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ABSTRACT

ON THE TIGHT CONTACT STRUCTURES ON SEIFERT FIBRED-BIANIFOLDS
WITH 4 SINGULAR FIBERS

Medetd@yullari, Elif
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Yildiray Ozan

September 2010, 49 pages

In this thesis, we study the classification problem of Stein fillable tight contaattares on
any Seifert fibered 3manifold M over S? with 4 singular fibers. In the casg(M) < -4
we have a complete classification. In the cag@) > 0 we have obtained upper and lower

bounds for the number of Stein fillable contact structure®/lon

Keywords: Contact structures, Seifert fibred manifolds
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SHFERT MANIFOLDLARDAK | TAYT KONTAKT YAPILAR UZERINE

Medeta@yullari, Elif
Doktora, Matematik BIUmu
Tez Yoneticisi : Prof. Dr. Yildiray Ozan

Eylul 2010, 49 sayfa

Bu tezde M bir 4 tekil lifli Seifert 3-manifold olmakiizere,M tzerindeki Stein dolabilir tayt
yapilar ¢alisiimistireg(M) < —4 olmasi durumunda Stein dolabilir yapilarin siniflandirmasi
elde edilmistir.eg(M) > 0 olmasi durumunda ise Stein dolabilir yapilarin sayilari igintistr

ve bir alt sinir bulunmustur.

Anahtar Kelimeler: Kontakt yapilar, Seifert manifoldlar
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CHAPTER 1

INTRODUCTION

Classification of tight contact structures oArBanifolds has been an interesting problem since
late 1980’s. It started with Eliashberg, who showed that there exists aaitight contact
structure orR3 [9]. Later various people worked on this problem and the classification ha
been done for several-dnanifolds, includingS3, B3, T2 x |, St x D?, L(p, ), St bundles
over surfaces, some surface bundles &%and some Seifert fibred-3nanifolds ( [9], [38],

[39], [58], [59], [28], [29], [24], [26]).

A Seifert fibred 3-manifold with three or less singular fibers and with b&3és called asmall
Seifert fibred3—manifold The classification of tight contact structures on small Seifert fibred
3—manifolds is as follows: A small Seifert fibred-ghanifold with one or two singular fibers

is a Lens space and the exact number of tight contact structures opsaresss known [38].
For small Seifert fibred 3manifoldsM with three singular fibers, Wu computed the exact
number of tight contact structures dh wheneverey(M) = -1, ep(M) # -2 oreg(M) # 0in
[59]. Later, Stipsicz, Ghiggini and Lisca gave a complete classificatiothtocaseey(M) >

0 in [28]. All the tight contact structures in the above cases are Stein filldltge that
fillable contact structures are tight (Eliashberg and Gromov, [12]). énctisesp(M) = -1

the classification is more filicult. This is partly because of the existence of non—fillable tight
contact structures, which are harder to detect. Another reason is iaa#ie contains some
manifolds which do not admit any positive tight contact structure as shgwidmnda and
Etnyre in [14]. Tight contact structures on small Seifert fibredn@nifolds witheg(M) = -2

are classified provided that they drespaces (Ghiggini, [26]).

For non—small Seifert fibred-3nanifolds, the first result in this direction is the classification

of tight contact structures on Seifert fibredrBanifolds with one singular fiber and with base



T2, given by Ghiggini in [24]. In this thesis, we study the classification probé# tight

contact structures on Seifert fibredBanifolds with 4 singular fibers oved?. We use the
methods developed in [58], [59] and [28]. Here is an outline of the thésithe Chapter 2,
we introduce some preliminary materials such as convex surface thegendgan surgery,
classification of tight contact structures on some building blocks-ofi@nifolds, Heegaard—

Floer theory and open book decompositions.

In the third chapter, using convex surface theory we obtain an upperbior the number

of Stein fillable tight contact structures on some certain Seifert fibredahifolds having 4
singular fibers with bass?, and then using Legendrian surgery presentations of these Seifert
fibred 3-manifolds we get a lower bound for the same number. If a Seifert fibrateBifold

M hasey(M) < —4 then the upper bound and the lower bound we obtain coincide, giving the
exact number of Stein fillable contact structureshdn However, in the casey(M) > 0 the

two bounds do not match.

The argument we give to get the upper bound depends on whetherrttaetc8 manifold
contains a vertical Legendrian curve with zero twisting or not. We obskatevherey(M) >

0 all the tight contact structures contain a vertical Legendrian curve withtavisting, which

is exactly the same situation for the small Seifert fibored manifolds by a resw\lfuof58].

It is also proved by Wu [58] that none of the tight contact structuresnaallsSeifert fibred
3-manifolds witheg(M) < -2 contains a vertical Legendrian curve with zero twisting. In
the case of four singular fibers, a tight contact structure on SeifeedfiB-manifolds with
e(M) < -1 may or may not contain a vertical Legendrian curve with twisting zero. We
prove that whereg(M) < —2 none of the tight contact structures with zero Giroux torsion
admit a Legendrian vertical curve with zero twisting. In the cagfM) < -2, the tight
contact structures will be non—fillable if there is a Legendrian verticalecwith twisting
zero. At this point we can consider another question: Are the tight butfillable contact
structures virtually overtwisted or universally tight? The first examples it tigit non—
fillable contact structures were found by Etnyre and Honda in [38].s@&lexamples were
all virtually overtwisted. Later, several tight but non—fillable examplesevexhibited, [45],
[46]. These are also all virtually overtwisted. The first of the univgragght but non—
fillable examples were constructed by Ghiggini [27] on Seifert fibrech&nifolds with 4
singular fibers andy(M) = 0. He used the Oz&th—Szab contact invariant to show the

non—fillability of his examples. The contact structures he constructeddeawewisting, zero



contact invariant and positive Giroux torsion. One can further askhiven¢here are any tight
contact structure with zero twisting, zero contact invariant and zerousitarsion or not?
Such contact structures were firstly constructed by Massot [50]rdweg that such contact
structures exist on any Seifert fibred@anifold with the base genus greater than or equal to

2.

In Chapter 4, we discuss possible generalizations of the above resulis 8eifiert fibred
3—manifolds with at least five singular fibers. We give examples of compatilde bpok

decompositions of the Stein fillable contact structures mentioned in Chapter 3.



CHAPTER 2

BACKGROUND

In this chapter we will introduce the classification problem of tight contaatsires and give
a brief introduction to the methods, which will be used to prove the main theotartiee last
part we will review some important results on the classification of tight costasttures on

small Seifert fibred 3manifolds.

2.1 Classification Problem

On a 3-manifold a plane distributiafy which is locally the kernel of a 1-formx with a A

da # O is called acontact structure Martinet in 1971 showed that every oriented closed
3-manifold admits a contact structure [48]. We call a 3-manifdidvith a contact structure

& acontact3-manifoldand denote it byNl, £). As a first example we can look at the standard
contact structure ofR®, which isésq = ker(dz - ydx). If we try to draw its picture we
will see that the planes are twisting in tielirection as in Figure 2.1. Another example is
&ot = ker ( cogrdz + rsinrdd ) on R® with cylindrical coordinates. In the first example the
twisting of planes in thg direction is less thanm however in the second example the contact

planes rotates along any radial direction infinitely many times.

Definition 2.1.1. A curveL which is everywhere tangent &ds calledLegendrian We define
thetwisting number @, Fr) of a closed Legendrian curdewith respect to a given framing
Fr to be the number of counterclockwise (right) Bvists of ¢ alongL, relative toFr. In
particular, ifL is a connected component of the boundary of a compact orientedestiffaz

gives a natural framingry, thent(L, Fry) is called thel hurston-Bennequin invariant ¢b).
Definition 2.1.2. Let L be an oriented Legendrian curve which is the boundary of an embed-

4



Figure 2.1: Standard and overtwisted contact structurd®on

ded orientable surfacg The winding number of a non—zero tangent vector field alongth

respect to any given trivialization ¢fsy is called theRotation numbeof a Legendrian curve.

Definition 2.1.3. An embedded dislo in (M, ¢) is called anovertwisted diskf the contact
planes are tangent #D = L andtb(L) = 0. If (M, &) contains such a disk then this contact
structure is called anvertwisted contact structurdf there is no such embedded disk then

the contact structure is calledight contact structure

According to this definition the second example above is an overtwisted tatitacture,
and we can see the overtwisted disk in Figure 2.1. However, the first daexamﬁ?’, which

is &gy IS @ tight contact structure. Tightness of this contact structure candeenalsing the
Bennequin inequality, [2], which says thatifs a Legendrian knot in[R®, £siq) and £ c R®

is a Seifert surface fdr thentb(L) + |rot(L)| < —y(X). An overtwisted diskD hastb(oD) = 0

andy(D) = 1. Thus by the Bennequin inequality, there can not be such a di&jg ).

The first example is called ttstandardtight contact structure, since by a theorem of Darboux,
locally every tight contact structure look lik&%, £siq). Therefore there is no local invariant

for contact structures.

Two contact structures;, £& on a smooth 3manifold M are calleccontactomorphidf there
is an orientation preservingftiéomorphismp : M — M such thaty*(£1) = &». If a contacto-

morphism is isotopic to the identity then it is called@ntact isotopy
The classification of overtwisted contact structures is the same as clagsifioch2—plane

5



fields (Eliashberg [8]) .

In this thesis we study the classification problem of (positive) tight contaattsires, up to

isotopy, on Seifert fibred-3nanifolds with bas&? and 4 singular fibers.

2.2 Convex Surface Theory

One of the tools used in proof of the main results, is the convex surfacey/tiduch is first

used in [33], then developed by Honda in [38].
For a detailed information about convex surface theory one may loolBhtE®],[33].

An embedded surface is calle¢@anvex surfacé there is acontact vector fielda vector field
whose flow preserves the contact structures) which is transverse sorfaee. Le be an
embedded convex surface iN(£). By the works of Giroux in [31], and Honda in [38], by
an arbitrary small isotopy of the surfaEeany embedded surface can be made convex in the

contact 3-manifold (M, &).

Definition 2.2.1. Let X be a convex embedded surfacelh €) with transverse vector field

ThenI's = {X € Z|a(Vx) = 0} is an embedded curve @i called thedividing curveof £ onX.

By a theorem of Giroux [33] we can read the information about the costastture on a
neighborhood of surface from its dividing curves on the surfacee foHowing theorem is

called Giroux’s Criteria.

Theorem 2.2.2 (Giroux [33]). LetX be an orientable surface (with or without boundary) and
T # S?, then a contact structure ab x | is tight if and only ifl's contains no homotopically
trivial dividing curve. Wherk = S? then the tight contact structure dhix | is tight if and

only if T'y consists of only one component.

Dividing curves divide the surfaces intoand— regions ag& —I's = £, UX_, where the flow
of the transverse vector fieldon the convex surface expands (contracts) a volume form on

>, (onX—, resp.) and/ points outward fronk, alongl's = 0%,.

Definition 2.2.3. A bypass is an oriented embedded half overtwisted Diskhose boundary

is the union of two arcs, say andg so that there are 3 elliptic singular points entwo of

6



them have the same sign but the third one which is in interiar lvdis diferent sign. Alongg
there are at least 3 elliptic singularity with the same sign but alternating indidiessign of

a bypass is defined to be the sign of the singularity in the interior of

+ +/\,\M

: 7

gl_
Figure 2.2: Bypass Half Disk

Lemma 2.2.4 (Edge-rounding, [38]).LetX; and X, be convex surfaces with collared Leg-
endrian boundary which intersect transversely inside the ambient comanifold along
a common boundary Legendrian curve. Assume a neighborhooa @othmon boundary
Legendrian curve is locally isomorphic to the neighborhood Nx?+y><e of M =
R?x (R/Z) with coordinates((x, y), 2) and contactl—form « = sin(2tn2dx+ cog2rn2)dy ,
for some ne Z*, and that £; and X, satisfy 21N Ne = {x = 0,0 <y < ¢ and
2NN ={y=00< x<¢€. Ifwejoin ¥; and X, along{x =y = 0} and round the
common edge (tak€(Z1 U o) — Ns) U ({(x - 6)? + (Y — 6)% = 62} N N;) , where § < ¢) , the
resulting surface is convex, and the dividing curve % on X1 will connect to the dividing
k

curve z= 5 — 4—1n onXy, where k=0,...,2n - 1. Here we assume that the orientationsef

andX, are compatible and induce the same orientation after rounding.

Lemma 2.2.5 (Bypass Attachment orT?, Honda [38]). If a bypass D is attached to?Tin
standard form, along a Legendrian ruling curve of slope r and if the stffgividing curve of
T?is s, then the resulting convex torus will have two dividing curves with boundary slope
s which is determined as follows: take the grcs|] on the hyperbolic unit disc obtained by
starting from r and moving counterclockwise until we hit s. On this drts the point which

is closest to r and has an edge fromess.

In practice this is done as follows: Let= g which we write as(T?) = g Then the #&ect of
a bypass along a ruling curve with slope g can be found using the Farey tesellation which

is the boundary of the hyperbolic unit disk. After bypass attachment agiRigure 2.3 we

7



p r

obtain a torug”’ which is isotopic tdT 2 and has slopg(T’) = 3— such that dgt =1,

qa q

wherep > p/, g > ¢ and the slopesg andg—: are connected by an edge on the boundary of
the hyperbolic unit disk.
11

1/2

1/3 S'
1/4
1/0 "0=0/1r

A1=1/(-1)

Figure 2.3: An application of Lemma 2.2.5

Figure 2.4: Altering of dividing curves after bypass attachment

\ \\ \ \ \ Y 4~ > Dividing curve

Legendrian ruling \ \\ \\\\ \\ \\ \\
A ALV VAN NLNRN

ANAVANEA N AN \ \

AN N N N N ¥

ANAVAVAN \\\ \\
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\\\\\\\\ \ \ \ \\\/.Legendrlan divide
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AN

Figure 2.5: Standard torus



AssumelL c M is a Legendrian curve with a negative twisting numb@) = —n with
respect to some fixed framing. Tk&andard tubular neighborhood (N) of L is defined as
the solid toruss® x D? with coordinatesZ, (x, y)) and the contactdform « = sin(2rn2dx+
cos(zn2dy, whereL = {(z (x,y)) : x =y = 0}. With respect to the fixed framing &f, we
may identify N(L) with R?/Z? such that the meridian is (@)" and the longitude (fixed

by the framing) is (01)" . Then the boundary slope (which means the slope of the dividing

curves ofdN(L)) s(ON(L)) = %

One can observe that the twisting number of a Legendrian durwéich is the boundary of

a convex surfacg can be calculated using the followin@., Fry) = —#%(L NTy) [38].

Proposition 2.2.6 (Imbalance Principle, Honda [38]).Let A = S! x [0, 1] be a convex
annulus with Legendrian boundary inside a tight contact manifoldSHx{0}) < t(Sx{1}) <
0, then there exists a bypass ald@gx {0}.

Lemma 2.2.7 (Twist Number Lemma, Honda [38]). Consider a Legendrian curve in a
contact manifold M, &) with twisting number n relative to a fixed framing and N a standard
tubular neighborhood of L. If there exists a bypass attached to a Legenailing curve of
ON of sloper with% > n+ 1, then there exists a Legendrian curve with twisting numbef.n

isotopic to L.

Definition 2.2.8 (Relative Euler Class).Let (M, &) be a contact 3manifold, with M .

Consider the following exact sequence;
H1(OM) — HZ(M, M) — H3(M) — HZ(OM).

The Euler class of is denoted bye(¢) € H?(M). If sis a nowhere zero section of the
restriction of¢ to the boundary oM, we define the relative Euler clasg, s) € H3(M, dM)

as the obstruction to extersto M. It follows thate(é, s) is a lift of e(£).

The relative Euler class can be computed by usingf¢, s),X >= y(Z;) — x(Z), [38]. The

relative Euler class is important since it distinguishes the tight contact stegctu

Let M = T2 x[0, 1] be a contact 3manifold withs(T? x {0}) = g andg(T?x (1)) = g— where
(g, p) and €, p’) form an integral basis. ONI there are two tight contact structures and they
can be distinguished by Poinéaduals of the homology classes represented (g, p’) —
(g, p)). Indeed if a 3manifold containgvl with the above propertiedV is called abasic

slice



Using basic slices Honda classified the tight contact structure8tonD? and T2 x | as

1 , . , .
follows: Let —g = ro - ——— be the continued fraction expansion of the rational

1 —
1 ok

number—g andp>q=> 1.

Theorem 2.2.9 (Honda [38]).0n the solid torus $x D? with two dividing curves of slope

—g there are exactlyi(ro + 1)(r1 + 1)- - - (rk=1 + 1)rx| non isotopic tight contact structures.

The ideas in the proof of the following theorem is essential for the prootiomain results.

By minimally twisting in the following theorem, we mean the slope of every taris {t} in

T2 x [0, 1] is between the slope d x {0} and the slope 6f 2 x {1}.

Theorem 2.2.10 (Honda [38]).0On T2 x | with boundaries T= T x {i}, fori = 0,1, and
boundary slopes(3p) = -1, T1) = —g, there are exactlyl(ro + 1)(r1 + 1) - - - (rg=1 + L)ryl

minimally twisting tight contact structures, up to isotopy.

Note that in the above two theorems the slopes are all negative. Howsirag, aisuitable
diffeomorphism, which is an element®1(2, 7), we can change a negative slope to a positive

one, ([38]).

Definition 2.2.11. Let (M, ¢) be a Seifert fibred -3manifold andL be a Legendrian curve
isotopic to a regular fiber artl) be the twisting oL.. Maximal twisting of a contact structure

£ is t(¢) = max{min_¢_ {t(L), 0}}, whereL is the set of possible Legendrian realization& of

To go further we need to understand the tight contact structuresmungétured sphere times
St. In the following theorem Honda [39] gave a classification of tight corgércictures on
pair of pants timesS!, with co boundary slopes. Lefy denote sphere with-unctures.

d(Zo x S1) = T1 U T, U Tz and infinite boundary slope meaning tIséf;) = o for all i.

Theorem 2.2.12 (Honda [39]).If there exist tight contact structures @iy x S* so that all
boundary slopes are infinite, then these tight contact structur&es? are all S'—invariant

and determined only by the dividing cunigs on Xo.

Theorem 2.2.13 (Giroux [33]). Let X be a surface. OrX x S an S invariant contact
structure is (universally) tight if and only if there is no homotopically trivialiding curve

onX.

10



The theorem below (and its proof) is an analog of a result of Hondaioofyzants timesS?.

Theorem 2.2.14.LetX be a4—punctured sphere with= x S = T; U To U T3 U T4. Then the
tight contact structures ol x St with minimally convex Ts having dividing curve slopes

S <oeZ,i=12 3,4 can be classified as follows:

1. Atight contact structure with a vertical Legendrian curve can be faotoras follows,
IxSl=2xStUTix DU (Tax)U(Tax 1)U (Tax1),

where |=[0,1] and T; x {1} are the boundaries d&’ x S* having dividing curve with

oo slope and each;Tx | is minimally twisting.

2. If we have a universally tight contact structure with a vertical Legeamdcurve having
zero twisting, then we can extend the tight contact structure uniquely to actgléct

structure on
¥ xSt=xSTU(Ty x ) U(Tyx 1) U(TE x 1)U (TS x1),

where |=[-1,1] and all the T’ x {—1} which are also boundaries af" x St haveco

slope.
3. If 3%, s > 3then

(a) there always exists a vertical Legendrian curve with zero twisting,
(b) universally tight contact structures are as in Part

(c) if Zi4=1 s = 4 then there exists one, Ei“zl s > 4 there exist two virtually over-
twisted contact structures and §* ; s = 3 then there exists no tight contact

structure.

4. If Zi“zl s < 3and if there exists a vertical Legendrian curve then tight contact strastur
are universally tight and are as in Pa#t If there is no vertical Legendrian curve then

there exisB — Zi4:1 § virtually overtwisted tight contact structures.

Proof of Theorem Let Zi4:1 s > 3. We will first say that there exist a vertical Legendrian
curve with twisting zero: Le#A\; and A, be two vertical annuli betweeh; andT,, T, and
Ts, respectively. Assume that the dividing curvesfnand A, are parallel connecting one

boundary to the other one. (Otherwise, there exist boundary paraliéing) curves which

11



may produce bypasses and after attaching all possible bypasses) firedcanc slope torus
and on this torus we can draw a Legendrian vertical curve.) We canong & U A1 U T, U
Ao U T3. After rounding the eight edges we obtaiTax |, whereT?2 x {0} = T4, which has
slopess, andT2x{1} having slopes, = —s1-S—s3+2. By the assumptions; + S, +S3+54 > 3
and this givessy > 3-5 -5 —s3. Hencesy > 2- 5 - -s3 = s, and thus by a Theorem of
Honda [38] there exist &2 with oo slope dividing curve . Once we found a torus witrslope
dividing curve connecting a Legendrian divide of this torus with an infindpesLegendrian
ruling on eachr;, i = 1,2, 3,4 we obtain four vertical annuli. Along each Legendrian ruling
on these annuli there are boundary parallel curves which prody=esbgs by the imbalance
principle. We attach these bypasses and continue this process until nérgjeg slope tori.
Hence we obtain basic slic&sx |, fori = 1, 2, 3,4, wheres(T; x{0}) = 5 ands(T; x{1}) = oo.

Now we can writeX x ST =%’ x STU (T x 1) U (T2 x ) U (Ta x 1) U (T4 x |) as claimed.

By Proposition 4 of Honda in [39], the tight contact structures Bhx S! can be char-
acterized by the dividing curves d&f. We have two cases depending on the existence of
a boundary parallel dividing curve aif. If there is no boundary parallel dividing curve,
which means that there is no bypassessdnthen there are three possible dividing curve
configurations or® as in Figure 3.3. Let each basic slice has fiedént sign such as;
+,+,—,— Or —, +, —, — etc., then we can uniquely extend this contact structurg’toc St =
ZxSlu(Ti’xI)U(Té’xI)U(Té’xl)u(T;(xI), where T/” x[-1,1] = T; x[0, 1]JUT/x[~-1,0].

So that on eachl;” x | the twisting of tight contact structure aswith each s(T” x {j}) = oo,

for i ={1,2,3,4} and j = {-1, 1}. Since the contact structure is tight the sign of the contact
structure o x [0, 1] and the sign on the contact structureTgnx [-1, 0] must be the same

by Theorem 13 in [39]. Now the classification of tight contact structures on the thickened
torus implies that the tight contact structure @ x [-1,1] is universally tight anc&® in-
variant. An St invariant contact structure o” x S? is universally tight since there is no

homotopically trivial dividing curve oix” by Theorem 2.13.

If the sign of the basic slices are not mixed, by a suitabfiedmorphism we can arrange the
slopes of the dividing curves to b = s, = s3 = 1. First we will show that the contact
structures withs; + s, + s3 + s > 3 are tight. We can construct such tight contact structures
as follows; let us start witt8! x D? with boundary slopes; > 0, then remove standard
neighborhoods of three Legendrian curves with twistiig To obtain a twisting numberl

curve take stabilizations of Legendrian curves with twisting zero in a waytligatontact
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structure is virtually overtwisted.

If 51+ s+ S35+ s = 4 then the contact structures with sigas+, +,+ and—, —, —, — are
isotopic: Let us connedi; andT, by a convex vertical annulus; andT, to Tz by a convex
vertical annulug®,. Since we assume the tight contact structure$;onl’sare all minimally
twisting, onA; andA; there are no boundary parallel dividing curves. If we cut aldng
A U Ty U Ay U T3 and round the edges we obtain a torus with boundary stdpfEom the
T, side. Hence, we obtain a thickened torus with two basic slices having slepes,and
o0, 1. The tight contact structures in both thickened tori ha¥iedint signs as-, — or —, +
respectively. However, there is only one positive basic slice in bothscasethe contact

structures with signs, +, +, + and—, —, —, — are isotopic.

If s1+ S+ s3+ 4 > 4 the above proof is not valid anymore. This is because when 1
there will be more than one positive basic slices in the thickened torus, wieicbtain after
cutting and rounding edges process. Hence there are two non-isotypicdigact structures,

and they difer by the relative Euler class @h

If 51+ + 53+ s = 3 then we will show that the contact structures are overtwisted. As
above, after suitable fleomorphisms we obtaif = s, = s3 = 1. Sinces; + S+ 3+ 4 = 3,

we haves; = 0 and we factor &2 x | layer with slopes 0L. Then we obtain & x St
having all the boundary slopes as 1. By a similar process, we can conattight model
using D? x St. In this tight model, letA; and A, be two vertical annuli connecting; to

T, andT;, to T3, respectively, on which all the dividing curves are horizontal. Cuttingglo
T1 U A; U T, U Ay U T3 and rounding the edges resulTa with slope—1. Hence we obtain

a thickened torus with two basic slices having slopgs @ndoeo, —1, respectively. Since the
basic slices have fierent signs, by Theorema3lin [39] the contact structures obtained in this
way is not tight. Indeed, also in casg < 0 we come up with overtwisted contact structure,

and hence the same proof covers the ;ses, + 3+ & < 3.

Now assume that there are boundary parallel arcs’onlf s; + s, + 3+ &4 < 3 and there
is a vertical Legendrian curve then the unmixed case of the signs of biasis gields an
overtwisted disk. In order to get a tight contact structure, signs shauidiked. Hence, we
have anS! invariant universally tight contact structure and there exists a unigie@sion to

a universally tight contact structure &1 x S* with co slope dividing curves on eadh.
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If s1+ s+ s34+ 4 < 3 and there exist a Legendrian vertical curve, then similar to the case
s1+S+S3+S4 > 3there exist universally tight contact structures however, there igtuaby

overtwisted contact structures. (We already proved this in thegase, + S3 + $4 < 3.)

When there is no vertical Legendrian curve then we can configtd T, by A; and T3

to T4 by Az, and onA; and A, there are dividing curves connecting one boundary to the
other boundary of the annuli. We can cut aloiigu A; U To U Ay U T3 and round the
eight edges to obtain a thickened tofisx | wheres(T? x {0}) = §(T4) ands(T? x {1}) =
S(ExSN\TIUAIUTLUAUTS) = —s; — S, — S3+ 2. Finally by the classification of tight contact
structures on thickened torus in [38] there existy(— - S3+2)—-4+1=3-5 - -S3—- 4

tight contact structures.

2.3 Legendrian Surgery

Given a Legendrian knot in any contact 3manifold (M, &), a Legendrian surgery oh
yields the contact manifold\{’, ¢&’), whereM’ is obtained fromM by t(L) — 1 Dehn surgery
onL and¢’ is obtained from¢ as follows: LetN be a standard convex neighborhoodLof
Choose a framing oN so thatt(L) = 0. This choice of framing allows us to make an oriented
identification —9(M\N) with R?/Z2, where (10)" is the meridian oN and (Q1)" is the
longitude ofN corresponding to the framing. Now take an identical cbPyof N (with the
same framing), and make an oriented identificatidi with (R?/Z?), where (10)" is the

meridian and (01)" is the longitude. NowM’ = (M\N) Us N’, whereg : N’ — —9(M\N)

1 0
is represented by the mat{x ] e SU2 7).
-1 1

Definition 2.3.1. A contact 3-manifold (M, &) is calledholomorphically fillablef there is a
compact complex surfac&(J) such that the contact structure 8K given by the complex

tangencies is contactomorphic td,&).

Definition 2.3.2. A Stein surface is a complex surfaewith a real-valued Morse function
f on X such that, away from the critical points 6f the field of complex tangencies to the
preimageX. = f~1(c) is a contact structure that induces an orientatiorkgagreeing with
the usual orientation as the boundaryfot(—co, c]. That is, f (-0, ¢] is a Stein filling of

Xc = M. M is calledStein fillable3—manifold.
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The complex structure on a holomorphic filling can be deformed to a blow ugtia filling.

Hence being holomorphically fillable and Stein fillable are the equivalent.

Definition 2.3.3. A contact 3-manifold (M, &) is calledstrongly (symplectically) fillabléf
there exist a compact symplectiedhanifold (X, w) such thatoX = M andw is exact near

the boundary witlda = w.

Definition 2.3.4. A contact 3-manifold (M, &) is calledweakly (symplectically) fillabler
simply fillable if there is a compact symplectic-#nanifold (X, w) such thatoX = M and
a)|§ # 0.

We have the following implications: If a contact structure is Stein fillable then I strong
symplectically fillable. If a contact structure is symplectically fillable then it is alsakiy
fillable and finally, if a contact structures is weakly fillable then it is tight. Theveoses of

these statements are all false ([25], [11], [14]).

The following theorems relates Legendrian surgery to fillability and are aféexl to show

tightness of many of the contact structures, [38], [59], [30].

Theorem 2.3.5 (Eliashberg [10]).Suppos€M’¢’) is obtained by Legendrian surgery from
(M, &). If (M, &) is weakly fillable therfM’, &) is also weakly fillable.

Theorem 2.3.6 (Eliashberg, Gromov [12]).If (M, &) is fillable then it is tight.

2.4 Seifert Fibred 3—Manifolds

Definition 2.4.1. Let M be a fibred 3manifold overS?, with n singular fiberd=q, Fp, - - -, Fp.
We can describ& explicitly as follows: Letv;, i = 1,2,--- ,n, be atubular neighborhood of
the singular fibeF;. We identifyV; with D? x St andaV; with R?/Z? by choosing (10)" as
the meridional direction, and (@) as the longitudinal direction given Kt} x S1. We also
identify M\(; V;) with =g x S, whereXg is a sphere witm punctures. Finally we choose a
diffeomorphism of-4(M\V;) to R?/Z? , which maps (01)" to the direction of arg*-fiber,
and (10)" to the direction given byg(M\V;) N (Zo x pt). With these identifications we may

reconstructM from (Zg x Sl)ui”:m (Uiz1 Vi), where

PP

A OV = —O(M\VA), A :[
-0 o

]e SL2 7).
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This manifold is called a Seifert fibred-gnanifold overS? with n singular fiber and we

denote it byM(%, % ’%)_

The integerp(M) = Y11, L%J is called they invariant of the Seifert fibred manifold.

If >0,1- é), wherel < (1- %) < 1, is equal to the Euler characteristic of the bags?),
then the Seifert fibred-3nanifold is a torus bundle oved'. These are the Seifert fibred
manifoldsM(x%, 3, 73), M(z1, 3,72, M(z3,+3. 71, 73). If Zi”:l% = 0, then the
Seifert manifolds contain horizantal incompressible torus. If the genbas# is greater than
zero or the number of singular fibers greater than three then there estisaVincompressible
torus. For detailed information one may look at [37]. The classification ofi¢ji contact

structures on these? bundles ove? is done in [39].

The next section will be a brief introduction to Heegaard—Floer TheodyGzs\ath—Szab
contact invariant ( [51], [52].)

2.5 Heegaard Floer Theory

Heegaard Floer homology associates a finitely generated abelian gﬁw,t) to any
closed connected oriented SpiB-manifold (M, t). A Spirf cobordism between two Sgin
manifolds M1, t1) and Mz, t2) such thats,, = ti fori = 1,2 yields a homomorphisniys :
HF (M1, tz) > HF (M2, to).

A contact structurg on a 3-manifold M determines a Spfnstructuret; on M such that
ci(te) = cu(é). To any contact manifold\], £) we can associate an eleme() € HE(—M, te)/+,

which is an isotopy invariant af (See[51] for details.).

Theorem 2.5.1 (Ozsath-Szald [51]). If (M, &) is overtwisted then(€) = 0, if (M, &) is Stein
fillable, then ¢£) # O.

The contact invariant can also be used to prove the non—fillability of a tagitact structure.
Indeed, if a tight contact structure has zero contact invariant thebdyeaheorem this tight
contact structure is not Stein fillable, (not even weakly fillable, if one tamvghat twisted

codficient contact invariant is zero, [52]).

Definition 2.5.2. Let £ be a contact structure on a 3maniféid TheGiroux torsionof (M, &)
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is the supremum of the integans> 1, for which there exists a contact embedding
(T2 %[0, 1], ker(cos(2n2)dx+ sin(2tn2)dy)) — (M, &).
We say that Giroux torsion olM, &) is zero if no such embedding exists.
The following theorem relates Giroux torsion to the contact invariant.
Theorem 2.5.3 (Ghiggini, Honda, Van Horn-Morris [22]). If a closed contacB—manifold

(M, €) has positiver— torsion, then its contact invarian{ b1, £) in HF(—M) vanishes.

The above theorem usé&scodficient Heegaard Floer homology theory. Using twisted coef-
ficient Heegaard Floer homology theory, Honda and Ghiggini proveébtteving theorem
in [23] (See also [20].).

Theorem 2.5.4 (Ghiggini, Honda, [23]).If T is a separating pre-Lagrangian torus in a
contact3—manifold(M, &), then for n> 0, ¢(M, &) = 0 in twisted cogicient Heegaard Floer
homology and hend@\, £) is not weakly symplectically fillable.

The theorem below describes how the contact invariant behaves luegiemdrian surgery.

Theorem 2.5.5 ([51]). SupposéM’, &) is obtained from(M, &) by Legendrian surgery along
a Legendrian link. Then there is a cobordisfy : HF(-M’,&) — HF(=M, &) , which
satisfiesF(c(¢")) = c(&).

Definition 2.5.6. A rational homology sphere is a— space if HE(M,t) = Z for all
t eSpirf(M).
Characterization of Seifert fibrdd-spaces, with bas®? in terms of taut foliations, transverse
foliations and transverse contact structures is given in the followingen@or
Theorem 2.5.7 (Lisca, Stipsicz [47]).Let M be an oriented rational homolo@+sphere
which is Seifert fibred over® Then the following statements are equivalent,

1. Mis an L-space,

2. Either M or—M carries no positive transverse contact structures,

3. M carries no transverse foliations,
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4. M carries no taut foliations.

The following is an important result of Lisca and Main [43] about transverse contact struc-

tures on Seifert fibred-3manifolds overS2.

Theorem 2.5.8 (Lisca,Matt [43]). An oriented Seifert fibred rational homologysphere
M(ry,ro, ..., 1K), Withrp > rp > --- > ry, admits no positive transverse contact structure if

and only if

e (M) >0,

e (M) = -1 and there are no relatively prime integers ma such that ny < a <

m(l-rpx)and mf < 1foralli =3,---,k.

In the next subsection we will give a brief information about open boaongpositions and

we will mention some important results.

2.6 Open Book Decompositions

An open book decomposition of a-BhanifoldM is a pair B, h), whereB is an oriented link in
M, called thebindingof the open book, andh : M\B — St is a fibration of the complement
of B, such that, for eactv € S, h™1(6) is the interior of a compact surfagec M, whose
boundary isB. The surface is called gpageof the open book andis called themonodromy

of the open book.

Alternatively, if we have a compact oriented surfacand a homeomorphisnin : £ — %,
which is identity near the boundary, we can construct an open booKlawg$o First form
the mapping toru&;,. Sinceh is the identity ondX, the boundary of¥, is the trivial circle
bundle over a union of circles, that is, a union of tori. To complete the agetgin, solid tori
are glued to fill in the boundary tori so that each cir@&x {p} c St xdD? is identified with
the boundary of a page. In this case, the binding is the collectiorcofesS?® x {q} of then

solid tori glued into the mapping torus, for arbitrarily chospa D?.

Alexander proved that every closed orienteehanifold admits an open book decomposi-

tion [1]. A contact structure is compatible with an open book decompositionajdmm the
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binding, the contact distribution is isotopic to the tangent spaces of the tregagh confolia-
tions. Every open book decomposition supports a contact structuresfdha\Winkelnkemper,
[55]). By a theorem of Giroux in [34] one can relate the contact streston 3-manifolds
up to isotopy with their open book decompositions up to positive stabilizationse biea
positive stabilization we mean modifying the page by adding@iensional +handle and
composing the monodromy by the positive Dehn twist along a curve that venshat handle

exactly once.

Seifert fibred 3-manifolds can be seen as the boundaries of plumbadshifolds. There are
several constructions for open book decompositions of some certagntSibifed 3-manifolds
using the plumbing diagrams. By adding ad2mensional £handle it is always possible to
increase the page genus of an open book decomposition, howevegfthdiminimal page
genus of an open book decomposition that supports a given contaztustris still an open
problem. For the plumbings with no bad vertex, which means framin¢ficmat of each
vertex is less than or equal to minus the number of edges going out forvettiex, in [53]
Schinenberger constructed open book decompositions with page gewouplzerar pages).

In [19] Etnyre andOzbdjci constructed open book decompositions for plumbings with some

bad vertices also. However, the open books they constructed hatigeopage genus.

In [19] it is also proved that the small Seifert fibredrBanifolds withey(M) > 0 and certain
small Sefiert manifolds witleg(M) = —1 admit planar open book decompositions. Moreover,
in [47] itis shown that a small Seifert fibred-Banifold, which has zero twisting Legendrian

vertical curve, has compatible planar open book decompositions.

Definition 2.6.1. Consider an embedding of a normal complex singulady) in (C?N, 0).
The 3-manifoldY = S2N-1 n X, called the link of the singularity, has the canonical contact
structure &:an, induced by the complex structure. M(£) is isomorphic to suchY{ &:an) then

it is called aMilnor fillable contact 3-manifold.

Grauert [36] showed that a small Seifert fibreen®anifold is Milnor fillable if and only if the
plumbing is negative definite. It is also shown in [5] that every closed & manifold

admits at most one Milnor fillable contact structure.

One can ask what is the minimal page genus (Milnor genus) of an open(bbiolor open

book), which is compatible with the unique Milnor fillable contact structure. #hiswn in
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[4] that if a contact structure is Milnor fillable then it is Stein fillable. Thereftre Milnor

genus is greater than or equal to the support genus of an open book.

The results we mention so far are about small Seifert fibreda@hifolds with eg(M) # —2.

For eg(M) = —2, there are also some results. In [3], Bhupal &mbajci constructed some
families of small Seifert fibred -3manifolds, where the Milnor genus equals to the support
genus, but these examples are all non-planar. All of these exampliefoasaey(M) = -2

areL—spaces.

There is also another recent interesting result of Lekili@abtiajci [42], which says that Mil-
nor fillable contact structures are universally tight. They also say the¢ ttentact structures
do not come from taut foliations. Combining this result with a result of Ghiggiisica and

Stipsicz, it can be deduced that Milnor fillable contact structures ate-albaces.

As we mentioned before there are six Seifert fibrean@nifolds, which are torus bundles
over S1. Open book decompositions for these manifolds are given in [56], [AB]these

open books have page genus one.

Plamenevskaya and Van Horn-Morris in [54] constructed open bookmdpositions for non—

fillable contact structures on Seifert fibredrBanifold M(=1;r1,r2,r3), withry, ro > % 3 =

%. They also found a more general non-fillable family of Seifert fibrech@nifold with

e(M) = —-1.

In Section 4, using the above results we will describe compatible open lEmokgpositions

of some tight contact structures on Seifert fibredr@nifolds with 4 singular fibers.

In the last part of this chapter, we will review some results about the clzsifn of tight

contact structures on small Seifert fibreeh3anifolds.

2.7 Results on Small Seifert Fibred3— Manifolds

Let- Pl _
Gi =

be the continued fraction expansioneﬁ—i, with all r‘j < -2,
i
rl...

1 =
1

-5
'm

2
wherep; > g > 0 and @i,q'i) =1
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In the following theorems whegy(M) > 0, we can assume th%% >1, 0< %i <1, so
that in the continued fraction expansion we may h%ve —1. In the following theorem, Wu

classified the tight contact structures on small Seifert manifoldsey{i) # -2, -1, 0.

Theorem 2.7.1 (Wu [58], [59]). 1. Let M = M(%, 2, %). If eg(M) > 0, then there
are exactly | Hi3:1 rg) ]’[?ll(r?) + 1)| tight contact structures and all of these contact
structures can be obtained by Legendrian surgery on a linkSirtt8refore they are all

Stein fillable.

2. Let M= M(ep; % % %). If eg(M) < —3, then there are exactly

[(ep(M) + 1)1‘[?’21 H’j'll(rj‘ + 1) Stein fillable tight contact structures.
Theorem 2.7.2 (Ghiggini, Lisca, Stipsicz [28]).0n a small Seifert fibre8—manifold
M(%, % %) with ep(M) > 0, there are exactiy([ 12 ,(ro' + 1) — [124 ro') [T2; [T, (r' + 1)l
Stein fillable tight contact structures.

The above theorems cover the cases wdp€l) = —1, 2.

The classification of tight contact structures on small Seifert fibradahifolds with
e(M) = -1 is harder, since there are non-fillable tight contact structures. dnoleesome
Seifert fibred 3manifolds witheg(M) = —1, there is no positive tight contact structures. The

following theorems are proved by Honda and Etnyre using convexcaifieeory;

Theorem 2.7.3 (Etnyre, Honda [14]). There exist no positive tight contact structure on the

Poincaré homology sphere M3, £, 1) with reverse orientation.

Theorem 2.7.4 (Etnyre, Honda [18]).0n M(-3, 7, 1) there exist one tight contact structure
and M(—%, % %) there are two non—isotopic tight contact structures which are not weakly

symplectically fillable.

These were the first examples of tight but not fillable contact structdifes.main problem
for constructing non—fillable tight examples is showing the tightness of thaciostructure,
since Theorem 2.3.6 is not applicable anymore. The tightness of the ndrlefilantact
structures in the previous theorem is proved by the convex surfaceytheater, Stipsicz
and Lisca produced infinitely many non-fillable tight examples, using Legandurgery
diagrams to compute the Oath-Szab contact invariants, whose non-triviality implies the

tightness of the contact structure.
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The above tight but not fillable contact structures are all virtually ovetddisnd all have
non-zero Os&th-Szab contact invariant. We may ask that, do all tight but not fillable con-
tact structures have non-zero contact invariant, or are there any tighobfillable contact

structures which are not virtually overtwisted?

In 2006 Ghiggini answered both questions. He showed that there efkistaly many tight

contact structures with trivial contact invariant which are all univérdeght. His examples
are Seifert fibred 3manifolds ovelS? with four singular fibers angy(M) = 0. Later in 2007
Honda, Ghiggini and Van Horn-Morris showed that if a tight contactcstme has positive
Giroux torsion then its contact invariant vanishes. This result providet/rother examples

of tight contact structures with trivial contact invariant [49].

In the casexp(M) = -1 there is no complete classification, however there are some patrtial

results as in the following theorems;

Theorem 2.7.5 (Ghiggini, Scibnenberger [30]). On the small Seifert fibre@—manifold
M(3,-3,-34) there exist two Stein fillable contact structures and on the small Seiferd fibre

3-manifold M—3, , &) there exist a unique Stein fillable tight contact structure.
In the proof of the above theorem, convex surface theory is used tafingoper bound
and Legendrian surgery is used to find a lower bound. The manifolds iabitnee theorem
are Brieskorn homology sphere&(2, 3,11). Recently Ghiggini and Horn-Morris gave a

complete classification of the tight contact structures-B(2, 3,6n — 1), forn > 2.

Later using Heegaard Floer homology and Legendrian surgery Ghidigsieca and Stipsicz

in [29] gave a classification for some small Seifert fibreeranifold with q—i % > % and
eo(M) = —1. They also showed that dvi(3, 3, %) there are strong but not Stein fillable con-
tact structures oM, for eachp > 2, and that there are no strongly fillable contact structures

for somep > 2.

Theorem 2.7.6 (Ghiggini [26]). Let M(ep; %, %, %) with ey(M) = -2 be an L-space. Then

there are exactly[T™ (r!) [T (r?) [T, (r3)| Stein fillable tight contact structures.

In next chapter we will try to extend of some of the results to Seifern&nifolds with 4

singular fibers.

22



CHAPTER 3

STATEMENTS AND PROOFS OF THE MAIN THEOREMS

The following theorems are what we were able to prove regarding thefdagen of tight

contact structures on Seifert fiored®anifolds with four singular fibers and baSé.

3.1 Main Results

In the following theorems le¥l be a Seifert fibred-3manifold which admits a Seifert fibration

overS? with 4 singular fibers.

Theorem 3.1.1.1f eo(M) < -2 then no tight contact structures on M with zero Giroux torsion
contains a Legendrian curve with zero twisting.

S ML 2 % & i i 9 _ a4 ... gl
LetM = M( o T T p4) be a Seifert manifold, where o " [ag, a3, ,am] and
a <-2,i=123,4 isthe continued fraction expansion ef% with (pi,q) = 1, pi > 1,

i

g > 0.

Theorem 3.1.2.1f eg(M) < —4 then there are exactlyey(M) + 1) Hi4:1 H’j‘ll(a(ji) + 1) Stein
fillable contact structures (up to isotopy) on M. Moreover M has infinitelpynaon—fillable
tight contact structures with positive Giroux torsion and a Legendrian \artiorve with zero

twisting.

— M(PL P2 P3P : ; Pi_ i 4 i
Let nowM = M(ﬁ’ @ 0 a) be a Seifert manifold, Wherea = [ayg. a3, ,am] and

a; < -1, < -2 is the continued fraction expansion@g—i with (pi,g) =1, pi > 1q > 1.
i

Theorem 3.1.3.1f eo(M) > O then, every tight contact structure on M contains a Legendrian
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vertical curve with zero twisting. There are at most

4 m
mﬂ@+n[hwﬂﬂwwu

i=1 i=1 k=1

and at least

Kﬂ@+ﬂ[ﬁﬂﬂﬂ@+u

i=1 k=1
many Stein fillable contact structures (up to isotopy) on M. Moreovergther infinitely

many non-fillable tight contact structures on M with positive Giroux torsion.

Proof of Theorem 3.1.1 On contrary to the theorem, assume that there exists a Legendrian
vertical curvelL with twisting zero. By adding cusps we can assume the twisting of any
singular fiber is some numbér < -1, for eachi = 1,2,3,4. LetV; denote a standard
neighborhood of each singular fiber. Then slope of this dividing cuovedV; is s(0V;) = t} .

|
Sincegy(M) < -2, M can be written in the form

wherep; > g > 0, fori = 3,4, 01,00 < 0 andp; > 1. Let the orientation preserving
Pi

diffeomorphism given by; : 0V, — T; = d(M\V)), ¢i = ,fori =2
~(E0+2)pi —qi Vi

andy; : 0V — Ti, byg = , fori # 2. Usingy; we can compute the slope of
- Vv
(@t Po+Vo o gy o ZAEHV

P2tz + Uz - Pt
fori = 1,3,4. One can observe that fo= 2, —(eg+2) < § < —(eg + 2) — % fori =1,

dividing curves oI ass, = (Ty) =

O<s<——', and fori = 3,4, 1<s<—5

ConnectL with anco—slope Legendrian ruling curve on eath This produces four vertical
annuli. Since. has twisting zero, there will be no dividing curves starting or ending.dBy
the imbalance principle there will be bypasses along each ruling curvecbraeauli. After
attaching all possible bypasses, we obtain Tgrivith slopeco isotopic toV;. Using Farey
tesellation, when we start from—slope and hits going counterclockwise on the boundary
of hyperbolic disk, we know that all the intermediate slopes can be rea[&&Jd, Therefore
around each singular fiber we obtain a thickened tori containing basis slitte slopes as in
Figure 3.1. All thickened tori contain the basic slice with slop&sc. According to the sign

of this basic slice there are several cases. In each case we eithgy @itth an inappropriate

24



Figure 3.1: Disk with 3 holes and boundary slopes of thickened tori

therefore overtwisted contact structure or a contact structure with y@s$siroux torsion,
both of which contradict with the assumptions of the theorem. In the followireguill give
one case which ends up with positive Giroux torsion and another cash amils up with an

inappropriate contact structure. All the other cases are similar.

Let Ty x[1/2,1] and T, x[1/2,1], where (T; x {1/2}) = -1 and s(T; x {1}) = ~ , for
i = 1,2 have the same sign, say Then for the remaining two basic slicés x [1/2,1] and
T4 x[1/2,1] where,s(T; x {1/2}) = -1 ands(T; x {1}) = oo, fori = 3,4, and there are four

cases according to their signg=, -}, {+, -}, {—, +}, {+, +}.

Connecting an infinite slope Legendrian ruling curveTanx {1/2} with an infinite slope
Legendrian curve o2 x{1/2} yields a vertical annulu& with no boundary parallel dividing
curve. Therefore, cutting alond; x {1/2} U AU T2 x {1/2} and rounding the edges gives a
torus with slope one. Now we have a pair of pants tifSésvith boundary slopes,+1, -1
and there areo slope tori in the neighborhood @k and T4, which implies that we can also

find one in the neighborhood of the torus with slope 1.

Consider the casé+, +}. We can cut alonglsx{1/2}UAUT4x{1/2}, where (T;j x{1/2}) =
-1,fori =12and 9(T; x {1}) = o fori = 3,4 . After rounding the edges we obtain a
torus with slope one. Therefore we obtain two tori with slope one, whiclma@iréoundaries
of singular fibers. Since we assume the existence of a Legendrian veutiea with twisting

zero, we can find a torus witk—slope between these slope one tori. This means there exist
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an embedded? x |, which have at least twisting. So the Giroux torsion is positive The case

{—, =} will be the same.

Now consider the casgr, —}. We have three of the four basic slices with slopdsand

oo of the same sign. Connecting an infinite slope Legendrian ruling curvéon{l1/2}
with an infinite slope Legendrian ruling curve of, x {1/2} vyields a vertical annulugy
and connecting an infinite slope Legendrian ruling curv@ g {1/2} with an infinite slope
Legendrian curve onT3 x {1/2} yields a vertical annulugy,. On A; and A there are no
boundary parallel dividing curves. We can extend the annju® an annulu#\;, which is

in between the infinite slope Legendrian ruling curvesTerx {1/4} and T, x {1/4}, where
(Ti x {1/4})) = 0 fori = 1,2. Similarly, we can extend the annulusAq, which is in
between infinite the slope Legendrian ruling curvesTonx {1/4} and T3 x {1/2}. If we

cut alongTy x {1/4} U A} U T2 x {1/4} U Aj U T3 x {1/2}, and round the edges, we obtain
a torus with slope-1, which is in the neighborhood of the remaining fourth singular fiber.
Thus, we obtain a twisting thickened torus in the neighborhood of fourth singular fiber.
However using Proposition.#6 of Honda ([38]) we can realize any rational slope in this
thickened torus. Therefore, we can realize the meridian of the neigbddidf singular fiber

as a dividing curve. This gives an embedded disk with twisting zero, whicbtiing but an

overtwisted disk. Hence, we are done. The dase-} will be similar. O
G _ % _9%B _% i G _ 1) 50 0]

Proof of Theorem 3.1.2 Let M(_H’_E’_E’_E) , With o = [ay,a}’s ..., am], where

all aﬁ') are integersal) = _({%J +1) < -1, ag') < -2 for j > 1. We claim that up to isotopy

there are|(eg(M) + 1) Hi4:1 H’j‘ll(a(ji) + 1) tight contact structures dv which do not contain

a Legendrian vertical curve with twisting zero, i.e having negative maximafingis

Pi Ui

Define an orientation preservingidomorphismy; : dV; — T; by ¢; = [
g Vvi

]. Then

(o[} a2 gz G4 1
-— -, ——) = >X S V1 UVoUV3U V).
) ( ) U ( 1 2 3 4)

P1Up2Up3Ups

M = M(

Let & be a tight contact structure dvl. Isotopeé to make eaclv; a standard neighborhood
of a Legendrian circlé;, isotopic to theé™ singular fiber with twisting; < —2. ThendV; is

- , 1 .
convex and has two dividing curves with sIoPe Then, sincel; = dV; we can compute the
i

slope of dividing curves ofiij, 5 = (T;), using the mag;. We see thats; = tt'g'—:\(" = % +
iPi+ U i
Sincetj < -2 we have{ﬂJ <§< &. Using Giroux Flexibility theorem we can

pitipi +up) j i
assume that eadh has Legendrian rulings; of slopeco when measured in the coordinates of
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Ti. LetA, A, c =x S be convex vertical annuli such tha#; = L1 ULy anddA, = Lo U Ls.

By the assumptio& has negative maximal twisting so there must be dividing curvég ahd

Az that connect the two boundary component®\pfindA;. If there ared—parallel dividing
curves onA; andA,, by imbalance principle there are bypasses. To get rid ai-gllarallel
dividing curves omA; and A, we attach all bypasses. After the isotpoy the slopes of dividing
curves ofT1, T> andTz becomes, = q—pl 'S, = G Sy = q—p3 ,p=>1,(p.qg)=1,fori=123.
Sinces > | & | we haves > || > 0, because otherwise # < | | there exist amo-slope
torus, on which we can find a twisting zero vertical Legendrian curvés dantradicts to the
assumption that has negative maximal twisting. If we cMt along TIU A U T U A U T3

. , 2
and round the edges, we obtain a torus with slage= ittt s . The slopes,

PG: + (O + G + Gs + 2)Pa in the coordinates afV4. One
Qv + (O + 02 + Oz + 2)uy ]
4

can observe that, < —% . By a theorem in [38] we can find a torus with slopev—. In
4 4

corresponds to the slopg, = —

the coordinates 0f 4 this slope becomes zero. This implies that the maximal twisting number
is —1. When we have a twisting numbefd Legendrian curve then we can find an annuli
between the curve curve and other fouso—slope Legendrian ruling curves on boundary of
Vi. On this annuli we apply the imbalance principle. Then adding bypasstaperave can
assume that all the boundary sIopesprecome[%J. When measured in the coordinates

0+ 1p

g
G —[pn]Pi i+
of 9V, the slopes of the dividing curves becor*r}eI lpr . 4 (a(()i) . Asin
Vi — [iJ Ui Vi + (ay’ + L)uj

[58], one can observe that this quotient hﬁ%,[aﬂi_l, .-+ ,a1 + 1] asits continued fraction
expansion. Therefore using the classification of the tight contact stesctn solid torus,
we conclude that on the neighborhood of each singular fiber therle}‘ﬁ?;qi(a?) + 1)| tight

contact structures up to isotopy.

By extending a theorem of Ko Honda in [39], to Seifert fibreeh@anifold with four singular
fibers as in the last part of Theorem 2.2.14, we can say there are é&a{;%}lj + [%J + [%J +

[%J = leg(M) + 1] tight contact structures anx S, whereX is a sphere with 4 punctures.
As itis written in Theorem 2.2.14, none of these tight contact structurdaioamlLegendrian
vertical curve with twisting zero. So, there are at maog(M) + 1)H?ll(a§i) + 1) tight

contact structures.

For the lower bound we use Legendrian surgery diagram. Indeed ine=8gR we draw the
smooth surgery diagram @. In the Figure eacly = ¢ + {—%J pi. We also draw the

possible Legendrian realizations of a smooth surgery an unknot with fgagiwhich is less
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than or equal to minus two. There agg+ 1 ways to obtain dferent Legedrian diagram,
which gives diterent rotation numbers. All the contact structures obtained by Leg@ndria
surgery will be Stein fillable by Eliashberg [10]. Moreover, by Lisca Btatic [44], they can

be distinguished by their first Chern classes which is the rotation numbee &htlt. Since

all the framing co#icients are less than or equal+@ we can do the same for all the unknots

in Figure 3.2. Hence there are at least
s ()
|
(eo(M) + 1) H(a,- +1)
J=
Stein fillable contact structures & with ey < -2.

We now obtained an upper bound using convex surface theory foretipatimve maximally
twisting tight contact structures d. This number matches with the lower bound coming
from Legendrian surgery, which is the number of Stein fillable (thereBareux torsion zero)
contact structures. By Theorem 3.1.1 all Giroux torsion zero contaattetes are negative
maximally twisting. Therefore the number we obtain gives the exact numbeeiof Blable
contact structure oM with eg(M) < —4. This finalizes the proof of the first part of the

theorem.

For the second statement note that there are infinitely many universallydigiaiot structures
when there is an incompressible torus [6]. When the number of singularrdilee Seifert
fibred 3-manifold is greater than three there exists a vertical incompressible torusy tiis
incompressible torus one can emB&dx | with the special contact structure on it. This does
not change the manifold, but the contact structure changes. By a oé$idihda, Van-Horn

Morris, Ghiggini [23], [22] all of such contact structures will be nditiable. [

Proof of Theorem 3.1.3 We will first show that on a Seifert fibred manifol with 4 singular
fibers andey(M) > 0, no tight contact structure has negative maximal twisting number. (See
also Theorem3B in [58]). We assume the set up in the above proof so théE, x St = T, U

P G

-G U
First we will prove the following claim.

ToUT3U Ty, ¢ dVi — d(M\V)),

J, wherepiui +vigi = 1, —0Xx{pt} — (0,1)".

Claim: Let ¢ be a tight contact structure oB x St with s = §(T;) , such that allT;’s are
convex. Then there exist collar neighborhoobBisx | , To x 1 andTz x| of T, T, andTs,
properly embedded vertical convex anmyi Az in (Ex SH\(T1x 1 UTax 1 UTzx1), where

A is connectingl'; x {1} to T x {1} andA; is connectingl, x {1} to T3 x {1} with Legendrian
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there is e +1 choice for k

O~ O
<>

Figure 3.2: Smooth surgery diagram Mfwith eg(M) < —2 and Legendrian realization of a
smooth surgery on the unknot with dheientey < -2.

boundaries such that
1) Ty x 1, Tox I andTs x | are mutually disjoint forni,
2)fori=1,2,3,4, Ti x{0} = Tj, and eacHT; x {1} is convex with dividing curve slop§ < s

3) A1 andA; has naj parallel dividing curves.

Proof of the Claim First we consider the casg = S = s3 = . Connect a Legendrian divide
of T1 to a Legendrian divide of, and a Legendrian divide df, to a Legendrian divide of
T3 so that we obtain two annuli on which there are no boundary paralleésuthis finishes

the proof for this case.

Now, If 53 = oo and all the othess are finite then connect a Legendrian divideTafto a

Legendrian ruling withw slope onT, and to a Legendrian vertical ruling witk slope onT3
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by annuliB; andB,. T side of the annulus does not intersect any dividing curves. If there
are g—parallel arcs o, and T3 sides of the annulB; and B, adding bypasses we obtain

oco—slope tori isotopic td, andTs.

The cases; = s, = o0 andszands, are finite can be handled similarly.
Finally assume alf's are finite. After renaming the toflij’s we may assume that the torus
0i

T, has slope with smallest denominator among those of alltkeLets = —, fori = 1,2,

wherep; > 0. Connect vertical Legendrian ruling curves on edghT, andITg, to obtain
vertical convex annulA; and Ay. If A; and A, has nod parallel curve then we are done.
Since we assume that slope Bf has the smallest denominator, by the imbalance principle
there may b&-parallel curve orT; and T3 side of the annulA; and A;. If this is the case
then we can attach these bypasse§itand T, along theco—slope Legendrian ruling curve.
Repeat the procedure until there are no mirparallel dividing curves oy andAy, or until

the slopess;, s, andsz become albo, which is the case we already handléd.

Sinceegy(M) > 0, we may assume thgﬁ, %, Rl > 0, and%+%
P1 P2 P3 P1 Pa
Pi Ui

=g Vv

> 0. Define an orientation

preserving dieomorphism byg; : 0V, - Ti, ¢i = [ ] wherepiy; + vigi = 1.

Let ¢ be a tight contact structure dvi. First isotopet to make eaclv; a standard neighbor-

hood of a Legendrian circl;, isotopic to theé'™ singular fiber with twisting number < 0.

Then eachV; is a convex tori with two dividing curves having sloptesWe can calculate the
i

slope ofT; as<(Ti) = s, where

_tGvi_o g, 1 G

_ <=
tipi + Ui pi o pi(nip + W) pi

By the previous claim we can thickéf, V2 andV3 to V;,V; andVé such that

1) V1, V3, V; andV, are pairwise disjoint,
2) T =@V, §=-%<s, p g>0i=123 and
3) there exist properly embedded vertical anmiliconnectingT; to T, and A, connecting

T; andT; that have n@—parallel dividing curves.

If all the dividing curves ofA; (or Ay) ared—parallel then there is a Legendrian vertical curve
on this annulus, which has zero intersection with the dividing curves ofrthelas so that it

has twisting zero, and hence we are done.
If there are dividing curves connecting the two component@AafanddA, then we cutM
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alongV] UAL UVSU A UVZ. This gives an embedded thickened tofys |, whose boundary

is convex with two dividing curves of slopeg ands), where

Rk Tk S S
p p P1 P4
Since s; > 0 > s4, when we go counterclockwise frosj to s4 along the hyperbolic unit
disk we pass through the infinite slope. This guarantees the existencero$ avith slopex,
so that we have a twisting number zero curve on this torus. This concluelgsdbf of the

claim.

In the second part of the proof, we will find an upper bound for the rarnalb tight con-
tact structures with zero Giroux torsion using the convex surface th&mge there exists a
Legendrian vertical curve with zero twisting, we can connekttwith all the vertical Legen-
drian ruling curves on the boundaries of neighborhoods of singularsfiby vertical annuli
Ai. Sincel has twisting zero there is no intersection on theide of the annuliA’s and
hence there will be boundary parallel dividing curves on Theides of the annuli. After
attaching all possible bypasses we obtairarslope tori, sayl;, parallel toT;, i = 1,2,3, 4.

Using the boundary map we see this-slope dividing curve corresponds%e\% in the co-

|
ordinates of theJ;, whereT/ = d(M\U;). One can observe that% = &y, ..., ap, &), ap).
I .
Using the classification of tight contact structures on the solid torus with sh%éehere are
i

1T a0 T, [T, (& + 1)l many tight contact structures.

However, in the casey(M) = 0, some of these contact structures are isotopic to each other.
Indeed, the tight structures, where all basic slices with slefdgso have positive sign is
isotopic to the structure when all basic slices with slopgs~ have negative sign. To see this
first note that sinceg(M) = 0, we have-1 < § < —& We showed that all the tight contact
structures orM with eg(M) > O contain a Legendrlian vertical cunkewith twisting zero.
ConnectL with vertical Legendrian ruling curves on the neighborhoods of eagukinfiber

and obtain vertical annully. The imbalance principle says that there are boundary parallel
curves onl; side. Attaching all possible bypasses gives a thickened tori arouhdseagular
fiber, which contains basic slices with slopé, . If the sign of these basic slices are all
the same then we can connect Legendrian vertical ruling curves on-daslope tori, and
obtain two annuli,B; betweenT; x {1/2} and T, x {1/2}, and B, betweenT, x {1/2} and

T3 x {1/2}, where the slope of each toruss@l; x {1/2}) = -1, fori = 1,2,3. According

to the previous claim there is no boundary parallel dividing curves oretapsuli. Cutting
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alongTy x{1/2UB1UT,x{1/2}UB,UT3x{1/2} and rounding the edges yields a torus with
slope-1. Then, we obtain a thickened torus with two basic slices in the neighbodfdabd
fourth singular fiber which have slopegd, «, 1. The sign of the first basic slice is positive as

we assumed at the beginning, and the sign of the new basic slice with stofiés negative.

Similarly if we assume that all the signs of the basic slices with stapeo are negative we
obtain a thickened torus containing basic slices with same slopes but oppgsgersthis
case. However, in both cases, there is only one positive basic slice inickertbd tori, so

that these contact structures must be isotopic [38].

The number of tight contact structures, which contains the basic slic@sghsiopes-1, co
with positive (or negative) sign ig [T (a0’ + 1) [Tj; [Th, (@' + 1. Then [[]i; a0' —
Hi“:l(aoi +1) ni4:1 Hﬂll(ak‘ + 1)| is the number of tight contact structures on the neighbor-
hoods of singular fibers which M\ (Z x S1).

Next, we need an upper bound on the number of tight contact structutfezevo Giroux

torsion onZ x St with co boundary slopes.

Let M\(U?, Uj) be the background d\‘/l(%, % % %), which is difeomorphic taz x S,
whereX is a 4-punctured sphere. S&& x S = T; U T U3 UT4. The St—invariant tight
contact structures ob x S by theco boundary slopes are determined with dividing curves
on any section. Figure 3.3 shows all possible dividing curve configmsba a section. The
relative Euler class calculations show that the structures correspotadihg configurations
are mutually non—isotopic except the ones corresponding to (3) andlibh are isotopic.

We call these structures £_, and&g as in Figure 3.3.

In this part of the proof, we will show that the configurations in FigureA)4prrespond to
a Stein fillable contact structure and those in Figure 3.4(B) correspondntdiltable tight

contact structures.

We construct a tight contact structufeon M(ry,ro, r3), such that after some negative Leg-
endrian surgery onM(r1,r2,r3),¢) we obtain M(r1,r2,r3,r4),£) as in the following: Let
(M\V4, &lmy,) have infinite boundary slope and dd3x S*), let A be the unique tight con-

tact structure with slope>. Then set

(M(r1,r2,r3),2) = (M\V4, £lm,) Uig (D? x S, 2)
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1

2)

3)

4)

Figure 3.3: Possible dividing curves on the backgrounkilof

by id : 9D? x ST — —3d(M\V,).

In (M(ry,r2,r3),Z) constructed as above, there is? x St with oo slope, which is the
neighborhood of a Legendrian curve with twisting zero. $6\V4, £lm\v,) is the complement

of the standard neighborhood of a regular fiber with twisting number ze¥(i, r», r3). So
when we perform smooth% surgery on this fiber we ge¥i(ry, r2,r3,r4), and since the
twisting number of the curve on which we apply the Legendrian surgeryris #&e smooth
surgery co#ficient is equal to the contact surgery fio@ent. Thus, we have% negative
Legendrian surgery and this can be written as a sequenek bégendrian surgeries.

In [28] it has been proved that if a contact Seifert fibredr@nifold with three singular fibers
overS? has a background fieomorphic to the one in Figure 3.5 then the contact structure on

M is Stein fillable. Using the above construction and the theorem of Eliashibich says
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Figure 3.4: Possible dividing curves on a section of 4 punctured sgheesS?.

that Legendrian surgery preserves Stein fillability, we deduce that actogitéct structure on
a Seifert fibred 3manifold with 4 singular fiber which has a backgrounéetmorphic to

the one in Figure 3.4(A) is also Stein fillable. For the background given inr€i§.4(B),

Figure 3.5: There is a unique dividing curve configuration for pair eitpéimesS® with co
boundary slopes.

we refer to the Proposition@in [27]. It is proved that such a background corresponds to an
embedded? x | with &, = ker(cos Znzdx+ sin 2thzdy along incompressible tori which
separates the manifolds into pieces. This embedding yields positive Giraisnoso that

the corresponding tight contact structureMris non—fillable (See also [57], and [49].).

However, the above argument does not work for the background urd-i§}4(C). Besides,
by a Theorem of Giroux, since there is no homotopically trivial curve oedian of the

background, ang!-invariant contact structure is universally tight.

Existence of these contact structures can be guaranteed by Legesulrmigry. Figure 3.6
shows the handlebody decomposition of-en#anifold whose boundary is fiéomorphic to
a Seifert fibred 3manifold witheg(M) > 0. Legendrian realizations of these unknots give
possible Stein fillable contact structures. We refer to Propositibrin3[28] to deduce that

there are| [T, ao' - 11, (a0’ + 1) [T, [T, (&l + 1) Stein fillable contact structures d.
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Figure 3.6: Handlebody decomposition of a 4 manifold whose boundafywgth eg(M) > 0.

Therefore as an upper bound we obtait[ B ; a0' — [T, (a0’ + 1)) [Ti; [T, (&' + 1)l , and
by above explanations at leaf]! ; ao' — [T (a0’ + 1) [1{-; [T, (& + 1) many of them
are Stein fillabld]
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CHAPTER 4

GENERALIZATIONS AND OPEN BOOK DECOMPOSITIONS

In this chapter, we discuss the possible generalizations of the main resuéiged Sbered
3-manifold with more than 4 singular fibers. We also study the open book deitops of

Seifert fibered 3manifolds with 4 singular fibers.

4.1 Possible Generalizations

Let & be a tight contact structure on the Seifert fiberean@nifold M(%, % e ,%) with

baseS? andn singular fibers. LeM\ U, Ui be the background d\‘/l(%, % -, ), and
choose a dieomorphism t& x S! whereX is ann punctured sphere, so thaE x St =
TiUToU--- Ty If the slopes of the dividing curves dn are alls(T;) = oo, then there are
three homotopy class of contact structureZor8! (Recall the background for 4 fibered case

and Figure 3.3).

Figure 4.1: Examples of dividing curves on the backgrounafith six singular fibers.

However, in each homotopy class there may be non-isotopic contact sésickor example
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in Figure 4.1, although they have the same relative Euler class, the strootuesponding
to Figure 4.1 (A) may not be isotopic to the structure in Figure 4.1(B). Onckane a tool
to distinguish these tight contact structures we can find an upper boumgl eractly the
same techniques employed in the four fiber case. Finding a lower bourtteadone using

Legendrian surgery diagrams similar to previous results.

4.2 Open Book Decompositions

For small Seifert fibered-3manifolds withep(M) < -3 it is shown in [53] that all tight con-
tact structures are compatible with planar open books and all are Stein filgditenenberger
[53] generalizes this result to Seifert fibereen3anifolds withn singular fibers and says that
on a plumbing, when framing céiient of central vertex is less than or equal to minus the
number of edges going out of that vertex (which means that there is neeli@X or a non-
positive plumbing diagram), any Legendrian realization give a Stein fillaliieacostructure

and the compatible open book is planar.

As aresult of Theorem 3.1.2 and Sttenberger’s theorem we can say that on a Seifert fibered
3—-manifold M with 4 singular fibers andy(M) < —4 all Stein fillable contact structures are

compatible with planar open books.

In Figure 4.2, we present a possible planar open book decompositioere Hne many
other ones depending on the position of cusps which are used to stabilitegbadrian
knot. However, all the open books corresponding to Stein fillable costagattures in the
caseey(M) < -4, will be planar. In Figure 4.2, all the curves on the page represent on
positive Dehn twist. In Figure 4.2 and Figure 4.6 we assumejallare greater than 1
and-ry = [-ag,—ap, -+ ,~a&], —r2 = [~dy,—dp,---,~d], —-r3 = [-bg,~bp,---,—bn],

—rq = [-C1,—Cp, -+, —Cpn] Where all-g's, —bj’s, —¢;’s and—d;’s are less than or equal te.

In both cases we start with an open bookssf whose page is annulus and monodromy is a

right handed Dehn twist around the core curve of the annulus.

Similarly, it is shown in [19] that all Stein fillable tight contact structures on si8alfert
fibred 3-manifolds witheg(M) > O are compatible with planar open books. An example
can be seen in Figure 4.3. We can construct planar open books fotelnefifable contact

structures on a Seifert fibred-Banifold with 4 singular fibers aneh(M) > 0. Similarly,
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wheney(M) = k > 0, an example of an open book decomposition is as in Figure 4.4. In
Figure 4.3 we assume all > 1 and-r; = [a},a!,--- ,al,], for all aij < -2. In Figure 4.4

we assume & r; < Landr; > 1fori = 2,34, and-r; = [a},a,---,a},], & < -1 and

aij < —2. In both cases we start with an open bookSdfx S?, whose page is annulus and
monodromy is trivial. Therefore Figure 4.3 and Figure 4.4 can be obtainadimilar way.
Wheney(M) = -2, for a Seifert 3manifold with 4 singular fibers there is a bad vertex in its
plumbing diagram as explained in [19]. We can describe its open bookmesition and it
turns out to be non-planar. These contact structures are Stein fillatbleaae zero Giroux
torsion. For the special casé(-3, -3, 3, 3) the manifold is actually a torus bundle over the

circle and a compatible open book decomposition described separately,ifbE]g19].

Dalyan in [60] also says that if the plumbing diagram contains Figure 4.5 alsgaaph then
its compatible open books will be non-planar. Also using rolling up as in [68][49] a
non—planar open book decomposition for a Seifert fibreth&nifold with 4 singular fibers

andey(M) = -2 is given as in Figure 4.6. (The casgM) = -3 is similar.)

As in Figure 4.7 Seifert fibred-3nanifolds with 4 or more singular fibers which are also
L—spaces, and are compatible with planar open books. Since there is @tigen&ghn twist
around the blue curve, there may be non-fillable contact structuresyamdillability of
these contact structures can be shown using the technique in [54] irddvg\deremy Van—
Horn Morris and Olga Plamenevskaya, which shows that this negativa st can not
be removed from the monodromy of the open book. As it is written in the samer pagn
book decompositions of non—fillable contact structures on Seifert fibrathnifolds with 4
or more singular fibers can be obtained using similar techniques. Howessr thay not be
the whole list of tight contact structures &h. For the casey(M) = —1, we can draw the
following Legendrian surgery diagram, and it is easy to draw a compatibheiptaoen book
for this surgery diagram if the surgeries have integeffoments (Figure 4.7). Note that for
each open book decomposition figure given in this chapter, on eachazidjgon to the right
handed Dehn twists along curves drawn in the figures, there are rigdetdeaDehn twists

along the curves which are parallel to the holes on the pages.
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X=-gy1
y=-§+2

=bm roll up \

Z=-q+1
w=-df2

Figure 4.2: Surgery diagram to plumbing, rolling up plumbing to a page of thgatble
open book
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roll up aii 's onto %‘s for each i

Figure 4.3: Plumbing to an open book for Seifert fibrear@&nifold withep(M) = 0
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roll up a} 's onto %‘s foreachi

Figure 4.4: Plumbing to an open book for a Seifert fibrednznifold witheg(M) = k > 0.

'
N

Figure 4.5: Plumbing diagram of a small Seifert fibreeh@anifold witheg(M) = -2.

41



“Ip 2 X=- Gy 1
_rr—}—wz 5 — on ol V=-g+2
1y
z=-q+1
wW=- d2+ 2

Figure 4.6: Plumbing to a compatible open book for a Seifert fibradanifold witheg(M) =
-2.
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B -y

B

blow down

Figure 4.7: Legendrian realization of a surgery diagram and a compagiblelmok decom-
position of a Seifert fibred-3manifold witheg(M) = —1 andr; € Z>? for eachi.
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