

AN ONTOLOGY-DRIVEN VIDEO ANNOTATION AND RETRIEVAL SYSTEM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

GONCAGÜL DEMİRDİZEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

SEPTEMBER 2010

Approval of the thesis:

AN ONTOLOGY-DRIVEN VIDEO ANNOTATION AND RETRIEVAL

SYSTEM

submitted by GONCAGÜL DEMİRDİZEN in partial fulfillment of the

requirements for the degree of Master of Science in Computer Engineering

Department, Middle East Technical University by,

Prof. Dr. Canan Özgen _______________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı _______________

Head of Department, Computer Engineering

Assoc. Prof. Dr. Nihan Kesim Çiçekli

Supervisor, Computer Engineering Dept., METU _______________

Examining Committee Members:

Prof. Dr. Özgür Ulusoy

Computer Engineering Dept., BİLKENT _____________________

Assoc. Prof. Dr. Nihan Kesim Çiçekli

Computer Engineering Dept., METU _____________________

Assoc. Prof. Dr. Ferda Nur Alpaslan

Computer Engineering Dept., METU _____________________

Assoc. Prof. Dr. Ahmet Coşar

Computer Engineering Dept., METU _____________________

Asst. Prof. Dr. İlkay Ulusoy

Electrical and Electronics Engineering Dept., METU _____________________

Date: 17.09.2010

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last name : Goncagül DEMİRDİZEN

 Signature :

 iv

ABSTRACT

AN ONTOLOGY-DRIVEN VIDEO ANNOTATION AND

RETRIEVAL SYSTEM

Demirdizen, Goncagül

M.Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Nihan Kesim Çiçekli

September 2010, 109 pages

In this thesis, a system, called Ontology-Driven Video Annotation and Retrieval

System (OntoVARS) is developed in order to provide a video management system

which is used for ontology-driven semantic content annotation and querying. The

proposed system is based on MPEG-7 ontology which provides interoperability and

common communication platform with other MPEG-7 ontology compatible systems.

The Rhizomik MPEG-7 ontology is used as the core ontology and domain specific

ontologies are integrated to the core ontology in order to provide ontology-based

video content annotation and querying capabilities to the user. The proposed system

supports content-based annotation and spatio-temporal data modeling in video

databases by using the domain ontology concepts. Moreover, the system enables

ontology-driven query formulation and processing according to the domain ontology

instances and concepts. In the developed system, ontology-driven concept querying,

spatio-temporal querying, region-based and time-based querying capabilities are

performed as simple querying types. Besides these simple query types, compound

queries are also generated by combining simple queries with "(", ")", "AND" and

"OR" operators. For all these query types, the system supports both general and

 v

video specific query processing. By this means, the user is able to pose queries on all

videos in the video databases as well as the details of a specific video of interest.

Keywords: Ontology-Driven Annotation, Semantic Content-Based Querying,

Spatio-Temporal Querying, MPEG-7 Ontology, Domain Ontology.

 vi

ÖZ

ONTOLOJİ TABANLI VİDEO ETİKETLEME VE ERİŞİM

SİSTEMİ

Demirdizen, Goncagül

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Nihan Kesim Çiçekli

Eylül 2010, 109 sayfa

Bu tez kapsamında, ontoloji tabanlı, anlamsal içeriğe yönelik etiketleme ve

sorgulama yapılmasına olanak sağlayan bir video yönetim sistemi sağlamak

amacıyla "Ontoloji Tabanlı Video Etiketleme ve Erişim Sistemi" adında bir alt yapı

geliştirilmiştir. Sunulan sistem, MPEG-7 ontolojisi tabanlıdır ve bu alt yapı sisteme,

diğer MPEG-7 ontolojisi uyumlu sistemlerle ortak bir dil üzerinden haberleşebilme

ve birlikte çalışabilirlik yeteneği kazandırmıştır. Rhizomik MPEG-7 ontolojisi

sistemde temel ontoloji olarak kullanılır ve kullanıcıya ontoloji tabanlı video içeriği

etiketleme ve sorgulama kabiliyetlerini saplayabilmek için alana özel ontolojiler

temel ontolojiye entegre edilir. Sunulan sistem, video veritabanlarında, alana özel

ontolojilerin kavramları kullanılarak içeriğe yönelik etiketleme ve uzay-zamansal

veri modelleme işlevlerini desteklemektedir. Bunların yanı sıra, geliştirilen sistem

alana özel ontolojik kavram ve nesnelere yönelik ontoloji tabanlı sorguların

oluşturulması ve işlenmesine olanak sağlar. Geliştirilen sistemde, ontoloji tabanlı

kavramsal sorgulama, uzay-zamansal sorgulama, bölgesel ve zaman tabanlı

sorgulama kabiliyetleri basit sorgu tipleri olarak gerçekleştirilebilmektedir. Bunların

yanı sıra, basit sorguların "(", ")", "AND" ve "OR" operatörleri ile birleştirilmesiyle

 vii

birleşik sorgular oluşturulur. Tüm bu sorgu tipleri için, sistem, hem genel hem de

belirli bir videoya özel sorgulama yapabilmeyi desteklemektedir. Bu sayede,

kullanıcıya video veritabanındaki tüm videolar üzerinde arama ve veri erişimi

kabiliyeti sağlanmasının yanı sıra sadece ilgilenilen belirli bir video üzerinde arama

yapma kabiliyeti de sunulmuş olur.

Anahtar kelimeler: Ontoloji Tabanlı Etiketleme, Anlamsal İçeriğe Yönelik

Sorgulama, Uzay-Zamansal Sorgulama, MPEG-7 Ontolojisi, Alan Ontolojisi.

 viii

To my family…

 ix

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to my supervisor

Assoc. Prof. Dr. Nihan Kesim Çiçekli for her guidance, understanding and

encouragement throughout my masters and thesis study. It was a privilege to study

with such a friendly and considerate supervisor.

I would also like to thank to my thesis jury members for their valuable comments

and evaluation on this thesis.

I also want to thank to Scientific and Technical Research Council of Turkey

(TÜBİTAK) for its support to the project with grant number EEEAG 107E234.

I would like to present my special thanks to TÜBİTAK - BİBED for their support

with grant number 2228.

I am indebted to my precious friends Hilal Karaman, Ertay Kaya, Gizem Gürcüoğlu,

Enver Veli Atabek, Seda Çakıroğlu, Ali Anıl Sınacı, Duygu Ceylan, Duygu Görgün

Yıldırım, Begüm Bulutcu and Bahar Pamuk for their support and encouragement

throughout this thesis study. Thanks for standing by me and giving me a shoulder to

lean on whenever I need.

I would also like to thank my supervisors and my colleagues from ASELSAN for

their understanding and support during my academic studies.

Finally, my deepest thanks are to my family for their never ending love, patience and

support throughout my life.

 x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ... .. vi

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS .. x

LIST OF TABLES ... xiv

LIST OF FIGURES ... xv

1 INTRODUCTION ... 1

2 BACKGROUND INFORMATION AND RELATED WORK 9

2.1 Background Information ... 9

2.1.1 MPEG-7 Standard .. 9

2.1.2 MPEG-7 Ontology ... 11

2.1.3 Domain Ontology Integration .. 13

2.1.4 JENA Ontology API ... 15

2.1.5 SPARQL ... 16

2.2 Related Work ... 19

2.2.1 BilVideo ... 19

2.2.2 Ontology-Driven Audiovisual Content Management Framework . 23

 xi

2.2.3 Ontology-Based Multimedia Information Management System ... 25

2.2.4 Ontology-Based Spatio-Temporal Video Management System

(OntoVMS) .. 27

2.2.5 Content-Based Video Query System .. 30

2.2.6 Extended AVIS .. 32

2.2.7 Ontology-Supported Video Modeling System 33

2.2.8 Spatio-Temporal Query Approach for Multimedia Databases 34

2.2.9 Multimedia Ontology Framework for Event Annotation and

Retrieval .. 35

3 GENERAL SYSTEM ARCHITECTURE .. 37

3.1 System Properties .. 37

3.2 System Specifications ... 38

3.3 System Architecture and Components .. 39

4 VIDEO ANNOTATION AND MODELING ... 43

4.1 Domain Specific Common Data Integration ... 44

4.2 Semantic Annotation ... 46

4.3 Spatio-Temporal Annotation ... 51

4.3.1 Spatial Relations ... 52

4.3.2 Temporal Relations .. 55

4.3.3 Spatio-Temporal Relation Extraction ... 56

 xii

4.3.4 Spatio-Temporal Data Modeling .. 61

5 QUERY PROCESSING .. 64

5.1 OntoVARS Query Types .. 65

5.1.1 Concept Querying .. 65

5.1.2 Spatial Querying ... 65

5.1.3 Temporal Querying .. 66

5.1.4 Time-Based Querying .. 66

5.1.5 Region-Based Querying ... 67

5.1.6 Compound Querying .. 67

5.2 OntoVARS Query Engine Architecture .. 68

5.3 OntoVARS Query Processing ... 71

5.3.1 Query Analysis ... 71

5.3.2 SPARQL Generation .. 72

5.3.3 Query Execution ... 72

5.3.3.1 Concept Query Execution ... 73

5.3.3.2 Spatial Query Execution .. 76

5.3.3.3 Temporal Query Execution ... 78

5.3.3.4 Time-Based Query Execution ... 80

5.3.3.5 Region-Based Query Execution .. 83

5.3.3.6 Compound Query Execution ... 85

 xiii

6 IMPLEMENTATION ... 90

6.1 Ontology Management Panel .. 91

6.2 Video Annotation Panel .. 93

6.3 Video Query Panel .. 96

7 CONCLUSION AND FUTURE WORK .. 101

8 REFERENCES .. 104

 xiv

LIST OF TABLES

TABLES

Table 2.1.1: Comparison of MPEG-7 Based Ontologies .. 11

Table 4.3.1: Topological Relation Formalization ... 58

 xv

LIST OF FIGURES

FIGURES

Figure 2.1.1: MPEG-7 Main Elements .. 10

Figure 2.2.1: BilVideo System Architecture ... 20

Figure 2.2.2: Audio-Visual Content Management Framework Architecture 23

Figure 2.2.3: Ontology-Based Multimedia Management Framework Architecture . 26

Figure 2.2.4: OntoVMS System Architecture ... 28

Figure 2.2.5: Ontology-Supported Video Modeling System Architecture 33

Figure 2.2.6: Five Regions of Interest ... 35

Figure 3.3.1: General System Architecture ... 40

Figure 4.2.1: Semantic Annotation Module Architecture ... 47

Figure 4.2.2: MBRs for Annotation Instances .. 48

Figure 4.2.3: MBR Corner Points ... 48

Figure 4.3.1: Directional and Positional Relations ... 53

Figure 4.3.2: Left Relation Example ... 53

Figure 4.3.3: Topological Relations .. 54

Figure 4.3.4: Temporal Relations .. 55

Figure 4.3.5: Directional Relation Extraction ... 57

 xvi

Figure 4.3.6: Inverse Directional Relation Samples ... 57

Figure 4.3.7: Temporal Relation Examples .. 60

Figure 4.3.8: Spatio-Temporal Annotation Module Architecture 62

Figure 5.2.1: OntoVARS Query Engine Architecture .. 68

Figure 5.3.1: Concept Query Execution Mechanism .. 76

Figure 5.3.2: Spatial Query Execution Mechanism .. 78

Figure 5.3.3: Temporal Query Execution Mechanism .. 80

Figure 5.3.4: Time-Based Query Execution Mechanism .. 82

Figure 5.3.5: Region-Based Query Execution Mechanism 85

Figure 5.3.6: (a) Initial Query Tree for Query 1 and (b) Final Query Tree for Query 1

After Internal Node Reordering .. 87

Figure 5.3.7: (a) Initial Query Tree for Query 2 and (b) Final Query Tree for Query 2

After Internal Node Reordering .. 88

Figure 5.3.8: Compound Query Evaluation .. 89

Figure 6.1.1: OntoVARS Main Page .. 91

Figure 6.1.2: Ontology Management Panel .. 91

Figure 6.1.3: Ontology Import Interface ... 93

Figure 6.1.4: Common Data Integration Interface .. 93

Figure 6.2.1: Instance Definition Interface ... 95

Figure 6.2.2: Semantic Annotation Interface .. 95

 xvii

Figure 6.3.1: Multiple Video Concept Query ... 96

Figure 6.3.2: Specific Video Concept Query .. 97

Figure 6.3.3: Time-Based Query Interface .. 98

Figure 6.3.4: Region-Based Query Interface .. 99

 1

CHAPTER 1

1 INTRODUCTION

In latest years, multimedia content has become more important and replaced the

traditional media in our daily lives, since it is used in a wide number of domains

ranging from entertainment, news, commerce, education, etc. The recent

technological advances, as well as the availability of electronic devices for

multimedia content consumption, have also increased the amount of multimedia data

and brought a demand for the management and access on the data at the semantic

content-based level. Thus, the increase in the amount of multimedia data leads

difficulty in the content based retrieval of audio-visual data and makes semantic

content annotation and querying in multimedia databases an important issue.

Semantic content based retrieval is an important criterion for the evaluation of

multimedia content management systems, since the retrieval success has a direct

interaction with the system end users. As the user constructs more complex and

detailed queries, the multimedia system is expected to present more advanced

retrieval performance on multimedia content. In order to provide successful retrieval

capabilities, semantic content based data modeling also becomes more of an issue in

a multimedia management system.

In multimedia systems, semantic content is defined according to the application and

the multimedia data type (i.e. audio, image, video). In this thesis, video data is used

as the center of study and other multimedia data types are excluded from the scope

of the thesis work. Video data consists of high level features including semantic

information and low level features including color, shape, texture etc. In this thesis,

 2

only video high level features, namely video semantic content is studied and low

level features are remained out of the scope. Video semantic content should be

described and stored in a machine understandable way in order to satisfy the

required advanced retrieval capabilities on video content and provide semantic

content-based search capabilities to the user. Semantic descriptions for the audio-

visual content is stored in semantic descriptors and these semantic descriptions

include metadata for the content of audio-visual information referring to the whole

multimedia content or to segments of the whole content. For interoperability issues

between similar audio-visual content based retrieval systems, conforming to widely-

accepted international standards for the description of semantic metadata has

primary importance [10][20][38]. In order to provide interoperability, a standard,

namely MPEG-7, is developed by Moving Picture Expert Group for multimedia

content description [1][3][6].

MPEG-7 is one of the widespread standards used for describing content of

audiovisual information by providing a rich set of standardized tools to describe

multimedia content [1]. MPEG-7 provides a set of audio-visual Description Tools in

the forms of Descriptors and Description Schemes which are complex data types

used to describe audio-visual content in order to provide efficient access to the

multimedia content for semantic content based retrieval systems [2]. Although the

standard is developed for describing different multimedia contents in a standard

representation, its XML-based structure prevents semantic interoperability between

similar content based retrieval systems [3][6]. Moreover, MPEG-7 does not support

reasoning capability and in MPEG-7 standardization the same semantic content can

be represented in different ways. In order to provide semantic interoperability, a

standard representation and reasoning capability, MPEG-7 to Semantic Web

transition has been attempted [4].

Semantic web technologies are applied to MPEG-7 standard and the standard

schema is translated into OWL ontology in order to solve semantic interoperability

issues. By this way, four MPEG-7 ontologies having different amount of coverage of

the standard and different expressiveness power are proposed [4][5][8]. These

 3

MPEG-7 ontologies are Jane Hunter Ontology [18], Tsinaraki Ontology [7],

Rhizomik Ontology [14] and COMM Ontology [19]. In this thesis, MPEG-7

Rhizomik ontology is used as the core ontology due to its complete coverage of the

standard and reasonable expressiveness power. Moreover, domain specific

ontologies are integrated to the core MPEG-7 ontology in order to improve semantic

content-based retrieval capabilities. The usage of domain ontologies presents domain

specific concepts to the users for providing legal content annotation and content-

based queries.

In this thesis, we aim to propose a solution for semantic content modeling and data

retrieval issues in video databases and develop a framework, namely An Ontology-

Driven Video Annotation and Retrieval System. Our system provides video content

annotation and querying capabilities to the user. In the proposed system, an

ontology-driven approach is adopted by constructing MPEG Rhizomik ontology as

the core ontology and attaching domain ontologies to this core ontology. Due to the

supported ontology infrastructure, domain specific concepts can be used to annotate

video contents and formulate content-based user queries. The system supports

semantic content modeling and annotation which can be divided into concept

annotation and spatio-temporal annotation. Concept annotation covers the annotation

of the individuals, objects and events in the video content according to the domain

specific concepts. Moreover, the system also supports domain specific common

application data integration and this integration process decreases concept

annotation effort. Spatio-temporal annotation includes the spatial and temporal

relations between individuals, objects and events. The supported spatial relations are

composed of directional relations (north, south, east, west), mixed directional

relations (northwest, northeast, southwest, southeast), distance relations (near, far),

positional relations (left, right, above, below) and topological relations (overlaps,

equal, inside, touch, contain, cover, covered-by, disjoint) [37][45]. The supported

temporal relations are defined according to Allen’s temporal algebra relations

(precedes, preceded-by, meets, met-by, overlaps, overlapped-by, finishes, finished-

by, starts, started-by, equals, during) [42].

 4

The proposed system supports ontology-driven concept querying, spatio-temporal

querying, region-based and time-based querying capabilities as simple querying

types. Besides these simple query types, compound queries are also supported in

order to enhance querying capability of the system. Compound queries are generated

by combining simple queries with "(", ")", "AND" and "OR" operators. For all these

query types, the system supports both general and video specific query processing.

By this means, the user will be able to pose queries on all videos in the video

databases as well as a specific video of interest.

The main difference between our proposed framework and other video management

and retrieval systems is its ontology support. Our system uses both MPEG-7

Rhizomik ontology and domain ontologies for modeling and querying the video

semantic content, including spatio-temporal data. The users can formulate

ontological queries by using the domain ontology concepts via a form-based user

interface. The user queries are converted to SPARQL queries and the query engine

executes these SPARQL queries in order to retrieve ontological data and query

results. By means of the ontological querying capability, the users can query the

members of a domain ontology class. For instance, it is possible to query mammals

in an animal documentary. Or, the user may be interested in only the positions of

home team players when an offside event occurs in a soccer video.

The system is developed as a web application and provides a form-based user

interface for video content annotation and querying. The current version of the

framework supports manual annotation of the videos, however the system

infrastructure is convenient to integrate automatic or semi-automatic annotator

modules in latter studies. On the other hand, the query interface enables the

formulation of different types of queries such as concept, spatio-temporal, region

based and time based queries. Moreover, by combining these sub-queries, compound

queries are also generated and sent to the query engine. After generating

corresponding SPARQL queries, the queries are executed and matching query

results are retrieved. Finally, the query results are organized and displayed to the end

users in the user interface.

 5

This thesis is conducted as a part of a research project partially supported by

TUBITAK (TUBITAK-EEEAG 107E234). The main objective of the project is to

develop an ontology-driven video management framework for the management of

personal videos. The proposed framework provides semantic content based

modeling, annotation and querying of multimedia content capabilities to the user. In

this thesis work, the main infrastructure of the project is developed providing the

mentioned system capabilities.

In the concept of this research project, some academic studies have been already

performed. An ontology-based multimedia information management system was

proposed by Hilal Tarakçı in 2008 [20]. That was the initial study on the framework

and the ontological infrastructure was constructed in the concept of that study.

MPEG-7 ontology structure was established and an automatic integration

mechanism was developed for the attachment of domain specific ontologies to the

MPEG-7 ontology. The initial framework has very limited annotation and querying

capabilities. Only concept annotation and querying capabilities are provided. In

order to satisfy the project specifications and construct a personal multimedia

management system, some extra capabilities are needed to be added.

In order to improve system capabilities, ontology-based spatio-temporal video

management system was developed by Atakan Şimşek in 2009. The developed

system provided spatio-temporal data modeling and querying capabilities to the

system. Thus, a framework that provides ontology-driven concept modeling, spatio-

temporal annotation and data retrieval capabilities was achieved [37]. Moreover, a

knowledge base structure has been constructed for the management of spatio-

temporal data modeling in order to optimize system space usage.

Furthermore, a natural language query interface and SPARQL query generator has

been proposed by Filiz Alaca in this year in order to provide a natural language

query input to the system. According to the proposed system, natural language

queries provided by the users are converted to the SPARQL queries and supplied as

query input to the system [44].

 6

In the light of these studies, the infrastructure management, video annotation and

querying capabilities are decided to be improved in this thesis work. After

conducting a literature survey, domain specific common data integration is decided

to be added to the system. Moreover, a time-efficient spatio-temporal data modeling

approach has been proposed by replacing the knowledge base structure with a

relational database and JENA ontology concepts. On the other hand, spatio-temporal

querying capability is enhanced with the region-based and time-based query types.

Compound querying mechanism has been formalized and for all query types both

general and video specific query processing mechanisms are developed.

The contributions of this thesis can be summarized as follows:

 The proposed solution offers the automatic integration of domain specific

common data to the ontology infrastructure and by this means; annotation

effort to be expended for domain specific common data addition is

decreased.

 In this thesis, all spatio-temporal data and relations for the annotated video is

generated in annotation phase and stored in the relational database for latter

querying phase. Thus, in query processing time, there is no need to re-

generate necessary relations between the queried objects again. Since time

efficiency requirements are more important for a query engine than system

space requirements, this approach provides a better data retrieval

performance.

 The developed system provides region-based and time-based querying

capabilities. As a result, individuals, objects, events or domain ontology

concepts occurring in a specified region or time interval can also be queried.

 The spatio-temporal querying, region-based and time-based querying

capabilities can also be performed for the events in the video content besides

objects and individuals.

 7

 The proposed system also supports domain independent ontology-driven

compound querying capability. Compound queries are constructed by

combining the other simple query types and an optimization approach has

been developed for compound query processing in order to provide an

efficient query execution.

 In this thesis, time interval based video annotation capability is provided

instead of frame by frame annotation.

 The proposed system provides a generic multiple video querying capability.

By this means, a user query is executed on a video database and the query

can match various video scenes from different video files. As query result,

all these matching scenes from multiple videos are returned to the user.

 The system also provides specific video querying capability. According to

this feature, the user will be able to select a video for query operations and

pose queries on this specific video of interest. As query result, all matching

scenes from the selected video file are returned to the user.

 The developed system provides a form based user interface to the users and

the formulated form based user queries are converted to the SPARQL

queries and send to the system query engine for execution. Since the query

engine accepts SPARQL queries, the system can be easily integrated with

other systems providing different user interface components and generating

SPARQL query outputs.

 The system is developed as an ontology-driven generic system. MPEG-7

Rhizomik ontology is used as the core ontology and domain ontologies are

attached to the MPEG-7 ontology. In this way, interoperability and data

exchange between other MPEG-7 ontology-driven systems are provided. On

the other hand, the system is domain independent and any domain ontology

can be integrated to the core ontology automatically.

 8

The rest of the thesis is organized as follows:

 Chapter 2 presents some background information about the concepts and

technologies used in this thesis. In addition, some important related work is

explained in Chapter 2 and they are compared with this thesis work in terms

of their weaknesses and strengths.

 Chapter 3 gives brief description about the system properties and

specifications. Moreover, the general system architecture is also mentioned

in this chapter.

 In Chapter 4, the details of the video annotation and data modeling concepts

are described. Ontology-driven concept annotation and spatio-temporal

annotation mechanisms are presented.

 In Chapter 5, the different query types supported by the system are described

and the details of the system query processing approach are explained.

 Chapter 6 gives the system implementation details and presents a case study

related to the usage of the system. The functionalities of the user interface

module are also demonstrated in this chapter.

 Chapter 7 concludes the thesis with a brief summary and discusses some

possible future work.

 9

CHAPTER 2

2 BACKGROUND INFORMATION AND RELATED WORK

This chapter consists of two parts. In the first part, some background information

regarding the terminology, standards and methodologies used in this thesis is

presented. In addition, definitions and general overview of the multimedia content

management concepts are explained in this section.

In the second part, some approaches to multimedia management systems that deal

with indexing, storage and content-based retrieval of multimedia content data are

described and their comparison with this thesis work is presented.

2.1 Background Information

2.1.1 MPEG-7 Standard

MPEG-7, namely Multimedia Content Description Interface, is developed by

Moving Picture Experts Group (MPEG) as an ISO/IEC standard for describing the

multimedia contents. The rising goal of MPEG-7 standard is to represent the

semantic contents as well as the actual multimedia content by using a comprehensive

set of Description Tools [1]. In this way, MPEG-7 standard aims to provide

interoperability between different applications dealing with multimedia content data.

The main elements of MPEG-7 standard include the following [2]:

 Description Tools:

 10

 Descriptors (D): Elements that are used to define syntax and semantics

of multimedia content features. Descriptors define low-level features

such as color, texture, motion, shape etc., as well as high-level features

such as title and author.

 Description Schemes (DS): Elements that are used to define the

relationship between descriptors and other description schemes.

 Description Definition Language (DDL): DDL is used to define the syntax of

 MPEG-7 descriptors and description schemes. Moreover, DDL also allows the

 definition of new descriptors and description schemes.

 System Tools: System Tools are used to define optimization for effective

 storage and transmission of the content.

Figure 2.1.1: MPEG-7 Main Elements

Although MPEG-7 standard allows the description of semantic multimedia content

and aims to provide interoperability between applications, the data exchange

between different systems and interoperability issues are still problematic. Due to

 11

the complexity of MPEG-7 standard and its descriptors, the same content can be

described in several ways. For that reason, it is difficult to provide interoperability

between different systems, since the same multimedia content can be differently

described and annotated in each system [3].

As a result, MPEG-7 standard is inadequate to represent semantic content precisely

and in order to overcome interoperability issues, there exist several studies to move

MPEG-7 standard to Semantic Web [4][5].

2.1.2 MPEG-7 Ontology

MPEG-7 standard is implemented by XML Schemas and therefore most of the

semantic content becomes implicit [4]. On the other hand, as mentioned before,

semantically identical content can be described in multiple ways by using the

MPEG-7 standard, since it is difficult to define precise semantics in XML syntax.

For that reason, lack of precise semantic description in XML-based syntax prevents

semantic interoperability [6]. In order to enhance semantic interoperability issues,

semantic web technologies are applied to MPEG-7 standard and the standard XML

schema is translated into an ontology represented by OWL [7][4][18][19]. As a

result, four MPEG-7 based multimedia ontologies are proposed [5]. The proposed

MPEG-7 ontologies are Jane Hunter’s MPEG-7/ABC ontology [18], Tsinaraki’s

MPEG-7/Tsinaraki (DS-MIRF) ontology [7], Garcia and Celma’s Rhizomik model

[14] and Arndt’s COMM [19]. These ontologies differ from each other in their

coverage of the standard and expressiveness power. The proposed MPEG-7

ontologies are summarized in Table 2.1.1 [5]:

Table 2.1.1: Comparison of MPEG-7 Based Ontologies

 Hunter Tsinaraki Rhizomik Comm

Foundations ABC - - DOLCE

Complexity OWL-Full OWL-DL OWL-DL OWL-DL

 12

Table 2.1.2 Continue

Coverage MDS + Visual MDS + CS All MDS + Visual

Applications

Digital

Libraries,

e-Research

Digital

Libraries,

e-Learning

Digital Rights

Management,

e-Business

Multimedia

Analysis and

Annotations

1. Jane Hunter Ontology:

Jane Hunter made the initial efforts towards the semantic representation of

MPEG-7 descriptors in a machine understandable way to provide

interoperability. RDF Schema and DAML-OIL constructs are used to formalize

and describe MPEG-7 MDS and visual metadata structures [18]. Hunter also

created an upper ontology and integrated other domain ontologies to the upper

ontology in order to provide a basis for data exchange. For that reason, ABC

ontology is used as an upper ontology and domain ontologies are integrated to

ABC ontology [3][18]. The main deficiency in Jane Hunter's MPEG-7 ontology

is its limited coverage of the MPEG-7 standard.

2. Tsinaraki (DS-MIRF) Ontology:

Tsinaraki developed a core ontology manually by converting MPEG-7 XML

Schema to OWL-DL. Tsinaraki's DS-MIRF ontology has OWL-DL complexity

[5][8][14][15][16]. During ontology development, MPEG-7 simple data types

are integrated to OWL ontology using rdfs:Datatype [13]. For each complex type

in MPEG-7 XML Schema, a corresponding OWL class is defined [12] and

relations between entities are constructed. For evaluation and demonstration of

the MPEG-7 ontology, soccer and formula domain ontologies are integrated to

the core ontology [13].

3. Rhizomik Ontology:

 13

In 2005, Garcia and Celma proposed the Rhizomik ontology in order to translate

MPEG-7 XML Schema to OWL. Their approach is developed as a generic

solution providing an automatic and complete mapping from MPEG-7 Schema

to OWL [4]. The Rhizomik ontology is generated as an upper ontology and

domain ontologies can be integrated to this upper ontology [4]. The Rhizomik

ontology is developed as an MPEG-7 ontology of OWL-Full complexity since

both object type and data type properties are needed [5].

In Rhizomik approach, the automatic MPEG-7 Schema to Semantic Web

transformation process includes two steps; XSD2OWL Mapping and XML2RDF

Mapping. XSD2OWL Mapping captures the implicit MPEG-7 Schema

semantics. The mapping is performed by transforming XML Schema constructs

into OWL constructs [4]. However, after the automatic transformation, the

collision of name domains arises, since OWL uses a unique name domain

whereas XML has separate name domains. This problem is fixed by the manual

resolution of name collusions [17]. In XML2RDF Mapping, XML metadata that

instantiates the OWL ontology obtained in XSD2OWL Mapping, is translated to

RDF metadata in a transparent way [4]. The approach uses structure-mapping

models for transparent XML metadata to RDF translation.

4. Comm Ontology:

COMM is designed as a core multimedia ontology by re-engineering MPEG-7

semantic using DOLCE patterns [19]. COMM has OWL-DL complexity.

In this thesis work, Rhizomik MPEG-7 ontology is chosen as the core multimedia

ontology because of its expressiveness power and its flexibility to merge domain

ontologies to the core ontology.

2.1.3 Domain Ontology Integration

Integrating domain knowledge to the core MPEG-7 ontology enhances semantic

interoperability and audiovisual multimedia content retrieval performance. In

 14

addition, integration of domain ontologies to the multimedia metadata model gives

the user the ability to generate ontology-based queries on multimedia resources. For

this purpose, the domain knowledge is integrated to the upper ontology in the form

of domain ontologies [7][11][12]. There are two main approaches to integrate

domain ontologies to the MPEG-7 ontology proposed by Hunter et. al. [6][18] and

Tsinaraki et. al. [6][7].

In Jane Hunter' approach, ABC ontology is chosen as the upper ontology. MPEG-7

and other domain ontologies are attached to ABC ontology by using the attachment

points provided by the ontology for MPEG-7 and domain specific ontology

integration. Technically, MPEG-7 classes and other domain ontologies are attached

to the core ontology by extending the corresponding ABC classes [18].

In Tsinaraki's approach, MPEG-7/Tsinaraki ontology is chosen as the core ontology

and domain specific ontologies are integrated to the core ontology. According to this

approach, domain specific ontologies construct the second layer of the multimedia

metadata model and extend the existing concepts in the core ontology with domain

knowledge. Domain ontology integration includes sub-classing domain ontology

concepts from the upper ontology constructs such as SemanticBaseType,

EventType, ObjectType, AgentObjectType, ConceptType, SemanticPlaceType and

SemanticTimeType [12][13].

In this thesis work, Tsinaraki's approach is applied by choosing MPEG-7 ontology

as the upper ontology and integrating domain specific ontologies to the upper

ontology [12][13][20]. The major aim of domain ontology integration is to hide the

integration details from the end user. For that reason, domain ontology integration is

performed in an automated way in order to provide an efficient usage of domain

specific ontologies [20]. According to the applied approach in the thesis work, only

domain ontology concepts are visible to the end user. Therefore, the user only deals

with the domain knowledge without being familiar with the upper ontology classes

and concepts. These domain ontology concepts are used during annotation and

querying phases by enabling the user to incorporate domain knowledge to the

 15

multimedia metadata model. In addition, ontology-based querying capability also

allows formulating queries using the domain ontology concepts and provides an

efficient retrieval performance on multimedia resources.

2.1.4 JENA Ontology API

JENA is a Java framework used to create Semantic Web applications. JENA

Framework provides classes and interfaces for the creation and manipulation of RDF

repositories and OWL ontologies [22]. Through the JENA Ontology API, a

consistent programming interface is aimed to be provided in order to develop

ontology applications, independent of the ontology language used [23]. JENA

Framework provides the following capabilities:

 An RDF API,

 Reading and writing in RDF/XML, N-Triples,

 An OWL API,

 In-memory and persistent storage,

 RDQL - a query language for RDF,

 SPARQL query engine.

In JENA, the Model Interface is used to represent the entire ontology as graphs and

models are created, loaded, saved, modified and queried using plain Java [21][22].

Moreover, JENA provides reasoning over ontology models. The main advantage of

building an ontology-based structure is to derive additional information about the

concepts being modeled [23]. JENA derives extra information and relationships

between the concepts that the model does not express directly [21]. For instance,

assume building an ontology having a simple hierarchy of the concepts organism,

animal and fish. In such a hierarchy, fish is a sub-class of animal and animal is a

sub-class of organism. If an individual "Fred" is inserted to the model as a "Fish",

the assertion "Fred is a Fish" entails the deduction "Fred is an Animal" and "Fred is

an Organism" [23].

 16

JENA provides querying capability by using SPARQL engine and JENA specific

ontology queries. ARQ engine is used for SPARQL query processing. By the help of

ARQ engine and JENA, SPARQL queries are created, executed and a result set is

generated. The result set contains the matching results returned by the executed

query and these results can be iterated and displayed to the user.

In this thesis work, JENA framework is used for the domain ontology integration,

ontological model creation, modification and querying. JENA ontology API

manages all ontological processes. During the domain ontology integration, model

creation and ontological data population with annotations, JENA ontology API

methods are used. For query formulation and processing phase, SPARQL query

engine is used. The user queries, which are formulated via a form based user

interface, are converted to SPARQL queries and JENA ARQ engine executes the

queries and returns the query results.

2.1.5 SPARQL

SPARQL, namely SPARQL Protocol and RDF Query Language, is a query

language designed by the W3C RDF Data Access Working Group. It is developed as

a query language and a protocol for accessing RDF graphs [24]. As a query

language, SPARQL is data-oriented without supporting an inference mechanism.

However, ARQ and SemWeb implementations of SPARQL are used for providing

an inference mechanism. ARQ Engine is a SPARQL query language implementation

for JENA and it provides OWL reasoning [25]. SemWeb is an RDF library and it

provides RDFS reasoning [26].

1. A Simple SPARQL Query:

A Simple SPARQL Query is composed of two parts; a SELECT clause and a

WHERE clause. The SELECT clause includes the variables that will appear in

the query result and the WHERE clause includes the matching query patterns

that will be matched against the triples in the data graph.

 17

The following is a SPARQL query example that aims to find the title of a book

on a given data graph [24].

SELECT ?title

WHERE

{

 <http://purl.org/book/Book1> <http://purl.org/book/elements/title> ?title .

}

In the example query, the subject and the query predicate have predefined values

whereas the query object is a variable. For the evaluation of the query result, the

query pattern is matched against the triples having these fixed subject and

predicated values and the query result for title variable is generated. There is also

a shorthand query formulation mechanism for long URIs using prefixes. The

following query is an example of the prefixing mechanism [24]:

PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

SELECT ?givenName

WHERE

{

 ?y vcard:Family "Smith" .

 ?y vcard:Given ?givenName .

}

2. SPARQL Query Filters:

SPARQL Query Filters are used to restrict the values in a query solution. Most

common query filtering mechanisms are string matching filters and testing value

filters [24].

For string matching, SPARQL provides a filtering mechanism based on regular

expressions to test the string values. The following example query includes the

filtering mechanism according to string matching:

 PREFIX user: <http://purl.org/user/>

 SELECT ?name

 WHERE

 {

 ?person user:fullName ?name .

 18

 FILTER regex(?name, "r", "i")

 }

In the example above, the usage of the flag "i" denotes that a case-insensitive

pattern matching is performed. If the last flag argument is not stated in the query,

only case-sensitive pattern matching is performed. In this example, the query

returns the full names having "r" or "R" letters in them [24].

For testing value, SPARQL provides a filtering mechanism based on the value of

a variable. The following query includes the filtering mechanism according to

the testing value approach:

PREFIX user: <http://purl.org/user/>

SELECT ?person

 WHERE

 {

 ?person user:age ?age .

 FILTER (?age >= 18)

 }

In the above example, the query results are restricted according to the value of

the age variable and the query solution includes the people who are older than 18

[24].

3. SPARQL Query Solution Modifiers:

Query patterns generate an unordered solution list. However, the solution list can

be converted to a modified sequence by applying solution modifiers. The

SPARQL solution modifiers can be one of the following [24]:

Order By: The result set is sorted according to the given criterion.

Projection: The result set is constructed by selecting only certain variables.

Distinct: The solutions in the result set are ensured to be unique.

 19

Reduced: Some of the solutions in the result set are permitted to be eliminated

since they are non-unique solutions.

Offset: The result set contains a set of solutions starting from the specified start

index.

Limit: The result set size is restricted according to the specified number. The

specified number of solutions is returned.

In this thesis work, ARQ implementation of SPARQL is used for query processing

and execution. ARQ is a query engine for JENA that supports SPARQL query

language. By the usage of ARQ engine, the proposed system also provides OWL

reasoning capability.

2.2 Related Work

The approaches dealing with the indexing and retrieval of multimedia data according

to its semantic content have become very popular research topics in recent years.

There has been a significant amount of work conducted on the storage issues, and

semantic content based annotation and querying capabilities for multimedia data

especially in video databases. In the following part, we aim to examine the related

research conducted in the literature and present the methodologies and approaches

for multimedia data management issues. In addition, this thesis work is compared

with the proposed approaches in order to present its strengths and weaknesses.

2.2.1 BilVideo

BilVideo is a web-based video database management system that supports spatio-

temporal, semantic content based and low-level feature based querying on video data

[27][29][31]. The client-server architecture of BilVideo is illustrated in the

following figure [27]:

 20

Figure 2.2.1: BilVideo System Architecture

The query processor module is responsible for processing the user queries, retrieving

the related audio-visual content and responding to the user. This module interacts

with a knowledge base and object relational database. BilVideo handles spatio-

temporal queries using a knowledge-base, which consists of a fact-base and a

comprehensive set of rules implemented in Prolog [28]. Semantic and low-level

feature based queries are handled by using the object-relational database [32]. For

compound queries having spatio-temporal, semantic and low-level feature based

sub-queries, the query processor directs the sub-queries to the related component and

retrieves the intermediate results of these sub-queries by communicating with the

knowledge base or the object relational database [29][33]. After collecting the

intermediate results, these sub-query results are combined in order to generate the

result of the whole query and the final query result is displayed to the users on Web

client interfaces [33].

The video annotator tool interacts with the raw video database system and extracts

the semantic metadata stored in object relational database for semantic queries

[29][31]. On the other hand, fact extractor populates the knowledge base and

extracts color and shape histograms of the objects. Extracted color and shape

histograms of the objects are stored in the feature database to be used for color and

 21

shape queries [34]. Moreover, spatio-temporal relations between objects, object-

appearance relations, and object trajectories are extracted semi-automatically and

stored in the knowledge base as a set of facts representing the relations and

trajectories in order to be used for spatio-temporal querying [28].

In BilVideo, a spatio-temporal query contains any combination of directional,

topological, 3D-relation, object-appearance, trajectory-projection and similarity-

based object-trajectory conditions [33]. Spatio-temporal query processing is

performed according to the extracted facts and query rules stored in the knowledge

base. However, not all extracted facts are stored in the knowledge base. After

extracting the facts, a fact pruning algorithm is applied and only basic facts are

added to the knowledge base. There are extraction rules in the knowledge base and

the facts that can be derived using these extraction rules according to the fact

extraction algorithm are not stored in the knowledge base. The extraction rules in the

knowledge base significantly reduce the number of facts representing the relations

that need to be stored for spatio-temporal querying of video data which results in a

considerable storage space saving [28][29].

BilVideo also introduces its SQL-like query language and the queries can be sent to

the system using its own query language [32].

The latest BilVideo version, BilVideo v2.0 is also developed by the BilVideo

research group and it is an MPEG-7 compliant video database management system

using MPEG-7 standard for the description of audio-visual content. BilVideo v2.0

uses native XML database for storage and querying capabilities instead of

BilVideo’s two different storage environments approach using a relational database

and a knowledge base. BilVideo v2.0 has its own XML-based query language. The

query processor interprets the queries and generates XQuery statements to query

native XML database [33].

The proposed system in this thesis differs from BilVideo and BilVideo v2.0 in the

followings:

 22

 BilVideo v2.0 is MPEG-7 compliant and uses MPEG-7 descriptors for the

description of the video content [33][34]. However, our system is MPEG-7

ontology-driven. Since MPEG-7 has interoperability problems, using MPEG-7

ontology-driven approach is more powerful in order to overcome the

interoperability issues.

 Since our proposed system supports the integration of domain ontologies to the

MPEG-7 core ontology, ontology-based annotation and querying is provided.

By this way, audio-visual content of the video data is annotated with

ontological concepts and queried accordingly.

 BilVideo handles spatio-temporal querying over a knowledge base structure

implemented in Prolog [28]. In our proposed system, we keep spatio-temporal

relations in relational database with other semantic metadata and annotations.

Jena Ontology API features are used to interact with relational database

backend and storage and query processing capabilities are performed over the

relational database approach.

 In BilVideo for spatio-temporal querying, all extracted facts are not stored in

the knowledge base, only a pruned set of necessary facts are stored and the

other facts are derived at query time by using the extraction rules and stored

facts [28]. This approach provides storage space efficiency, however the

inference of all other spatio-temporal relations in the querying phase brings an

overhead in query processing time. For this purpose, we store all spatio-

temporal relations in the database in the annotation phase and provide a time

efficient retrieval for spatio-temporal querying in our system.

 In contrast to BilVideo and BilVideo v2.0, our proposed system does not have

its own query language, queries are formulated by using a form based query

formulation interface and they are converted to the corresponding SPARQL or

JENA specific queries for query processing.

 There are some extra capabilities that BilVideo and BilVideo v2.0 provides

which are different from our system. One of them is the low-level feature

based querying according to color, shape, texture descriptors [34]. Another

 23

feature is 3D spatio-temporal querying support while our system only deals

with 2D spatio-temporal querying. These extra capabilities can be studied and

integrated to our system as a future work.

 Semi-automatic fact extractor and video annotator modules of BilVideo handle

semantic and spatio-temporal annotation of all objects in video data [29][34].

In our system, manual annotation of objects is supported. A semi-automatic

annotation module can be integrated to our system as a future work.

2.2.2 Ontology-Driven Audiovisual Content Management Framework

In [10][11][15], a framework has been developed that handles the management,

indexing and retrieval of semantic metadata describing the audio-visual content. The

main objective of the developed framework is to enhance the retrieval performance

while providing compatibility with the international multimedia standards such as

MPEG-7 and TV-Anytime [10][11]. The system has a mechanism for the integration

of domain ontologies with the multimedia content description standards. The use of

domain specific ontologies guides the users to provide legal content descriptions for

the specific content [9][12][13]. The following figure shows a detailed outline of the

framework:

Figure 2.2.2: Audio-Visual Content Management Framework Architecture

 24

The system includes a TV-Anytime (TVA) compliant database where TV-Anytime

metadata and segments are stored and a semantic base where the ontology-driven

semantic metadata are stored. The segmentation and semantic indexing component

is used for importing the domain ontologies and application specific metadata. After

these import operations this component populates the semantic base and TVA

database by annotating audio-visual content. During the annotation phase, keywords

related to the video content are also stored in the TVA database and used for the

keyword-based search [11][13].

The presented system also provides a querying API that supports advanced semantic

content based queries in addition to the keyword search capabilities [11][12]. Both

databases are aware of the domain specific ontology-based extensions and as a

result, querying according to the domain ontology concepts can be performed [16].

By combining the search API methods, more complex semantic queries can be

supported.

This system is developed for soccer domain applications. A domain specific

ontology for football matches is developed and imported into the system database

[12][13]. The soccer videos are annotated and queried according to the domain

ontology by using annotation and querying components. However, the framework

constructs a base for the definition of other domain ontologies and an adaptation of

these ontologies with the current framework. Domain independency is studied as a

future work for the system [12][13][15].

Our proposed system differs from the mentioned framework in the following issues:

 Our solution does not depend on any specific domain; it allows the integration

of a given domain ontology and supports the annotation and querying

according to the domain specific ontology concepts.

 Our proposed system supports spatio-temporal annotation and querying

capabilities different from this framework. Moreover, our system also enables

region-based and time-based queries to the user.

 25

 Compound querying according to the semantic content and spatio-temporal

relations of the video content object is supported in our system.

 Our proposed system supports both general and video specific query

processing for all query types different from this framework. By this means,

the user is able to pose queries on all videos in the video databases as well as a

specific video of interest.

 The mentioned system provides compatibility with TV-Anytime standard

different from our system.

2.2.3 Ontology-Based Multimedia Information Management System

The ontology based multimedia information management system in [20] proposes a

framework as a solution to the multimedia content management problem. The main

objective of the proposed framework is to provide a standardized method for the

audiovisual content description and overcome the semantic interoperability problems

between similar semantic content based retrieval systems. For this purpose, the

system uses Rhizomik MPEG-7 ontology as the core model and integrates this core

MPEG-7 ontology with other domain specific ontologies. By this way, a domain

independent solution is presented for semantic annotation and querying of

multimedia content. The domain specific ontological concepts are used for semantic

content based annotation and querying the annotated multimedia content. Ontology-

driven approach enhances content based retrieval capabilities [20].

The system is a client-server web application and presents domain independent

multimedia content annotation, querying and retrieval capabilities to the user. Figure

2.2.3 shows the system architecture for the proposed ontology based multimedia

management framework in [20]:

 26

Figure 2.2.3: Ontology-Based Multimedia Management Framework Architecture

The users interact with ontology management, annotation and querying capabilities

of the system via the user interface module. The domain specific ontologies are

imported and attached to the MPEG-7 core ontology and after this procedure the

users are able to annotate the video contents with domain specific ontological

concepts and legal content descriptions. By using the query interface, the user

formulates queries on the annotated videos and performs ontology-based querying

[20].

The mentioned core MPEG-7 ontology model and framework capabilities construct

the basis of this thesis work. In this thesis, we have added extra capabilities for a

multimedia management framework and contributed to the mentioned system by

supporting the following abilities:

 Common Data Integration to Domain Ontology

 Spatio-Temporal Annotation

 Spatio-Temporal Querying

 Regional and Time-Based Querying

 27

 Compound Querying

 General and Video Specific Querying

2.2.4 Ontology-Based Spatio-Temporal Video Management System

(OntoVMS)

OntoVMS [37] is developed as an ontology-based video management system which

supports semantic data modeling and querying in video files. The system is

ontology-driven and makes use of Rhizomik MPEG-7 ontology as the core ontology

and the domain specific ontologies are integrated to the core ontology. By

supporting MPEG-7 ontology compatibility, interoperability with the other MPEG-7

ontology compliant systems is achieved. Moreover, the framework provides

ontology-based content annotation and querying using domain ontology concepts

[37].

The system supports concept modeling, spatio-temporal relations and trajectory

modeling. Supported spatial relations are directional, positional, topological and

distance relations. Allen’s temporal algebra relations are also supported as temporal

relations in video files [37].

The following figure shows the main system architecture:

 28

Figure 2.2.4: OntoVMS System Architecture

The query engine supports semantic content based, spatio-temporal and trajectory

querying capabilities and interacts with the knowledge base and relational database

for query processing. The knowledge base structure of OntoVMS stores spatial and

temporal relations between video content objects. The rule based modeling contains

basic facts and inference rules. Annotated spatio-temporal relations are pruned

according to a fact pruning algorithm and only necessary facts extracted by spatio-

temporal annotator are stored. By storing only a necessary subset of all spatio-

temporal relations, OntoVMS aims to reduce the required storage space and provide

space efficiency. In querying phase, inference rules are used to generate non-stored

spatio-temporal relations [37].

OntoVMS query engine makes use of JPL Prolog API and JENA Ontology API in

order to interact with the knowledge base and relational database for query

execution. The system also supports a basic compound querying capability.

Different query types such as concept queries, spatial, temporal, object appearance

queries are combined to construct a compound query. For compound query

processing, the query is divided into sub-queries, these sub-queries are evaluated

separately and finally their results are combined to form the final query result [37].

 29

The mentioned framework, namely OntoVMS, is chosen as the basis for this thesis

work. In our proposed work, we have added extra features and extended the

framework capabilities with the following issues:

 OntoVMS manages a knowledge base structure in order to store spatial and

temporal relations and its query engine interacts with the knowledge base for

spatio-temporal querying by using JPL Prolog API. In our proposed system,

we keep spatio-temporal relations in the relational database with other

semantic metadata and annotations. For spatio-temporal querying, similar to

ontological concept querying, the system makes use of Jena ARQ Engine and

SPARQL query language in order to communicate with relational database

backend. The storage and query processing capabilities are performed over

relational database approach.

 Fact pruning approach that OntoVMS applies in order to save storage space

brings a cost in the query processing time. In our system, the extracted

spatio-temporal facts in the annotation phase are directly stored in the

database. The inference of all relations is performed during the annotation

phase. By this way, the cost of pruning and inferring again in the querying

phase is overcome and a time efficient retrieval for spatio-temporal querying

is provided.

 In our system, after attaching the domain ontology to the MPEG-7 core

ontology, we provide a mechanism to the user in order to integrate the

application specific metadata to the system. By this means, the domain

specific common data is integrated to the ontology infrastructure. This

extension reduces the annotation effort and also provides common metadata

knowledge to the user in querying phase.

 Our proposed system supports both general and video specific query

processing for all query types different from OntoVMS. Thus, the user is

able to pose queries on all videos in the video database as well as a specific

video of interest.

 The developed system in this thesis work supports querying on multiple

videos and the matched results retrieved from different videos are returned to

 30

the user. However, in OntoVMS, queries are performed only on a selected

video. Multiple video querying capability is not supported in OntoVMS.

 In our system, the annotation is performed according to frame intervals

whereas OntoVMS supports frame by frame annotation. For that reason, the

same scene and instances are needed to be annotated for each frame of the

consequent video frames.

2.2.5 Content-Based Video Query System

In [35][36], Kuo and Chen propose a new mechanism for the content-based retrieval

of video data. They present a content based video query language named CVQL and

a query processing strategy for the language [35]. The system is a prototype video

database system providing a graphical user interface and CVQL processor. CVQL

allows users to specify query predicates by using spatial and temporal relations

between the video content objects. The user constructs a sketch of the query and

provides the corresponding query predicate via GUI and the query processor

performs the evaluation of the predicates. As a result, the related videos or frames

are displayed to the user [35][36].

A CVQL query is based on the predicate specification of the temporal and spatial

relationships of the video objects. For users, it is easier to retrieve videos and frames

according to the specified video content. They generally remember snapshots of the

videos and query according to the remembered content. By the help of query

predicates, CVQL allows the specification of the following query types [35]:

 Existence Querying

 Spatio-Temporal Querying

 Compound Querying

For content-based queries, firstly, video objects and object relations are detected by

using video analysis and shot detection techniques. According to the detected video

objects and their relations, four types of indices for CVQL are constructed [35].

 31

Symbol Object Hierarchy: Symbol objects are managed in a class hierarchy. When

a symbol object class is used in a query, it represents all symbol objects belonging to

this class.

Video-Symbol_Object Table (VST): This table keeps an entry for each symbol

object detected and lists the videos that this symbol object appears.

Symbol_Object Life-Time Table (SLT): This table is kept for each video. For each

symbol object in the video, frame intervals that the object appears are recorded.

Symbol_Object Spatial Information Table (SST): This table is also kept for each

video. It records the spatial locations of the symbol objects in each frame. By using

SST entries, motion tracks of the objects and spatial relations between the objects

can be derived [36].

The query processing is based on three phase elimination. In video elimination

phase, VST structure is used to eliminate the videos that do not contain the symbol

objects specified in the query predicate. In frame elimination, before predicate

evaluation, videos are filtered by the SLT tables and the frames not containing the

symbol objects specified in a predicate are eliminated. In video function evaluation

phase, SST tables are accessed to evaluate the remaining frames. Query predicates

are evaluated and results are generated [35][36].

The differences between this system and our proposed framework are:

 Our proposed system supports the integration of domain ontologies to the

MPEG-7 core ontology. Ontology-based annotation and querying is

provided. By this way, audio-visual content of the video data is annotated

with ontological concepts and queried accordingly.

 Our system also supports annotation and retrieval of semantic events and

activities in videos whereas the mentioned system only deals with content

objects.

 This system has its own query language, CVQL and queries are formulated

in CVQL using query predicates. However, in our system queries are

 32

formulated by using a form based query formulation interface and they are

converted to corresponding SPARQL or JENA specific queries for query

processing.

 The system makes use of video analysis and detection techniques for the

extraction and annotation of video objects semi-automatically. However, our

proposed solution provides manual annotation. Semi-automatic annotation

and extraction techniques can be added to our system as a future work.

2.2.6 Extended AVIS

Extended-AVIS [38] proposes a video data model that supports fuzzy spatio-

temporal modeling and querying capabilities. This system is developed as an

extension to AVIS video data model [49]. By providing some extra capabilities,

Extended-AVIS supports semantic content modeling with the spatial and temporal

properties of objects and allows spatio-temporal querying with the inclusion of

fuzziness. Regional and trajectory querying capabilities are also provided in

Extended-AVIS. The video data model focuses on video objects, activities and

events and semantic metadata related to these concepts are indexed using some

special index structures. Association maps, a frame-segment tree and array structures

are used as index structures and these index structures are used to retrieve data and

derive relations between the video objects in the query processing phase [38].

Our proposed system differs from Extended-AVIS in terms of the following issues:

 Extended-AVIS is not ontology based system whereas our system is MPEG-

7 ontology-driven and supports the integration of domain ontologies to the

MPEG-7 core ontology. By this way, audio-visual content of the video data

is annotated with ontological concepts and queried accordingly.

 Compound querying capability is not supported in Extended-AVIS.

However, our proposed system allows compound queries which are

combinations of different query types.

 33

2.2.7 Ontology-Supported Video Modeling System

A video database model that provides almost automatic object, event and concept

extraction is proposed in [39]. The system is ontology based and ontology of objects,

events and concepts is defined and used to extract new events and concepts in videos

[39]. N-Cut image segmentation and a genetic algorithm based approach are

followed to classify the candidate objects obtained from segments and key-frames

[39][40]. Besides the event and concept extraction, spatial relations between the

objects, temporal relations between events and object trajectory information are

extracted and stored [39][41]. All derived events and concepts are stored with their

time intervals. Standardized MPEG-7 descriptors are used in order to be compatible

with the other MPEG-7 compliant systems for information exchange. Figure 2.2.5

shows the general system architecture [40]:

Figure 2.2.5: Ontology-Supported Video Modeling System Architecture

 34

In this video model, there is an object, event, concept ontology which constructs the

upper layer of the model and for each domain this generic video ontology is

modified with the domain specific data at lower layers. Ontology-supported model

provides the ability for ontology-based querying. Moreover, the system also allows

fuzziness in object features, relations, ontology and query mechanism in order to

make more flexible query formulations [39][40]. Queries related to the objects,

events, spatio-temporal relations between the objects and low-level features are

supported. Compound queries can also be formulated by combining the sub-queries

related to the above mentioned query types [40][41].

The main differences between this system and our proposed framework are:

 Our proposed system makes use of MPEG-7 ontology and integrates domain

ontologies to this core ontology in order to resolve semantic interoperability

problems. However, the system in [39] uses standardized MPEG-7

descriptors.

 The system in [39] supports semi-automatic object and event extraction

whereas our system supports manual annotation of semantic content and

events. Moreover, this system uses fuzzy modeling and querying. These

features can be studied as a future work in our system.

2.2.8 Spatio-Temporal Query Approach for Multimedia Databases

Wattamwar and Ghosh propose a spatio-temporal formalism in order to specify

arbitrary spatio-temporal relations between the multimedia content objects [42].

Their approach includes fuzziness in the formalism and they illustrate Allen’s

relations in their uncertain form. Allen’s relations are formulated according to the

binary string encoding schema proposed by Papadias [42]. The temporal relations

between the two events are defined to be binary 5-tuples (Rtuvwx: t, u, v, w, x ϵ {0,

1}) where “0” indicates n empty intersection and “1” indicates a nonempty one. The

relationship between a primary interval [a, b] and a secondary interval [c, d] can be

uniquely determined by considering the five empty or nonempty intersections of [c,

 35

d] with each of the five regions, denoted by five binary variables t, u, v, w, x,

respectively.

Figure 2.2.6: Five Regions of Interest

According to this approach, for example precedes relation is denoted by R10000

whereas overlaps relation is denoted by R11100. By defining neighborhood values for

the regions and degree of intersection increases the regions of interest, the system

describes more detailed relations and also adds fuzziness to the formalism [42].

The main differences between this work and our proposed system are:

 MPEG-7 standard is used for audio-visual content description whereas our

system makes use of MPEG-7 ontology and domain ontologies.

 Binary string encoding schema is used in their work for formulating spatio-

temporal relations. However, in our work we use a relational approach.

 This approach supports fuzziness and this can be added to our system as a

future work.

2.2.9 Multimedia Ontology Framework for Event Annotation and Retrieval

The framework in [43] proposes an ontology-driven approach used for higher-level

annotation of the video clips and formulation of complex queries that comprise

events, actions and their temporal relations. The multimedia ontology is composed

of two main parts: the domain-specific ontology and the video structure ontology.

The domain ontology includes all the concepts and relations that define the related

application domain whereas the video structure ontology describes the components

of a video such as clips, shots, frames, etc. The video structure ontology also defines

 36

the descriptors of the visual content. Semantic annotation is performed semi-

automatically by using face detection and text recognition algorithms according to

the multimedia ontology concepts [43].

Exploitation of the multimedia ontology allows queries that combine visual concepts

with high-level domain-specific concepts. The queries formulated via graphical user

interface are converted to the SPARQL query syntax and JENA APIs are used to

pose queries with SPARQL [43].

The main differences between the mentioned framework and our system are:

 Both approaches are ontology-driven, however, in our proposed system we

use MPEG-7 ontology and attach domain ontologies to this core ontology.

This approach makes our system compatible with the other MPEG-7

ontology compliant systems and solves interoperability problems.

 Our proposed solution supports spatio-temporal annotation besides semantic

content based object and event annotation. By this way, spatio-temporal and

trajectory queries are also processed.

 The multimedia ontology framework in [43] is developed for soccer domain;

however their ongoing work aims to generalize the framework to other

application domains. On the other hand, our solution is domain independent.

 This framework supports semi-automatic object and event extraction and

inference mechanisms for the annotation of the videos. Our solution provides

manual annotation and semi-automatic annotation can be added as a future

work to our solution.

 37

CHAPTER 3

3 GENERAL SYSTEM ARCHITECTURE

In this thesis, a system called Ontology-Driven Video Annotation and Retrieval

System (OntoVARS) is developed in order to provide a video management system

which is used for ontology-driven semantic content annotation and querying. The

proposed system is MPEG-7 ontology-driven and allows ontological video content

annotation and data retrieval.

In this chapter, the architectural design details of OntoVARS which include the

general system architecture, the main system characteristics and components are

introduced. In section 3.1 general properties of the system are explained. System

specifications are mentioned in section 3.2. Finally, in section 3.3, the general

system architecture and main component descriptions are detailed.

3.1 System Properties

The proposed system is an ontology driven video management system which

provides ontology-based semantic content annotation and querying in video

databases. The system uses Rhizomik MPEG-7 ontology as the upper ontology and

enables the automatic integration of domain specific ontologies to the core MPEG- 7

ontology. The ontology infrastructure of the system provides interoperability and a

common communication platform with other MPEG-7 ontology compatible systems.

Moreover, domain ontology integration enables semantic annotation and querying

according to domain ontology instances and concepts. The system is domain

independent and proposes a generic solution that enables the integration of different

 38

domain ontologies to the system at the same time. The system can operate with any

type of video for annotation and querying.

The system supports content-based annotation and spatio-temporal data modeling in

video databases by using domain ontology concepts. The video annotation is

performed manually via a form-based user interface which provides selections for

the video to be annotated, annotation concepts and instances. The system also

enables new individual definitions and domain specific common data integration.

The newly defined and automatically integrated instances are also used during the

video annotation and querying processes.

The developed system enables ontology-driven query formulation and processing

according to domain ontology instances and concepts. The supported query types in

the system are as follows:

 Concept Querying

 Spatio-Temporal Querying

 Region-Based Querying

 Time-Based Querying

 Compound Querying

Concept, spatio-temporal, region-based and time-based querying capabilities are

regarded as simple querying types. Compound queries are formulated by combining

simple queries with "(", ")", "AND" and "OR" operators. For all these query types,

the system supports both general and video specific query processing. Thus, the user

can pose queries on all videos in the database as well as a specific video of interest.

3.2 System Specifications

Ontology-Driven Video Annotation and Retrieval System is developed as a standard

web application based on client-server architecture. Eclipse Galileo is used as the

development IDE during the system development. The other technologies used for

the system development can be summarized as follows:

 39

 Server Side:

o Java programming language

o JENA Ontology API

o ARQ Engine

o SPARQL query language

o Rhizomik MPEG-7 Ontology

o JMF (for multimedia player applet)

 Client Side:

o JavaServer Faces - Facelets

o Richfaces and Myfaces components

 Apache Tomcat as web server

 Mozilla Firefox as web browser

 MySQL database

3.3 System Architecture and Components

The proposed video management system is designed with a modular architecture and

it is composed of ontology management, video content annotation and query

processing sub-modules. Due to the modular architecture, the sub-modules and the

main components interact with each other through the defined interfaces. Moreover,

the modular architecture also enables the integration and replacement of sub-

modules and components with different mechanisms if necessary. In other words, a

component can be easily separated from the system and replaced with a different

mechanism that performs the same functionality in order to provide a more efficient

working component. In addition, modularity eases the integration of new modules to

the proposed system in order to allow the system gain extra functional capabilities.

The general system architecture is presented in Figure 3.3.1.

 40

Figure 3.3.1: General System Architecture

The proposed system is mainly composed of the following components:

 MySQL Database: The database is accessed by JENA Ontology API and

ARQ Engine in order to store and retrieve all ontological data. MPEG-7 and

integrated domain ontologies, semantic annotations, annotated concepts,

individuals, spatio-temporal annotations, object/event positions and time

intervals are stored in the MySQL database. The storage and data retrieval

operations are performed via JENA Ontology API and ARQ Engine

interacting with the MySQL database.

 JENA Ontology API: The API is used for ontology management and video

content annotation processes. MPEG-7 core ontology construction, domain

ontology integration, removal, domain specific common data attachment,

 41

semantic and spatio-temporal annotation operations are performed via JENA

Ontology API.

 ARQ Engine: ARQ Engine is used for SPARQL query processing and

execution. Query Engine module sends the generated SPARQL query to the

ARQ Engine and query results are retrieved from the database.

 System Initializer: This component initializes the system in order to provide

interfaces for annotation and query operations. During initialization process,

MPEG-7 core ontology is loaded to the database and set up for domain

ontology integration.

 Ontology Manager: This component is responsible for ontology management

operations. Domain ontology insertion, deletion and configuration

procedures are handled by the Ontology Manager. Moreover, inserted

domain ontologies are integrated with the core ontology and the received

domain specific common data are also attached to the ontology

infrastructure.

 Semantic Annotator: This component handles semantic annotation

procedures. The received semantic annotation concepts, individuals and time

intervals are stored in the database by interacting with JENA Ontology API.

 Spatio-Temporal Annotator: This component handles spatio-temporal

annotation. Spatial and temporal relations between the annotated objects

and/or events are extracted according to the minimum bounding rectangle

(MBR) coordinates and time intervals. Interacting with JENA Ontology API,

the received spatio-temporal annotation concepts, individuals, region

coordinates, extracted spatial and temporal relations are stored in the

database.

 Query Analyzer: Query Analyzer component is used for parsing and

validating the received query input. If the parsed input is a valid query, its

 42

query type is determined and the query input is sent to the related SPARQL

Query Generator according to its query type.

 SPARQL Query Generator: This component receives a valid query and its

query type in order to convert the query to the corresponding SPARQL

query. After the conversion, the generated SPARQL query is sent to the

Query Executer module for query execution.

 Query Executer: This module is used to execute the generated SPARQL

queries. Query Executer module interacts with ARQ Engine for query

processing and execution in order to retrieve the matched ontological data

from the database. The query results are then received from the ARQ Engine

and organized to be displayed. The organized query results are sent to the

user interface module in order to be displayed to the user.

 User Interface Module: The users interact with the User Interface Module

and this module provides interfaces for ontology management, video

annotation and querying. Domain ontology files and domain specific

common data are supplied to the system via the User Interface Module.

Video files to be annotated can be browsed and ontological concepts and

individuals are selected for annotation from the user interface. Users can

formulate different types of queries by using the form-based user interface

module. These annotations and formulated queries are sent to the video

annotator and query engine modules, respectively.

 43

CHAPTER 4

4 VIDEO ANNOTATION AND MODELING

Video scenes mainly consist of individuals, objects and events. The individuals can

be treated as specific object types representing the human beings. The semantic

video content depends on the relationships between these video objects and events.

Therefore, semantic content-based querying deals with the video objects,

individuals, events and the relationships between them. Moreover, video

management systems are mainly interested in video object and event modeling and

these systems propose improvements on video data management issues. To

generalize, video data management issues can be reduced to modeling and storage of

the video objects, events and the relationships between them.

In this chapter, the video annotation and modeling component of the developed

framework is introduced. The video annotation and modeling component is

composed of common data integration, semantic annotation and spatio-temporal

annotation sub-modules. The video annotation process makes use of domain

ontology concepts in order to annotate individuals, object and events in video files.

Thus, the usage of domain ontology concepts during annotation and modeling

process enables ontology-driven content-based querying capability.

The rest of the chapter describes the details of the video annotation and modeling

component. In section 4.1 domain specific common data integration process is

explained. The semantic annotation details are given in section 4.2. Section 4.3

presents spatio-temporal annotation and data modeling. The computations of the

spatial and temporal relations between video objects and events are explained.

 44

4.1 Domain Specific Common Data Integration

The proposed system in this thesis is ontology-driven and enables the import of

various domain ontologies independently. After a domain ontology is imported to

the system, the imported ontology is attached to the MPEG-7 core ontology and the

ontological infrastructure enables the usage of the imported domain ontology

concepts during video content annotation and querying processes. The MPEG-7

ontology constructs and domain ontology attachment details are hidden from the end

users and only domain ontology concepts are visible to the users in the proposed

system. The instances related to these domain ontology concepts are defined and

video content is annotated and queried by using the defined instances. The defined

instances consist of video objects, individuals and events. The definition of the

instances in the system is performed via new instance creation or common data

integration processes. The interface for creating new instances provides the user with

the ability to select the domain ontology and the related ontology concept. A name

tag is assigned to the newly created instance in order to be accessed in later

processes. In our framework, domain-specific ontologies also guide the definition of

the domain specific common data that is used to describe the contents of audiovisual

programs and/or their segments. Domain specific common data consists of the

instances that can be commonly used in the video content of domain specific

applications. For example, in a soccer tournament application the domain specific

common data includes instances of the players in football teams that participate in

the tournament, instances of the referees, coaches etc. These instances are reusable

both in one football match as well as across several matches in the tournament.

The integration of the common data is performed automatically in the proposed

framework and domain ontology entities are used for the description of common

data instances. After a domain ontology is imported to the system and attached to the

core ontology, the user can provide an OWL file containing the definitions of the

domain specific common data entities. The provided OWL file is imported to the

system via common data integration interface. During the import process, the related

 45

domain ontology is selected and the domain specific common data is integrated to

the ontological model by using JENA Ontology API methods. The ontology

structure, its contents and integrated common data instances are stored in the

MySQL database and accessed by using JENA Ontology API and SPARQL queries

in order to be used in video content annotation and retrieval procedures.

Domain specific common data definitions are performed with the use of domain

ontologies. In other words, common data integration module is aware of the attached

domain ontologies. Therefore, the individuals and objects to be integrated are stored

as instances of the related domain ontology classes and concepts. After the

integration is completed, the integrated common data instances can be used by

ontology-driven concept annotation and spatio-temporal annotation modules. For

instance, if the user wants to define the position of a specific football player in a

soccer video, the spatio-temporal annotator module looks for all defined individuals

by using Jena Ontology API. The user interface module lists the available

individuals in the database according to the selected domain ontology concept. By

using the form-based user interface, the end user can select the specific individual to

be annotated and define the positions and time intervals that the selected individual

appears.

Due to ontology awareness, if the user wants to define a new object in the video and

this object is not one of the integrated common data instances, the user should define

this new object first. New objects and individuals are defined via new instance

creation procedure. After defining the new objects and individuals, all annotator

modules can use these instances for annotation. Since domain specific common data

integration provides the annotation instances directly to the annotator modules, it

decreases the annotation effort and eases the annotation process. Otherwise, users

would be defining all individuals and objects from new instance creation interface

before annotation and querying phases. Defining all instances would be a very time

consuming process, especially for large domain specific applications. As a result,

domain specific common data integration capability of the system proposes an

 46

automatic and efficient instance creation mechanism that enables faster video

content annotation.

4.2 Semantic Annotation

In this section we provide an overview of the semantic annotation module that

supports ontology-based semantic indexing for the video visual content. The

semantic annotation is performed manually by using the instances of domain

ontology classes and concepts. Semantic descriptions and metadata related to the

video content are stored in the relational database and JENA Ontology API provides

methods for semantic metadata insertion and access operations.

The use of domain ontologies guides the users to provide legal semantic metadata

for video content and supplies a common annotation platform for annotation

concepts and instances. Moreover, the ontology support enhances the retrieval

effectiveness and ontology-driven annotation extends the querying capability with

ontological reasoning.

The architecture of the semantic annotation module is presented in Figure 4.2.1.

 47

Figure 4.2.1: Semantic Annotation Module Architecture

In semantic annotation process, the instances of the domain ontology concepts and

classes are annotated on the video content. The frame intervals that the objects

appear on the scene and the object positions are stored for each instance in the video

content. The stored instances, their positions and time intervals are used for

calculating spatial and temporal relations between video objects and posing semantic

content-based queries over video content. In this thesis, minimum bounding

rectangle (MBR) formalization is used to annotate the positions of the video objects.

The object positions for each video object are defined by drawing a rectangle

covering the annotated object and the drawn rectangle is the minimum sized

rectangle that contains the object of interest.

The definitions of the individual, object and event positions using MBR

formalization in semantic annotation process are shown in Figure 4.2.2.

 48

Figure 4.2.2: MBRs for Annotation Instances

The MBR of an object is used to determine the coordinates of the annotated object

on the video scene. Each MBR is a rectangle with four corner points and these

corner points have some pixel values which are calculated according to their

distance to the origin of the coordinate axis. Figure 4.2.3 displays the object MBR

representation with its four corner points.

Figure 4.2.3: MBR Corner Points

 49

In the developed system, MBRs of objects are stored with only two corner points.

The first and the fourth point’s coordinates are stored and all other corner points can

be inferred by using these two corner points. MBRs of objects are stored in the

semantic annotation phase and all spatio-temporal relations between objects,

individuals and events are calculated in the spatio-temporal annotation phase by

using these coordinates. The details of using the MBR coordinates in defining

spatio-temporal relations are discussed in Section 4.3.

During semantic annotation, the end users interact with the semantic annotation

interface in order to store object appearance time intervals and positions. At the

beginning of the annotation session, the user is expected to specify the domain

ontology to be used from the available ontologies attached to the system. If the

domain ontology that will be used for annotation is not supported by the system, the

ontology import operation is carried out via the ontology management module and

the imported ontology is attached to the system’s ontology infrastructure. After the

domain ontology import operation is finalized, domain specific common data

integration process is performed and common data instances are stored in the

relational database. After selecting the domain ontology from the list of the available

domain ontologies, the semantic annotation interface module interacts with JENA

Ontology API methods in order to retrieve the related domain ontology classes and

concepts. The user selects one of the ontology concepts and the semantic annotation

interface module retrieves the instances of the selected ontology concept e.g.

individuals, objects or events. The retrieved instances consist of the defined

individuals, objects or events and integrated domain specific common data instances.

After selecting the instance of concern from the ontology, the individual, object or

event to be annotated is specified. In this way, the first step of the semantic

annotation process is finalized.

In the next step, the user browses the video files in the video database and selects

one of them for annotation. The selected video is loaded by the JMF player and the

player presents playing and stopping options for video files to the users. The user

pushes the play button and the video scenes are started to be displayed. When the

 50

individual, object or event to be annotated appeared, the user pushes the stop button

and the video is stopped. The video time when the player is stopped is taken as the

start time of the annotation object frame interval since object of interest appears at

this time. The user draws the minimum bounding rectangle for the selected

annotation instance and plays the video again. The video is played until the object of

interest disappears or leaves the minimum bounding rectangle borders. The user

stops the video as soon as the annotated instance leaves the MBR borders or

disappears. This stop time is taken as the end time of the annotation object frame

interval. This manual annotation procedure is repeated, if necessary, for other

appearances of the same instance or the other instances existing in the video content.

The output of the semantic annotation procedure is the metadata describing the

appearances of instances. The obtained data for each instance appearance consists of

the following attributes:

 Selected domain ontology name,

 Selected domain ontology concept,

 Selected individual, object or event,

 Start frame time,

 End frame time,

 MBR coordinates,

 Video file path.

In the last step of the semantic annotation process, the instance appearance data is

stored in the relational database in order to be used for semantic content-based

querying and retrieval. For this purpose, the semantic annotation module interacts

with JENA Ontology API; and the instance appearance data is stored into the

ontological model residing in MySQL database by using the methods provided by

JENA. For each domain ontology which is used for annotation, a separate

ontological model is created and stored in the database. The instance appearance

data constructed for the instances of domain ontology concepts is stored into the

related ontological model. In the querying process, user queries are executed on one

 51

ontological model since query input formulations contain the selected domain

ontology information. All JENA specific retrieval requests and SPARQL queries

deal with only one ontological model at a time. This kind of storage strategy

provides a more efficient query processing mechanism.

4.3 Spatio-Temporal Annotation

The semantics of media data is derived from the interaction of the media objects in

space and time. Complex media events are also characterized by spatio-temporal

relations of its media objects. For instance, a “goal scored” event in a soccer game

can be characterized by “the ball inside goal-box precedes cheer”. In this example,

assuming that a "ball", a "goal-box" and "cheer" are recognized by audiovisual

annotation and recognition techniques, the “goal scored” event can be derived by

analyzing their spatial and temporal relations, namely inside and precedes [42]. This

brings the requirement for complete representation of the spatio-temporal ordering

and relationships between media objects.

In this section we provide an overview of the spatio-temporal annotation module that

supports ontology-based spatio-temporal modeling for the video content. Spatio-

temporal annotation deals with the interactions of the annotated video instances in

space and time. Spatio-temporal modeling is a crucial step in video retrieval systems

for using semantic information on image object relationship to improve the quality

of content-based video retrieval. Such information can be used for tagging the video

content and thus, performing spatio-temporal querying on video databases [45]. For

this purpose, a spatio-temporal model should suggest a practical solution for an

effective indexing and retrieval. In addition, combining spatio-temporal information

with domain ontology knowledge enhances spatio-temporal querying capability.

Therefore, the developed system provides a spatio-temporal modeling mechanism

supporting ontology knowledge.

Spatio-temporal relations provided by the spatio-temporal annotation module are

composed of spatial and temporal relations according to the relationship definitions.

 52

Spatial relations describe the relative positions of the annotated individuals, objects

and events, whereas temporal relations describe the frame appearances of the

annotated instances with respect to each other [28, 37]. The details of the supported

spatial and temporal relations are explained in the following sub-sections.

4.3.1 Spatial Relations

In a given frame, the spatial relations between two instances are defined using the

spatial relationship between the MBRs of each instance. This property gives us the

ability to retrieve the spatio-temporal relations between any two objects in a frame

sequence [38]. The retrieved spatial properties of annotated instances are used to

define the spatio-temporal relations between them in a video stream. Li et al. have

proposed a formal definition of these relations for a rule base [46]. They extended

Allen’s temporal interval algebra [47] into two-dimensional space in order to define

spatial relations between rectangular areas. According to the proposed approach, the

spatial relations are divided into two groups, namely directional and topological. In

this thesis, the developed framework supports positional relations in addition to

directional and topological relations. Therefore, spatial relations are categorized as

directional, positional and topological relations.

Directional relations include strict directional and mixed directional relations. These

relations represent the basic directions of a compass. There are four strict directional

relations; South, North, West and East. There are also four mixed directional

relations; Northwest, Northeast, Southwest, and Southeast [37,38]. These directional

relations are presented in Figure 4.3.1. The directional relations between the

instances are calculated according to the center points of the MBRs. If x and y

coordinates of the MBR center points are equal, no directional relation can be

computed between these objects. However, if the objects have different MBR center

points, the spatial relations of the center points relative to each other according to the

eight directional coordinate axes represent the directional relation between objects.

 53

Figure 4.3.1: Directional and Positional Relations

Positional relations are computed with respect to directional relations. There are four

positional relations: Left, Right, Above, Below. Figure 4.3.1 also shows positional

relations. Despite the equivalent directional relations, positional relations are also

supported by the developed framework since they are commonly used in spatio-

temporal user queries. These positional relations cover both strict directional and

mixed directional relations (Figure 4.3.2).

Figure 4.3.2: Left Relation Example

 54

Directional and positional relations address where the annotated individuals and

objects are placed relative to each other, express relative orientation of two instances

and describe spatial ordering along the x and y directions. Thus, these relations are

defined according to point-based representation depending on the comparison of two

objects’ center points. On the other hand, topological relations address how the

boundaries of two annotated instances relate, express topological extension of two

object boundaries, and describe neighborhood and incidence [45]. These relations

have interval-based representation and they are used to represent the relationships

between object boundaries. There are eight different topological relations which

include Equal, Contains, Inside, Overlaps, Cover, Covered-By, Touch and Disjoint

relations.

The object boundary relationships for these eight topological relations are

represented in Figure 4.3.3 [37].

Figure 4.3.3: Topological Relations

The relationships Overlaps, Equal, Touch and Disjoint are symmetric relations

which means both (A, B) and (B, A) tuples satisfy the relation. For instance, if the

 55

boundary of object A overlaps with the boundary of object B, both Overlaps(A, B)

and Overlaps(B, A) are satisfied according to the symmetry property.

4.3.2 Temporal Relations

Video events and object appearances change over time and this brings the

requirement for studying temporal relations between object appearances and events.

Allen [47] modeled an event as an interval in time and established temporal relations

between the events by comparing their start and end times. Allen identified thirteen

distinct temporal relations which exhaustively represent all possible combinations of

relative start and end times of the events [42,47]. The temporal interval algebra

proposed by Allen consists of the following relations: Precedes, Meets, Overlaps,

Starts, Finishes, Contains, Equals, During, Finished-By, Started-By, Overlapped-By,

Met-By and Preceded-By. Except Equals relation, the first six temporal relations are

inverse relations of the last six temporal relations [37]. Although, Allen has

proposed these relations with respect to time, they can be generalized to any space

dimension.

These temporal relations are summarized in Figure 4.3.4, where A and B represent

the object appearance or event time intervals [42].

Figure 4.3.4: Temporal Relations

 56

The temporal relationship Equals is a symmetric relation similar to the symmetric

spatial relations. Equals(A, B) relation derives Equals(B, A) relation.

4.3.3 Spatio-Temporal Relation Extraction

Spatio-temporal relations between annotated individuals, objects and events are

extracted during the spatio-temporal annotation process. Spatial relations are

specified according to the object MBRs whereas temporal relations are computed by

using frame time intervals in which the objects appear or events occur. As

mentioned before, both object MBRs and frame time intervals are stored during

semantic annotation. In spatio-temporal annotation, there is no extra annotation

effort spent by the users. Thus, the spatio-temporal annotation module uses the

semantic annotation input in order to extract spatial and temporal relations between

annotated instances.

After the semantic annotation of a video is completed, the spatio-temporal

annotation process starts. In most of the cases, the extraction of the spatio-temporal

relations between annotated instances are performed only once for each video and

used for querying.

During spatio-temporal annotation, first, spatial relations are computed and then the

calculation of temporal relations is performed. Spatial relations are computed

according to the MBR center points of the annotated instances. The relative

positions of the MBR center points with respect to the directional coordinate axes

are used to compute the directional relations between two instances. In order to

specify the directional relation type, an imaginary line that combines the centers of

two instances is constructed and the angles between this imaginary line and x and y

coordinate axes are calculated respectively. According to the calculated angle values

relative to the horizontal and vertical axes, the angular proximity to the eight

directional coordinate axes determines the directional relation type.

The directions and the imaginary line drawn in orange color that combines the MBR

center points of two objects A and B are shown in Figure 4.3.5. By comparing the

 57

calculated angles and directional angles between axes, it is derived that object A is

in south-west direction of object B.

Figure 4.3.5: Directional Relation Extraction

All of these directional relations have their counter relations. In other words, North -

South, West - East, Southwest - Southeast and Northwest - Northeast relation

couples are inverse relations. For instance, if North(A, B) relation is satisfied,

South(B, A) relation is also inferred automatically. For the above example,

Southwest(A, B) relation derives Northeast(B, A) relation. Figure 4.3.6 shows

examples of West - East and Northwest - Southeast inverse relations.

Figure 4.3.6: Inverse Directional Relation Samples

 58

Positional relations are computed by using directional relations. These relations are

supported for enhancing the system’s spatial querying capability since positional

expressions are more commonly used in user queries. The computations of the

positional relations are given as follows:

 Above(A, B) ≡ North(A, B) ║ Northwest(A, B) ║ Northeast(A, B).

 Below(A, B) ≡ South(A, B) ║ Southwest(A, B) ║ Southeast(A, B).

 Left(A, B) ≡ West(A, B).

 Right(A, B) ≡ East(A, B).

Topological relations between annotated instances are computed by using MBR

boundaries of the instances. The eight topological relationships presented in Figure

4.3.3 are formulated according to the inner areas and border lines of the instances. In

the developed system, two operators, namely Inner and Border are defined for the

extraction of topological relations. Inner operator represents the inner area of the

related object MBR, whereas Border operator represents the border lines

surrounding the related object MBR.

Table 4.3.1 [48] represents the formalization of topological relations according to

Inner and Border operators.

Table 4.3.1: Topological Relation Formalization

Border(A) &&

Border(B)

Border(A) &&

Inner(B)

Inner(A) &&

Border(B)

Inner(A) &&

Inner(B)

Overlaps ≠ Ø ≠ Ø ≠ Ø ≠ Ø

Equal ≠ Ø Ø Ø ≠ Ø

Inside Ø ≠ Ø Ø ≠ Ø

Contains Ø Ø ≠ Ø ≠ Ø

 59

Table 4.3.1 Continue

Touch ≠ Ø Ø Ø Ø

Disjoint Ø Ø Ø Ø

Cover ≠ Ø Ø ≠ Ø ≠ Ø

Covered-By ≠ Ø ≠ Ø Ø ≠ Ø

As mentioned before, the relations Overlaps, Equal, Touch and Disjoint are

symmetric relations. On the other hand, Cover - Covered-By and Inside - Contains

relation couples are inverse relations. Therefore, if one side of the following

statements is satisfied, the other side is automatically deduced.

 Overlaps(A, B) ↔ Overlaps(B, A)

 Equal(A, B) ↔ Equal(B, A)

 Touch(A, B) ↔ Touch(B, A)

 Disjoint(A, B) ↔ Disjoint(B, A)

 Cover(A, B) ↔ Covered-By(B, A)

 Inside(A, B) ↔ Contains(B, A)

In the developed framework, temporal relationships between annotated objects,

individuals and events are extracted according to the frame appearance time intervals

of the instances. For each instance couple, their start and end times are compared

with respect to each other in order to determine the temporal relationship between

the related instances. For instance, according to the definition of Overlaps relation,

the following condition should be satisfied between the appearance time intervals of

objects A and B.

Overlaps relation condition: (Astart < Bstart) ∩ (Aend < Bend) ∩ (Aend > Bstart)

 60

On the other hand, for Precedes relation, the condition to be satisfied is Aend < Bstart

whereas Starts relation criterion is (Astart = Bstart) ∩ (Aend < Bend).

Figure 4.3.7 displays the temporal orderings for objects A and B satisfying

Overlaps, Precedes and Starts relations respectively.

Figure 4.3.7: Temporal Relation Examples

In the set of temporal relations, Equals relation is a symmetric relation whereas

Precedes - Preceded-By, Meets - Met-By, Overlaps - Overlapped-By, Starts -

Started-By, Finishes - Finished-By, Contains - During relation couples are inverse

relations. Therefore, if one side of the following statements is satisfied, the other

side is automatically deduced.

 Equals(A, B) ↔ Equals(B, A)

 Precedes(A, B) ↔ Preceded-By(B, A)

 Meets(A, B) ↔ Met-By(B, A)

 Overlaps(A, B) ↔ Overlapped-By(B, A)

 Starts(A, B) ↔ Started-By(B, A)

 Finishes(A, B) ↔ Finished-By(B, A)

 During(A, B) ↔ Contains(B, A)

 61

4.3.4 Spatio-Temporal Data Modeling

The spatio-temporal annotation process includes the extraction and storage of spatial

and temporal relations between annotated video instances. Moreover, the annotation

module should be aware of the domain ontology knowledge in order to support

ontology-driven querying capability. Therefore, the extracted spatial and temporal

relations needed to be stored with the ontological information.

The previous studies conducted on spatio-temporal modeling and query processing

proposed a rule base approach [28,29,37]. According to the rule base approach, the

annotated information is stored in the knowledge base as basic facts and inference

rules. Basic facts represent only necessary facts which are annotated by the semantic

annotator module and inference rules represent reasoning rules among spatio-

temporal relations. These inference rules are formalized by Allen's temporal algebra

and spatial logic [28,37]. In this rule base approach, only a pruned set of facts are

stored in the knowledge base. Other non-stored relations are extracted by using the

inference rules during query processing [28,37]. This approach provides space

efficiency by optimizing the system space. The usage of inference rules enables to

prune spatio-temporal relations in annotation phase since most of the relations have

inverse and symmetry properties and these relations can be derived later in querying

phase. However, in a video retrieval system, a time efficient query processing and

result generation mechanism is much more important than space efficiency

requirements. In order to decrease the query response time, the computations and

spatio-temporal relation extractions in query processing phase should be reduced.

Moreover, in modern computer systems space specifications are more adequate and

proposing a time efficient solution is encouraged.

In the developed system, the spatio-temporal annotation module stores all extracted

relations instead of a pruned set of relations into the relational database by using

JENA Ontology API methods. According to the proposed approach, extra effort

spent for the computation of the spatio-temporal relations in query processing time is

disposed. By this means, the query processing and result retrieval process is

 62

performed in a time efficient manner. On the other hand, interacting with JENA

Ontology API, the extracted relations are stored into the ontological model existing

in the relational database. Thus, the spatio-temporal annotations are stored with

ontological data being aware of the domain ontology knowledge which enhances

ontology-based spatio-temporal querying capability. The architecture of the spatio-

temporal annotation module is presented in Figure 4.3.8.

Figure 4.3.8: Spatio-Temporal Annotation Module Architecture

For each annotated video, the spatio-temporal annotation process is started by

Finalize Annotation Request from the user interface. The spatio-temporal annotation

module consists of spatial and temporal relation extraction sub-modules. These sub-

modules communicate with JENA Ontology API and retrieve the annotated

instances in the specified video file, MBR coordinates and appearance time

intervals. By using MBR coordinates, the spatial relation extraction module

computes spatial relations between annotated instances. On the other hand, temporal

 63

relation extraction module computes temporal relations by using instance

appearance time intervals. The calculated spatial and temporal relations are stored

with the ontological data of the instances via JENA Ontology API. Thus, spatio-

temporal annotation is performed and ontology-driven spatio-temporal querying

capability is provided.

 64

CHAPTER 5

5 QUERY PROCESSING

In OntoVARS, an ontology-driven video content querying capability is provided to

the end users. The integrated domain ontology concepts are used to formulate

queries on the semantic video content. The usage of domain specific ontologies

improves querying capability and content-based retrieval performance by providing

legal content descriptions for domain specific audio-visual content to the users. In

addition, ontological querying enables content-based queries on all members of a

domain ontology class as well as each annotated instance. For instance, it is possible

to query the scenes where any home team player appears in the left of the goalkeeper

when a goal event is occurred. Similarly, the same query can also be performed for a

specific player or goalkeeper.

In the developed framework, it is possible to query the content of either a specific

video or multiple videos. In multiple video querying, the formulated queries via a

form-based query interface are executed on the whole video database and the

formulated query can match various video scenes from different video files. All

these matching scenes from multiple videos are returned to the users as the query

result. In video specific querying, the formulated user queries are executed on the

selected video. All matching scenes from the selected video file are returned to the

user as the query result. Multiple video querying provides a comprehensive video

content search on the whole video database whereas the video specific querying

capability enables a more efficient video content retrieval for a specific video.

 65

This chapter is organized as follows: In Section 5.1, the supported query types in the

developed system are explained. In Section 5.2, the general architecture of

OntoVARS query engine is mentioned. The details of the query processing

mechanism are discussed in section 5.3 and finally, some illustrative examples are

shown in Section 5.4.

5.1 OntoVARS Query Types

In OntoVARS, simple query types provide ontology-driven concept querying,

spatio-temporal querying, region-based and time-based querying capabilities. In

addition, compound queries are also supported in order to enhance the querying

capability of the system.

5.1.1 Concept Querying

Concept queries are used to retrieve the scenes related to the individuals, objects or

events of interest in video files. According to the ontology support, concept querying

enables the search of selected domain ontology concepts in order to retrieve the

instances of the selected concepts. For instance, in the proposed system the

following queries can be formulated as concept query type:

"Return all scenes where Meg Ryan appears."

"Return frame intervals where goal event occurs."

"Return frame intervals where a carnivore animal is seen."

5.1.2 Spatial Querying

Spatial queries are formulated in order to query the object positions and spatial

orientations of the instances relative to each other. Spatial querying capability allows

the users to pose queries about directional, positional and topological relations

between instances. In OntoVARS, the following queries can be formulated as spatial

query type:

 66

"Return all scenes where a road is in the west of a house." (Directional Relation)

"Return frame intervals where a male appears to left of a female." (Positional

Relation)

"Return frame intervals where the ball is inside goal area." (Topological Relation)

5.1.3 Temporal Querying

Temporal queries are formulated in order to query the object appearances and

temporal relations between individuals, objects and events. Using temporal query

type, the users can pose the following queries:

"Return all scenes where a goal event is preceded by a penalty event."

"Return cars which appear overlapping with a tree."

5.1.4 Time-Based Querying

Time-based queries are used to query object appearances and event occurrences with

respect to specific time intervals. There are four time specific relations: Before,

After, Contain and Between which are used to formulate time-based queries. The

user enters a frame or time interval and the object appearances and event

occurrences according to the specified frame times and selected relation are queried.

Time-based queries are used to restrict the query result set and enhance retrieval

efficiency if the time intervals of the queried objects or events are known

approximately. The following queries can be given as examples for the time-based

query type:

"Return frames where a goal event occurs between time interval [15, 25]."

"Return mammals where a mammal instance appears before frame time 12.4."

 67

5.1.5 Region-Based Querying

Region-based queries are used to query individual, object and event locations

according to a specified region of the video files. Before formulating the region-

based queries, the users specify a query region by using the mouse motion

coordinates over the video player applet. The positions of the queried instances and

events that are located in the specified region are retrieved as query results. Region-

based queries also restrict the result set and are used efficiently when the user deals

with the objects or events in a specific region of the video files.

5.1.6 Compound Querying

In OntoVARS, besides simple query types, compound queries are also supported to

enhance the querying capability of the system. Compound queries are formulated by

combining concept, spatial, temporal, time-based and region-based queries. These

simple queries are combined with "(", ")", "AND" and "OR" operators in order to

generate compound queries. By the help of compound query support, the users can

query more complex and comprehensive situations on video databases. For instance,

"Return all football players who appear in the right of the goalkeeper when the

penalty event occurs and they precede a goal event and the goal event occurs

between time interval [25.0, 45.0]." is a legal compound query that can be

formulated in the developed framework. This sample query is composed of four

different simple queries. The first query is a spatial query; "Return all football

players who appear in the right of the goalkeeper." In this query, ontological football

player class instances are examined according to their spatial positions with respect

to the goalkeeper class instances. The second query is a concept query; "When

penalty event occurs" and retrieves the scenes in which a penalty event occurs. The

third query; "Return all football players who precede a goal event." is a temporal

query and retrieves the football players that appear before a goal event. Finally the

fourth simple query; "Return the goal events occurred between time interval [25.0,

45.0]." is a time-based query used to examine the goals scored in the given time

period. After executing these four different types of simple queries, Union or

 68

Intersection operations are applied to the query results in order to combine the

results retrieved from different query types.

5.2 OntoVARS Query Engine Architecture

In OntoVARS, the formulated user queries are processed and the query results are

generated by OntoVARS Query Engine. The query engine interacts with a form-

based user interface and processes the queries that are sent through the query

interface. The general architecture of OntoVARS query engine is shown in Figure

5.2.1.

Figure 5.2.1: OntoVARS Query Engine Architecture

The query engine consists of the following components:

 69

 Query Listener: This component is responsible for retrieving the user query

from the query interface. When a query is formulated by using OntoVARS

GUI components, Query Listener retrieves the values of the query parts from

GUI components and sends the formulated query to the Query Analyzer

module.

 Query Analyzer: Query Analyzer component is used for parsing and

validating the query inputs received from the query interface. During the

query parsing process, this module decomposes the query into sub-queries in

case it may contain multiple queries (i.e., the query is a compound query). If

the parsed query input is a valid simple query, its query type is determined

and the query input is sent to the related SPARQL Query Generator

component according to its query type. In case of a valid compound query

input, a compound query structure is generated consisting of its sub-queries

and sub-query types and sent to Compound Query Handler module.

 SPARQL Query Generator: This component receives a valid query input and

its query type in order to convert the query input to the corresponding

SPARQL query. After the conversion, the generated SPARQL query is sent

to the related Query Executor module for query execution.

 Compound Query Handler: This component retrieves the compound query

structure from Query Analyzer component and sends the sub-queries of the

received compound query to the related query executor modules. After the

executions of the sub-queries are finalized, the query results of the sub-

queries are returned to the Compound Query Handler. Then, this component

evaluates the final query result by applying union and intersection operations

on the sub-query results and the evaluated final query result is sent to the

Query Result Handler component.

 Concept Query Executor: This component executes the received SPARQL

query that is generated according to the concept query input. After the query

 70

execution is completed, the concept query result is sent to Query Result

Handler component.

 Spatial Query Executor: This component executes the received SPARQL

query that is generated according to the spatial query input. After the query

execution is completed, the spatial query result is sent to Query Result

Handler component.

 Temporal Query Executor: This component executes the received SPARQL

query that is generated according to the temporal query input. After the query

execution is completed, the temporal query result is sent to Query Result

Handler component.

 Time-Based Query Executor: This component executes the received

SPARQL query that is generated according to the time-based query input.

After the query execution is completed, the time-based query result is sent to

Query Result Handler component.

 Region-Based Query Executor: This component executes the received

SPARQL query that is generated according to the region-based query input.

After the query execution is completed, the region-based query result is sent

to Query Result Handler component.

 Query Result Handler: The query results are retrieved from the related query

executor modules and displayed to the end users by Query Result Handler

component. The collected query results are transformed to the query display

format in order to be displayed in a user understandable way.

 71

5.3 OntoVARS Query Processing

OntoVARS query processor supports ontology-driven querying capabilities for

different query types. The query processing mechanism includes three main phases:

query analysis, SPARQL generation and query execution. During the query analysis

phase, the user query input is parsed and validated according to its query type. If the

query input is valid, a query structure is constructed and transferred to the SPARQL

generation phase. In SPARQL generation phase, the received query structure is used

to generate the corresponding SPARQL query for execution. After SPARQL query

construction is finalized, the generated SPARQL query is sent to the related query

execution module. During the execution of the query, the query processor

communicates with the relational database via ARQ Engine in order to retrieve the

query results. At the end of the query execution phase, these retrieved query results

are sent to the Query Result Handler in case the executed query is a simple query. If

the executed query is part of a compound query, the query results are transferred to

the Compound Query Handler where the final query result is computed by using the

sub-query results. The details of the query processing mechanism are explained in

the following sections.

5.3.1 Query Analysis

Query analysis process parses the received query input and constructs a query

structure for valid queries. Query analysis mechanism for simple queries differs

from the analysis process for compound queries. A formulated simple query is

retrieved with its query type and data. The query data is provided through the query

interfaces and the system query analyzer validates the provided data according to the

query type. If one of the required fields is invalid or not supported in the query data,

the simple query is found to be invalid and eliminated. For instance, domain

ontology model name should be valid for all simple query types. Or, the time

interval values are required to be supported during query formulation for valid time-

based queries. If the query input satisfies the parser checks, the query analyzer

validates the query input and generates a query structure for the execution. The

 72

generated query structure consists of the query type and the provided query data

such as the selected domain ontology name, domain ontology concept, ontological

instance, video file name for a specific video query, selected relation for spatio-

temporal or time-based queries, etc. The query structure constructed in the query

analysis phase is used to generate a corresponding SPARQL query for the execution.

In the compound query analysis process, the query analyzer is responsible for

parsing the retrieved query, dividing it into its sub-queries and constructing a query

parse tree for execution. Before dividing into sub-queries, the compound query

string is checked for structural formatting errors. If the format of the compound

query is valid, the query analyzer divides the compound query into sub-queries. At

the end of the compound query analysis, a query tree is constructed by using the

generated sub-queries and the query operators. The sub-queries form the leaf nodes

of the generated query tree where as the operators are the parent nodes. The

constructed query tree is transferred to the Compound Query Handler module for

execution.

5.3.2 SPARQL Generation

SPARQL generation process receives a validated query structure constructed in the

query analysis phase in order to convert the query input to the corresponding

SPARQL query. By using the query type in the query structure, SPARQL generator

accesses the related query data fields and generates a SPARQL query according to

these query data fields and query type. After the conversion operation is finalized,

the generated SPARQL query is sent to the related Query Executor module for query

execution.

5.3.3 Query Execution

Query execution process takes place in five different sub-modules that are specific to

the query type. These five sub-modules share the same infrastructure for performing

common tasks. These common tasks include ARQ Engine connectivity, which is

used for connecting to the relational database and executing the generated SPARQL

 73

query, and the query result generation, which is used for parsing the result set

structure retrieved from the relational database when SPARQL query is executed.

The details of the query execution for each query type are explained in the following

sections.

5.3.3.1 Concept Query Execution

The concept query executor module deals with the execution of the concept queries.

In the query analysis phase, the retrieved concept query input is translated into a

validated concept query structure in the following form:

Concept Query Structure:

 Query Type

 Domain Ontology Name

 Domain Ontology Concept

 Instance Name

 Video File Path

This concept query structure is used to generate the corresponding SPARQL query

in SPARQL generation phase. For instance, the details of the concept query

execution phases are explained in the following query examples.

Example: Show all frame intervals where a male John appears.

Concept Query Structure:

 Query Type = Concept

 Domain Ontology Name = Person

 Domain Ontology Concept = Male

 Instance Name = John

 Video File Path

 74

By using the validated query structure, SPARQL generator outputs the following

SPARQL query for execution.

SELECT ?startTime ?duration ?mediaUri

WHERE

{

<http://www.sw-app.org/Person#John>

 <http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaLocator>

 ?mediaLocator .

?mediaLocator

 <http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaIncrDuration>

 ?duration .

?mediaLocator

<http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaRelIncrTimePoint>

?startTime .

?mediaLocator

<http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaUri>

?mediaUri .

 }

Example: Show all scenes where a carnivore animal is seen in video file

AnimalDocumentary.mpg.

Concept Query Structure:

 Query Type = Concept

 Domain Ontology Name = Animal

 Domain Ontology Concept = Carnivore

 Instance Name

 Video File Path = AnimalDocumentary.mpg

The following SPARQL query is constructed according to the validated concept

query structure.

 75

SELECT ?animal ?startTime ?duration

WHERE

{

?animal a <http://www.sw-app.org/Animal#Carnivore> .

?animal

 <http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaLocator>

 ?mediaLocator .

?mediaLocator

 <http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaIncrDuration>

 ?duration .

?mediaLocator

<http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaRelIncrTimePoint>

?startTime .

?mediaLocator

<http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaUri>

?mediaUri .

FILTER regex(?mediaUri, "AnimalDocumentary.mpg","i") .

 }

The concept query executor receives the generated SPARQL query as an input for

execution. In order to execute the query, this module interacts with ARQ Engine that

provides relational database connectivity for the execution of SPARQL query. After

SPARQL query is executed, a result set is obtained. The result set contains the query

results in a table-like manner and each row corresponds to a set of bindings that

satisfies the conditions of the query. The obtained result set is parsed and a query

result list is constructed by using each query solution in the result table. At the end

of this process, the constructed query result list is passed to Query Result Handler

module which converts the query results to the query display format and displays

them to the users in the user interface.

Figure 5.3.1 represents OntoVARS concept query execution process in details.

 76

Figure 5.3.1: Concept Query Execution Mechanism

5.3.3.2 Spatial Query Execution

The execution of the spatial queries is handled in the spatial query executor module.

The major difference between the execution of a spatial query and a concept query is

that in a spatial query there are two ontological instances and a spatial relation to be

queried. During the spatial query execution process, SPARQL query generated for a

spatial query type is retrieved and the spatial query executor module interacts with

ARQ Engine in order to execute the query over the ontological video models

constructed in spatio-temporal annotation phase in the relational database. In

annotation phase, for each annotated video file, an ontological model that stores the

spatio-temporal relations between annotated instances is constructed. In spatial

query processing phase, these ontological models in the database are accessed via

ARQ Engine and the query is executed to retrieve the matching results from the

related models. For video specific querying, the user selects a video file via query

interface and the query executor module executes the query only on the ontological

 77

model of the related video. However, for general video querying, the user requests to

retrieve the matching results from different video files. Therefore, the query is

executed via ARQ Engine on the ontological models of all annotated video files in

the relational database and all matching results are retrieved. The following example

displays a sample spatial query and presents the corresponding SPARQL query

generated for execution.

Example: Show all frame intervals where a male appears to left of a female.

Spatial Query Structure:

 Query Type = Spatial

 First Domain Ontology = Person

 First Domain Ontology Concept = Male

 First Instance Name

 Relation = Left

 Second Domain Ontology = Person

 Second Domain Ontology Concept = Female

 Second Instance Name

 Video File Path

By using the spatial query structure, SPARQL generator outputs the following

SPARQL query to be executed on ontological video models.

SELECT ?stLoc

WHERE

{

 ?x a <http://www.moass.com/SpatioTemporal#Left> .

 ?x <http://www.moass.com/SpatioTemporal#SpatioTemporalLocator> ?stLoc .

 ?stLoc <http://www.moass.com/SpatioTemporal#FirstDomain> "Person" .

 ?stLoc <http://www.moass.com/SpatioTemporal#FirstConcept> "Male" .

 ?stLoc <http://www.moass.com/SpatioTemporal#SecondDomain> "Person" .

 78

 ?stLoc <http://www.moass.com/SpatioTemporal#SecondConcept> "Female" .

}

After executing the related SPARQL query, the query result set is obtained and

parsed to construct a query result list similar to the concept query execution process.

Finally, the query result list is sent to Query Result Handler module in order to be

displayed in user interface. The details of OntoVARS spatial query execution

process is shown in Figure 5.3.2.

Figure 5.3.2: Spatial Query Execution Mechanism

5.3.3.3 Temporal Query Execution

The execution of the temporal queries is performed in the temporal query executor

module. By using the validated query structure, SPARQL query to be executed is

generated according to the temporal query data that consists of the ontological

information of both instances and the selected temporal relation to be queried. After

the generation of SPARQL query, the execution of the temporal queries is

 79

performed similar to the execution of spatial queries. For instance, the following

example displays a sample temporal query and shows the corresponding SPARQL

query generated for execution.

Example: Show frame intervals where the player Hakan Şükür precedes an Offside

event.

Temporal Query Structure:

 Query Type = Temporal

 First Domain Ontology = Soccer

 First Domain Ontology Concept = Player

 First Instance Name = Hakan Şükür

 Relation = Precedes

 Second Domain Ontology = Soccer

 Second Domain Ontology Concept = Offside

 Second Instance Name

 Video File Path

By using the temporal query structure, SPARQL generator outputs the following

SPARQL query to be executed on ontological video models.

SELECT ?stLoc WHERE

{

 ?x a <http://www.moass.com/SpatioTemporal#Precedes> .

 ?x <http://www.moass.com/SpatioTemporal#SpatioTemporalLocator> ?stLoc .

 ?stLoc <http://www.moass.com/SpatioTemporal#FirstDomain> "Soccer" .

 ?stLoc <http://www.moass.com/SpatioTemporal#FirstConcept> "Player" .

 ?stLoc <http://www.moass.com/SpatioTemporal#FirstInstance> "Hakan Şükür" .

 ?stLoc <http://www.moass.com/SpatioTemporal#SecondDomain> "Soccer" .

 ?stLoc <http://www.moass.com/SpatioTemporal#SecondConcept> "Offside" .

}

 80

In Figure 5.3.3, OntoVARS temporal query execution mechanism is presented.

Figure 5.3.3: Temporal Query Execution Mechanism

5.3.3.4 Time-Based Query Execution

The time-based query executor module deals with the execution of the time-based

queries. SPARQL generator interacts with the query analyzer to retrieve the valid

time-based query structure which is in the following form:

Time-Based Query Structure:

 Query Type

 Domain Ontology Name

 Domain Ontology Concept

 Instance Name

 Time-Based Relation

 Time Interval Start Value

 81

 Time Interval End Value

 Video File Path

This time-based query structure is used to generate the corresponding SPARQL

query in SPARQL generation phase. For instance, the following query structure and

SPARQL query are generated for the time-based query given below.

Example: Show all frame intervals where a female Mary appears before frame time

43.5.

Time-Based Query Structure:

 Query Type = Time-Based

 Domain Ontology Name = Person

 Domain Ontology Concept = Female

 Instance Name = Mary

 Time-Based Relation = Before

 Time Interval Start Value = 43.5

 Time Interval End Value

 Video File Path

The corresponding SPARQL query:

SELECT ?startTime ?duration ?mediaUri

WHERE

{

<http://www.sw-app.org/Person#Mary>

 <http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaLocator>

 ?mediaLocator .

?mediaLocator

 <http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaIncrDuration>

 ?duration .

?mediaLocator

 82

<http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaRelIncrTimePoint>

?startTime .

?mediaLocator

<http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaUri>

?mediaUri .

FILTER (<http://www.w3.org/2001/XMLSchema#double>(?startTime) < 43.5) .

}

The time-based query executor receives the generated SPARQL query as an input

for execution. In order to execute the query, this module interacts with ARQ Engine

that provides relational database connectivity for the execution of SPARQL query.

After SPARQL query is executed, the obtained result set is parsed and a query result

list is constructed. At the end of this process, Query Result Handler module receives

the constructed query result list and displays the query results to the users in the user

interface. In Figure 5.3.4, the general architecture of the time-based query execution

mechanism is shown in details.

Figure 5.3.4: Time-Based Query Execution Mechanism

 83

5.3.3.5 Region-Based Query Execution

The region-based query executor module is responsible for the execution of the

region-based queries. The region-based query execution process resembles the time-

based query execution process. In region-based query processing, SPARQL

generator interacts with the query analyzer to retrieve the valid region-based query

structure which is in the following form:

Region-Based Query Structure:

 Query Type

 Domain Ontology Name

 Domain Ontology Concept

 Instance Name

 Query Region Data

 Video File Path

By using these region-based query data fields, a related SPARQL query is

formulated. However, the execution of region-based queries is performed in two

steps. In the first step, the query executor module receives the generated SPARQL

query as an input for execution and retrieves the matching scenes with the instance

MBR coordinates. In the next step, the retrieved instances and their object

coordinates are filtered according to the specified query region coordinates. For

instance, the following region-based query is analyzed as an example for the

generation of the query structure and SPARQL query.

Example: Show all frame intervals where a Penalty event occurs in the specified

region.

Region-Based Query Structure:

 Query Type = Region-Based

 Domain Ontology Name = Soccer

 84

 Domain Ontology Concept = Penalty

 Instance Name

 Query Region Data = Query Region Coordinates

 Video File Path

The corresponding SPARQL query:

SELECT ?startTime ?duration ?mediaUri ?mbrPoints

WHERE

{

?x a <http://www.sw-app.org/Soccer#Penalty> .

?x <http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaLocator>

 ?mediaLocator .

?mediaLocator

 <http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaIncrDuration>

 ?duration .

?mediaLocator

<http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaRelIncrTimePoint>

?startTime .

?mediaLocator

<http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#MediaUri>

?mediaUri .

?mediaLocator

<http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl#Polygon>

?mbrPoints .

}

After executing the generated SPARQL query, the MBR corner points of the

retrieved results are compared with the specified query region coordinates. If the

retrieved individual, object or event resides in the query region, the retrieved result

is added to the constructed query result list. Otherwise, the instances that are out of

the query region are eliminated. Finally, the query results are sent to Query Result

Handler module for display in the user interface. Figure 5.3.5 displays the general

architecture of the region-based query execution process.

 85

Figure 5.3.5: Region-Based Query Execution Mechanism

5.3.3.6 Compound Query Execution

OntoVARS supports ontology-driven compound queries which are formulated by

combining concept, spatial, temporal, time-based and region-based simple queries

using "AND", "OR", "(" and ")" operators. In query analysis phase, the query

analyzer retrieves the compound query input, parses the query and divides it into its

sub-queries. Afterwards, a compound query tree structure is constructed regarding

the operator precedence and expressions in parenthesis. In OntoVARS video

database model, a compound query is represented by a query tree in which the sub-

queries of the compound query form the leaf nodes of the query tree whereas the

operators form the internal nodes. At the end of the query analysis process, the

constructed query tree is sent to Compound Query Handler module for execution.

Compound Query Handler module applies an optimization algorithm on the initial

query tree in order to process more selective sub-queries before the others. The

optimization algorithm restructures the initial query tree and generates an optimal

 86

tree for execution [30]. By using the optimal query tree, the query result size is kept

as small as possible and the final result generation process is performed more

efficiently. The query optimization process implemented in [30] proposes two

optimization mechanisms, which are internal node reordering and leaf node

reordering. In the concept of this thesis study, only internal node reordering

mechanism is applied for the compound query processing. During the query tree

reconstruction process according to the internal node reordering algorithm, the

children of "AND" typed nodes are reordered in order to place more selective nodes

as the left child of the "AND" parent node since the left child is processed first [30].

The internal node reordering algorithm restructures the query tree using the

following rules:

 The "AND", "Concept", "Time-Based", "Region-Based", "Spatial" and

"Temporal" type child nodes are placed as the left child if the other child is

"OR" type. Since "OR" type nodes combine the query results of two different

result sets, they are less selective nodes compared to the other types.

 The "Concept", "Time-Based", "Spatial" and "Temporal" type child nodes

are placed on the left node if the other child node contains "Region-Based"

type queries, since these queries are processed faster than "Region-Based"

queries.

Some compound query formulations are given in the following examples. In each

example, the initial query tree and the query tree after internal node reordering

process are shown.

Query 1:

((East(A, B) AND Disjoint(A, B)) OR (Above(A, B) AND Starts(A, B))) AND

(Appear(A) AND Between(B, 45.0, 60.0)).

The above compound query is formulated by using the spatial, temporal, concept

and time-based sub-queries. According to the internal node reordering algorithm, the

 87

children of the root "AND" type node are exchanged since the type of the left node

is "OR" and the type of the right node is "AND" in the initial query tree. In Figure

5.3.6, the initial and the final query tree structures are displayed.

Figure 5.3.6: (a) Initial Query Tree for Query 1 and (b) Final Query Tree for Query 1

After Internal Node Reordering

Query 2:

((InRegion(X, region1) AND During(X, Y)) OR Appear(Z)) AND ((Touch(X, Y)

OR Left(X, Z)) AND (InRegion(Y, region2) AND After(X, 50.0)))

The above compound query is composed of the region-based, time-based, concept,

temporal and spatial sub-queries. Both rules of the internal node reordering

mechanism are applied on the initial query tree in order to construct the final

compound query tree for execution. Figure 5.3.7 shows the initial query tree and the

reconstructed final query tree after the internal node reordering is applied.

 88

Figure 5.3.7: (a) Initial Query Tree for Query 2 and (b) Final Query Tree for Query 2

After Internal Node Reordering

By applying the internal node reordering process on the initial compound query tree,

an optimal query tree is constructed for execution. After the optimal query tree is

generated, Compound Query Handler module sends each sub-query to the related

query executor modules according to the sub-query type. These sub-queries are

executed separately in the related query engines and their results are returned back to

Compound Query Handler module for the final query result generation. By applying

union and intersection operations, the sub-query results are combined and the final

query result list is transferred to Query Result Handler module in order to be

displayed in the user interface. In Figure 5.3.8, the execution of the compound

queries by combining the query result sets of each sub-query is shown. If the

connector between two sub-queries is "AND" operator, the intersection of two result

sets are evaluated. On the other hand, if the sub-queries are connected with "OR"

operator, the union of two result sets is computed. In order to find the intersection of

two result sets, each frame interval in the first result set is compared with every

frame interval in the second result set. If the first time interval overlaps with the

second time interval, then the overlapping interval is computed and added to the

 89

intersection result. For union operation, similar to the intersection process, each

frame interval in the first result set is compared with every frame interval in the

second result set and the union of two time intervals is obtained and added to the

union result. This evaluation process continues until all sub-query results are merged

and the final compound query result is generated.

Figure 5.3.8: Compound Query Evaluation

 90

CHAPTER 6

6 IMPLEMENTATION

OntoVARS is a domain independent ontology-driven video annotation and retrieval

system that provides semantic content-based annotation and querying capabilities in

video databases. During the evaluation of the proposed framework, the framework is

tested and evaluated with different domain ontologies in terms of ontological

integration, video content annotation and querying power. Essentially, the system

capabilities and usage do not depend on the selected domain ontology. Therefore in

this chapter person ontology is selected for the demonstration of the system

capabilities and its usage.

In the following sections, the usage and the features of the proposed system are

explained by the help of user interface screenshots. OntoVARS consists of three

main components, namely ontology management, annotation, querying and the

system end users interact with these components through the system main page. The

main page of OntoVARS is shown in Figure 6.1.1.

This chapter is organized as follows: In Section 6.1, ontology management menu

and its features are explained. OntoVARS annotation panel is discussed in Section

6.2 and finally, Section 6.3 presents the usage of the query panel and system

querying capabilities.

 91

6.1 Ontology Management Panel

The ontology management component handles MPEG-7 and domain ontology

operations in order to construct the ontological infrastructure. The automatic

harmonization of MPEG-7 core ontology and imported domain ontologies is

performed through the sub-menus of the ontology management panel. Moreover, the

domain specific common data integration capability is also enabled in the concept of

this module. The ontology management menu is presented in Figure 6.1.2.

Figure 6.1.1: OntoVARS Main Page

Figure 6.1.2: Ontology Management Panel

 92

The ontology management panel provides the following operations through its sub-

menus:

 System Initialization: This operation is used to clean up and initialize the

whole system resources. All ontological data, imported domain ontologies

and annotations are removed from the relational database. After cleaning

operation is finalized, system initialization process loads MPEG-7 upper

ontology automatically to the system.

 Ontology Import: The integration of the domain specific ontologies is carried

out via import ontology user interface. The user enters a model name for the

domain ontology and selects the ontology file to be imported. Figure 6.1.3

represents the domain ontology import operation.

 Ontology Configuration: The ontology configuration interface enables the

user to categorize the imported domain ontology concepts into the following

categories: Semantic Base, Object, Agent Object, Person, PersonGroup,

Organization, Concept, Semantic Place, Semantic Time and Semantic State.

According to this categorization, the system subclasses the selected domain

ontology concepts from the corresponding super concepts in the upper

ontology [20].

 Ontology Deletion: The system enables the deletion of the imported domain

ontologies through ontology deletion interface. In the concept of the deletion

operation, the selected ontological model and the annotations related to this

domain ontology concepts are removed from the system relational database.

 Common Data Integration: This sub-menu enables the integration of the

domain specific common data into the ontological structure. Similar to

ontology import operation, the user enters a model name in order to specify

the ontological model in which the common data is integrated and selects the

data file for domain specific common data import operation. Figure 6.1.4

demonstrates the domain specific common data import operation.

 93

Figure 6.1.3: Ontology Import Interface

Figure 6.1.4: Common Data Integration Interface

6.2 Video Annotation Panel

The video annotation panel is used to manage ontology-driven video content

annotation operations. In OntoVARS, video content annotation procedure is

performed manually. However, the modular architecture of the proposed system

enables the integration of semi-automatic and automatic annotation modules to the

system. In addition, the annotation procedure is performed using domain ontology

concepts. By this means, the annotation interface provides legal content descriptions

and the ontological relation between the annotations and domain ontologies is

 94

established. In this panel, the users have the following opportunities for ontology-

driven annotation:

 Instance Definition: OntoVARS supports ontological annotation in order to

provide ontology-driven querying capability to the end users. For this

purpose, the instances should be defined according to the ontology classes

before the annotation process starts. The ontological instances can be

supplied to the system by domain specific common data integration process

or defined through instance definition interface. For instance in Figure 6.2.1,

Gonca instance is defined as an individual of Female ontology class in

Person domain ontology.

 Semantic Annotation: In semantic annotation process, the instances of the

domain ontology concepts and classes are annotated on video content. The

object appearance frame intervals and the object positions are stored for each

instance in the video content during semantic annotation process. These

annotated instances, their positions and time intervals are used for calculating

spatial and temporal relations between video objects and posing semantic

content-based queries over video content. For specifying the instance

positions, minimum bounding rectangle (MBR) formalization is used. During

annotation process, the user selects the domain ontology, ontology concept

and the instance to be annotated by using the provided user interface menu

options. Afterwards, the video file on which the annotation operation will be

performed is played and the selected instance appearance time intervals and

positions are tagged through the semantic annotation interface. Figure 6.2.2

presents the semantic annotation of the individual Peter Scherbatsky.

 Spatio-Temporal Annotation: Spatio-temporal annotation process is started

after the semantic annotation of the instances for a video file is completed

and Finalize Annotation button is pressed in semantic annotation user

interface. For each annotated video file, the spatio-temporal relations

between the annotated instances are computed implicitly and stored into the

 95

relational database for later usage in ontology-driven spatio-temporal

querying. Finalize Annotation button is also displayed in Figure 6.2.2 which

is used to start the computations of spatial and temporal relations during

spatio-temporal annotation process.

Figure 6.2.1: Instance Definition Interface

Figure 6.2.2: Semantic Annotation Interface

 96

6.3 Video Query Panel

The query panel provides user interfaces for the system supported query types. The

form-based query interfaces enable the formulation of ontology-driven semantic

content-based queries and display the retrieved query results according to the result

display format to the end users. In the query panel, the system provides the

following query interfaces for ontology-driven query processing:

 Concept Query: The users can pose simple concept queries by using this

interface in order to query the appearances of the ontological instances and

domain ontology classes. For instance, Figure 6.3.1 displays the query results

containing the video scenes from different video files in which Peter

Scherbatsky appears.

Figure 6.3.1: Multiple Video Concept Query

In order to generate concept queries for a specific video, the users select a video file

from the video file selection menu. After a video file is selected, the formulated

 97

query is executed to retrieve the matching scenes for the specified video. Figure

6.3.2 displays the query results containing the video scenes from the specified video

file in which any Male class individual appears. By pressing Play button that is

provided at the end of each query result row, the related video intervals are played

automatically in the video player applet.

Figure 6.3.2: Specific Video Concept Query

 Time-Based Query: The users formulated time-based queries through time-

based query interface. Similar to all other query types, both multiple and

specific video querying features are supported for time-based queries. In

order to formulate the queries, the users select the related domain ontology

model name, ontology concept and/or ontological instance. In addition, the

time-based relation; Before, After, Between and Contain is specified and

time interval values are provided from this query interface. For instance,

Figure 6.3.3 displays the query results containing the video scenes from

different video files in which Peter Scherbatsky appears between time

interval 15.0 and 30.0.

 98

Figure 6.3.3: Time-Based Query Interface

 Region-Based Query: The users formulate region-based queries through

region-based query interface. Before query formulation and execution, the

users select the related domain ontology model name, ontology concept

and/or ontological instance from the query interface. Moreover, in order to

specify the query region coordinates, the users click for region selection and

draw a rectangular region by dragging the mouse on region selection area.

After the query execution is completed, the video scenes that contain the

queried instance or concept in the specified query region are displayed to the

user. For instance, Figure 6.3.4 displays the query formulation and region

selection process for region-based queries through this interface. In addition,

the query results containing the video scenes in which any Male class

individual appears in the specified query region are also listed in Figure

6.3.4.

 99

Figure 6.3.4: Region-Based Query Interface

 Spatio-Temporal Query: The spatial and temporal queries are generated by

using this interface in order to query the spatio-temporal relations between

video instances. The users can specify the domain ontology, ontological

concept and instances for the queried individuals, objects or events by

selecting from the user interface. Moreover, the spatial or temporal relation

to be queried can also be selected during the query formulation process.

After executing the formulated query, the matching query results are

displayed to the users in spatio-temporal query display format.

 Compound Query: OntoVARS provides ontology-driven compound querying

capability to the end users. The supported simple queries are combined by

using "AND" and "OR" connectors in order to formulate compound queries.

The simple queries are constructed in their own query tabs and Add

Compound Query Item button is used to add the formulated simple query to

the compound query. After adding the generated simple query to the

compound query, the user moves to compound query tab in order to specify

the connector between the lastly added simple query and the existing

compound query. This operation is repeated for each sub-query insertion.

 100

Finally, the compound query is executed by clicking Execute button in the

compound query tab and the retrieved query results are displayed.

 101

CHAPTER 7

7 CONCLUSION AND FUTURE WORK

In this thesis, an ontology-driven video annotation and retrieval system is proposed.

The developed framework is a generic solution for ontological video content

modeling and content-based querying. The main difference of the developed system

from other video management and retrieval systems is its ontological infrastructure.

The system is MPEG-7 ontology-based and MPEG-7 ontology infrastructure

provides interoperability with other MPEG-7 ontology compatible systems. The

Rhizomik MPEG-7 ontology is used as the core ontology and domain specific

ontologies are integrated to the core ontology in order to provide ontology-based

video content annotation and querying capabilities to the user. The system is domain

independent, thus any domain ontology can be attached to the system.

The system is developed in a modular architecture and consists of ontology

management, video annotation and query processing sub-modules. The ontology

management module enables the construction of MPEG-7 core ontology and

provides domain ontology insertion, deletion and integration capabilities. Video

annotation module enables concept and spatio-temporal annotation on video content

by using domain ontology concepts. Moreover, domain specific common data

integration is also provided by the annotation module and the annotation effort is

relieved by the automatic integration of common data. The query processing module

provides ontology-driven conceptual, spatio-temporal, region-based, time-based and

compound querying capabilities. For all query types, both multiple video querying

and specific video querying capabilities are supported. In multiple video querying,

the user query input is executed on video database and matching scenes from

 102

different video files are returned to the users as query results. In specific video

querying, the user selects a specific video and the query is executed on the selected

video content. The matching scenes of this specific video are returned to the users as

query results. In query execution process, SPARQL queries are generated according

to the form-based user query inputs and query types. The generated SPARQL

queries are executed in the query engine and the results are retrieved. Compound

query processing mechanism differs from other query types. An optimization

mechanism proposed in [30] is adapted to our framework for compound query

execution. The compound query input is decomposed into its sub-queries and

corresponding SPARQL queries are generated. On the other hand, the compound

query tree is generated and the parent nodes containing "AND", "OR" operators are

re-organized on the query tree structure. After new query tree is constructed, the sub-

queries are executed and combined according to the operators in the parent nodes.

By means of the optimization process, the intermediate query result sizes are kept

small and an efficient query execution mechanism is provided.

The current version of the system supports manual annotation of the video content;

however, the modular architecture of the system enables the integration of any

automatic or semi-automatic annotation module. As a future work, video annotation

mechanism can be improved by developing or integrating semi-automatic or

automatic annotators.

The developed system does not support 3D relations. Spatio-temporal annotation

and querying capability for 3D relations can also be added as a future extension.

Moreover, the framework is developed for video management capabilities and does

not support the annotation and querying of other multimedia content types such as

images and audio. These extensions can also be added to the current framework in

the future. Thus, by enabling image, audio and text data description and querying

features, the system capabilities are enhanced and the framework is transformed to a

full-functional multimedia content management and retrieval system.

 103

The query processing mechanism converts the form-based user input to SPARQL

queries for execution. The query engine accepts SPARQL query input and retrieves

the query results by executing the SPARQL queries. Due to the modular

architectural design of the system, SPARQL query generator and query processor

modules do not depend on each other. Thus, the query processor module can be

separated from the form-based query interface and the SPARQL generator module

in order to be integrated with different mechanisms. For instance, a system having a

natural language query interface and generating SPARQL query outputs from the

given natural language query inputs can be integrated with the query processor

component of the proposed framework. As a result, ontology-driven natural

language query processing and retrieval capability can also be provided. Similarly,

different user interface modules can be integrated to the current system as a future

extension.

To summarize, in this thesis, an ontology-driven video annotation and retrieval

framework has been developed in order to provide semantic content-based modeling

and querying capabilities. The system enhances its video content modeling and

querying capabilities with its ontology support. In the light of the future studies, new

features can be added to the developed framework since it provides a modular

infrastructure that allows extensions.

 104

8 REFERENCES

[1] J. M. Martinez, "MPEG-7 Overview Version 10",

http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm, last visited

on 20 Aug. 2010

[2] B. S. Manjunath, P. Salembier, and T. Sikora, editors. "Introduction to MPEG-

7 Multimedia Content Description Interface". Wiley, England, 2002.

[3] "Use Case: MPEG-7 metadata interoperability",

http://www.w3.org/2005/Incubator/mmsem/wiki/MPEG-7, last visited on 15

Aug. 2010.

[4] R. García, O. Celma, “Semantic Integration and Retrieval of Multimedia

Metadata”, In the Proceedings of the Knowledge Markup and Semantic

Annotation Workshop, Semannot'05, 2005.

[5] R. Troncy, Celma O., Little S., Garcia R., and Tsinaraki C. "MPEG-7 based

multimedia ontologies: Interoperability support or interoperability issue". In

Proceedings of the 1st International Workshop on Multimedia Annotation and

Retrieval enabled by Shared Ontologies (MAReSO), 2007.

[6] W3C Incubator Group, "MPEG-7 and the Semantic Web",

http://www.w3.org/2005/Incubator/mmsem/XGR-mpeg7, August 2007

[7] C. Tsinaraki, “Ontology-Driven Interoperability for MPEG-7”, In the

Procedings of DELOS Conference, 2007.

[8] C. Tsinaraki, P. Polydoros, S. Christodoulakis S, "Interoperability support

between MPEG-7/21 and OWL in DS-MIRF", In Transactions on Knowledge

and Data Engineering (IEEE-TKDE), Special Issue on the Semantic Web Era,

2007.

 105

[9] C. Tsinaraki , P. Polydoros , S. Christodoulakis , "Interoperability support for

Ontology-based Video Retrieval Applications", In the Proceedings of CIVR

2004, Dublin/Ireland, July 2004

[10] C. Tsinaraki, E. Fatourou, S. Christodoulakis, “An ontology-driven framework

for the management of semantic metadata describing audiovisual information”,

In the Proceedings of CAiSE 2003, Velden, Austria, pp. 340–356, 2003.

[11] C. Tsinaraki, P. Polydoros, F. Kazasis, S. Christodoulakis, “Ontology-Based

Semantic Indexing for MPEG-7 and TV-Anytime Audiovisual Content”,

Multimedia Tools Appl. 26, 3 , 299-325, Aug.2005

[12] C. Tsinaraki, P. Polydoros, N. Moumoutzis, S. Christodoulakis, “Coupling

Owl with MPEG-7 and TVAnytime for Domain-specific Multimedia

Information Integration and Retrieval”, In the Proceedings of RIAO 2004,

Avignon/ France, April 2004.

[13] C. Tsinaraki, P. Polydoros, S. Christodoulakis, “Integration of OWL

Ontologies in MPEG-7 and TVAnytime Compliant Semantic Indexing”, In the

Proceedings of CaiSE, 2004.

[14] C. Tsinaraki, S. Christodoulakis, "XS2OWL: A Formal Model and a System

for enabling XML Schema Applications to interoperate with OWL-DL

Domain Knowledge and Semantic Web Tools", DELOS Conference, Tirrenia,

Italy, March 2007.

[15] P. Polydoros, C. Tsinaraki, S. Christodoulakis, "GraphOnto: OWL-Based

Ontology Management and Multimedia Annotation in the DS-MIRF

Framework", In the proceedings of the Workshop on Multimedia Semantics

2006 (WMS 2006), pp. 14-24, 19-21 June 2006, Chania, Crete, 2006.

[16] C. Tsinaraki, P. Polydoros, S. Christodoulakis, "GraphOnto: A Component

and a User Interface for the Definition and Use of Ontologies in Multimedia

 106

Information Systems", In the Proceedings of AVIVDiLib 2005, Cortona, Italy,

April 2005

[17] R. García, C. Tsinaraki, O. Celma and S. Christodoulakis, “Multimedia

Content Description using Semantic Web Languages”, In Y. Kompatsiaris, P.

Hobson (Eds) “Semantic Multimedia and Ontologies: Theory and

Application”, pp. 17-34, Springer, 2008.

[18] J. Hunter , “Adding Multimedia to the Semantic Web - Building an MPEG-7

Ontology”. In International Semantic Web Working Symposium (SWWS

2001), Stanford University, California, USA, July 30 - August 1, 2001.

[19] R. Arndt, R. Troncy, S. Staab, L. Hardman, M. Vacura, “COMM: designing a

well-founded multimedia ontology for the web”, In the Proceedings of the 6th

International Semantic Web Conference (ISWC'2007), 2007.

[20] Hilal Tarakçı, "An Ontology-Based Multimedia Information Management

System", Master’s thesis, METU, 2008.

[21] H. Rajigopal, "JENA: A Java API for Ontology Management", October, 2005.

[22] K. Tzonas, "JENA RDF Framework", May, 2008.

[23] "Jena Ontology API", http://jena.sourceforge.net/ontology, last visited on 15

Aug. 2010.

[24] SPARQL, http://www.w3.org/TR/rdf-sparql-query, last visited on 2 Agu.

2010.

[25] SPARQL Tutorial, http://openjena.org/ARQ/Tutorial/index.html, last visited

on 2 Agu 2010.

[26] "Semantic Web/RDF Library for C#/.NET",

http://razor.occams.info/code/semweb/, last visited on 3 Agu. 2010.

 107

[27] Mehmet Emin Dönderler, Ediz Saykol, Özgür Ulusoy, and Uğur Güdübay.,

Ediz Saykol, Cemil Alper. "BilVideo Video Database Management System",

VLDB Journal, pp: 1371–1376, 2004.

[28] Mehmet Emin Dönderler, Özgür Ulusoy, Uğur Güdükbay. "Rule-Based

Spatio-Temporal Query Processing for Video Databases", VLDB Journal,

13:86–103, 2004.

[29] Mehmet Emin Dönderler, Ediz Saykol, Umut Arslan, Özgür Ulusoy, Uğur

Güdükbay. "BilVideo: Design and Implementation of a Video Database

Management System", Multimedia Tools and Applications, 27:79–104, 2005.

[30] Gülay Ünel, Mehmet Emin Dönderler, Özgür Ulusoy, Uğur Güdükbay. "An

Efficient Query Optimization Strategy for Spatio-Temporal Queries in Video

Databases", pp. 113-131, September, 2004.

[31] Mehmet Emin Dönderler. "Data Modeling and Querying for Video

Databases", PhD thesis, Bilkent University, 2002.

[32] Cemil Alper. "Semantic Query Execution In A Video Database System",

Master's thesis, Bilkent University, 2004.

[33] Hayati Çam. "Query Processing for An MPEG-7 Compliant Video Database",

Master’s thesis, Bilkent University, 2008.

[34] Muhammet Baştan, Hayati Çam, Uğur Güdükbay, Özgür Ulusoy. "An MPEG-

7 Compatible Video Retrieval System with Integrated Support for Complex

Multimodel Queries", IEEE Multimedia, August, 2009.

[35] Tony C. T. Kuo, Arbee, L. P. Chen, "A Content-Based Query Language for

Video Databases", pp: 209-214, 2000.

[36] Tony C. T. Kuo, Arbee, L. P. Chen, "Content-Based Query Processing for

Video Databases", IEEE Multimedia, March, 2000.

 108

[37] A. Şimşek. "Ontology-Based Spatio-Temporal Video Management System",

Master’s thesis, METU, 2009.

[38] M. Koprulu, N. K. Cicekli, and A. Yazici. "Spatio-Temporal Querying In

Video Databases", In Information Sciences, pages 131–152, 2004.

[39] Y. Yildirim, T. Yilmaz, A. Yazici. "Ontology-Supported Object and Event

Extraction with a Genetic Algorithms Approach for Object Classification", In

CIVR’07: Proceedings of the 6th ACM international conference on Image and

video retrieval, pages 202–209, New York, NY, USA, 2007. ACM.

[40] Y. Yildirim, A. Yazici. "Ontology-Supported Video Modeling and Retrieval",

pp:28-41, June, 2007.

[41] Y. Yildirim. "Automatic Semantic Content Extraction In Videos Using a

Spatio-Temporal Ontology Model", PhD thesis, METU, 2009.

[42] S. Subhash Wattamwar, H. Ghosh. "Spatio-Temporal Query for Multimedia

Databases", In MS ’08: Proceeding of the 2nd ACM workshop on Multimedia

semantics, pages 48–55, New York, NY, USA, 2008. ACM.

[43] A. D. Bagdanov, M. Bertini, A.D. Bimbo, G. Serra, C. Torniai. "Semantic

Annotation and Retrieval of Video Events Using Multimedia Ontologies",

pp:713-720, IEEE Multimedia, 2007.

[44] F. A. Aygül. "Natural Language Query Processing in Ontology Based

Multimedia Databases", Master’s thesis, METU, 2010.

[45] W. Ren, S. Singh, M. Singh, and Y. S. Zhu. "State-of-the-art on Spatio-

Temporal Information-Based Video Retrieval", Pattern Recognition,

42(2):267–282, 2009.

[46] J. Z. Li, M. T. Özsu, D. Szafron, "Modeling of Moving Objects In a Video

Database", Proceedings of IEEE International Conference on Multimedia

Computing and Systems, Ottawa, Canada, June 1997, pp. 336–343.

 109

[47] J. F. Allen, "Maintaining Knowledge About Temporal Intervals",

Communications of ACM 26 (1983) 832–843.

[48] R. H. Güting, "An Introduction to Spatial Database Systems". The VLDB

Journal, 3(4):357–399, 1994.

[49] S. Adali, K. S. Candan, S. S. Chen, K. Erol, and V. S. Subrahmanian.

"Advanced Video Information System: Data Structures and Query

Processing", Multimedia Systems, 4:172–186, 1996.

