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ABSTRACT 

 

SOLUTION OF THE ANTENNA PLACEMENT PROBLEM 

BY MEANS OF GLOBAL OPTIMIZATION TECHNIQUES 

 

Ural, Mustafa 

  M.Sc., Department of Electrical and Electronics Engineering 

  Supervisor: Prof. Dr. Mustafa Kuzuoğlu 

 

October 2010, 113 pages 

 
In this thesis work, minimization of platform-based coupling between the 

antennas of two VHF radios on an aircraft platform and two HF radios on a ship 

platform is aimed. For this purpose; an optimal antenna placement, which yields 

minimum average coupling between the antennas over the whole frequency band 

of operation is determined for each platform. Two important global optimization 

techniques, namely Genetic Algorithm Optimization and Particle Swarm 

Optimization, are used in determination of these optimal antenna placements. 

Aircraft & ship platforms and antennas placed on them are modeled based on their 

real electrical and physical properties in CST – MWS (Microwave Studio) 

simulation tool. For each platform, antenna placements and coupling results 

determined by two different optimization techniques and performances of these 

optimization techniques are compared with each other. At the end of this thesis 

work; for each platform, far-field radiation pattern performances of the antennas 

at their optimal places are analyzed in terms of directivity and coverage. 

 

Keywords: Genetic Algorithm Optimization, Particle Swarm Optimization, 

Antenna Placement Analysis 
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ÖZ 

 

 ANTEN YERLEŞTİRME PROBLEMİNİN 

 TÜMEL OPTİMİZASYON YÖNTEMLERİ İLE ÇÖZÜMLENMESİ  

 

Ural, Mustafa 

  Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

  Tez Yöneticisi: Prof. Dr. Mustafa Kuzuoğlu 

 
Ekim 2010, 113 sayfa 

 

Bu çalışmada, uçak platformuna yerleştirilecek iki VHF telsizin ve gemi 

platformuna yerleştirilecek iki HF telsizin antenlerinin, platform bazında birbirleri 

arasındaki bağlaşımının en aza indirgenmesi amaçlanmıştır. Bu amaçla, her iki 

platform için, antenler arası bağlaşım seviyelerinin çalışma bantları boyunca 

alınan ortalamalarının en az olduğu anten yerleşimi tespit edilmiştir. Bu optimal 

yerleşimin tespitinde, iki önemli tümel optimizasyon yöntemi olan Genetik 

Algoritma Optimizasyonu ve Parçacık Sürüsü Optimizasyonu kullanılmıştır. 

Uçak, gemi platformları ve bu platformlara ait antenler, platformların ve 

antenlerin gerçek fiziksel ve elektriksel özellikleri temel alınarak CST – MWS 

(Microwave Studio) simülasyon aracında modellenmiştir. Her iki platform için 

farklı optimizasyon yöntemleri kullanılarak tespit edilen anten yerleşimleri, 

bağlaşım sonuçları ve bu iki optimizasyon yönteminin performansları birbirleri ile 

karşılaştırılmıştır. En nihayetinde, her iki platform için de ortalama bağlaşımın en 

az olduğu anten yerleşiminde, antenlerin uzak alan ışıma örüntüsü, kapsama ve 

yönlülük değerleri açısından incelenmiştir. 

 

Anahtar Kelimeler: Genetik Algoritma Optimizasyonu, Parçacık Sürüsü 

Optimizasyonu, Anten Yerleşim Analizi 
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CHAPTER 1 

 

1 INTRODUCTION 

 

 

Communication requirements of today’s modern aircraft and ship platforms are 

broad and diverse [1]. For that reason, they are equipped with various systems 

each of which takes a particular role in communication. These systems have 

similar RF characteristics and have many antennas operating at the same time in 

overlapping frequency bands. In such a case; there is a potential risk of platform-

based system-to-system electromagnetic interference because of antenna-to-

antenna coupling. System-to-system interference may degrade the operational 

performance of the systems or damage the sensitive RF circuitry of these systems. 

One of the important steps followed in the design stages of aircraft and ship 

platforms before appealing filtering, blanking and etc., is determining an optimal 

antenna placement yielding minimum coupling between antennas that operate at 

the same time in overlapping frequency bands. 

 

Antenna-to-antenna coupling can be calculated by various electromagnetic 

analysis tools easily. In spite of this simplicity, the geometrical structures of the 

platforms change and become more complex gradually, which make it difficult to 

determine an optimal antenna placement by trial and error or based on past 

experiences. For this reason, determining the optimal antenna placement can be 

considered as an “optimization problem” and this problem can be solved by global 

optimization techniques effectively. 
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In electromagnetics, two important global optimization techniques, namely 

genetic algorithm optimization and particle swarm optimization are mostly used 

for the optimization of antenna, antenna array and RF component design, and 

optimization of radar cross section problems. Besides, there are studies in which 

genetic algorithm optimization is also used for the optimization of antenna 

placement. On the other hand, there is no considerable study in the literature in 

which the particle swarm optimization is used for the optimization of antenna 

placement problem. 

 

In the study conducted by Kooper and Wood, genetic algorithm optimization is 

used for minimization of antenna-to-antenna coupling between VHF antennas on 

Boeing 747-200 aircraft [2]. Rather than a real aircraft model, a simple and 

smaller right circular cylinder is used for modeling the whole fuselage of the 

aircraft where antennas are mounted. By using Uniform Theory of Diffraction, 

coupling between the antennas and radiation pattern of the antennas are 

formulated analytically. The fitness function (function to be optimized) includes 

the coupling between the antennas and the scaled radiation patterns of the 

antennas as polar plots at certain frequencies. At the end, optimal antenna 

placements yielding minimum coupling and best two-dimensional radiation 

pattern performance are determined at distinct frequencies. 

 

In another study performed by Aydemir, Günel and Üstüner optimization of 

coupling between two VHF-UHF antennas of F-4 Phantom aircraft by genetic 

algorithm optimization is aimed [3]. Aircraft is modeled based on its real physical 

properties. The fitness function includes coupling between the antennas calculated 

by Method of Moments method at three distinct frequencies. Different from the 

study of Kooper and Wood, radiation pattern performances of the antennas are not 

considered in the fitness function. Finally, optimal antenna placement yielding 

minimum coupling between the antennas at three distinct frequencies is 

determined. 
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In the study of Suh, Lee, and Kim genetic algorithm is used for minimization of 

coupling between two ship board antennas [4]. Rather than a realistic ship model, 

a smaller and simpler ship model is used in the analyses. By using the 

combination of Method of Moments and Green’s Function method, coupling 

between the antennas is calculated at a single frequency. One antenna is kept 

stationary and, position and angle of other antenna are changed during 

optimization process. At the end, optimal antenna placement yielding minimum 

coupling at a single frequency is obtained. 

 

Moreover, genetic algorithm optimization is used by Barney, Knapil and Haupt in 

order to optimize the radiation pattern performance of a monopole antenna on a 

ship platform [5]. Rather than a realistic ship model, a very simple model 

constructed from basic geometric structures is used. In the analyses, minimum 

value of the directivity of the monopole antenna at a certain cross section and at a 

single frequency is tried to be maximized.  

 

In this thesis work: 

 

• Coupling between the antennas of two VHF radios on an aircraft platform 

and two HF radios on a ship platform is minimized by determining an 

optimal antenna placement, which yields minimum average coupling 

between the antennas over the whole frequency band of operation for each 

platform.  

 

• Genetic Algorithm Optimization and Particle Swarm Optimization are 

used in determination of these optimal antenna placements.  
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• Transient Solver of CST – MWS, which is based on Finite Integration 

Technique, is used in optimization of coupling between the antennas and 

in analyses of far-field ration patterns of the antennas. 

 

• Aircraft and ship platforms are modeled based on the real physical 

dimensions and geometrical structures of F-4 Aircraft in Turkish Air Force 

Inventory and Patrol Boat in Turkish Naval Force Inventory respectively. 

 

• For each platform, optimal antenna placements and coupling results 

determined by two different optimization techniques and performances of 

these optimization techniques are compared with each other.  

 

• At the end of this thesis work; for each platform, far-field radiation pattern 

performances of the antennas at their optimal places are analyzed in terms 

of directivity and coverage. 

 

Excluding introduction and conclusion parts, this thesis work consists of six 

chapters, each of which follows one another in a continual manner. In Chapter 2; 

first, “optimization” concept and terminology are introduced; then, features of 

local and global optimization techniques are given and compared with each other. 

Finally, detailed theory of two global optimization techniques used in this thesis 

work, namely “genetic algorithm optimization” and “particle swarm optimization” 

are explained. In Chapter 3, simulation tool, Computer Simulation Technology – 

Microwave Studio (CST – MWS), used for the simulations of antenna placement 

and far-field radiation pattern analysis is briefly introduced. Chapter 4 details the 

steps followed in modeling of the platforms and their antennas in CST – MWS. In 

Chapter 5, the search spaces of antennas on the platforms are explained and 

illustrated in details. In Chapter 6, optimal antenna placements and coupling 

results determined by two different optimization techniques and performances of 

these optimization techniques are compared with each other for each platform. In 
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Chapter 7, far-field radiation pattern performances of the antennas located at their 

optimal placements are analyzed in terms of directivity and coverage. Finally; in 

the last chapter, all conclusions obtained in this thesis work are summarized and 

further studies which can improve or extend the accomplishments of this thesis 

work are discussed. 
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CHAPTER 2 

 

2 GLOBAL OPTIMIZATION TECHNIQUES: 

GENETIC ALGORITHM OPTIMIZATION AND 

PARTICLE SWARM OPTIMIZATION 

 

 

Optimization simply means finding a “better” solution to a problem. It is the 

process of adjusting inputs of a phenomenon to obtain a desirable output. Most of 

the real-life problems are optimization problems, indeed. Scientists, engineers, 

manufacturers, financiers and even sociologists consult with different types of 

optimization techniques in order to obtain efficient solutions to their problems. 

 

In mathematics, optimization deals with seeking for the minima or maxima of a 

function within a search space. In order to gain insight about the optimization 

concept in mathematics; first & second derivatives test, which is a famous and a 

simple optimization technique used in mathematics, can be examined. In this test, 

the object is to determine the extreme points (minima and maxima) of a function 

over its search space. This simple optimization problem can be represented with 

an example; where the sample function, ( )xf , to be optimized is depicted in 

Figure 2.1. In this example; the function ( )xf  is assumed to be a one-variable, 

real valued, continuous and differentiable function, whose minima and maxima 

will be determined in the interval [ ]bax ,∈ . Here, ( )xf  is called “the objective or 

fitness or cost function”. It is important to note that, fitness is something to be 

maximized and cost is something to be minimized. In optimization terminology, 
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both “to maximize the fitness” and “to minimize the cost” wordings refer to the 

same meaning which is “to optimize the objective function” [6].  

 

In this example, [ ]ba,  is called “the search space”. Solution to an optimization 

problem is searched over the search space. Boundaries of the search space are 

directly related with bounds on variables of the optimization problem. If there is 

no specification for the variables then the problem is called “unconstrained” 

optimization problem. For example, an unconstrained minimization problem can 

be defined as: 

 

minimize )2cos(1020 2 xx π−+  (2.1) 

 

On the other hand, if the variables have equality and/or inequality constraints on 

them, then the problem becomes a “constrained” optimization problem. For 

example; the previous unconstrained optimization problem can be transformed to 

a constrained one by introducing an inequality constraint on the variable such as: 

 

minimize )2cos(1020 2 xx π−+ , where 10 2 <≤ x  (2.2) 

 

Since the minima and maxima of ( )xf  will be determined in the interval 

[ ]bax ,∈ , this problem is a constrained optimization problem. 

 

During the first & second derivatives test; initially, first derivative of the function 

is set to zero and extreme points satisfying this equation are extracted. Secondly, 

values of second derivative of ( )xf  at those extreme points are checked whether 

they are greater or smaller than zero. If the value of second derivative is greater 

than zero at an extreme point, then that extreme point is a “minimum”, and 

conversely if the value of second derivative is less than zero at an extreme point, 

then that extreme point is a “maximum”. If the value of ( )xf  at a maximum is 
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greater than the values of ( )xf  at other maxima, then this maximum is called “the 

global maximum” and each of the other maxima is called “the local maximum”. 

Similar relationship also exists between “local minimum” and “global minimum”. 

Namely, if the value of ( )xf  at a minimum is less than the values of ( )xf  at 

other minima, then this minimum is called “global minimum” and each of the 

other minima is called “the local minimum” (Figure 2.1). 

 

 

 
 

Figure 2.1 Extreme points of function ( )xf  for [ ]bax ,∈  

 

 

As in the example above, there may be both local and global solutions to an 

optimization problem. Similarly, optimization techniques can also be classified as 

local and global optimization techniques depending on their search strategies for 

extreme points.  

 

( )xf  

x  

x=a x=b 

global maximum 

global minimum 

local maximum 

local minimum 
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Local optimization techniques start searching an extreme point with an initial 

solution which is chosen randomly or systematically, and iteratively generate new 

solutions “within the neighborhood” of previous solutions. “A single” neighboring 

solution is generated at each iteration by “neighbor function” where the search 

strategy of the optimization is embedded in [7]. This optimization process 

continues until stopping criterion is reached. 

 

Well-known local optimization techniques, which are also provided by CST– 

MWS, are the Quasi Newton, the Powell and the Nelder-Mead Simplex 

optimization techniques. The Quasi Newton optimizer requires approximated 

gradient information and the Powell optimizer requires partial derivative 

information to determine a search direction and to generate new solution at each 

iteration [8]. The Nelder-Mead Simplex optimizer does not need any gradient 

information to determine a search direction. Instead it uses a geometrical structure 

called “simplex” which adapts itself to the neighborhood, and focuses iteratively 

on to the extreme point [8], [9]. In addition to techniques specified above, there 

are many other local optimization techniques applied for the solution of 

optimization problems. 

 

Local optimization techniques do not guarantee to find the global optimum. These 

techniques may be effective and computationally compact for smooth problems 

where global solution is not the prime concern [9]. However; these techniques 

generally are very sensitive to the choice of the initial point in the search space. If 

the initial point is not chosen close to the extreme point and the objective function 

is not plain, then even convergence to a local extreme point will not be easy. 

 

On the other hand, global optimization techniques are preferable when the 

objective function is complex (not easily differentiable and/or having multiple 

extreme points) and pre-estimation of initial solution can not be easily made over 

a wide search space [8]. These techniques seek for the “best” solution to a 
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problem among all possible good solutions. They generally follow population-

based search strategy. Therefore, they start searching by generating an initial 

population rather than a single solution as in the case of local optimization [10]. 

Then, they iteratively generate new populations by making use of the fitness 

values of the elements of previous populations. Elements of the populations are 

generated not only within the neighborhood of the previous solution, but also 

among whole search space. At each iteration, elements of the population move 

toward more optimal solutions and optimization stops when a stopping criterion is 

achieved like it happens in local optimization [11]. 

 

Global optimization techniques are classified into many classes according to their 

methods of operation. Throughout this thesis work, two of the well-known nature-

inspired (also called bio-inspired) global optimization techniques, “genetic 

algorithm optimization” and “particle swarm optimization”, were used in order to 

minimize antenna-to-antenna coupling on aircraft and ship. Both of the techniques 

are population-based optimization algorithms representing the processes in nature 

which are successful at optimizing natural phenomena [11]. These optimization 

techniques are explained in detail in Sections 2.1 and 2.2 respectively. 

 

Besides local and global optimization, optimization techniques can be categorized 

into many branches like unconstrained and constrained optimization (Equations 

2.1 and 2.2), single and multi variable optimization, single and multi objective 

optimization and etc. Nevertheless, none of these branches are mutually exclusive. 

 

2.1 Genetic Algorithm Optimization 

 

Nature’s perfect balance and strong capability of optimization of natural 

phenomena have been source of inspiration for scientists in solving hard technical 
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optimization problems. Thus, they developed many natural (nature-inspired) 

optimization techniques which imitate the optimization processes in nature. 

 

One of the famous natural optimization techniques is the genetic algorithm 

optimization (which is also called “genetic algorithm” in short). The genetic 

algorithm is a member of the larger class of “evolutionary algorithms” and it 

searches for global optimum by using techniques derived from principles of 

genetics, natural selection and evolution [11]. The genetic algorithm was 

developed in 1975 by John Holland who is an American scientist and Professor of 

Psychology and Professor of Electrical Engineering and Computer Science at the 

University of Michigan, Ann Arbor. In his book “Adaptation in natural and 

artificial systems”, he described how to apply the principles of natural selection 

and evolution, theory of Charles Darwin, and the principles of genetics to real-life 

optimization problems [12]. Holland’s idea has been further developed and 

popularized by one of his students, David Goldberg, who used genetic algorithm 

to solve a pipeline optimization problem in 1989 [13]. Nowadays; thanks to the 

computer technology, genetic algorithm stands as a powerful tool for solving 

global optimization problems. This algorithm can be used for the solution of 

optimization problems that are not suitable for standard optimization algorithms, 

including problems in which the objective function is discontinuous, non-

differentiable, stochastic, or highly nonlinear [14]. 

 

2.1.1 Theory of Operation 

 

Individuals and operators used for searching the global optimum in genetic 

algorithm are analogous with individuals and operators in genetics [11]. Since the 

genetic algorithm is a population based global search algorithm, it starts searching 

the global optimum by generating an initial population which is composed of 

many individuals called “chromosomes”. Each chromosome is considered as a 

candidate for the optimal solution. Then, the algorithm evaluates the “fitness” of 
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each chromosome and “selects” the fitter ones by a special selection strategy to 

use them in creation of the next generation. A part of the selected chromosomes is 

directly transferred to the next generation without any change. These 

chromosomes are called “elite” chromosomes. The other part of the selected 

individuals is first used in “crossover” (mating) and then in “mutation” operations 

for creation of new individuals for the next generation. According to Holland; 

individuals of the newer generations, generated by utilizing specific rules of 

genetics like “elitism”, “crossover” and “mutation” on current population, are 

supposed to be fitter than their parents [12]. At the end, fitness of each individual 

in the new generation is evaluated and stopping criterion is checked. If stopping 

criterion is met algorithm stops. If not, then the algorithm continues to “select” 

individuals to use them as parents for the next generation. Flowchart of elitist 

genetic algorithm optimization is shown in Figure 2.2. 

 

2.1.2 Chromosomes 

 

Basic elements of the genetic algorithm are individuals called “chromosomes”. 

Populations are composed of these basic elements. Each chromosome is a solution 

to the optimization problem. Main aim of the algorithm is to find a chromosome 

(solution) which optimizes the objective (fitness or cost) function. If the objective 

function has varn  variables (if optimization problem is varn - dimensional) then the 

chromosome is defined as an array of varn  variables. For example; for an 

optimization problem with an objective function f having two variables of x and y 

( varn  = 2), belonging to set of real numbers, the chromosome can be defined as a 

21×  row vector such as [11]: 

 

chromosome = [ ]yx,  where x, y ℜ∈   (2.3) 
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Figure 2.2 Flowchart of elitist genetic algorithm optimization 
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Fitness value of the chromosome is determined by evaluating it in objective 

(fitness) function. 

 

fitness of chromosome = ( )chromosomef  = ( )yxf ,   (2.4) 

  

In most of the optimization problems and in the antenna placement problem 

solved by genetic algorithm throughout this thesis; variables of chromosomes, and 

hence the search space are defined as real numbers. However; according to type of 

optimization problem; these variables can also be characters, descriptive words 

and etc. For example, in order to solve Traveling Salesman Problem, which is a 

famous optimization problem in computer science, by genetic algorithm; variables 

are defined as an array of city names. In this problem, the aim is to find the 

shortest possible tour of n cities, that salesman visits each city no more than once 

[6]. If this problem is adapted to Turkey for cities İstanbul, Ankara, İzmir and 

Adana (n = 4), then the optimization variables can be defined such as: 

 

1tourchromosome = [Ankara, İstanbul, İzmir, Adana]  (2.5) 

 

2tourchromosome = [Ankara, İzmir, İstanbul, Adana]  (2.6) 

 

1tourchromosome  and 2tourchromosome  are depicted in Figure 2.3 and Figure 2.4. 
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Figure 2.3 1tourchromosome  

 

 

 
 

Figure 2.4 2tourchromosome  

 

 

According to paths given in Figure 2.3 and Figure 2.4, fitness values of 

1tourchromosome  and 2tourchromosome  are evaluated as: 

 

fitness of 1tourchromosome  = 454 km + 565 km + 898 km + 489 km  (2.7) 

                                           = 2406 km 

fitness of 2tourchromosome  = 582 km + 565 km + 939 km + 489 km  (2.8) 

                                           = 2575 km 



 

 
 

16 
 

It is important to note that since this is a minimization problem, 1tourchromosome is 

fitter than 2tourchromosome . 

 

2.1.3 Encoding of Chromosomes (Phenotype-to-Genotype Encoding) 

 

In genetic algorithm terminology; a chromosome is also called “phenotype” and 

the search space is also called “phenome” [15]. Selection operation is done based 

on fitness values of phenotypes. However; in order to do crossover and mutation 

operations on phenotypes, they should be encoded by binary arrays. The genetic 

representation of a phenotype formed after encoding is called “genotype”. In 

binary encoding of a phenotype to a genotype, each variable of the phenotype is 

assigned to a unique bit string of a certain length called “gene”. The bounds 

(constraints) of variables also apply to genes. The space in between lower and 

upper bounds of variables are divided into intervals that are represented 

genetically by gene’s bit string. If the length of bit string of a gene is bitsn , then 

space in between lower and upper bounds of a variable can be divided into  

12 −bitsn  intervals each of whose size is 
( )

12 −
−

bitsn

boundlowerboundupper
 [6].  

 

For example, for the constrained optimization problem given in Equation 2.9, 

space in between lower and upper bounds of each variable can be divided into 3 

intervals if length of bit string of a gene, bitsn , is chosen as 2. Phenotype-to-

genotype encoding of the search space of this optimization problem for bitsn = 2 is 

depicted in Figure 2.5. 

 

minimize ( )yxf ,  where x, y ℜ∈  and bxa ≤≤ , dyc ≤≤  (2.9) 
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Figure 2.5 Phenotype-to-genotype encoding of ( )yxf ,  

 

 

Genes which, in pair, form genotypes and corresponding variables which, in pair, 

form phenotypes are listed in Table 2.1.  

 

For instance, according to this table:  

 

• ( )dachromosome ,  is genetically represented by   )11,00(
ygenexgene

chromosome
−−

, 

• ( )dbchromosome ,  is genetically represented by   )11,11(
ygenexgene

chromosome
−−

 

and etc. 

 

0 0 
 

0 1 
 

1 0 
 

1 1 
 

122 −
− ab  

a  b  x  

122 −
− cd  
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0 1 
 

1 0 
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Table 2.1 Phenotype-to-genotype encoding of ( )yxf ,  

 
variable-x 

(phenotype) 

gene-x 

(genotype) 

variable-y 

(phenotype) 

gene-y 

(genotype) 

a 00 c 00 

a+
122 −

− ab  01 c + 
122 −

− cd  01 

a+ 







−
−

×
12

2 2

ab  10 c + 







−
−

×
12

2 2

cd  10 

a+ bab
=








−
−

×
12

3 2  11 c + dcd
=








−
−

×
12

3 2  11 

 

 

In this example, each continuous variable space (i.e. bxa ≤≤  and dyc ≤≤ ) is 

encoded by 422 2 ==bitsn  discrete genes. Therefore, two-variable continuous 

search space is represented genetically by sixteen ( 164422 =×=× bitsbits nn ) 

discrete genotypes. Since the continuous search space is converted into an 

equivalent discrete space, there may occur “encoding error” (or discretization 

error) while encoding a phenotype to a genotype. For example, according to 

Figure 2.5, any x-value ( 1x ) falling between a and 
122 −

−
+

aba , firstly is assigned to 

a (the lowest value of that interval) or to 
122 −

−
+

aba  (the highest value of that 

interval) and then encoded to its corresponding gene according to Table 2.1. 

Encoding error for 1x  is evaluated as  ax −1  or 
1221 −

−
+−

abax . It is important to 

note that, if the length of bit string of a gene, bitsn , is increased,  the space in 

between lower and upper bounds of variables will be represented by more genes. 
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Moreover, increasing the number of bits of a gene would increase the number of 

intervals and reduce the size of intervals and hence “encoding error” [11]. 

 

2.1.4 Initial Population 

 

Initial population is created so that all possible solutions in the search space are 

presented in. Except cases where it is possible to make a strong initial estimation 

for the location of optimal solution over the search space, initial population is 

created “randomly” [6]. Throughout this thesis work, two different random 

creation functions which are based on “uniform random distribution” and “Latin 

hypercube distribution” are used for the generation of initial population for 

genetic algorithm optimization problems. In Latin hypercube distribution 

technique; if the number of individuals in the population is popn  and the number 

of variables is varn , then the search space is divided into varn -dimensional, 

( ) varn
popn  identical sections. For instance; for two-dimensional search space case, 

search space is divided into ( )2popn  identical sections which are in the form of 

squares. These square sections form rows and columns, and individuals are 

created such that there is only one individual in each row and each column. 

Similar procedure applies for search spaces having dimensions more than two. On 

the other hand, in uniform random distribution technique, there is no division of 

search space into intervals. In this distribution technique, the only criterion is that; 

each point in the search space has same probability to be chosen as a solution [8]. 

An example showing the differences between two distribution techniques are 

shown in Figure 2.6. 
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Figure 2.6 Latin hypercube distribution (on the left) and uniform random 

distribution (on the right) [16] 

 

 

Size of the population also is an important parameter to sample the solution space 

effectively. If the size of the population increases, it becomes easier to explore 

whole search space and to converge to the optimal solution. However; time 

required to converge to the optimal point, memory used, cost of genetic algorithm 

also increase with the size of the population. Population size of around 100 

individuals is generally used in genetic algorithms, but this size can be changed 

according to time, cost and memory limit of the algorithm [6]. 

 

2.1.5 Selection, Crossover and Mutation 

 

As previously stated in the beginning of this section; after creation of initial 

population, the genetic algorithm uses three main types of operations (selection, 

crossover and mutation) at each iteration in order to create the next generation 

from the current population. Creation of initial population, selection of 

individuals, crossover and mutation operations all have “randomness” property 

where the power of genetic algorithm in finding global optimum comes from.  
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2.1.5.1 Selection 

 

Selection is a process of choosing a group of individuals from current population 

in order to use them as “parents” for the next generation. This operation is a 

random process which selects individuals based on their fitness values. According 

to Holland [12], who used “survival of the fittest” principle of Darwin as a 

baseline of genetic algorithm, parents which have higher fitness values will 

produce fitter children; and these children will evolve to better states through 

iterations. Therefore, Holland states that the next generation should be composed 

of the fitter parents and their children. Moreover, the parents who have lower 

fitness values should be discarded from the population. As a result; in selection 

operation, fitter individuals have higher chance to be selected as parents for the 

next generations.   

 

According to selection strategy used throughout this thesis, half of the population 

which is composed of the fittest individuals is “directly transferred” to the next 

generation as parents. This operation is called “elitism” and used in order to 

prevent loss of fitter individuals (loss of healthy data) during crossover and 

mutation operations. The individuals in the other half, which will be involved in 

crossover and mutation operations, are selected by “tournament selection 

technique”. According to this technique, a small group of chromosomes is 

randomly selected from the current population and a tournament is made among 

that group. The chromosome with the highest fitness value wins the tournament at 

that group and selected as a parent. Tournament selections continue until desired 

number of parents is created [11]. Figure 2.7 depicts an example showing the 

tournament selection technique. According to Figure 2.7; at each tournament, 

three individuals are picked from the current population of eight individuals out 

and fitness values of these individuals are compared with each other. Among three 

individuals, the one with the highest fitness value is the winner of that tournament 
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and is selected as a parent. Since the current population is composed of eight 

individuals, total number of eight tournaments is done in order to select eight 

parents. 

 

The other well-known selection techniques are “roulette-wheel selection”, “rank 

selection” and “random selection”. Roulette wheel selection technique selects 

individuals based upon their fitness values relative to the fitness of the other 

individuals in the population. Rank selection technique sorts the individuals 

according to their fitness values and selects them based on their rank in the 

population [6]. Random selection technique is very easy to implement since it just 

randomly selects the individuals from the current population. 

 

 

 
 

Figure 2.7 Tournament selection technique 
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2.1.5.2 Crossover 

 

After fitter individuals are selected; a part of them, excluding elite members, are 

mated to create children (new individuals) for the next generation. The fraction of 

selected individuals to which crossover will be applied is determined by 

“crossover rate” or “crossover probability”. If crossover rate is too high, fitter 

parents may be lost during crossover operation. On the other hand, if crossover 

rate is too low, sufficient number of new offspring can not be produced so that 

convergence to the optimal solution may be slow [11]. Typically crossover 

probability between 0.6 and 0.8 is found to work best in most optimization 

problems [17]. In CST– MWS crossover rate is adopted according to the structure 

of individuals at each iteration.  

Three well-known crossover techniques are “single-point crossover”, “two-point 

crossover”, “uniform random crossover”. Generally, two individuals are mated in 

each of these crossover techniques. According to the single and two-point 

crossover techniques, a part of genetic information (binary code) of the first 

individual (genotype) is transferred to the second individual and in a like manner 

a part of genetic information of the second individual is transferred to the first 

individual. In single-point crossover technique, binary chromosomes are split into 

two arrays at the same crossover points and arrays after these points are 

exchanged. In two-point crossover technique, two crossover points are determined 

and the array between these points is exchanged between two parents. Examples 

showing the bit transfer mechanisms of these two techniques are depicted in 

Figure 2.8 and Figure 2.9 [6]. 

 

 



 

 
 

24 
 

 
 

Figure 2.8 Single-point crossover technique 

 

 

 
 

Figure 2.9 Two-point crossover technique 
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Uniform random crossover technique, which is used throughout this thesis, creates 

offspring by interchanging the bits of the parents using a randomly generated 

binary “crossover mask” of the same length with the parents. This mask 

determines the bits which will be interchanged between parents and is created 

randomly such that the bits of the parents generally have a probability of 0.5 to be 

interchanged. In crossover mask, “ones” mean that the corresponding bits will be 

interchanged between parents and “zeros” mean that bits will not be interchanged. 

After interchanging operation is completed, two new children are generated from 

two parents. An example showing the interchange mechanism of this technique is 

depicted in Figure 2.10. 

 

 

 
 

Figure 2.10 Uniform random crossover technique 
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converging to a local optimum before exploring the entire search space, mutation 

operation is done over a fraction of individuals in the population [6]. In mutation 

operation, a part of the binary chromosome is altered randomly so that a new 

chromosome with a totally different genetic structure is created. By this way, 

diversity in the population is maintained and new solutions that are not present in 

the genetic makeup of the population after crossover are explored. A graphical 

example showing how mutation works for one-dimensional problem space is 

given in Figure 2.11.  

 

 

 
 

Figure 2.11 Mutation operation in one-dimensional search space 

 

 

In CST – MWS, mutation is performed with a predefined mutation rate on the 

individuals who have very similar genetic characteristics. Mutation rate specifies 

the probability that a mutation occurs on one of the similar individuals.  
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mutation procedures to create a new child from a parent. In flipping technique, a 

“mutation mask” is generated and bits of the individual are changed according to 

that mask. In mutation mask, “ones” mean that the corresponding bits will be 

reversed and “zeros” mean that those bits will not be changed. In interchanging 

technique, two bits in the binary individual are chosen randomly and 

interchanged. In this technique, if the bits chosen are same then the individual 

remains unchanged. Finally, in reversing technique; a reversing point is chosen 

and the bits next to that point are reversed. Examples showing these three 

mutation techniques are depicted in Figure 2.12, Figure 2.13 and Figure 2.14. 

 

 

 
 

Figure 2.12 Mutation by using flipping technique 

 

 

 
 

Figure 2.13 Mutation by using interchanging technique 
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Figure 2.14 Mutation by using reversing technique 

 

 

Elitism, crossover and mutation operations are illustrated in Figure 2.15.  

 

 

 
 

Figure 2.15 Elitism, crossover and mutation in genetic algorithm [14] 
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2.1.6 Stopping Criterion 

 

At each iteration; after a new generation is created, stopping criterion of the 

algorithm is checked. If stopping criterion is met, algorithm stops. If not, then the 

algorithm continues to “select” individuals for the creation of the next generation. 

In CST –  MWS, the algorithm stops when the fitness value of the best individual 

in the population reaches the limit specified as a target in the beginning or 

maximum number of iterations is reached [8]. 

 

2.2 Particle Swarm Optimization 

 

The other famous global optimization technique used throughout this thesis work 

is the particle swarm optimization which is inspired by social behavior of 

“swarms” in the nature. The swarms like bird flock and fish school are very 

successful in finding food in nature [18]. They are in continuous interaction with 

each other while searching for food in a large area.  Each bird or fish tells the 

location and quantity of the food that it found to the others. Thus, by taking into 

account the location and quantity data from each member of the swarm, whole 

swarm tends towards the optimum location where maximum amount of food is 

present. Particle swarm optimization technique searches for the global optimum 

by using the techniques derived from the social interaction in the swarms while 

searching for food.   

 

The particle swarm optimization technique was first introduced in 1995 by James 

Kennedy, who is a social psychologist; and by Russell Eberhart, who is an 

electrical engineer. In their articles “Particle Swarm Optimization” and “A new 

optimizer using particle swarm theory”, they described the stages of development 

of their technique from a social study of swarms to an optimizer [18], [19]. They 

also discussed the basic concepts of this technique and the results obtained from 
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applications upon which their technique performed successfully. Particle swarm 

optimization technique has been further developed by many researchers and has 

undergone many changes since its introduction in 1995. According to Kennedy 

and Eberhart, particle swarm optimization can be used in solution of nonlinear 

global optimization problems effectively. Moreover, it has a very simple concept 

and can be implemented by using primitive mathematical operators which make 

the technique computationally inexpensive in terms of both memory and speed 

requirements [18], [19]. 

 

2.2.1 Theory of Operation 

 

Particle swarm optimization, like genetic algorithm, is a population based global 

search technique. It starts searching the global optimum by generating an initial 

swarm which is composed of many individuals called “particles” and converge to 

the global optimum iteratively. Each particle in the swarm is considered as a 

potential solution for the optimization problem. In contrast to what happens in 

genetic algorithm, the particles are not encoded by binary arrays. Instead, they are 

represented by “position" and “velocity” vectors. Particles iteratively change their 

positions (fly) among the search space and seek for the optimum solution. At each 

iteration, position of the particle is updated according to its velocity vector. 

Besides; at each iteration, the velocity vector of a particle is updated according to 

“previous best position of that particle” and “previous best position of the 

swarm”. By this way, particles are in continuous interaction with each other and 

determine their movements according to their best and swarm’s best performance. 

At the end of each iteration, fitness values of particles are evaluated and stopping 

criterion is checked. If stopping criterion is met optimization process stops. If not; 

first, the velocity vectors of the particles and then, the position vectors of them are 

updated. Movement of the particles among the search space is continued until 

stopping criterion is met. Flowchart of a basic particle swarm optimization is 

shown in Figure 2.16. 
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Figure 2.16 Flowchart of a basic particle swarm optimization 
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2.2.2 Particles, Velocity & Position Vectors 

 

Basic elements of the particle swarm optimization are individuals called 

“particles”. Particles are potential solutions to the optimization problem and 

change their positions on the search space iteration by iteration in order to find a 

solution which optimizes the objective function. Unlike the genetic algorithm, 

particle swarm optimization has no genetic operators like crossover and mutation. 

Therefore, the particles do not need to be encoded into a special format.  

 

Instead, each particle is represented by a “position” and a “velocity” vector at any 

iteration. These vectors are defined with respect to origin of the search space. If 

the objective function has varn variables (
var

,...,, 21 nxxx ) and the swarm has popn  

particles; then, the position and velocity vectors of ith particle at the kth iteration 

can be defined as: 

 

position vector: k
nix

k
ix

k
ix

k
i xaxaxax

n varvar21 ,2,1, ˆ...ˆˆ +++=
   (2.10) 

 

velocity vector: k
nix

k
ix

k
ix

k
i vavavav

n varvar21 ,2,1, ˆ...ˆˆ +++=
  (2.11) 

 

where,  

 

k stands for the iteration number, 

i stands for the rank of the particle in the swarm and popni ...,,3,2,1=   

var21
ˆ...,,ˆ,ˆ

nxxx aaa are unit vectors in the direction of variable axes. 
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Fitness of a particle at the kth iteration is determined by evaluating its value in the 

objective function at its current position. 

 

Fitness value of ith particle = ( )k
ixf   = ( )

var,2,1, ,...,, niii xxxf  (2.12) 

 

In most of the optimization problems and in the antenna placement problem 

solved by particle swarm optimization throughout this thesis; variables of 

particles, and hence the search space are defined as real numbers. However; 

according to the type optimization problem; these variables can also be characters, 

descriptive words and etc. In previous section, there is an example in where 

genetic algorithm is used for the solution of Traveling Salesman Problem. In this 

example, variables are city names therefore; chromosomes are defined as arrays of 

city names. Similarly, this problem can be solved by particle swarm optimization 

by defining the particles as arrays of city names. 

 

2.2.3 Initial Swarm 

 

In particle swarm optimization, initial swarm is created so that whole search space 

is sampled as uniformly as possible. Unless a strong initial estimation for the 

location of optimal solution over the search space can be made, position and 

velocity vectors of initial swarm are created “randomly”. Throughout this thesis 

work, two different random creation functions are used for the generation of 

initial swarm for particle swarm optimization problems. These functions are based 

on “uniform random distribution” and “Latin hypercube distribution” techniques, 

which are explained in details in the previous section. 

 

Size of the swarm also is an important parameter for sampling the solution space 

effectively. It is determined according to the dimension and difficulty of the 
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problem. Swarm size in the range 20 to 50 particles are generally used in particle 

swarm optimization problems [20] 

 

2.2.4 Updating velocity & position vectors 

 

In particle swarm optimization, each particle changes its position on the search 

space according to: 

 

• its current position (inertial part) 

• its previous best performance (cognitive part) 

• previous best performance of the whole swarm (social part) [21], [22], 

[23]. 

 

At each iteration, velocity and position vectors of a particle are updated according 

to Equation 2.13 and Equation 2.14 respectively. 

 


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22,11
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i

k
i vxx   (2.14) 

 

Right side of Equation 2.13 consists of three parts. First part, which is called the 

“inertial part” [20], is the contribution of ith particle’s previous velocity ( k
iv ) to its 

next velocity ( 1+k
iv ). In this part, ω  is the inertia weight which helps the particle 

to keep its inertia while updating its velocity vector. ω  can be a positive constant 

number. In original particle swarm optimization which was introduced firstly in 

1995, ω  was set to be 1 [18]. Also, according to Shi and Eberhart [22], positive 

value of ω  can change linearly in time. 
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The second part; which is called the “cognitive part”, is the contribution of ith 

particle’s previous best experience and the third part; which is called the “social 

part”, is the contribution of swarm’s best experience in updating the current 

velocity vector of ith particle. According to Shi and Eberhart [22], the second part 

represents the private thinking of the particle itself and the third part represents 

the social interaction and collaboration among the particles.  

 

The previous best position of the ith particle (up to kth iteration) is recorded and 

represented as vector k
bestip ,

 . The position of the particle in the whole swarm 

which has the best fitness value (up to kth iteration) is recorded and represented as 

vector k
bestg . 1c  and 2c are positive constant numbers which are called “self 

confidence” and “swarm confidence” respectively [23]. krand1  and krand2  are 

random numbers uniformly distributed in the interval [0, 1]. These random 

numbers add stochasticity, which is an important property of particle swarm 

optimization algorithm in finding global optimum, to the vectors. 

 

In Equation 2.13, ( )k
i

k
besti xp 

−,  is the difference between particle’s previous best 

position vector and particle’s current position vector. Similarly, ( )k
i

k
best xg 

−  is the 

difference between swarm’s previous best position vector and particle’s current 

position vector. These difference vectors are weighted by krandc 11  and krandc 22  

respectively and added to the current velocity vector of the particle in order to 

update it. At the end, updated velocity vector in Equation 2.13, is added to current 

position vector and the current position vector is updated by this manner 

(Equation 2.14). This process is repeated for each particle at each iteration until 

the stopping criterion is met. An example, showing position update mechanism of 

particle swarm optimization algorithm (Equation 2.13 and 2.14) for two-

dimensional (x and y variables) search space, is illustrated in Figure 2.17. 
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Figure 2.17 Position update mechanism of particle swarm optimization 

 

 

In Equation 2.13, without the first part (while ω  = 0) the velocity vector of a 

particle will be updated only by particle’s previous best position and swarm’s best 

position. In this case, the particle having the current best fitness value will not 

move since ( )k
i

k
besti xp 

−,  and ( )k
i

k
besti xg 

−,  will be zero. With no inertial 

component, other particles move fast toward this current best position unless a 

better position is found on the way. Therefore, search space shrinks fast through 

the iterations and algorithm resembles a local search algorithm in which there is a 

possibility of premature convergence to a local optimum [22]. On the other hand, 

it is obvious that, without the second and the third parts and with a constantω , the 

velocity vector of a particle will not be updated and the particle will move on a 

straight line with its initial speed until it hits the boundary of the search space. 

Due to the type of the problem inertia weight, ω : 
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• may be a constant number 

• may decrease from a high value to a low value in time  

• may be chosen randomly from an interval in time 

• may be adopted by an external controller in time [20], [23]. 

 

1c  and 2c  are the parameters that determine the magnitude of random forces in the 

direction of particle’s and swarm’s previous best position vectors [20]. 

Magnitudes of 1c and 2c substantially affect the magnitude and direction of the 

velocity vector. They are usually chosen equal to each other and range from 0 to 4 

[23]. In earlier particle swarm optimization researches, 1c  and 2c  were chosen to 

be 2 but in recent works, a usual choice for 1c  and 2c  is 1.494 [20], [23]. 

 

The magnitude of the velocity vector, k
iv , is bounded by maxv  in order to damp 

the movement of the particle over the search space. Just as inertia weight, maxv  

may be a constant number or may differ due to the type of the problem. If maxv  is 

chosen too large, movements of particles at each iteration will be too large and 

particles will search for the solution far away from the global optima. Moreover, 

if maxv  is chosen too small, then there is a risk of the algorithm getting stuck in a 

local optima. The same as above also happens when 1c  and 2c  are chosen too 

large or too small [21]. 

 

Due to the optimization parameters used or due to the location of the global 

minimum, there is a possibility of some of the particles moving outside the search 

space, when their position vectors are updated. For example, if the location of the 

global optimum is near to the boundary of the search space and/or maxv  is chosen 

too large, this problem may arise. In order to prevent particles to search for the 

global optimum outside the search space, various “boundary conditions” are used. 

The boundary conditions currently used in literature are absorbing, reflecting, 



 

 
 

38 
 

invisible and damping boundary conditions [24]. These boundary conditions have 

different features to redirect the particles outside into the search space of interest 

and their performances are highly dependant on the type of the problem, size of 

the search space and location of the global optimum. 

 

It is important to note that if k
bestg  is defined not for the whole swarm but for the 

particles in the neighborhood, then the algorithm is called the “partial” particle 

swarm optimization algorithm. 

 

In CST – MWS, maxv  is chosen as a constant number according to the size of the 

search space. The other terms like ω , 1c and 2c are chosen quasi-randomly from 

predefined ranges during the optimization process. 
 

2.2.5 Stopping Criterion 

 

At each iteration; after a new swarm is created, stopping criterion of the algorithm 

is checked. If stopping criterion is met algorithm stops. If not, algorithm continues 

updating each particle’s velocity and position vectors. In CST – MWS the 

algorithm stops when the fitness value of the best individual in the population 

reaches the limit specified as a target in the beginning or maximum number of 

iterations is achieved [8]. 
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CHAPTER 3 

 

3 SIMULATION TOOL 

 

 

Throughout this thesis, Computer Simulation Technology – Microwave Studio 

(CST – MWS), which is a simulation module of CST Studio Suite, is used for the 

simulations of antenna placement and far-field radiation pattern analysis. CST 

Studio Suite is the main simulation software product of CST Company, which 

was founded in 1992 in Darmstadt, Germany, and which develops and markets 

software tools for the simulation of electromagnetic problems in all frequency 

bands [25].   

 

CST – MWS is a powerful three-dimensional electromagnetic simulation tool for 

the fast and accurate solutions of high frequency problems. It provides a solid 

modeling tool in where the components can be modeled with their real electrical 

and physical characteristics. It has ability to solve different types of 

electromagnetic problems by variety of different solvers operating in time and 

frequency domains. These solvers are Transient Solver, Frequency Domain 

Solver, Integral Equation Solver, Eigenmode Solver [26].  

 

In this thesis study Transient Solver of CST – MWS, which is adequate for 

antenna placement and far-field radiation pattern analysis, is used. Main 

advantage of Transient Solver is that the entire broadband frequency behavior of 

the simulated problem can be obtained from only one calculation run. By this way 

broadband coupling between the antennas of aircraft and ship platforms were 

obtained from one single calculation run during optimization processes. 
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Transient Solver of CST – MWS is based on Finite Integration Technique 

developed by Weiland in 1976/1977 [27]. This numerical method provides a 

universal spatial discretization scheme for Maxwell’s equations in their “integral 

form” [28].  

 

In order to solve these equations for the unknown electric and magnetic 

parameters numerically, a finite calculation domain (with boundary conditions) 

enclosing the problem space is defined and divided into orthogonal hexahedral 

grid cells. After that, Maxwell’s equations in their integral form are discretized 

spatially for each of the hexahedral cells. For the whole problem space, 

discretized Maxwell’s equations are arranged together and written in matrix form. 

Finally, this matrix is solved for the unknown electric and magnetic parameters 

according to boundary conditions. In the light of these solved parameters coupling 

between two antennas and far-field radiation pattern of an antenna can be 

calculated [28]. 
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CHAPTER 4 

 

4 MODELING OF AIRCRAFT, SHIP 

AND THEIR ANTENNAS 

 

 

Aircraft & ship platforms and antennas placed on them are modeled in CST which 

provides a three-dimensional solid modeling tool in where structures can be 

modeled based on their real electrical and physical properties. This chapter details, 

firstly the modeling of aircraft platform and its VHF antennas and secondly the 

modeling of ship platform and its HF antennas.  

 

4.1 Modeling of Aircraft Platform and Its Antennas 

 

Aircraft platform and VHF antennas placed on it are modeled as follows: 

 

• Both aircraft platform and its antennas are modeled in a problem space 

defined as “normal” which has: 

o No electrical conductivity, 0=σ Siemens / meter  

o Permittivity of  free space, 12
0 1085.8 −×≅ε  Farads / meter 

o Permeability of free space, 7
0 104 −×= πµ  Henrys / meter 

 

• Problem space in which the aircraft and its antennas are modeled, is 

divided into about 300,000 hexahedral grid cells having smallest and 

largest side length of about 1.25 cm and 30 cm respectively. 
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• Aircraft is modeled by primitive geometric structures in order to reduce 

simulation complexity and simulation time, based on the real physical 

dimensions and geometrical structure of F-4 Aircraft in Turkish Air Force 

Inventory. 

 

• Aircraft has an overall length of 19.5 m, wingspan of 12 m and fuselage 

width of 3 m (Figure 4.1). 

 

 

 
 

Figure 4.1 Dimensions of aircraft model 

 

 

• VHF antennas are modeled as 4/λ monopole antennas operating in 30 – 

88 MHz frequency band. They have length of 1 m and radius of 0.625 cm 

(Figure 4.2). 
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• VHF antennas are connected to aircraft and excited by discrete ports 

having length of 1.25 cm and impedance of 50Ω . Discrete ports are 

considered to be lumped circuit elements with an internal resistor and a 

current source in parallel. These ports consist of a lumped element in the 

middle and two perfectly electric conducting wires connecting the port to 

the antenna (Figure 4.2) [29]. 

 

 

 
 

Figure 4.2 Dimensions of VHF antennas 

 

 

• Since the aircraft platform and VHF antennas are metallic structures 

having high electrical conductivity, they are modeled with PEC (Perfect 

Electric Conductor) materials. PEC material, which is thought to exhibit 

infinite conductivity, does not exist in real life but it is an idealization. 
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Using PEC material helps the simulations run faster than the simulations 

in where “real” materials with finite conductivity are used [26]. 

 

• Boundary of the problem space is defined as “open space” which operates 

as a free space. Electromagnetic waves can pass this boundary with 

minimal reflections. 

 

• x – z plane is used as a symmetry plane since aircraft and VHF antennas 

are oriented symmetrically with respect to this plane. By symmetry 

property of problem, simulation time is reduced to its half. 

 

4.2 Modeling of Ship Platform and Its Antennas 

 

Ship platform and HF antennas placed on it are modeled as follows: 

 

• Both ship platform and its antennas are modeled in a problem space 

defined as “normal” which operates as free space. 

 

• Problem space in where the ship and its antennas are modeled is divided 

into about 200,000 hexahedral grid cells having smallest and largest side 

length of about 6 cm and 1 m respectively. 

 

• Like the aircraft, ship is modeled by primitive geometric structures in 

order to reduce simulation complexity and simulation time, based on the 

real physical dimensions and geometrical structure of Patrol Boats in 

Turkish Naval Force Inventory. 

 

• Ship has an overall length of 60 m, width of 8 m and height (from sea 

level) of 15.5 m (Figure 4.3). 
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Figure 4.3 Dimensions of ship model 

 

 

• HF antennas are modeled as 4/λ monopole antennas operating in 2 – 30 

MHz frequency band. They have length of 8 m and radius of 2 cm (Figure 

4.4). 

 

• HF antennas are connected to ship and excited by discrete ports having 

length of 6 cm and impedance of 50Ω  (Figure 4.4). 
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Figure 4.4 Dimensions of HF antennas 

 

 

• Since the ship platform and HF antennas are metallic structures having 

high electrical conductivity, they are modeled with PEC (Perfect Electric 

Conductor) materials. 

 

• Boundary of the problem space is defined as “open space” which operates 

as a free space. The boundary surface below the ship (z = 0 surface) is 

modeled with a material having conductivity of 5 Siemens / meter which 

has equal conductivity with sea water. 

 

• Ship platform has a non-symmetric geometry with respect to x - z plane 

because of the funnel on the right side of the weather deck. Unfortunately, 

x – z plane is not used as a symmetry plane in contrast to what happened in 

aircraft case. 
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CHAPTER 5 

 

5 SEARCH SPACES 

 

 

In general, there are finite and specific spaces on the platforms for the antennas to 

be mounted because of the structural and functional constraints. These constraints 

and “real-life applicability” concept are taken into account while defining the 

search spaces of antennas on aircraft and ship models in the simulations. In this 

chapter, the search spaces of VHF antennas on aircraft platform and the search 

spaces of HF antennas on ship platform are explained and illustrated in detail. 

 

5.1 Search Spaces of VHF Antennas on Aircraft Platform 

 

Three-dimensional Cartesian coordinate system is used in order to define the 

orientations of geometries with respect to origin. According to this system, the 

surface between fuselage and rear wings of the aircraft is assumed to be “x = 0 m 

surface” which is illustrated in Figure 5.3 and Figure 5.4. One of the VHF 

antennas is aimed to be placed on the upper fuselage, in the direction of z – axis. 

This antenna is named as “VHF upper antenna”. The other VHF antenna is aimed 

to be placed on the lower fuselage in the direction of (–z) – axis. This antenna is 

named as “VHF lower antenna”. 

 

Because of the symmetry requirement of the aircraft platform in real-life, search 

spaces of VHF antennas are defined on the centerlines of upper and lower 

fuselages and antennas are oriented with an angular separation of 180 degrees.  
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Moreover, the orientation of antennas with an angular separation of 180 degrees is 

found to be advantageous by Davidson and Thiele, [30]. In their paper published 

in 1984, they showed how the coupling between two 4/λ monopole antennas, 

mounted on metallic circular cylinder of radius λ10 , changes with the angular 

separation between antennas. They computed the coupling at 1 GHz by two 

different techniques (IEMCAP and Hybrid Method of Moments techniques) in 

order to confirm the results. The circular cylinder and the monopole antenna 

models used in the computations are shown in Figure 5.1. The coupling results 

computed by two different techniques are given in Figure 5.2. According to this 

figure, the coupling between monopole antennas decreases as the angular 

separation increases. The minimum coupling occurs at an angular separation of 

180 degrees. In their paper, Davidson and Thiele concluded that, on a circular 

metallic structure like a plane fuselage, minimum coupling between monopole 

antennas is achieved when the angular separation between them is 180 degrees. 

 

 

 
 

Figure 5.1 Two 4/λ monopole antennas mounted on metallic circular cylinder of 

radius λ10  [30] 
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Figure 5.2 Coupling between monopole antennas vs. angular separation [30] 

 

 

The search space of VHF upper antenna is defined on the centerline of upper 

fuselage between x = 0 m and x = 9 m (Figure 5.3). The search space of VHF 

lower antenna is defined on the centerline of lower fuselage between x = 7 m and 

x = 14.5 m (Figure 5.4). The space between x = 0 m and x = 7 m on the lower 

fuselage is not included in the search space of VHF lower antenna since fuel tank, 

ordnance and wheels of aircraft are located on that space in real-life. 
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Figure 5.3 The search space of VHF upper antenna 

 

 

 
 

Figure 5.4 The search space of VHF lower antenna 
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5.2 Search Spaces of HF Antennas on Aircraft Platform 

 

One of the HF antennas is aimed to be placed on the bridge, in the direction of z – 

axis. This antenna is named as “HF fore antenna”. The other HF antenna is aimed 

to be placed on the stern, in the direction of z – axis. This antenna is named as 

“HF aft antenna”.  

 

Different from aircraft antennas, HF antennas have two-dimensional search spaces 

as shown in Figure 5.5.The search space of HF fore antenna has an area of 42 m2 

(6 m ×7 m) on the z = 7.5 m surface and the search space of HF aft antenna has an 

area of 60 m2 (7.5 m ×8 m) on the z = 3 m surface. Coordinates of search spaces 

of both antennas are given in detail in Figure 5.5. 

 

 

 
 

Figure 5.5 Coordinates of search spaces of HF fore and HF aft antennas 
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CHAPTER 6 

 

6 OPTIMIZATION OF ANTENNA PLACEMENTS  

 

 

Optimizations of antenna placements on aircraft and ship are performed by using 

optimization toolbox of CST – MWS. At each simulation, placements of the 

antennas are changed among their search spaces according to the search strategy 

of optimization algorithm used. For each placement, “coordinates of the antennas” 

are regarded as a potential solution to the optimization problem. Therefore, 

coordinates of two antennas, in pair, are considered as a “chromosome” in genetic 

algorithm optimization and as a “particle” in particle swarm optimization.  

 

Moreover; for each of the placements, the coupling between antennas is calculated 

for whole frequency band of operation of the antennas. After that, the coupling 

between antennas is averaged over whole frequency band of operation and this 

“average coupling value” is considered as the “fitness value” of that antenna 

placement (fitness of chromosome or particle). By averaging the coupling over the 

whole frequency band of operation of the antennas, effect of the coupling at each 

frequency in that band is considered in the optimizations. In aircraft antenna 

placement optimizations, the coupling is calculated and averaged among 30-88 

MHz band and in ship antenna placement optimizations, the coupling is calculated 

and averaged among 2-30 MHz band. It is important to note that, since there is no 

active element like antenna tuning unit, active filter, etc. connected to the 

antennas, coupling between them is reciprocal.  
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The aim of both optimization techniques is to find an antenna placement, which 

minimizes the average coupling between antennas at each platform by using the 

inputs explained above. 

 

 

 
 

Figure 6.1 Example showing how the simulation results are introduced as 

optimization parameters 

population members coupling over whole 
operating freq. band 

average coupling 
values 

↓ ↓ ↓ 
chromosome or  

particle # 1 
(antenna placement # 1) 

coupling graph # 1 fitness value # 1 

  

- 33 dB 

chromosome or  
particle # 2 

(antenna placement # 2) 
coupling graph # 2 fitness value # 2 

  

-37 dB 

… 
 

… 
 

… 
 

chromosome or  
particle # popn  

(antenna placement # popn ) 
coupling graph # popn  fitness value # popn  

  

- 35 dB 
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An example showing how “the antenna placements” and “average coupling 

values” are introduced as optimization parameters into optimization algorithms is 

given in Figure 6.1. In the first column, different antenna placements which are 

regarded as chromosomes or particles are given. In the second column, graphs 

showing corresponding coupling values versus operating frequency band of the 

antennas are given. Finally, in the third column, corresponding fitness values 

(average coupling values) of the chromosomes / particles are given. In this figure, 

each row represents a simulation and popn  represents the size of the population. 

 

It is important to note that; coordinates of the antennas at their optimal locations 

are rounded to two decimal places in the tables below for simplicity. 

6.1 Optimization of Antenna Placement on Aircraft 

6.1.1 Optimization of Antenna Placement on Aircraft by Genetic Algorithm 

Optimization 

 

Parameters of the genetic algorithm optimization are set as follows in 

optimization of antenna placement on aircraft: 

 

• Search spaces of VHF antennas are defined on the centerlines of upper and 

lower fuselages of the aircraft and both antennas move along only on the x 

– axis. Therefore, the coordinates of both antennas on the x – axis are 

defined as variables. The number of variables is 2. 

 

• Number of chromosomes in the population is defined as 40. 

 

• Two different random creation functions which are based on “uniform 

random distribution” and “Latin hypercube distribution” are used for the 

generation of the initial population of chromosomes. 
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• Maximum number of iterations is defined as 30. Algorithm stops when 

maximum number of iterations is achieved. 

 

• Total number of simulations is calculated by multiplying “the number of 

chromosomes in the population” and “the maximum number of iterations”. 

However; according to selection strategy of the algorithm used, half of the 

population which is composed of the fittest individuals is “directly 

transferred” to the next generation as parents. Therefore, total number of 

simulations becomes ( ) ( ) 6201302/40 =+×  instead of 12003040 =× . 

 

• CST – MWS genetic algorithm optimizer uses variable crossover rate 

which is adopted according to the genetic structure of chromosomes at 

each iteration (explained in Section 2.1 in details). 

 

• For each population generated by two different distribution techniques, 

three different optimization runs with mutation rates of 60 %, 30 % and 1 

% are operated. Therefore, six different antenna placements are 

determined by six optimization runs having different optimization 

parameters.  

 

Coordinates of VHF antennas on the aircraft and final average coupling values 

between them obtained by different optimization runs are given in Table 6.1. 

 

 

 

 

 

 

 



 

 
 

56 
 

 

Table 6.1 Antenna placement results on aircraft obtained by genetic algorithm 

optimization 

 
Distribution 

Technique Used 
for Generation of 
Initial Population 

Mutation 
Rates 

Coordinate 
of VHF 
Upper 

Antenna 

Coordinate 
of VHF 
Lower 

Antenna 

Average 
Coupling 
Between 
Antennas 

Uniform Random 
Distribution 

60 % x = 0.48 m x = 8.28 m - 44.62 dB 
30 % x = 0.86 m x = 7.93 m - 44.47 dB 
1 % x = 0.93 m x = 9.92 m - 44.15 dB 

Latin Hypercube 
Distribution 

60 % x = 0.86 m x = 7.88 m - 45.03 dB 
30 % x = 0.86 m x = 7.87 m - 44.95 dB 
1 % x = 1.07 m x = 7.68 m - 43.85 dB 

 

 

During these six different optimization runs; 

 

• “minimum” of the average coupling values of the individuals generated at 

each iteration  

• “maximum” of the average coupling values of the individuals generated at 

each iteration  

•  “population average” of the average coupling values of the individuals 

generated at each iteration 

 

are calculated in order to monitor the progresses and performances of the these 

optimization runs. Graphs related to these calculations are given in Figure 6.2 

through Figure 6.7. 
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Genetic Algorithm Optimization
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Figure 6.2 Progress of the optimization run with an initial population generated by 

uniform random distribution technique and with a mutation rate of 60 % 

 

 

Genetic Algorithm Optimization
Uniform Random Distribution, Mutation Rate = 30 % (aircraft)
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Figure 6.3 Progress of the optimization run with an initial population generated by 

uniform random distribution technique and with a mutation rate of 30 % 



 

 
 

58 
 

Genetic Algorithm Optimization
Uniform Random Distribution, Mutation Rate = 1 % (aircraft)
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Figure 6.4  Progress of the optimization run with an initial population generated 

by uniform random distribution technique and with a mutation rate of 1 % 

 

 

Genetic Algorithm Optimization
Latin Hypercube Distribution, Mutation Rate = 60 % (aircraft)
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Figure 6.5  Progress of the optimization run with an initial population generated 

by Latin hypercube distribution technique and with a mutation rate of 60 % 
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Genetic Algorithm Optimization
Latin Hypercube Distribution, Mutation Rate = 30 % (aircraft)
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Figure 6.6  Progress of the optimization run with an initial population generated 

by Latin hypercube distribution technique and with a mutation rate of 30 % 
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Figure 6.7 Progress of the optimization run with an initial population generated by 

Latin hypercube distribution technique and with a mutation rate of 1 % 
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According to Table 6.1 and Figure 6.2 through Figure 6.7: 

 

• For all of the six antenna placements in Table 6.1, final average coupling 

values are very close to each other. 

 

• Minimum (best) final average coupling between the antennas, - 45.03 dB, 

is achieved in the optimization run in where the initial population is 

generated by Latin hypercube distribution technique and mutation rate of 

60 % is used. 

 

• Maximum (worst) final average coupling between the antennas, - 43.85 

dB, occurs in the optimization run in where the initial population is 

generated by Latin hypercube distribution technique and mutation rate of 1 

% is used. 

 

• Coordinates of antennas in six different antenna placements also are very 

close to each other like the final average coupling values. 

 

• The placement; where VHF upper antenna is located at x = 0.86 m and 

VHF lower antenna is located at x = 7.88 m, yields minimum final average 

coupling between the antennas. This placement is illustrated in Figure 6.8. 
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Figure 6.8 The placement yielding minimum final average coupling between VHF 

antennas (genetic algorithm optimization) 

 

 

• As it is seen in graphs above, population average of the average coupling 

values and minimum average coupling values decrease as the iteration 

number increases. In parallel with Holland’s idea [12], individuals 

generated at each new iteration are generally fitter than their parents. This 

downward trend in the population average of the average coupling values 

may be thought as a marker of achievement of the global optimum. 

 

• It is important to note that, in the optimization runs with mutation rates of 

60 % and 30 %, the population average of the average coupling values and 

the maximum average coupling values fluctuate through the iterations. 

Because of these fluctuations, the difference between the minimum and 

the maximum average coupling curves reaches up to 20 dB. The reason for 

these fluctuations is the high diversity in the population because of high 

mutation rates. These fluctuations and the difference between the 

minimum and the maximum average coupling curves become smaller as 

the mutation rate decreases. 
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• Each of the genetic algorithm optimization runs, namely 620 simulations, 

last for about 26 hours (about 1 day) with a machine having 4 GB random 

access memory and 2.53 GHz Intel® CoreTM 2 Duo central processor unit. 

 

6.1.2 Optimization of Antenna Placement on Aircraft by Particle Swarm 

Optimization 

 

Parameters of the particle swarm optimization are set as follows in optimization of 

antenna placement on aircraft: 

 

• The coordinates of VHF antennas on the x – axis are defined as variables. 

Therefore, variable number is defined as 2. 

 

• Number of particles in the swarm is defined as 40. 

 

• Two different random creation functions which are based on “uniform 

random distribution” and “Latin hypercube distribution” are used for the 

generation of the initial swarm of particles. 

 

• Maximum number of iterations is defined as 30. Algorithm stops when 

maximum number of iterations is reached. 

 

• Total number of simulations is calculated by multiplying “the number of 

particles in the swarm” and “the maximum number of iterations”. 

Therefore, total number of simulations becomes 12003040 =× . 

 

• CST– MWS particle swarm optimizer randomly determines the weights of 

parameters of position and velocity vectors (explained in Section 2.2 in 

detail).  
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• Two different antenna placements are determined for each of the swarms 

generated by two different distribution techniques. 

 

Coordinates of VHF antennas on the aircraft and final average coupling values 

between them obtained by different optimization runs are given in Table 6.2. 

 

 

Table 6.2 Antenna placement results on aircraft obtained by particle swarm 

optimization 

 
Distribution 

Technique Used for 
Generation of Initial 

Swarm 

Coordinate 
of VHF 
Upper 

Antenna 

Coordinate 
of VHF 
Lower 

Antenna 

Average 
Coupling 
Between 
Antennas 

Uniform Random 
Distribution x = 0.84 m x = 7.88 m - 44.91 dB 

Latin Hypercube 
Distribution x = 0.81 m x = 7.93 m - 44.81 dB 

 

 

During these two different optimization runs; 

 

• “minimum” of the average coupling values of the individuals generated at 

each iteration  

• maximum” of the average coupling values of the individuals generated at 

each iteration  

• “swarm average” of the average coupling values of the individuals 

generated at each iteration 

 

are calculated in order to monitor the progresses and performances of the these 

optimization runs. Graphs related to these calculations are given in Figure 6.9 and 

Figure 6.10. 
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Particle Swarm Optimization, Uniform Random Distribution (aircraft)
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Figure 6.9 Progress of the optimization run with an initial swarm generated by 

uniform random distribution technique  

 
 

Particle Swarm Optimization, Latin Hypercube Distribution (aircraft)
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Figure 6.10  Progress of the optimization run with an initial swarm generated by 

Latin hypercube distribution technique  
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According to Table 6.2, Figure 6.9 and Figure 6.10: 

 

• For both of the antenna placements in Table 6.2, final average coupling 

values are very close to each other. 

 

• Minimum (best) final average coupling between the antennas, - 44.91 dB, 

is achieved in the optimization run in where the initial swarm is generated 

by uniform random distribution technique. 

 

• Coordinates of antennas in two different antenna placements also are very 

close to each other like the final average coupling values. 

 

• The placement; where VHF upper antenna is located at x = 0.84 m and 

VHF lower antenna is located at x = 7.88 m, yields minimum final average 

coupling between the antennas. This placement is illustrated in Figure 

6.11.  

 

 

 
 

Figure 6.11  The placement yielding minimum final average coupling between 

VHF antennas (particle swarm optimization) 
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• As it is seen in Figure 6.9 and Figure 6.10, swarm average of the average 

coupling values and minimum average coupling values decrease as the 

iteration number increases. This downward trend in the swarm average of 

the average coupling values may be thought as a marker of tendency of the 

whole swarm towards the global optimum. 

 

• The fluctuations in the swarm average of the average coupling values and 

the maximum average coupling values are very small in contrast to the 

fluctuations in the genetic algorithm optimization runs with mutation rates 

of 60 % and 30 %. Moreover, the difference between the minimum and the 

maximum average coupling values are smaller when compared with the 

differences in the genetic algorithm optimization runs with mutation rates 

of 60 % and 30 %. Since there is no mutation operator in particle swarm 

optimization, these fluctuations and the difference between the curves 

resemble the fluctuations and the differences in the genetic algorithm 

optimization runs with mutation rate of 1 %. 

  

• Each of the particle swarm optimization runs, namely 1200 simulations, 

last for about 50 hours (about 2 days) with a machine having 4 GB random 

access memory and 2.53 GHz Intel® CoreTM 2 Duo central processor unit. 

 

6.2 Optimization of Antenna Placement on Ship 

6.2.1 Optimization of Antenna Placement on Ship by Genetic Algorithm 

Optimization 

 

Parameters of the genetic algorithm optimization are set as follows in 

optimization of antenna placement on ship: 
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• Different from aircraft antennas, HF antennas on ship have two-

dimensional search spaces. Coordinates of the HF antennas on x and y 

axes are defined as variables. Therefore, variable number is defined as 4. 

 

• Number of chromosomes in the population is defined as 40. 

 

• Two different random creation functions which are based on “uniform 

random distribution” and “Latin hypercube distribution” are used for the 

generation of the initial population of chromosomes. 

 

• Maximum number of iterations is defined as 30. Algorithm stops when 

maximum number of iterations is reached. 

 

• Total number of simulations is ( ) ( ) 6201302/40 =+×  as in the aircraft  

antenna placement optimization case. 

 

• CST– MWS genetic algorithm optimizer uses variable crossover rate 

which is adopted according to the genetic structure of chromosomes at 

each iteration (explained in Section 2.1 in detail). 

 

• For each population generated by two different distribution techniques, 

three different optimization runs with mutation rates of 60 %, 30 % and 1 

% are operated. Therefore, six different antenna placements are 

determined by six optimization runs having different optimization 

parameters.  

 

Coordinates of HF antennas on the ship and final average coupling values 

between them obtained by different optimization runs are given in Table 6.3. 
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Table 6.3 Antenna placement results on ship obtained by genetic algorithm 

optimization 

 
 

Distribution 
Technique Used 
for Generation of 
Initial Population 

Mutation 
Rates 

Coordinate 
of HF Fore 

Antenna 

Coordinate 
of HF Aft 
Antenna 

Average 
Coupling 
Between 
Antennas 

Uniform Random 
Distribution 

60 % 
x = 25.9 m 

y = 3.3 m 

x = 1.1 m 

y = 0.5 m 
- 38.27 dB 

30 % 
x = 25.6 m 

y = 2.7 m 

x = 1.5 m 

y = 0.3 m 
- 38.09 dB 

1 % 
x = 25.7 m 

y = 2.6 m 

x = 1.5 m 

y = 0.6 m 
- 37.66 dB 

Latin Hypercube 
Distribution 

60 % 
x = 26.2 m 

y = 2.7 m 

x = 1.2 m 

y = 0.1 m 
- 38.22 dB 

30 % 
x = 26.7 m 

y = 3.1 m 

x = 1.7 m 

y = 0.4 m -38.16 dB 

1 % 
x = 26.7 m 

y = 3.1 m 

x = 1.7 m 

y = 0.4 m -38.16 dB 

 

 

During these six different optimization runs; 

 

• “minimum” of the average coupling values of the individuals generated at 

each iteration  

• “maximum” of the average coupling values of the individuals generated at 

each iteration  

• “population average” of the average coupling values of the individuals 

generated at each iteration 
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are calculated in order to monitor the progresses and performances of the these 

optimization runs. Graphs related to these calculations are given in Figure 6.12 

through Figure 6.17. 

 

 

Genetic Algorithm Optimization
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Figure 6.12 Progress of the optimization run with an initial population generated 

by uniform random distribution technique and with a mutation rate of 60 % 
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Genetic Algorithm Optimization
Uniform Random Distribution, Mutation Rate = 30 % (ship)
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Figure 6.13 Progress of the optimization run with an initial population generated 

by uniform random distribution technique and with a mutation rate of 30 % 
 

 

Genetic Algorithm Optimization
Uniform Random Distribution, Mutation Rate = 1 % (ship)
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Figure 6.14 Progress of the optimization run with an initial population generated 

by uniform random distribution technique and with a mutation rate of 1 % 
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Genetic Algorithm Optimization
Latin Hypercube Distribution, Mutation Rate = 60 % (ship)
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Figure 6.15 Progress of the optimization run with an initial population generated 

by Latin hypercube distribution technique and with a mutation rate of 60 % 
 

 

Genetic Algorithm Optimization
Latin Hypercube Distribution, Mutation Rate = 30 % (ship)
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Figure 6.16 Progress of the optimization run with an initial population generated 

by Latin hypercube distribution technique and with a mutation rate of 30 % 
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Genetic Algorithm Optimization
Latin Hypercube Distribution, Mutation Rate = 1 % (ship)

-38.5

-37.5

-36.5

-35.5

-34.5

-33.5

-32.5

-31.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

iteration

av
er

ag
e 

co
up

lin
g 

(d
B

)__
_

minimum population average maximum
 

 
Figure 6.17 Progress of the optimization run with an initial population generated 

by Latin hypercube distribution technique and with a mutation rate of 1 % 

 

 

According to Table 6.3 and Figure 6.12 through Figure 6.17: 

 

• For all of the six antenna placements in Table 6.3, final average coupling 

values are very close to each other. 

 

• Minimum (best) final average coupling between the antennas, - 38.27 dB, 

is achieved in the optimization run in where the initial population is 

generated by uniform random distribution technique and mutation rate of 

60 % is used. 

 

• Maximum (worst) final average coupling between the antennas, - 37.66 

dB, occurs in the optimization run in where the initial population is 
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generated by uniform random distribution technique and mutation rate of 1 

% is used. 

 

• Coordinates of antennas in six different antenna placements also are very 

close to each other like the final average coupling values. 

 

• The placement; where HF fore antenna is located at x = 25.9 m & y = 3.3 

m and HF aft antenna is located at x = 1.1 m & y = 0.5 m, yields minimum 

final average coupling between the antennas. This placement is illustrated 

in Figure 6.18.  

 

 

 
 

Figure 6.18 The placement yielding minimum final average coupling between HF 

antennas (genetic algorithm optimization) 

 

 

• As it is seen in graphs above, population average of the average coupling 

values and minimum average coupling values decrease as the iteration 

number increases. In fact, in some optimization runs “minimum average 
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coupling value” curve reaches its minimum value in a few iterations. Here, 

the more important thing is the downward trend in the population average 

curve. This downward trend in the population average of the average 

coupling values may be thought as a marker of evolution of the individuals 

towards the global optimum. 

 

• It is important to note that, in the optimization runs with mutation rates of 

60 % and 30 %, the population average of the average coupling values and 

the maximum average coupling values fluctuate through the iterations 

(like in the aircraft case). Moreover, because of these fluctuations, the 

differences between the minimum and the maximum average coupling 

curves in the optimization runs with mutation rates of 60 % and 30 % are 

larger than differences in the optimization runs with mutation rate of 1 %. 

The reason for these fluctuations is the diversity in the population because 

of high mutation rates. The fluctuations and differences become smaller as 

the mutation rate decreases. 

 

• Each of the genetic algorithm optimization runs, namely 620 simulations, 

last for about 26 hours (about 1 day) with a machine having 4 GB random 

access memory and 2.53 GHz Intel® CoreTM 2 Duo central processor unit. 

 

6.2.2 Optimization of Antenna Placement on Ship by Particle Swarm 

Optimization 

 

Parameters of the particle swarm optimization are set as follows in optimization of 

antenna placement on ship: 

 

• Coordinates of the HF antennas on x and y axes are defined as variables. 

Therefore, variable number is defined as 4. 
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• Number of particles in the swarm is defined as 40. 

 

• Two different random creation functions which are based on “uniform 

random distribution” and “Latin hypercube distribution” are used for the 

generation of the initial swarm of particles. 

 

• Maximum number of iterations is defined as 30. Algorithm stops when 

maximum number of iterations is reached. 

 

• Total number of simulations is the multiplication of “the number of 

particles in the swarm” and “the maximum number of iterations”, namely 

12003040 =× . 

 

• CST– MWS particle swarm optimizer randomly determines the weights of 

parameters of position and velocity vectors (explained in Section 2.2 in 

detail). 

 

• Two different antenna placements are determined for each of the swarms 

generated by two different distribution techniques. 

 

Coordinates of HF antennas on the ship and final average coupling values 

between them obtained by different optimization runs are given in Table 6.4. 

 

 

 

 

 

 

 



 

 
 

76 
 

Table 6.4  Antenna placement results on ship obtained by particle swarm 

optimization 

 
Distribution 

Technique Used for 
Generation of Initial 

Swarm 

Coordinate 
of HF Fore 

Antenna 

Coordinate 
of HF Aft 
Antenna 

Average 
Coupling 
Between 
Antennas 

Uniform Random 
Distribution 

x = 25.3 m 

y = 3.4 m 

x = 1.3 m 

y = 0.6 m 
- 39.47 dB 

Latin Hypercube 
Distribution 

x = 25.1 m 

y = 3.4 m 

x = 1.5 m 

y = 1.2 m 
- 39.58 dB 

 

 

During these two different optimization runs; 

 

• “minimum” of the average coupling values of the individuals generated at 

each iteration  

• “maximum” of the average coupling values of the individuals generated at 

each iteration  

• “swarm average” of the average coupling values of the individuals 

generated at each iteration 

 

are calculated in order to monitor the progresses and performances of the these 

optimization runs. Graphs related to these calculations are given in Figure 6.19 

and Figure 6.20. 
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Particle Swarm Optimization, Uniform Random Distribution (ship)
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Figure 6.19 Progress of the optimization run with an initial swarm generated by 

uniform random distribution technique  

 
 

Particle Swarm Optimization, Latin Hypercube Distribution (ship)

-40
-39

-38
-37
-36

-35
-34
-33

-32
-31

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

iteration

av
er

ag
e 

co
up

lin
g 

(d
B

)__
_

minimum population average maximum
 

 
Figure 6.20 Progress of the optimization run with an initial swarm generated by 

Latin hypercube distribution technique  
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According to Table 6.4, Figure 6.19 and Figure 6.20: 

 

• For both of the antenna placements in Table 6.4, final average coupling 

values are very close to each other. 

 

• Minimum (best) final average coupling between the antennas, - 39.58 dB, 

is achieved in the optimization run in where the initial swarm is generated 

by Latin hypercube distribution technique. 

 

• Coordinates of antennas in two different antenna placements also are very 

close to each other like the final average coupling values. 

 

• The placement; where HF fore antenna is located at x = 25.1 m & y = 3.4 

m and HF aft antenna is located at x = 1.5 m & y = 1.2 m, yields minimum 

final average coupling between the antennas. This placement is illustrated 

in Figure 6.21.  

 

 

 
 

Figure 6.21 The placement yielding minimum final average coupling between HF 

antennas (particle swarm optimization) 
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• As it is seen in Figure 6.19 and Figure 6.20, swarm average of the average 

coupling values and minimum average coupling values decrease as the 

iteration number increases. This downward trend in the swarm average of 

the average coupling values may be thought as a marker of tendency of the 

whole swarm toward the global optimum. 

 

• The fluctuations in the swarm average of the average coupling values and 

the maximum average coupling values are very small in contrast to the 

fluctuations in the genetic algorithm optimization runs with mutation rates 

of 60 % and 30 %. Moreover, the difference between the minimum and the 

maximum average coupling values are smaller when compared with the 

differences in the genetic algorithm optimization runs with mutation rates 

of 60 % and 30 %. Since there is no mutation operator in particle swarm 

optimization, these fluctuations and the difference between the curves 

resemble the fluctuations and the differences in the genetic algorithm 

optimization runs with mutation rate of 1 %. 

  

• Each of the particle swarm optimization runs, namely 1200 simulations, 

last for about 50 hours (about 2 days) with a machine having 4 GB random 

access memory and 2.53 GHz Intel® CoreTM 2 Duo central processor unit. 
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CHAPTER 7 

 

7 FAR-FIELD RADIATION PATTERN 

PERFORMANCES OF ANTENNAS 

 

 

After the optimal placements of aircraft and ship antennas are determined, far-

field radiation pattern performances of those antennas for their optimal 

placements are analyzed in terms of directivity and coverage at the end of this 

thesis work. 

 

Far-field analyses deal with the field behavior far away from the antennas. 

Throughout the far-field analyses, far-field radiation patterns of the aircraft and 

ship antennas are calculated at distinct frequencies such that whole frequency 

bands of operation of the antennas are sampled uniformly. These far-field 

radiation patterns are represented graphically as plots of “directivity” in the 

spherical coordinate system. From these directivity plots, coverage on each of the 

aircraft and ship platforms is figured out. 

 

The directivity of an antenna is an indicator of its radiation and reception 

performance. It is defined as the ratio of the radiation intensity in a given direction 

from the antenna to the radiation intensity averaged over all directions and 

represented mathematically in Equation 7.1 as a function standard spherical 

coordinates. Directivity of an isotropic antenna is 0 dB since it radiates equally to 

all directions (for all azimuth “φ ” and elevation “θ ” angles). Generally, the 

directivities of all other antennas are expressed with respect to directivity of an 

isotropic antenna in terms of dBi. 
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( ) ( )( )
( )π

φθφθ
4/

,,
powerradiatedtotal
densitypowerradiatedyDirectivit =  (7.1) 

 

where θ  and φ  are standard spherical coordinate angles and π4 is the total solid 

angle for a sphere. 

 

In order to analyze the far-field radiation performances of aircraft and ship 

antennas; at each distinct frequency, directivities of them are compared with the 

directivities of monopole antennas on an infinite perfectly conducting ground 

plane, having the same electrical and physical properties with those antennas. 

 

7.1 Far-field Radiation Pattern Performances of Aircraft 

Antennas 

 

The optimal antenna placement yielding minimum average coupling between the 

aircraft antennas is determined by Genetic Algorithm Optimization. In this 

optimization, the initial population is generated by Latin hypercube distribution 

technique and mutation rate of 60 % is used. In the optimal placement, VHF upper 

antenna is located at x = 0.86 m and VHF lower antenna is located at x = 7.88 m.  

 

In this antenna placement, VHF upper and lower antennas radiate/receive in the 

upper and lower hemispheres respectively. In order to determine the radiation 

performances of these antennas on the upper and lower hemispheres, directivities 

of them are compared with the directivities of a monopole antenna on an infinite 

ground plane as follows: 

 

• Directivities of the aircraft antennas are calculated at 30 MHz, 40 MHz, 50 

MHz, 60 MHz, 70 MHz and 80 MHz. 
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• Directivities of a VHF monopole antenna on an “infinite ground plane”, 

having the same electrical and physical properties with aircraft antennas 

are calculated at same distinct frequencies. 

 

• At each frequency, “the ranges of azimuth and elevation angles (φ  and 

θ )” in where the directivity of the monopole antenna on an infinite ground 

plane is greater than 0 dBi, is determined.  

 

• At each frequency, directivity of each aircraft antenna is examined within 

the angular ranges mentioned in the bullet above. If minimum of 50 % of 

directivity values of the aircraft antenna within these ranges is greater than 

0 dBi, then that antenna is assumed to have “sufficient coverage”, which 

means, that antenna radiates/receives sufficiently. 

 

7.1.1 Far-field Radiation Pattern Analyses for Aircraft Antennas at 30 

MHz 

 

Three-dimensional and two-dimensional far-field radiation patterns of a VHF 

monopole antenna on an infinite ground plane at 30 MHz are given in Figure 7.1. 

According to this figure, for  9034 ≤≤θ  (within a range of 56 ) and 
 3600 ≤≤ φ , directivity of monopole antenna on an infinite ground plane is 

greater than 0 dBi.  

 

 

 

 

 

 



 

 
 

83 
 

 

 
 

Figure 7.1 Far-field radiation patterns of monopole antenna at 30 MHz 

 

 

Figure 7.2 shows the far-field radiation pattern of VHF upper antenna which is 

spatially filtered and examined for  9034 ≤≤θ  and  3600 ≤≤φ . Figure 7.3 

shows the far-field radiation pattern of VHF lower antenna which is spatially 

filtered and examined for  14690 ≤≤θ  and  3600 ≤≤φ . According to these 

figures: 

 

• 66 % (greater than 50 %) of the directivity values of VHF upper antenna 

for  9034 ≤≤θ  and  3600 ≤≤φ  is greater than 0 dBi. 

 

• 82 % (greater than 50 %) of the directivity values of VHF lower antenna 

for  14690 ≤≤θ  and  3600 ≤≤φ  is greater than 0 dBi. 

 

As a result both antennas are considered to have “sufficient coverage” at 30 MHz 

at their optimal places where the average coupling between them is minimum. 
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Figure 7.2 Far-field radiation pattern of VHF upper antenna at 30 MHz 

 

 

 
 

Figure 7.3 Far-field radiation pattern of VHF lower antenna at 30 MHz 
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7.1.2 Far-field Radiation Pattern Analyses for Aircraft Antennas at 40 

MHz 

 

Three-dimensional and two-dimensional far-field radiation patterns of a VHF 

monopole antenna on an infinite ground plane at 40 MHz are given in Figure 7.4. 

According to this figure, for  9037 ≤≤ θ  (within a range of 53 ) and 
 3600 ≤≤ φ , directivity of monopole antenna on an infinite ground plane is 

greater than 0 dBi.  

 

 

 
 

Figure 7.4 Far-field radiation patterns of monopole antenna at 40 MHz 

 

 

Figure 7.5 shows the far-field radiation pattern of VHF upper antenna which is 

spatially filtered and examined for  9037 ≤≤ θ  and  3600 ≤≤φ  and Figure 

7.6 shows the far-field radiation pattern of VHF lower antenna which is spatially 

filtered and examined for  14390 ≤≤ θ  and  3600 ≤≤φ . According to these 

figures: 
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• 72 % (greater than 50 %) of the directivity values of VHF upper antenna 

for  9037 ≤≤ θ  and  3600 ≤≤φ  is greater than 0 dBi. 

 

• 79 % (greater than 50 %) of the directivity values of VHF lower antenna 

for  14390 ≤≤ θ  and  3600 ≤≤φ  is greater than 0 dBi. 

 

As a result both antennas are considered to have “sufficient coverage” at 40 MHz 

at their optimal places where the average coupling between them is minimum. 

 

 

 
 

Figure 7.5 Far-field radiation pattern of VHF upper antenna at 40 MHz 
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Figure 7.6 Far-field radiation pattern of VHF lower antenna at 40 MHz 

 

 

7.1.3 Far-field Radiation Pattern Analyses for Aircraft Antennas at 50 

MHz 

 

Three-dimensional and two-dimensional far-field radiation patterns of a VHF 

monopole antenna on an infinite ground plane at 50 MHz are given in Figure 7.7. 

According to this figure, for  9037 ≤≤ θ  (within a range of 53 ) and 
 3600 ≤≤ φ , directivity of monopole antenna on an infinite ground plane is 

greater than 0 dBi.  
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Figure 7.7 Far-field radiation patterns of monopole antenna at 50 MHz 

 

 

Figure 7.8 shows the far-field radiation pattern of VHF upper antenna which is 

spatially filtered and examined for  9037 ≤≤ θ  and  3600 ≤≤φ  and Figure 

7.9 shows the far-field radiation pattern of VHF lower antenna which is spatially 

filtered and examined for  14390 ≤≤ θ  and  3600 ≤≤φ . According to these 

figures: 

 

• 72 % (greater than 50 %) of the directivity values of VHF upper antenna 

for  9037 ≤≤ θ  and  3600 ≤≤φ  is greater than 0 dBi. 

 

• 80 % (greater than 50 %) of the directivity values of VHF lower antenna 

for  14390 ≤≤ θ  and  3600 ≤≤φ  is greater than 0 dBi. 

 

As a result both antennas are considered to have “sufficient coverage” at 50 MHz 

at their optimal places where the average coupling between them is minimum. 
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Figure 7.8 Far-field radiation pattern of VHF upper antenna at 50 MHz 

 

 

 
 

Figure 7.9 Far-field radiation pattern of VHF lower antenna at 50 MHz 
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7.1.4 Far-field Radiation Pattern Analyses for Aircraft Antennas at 60 

MHz 

 

Three-dimensional and two-dimensional far-field radiation patterns of a VHF 

monopole antenna on an infinite ground plane at 60 MHz are given in Figure 7.10. 

According to this figure, for  9039 ≤≤θ  (within a range of 51 ) and 
 3600 ≤≤ φ , directivity of monopole antenna on an infinite ground plane is 

greater than 0 dBi.  

 

 

 
 

Figure 7.10 Far-field radiation patterns of monopole antenna at 60 MHz 

 

 

Figure 7.11 shows the far-field radiation pattern of VHF upper antenna which is 

spatially filtered and examined for  9039 ≤≤θ  and  3600 ≤≤φ  and Figure 

7.12 shows the far-field radiation pattern of VHF lower antenna which is spatially 

filtered and examined for  14190 ≤≤θ  and  3600 ≤≤φ . According to these 

figures: 
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• 78 % (greater than 50 %) of the directivity values of VHF upper antenna 

for  9039 ≤≤θ  and  3600 ≤≤φ  is greater than 0 dBi. 

 

• 68 % (greater than 50 %) of the directivity values of VHF lower antenna 

for  14190 ≤≤θ  and  3600 ≤≤φ  is greater than 0 dBi. 

 

As a result both antennas are considered to have “sufficient coverage” at 60 MHz 

at their optimal places where the average coupling between them is minimum. 

 

 

 
 

Figure 7.11 Far-field radiation pattern of VHF upper antenna at 60 MHz 
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Figure 7.12 Far-field radiation pattern of VHF lower antenna at 60 MHz 

 

 

7.1.5 Far-field Radiation Pattern Analyses for Aircraft Antennas at 70 

MHz 

 

Three-dimensional and two-dimensional far-field radiation patterns of a VHF 

monopole antenna on an infinite ground plane at 70 MHz are given in Figure 7.13. 

According to this figure, for  9040 ≤≤θ  (within a range of 50 ) and 
 3600 ≤≤ φ , directivity of monopole antenna on an infinite ground plane is 

greater than 0 dBi.  
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Figure 7.13 Far-field radiation patterns of monopole antenna at 70 MHz 

 

 

Figure 7.14 shows the far-field radiation pattern of VHF upper antenna which is 

spatially filtered and examined for  9040 ≤≤θ  and  3600 ≤≤φ  and Figure 

7.15 shows the far-field radiation pattern of VHF lower antenna which is spatially 

filtered and examined for  14090 ≤≤θ  and  3600 ≤≤φ . According to these 

figures: 

 

• 78 % (greater than 50 %) of the directivity values of VHF upper antenna 

for  9040 ≤≤θ  and  3600 ≤≤φ  is greater than 0 dBi. 

 

• 85 % (greater than 50 %) of the directivity values of VHF lower antenna 

for  14090 ≤≤θ  and  3600 ≤≤φ  is greater than 0 dBi. 

 

As a result both antennas are considered to have “sufficient coverage” at 70 MHz 

at their optimal places where the average coupling between them is minimum. 
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Figure 7.14 Far-field radiation pattern of VHF upper antenna at 70 MHz 

 

 

 
 

Figure 7.15 Far-field radiation pattern of VHF lower antenna at 70 MHz 
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7.1.6 Far-field Radiation Pattern Analyses for Aircraft Antennas at 80 

MHz 

 

Three-dimensional and two-dimensional far-field radiation patterns of a VHF 

monopole antenna on an infinite ground plane at 80 MHz are given in Figure 7.16. 

According to this figure, for  9040 ≤≤θ  (in a range of 50 ) and  3600 ≤≤ φ ,  

directivity of monopole antenna on an infinite ground plane is greater than 0 dBi.  

 

 

 
 

Figure 7.16 Far-field radiation patterns of monopole antenna at 80 MHz 

 

 

Figure 7.17 shows the far-field radiation pattern of VHF upper antenna which is 

spatially filtered and examined for  9040 ≤≤θ  and  3600 ≤≤φ  and Figure 

7.18 shows the far-field radiation pattern of VHF lower antenna which is spatially 

filtered and examined for  14090 ≤≤θ  and  3600 ≤≤φ . According to these 

figures: 
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• 76 % (greater than 50 %) of the directivity values of VHF upper antenna 

for  9040 ≤≤θ  and  3600 ≤≤φ is greater than 0 dBi. 

 

• 84 % (greater than 50 %) of the directivity values of VHF lower antenna 

for  14090 ≤≤θ  and  3600 ≤≤φ is greater than 0 dBi. 

 

As a result both antennas are considered to have “sufficient coverage” at 80 MHz 

at their optimal places where the average coupling between them is minimum. 

 

 

 
 

Figure 7.17 Far-field radiation pattern of VHF upper antenna at 80 MHz 
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Figure 7.18 Far-field radiation pattern of VHF lower antenna at 80 MHz 

 

 

All of the results of the radiation pattern analyses of aircraft antennas are gathered 

together and given in Table 7.1. 

 

 

Table 7.1 Results of the radiation pattern analyses of aircraft antennas 

 
Coordinates 

of the 
Antennas 

Frequency Percentage of 
(Directivity Values ≥  0 dBi) 

Angular Ranges 
of Interest 

(  3600 ≤≤φ ) 

VHF upper 
antenna @  
x = 0.86 m 

30 MHz 66 %  9034 ≤≤θ  
40 MHz 72 %  9037 ≤≤ θ  
50 MHz 72 %  9037 ≤≤ θ  
60 MHz 78 %  9039 ≤≤θ  
70 MHz 78 %  9040 ≤≤θ  
80 MHz 84 %  9040 ≤≤θ  
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Table 7.1 (continued) 

 
Coordinates 

of the 
Antennas 

Frequency Percentage of 
(Directivity Values ≥  0 dBi) 

Angular Ranges 
of Interest 

(  3600 ≤≤φ ) 

VHF lower 
antenna @  
x = 7.88 m 

30 MHz 82 %  14690 ≤≤θ  
40 MHz 79 %  14390 ≤≤ θ  
50 MHz 80 %  14390 ≤≤ θ  
60 MHz 68 %  14190 ≤≤θ  
70 MHz 85 %  14090 ≤≤θ  
80 MHz 76 %  14090 ≤≤θ  

 

 

According to Table 7.1, percentages of the directivity values of aircraft antennas 

within each of the angular ranges and for all frequencies of interest are greater 

than 50 %. Therefore both of the VHF upper and lower antennas are considered to 

have “sufficient coverage” at the upper and lower hemisphere respectively. 

 

7.2 Far-field Radiation Pattern Performances of Ship Antennas 

 

The optimal antenna placement yielding minimum average coupling between the 

ship antennas is determined by Particle Swarm Optimization. In this optimization 

the initial population is generated by Latin hypercube distribution technique. In 

the optimal placement, HF fore antenna is located at x = 25.1 m and y = 3.4 m, 

and HF aft antenna is located at x = 1.5 m and y = 1.2 m.  

 

In this antenna placement, both HF fore and aft antennas radiate/receive in the 

upper hemisphere. In order to analyze the total coverage of the antennas on the 

upper hemisphere, contribution of both antennas is considered. Therefore, two HF 

antennas are assumed to operate complementarily in terms of directivity in upper 

hemisphere. While determining “resultant directivity” for a particular direction on 

the upper hemisphere, the directivity value of the antenna which is higher than 
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that of the other antenna is chosen. For example; for a particular direction on the 

upper hemisphere, if directivity value of HF fore antenna is higher than that of HF 

aft antenna, then directivity value of HF fore antenna is assigned for that 

particular direction. 

 

The “resultant directivities” of ship antennas are compared with directivities of 

monopole antenna on an infinite ground plane as follows: 

 

• The directivities of the ship antennas are calculated at 10 MHz, 20 MHz 

and 30 MHz. 

 

• Directivities of an HF monopole antenna on an “infinite ground plane”, 

having the same electrical and physical properties with ship antennas are 

calculated at same distinct frequencies. 

 

• At each frequency, “the ranges of azimuth and elevation angles (φ  and 

θ )” in where the directivity of the monopole antenna on an infinite gorund 

plane is greater than 0 dBi, is determined.  

 

• At each frequency, “resultant directivity” of ship antennas is examined 

within the angular ranges mentioned in the bullet above. If minimum of 50 

% of “resultant directivity” values of ship antennas within these ranges are 

greater than 0 dBi, then those antennas are assumed to have “sufficient 

coverage”, which means, those antennas radiate/receive sufficiently. 

 

7.2.1 Far-field Radiation Pattern Analyses for Ship Antennas at 10 MHz 

 

Three-dimensional and two-dimensional far-field radiation patterns of an HF 

monopole antenna on an infinite ground plane at 10 MHz are given in Figure 7.19. 
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According to this figure, for  9040 ≤≤θ  and  3600 ≤≤ φ , directivity of 

monopole antenna on an infinite ground plane is greater than 0 dBi.  

 

 

 
 

Figure 7.19 Far-field radiation patterns of monopole antenna at 10 MHz 

 

 

Figure 7.20 shows the far-field radiation patterns of HF fore and aft antennas 

which are spatially filtered and examined for  9040 ≤≤ θ  and  3600 ≤≤φ . 

According to these radiation patterns, “resultant directivity” is calculated as 

explained above, for  9040 ≤≤ θ  and  3600 ≤≤φ . According to this 

calculation: 

 

• 88 % (greater than 50 %) of the “resultant directivity” values of HF fore 

and aft antennas for  9040 ≤≤ θ  and  3600 ≤≤φ  are greater than 0 

dBi. 

 

As a result; both antennas are considered to have “sufficient coverage” at 10 MHz 

at their optimal places where the average coupling between them is minimum. 
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Figure 7.20 Far-field radiation patterns of HF fore and aft antennas at 10 MHz 

 

 

7.2.2 Far-field Radiation Pattern Analyses for Ship Antennas at 20 MHz 

 

Three-dimensional and two-dimensional far-field radiation patterns of an HF 

monopole antenna on an infinite ground plane at 20 MHz are given in Figure 7.21. 
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According to this figure, for  9060 ≤≤ θ  and  3600 ≤≤ φ , directivity of 

monopole antenna on an infinite ground plane is greater than 0 dBi.  

 

 

 
 

Figure 7.21 Far-field radiation patterns of monopole antenna at 20 MHz 

 

 

Figure 7.22 shows the far-field radiation patterns of HF fore and aft antennas 

which are spatially filtered and examined for  9060 ≤≤ θ  and  3600 ≤≤φ . 

According to these radiation patterns, “resultant directivity” is calculated as 

explained above, for  9060 ≤≤ θ  and  3600 ≤≤φ . According to this 

calculation: 

 

• 89 % (greater than 50 %) of the “resultant directivity” values of HF fore 

and aft antennas for  9060 ≤≤ θ  and  3600 ≤≤φ  are greater than 0 

dBi. 

 

As a result; both antennas are considered to have “sufficient coverage” at 20 MHz 

at their optimal places where the average coupling between them is minimum. 



 

 
 

103 
 

 

 
 

Figure 7.22 Far-field radiation patterns of HF fore and aft antennas at 20 MHz 

 

 

7.2.3 Far-field Radiation Pattern Analyses for Ship Antennas at 30 MHz 

 

Three-dimensional and two-dimensional far-field radiation patterns of an HF 

monopole antenna on an infinite ground plane at 30 MHz are given in Figure 7.23 

According to this figure, for  7022 ≤≤ θ  and  3600 ≤≤ φ , directivity of 

monopole antenna on an infinite ground plane is greater than 0 dBi.  
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Figure 7.23 Far-field radiation patterns of monopole antenna at 30 MHz 

 

 

Figure 7.24 shows the far-field radiation patterns of HF fore and aft antennas 

which is spatially filtered and examined for  7022 ≤≤ θ  and  3600 ≤≤φ . 

According to these radiation patterns, “resultant directivity” is calculated as 

explained above, for  7022 ≤≤ θ  and  3600 ≤≤ φ . According to this 

calculation: 

 

• 99 % (greater than 50 %) of the “resultant directivity” values of HF fore 

and aft antennas for  7022 ≤≤ θ and  3600 ≤≤φ are greater than 0 dBi. 

 

As a result both antennas are considered to have “sufficient coverage” at 30 MHz 

at their optimal places where the average coupling between them is minimum. 
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Figure 7.24 Far-field radiation patterns of HF fore and aft antennas at 30 MHz 

 

Results of the radiation pattern analyses of ship antennas are gathered and given 

in Table 7.2. 
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Table 7.2 Results of the radiation pattern analyses of ship antennas 

 
Coordinates 

of the 
Antennas 

Frequency 
Percentage of 

(“Resultant Directivity” 
Values ≥  0 dBi) 

Angular Ranges 
of Interest 

(  3600 ≤≤φ ) 

HF fore 
antenna @ 
x = 25.1 m 
y = 3.4 m 

 
& 
 

HF aft 
antenna @ 
x = 1.5 m 
y = 1.2 m 

10 MHz 88 %  9040 ≤≤ θ  

20 MHz 89 %  9060 ≤≤ θ  

30 MHz 99 %  7022 ≤≤ θ  

 

 

According to Table 7.2, percentages of the “resultant directivity” values of ship 

antennas for each of the angular ranges and for all frequencies of interest are 

greater than 50 %. Therefore both of the HF fore and aft antennas are considered 

to have “sufficient coverage” in the upper hemisphere. 
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CHAPTER 8 

 

8 CONCLUSIONS AND FUTURE WORK 

 

 

Since the detailed conclusions/discussions about the analyses are already included 

in the previous chapters, the general conclusions drawn from this thesis work are 

summarized as follows: 

 

• Optimal antenna placements yielding minimum average coupling between 

the antennas of two VHF radios on an aircraft platform and between the 

antennas of two HF radios on a ship platform are determined by genetic 

algorithm optimization and particle swarm optimization techniques. 

 

• For both platforms, optimal antenna placements and resultant average 

coupling values determined by two different optimization techniques are 

found to be very close to each other. The results and performances of two 

global optimization techniques are given in detail and compared with each 

other in the related sections above 

 

• For both platforms, each antenna placement optimization by genetic 

algorithm lasts for about one day and each antenna placement optimization 

by particle swarm optimization lasts for about two days. Both time spans 

are “real-time” values and are found to be tolerable. 

 

• For each platform, far-field radiation pattern performances of the antennas 

at their optimal places are analyzed in terms of directivity and coverage. 
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As a result, radiation performances (coverage) of the antennas for both 

platforms are found to be sufficient. 

 

Further studies which can improve or extend the achievements of this thesis work 

are summarized as follows: 

 

• For each platform, similar coupling optimizations and far-field 

performance analyses can be performed for different antenna lengths and 

for different frequency bands of operation. 

 

• In this thesis work the, RF components like impedance matching units, 

pre-selector filters, etc. which are used for improving the performances of 

the antennas and protective components like radomes are not considered in 

the simulations. For more realistic results, these components can be added 

to the antenna models and considered in the simulations. 

 

• For each platform, similar coupling optimizations can be performed with 

different genetic algorithm and particle swarm optimization parameters.  

 

• In this thesis work, coupling between the antennas are minimized for the 

whole frequency band of operation for each platform. Instead of this 

approach, maximum value of the coupling or the coupling for at a 

particular frequency of interest can be minimized for each platform. 

 

• Optimal antenna placements can further be improved by using local 

optimization techniques like the Quasi Newton, the Powell and the Nelder-

Mead Simplex optimization techniques. 
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