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ABSTRACT

A FUZZY SOFTWARE PROTOTYPE FOR SPATIAL PHENOMENA: CASE
STUDY PRECIPITATION DISTRIBUTION

Yanar, Tahsin Alp

Ph.D., Department of Geodetic and Geographic Information Technologies

Supervisor: Assoc. Prof. Dr. Zuhal Akyürek

September 2010, 197 pages

As the complexity of a spatial phenomenon increases, traditional modeling becomes

impractical. Alternatively, data-driven modeling, which is based on the analysis of data

characterizing the phenomena, can be used. In this thesis, the generation of under-

standable and reliable spatial models using observational data is addressed. An inter-

pretability oriented data-driven fuzzy modeling approach is proposed. The method-

ology is based on construction of fuzzy models from data, tuning and fuzzy model

simplification. Mamdani type fuzzy models with triangular membership functions are

considered. Fuzzy models are constructed using fuzzy clustering algorithms and simu-

lated annealing metaheuristic is adapted for the tuning step. To obtain compact and

interpretable fuzzy models a simplification methodology is proposed. The simplifica-

tion methodology reduced the number of fuzzy sets for each variable and simplified

the rule base. Prototype software is developed and mean annual precipitation data of

Turkey is examined as case study to assess the results of the approach in terms of both

precision and interpretability. In the first step of the approach, in which fuzzy models

are constructed from data, “Fuzzy Clustering and Data Analysis Toolbox”, which is

developed for use with MATLAB R©, is used. For the other steps, the optimization of

obtained fuzzy models from data using adapted simulated annealing algorithm step

and the generation of compact and interpretable fuzzy models by simplification algo-

rithm step, developed prototype software is used. If accuracy is the primary objective

then the proposed approach can produce more accurate solutions for training data

than the geographically weighted regression method. The minimum training error
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value produced by the proposed approach is 74.82 mm while the error obtained by

geographically weighted regression method is 106.78 mm. The minimum error value

on test data is 202.93 mm. An understandable fuzzy model for annual precipitation

is generated with only 12 membership functions and 8 fuzzy rules. Furthermore, more

interpretable fuzzy models are obtained when Gath-Geva fuzzy clustering algorithms

are used during fuzzy model construction.

Keywords: Spatial modeling, Data-driven fuzzy modeling, Fuzzy clustering algorithms,

Simulated annealing, Fuzzy model tuning, Interpretability, Precipitation
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ÖZ

MEKÂNSAL FENOMENLER İÇİN BULANIK YAZILIM PROTOTİPİ: YAĞIŞ
DAĞILIMI ÖRNEK OLAYI İNCELEMESİ

Yanar, Tahsin Alp

Doktora, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü

Tez Yöneticisi: Doç. Dr. Zuhal Akyürek

Eylül 2010, 197 sayfa

Mekânsal fenomenlerin karmaşıklığı arttıkça geleneksel yöntemler ile modellenmesi

pratikliğini yitirmektedir. Bu durumlarda, fenomeni niteleyen verilerin analiz edilme-

sine dayanan veri güdümlü modelleme yaklaşımı kullanılabilir. Bu tezde, anlaşılabilir

ve güvenilir mekânsal modellerin gözlemsel veriler kullanılarak oluşturulması ele alın-

mıştır. Tezde, anlaşılabilir bulanık modellerin veriler kullanılarak oluşturulması (veri

güdümlü) yöntemi sunulmuştur. Yöntem, bulanık modellerin verilerden oluşturulması,

optimize edilmesi ve sadeleştirilmesi adımlarından oluşmaktadır ve Mamdani tipinde

bulanık modeller ile üçgensel aitlik fonksiyonları için oluşturulmuştur. Bulanık mo-

deller, bulanık kümeleme algoritmaları kullanılarak oluşturulmuştur ve optimizasyon

adımı için benzetimli tavlama yöntemi uyarlanmıştır. Küçük ve anlaşılabilir bulanık

modelleri elde edebilmek için bir sadeleştirme yöntemi önerilmiştir. Sadeleştirme yön-

teminde her bir dilsel değişkenin kullandığı bulanık küme sayısı azaltılmış ve kural ta-

banı basitleştirilmiştir. Yöntemin ürettiği sonuçların doğruluk ve anlaşılabilirlik açısın-

dan değerlendirilebilmesi için bir prototip yazılım geliştirilmiştir ve Türkiye’nin orta-

lama yıllık yağış verisi örnek olay olarak incelenmiştir. Yöntemin ilk adımı olan bulanık

modellerin verilerden üretilmesi adımında MATLAB R© için geliştirilmiş olan “Fuzzy

Clustering and Data Analysis Toolbox” aracı kullanılmıştır. Elde edilen bulanık mod-

ellerin benzetimli tavlama yöntemi ile optimize edilmesi, sadeleştirilerek küçük ve an-

laşılabilir bulanık modellerin oluşturulması adımları için ise geliştirilmiş olan prototip
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yazılım kullanılmıştır. Birinci öncelikli amaç doğruluk olduğunda sunulan yaklaşım ile

coğrafi ağırlıklandırılmış regresyon yöntemine göre daha iyi sonuçlar elde edilmiştir.

Sunulan yaklaşım ile eğitim verisi için bulunan minimum hata 74.82 milimetreyken

coğrafi ağırlıklandırılmış regresyon yönteminde eğitim verisi hatası 106.78 milimetre

olmuştur. Sunulan yaklaşım ile test verisi için bulunan minimum hata ise 202.93

milimetredir. Yıllık yağış için sadece 12 aitlik fonksiyonu ve 8 kural içeren anlaşılır bir

bulanık model oluşturulmuştur. Buna ilâveten, Gath-Geva bulanık kümeleme yöntemi

ile oluşturulan bulanık modeller kullanılarak daha anlaşılabilir bulanık modeller elde

edilmiştir.

Anahtar Kelimeler: Mekânsal modelleme, Veri güdümlü bulanık modelleme, Bulanık

kümeleme algoritmaları, Benzetimli tavlama, Bulanık model en iyileme, Anlaşılabilir-

lik, Yağış
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CHAPTER 1

INTRODUCTION

A spatial model represents an object or behavior of a phenomenon that exist in the

real world (Aronoff, 1989). The development of reliable and understandable spatial

models is very important to comprehend and work on natural phenomena. In tradi-

tional modeling, also known as white-box modeling, the parameters characterizing the

phenomenon have clear and interpretable physical meanings and they are derived using

geological, physical, biological laws. However, as the complexity of spatial phenomenon

increases traditional modeling becomes impractical. Examples of such complex spatial

phenomena are hydrologic systems, mineral prospectivity, seismic activities, ground-

water vulnerability, landslide susceptibility, etc. Due to advances in data acquisition

technology, it has been possible to collect large volumes of data associated with these

spatial phenomena. Thus, spatial phenomenon can be modeled fully based on observa-

tional data without any need to prior knowledge with data-driven modeling techniques.

This strategy is called black-box modeling. Although black-box modeling can gener-

ate a model which represents natural phenomenon reliably and precisely, the model

structure and parameters usually give no explicit explanation about the behaviors of

the phenomenon. Alternatively, the third modeling strategy seeks a balance between

precision and understandability which are two conflicting modeling objectives. In this

approach, models are generated using relationships between inputs and outputs but

the primary objective is not the accuracy itself. Precise and understandable models

give some explanation about the complex phenomena. These models can be a good

starting point for better understanding of the nature and behavior of the phenomena

and for further analysis.

Fuzzy set theory is a generalization to classical set theory to allow objects to take

partial degrees between zero and one. A fuzzy model is a set of fuzzy if-then rules

that maps inputs to outputs where a fuzzy rule establishes logical relation between
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variables, by relating qualitative value of the input variable to qualitative value of

the output variable. Fuzzy models are able to perform non-linear mappings between

inputs and outputs and they are also able to handle linguistic knowledge in addition

to numerical data. Therefore, fuzzy models can formulate the spatial phenomenon in

interpretable fuzzy if-then rules.

FuzzyCell (Yanar, 2003) is a fuzzy processing software for raster data analyses.

It incorporates human knowledge and experience in the form of linguistically defined

variables into raster based GIS through the use of fuzzy set theory. The main purpose

of the FuzzyCell is to assist a GIS user to make decisions using experts’ experiences

in decision-making processes. Experts’ experiences described in natural language are

captured by fuzzy if-then rules. Created fuzzy if-then rules are used to generate so-

lutions to decision-making problems. According to feedbacks from FuzzyCell software

users, they have some difficulties in the conversion of experts’ experiences into fuzzy

if-then rules. In addition to this, experts and users need some guidance while selecting

membership function parameters and deciding on fuzzy rules. Therefore, before con-

structing fuzzy if-then rules, an initially created interpretable fuzzy model can assist

experts and FuzzyCell users and simplify the fuzzy rule creation process.

The basic problem is the generation of understandable and reliable spatial models

using observational data. Specifically, the problem is to construct interpretable and

accurate fuzzy models using relationships between inputs and outputs.

1.1 Contributions

In this thesis, an interpretability oriented data-driven fuzzy modeling methodology is

proposed. A software prototype is implemented for the proposed methodology. Mean

annual precipitation data of Turkey is used as a case study to demonstrate the use of

the proposed approach and to test its accuracy and interpretability.

Due to its rule structure, Mamdani type fuzzy model offers a more understand-

able model than a Takagi-Sugeno type fuzzy model. For data-driven Mamdani type

fuzzy model construction, three fuzzy clustering algorithms namely fuzzy c-means,

Gustafson-Kessel and Gath-Geva clustering algorithms are used. Fuzzy clustering al-

gorithms are applied on both original spatial data and processed data. Processed data

are obtained by applying Box-Cox power transformation to original data and then
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scaling of data into the range [0, 1]. Cluster validity indices with accuracy measures

are used to determine the cluster count and initial fuzzy models are created by using

fuzzy partition matrix for fuzzy c-means algorithm and fuzzy covariance matrix for

Gustafson-Kessel and Gath-Geva clustering algorithms.

• Results have proven the claim that data scale influences the performance of the

clustering algorithms. The use of the processed data in the fuzzy clustering pro-

cess makes fuzzy clustering algorithms more stable and improves their accuracies.

After initial fuzzy model construction, simulated annealing algorithm is adapted

for tuning Mamdani type fuzzy models with triangular membership functions.

• In the disturbance mechanism of the adapted simulated annealing algorithm,

transitions of each parameter of triangular membership function are decreased

as temperature decreases. Therefore, at high temperatures each parameter has

wider allowable change interval.

• A rule based disturbance mechanism is defined. Instead of modifying all or

a number of randomly selected parameters, only parameters associated with a

randomly selected rule are modified.

The computing time is decreased by adding constraints on temperature stage.

• After the tuning process, obtained model error on training data (74.82 mm)

is reduced more than geographically weighted regression method (106.78 mm).

Moreover, obtained model error on test data is 202.93 mm.

Since accuracy is the primary objective while tuning fuzzy models, at the end of

the tuning process obtained membership functions have high degree of overlapping.

Thus, the optimized fuzzy models are not interpretable. An algorithm is proposed to

obtain compact and interpretable fuzzy models. The algorithm has two simplification

phases and tuning phases. In a simplification phase, the number of fuzzy sets for each

linguistic variable is reduced using similarity among fuzzy sets. Moreover, rule base

simplification is performed.

• In the simplification algorithm, the degree of subset measure is defined to measure

the degree of subset a fuzzy set is inside other fuzzy set.
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• In the simplification algorithm, a combination measure is defined to detect cases

where similarity between the fuzzy sets is low but they are indistinguishable

because of the closeness of their centers.

• The results show that, simplified fuzzy models obtained by the simplification

algorithm satisfy most of the interpretability criteria.

• Fuzzy models constructed by Gath-Geva clustering algorithms are simplified

more.

• An interpretable fuzzy model for estimating mean annual precipitation of Turkey

is generated only with 12 membership functions and 8 rules.

• A software prototype is implemented for the proposed methodology. The soft-

ware is able to tune Mamdani type fuzzy models with triangular membership

functions using the adapted simulated annealing algorithm. And it can sim-

plify fuzzy models using the simplification methods to obtain interpretable fuzzy

models.

1.2 Organization

The organization of the thesis is as follows: the next chapter, Chapter 2, describes the

details of the mean annual precipitation data of Turkey. Properties of the precipitation

data are described and information on some methods that can be used for precipitation

modeling problem are given.

Chapter 3 presents detailed information about the clustering analysis of mean

annual precipitation data. The results of the clustering analysis and discussion on

these results are given.

Chapter 4 describes the adapted simulated annealing algorithm which is used to

tune Mamdani type fuzzy models with triangular membership functions. And the

results of the tuning process are given in this chapter.

Chapter 5 begins with the detailed information about the simplification methods

for Mamdani type fuzzy models. After presenting simplification methods, the proposed

simplification algorithm and the results of the application of the presented simplifica-

tion algorithm to mean annual precipitation data are given.

Chapter 6 concludes and gives some future directions on the thesis.
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CHAPTER 2

IDENTIFICATION OF ILL-DEFINED

SPATIAL PHENOMENA

In Geographic Information System (GIS), a spatial model represents an object or be-

havior of a phenomenon that exists in the real world (Aronoff, 1989). Models are

presented as mathematical descriptions. In most cases, however, the derivation of

mathematical descriptions by geological, biological, or physical laws is not easy, time

consuming and involves many unknown parameters (Nayak and Sudheer, 2008). In

traditional approach, modeling spatial phenomena like hydrologic systems, mineral

prospectivity, seismic activities, rainfall, groundwater vulnerability, landslide suscepti-

bility, surface air temperature etc. not only requires deep understanding of the nature

and behavior of the phenomena, but also requires knowledge on mathematical meth-

ods for developing such models (Nayak and Sudheer, 2008). Alternatively, data-driven

modeling which is based on the analysis of data characterizing the phenomena can

be used. Data-driven modeling uses connections in input data (e.g. data generated

by input variables) and output data (e.g. data generated by output variables) to es-

tablish qualitative relationships among the variables of the phenomena. Therefore,

data-driven modeling can be used only when at least some of the variables charac-

terizing the phenomena have been measured and there is enough data to establish

relationships among the variables of the phenomena. Data-driven modeling is an in-

terdisciplinary field. It is related with fields such as data mining, artificial intelligence,

machine learning, soft computing, pattern recognition and statistics.

The remainder of this chapter is organized as follows. In the first section, the

detailed information about modeling annual precipitation of Turkey is given. In the

next section, properties of the precipitation data are described. In the third section,

information on some methods that can be used for precipitation modeling problem
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Table 2.1: Input variables.

Variable Description

Latitude Latitude of the observation station (or point) (◦)

Longitude Longitude of the observation station (or point) (◦)

Altitude Height of the observation station (or point) (m)

SdGrid Standard deviation of elevation in local 5 km × 5 km grid,

local roughness value (m)

is given. In the last section, validation of the derived models are described and brief

information about comparison metrics which are used to compare the models are given.

2.1 Modeling Annual Precipitation of Turkey

In this thesis, a data-driven modeling approach is proposed. Mean annual precipitation

data is used to demonstrate the use of the proposed approach and to test its accuracy.

A model which explains precipitation characteristics of Turkey is generated by using the

data. While generating the precipitation model of Turkey, ancillary variables namely

longitude, latitude, altitude, standard deviation of elevation in local 5 km× 5 km grid

are used. A total of four geographical variables are included in the analyses (Bostan

and Akyürek, 2007). The variable set is given in Table 2.1.

Precipitation is the condensation of atmospheric water vapor into liquid or solid

phase aqueous particles which fall to the surface of the Earth. The main forms of

precipitation include rain, freezing rain, sleet, snow, ice pellets and hail. It is usually

expressed in terms of millimeters of depth of the water substance that has fallen at a

given point (e.g., rain gauge) over a specified period of time. Although there are many

forms of precipitation, only rainfall is considered in this thesis. Throughout the thesis

the term precipitation is used to refer rainfall.

Note that values of the variables can be obtained or calculated for all geographical

locations in Turkey easily without requiring any measurement. In addition to these

variables, all meteorological observations obtained at each station can be used in the

analysis and can increase the accuracy of the model. Precipitations at all locations in

Turkey (1 km resolution) is estimated using the proposed model and an estimation of
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Figure 2.1: Meteorological stations used in the analyses.

long term mean annual precipitation map for Turkey is prepared (Figure 4.9).

2.2 Mean Annual Precipitation Data

Mean annual precipitation data measured at meteorological stations given in Figure 2.1

are used to model the annual precipitation of Turkey. Precipitation data is taken

from the study of Bostan and Akyürek (2007). Data consist of precipitation observa-

tions measured at 254 meteorological stations over Turkey between the years 1970 and

2008. Mean monthly precipitation data are converted to annual average precipitation.

Spatial distribution of meteorological stations is illustrated in Figure 2.1. Average

precipitation data for meteorological stations over Turkey are given in Appendix A.

Latitude values of meteorological stations, which precipitation measurements are

made, constitutes “latitude” input variable. Histogram of input variable “latitude” for

the 254 stations is given in Figure 2.2a. Mean value of the variable is 38.9773◦ and

the standard deviation is 1.5309◦.

“Latitude” variable has a low degree of skewness 0.0681, the mode is very close,
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Figure 2.2: Histograms for each of the four input variables based on all 254 meteoro-

logical stations located over Turkey.

Table 2.2: Descriptive statistics of input variables are calculated using 254 meteoro-

logical stations.

Variable Mean Standard deviation Skewness Kurtosis

Latitude 38.9773 1.5309 0.0681 1.9607

Longitude 34.3572 5.0723 0.1880 1.8857

Altitude 702.6142 585.2418 0.3037 2.0663

SdGrid 463.5106 163.6029 0.7304 4.0975

or even coincides with, the mean. Moreover, “latitude” variable can be considered as

a flat or platykurtic distribution, since it has low kurtosis value, 1.9607. Note that a

normal distribution has a skewness of zero and a kurtosis of 3.0. Low kurtosis is one

sign that “latitude” variable is not normally distributed.

The Q-Q plot is a graphical method for comparing two sample data sets (Aster

et al., 2005). If the two data sets come from the same distribution, the plot will be

linear. The Q-Q plot for the “latitude” variable is given in Figure 2.3a. The Q-Q plot

for “latitude” data shows deviations from normality. Furthermore, Lilliefors test is used

to statistically test for normality. The test is used to evaluate the null hypothesis that

data have a normal distribution with unspecified mean and variance. The alternative
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Figure 2.3: Q-Q plots for the input variables.

hypothesis states that data do not have a normal distribution (Lilliefors, 1967). Since

Lilliefors test statistic is 0.0617 and the p-value is 0.0234, the hypothesis that “latitude”

variable has a normal distribution can be rejected at the 5% significance level.

“Longitude” input variable is composed of longitude values of meteorological sta-

tions. Histogram of the variable is illustrated in Figure 2.2b. Descriptive statistics

are given in Table 2.2. Mean value of the variable is 34.3572◦ and the standard de-

viation is 5.0723◦. Unlike “latitude” variable “longitude” variable has a high skewness

of 0.1880. “Longitude” variable can also be considered as a flat distribution with low

kurtosis value of 1.8857. The Q-Q plot for “longitude” data in Figure 2.3b shows de-

viations from normality. Indeed, Lilliefors test statistic is calculated as 0.0800 but

since the value of Lilliefors test statistic is outside the range of the Lilliefors table, the

p-value could not be computed. The hypothesis that “longitude” variable has a normal

distribution can be rejected at the 5% significance level.

“Altitude” input variable is composed of height values of meteorological stations.

Histogram of the variable is illustrated in Figure 2.2c and the descriptive statistics of

the variable are given in Table 2.2. “Altitude” variable has a high skewness of 0.3037

and low kurtosis value of 2.0663. The Q-Q plot for “altitude” data in Figure 2.3c

clearly shows deviations from normality. Lilliefors test statistic is 0.1670; therefore the
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Figure 2.4: Standard deviation of elevation in local 5 km× 5 km grid, local roughness

over Turkey.

hypothesis of normality can be rejected at the 5% significance level.

Essentially, violation of the normality for the input variables “latitude”, “longitude”

and “altitude” is not unexpected. Because, these variables are the components of

the locations of meteorological stations, which were located based on some specified

rules and regulations, in order to measure meteorological variables such as rainfall,

temperature, humidity, wind speed and wind direction.

Local roughness (SdGrid) variable is derived by calculating standard deviation of

elevation in local 5 km × 5 km grid. Derived SdGrid map of Turkey is illustrated

in Figure 2.4. Digital elevation data which is provided by the NASA Shuttle Radar

Topographic Mission (SRTM) is used. The spatial resolution of SRTM data is 3 arc

seconds (approximately 90 m resolution) and the vertical error of the SRTM data is

less than 16 m (Jarvis et al., 2008).

Histogram of the “SdGrid” variable is illustrated in Figure 2.2d and the descriptive

statistics are given in Table 2.2. “SdGrid” variable has a high skewness of 0.7304 and

also high kurtosis value of 4.0975. The Q-Q plot for “SdGrid” data in Figure 2.3d shows
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Figure 2.5: Mean annual precipitation values for meteorological stations over Turkey.

deviations from normality. Lilliefors test statistic is 0.0725; therefore the hypothesis

of normality can be rejected at the 5% significance level.

Output variable contains annual average precipitation values obtained from mete-

orological stations over Turkey. Mean annual precipitation values calculated for 254

meteorological stations are shown in Figure 2.5.

Histogram of the output variable “precipitation” for 254 stations is given in Fig-

ure 2.6. Mean value of the output variable is 611.0961 mm and the standard deviation

is 275.9812 mm.

“Precipitation” variable has a high degree of skewness 2.5942 the mode is very far

from the mean. Since it also has a very high kurtosis value, 13.9359, output variable

can be considered as a very peaky or leptokurtic distribution. “Precipitation” variable

has a highly skewed and very peaky distribution. This indicates that the variable is

not normally distributed. Descriptive statistics for the output variable are given in

Table 2.3.

The Q-Q plot for the “precipitation” variable is illustrated in Figure 2.7. The Q-Q

plot for “precipitation” data shows deviations from normality. Moreover, three values
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Figure 2.6: Histogram of the output variable “precipitation” based on all 254 meteo-

rological stations located over Turkey.

Table 2.3: Descriptive statistics of output variable are calculated using 255 meteoro-

logical stations.

Variable Mean Standard deviation Skewness Kurtosis

Precipitation 611.0961 275.9812 2.5942 13.9359

in the plot are very far from the other values. These stations are located at Rize,

Pazar (Rize) and Hopa. Actually, according to the annual precipitation values, this

region which is at the north-east cost of Turkey, has the most rainfall in Turkey. Since

Lilliefors test statistic is 0.1263, the hypothesis of normality can be rejected at the 5%

significance level.

Bivariate scatter plots are constructed (Figure 2.8) between output variable and

the input variables to examine the nature and the strength or degree of any relation-

ship revealed by the data. Bivariate scatter plots suggested slight linear relationships

between “precipitation” and “altitude” and “precipitation” and “sdgrid”. The strength

of the correlations between the variables are calculated using the Pearson’s correlation

coefficient, Table 2.4.
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Figure 2.7: Q-Q plot for the output variable.
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Figure 2.8: Bivariate scatter plots between precipitation and the input variables.

Table 2.4: The correlation coefficients calculated between the variables.

Longitude Latitude Altitude SdGrid Precipitation

Longitude 1.0000 -0.0144 0.6005 0.5480 -0.0057

Latitude -0.0144 1.0000 -0.0179 -0.0265 0.1052

Altitude 0.6005 -0.0179 1.0000 0.0883 -0.3856

SdGrid 0.5480 -0.0265 0.0883 1.0000 0.4481

Precipitation -0.0057 0.1052 -0.3856 0.4481 1.0000

Matrix of p-values for testing the hypothesis of no correlation is given in Table 2.5.

Results suggest that there is a negative correlation (−0.3856) between “precipitation”

and “altitude”, and a positive relationship (0.4481) between “precipitation” and “sd-

grid”.

Data are divided into training and test sets. The training data set is used for

learning and test data set is used for measuring the predictive capability of the learned

model. 218 meteorological stations have observations for more than 20 years. From this

set, 180 meteorological stations (e.g. 70% of the total data set) are selected randomly

by using MATLAB R© “randperm” command then training data set is generated by

using precipitation data measured at these stations. Test data set is generated by

13



Table 2.5: p-values for correlation coefficients.

Longitude Latitude Altitude SdGrid Precipitation

Longitude 1.0000 0.8199 0.0000 0.0000 0.9275

Latitude 0.8199 1.0000 0.7765 0.6746 0.0944

Altitude 0.0000 0.7765 1.0000 0.1605 0.0000

SdGrid 0.0000 0.6746 0.1605 1.0000 0.0000

Precipitation 0.9275 0.0944 0.0000 0.0000 1.0000

data obtained from the remaining 74 meteorological stations. Therefore, test data set

contains 38 stations which have observations for more than 20 years and 36 stations

which have shorter observations.

2.3 Some Methods Used in Data-Driven Modeling

In this section, information on some methods that can be used for precipitation mod-

eling problem is given. These methods are linear regression, artificial neural networks,

neuro-fuzzy systems and fuzzy systems. Although linear regression method can only

be used for linear problems or problems which can be linearized with some transforma-

tions, artificial neural networks, fuzzy systems and neuro-fuzzy systems can be used

for both linear and non-linear problems. Many other methods exist in addition to

these methods.

2.3.1 Linear Regression

Regression analysis is used for the identification of relationships between variables.

The values of dependent variable are to be predicted or explained using the values of

the independent variables. In our case, dependent variable is precipitation and the

independent variables are longitude, latitude, altitude and sdgrid. Linear regression

is used to explain variation in precipitation with these four variables. It is found that

34.29 percent of the variation in precipitation is explained by the four input variables.

The root mean squared error is calculated as 217.50 mm for the training data and

207.80 mm for the test data. The equation is given in Equation 2.1.
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Figure 2.9: Residuals versus predicted precipitation (a) linear regression, (b) geograph-

ically weighted regression.

Precipitation = −468.0335 − 5.044 × Longitude + 24.6842 × Latitude

−0.1584 × Altitude + 0.8713 × SdGrid
(2.1)

If this regression is to successfully explain the variation in the precipitation then

no systematic variation should exist in the residuals (Ebdon, 1977). In other words,

there should be no serial correlation or autocorrelation. To test whether residuals are

autocorrelated Durbin-Watson test (Draper and Smith, 1981) is used. Durbin-Watson

test tests if the residuals are independent. A Durbin-Watson test statistic lies between

0 and 4.0 with 2.0 indicates no autocorrelation. While values less than 2.0 indicate

positive autocorrelation, values greater than 2.0 indicate negative correlation.

Durbin-Watson test statistic is computed as 1.66 which indicates low positive se-

rial correlation. Residuals versus precipitation plot (Figure 2.9a) supports this result.

Moreover, no spatial autocorrelation should exist in the residuals for a successful re-

gression. Therefore, to see if there is any spatial autocorrelation in the residuals global

Moran’s I index is used. Global Moran’s I index (Moran, 1950) is a measure of spatial

autocorrelation and ranges between −1.0 (negative spatial autocorrelation) and 1.0

(positive spatial autocorrelation). As value of index approaches 1.0 similar values tend

to cluster in geographic space, as the value of index approaches −1.0 dissimilar values

tend to cluster in geographic space, and as the value of index approaches −1/(n − 1),

where n is the number of observations, values are randomly scattered over the space.

For linear regression, global Moran’s I index values are given in Table 2.6.

In linear regression, only a small portion of the variation in precipitation is ex-

plained and also residuals are spatially autocorrelated. Therefore, linear regression
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Table 2.6: Moran’s I index measuring the spatial autocorrelation in residuals of linear

regression.

Data Moran’s I Expected Z-Score In 5%

index value significance level

Training Data 0.035294 -0.005587 4.414005 Clustered

Testing Data -0.055449 -0.013699 -2.067710 Dispersed

did not explain precipitation sufficiently.

A basic assumption in fitting a linear regression is that observations are indepen-

dent, which is very unlikely in geographical data, and the structure of the model, i.e.

regression equation, remains constant over the whole study area, no local variations

are allowed. Geographically weighted regression (Fotheringham et al., 2002) is a tech-

nique which permits the parameter estimates to vary locally. This is accomplished by

a weighting scheme such that observations near the point in space where the parameter

estimates are desired have more influence on the result than the observations further

away. Geographically weighted regression is applied on training data and better re-

sults are obtained than linear regression. The coefficient of determination is calculated

as 0.8416 which means that the model can explain 84.16 percent of the variation in

precipitation. The root mean squared error is calculated as 106.78 mm for the training

data which is half of the error obtained with linear regression and all the parameters

are significant at 5% level.

As in the linear regression case, residuals are tested whether they are autocorrelated

or not by Durbin-Watson test. The Durbin-Watson test statistic is calculated as 2.15

indicating almost no serial correlation. Residuals versus the predicted precipitation

values are plotted on Figure 2.9b. Morans’I index values between the residuals of

geographically weighted regression are given in Table 2.7.

2.3.2 Artificial neural networks

Artificial neural networks (ANNs) are originally motivated by the biological structures

in the brains of human and animals, which are powerful for such tasks as information

processing, learning and adaptation (Nelles, 2000). ANNs are composed of a set of

connected nodes or units where each connection has a weight associated with it. ANNs
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Table 2.7: Moran’s I index measuring the spatial autocorrelation in residuals of geo-

graphically weighted regression.

Data Moran’s I Expected Z-Score In 5%

index value significance level

Training Data -0.023052 -0.005587 -1.873512 Random

Testing Data - -0.013699 - -

can “learn” from prior applications. During the learning phase, the network learns by

adjusting the weights. If a poor solution to the problem is made, the network is

modified to produce a better solution by changing its weights.

ANNs provide a mechanism for learning from data and mapping of data. These

properties make neural networks a powerful tool for modeling nonlinear systems.

Therefore, neural networks can be trained to provide an alternative approach for prob-

lems that are difficult to solve such as decision-making problems in GIS (Yanar and

Akyürek, 2007).

Although, ANNs learn well, they have a long training time (time required for

learning phase). Also, there are no clear rules to build network structure (Han and

Kamber, 2001). Network design is a trial-and-error process which may affect accuracy

of the result and there is no guarantee that the selected network is the best network

structure. Another major drawback in the use of ANNs is their poor interpretability

(Yen and Langari, 1999).

On the other hand, neural network’s tolerance to noisy data is high and they are

robust against the failure of single units. Like all statistical models, ANNs are subject

to overfitting when the neural network is trained to fit one set of data almost exactly

(Russell and Norvig, 2003; Dunham, 2003). When training error associated with the

training data is quite small, but error for new data is very large, generalization set

is used. Also, to avoid overfitting, smaller neural networks are advisable (Dunham,

2003).

An example for the use of ANNs for a decision-making problem in GIS and compari-

son between the accuracies of models obtained by using ANNs and linear time-invariant

systems are given in Appendix B.
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2.3.3 Fuzzy Systems

Fuzzy logic (Zadeh, 1965) generalizes crisp logic to allow truth-values to take par-

tial degrees. Since bivalent membership functions of crisp logic are replaced by fuzzy

membership functions, the degree of truth-values in fuzzy logic becomes a matter of

degree, which is a number between zero and one. Fuzzy logic is unique in that it

provides a formal framework to process linguistic knowledge and its corresponding nu-

merical data through membership functions (Zadeh, 1973). The linguistic knowledge

is used to summarize information about a complex phenomenon and is used to express

concepts and knowledge in human communication, whereas numerical data is used

for processing (Zadeh, 1973; Mendel, 1995). An important advantage of using fuzzy

models is that they are capable of incorporating knowledge from human experts natu-

rally and conveniently, while traditional models fail to do so (Yen and Langari, 1999).

Other important properties of fuzzy models are their ability to handle nonlinearity

and interpretability feature of the models (Yen and Langari, 1999).

Fuzzy logic offers a way to represent and handle uncertainty present in the con-

tinuous real world. Using fuzzy logic continuous nature of landscape can be modeled

appropriately. The use of fuzzy logic in GIS has become an active field in recent years.

Fuzzy set theory has been widely used for many different problems in GIS including

soil classification (Lark and Bolam, 1997; Zhu et al., 1996), crop-land suitability anal-

ysis (Ahamed et al., 2000), identifying and ranking burned forests to evaluate risk of

desertification (Sasikala and Petrou, 2001), estimating forest fire risky areas (Akyürek

and Yanar, 2005), classifying and assessing natural phenomena (Kollias and Kalivas,

1998; Benedikt et al., 2002), and classifying slope and aspect maps into linguistically

defined classes (Yanar, 2003). Moreover, fuzzy logic can be used for decision-making

in GIS. Fuzzy decision-making can be used for different kinds of purposes such as se-

lecting suitable sites for industrial development (Yanar and Akyürek, 2006), seeking

the optimum locations for real estate (Zeng and Zhou, 2001), assessing vulnerability

to natural hazards (Rashed and Weeks, 2003; Martino et al., 2005), or estimating risk

(Sadiq and Husain, 2005; Chen et al., 2001; Iliadis, 2005).

In this thesis, an approach for building optimal and interpretable fuzzy systems

for GIS applications using relationships in spatial data is proposed. In general, the

proposed approach has three stages:
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1. Building fuzzy models from spatial data,

2. Optimizing fuzzy models, and

3. Enhancing interpretability of the driven fuzzy models.

Details of the proposed approach are given in Chapters 3, 4 and 5, respectively.

2.3.4 Neuro-Fuzzy Systems

The underlying rational behind the neuro-fuzzy systems is to generate a fuzzy system

from data or to enhance a fuzzy system by learning from examples (Nauck and Kruse,

1999; Nauck, 2003a; Jang, 1993). Learning methods are obtained from neural net-

works. Since neural network learning algorithms are usually based on gradient descent

methods, the application of neural networks to fuzzy system needs some modifica-

tions on the fuzzy inference procedure such as selecting differentiable functions. For

example in Adaptive-Network-based Fuzzy Inference System (ANFIS) a Sugeno-type

fuzzy system (Takagi and Sugeno, 1985) is implemented in neural network structure

and differentiable t-norm and membership functions are selected. On the other hand,

NEFCON (Nauck, 1994), NEFCLASS and NEFPROX systems can also implement

Mamdani-type fuzzy systems (Mamdani and Assilian, 1975) and do not use a gradient-

based learning algorithm but uses a heuristic learning algorithm in which semantics

and interpretability of the fuzzy system are retained (Nauck and Kruse, 1999).

Dixon (2005) integrated GIS and neuro-fuzzy techniques to predict groundwater

vulnerability and examined sensitivity of neuro-fuzzy models. For hydro geologic appli-

cations, Dixon (2005) shows that neuro-fuzzy models are sensitive to model parameters

which are used during learning and validation steps. Vasilakos and Stathakis (2005)

show that granular neural network (Bortolan, 1998), which is based on the selection

of fuzzy sets that represent data, are suited to model the inherent uncertainty of

geographical phenomena. Both studies use neuro-fuzzy classification software, NEF-

CLASS, with geographic data.

An example for the use of neuro-fuzzy systems for a decision-making problem in

GIS is given in Appendix C.
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Adaptive-Network-Based Fuzzy Inference System

ANFIS (Jang, 1993) is one of the first hybrid neuro-fuzzy systems for function ap-

proximation. ANFIS implements the Sugeno-type (Takagi and Sugeno, 1985) fuzzy

system, which has a functional form (linear combination of input variables) of the

consequent part. This system uses differentiable membership functions and a differen-

tiable t-norm operator. Since ANFIS does not have an algorithm for structure learning

(rule generation), the rule base must be known in advance.

The architecture is five-layer feed-forward network, where the first layer contains

elements which realize the membership functions in the antecedent part of the IF-

THEN rules. The second layer corresponds to calculation of firing strengths of each

rule. Next layers correspond to the consequent part of the rules (Rutkowska, 2002).

The structure of ANFIS is assumed to be fixed and the parameter identification is

solved through the hybrid learning rule. However, since there is no structure identifi-

cation, the number of rules, number of membership functions assigned to each input

and initial step size, which is the length of each gradient transition in the parameter

space (used to change the speed of convergence), have to be given by the user (see

Table 2.8).

Neuro-Fuzzy Function Approximator

NEuro-Fuzzy function apPROXimator (Nauck and Kruse, 1999) (NEFPROX) can be

applied to function approximation. The system is based on a generic fuzzy perceptron.

A generic fuzzy perceptron is designed as a three-layer neural network, it has special

activation and propagation functions and uses fuzzy sets as weights. The fuzzy per-

ceptron provides a framework for learning algorithm to be interpreted as a system of

linguistic rules and enables to use prior knowledge in the form of fuzzy IF-THEN rules

(Rutkowska, 2002). The architecture of fuzzy perceptron is a three-layer feed-forward

network. The units of input layer represent the input variables. The hidden layer is

composed of units representing fuzzy rules. And the units of the output layer represent

output variables which compute crisp output values by defuzzification. The connec-

tions between input units (neurons) and hidden units are labeled with linguistic terms

corresponding to the antecedent fuzzy sets and the connection between hidden neu-

rons and output neurons are labeled with linguistic terms corresponding to consequent
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Table 2.8: Major inputs and outputs of ANFIS and NEFPROX systems.

Neuro-Fuzzy Inputs Outputs

System

number of rules fuzzy if-then rules (rule base)

ANFIS number of membership functions assigned to each input learned membership functions

initial step size a

initial fuzzy partitions for input and output fuzzy if-then rules (rule base)

type of membership functions learned membership functions

t-norm operators a

NEFPROX t-conorm operators

defuzzification procedure

initialization parameters

learning restrictions
a Log files, statistics, membership function plots, etc. are also obtained.

fuzzy sets.

The learning of NEFPROX system consists of two steps: structure learning (learn-

ing of rule base) and parameter learning (learning of fuzzy sets). In this system,

some rules can be given a priori and the remaining rules may be found by learning.

Moreover, NEFPROX can generate the whole rule base by the rule learning algorithm,

which each fuzzy rule is based on a predefined partition of the input space (Rutkowska,

2002; Nauck and Kruse, 1999). Parameter learning procedure (learning of fuzzy sets)

is a simple heuristic. For details, see (Nauck and Kruse, 1999). Initial fuzzy partitions

for input and output variables, type of membership functions, t-norm and t-conorm

operators, defuzzification procedure, initialization parameters and learning restrictions

are given to the system by user.

2.4 Model Comparisons

Comparative statistics and error metrics are used to assess the accuracy of the mod-

els build using relationships in data. These metrics also allow to make comparisons

between the models according to their prediction accuracies. These metrics are as

follows:

1. The product-moment correlation coefficient or Pearson’s correlation coefficient,

2. Root mean squared error (RMSE).

First metric provides statistical measures of the strength of the relationship between

the target output and predicted output. Second metric measures the amount by which
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predicted output differs from the target output.

The product-moment correlation coefficient or Pearson’s correlation coefficient mea-

sures the association or correlation between two variables. To calculate product-

moment correlation coefficient, data must be measured on an interval or ratio scale. It

is also assumed that both variables have come from normally distributed populations

and they have a linear relationship (McGrew and Monroe, 2000). The product-moment

correlation coefficient for two variables x1 and x2 is calculated by following equation:

r =
[
∑

(x1 − x̄1)(x2 − x̄2)] /N

Sx1 ∗ Sx2

(2.2)

where r is the product-moment correlation coefficient or Pearson’s correlation coeffi-

cient, x̄1, x̄2 are the mean of variables x1 and x2, N is the number of paired data

values and Sx1 and Sx2 are the standard deviations of x1 and x2. r values can vary be-

tween −1.0 and 1.0 with 0.0 indicating no association, 1.0 and −1.0 indicating perfect

positive and negative relationships, respectively.

RMSE is computed by taking square root of average of the squared differences

between each computed value (x̂i) and its corresponding correct value (xi). Root

mean squared error formula is given below:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(xi − x̂i)2 (2.3)

22



CHAPTER 3

BUILDING FUZZY MODELS

A fuzzy model is a set of fuzzy if-then rules that maps inputs to outputs. A fuzzy

if-then rule describe relationships between variables such as

If the precipitation is high then the landslide risk will be high. (3.1)

This rule establishes logical relation between variables by relating qualitative value of

the input variable (precipitation is high) to qualitative value of the output variable

(landslide risk will be high). The qualitative values, such as in the above example

are called linguistic terms or linguistic values. The symbolic knowledge is used to

summarize information about a phenomenon and to express concepts and knowledge

in a clear linguistic interpretation, whereas numerical data is used for processing.

A fuzzy model integrates numerical data and symbolic knowledge into one common

framework by means of linguistic variables (Babuška, 1998; Mendel, 1995).

Fuzzy models can be created from expert knowledge by translating linguistic in-

formation obtained from human experts into fuzzy rules. Then, parameters of the

fuzzy model (membership functions, weights of rules, etc.) can be fine tuned using

available input-output data (Babuška, 1998). However, no standard method exists for

transforming experts’ knowledge into fuzzy rules (Jang, 1993; Yen and Langari, 1999;

Yanar, 2003). Moreover, expert knowledge is not sufficient to define complex partially

unknown systems satisfactorily (Guillaume and Charnomordic, 2004). In such cases,

fuzzy models can be constructed by using numerical data (Jang, 1993; Guillaume and

Charnomordic, 2004; Yen and Wang, 1998; Emami et al., 1998; Wang and Mendel,

1992; Shi and Mizumoto, 2000; Chen and Linkens, 2004; Jin, 2000; Nauck and Kruse,

1999; Guély et al., 1999).

In this study, clustering is used in learning fuzzy rules from data. In fuzzy clus-

tering, space partitioning is derived from data partitioning and rules are associated
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to each clusters. To completely define rules, clustering is applied in the Cartesian

product-space of inputs and outputs where premise part of a fuzzy if-then rule cor-

responds to the input part and consequent corresponds to the output part (Babuška,

1998; Guillaume, 2001; Sugeno and Yasukawa, 1993). To find the optimum number of

clusters fuzzy cluster validation indices are used.

The remainder of this chapter is organized as follows. In the first section, brief

information about the related work done in this area is given. The detailed information

about the clustering analysis of mean annual precipitation data are given in the second

section. The results of the clustering analysis and discussion on these results are given

in the third section. Information about the fuzzy model construction using results

of the fuzzy clustering algorithms is given in the forth section. In the next section,

performances of the constructed fuzzy models are given. Discussions are provided in

the last section.

3.1 Related Work

The most remarkable step during a fuzzy modeling procedure is to detect the un-

derlying data structure and to transform it into a collection of fuzzy rules (Delgado

et al., 1996; Sugeno and Yasukawa, 1993; Yoshinari et al., 1993; Pedrycz, 2005). For

data-driven fuzzy modeling, there are three kinds of methods:

The first kind partitions each variable domain into a given number of intervals

without considering any physical meaning and distribution in data. In the grid par-

titioning approach all possible combinations of the fuzzy sets are used during rule

generation. For example, a Mamdani type fuzzy model with five variables (four input

variables and an output) and three membership functions on each variable would result

in 35 = 243 fuzzy rules. Ruspini-type partition (Ruspini, 1970) arranges membership

functions such that the sum of the membership degrees equal to one. These techniques

create interpretable fuzzy rules and the rule base generation is easy. However, these

techniques suffer from the curse of dimensionality problem.

The second kind tries to gather data into homogeneous groups to create rules

where a rule is associated to each group. The clustering technique can be hard or

fuzzy. In hard or crisp clustering algorithm each pattern belongs to a single specific

cluster. For example, the Isodata (k-means or c-means) is one of the most famous and
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well-known algorithm of this type (Duda et al., 2001). A fuzzy clustering algorithm

assigns a pattern to a specific cluster up to a certain degree. Different fuzzy clustering

techniques have been used to drive fuzzy models from data (Chiu, 1994; Wong and

Chen, 1999; Yao et al., 2000; Angelov, 2004; Panella and Gallo, 2005). The fuzzy

c-means or fuzzy k-means (Dunn, 1973) is the most widely used clustering approach

in fuzzy modeling. Together with fuzzy c-means, the Gustafson-Kessel (Gustafson

and Kessel, 1978) and Gath-Geva (Gath and Geva, 1989) clustering algorithms are

also used in fuzzy modeling (Ansari et al., 2009; Nayak and Sudheer, 2008; Vernieuwe

et al., 2006, 2007). The fuzzy c-means (FCM), Gustafson-Kessel (GK) and Gath-Geva

(GG) clustering algorithms are based on a cost function optimization technique. All

these clustering algorithms are derived by minimizing a cost function of the form

Jm(Q, U) =
N

∑

i=1

c
∑

j=1

uj(xi)
m ∗ d(xi, qj) (3.2)

with respect to Q and U , subject to the constraints
c

∑

j=1

uj(xi) = 1, i = 1 . . . N (3.3)

where

uj(xi) ∈ [0, 1], i = 1 . . . N, j = 1 . . . c (3.4)

0 <
N

∑

i=1

uj(xi) < N, j = 1 . . . c (3.5)

and Q = [q1, q2, . . . , qc], qi ∈ <n is a matrix of cluster prototypes (centers), U is N ∗ c

matrix whose (i, j) element equals uj(xi) the membership degree of data vector x

to cluster Qj and U is called a fuzzy partition matrix, d(xi, Qj) is a dissimilarity

measure between data vector xi and cluster center qj . The exponent m ∈ [1,∞),

called fuzzifier, is a weighting exponent which determines the fuzziness of the resulting

clusters. Commonly, the fuzzifier is chosen as m = 2 (Babuška, 1998; Vernieuwe et al.,

2006) and this value is used in the experiments. To obtain estimates for U and Q,

these clustering algorithms employ an iterative algorithm which its outline is shown in

Algorithm 1.

As the termination criterion, a tolerance value epsilon may be chosen for the max-

imal difference between partition matrices of the previous and the current iteration.

If the difference between the partition matrices
∥

∥U (t) − U (t−1)
∥

∥ < ε, then the itera-

tion ends. The difference between these clustering techniques is in the use of different
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Algorithm 1 Generalized Fuzzy Clustering Algorithmic Scheme (adapted from (Duda

et al., 2001))
Require: The data set X, number of clusters 1 < c < N , fuzziness m > 1 and

termination tolerance ε > 0.

1: Initialize partition matrix, U (0)

2: t = 0

3: repeat

4: Compute cluster prototypes, q
(t)
i

5: Compute dissimilarity measure between data points xi and cluster centers qj

6: Update partition matrix, U (t)

7: t = t + 1

8: until a termination criterion is met

dissimilarity measures. While the FCM uses Euclidean distance, GK clustering al-

gorithm uses covariance matrices for the calculation of the distance between cluster

centers and data points. Therefore, GK algorithm uses an adaptive distance norm to

detect clusters of different geometrical shapes (Gustafson and Kessel, 1978). Contrary

to the GK algorithm, GG algorithm uses cluster covariance matrix in conjunction with

an “exponential” distance.

The FCM algorithm is suitable for recovering well-separated, compact clusters and

it imposes a circular shape. The FCM depends on the initialization of the iteration

(Tsekouras, 2007; Abonyi and Feil, 2007) and it is sensitive to the scaling (normaliza-

tion) of data. The GK algorithm can detect clusters with different geometrical shapes

in data as it can adapt the distance norm to the underlying distribution of data. It

can recover clusters with ellipsoidal shape, but it cannot reflect the different size of the

clusters (Abonyi and Feil, 2007). As the FCM algorithm, resulting clusters obtained

by the GK algorithm can be significantly changed by different initial states. The GK

algorithm is not so sensitive to the normalization of data as it is based on an adap-

tive distance measure (Babuška, 1998). The GG algorithm is able to detect clusters of

varying shapes and varying volumes as contrary to the GK algorithm (Babuška, 1998).

However, it is very sensitive to the initial conditions due to the exponential distance

measure (Babuška, 1998; Abonyi and Feil, 2007).

The third kind is based on ad hoc data-driven methods (Wang and Mendel, 1992;
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Casillas et al., 2002; Nozaki et al., 1997; Higgins and Goodman, 1994). These are

the efficient and simple methods. They are easily understandable, implementable and

suitable to be used as a first stage of modeling process because they are very fast,

computationally inexpensive algorithms. They can be used if data contains numeric

and non-numeric attributes and if the data contains missing values. One of the most

widely used methods is the Wang and Mendel’s method (Wang and Mendel, 1992).

In this method, all variables are partitioned by equidistant overlapping triangular

or trapezoidal membership functions. Rules are generated by using these partitions

and input-output data pairs. Each rule is assigned a weight to solve conflicts among

the generated rules. This method is designed to create fuzzy systems for function

approximation.

Fuzzy clustering has been used in many different GIS problems. For instance, Tüt-

mez (2009) used FCM algorithm to initially create structure of a neuro-fuzzy system

then after learning of the neuro-fuzzy inference system is done, it is used for estimation

of mineral resource parameters such as grade and thickness. Tütmez et al. (2007) also

employed possibilistic fuzzy clustering algorithm in fuzzy modeling for reserve estima-

tion. Xiong et al. (2001) used a first order Takagi-Sugeno fuzzy model combined with

FCM clustering algorithm for flood forecasting, Chang and Chang (2001) used sub-

tractive clustering while developing reservoir operation model, Hong et al. (2002) used

the GK algorithm in forecasting ground water levels, Ansari et al. (2009) employed

GG algorithm to create a non-subjective seismic catalog of Iran for helping in better

seismological interpretations and seismic zoning. Nayak and Sudheer (2008) analyzed

the relative performance of two clustering techniques, i.e., the GK and subtractive

clustering in reservoir inflow forecasting. Vernieuwe et al. (2006) used different clus-

tering algorithms (FCM, GK, GG, simplified GK, simplified GG, modified GG and

subtractive clustering) to identify Takagi-Sugeno models for unsaturated groundwater

flow. Then, they compared the complexity and accuracy by using this hydrological

case study. Similarly, a comparison of clustering techniques can be found in (Vernieuwe

et al., 2007) and (Agarwal et al., 2005).
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3.2 Clustering Analysis of the Mean Annual Precipitation

Data

FCM, GK and GG clustering algorithms are used to construct fuzzy models from

data. To completely define rules, clustering is applied in the Cartesian product space of

inputs and outputs. Before fuzzy clustering can be applied, the number of clusters must

be specified. Partition coefficient, fuzzy hypervolume and partition density cluster

validity indices are used to determine an appropriate number of clusters in the data set.

The partition coefficient (PC) measures the amount of overlapping between clusters.

The index is defined as (Bezdek, 1981)

VPC =
1

N

N
∑

i=1

c
∑

j=1

(uj(xi))
2 (3.6)

where uj(xi) is the membership of data point i in cluster j. The index values range

in [1/c, 1] where c is the number of clusters. The optimal number of clusters is at the

maximum value. Gath and Geva (1989) proposed the fuzzy hypervolume (FHV) and

the partition density (PD) indices. The FHV is defined by

VFHV =

c
∑

i=1

[det(Fi)]
2 (3.7)

where the matrix Fi denotes the fuzzy covariance matrix of cluster i. A good fuzzy

partition is indicated by small values of VFHV . The PD is defined as

VPD =

∑c
i=1 Si

VFHV
(3.8)

where Si is the sum of membership degrees of data that are within a pre-specified

region around cluster centroid. Large values of VPD indicate good partitions.

The range of the number of clusters is selected as cmin = 2 and cmax = 16. Then,

cluster validity analysis are performed by running the fuzzy cluster algorithms for

different values of c in the range [cmin, cmax]. Furthermore, clustering is performed

20 times for each c with a different initialization, since these clustering algorithms

are sensitive to the initialization. Clustering is performed with the Fuzzy Clustering

and Data Analysis Toolbox (Balasko et al., 2005) which is a collection of MATLAB R©

functions. For cluster validity indices FHV and PD, MATLAB R© functions are written.

FCM is initialized randomly (Table 3.1). For GK clustering algorithm, two ap-

proaches are applied. First, GK is initialized randomly (this procedure is named as
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Table 3.1: Initialization methods applied to clustering algorithms.

Clustering algorithm Initialization method Abbreviation of

the algorithm

Fuzzy c-means Random FCM1

Gustafson-Kessel Random GK1

Gustafson-Kessel Fuzzy c-means GK2

Gath-Geva Gustafson-Kessel GG3

GK1). Second, the results of the FCM are used to initialize GK (GK2). The ini-

tialization of GG clustering is done with GK, since GG is very sensitive to initial

solution.

The data scale may have an influence on the performance of the clustering algo-

rithms (Babuška, 1998; Vernieuwe et al., 2006). Moreover, according to Sudheer et al.

(2003) the performance of soft computing-based models can be improved by following

the guidelines which are used in traditional statistical modeling. In the previous chap-

ter it is noticed that variables related with the annual precipitation are not normally

distributed. Therefore, Box-Cox power transformations (Box and Cox, 1964) are ap-

plied to the data. Box-Cox power transformation transforms non-normally distributed

data to a set of data that has approximately normal distribution. The transformation

is defined as

x∗ =







xλ−1
λ ifλ 6= 0

ln (x) ifλ = 0
(3.9)

with x is the data and λ is a scalar called power parameter. Power parameters used

in the transformations are listed in Table 3.2. After Box-Cox transformations the

variables are scaled to fall between 0 and 1. Hence, two training data sets namely

original and processed set are used.

Errors on original data set for linear regression and geographically weighted regres-

sion are given in Section 2.3.1. On processed data set, errors associated with these

methods are as follows: For linear regression, the RMSE is calculated as 208.79 mm

for the training data and 226.53 mm for the test data. For geographically weighted

regression, the RMSE is calculated as 255.77 mm for the training data.
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Table 3.2: Power parameters for training and testing data. λ values that maximize

the logarithm of the likelihood function are calculated for training and testing data

respectively.

Variable λ values for training data λ values for testing data

Longitude 0.07475000 -0.24143750

Latitude -1.25018750 2.80850000

Altitude 0.43081250 0.28187500

SdGrid 0.47031250 0.25187500

Precipitation -0.53293750 -0.68568750

3.3 Clustering Analysis Results and Discussion

The cluster validity indices for the clusters obtained by FCM, GK and GG clustering

algorithms for original and processed data sets are given in Figure 3.1, Figure 3.2,

Figure 3.3 and Figure 3.4. Note that for each cluster c, clustering is performed 20

times with different initial conditions. In these figures in addition to the mean values

minimum and maximum values for each cluster are also provided.

The PC value for FCM clustering in Figure 3.1 is, in this case, monotonic for both

data sets and choosing appropriate cluster count was not possible using only PC value.

Actually, the main drawback of PC is its monotonic decreasing behavior with c and

the lack of direct connection with data (Abonyi and Feil, 2007; Tsekouras, 2007).

The FHV index value decreases suddenly at c = 6. Although it seems the FHV

index has local minima at 6 clusters, as the number of cluster increases FHV values

decreases for both training data sets. The minimum value is at c = 16.

The PD index is also monotonic for this case. While PD index values gradually

increases after c = 11 for original data set, for processed data set this value is c = 5.

The maximum value is at c = 16 for both data sets.

Although PC index monotonically decreases with increasing number of clusters,

PC index values for GK1, GK2 and GG3 initially decreases up to a point (8 clusters

for GK1 and GK2, 4 clusters for GG3) and then increases. PC index value for GG3

reaches to almost its theoretical maximum value at c = 16. Also, note that index value

for GG3 for both data sets, maximum increase in index values is at c = 5.
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Figure 3.1: Plots of the minimum, mean and maximum values of the validity indices

for clusters detected by FCM1 (a) original data, (b) processed data.

The FHV index decreases monotonically for three of the clustering algorithms GK1,

GK2 and GG3. The minimum and maximum values of FHV index for these algorithms

are closer than in the FCM1 case. The minimum values are at c = 16.

The PD increases monotonically for GK1, GK2 and GG3. As in the FHV index,

the differences between minimum and maximum values are lower than the FCM1 case.

The maximum values are at c = 16.

For both training data sets, as cluster count increases validity indices indicate better

clustering. Cluster validity indices measured for processed data behave similar to the

validity indices of original data. Sudden increases or decreases are at the same cluster

counts. On the other hand, the differences between minimum and maximum values

of the validity indices are lower than that of the original data. Clustering algorithms

become more stable when transformed data are used.
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Figure 3.2: Plots of the minimum, mean and maximum values of the validity indices

for clusters detected by GK1 (a) original data, (b) processed data.

3.4 Construction of Fuzzy Models

FCM, GK and GG clustering algorithms are applied on the original and processed

training data sets. After obtaining fuzzy partitions from the input-output product

space clustering, fuzzy rule-based models are constructed from these partitions. Each

partition (cluster) obtained by product space clustering of the training data is associ-

ated with a multidimensional membership functions as shown in Figure 3.5.

In order to obtain one-dimensional membership functions, the clusters are projected

onto the variable axes. The center of a membership function is the cluster center and

width of the membership function is computed using fuzzy partition matrix for FCM

algorithm or using fuzzy covariance matrix for GK and GG clustering algorithms. The

resulting fuzzy sets are usually difficult to interpret (Guillaume, 2001; Babuška, 1998;

Abonyi and Feil, 2007; Tsekouras, 2007). Rules of the fuzzy models are associated to

each cluster. Membership functions of variables “altitude” and “precipitation” for a
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Figure 3.3: Plots of the minimum, mean and maximum values of the validity indices

for clusters detected by GK2 (a) original data, (b) processed data.

fuzzy model constructed from data is given in Figure 3.6.

3.5 Fuzzy Models

Fuzzy models are created for all iterations. In order to compare performance of fuzzy

models, RMSE and the product moment correlation coefficient values are calculated.

The results are illustrated in Figure 3.7, Figure 3.8, Figure 3.9 and Figure 3.10.

Although, cluster validity indices indicate better clustering for increasing number

of clusters, the RMSE and the product moment correlation coefficient values for fuzzy

models created using original data set do not support this outcome. Surprisingly,

increase in the cluster count (increase in complexity) also increases error and reduces

correlation between predicted and the original data values. On the other hand, as

cluster validity indices suggested increasing the number of clusters decreases error

obtained from the fuzzy models constructed with the processed data set.
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Figure 3.4: Plots of the minimum, mean and maximum values of the validity indices

for clusters detected by GG3 (a) original data, (b) processed data.

The difference between upper and lower bounds of the error measures are listed in

Table 3.3. The subscript p refers to the results obtained with models identified on the

processed data set.

With increasing the number of clusters fuzzy clustering algorithms may provide

different solutions. The deviation between the different solutions is high when original

data set is used to create fuzzy models as oppose to the processed data set. Therefore,

transformations made on the original data set to produce processed data set improved

clustering results in two ways: it improves the performance of the fuzzy models ob-

tained from data and it provides clustering algorithms to be less affected from the

initialization. On the other hand, this conclusion is specific to the precipitation case

study and cannot be generalized to all other data sets.

For these reasons, fuzzy models constructed with processed data are used for further

analysis. In addition, cluster count is selected using, firstly cluster validity indices
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Figure 3.5: An example of multidimensional membership functions (adapted from

(Babuška, 1998)).
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Figure 3.6: An example of membership functions identified from original training data

set (a) membership functions for “altitude” variable, (b) membership functions for

“precipitation” variable.

and secondly using global error measures (RMSE and product moment correlation

coefficient values). If cluster validity indices impose a cluster count, then it is selected.

But if indices do not clearly specify a cluster count such as if they are monotonically

increasing or decreasing with c, then the global error measures are used to select

the cluster count. The selected cluster counts and their associated indices and error

measures are listed in Table 3.4. In Table 3.4, iteration numbers at which indices and

error measures are calculated are given.
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Table 3.3: The difference between upper and lower bounds of the error measures for

original and processed training data sets. The subscript p refers to the results obtained

with models identified on the processed data set.

RMSE Product moment

correlation coefficient

Algorithms Cluster Number Difference Cluster Number Difference

FCM1 15 76.1600 13 0.2385

FCM1p 16 52.4451 16 0.2879

GK1 16 437.5250 12 0.6222

GK1p 11 44.9843 11 0.2636

GK2 12 492.4061 13 0.6856

GK2p 15 20.0169 15 0.0991

GG3 12 439.6502 6 0.6520

GG3p 16 52.0668 16 0.3094

Table 3.4: Selected cluster counts and their associated indices and error measures for

training data. The subscript p refers to the results obtained with models identified on

the processed data set. PMCC refers to the product moment correlation coefficient.

Measures FCM1p GK1p GK2p GG3p

Cluster Count 16 14 14 14

Iteration 6 18 15 10

PC 0.3057 0.4870 0.4685 0.9876

FHV 0.84 ∗ 10−4 0.20 ∗ 10−4 0.21 ∗ 10−4 0.08 ∗ 10−4

PD 2.14 ∗ 106 0.91 ∗ 107 0.85 ∗ 107 2.33 ∗ 107

RMSE 199.5172 194.2788 194.8994 199.9073

PMCC 0.6914 0.7088 0.7022 0.7002
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Figure 3.7: Plots of the minimum, mean and maximum values of the error measures

for fuzzy models constructed using FCM1 (a) original data, (b) processed data. The

constructed fuzzy models use triangular type membership functions.
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Figure 3.8: Plots of the minimum, mean and maximum values of the error measures

for fuzzy models constructed using GK1 (a) original data, (b) processed data. The

constructed fuzzy models use triangular type membership functions.
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Figure 3.9: Plots of the minimum, mean and maximum values of the error measures

for fuzzy models constructed using GK2 (a) original data, (b) processed data. The

constructed fuzzy models use triangular type membership functions.
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Figure 3.10: Plots of the minimum, mean and maximum values of the error measures

for fuzzy models constructed using GG3 (a) original data, (b) processed data. The

constructed fuzzy models use triangular type membership functions.
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3.6 Discussion

Fuzzy models can be created from expert knowledge. However, when no experts are

available or expert knowledge is not sufficient to define complex partially unknown

systems fuzzy models can be constructed by using available data. For data-driven fuzzy

model construction fuzzy clustering algorithms are most widely used. Three of the

fuzzy clustering algorithms namely fuzzy c-means, Gustafson-Kessel and Gath-Geva

clustering algorithms are used. However, the implementation of all these clustering

algorithms suffers from three major problems:

1. Before fuzzy clustering can be applied, the number of clusters must be known

a priori. To resolve this problem either cluster validity indices or optimal fuzzy

clustering algorithms can be applied. According to the first approach, clustering

is applied in an iterative fashion. In each of the iteration, the complexity of the

model is increased by increasing cluster count (this also increases rule count) and

the goodness of the obtained partitions are measured by validity measures. This

iteration is repeated until a predefined criterion. Three of the cluster validity

indices partition coefficient, fuzzy hypervolume and partition density are used.

Unfortunately, none of the indices specify cluster count clearly. Wang and Zhang

(2007) conducted extensive comparisons on a large number of cluster validity

indices with fuzzy c-means clustering algorithm on a number of widely used

data sets and conclude that none of the tested cluster validity indices correctly

recognized optimal cluster count.

2. The fuzzy clustering algorithms are sensitive to the initialization. The result-

ing clusters obtained by fuzzy clustering algorithms (fuzzy c-means, Gustafson-

Kessel and Gath-Geva) can be significantly changed by different initial states.

For each of these fuzzy clustering algorithms, clustering is performed 20 times

for each cluster count with different initialization. Clustering results support

this statement. Performance of the obtained fuzzy models constructed by us-

ing identified clusters significantly changed by different initial states (Table 3.3).

Fortunately, when the processed data are used, which is produced by Box-Cox

power transformation to normality and then scaling is applied, the effect of ini-

tialization is lowered. Using the processed data in the fuzzy clustering process

39



makes fuzzy clustering algorithms more stable and performances of the fuzzy

models are also improved.

3. After obtaining fuzzy partitions from data partitioning, fuzzy rule based mod-

els are constructed from these partitions. However, the obtained fuzzy models

are usually difficult to interpret (Figure E.7, Figure E.9, Figure E.11 and Fig-

ure 4.11a). Obtained fuzzy models need further processing for interpretability.

After obtaining fuzzy models using available data, the accuracies of the fuzzy mod-

els are further increased by tuning membership function parameters using simulated

annealing. The details of the optimization of parameters of fuzzy models are given

in the next chapter. Moreover, while tuning parameters of the membership functions

interpretability is also enhanced by analyzing fuzzy sets and rules in the fuzzy models.

The details of the proposed approach are given in Chapter 5.
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CHAPTER 4

FUZZY MODEL TUNING

Fuzzy systems based on fuzzy if-then rules are being used successfully for modeling

of nonlinear, uncertain and complex systems. Fuzzy rules can be obtained from ex-

perts’ knowledge. However, there is no standard method available for transforming

experts’ knowledge into the database of fuzzy systems (Jang, 1993; Yen and Lan-

gari, 1999; Yanar, 2003). In addition, expert rules are not sufficient to define complex

partially unknown systems satisfactorily (Guillaume and Charnomordic, 2004). There-

fore, various methods have been applied to fuzzy systems for automatically generating

and adjusting if-then rules (Jang, 1993; Guillaume and Charnomordic, 2004; Yen and

Wang, 1998; Emami et al., 1998; Wang and Mendel, 1992; Shi and Mizumoto, 2000;

Chen and Linkens, 2004; Jin, 2000; Nauck and Kruse, 1999; Guély et al., 1999).

Among the data driven, automatic fuzzy rule generation and tuning methods there

are local optimization methods such as gradient descent algorithm and global optimiza-

tion methods such as simulated annealing and genetic algorithms. Simulated annealing

is an iterative search method inspired by the annealing of metals (Kirkpatrick et al.,

1983; Cerny, 1985). It simulates the annealing of metal where annealing is a strategy to

find optimum state by controlling the temperature. The technique starts with heating

a metal to a temperature near its melting point and then the metal is cooled slowly by

keeping at each stage temperature in sufficient duration. The method of controlling

the temperature decrease leads to a stable crystallized solid state which corresponds to

an obsolete minimum of energy. Simulated annealing introduces a control parameter,

temperature, in optimization and searches for global optimum by gradually decreas-

ing the temperature similar to real annealing technique. Simulated annealing has two

advantages over gradient descent algorithms: simulated annealing is able to find the

global minimum of the function under certain conditions (Aarts and Laarhoven, 1985;

Hajek, 1988; Hajek and Sasaki, 1989; Kan and Timmer, 1987a,b) and it can handle
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any cost function. However its convergence speed is low unlike gradient descent. More-

over, since gradient descent based algorithms use derivatives they are mostly applied

to Sugeno (Takagi and Sugeno, 1985) type fuzzy systems. These models are not as

interpretable as Mamdani (Mamdani and Assilian, 1975) type fuzzy models since they

use rules with linear models as consequents. For learning and tuning of fuzzy mod-

els global optimization methods such as simulated annealing (Mohamadi et al., 2008;

Ghazanfari et al., 2007; Cordón et al., 2000; Liu and Yang, 2000; Cheng and Chen,

1997) and genetic algorithms (Antonelli et al., 2009; Marquez et al., 2007; Cordón and

Herrera, 2001; Cordón et al., 2001; Roubos and Setnes, 2001; Setnes and Roubos, 2000)

are also used. On the other hand, simulated annealing convergence has been demon-

strated under more general assumptions than genetic algorithm (Aarts and Laarhoven,

1985) and genetic algorithm convergence depends on the way of coding parameters into

genes.

In this study, simulated annealing algorithm was used to fine-tune Mamdani type

fuzzy models which were constructed by using fuzzy clustering approach presented in

the previous chapter.

The remaining of this chapter is organized as follows. In the first section, brief

information on the related work done in this area is given. The detailed information

about the proposed algorithm for Mamdani type fuzzy model tuning using simulated

annealing is given in the second section. In the third section, the results of the tuning

process are given. Discussions are provided in the last section.

4.1 Related Work

Simulated annealing (SA) is considered as a metaheuristic. It does not guarantee

finding an optimal solution. However, under certain constraints (Aarts and Laarhoven,

1985; Hajek, 1988; Hajek and Sasaki, 1989; Kan and Timmer, 1987a,b) SA probably

converges towards a global optimum (Dreo et al., 2006). The SA algorithm is given in

Algorithm 2.

SA starts with an initial solution at high temperature. Initial solution can be a

randomly selected point within the search space of all the possible solutions. Cur-

rent solution in search space is evaluated by an objective function. Objective function

(evaluation function) measures the energy of the current solution (in the algorithm
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Algorithm 2 Simulated Annealing Algorithm
Require: The initial temperature T0 and an initial solution X.

1: repeat

2: repeat

3: Generate a new solution Y , near to X

4: if E(Y ) < E(X) then

5: Accept new solution, X = Y

6: else if MetropolisAcceptance(E(Y ), E(X), Tk) == true then {use Metropo-

lis Acceptance Rule (Algorithm 3) for decision}

7: Accept new solution, X = Y

8: end if

9: until temperature stage length is reached

10: Reduce the temperature, Tk+1 = α ∗ Tk

11: until Tk+1 ≥ Tfinal

energy of the solution is indicated by E()). New solution near to the current solution

is selected from the search space using disturbance mechanism. If energy of the newly

selected solution is less than the current solution, then newly selected solution is ac-

cepted as the current solution. On the contrary, if energy of the newly selected solution

is higher than the energy of the current solution, SA does not automatically reject new

candidate solution. Instead, it uses Metropolis Acceptance Criterion (Metropolis et al.,

1953). Metropolis Acceptance Criterion will accept the new solution on a probabilistic

basis. Bad moves in the search space are accepted with probability p(T ).

p(T ) = e−∆E/T (4.1)

∆E is the change in energy and T defines the temperature of the current configuration.

Metropolis acceptance rule is given in Algorithm 3. According to the algorithm, change

in the energy, ∆E, is calculated using the current and new solution. A real number

is randomly selected from the interval [0, 1]. New solution is accepted if the randomly

selected number is lower than p(T ). At high temperature probability of accepting bad

configurations p(T ) is high, close to 1, therefore most of the moves are accepted. At

low temperature, p(T ) is low, close to 0, majority of the bad moves are rejected.

At each temperature SA performs selected number of iterations (i.e., temperature
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Algorithm 3 Metropolis Acceptance Rule
Require: The energy of the new solution Enew, the energy of the current solution

Ecur and the current temperature T .

1: Calculate change in energy, ∆E = Enew − Ecur

2: Calculate acceptance probability, p(T ) = e−∆E/T

3: if Random(0, 1) < p(T ) then

4: return true {accept solution}

5: end if

6: return false {reject solution}

stage length) to allow the algorithm to settle into a balanced state. Then, the tem-

perature is reduced according to the selected cooling schedule. Annealing process is

repeated until the current temperature reaches the final temperature as in the Al-

gorithm 2 or any termination criteria have been met. For example, three successive

temperature stages without any acceptance or a time limit for the execution of the

algorithm may also be stopping criterion.

Guély et al. (1999) use SA to optimize the membership functions of Takagi-Sugeno

rules with constant output functions. The membership functions in this study are sym-

metric triangular membership functions. Therefore, the optimization problem consists

of tuning the parameters of symmetric triangular membership functions (center and

width) and the constant value for output. They compare SA results with gradient

descent optimization results and state that SA enables to obtain better results when

the number of membership functions and rules is as small as possible.

Chen and Linkens (2004) propose a hybrid fuzzy modeling approach using a self

organizing map and SA for self constructing and optimizing Takagi-Sugeno type fuzzy

rule-based models. The fuzzy rule-based model is generated by a self-organizing map

(SOM) and the parameters of the membership functions (parameter learning) are

performed with SA. Similarly, Liu and Yang (2000) use SA for learning parameters of

Takagi-Sugeno fuzzy model. In their work, the structure of the fuzzy model and the

initial membership function parameters are given.

Cheng and Chen (1997) combine fuzzy sets and SA in processing image brightness

values. They represent brightness of gray levels in an image by S-type membership
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Figure 4.1: Workflow of prototype software, SAFGIS.

function and try to find an optimum or near optimum parameters for each gray level

in the image. Mohamadi et al. (2008) use SA for constructing a fuzzy classification

system and compare the approach with several well-known classification algorithms.

Youssef et al. (2001) compare general iterative algorithms namely genetic algorithms,

simulated annealing and tabu search on the same optimization problem and compare

these techniques with respect to 1) quality of the best solution identified, 2) progress

of the search from initial solutions to the end, 3) time (iteration count) needed to find

best solution, and 4) the number solutions found at successive iterations.

4.2 Fuzzy Software Prototype

Prototype software, SAFGIS (Simulated Annealing Fuzzy Geographic Information Sys-

tems), is implemented for the interpretability oriented data-driven fuzzy modeling ap-

proach, which is presented throughout the thesis. SAFGIS can optimize a fuzzy model

using adapted SA algorithm, whose details are given in Section 4.3, and generate com-

pact and interpretable fuzzy model using simplification algorithm presented in Section

5.2. The general workflow of the software is shown in Figure 4.1.

An initial fuzzy model, a parameter file, training and test data files are given as

inputs to the software. Initial fuzzy model generation from data is given in the previous

chapter. SAFGIS is loosely coupled with MATLAB R© and accepts initial fuzzy model in

MATLAB R© FIS file format, which has .fis suffix. Parameter file is an XML (eXtensible

Markup Language) file and defines initial fuzzy model, training and test data file paths,

user preferences and thresholds for adapted SA algorithm and simplification algorithm.
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Figure 4.2: SAFGIS graphical user interface. (a) Files required for execution, initial

fuzzy model file, training and test data files, (b) thresholds used in the adapted SA

algorithm, and (c) thresholds used in the simplification algorithm.

SAFGIS has two operation modes; it can be run from command prompt or can be run

as Windows R© application. In command prompt mode, the usage of SAFGIS software

is defined as follows:

SAFGIS parameter_file_name (4.2)

In this mode, the software takes one parameter. The parameter defines name and

full path of the parameter file. In Windows R© application mode, when the software is

started, graphical user interface (GUI) shown in Figure 4.2 is opened. User can enter

initial fuzzy model, training and test data files and thresholds for adapted SA algorithm

and simplification algorithm. Therefore, in this mode, there is no need to prepare

parameter file manually, parameter file can be prepared using GUI. After specifying

parameters using GUI in Windows R© application mode or by parameter file in command

prompt mode, running the software generates accurate and interpretable fuzzy model

using adapted SA algorithm (given in Section 4.3), simplification algorithm (given in

Section 5.2) and the given thresholds.
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Accuracy and interpretability are two conflicting objectives. User can control the

balance using the parameters. When the software finishes its execution, generated

fuzzy model in FIS file format, final membership functions in GNU file format, outputs

calculated for training and test data files, optionally a log file, which contains informa-

tion about execution, other optional intermediate fuzzy model files and membership

function files are written in a newly generated folder. SAFGIS is also integrated with

GNUPLOT software and generates membership function plots in GNU file format.

SAFGIS software is implemented using Microsoft Visual C# 2005 c© and Microsoft

.NET Framework Version 2.0.50727 SP2 c©. It has three modules; one module is for

making inferences from a fuzzy model, second module is for optimization of fuzzy

model using adapted SA algorithm which is presented in the next section and the

other module is for simplifying fuzzy model using simplification methods described in

Section 5.2.

4.3 Parameter Tuning Using Simulated Annealing

Mamdani type fuzzy models were constructed from input and output data using fuzzy

clustering approach. FCM, GK and GG clustering algorithms were employed on the

training data. After obtaining fuzzy partitions from input-output product space clus-

tering, Mamdani type fuzzy rule-based models were generated from these partitions.

And, a fuzzy model was selected for each fuzzy clustering algorithm (FCM1, GK1,

GK2 and GG3) for further analysis. The details of this approach are given in the

previous chapter. The accuracy of constructed fuzzy models was increased by tuning

parameters using SA. Each rule in Mamdani fuzzy models has the following properties:

Ri :



















If VLongitude is mfi1 and VLatitude is mfi2 and

VAltitude is mfi3 and VSdGrid is mfi4

then VRainfall is mfi5

(4.3)

where VLongitude, VLatitude, VAltitude and VSdGrid define values for each variable, mfij

is the membership function of the ith rule associated with jth variable. Triangular

membership functions were used in the fuzzy models and three parameters (a, b, c) were
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Table 4.1: Properties of initial solutions (fuzzy models).

Name Rule Count Parameter Count Training Error Test Error

FCM1p 16 240 199.5172 235.0664

GK1p 14 210 194.2788 232.5839

GK2p 14 210 194.8994 263.5563

GG3p 14 210 199.9073 245.9093

used to define membership functions. Triangular membership functions are defined as

triangle(x : a, b, c) =































0 x < a

(x − a)/(b − a) a ≤ x ≤ b

(c − x)/(c − b) b ≤ x ≤ c

0 x > c

(4.4)

The parameters a and c locate the “feet” of the triangle and the parameter b locates

the “peak”. Therefore, the optimization problem contains tuning of the parameters

aij , bij and cij .

Outline of the proposed approach for parameter tuning using SA is presented as

follows (Algorithm 4):

Initial Solution: SA starts with an initial solution which was obtained from fuzzy

clustering. Initial configuration which contains fuzzy if-then rules and initial member-

ship function parameters for Mamdani fuzzy model was automatically generated from

input-output data using fuzzy clustering approach. This structure learning method

provides a good starting point for SA. Properties of initial fuzzy models are given in

Table 4.1. All fuzzy models have four input variables and an output variable. FCM1p

contains 16 rules and has 240 parameters (i.e., 16× 5× 3), other fuzzy models contain

14 rules and has 210 parameters (i.e., 14 × 5 × 3).

Initial Temperature (Step 3): Initial temperature was calculated using the method

described by Wong and Liu (1986). According to the Metropolis rule of acceptance

SA accepts an energy rise (worse solution), h, with probability p(T ) given in Equation

4.1 where T is the current temperature. The initial temperature, T0, can be calculated

from mean energy rises, hmean, during the initialization. Before the start of the actual

SA algorithm, a number of moves (i.e., temperature stage length) in the neighborhood

of the initial rule base were made and created new solutions were evaluated using
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Algorithm 4 Adapted Simulated Annealing Algorithm for Fuzzy Model Tuning
Require: Initial fuzzy model FM0, initial probability of acceptance P0, the percentage

of transition parameter ξ, temperature update parameter α.

1: Set iteration count and iterations without improvement count to zero, k =

0, IWI = 0

2: Set initial solution as current and the best solution, Sbest = FM0, Scur = FM0

3: T0 = InitialTemperature(Scur, P0, ξ)

4: while ((k < 100)&(IWI < N)) do

5: Set accepted good moves count to zero, AGM = 0

6: Set move in temperature stage count to zero, MITS = 0

7: Set best improvement flag to false, BIF = false

8: while ((MITS < 500N)&(AGM < 32N)) do

9: Snew = DisturbanceMechanism(Scur, ξ, To, Tk)

10: if E(Snew) < E(Scur) then {good move}

11: Scur = Snew {Set new solution as current solution}

12: if E(Snew) < E(Sbest) then {best solution}

13: Sbest = Snew {Set new solution as best solution}

14: BIF = true

15: end if

16: AGM = AGM + 1

17: else if MetropolisAcceptance(E(Snew), E(Scur), Tk) == true then

18: Scur = Snew {bad move but accepted}

19: end if

20: MITS = MITS + 1

21: end while

22: Decrease temperature, Tk+1 = αTk {cooling procedure}

23: if BIF == false then

24: IWI = IWI + 1

25: else

26: IWI = 0

27: end if

28: k = k + 1

29: end while
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objective function. During the initialization, mean value of energy rises, hmean, was

calculated using the formula given by Equation 4.5.

hmean =
1

Mbad

Mbad
∑

i=1

∆Errorbad (4.5)

where ∆Errorbad defines the energy rise of a bad move and Mbad is the number of bad

moves made. Then, initial temperature T0 was calculated using the following formula.

The formula was derived from the Metropolis function.

T0 =
−hmean

In(P0)
(4.6)

Selecting the initial probability, P0, near to 1 allows SA to start with a high temper-

ature and accepting worse solutions with high probability. If the initial probability,

P0, is adjusted near to 0 then SA starts with a low temperature which accepts worse

solutions with low probability.

The initial solution was obtained from structure learning algorithms described in

the previous chapter and we did not want to alter this initial knowledge too much

therefore we wish to keep the initial probability, P0, of accepting worse solutions low

(Guély et al., 1999). Throughout the tuning process, P0 = 0.25 was used.

Objective Function: Output calculated from the tuned fuzzy model at current

temperature can be evaluated using RMSE. Therefore, the objective function was

minimizing the RMSE. Since, SA can use any cost function, any function measuring

error between calculated output and target values can be used. However, evaluation

function calculation must be direct and rapid to increase SA convergence speed and

to decrease CPU consumption.

Disturbance Mechanism (Step 9): Instead of modifying all the parameters of a fuzzy

model (i.e., 240 parameters for FCM1p and 210 parameters for the other models) for

selecting a new solution near to the current solution in the search space, only param-

eters associated with a randomly selected rule were modified. A rule was randomly

selected from the rule base. Then, parameters of membership functions associated with

this rule were modified. To update a parameter of a triangular membership function, a

change interval was introduced. Change interval defines allowable minimum and max-

imum percentage of transitions that can be made to each parameter (aij , bij , cij). At

each move, each parameter was updated proportional to the change rate randomly cho-

sen in the interval [−maxchangerate,+maxchangerate], where maxchangerate was
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calculated based on the current temperature. An update for a parameter is calculated

using a random value which is drawn between [−0.5, +0.5], percentage of transition

parameter, ξ, which is given by the user as an optimization parameter and the current

temperature as given in Equation 4.7.

τij = Random(−0.5, +0.5) ∗ ξ ∗
Tcurrent

Tinitial
(4.7)

where τij is the update calculated for jth membership function of ith variable. Then,

new parameter was calculated by adding update to the parameter.

anew
ij = acur

ij ∗ τij (4.8)

Updates for each parameter of a fuzzy set were calculated separately. Therefore,

transitions made to the parameters of a fuzzy set were not equal. At high temperatures

each parameter has wider allowable change interval. As the temperature decreases,

change in parameters decreases proportional to the temperature decrease.

Decrease of the Temperature (Step 22): The geometrical law of decrease Tk+1 =

αTk, where k defines temperature stage number and α is a constant between 0 and

1, was used to perform temperature decrease. Temperature update parameter was

chosen as α = 0.99.

Temperature Stage Length (Step 8): The number of iterations performed at each

temperature stage is called temperature stage length. Adaptive temperature stage

length was used in the analysis. Temperature stage was changed when one of the two

following conditions was satisfied:

1. 32 × N perturbations accepted

2. 500 × N perturbations attempted

N indicates the number of variables used. In mean annual precipitation problem

N = 5. After performing iterations at each temperature stage, temperature was

decreased according to the cooling strategy.

Termination of SA algorithm (Step 4): SA algorithm was terminated after N suc-

cessive temperature stages without any global improvement or the maximum number

of temperature stages was reached. The maximum number of temperature stages was

chosen as 100.

51



Table 4.2: Simulated annealing parameters used in the analysis.

Parameter Value Allowable Range

Initial probability of acceptance, P0 0.25 0 < P0 < 1

The percentage of transition parameter, ξ 0.10 0 < ξ ≤ 1

Temperature update parameter, α 0.99 0 < α < 1
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Figure 4.3: Training and testing errors after tuning fuzzy models.

4.4 Results

Fuzzy models learned from data were used as initial solution for SA algorithm to op-

timize. Optimization starts with the calculation of the initial error and the initial

temperature. To calculate initial temperature specified number of moves (i.e., tem-

perature stage length, 500 × N) was made and the mean value of energy rises was

estimated for each fuzzy models. Then, initial temperature T0 was calculated with the

selected initial probability, P0. Initial probability was chosen near to zero not to alter

initial solution too much. The percentage of transition parameter ξ for membership

functions was selected as 10%, temperature update coefficient was chosen as α = 0.99.

SA parameters used in the analysis are summarized in Table 4.2.

In the disturbance mechanism of the adapted SA algorithm, only parameters as-

sociated with a randomly chosen rule are modified. And the modifications on the
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Table 4.3: Properties of training errors obtained after tuning fuzzy models.

Fuzzy Min. Max. Mean Mean Mean (%) Standard

Model Difference Difference Deviation

FCM1p 74.8169 162.0107 114.0498 −85.4671 −42.84 24.9373

GK1p 85.1901 136.8754 109.3118 −84.9670 −43.73 13.5764

GK2p 78.7496 153.5968 118.7519 −76.1475 −39.07 20.4463

GG3p 86.7839 123.7203 107.1306 −92.7767 −46.41 11.4663

Table 4.4: Properties of testing errors obtained after tuning fuzzy models.

Fuzzy Min. Max. Mean Mean Mean (%) Standard

Model Difference Difference Deviation

FCM1p 202.9307 326.6135 254.8912 +19.8248 +8.43 31.3841

GK1p 215.5814 334.7319 281.8435 +49.2603 +21.18 27.6830

GK2p 258.6844 382.1230 297.8304 +34.7241 +13.17 29.0666

GG3p 217.5669 357.1768 285.3823 +39.4730 +16.05 36.0128

membership functions are based on randomly chosen rate in an interval which is cal-

culated using a given parameter and the current temperature. In addition to these

probabilistic behaviors, SA algorithm uses Metropolis Acceptance Criterion which ac-

cepts worse solutions on a probabilistic basis. Therefore, results obtained from the

algorithm may vary when the algorithm is executed several times with different seed

value. Seed values are used in the random number generation process. For this rea-

son, tuning of each initial fuzzy model was repeated 20 times with a different seed

value. Training and test data errors after tuning fuzzy models FCM1p, GK1p, GK2p

and GG3p are shown in Figure 4.3. Properties of training and test data errors are

listed in Table 4.3 and Table 4.4.

Besides the stochastic behavior of the algorithm, the deviations of error on training

data were low especially for GG3p and GK1p fuzzy models. Yet the algorithm must

be run several times before making a decision.

After the tuning process, error on training data reduced approximately 43%. On

the other hand, error on test data increased only about 15%. Even in some iterations

both training and test data errors decreased. For example, at the fourth iteration
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Figure 4.4: Residuals versus predicted precipitation for tuned fuzzy models (a) FCM1p,

(b) GK1p, (c) GK2p, (d) GG3p.

(Figure 4.3a) the adapted SA algorithm tuned FCM1p fuzzy model such that error on

training data is 90.9208 mm and error on test data is 214.4794 mm.

A tuned fuzzy model was selected for each tuning session (FCM1p, GK1p, GK2p

and GG3p) to analyze its residuals and visualize errors obtained for each meteorological

station on map. Selected tuned fuzzy models are:

• for FCM1p, fuzzy model obtained at the 4th iteration,

• for GK1p, fuzzy model obtained at the 11th iteration,

• for GK2p, fuzzy model obtained at the 18th iteration,

• for GG3p, fuzzy model obtained at the 10th iteration.

Selection was based on both training and test data errors; fuzzy model which minimized

the sum of training and test data errors most was selected. Residuals versus predicted

precipitation values are plotted on Figure 4.4.

The residuals are tested for autocorrelation using Durbin-Watson test. The Durbin-

Watson test statistics are 2.20 (FCM1p), 2.05 (GK1p), 2.35 (GK2p) and 2.12 (GG3p).

The Durbin-Watson test statistic for GK2p indicates low negative autocorrelation.
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Table 4.5: Moran’s I index measuring the spatial autocorrelation in residuals of tuned

fuzzy models.

Fuzzy Data Moran’s I Expected Z-Score In 5% signif-

model index value icance level

FCM1p Training Data 0.006819 -0.005587 1.318221 Random

FCM1p Testing Data -0.041939 -0.013699 -1.391968 Random

GK1p Training Data 0.015554 -0.005587 2.361172 Clustered

GK1p Testing Data -0.015849 -0.013699 -0.105874 Random

GK2p Training Data -0.015753 -0.005587 -1.084701 Random

GK2p Testing Data -0.024197 -0.013699 -0.536431 Random

GG3p Training Data 0.017959 -0.005587 2.675365 Clustered

GG3p Testing Data -0.034016 -0.013699 -1.002188 Random

For the other fuzzy models, test statistics indicate no autocorrelation. Moreover, the

degree of spatial autocorrelation in the residuals was measured using global Moran’s

I index and the results are listed in Table 4.5. No spatial autocorrelation should exist

in the residuals for a successful model. Only residuals of training data for GK1p and

GG3p show spatial autocorrelation (marked as “Clustered” in Table 4.5). Predictions

made by the selected tuned fuzzy models for meteorological stations are mapped in

Figure 4.5, Figure 4.6, Figure 4.7 and Figure 4.8.

Predictions of FCM1p (Figure 4.5) model for training data are accurate and there

are no remarkable errors. For test data, FCM1p fuzzy model underestimates precip-

itation on the northwestern Anatolia region especially the cities Zonguldak, Bartın

and Kastamonu. On the other hand, model overestimates precipitation remarkably

for the cities Aksaray, Tokat and Erzincan. Predictions of GK1p (Figure 4.6) model

for training data exhibit a considerable error for meteorological station located at Ulu-

dağ (peak). Most of the error on training data is due to the error for this station.

Actually, mean precipitation for this station is considerably higher than the mean pre-

cipitations of surrounding stations. In spite of this, prediction errors of FCM1p and

GK2p models for this station are low, 11.3 mm and 34.0 mm respectively. For the

test data, like FCM1p models GK1p fuzzy model underestimates precipitation on the

northwestern Anatolia region especially the cities Zonguldak, Bartın and Kastamonu
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and overestimates precipitation remarkably for the cities Konya, Aksaray and Erzin-

can. GK2p (Figure 4.7) model seems over fitted on training data, while prediction

error on training data is very low, error on test data is high. GK2p fuzzy model under-

estimates precipitation on the northwestern Anatolia region cities Zonguldak, Bartın,

Kastamonu and northeast Anatolian city Giresun. Moreover, the model considerably

overestimates precipitation for the cities Kütahya, Bilecik, Aksaray, Tokat, Erzincan,

Trabzon and Şanlıurfa. Prediction error for Trabzon Akçaabat meteorological station

is −1300 mm. Like the GK1p model, most of the error on training data for GG3p fuzzy

model (Figure 4.8) is due to error for meteorological station located at Uludağ (peak).

On the test data, GG3p model underestimates precipitation for the cities Zonguldak,

Bartın, Kastamonu and Giresun and overestimates precipitation for the cities Kütahya,

Aksaray and Erzincan.

Although prediction errors associated with the cities Zonguldak, Aksaray and Erz-

incan are high for all the models, these cities have few meteorological stations. For

example, there is only one meteorological station for Zonguldak and Aksaray and this

station is included in the test data set. For Erzincan, there are two meteorological

stations, one station is included in the training data set and the other is included in

the test data set by chance.
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Figure 4.5: Predictions of the tuned FCM1p fuzzy model. (a) Predictions of the tuned

FCM1p fuzzy model for training data. Training error is 90.9208 mm. (b) Predictions

of the tuned FCM1p fuzzy model for testing data. Testing error is 214.4794 mm.
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Figure 4.6: Predictions of the tuned GK1p fuzzy model. (a) Predictions of the tuned

GK1p fuzzy model for training data. Training error is 109.3242 mm. (b) Predictions

of the tuned GK1p fuzzy model for testing data. Testing error is 215.5814 mm.
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Figure 4.7: Predictions of the tuned GK2p fuzzy model. (a) Predictions of the tuned

GK2p fuzzy model for training data. Training error is 78.7496 mm. (b) Predictions of

the tuned GK2p fuzzy model for testing data. Testing error is 268.1016 mm.
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Figure 4.8: Predictions of the tuned GG3p fuzzy model. (a) Predictions of the tuned

GG3p fuzzy model for training data. Training error is 109.5233 mm. (b) Predictions

of the tuned GG3p fuzzy model for testing data. Testing error is 217.5669 mm.
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Figure 4.9: Predicted precipitation map for Turkey generated using the model FCM1p. Training error is 90.9208 mm and testing error is

214.4794 mm.
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Fuzzy models created and tuned using data-driven approach can be used not only

for data related with the meteorological stations but also for the whole Turkey. An

example of such precipitation prediction map (Figure 4.9) for Turkey is generated

using the FCM1p fuzzy model which is selected for the above residual analysis. The

precipitation values of all locations of Turkey in 1 km resolution are estimated using

the model. According to the prediction map, northeastern coast of Turkey (especially

the cities Trabzon, Rize and Artvin) has the highest precipitation values. As it is

moved away from the coast, precipitation decreases. Other wet cities and regions

are Giresun, Ordu, Central Black Sea region (Samsun and Sinop), West Black Sea

region (Bartın, Zonguldak and Sakarya), Kocaeli, İstanbul, Balıkesir (especially the

region among the borders of Manisa, Bursa and Kütahya), southwestern cost of Turkey

(Muğla and Antalya), Bingöl and Bitlis. In addition to these Çukurova region has also

high precipitation value and this region gets more rainfall than its surrounding region.

The central Anatolia has the least precipitation. Most or all parts of the cities in

this region (Afyon, Konya, Eskişehir, Ankara, Kırıkkale, Kırşehir, Aksaray, Nevşehir,

Niğde, Kayseri and Çorum) are the driest regions according to the prediction map.

Southeastern Anatolia has relatively higher precipitation than the central Anatolia.

Since the model is generated using data obtained from the meteorological stations

covering Turkey, the model is only valid for Turkey. Although the model is also used

to estimate the surrounding locations of Turkey, they may contain quite large errors.

On the other hand, models for any region of the earth can be generated using data

related with the region.

The average computing time was about 25 minutes (1477.183 seconds) on a note-

book which contains an Intel R© 1.83 GHz CoreTM Duo processor (T2400), 1 GB RAM

and Microsoft R© Windows R© Home Edition Version 2002 with Service Pack 3.

In addition to the fuzzy models tuned above, which are selected among the others

in Section 3.5, fuzzy models constructed with five clusters are also tuned. Same SA

parameters are used as in the previous tuning process. These parameters are given in

Table 4.2. Training and test errors after tuning fuzzy models are shown in Figure 4.10.

Properties of training and test data errors are listed in Table 4.6 and Table 4.7.

According to the results, training errors obtained after tuning fuzzy models which

are constructed with five clusters are approximately 37% worse. On the other hand,

testing errors obtained for the second tuning process (tuning of fuzzy models which

62



Table 4.6: Properties of training errors obtained after tuning fuzzy models which are

constructed with five clusters.

Fuzzy Min. Max. Mean Mean Mean (%) Standard

Model Difference Difference Deviation

FCM1p 137.0620 208.9881 187.8785 −72.8498 −27.94 14.6928

GK1p 124.4373 186.8453 162.7168 −88.9155 −35.34 18.5641

GK2p 129.1925 196.1799 160.7316 −90.9372 −36.13 17.2777

GG3p 115.5658 182.9143 162.3836 −92.7979 −36.37 21.1890

Table 4.7: Properties of testing errors obtained after tuning fuzzy models which are

constructed with five clusters.

Fuzzy Min. Max. Mean Mean Mean (%) Standard

Model Difference Difference Deviation

FCM1p 222.9331 319.2139 272.6508 −7.8922 −2.81 20.1023

GK1p 211.6637 316.0900 255.4841 −6.4650 −2.47 28.1635

GK2p 219.8441 309.2197 266.1297 +4.0828 +1.62 24.7084

GG3p 218.7518 378.9263 266.9077 −12.1857 −4.78 37.0660
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Figure 4.10: Training and testing errors after tuning fuzzy models which are con-

structed with five clusters.

are constructed with five clusters) are only approximately 6% better. The average

computing time for the second tuning process was about 8 minutes (484.72 seconds)

on the same configuration given above.

4.5 Discussion

The aim of this study was to introduce a simulated annealing algorithm for tuning

Mamdani type fuzzy models with triangular membership functions. The tuning of the

membership functions is a complex problem, because the cost function to be optimized

is not derivable everywhere and when the membership functions do not overlap it

is not continuous everywhere (Guély et al., 1999). Furthermore, the parameters to

optimize are numerous, in the mean annual precipitation case there were more than

200 parameters.

Simulated annealing is a general method, it is easy to understand and implement

and can use any cost function. Unlike gradient descent methods simulated annealing

can use any type of membership functions and it does not depend on fuzzy logic

operators, implication or defuzzification functions, etc.

Simulated annealing can be used to solve many combinatorial optimization prob-
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lems and some continuous variable problems (Bonomi and Lutton, 1984). Optimizing

the parameters of membership functions is a continuous variable problem. Therefore,

a specific method was needed for discretization of each parameter. In the disturbance

mechanism of the adapted simulated annealing algorithm, transitions of each param-

eter of triangular membership functions were calculated based on randomly chosen

rate in an interval which was calculated using a given parameter and the current tem-

perature. Moreover, instead of modifying all the parameters in a fuzzy model only

parameters associated with a randomly selected rule were modified. Therefore, the

tuning process was based on the selection of parameters of the rule that decrease the

overall cost function.

Simulated annealing involves many parameters such as initial temperature, the

rate of decrease of temperature, length of the temperature stages, termination criteria,

etc. Although there are some methods to obtain them, generally they depend on the

problem therefore finding appropriate simulated annealing parameters requires empir-

ical testing. Such an approach was used in Appendix D to find simulated annealing

parameters for fuzzy models which were built using Mackey-Glass time series data.

The second disadvantage of the simulated annealing is the computing time. The com-

puting time was decreased by adding a limit on iterations in a temperature stage. In

the adapted algorithm, the number of accepted perturbations was limited to 32 × N .

Interpretability of a fuzzy model was not considered while tuning a fuzzy model

using simulated annealing. In Figure 4.11a, membership functions of an initial fuzzy

model GG3p is shown and the tuned fuzzy model is given in Figure 4.11b. From both

figures, it is clear that the fuzzy models before and after the tuning process are not

interpretable. In the next chapter, an approach for enhancing interpretability of a

fuzzy model by analyzing fuzzy sets and rules in the fuzzy models while tuning is

introduced.
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Figure 4.11: Membership functions of fuzzy model GG3p before and after tuning. (a)

Membership functions of initial fuzzy model GG3p before tuning. (b) Membership

functions of fuzzy model after tuning process.
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CHAPTER 5

INTERPRETABILITY

ENHANCEMENT

Fuzzy models are able to perform nonlinear mappings between inputs and outputs, as

they are universal approximators (Kosko, 1994; Buckley, 1993). On the other hand,

fuzzy models are also able to handle linguistic knowledge. Due to the use of linguistic

knowledge fuzzy models are assumed to be interpretable. However, this assumption

is not true when data-driven fuzzy modeling methods are used to build fuzzy models

or adaptive learning methods are used to tune fuzzy models. One strength of fuzzy

models, interpretability, is lost with the use of automatic fuzzy rule generation and

tuning methods, since the primary objective of these methods is the highest possible

accuracy.

Model interpretability and accuracy are two conflicting modeling objectives, as

improving interpretability of fuzzy models generally degrades accuracy, and vice versa

(Zhou and Gan, 2008; Antonelli et al., 2010; Guillaume and Charnomordic, 2004; Paiva

and Dourado, 2004; Nauck and Kruse, 1999; Bersini and Bontempi, 1997; Mencar and

Fanelli, 2008; Mencar et al., 2007). There is a trade-off between model interpretability

and accuracy. An interpretable and accurate fuzzy model is expected to have high

interpretability and at the same time can provide as much accuracy as possible (Zhou

and Gan, 2008; de Oliveira, 1999; Ishibuchi and Nojima, 2007).

In the previous chapters, fuzzy models are initially created by clustering techniques,

and then constructed fuzzy models are tuned using simulated annealing. Structure

learning by means of clustering techniques and optimization lead to a set of membership

functions with a high degree of overlapping. Thus, the models are not interpretable.

Simplification methods based on similarity among the fuzzy sets are used to reduce the

number of fuzzy sets. In addition to decreasing the number of fuzzy sets, redundant
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and inconsistent rules are detected and eliminated. When the number of fuzzy sets

and the number of rules in a fuzzy model are decreased the interpretability of the

model is improved, since the complexity of a fuzzy model increases with the number of

fuzzy sets per linguistic variable and the number of rules. The aim is to obtain more

compact and interpretable fuzzy models while preserving accuracy of the models.

This chapter is organized as follows. In the first section, brief information on the

related work done in this area is given. The detailed information about the simplifi-

cation methods for Mamdani type fuzzy model is given in the second section. In the

third section, results of the application of the presented simplification method to mean

annual precipitation data are shown. Discussions are provided in the last section.

5.1 Related Work

The interpretability or transparency of fuzzy models excessively depends on human’s

prior knowledge (Furuhashi, 2002; Furuhashi and Suzuki, 2001; Zhou and Gan, 2008).

Although there are some formalized definitions for interpretability of fuzzy models

(Bodenhofer and Bauer, 2000, 2003; Riid, 2002; Riid et al., 2001), it is highly subjective

(Cordón and Herrera, 2003; Mikut et al., 2005). Furuhashi (2002) proposed low-level

and high-level interpretability concepts for fuzzy models. The low-level interpretability

of fuzzy models refers to interpretability achieved on fuzzy set level by optimizing

membership functions in terms of the semantic criteria on membership functions. The

high-level interpretability refers to interpretability of fuzzy models which is obtained

on fuzzy rule level by performing overall complexity reduction considering coverage,

completeness and consistency of the rules.

Some criteria for fuzzy set interpretability are (Mencar and Fanelli, 2008; Fu-

ruhashi, 2002; de Oliveira, 1999):

1. Normality, each membership function of a linguistic variable should be normal

such that there exist one data point in universe of discourse with full member-

ship. A normal membership function can represent a linguistic term with a clear

semantic meaning.

2. Moderate number of membership functions, the number of membership functions

in a linguistic variable should not be too high. Considering Miller (1956)’s work,
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a linguistic variable is suggested to contain 7 ± 2 membership functions for a

human to efficiently handle this linguistic variable.

3. Distinguishability, each membership function of a linguistic variable should be

distinct enough from each other to represent clear semantic meaning to avoid in-

consistencies and to reduce redundancy and complexity. Figure 4.11b shows an

example of indistinguishable membership functions. Disjoint membership func-

tions are maximum distinguishable. On the other hand, other interpretability

criteria for fuzzy sets suggest some degree of overlapping. Therefore, distin-

guishability should be balanced with other constraints.

4. Completeness, every data point in universe of discourse should be covered by a

membership function of the linguistic variable.

Some criteria for fuzzy model interpretability are (Mencar and Fanelli, 2008; Zhou

and Gan, 2008):

1. The number of rules (compactness), the total number of rules in a rule base

should be as small as possible.

2. Rule readability, the antecedent part of the rule should preferably contain 7 ± 2

distinct conditions.

3. Consistency, if antecedents of rules are similar then consequent part of the rules

should be similar. Violating this constraint leads to contradictions in rule base.

4. Completeness, for each input there should be at least one rule with non-zero

activation. However, very low activation strength of a rule may decrease inter-

pretability of the fuzzy model also. Moreover, over fitting on data may lead to

incomplete fuzzy models (Jin et al., 1999).

5. Number of variables, the number of input and output variables should be as

small as possible.

Other than the above constraints there are many other constraints for fuzzy set

and fuzzy model interpretability (Mencar and Fanelli, 2008; Zhou and Gan, 2008).

To develop interpretable and accurate fuzzy models, Xing et al. (2006), Ishibuchi

and Nojima (2007), González et al. (2007), Antonelli et al. (2009) and Gacto et al.
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(2010) used multiobjective optimization techniques. They try to optimize both global

fuzzy model accuracy and interpretability using evolutionary algorithms while gener-

ating fuzzy models.

Paiva and Dourado (2004) defined a set of constraints on parameters of fuzzy

model for interpretability and try to optimize accuracy subject to these constraints.

The locations of membership functions are limited during learning. In addition to

the constraints, they merged similar fuzzy sets by using similarity measure which is

defined by Setnes et al. (1998).

Setnes et al. (1998) proposed a rule base simplification method to reduce the num-

ber of fuzzy sets in a fuzzy model by using similarity measures. The rule base is sim-

plified by merging similar fuzzy sets and redundant rules. Using the proposed method

compact fuzzy models with distinguishable membership functions are obtained. Simi-

larity between two fuzzy sets A and B is measured by

sim(A, B) =
|A ∩ B|

|A ∪ B|
(5.1)

where |.| denotes the cardinality of a set and ∩ and ∪ operators represent the intersec-

tion and union respectively. In the proposed algorithm if similarity measure between

two fuzzy sets A and B is greater than a given threshold then they are merged. This

merging process is repeated until there are no similar fuzzy sets. Finally fuzzy sets

that are close to universal set are removed.

Since interpretability of a fuzzy model is highly subjective and excessively depends

on human’s prior knowledge, some researches allow users to get involved in the fuzzy

model generation process to use human subjective evaluation. For example, NEF-

CLASS model developed by Nauck (2003a) allows users to supervise the fuzzy model

generation process. Users can interactively delete fuzzy sets and change parameters of

heuristic learning process. However, deleting fuzzy sets can lead to inconsistent rule

base. Moreover, finding a good trade-off between accuracy and interpretability and

selecting the best model requires many trials.

Similar to the NEFCLASS model, Alonso et al. (2008) designed the High Inter-

pretable Linguistic Knowledge (HILK) fuzzy modeling methodology which offers an

integration framework for combining both expert knowledge and knowledge extracted

from data. And they pointed out that the combination of expert and induced knowl-

edge yields compact and robust systems.
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Alonso and Magdalena (2010) upgraded HILK to deal with automatic learning from

data and presented methodology HILK++ for building interpretable fuzzy classifica-

tion systems. HILK++ uses the general framework provided by HILK and enhances it

with new functionalities such as feature selection, interpretability guided simplification,

etc. to get comprehensible fuzzy rule based classifier.

For evaluating the interpretability of fuzzy models interpretability indices are de-

fined. For example, similarity measure defined by Equation 5.1 is an interpretability

index which is mainly used for merging similar fuzzy sets to obtain distinguishable

membership functions. Interpretability indices which evaluate the similarity, distin-

guishability, coverage, overlapping, etc. (Botta et al., 2009; Jin et al., 1999; Mencar,

2007; Setnes et al., 1998) are usually considered to preserve the readability of fuzzy

models automatically generated from data. They are used in tuning algorithms to pre-

serve interpretability while improving accuracy. On the other hand, some indices are

used as a criterion to maximize interpretability while generating fuzzy models by mul-

tiobjective optimization techniques (Antonelli et al., 2009; Gacto et al., 2010; Ishibuchi

and Nojima, 2007). There are some indices which cover several interpretability con-

straints and used globally to assess transparency of the whole fuzzy model (Nauck,

2003b; Alonso et al., 2008). Alonso et al. (2009) compared global interpretability

indices quantitatively and qualitatively.

5.2 Simplification of Fuzzy Models

In the previous chapters, Mamdani type fuzzy models were initially created by fuzzy

clustering techniques, then initial fuzzy models were tuned using simulated annealing

to improve accuracy of the models. Although very high accuracies were obtained,

interpretability of the tuned fuzzy models were poor. Since accuracy was the primary

objective, interpretability was not considered during the tuning process. On the other

hand, one of the important purposes of using fuzzy sets for modeling complex systems

is their transparency. To maintain interpretability of the fuzzy models, an algorithm

is developed which has two major parts. In the first part, interpretability at the fuzzy

set level is achieved by using similarity measures. In the second part, fuzzy model

interpretability is considered by merging similar redundant fuzzy rules, eliminating

inconsistent rules from the rule base and deleting rules which have low influence on
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Figure 5.1: Overview of the simplification algorithm.

the fuzzy model (i.e., rules with low activation strength). Overview of the algorithm

is given in Figure 5.1.

After rule base simplification, fuzzy model is tuned using simulated annealing.

Since primary objective is not the accuracy and to keep changes in parameters of

simplified fuzzy model as small as possible, simulated annealing is initialized with low

temperature and the other parameters are also designed for that purpose. At the

end of the tuning, rules with low activation strengths are removed. Then, tuning is

performed again to allow fuzzy models to adapt the remaining rules for this removal.

In the second tuning process, initial temperature is lower than the first tuning step.

Although tuning algorithms are designed as not to change simplified fuzzy models

much, interpretability of the fuzzy models might decrease. Therefore, interpretability

operations on fuzzy sets and rule base simplification are repeated after tuning process.

The details of the algorithm are given in the next sections.

5.2.1 Reducing the Number of Fuzzy Sets for Each Variable

Initial fuzzy models created by the fuzzy clustering algorithms may contain fuzzy

sets that are close to universal set. A fuzzy set A, is close to universal set U if

µA(x) ≈ 1, ∀x ∈ A. The similarity sim(A, U) is calculated using Equation 5.1. If

sim(A, U) > λr then the fuzzy set A is removed from the rule where λr ∈ (0, 1) is the

threshold for removing fuzzy sets similar to universal set. In the algorithm fuzzy sets

similar to U are removed first, because these fuzzy sets dominate the merging process

and excessively merged with other membership functions which reduce both accuracy

and transparency. The threshold λr = 0.85 is used in the analysis.

Fuzzy sets that are similar to singleton are also removed from the rules. A fuzzy
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set A is close to a singleton function if µA(x) ≈ 0, ∀x ∈ A. If a fuzzy set is similar

to a singleton, then sim(A, U) ≈ 0. Therefore, if sim(A, U) < λs then fuzzy set A is

removed from the rule, where λs ∈ (0, 1) is the threshold for removing singleton fuzzy

sets. Removing singleton fuzzy sets from rules decrease accuracy much, because these

kinds of rules represent exceptions exist in data. On the other hand, removing such

fuzzy sets increases model generalization ability. For the threshold, λs = 0.01 is used.

After removing fuzzy sets, similar fuzzy sets are merged. Similarity of fuzzy sets A

and B is calculated using Equation 5.1. If sim(A, B) > λm then fuzzy sets A and B

are merged into a new fuzzy set C, where λm ∈ (0, 1) is the threshold for similar fuzzy

set merging. The support of the new fuzzy set is taken as the support of the A ∪ B

to preserve the coverage of A and B. The center of the new fuzzy set is calculated by

averaging the centers of the original functions. Fuzzy set merging is repeated until no

more pairs satisfy the merging threshold. The new fuzzy set created after merging is

also used in the following iterations. Fuzzy sets created by merging are given stronger

weight in the merging process. Two similar triangular membership functions A and

B defined by parameters (a1, b1, c1) and (a2, b2, c2) are merged to create a new fuzzy

set C defined with parameters (a3, b3, c3) as follows (Setnes et al., 1998; Paiva and

Dourado, 2004):

a3 = min(a1, a2) (5.2)

b3 =
nab1 + nbb2

na + nb
(5.3)

c3 = max(c1, c2) (5.4)

The center of the newly created membership function C is calculated by weighted

mean of the centers of the parameters of original membership functions where na and

nb represent the number of pairs of functions merged before A and B were created. The

threshold λm influence model interpretability and also accuracy significantly. Small

values of λm produce few fuzzy sets and simpler fuzzy models with low accuracy. The

threshold λm = 0.75 is used in the analysis.

Fuzzy set merging using Equation 5.1 cannot solve subsets (fuzzy sets inside other

fuzzy sets) or functions passing through other functions (Paiva and Dourado, 2004). To

detect such cases, Equation 5.1 is used as in the following: if A ⊆ B then A∩B = A and

A∪B = B. Let A∩B = D, if support of B includes support of A and sim(A, D) > λi

then fuzzy set A and B are merged where λi ∈ (0, 1) is the threshold for inclusion
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Figure 5.2: Similarity measure between fuzzy sets A and B is low, sim(A, B) = 0.05.

Since their centers are too close, they are not distinguishable. lc/ls measure is an

indication for this case. In the figure, merging fuzzy sets A and B results in fuzzy set

C.

case. The threshold λi = 0.80 is used.

There are rarely some cases where similarity of fuzzy sets is low but their centers

are too close. Figure 5.2 depicts this case. When the centers of the fuzzy sets are

too close then giving names to fuzzy sets A and B are difficult, because the fuzzy

sets A and B are actually not distinguishable enough. These cases are detected by

calculating the proportion of the length between centers to the length of the support of

A∪B. If the proportion |b2 − b1| / |c2 − a1| > λc then fuzzy sets A and B are merged.

λc ∈ (0, 1) is the threshold for detecting such cases. The threshold λc = 0.01 is used.

Outline of the interpretability operations on fuzzy sets is presented in Algorithm 5.

After removing fuzzy sets, merging similar function pairs etc. the rule base is updated.

5.2.2 Rule Base Simplification

The interpretability operations on fuzzy sets may produce similar rules. Redundancy

or inconsistency in a rule base decrease interpretability of the fuzzy model. Similarity

of rules Ri and Rj is calculated using

simP (Ri, Rj) = minn
k=1sim(Aik, Ajk) (5.5)
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Algorithm 5 Reducing the Number of Fuzzy Sets for Each Variable
Require: Initial fuzzy model FM0, threshold for removing fuzzy sets similar to uni-

versal set λr, threshold for removing singleton fuzzy sets λs, threshold for similar

fuzzy set merging λm, threshold for function inclusion λi, threshold for combine

λc.

1: for all fuzzy sets, fi ∈ fuzzy model FM0 do

2: if (sim(fi, U) > λr) or (sim(fi, U) < λs) then {fuzzy set fi is similar to U or

a singleton}

3: Delete fuzzy set fi

4: Update rule base

5: end if

6: end for

7: for all fuzzy sets, fi and fj ∈ fuzzy model FM0 do

8: if (sim(fi, fj) > λm) or (sim(fi, fi ∩ fj) > λi) or ((|bj − bi| / |cj − ai|) < λc)

then {fuzzy sets are similar or fi ⊆ fj or their centers are close}

9: Merge fuzzy sets fi and fj

10: Update rule base

11: end if

12: end for
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where Aik are antecedent fuzzy sets of rule Ri and Ajk are antecedent fuzzy sets of

rule Rj . If similarity between premises of the two rules is high, simP (Ri, Rj) > γsp,

where γsp ∈ (0, 1) is a threshold for rule premise similarity, then similarity between the

consequents are computed. For multiple input single output (MISO) systems similarity

of rule consequents is calculated by

simC(Ri, Rj) = sim(Bi, Bj) (5.6)

where Bi and Bj are consequent fuzzy sets of Ri and Rj respectively. The degree of

consistency of fuzzy rules Ri and Rj is calculated using Equation 5.7 (Jin et al., 1999).

Cons(Ri, Rj) = e
−

(
simP (Ri,Rj)

simC(Ri,Rj)
−1)2

( 1
simP (Ri,Rj)

)2

(5.7)

This index ranges between 0 and 1.0. High values indicate consistency. If consistency

degree between similar rules Ri and Rj is low such that Cons(Ri, Rj) < γc, where

γc ∈ (0, 1) is a threshold for rule consistency then these rules are inconsistent. To

solve inconsistency in the rule base, the rule with high activation strength is kept

in the rule base and the other rule is deleted. On the other hand, if the rules are

consistent, Cons(Ri, Rj) ≥ γc and the similarity between the consequent fuzzy sets

is high, simC(Ri, Rj) > γsc, where γsc is a threshold for similarity between rule

consequents, then one of these rules is redundant. Ri and Rj are merged to create

a new rule according to the merging process described in the previous section. The

thresholds are selected as γsp = 0.60, γc = 0.50 and γsc = 0.70.

After detecting and solving inconsistencies and redundancies, fuzzy model is tuned

with very low temperature and without changing membership function parameters

much. At the end of this tuning, activation strength of each rule and the total ac-

tivation is computed. If all rules are equally contributed to the outputs of a fuzzy

model then activation strength of each rule would be the average, totalactivationstrength
rulecount .

If activation strength of a rule is less than τa percent of the average then rule is re-

moved. τa ∈ (0, 1) is the threshold for inactive rule removal and represents percentage

of average activation strength a rule must have. τa = 0.1 (i.e., 10% of the average

activation strength) is used.

Outline of the rule base simplification is presented in Algorithm 6.
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Algorithm 6 Rule Base Simplification
Require: Fuzzy model FM , threshold for rule premise similarity γsp, threshold for

rule consistency γc, threshold for similarity between rule consequents γsc, threshold

for inactive rule removal τa.

1: for all rules Ri and Rj do

2: if (simP (Ri, Rj) > γsp) then {premises of the rules are similar}

3: if (Cons(Ri, Rj) > γc) then {rules are consistent}

4: if (simC(Ri, Rj) > γsc) then {consequents of the rules are similar}

5: Merge rules Ri and Rj

6: end if

7: else

8: Remove inconsistent rule Ri or Rj

9: end if

10: end if

11: end for

12: Tune fuzzy model

13: Calculate activation strengths of the rules and total activation strength

14: Set rule deletion flag to false, isRuleRemoved = false

15: for all rules Ri ∈ fuzzy model FM do

16: if (activation strength of rule Ri < τa) then {activation strength of Ri is low}

17: Remove rule Ri from rule base

18: isRuleRemoved = true

19: end if

20: end for

21: if isRuleRemoved == true then

22: Tune fuzzy model with very low temperature

23: end if
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Figure 5.3: Training and testing errors of simplified fuzzy models.

5.3 Results

Fuzzy models learned from data were used as initial solution for simplification algo-

rithm. The algorithm starts with reducing the number of fuzzy sets for each variable

then rule base simplification is performed. After rule base simplification, simplified

model is tuned without changing fuzzy model much. Next, rules with low activation

strength are removed from the rule base. Since tuning mechanism is based on a prob-

abilistic function, results obtained from the simplification algorithm may vary, when

the algorithm is executed several times with different seed value. Therefore, simpli-

fication algorithm was repeated 20 times with different seed values. The thresholds

and simulated annealing parameters used in the simplification algorithm are given in

Table 5.1.

Training and test data errors of simplified fuzzy models FCM1p, GK1p, GK2p and

GG3p are shown in Figure 5.3. Properties of training and test data errors are listed in

Table 5.2 and Table 5.3.

Simplification algorithm reduced the number of fuzzy sets used for linguistic vari-

ables using similarity measures and simplified the rule base of fuzzy models either by

removing inconsistent rules or by merging redundant ones. GG3p fuzzy models were

simplified more than the other fuzzy models. Figure 5.4 depicts a simplified GG3p

78



Table 5.1: The thresholds and tuning parameters used in the simplification algorithm.

Parameter Value Allowable Range

Fuzzy Set Simplification

Similarity with U, αr 0.85 0 < αr < 1

Similarity to a singleton, αs 0.01 0 < αs < 1

Merging similar functions, αm 0.75 0 < αm < 1

Inclusion, αi 0.80 0 < αi < 1

Consistency, αc 0.01 0 < αc < 1

Rule Base Simplification

Similarity of rule premise, γsp 0.60 0 < γsp < 1

Similarity of rule consequent, γsc 0.70 0 < γsc < 1

Consistency, γc 0.50 0 < γc < 1

Tuning Parameters - 1

Initial probability of acceptance, P0 0.10 0 < P0 < 1

The percentage of transition parameter, ξ 0.005 0 < ξ ≤ 1

Temperature update parameter, α 0.95 0 < α < 1

Tuning Parameters - 2

Initial probability of acceptance, P0 0.01 0 < P0 < 1

The percentage of transition parameter, ξ 0.005 0 < ξ ≤ 1

Temperature update parameter, α 0.95 0 < α < 1

Table 5.2: Properties of training errors obtained after simplifying fuzzy models.

Fuzzy Min. Max. Mean Mean Mean (%) Standard

Model Difference Difference Deviation

FCM1p 179.1740 188.1766 182.9947 −16.5247 −8.28 2.1094

GK1p 224.0958 228.4579 226.3449 +32.0661 +16.51 1.5456

GK2p 208.1055 217.2496 212.0530 +17.1536 +8.80 2.1736

GG3p 187.4285 209.1155 201.2518 +1.3445 +0.67 6.7542
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Table 5.3: Properties of testing errors obtained after simplifying fuzzy models.

Fuzzy Min. Max. Mean Mean Mean (%) Standard

Model Difference Difference Deviation

FCM1p 214.6314 226.9859 223.2313 −11.8351 −5.03 2.5799

GK1p 245.3889 251.8004 248.0863 +15.5024 +6.67 1.4954

GK2p 210.3524 236.3316 224.8523 −38.7040 −14.69 7.1921

GG3p 226.2879 275.1404 247.9185 +2.0092 +0.82 12.5833

fuzzy model where associated initial fuzzy model is shown in Figure 4.11a and the

tuned one is shown in Figure 4.11b. Both the initial and tuned fuzzy models are

not interpretable, since membership functions are indistinguishable and the number of

membership functions is more than the number generally suggested in the literature

(ie., 7±2 membership functions). For both the initial and tuned fuzzy model, it is not

easy to name fuzzy sets and to obtain understandable rule base. On the other hand,

simplified fuzzy model given in Figure 5.4 is interpretable.

It has three membership functions for linguistic variables “longitude” and “latitude”

and two membership functions for linguistic variables “altitude”, “sdgrid” and “precip-

itation”. All membership functions are distinguishable. All linguistic variables are

complete i.e., every data point in universe of discourse is covered by a membership

function. Each fuzzy set was given a name based on its position. The rules in the rule

base are given as follows:

R1 : If longitude is near-west and latitude is near-north and altitude is low

and sdgrid is medium then precipitation is medium.

R2 : If longitude is east and latitude is near-north and altitude is high

and sdgrid is medium then precipitation is medium.

R3 : If longitude is west and latitude is near-north and altitude is low

and sdgrid is medium then precipitation is medium.

R4 : If longitude is near-west and latitude is near-north and altitude is high

and sdgrid is medium then precipitation is medium.

R5 : If longitude is near-west and latitude is south and altitude is low
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Figure 5.4: Membership functions of simplified GG3p fuzzy model.

and sdgrid is medium then precipitation is high.

R6 : If longitude is east and latitude is north and altitude is low

and sdgrid is high then precipitation is high.

R7 : If longitude is east and latitude is south and altitude is low

and sdgrid is medium then precipitation is medium.

R8 : If longitude is near-west and latitude is north and altitude is low

and sdgrid is medium then precipitation is high.

The rule base is compact and every rule is readable and consistent with the other

rules. In order to increase comprehensibility of each rule, centers of the triangular

membership functions for linguistic variables “longitude” and “latitude” are drawn on

map of Turkey (Figure 5.5) and effectiveness of these triangular membership functions

are also given in Figure E.1, Figure E.2, Figure E.3, Figure E.4, Figure E.5 and

Figure E.6.

The average computing time was about 3 minutes (177.094 seconds) on a notebook

which contains an Intel R© 1.83 GHz CoreTM Duo processor (T2400), 1 GB RAM and
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Figure 5.5: The centers of the triangular membership functions for linguistic variables

“longitude” and “latitude”.

Microsoft R© Windows R© Home Edition Version 2002 with Service Pack 3.

As in the previous chapter, in addition to the fuzzy models simplified above, fuzzy

models constructed with five clusters are also simplified. Same thresholds and SA

parameters are used in the simplification process. These thresholds and parameters

are given in Table 5.1. Training and test data errors of simplified fuzzy models are

depicted in Figure 5.6. Properties of training and test data errors are listed in Table 5.4

and Table 5.5.

According to the results, training errors obtained after simplifying fuzzy models

which are constructed with five clusters are approximately 13% worse. Testing errors

obtained for the second tuning process (tuning of fuzzy models which are constructed

with five clusters) are also approximately 10% worse. Initial and simplified fuzzy

models are given in Figure E.13, Figure E.14, Figure E.15, Figure E.16, Figure E.17,

Figure E.18, Figure E.19 and Figure E.20. The average computing time for the second

simplification process was about 1.5 minutes (95.25 seconds) on the same configuration

given above.
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Table 5.4: Properties of training errors obtained after simplifying fuzzy models which

are constructed with five clusters.

Fuzzy Min. Max. Mean Mean Mean (%) Standard

Model Difference Difference Deviation

FCM1p 252.1641 262.2974 255.1242 −5.6041 −2.15 2.5640

GK1p 228.5758 233.1885 231.2684 −20.3640 −8.09 0.9933

GK2p 228.1740 233.1526 231.1777 −20.4911 −8.14 1.3257

GG3p 224.5395 254.0930 232.6494 −22.5322 −8.83 12.4164

Table 5.5: Properties of testing errors obtained after simplifying fuzzy models which

are constructed with five clusters.

Fuzzy Min. Max. Mean Mean Mean (%) Standard

Model Difference Difference Deviation

FCM1p 273.8001 288.4236 279.4921 −1.0510 −0.37 3.4087

GK1p 258.8537 261.6111 259.7090 −2.2400 −0.86 0.7874

GK2p 255.9232 270.5631 260.6076 −1.4393 −0.55 3.6975

GG3p 248.0283 276.1197 255.4549 −23.6385 −8.47 11.5646
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Figure 5.6: Training and testing errors of simplified fuzzy models. Initial fuzzy models

are constructed with five clusters.

5.4 Discussion

Fuzzy models can be constructed by expert knowledge. When expert knowledge is

not available then data-driven modeling techniques can be used to automatically con-

struct fuzzy models. However, interpretability of fuzzy models is lost with the use of

automatic data-driven techniques, since the primary objective of these methods is the

highest possible accuracy. Interpretability of fuzzy models can be maintained while

generating fuzzy models from data or by applying simplification techniques. In this

study, a simplification algorithm is proposed to obtain more compact and interpretable

fuzzy models.
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Figure 5.7: Predicted precipitation map for Turkey generated using simplified FCM1p model. Training error is 188.1766 mm and testing

error is 214.6314 mm.
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Examples of the simplified fuzzy models obtained from the algorithm are given in

Figure 5.4, Figure E.8, Figure E.10 and Figure E.12. Although interpretability of fuzzy

models is a subjective concept, obtained simplified fuzzy models satisfy most of the

interpretability criteria given in the previous sections. A precipitation prediction map

for the whole Turkey is generated using simplified FCM1p fuzzy model (Figure 5.7).

The precipitation values of all locations of Turkey in 1 km resolution are estimated

using the simplified model.

Simplification algorithm simplified GG3p fuzzy models more than the others. On

the other hand, FCM1p fuzzy models are simplified less. Additionally interpretability

of simplified FCM1p fuzzy models are not good enough. However, it is possible to

obtain more interpretable results for FCM1p models by changing the thresholds. In

Table 5.6, error values obtained by different methods are listed. As discussed in Chap-

ter 2, linear regression technique assumes that observations are independent which is

very unlikely in geographical data. The regression equation fitted on data remains con-

stant over the whole study area and no local variations are allowed. Linear regression

was used to model mean annual precipitation. Residuals obtained from linear regres-

sion model were spatially autocorrelated and interpretability of the regression equation

was low. Better result was obtained using geographically weighted regression (GWR).

Error on training data was reduced and the residuals of GWR were not spatially au-

tocorrelated. To model variation in data GWR estimates parameters associated with

the (training) data. However, interpretability of these parameters and the model are

very low and application of the obtained model to data, other than the training data,

for testing and prediction is difficult. The proposed approach can produce accurate

and interpretable solutions. If the accuracy is the primary objective then the proposed

approach can produce more accurate solutions for training data. The minimum train-

ing error value obtained is 30 percent less than the error obtained by GWR method

(tuned fuzzy model in Table 5.6). However, interpretability of the accurate solutions

was low. Furthermore, the proposed approach can generate interpretable solutions by

decreasing the complexity of the fuzzy models (and also the accuracy). Interpretabil-

ity and accuracy are conflicting modeling objectives. Although the simplified fuzzy

modes are more interpretable than the tuned fuzzy models, their accuracies are lower.

For the simplified fuzzy models, average error on training data is increased (Table 4.3

and Table 5.2), but average error on test data is decreased (Table 4.4 and Table 5.3).
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Table 5.6: Error values for linear regression, GWR and the proposed approach.

Method Training Error (mm) Testing Error (mm)

Linear Regression 217.50 207.80

Linear Regressiona 208.79 226.53

GWR 106.78 -

GWRa 255.77 -

Tuned Fuzzy Modelb 74.82 326.61

Simplified Fuzzy Modelb 179.17 223.81

Tuned Fuzzy Modelc 122.70 202.93

Simplified Fuzzy Modelc 209.85 210.35

a Error values on processed data set.

b Error values are associated with the fuzzy model which has minimum error

value on training data.

c Error values are associated with the fuzzy model which has minimum error

value on testing data.

Thus, simplification algorithm produced not only interpretable but also more gener-

alized fuzzy models. In addition to these, after the model is built, it can be easily

applied to test data set and it can be used for prediction purposes.

Moreover, simplification algorithm produced simplified fuzzy models for more than

eight times faster than the tuning algorithm whose primary objective is the accuracy.

Simplification algorithm involves many thresholds. Interpretability and accuracy

of the final fuzzy model can be adjusted by changing the values of these thresholds.
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CHAPTER 6

CONCLUSION

In traditional modeling, the development of spatial models not only requires deep un-

derstanding of the nature and behavior of the phenomena but also requires knowledge

on mathematical methods. Therefore, as the complexity of the spatial phenomenon

increases traditional modeling becomes impractical. Alternatively, data-driven model-

ing which is based on the analysis of data characterizing the phenomena can be used.

Since the development of reliable and understandable spatial models is crucial to com-

prehend and work on natural phenomena, both precision and understandability have

to be considered in the data-driven modeling techniques. In this thesis, the primary

motivation is the generation of understandable and reliable spatial models using ob-

servational data. In the scope of this thesis, an interpretability oriented data-driven

fuzzy modeling approach is proposed, a prototype software is developed for the pro-

posed approach and mean annual precipitation data of Turkey is used as case study

to assess obtained fuzzy models in terms of both accuracy and transparency.

Results show that data scale influences the performance of the methods. Therefore,

before using the proposed approach, it is important to apply proper transformations

and scaling to original data. Mamdani type fuzzy models with triangular member-

ship functions are generated using fuzzy clustering techniques. Simulated annealing

algorithm is adapted to tune Mamdani type fuzzy models with triangular membership

functions. After the initial fuzzy model construction, fuzzy models are tuned using

the adapted simulated annealing algorithm by considering only the accuracy to show

its optimization capability. According to the results adapted simulated annealing al-

gorithm is able to optimize fuzzy models such that error on training data is 30 percent

less than the error obtained by geographically weighed regression model (Table 5.6).

However, tuned fuzzy models are not interpretable, because accuracy is the primary

objective and interpretability is not considered while tuning.
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To obtain compact and interpretable fuzzy models, a simplification methodology

is proposed. Together with the tuning process, simplification methodology produced

simplified fuzzy models which satisfy most of the interpretability criteria. Further-

more, more interpretable fuzzy models are obtained when Gath-Geva fuzzy clustering

algorithms are used during fuzzy model construction.

An interpretable fuzzy model for estimating mean annual precipitation of Turkey

is generated only with 12 membership functions and 8 rules.

GIS is an interdisciplinary field. It is related with fields such as geodesy, geog-

raphy, surveying, cartography, remote sensing, computer science, statistics and etc.

Recently, the use of soft computing approaches especially fuzzy logic in GIS has be-

come an active field. Since the underlying logic in conventional GIS software systems is

crisp logic, continuous nature of landscape cannot be modeled appropriately. Because

the real physical world is gray but crisp logic is black and white. Therefore, fuzzy

logic offers a way to represent and handle uncertainty present in the continuous real

world. Most of the researches primarily focus on the use of fuzzy logic in classifying

the continuum of the landscape. In addition to the classification, fuzzy logic is also

used for decision-making and modeling purposes. The development of reliable and

understandable spatial models, classification and decision rules requires knowledge on

the phenomena which is working on. Fuzzy rules and models can be created from

expert knowledge by translating linguistic information obtained from human experts.

However, there is no standard method exist for transforming experts’ knowledge into

fuzzy rules. Moreover, expert knowledge is not sufficient to define complex partially

unknown systems satisfactorily. In such cases, fuzzy models can be constructed by

using numerical data. Using the proposed methodology in this thesis, interpretable

and accurate fuzzy models can be constructed using relationships between inputs and

outputs. Fuzzy models constructed using the proposed methodology can be used in

three different ways:

1. As a starting point for the further analysis,

2. If interpretability is the primary objective while fuzzy model generation then

constructed models present valuable information about the phenomenon being

modeled and may help in understanding the phenomenon,

3. To generate prediction maps where the phenomenon is not measured before.
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With the increase in the use fuzzy logic in GIS, automatic generation of reliable and

interpretable fuzzy models (fuzzy rules, membership functions) from input and output

data becomes a valuable tool for GIS users. Input and output data are prepared in

GIS software and used in the fuzzy model creation process. After constructing a fuzzy

model, it can be used for other regions to generate prediction map for that region.

The prediction maps are generated by running the model with the input data for the

region. These maps can be not only visualized but also analyzed further using the GIS

software.

Prototype software can be extended such that initial fuzzy model can be generated

from data using fuzzy clustering techniques. In such a case, it will no longer need any

other software. Moreover, if the use of the software is increased, then the proposed

methodology can be added to GIS software as an add-on package. Although the average

computing time for the generation of interpretable (simplified) fuzzy models is about 3

minutes on a standard notebook, it takes approximately 25 minutes for the generation

of accurate fuzzy models. Most of the execution time is spent for the calculation

of objective function while optimizing the fuzzy models using simulated annealing.

Therefore, objective function calculation must be direct and rapid to increase simulated

annealing convergence speed and to decrease CPU consumption. This is the key point

to decrease the execution time.

Future directions for this study can be summarized as follows:

• Fuzzy c-means, Gustafson-Kessel and Gath-Geva fuzzy clustering algorithms are

used to construct fuzzy models from data. These clustering algorithms require a

priori knowledge of the number of clusters. Although, cluster validity indices are

used to determine an appropriate number of clusters in the data sets, none of the

indices clearly specify the cluster count and usually they are not in agreement.

Alternatively, fuzzy clustering techniques which do not require cluster count can

be used as a future work. Examples of such algorithms are hierarchical clustering,

weighted fuzzy c-means, subtractive clustering, compatible cluster merging, etc.

• In the scope of this thesis, Mamdani type fuzzy models with triangular member-

ship functions are considered. Mamdani type fuzzy models are selected because

they offer more understandable models than Takagi-Sugeno fuzzy models. On

the other hand, different types of membership functions can be used instead of
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triangular membership functions. Fuzzy model construction, adapted simulated

annealing algorithm and simplification methodology can be extended to work on

other types of membership functions such as gaussian, trapezoidal, bell-shaped,

etc.

• Simulated annealing is adapted for tuning Mamdani type fuzzy models with

triangular membership functions. Other global optimization methods such as

evolutionary algorithms can be used instead of simulated annealing as a future

work.

• New similarity measure and interpretability constraints can be added to the

simplification methodology. For example, feature selection can be added to the

methodology.

• Adapted simulated annealing algorithm and proposed simplification methodology

involve many parameters and thresholds which is very difficult to estimate them.

Therefore, automatic estimation of parameters and thresholds from data can be

specified as a future work.

• To find the right balance between model accuracy and fuzzy model interpretabil-

ity, global interpretability indices can be used while tuning fuzzy models. Adapt-

ed simulated annealing algorithm can be extended such that tuning is based on

both accuracy and interpretability (i.e., multi-objective optimization).

• The primary objective while tuning fuzzy models is the accuracy, error on train-

ing data. Therefore, adapted simulated annealing algorithm optimizes fuzzy

models for this criterion. Although, accuracy of the fuzzy models on training

data is the main objective, generalization ability of the fuzzy models is also im-

portant. Adapted simulated annealing algorithm can be extended such that it

presents not only the best solution but also a specified number of solutions before

the best solution. Therefore, user can prefer any solution from the solution set

by looking errors on both training and test data sets.
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APPENDIX A

MEAN ANNUAL PRECIPITATION

DATA

Table A.1: Training data.

Station Longitude Latitude Altitude SdGrid Rainfall

Name (◦) (◦) (m) (m) (mm)

INEBOLU 33.76 41.97 64 566.4 1024.8

SINOP 35.14 42.03 42 509.9 676.4

ORDU 37.89 40.97 4 788.4 1031.7

TRABZON 39.74 41 30 957.6 816.7

RIZE 40.49 41.03 9 1013.3 2235.3

HOPA 41.42 41.39 33 997.7 2237.8

ARTVIN 41.81 41.18 628 947.8 714.2

EDIRNE 26.54 41.68 51 191.2 569.3

KIRKLARELI 27.21 41.73 232 160.4 543.8

CORLU 27.81 41.14 183 186.8 561.9

KUMKOY-KILYOS 29.03 41.24 30 287.8 811.6

KOCAELI 29.91 40.76 76 448.2 809.4

SAKARYA 30.39 40.76 30 473.9 839.6

BOLU 31.5 40.7 743 504.2 536.3

KASTAMONU 33.78 41.36 800 511.8 474.6

MERZIFON 35.44 40.83 755 477.8 431.9

CORUM 34.96 40.54 776 364.0 445.3

AMASYA 35.84 40.64 412 501.1 448.8

TOKAT 36.56 40.29 608 546.4 434.7

GUMUSHANE 39.46 40.46 1219 874.9 456.5
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Table A.1: Cont’d

Station Longitude Latitude Altitude SdGrid Rainfall

Name (◦) (◦) (m) (m) (mm)

ERZURUM 41.16 39.94 1758 545.6 403.0

AGRI 43.04 39.71 1632 406.9 516.7

IGDIR 44.05 39.91 858 505.0 253.6

GOKCEADA 25.89 40.18 72 211.6 725.1

BOZCAADA 26.06 39.83 28 205.5 460.6

CANAKKALE 26.41 40.13 6 209.0 583.5

BANDIRMA 27.98 40.31 58 347.1 692.3

BURSA 29 40.21 100 451.0 680.5

ETIMESGUT 32.68 39.94 806 253.5 348.7

ANKARA 32.88 39.94 891 256.1 393.7

KIRSEHIR 34.14 39.16 1007 270.1 372.9

GEMEREK 36.06 39.18 1171 326.2 395.2

VAN 43.34 38.46 1671 520.6 378.9

AYVALIK 26.69 39.31 4 232.0 628.6

AKHISAR 27.81 38.91 93 343.1 552.6

MANISA 27.39 38.61 71 330.5 692.3

USAK 29.39 38.66 919 334.6 524.5

AFYON 30.54 38.73 1034 256.2 401.5

KAYSERI 35.48 38.71 1093 384.4 386.4

MALATYA 38.21 38.34 948 488.7 375.6

ELAZIG 39.24 38.64 990 503.6 398.1

BINGOL 40.49 38.86 1177 568.0 931.2

MUS 41.48 38.68 1320 557.5 751.3

TATVAN 42.29 38.48 1665 579.0 812.7

SIIRT 41.94 37.91 896 648.0 656.5

IZMIR 27.08 38.39 29 298.9 684.9

KUSADASI 27.26 37.87 22 325.9 603.0

AYDIN 27.84 37.84 56 382.8 609.8

DENIZLI 29.08 37.78 425 469.3 539.2
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Table A.1: Cont’d

Station Longitude Latitude Altitude SdGrid Rainfall

Name (◦) (◦) (m) (m) (mm)

BURDUR 30.29 37.71 967 445.1 411.6

ISPARTA 30.56 37.78 997 420.8 494.0

KONYA 32.54 37.97 1031 332.0 314.5

EREGLI-KONYA 34.05 37.53 1044 533.4 296.3

NIGDE 34.68 37.96 1211 578.6 318.9

KAHRAMANMARAS 36.92 37.59 572 589.2 723.6

GAZIANTEP 37.34 37.05 855 490.6 551.8

SANLIURFA 38.78 37.14 549 390.2 436.2

MARDIN 40.73 37.29 1050 328.1 646.7

DIYARBAKIR 40.19 37.89 677 444.7 462.3

BATMAN 41.11 37.58 540 465.9 454.9

HAKKARI 43.73 37.56 1728 779.9 738.1

BODRUM 27.43 37.03 26 334.6 668.2

MUGLA 28.36 37.21 646 481.9 1121.1

DALAMAN 28.78 36.74 6 551.4 951.7

MARMARIS 28.24 36.83 16 472.8 1187.3

ANAMUR 32.83 36.08 4 658.6 894.0

SILIFKE 33.93 36.38 15 685.3 548.5

MERSIN 34.63 36.79 3 725.9 562.2

ADANA 35.34 37.04 27 724.4 632.8

ISKENDERUN 36.16 36.58 4 447.8 715.5

FINIKE 30.15 36.3 2 584.5 919.9

KAS 29.65 36.2 153 599.4 785.1

AMASRA 32.38 41.74 73 583.3 1010.6

UZUNKOPRU 26.68 41.24 52 152.0 644.0

SILE 29.59 41.16 83 361.7 860.5

AKCAKOCA 31.14 41.08 10 509.3 1067.5

DEVREKANI 33.83 41.58 1050 547.0 522.4

BAFRA 35.91 41.54 20 486.6 788.0
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Table A.1: Cont’d

Station Longitude Latitude Altitude SdGrid Rainfall

Name (◦) (◦) (m) (m) (mm)

UNYE 37.28 41.13 20 703.1 1134.4

IPSALA 26.36 40.91 10 195.1 590.3

MALKARA 26.91 40.88 283 174.9 677.2

CERKES 32.87 40.81 1126 440.6 391.5

ILGAZ 33.63 40.91 885 400.2 479.7

TOSYA 34.03 41.01 870 428.2 462.6

CINARCIK 29.12 40.64 20 425.8 845.1

GEYVE 30.29 40.51 100 480.2 623.3

KIZILCAHAMAM 32.64 40.46 1033 358.2 556.5

OLTU 41.98 40.54 1322 682.5 380.7

GONEN 27.64 40.11 37 299.0 653.9

ULUDAG ZIRVE 29.11 40.11 1877 451.9 1445.0

NALLIHAN 31.36 40.18 650 412.9 311.7

BEYPAZARI 31.91 40.16 682 365.9 398.3

ZILE 35.87 40.29 700 442.2 446.1

SEBINKARAHISAR 38.41 40.28 1300 762.6 578.5

SUSEHRI 38.06 40.14 1163 685.3 422.0

TORTUM 41.54 40.29 1572 671.6 470.1

SARIKAMIS 42.56 40.33 2102 462.9 606.8

KELES 29.23 39.91 1063 442.7 733.8

BOZUYUK 30.04 39.89 754 421.8 471.7

TAVSANLI 29.49 39.53 833 393.9 470.5

SORGUN 35.18 39.79 1110 311.5 451.3

ZARA 37.74 39.89 1347 529.6 525.0

TERCAN 40.38 39.78 1425 541.8 443.6

DOGUBEYAZIT 44.08 39.54 1584 518.3 320.4

BURHANIYE 26.96 39.49 10 249.1 595.5

SIVRIHISAR 31.53 39.44 1070 258.1 381.4

POLATLI 32.16 39.58 886 238.5 351.2
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Table A.1: Cont’d

Station Longitude Latitude Altitude SdGrid Rainfall

Name (◦) (◦) (m) (m) (mm)

CICEKDAGI 34.41 39.61 900 242.7 346.6

MAZGIRT 39.59 39.03 1400 519.7 717.3

HINIS 41.69 39.36 1715 460.9 579.5

BERGAMA 27.16 39.11 53 281.4 622.3

SIMAV 28.97 39.09 809 398.6 774.7

GEDIZ 29.39 39 825 366.9 558.9

KAMAN 33.69 39.36 1075 220.5 451.0

BOGAZLIYAN 35.24 39.19 1067 328.4 359.1

KANGAL 37.38 39.23 1512 320.5 400.8

ARAPKIR 38.49 39.04 1200 429.8 724.2

AGIN 38.72 38.95 900 462.8 502.4

CEMISGEZEK 38.91 39.06 953 461.6 558.8

KARAKOCAN 40.03 38.96 1090 567.1 633.7

SOLHAN 41.06 38.96 1366 565.4 671.6

VARTO 41.44 39.16 1650 534.8 611.2

MURADIYE-VAN 43.76 38.98 1706 517.4 556.4

BOLVADIN 31.04 38.73 1018 264.7 380.6

PINARBASI-KAYSERI 36.39 38.71 1500 393.0 410.9

KEBAN 38.74 38.79 808 488.1 362.2

PALU 39.96 38.71 1000 555.2 533.2

AHLAT 42.49 38.76 1750 523.8 538.5

OZALP 43.97 38.66 2100 483.0 476.6

SEFERIHISAR 26.84 38.19 22 265.2 581.6

ODEMIS 27.96 38.21 117 400.5 562.2

GUNEY 29.06 38.14 806 418.9 505.9

SENIRKENT 30.54 38.09 959 375.5 643.8

YALVAC 31.18 38.29 1096 331.1 504.7

ILGIN 31.89 38.28 1034 333.0 419.8

URGUP 34.91 38.63 1060 399.4 375.4
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Table A.1: Cont’d

Station Longitude Latitude Altitude SdGrid Rainfall

Name (◦) (◦) (m) (m) (mm)

DEVELI 35.49 38.38 1180 517.3 360.8

TOMARZA 35.79 38.44 1397 502.0 392.9

SARIZ 36.49 38.48 1500 481.4 520.3

BASKIL 38.81 38.56 1225 491.4 417.9

SIVRICE 39.31 38.44 1240 494.9 591.8

MADEN ELAZIG 39.66 38.39 1100 513.8 826.9

ERGANI 39.76 38.28 1000 504.5 750.0

BITLIS 42.09 38.36 1573 609.5 1208.5

SULTANHISAR 28.14 37.88 72 417.6 583.1

SELCUK 27.36 37.94 17 334.4 664.7

NAZILLI 28.33 37.91 60 440.5 567.6

DINAR 30.14 38.06 864 386.8 432.0

GOKSUN 36.48 38.01 1344 596.6 597.9

AFSIN 36.91 38.24 1180 540.8 425.7

ELBISTAN 37.19 38.19 1137 528.1 390.2

DOGANSEHIR 38.1 37.86 1280 482.8 517.2

CERMIK 39.44 38.11 700 444.9 761.4

BASKALE 44.01 38.04 2400 603.1 430.2

EGIRDIR 30.86 37.83 920 425.4 776.8

MILAS 27.78 37.29 52 387.6 683.1

YATAGAN 28.13 37.33 365 432.3 635.2

ACIPAYAM 29.33 37.41 941 488.5 516.7

TEFENNI 29.78 37.31 1142 489.6 448.0

SEYDISEHIR 31.84 37.43 1131 465.3 732.2

CUMRA 32.78 37.58 1013 391.6 317.3

KARAPINAR 33.53 37.71 1004 418.0 280.4

ULUKISLA 34.48 37.53 1453 604.2 313.2

KOZAN 35.81 37.44 109 678.9 823.8

YUKSEKOVA 44.28 37.56 1900 757.4 760.8
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Table A.1: Cont’d

Station Longitude Latitude Altitude SdGrid Rainfall

Name (◦) (◦) (m) (m) (mm)

KORKUTELI 30.18 37.04 1014 513.7 372.8

HADIM 32.49 36.97 1552 462.0 632.0

NUSAYBIN 41.21 37.06 500 346.1 446.9

CIZRE 42.18 37.31 400 693.3 654.0

ELMALI 29.91 36.73 1095 537.3 463.3

MANAVGAT 31.43 36.78 38 551.2 1080.2

MUT 33.43 36.64 275 581.7 373.5

ALATA-ERDEMLI 34.29 36.61 9 684.1 575.1

CEYHAN 35.81 37.03 30 647.3 695.0

DORTYOL 36.21 36.84 28 563.3 929.1

ISLAHIYE 36.63 37.01 518 532.9 799.4

BIRECIK 37.94 37.01 347 422.5 355.8

KALE-DEMRE 29.98 36.24 25 598.8 799.5

YUMURTALIK 35.78 36.76 27 609.9 796.6

SAMANDAG 35.96 36.08 4 313.1 878.1
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Table A.2: Testing data.

Station Longitude Latitude Altitude SdGrid Rainfall

Name (◦) (◦) (m) (m) (mm)

ZONGULDAK 31.78 41.44 137 561.9 1230.5

SAMSUN 36.24 41.34 4 545.9 688.0

GIRESUN 38.38 40.91 37 833.7 1257.4

TEKIRDAG 27.49 40.97 3 190.6 556.3

KIRECBURNU 29.05 41.14 58 317.3 832.5

CANKIRI 33.61 40.61 751 300.8 390.0

SIVAS 37.01 39.74 1285 403.3 435.6

KIRIKKALE 33.51 39.84 748 225.7 371.2

YOZGAT 34.79 39.81 1298 276.8 582.5

DIKILI 26.87 39.06 3 254.6 573.9

NEVSEHIR 34.69 38.61 1260 397.2 407.5

CESME 26.29 38.29 5 200.2 552.6

ADIYAMAN 38.28 37.74 672 462.0 675.1

FETHIYE 29.11 36.63 3 556.5 795.0

ANTALYA 30.67 36.91 42 520.0 1071.2

ALANYA 32 36.54 6 555.2 1064.5

BOZKURT 34.01 41.94 167 563.5 1245.4

AKCAABAT 39.54 41.03 3 937.9 724.4

PAZAR-RIZE 40.89 41.16 79 998.2 2049.8

FLORYA 28.78 40.97 36 336.5 623.7

ARPACAY 43.33 40.84 1687 541.7 489.9

ISPIR 41 40.48 1222 861.1 467.2

HORASAN 42.16 40.04 1540 420.4 396.1

DURSUNBEY 28.63 39.58 639 408.5 551.6

DIVRIGI 38.11 39.36 1225 377.5 385.3

EMIRDAG 31.14 39.01 700 277.4 402.4

KULU 33.08 39.08 1010 193.4 379.0

MALAZGIRT 42.53 39.14 1565 469.2 450.9

ERCIS 43.34 39.03 1678 482.5 416.4
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Table A.2: Cont’d

Station Longitude Latitude Altitude SdGrid Rainfall

Name (◦) (◦) (m) (m) (mm)

SALIHLI 28.11 38.48 111 389.3 481.5

YUNAK 31.73 38.81 1000 251.2 447.3

GENC 40.56 38.74 1250 562.9 840.3

GEVAS 43.1 38.29 1694 608.0 508.0

SIVEREK 39.31 37.74 801 383.5 533.8

KOYCEGIZ 28.71 36.92 24 529.0 1064.3

KARAISALI 35.06 37.26 241 710.6 862.6

GAZIPASA 32.31 36.26 21 594.0 826.1

KARATAS 35.38 36.56 22 637.7 757.1

BARTIN 32.33 41.63 30 579.0 944.4

ARDAHAN 42.71 41.11 1829 726.1 577.1

GOZTEPE-ISTANBUL 29.05 41.14 33 317.3 433.8

KARTAL 29.18 40.89 27 372.6 521.2

DUZCE 31.16 40.83 146 504.2 652.1

KARABUK 32.63 41.19 248 516.1 400.4

BAYBURT 40.23 40.24 1584 836.4 459.5

ERZINCAN 39.49 39.74 1218 525.6 357.6

KARS 43.09 40.61 1775 468.3 521.0

YENISEHIR 34.14 39.16 220 270.1 590.9

YALOVA 29.28 40.66 4 432.1 657.1

BILECIK 29.98 40.14 539 470.9 447.4

ESKISEHIR 30.51 39.81 801 381.6 388.4

EDREMIT 27.01 39.58 21 254.1 586.7

KUTAHYA 29.97 39.41 969 344.5 423.3

TUNCELI 39.54 39.11 978 510.1 729.6

CIHANBEYLI 32.91 38.64 968 207.7 290.1

AKSARAY 34.04 38.38 965 376.3 280.3

DIDIM 27.25 37.38 33 334.7 584.5

AKSEHIR 31.41 38.34 1002 308.3 440.4
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Table A.2: Cont’d

Station Longitude Latitude Altitude SdGrid Rainfall

Name (◦) (◦) (m) (m) (mm)

KARAMAN 33.21 37.19 1025 481.4 280.4

KILIS 37.11 36.69 638 365.5 389.4

DATCA 27.67 36.7 28 366.5 347.1

OSMANIYE 36.24 37.1 120 615.3 802.1

ANTAKYA 36.16 36.19 100 302.6 1050.1

CIDE 33 41.88 10 581.9 1061.6

LULEBURGAZ 27.34 41.39 46 128.9 537.9

CEYLANPINAR 40.03 36.83 398 251.7 333.4

TURHAL 36.08 40.39 500 493.4 509.2

DEMIRCI-MANISA 28.64 39.05 851 399.5 569.2

CAY 31.03 38.58 1020 275.3 424.3

GOLBASI 37.63 37.78 900 521.6 573.4

BEYSEHIR 31.73 37.68 1129 442.8 542.6

KAHTA 38.61 37.78 675 434.9 649.8

HILVAN 38.94 37.58 585 400.7 358.4

BOZOVA-URFA 38.49 37.34 600 428.0 375.2
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APPENDIX B

COMPARING MODEL ESTIMATION

ACCURACIES OF LINEAR TIME

INVARIANT MODELS AND

ARTIFICIAL NEURAL NETWORKS

FOR SPATIAL DECISION-MAKING

Tahsin Alp Yanar and Zuhal Akyürek

Submitted to Environmental Modelling & Software

B.1 Abstract

Building spatial analyses rules for a spatial decision-making problem is difficult if the decision problem

to be modeled is high dimensional. If the spatial nature of the phenomena is not entirely known by

the user, then it is quite difficult to adequately describe the solution steps. In such cases, decision

models can be estimated using observed input-output data for the phenomena. In this paper, we

used linear time-invariant systems and artificial neural networks to acquire knowledge about spatial

analysis tasks using input-output relationship in data. Then, we examined the use of linear time-

invariant systems and artificial neural networks by measuring their prediction accuracies and time

required for learning and prediction. For linear time-invariant systems, ARX, ARMAX and state-

space model structures, for artificial neural networks, feed forward backpropagation neural networks

were used. To compare methods two-sample Kolmogorov-Simirnov test, root mean square error value

and time required for training (learning) and prediction were used. Experiments were performed with

two disjoint geographical regions which have different characteristics. The results indicate that linear

time-invariant systems perform better predictions and require less training time compared to artificial

neural networks and models trained with data which have higher Moran’s I values performed better

predictions.

Keywords: GIS, Spatial decision-making, Linear time-invariant systems, Artificial

neural networks, Inverse problems, Site
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B.2 Introduction

Spatial decision-making is one of the primary uses of geographic information systems (GIS). Although

the developments in GIS have led to significant improvements in decision-making, the rate of data

acquisition far exceeds the analytical ability of humans (Clementini et al., 2000). Increase in both

amount and complexity of data points an intelligent assistant. This concerns the extraction of useful

information from vast amount of data for decision-making.

Geographic knowledge discovery (GKD) (Li and Cheng, 1994; Miller and Han, 2001) process

extracts useful, interesting and non-trivial information from geo-referenced data. These learned useful

concepts, relationships and rules characterizing knowledge in data can guide spatial decision-making

(Lee and Kerschberg, 1998; Berdard et al., 2003; Somodevilla et al., 2002; Han et al., 2004; Sester, 2000;

Bui et al., 2006; Santos and Amaral, 2004; Eklund et al., 1998; Qi and Zhu, 2003). The decision-making

is affected by many factors and sometimes needs many criteria. In numerous situations involving a

large set of feasible alternatives and multiple, conflicting and incommensurate criteria, it is difficult

to state and measure these factors and criteria (Malczewski, 1996). Although knowledge discovery

methods soften these problems and assist decision-makers in their analysis, it is very difficult for human

experts to build spatial analysis rules if the decision problem to be modeled is high dimensional. Even

in some cases, it is quite difficult to adequately describe the solution steps, especially when the spatial

nature of the phenomena is not entirely known. In such cases, based on observed input-output data

for the phenomena decision models can be estimated.

The problem of building mathematical models of systems based on observed data from the systems

is known as system identification (Ljung, 1987). Linear time-invariant systems (LTIS) and artificial

neural networks (ANNs) are the two examples of the theories and techniques used in the system

identification field.

LTIS can be used to model systems by using input-output relationships. Unless time-invariant

linear systems represent idealizations of the processes encountered in real life, the approximations

involved are often justified and design considerations based on linear theory lead to good results in

many cases (Ljung, 1987). The response of time-invariant systems to a certain input does not depend

on absolute time. The output response of linear systems to a linear combination of inputs is the same

linear combination of the output responses of individual inputs (Ljung, 1987).

ANNs provide a mechanism for learning from data and mapping of data. They can solve complex

problems and can “learn” from prior applications. These properties make neural networks a power-

ful tool for modeling nonlinear systems. Therefore, neural networks can be trained to provide an

alternative approach for problems that are difficult to solve such as decision-making problems in GIS.

Identifying models using input-output data has been extensively studied in the control field and

has been successfully applied to modeling of complex systems. System identification methods and

tools, such as LTIS and ANNs, are also applied to GIS (Kanevski et al., 2004; Almasri and Kalu-

arachchi, 2005; Taylor et al., 2007; Sousa et al., 2007). In GIS, attributes of the neighbors of some

object of interest may have an influence on the object and therefore have to be considered as well

(Ester et al., 1997). This is also the main difference between knowledge discovery in databases for

relational database systems and in spatial database systems (Ester et al., 1997).
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The aim of this study is to compare model estimation accuracies of the two of the system iden-

tification tools, LTIS and ANNs, for ill-defined spatial decision-making problem. In this perspective,

FuzzyCell (Yanar and Akyurek, 2006) was used to model a site selection problem by capturing rules

from human experts using its natural language interfaces. Then, FuzzyCell converts these rules to

fuzzy if-then rules. Application of these fuzzy rules to input data layers produces sites with degree of

satisfaction depending on the searching criteria. If LTIS and ANNs are trained by the obtained data

defining suitable sites against input data, then these systems can produce models for the decision-

making problem. The comparison of the LTIS and ANNs for spatial decision-making problems in GIS

is done by measuring their prediction accuracies and time required for learning and prediction.

The paper is organized as follows. A brief description of the system identification process from

GIS perspective is given in Section B.3. Section B.4 introduces methods, linear time-invariant systems

and artificial neural networks. In Section B.5, decision-making problem, data used in the analyses,

performance metrics used to compare methods are given and experiment results are reported. Dis-

cussions and conclusions are given in Sections B.6 and B.7.

B.3 System Identification from GIS Perspective

The system identification is a general term used to describe set of tools and algorithms to estimate a

model of a system based on the observed input-output data (Ljung, 1987). Estimating a model of a

system from observed input-output data involves three basic steps; (Ljung, 1987)

1. Input and output data

2. Model structure

3. Identification method (i.e., a criterion to select a particular model in the set)

From the GIS perspective;

1. The data collections may consist of maps, imagery, sensor data, in situ measurements which

are in various forms (e.g., raster, vector, text, etc.) and formats. In order to obtain successful

estimations it will be necessary to access such large and heterogeneous data collection.

2. Determining the model structure is the most important and the most difficult part of the

system identification procedure. There are so many techniques defined. For example, fuzzy set

theory (Yen and Langari, 1999; Takagi and Sugeno, 1985; Emami et al., 1998; Grisales et al.,

2005), statistical methods (Fukunaga, 1990; Kohonen, 1990; Anderberg, 1971), unsupervised

learning techniques (Fukunaga, 1990; Kohonen, 1990; Anderberg, 1971) followed by supervised

learning techniques, decision trees (e.g., ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993)), neural

networks (Haykin, 1994), genetic algorithms (Holland, 1975; Kristinsson and Dumont, 1992),

etc. and hybrid systems which are the combination of more than one technique (Takagi and

Hayashi, 1991; Lee and Takagi, 1993; Takagi, 1993).

Despite there is no fuzzy model identification example (i.e., system identification from input-

output data using fuzzy models) in GIS, plenty of research investigated the identification of
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membership function parameters for geo-referenced data. One approach in obtaining member-

ship function parameters and rules is using users’ own experience or throughout the consulta-

tion with experts in the related field (Yanar and Akyurek, 2006; Zhu et al., 1996; Sasikala and

Petrou, 2001; Jiang and Eastman, 2000; Dragicevic and Marceau, 2000; Kollias and Kalivas,

1998; Zeng and Zhou, 2001; Benedikt et al., 2002). Other approaches rely on the numerical

processing of data. For example, Ahamed et al. (2000) used Euclidean distance based measure

to determine membership degree of soil in soil erosion classes. Eigenvector method is also used

to determine membership function parameters and weights (Chen et al., 2001). It is based

on the computation of pairwise comparison matrices for evaluating the relative importance of

criteria where the importance weights for criteria are given by two decision groups. K-means

clustering (Iliadis, 2005) and analytical hierarchy process (Sadiq and Husain, 2005) are other

examples for determining membership function parameters and weights. Determination of

membership function parameters i.e., parameter estimation is only a part of the sub problem

of fuzzy system identification.

Other methods that can be used for system identification than fuzzy logic are also used ex-

tensively in GIS but largely for knowledge discovery processes. Such as, Lee and Kerschberg

(1998) integrate two types of learning, unsupervised Bayesian classification and supervised

inductive learning to discover useful concepts, relationships and rules that characterize knowl-

edge in precision agriculture data space. Sester (2000) also used supervised learning for in-

terpretation of 2D map data and discover structural models. Rough sets concept and GIS

data attributes are also used for knowledge discovery from geographic information (Han et al.,

2004). In the proposed work, experts provide condition attributes, decision attributes, param-

eters, minimum-maximum values of the domain and linguistic values for each attribute. Bell

shaped membership function is used assuming that data is normally distributed and member-

ship function parameters are calculated based on data distribution, user entered values and

parameters. A decision table is constructed to get a reduction of attributes and to reduce every

rule. Finally, the most concise rules are determined by building and training a neural network

with reduced rule set.

3. To identify the best available model in the set, performances of the models are evaluated for

unseen data (i.e., validation or testing data set). Dividing the available training data into an

estimation subset and a validation subset to result in spatially disjoint sets may provide better

evaluation results (Lazarevic et al., 2000).

B.4 Methods and Tools

In broad terms, an object in which variables of different kinds interact and produce observable output

data is called a system (Ljung, 1987). External influences that can be manipulated by the observer are

called input. Determining relations between the measurements of the behavior of the system (outputs

of the system) and the external influences (inputs to the system) without going into the details of

what actually happening inside the system is known as system identification.
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In linear system, behavior of the resulting system subjected to a complex input can be described

as sum of responses to simpler inputs. On the other hand, in nonlinear system, behavior of the system

is not expressible as sum of the behaviors of its descriptors.

In this work, LTIS and ANNs were used to identify ill-defined spatial decision-making problems.

LTIS were selected because of their high prediction accuracies. And, ANNs were selected since they

are frequently used in problems of GIS.

B.4.1 Models of Linear Time-Invariant Systems

A linear time-invariant (LTI) system investigates the response of a linear and time-invariant system

to an arbitrary input. LTI system is identified by its linearity and time invariance properties. In

linear systems, the output response to a linear combination of inputs is the same linear combination

of the output responses of individual inputs. Time invariance property means that system’s response

to a certain input does not depend on absolute time (Ljung, 1987).

A simple input-output relationship can be obtained by describing it as a linear difference equation

(Equation B.1).

y(t) + a1y(t − 1) + a2y(t − 2) + . . . + ana
y(t − na) =

b1u(t − 1) + b2u(t − 2) + . . . + bnb
u(t − nb) + e(t) (B.1)

which relates the current output y(t) to a finite number of past outputs y(t − k) and inputs u(t −

k). a1, . . . , ana
, b1, . . . , bnb

are the system coefficients. If we define backward shift operator q−1 as

q−1u(t) = u(t − 1) then Equation B.1 becomes

A(q)y(t) = B(q)u(t) + e(t) (B.2)

where

A(q) = 1 + a1q
−1 + a2q

−2 + . . . + ana
q−na

B(q) = b1q
−1 + b2q

−2 + . . . + bnb
q−nb (B.3)

Equation B.3 is called an ARX model where AR refers to autoregressive part A(q)y(t) and X to the

extra input B(q)u(t) part.

Unlike the ARX model, the ARMAX model structure includes disturbance dynamics. Error is

described by a moving average of white noise. The ARMAX model has more flexibility in the handling

of disturbance modeling than the ARX model. The ARMAX model is given in Equation B.4.

A(q)y(t) = B(q)u(t) + C(q)e(t) (B.4)

A state-space model provides a more complete representation of the system than parametric

models like ARX and ARMAX. A state-space model represents a system as a set of input, output and

state variables with related first-order differential equations. The model is written in the following

form

x(t + 1) = Ax(t) + Bu(t) + Ke(t)

y(t) = Cx(t) + Du(t) + e(t) (B.5)
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x(t) is the state vector, y(t) is the system output, u(t) is the system input and e(t) is the error.

A, B, C, D and K are the system matrices.

B.4.2 Artificial Neural Networks

Artificial neural networks are originally motivated by the biological structures in the brains of human

and animals, which are powerful for such tasks as information processing, learning and adaptation

(Nelles, 2000). ANNs are composed of a set of connected nodes or units where each connection has a

weight associated with it. ANNs can “learn” from prior applications. During the learning phase, the

network learns by adjusting the weights. If a poor solution to the problem is made, the network is

modified to produce a better solution by adjusting its weights.

Although, ANNs learn well, they have a long training time (time required for learning phase).

Also, there are no clear rules to build network structure (Han and Kamber, 2001). Network design is

a trial-and-error process which may affect accuracy of the result and there is no guarantee that the

selected network is the best network structure. Another major drawback to the use of ANNs is their

poor interpretability (Yen and Langari, 1999).

On the other hand, neural network’s tolerance to noisy data is high and they are robust against

the failure of single units. Like all statistical models, ANNs are subject to overfitting when the ANN

is trained to fit one set of data almost exactly (Russell and Norvig, 2003; Dunham, 2003). When

training error associated with the training data is quite small, but error for new data is very large,

generalization set is used. Also, to avoid overfitting, smaller neural networks are advisable (Dunham,

2003).

B.5 Application

Decision-making problem, used in the analysis and tests, was taken from the study of Yanar and

Akyurek (2006). According to the decision problem, suitable sites for industrial development are

selected using the criteria “if site has flat or gentle slope and if site is close to roads and town then site

is suitable for industrial development”. For humans it is simple to comprehend and make decisions

based on these vague terms. Conventional GIS, which is based on crisp logic, cannot evaluate such

vague statements. On the other hand, FuzzyCell can be used to model the decision problem by using

its natural language interfaces and find fuzzy answer to site selection problem. The decision-making

problem was modeled by using FuzzyCell and named as FuzzyCellModel. This model, which involves

fuzzy rules and membership functions, was captured from human experts using FuzzyCell. This model

has two fuzzy rules given in Rules B.6 and B.7.

Rule 1. IF Slope is flat and

Distance to road is close and

Distance to town is close

THEN Suitability is good. (B.6)
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(a) (b)

(c) (d)

Figure B.1: Membership functions for (a) Slope, (b) Distance to road, (c) Distance to

town, and (d) Suitability.

Rule 2. IF Slope is gentle and

Distance to road is close and

Distance to town is close

THEN Suitability is good. (B.7)

Membership functions for linguistic terms constructed based on expert knowledge are depicted in

Figure B.1.

Membership functions can be chosen by the experts arbitrarily based on experts’ experiences on

the problem domain. Hence, membership functions for two experts could be quite different upon their

experiences and perspectives. Both membership function types and parameters shown in Figure B.1

were given by experts. It has to be also noted that linguistic term “close” was used twice, one stands

for “distance to road” and the other stands for “distance to town” and two different membership

functions were defined for this linguistic term. This illustrates the fact that membership functions

can be quite context dependent.

B.5.1 Data

FuzzyCellModel, which was built depending on expert knowledge, uses slope, closeness to roads and

closeness to town maps as input. Output data were generated by using FuzzyCell applying the

constructed model to input data layers and define suitability values for industrial development sites.

Two different data sets belonging to two geographically disjoint regions were used. One data set
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Table B.1: Minimum and maximum values of the DataSet1 and DataSet2

Layer Name Minimum Value Maximum Value

DataSet1 (Birecik region)

Slope 0 44.9880

Distance to Road 0 4371.1440

Distance to Town 0 9798.4453

Output Suitability 50 96.5000

DataSet2 (Bartın region)

Slope 0 73.9123

Distance to Road 0 3802.6824

Distance to Town 0 11344.0928

Output Suitability 50 93.0000

was taken from Birecik region (DataSet1) and the second data set was from Bartın region (DataSet2).

Each data set includes three input maps (i.e., slope, closeness to roads and closeness to town) and

one calculated map (i.e., suitability map). All input and output maps have the same cell size and the

same coordinate system. Dimensions of all the maps are 1000-by-1000 pixels. Histograms of the data

layers used are given in Figure B.2 and minimum and maximum values of the data layers are listed

in Table B.1.

Input and target values of Birecik and Bartın zone were mapped into the interval [−1, +1] by

using formula given in Equation B.8 to simplify the problem.

y =
(ymax − ymin) × (x − xmin)

(xmax − xmin)
+ ymin (B.8)

Equation B.8 processes matrix x by normalizing the minimum (xmin) and maximum (xmax) values

to [ymin, ymax] and produces a normalized matrix y.

It also ensures that target values fall into the range that new neural networks can reproduce.

Lastly, the data were divided into training, generalization and test sets for ANNs. The training set

was used for training the network. Generalization set was used to validate network performance

during training so that training stopped early if it attempted to overfit the training data. Test set

was used for an independent measure of how the network might be expected to perform on data it

was not trained on. 20% of data (i.e., 200000 cells) was selected for generalization set and 20% for

the test set (i.e., 200000 cells), remaining 60% of data (i.e., 600000 cells) was selected for training set.

For LTIS, the data were divided into training and test sets. The training set was used for estimation

of model parameters. And test set was used for an independent measure of how the identified model

might be expected to perform on data it was not trained on. 40% of data (i.e., 400000 cells) was

selected for test set and remaining 60% of data (i.e., 600000 cells) was selected for training set.
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Figure B.2: Histograms of the data layers belonging to (a) DataSet1 and (b) DataSet2.
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B.5.2 Performance Metrics

The goal of this study was to compare models identified by LTIS and ANNs, in defining the ill-

defined GIS based decision-making problems. As discussed in the Section B.5, the problem “selection

of suitable sites for industrial development” was modeled by using FuzzyCell with the help of expert

judgments. Model of this decision problem includes rule base (Rules 1 and 2) and membership function

parameters (Figure B.1). Output was generated by applying these rule base and membership functions

to input data. Calculated output data (i.e., suitability map) using the constructed model (i.e., rule

base, membership function parameters and output) was taken as reference.

The reference output and the predictions made with LTIS and ANNs were compared using two

performance metrics;

1. Two-sample Kolmogorov-Simirnov (KS) test statistic, and

2. Root mean square error (RMSE).

These metrics specify error and similarity between the reference and the predicted outputs. These

metrics compare predicted data set with target data set and give lower results when predicted data

and target data are more similar.

Two-sample KS test is a non-parametric test for ratio scale data. The two-sample KS test statistic

compares the distribution of values in the two sample data vectors representing random samples from

some underlying distributions (McKillup, 2006). The objective is to determine if these two data sets

have been drawn from identical population distribution functions. Therefore, null hypothesis for this

test is whether the two sample data vectors are drawn from the same continuous distribution. The

alternative hypothesis is that they are drawn from different continuous distributions. To compare the

distributions of the values in the two data vectors x1 and x2, the test statistic is computed by:

KSStatistic = max (|F1(x) − F2(x)|) (B.9)

where F1(x) is the proportion of x1 values less than or equal to x and F2(x) is the proportion of x2

values less than or equal to x.

RMSE is computed by taking square root of average of the squared differences between each

computed value (x̂i) and its corresponding correct value (xi). Root mean square error formula is

given below:

RMSE =

 

1

n

n
X

i=1

(xi − x̂i)
2

!1/2

(B.10)

Since input and target values were mapped into the interval [−1, +1], before calculating two-

sample KS test statistic and RMSE the predictions made with LTIS and ANNs were mapped back

into their original scale. Furthermore, for two-sample KS test, significance level was set to 5%.

In addition to the prediction accuracy, training time and time needed to accomplish the applica-

tion of identified model to input data from geographically different regions were also used to compare

run-time efficiency of the LTIS and ANNs. The configuration of the dedicated workstation was IntelR©

XeonR© 3.20GHz Dual CPU with 1GB RAM and operating system was MicrosoftR© WindowsR© XP

Professional Version 2002 with Service Pack 2.
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B.5.3 Site Selection Example

LTIS

MATLABR© System Identification Toolbox
TM

was used for modeling linear time-invariant systems.

In the System Identification Toolbox
TM

input and output data are represented as column vectors. If

the system has several input layers, the input data is represented by a matrix, where the columns are

the input data in different layers. The same holds for systems with several output layers.

Input Column Vector, u = [uroad utown uslope] (B.11)

Output Column Vector, y = [ysuitability] (B.12)

Estimation of parametric models in this study involves AutoRegressive with eXternal input

(ARX), AutoRegressive Moving Average with eXternal input (ARMAX) and state-space models.

Best models for each type of parametric models were investigated and selected based on their pre-

diction performances. All models require some parameters (coefficients of polynomials) for system

definitions. These parameters and model structure together identify a linear time-invariant model.

Therefore, it is the main idea to find parameters such that the prediction performance of the whole

model is the highest.

ARX model has an advantage that many models (10000 models in this study) can be estimated

simultaneously. According to the estimation results, models with highest fitness values were further

investigated and best model is selected.

ARMAX models are the elaborations of the basic ARX model where different disturbance models

are introduced. The reason for introducing all these model variants is to provide for flexibility in the

disturbance description and to allow for common or different dynamics (poles) for different inputs

(Ljung, 1987). Unfortunately, it is not possible to estimate many different structures simultaneously

for input-output models. For these models, parameters of the systems were investigated by taking

ARX model parameters as reference and performing trials. Models, which gave the smallest error

value, were chosen.

As in ARX models, parameterization of state-space models were performed by estimating many

models simultaneously and selecting the one with the highest fitness value. There are two basic

methods for estimation of parameters in state-space models:

1. PEM: Prediction error/maximum likelihood method, based on iterative minimization of a cri-

terion.

2. N4sid: Subspace based method that does not use iterative search.

In this work, both methods were used for state-space models.

Input and output vectors for the analyses were prepared by transforming input and output ma-

trices with two different methods.

1. Column tracing: Each column of matrices was added back to back to form vector structure.
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2. Row tracing: First row was converted to column vector, second row was reverted and then

converted to column vector and added to the first column vector. Other rows were processed

according to this rule.

For example, assume that we are given matrix A.

A =

2

6

6

6

4

1 2 3

4 5 6

7 8 9

3

7

7

7

5

(B.13)

The column vector, Acolumn, after performing column tracing process is shown in Equation B.14.

Acolumn =
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(B.14)

and column vector after performing row tracing rule is shown in Equation B.15.

Arow =
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(B.15)

Both methods preserve neighborhood relation in only one direction. To evaluate global spatial au-

tocorrelation in input and output data for adjacencies defined by column tracing and row tracing,

Moran’s I measure was calculated and given in Table B.2.

Moran’s I values range from −1 (indicating perfect dispersion) to +1 (perfect correlation). A zero

value indicates a random spatial pattern. All values in Table B.2 indicate near perfect correlation. In

addition, for DataSet1, Moran’s I values of layers for row tracing method (left-right adjacency) are

slightly higher than values for column tracing method (top-down adjacency). Since spatial autocor-

relation in DataSet1 for row tracing method is slightly higher than column tracing method, we may

expect slightly better accuracies from the models identified using row tracing data for DataSet1.

Experiment-1 Results Constructed models are listed in Table B.3. Prediction performance

comparison tables for Birecik and Bartın zones for both column and row tracing methods are given
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Table B.2: Moran’s I measures for DataSet1 and DataSet2

Layer Name Top-Bottom Left-Right

Adjacency1 Adjacency2

DataSet1

Slope 0.9779 0.9824

Distance to Road 0.9962 0.9980

Distance to Town 0.9955 0.9980

Output Suitability 0.9956 0.9977

DataSet2

Slope 0.9561 0.9528

Distance to Road 0.9975 0.9979

Distance to Town 0.9964 0.9980

Output Suitability 0.9318 0.9247

1 Column tracing method.

2 Row tracing method.

in Table B.4, Table B.5, Table B.6 and Table B.7. Prediction accuracy measures were calculated for

test sets.

Since input and output data are represented as column vectors, we used two different methods to

transform input and output matrix data into vector form as discussed in Section B.5.3. According to

KS statistics, models trained and tested with row tracing method performed better predictions than

models trained and tested with column tracing method for both data sets DataSet1 and DataSet2.

For DataSet1, models constructed with row tracing method also produced smaller RMSE values.

Therefore, for DataSet1, models constructed with row tracing method are better as expected since

spatial autocorrelation in DataSet1 for row tracing method was slightly higher than column tracing

method. According to RMSE statistics, models for DataSet1 performed better predictions than models

built for DataSet2. In addition, Arx models required less training times than other methods require.

ANNs

MATLABR© Neural Network Toolbox
TM

was used for identifying neural network prediction perfor-

mance trained with geographic data. In the Neural Network Toolbox
TM

input and output (target)

data are represented as row vectors. If the system has several input layers, the input data is repre-

sented by a matrix, where the rows are the input data in different layers. Similar convention is used

for output with more than one layer; which is not very common.

Input Row Vector, p =

2

6

6

6

4

proad

ptown

pslope

3

7

7

7

5

(B.16)

Output Row Vector, t = [tsuitability] (B.17)
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Table B.3: Constructed models

Region Vectorization Model Model

Method Name Type

Birecik Column Birecik-LTIM-C1 ARX

(DataSet1) tracing Birecik-LTIM-C2 ARMAX

Birecik-LTIM-C3 N4sid

Birecik-LTIM-C4 PEM

Row Birecik-LTIM-R1 ARX

tracing Birecik-LTIM-R2 ARMAX

Birecik-LTIM-R3 N4sid

Birecik-LTIM-R4 PEM

Birecik Column Bartın-LTIM-C1 ARX

(DataSet2) tracing Bartın-LTIM-C2 ARMAX

Bartın-LTIM-C3 N4SID

Bartın-LTIM-C4 PEM

Row Bartın-LTIM-R1 ARX

tracing Bartın-LTIM-R2 ARMAX

Bartın-LTIM-R3 N4sid

Bartın-LTIM-R4 PEM

Table B.4: Model prediction accuracies for DataSet1 (column tracing)

Model KS RMSE Training

Time (sec.)

Birecik-LTIM-C1 0.0327 0.6667 11

Birecik-LTIM-C2 0.0306 0.6638 114

Birecik-LTIM-C3 0.0336 0.6807 109

Birecik-LTIM-C4 0.0328 0.6679 335

Table B.5: Model prediction accuracies for DataSet1 (row tracing)

Model KS RMSE Training

Time (sec.)

Birecik-LTIM-R1 0.0191 0.2163 13

Birecik-LTIM-R2 0.0294 0.2149 60

Birecik-LTIM-R3 0.0291 0.2193 54

Birecik-LTIM-R4 0.0196 0.2232 133
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Table B.6: Model prediction accuracies for DataSet2 (column tracing)

Model KS RMSE Training

Time (sec.)

Bartın-LTIM-C1 0.0291 5.3854 15

Bartın-LTIM-C2 0.0272 5.5070 180

Bartın-LTIM-C3 0.0298 5.3670 28

Bartın-LTIM-C4 0.0249 5.5618 28

Table B.7: Model prediction accuracies for DataSet2 (row tracing)

Model KS RMSE Training

Time (sec.)

Bartın-LTIM-R1 0.0284 5.4922 12

Bartın-LTIM-R2 0.0246 5.6192 35

Bartın-LTIM-R3 0.0286 5.4703 26

Bartın-LTIM-R4 0.0246 5.6191 180

Before using data layers with neural networks some pre-processing steps were taken for all input

and output maps. Since neural networks use data vectors, two dimensional input and output maps

were transformed to one dimensional column vectors. Data vectors for the analyses may be prepared

by transforming data matrices with different methods such as column and row tracing as discussed

previously. These methods preserve neighborhood relation in one dimension. Because multilayer

feed-forward neural networks have no internal state other than the weights themselves (Russell and

Norvig, 2003), vectorization process should not affect the performance. Therefore, in this work input

and output column vectors were formed randomly, using MATLABR© “randperm” command. For

example, assume that we are given matrix A as in Equation B.13. The column vector, Acolumn, after

randomly selecting locations is shown in Equation B.18.

Acolumn =
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(B.18)

Although there are plenty of network types that can be used for identifying models of unknown

geographic phenomena, feed forward backpropagation networks were used in this work. Standard

backpropagation is a gradient descent algorithm in which the network weights are moved along the

negative of the gradient of the performance function (Demuth et al., 2006).
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Figure B.3: Tan-sigmoid transfer function.

A multilayer network has multiple layers of neurons. Each layer plays different roles. A layer

that produces the network output is called an output layer. All other layers are called hidden layers.

Since there is only one target value associated with input vectors, all networks used in this study

should have one output neuron. The number of hidden layers and the number of neurons used in each

layer were changed to create different network structures. The aim was to find a network structure

which gives the most similar values with output layer. Unfortunately, there are no clear rules to build

appropriate network structure (Han and Kamber, 2001). Therefore, this step requires testing many

different structures and there is no guarantee that the selected network which gives the most similar

values is the best network structure among all alternatives. This is the main disadvantage of using

neural networks.

Multiple layers of neurons with nonlinear transfer functions allow the network to learn nonlinear

and linear relationships between input and output data. A linear transfer function in the output

layer lets the network produce values outside the range −1 to +1. On the other hand, we want to

constrain the outputs of a network between −1 and +1 therefore in the output layer we used tan-

sigmoid transfer function. For all networks tan-sigmoid transfer function was used. Equation of the

transfer function is given in Equation B.19 and the function is depicted in Figure B.3.

a = tansig(n) =
2

1 + e−2n
− 1 (B.19)

Once network weights and biases were initialized the network training began. All networks used

Levenberg-Marquardt backpropagation algorithm for training and gradient descent with momentum

weight and bias learning function. Mean squared error was used for network performance function

which measures the network’s performance according to the mean squared errors.

Experiment-2 Results Built networks and their properties are listed in Table B.8. Prediction

performances of networks trained and tested with data from Birecik and Bartın zones are shown in

Table B.9 and Table B.10.

According to RMSE test metrics network Birecik-ANN-5 trained and tested with DataSet1 was

the best predictor. Network Birecik-ANN-5 contains one hidden layer with five nodes and one output

layer with one node. KS statistics indicate network Birecik-ANN-8, which consists of two hidden layer
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Table B.8: Trained feed forward neural networks for DataSet1 and DataSet2

Network Name Layer Neuron Count Neuron Count Neuron Count

Count Hidden Layer1 Hidden Layer2 Output Layer

Birecik-ANN-1 2 1 NA 1

& Bartın-ANN-1

Birecik-ANN-2 2 2 NA 1

& Bartın-ANN-2

Birecik-ANN-3 2 3 NA 1

& Bartın-ANN-3

Birecik-ANN-4 2 4 NA 1

& Bartın-ANN-4

Birecik-ANN-5 2 5 NA 1

& Bartın-ANN-5

Birecik-ANN-6 3 1 1 1

& Bartın-ANN-6

Birecik-ANN-7 3 1 2 1

& Bartın-ANN-7

Birecik-ANN-8 3 2 2 1

& Bartın-ANN-8

Table B.9: Network prediction accuracies for DataSet1

Model KS RMSE Training

Time (sec.)

Birecik-ANN-1 0.1507 2.6199 1160

Birecik-ANN-2 0.0846 1.0971 1675

Birecik-ANN-3 0.0614 0.9763 2222

Birecik-ANN-4 0.0384 1.0597 3249

Birecik-ANN-5 0.0388 0.4821 1749

Birecik-ANN-6 0.1507 2.6183 1586

Birecik-ANN-7 0.1507 2.6200 1974

Birecik-ANN-8 0.0346 0.4937 2650
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Table B.10: Network prediction accuracies for DataSet2

Model KS RMSE Training

Time (sec.)

Bartın-ANN-1 0.3014 11.9558 230

Bartın-ANN-2 0.0546 8.2210 1106

Bartın-ANN-3 0.0456 2.1163 736

Bartın-ANN-4 0.0458 1.9819 3220

Bartın-ANN-5 0.0329 1.7718 3570

Bartın-ANN-6 0.3645 11.8817 1570

Bartın-ANN-7 0.2895 11.6739 1995

Bartın-ANN-8 0.1671 6.6730 2669

with two nodes in both hidden layers and one output layer with one node, produced best prediction

performance for DataSet1. For DataSet2, according to KS and RMSE statistics network Bartın-ANN-

5 produced better prediction performances.

All identified linear time-invariant models using row tracing method performs better than neural

networks according to both metrics. According to KS statistics, identified linear time-invariant models

using column tracing method also performs better. For DataSet1, based on RMSE statistics LTIS

generally performed better than ANN. In addition, linear tine-invariant models required less training

times than ANNs require.

B.5.4 Testing Models with Different Geographical Region

LTIS and neural networks constructed for one region were used for other geographical region, to test

their prediction performance. Geographical regions are disjoint and have different characteristics (see

Figure B.2). The purpose of this test was to find the generic methods which give better prediction

performances over different geographical regions. Models and networks trained with DataSet1 were

tested with DataSet2 and models and networks trained with DataSet2 were tested with DataSet1.

LTIS

Experiment-3 Results Table B.11 and Table B.12 show test results obtained by testing

trained models with unseen DataSet2. Times given in tables are the time needed to accomplish

the application of trained model to input data from geographically separated (disjoint) region (i.e.,

DataSet2). Table B.13 and Table B.14 show results for linear time-invariant models constructed

from DataSet2 and tested with DataSet1.

Models constructed using row tracing method performed better predictions for both data sets

according to KS statistics. Based on RMSE test values, models constructed using DataSet2 are

more general, since accuracies of the predictions made using DataSet2 models are higher than the

accuracies of the predictions made using DataSet1 models. RMSE values obtained when models
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Table B.11: Performance tests for LTIS constructed from DataSet1 and tested with

DataSet2 (column tracing)

Model KS RMSE Prediction

Time (sec.)

Birecik-LTIM-C1 0.0321 5.5766 18.3

Birecik-LTIM-C2 0.0222 5.6105 30.6

Birecik-LTIM-C3 0.0279 5.7807 12.9

Birecik-LTIM-C4 0.0313 5.5765 26.9

Table B.12: Performance tests for LTIS constructed from DataSet1 and tested with

DataSet2 (row tracing)

Model KS RMSE Prediction

Time (sec.)

Birecik-LTIM-R1 0.0216 5.5628 9.6

Birecik-LTIM-R2 0.0216 5.6584 55.6

Birecik-LTIM-R3 0.0220 6.0601 22.6

Birecik-LTIM-R4 0.0220 5.6050 7.9

Table B.13: Performance tests for LTIS constructed from DataSet2 and tested with

DataSet1 (column tracing)

Model KS RMSE Prediction

Time (sec.)

Bartın-LTIM-C1 0.0345 0.7632 18.0

Bartın-LTIM-C2 0.0346 0.6828 80.4

Bartın-LTIM-C3 0.0343 0.7441 15.4

Bartın-LTIM-C4 0.0346 0.6710 6.2

Table B.14: Performance tests for LTIS constructed from DataSet2 and tested with

DataSet1 (row tracing)

Model KS RMSE Prediction

Time (sec.)

Bartın-LTIM-R1 0.0313 0.3801 9.2

Bartın-LTIM-R2 0.0198 0.2211 9.1

Bartın-LTIM-R3 0.0201 0.3271 15.4

Bartın-LTIM-R4 0.0176 0.2219 17.8
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Table B.15: Performance tests for ANNs constructed from DataSet1 and tested with

data from DataSet2

Model KS RMSE Prediction

Time (sec.)

Birecik-ANN-1 0.2317 14.4030 6.4

Birecik-ANN-2 0.1572 13.0735 6.6

Birecik-ANN-3 0.1433 12.9009 6.9

Birecik-ANN-4 0.1374 13.5434 7.2

Birecik-ANN-5 0.1291 12.9502 7.5

Birecik-ANN-6 0.2311 14.3979 6.7

Birecik-ANN-7 0.2317 14.4029 7.0

Birecik-ANN-8 0.1180 13.3484 7.2

Table B.16: Performance tests for ANNs constructed from DataSet2 and tested with

data from DataSet1

Model KS RMSE Prediction

Time (sec.)

Bartın-ANN-1 0.3934 6.1940 6.0

Bartın-ANN-2 0.2192 5.5380 6.4

Bartın-ANN-3 0.1530 3.9441 6.5

Bartın-ANN-4 0.1401 3.9198 6.8

Bartın-ANN-5 0.1205 3.9283 7.2

Bartın-ANN-6 0.4341 7.6215 6.4

Bartın-ANN-7 0.3934 8.3824 6.6

Bartın-ANN-8 0.3122 5.3134 7.0

constructed using DataSet2 were used to predict DataSet1 are in the range [0.2211, 0.7632], while

RMSE values obtained from the models constructed using DataSet1 are in the range [5.5628, 6.0601].

Also, generally models built with DataSet2 end the estimation in less time.

ANNs

Experiment-4 Results Results in Table B.15 shows test results obtained by testing trained

networks with unseen DataSet2. Times given in table are the time needed to accomplish the applica-

tion of trained network to input data from geographically separated (disjoint) region (i.e., DataSet2).

Table B.16 shows results for networks trained with DataSet2 and tested with DataSet1.

There is not much difference between accuracies for the models constructed from both data sets

when they were tested on different geographic region when KS statistics are used for comparison.

On the other hand, according to RMSE metric networks trained with DataSet2 produced better
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predictions. While RMSE metrics for DataSet2 networks are in between 3.9198 and 8.3824, RMSE

metrics for DataSet1 networks are in between 12.9009 and 14.4030. Although, the error on networks

trained with DataSet1 were small than DataSet2 networks, when new data was presented to the

networks the error was large for DataSet1 networks. Moreover, prediction times were in between 6.0

seconds and 7.5 seconds.

B.6 Discussion

In this work, LTIS and ANNs were used to model a spatial decision-making problem. Both meth-

ods can construct models and networks by using input-output data relationships. We used slope,

distance to road and distance to town maps as input. Output data were the suitability map, which

was calculated using FuzzyCell. We have two datasets which came from two disjoint regions. The

characteristics of the regions were different as shown in Figure B.2. LTIS and ANNs were compared

with different examples and results were given in the previous section. According to the results, linear

time-invariant models and networks trained with DataSet1 seem overfitted to the data. While perfor-

mances of the predictions on DataSet1 test data were very good, they did not achieve similar success

when they used to predict DataSet2. On the other hand, linear time-invariant models and networks

learned using DataSet2 were more general since they performed good predictions for DataSet1.

MATLABR© System Identification Toolbox
TM

and Neural Network Toolbox
TM

were used in the

experiments. Since both toolboxes use data in vector form, input and output matrices were converted

to vector form using column (top-bottom adjacency) and row tracing (left-right adjacency) methods.

After conversion, spatial autocorrelation in data were calculated using Moran’s I. According to the

experiment results, models trained with data which have higher Moran’s I values result in higher

prediction accuracies. Moreover, LTIS performed better predictions than ANNs. They also required

less training times than ANNs require. Although, learning of networks took much time, prediction

times were as low as LTIS prediction times.

In Figure B.4, we illustrate predictions made on DataSet2 using linear time-invariant models and

ANNs trained with DataSet1. Original output and outputs produced by best methods for LTIS and

ANNs are given. To compare the values of reference output and outputs produced by best methods for

LTIS and ANNs, ten locations were randomly selected and associated values are given in Table B.17.

B.7 Conclusion

Building spatial analyses rules for a decision problem is difficult if the decision problem to be modeled

is high dimensional. If the spatial nature of the phenomena is not entirely known by the user, then

it is quite difficult to adequately describe the solution steps. In such cases, decision models can be

estimated using observed input-output data for the phenomena.

In this paper, we used linear time-invariant systems and feed forward backpropagation neural

networks to acquire knowledge about unknown or unmanageable spatial analysis tasks using input-

output relationship. To compare methods two metrics, two-sample KS test and RMSE value and
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Figure B.4: Graphs for (a) Bartın suitability (reference output), (b) Output data

produced by Birecik-LTIM-R1, (c) Output data produced by Birecik-ANN-3, and (d)

Histograms of output suitability values.
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Table B.17: Selected output values

Point Reference Birecik-LTIM-R1 Birecik-ANN-3

no output output output

1 55 55.05 58.61

2 0 11.42 76.14

3 33 32.95 22.66

4 68 68.07 65.78

5 75 74.92 80.07

6 0 0.13 10.77

7 32 31.15 23.78

8 0 -0.06 76.86

9 69 67.93 64.15

10 66 65.94 72.13

time required for training and prediction were used. It was seen that these metrics are not always

in agreement. In addition to these, residual graphs may be used for comparing results of the models

and networks.

The work examined the use of LTIS and ANNs for decision-making problems of GIS by mea-

suring their prediction accuracies and time required for learning and prediction. For LTIS, ARX,

ARMAX, and state-space model structures, for ANNs feed forward backpropagation networks were

used. FuzzyCell was used to model site selection problems by capturing rules from human experts

using its natural language interfaces. After capturing rules from human experts, FuzzyCell converted

these rules to fuzzy if-then rules. Application of these fuzzy rules to input data layers produced sites

with degree of satisfaction for searching criteria. LTIS and ANNs were trained with input-output data

pairs where output data were calculated by GIS-based fuzzy inference system, FuzzyCell, as described

above. In this work, it was tested that whether system identification models trained by data obtained

from fuzzy models can produce reasonable guesses for locations other than training sites when com-

pared to results obtained from fuzzy rule based system, FuzzyCell. Additionally, system identification

models constructed from one geographical region were used for another geographical region to test

their prediction performance. Geographical regions are disjoint and have different characteristics.

The purpose of this test was to find the generic methods which give better prediction performances

over different geographical regions. When models were tested with geographically separate region,

LTIS produced better predictions. Also, in the experiments LTIS required less training times than

ANNs. However, after learning was done, ANNs produced predictions in less time. LTIS perform

better predictions and require less training time.

While identifying an unknown spatial phenomena using input-output data relationship, both

prediction accuracy and interpretability of driven model are important. Despite higher prediction

accuracies were obtained by both LTIS and ANNs, interpretability of driven models and networks

were very difficult. Therefore, neither LTIS nor ANNs are convenient to acquire knowledge about
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unknown or unmanageable spatial analysis tasks using input-output relationship. However, after

learning both methods can be used to estimate decisions for new locations faster.

Building accurate interpretable models while identifying an unknown spatial phenomena using

input-output data relationship can be addressed as a future work.
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APPENDIX C

THE USE OF NEURO-FUZZY

SYSTEMS IN ILL-DEFINED DECISION

MAKING PROBLEMS WITHIN GIS

Tahsin Alp Yanar and Zuhal Akyürek

Submitted to Information Sciences

C.1 Abstract

Fuzzy set theory is introduced into GIS to obtain more flexibility and more effective capability of

handling and processing imprecise information about the real world. Extending GIS operations with

fuzzy logic methodologies not only offers a way to represent and handle uncertainty present in the

continuous real world but also assist GIS user to make decisions using experts’ experiences in decision-

making process. Using fuzzy logic methodologies, the GIS user can approximate complex ill-defined

problems in decision-making processes by capturing rules from experts’ experiences in the form of

fuzzy if-then rules. Fuzzy system consists of many properties such as fuzzy if-then rules, input and

output linguistic variables, membership function types and membership function parameters. Suitable

fuzzy systems for the decision problem can be identified by learning from data. In this study, the use

of neuro-fuzzy systems, namely NEFPROX and ANFIS, which can construct a set of fuzzy if-then

rules with appropriate membership functions using input-output pairs, for decision-making problems

of GIS was examined by measuring their prediction accuracies and time required for learning and

prediction. It was found that NEFPROX system provides more interpretable and manageable rule

bases than ANFIS structure. Moreover, constructed rule bases still require human expert for further

processing.

Keywords: Neuro-fuzzy systems, Function approximation, Fuzzy if-then rules,

Decision-making, GIS
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C.2 Introduction

One of the main tasks of Geographic Information Systems (GIS) is to support the decision-making

process using information from different data sources. In GIS, decision-making based on conventional

tools such as threshold modeling is not well suited for ill-defined problems. The incorporation of

human knowledge and reasoning process through the use of fuzzy set theory into GIS provides an

approximate and yet effective means of describing the ill-defined decision-making problems (Stefanakis

et al., 1996; Yanar and Akyurek, 2006).

Fuzzy decision-making in GIS can be used for different kinds of purposes such as selecting suitable

sites for industrial development (Yanar and Akyurek, 2006), seeking the optimum locations for real

estates (Zeng and Zhou, 2001), assessing vulnerability to natural hazards (Rashed and Weeks, 2003;

Martino et al., 2005), or estimating risk (Chen et al., 2001; Iliadis, 2005; Sadiq and Husain, 2005).

Other than decision-making, fuzzy set theory has been widely used for many different problems

in GIS including soil classification (Zhu et al., 1996; Lark and Bolam, 1997), crop-land suitability

analysis (Ahamed et al., 2000), identifying and ranking burned forests to evaluate risk of desertification

(Sasikala and Petrou, 2001), classifying and assessing natural phenomena (Kollias and Kalivas, 1998;

Benedikt et al., 2002), and classifying slope and aspect maps into linguistically defined classes (Yanar,

2003). Enhancing GIS operations with fuzzy logic methodologies helps the GIS user to make decisions

using experts’ experiences in the decision-making process easier and fuzzy logic methodologies enable

decision-makers to express imprecise concepts that are used with geographic data. Another advantage

of fuzzy logic is that fuzzy result of a decision-making process provides a set of locations whose

attribute values partially satisfy the constraints posed by the user (Yanar and Akyurek, 2006).

Despite the advantages of using fuzzy logic with GIS, no standard method exists for the identifica-

tion of fuzzy if-then rules, which involves transforming experts’ experiences into the database of fuzzy

inference system or determining membership function parameters such as the choice of function types,

estimating and tuning parameters and partitioning of input space (Jang, 1993; Yen and Langari, 1999;

Yanar, 2003). In order to estimate parameters of membership functions, both linguistic information

from human experts and numerical data (e.g. statistical data, data obtained from observations on

the system) obtained from the actual physical system can be used (Yen and Langari, 1999). Plenty

of research investigated the identification of membership function parameters for geo-referenced data.

One approach in obtaining membership function parameters and rules is using users’ own experi-

ence or throughout the consultation with experts in the related field (Zhu et al., 1996; Kollias and

Kalivas, 1998; Dragicevic and Marceau, 2000; Jiang and Eastman, 2000; Sasikala and Petrou, 2001;

Zeng and Zhou, 2001; Benedikt et al., 2002; Yanar and Akyurek, 2006). Other approaches rely on

the numerical processing of data. For example, Ahamed et al. (2000) used Euclidean distance based

measure to determine membership degree of soil in soil erosion classes. Eigenvector method is also

used to determine membership function parameters and weights (Chen et al., 2001). It is based on

the computation of pair wise comparison matrices for evaluating the relative importance of criteria,

where weights representing the importance of the criteria are given by two decision groups. K-means

clustering (Iliadis, 2005) and analytical hierarchy process (Sadiq and Husain, 2005) are other examples

for determining membership function parameters and weights.
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In addition to these, database of fuzzy if-then rules with appropriate membership function pa-

rameters can be estimated based on observed input-output data for the phenomena (Jang, 1993).

Learning rule base (structure) and membership function parameters from input-output data pairs

in fuzzy systems is most often implemented by learning techniques derived from neural networks

(Nauck, 2003). The combinations of neural networks and fuzzy systems are referred as neuro-fuzzy

systems. Such well-known neuro-fuzzy systems are Adaptive-Network-based Fuzzy Inference System

(ANFIS) (Jang, 1993), Neuro-Fuzzy Function Approximation (NEFPROX) (Nauck and Kruse, 1999)

and Neuro-Fuzzy Classification (NEFCLASS) (Nauck, 2003).

The aim of this study is to test whether neuro-fuzzy systems for function approximation, namely

ANFIS and NEFPROX, can produce similar predictions for rule base (structure identification) and

membership function parameters (parameter identification) for ill-defined decision-making problems,

compared to actual fuzzy rule based system which is constructed by using FuzzyCell (Yanar and

Akyurek, 2006) with the help of expert knowledge. The goal is to identify the structure (rule base)

and parameters (membership function parameters) of the model of a GIS based decision problem

by using neuro-fuzzy systems, which are used for function approximation, and to compare identified

models with the reference model. Optimization of membership function parameters is not the aim of

this study. Tuning of membership function shapes and membership function parameters with the use

of neuro-fuzzy systems is not aimed. Moreover, the use of fuzzy logic in GIS is not presented. The use

of fuzzy logic in GIS and the integration of fuzzy logic and GIS were discussed in Yanar (2003) and

Yanar and Akyurek (2006). In this perspective, FuzzyCell was used to model site selection problems

by capturing rules from human experts using its natural language interfaces. Then, FuzzyCell converts

these rules to fuzzy if-then rules. Application of these fuzzy rules with the input data layers produces

sites with degree of satisfaction depending on the searching criteria. If neuro-fuzzy systems for function

approximation are trained by the obtained data defining suitable sites against input data, then these

systems can produce rule base and membership function parameters for decision-making problem.

The objective of this study is to examine the use of neuro-fuzzy systems for decision-making problems

in GIS by measuring their prediction accuracies and time required for learning and prediction.

C.3 Methods and Tools

C.3.1 Fuzzy Set Theory

Fuzzy logic (Zadeh, 1965) generalizes crisp logic to allow truth-values to take partial degrees. Since

bivalent membership functions of crisp logic are replaced by fuzzy membership functions, the degree

of truth-values in fuzzy logic becomes a matter of degree, which is a number between zero and one.

An important advantage of using fuzzy models is that they are capable of incorporating knowledge

from human experts naturally and conveniently, while traditional models fail to do so (Yen and

Langari, 1999). Other important properties of fuzzy models are their ability to handle nonlinearity

and interpretability feature of the models (Yen and Langari, 1999).

In the decision analysis within GIS, FuzzyCell was used. FuzzyCell is a GIS-based fuzzy inference

system and assists the GIS users in making decisions using experts’ experiences in the decision-
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making process. Users can approximate complex ill-defined problems in decision-making processes

and classification by using FuzzyCell. FuzzyCell is a generic (not problem specific) module integrated

into commercial GIS software (ArcMap R©) which enables decision-makers to express their constraints

and imprecise concepts that are used with geographic data through the use of natural language

interfaces (Yanar and Akyurek, 2006).

C.3.2 Neuro-Fuzzy Systems

The underlying rational behind the neuro-fuzzy systems is to derive a fuzzy system from data or to

enhance it by learning from examples (Jang, 1993; Nauck and Kruse, 1999; Nauck, 2003). Learning

methods are obtained from neural networks. Since neural network learning algorithms are usually

based on gradient descent methods, the application of neural networks to fuzzy system needs some

modifications on the fuzzy inference procedure such as selecting differentiable functions. For example

in ANFIS a Sugeno-type fuzzy system (Takagi and Sugeno, 1985) is implemented in neural network

structure and differentiable t-norm and membership functions are selected. On the other hand,

NEFCON (Nauck, 1994), NEFCLASS and NEFPROX systems can also implement Mamdani-type

fuzzy systems (Mamdani and Assilian, 1975) and do not use a gradient-based learning algorithm but

a restricted learning algorithm such that the semantics and interpretability of the represented fuzzy

system are retained (Nauck and Kruse, 1999).

Dixon (2005) examined the sensitivity of neuro-fuzzy models used to predict groundwater vulner-

ability in a spatial context by integrating GIS and neuro-fuzzy techniques. The results show that the

neuro-fuzzy models are sensitive to the model parameters used during learning and validation steps

for hydro geologic applications (Dixon, 2005). Vasilakos and Stathakis (2005) show that granular

neural network (Bortolan, 1998), which is based on the selection of fuzzy sets that represent data, are

suited to model the inherent uncertainty of geographical phenomena. Both studies use neuro-fuzzy

classification software, NEFCLASS, with geographic data.

Adaptive-Network-Based Fuzzy Inference System

ANFIS (Jang, 1993) (Adaptive-Network-based Fuzzy Inference System) is one of the first hybrid

neuro-fuzzy systems for function approximation. ANFIS implements a Sugeno-type (Takagi and

Sugeno, 1985) fuzzy system, which has a functional form (linear combination of input variables) in

the consequent part of the fuzzy if-then rules. This system uses a differentiable t-norm and differen-

tiable membership functions. Since ANFIS does not have an algorithm for structure learning (rule

generation), the rule base must be known in advance.

The architecture is five-layer feed-forward network, where the first layer contains elements which

realize the membership functions in the antecedent part of the if-then rules. The second layer corre-

sponds to calculation of firing strengths of each rule. Next layers correspond to the consequent part

of the rules (Rutkowska, 2002). The structure of ANFIS is assumed to be fixed and the parameter

identification is solved through the hybrid learning rule. However, since there is no structure identifi-

cation, the number of rules, number of membership functions assigned to each input and initial step
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Table C.1: Major inputs and outputs of ANFIS and NEFPROX systems.
Neuro-Fuzzy Inputs Outputs

System

number of rules fuzzy if-then rules (rule base)

ANFIS number of membership functions assigned to each input learned membership functions

initial step size a

initial fuzzy partitions for input and output fuzzy if-then rules (rule base)

type of membership functions learned membership functions

t-norm operators a

NEFPROX t-conorm operators

defuzzification procedure

initialization parameters

learning restrictions
a Log files, statistics, membership function plots, etc. are also obtained.

size, which is the length of each gradient transition in the parameter space (used to change the speed

of convergence), have to be given by the user (see Table C.1).

Neuro-Fuzzy Function Approximator

Neuro-Fuzzy function apPROXimator (Nauck and Kruse, 1999) (NEFPROX) can be applied to func-

tion approximation. The system is based on a generic fuzzy perceptron, which is a three-layer neural

network with special activation and propagation functions, and fuzzy sets as weights. The fuzzy per-

ceptron provides a framework for learning algorithm to be interpreted as a system of linguistic rules

and enables to use prior knowledge in the form of fuzzy if-then rules (Rutkowska, 2002). The archi-

tecture of fuzzy perceptron is a three-layer feed-forward network. The units of input layer represent

the input variables. The hidden layer is composed of units representing fuzzy rules. And the units

of the output layer represent output variables which compute crisp output values by a defuzzification

procedure. The connections between input units (neurons) and hidden units are labeled with linguis-

tic terms corresponding to the antecedent fuzzy sets and the connection between hidden neurons and

output neurons are labeled with linguistic terms corresponding to consequent fuzzy sets.

The learning of NEFPROX system consists of two steps: structure learning (learning of rule base)

and parameter learning (learning of fuzzy sets). In this system, some rules can be given a priori and

the remaining rules may be found by learning. Moreover, NEFPROX can generate the whole rule

base by the rule learning algorithm, which selects fuzzy rules based on a predefined partitioning of

the input space (Nauck and Kruse, 1999; Rutkowska, 2002). Parameter learning procedure (learning

of fuzzy sets) is a simple heuristic. For details, see (Nauck and Kruse, 1999).

Initial fuzzy partitions for input and output variables, type of membership functions, t-norm and

t-conorm operators, defuzzification procedure, initialization parameters and learning restrictions are

given to the system by user.

147



C.4 Application

Decision-making problem, used in the analysis and tests, was taken from the study of Yanar and

Akyurek (2006). According to the decision problem, suitable sites for industrial development are

selected using the criteria ‘if site has flat or gentle slope and if site is close to roads and town then site

is suitable for industrial development’. For humans it is simple to comprehend and make decisions

based on these vague terms. Conventional GIS, which is based on crisp logic, cannot process such

vague statements. On the other hand, FuzzyCell can be used to model the decision problem by using

its natural language interfaces and find fuzzy answer to site selection problem. The model, which

involves fuzzy rules and membership functions, was captured from human experts using FuzzyCell.

This model has two fuzzy rules given in Rules C.1 and C.2.

IF Slope is flat and

Distance to road is close and

Distance to town is close

THEN Suitability is good. (C.1)

IF Slope is gentle and

Distance to road is close and

Distance to town is close

THEN Suitability is good. (C.2)

Membership functions for linguistic terms constructed based on expert knowledge are depicted in

Figure C.1.

Membership functions can be chosen by the experts arbitrarily based on experts’ experiences on

the problem domain. Hence, membership functions for two experts could be quite different upon their

experiences and perspectives. Both membership function types and parameters shown in Figure C.1

were given by experts. It has to be also noted that linguistic term ‘close’ was used twice, one stands

for ‘distance to road’ and other stands for ‘distance to town’ and two different membership functions

were defined for this linguistic term. This illustrates the fact that membership functions can be quite

context dependent.

C.4.1 Data

The model, which was built depending on expert knowledge, uses slope, closeness to roads and close-

ness to town maps as input. Output data were generated by using FuzzyCell applying the constructed

model to input data layers and define suitability values for industrial development sites. Two different

data sets belonging to two geographically disjoint regions were used. One data set was taken from

Birecik region and the second data set was from Bartın region. Each data set includes three input

maps (i.e., slope, closeness to roads and closeness to town) and one calculated map (i.e., suitability
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(a) (b)

(c) (d)

Figure C.1: Membership functions for (a) Slope, (b) Distance to road, (c) Distance to

town, and (d) Suitability.

map). All input and output maps have the same cell size and the same coordinate system. Dimensions

of all the maps are 1000-by-1000 pixels. Histograms of the data layers used are given in Figure C.2.

C.4.2 Comparison Methods and Tests

The goal of this study is to compare the use of neuro-fuzzy systems (namely ANFIS and NEFPROX),

which are used for function approximation, in defining the ill-defined GIS based decision-making prob-

lems. As discussed in Section C.4 the problem ‘selection of suitable sites for industrial development’

was modeled by using FuzzyCell with the help of expert judgments. Model of this decision-making

problem includes rule base (Rules C.1 and C.2), membership function parameters (Figure C.1) and

output generated by applying these rule base and membership functions to input data. Constructed

model (i.e., rule base, membership function parameters and output) by using expert knowledge was

taken as reference. The comparison between the predicted decision models and reference model was

made in two steps:

1. In the first step, performance metrics, root mean squared error and Kolmogorov-Smirnov test

metrics were used to compare outputs generated by both neuro-fuzzy systems and reference

output. These metrics specify error and similarity between the reference and the predicted

outputs. These metrics compare predicted data set with target data set and give higher results

when predicted data and target data are more similar. In this work, Kolmogorov-Smirnov

statistics, which is a non-parametric test for ratio scale data, and root mean squared error

value are used for comparison metric. The two-sample Kolmogorov-Smirnov test compares the

distribution of values in the two sample data vectors representing random samples from some
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Figure C.2: Histograms of the data layers belonging to (a) Birecik region, (b) Bartın

region.
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underlying distributions (McKillup, 2006). The objective is to determine if these two data sets

have been drawn from identical population distribution functions. Therefore, null hypothesis

for this test is whether the two sample data vectors are drawn from the same continuous

distribution. The alternative hypothesis is that they are drawn from different continuous

distributions. Root mean squared error is computed by taking square root of average of the

squared differences between each computed value and its corresponding reference value.

2. Second step involves the comparison of the rule bases based on their interpretability. Com-

parison of the interpretation of the rule bases constructed by both neuro-fuzzy systems was

intuitive.

Lastly, training time and time needed to accomplish the application of trained network for input

data from geographically different regions were also used to compare run-time efficiency of neuro-fuzzy

systems. The configuration of the dedicated workstation is Intel R© XeonTM 3.20 GHz Dual CPU, 1

GB RAM and operating system is Microsoft R© Windows XP ProfessionalTM Version 2002 with Service

Pack 2.

C.4.3 Structure and Parameter Identification

As discussed in Section C.4.1 two different data sets, which come from two geographically disjoint

regions, were used. One data set was taken from Birecik region and used to train neuro-fuzzy models

to derive rule base and membership function parameters. Thus, the model of a GIS-based decision-

making problem, which is given in Section C.4, was constructed by using Birecik data set. Constructed

model includes rule base and membership function parameters. Moreover, output was produced by

applying these rule base and membership functions to input data (slope, closeness to roads and

closeness to town maps). Then, produced output compared with the reference output data using

comparison tests given in Section C.4.2.

Before using data layers with neuro-fuzzy models some pre-processing steps were taken for all

input and output maps. Since neuro-fuzzy models use data vectors, two dimensional input and

output maps were transformed to one dimensional column vectors. Because ANFIS and NEFPROX

neuro-fuzzy models use multilayer feed-forward neural networks, which have no internal state other

than the weights themselves (Russell and Norvig, 2003), vectorization process does not affect the

performance. Therefore, in this work input and output column vectors were formed randomly using

MATLABTM ‘randperm’ command. For example, assume that we are given matrix A.

A =

2

6

6

6

4

1 2 3

4 5 6

7 8 9

3

7

7

7

5

(C.3)

The column vector, Acolumn, after randomly selecting locations is shown in Equ. C.4.
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(C.4)

Using these command indices were randomized and the same permutation indices were used for

all the matrices. Furthermore, input and target values of Birecik zone were mapped into the interval

[−1, +1] by using formula given in Equ. C.5 to simplify the problem of network.

y =
(ymax − ymin) ∗ (x − xmin)

(xmax − xmin)
+ ymin (C.5)

It also ensures that target values fall into the range that new network can reproduce. Third,

the data were divided into training, generalization and test sets. The training set was used for

training the network. Generalization set was used to validate network performance during training

so that training stopped early if it attempted to over fit the training data. Test set was used for an

independent measure of how the network might be expected to perform on data it was not trained

on. 20% of data (i.e., 200000 cells) was selected for generalization set and 20% for the test set (i.e.,

200000 cells), remaining 60% of data (i.e., 600000 cells) was selected for training set.

NEFPROX neuro-fuzzy tool for function approximation produced by Nauck and Kruse (1999)

was used. NEFPROX can implement Mamdani-type fuzzy systems and also has ability to perform

ANFIS architecture which is used to implement Sugeno-type fuzzy system that uses a differentiable

t-norm and differentiable membership functions (Jang, 1993). NEFPROX can use either supervised

learning, where the correct vector is known for each given input vector or prior knowledge if available.

Prior to learning process initial fuzzy partitions for each input and output variables (i.e. number

of fuzzy sets for input and output variables), type of membership functions, t-norm and t-conorm

operators, defuzzification procedure, initialization parameters and learning restrictions are given to

the system. System produces learned fuzzy rules, predicted output and performance measures for

overall training, generalization and test patterns.

The initial conditions of the analyzed ANFIS and NEFPROX models were the same. Neuro-fuzzy

model properties for neuro-fuzzy models are shown in Table C.2. For ANFIS system, parameters in

the output layer are referred as consequent parameters. Therefore, numbers for the column ‘Output

membership function count’ in Table C.2 represent consequent parameter count for ANFIS system.

Because actual fuzzy rule base is known previously (Rules C.1 and C.2), the number of fuzzy

sets for input and output variables were selected based on prior knowledge. In fact, the optimum

number of fuzzy sets for both input and output variables might have been found by performing many

trials and selecting the configuration which gives the smallest error value. Initial guesses for fuzzy set

count might begin with two. Learning algorithm was applied to triangular and Gaussian membership
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Table C.2: The initial conditions of neuro-fuzzy models.
Model Method Fuzzy set count Input mf Fuzzy set count Output mf

for input type for output type

variables variables

Model10 NEFPROX 2 Triangular 2 Triangular

Model11 ANFIS 2 Triangular 2b -

Model12 NEFPROX 2 Gaussian 2 Gaussian

Model1 NEFPROX 4 Triangular 3 Triangular

Model2 ANFIS 4 Triangular 3b -

Model3 NEFPROX 4 Gaussian 3 Gaussian

Model4 NEFPROX 3 Triangular 3 Triangular

Model5 ANFIS 3 Triangular 3b -

Model6 NEFPROX 3 Gaussian 3 Gaussian

Road → 3 Gaussian

Model8 NEFPROX Town → 2 Gaussian 3 Gaussian

Slope → 4 Triangular

Road → 3 Gaussian

Model9 ANFIS Town → 2 Gaussian 3b -

Slope → 4 Triangular
b Consequent parameter count.

Table C.3: Performance metrics for tested neuro-fuzzy models.
Model Kolmogorov-Smirnov RMSE Generated rule Training time (sec.)

test (KSTAT) counts

Model10 0.632980 0.449468 2 292

Model11 0.115340 0.111423 8 652

Model12 0.229220 0.279462 4 116

Model1 0.322460 0.281184 10 130

Model2 0.074365 0.057002 48 593

Model3 0.087495 0.178551 11 755

Model4 0.569090 0.366189 5 234

Model5 0.092485 0.070755 23 354

Model6 0.333270 0.433740 7 292

Model8 0.193560 0.298716 4 256

Model9 0.043580 0.131135 20 476

functions. All models use minimum function for t-norm operator and maximum function for t-

conorm operator. Although NEFPROX can use either center of gravity (COG) or mean of maximum

(MOM) methods for defuzzification procedure, MOM was selected because the implementation of

MOM procedure in NEFPROX is faster and produces almost the same results after learning (Nauck

and Kruse, 1999). Same initialization parameters and learning restrictions were used for all models

in order to get consistent results.

Obtained performance measures, time spent during training and generated rule counts are given

in Table C.3. For the two-sample Kolmogorov-Simirnov test metric, KSTAT value gets lower as the

probability that compared sets coming from the same population increases. Therefore, lower KSTAT

values indicate better prediction performances. Similarly, as the root mean squared error value gets

lower, prediction performance of network is better.
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Table C.4: Performance metrics for neuro-fuzzy systems trained with Birecik data and

tested with data from Bartın region.
Model Kolmogorov-Smirnov RMSE Prediction time (sec.)

test (KSTAT)

Model10 0.817580 0.440447 12

Model11 0.133570 0.279530 12

Model12 0.385850 0.356157 12

Model1 0.321000 0.341014 12

Model2 0.079289 0.289401 18

Model3 0.095203 0.259266 14

Model4 0.686750 0.444107 12

Model5 0.098323 0.303631 14

Model6 0.496310 0.372795 13

Model8 0.300880 0.303227 12

Model9 0.189580 0.297883 14

C.4.4 Testing Models with Different Geographical Region

Neuro-fuzzy models constructed from Birecik region were used for other geographical region, Bartın

region, to test their prediction performance. Geographical regions are disjoint and have different

characteristics (Figure C.2). The purpose of this test was to find the generic methods which give

better prediction performances over different geographical regions. Neuro-fuzzy models trained with

the data from Birecik region were tested with Bartın zone data. Results in Table C.4 show test results

obtained by testing trained neuro-fuzzy models with unseen Bartın test data. Time given in Table C.4

is the time needed to accomplish the application of trained network to input data from geographically

separated (disjoint) Bartın region.

For both KSTAT test metrics and RMSE values in Table C.4, Model3 is the best predictor for

NEFPROX system. For ANFIS type neuro-fuzzy models metrics are not in agreement. According to

KSTAT test metrics Model2, according to RMSE values Model11 produce better prediction perfor-

mances. Since Model11 contains much less rules than Model2 and also requires less prediction time,

Model11 was selected for ANFIS type system. In Table C.5, rules identified by Model3 and Model11

are given with the rules in FuzzyCell rule base (Rules C.1 and C.2).

Since Model11 rely on ANFIS architecture which is used to implement Sugeno-type fuzzy system

in neural network structure, consequent parts of the fuzzy rules are functions of the input variables.

Therefore, Model11 does not have output linguistic variable. Identified membership functions by

models Model3 and Model11 are depicted in Figure C.3 and Figure C.4 respectively.

To compare interpretability of constructed rule bases, each membership function identified by the

neuro-fuzzy models must be assigned with a name to make rule base more interpretable by considering

functions and data ranges that function can take. For example identified membership functions by

neuro-fuzzy models may be named as given in Table C.6.
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Table C.5: Rules in the rule-bases of FuzzyCell and the best models for NEFPROX

and ANFIS type neuro-fuzzy system. To shorten the rules following notation is used:

Distance to road = r, Distance to town = t, Slope = s, Site Suitability = ss.
Model Rules

Rules in FuzzyCell IF r is close and t is close and s is flat THEN ss is good

rule base IF r is close and t is close and s is gentle THEN ss is good

IF r is mf0 and t is mf1 and s is mf0 THEN ss is mf2

IF r is mf1 and t is mf1 and s is mf0 THEN ss is mf1

IF r is mf1 and t is mf2 and s is mf0 THEN ss is mf1

IF r is mf1 and t is mf1 and s is mf1 THEN ss is mf1

IF r is mf0 and t is mf1 and s is mf1 THEN ss is mf2

Identified rules IF r is mf0 and t is mf2 and s is mf0 THEN ss is mf1

by Model3 IF r is mf1 and t is mf2 and s is mf1 THEN ss is mf1

IF r is mf0 and t is mf2 and s is mf1 THEN ss is mf1

IF r is mf2 and t is mf2 and s is mf0 THEN ss is mf0

IF r is mf1 and t is mf0 and s is mf0 THEN ss is mf1

IF r is mf2 and t is mf2 and s is mf1 THEN ss is mf1

IF r is mf0 and t is mf1 and s is mf0 THEN -r*0.026401-t*0.075391-s*0.077778+0.435781

IF r is mf0 and t is mf0 and s is mf0 THEN -r*0.266423+t*0.036360+s*0.022906+0.569266

IF r is mf1 and t is mf1 and s is mf0 THEN -r*0.181756+t*0.034938+s*0.023866-0.749197

Identified rules IF r is mf1 and t is mf0 and s is mf0 THEN -r*0.026206+t*0.079974+s*0.147433-0.568073

by Model11 IF r is mf1 and t is mf1 and s is mf1 THEN -r*0.001481+t*0.000987-s*0.004933-0.883753

IF r is mf0 and t is mf1 and s is mf1 THEN -r*0.018590-t*0.003683-s*0.001895+0.368105

IF r is mf0 and t is mf0 and s is mf1 THEN -r*0.019436-t*0.011035+s*0.009854+0.507347

IF r is mf1 and t is mf0 and s is mf1 THEN -r*0.003335+t*0.007968-s*0.011000-0.468688

Table C.6: Possible naming conventions for membership functions.
Model Linguistic Variables

r t s ss

mf0→ Close mf0→ Close mf0→ Flat mf0→ Bad

Identified membership mf1→ Average mf1→ Average mf1→ Gentle mf1→ Average

functions by Model3 mf2→ Far mf2→ Far mf2→ Moderate mf2→ Good

mf3→ V eryFar mf3→ V eryFar mf3→ Steep

Identified membership mf0→ Close mf0→ Close mf0→ Gentle

functions by Model11 mf1→ Far mf1→ Far mf1→ Moderate
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(a) (b)

(c) (d)

Figure C.3: Identified membership functions by Model3 (a) Slope, (b) Distance to

road, (c) Distance to town, and (d) Suitability.

(a) (b)

(c)

Figure C.4: Identified membership functions by Model11 (a) Slope, (b) Distance to

road, and (c) Distance to town.
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C.5 Discussion

Enhancing GIS operations with fuzzy set theory enables GIS user to design decision rules in the

decision-making processes easier. Suitable fuzzy system for the decision problem can be built by

using prior knowledge or experts’ experiences. However, it is very difficult for human experts to build

spatial analysis rules if the decision problem to be modeled is high dimensional. Even in some cases,

it is quite difficult to adequately describe the solution steps, especially when the spatial nature of

the phenomena is not entirely known. In such cases, based on observed input-output data for the

phenomena decision models can be estimated.

In this work, the combinations of neural networks and fuzzy systems, neuro-fuzzy systems, were

examined since they can construct a set of fuzzy if-then rules with appropriate membership functions

using input-output pairs. Neuro-fuzzy systems were trained with fuzzy measures calculated from

GIS-based fuzzy inference system, FuzzyCell, against input data. Birecik region data were used for

training. Then, prediction performances of constructed neuro-fuzzy models were tested with data

from Bartın region. According to test metrics Model3 produced better predictions for NEFPROX

system and Model11 produced better predictions for ANFIS system. Original output and outputs

produced by best methods for NEFPROX and ANFIS systems are given in Figure C.5. To compare

the values of reference output and outputs produced by best methods for NEFPROX and ANFIS

systems, ten locations were randomly selected and associated values are given in Table C.7.

The best neuro-fuzzy model for the decision problem to be modeled could be found by trying

many models and selecting the configuration which gives the smallest error value. However, in this

work the actual fuzzy rule base was known previously. Therefore, selection of the neuro-fuzzy model

properties was based on this prior knowledge.

In the training phase, all models based on ANFIS system produced better prediction performance

metrics than NEFPROX based models. Although ANFIS models yield better approximation results

for training data set, they did not produce as good results in the test data set as in the training data

set. Moreover, best predictor for the test data set was based on NEFPROX system. This can be due

to the generalization ability of the systems.

Since Sugeno-type systems trained by computationally demanding training algorithms based on

gradient descent or least square technique, training time for ANFIS models were longer. On the other

hand, prediction times for all models were almost similar. Moreover, prediction took much less time

when compared to training phase.

Produced outputs by neuro-fuzzy models, especially by NEFPROX, have some parts on the

region which were overestimated. Especially, there are regions estimated as suitable by some degree

where these regions are actually not suitable (i.e. suitability value is zero in the original image).

However, there is a trade-off between interpretability and performance. Very good approximations

may be achieved by other identification techniques but with less interpretable rule bases. Moreover,

compared to ANFIS models, NEFPROX models gave more interpretable solutions. ANFIS models

can represent Sugeno-type fuzzy models, which are not as easy to interpret as Mamdani models which

NEFPROX can also represent (Nauck and Kruse, 1999). However, NEFPROX models did not always

construct small and interpretable rule base. In such cases, human expert can further process the
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Histogram of output data produced by Model3
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Histogram of output data produced by Model11
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Figure C.5: Graphs for (a) Bartın suitability (original output), (b) Suitability data

produced by NEFPROX type model, Model3, (c) Suitability data produced by ANFIS

type model, Model11, and (d) Histograms of suitability values.
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Table C.7: Selected suitability values.
Location Reference suitability Suitability produced Suitability produced

by Model3 by Model11

1 55 59.129 65.891

2 0 73.428 74.088

3 33 51.922 19.642

4 68 66.318 67.662

5 75 78.650 82.500

6 0 35.214 13.443

7 32 46.956 21.678

8 0 69.094 71.294

9 69 66.476 43.808

10 66 65.323 70.610

rules to produce more interpretable and more manageable (small number of rules) rule base. To

produce more interpretable rule bases, learning algorithm should be constrained such that adjacent

membership functions do not pass each other during training, may become asymmetric, or have a

certain degree of overlapping (Nauck and Kruse, 1999). In Section C.4.4, the comparison of rule

bases based on their interpretability would be more meaningful, if the constraint certain degree of

overlapping has been implemented in the NEFPROX.

C.6 Conclusion

Fuzzy set theory is introduced into GIS to obtain more flexibility and more effective capability of

handling and processing imprecise information about the real world. By enhancing GIS operations

with fuzzy logic methodologies, the GIS user can approximate complex ill-defined problems in decision-

making processes by capturing decision rules from experts’ experiences in the form of fuzzy if-then

rules. Fuzzy system properties, which consist of fuzzy if-then rules, input and output linguistic

variables, membership function types and membership function parameters, can be selected depending

on the problem (Robinson, 2003). Parameters, rules and all other choices forming a fuzzy system may

be different for problems. Variety of results can be obtained by using different combinations of choices.

Identifying a suitable fuzzy system for a given problem can be done by prior knowledge (i.e. experts’

experiences), by learning from input-output data pairs, or by combination of both. Neuro-fuzzy

methods can construct a set of fuzzy if-then rules with appropriate membership functions by means

of learning methods obtained from neural networks.

This paper examined the use of neuro-fuzzy systems for decision-making problems of GIS by

measuring their prediction accuracies and time required for learning and prediction. ANFIS and

NEFPROX systems were used to construct rule base and membership function parameters for decision-

making problems. These two systems were trained with input-output data pairs where output data

were calculated by GIS-based fuzzy inference system. Then, constructed rule base and membership

function parameters were compared with rule base and membership function parameters of GIS-

based fuzzy inference system. While identifying a suitable fuzzy system, both prediction accuracy

and interpretability of driven rule base are important. Since NEFPROX system implements Mamdani-
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type fuzzy system, it produced more interpretable results. However, rules constructed by NEFPROX

system still require human expert for further processing such as pruning, when used for GIS-based

decision-making problems.
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APPENDIX D

FUZZY MODEL TUNING USING

SIMULATED ANNEALING

Tahsin Alp Yanar and Zuhal Akyürek
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D.1 Abstract

This paper presents the use of simulated annealing metaheuristic for tuning Mamdani type fuzzy

models. Structure of the Mamdani fuzzy model is learned from input-output data pairs using Wang

and Mendel’s method (Wang and Mendel, 1992) and fuzzy c-means clustering algorithm. Then,

parameters of the fuzzy system are tuned through simulated annealing. In this paper, we perform

experiments to examine effects of a) initial solution generated by Wang and Mendel’s method and fuzzy

c-means clustering method, b) membership function update procedure, c) probability parameter for

the calculation of the initial temperature, d) temperature update coefficient used for cooling schedule,

and e) randomness level in the disturbance mechanism used in simulated annealing algorithm on the

tuning of Mamdani type fuzzy models. Experiments are performed with Mackey-Glass chaotic time

series (Mackey and Glass, 1977). The results indicate that Wang and Mendel’s method provides better

starting configuration for simulated annealing compared to fuzzy c-means clustering method, and for

the membership function update parameter, MFChangeRate ∈ (0, 1], and the probability parameter

for the calculation of the initial temperature, P0 ∈ (0, 1), values close to zero produced better results.

Keywords: Simulated annealing, Optimization, Fuzzy model tuning, Mamdani fuzzy

model, Fuzzy model extraction

D.2 Introduction

Fuzzy systems based on fuzzy if-then rules are being used successfully for modeling of nonlinear,

uncertain and complex systems. Fuzzy rules can be obtained from experts’ knowledge. However,

there is no standard method available for transforming experts’ knowledge into the database of fuzzy

systems (Jang, 1993; Yen and Langari, 1999; Yanar, 2003). In addition, expert rules are not sufficient

to define complex partially unknown systems satisfactorily (Guillaume and Charnomordic, 2004).
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Therefore, various methods have been applied to fuzzy systems for automatically generating and

adjusting if-then rules (Jang, 1993; Guillaume and Charnomordic, 2004; Yen and Wang, 1998; Emami

et al., 1998; Wang and Mendel, 1992; Shi and Mizumoto, 2000; Chen and Linkens, 2004; Jin, 2000;

Nauck and Kruse, 1999; Guely et al., 1999).

Among the data driven, automatic fuzzy rule generation and tuning methods there are local

optimization methods such as gradient descent algorithm and global optimization methods such as

simulated annealing and genetic algorithms. Simulated annealing (SA) is an iterative search method

inspired by the annealing of metals (Kirkpatrick et al., 1983; Cerny, 1985). It simulates the annealing

of metal where annealing is a strategy to find optimum state by controlling the temperature. The

technique starts with heating a metal to a temperature near its melting point and then the metal is

cooled slowly by keeping at each stage temperature in sufficient duration. The method of controlling

the temperature decrease leads to a stable crystallized solid state which corresponds to an obsolete

minimum of energy. SA introduces a control parameter, temperature, in optimization and searches

for global optimum by gradually decreasing the temperature similar to real annealing technique.

Compared to gradient descent, simulated annealing has two advantages: simulated annealing is able

to find the global minimum of the function to optimize under certain conditions (Aarts and Laarhoven,

1985; Hajek, 1988; Hajek and Sasaki, 1989; Kan and Timmer, 1987a,b) and it can handle any cost

function. However its convergence speed is low unlike gradient descent. Moreover, since gradient

descent based algorithms use derivatives they are mostly applied to Sugeno (Takagi and Sugeno,

1985) type fuzzy systems. These models are not as interpretable as Mamdani (Mamdani and Assilian,

1975) type fuzzy models since they use rules with linear models as consequents. For learning and

tuning of fuzzy models global optimization methods such as simulated annealing (Mohamadi et al.,

2008; Ghazanfari et al., 2007; Cordon et al., 2000; Liu and Yang, 2000; Cheng and Chen, 1997) and

genetic algorithms (Antonelli et al., 2009; Marquez et al., 2007; Cordon and Herrera, 2001; Cordon

et al., 2001; Roubos and Setnes, 2001; Setnes and Roubos, 2000) are also used. On the other hand,

simulated annealing convergence has been demonstrated under more general assumptions than genetic

algorithm (Aarts and Laarhoven, 1985) and genetic algorithm convergence depends on the way of

coding parameters into genes.

This paper utilizes simulated annealing algorithm to fine-tune Mamdani type fuzzy models and

reports experiments performed to determine the effects of simulated annealing parameters on the final

prediction error. The proposed approach was tested with a chaotic time series given by Mackey-Glass

differential equation. In the first experiment we generated two sets of rule bases. One set was created

using fuzzy c-means clustering algorithm and the other set was generated by ad hoc data driven Wang

and Mendel’s method (Wang and Mendel, 1992). Then, the proposed approach was used to fine-tune

the obtained rule bases. Tuned rule bases were evaluated using their prediction accuracies on test data

and one rule base was selected for further testing the sensitivity of parameters involved in simulated

annealing on final prediction accuracy. In our last experiment, we showed the random nature of the

simulated annealing algorithm.

The paper is organized as follows. Section D.3 briefly describes generation of fuzzy-if then rules

from input-output data, Section D.4 introduces simulated annealing method and describes the use
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Figure D.1: Triangular fuzzy membership functions created by WM-method.

of simulated annealing for tuning parameters of a Mamdani fuzzy system whose structure is auto-

matically generated from data, experiment results and discussions are reported in Section D.5 and

conclusions are given in Section D.6.

D.3 Structure Learning

Fuzzy if-then rules and the number of fuzzy sets for each variable define the structure of a fuzzy

system (Nauck, 2005). Structure of a fuzzy system can be given by experts or can be generated from

data. For automatic rule generation from data there are three kinds of methods: the first kind uses

a grid partitioning of the multidimensional space, the second kind uses clustering methods and the

third kind uses a hybrid methods which utilize soft computing techniques (Guillaume, 2001).

In this study, two sets of rule bases were generated. This first set of rule bases were generated by

Wang and Mendel’s method (WM-method). Each variable of input and output space were divided

into a number of (3, 5, 7, 10, 13, 16 and 20) symmetrical triangular membership fuzzy sets. Then

fuzzy rules were generated using data as proposed by Wang and Mendel (1992). The second sets of

rule bases were generated using fuzzy c-means (Dunn, 1973) (FCM) clustering algorithm. In FCM

clustering space partitioning is derived from data partitioning and rule is associated to each cluster.

To completely define rules, clustering was applied to input-output data where premise corresponds

to input part and conclusion corresponds to the output part. The second set of rule bases also

include rule bases with 3, 5, 7, 10, 13, 16 and 20 triangular membership fuzzy sets, like the first set.
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Table D.1: Rules generated by WM-method
IF ((in1 is mf1) and (in2 is mf2) and (in3 is mf2) and (in4 is mf2)) THEN out1 is mf1

IF ((in1 is mf1) and (in2 is mf2) and (in3 is mf2) and (in4 is mf1)) THEN out1 is mf1

IF ((in1 is mf2) and (in2 is mf2) and (in3 is mf2) and (in4 is mf1)) THEN out1 is mf1

IF ((in1 is mf2) and (in2 is mf2) and (in3 is mf1) and (in4 is mf1)) THEN out1 is mf0

IF ((in1 is mf2) and (in2 is mf1) and (in3 is mf1) and (in4 is mf1)) THEN out1 is mf1

IF ((in1 is mf2) and (in2 is mf1) and (in3 is mf1) and (in4 is mf0)) THEN out1 is mf1

IF ((in1 is mf1) and (in2 is mf1) and (in3 is mf1) and (in4 is mf0)) THEN out1 is mf1

IF ((in1 is mf1) and (in2 is mf1) and (in3 is mf1) and (in4 is mf1)) THEN out1 is mf1

IF ((in1 is mf1) and (in2 is mf1) and (in3 is mf0) and (in4 is mf1)) THEN out1 is mf1

IF ((in1 is mf1) and (in2 is mf0) and (in3 is mf1) and (in4 is mf1)) THEN out1 is mf2

IF ((in1 is mf1) and (in2 is mf0) and (in3 is mf1) and (in4 is mf2)) THEN out1 is mf2

IF ((in1 is mf1) and (in2 is mf1) and (in3 is mf1) and (in4 is mf2)) THEN out1 is mf2

IF ((in1 is mf0) and (in2 is mf1) and (in3 is mf1) and (in4 is mf2)) THEN out1 is mf2

IF ((in1 is mf0) and (in2 is mf1) and (in3 is mf2) and (in4 is mf2)) THEN out1 is mf2

IF ((in1 is mf1) and (in2 is mf1) and (in3 is mf2) and (in4 is mf2)) THEN out1 is mf2

IF ((in1 is mf2) and (in2 is mf2) and (in3 is mf1) and (in4 is mf0)) THEN out1 is mf0

IF ((in1 is mf2) and (in2 is mf1) and (in3 is mf0) and (in4 is mf0)) THEN out1 is mf1

IF ((in1 is mf1) and (in2 is mf1) and (in3 is mf0) and (in4 is mf0)) THEN out1 is mf1

IF ((in1 is mf1) and (in2 is mf0) and (in3 is mf0) and (in4 is mf1)) THEN out1 is mf1

IF ((in1 is mf0) and (in2 is mf0) and (in3 is mf1) and (in4 is mf1)) THEN out1 is mf1

IF ((in1 is mf0) and (in2 is mf1) and (in3 is mf1) and (in4 is mf1)) THEN out1 is mf2

IF ((in1 is mf1) and (in2 is mf1) and (in3 is mf2) and (in4 is mf1)) THEN out1 is mf1

IF ((in1 is mf1) and (in2 is mf2) and (in3 is mf1) and (in4 is mf1)) THEN out1 is mf1

IF ((in1 is mf2) and (in2 is mf2) and (in3 is mf2) and (in4 is mf2)) THEN out1 is mf1

Table D.2: Rules generated by FCM-method
IF ((in1 is mf0) and (in2 is mf0) and (in3 is mf0) and (in4 is mf0)) THEN out1 is mf0

IF ((in1 is mf1) and (in2 is mf1) and (in3 is mf1) and (in4 is mf1)) THEN out1 is mf1

IF ((in1 is mf2) and (in2 is mf2) and (in3 is mf2) and (in4 is mf2)) THEN out1 is mf2

Membership functions created by both WM-method and FCM-method for three membership fuzzy

set case are shown as example in Figure D.1 and Table D.2, respectively. Rules generated by the

methods are given in Table D.1 and Table D.2.

D.4 Parameter Tuning Using SA

SA is considered as a metaheuristic. It does not guarantee finding an optimal solution. However,

under certain constraints (Aarts and Laarhoven, 1985; Hajek, 1988; Hajek and Sasaki, 1989; Kan and

Timmer, 1987a,b) SA probably converges towards a global optimum with a probability arbitrarily

close to unity (Dreo et al., 2006). The SA algorithm is given in Figure D.3. SA starts with an initial

solution which can be a randomly selected point within the search space of all the possible solutions.

Current solution in search space is evaluated by an objective function. Objective function (evaluation

function) measures the energy of the current solution. A new solution near the current solution is

selected from the search space using disturbance mechanism. If energy of the newly selected solution

is less than the current solution, then newly selected solution is accepted as the current solution. On
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Figure D.2: Triangular fuzzy membership functions created by FCM-method.

Simulated_Annealing()

Begin

1. Choose an initial temperature, T.

2. Generate an initial solution, X.

3. Repeat

3.1. Repeat

3.1.1. Generate a new solution Y, near to X

3.1.2. If E(Y) < E(X) Then accept new solution

3.1.2.1. X = Y

3.1.3. Else use Metropolis acceptance rule

for decision

3.1.4. If Metropolis_Acceptance(E(Y), E(X), T)

returns true Then accept new solution

3.1.4.1. X = Y

3.2 Until temperature stage length is reached

3.3. Update T

4. Until T ≥ Tfinal

End

Figure D.3: Simulated annealing algorithm.
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Metropolis_Acceptance(Enew , Ecur, T)

// Enew is the energy of the new solution.

// Ecur is the energy of the current solution.

// T is the current temperature.

Begin

1. Calculate change in energy, ∆E = Enew − Ecur

2. Calculate acceptance probability, p(T ) = e−∆E/T

3. If Random(0, 1) < p(T) Then

3.1. Accept solution (return true)

4. Else

4.1. Reject solution (return false)

End

Figure D.4: Metropolis acceptance rule.

the contrary, if energy of the newly selected solution is higher than the energy of the current solution,

SA does not automatically reject new candidate solution. Instead, it uses Metropolis Acceptance

Criterion (Metropolis et al., 1953). Metropolis Acceptance Criterion will accept the new solution on

a probabilistic basis. Bad moves in the search space are accepted with probability p(T ).

p(T ) = e−∆E/T (D.1)

∆E is the change in energy and T defines the temperature of the current configuration. Metropolis

rule of acceptance is realized as in the following: a real number is drawn at random between 0 and 1.

New solution causing ∆E change in the objective function is accepted if the random number drawn

is lower than p(T ). At higher temperature probability of accepting bad configurations p(T ) is high,

close to 1, therefore majority of the moves are accepted. At low temperature, p(T ) is low, close to 0,

majority of the bad moves are rejected. Metropolis acceptance rule is given in Figure D.4.

SA starts with high temperature then initial temperature is reduced according to the selected

cooling schedule. At each temperature SA performs selected number of iterations (i.e., temperature

stage length) to allow the algorithm to settle into a balanced state.

Outline of the proposed approach for parameter tuning using SA is presented as follows:

Initial Solution: SA starts with an initial solution which was obtained from structure learning

algorithm. Initial configuration which contains fuzzy if-then rules and initial membership function

parameters for Mamdani fuzzy system was automatically generated from input-output data using

WM-method and FCM-method. Both structure learning methods provide a good starting point for

SA.

In the first experiment, we started with 7 different initial solutions obtained from both methods

and reported final error values reached after optimizations.

Initial Temperature: Initial temperature was calculated using the method described by Wong

and Liu (1986). According to the Metropolis rule of acceptance SA accepts an energy rise (worse

solution), h, with probability p(T ) given in Equ. D.1 where T is the current temperature. The initial

temperature, T0, can be calculated from mean energy rises, hmean, during the initialization. Before

the start of the actual SA, the mean value of energy rises is estimated by a constant number of moves.
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Then, initial temperature T0 is calculated using the following formula. The formula is derived from

the Metropolis function.

T0 =
−hmean

In(P0)
(D.2)

Selecting the initial probability, P0, near to 1 allows SA to start with a high temperature and accepting

worse solutions with high probability. If the initial probability, P0, is adjusted near to 0 then SA starts

with a low temperature which accepts worse solutions with low probability.

The initial solution was obtained from structure learning algorithms described above and we did

not want to alter this initial knowledge too much therefore we wish to keep the initial probability, P0,

of accepting worse solutions low (Guely et al., 1999).

In the third experiment, the effect of initial probability, P0, of accepting worse solution parameter

on the final error was tested with all other parameters kept the same.

Objective Function: Output calculated from the tuned fuzzy system at current temperature can

be evaluated using root mean square error (RMSE). Therefore, objective function to minimize was

RMSE. Since, SA can use any cost function, any function measuring error between calculated output

and target values can be used. However, evaluation function calculation must be direct and rapid to

increase SA convergence speed and to decrease CPU consumption.

Disturbance Mechanism: SA can be used to solve many combinatorial optimization problems

and some continuous variable problems (Bonomi and Lutton, 1984). Optimizing the parameters

of fuzzy systems is a continuous variable problem. For selecting a new solution near the current

solution in the search space, we introduce a change interval for each parameter which defines al-

lowable minimum and maximum percentage of changes that can be made to each parameter. At

each move, each parameter is changed proportional to the change rate randomly chosen in the inter-

val [−maxchangerate, +maxchangerate], where maxchangerate was calculated based on the current

temperature. As the temperature decreases maxchangerate decreases. Therefore, at high tempera-

tures each parameter has wider allowable change interval while at the lower temperatures allowable

change interval is narrow.

In the second experiment, we tested optimization algorithm with different values of the change

interval. Other parameters of the optimization algorithm were kept the same.

Decrease of the Temperature: The geometrical law of decrease Tk+1 = αTk, where k defines

temperature stage number and α is a constant between 0 and 1, was used to perform temperature

decrease.

In the forth experiment, different values of cooling rate were used with all other parameters kept

the same.

Temperature Stage Length: After performing a constant number of iterations at each temperature,

temperature is decreased according to the cooling strategy.

Termination of SA algorithm: SA algorithm can be terminated when the temperature reaches

the final temperature or after 3 successive temperature stages without any acceptance. Since our aim

is to show the use of SA algorithm instead of finding a suitable model for test data, we terminated

the SA algorithm after 100 iterations, which can be considered as a constant stopping criterion.
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Table D.3: SA model parameters used in the experiments

SA Model Parameters Ranges of Parameters

Initial solution WM-method / FCM-method

Probability parameter for the calculation 0.03 ≤ P0 ≤ 0.50

of the initial temperature, P0 (allowable range is 0 < P0 < 1)

Objective function RMSE

Membership function update parameter, 0.01 ≤ MFChangeRate ≤ 0.20

MFChangeRate, used for disturbance (allowable range is

mechanism 0 < MFChangeRate ≤ 1)

Temperature update parameter, α 0.80 ≤ α ≤ 0.99

(allowable range is 0 < α < 1)

Temperature stage length Rule base

parameter count∗ × 2

Termination of SA algorithm 100 iterations

∗ Parameter counts for the rule bases are given in Table D.4 and Table D.5.

D.5 Experiments and Results

In the experiments, the proposed approach was tested with a chaotic time series given by Mackey-Glass

differential equation. We performed five experiments. In the first four experiments, we examined the

effects of initial solutions generated by the structure learning algorithms, membership function change

interval, probability parameter for the calculation of the initial temperature and temperature update

coefficient used in simulated annealing algorithm on the tuning of Mamdani type fuzzy models. Last

experiment is divided into two parts. In the first part, we showed the random nature of the algorithm

and in the second part we proposed an alternative disturbance mechanism to reduce randomness of

the algorithm.

D.5.1 Test Data and Simulated Annealing Model Parameters

Proposed approach for constructing a Mamdani fuzzy system from data was tested with a chaotic

time series given by Mackey-Glass differential equation (Mackey and Glass, 1977).

ẋ(t) =
0.2x(t − τ)

1 + x10(t − τ)
− 0.1x(t) (D.3)

The problem consists of predicting future values of the series. In the experiments, the values x(t−18),

x(t − 12), x(t − 6) and x(t) were used to predict x(t + 6). To obtain time series data Runge-Kutta

method with 0.1 time step was used. Initial conditions for the time series were x(0) = 1.2 and τ = 17.

From Mackey-Glass time series 1000 input-output data pairs were generated between t = 118 and

1117. The first 500 data pair was used for training and the remaining 500 data pair was used for

testing.

SA model parameters used in the experiments are summarized in Table D.3.

D.5.2 Experiment-1

In the first experiment, we examine the effect of initial solutions on the tuning of the Mamdani type

fuzzy models. Initial solutions were generated by structure leaning methods namely WM-Method
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Table D.4: Properties of rule bases generated by WM-method

Rule base name Input fuzzy Output fuzzy Rule Parameter

set count∗ set count∗ count count

grid-3mf-Test1 3 3 24 45

grid-5mf-Test1 5 5 68 75

grid-7mf-Test1 7 7 116 105

grid-10mf-Test1 10 10 213 150

grid-13mf-Test1 13 13 304 195

grid-16mf-Test1 16 16 355 240

grid-20mf-Test1 20 20 413 300

∗ All linguistic variables have the same fuzzy set count.

Table D.5: Properties of rule bases generated by FCM-method

Rule base name Input fuzzy Output fuzzy Rule Parameter

set count∗ set count∗ count count

fcm-3mf-Test1 3 3 3 45

fcm-5mf-Test1 5 5 5 75

fcm-7mf-Test1 7 7 7 105

fcm-10mf-Test1 10 10 10 150

fcm-13mf-Test1 13 13 13 195

fcm-16-mf-Test1 16 16 16 240

fcm-20mf-Test1 20 20 20 300

∗ All linguistic variables have the same fuzzy set count.

and FCM-Method. We generated 7 rule bases with WM-method. Each variable of input and output

space were divided into symmetrical triangular membership fuzzy sets. Rule base properties generated

by WM-method are given in Table D.4. The second sets of rule bases were generated using FCM-

method. In order to define rules completely, clustering was applied to input-output data, where

premise corresponds to input part and conclusion corresponds to the output part. Rule base properties

generated by FCM-method are given in Table D.5. As an example for the generated rule bases, rule

base created by WM-method “grid-3mf-Test1” and rule base “fcm-3mf-Test1” generated by FCM-

method are shown in Figure D.1 and Figure D.2 respectively. Generated rules by the methods are

given in Table D.1 and Table D.2. Generated fuzzy systems “grid-3mf-Test1” and “fcm-3mf-Test1”

have 36 (i.e., 4 × 3 × 3) premise parameters, 9 (i.e., 1 × 3 × 3) consequent parameters and a total of

45 parameters.

Fuzzy systems learned from training data were used as initial solution for SA to optimize. Op-

timization starts with the calculation of the initial error and the initial temperature. To calculate

initial temperature specified number of moves (i.e., temperature stage length) was made and the mean

value of energy rises was estimated for each rule bases. Then, initial temperature T0 was calculated

with the selected initial probability as 25%. We chose initial probability near zero since we did not

want to alter initial solution too much. Membership function change rate was selected as 2%, tem-

perature update coefficient was chosen as 0.90 and we chose temperature stage lengths as twice of the

parameter counts. Optimizations were ended after 100 iterations.

At each temperature stage SA performs selected number of iterations (i.e., temperature stage
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Table D.6: Training and test data errors after optimization

Rule base Initial training Initial testing Final training Final testing

name error error error error

grid-3mf-Test1 0.182128832717001 0.181332938414955 0.051293974826460 0.050551617372790

fcm-3mf-Test1 0.140500698321958 0.139089028431362 0.078924371420670 0.077601009623490

grid-5mf-Test1 0.067090942695495 0.065354930169926 0.037904107964340 0.037353257338010

fcm-5mf-Test1 0.113075237211503 0.110560368543713 0.064353429271540 0.063513924539640

grid-7mf-Test1 0.046433363724616 0.046199259813711 0.026913527065960 0.026855596131330

fcm-7mf-Test1 0.098854033131716 0.097474551961004 0.037469200208330 0.037606564592140

grid-10mf-Test1 0.032135461828215 0.030864573734693 0.020737285054710 0.022538351721490

fcm-10mf-Test1 0.078020749645363 0.075967057552711 0.021278026505080 0.021800062794140

grid-13mf-Test1 0.020227422404703 0.019976078411097 0.018415298211630 0.019595607238630

fcm-13mf-Test1 0.070818362261285 0.070954972110349 0.028628477201970 0.029525150198400

grid-16mf-Test1 0.017113632074282 0.017062889146294 0.020417443199310 0.022326597589060

fcm-16-mf-Test1 0.064910666069115 0.062670491780502 0.034262130245540 0.036598162900300

grid-20mf-Test1 0.015203573427025 0.014667227384729 0.019685296335970 0.021934103329990

fcm-20mf-Test1 0.057035467905985 0.056325876910200 0.022451010716630 0.024077184923930

length). At each move, to find a new solution near to the current solution, we changed each parameter

of membership function belonging to each linguistic variable. We used 3 parameters (a, b, c) for

triangular membership functions as given by Equ. D.4.

triangle(x : a, b, c) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0 x < a

(x − a)/(b − a) a ≤ x ≤ b

(c − x)/(c − b) b ≤ x ≤ c

0 x > c

(D.4)

The parameters a and c locate the “feet” of the triangle and the parameter b locates the “peak”. Each

parameter of triangular membership functions were changed as follows: a random value is drawn

between [−0.5, +0.5]. The effect of random value is reduced allowing only 1% change at a move

(i.e., membership function change rate × a random value between [−0.5, +0.5]). Then, change rate

is decreased by multiplying with the temperature decrease from the beginning of SA. Therefore, at

the highest temperature maximum allowed change in each parameter was ±1% of the parameter

value. As the temperature decreases, change in parameters decreases proportional to the temperature

decrease. Training and test data errors after optimization are given in Table D.6 and final error values

are presented graphically in Figure D.5. Generally structures learned using WM-method have less

initial error values on both training and test data sets, only exception is the 3 membership fuzzy

set case. Since rule bases learned using WM-method provide better starting configuration for SA

algorithm, they have less final error values. On the other hand, error values of rule bases learned

using FCM-method were changed more. Moreover, SA could not produce better solutions for rule

bases “grid-16mf-Test1” and “grid-20mf-Test1”.

Rule base “grid-13mf-Test1” has the best error value for test data, however SA algorithm could

not tune rule base much. Therefore, we chose “fcm-10mf-Test1” rule base for the remaining tests since

this rule base produces the second best error value for test data. Another factor for choosing “fcm-

10mf-Test1” rule base was the execution time. Each linguistic variable in rule base “grid-13mf-Test1”
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Figure D.5: Training and test data errors after optimization.

has 13 membership fuzzy sets and the rule base contains 304 rules, while each linguistic variable

in rule base “fcm-10mf-Test1” has 10 membership fuzzy sets and the rule base contains only 10

rules. Therefore, optimization of rule base “grid-13mf-Test1” requires 37 times more execution time.

Iterations took 1295.5736641 seconds for rule base “fcm-10mf -Test1”, on the other hand time required

for SA algorithm for “grid-13mf-Test1” rule base was 48394.4190356 seconds on IntelR© Core
TM

2 Quad

Q6600 2.40GHz CPU machine with 2GB RAM (WindowsR©2003 Server SP2 platform).

D.5.3 Experiment-2

In the SA algorithm pseudo code shown in Figure D.3, Step 3.1.1 selects a new solution near to the

current solution in the search space. To generate a new solution based on the current solution, an

update for each parameter is calculated at each move. Update parameter is calculated using a random

value which is drawn between [−0.5, +0.5], membership function change rate which is given by the

user as an optimization parameter and the current temperature as given in Equ. D.5.

∆Change = Random(−0.5, +0.5)

∗ MFChangeRate ∗
Tcurrent

Tinitial
(D.5)

At the initial temperature allowed change for each parameter is high. As the temperature de-

creases, change in parameters decreases proportional to the temperature decrease.

In the second experiment, our aim is to investigate the effect of the membership function change

rate (MFChangeRate) on the proposed optimization. In this experiment, 20 different MFChangeRate

parameters were used for optimization of rule base “fcm-10mf-Test1”. Other parameters were selected

as: 100 iterations for SA algorithm iteration count, 300 moves for temperature stage length, 0.90 for

temperature update coefficient and 25% for initial probability of acceptance. Training and test data

errors after optimization are given in Table D.7 and final error values are presented graphically in

Figure D.6.

Although error values obtained after optimization show peaks and falls, there is an evidence for an

increase in error values as the membership function change rate increases especially after membership
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Table D.7: Membership function update parameter, MFChangeRate, values used in

the SA algorithm and obtained error values after optimization

Test name MFChange Final training Final testing

rate error error

fcm-10mf-Test2-1 0.01 0.032580760211814 0.034482933503751

fcm-10mf-Test2-2 0.02 0.032591948510532 0.033392132982630

fcm-10mf-Test2-3 0.03 0.045522215875877 0.045283773571063

fcm-10mf-Test2-4 0.04 0.037250221958866 0.037111686343773

fcm-10mf-Test2-5 0.05 0.046859342753061 0.049512942168226

fcm-10mf-Test2-6 0.06 0.055710873762785 0.057387104672936

fcm-10mf-Test2-7 0.07 0.038593190277779 0.037691760335007

fcm-10mf-Test2-8 0.08 0.049405986659366 0.049606681226335

fcm-10mf-Test2-9 0.09 0.035560052878913 0.035040584929122

fcm-10mf-Test2-10 0.10 0.065161201280302 0.066034531924431

fcm-10mf-Test2-11 0.11 0.070715231866115 0.072737568138272

fcm-10mf-Test2-12 0.12 0.072491758454550 0.071444260694880

fcm-10mf-Test2-13 0.13 0.057367859895025 0.056450062456253

fcm-10mf-Test2-14 0.14 0.077969900413780 0.080257029618051

fcm-10mf-Test2-15 0.15 0.069258076957214 0.068363297497902

fcm-10mf-Test2-16 0.16 0.078020749645363 0.075967057552711

fcm-10mf-Test2-17 0.17 0.069279254319482 0.070267892090533

fcm-10mf-Test2-18 0.18 0.059555069215372 0.058699548712191

fcm-10mf-Test2-19 0.19 0.078020749645363 0.075967057552711

fcm-10mf-Test2-20 0.20 0.078020749645363 0.075967057552711

Figure D.6: Training and test data errors after optimization.
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Figure D.7: Training and test data errors after optimization.

function change rate values above 0.09. Lowest error value on test data is obtained when membership

function change rate is 0.02.

D.5.4 Experiment-3

Initial temperature can be given by the user or it can be calculated according to the probability, also

chosen by the user. In this experiment, initial probability was given by the user to compute the initial

temperature. Before starting the actual SA algorithm, a number of moves (i.e., temperature stage

length) in the neighborhood of the initial rule base are made and new solutions are evaluated. During

the initialization, mean value of energy rises, hmean, is calculated using the formula given by Equ.

D.6.

hmean =
1

Mbad

Mbad
X

i=1

∆Errorbad (D.6)

where ∆Errorbad defines the energy rise of a bad move and Mbad is the number of bad moves made.

Then, initial temperature T0 is calculated using the formula given by Equ. D.2.

The user can start with a high temperature to accept worse solutions with high probability by

tuning the probability, P0, near to 1 or user can adjust P0 near to 0 to start with a low temperature

which accepts worse solutions with low probability. Starting with a low temperature is appropriate if

user do not want to alter initial knowledge too much.

In the third experiment, the effect of initial probability, P0, parameter was examined. In the

experiment, 20 different probability parameters were used for optimization of rule base “fcm-10mf-

Test1”. Other parameters were selected as: 100 iterations for SA algorithm iteration count, 300 moves

for temperature stage length, 0.90 for temperature update coefficient and 2% for membership function

change rate. Training and test data errors after optimization are given in Table D.8 and final error

values are presented graphically in Figure D.7.

Error values obtained after optimization show peaks and falls. Lowest error value on test data is

obtained when probability is 0.15.
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Table D.8: Probability parameter values, P0, used for the calculation of the initial

temperature and obtained error values after optimization

Test name Probability Final training Final testing

P0 error error

fcm-10mf-Test3-1 0.03 0.027049552287911 0.027869527137647

fcm-10mf-Test3-2 0.05 0.029956197338474 0.029829660111646

fcm-10mf-Test3-3 0.07 0.029706767182239 0.029079298999509

fcm-10mf-Test3-4 0.10 0.025233256318947 0.032839207577676

fcm-10mf-Test3-5 0.13 0.028108383024951 0.028903550365257

fcm-10mf-Test3-6 0.15 0.024723257924412 0.024207541432082

fcm-10mf-Test3-7 0.17 0.026744231653214 0.030178560416393

fcm-10mf-Test3-8 0.20 0.037303580573930 0.040250130879308

fcm-10mf-Test3-9 0.23 0.031059031170019 0.031098828253451

fcm-10mf-Test3-10 0.25 0.045389565363614 0.049498884978027

fcm-10mf-Test3-11 0.27 0.024294366227691 0.025061559123040

fcm-10mf-Test3-12 0.30 0.033570963106261 0.035780452130748

fcm-10mf-Test3-13 0.33 0.032578269279932 0.033617406936935

fcm-10mf-Test3-14 0.35 0.033021769309479 0.033618519921317

fcm-10mf-Test3-15 0.37 0.030999547372159 0.030512401946027

fcm-10mf-Test3-16 0.40 0.055932345066092 0.056781686915067

fcm-10mf-Test3-17 0.43 0.038780551326288 0.039264913365340

fcm-10mf-Test3-18 0.45 0.030843584680606 0.032059942003109

fcm-10mf-Test3-19 0.47 0.039539665936664 0.043011251124456

fcm-10mf-Test3-20 0.50 0.041774049038074 0.043849155959658

D.5.5 Experiment-4

In the SA algorithm pseudo code shown in Figure D.3, Step 3.3 updates temperature according to

cooling strategy. In this work, geometrical law of decrease Tk+1 = αTk, where k defines temperature

stage number and α is the cooling rate parameter, 0 < α < 1, was used to perform temperature

decrease. High cooling rate parameter leads to an excessive calculation time and low cooling rate

parameter leads to the risk of evolving to a local minimum. In the experiment, α took values between

[0.80, 0.99].

In this experiment, the effect of α coefficient on the proposed optimization algorithm was exam-

ined. In the experiment, 20 different coefficients were used for optimization of rule base “fcm-10mf-

Test1”. Other parameters were selected as: 100 iterations for SA algorithm iteration count, 300 moves

for temperature stage length, 2% for membership function change rate and 25% for initial probability

of acceptance. Training and test data errors after optimization are given in Table D.9 and final error

values are presented graphically in Figure D.8.

Although error values obtained after optimization show peaks and falls, there is an evidence

for a decrease in error values as the coefficient value increases. On the other hand, there are some

exceptional behaviors when coefficient values are 0.80, 0.85, 0.93 and 0.95. Lowest error value on test

data is obtained when coefficient value is 0.97.
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Table D.9: Temperature update parameter values, α, and obtained error values after

optimization

Test name α Final training Final testing

coefficient error error

fcm-10mf-Test4-1 0.99 0.029026835077074 0.028326832465250

fcm-10mf-Test4-2 0.98 0.027777197636446 0.028659410138441

fcm-10mf-Test4-3 0.97 0.025672519214074 0.026026204822291

fcm-10mf-Test4-4 0.96 0.029759235867780 0.029996045236807

fcm-10mf-Test4-5 0.95 0.035546402545102 0.034864868319703

fcm-10mf-Test4-6 0.94 0.028193049851985 0.028270533502236

fcm-10mf-Test4-7 0.93 0.033324398812754 0.032960821576594

fcm-10mf-Test4-8 0.92 0.028136847672635 0.028029401015691

fcm-10mf-Test4-9 0.91 0.027984092493318 0.031211528735725

fcm-10mf-Test4-10 0.90 0.033322404863300 0.035016758634859

fcm-10mf-Test4-11 0.89 0.031917133745359 0.034114345905790

fcm-10mf-Test4-12 0.88 0.032445720605595 0.036761924729329

fcm-10mf-Test4-13 0.87 0.042040335158929 0.042430370726941

fcm-10mf-Test4-14 0.86 0.043826190250623 0.047584086162179

fcm-10mf-Test4-15 0.85 0.030392062758001 0.033358291518275

fcm-10mf-Test4-16 0.84 0.044645825142355 0.047110705252473

fcm-10mf-Test4-17 0.83 0.042474735507536 0.045331511498727

fcm-10mf-Test4-18 0.82 0.037630542191324 0.040724213443291

fcm-10mf-Test4-19 0.81 0.046103484209897 0.046745444622349

fcm-10mf-Test4-20 0.80 0.031979527957012 0.032640376540650

Figure D.8: Training and test data errors after optimization.
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Table D.10: Training and test data errors after optimization

Test name Final training Final testing

error error

fcm-10mf-Test5-1 0.031564486466301 0.031939684155499

fcm-10mf-Test5-2 0.022802840902982 0.023854559444832

fcm-10mf-Test5-3 0.030791731337729 0.031700077977207

fcm-10mf-Test5-4 0.020406376159823 0.020755203606649

fcm-10mf-Test5-5 0.023315952668870 0.024805128019452

fcm-10mf-Test5-6 0.025216722161838 0.026244743972233

fcm-10mf-Test5-7 0.024890721224761 0.025693350438340

fcm-10mf-Test5-8 0.024289979042150 0.026386516004149

fcm-10mf-Test5-9 0.031672059511228 0.031247557712458

fcm-10mf-Test5-10 0.024287407133265 0.024036721748655

fcm-10mf-Test5-11 0.025208654527442 0.026268854848332

fcm-10mf-Test5-12 0.020950259310876 0.021568865747721

fcm-10mf-Test5-13 0.028185466084554 0.028492139168233

fcm-10mf-Test5-14 0.024660307337206 0.025378469188651

fcm-10mf-Test5-15 0.018035446685474 0.017910462862281

fcm-10mf-Test5-16 0.021542658515521 0.021227765585768

fcm-10mf-Test5-17 0.016470763553281 0.016084958995410

fcm-10mf-Test5-18 0.026104224437659 0.026002423878585

fcm-10mf-Test5-19 0.024386712821907 0.025077005563244

fcm-10mf-Test5-20 0.020379414613201 0.020536928120313

D.5.6 Experiment-5

Since SA algorithm uses Metropolis Acceptance Criterion, it accepts worse solutions on a probabilistic

basis. Therefore, results obtained from the algorithm may vary when the algorithm executed several

times:

1. with different “seeds” for the generation of the random numbers,

2. with different initial configurations.

This experiment investigates the random nature of the algorithm. In the experiment, we used two

different disturbance mechanisms to examine their effect on the final solutions. Therefore, we divided

the experiment in two parts. In both parts of the experiment, the rule base “fcm-10mf-Test1” was used

as initial solution and the algorithm was executed 20 times with the same initial solution and with

the same parameters but with different seeds. Other parameters were selected as: 100 iterations for

SA algorithm iteration count, 300 moves for temperature stage length, 2% for membership function

change rate, 0.97 for temperature update coefficient and 15% for initial probability of acceptance.

Part1

In the first part, each parameter of a triangular membership function was changed during the gener-

ation of the new solution near to the current solution, as discussed in Section D.5.2. According to the

disturbance mechanism all linguistic variables, all membership functions of each linguistic variable

and all parameters of each membership function were changed. Training and test data errors after

optimization are given in Table D.10 and final error values are presented graphically in Figure D.9.
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Figure D.9: Training and test data errors after optimization.

Figure D.10: Training and test data errors after optimization.

Although initial solution and all the parameters were the same, SA algorithm generated different

tuned solutions with different seeds. Minimum and maximum error values for the test data are

0.016470763553281 and 0.031672059511228 respectively. Average error value for the test data is

0.024258109224803, where standard deviation is calculated as 0.004122075.

Part2

If we change disturbance mechanism in such a way that it alters less parameter, then results should

not vary as the results obtained in the previous part. In the second part, only one membership

function of one linguistic variable was changed. Linguistic variable and membership function was

selected randomly. Each parameter of the membership function was changed as in the previous part.

Training and test data errors after optimization are given in Table D.11 and final error values are

presented graphically in Figure D.10.

In the second part, variation in the final solutions is decreased. As we decrease the number of

changed parameters (i.e, as we decrease randomness of the algorithm), variation in the final solutions
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Table D.11: Training and test data errors after optimization

Test name Final training Final testing

error error

fcm-10mf-Test5-1 0.047528509468113 0.045970628326737

fcm-10mf-Test5-2 0.048747128906402 0.049712415319536

fcm-10mf-Test5-3 0.048369334423920 0.047528767895028

fcm-10mf-Test5-4 0.048768782612161 0.049011383074938

fcm-10mf-Test5-5 0.047394391155267 0.046507890548215

fcm-10mf-Test5-6 0.047424592345344 0.046009531275367

fcm-10mf-Test5-7 0.047288391081381 0.046802047863112

fcm-10mf-Test5-8 0.047155412732968 0.046281661714853

fcm-10mf-Test5-9 0.048314081192186 0.047533716220824

fcm-10mf-Test5-10 0.047494901529983 0.047789262605717

fcm-10mf-Test5-11 0.049856607977170 0.049943798781281

fcm-10mf-Test5-12 0.047638921685791 0.047612775582430

fcm-10mf-Test5-13 0.048855344137112 0.048768356490588

fcm-10mf-Test5-14 0.049238604504681 0.049470142262899

fcm-10mf-Test5-15 0.046652646803224 0.045696866606049

fcm-10mf-Test5-16 0.049866553542626 0.049953206071869

fcm-10mf-Test5-17 0.047817223953570 0.047301631752595

fcm-10mf-Test5-18 0.047249673199303 0.046175690001018

fcm-10mf-Test5-19 0.047344129831350 0.045733860336663

fcm-10mf-Test5-20 0.048131985347495 0.047948254104687

is also decreased. Minimum and maximum error values for the test data are 0.046652646803224 and

0.049866553542626 respectively. Average error value for the test data is 0.048056860821502. Standard

deviation is calculated as 0.000914823 which is only 2/9 of the standard deviation of the previous part.

D.6 Conclusion

The aim of this paper was to introduce SA metaheuristic for tuning Mamdani type fuzzy models.

Structures of the fuzzy models were learned from input-output data using two different methods

namely WM-Method and FCM-Method. Then, parameters of the fuzzy rule bases were tuned using

SA. SA technique is a general method, it is easy to understand and implement, can use any cost

function, unlike gradient descent methods SA can use any type of membership functions, it does not

depend on fuzzy logic operators, implication, defuzzification functions, etc.

SA can be used to solve many combinatorial optimization problems and some continuous variable

problems. Optimizing the parameters of fuzzy rule bases is a continuous variable problem. Therefore,

a specific method was needed for discretization of each parameter.

SA technique involves many parameters such as initial temperature, rate of decrease of the temper-

ature, length of the temperature stages, termination criterion, etc. Although there are some methods

to obtain them, generally they depend on the problem, therefore finding method requires empirical

testing. In this paper we experiment with a) initial solution generated by WM-Method and FCM-

Method, b) membership function update procedure, c) probability parameter for the calculation of the

initial temperature, d) temperature update coefficient used for cooling schedule, and e) randomness
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level in the disturbance mechanism used in the SA algorithm. Both WM-Method and FCM-Method

provided good starting solutions to tune. Although WM-Method generated better initial solutions,

they contained too many rules which are very difficult to interpret and required extensive calculation

time to tune. For membership function update parameter, MFChangeRate ∈ (0, 1], and probability

parameter for the calculation of the initial temperature, P0 ∈ (0, 1), values close to zero generally pro-

duced better results. This may be due to the quality of the initial solutions. Taking update coefficient

small for temperature leads to the risk of evolving to a local minimum, while taking update coefficient

high leads to excessive calculation time. In our forth experiment, we used the same rule base, the

same parameters except from the update coefficient and we stopped optimization after a constant

number of iterations therefore we did not notice the difference between the calculation times required

for different update coefficients. On the other hand, high values of the update coefficients gave better

results. In the last experiment, as we decrease the number of changed parameters, variation in the

final solutions was also decreased.

The computing time required by the SA technique is high; especially at low temperatures SA is

greedy. Therefore, to reduce computation time, SA can be used in conjunction with an algorithm

of local type such as gradient descent etc. SA can be terminated at a user specified error value and

then local optimizer can further search the optimum locally. However, this approach adds another

parameter that needs to be determined.

In this work, interpretability of fuzzy system is not considered while generation and tuning of

the fuzzy rule bases. Addition of interpretation ability to data driven fuzzy rule base generation and

tuning method presented in this work can be addressed as a future work.
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APPENDIX E

SIMPLIFIED FUZZY MODELS

The effectiveness of triangular membership functions for linguistic variables “longitude”

and “latitude” are given in Figure E.1, Figure E.2, Figure E.3, Figure E.4, Figure E.5

and Figure E.6. The centers of the membership functions are drawn black and indicate

membership degrees equal to unity. Shades of gray represent the membership degrees

between zero and one where whiter regions represent membership degrees close to zero.

Initial and simplified fuzzy models for FCM1p, GK1p and GK2p are given in Fig-

ure E.7, Figure E.8, Figure E.9, Figure E.10, Figure E.11 and Figure E.12, respectively.

Initial fuzzy models were created by fuzzy clustering techniques and simplified fuzzy

models were obtained by applying simplification algorithm to initially created fuzzy

models.
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Figure E.1: Membership function “east” for linguistic variable “longitude”.
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Figure E.2: Membership function “west” for linguistic variable “longitude”.
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Figure E.3: Membership function “near-west” for linguistic variable “longitude”.
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Figure E.4: Membership function “near-north” for linguistic variable “latitude”.
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Figure E.5: Membership function “south” for linguistic variable “latitude”.
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Figure E.6: Membership function “north” for linguistic variable “latitude”.
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Figure E.7: Membership functions of initial fuzzy model FCM1p before tuning. Initial

fuzzy model rule base contains 16 rules.
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Figure E.8: Membership functions of simplified FCM1p fuzzy model. Simplified fuzzy

model rule base contains 15 rules.
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Figure E.9: Membership functions of initial fuzzy model GK1p before tuning. Initial

fuzzy model rule base contains 14 rules.
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Figure E.10: Membership functions of simplified GK1p fuzzy model. Simplified fuzzy

model rule base contains 11 rules.
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Figure E.11: Membership functions of initial fuzzy model GK2p before tuning. Initial

fuzzy model rule base contains 14 rules.
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Figure E.12: Membership functions of simplified GK2p fuzzy model. Simplified fuzzy

model rule base contains 10 rules.
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Figure E.13: Membership functions of initial fuzzy model FCM1p before tuning. Initial

fuzzy model is constructed with 5 clusters and it contains 5 rules.
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Figure E.14: Membership functions of simplified FCM1p fuzzy model which are ini-

tially constructed with five clusters. Simplified fuzzy model rule base contains 5 rules.
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Figure E.15: Membership functions of initial fuzzy model GK1p before tuning. Initial

fuzzy model is constructed with 5 clusters and it contains 5 rules.
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Figure E.16: Membership functions of simplified GK1p fuzzy model which are initially

constructed with five clusters. Simplified fuzzy model rule base contains 5 rules.
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Figure E.17: Membership functions of initial fuzzy model GK2p before tuning. Initial

fuzzy model is constructed with 5 clusters and it contains 5 rules.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fuzzy Partition of Input Variable Longitude
23

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fuzzy Partition of Input Variable Latitude
1 3

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fuzzy Partition of Input Variable Altitude
01

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fuzzy Partition of Input Variable SdGrid
23

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fuzzy Partition of Output Variable Precipitation
24

Figure E.18: Membership functions of simplified GK2p fuzzy model which are initially

constructed with five clusters. Simplified fuzzy model rule base contains 5 rules.
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Figure E.19: Membership functions of initial fuzzy model GG3p before tuning. Initial

fuzzy model is constructed with 5 clusters and it contains 5 rules.
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Figure E.20: Membership functions of simplified GG3p fuzzy model which are initially

constructed with five clusters. Simplified fuzzy model rule base contains 5 rules.
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