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ABSTRACT

ON THE TIGHT CONTACT STRUCTURES ON SEIFERT FIBRED 3−MANIFOLDS
WITH 4 SINGULAR FIBERS

Medetŏgulları, Elif

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Yıldıray Ozan

September 2010, 49 pages

In this thesis, we study the classification problem of Stein fillable tight contact structures on

any Seifert fibered 3−manifold M over S2 with 4 singular fibers. In the casee0(M) ≤ −4

we have a complete classification. In the casee0(M) ≥ 0 we have obtained upper and lower

bounds for the number of Stein fillable contact structures onM.

Keywords: Contact structures, Seifert fibred manifolds
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ÖZ

SĖIFERT MANİFOLDLARDAK İ TAYT KONTAKT YAPILAR ÜZEṘINE

Medetŏgulları, Elif

Doktora, Matematik B̈olümü

Tez Yöneticisi : Prof. Dr. Yıldıray Ozan

Eylül 2010, 49 sayfa

Bu tezde,M bir 4 tekil lifli Seifert 3−manifold olmaküzere,M üzerindeki Stein dolabilir tayt

yapılar çalışılmıştır.e0(M) ≤ −4 olması durumunda Stein dolabilir yapıların sınıflandırması

elde edilmiştir.e0(M) ≥ 0 olması durumunda ise Stein dolabilir yapıların sayıları için birüst

ve bir alt sınır bulunmuştur.

Anahtar Kelimeler: Kontakt yapılar, Seifert manifoldlar
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Mustafa Korkmaz, Assist. Prof. Dr. Mohan Bhupal, and Assoc. Prof.Dr. Tolga Etg̈u for

their helpful comments and suggestions.

I wish to thank to my colleagues and my friends Elif Yılmaz Dalyan, Sinem Çelik Onaran,
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CHAPTER 1

INTRODUCTION

Classification of tight contact structures on 3−manifolds has been an interesting problem since

late 1980’s. It started with Eliashberg, who showed that there exists a unique tight contact

structure onR3 [9]. Later various people worked on this problem and the classification has

been done for several 3−manifolds, includingS3, B3, T2 × I , S1 × D2, L(p,q), S1 bundles

over surfaces, some surface bundles overS1 and some Seifert fibred 3−manifolds ( [9], [38],

[39], [58], [59], [28], [29], [24], [26]).

A Seifert fibred 3−manifold with three or less singular fibers and with baseS2 is called asmall

Seifert fibred3−manifold. The classification of tight contact structures on small Seifert fibred

3−manifolds is as follows: A small Seifert fibred 3−manifold with one or two singular fibers

is a Lens space and the exact number of tight contact structures on lens spaces is known [38].

For small Seifert fibred 3−manifoldsM with three singular fibers, Wu computed the exact

number of tight contact structures onM, whenevere0(M) , −1, e0(M) , −2 or e0(M) , 0 in

[59]. Later, Stipsicz, Ghiggini and Lisca gave a complete classification forthe casee0(M) ≥

0 in [28]. All the tight contact structures in the above cases are Stein fillable. Note that

fillable contact structures are tight (Eliashberg and Gromov, [12]). In the casee0(M) = −1

the classification is more difficult. This is partly because of the existence of non–fillable tight

contact structures, which are harder to detect. Another reason is that this case contains some

manifolds which do not admit any positive tight contact structure as shown by Honda and

Etnyre in [14]. Tight contact structures on small Seifert fibred 3−manifolds withe0(M) = −2

are classified provided that they areL−spaces (Ghiggini, [26]).

For non–small Seifert fibred 3−manifolds, the first result in this direction is the classification

of tight contact structures on Seifert fibred 3−manifolds with one singular fiber and with base
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T2, given by Ghiggini in [24]. In this thesis, we study the classification problem of tight

contact structures on Seifert fibred 3−manifolds with 4 singular fibers overS2. We use the

methods developed in [58], [59] and [28]. Here is an outline of the thesis.In the Chapter 2,

we introduce some preliminary materials such as convex surface theory, Legendrian surgery,

classification of tight contact structures on some building blocks of 3−manifolds, Heegaard–

Floer theory and open book decompositions.

In the third chapter, using convex surface theory we obtain an upper bound for the number

of Stein fillable tight contact structures on some certain Seifert fibred 3−manifolds having 4

singular fibers with baseS2, and then using Legendrian surgery presentations of these Seifert

fibred 3−manifolds we get a lower bound for the same number. If a Seifert fibred 3−manifold

M hase0(M) ≤ −4 then the upper bound and the lower bound we obtain coincide, giving the

exact number of Stein fillable contact structures onM. However, in the casee0(M) ≥ 0 the

two bounds do not match.

The argument we give to get the upper bound depends on whether the contact 3−manifold

contains a vertical Legendrian curve with zero twisting or not. We observethat whene0(M) ≥

0 all the tight contact structures contain a vertical Legendrian curve with zero twisting, which

is exactly the same situation for the small Seifert fibred manifolds by a result ofWu [58].

It is also proved by Wu [58] that none of the tight contact structures on small Seifert fibred

3−manifolds withe0(M) ≤ −2 contains a vertical Legendrian curve with zero twisting. In

the case of four singular fibers, a tight contact structure on Seifert fibred 3−manifolds with

e0(M) ≤ −1 may or may not contain a vertical Legendrian curve with twisting zero. We

prove that whene0(M) ≤ −2 none of the tight contact structures with zero Giroux torsion

admit a Legendrian vertical curve with zero twisting. In the casee0(M) ≤ −2, the tight

contact structures will be non–fillable if there is a Legendrian vertical curve with twisting

zero. At this point we can consider another question: Are the tight but non–fillable contact

structures virtually overtwisted or universally tight? The first examples of tight but non–

fillable contact structures were found by Etnyre and Honda in [38]. These examples were

all virtually overtwisted. Later, several tight but non–fillable examples were exhibited, [45],

[46]. These are also all virtually overtwisted. The first of the universally tight but non–

fillable examples were constructed by Ghiggini [27] on Seifert fibred 3−manifolds with 4

singular fibers ande0(M) = 0. He used the Ozsváth–Szab́o contact invariant to show the

non–fillability of his examples. The contact structures he constructed havezero twisting, zero

2



contact invariant and positive Giroux torsion. One can further ask whether there are any tight

contact structure with zero twisting, zero contact invariant and zero Giroux torsion or not?

Such contact structures were firstly constructed by Massot [50]; he proved that such contact

structures exist on any Seifert fibred 3−manifold with the base genus greater than or equal to

2.

In Chapter 4, we discuss possible generalizations of the above results to the Seifert fibred

3−manifolds with at least five singular fibers. We give examples of compatible open book

decompositions of the Stein fillable contact structures mentioned in Chapter 3.
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CHAPTER 2

BACKGROUND

In this chapter we will introduce the classification problem of tight contact structures and give

a brief introduction to the methods, which will be used to prove the main theorems.In the last

part we will review some important results on the classification of tight contactstructures on

small Seifert fibred 3−manifolds.

2.1 Classification Problem

On a 3-manifold a plane distributionξ, which is locally the kernel of a 1-formα with α ∧

dα , 0 is called acontact structure. Martinet in 1971 showed that every oriented closed

3-manifold admits a contact structure [48]. We call a 3-manifoldM with a contact structure

ξ acontact3-manifoldand denote it by (M, ξ). As a first example we can look at the standard

contact structure onR3, which is ξstd = ker(dz− ydx). If we try to draw its picture we

will see that the planes are twisting in they direction as in Figure 2.1. Another example is

ξot = ker ( cosrdz+ r sinrdθ ) on R3 with cylindrical coordinates. In the first example the

twisting of planes in they direction is less thanπ however in the second example the contact

planes rotates along any radial direction infinitely many times.

Definition 2.1.1. A curveL which is everywhere tangent toξ is calledLegendrian. We define

the twisting number t(L, Fr) of a closed Legendrian curveL with respect to a given framing

Fr to be the number of counterclockwise (right) 2π twists of ξ along L, relative toFr. In

particular, ifL is a connected component of the boundary of a compact oriented surfaceΣ, TΣ

gives a natural framingFrΣ, then t(L, FrΣ) is called theThurston-Bennequin invariant tb(L).

Definition 2.1.2. Let L be an oriented Legendrian curve which is the boundary of an embed-
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y

x

z z

Figure 2.1: Standard and overtwisted contact structures onR3

ded orientable surfaceΣ. The winding number of a non–zero tangent vector field alongL with

respect to any given trivialization ofξ|∂Σ is called theRotation numberof a Legendrian curve.

Definition 2.1.3. An embedded diskD in (M, ξ) is called anovertwisted diskif the contact

planes are tangent to∂D = L andtb(L) = 0. If (M, ξ) contains such a disk then this contact

structure is called anovertwisted contact structure. If there is no such embedded disk then

the contact structure is called atight contact structure.

According to this definition the second example above is an overtwisted contact structure,

and we can see the overtwisted disk in Figure 2.1. However, the first example onR
3, which

is ξstd, is a tight contact structure. Tightness of this contact structure can be shown using the

Bennequin inequality, [2], which says that ifL is a Legendrian knot in (R3, ξstd) and Σ ⊂ R
3

is a Seifert surface forL thentb(L)+ |rot(L)| ≤ −χ(Σ). An overtwisted diskD has tb(∂D) = 0

andχ(D) = 1. Thus by the Bennequin inequality, there can not be such a disk in (R
3, ξstd).

The first example is called thestandardtight contact structure, since by a theorem of Darboux,

locally every tight contact structure look like (R
3, ξstd). Therefore there is no local invariant

for contact structures.

Two contact structuresξ1, ξ2 on a smooth 3−manifold M are calledcontactomorphicif there

is an orientation preserving diffeomorphismϕ : M → M such thatϕ∗(ξ1) = ξ2. If a contacto-

morphism is isotopic to the identity then it is called acontact isotopy.

The classification of overtwisted contact structures is the same as classification of 2−plane

5



fields (Eliashberg [8]) .

In this thesis we study the classification problem of (positive) tight contact structures, up to

isotopy, on Seifert fibred 3−manifolds with baseS2 and 4 singular fibers.

2.2 Convex Surface Theory

One of the tools used in proof of the main results, is the convex surface theory, which is first

used in [33], then developed by Honda in [38].

For a detailed information about convex surface theory one may look at [38], [39],[33].

An embedded surface is called aconvex surfaceif there is acontact vector field(a vector field

whose flow preserves the contact structures) which is transverse to thesurface. LetΣ be an

embedded convex surface in (M, ξ). By the works of Giroux in [31], and Honda in [38], by

an arbitrary small isotopy of the surfaceΣ any embedded surface can be made convex in the

contact 3−manifold (M, ξ).

Definition 2.2.1. LetΣ be a convex embedded surface in (M, ξ) with transverse vector fieldv.

ThenΓΣ = {x ∈ Σ|α(vx) = 0} is an embedded curve onΣ, called thedividing curveof ξ onΣ.

By a theorem of Giroux [33] we can read the information about the contactstructure on a

neighborhood of surface from its dividing curves on the surface. The following theorem is

called Giroux’s Criteria.

Theorem 2.2.2 (Giroux [33]). LetΣ be an orientable surface (with or without boundary) and

Σ , S2, then a contact structure onΣ × I is tight if and only ifΓΣ contains no homotopically

trivial dividing curve. WhenΣ = S2 then the tight contact structure onΣ × I is tight if and

only if ΓΣ consists of only one component.

Dividing curves divide the surfaces into+ and− regions asΣ− ΓΣ = Σ+ ∪ Σ−, where the flow

of the transverse vector fieldv on the convex surfaceΣ expands (contracts) a volume form on

Σ+ (onΣ−, resp.) andv points outward fromΣ+ alongΓΣ = ∂Σ+.

Definition 2.2.3. A bypass is an oriented embedded half overtwisted diskD, whose boundary

is the union of two arcs, sayα andβ so that there are 3 elliptic singular points onα, two of

6



them have the same sign but the third one which is in interior ofα has different sign. Alongβ

there are at least 3 elliptic singularity with the same sign but alternating indicies. The sign of

a bypass is defined to be the sign of the singularity in the interior ofα.

+ +

+

-

++

Figure 2.2: Bypass Half Disk

Lemma 2.2.4 (Edge-rounding, [38]).Let Σ1 andΣ2 be convex surfaces with collared Leg-

endrian boundary which intersect transversely inside the ambient contact manifold along

a common boundary Legendrian curve. Assume a neighborhood of the common boundary

Legendrian curve is locally isomorphic to the neighborhood Nǫ = x2 + y2 ≤ ǫ of M =

R
2× (R/Z) with coordinates((x, y), z) and contact1−form α = sin(2πnz)dx+ cos(2πnz)dy ,

for some n∈ ¸Z+, and that Σ1 and Σ2, satisfy Σ1 ∩ Nǫ = {x = 0,0 ≤ y ≤ ǫ} and

Σ2 ∩ Nǫ = {y = 0,0 ≤ x ≤ ǫ}. If we join Σ1 and Σ2 along {x = y = 0} and round the

common edge (take((Σ1 ∪ Σ2) − Nδ) ∪ ({(x− δ)2 + (y− δ)2 = δ2} ∩ Nδ) , where δ < ǫ) , the

resulting surface is convex, and the dividing curve z= k
2n onΣ1 will connect to the dividing

curve z= k
2n −

1
4n onΣ2, where k= 0, . . . ,2n− 1. Here we assume that the orientations ofΣ1

andΣ2 are compatible and induce the same orientation after rounding.

Lemma 2.2.5 (Bypass Attachment onT2, Honda [38]). If a bypass D is attached to T2 in

standard form, along a Legendrian ruling curve of slope r and if the slopeof dividing curve of

T2 is s, then the resulting convex torus T′ will have two dividing curves with boundary slope

s′ which is determined as follows: take the arc[r, s] on the hyperbolic unit disc obtained by

starting from r and moving counterclockwise until we hit s. On this arc, s′ is the point which

is closest to r and has an edge from s′ to s.

In practice this is done as follows: Lets= p
q , which we write ass(T2) = p

q . Then the affect of

a bypass along a ruling curve with sloper , p
q can be found using the Farey tesellation which

is the boundary of the hyperbolic unit disk. After bypass attachment as in the Figure 2.3 we

7



obtain a torusT′ which is isotopic toT2 and has slopes(T′) = p′

q′ such that det


p p′

q q′

 = 1,

wherep > p′, q > q′ and the slopes,pq and p′

q′ are connected by an edge on the boundary of

the hyperbolic unit disk.

1/1

0=0/1

-1=1/(-1)

1/0

1/2

1/3

1/4
...

r

s

s'

Figure 2.3: An application of Lemma 2.2.5

Figure 2.4: Altering of dividing curves after bypass attachment

Legendrian ruling

Legendrian divide

Dividing curve

Figure 2.5: Standard torus
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AssumeL ⊂ M is a Legendrian curve with a negative twisting numbert(L) = −n with

respect to some fixed framing. Thestandard tubular neighborhood N(L) of L is defined as

the solid torusS1×D2 with coordinates (z, (x, y)) and the contact 1−form α = sin(2πnz)dx+

cos(2πnz)dy, whereL = {(z, (x, y)) : x = y = 0}. With respect to the fixed framing ofL, we

may identify ∂N(L) with R
2/Z2 such that the meridian is (1,0)T and the longitude (fixed

by the framing) is (0,1)T . Then the boundary slope (which means the slope of the dividing

curves of∂N(L)) s(∂N(L)) =
1
n

.

One can observe that the twisting number of a Legendrian curveL, which is the boundary of

a convex surfaceΣ can be calculated using the followingt(L, FrΣ) = −#1
2(L ∩ ΓΣ) [38].

Proposition 2.2.6 (Imbalance Principle, Honda [38]).Let A = S1 × [0,1] be a convex

annulus with Legendrian boundary inside a tight contact manifold. Ift(S1×{0}) < t(S1×{1}) ≤

0, then there exists a bypass alongS1 × {0}.

Lemma 2.2.7 (Twist Number Lemma, Honda [38]).Consider a Legendrian curve in a

contact manifold(M, ξ) with twisting number n relative to a fixed framing and N a standard

tubular neighborhood of L. If there exists a bypass attached to a Legendrian ruling curve of

∂N of slope r with
1
r
≥ n+ 1, then there exists a Legendrian curve with twisting number n+ 1

isotopic to L.

Definition 2.2.8 (Relative Euler Class).Let (M, ξ) be a contact 3−manifold, with ∂M .

Consider the following exact sequence;

H1(∂M)→ H2(M, ∂M)→ H2(M)→ H2(∂M).

The Euler class ofξ is denoted bye(ξ) ∈ H2(M). If s is a nowhere zero section of the

restriction ofξ to the boundary ofM, we define the relative Euler classe(ξ, s) ∈ H2(M, ∂M)

as the obstruction to extends to M. It follows thate(ξ, s) is a lift of e(ξ).

The relative Euler class can be computed by using< e(ξ, s),Σ >= χ(Σ+) − χ(Σ−), [38]. The

relative Euler class is important since it distinguishes the tight contact structures.

Let M = T2× [0,1] be a contact 3−manifold withs(T2×{0}) = p
q ands(T2×{1}) = p′

q′ , where

(q, p) and (q′, p′) form an integral basis. OnM there are two tight contact structures and they

can be distinguished by Poincaré duals of the homology classes represented by±((q′, p′) −

(q, p)). Indeed if a 3−manifold containsM with the above properties,M is called abasic

slice.
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Using basic slices Honda classified the tight contact structures onS1 × D2 and T2 × I as

follows: Let −
p
q
= r0 −

1

r1 −
1

r2−···−
1
rk

be the continued fraction expansion of the rational

number−
p
q

andp > q ≥ 1.

Theorem 2.2.9 (Honda [38]).On the solid torus S1 × D2 with two dividing curves of slope

−
p
q

there are exactly|(ro + 1)(r1 + 1) · · · (rk−1 + 1)rk| non isotopic tight contact structures.

The ideas in the proof of the following theorem is essential for the proof ofour main results.

By minimally twisting in the following theorem, we mean the slope of every torusT2 × {t} in

T2 × [0,1] is between the slope ofT2 × {0} and the slope ofT2 × {1}.

Theorem 2.2.10 (Honda [38]).On T2 × I with boundaries Ti = T × {i}, for i = 0,1, and

boundary slopes s(T0) = −1, s(T1) = − p
q , there are exactly|(ro + 1)(r1 + 1) · · · (rk−1 + 1)rk|

minimally twisting tight contact structures, up to isotopy.

Note that in the above two theorems the slopes are all negative. However, using a suitable

diffeomorphism, which is an element ofS L(2,Z), we can change a negative slope to a positive

one, ([38]).

Definition 2.2.11. Let (M, ξ) be a Seifert fibred 3−manifold andL be a Legendrian curve

isotopic to a regular fiber andt(L) be the twisting ofL. Maximal twisting of a contact structure

ξ is t(ξ) = max{minL∈L {t(L),0}}, whereL is the set of possible Legendrian realizations ofL.

To go further we need to understand the tight contact structures on 4−punctured sphere times

S1. In the following theorem Honda [39] gave a classification of tight contactstructures on

pair of pants timesS1, with ∞ boundary slopes. LetΣ0 denote sphere with 3−punctures.

∂(Σ0 × S1) = T1 ∪ T2 ∪ T3 and infinite boundary slope meaning thats(Ti) = ∞ for all i.

Theorem 2.2.12 (Honda [39]).If there exist tight contact structures onΣ0 × S1 so that all

boundary slopes are infinite, then these tight contact structures onΣ0×S1 are all S1−invariant

and determined only by the dividing curvesΓΣ0 onΣ0.

Theorem 2.2.13 (Giroux [33]). Let Σ be a surface. OnΣ × S1 an S1 invariant contact

structure is (universally) tight if and only if there is no homotopically trivial dividing curve

onΣ.
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The theorem below (and its proof) is an analog of a result of Honda on pair of pants timesS1.

Theorem 2.2.14.LetΣ be a4−punctured sphere with∂Σ×S1 = T1∪T2∪T3∪T4. Then the

tight contact structures onΣ × S1 with minimally convex T′i ’s having dividing curve slopes

si < ∞ ∈ Z, i = 1,2,3,4 can be classified as follows:

1. A tight contact structure with a vertical Legendrian curve can be factorized as follows,

Σ × S1 = Σ′ × S1 ∪ (T1 × I ) ∪ (T2 × I ) ∪ (T3 × I ) ∪ (T4 × I ),

where I= [0,1] and Ti × {1} are the boundaries ofΣ′ × S1 having dividing curve with

∞ slope and each Ti × I is minimally twisting.

2. If we have a universally tight contact structure with a vertical Legendrian curve having

zero twisting, then we can extend the tight contact structure uniquely to a tightcontact

structure on

Σ′′ × S1 = Σ × S1 ∪ (T′′1 × I ) ∪ (T′2 × I ) ∪ (T′′3 × I ) ∪ (T′′4 × I ),

where I= [−1,1] and all the T′′i × {−1} which are also boundaries ofΣ′′ × S1 have∞

slope.

3. If
∑4

i=1 si ≥ 3 then

(a) there always exists a vertical Legendrian curve with zero twisting,

(b) universally tight contact structures are as in Part2,

(c) if
∑4

i=1 si = 4 then there exists one, if
∑4

i=1 si > 4 there exist two virtually over-

twisted contact structures and if
∑4

i=1 si = 3 then there exists no tight contact

structure.

4. If
∑4

i=1 si < 3 and if there exists a vertical Legendrian curve then tight contact structures

are universally tight and are as in Part2. If there is no vertical Legendrian curve then

there exist3−
∑4

i=1 si virtually overtwisted tight contact structures.

Proof of Theorem Let
∑4

i=1 si ≥ 3. We will first say that there exist a vertical Legendrian

curve with twisting zero: LetA1 andA2 be two vertical annuli betweenT1 andT2, T2 and

T3, respectively. Assume that the dividing curves onA1 andA2 are parallel connecting one

boundary to the other one. (Otherwise, there exist boundary parallel dividing curves which

11



may produce bypasses and after attaching all possible bypasses, we can find an∞ slope torus

and on this torus we can draw a Legendrian vertical curve.) We can cut alongT1 ∪ A1 ∪ T2 ∪

A2 ∪ T3. After rounding the eight edges we obtain aT2 × I , whereT2 × {0} = T4, which has

slopes4, andT2×{1} having slopes′4 = −s1−s2−s3+2. By the assumptions1+s2+s3+s4 ≥ 3

and this givess4 ≥ 3− s1− s2− s3. Hence,s4 ≥ 2− s1− s2− s3 = s′4 and thus by a Theorem of

Honda [38] there exist aT2 with∞ slope dividing curve . Once we found a torus with∞ slope

dividing curve connecting a Legendrian divide of this torus with an infinite slope Legendrian

ruling on eachTi , i = 1,2,3,4 we obtain four vertical annuli. Along each Legendrian ruling

on these annuli there are boundary parallel curves which produce bypasses by the imbalance

principle. We attach these bypasses and continue this process until we getinfinite slope tori.

Hence we obtain basic slicesTi× I , for i = 1,2,3,4, wheres(Ti×{0}) = si ands(Ti×{1}) = ∞.

Now we can writeΣ × S1 = Σ′ × S1 ∪ (T1 × I ) ∪ (T2 × I ) ∪ (T3 × I ) ∪ (T4 × I ) as claimed.

By Proposition 4.4 of Honda in [39], the tight contact structures onΣ′ × S1 can be char-

acterized by the dividing curves onΣ′. We have two cases depending on the existence of

a boundary parallel dividing curve onΣ′. If there is no boundary parallel dividing curve,

which means that there is no bypasses onΣ′, then there are three possible dividing curve

configurations onΣ as in Figure 3.3. Let each basic slice has a different sign such as;

+,+,−,− or −,+,−,− etc., then we can uniquely extend this contact structure toΣ′′ × S1 =

Σ×S1∪(T′′1 × I )∪(T′′2 × I )∪(T′′3 × I )∪(T′′4 × I ), whereT′′i × [−1,1] = Ti× [0,1]∪T′i × [−1,0].

So that on eachT′′i × I the twisting of tight contact structure isπ with each s(T′′i × { j}) = ∞,

for i = {1,2,3,4} and j = {−1,1}. Since the contact structure is tight the sign of the contact

structure onTi × [0,1] and the sign on the contact structure onT′i × [−1,0] must be the same

by Theorem 1.3 in [39]. Now the classification of tight contact structures on the thickened

torus implies that the tight contact structure onT′′i × [−1,1] is universally tight andS1 in-

variant. An S1 invariant contact structure onΣ′′ × S1 is universally tight since there is no

homotopically trivial dividing curve onΣ′′ by Theorem 2.2.13.

If the sign of the basic slices are not mixed, by a suitable diffeomorphism we can arrange the

slopes of the dividing curves to bes1 = s2 = s3 = 1. First we will show that the contact

structures withs1 + s2 + s3 + s4 > 3 are tight. We can construct such tight contact structures

as follows; let us start withS1 × D2 with boundary slopes4 > 0, then remove standard

neighborhoods of three Legendrian curves with twisting−1. To obtain a twisting number−1

curve take stabilizations of Legendrian curves with twisting zero in a way thatthe contact

12



structure is virtually overtwisted.

If s1 + s2 + s3 + s4 = 4 then the contact structures with signs+,+,+,+ and−,−,−,− are

isotopic: Let us connectT1 andT2 by a convex vertical annulusA1 andT2 to T3 by a convex

vertical annulusA2. Since we assume the tight contact structures onTi × I ′sare all minimally

twisting, onA1 andA2 there are no boundary parallel dividing curves. If we cut alongT1 ∪

A1 ∪ T2 ∪ A2 ∪ T3 and round the edges we obtain a torus with boundary slope−1 from the

T4 side. Hence, we obtain a thickened torus with two basic slices having slopes,−1,∞ and

∞,1. The tight contact structures in both thickened tori have different signs as+,− or −,+

respectively. However, there is only one positive basic slice in both cases, so the contact

structures with signs+,+,+,+ and−,−,−,− are isotopic.

If s1 + s2 + s3 + s4 > 4 the above proof is not valid anymore. This is because whens4 > 1

there will be more than one positive basic slices in the thickened torus, which we obtain after

cutting and rounding edges process. Hence there are two non-isotopic tight contact structures,

and they differ by the relative Euler class onΣ.

If s1 + s2 + s3 + s4 = 3 then we will show that the contact structures are overtwisted. As

above, after suitable diffeomorphisms we obtains1 = s2 = s3 = 1. Sinces1+ s2+ s3+ s4 = 3,

we haves4 = 0 and we factor aT2 × I layer with slopes 0,1. Then we obtain aΣ × S1

having all the boundary slopes as 1. By a similar process, we can construct a tight model

using D2 × S1. In this tight model, letA1 and A2 be two vertical annuli connectingT1 to

T2 andT2 to T3, respectively, on which all the dividing curves are horizontal. Cutting along

T1 ∪ A1 ∪ T2 ∪ A2 ∪ T3 and rounding the edges result aT2 with slope−1. Hence we obtain

a thickened torus with two basic slices having slopes 0,∞ and∞,−1, respectively. Since the

basic slices have different signs, by Theorem 1.3 in [39] the contact structures obtained in this

way is not tight. Indeed, also in cases4 ≤ 0 we come up with overtwisted contact structure,

and hence the same proof covers the cases1 + s2 + s3 + s4 ≤ 3.

Now assume that there are boundary parallel arcs onΣ′. If s1 + s2 + s3 + s4 ≤ 3 and there

is a vertical Legendrian curve then the unmixed case of the signs of basic slices yields an

overtwisted disk. In order to get a tight contact structure, signs should be mixed. Hence, we

have anS1 invariant universally tight contact structure and there exists a unique extension to

a universally tight contact structure onΣ′′ × S1 with∞ slope dividing curves on eachTi .
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If s1 + s2 + s3 + s4 < 3 and there exist a Legendrian vertical curve, then similar to the case

s1+s2+s3+s4 ≥ 3 there exist universally tight contact structures however, there is no virtually

overtwisted contact structures. (We already proved this in the cases1 + s2 + s3 + s4 ≤ 3.)

When there is no vertical Legendrian curve then we can connectT1 to T2 by A1 and T3

to T4 by A2, and onA1 and A2 there are dividing curves connecting one boundary to the

other boundary of the annuli. We can cut alongT1 ∪ A1 ∪ T2 ∪ A2 ∪ T3 and round the

eight edges to obtain a thickened torusT2 × I wheres(T2 × {0}) = s(T4) ands(T2 × {1}) =

s(Σ×S1\T1∪A1∪T2∪A2∪T3) = −s1−s2−s3+2. Finally by the classification of tight contact

structures on thickened torus in [38] there exist (−s1− s2− s3+2)− s4+1 = 3− s1− s2− s3− s4

tight contact structures.

2.3 Legendrian Surgery

Given a Legendrian knotL in any contact 3−manifold (M, ξ), a Legendrian surgery onL

yields the contact manifold (M′, ξ′), whereM′ is obtained fromM by t(L) − 1 Dehn surgery

on L andξ′ is obtained fromξ as follows: LetN be a standard convex neighborhood ofL.

Choose a framing onN so thatt(L) = 0. This choice of framing allows us to make an oriented

identification −∂(M\N) with R
2/Z2, where (1,0)T is the meridian ofN and (0,1)T is the

longitude ofN corresponding to the framing. Now take an identical copyN′ of N (with the

same framing), and make an oriented identification∂N′ with (R2/Z2), where (1,0)T is the

meridian and (0,1)T is the longitude. NowM′ = (M\N) ∪φ N′, whereφ : ∂N′ → −∂(M\N)

is represented by the matrix


1 0

−1 1

 ∈ S L(2,Z).

Definition 2.3.1. A contact 3−manifold (M, ξ) is calledholomorphically fillableif there is a

compact complex surface (X, J) such that the contact structure on∂X given by the complex

tangencies is contactomorphic to (M, ξ).

Definition 2.3.2. A Stein surface is a complex surfaceX with a real-valued Morse function

f on X such that, away from the critical points off , the field of complex tangencies to the

preimageXc = f −1(c) is a contact structure that induces an orientation onXc agreeing with

the usual orientation as the boundary off −1(−∞, c]. That is, f −1(−∞, c] is a Stein filling of

Xc = M. M is calledStein fillable3−manifold.
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The complex structure on a holomorphic filling can be deformed to a blow up of aStein filling.

Hence being holomorphically fillable and Stein fillable are the equivalent.

Definition 2.3.3. A contact 3−manifold (M, ξ) is calledstrongly (symplectically) fillableif

there exist a compact symplectic 4−manifold (X, ω) such that∂X = M andω is exact near

the boundary withdα = ω.

Definition 2.3.4. A contact 3−manifold (M, ξ) is calledweakly (symplectically) fillableor

simply fillable if there is a compact symplectic 4−manifold (X, ω) such that∂X = M and

ω|ξ , 0.

We have the following implications: If a contact structure is Stein fillable then it is also strong

symplectically fillable. If a contact structure is symplectically fillable then it is also weakly

fillable and finally, if a contact structures is weakly fillable then it is tight. The converses of

these statements are all false ([25], [11], [14]).

The following theorems relates Legendrian surgery to fillability and are oftenused to show

tightness of many of the contact structures, [38], [59], [30].

Theorem 2.3.5 (Eliashberg [10]).Suppose(M′ξ′) is obtained by Legendrian surgery from

(M, ξ). If (M, ξ) is weakly fillable then(M′, ξ′) is also weakly fillable.

Theorem 2.3.6 (Eliashberg, Gromov [12]).If (M, ξ) is fillable then it is tight.

2.4 Seifert Fibred3−Manifolds

Definition 2.4.1. Let M be a fibred 3−manifold overS2, with n singular fibersF1, F2, · · · , Fn.

We can describeM explicitly as follows: LetVi , i = 1,2, · · · ,n, be a tubular neighborhood of

the singular fiberFi . We identifyVi with D2 × S1 and∂Vi with R
2/Z2 by choosing (1,0)T as

the meridional direction, and (0,1)T as the longitudinal direction given by{pt} × S1. We also

identify M\(
⋃

i Vi) with Σ0 × S1, whereΣ0 is a sphere withn punctures. Finally we choose a

diffeomorphism of−∂(M\Vi) to R
2/Z2 , which maps (0,1)T to the direction of anS1-fiber,

and (1,0)T to the direction given by∂(M\Vi) ∩ (Σ0 × pt). With these identifications we may

reconstructM from (Σ0 × S1)∪n
i=1Ai

(
⋃

i=1 Vi), where

Ai : ∂Vi → −∂(M\Vi), Ai =


pi p′i

−qi q′i

 ∈ S L(2,Z).
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This manifold is called a Seifert fibred 3−manifold overS2 with n singular fiber and we

denote it byM( q1
p1
,

q2
p2
, · · · ,

qn
pn

).

The integere0(M) =
∑n

i=1

⌊
qi
pi

⌋
is called thee0 invariant of the Seifert fibred manifold.

If
∑n

i=1(1− 1
pi

), where1
2 ≤ (1− 1

pi
) < 1, is equal to the Euler characteristic of the base ,χ(S2),

then the Seifert fibred 3−manifold is a torus bundle overS1. These are the Seifert fibred

manifoldsM(±1
4,±

1
4,∓

1
2), M(±1

3,±
1
3,∓

2
3), M(±1

2,±
1
2,∓

1
2,∓

1
2). If

∑n
i=1

qi
pi
= 0, then the

Seifert manifolds contain horizantal incompressible torus. If the genus ofbase is greater than

zero or the number of singular fibers greater than three then there exist vertical incompressible

torus. For detailed information one may look at [37]. The classification of thetight contact

structures on theseT2 bundles overS1 is done in [39].

The next section will be a brief introduction to Heegaard–Floer Theory and Ozsv́ath–Szab́o

contact invariant ( [51], [52].)

2.5 Heegaard Floer Theory

Heegaard Floer homology associates a finitely generated abelian groupĤF(M, t) to any

closed connected oriented Spinc 3−manifold (M, t). A Spinc cobordism between two Spinc

manifolds (M1, t1) and (M2, t2) such thats|Mi
= ti for i = 1,2 yields a homomorphismFW,s :

ĤF(M1, t1)→ ĤF(M2, t2).

A contact structureξ on a 3−manifold M determines a Spinc structuretξ on M such that

c1(tξ) = c1(ξ). To any contact manifold (M, ξ) we can associate an elementc(ξ) ∈ ĤF(−M, tξ)/±,

which is an isotopy invariant ofξ (See[51] for details.).

Theorem 2.5.1 (Ozsv́ath-Szab́o [51]). If (M, ξ) is overtwisted then c(ξ) = 0, if (M, ξ) is Stein

fillable, then c(ξ) , 0.

The contact invariant can also be used to prove the non–fillability of a tight contact structure.

Indeed, if a tight contact structure has zero contact invariant then by above theorem this tight

contact structure is not Stein fillable, (not even weakly fillable, if one can show that twisted

coefficient contact invariant is zero, [52]).

Definition 2.5.2. Let ξ be a contact structure on a 3manifoldM. TheGiroux torsionof (M, ξ)
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is the supremum of the integersn ≥ 1, for which there exists a contact embedding

(T2 × [0,1], ker(cos(2πnz)dx+ sin(2πnz)dy)) ֒→ (M, ξ).

We say that Giroux torsion of (M, ξ) is zero if no such embedding exists.

The following theorem relates Giroux torsion to the contact invariant.

Theorem 2.5.3 (Ghiggini, Honda, Van Horn-Morris [22]). If a closed contact3−manifold

(M, ξ) has positive2π− torsion, then its contact invariant c(M, ξ) in ĤF(−M) vanishes.

The above theorem usesZ coefficient Heegaard Floer homology theory. Using twisted coef-

ficient Heegaard Floer homology theory, Honda and Ghiggini proved thefollowing theorem

in [23] (See also [20].).

Theorem 2.5.4 (Ghiggini, Honda, [23]). If T is a separating pre-Lagrangian torus in a

contact3−manifold(M, ξ), then for n> 0, c(M, ξ) = 0 in twisted coefficient Heegaard Floer

homology and hence(M, ξ) is not weakly symplectically fillable.

The theorem below describes how the contact invariant behaves underLegendrian surgery.

Theorem 2.5.5 ([51]).Suppose(M′, ξ′) is obtained from(M, ξ) by Legendrian surgery along

a Legendrian link. Then there is a cobordism̂FW : ĤF(−M′, ξ′) → ĤF(−M, ξ) , which

satisfiesF̂(c(ξ′)) = c(ξ).

Definition 2.5.6. A rational homology sphere is anL− space if ĤF(M, t) ¾ Z for all

t ∈Spinc(M).

Characterization of Seifert fibredL−spaces, with baseS2 in terms of taut foliations, transverse

foliations and transverse contact structures is given in the following theorem.

Theorem 2.5.7 (Lisca, Stipsicz [47]).Let M be an oriented rational homology3−sphere

which is Seifert fibred over S2. Then the following statements are equivalent,

1. M is an L-space,

2. Either M or−M carries no positive transverse contact structures,

3. M carries no transverse foliations,
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4. M carries no taut foliations.

The following is an important result of Lisca and Matić in [43] about transverse contact struc-

tures on Seifert fibred 3−manifolds overS2.

Theorem 2.5.8 (Lisca,Matíc [43]). An oriented Seifert fibred rational homology3−sphere

M(r1, r2, . . . , rk), with r1 ≥ r2 ≥ · · · ≥ rk, admits no positive transverse contact structure if

and only if

• e0(M) ≥ 0,

• e0(M) = −1 and there are no relatively prime integers m> a such that mr1 < a <

m(1− r2) and mri < 1 for all i = 3, · · · , k.

In the next subsection we will give a brief information about open book decompositions and

we will mention some important results.

2.6 Open Book Decompositions

An open book decomposition of a 3−manifoldM is a pair (B,h), whereB is an oriented link in

M, called thebindingof the open book, andh : M\B→ S1 is a fibration of the complement

of B, such that, for eachθ ∈ S1, h−1(θ) is the interior of a compact surfaceΣ ⊂ M, whose

boundary isB. The surfaceΣ is called apageof the open book andh is called themonodromy

of the open book.

Alternatively, if we have a compact oriented surfaceΣ and a homeomorphismh : Σ → Σ,

which is identity near the boundary, we can construct an open book as follows: First form

the mapping torusΣh. Sinceh is the identity on∂Σ, the boundary ofΣh is the trivial circle

bundle over a union of circles, that is, a union of tori. To complete the construction, solid tori

are glued to fill in the boundary tori so that each circleS1× {p} ⊂ S1×∂D2 is identified with

the boundary of a page. In this case, the binding is the collection ofn coresS1 × {q} of then

solid tori glued into the mapping torus, for arbitrarily chosenq ∈ D2.

Alexander proved that every closed oriented 3−manifold admits an open book decomposi-

tion [1]. A contact structure is compatible with an open book decomposition if away from the
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binding, the contact distribution is isotopic to the tangent spaces of the pagesthrough confolia-

tions. Every open book decomposition supports a contact structure (Thurston–Winkelnkemper,

[55]). By a theorem of Giroux in [34] one can relate the contact structures on 3−manifolds

up to isotopy with their open book decompositions up to positive stabilizations. Here by a

positive stabilization we mean modifying the page by adding a 2−dimensional 1−handle and

composing the monodromy by the positive Dehn twist along a curve that runs over that handle

exactly once.

Seifert fibred 3−manifolds can be seen as the boundaries of plumbed 4−manifolds. There are

several constructions for open book decompositions of some certain Seifert fibred 3−manifolds

using the plumbing diagrams. By adding a 2−dimensional 1−handle it is always possible to

increase the page genus of an open book decomposition, however finding the minimal page

genus of an open book decomposition that supports a given contact structure is still an open

problem. For the plumbings with no bad vertex, which means framing coefficient of each

vertex is less than or equal to minus the number of edges going out form thatvertex, in [53]

Scḧonenberger constructed open book decompositions with page genus zero (planar pages).

In [19] Etnyre andÖzbăgcı constructed open book decompositions for plumbings with some

bad vertices also. However, the open books they constructed have positive page genus.

In [19] it is also proved that the small Seifert fibred 3−manifolds withe0(M) ≥ 0 and certain

small Sefiert manifolds withe0(M) = −1 admit planar open book decompositions. Moreover,

in [47] it is shown that a small Seifert fibred 3−manifold, which has zero twisting Legendrian

vertical curve, has compatible planar open book decompositions.

Definition 2.6.1. Consider an embedding of a normal complex singularity (X, x) in (C2N,0).

The 3−manifoldY = S2N−1
ǫ ∩ X, called the link of the singularity, has the canonical contact

structureξcan, induced by the complex structure. If (M, ξ) is isomorphic to such (Y, ξcan) then

it is called aMilnor fillable contact 3−manifold.

Grauert [36] showed that a small Seifert fibred 3−manifold is Milnor fillable if and only if the

plumbing is negative definite. It is also shown in [5] that every closed oriented 3−manifold

admits at most one Milnor fillable contact structure.

One can ask what is the minimal page genus (Milnor genus) of an open book(Milnor open

book), which is compatible with the unique Milnor fillable contact structure. It isshown in
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[4] that if a contact structure is Milnor fillable then it is Stein fillable. Therefore the Milnor

genus is greater than or equal to the support genus of an open book.

The results we mention so far are about small Seifert fibred 3−manifolds with e0(M) , −2.

For e0(M) = −2, there are also some results. In [3], Bhupal andÖzbăgcı constructed some

families of small Seifert fibred 3−manifolds, where the Milnor genus equals to the support

genus, but these examples are all non-planar. All of these examples forthe casee0(M) = −2

areL−spaces.

There is also another recent interesting result of Lekili andÖzbăgcı [42], which says that Mil-

nor fillable contact structures are universally tight. They also say that these contact structures

do not come from taut foliations. Combining this result with a result of Ghiggini,Lisca and

Stipsicz, it can be deduced that Milnor fillable contact structures are allL−spaces.

As we mentioned before there are six Seifert fibred 3−manifolds, which are torus bundles

over S1. Open book decompositions for these manifolds are given in [56], [16].All these

open books have page genus one.

Plamenevskaya and Van Horn-Morris in [54] constructed open book decompositions for non–

fillable contact structures on Seifert fibred 3−manifoldM(−1; r1, r2, r3), with r1, r2 ≥
1
2, r3 =

1
p. They also found a more general non–fillable family of Seifert fibred 3−manifold with

e0(M) = −1.

In Section 4, using the above results we will describe compatible open book decompositions

of some tight contact structures on Seifert fibred 3−manifolds with 4 singular fibers.

In the last part of this chapter, we will review some results about the classification of tight

contact structures on small Seifert fibred 3−manifolds.

2.7 Results on Small Seifert Fibred3− Manifolds

Let −
pi

qi
= r i

0 −
1

r i
1 −

1
r i
2···−

1
rimi

be the continued fraction expansion of−
pi

qi
, with all r i

j ≤ −2,

wherepi > qi > 0 and (pi ,qi) = 1.
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In the following theorems whene0(M) > 0, we can assume thatq1
p1
> 1, 0 < qi

p i
< 1, so

that in the continued fraction expansion we may haver i
0 ≤ −1. In the following theorem, Wu

classified the tight contact structures on small Seifert manifolds withe0(M) , −2,−1,0.

Theorem 2.7.1 (Wu [58], [59]). 1. Let M = M( q1
p1
,

q2
p2
,

q3
p3

). If e0(M) > 0, then there

are exactly |
∏3

i=1 r (i)
0

∏mi
j=1(r (i)

j + 1)| tight contact structures and all of these contact

structures can be obtained by Legendrian surgery on a link in S3, therefore they are all

Stein fillable.

2. Let M= M(e0; q1
p1
,

q2
p2
,

q3
p3

). If e0(M) ≤ −3, then there are exactly

|(e0(M) + 1)
∏3

i=1
∏mi

j=1(r j
i + 1)| Stein fillable tight contact structures.

Theorem 2.7.2 (Ghiggini, Lisca, Stipsicz [28]).On a small Seifert fibred3−manifold

M( q1
p1
,

q2
p2
,

q3
p3

) with e0(M) ≥ 0, there are exactly|(
∏3

i=1(r0
i + 1)−

∏3
i=1 r0

i)
∏3

i=1
∏mi

k=1(rk
i + 1)|

Stein fillable tight contact structures.

The above theorems cover the cases whene0(M) , −1,−2.

The classification of tight contact structures on small Seifert fibred 3−manifolds with

e0(M) = −1 is harder, since there are non-fillable tight contact structures. Indeed on some

Seifert fibred 3−manifolds withe0(M) = −1, there is no positive tight contact structures. The

following theorems are proved by Honda and Etnyre using convex surface theory;

Theorem 2.7.3 (Etnyre, Honda [14]).There exist no positive tight contact structure on the

Poincaré homology sphere M(−1
2,

1
3,

1
5) with reverse orientation.

Theorem 2.7.4 (Etnyre, Honda [18]).On M(−1
2,

1
4,

1
4) there exist one tight contact structure

and M(−2
3,

1
3,

1
3) there are two non–isotopic tight contact structures which are not weakly

symplectically fillable.

These were the first examples of tight but not fillable contact structures.The main problem

for constructing non–fillable tight examples is showing the tightness of the contact structure,

since Theorem 2.3.6 is not applicable anymore. The tightness of the non–fillable contact

structures in the previous theorem is proved by the convex surface theory. Later, Stipsicz

and Lisca produced infinitely many non–fillable tight examples, using Legendrian surgery

diagrams to compute the Ozváth-Szab́o contact invariants, whose non–triviality implies the

tightness of the contact structure.
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The above tight but not fillable contact structures are all virtually overtwisted and all have

non-zero Osv́ath-Szab́o contact invariant. We may ask that, do all tight but not fillable con-

tact structures have non-zero contact invariant, or are there any tight but not-fillable contact

structures which are not virtually overtwisted?

In 2006 Ghiggini answered both questions. He showed that there exist infinitely many tight

contact structures with trivial contact invariant which are all universally tight. His examples

are Seifert fibred 3−manifolds overS2 with four singular fibers ande0(M) = 0. Later in 2007

Honda, Ghiggini and Van Horn-Morris showed that if a tight contact structure has positive

Giroux torsion then its contact invariant vanishes. This result provided many other examples

of tight contact structures with trivial contact invariant [49].

In the casee0(M) = −1 there is no complete classification, however there are some partial

results as in the following theorems;

Theorem 2.7.5 (Ghiggini, Scḧonenberger [30]). On the small Seifert fibred3−manifold

M(1
2,−

1
3,−

2
11) there exist two Stein fillable contact structures and on the small Seifert fibred

3−manifold M(−1
2,

2
3,

2
11) there exist a unique Stein fillable tight contact structure.

In the proof of the above theorem, convex surface theory is used to findan upper bound

and Legendrian surgery is used to find a lower bound. The manifolds in theabove theorem

are Brieskorn homology spheres±Σ(2,3,11). Recently Ghiggini and Horn-Morris gave a

complete classification of the tight contact structures on−Σ(2,3,6n− 1), for n ≥ 2.

Later using Heegaard Floer homology and Legendrian surgery Ghiggini,Lisca and Stipsicz

in [29] gave a classification for some small Seifert fibred 3−manifold with q1
p1
,

q2
p2
≥ 1

2 and

e0(M) = −1. They also showed that onM(1
2,

1
2,

1
p) there are strong but not Stein fillable con-

tact structures onM, for eachp ≥ 2, and that there are no strongly fillable contact structures

for somep ≥ 2.

Theorem 2.7.6 (Ghiggini [26]).Let M(e0; q1
p1
,

q2
p2
,

q3
p3

) with e0(M) = −2 be an L−space. Then

there are exactly|
∏m1

i=1(r1
i )
∏m2

i=1(r2
i )
∏m3

i=1(r3
i )| Stein fillable tight contact structures.

In next chapter we will try to extend of some of the results to Seifert 3−manifolds with 4

singular fibers.
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CHAPTER 3

STATEMENTS AND PROOFS OF THE MAIN THEOREMS

The following theorems are what we were able to prove regarding the classification of tight

contact structures on Seifert fibred 3−manifolds with four singular fibers and baseS2.

3.1 Main Results

In the following theorems letM be a Seifert fibred 3−manifold which admits a Seifert fibration

overS2 with 4 singular fibers.

Theorem 3.1.1.If e0(M) ≤ −2 then no tight contact structures on M with zero Giroux torsion

contains a Legendrian curve with zero twisting.

Let M = M(− q1
p1
,−

q2
p2
,−

q3
p3
,−

q4
p4

) be a Seifert manifold, where−
qi

pi
= [ai

0,a
i
1, · · · ,am

i
i ] and

ai ≤ −2, i = 1,2,3,4 is the continued fraction expansion of−
qi

pi
with (pi ,qi) = 1, pi > 1,

qi > 0.

Theorem 3.1.2. If e0(M) ≤ −4 then there are exactly|(e0(M) + 1)
∏4

i=1
∏mi

j=1(a(i)
j + 1)| Stein

fillable contact structures (up to isotopy) on M. Moreover M has infinitely many non–fillable

tight contact structures with positive Giroux torsion and a Legendrian vertical curve with zero

twisting.

Let now M = M( p1
q1
,

p2
q2
,

p3
q3
,

p4
q4

) be a Seifert manifold, where−
pi

qi
= [ai

0,a
i
1, · · · ,am

i
i ] and

a1 ≤ −1, ai ≤ −2 is the continued fraction expansion of−
pi

qi
with (pi ,qi) = 1, pi ≥ 1,qi > 1.

Theorem 3.1.3. If e0(M) ≥ 0 then, every tight contact structure on M contains a Legendrian
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vertical curve with zero twisting. There are at most

2|(
4∏

i=1

(a0
i + 1)−

4∏

i=1

a0
i)

4∏

i=1

mi∏

k=1

(ak
i + 1)|

and at least

|(
4∏

i=1

(a0
i + 1)−

4∏

i=1

a0
i)

4∏

i=1

mi∏

k=1

(ak
i + 1)|

many Stein fillable contact structures (up to isotopy) on M. Moreover, there are infinitely

many non–fillable tight contact structures on M with positive Giroux torsion.

Proof of Theorem 3.1.1 On contrary to the theorem, assume that there exists a Legendrian

vertical curveL with twisting zero. By adding cusps we can assume the twisting of any

singular fiber is some numberti ≤ −1, for eachi = 1,2,3,4. Let Vi denote a standard

neighborhood of each singular fiber. Then slope of this dividing curves on ∂Vi is s(∂Vi) =
1
ti

.

Sincee0(M) ≤ −2, M can be written in the form

M(
q1

p1
,e0 + 2+

q2

p2
,

q3

p3
,

q4

p4
),

where pi > qi > 0, for i = 3,4, q1,q2 < 0 and pi > 1. Let the orientation preserving

diffeomorphism given byϕi : ∂Vi −→ Ti = ∂(M\Vi), ϕi =


pi ui

−(e0 + 2)pi − qi vi

, for i = 2

andϕi : ∂Vi −→ Ti , by ϕi =


pi ui

−qi vi

, for i , 2. Usingϕi we can compute the slope of

dividing curves onTi ass2 = s(T2) =
−((e0 + 2)p2 + q2)t2 + v2

p2t2 + u2
andsi = s(Ti) =

−qi ti + vi

pi ti + ui
,

for i = 1,3,4. One can observe that fori = 2, −(e0 + 2) < si < −(e0 + 2) − qi
pi
, for i = 1,

0 < si < −
qi
pi
, and fori = 3,4, −1 < si < −

qi
pi

.

ConnectL with an∞−slope Legendrian ruling curve on eachTi . This produces four vertical

annuli. SinceL has twisting zero, there will be no dividing curves starting or ending onL. By

the imbalance principle there will be bypasses along each ruling curve on each annuli. After

attaching all possible bypasses, we obtain toriT′i with slope∞ isotopic toVi . Using Farey

tesellation, when we start from∞−slope and hitsi going counterclockwise on the boundary

of hyperbolic disk, we know that all the intermediate slopes can be realized,[38]. Therefore

around each singular fiber we obtain a thickened tori containing basic slices with slopes as in

Figure 3.1. All thickened tori contain the basic slice with slopes−1,∞. According to the sign

of this basic slice there are several cases. In each case we either end up with an inappropriate
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Figure 3.1: Disk with 3 holes and boundary slopes of thickened tori

therefore overtwisted contact structure or a contact structure with positive Giroux torsion,

both of which contradict with the assumptions of the theorem. In the following, we will give

one case which ends up with positive Giroux torsion and another case which ends up with an

inappropriate contact structure. All the other cases are similar.

Let T1 × [1/2,1] and T2 × [1/2,1], where s(Ti × {1/2}) = −1 and s(Ti × {1}) = ∞ , for

i = 1,2 have the same sign, say+. Then for the remaining two basic slicesT3 × [1/2,1] and

T4 × [1/2,1] where,s(Ti × {1/2}) = −1 ands(Ti × {1}) = ∞, for i = 3,4, and there are four

cases according to their signs:{−,−}, {+,−}, {−,+}, {+,+}.

Connecting an infinite slope Legendrian ruling curve onT1 × {1/2} with an infinite slope

Legendrian curve onT2×{1/2} yields a vertical annulusA with no boundary parallel dividing

curve. Therefore, cutting alongT1 × {1/2} ∪ A∪ T2 × {1/2} and rounding the edges gives a

torus with slope one. Now we have a pair of pants timesS1 with boundary slopes 1,−1,−1

and there are∞ slope tori in the neighborhood ofT3 andT4, which implies that we can also

find one in the neighborhood of the torus with slope 1.

Consider the case{+,+}. We can cut alongT3×{1/2}∪A∪T4×{1/2}, where s(Ti×{1/2}) =

−1 , for i = 1,2 and s(Ti × {1}) = ∞ for i = 3,4 . After rounding the edges we obtain a

torus with slope one. Therefore we obtain two tori with slope one, which arenot boundaries

of singular fibers. Since we assume the existence of a Legendrian vertical curve with twisting

zero, we can find a torus with∞−slope between these slope one tori. This means there exist

25



an embeddedT2× I , which have at leastπ twisting. So the Giroux torsion is positive The case

{−,−} will be the same.

Now consider the case{+,−}. We have three of the four basic slices with slopes−1 and

∞ of the same sign. Connecting an infinite slope Legendrian ruling curve onT1 × {1/2}

with an infinite slope Legendrian ruling curve onT2 × {1/2} yields a vertical annulusA1

and connecting an infinite slope Legendrian ruling curve onT2 × {1/2} with an infinite slope

Legendrian curve onT3 × {1/2} yields a vertical annulusA2. On A1 andA2 there are no

boundary parallel dividing curves. We can extend the annulusA1 to an annulusA′1, which is

in between the infinite slope Legendrian ruling curves onT1 × {1/4} andT2 × {1/4}, where

s(Ti × {1/4}) = 0 for i = 1,2. Similarly, we can extend the annulus toA′3, which is in

between infinite the slope Legendrian ruling curves onT2 × {1/4} and T3 × {1/2}. If we

cut alongT1 × {1/4} ∪ A′1 ∪ T2 × {1/4} ∪ A′3 ∪ T3 × {1/2}, and round the edges, we obtain

a torus with slope−1, which is in the neighborhood of the remaining fourth singular fiber.

Thus, we obtain aπ twisting thickened torus in the neighborhood of fourth singular fiber.

However using Proposition 4.16 of Honda ([38]) we can realize any rational slope in this

thickened torus. Therefore, we can realize the meridian of the neighborhood of singular fiber

as a dividing curve. This gives an embedded disk with twisting zero, which isnothing but an

overtwisted disk. Hence, we are done. The case{−,+} will be similar. ¤

Proof of Theorem 3.1.2 Let M(− q1
p1
,−

q2
p2
,−

q3
p3
,−

q4
p4

) , with − qi
pi
= [a(i)

0 ,a
(i)
1 , . . . ,a

(i)
mi

], where

all a(i)
j are integersa(i)

0 = −(
⌊

qi
pi

⌋
+ 1) ≤ −1, a(i)

j ≤ −2 for j ≥ 1. We claim that up to isotopy

there are|(e0(M)+1)
∏4

i=1
∏mi

j=1(a(i)
j +1)| tight contact structures onM which do not contain

a Legendrian vertical curve with twisting zero, i.e having negative maximal twisting.

Define an orientation preserving diffeomorphismϕi : ∂Vi −→ Ti by ϕi =


pi ui

qi vi

. Then

M = M(−
q1

p1
,−

q2

p2
,−

q3

p3
,−

q4

p4
) = (Σ × S1)

⋃

ϕ1∪ϕ2∪ϕ3∪ϕ4

(V1 ∪ V2 ∪ V3 ∪ V4).

Let ξ be a tight contact structure onM. Isotopeξ to make eachVi a standard neighborhood

of a Legendrian circleFi , isotopic to theith singular fiber with twistingti < −2. Then∂Vi is

convex and has two dividing curves with slope
1
ti

. Then, sinceTi = ∂Vi we can compute the

slope of dividing curves onTi , si = s(Ti), using the mapϕi . We see thatsi =
tiqi + vi

ti pi + ui
=

qi

pi
+

1
pi(ti pi + ui)

. Sinceti < −2 we have

⌊
qi

pi

⌋
< si <

qi

pi
. Using Giroux Flexibility theorem we can

assume that eachTi has Legendrian rulingsLi of slope∞when measured in the coordinates of
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Ti . Let A1,A2 ⊂ Σ×S1 be convex vertical annuli such that∂A1 = L1∪ L2 and∂A2 = L2∪ L3.

By the assumptionξ has negative maximal twisting so there must be dividing curves ofA1 and

A2 that connect the two boundary components ofA1 andA2. If there are∂–parallel dividing

curves onA1 andA2, by imbalance principle there are bypasses. To get rid of all∂−parallel

dividing curves onA1 andA2 we attach all bypasses. After the isotpoy the slopes of dividing

curves ofT1, T2 andT3 becomes′1 =
q1

p
, s′2 =

q2

p
, s′3 =

q3

p
, p ≥ 1, (p,qi) = 1, for i = 1,2,3.

Since si >
⌊

qi
pi

⌋
we haves′i ≥

⌊
qi
pi

⌋
≥ 0, because otherwise ifs′i <

⌊
qi
pi

⌋
there exist an∞−slope

torus, on which we can find a twisting zero vertical Legendrian curve. This contradicts to the

assumption thatξ has negative maximal twisting. If we cutM along T1 ∪ A1 ∪ T2 ∪ A2 ∪ T3

and round the edges, we obtain a torus with slopes′4 = −
q1 + q2 + q3 + 2

p
. The slopes′4

corresponds to the slopes′′4 = −
pq4 + (q1 + q2 + q3 + 2)p4

qv4 + (q1 + q2 + q3 + 2)u4
in the coordinates of∂V4. One

can observe thats′′4 < −
q4

v4
. By a theorem in [38] we can find a torus with slope−

q4

v4
. In

the coordinates ofT4 this slope becomes zero. This implies that the maximal twisting number

is −1. When we have a twisting number−1 Legendrian curveγ then we can find an annuli

between the curveγ curve and other four∞−slope Legendrian ruling curves on boundary of

Vi . On this annuli we apply the imbalance principle. Then adding bypass operations we can

assume that all the boundary slopes ofTi become
⌊

qi
pi

⌋
. When measured in the coordinates

of ∂Vi , the slopes of the dividing curves become−
qi −
⌊

qi
pi

⌋
pi

vi −
⌊

qi
pi

⌋
ui

= −
qi + (a(i)

0 + 1)pi

vi + (a(i)
0 + 1)ui

. As in

[58], one can observe that this quotient has [a(i)
mi
,a(i)

mi−1, · · · ,a1 + 1] as its continued fraction

expansion. Therefore using the classification of the tight contact structures on solid torus,

we conclude that on the neighborhood of each singular fiber there are|
∏m

j=1 i(a
(i)
j + 1)| tight

contact structures up to isotopy.

By extending a theorem of Ko Honda in [39], to Seifert fibred 3−manifold with four singular

fibers as in the last part of Theorem 2.2.14, we can say there are exactly3+
⌊

q1
p1

⌋
+
⌊

q2
p2

⌋
+
⌊

q3
p3

⌋
+

⌊
q4
p4

⌋
= |e0(M) + 1| tight contact structures onΣ × S1, whereΣ is a sphere with 4 punctures.

As it is written in Theorem 2.2.14, none of these tight contact structures contain a Legendrian

vertical curve with twisting zero. So, there are at most|(e0(M) + 1)
∏mi

j=1(a(i)
j + 1)| tight

contact structures.

For the lower bound we use Legendrian surgery diagram. Indeed in Figure 3.2 we draw the

smooth surgery diagram ofM. In the Figure eachq′i = qi +
⌊
−

qi
pi

⌋
pi . We also draw the

possible Legendrian realizations of a smooth surgery an unknot with framing e0, which is less
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than or equal to minus two. There aree0 + 1 ways to obtain different Legedrian diagram,

which gives different rotation numbers. All the contact structures obtained by Legendrian

surgery will be Stein fillable by Eliashberg [10]. Moreover, by Lisca andMatić [44], they can

be distinguished by their first Chern classes which is the rotation number of the knot. Since

all the framing coefficients are less than or equal to−2 we can do the same for all the unknots

in Figure 3.2. Hence there are at least

|(e0(M) + 1)
mi∏

j=1

(a(i)
j + 1)|

Stein fillable contact structures onM with e0 ≤ −2.

We now obtained an upper bound using convex surface theory for the negative maximally

twisting tight contact structures onM. This number matches with the lower bound coming

from Legendrian surgery, which is the number of Stein fillable (thereforeGiroux torsion zero)

contact structures. By Theorem 3.1.1 all Giroux torsion zero contact structures are negative

maximally twisting. Therefore the number we obtain gives the exact number of Stein fillable

contact structure onM with e0(M) ≤ −4. This finalizes the proof of the first part of the

theorem.

For the second statement note that there are infinitely many universally tight contact structures

when there is an incompressible torus [6]. When the number of singular fiber of a Seifert

fibred 3−manifold is greater than three there exists a vertical incompressible torus. Along this

incompressible torus one can embedT2 × I with the special contact structure on it. This does

not change the manifold, but the contact structure changes. By a resultof Honda, Van-Horn

Morris, Ghiggini [23], [22] all of such contact structures will be non–fillable. ¤

Proof of Theorem 3.1.3 We will first show that on a Seifert fibred manifoldM with 4 singular

fibers ande0(M) ≥ 0, no tight contact structure has negative maximal twisting number. (See

also Theorem1.3 in [58]). We assume the set up in the above proof so that,−∂Σ × S1 = T1 ∪

T2∪T3∪T4 , ϕi : ∂Vi → ∂(M\Vi),


pi qi

−qi ui

, wherepiui+viqi = 1, −∂Σ×{pt} → (0,1)T .

First we will prove the following claim.

Claim: Let ξ be a tight contact structure onΣ × S1 with si = s(Ti) , such that allTi ’s are

convex. Then there exist collar neighborhoodsT1 × I , T2 × I andT3 × I of T1, T2 andT3,

properly embedded vertical convex annuliA1, A2 in (Σ×S1)\(T1× I ∪T2× I ∪T3× I ), where

A1 is connectingT1× {1} to T2× {1} andA2 is connectingT2× {1} to T3× {1} with Legendrian

28



e
0

-p

-p
-p

-p

/

/

/

/

q

q
q

q

11
22

33

44

..

.

. . . .

.

.

.

.

.

a
a aa a

a

a

a

a

a

a

aa1
1

1

1
e
0

e
0

1 222

4

4

4

3

3

3

m

m

m

m1 2

3

4

e
0

+1

.

.
.
.

.

.

-1

k

-1

-1

2m

m4

-(e +2) -k
0

there is e +1 choice for k
0

2

'

'

'

'

1

1

2

Figure 3.2: Smooth surgery diagram ofM with e0(M) ≤ −2 and Legendrian realization of a
smooth surgery on the unknot with coefficiente0 ≤ −2.

boundaries such that

1) T1 × I , T2 × I andT3 × I are mutually disjoint formT4

2) for i = 1,2,3,4, Ti × {0} = Ti , and eachTi × {1} is convex with dividing curve slopes′i ≤ si

3) A1 andA2 has no∂ parallel dividing curves.

Proof of the Claim First we consider the cases1 = s2 = s3 = ∞. Connect a Legendrian divide

of T1 to a Legendrian divide ofT2 and a Legendrian divide ofT2 to a Legendrian divide of

T3 so that we obtain two annuli on which there are no boundary parallel curves. This finishes

the proof for this case.

Now, If s1 = ∞ and all the othersi are finite then connect a Legendrian divide ofT1 to a

Legendrian ruling with∞ slope onT2 and to a Legendrian vertical ruling with∞ slope onT3
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by annuliB1 andB2. T1 side of the annulus does not intersect any dividing curves. If there

are∂−parallel arcs onT2 andT3 sides of the annuliB1 and B2 adding bypasses we obtain

∞−slope tori isotopic toT2 andT3.

The cases1 = s2 = ∞ ands3ands4 are finite can be handled similarly.

Finally assume alls′i s are finite. After renaming the toriTi ’s we may assume that the torus

T2 has slope with smallest denominator among those of all theTi ’s. Let si =
qi

pi
, for i = 1,2,

wherepi > 0. Connect vertical Legendrian ruling curves on eachT1, T2 andT3, to obtain

vertical convex annuliA1 and A2. If A1 and A2 has no∂ parallel curve then we are done.

Since we assume that slope ofT2 has the smallest denominator, by the imbalance principle

there may be∂–parallel curve onT1 andT3 side of the annuliA1 andA2. If this is the case

then we can attach these bypasses toT1 andT2 along the∞−slope Legendrian ruling curve.

Repeat the procedure until there are no more∂−parallel dividing curves onA1 andA2, or until

the slopess1, s2 ands3 become all∞, which is the case we already handled.¤

Sincee0(M) ≥ 0, we may assume that
q1

p1
,

q2

p2
,

q3

p3
> 0, and

q1

p1
+

q4

p4
≥ 0. Define an orientation

preserving diffeomorphism byϕi : ∂Vi → Ti , ϕi =


pi ui

−qi vi

, wherepiui + viqi = 1.

Let ξ be a tight contact structure onM. First isotopeξ to make eachVi a standard neighbor-

hood of a Legendrian circleLi , isotopic to theith singular fiber with twisting numberti < 0.

Then eachVi is a convex tori with two dividing curves having slopes
1
ti

. We can calculate the

slope ofTi ass(Ti) = si , where

si =
−tiqi + vi

ti pi + ui
= −

qi

pi
+

1
pi(ni pi + ui)

< −
qi

pi
.

By the previous claim we can thickenV1, V2 andV3 to V′1,V′2 andV′3 such that

1) V′1, V′2, V′3 andV4 are pairwise disjoint,

2) T′i = ϕi(∂V′i ), s′i = −
q′i
p ≤ si , p, qi > 0, i = 1,2,3, and

3) there exist properly embedded vertical annuliA1 connectingT′1 to T′2 andA2 connecting

T′2 andT′3 that have no∂–parallel dividing curves.

If all the dividing curves ofA1 (or A2) are∂–parallel then there is a Legendrian vertical curve

on this annulus, which has zero intersection with the dividing curves of the annulus so that it

has twisting zero, and hence we are done.

If there are dividing curves connecting the two components of∂A1 and∂A2 then we cutM
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alongV′1∪A1∪V′2∪A2∪V′3. This gives an embedded thickened torusT4× I , whose boundary

is convex with two dividing curves of slopess4 ands′4, where

s′4 =
q′1 + q′2 + q′3 − 2

p
≥

q′1
p
≥ −s1 >

q1

p1
≥ −

q4

p4
> s4 .

Since s′4 > 0 > s4, when we go counterclockwise froms′4 to s4 along the hyperbolic unit

disk we pass through the infinite slope. This guarantees the existence of a torus with slope∞,

so that we have a twisting number zero curve on this torus. This concludes the proof of the

claim.

In the second part of the proof, we will find an upper bound for the number of tight con-

tact structures with zero Giroux torsion using the convex surface theory. Since there exists a

Legendrian vertical curveL with zero twisting, we can connectL with all the vertical Legen-

drian ruling curves on the boundaries of neighborhoods of singular fibers by vertical annuli

Ai . SinceL has twisting zero there is no intersection on theL side of the annuliA′i s and

hence there will be boundary parallel dividing curves on theTi sides of the annuli. After

attaching all possible bypasses we obtain an∞−slope tori, sayT′i , parallel toTi , i = 1,2,3,4.

Using the boundary map we see this∞−slope dividing curve corresponds to−
pi

vi
in the co-

ordinates of theUi , whereT′i ¾ ∂(M\Ui). One can observe that−
pi

vi
= [ai

mi
, . . . ,ai

2,a
i
1,a

i
0].

Using the classification of tight contact structures on the solid torus with slope−
pi

vi
there are

|
∏4

i=1 a0
i∏4

i=1
∏mi

k=1(ak
i + 1)|many tight contact structures.

However, in the casee0(M) = 0, some of these contact structures are isotopic to each other.

Indeed, the tight structures, where all basic slices with slopes−1,∞ have positive sign is

isotopic to the structure when all basic slices with slopes−1,∞ have negative sign. To see this

first note that sincee0(M) = 0, we have−1 < si < −
qi

pi
.We showed that all the tight contact

structures onM with e0(M) ≥ 0 contain a Legendrian vertical curveL with twisting zero.

ConnectL with vertical Legendrian ruling curves on the neighborhoods of each singular fiber

and obtain vertical annuliAi . The imbalance principle says that there are boundary parallel

curves onTi side. Attaching all possible bypasses gives a thickened tori around each singular

fiber, which contains basic slices with slope−1,∞. If the sign of these basic slices are all

the same then we can connect Legendrian vertical ruling curves on each−1 slope tori, and

obtain two annuli,B1 betweenT1 × {1/2} andT2 × {1/2}, andB2 betweenT2 × {1/2} and

T3 × {1/2}, where the slope of each torus iss(Ti × {1/2}) = −1, for i = 1,2,3. According

to the previous claim there is no boundary parallel dividing curves on these annuli. Cutting
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alongT1×{1/2}∪B1∪T2×{1/2}∪B2∪T3×{1/2} and rounding the edges yields a torus with

slope−1. Then, we obtain a thickened torus with two basic slices in the neighborhoodof the

fourth singular fiber which have slopes−1,∞,1. The sign of the first basic slice is positive as

we assumed at the beginning, and the sign of the new basic slice with slopes∞,1 is negative.

Similarly if we assume that all the signs of the basic slices with slope−1,∞ are negative we

obtain a thickened torus containing basic slices with same slopes but opposite signs in this

case. However, in both cases, there is only one positive basic slice in the thickened tori, so

that these contact structures must be isotopic [38].

The number of tight contact structures, which contains the basic slices having slopes−1,∞

with positive (or negative) sign is|
∏4

i=1(a0
i + 1)

∏4
i=1
∏mi

k=1(ak
i + 1)|. Then |

∏4
i=1 a0

i −

∏4
i=1(a0

i + 1)
∏4

i=1
∏mi

k=1(ak
i + 1)| is the number of tight contact structures on the neighbor-

hoods of singular fibers which isM\(Σ × S1).

Next, we need an upper bound on the number of tight contact structures with zero Giroux

torsion onΣ × S1 with∞ boundary slopes.

Let M\(
⋃4

i=1 Ui) be the background ofM( q1
p1
,

q2
p2
,

q3
p3
,

q4
p4

), which is diffeomorphic toΣ × S1,

whereΣ is a 4−punctured sphere. So∂Σ × S1 = T1 ∪ T2 ∪3 ∪T4. TheS1−invariant tight

contact structures onΣ × S1 by the∞ boundary slopes are determined with dividing curves

on any section. Figure 3.3 shows all possible dividing curve configurations on a section. The

relative Euler class calculations show that the structures correspondingto the configurations

are mutually non–isotopic except the ones corresponding to (3) and (4),which are isotopic.

We call these structuresξ+ ξ−, andξ0 as in Figure 3.3.

In this part of the proof, we will show that the configurations in Figure 3.4(A) correspond to

a Stein fillable contact structure and those in Figure 3.4(B) correspond to non-fillable tight

contact structures.

We construct a tight contact structureζ on M(r1, r2, r3), such that after some negative Leg-

endrian surgery on (M(r1, r2, r3), ζ) we obtain (M(r1, r2, r3, r4), ξ) as in the following: Let

(M\V4, ξ|M\V4) have infinite boundary slope and on (D2 × S1), let λ be the unique tight con-

tact structure with slope∞. Then set

(M(r1, r2, r3), ζ) = (M\V4, ξ|M4) ∪id (D2 × S1, λ)
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Figure 3.3: Possible dividing curves on the background ofM.

by id : ∂D2 × S1 −→ −∂(M\V4).

In (M(r1, r2, r3), ζ) constructed as above, there is aD2 × S1 with ∞ slope, which is the

neighborhood of a Legendrian curve with twisting zero. So, (M\V4, ξ|M\V4) is the complement

of the standard neighborhood of a regular fiber with twisting number zero inM(r1, r2, r3). So

when we perform smooth−
1
r4

surgery on this fiber we getM(r1, r2, r3, r4), and since the

twisting number of the curve on which we apply the Legendrian surgery is zero, the smooth

surgery coefficient is equal to the contact surgery coefficient. Thus, we have−
1
r4

negative

Legendrian surgery and this can be written as a sequence of−1 Legendrian surgeries.

In [28] it has been proved that if a contact Seifert fibred 3−manifold with three singular fibers

overS2 has a background diffeomorphic to the one in Figure 3.5 then the contact structure on

M is Stein fillable. Using the above construction and the theorem of Eliashberg,which says
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...

Figure 3.4: Possible dividing curves on a section of 4 punctured spheretimesS1.

that Legendrian surgery preserves Stein fillability, we deduce that a tightcontact structure on

a Seifert fibred 3−manifold with 4 singular fiber which has a background diffeomorphic to

the one in Figure 3.4(A) is also Stein fillable. For the background given in Figure 3.4(B),

+

-

-

+

Figure 3.5: There is a unique dividing curve configuration for pair of pants timesS1 with ∞
boundary slopes.

we refer to the Proposition 3.6 in [27]. It is proved that such a background corresponds to an

embeddedT2 × I with ξn = ker(cos 2πnzdx+ sin 2πnzdy) along incompressible tori which

separates the manifolds into pieces. This embedding yields positive Giroux torsion, so that

the corresponding tight contact structure onM is non–fillable (See also [57], and [49].).

However, the above argument does not work for the background in Figure 3.4(C). Besides,

by a Theorem of Giroux, since there is no homotopically trivial curve on a section of the

background, anyS1−invariant contact structure is universally tight.

Existence of these contact structures can be guaranteed by Legendrian surgery. Figure 3.6

shows the handlebody decomposition of a 4−manifold whose boundary is diffeomorphic to

a Seifert fibred 3−manifold with e0(M) ≥ 0. Legendrian realizations of these unknots give

possible Stein fillable contact structures. We refer to Proposition 3.1 in [28] to deduce that

there are|
∏4

i=1 a0
i −
∏4

i=1(a0
i +1)

∏4
i=1
∏mi

k=1(ak
i +1)| Stein fillable contact structures onM.
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Figure 3.6: Handlebody decomposition of a 4 manifold whose boundary isM with e0(M) ≥ 0.

Therefore as an upper bound we obtain 2|(
∏4

i=1 a0
i −
∏4

i=1(a0
i +1))

∏4
i=1
∏mi

k=1(ak
i +1)| , and

by above explanations at least|(
∏4

i=1 a0
i −
∏4

i=1(a0
i + 1))

∏4
i=1
∏mi

k=1(ak
i + 1)| many of them

are Stein fillable.¤
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CHAPTER 4

GENERALIZATIONS AND OPEN BOOK DECOMPOSITIONS

In this chapter, we discuss the possible generalizations of the main results to Seifert fibered

3−manifold with more than 4 singular fibers. We also study the open book decompositions of

Seifert fibered 3−manifolds with 4 singular fibers.

4.1 Possible Generalizations

Let ξ be a tight contact structure on the Seifert fibered 3−manifold M( q1
p1
,

q2
p2
, · · · ,

qn
pn

) with

baseS2 andn singular fibers. LetM\
⋃n

i=1 Ui be the background ofM( q1
p1
,

q2
p2
, · · · ,

qn
pn

), and

choose a diffeomorphism toΣ × S1 whereΣ is ann punctured sphere, so that∂Σ × S1 =

T1 ∪ T2 ∪ · · ·Tn. If the slopes of the dividing curves onTi are alls(Ti) = ∞, then there are

three homotopy class of contact structures onΣ×S1 (Recall the background for 4 fibered case

and Figure 3.3).

++++

+

-

++++

+

-

A B

Figure 4.1: Examples of dividing curves on the background ofM with six singular fibers.

However, in each homotopy class there may be non-isotopic contact structures. For example
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in Figure 4.1, although they have the same relative Euler class, the structurecorresponding

to Figure 4.1 (A) may not be isotopic to the structure in Figure 4.1(B). Once wehave a tool

to distinguish these tight contact structures we can find an upper bound using exactly the

same techniques employed in the four fiber case. Finding a lower bound canbe done using

Legendrian surgery diagrams similar to previous results.

4.2 Open Book Decompositions

For small Seifert fibered 3−manifolds withe0(M) ≤ −3 it is shown in [53] that all tight con-

tact structures are compatible with planar open books and all are Stein fillable. Scḧonenberger

[53] generalizes this result to Seifert fibered 3−manifolds withn singular fibers and says that

on a plumbing, when framing coefficient of central vertex is less than or equal to minus the

number of edges going out of that vertex (which means that there is no badvertex or a non-

positive plumbing diagram), any Legendrian realization give a Stein fillable contact structure

and the compatible open book is planar.

As a result of Theorem 3.1.2 and Schönenberger’s theorem we can say that on a Seifert fibered

3−manifold M with 4 singular fibers ande0(M) ≤ −4 all Stein fillable contact structures are

compatible with planar open books.

In Figure 4.2, we present a possible planar open book decomposition. There are many

other ones depending on the position of cusps which are used to stabilize theLegendrian

knot. However, all the open books corresponding to Stein fillable contactstructures in the

casee0(M) ≤ −4, will be planar. In Figure 4.2, all the curves on the page represent one

positive Dehn twist. In Figure 4.2 and Figure 4.6 we assume allr i ’s are greater than 1

and−r1 = [−a1,−a2, · · · ,−ak], −r2 = [−d1,−d2, · · · ,−dl ], −r3 = [−b1,−b2, · · · ,−bm],

−r4 = [−c1,−c2, · · · ,−cn] where all−ai ’s, −bi ’s, −ci ’s and−di ’s are less than or equal to−2.

In both cases we start with an open book ofS3, whose page is annulus and monodromy is a

right handed Dehn twist around the core curve of the annulus.

Similarly, it is shown in [19] that all Stein fillable tight contact structures on smallSeifert

fibred 3−manifolds withe0(M) ≥ 0 are compatible with planar open books. An example

can be seen in Figure 4.3. We can construct planar open books for the Stein fillable contact

structures on a Seifert fibred 3−manifold with 4 singular fibers ande0(M) ≥ 0. Similarly,
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whene0(M) = k ≥ 0, an example of an open book decomposition is as in Figure 4.4. In

Figure 4.3 we assume allr i > 1 and−r i = [ai
0,a

i
1, · · · ,a

i
mi

], for all ai
j ≤ −2. In Figure 4.4

we assume 0< r1 < 1 andr i > 1 for i = 2,34, and−r i = [ai
0,a

i
1, · · · ,a

i
mi

], a1
0 ≤ −1 and

ai
j ≤ −2. In both cases we start with an open book ofS1 × S2, whose page is annulus and

monodromy is trivial. Therefore Figure 4.3 and Figure 4.4 can be obtained ina similar way.

Whene0(M) = −2, for a Seifert 3−manifold with 4 singular fibers there is a bad vertex in its

plumbing diagram as explained in [19]. We can describe its open book decomposition and it

turns out to be non-planar. These contact structures are Stein fillable and have zero Giroux

torsion. For the special caseM(−1
2,−

1
2,

1
2,

1
2) the manifold is actually a torus bundle over the

circle and a compatible open book decomposition described separately in [16], [56],[19].

Dalyan in [60] also says that if the plumbing diagram contains Figure 4.5 as a subgraph then

its compatible open books will be non-planar. Also using rolling up as in [53] and [19] a

non–planar open book decomposition for a Seifert fibred 3−manifold with 4 singular fibers

ande0(M) = −2 is given as in Figure 4.6. (The casee0(M) = −3 is similar.)

As in Figure 4.7 Seifert fibred 3−manifolds with 4 or more singular fibers which are also

L−spaces, and are compatible with planar open books. Since there is one negative Dehn twist

around the blue curve, there may be non–fillable contact structures, andnon–fillability of

these contact structures can be shown using the technique in [54] improved by Jeremy Van–

Horn Morris and Olga Plamenevskaya, which shows that this negative Dehn twist can not

be removed from the monodromy of the open book. As it is written in the same paper open

book decompositions of non–fillable contact structures on Seifert fibred3−manifolds with 4

or more singular fibers can be obtained using similar techniques. However these may not be

the whole list of tight contact structures onM. For the casee0(M) = −1, we can draw the

following Legendrian surgery diagram, and it is easy to draw a compatible planar open book

for this surgery diagram if the surgeries have integer coefficients (Figure 4.7). Note that for

each open book decomposition figure given in this chapter, on each page, addition to the right

handed Dehn twists along curves drawn in the figures, there are right handed Dehn twists

along the curves which are parallel to the holes on the pages.
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Figure 4.5: Plumbing diagram of a small Seifert fibred 3−manifold withe0(M) = −2.
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[36] H. Grauert,Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann.146
(1962), 331-368.

[37] A. Hatcher,Notes on topology of3−manifolds.

[38] K. Honda,On the classification of tight contact structures I, Geo. Topol.4 (2000), 309–
368.

[39] K. Honda,On the classification of tight contact structures II, J. Differential Geom.55
(2000), no. 1, 83-143.

[40] Y. Kanda,The classification of tight contact structures on the3−torus, Comm. in Anal.
and Geom.5 (1997), 413–438.

[41] C. Karakurt,Contact structures on plumbed3−manifolds, (2009) ArXiv:0910.3965.
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Nationality: Turkish (TC)

Phone:+90 505 375 9069

email: elif.medet@gmail.com

EDUCATION

Ph.D. in Mathematics, Middle East Technical University, September 2010

Advisor: Prof. Dr. Yıldıray Ozan

Thesis Title: On The Tight Contact Structures on Seifert Fibred 3−Manifolds with 4 Singular Fibers

M.Sc. in Mathematics, Middle East Technical University, Spring 2006

Thesis Title: Tight But Not Fillable Contact Structures

B.Sc. in Mathematics, Middle East Technical University, June 2003

Minor in Philosophy, Middle East Technical University, June 2003

RESEARCH INTERESTS

Low-Dimensional Topology, Contact Geometry, Knot Theory

AWARDS AND SCHOLARSHIPS

Ph.D. Research Award by The Scientific and Technological Research Council of Turkey (TUBITAK),

August 2007-May 2008

48



TEACHING EXPERIENCE

Instructor, Calculus I-II, Differential Equations, Department of Mathematics,

Atilim University, Fall-Spring-Summer 2009

Teaching Assistant Calculus I-II, Department of Mathematics,

Atilim University, Fall-Spring 2008

Instructor, Calculus I-II, Differential Equations and Linear Algebra, Baskent University, Fall-Spring

2006

Teaching Assistant Calculus I-II, Baskent University, Spring 2004, Fall-Spring 2005

49


