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Electrical and Electronics Engineering, METU

Prof. Dr. Nevzat Güneri Gençer
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ABSTRACT

SOLUTION OF INVERSE ELECTROCARDIOGRAPHY PROBLEM USING MINIMUM
RELATIVE ENTROPY METHOD

Bircan, Ali

M.S., Department of Electrical and Electronics Engineering

Supervisor : Asst. Prof. Dr. Yeşim Serinağaoğlu Doğrusöz

September 2010, 118 pages

Coronary problems -such as heart attacks, stroke and arrhythmia- are the leading cause of

death in the world. Thus, understanding the functioning of the heart is crucial. The interpre-

tation of heart’s electrical activity is very important in clinical medicine since contraction of

cardiac muscles is initiated by the electrical activity of the heart. In other words, the electrical

activity of the heart reflects its mechanical activity. The electrocardiogram (ECG) is a diag-

nostic tool that measures and records the electrical activity of the heart. The conventional 12

lead electrocardiogram (ECG) is a clinical tool that provides information about the heart sta-

tus. However, it has limited information about functionality of heart due to limited number of

recordings. In addition, classical ECG is not based on a biophysical model of body; it rather

depends on a heuristic match of waveforms and disease state. A better alternative approach

for understanding cardiac electrical activity is the incorporation of body surface potential

measurements with torso geometry and the estimation of the equivalent cardiac sources. The

problem of the estimating the cardiac sources from the torso potentials and the body geometry

is called the inverse problem of electrocardiography. In this study, epicardial potentials are

used as equivalent cardiac sources in modeling the electrical activity of the heart. The aim of

this thesis is reconstructing accurate high resolution maps of epicardial potential representing
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the electrical activity of the heart from the body surface measurements. However, accurate

estimation of the epicardial potentials is not an easy problem due to ill-posed nature of the

inverse problem. In order to obtain correct result, the inverse problem should be solved by im-

posing constraints depending on the prior information about the true epicardial potential. In

this thesis, the linear inverse ECG problem is solved using different optimization techniques

such as Conic Quadratic Programming, multiple constrained convex optimization, Linearly

Constrained Tikhonov Regularization and Minimum Relative Entropy (MRE) method. The

MRE method treats the elements of epicardial potentials as random variables and estimates

the epicardial potentials (m) as the expected value of the posterior distribution using some

prior information. The prior information used in MRE method is the lower and upper bounds

of m and a prior expected value of m. The results are compared with Tikhonov Regularization

and with the true potentials. The performance of each method studied in the thesis is tested at

different level of measurement noise and geometric noise in order to investigate the effects of

different errors.

Keywords: Inverse electrocardiography, MRE, Minimum Relative Entropy, Entropy Opti-

mization, Iterative Optimization
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ÖZ

ELEKTROKARDİYOGRAFİ GERİ PROBLEMİNİN MİNİMUM BAĞIL ENTROPİ
YÖNTEMİ KULLANILARAK ÇÖZÜMÜ

Bircan, Ali

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Yeşim Serinağaoğlu Doğrusöz

Eylül 2010, 118 sayfa

Kalp krizi, felç ve aritmi gibi koroner sorunlar ölüme sebep olan önde gelen nedenidir. Bu

nedenle, kalbin işleyişini anlamak çok önemlidir. Kalp kaslarının kasılması kalbin elektriksel

aktivitesinin tarafından oluşturulduğu için kalbin elektriksel aktivitesinin yorumlanması çok

klinik tıp alanında oldukça önemlidir. Başka bir deyişle, kalbin elektriksel aktivitesi mekanik

işleyişini yansıtır. Elektrokardiyogram (EKG ) kalbin elektriksel aktivitesinin ölçülmesi ve

kaydedilmesinde kullanılan bir tanı aracıdır. Klasik 12 kanallı elektrokardiyogram(EKG) kalp

durumu hakkında bilgi sağlayan bir klinik araçtır. Ancak, kayıt sayısının azlığı nedeniyle

kalbil işlevselliği hakkında sınırlı bilgi sağlar. Ayrıca, klasik EKG vücudun bir biyofizik-

sel modeline bağlı değil, daha çok elde edilen dalga şekilleri ile hastalık durmunun sezgisel

olarak eşleştirilmesi dayalıdır. Kalbin elektriksel aktivitesinin anlaşılması için daha iyi bir al-

ternatif yaklaşım, vücut yüzeyinden alınan ölçümler ile gövde geometrisi birleştirilip eşdeğer

kalp kaynakların tahmin edilmesidir. Torso potansiye ölçümleri ve vücut geometri kullanarak

kardiyak kaynaklarının tahmin edilmesi ters elektrokardiyografi problemi olarak tanımlanır.

Bu çalışmada, epikardiyal potansiyelleri kalp aktivitesinin modellemesinde eşdeğer kalp kaynağı

olarak kullanılmaktadır. Bu tezin amacı, vücut yüzey ölçümlerinden kalbin elektriksel ak-

tivitesini temsil eden, doğru ve yüksek çözünürlüklü epikardiyal potansiyel haritaları elde
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etmektir. Ancak, problemin kötü konumlandırılmış doağasından dolayı doğru epikardiyal

potansiyellerinin hesaplanması kolay bir problem değildir. Doğru sonuçlar elde etmek için,

gerçek epikardiyal potansiyeli hakkında önceden bilinen bilgilere bağlı bazı kısıtlar prob-

leme dahil edilerek ters problemin çözülmesi gerekilidir. Bu tezde, goğrusal ters EKG prob-

lemi; Konik Karesel Programlama, birden çok kısıtlı dışbükey optimizasyonu doğrusal Kısıtlı

Tikhonov düzenlileştirmesi ve Minimum Bağıl Entropi (MBE) yöntemi gibi farklı optimiza-

syon teknikleri kullanılarak çözülmüştür. MBE yöntemi epikardiyal potansiyellerinin ele-

manları rassal birer değişken olarak ele alır ve epikardiyal potansiyellerini (m) bazı ön bil-

gileri kullanarak sonsal dağılımının ortalama değeri şeklinde hesaplar. MBE yönteminde

önsel bilgi olarak m rassal değişkeninin alt ve üst sınırları değerleri ile beklenen ortalama

değer kullanılmaktadır. Sonuçların uygunluğu gerçek potansiyellerini kullanarak Tikhonov

düzenlileştirmesi ile karşılaştırılır. Değişik hatalar karşısındaki performanlarını incelemek

amacıyla tezde çalışılan herbir yöntem, farklı düzeyde ölçüm gürültüsü ve geometrik hata-

ların bulunduğu problemler ile test edilmiştir.

Anahtar Kelimeler: Geri elektrokardiyografi, MGE, Minimum Bağıl Entropi,Entopi Opti-

mizasyonu, İteratif Optimizasyon
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Anatomy and Electrophysiology of the Heart . . . . . . . . . . . . . 6

2.1.1 Anatomy of the Heart . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Properties of Cardiac Cells . . . . . . . . . . . . . . . . . 7

2.1.3 Cardiac Action Potential . . . . . . . . . . . . . . . . . . 9

2.1.4 The Electrical Stimulation and Conduction System of Heart 10

2.1.5 Electrocardiography of Heart . . . . . . . . . . . . . . . . 12

2.2 Cardiac Source Models . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Multipoles . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Uniform Double Layers . . . . . . . . . . . . . . . . . . 14

2.2.4 Equivalent Double Layers . . . . . . . . . . . . . . . . . 15

2.2.5 Transmembrane Voltages . . . . . . . . . . . . . . . . . . 16

ix



2.2.6 Epicardial and Endocardial Potential Distribution . . . . . 16

2.3 Forward Problem of Electrocardiography . . . . . . . . . . . . . . . 17

2.4 Inverse Problem of Electrocardiography . . . . . . . . . . . . . . . 18

2.5 Mathematical Optimization . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Least-squares problems . . . . . . . . . . . . . . . . . . . 21

2.5.2 Linear programming . . . . . . . . . . . . . . . . . . . . 21

2.5.3 Convex optimization . . . . . . . . . . . . . . . . . . . . 21

2.5.4 Nonlinear optimization . . . . . . . . . . . . . . . . . . . 22

2.6 Entropy Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Entropy and Self Information Concepts . . . . . . . . . . 22

2.6.2 Principle of Maximum Entropy . . . . . . . . . . . . . . . 25

2.6.3 Principle of Minimum Relative Entropy . . . . . . . . . . 26

3 THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Definition and Formulation of the Inverse ECG Problem . . . . . . . 28

3.1.1 State Transition Matrix (STM) . . . . . . . . . . . . . . . 29

3.1.2 The Moore-Penrose (Generalized) Pseudo-inverse Matrix . 30

3.1.3 Singular Value Decomposition (SVD) and Pseudo-inverse
Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Regularization Methods for Solving Inverse ECG Problem . . . . . . 33

3.2.1 Tikhonov Regularization . . . . . . . . . . . . . . . . . . 34

3.2.2 Conic Quadratic Programming . . . . . . . . . . . . . . . 35

3.2.3 Two Step Tikhonov Regularization - Linearly Constrained
Optimization . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Twomey Regularization . . . . . . . . . . . . . . . . . . . 38

3.2.5 Admissible Solution Approach . . . . . . . . . . . . . . . 38

3.2.5.1 Spatial Gradient Estimation . . . . . . . . . . 40

3.2.5.2 Implementation of Admissible Solution Method 41

3.3 Minimum Relative Entropy Method in the Solution of Inverse ECG
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Overview of MRE Method . . . . . . . . . . . . . . . . . 43

x



3.3.3 Generating Prior Distribution - Maximum Entropy Method 43

3.3.4 Estimation of the Posterior Distribution - MRE Method . . 44

3.3.5 Implementation of MRE Method . . . . . . . . . . . . . . 46

3.3.5.1 Estimation of Prior Distribution . . . . . . . . 47

3.3.5.2 Estimation of Posterior Distribution . . . . . . 47

4 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Experimental Data and Validation Of Methods . . . . . . . . . . . . 49

4.2 Reconstruction of Solution By Conic Quadratic Programming . . . . 50

4.2.1 Conic Quadratic Programming Results of 30 dB Gaussian
White Noise Added Measurements . . . . . . . . . . . . . 51

4.2.2 Conic Quadratic Programming Results of 10 dB Gaussian
White Noise Added Measurements . . . . . . . . . . . . . 57

4.2.3 Conic Quadratic Programming Results of 30 dB Gaussian
White Noise Added Measurements with 0.6 Scale Geo-
metric Error . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.4 Conic Quadratic Programming Results of 30 dB Gaussian
White Noise Added Measurements with 15mm Shifted Ge-
ometric Error . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Linearly Constrained Tikhonov Solutions . . . . . . . . . . . . . . . 69

4.3.1 Linearly Constrained Tikhonov Results of 30 dB Gaussian
White Noise Added Measurements . . . . . . . . . . . . . 71

4.3.2 Linearly Constrained Tikhonov Regularization Results of
10 dB Gaussian White Noise Added Measurements . . . . 72

4.3.3 Linearly Constrained Tikhonov Regularization Results of
30 dB Gaussian White Noise Added Measurements with
0.6 Scale Geometric Error . . . . . . . . . . . . . . . . . 75

4.3.4 Linearly Constrained Tikhonov Regularization Results of
30 dB Gaussian White Noise Added Measurements with
15mm Shift Geometric Error . . . . . . . . . . . . . . . . 77

4.4 Regularization of Inverse ECG Problem with Multiple Constraints . 80

4.4.1 Results of 30 dB Gaussian White Noise Added Measure-
ments by Imposing Multiple Constraints . . . . . . . . . . 83

4.4.2 Results of 10 dB Gaussian White Noise Added Measure-
ments by Imposing Multiple Constraints . . . . . . . . . . 87

4.4.3 Results of 30 dB Noisy Measurement Containing 0.6 Scale
Geometric Error by Imposing Multiple Constraints . . . . 91

xi



4.4.4 Results of the Inverse Problem Containing 30 dB Noisy
Measurements and 15 Shift Geometric Error by Imposing
Multiple Constraints . . . . . . . . . . . . . . . . . . . . 91

4.5 Reconstruction of Solution by the MRE Method . . . . . . . . . . . 94

4.5.1 MRE Method Results of 30 dB Gaussian White Noise Added
Measurements . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.2 MRE Method Results of 10 dB Gaussian White Noise Added
Measurements . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.3 MRE Method Results of 30 dB Noisy Data with 0.6 Scal-
ing Geometric Error . . . . . . . . . . . . . . . . . . . . 103

4.5.4 MRE Method Results of 30 dB noisy data with 15mm shift
geometric error . . . . . . . . . . . . . . . . . . . . . . . 106

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Performance of Each Method . . . . . . . . . . . . . . . . . . . . . 110

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xii



LIST OF TABLES

TABLES

Table 4.1 Averages and standard deviations of CC and RDMS values for different

norms that are obtained by multiplying the norm of Tikhonov solution with differ-

ent scaling factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 4.2 Averages and standard deviations of CC and RDMS values for optimal

Tikhonov solution and solution using heuristic function . . . . . . . . . . . . . . 56

Table 4.3 Averages and standard deviations of CC and RDMS values of different test

methods for 10 dB Noisy Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 4.4 Averages and standard deviations of CC and RDMS values of different test

methods for 30 dB Noisy Data with 0.6 Scale Geometric Error . . . . . . . . . . 63

Table 4.5 Averages and standard deviations of CC and RDMS values of different test

methods for 30 dB Noisy Data with 15mm Shifted Geometric Error . . . . . . . . 67

Table 4.6 Averages of CC values of the reconstructed solution using different regular-

ization parameters for 30 dB Noisy Data (optimal Tikhonov solution has 0.7698

CC value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Table 4.7 Averages of RDMS values of the reconstructed solution using different regu-

larization parameters for 30 dB Noisy Data (optimal Tikhonov solution has 0.6039

RDMS value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Table 4.8 Averages of CC values of the reconstructed solution using different regular-

ization parameters for 10 dB Noisy Data (optimal Tikhonov solution has 0.5796

CC value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 4.9 Averages of RDMS values of the reconstructed solution using different regu-

larization parameters for 10 dB Noisy Data (optimal Tikhonov solution has 0.8196

RDMS value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xiii



Table 4.10 Averages of CC values of the reconstructed solution using different regular-

ization parameters for 30 dB Noisy Data with 0.6 Scale Geometric Error (optimal

Tikhonov solution has 0.5895 CC value) . . . . . . . . . . . . . . . . . . . . . . 77

Table 4.11 Averages of RDMS values of the reconstructed solution using different reg-

ularization parameters for 30 dB Noisy Data with 0.6 Scale Geometric Error (op-

timal Tikhonov solution has 0.8316 RDMS value) . . . . . . . . . . . . . . . . . 77

Table 4.12 Averages of CC values of the reconstructed solution using different regu-

larization parameters for 30 dB Noisy Data with 15mm Shifted Geometric Error

(optimal Tikhonov solution has 0.5328 CC value) . . . . . . . . . . . . . . . . . 80

Table 4.13 Averages of RDMS values of the reconstructed solution using different reg-

ularization parameters for 30 dB Noisy Data with 15mm Shifted Geometric Error

(optimal Tikhonov solution has 0.9133 RDMS value) . . . . . . . . . . . . . . . 80

Table 4.14 Averages of CC values of the reconstructed solution using different scaling

factors for 30 dB Noisy Data (optimal Tikhonov solution has 0. 77 CC value) . . . 85

Table 4.15 Averages of RDMS values of the reconstructed solution using different scal-

ing factors for 30 dB Noisy Data (optimal Tikhonov solution has 0. 604 RDMS

value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 4.16 Averages of CC values of the reconstructed solution using different scaling

factors for 10 dB Noisy Data (optimal Tikhonov solution has 0. 58 CC value) . . . 89

Table 4.17 Averages of RDMS values of the reconstructed solution using different scal-

ing factors for 10 dB Noisy Data (optimal Tikhonov solution has 0.819 RDMS

value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Table 4.18 Averages of CC values of the reconstructed solution of the problem contain-

ing the 30 dB Noise Data and 0.6 Scale Geometric Error using different scaling

factors (optimal Tikhonov solution has 0.589 CC value) . . . . . . . . . . . . . . 92

Table 4.19 Averages of RDMS values of the reconstructed solution of the problem con-

taining the 30 dB Noise Data and 0.6 Scale Geometric Error using different scaling

factors (optimal Tikhonov solution has 0.832 RDMS value) . . . . . . . . . . . . 92

Table 4.20 Averages of CC values of the reconstructed solutions using different scal-

ing factors for 30 dB Noisy Data with 15mm Shifted Geometric Error (optimal

Tikhonov solution has 0.533 CC value) . . . . . . . . . . . . . . . . . . . . . . . 95

xiv



Table 4.21 Averages of RDMS values of the reconstructed solutions using different

scaling factors for 30 dB Noisy Data with 15mm Shifted Geometric Error (optimal

Tikhonov solution has 0.913 RDMS value) . . . . . . . . . . . . . . . . . . . . . 95

Table 4.22 Averages values of CC and RDMS values of 30 dB noisy data reconstructed

solutions using MRE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 4.23 Averages values of CC and RDMS values of 10 dB noisy data reconstructed

solutions using MRE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Table 4.24 Averages values of CC and RDMS values of reconstructed solutions using

MRE Method for 30 dB noisy data with 0.6 scaling geometric error . . . . . . . . 105

Table 4.25 Averages values of CC and RDMS values of reconstructed solutions using

MRE Method for 30 dB noisy data with 15mm shift geometric error . . . . . . . 106

xv



LIST OF FIGURES

FIGURES

Figure 2.1 Anatomy of Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.2 The cardiac action potential has five phases . . . . . . . . . . . . . . . . . 10

Figure 2.3 Schematic representation comparing action potential of pacemaker and

non-pacemaker (working) myocardial cells . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.4 Cardiac Conduction System . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.5 ECG Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 4.1 L2 Norms of Epicardial Potential For Real Data and Tikhonov Solution . . 52

Figure 4.2 The CC and RDMS values of different norm bounds . . . . . . . . . . . . 54

Figure 4.3 The characteristic of the heuristic function that is used for determining the

upper bound of L2-norm of solution . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.4 The L2- Norms for 30 dB noisy data . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.5 The CCvalue for optimal Tikhonov solution and solution using heuristic

function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.6 Epicardial Maps of Solution at 61 ms after stimulus for 30dB Noisy Data . 58

Figure 4.7 The Euclidean Norms for 10 dB noisy data . . . . . . . . . . . . . . . . . 59

Figure 4.8 The CC values of different methods in a QRS interval . . . . . . . . . . . 61

Figure 4.9 Epicardial Maps of solutions at 44 ms after stimulus for 10 dB Noisy Data 62

Figure 4.10 The Euclidean Norms for 30 dB Noisy Data with 0.6 Scale Geometric Error 64

Figure 4.11 The CC values of different methods in a QRS interval for 30 dB Noisy Data

with 0.6 Scale Geometric Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 4.12 Epicardial Maps of solutions at 51 ms after stimulus for 30 dB Noisy Data

with 0.6 Scale Geometric Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xvi



Figure 4.13 The Euclidean Norms for 30 dB Noisy Data with 15mm Shifted Geometric

Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.14 The CC values of different methods in a QRS interval for 30 dB Noisy Data

with 15mm Shifted Geometric Error . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 4.15 Epicardial Maps of solutions at 43 ms after stimulus for 30 dB Noisy Data

with 15mm Shifted Geometric Error . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 4.16 The CC values of Tikhonov Solution and Linearly Constrained Tikhonov

Solution in a QRS interval for 30 dB Noisy Data . . . . . . . . . . . . . . . . . . 73

Figure 4.17 Epicardial Maps of Solution at 25th ms . . . . . . . . . . . . . . . . . . . 74

Figure 4.18 The CC values of Tikhonov Solution and Linearly Constrained Tikhonov

Solution in a QRS interval for 10 dB Noisy Data . . . . . . . . . . . . . . . . . . 75

Figure 4.19 Epicardial Maps of Solution at 42 ms for 10dB Noisy Data . . . . . . . . . 76

Figure 4.20 The CC values of Tikhonov Solution and Linearly Constrained Tikhonov

Solution in a QRS interval for 0.6 Scale Geometric Error . . . . . . . . . . . . . 78

Figure 4.21 Epicardial Maps of Solution at 65 ms for 0.6 Scale Geometric Error . . . . 79

Figure 4.22 The CC values of Tikhonov Solution and Linearly Constrained Tikhonov

Solution in a QRS interval for 15mm Shifted Geometric Error . . . . . . . . . . . 81

Figure 4.23 Epicardial Maps of Solutions at 65 ms for 15 mm Shifted Geometric Errors 82

Figure 4.24 The Average CC values of solutions using different scaling factors in con-

struction constraint values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 4.25 Epicardial Potential Maps for 30 dB noisy data : a) Colormap b) Real Po-

tential Distribution at the 40ms c) Optimal Tikhonov Solution d) Reconstructed so-

lution using real norms in multiple constraints imposed method e) Reconstructed

solution by imposing the constraint values as ε1 = 1.05ε1,tik, ε2 = 0.8ε2,tik and

ε3 = 0.8ε3,tik f)Reconstructed solution from heuristic method . . . . . . . . . . . . 88

Figure 4.26 Epicardial Potential Maps for 10 dB noisy data : a) Colormap b) Real Po-

tential Distribution at the 45ms c) Optimal Tikhonov Solution d) Reconstructed so-

lution using real norms in multiple constraints imposed method e) Reconstructed

solution by imposing the constraint values as ε1 = 1.05ε1,tik, ε2 = 0.8ε2,tik and

ε3 = 0.8ε3,tik f)Reconstructed solution from heuristic method . . . . . . . . . . . . 90

xvii



Figure 4.27 Epicardial Potential Maps for 30 dB noisy data with 0.6 Scale Geomet-

ric Error: a) Colormap b) Real Potential Distribution at the 49 ms c) Optimal

Tikhonov Solution d) Reconstructed solution using real norms in multiple con-

straints imposed method e) Reconstructed solution by imposing the constraint val-

ues as ε1 = 1.05ε1,tik, ε2 = 0.8ε2,tik and ε3 = 0.8ε3,tik f)Reconstructed solution from

heuristic method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 4.28 Epicardial Potential Maps for 30 dB noisy data with 15 mm Shift Geo-

metric Error: a) Colormap b) Real Potential Distribution at the 39 ms c) Opti-

mal Tikhonov Solution d) Reconstructed solution using real norms in multiple

constraints imposed method e) Reconstructed solution by imposing the constraint

values as ε1 = 1.05ε1,tik, ε2 = 0.8ε2,tik and ε3 = 0.8ε3,tik f)Reconstructed solution

from heuristic method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 4.29 The CC values of different methods . . . . . . . . . . . . . . . . . . . . . 99

Figure 4.30 Epicardial Potential Maps of reconstructed solutions using MRE Method

for 30 dB noisy data: a) Real Potential Distribution at the 50 ms b) Optimal

Tikhonov Solution c) Reconstructed solution using -5 mV as mean value d) Re-

constructed solution using the mean as identity matrix times previous time instant

solution e) Reconstructed solution using the mean as training set stm matrix times

previous time instant solution f) Reconstructed solution using the mean as real set

stm matrix times previous time instant solution . . . . . . . . . . . . . . . . . . . 101

Figure 4.31 The CC values of different methods for 10 dB Noisy Measurements . . . . 102

Figure 4.32 Epicardial Potential Maps of reconstructed solutions using MRE Method

for 10 dB noisy data: a) Real Potential Distribution at the 50 ms b) Optimal

Tikhonov Solution c) Reconstructed solution using -5 mV as mean value d) Re-

constructed solution using the mean as identity matrix times previous time instant

solution e) Reconstructed solution using the mean as training set stm matrix times

previous time instant solution f) Reconstructed solution using the mean as real set

stm matrix times previous time instant solution . . . . . . . . . . . . . . . . . . . 104

Figure 4.33 The CC plots of different methods for 30 dB noisy data with 0.6 scaling

geometric error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xviii



Figure 4.34 Epicardial Potential Maps of reconstructed solutions using MRE Method

for 30 dB noisy data with 0.6 scaling geometric error: a) Real Potential Distribu-

tion at the 50 ms b) Optimal Tikhonov Solution c) Reconstructed solution using

-5 mV as mean value d) Reconstructed solution using the mean as identity ma-

trix times previous time instant solution e) Reconstructed solution using the mean

as training set stm matrix times previous time instant solution f) Reconstructed

solution using the mean as real set stm matrix times previous time instant solution 107

Figure 4.35 The CC plots of different methods for 30 dB Noisy Data with 15mm Shift

Geometric Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 4.36 Epicardial Potential Maps of reconstructed solutions using MRE Method

for 30 dB noisy data with 15mm shift geometric error: a) Real Potential Distribu-

tion at the 50 ms b) Optimal Tikhonov Solution c) Reconstructed solution using

-5 mV as mean value d) Reconstructed solution using the mean as identity ma-

trix times previous time instant solution e) Reconstructed solution using the mean

as training set stm matrix times previous time instant solution f) Reconstructed

solution using the mean as real set stm matrix times previous time instant solution 109

xix



CHAPTER 1

INTRODUCTION

1.1 Motivation

Proper functioning of heart is crucial for human body. Coronary problems -such as heart

attacks, stroke and arrhythmia- are the leading cause of death. Thus, interpretation of heart’s

electrical activity is very important in clinical medicine. Electrocardiography (ECG) is the

most widely used noninvasive tool for diagnosing and monitoring heart diseases [1].

ECG is a representation of the heart’s electrical activity recorded from electrodes on the body

surface [2]. It records the difference of electrical potentials on the body surface. This obtained

electrical signal’s shape, rate and rhythm are used to determine the activity of the heart by

cardiologists. Thus, ECG reflects the electrical activity of the heart.

The conventional ECG consists of 12 different electrical signals recorded from 6 electrodes

simultaneously. Six of these signals are vertical and use frontal leads I, II, and III and limb

leads aVR, aVL, and aVF, and six of them are horizontal and use precordial leads V1, V2, V3,

V4, V5, and V6. This kind of ECG involves the low-resolution projections of heart’s electri-

cal activity on the body surface [3]. The 12-lead ECG is crucial for establishing many cardiac

diagnoses, especially arrhythmias and myocardial ischemia. Although the conventional ECG

provides information about the heart status, it has limited information about functionality of

heart due to the limited number of recordings. However, it is possible to image cardiac elec-

trical activity with high resolution using the body surface potentials recorded from a large

number of electrodes. The Body Surface Potential Map (BSPM) method is an electrocardio-

graphic method which records and displays the surface potentials from wide areas of chest in

order to obtain the electrical activity of heart with the increased spatial resolution.
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Body surface potential maps (BSPMs) allow the detection of significant physiological and

diagnostic information by measurements from large number of electrodes on body surface.

By this increased spatial resolution, these maps provide a comprehensive three-dimensional

image of cardiac electrical activity that is not possible with the conventional 12-lead ECG [4].

Thus, the BSPM is considered more appropriate to diagnose certain heart disease, compared

with the conventional 12-lead electrocardiogram [5, 6, 7]. The two main advantages of the

body surface potential maps over the 12-lead ECG are providing all information available in

the cardiac electrical field on the surface of the body and being more sensitive in detection of

the local electrical events in the heart [6].

Although BSPMs are useful tools to visualize the heart’s electrical activity on the body sur-

face, relating measurements with the cardiac activity and understanding it remains still a

problem. BSPM has limited ability in localization of cardiac electric events since the po-

tential distribution at each point on torso is determined by the electric activity in the entire

heart. Moreover, it has also limited ability in resolving multiple electric events due to the

smoothing effects of the volume conductor [8, 9, 10]. A better alternative approach for under-

standing cardiac electrical activity is the incorporation of BSPMs with torso geometry from

magnetic resonance imaging (MRI) or computed tomography (CT) scans and the estimation

of the equivalent cardic sources [10, 3, 4]. This is called inverse problem of ECG and enables

a better qualitative and quantitative understanding of heart’s electrical activity. By this kind

of approach, the estimation of cardiac sources from BSPMs yields to obtain more meaningful

and useful results for realization the events in heart.

Electrocardiography problem, which aims to gain a better understanding of cardiac electrical

activity, can be modeled in two major ways. In the first type, body surface potentials (effect)

is computed using a given cardiac sources distribution (cause). This problem is called forward

problem of electrocardiography. On the other hand, inverse problem of electrocardiography

can be defined as reconstruction of cardiac electrophysiological activity (cause) from remotely

measured torso ECG recordings (effect) [11, 12]. The objective of inverse electrocardiogra-

phy is improving traditional ECG recordings and gaining a better qualitative and quantitative

understanding of the cardiac electrical ectivity in order to detect diseases and malfunctions of

heart [13]. In solving the inverse ECG problem, the cardiac sources are represented by the

simplified models, such as fixed dipole, moving dipole, multiple dipoles, multipoles, the epi-

cardial potential distribution and the heart-surface activation isochrones on the surface of the
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heart [14, 13]. The details about these cardiac source models are represented in Background

section.

Epicardial potential distribution is one of the equivalent source models of heart that is used in

inverse ECG problem, since the potential distribution on epicardium reflects underlying local

electrical activity of myocardium. In the present work inverse problem of electrocardiography,

given a potential distribution on body surface and forward transfer matrix, is studied in order

to find epicardial potential distribution on heart surface.

1.2 Contribution of the Thesis

The inverse problem of electrocardiography is ill-posed which means that even small pertur-

bations lead to serious errors in the solutions. Due to this ill-posedness, it needs a regulariza-

tion process in order to estimate the desired solution. There are many different regularization

and statistical methods in literature in order to reconstruct the desired epicardial potential dis-

tribution in solution of inverse problem of electrocardiography. Some of these methods are

Tikhonov Regularization [15, 11], Truncated Singular Value Decomposition (TSVD) [16],

Convex Optimization with multiple constraints [17, 18, 19], Bayesian Maximum A Poste-

riori Estimation (Bayes MAP) [20], State-Space Models [21, 22] (see Background section

for details). There are also modified and combined forms of these regularization methods

[23, 24, 25, 15] in order to improve the solutions. Methods based on Tikhonov and TSVD

are able to robustly reconstruct epicardial potentials without any prior information. However,

these methods suffer from smoothing in edges of the solution i.e. reconstructed epicardial

potentials have limited relevance to real potential distribution especially at the edges. Bayes

MAP and state-space models are statistical methods that enable to incorporate prior infor-

mation to solve inverse problem. However, success of these methods is strongly dependent

on relevance of epicardial potentials to prior data. Thus, obtaining a good prior is problem

in these methods. Moreover, these methods assume that the random variables are normally

distributed, which is not true for all cases.

Due to these deficiencies of the methods in literature, in this thesis it is aimed to investigate

and study some novel methods in order to solve inverse electrocardiography problem. For

this purpose following studies are performed:

3



(i) Different least square optimization methods, similar to Tikhonov Regularization, are stud-

ied. L2-norm constraint is modified in zero-order Tikhonov regularization in order to add

prior information to formulation, which is also known as Twomey Regularization. Conic

Quadratic Programming is another studied method that is used for least square minimization.

Results of each method are compared.

(ii) The inverse ECG problem is reformulated as convex optimization problem in order to

improve the solution by addition of energy regularization and total variation regularization

constraints into the problem. This technique enables to regularize the problem with both

spatial and temporal constraints.

(iii) The minimum relative entropy (MRE) method, a statistical inference method, is used for

estimation of the a posteriori probability density function (pdf) using prior information. This

method is more flexible than other statistical inference methods in use of prior information.

Prior information does not have to be in a standard form of distribution. The MRE method

is studied with different types of priori and its performance is examined. The state transition

matrix, which is originally used in state space models, is also used to create the a priori pdf

for the MRE method.

1.3 Structure of Thesis

In this thesis the second chapter contains the background information about the electrocardio-

graphy and the studied methods in the thesis. In this chapter, first anatomy and physiology

of the heart is given. Then, the forward and inverse problems of ECG are defined along

with a literature survey on these topics. Next, the background information about the entropy

optimization and the mathematical optimization is represented.

The third chapter we represent the problem definition of the inverse problem of ECG.Then the

theory of the methods studied methods are represented. These methods are Conic Quadratic

Programming, linearly constrained Tikhonov regularization, admissible solution approach

(convex optimization with multiple constraints) and MRE Method.

In the fourth chapter, the application details of the methos given in theory section are provided.

The results of the reconstructed solutions are represented. In the last chapter, conclusions of
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this study are given.
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CHAPTER 2

BACKGROUND

2.1 Anatomy and Electrophysiology of the Heart

2.1.1 Anatomy of the Heart

Heart is the pumping organ of circulatory system located in the thorax between the lungs and

abdomen behind the sternum, which is also called mediastinum. The heart works like a pump

that pushes blood through the blood vessels. It has four chambers as shown in Figure 2.1: left

and right atria and left and right ventricles. The two atria act as collecting reservoirs receiving

blood from the body and lungs, while the two ventricles act as pumping chambers to push

blood through the body tissues and lungs. The atria on the right and left sides of the heart

are separated by a thin wall referred to as the atrial septum. Similarly, the ventricular septum

separates the two ventricles on the right and left side of the heart.

The heart has four valves to prevent backflow of blood as in any pumping system. Each atrium

and ventricle is connected with an atrio-ventricular valve on two side of heart. The tricuspid

valve is located on the right side of the heart and mitral valve is located on the left side.

These valves prevent blood moving back from the ventricles into atria. The right ventricle

is connected to the pulmonary artery through the pulmonary valve, while the left ventricle is

connected to the aorta through the aortic valve.

In the circulation system, the flow of blood through the heart is as follows: Unoxygenated

blood returns from the systemic circulation to the right atrium and then passes through the

tricuspid valve to the right ventricle. The right ventricle forces blood through the pulmonary

valve to the pulmonary artery and the lungs. Oxygenated blood returns from the lungs to the
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left atrium, and then passes through the mitral valve to the left ventricle. Finally blood is

pumped through the aortic valve to the aorta and the systemic circulation.

The wall of heart is composed of three layers. Epicardium, myocardium and endocardium

are outer, middle and inner layers, respectively. Myocardium is relatively thick and consists

mainly of cardiac muscle tissue responsible for forcing blood out of heart chambers.

2.1.2 Properties of Cardiac Cells

Mechanical and electrical activity of the heart are performed by two types of cardiac cells.The

first type is the actual contractile units of the heart which are termed as myocardial cells, or

myocytes [14, 26]. These cells are activated and begin to contract by electrical stimulus. The

second type of cardiac cells involves special cells that form the heart’s electrical conduction

system. The cardiac cells have four specific properties that enable to carry out their function:

automaticity, excitability, conductivity, and contractility [26].

Automaticity is the ability of of the cardiac cell to generate an impulse spontaneously without

an external electrical stimulation. This property is attributed to the pacemaker cells, in which

the concentration of potassium falls regularly during electrical diastole. The regular falls

in the concentration of potassium cause to the self-initiated depolarization when the trans-

membrane voltage reaches to the threshold. In a normal heart, the sinoatrial node acts as the

primary pacemaker of the heart with the highest automaticity [26]. The increase or decrease

in the automaticity can cause the arrhythmias [27]. Excitability refers to the ability of a cell to

respond to an electrical stimulus that reaches to threshold. Conductivity is the ability of each

cell in the cardiac conduction system to conduct electrical impulses from one cell to another.

Cardiac muscle tissue differs from skeletal muscle that activation can propagate from one cell

to another in any direction in heart muscle [14]. Thus, the propagation of impulse is more

complex in cardiac tissues. Contractility is the mechanical response of cardiac muscle fibers

in response to the electrical stimulation by shortening and contraction. The myocardial cells,

or myocytes in myocardium have this property.
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Figure 2.1: Anatomy of Heart [28]
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2.1.3 Cardiac Action Potential

The mechanical contraction and relaxation of heart is a consequence of electrical activity of

cardiac cells. The electrical activation of cardiac muscle cells occurs through the same mecha-

nism as in the nerve cell. The electrical activities on cell membrane contain the depolarization

and repolarization events. These events established by inflow and outflow some ions such as

sodium, potassium and calcium. Due to the plateau phase between depolarization and repo-

larization, the pulse duration of the cardiac muscle is two times longer than that in nerve cells

[14]. This change in membrane potential due to the movement of electric charges through the

cell membrane, including depolarization and repolarization is termed as action potential.

The cardiac action potential consists of one depolarization phase and the four phases of repo-

larization. Action potential and electrolyte movements are illustrated in 2.2. The phases of

action potential are [26, 29] :

Phase 4 Resting Membrane Potential and Diastolic Depolarization: This is the period that

the cell remains in the resting membrane potential until stimulated by an external electrical

stimulus. This external stimulus is typically from an adjacent cell. Certain cardiac cells

(pacemaker cells) have the capacity to undergo spontaneous depolarization. In pacemaker

cells, there is a time-dependent decrease of outward potassium current with a rapid influx of

sodium, causing a self-initiated depolarization.

Phase 0 Rapid Depolarization: As the stimulus reaches to a threshold voltage, the permeability

of cell membrane changes and sodium ions rush into the cell by activation of fast sodium

channels. This makes the inside of the cell more positive and produces the upstroke in the

action potential.

Phase 1 Initial Repolarization: In this phase, fast sodium channels are inactivated by the rapid

influx of chloride.

Phase 2 The Plateau: During this phase, a slow inward flow of calcium balanced by the slow

outward flow of potassium.

Phase 3 Final Rapid Repolarization: At this stage, a rapid repolarization occurs by the inacti-

vation of slow calcium current and by the acceleration of the outflow of potassium.

The action potential has different shapes in pacemaker and non-pacemaker (working) cells
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[26]. The difference between action potential in pacemaker and working cells is illustrated in

Figure 2.3.

Figure 2.2: The cardiac action potential has five phases

Figure 2.3: Schematic representation comparing action potential of pacemaker and non-
pacemaker (working) myocardial cells [26].

2.1.4 The Electrical Stimulation and Conduction System of Heart

Heart has its own electrical system to stimulate contraction without any nerve supply. The

specialized cardiac tissues generate and conduct the cardiac impulse all over the heart. Car-

diac conduction system consists of following structures (see Figure 2.4):

Sinoatrial node (SA node): Sinoatrial node is located in the right atrium near opening of supe-

rior vena cava where the heart beat or contraction origins. It contains the primary pacemaker
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cells of the heart [30, 26, 14]. The pacemaker cells, located SA node, generate an action

potential at the rate of about 70 per minute [14].

Atrioventricular node (AV node) : It is is located at the boundary between the atria and ventri-

cles. It provides the only conducting path from the atria to the ventricles [14]. Atrioventricular

bundle (Bundle of His) AV node and Bundle of His comprise AV junction. The cardiac im-

pulses from the AV node are conducted to the ventricles through the bundle of His.

Bundle branches (Left and right): These bundles branches distribute impulses from bundle of

His to each ventricle.

Purkinje fibers: These fibers are also called Conduction myofibers. They are located in the

ventricular myocardium. The cardiac stimulus spreads to the ventricular muscle cells through

the Purkinje fibers.

The conduction speed of electrical impulses varies through conduction path of the heart. It is

slowest through the AV node and fastest through the Purkinje fibers. This conduction speed

difference has a functional importance. The relatively slow conduction speed through the

AV node enables the ventricles enough time to fill with blood before the signal for cardiac

contraction arrives [30].

Figure 2.4: Cardiac Conduction System [30].
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2.1.5 Electrocardiography of Heart

The cardiac electric events that are represented so far in this section occur on the intracellular

level. The electric signals such as action potential may be recorded over a cardiac muscle cell.

However, the electrocardiogram (ECG) is a picture of heart, generated by the electric activity

of the heart, on the body surface. Thus, ECG records the electrical activity of a large mass

of cardiac cells, not a single cardiac cell. The superposition of the electrical signals on the

body surface forms the ECG wave. In Figure 2.5, pulses from different parts of heart and the

resultant ECG waveform during a cardiac period are shown. A normal ECG waveform con-

tains P wave, QRS complex, ST segment, T wave, and U wave that are generated by electrical

activity of atrial and ventricular cells. P wave is caused by the atrial depolarization. QRS

interval represents the ventricular depolarization. T and U wave are produced by ventricular

repolarization.

2.2 Cardiac Source Models

A model is a simplified abstract representation of complex real subjects. Simplified mod-

els of cardiac sources are used to investigate and understand the functioning of the heart.

Thus, a mathematical model of cardiac bioelectric sources enables to describe macroscopic

cardiac electrical activity with the ECG measurements by estimating the parameter values of

the model [31]. Equivalent cardiac current sources [32, 33, 34], cardiac activation isochrones

[35] and pericard potential distributions [36, 37, 10] are three major equivalents cardiac mod-

els used in inverse electrocardiography problems. Equivalent cardiac current sources include

the fixed-dipole, moving dipole, multi dipole and multipole models [14], while in the activa-

tion time based models, cardiac is represented by the uniform double layers and equivalent

double layer source models.

2.2.1 Dipole

A dipole is a current source that consists of two monopoles of opposite sign, a source and a

sink, separated by a very small distance [14]. The potentials tend to go to infinity near the

source. Thus, this simple equivalent source model is used only for describing the potentials
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Figure 2.5: ECG Waveform [14].
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at relatively large distances from the actual cardiac sources. Moreover, a dipole is limited

equivalent source in reflecting the underlying electrical activity of myocardium. It is able to

reflect the underlying electrophysiology when the electric activity is restricted to a small part

of the myocardium [38].

A single dipole model can be a fixed-dipole or a moving-dipole model. The fixed dipole

model has fixed origin location, its orientation and magnitude changes. This model expressed

by three independent variables. The moving-dipole model is based on a single dipole that

has varying location, magnitude and orientation, additionally variable. It has six independent

variables [14].

A single dipole model produces a very robust, but not very specific estimate of the cardiac

electrical activity. It is limited in ability to represent the entire electrical activity of the heart.

Therefore, multiple dipole models are used to improve the link with the underlying electro-

physiology. Multiple dipole models have more unstable solution in inverse problem solutions

due to the increase in number of parameters in the models [38].

2.2.2 Multipoles

The multipole source models characterize the heart by a series of multipolar current generators

such as dipole, quadrupole, octupole, hexadecapole, etc. A quadrupole sonsists of two equal

and opposite dipoles that are close together. Higher order source configurations are obtained

in similar way. The multipole representation of cardiac bioelectric sources is based on the

approach that states the any given source configuration can be expressed as an infinite sum

of multipoles of increasing order (i.e., dipole, quadrupole, octapole, etc.) all located at a

fixed common origin [13, 14]. It provides a more suitable representation of cardiac source

generators than the dipole model [38, 32].

2.2.3 Uniform Double Layers

The uniform double layer model (UDL) is a widely used model for representing cardiac

sources. In this source model, it is assumed that the remote ECG wave forms during the

depolarization phase of the ventricles are produced by a current dipole surface density (uni-

form double layer) lying along the activation wavefront and oriented in the normal direction
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[31, 35]. In this model, the surfaces carrying elementary current dipoles are located in my-

cardium and represent depolarization wavefronts as they propagate through the myocardium.

This source model is directly linked to the underlying electrophysiology [38]. However, the

wavefronts in in this kind of UDL model is accessible only by the electrodes mounted within

the heart tissue and therefore a more convenient equivalent source is needed [31]. This is

achieved by equivalent double layer or surface double layer models.

2.2.4 Equivalent Double Layers

The equivalent double layer is a surface source model that is used to express the entire cardiac

electrical activity by a source of double layer (dipole sheet) located on the closed surface of the

epicardium and endocardium surrounding the myocardium [38]. In this source model, cardiac

source is approximated as an equivalent uniform double layer on the pericardium instead of

the actual current dipole surface density (equivalent uniform double layer) in myocardium

[35, 39]. This equivalence is based on solid angle theorem [38, 35].

In this source model, equivalent surface is replaced with the the actual activation wavefront

by any UDL that has the same solid angle. This equivalent double layer can be estimated

from the external fields [39]. This equivalent UDL surface lies on the boundary of the heart

and encloses all currently excited tissue [31]. The movement of the edge of this surface forms

the activation time mapping during the depolarization.

The equivalent surface sources introduced by Geselowitz [40] by means of bidomain ap-

proach. Geselowitz claimed that in isotropic heart the volume distribution of cardiac sources

can be replaced by a double layer on the heart surface and the local double layer strength is

everywhere proportional to the transmembrane action potential.

In this model, the closed surface surrounding myocardium is digitized by dividing surface

into the small surface source elements [35]. The strength of the each EDL source elements

is zero until depolarization. By bidomain theory, during the depolarization for any point on

the surface of heart the local surface strength is proportional to the transmembrane potential

of the cells near surface. This leads to a uniform double layer with the assumption of the

maximum strength is same at any point on heart surface during depolarization [38, 41].

The equivalent double layer method requires the assumption of the homogeneity of the anisotropy
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ratio of intracellular and extracellular conductivities. Although this assumption may not al-

ways hold true, this cardiac model yields an accurate description of body surface potentials

throughout the entire cardiac cycle during, i.e., including repolarization [41].

2.2.5 Transmembrane Voltages

The transmembrane voltage describes the electrical potential difference between the interior

and exterior of the cell membrane. It is another type of cardiac source model that is used for

representing cardiac activity. In this model, TMV distribution within myocardium and elec-

trical potentials on body surface are related by bidomain model [42, 43]. The reconstruction

of the transmembrane voltages defined around the whole active heart tissue gives a complete

picture of cardiac activity [2].

The bidomain model provides a linear relation between transmembrane voltages and body sur-

face potential, however, the inverse problem formulated in terms of TMVs as cardiac sources

does not have a unique solution [42]. This problem can be overcome by imposing additional

constraints to the solution.

2.2.6 Epicardial and Endocardial Potential Distribution

One of the reasons for using such surface potentials as cardiac sources is based on the unique

one-to-one relationship between the potentials at the surface bounding a volume conductor

in case that the surfaces are closed and that no primary sources are present in between the

surfaces [38]. Aim of the inverse problems having epicardial potentials as cardiac source is

to compute the epicardial potential distribution from the body surface potentials using the

volume conductor model of the heart. In addition to its clinical importance, surface potentials

provide a representation of cardiac sources that have the possibility of direct validation of the

inverse solution using catheter measurements or sock electrodes [13, 42, 2]. Another advan-

tage of using epicardial potentials as cardiac source is that the effects of inhomogenities inside

the heart such as the intracardiac blood masses are avoided, since the epicardial potentials are

outside of the heart.

The main disadvantage of the inverse problem for epicardial potentials is highly ill-posed

due to the discretization and smoothing effects. Another weakness of this equivalent source
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model is the difficult interpretation of reconstructed results since the potentials at each point

is defined by the transmembrane voltages of the whole heart not just by the neighboring

nodes[42].

Epicardial potential distribution is assumed as equivalent cardiac electric generator in this

study. The relation between epicardial potential distribution and body surface measurements

is linear. The detaila about the formulation of the inverse problem involving epicardial poten-

tials as cardiac source are given in Chapter 3.1

2.3 Forward Problem of Electrocardiography

The forward problem of electrocardiography consists of the computation of the torso po-

tentials from a given distribution of bioelectrical sources in the heart. Depending on the used

model, these cardiac sources may be either equivalent current dipoles that represent the heart’s

electrical activity or epicard (heart’s outer surface) potentials [13].

The forward problem of electrocardiography involves three basic steps [44]: (i) representation

of bioelectrical sources in the heart, (ii)definition of electrophysiological properties (such as

geometry, conductivity, inhomogeneity, etc) of the volume conductor, (iii) solving of model

equations.

The major applications of the forward electrocardiography problem are [13, 2, 1, 44]: (i)

studying the effects of geometry and electric properties of different tissues on the body surface

potentials or epicardial potentials, (ii) validation of the cardiac cell models, (iii) optimization

of the ECG measurement systems (e.g. electrode locations), (iv) obtaining the transfer ma-

trix (volume-conductor relationships) for the inverse problem, (v) simulation (solution) of the

inverse problem with the model-based optimization. (vi) the reciprocal problem of obtain-

ing the currents traversing the heart due to current sources applied at the body surface (e.g.

defibrillation)

Forward problem can be solved uniquely from a given cardiac sources distribution. Generally

two different methods are used in forward problem, namely surface methods or volume meth-

ods. Surface methods require the numerical modeling of interfaces between various tissue

regions. In surface methods, also termed boundary-element methods, torso is first discretized
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to an approximately equivalent isotropic region. The discretized different torso regions are all

assumed to be of isotropic conductivity. Only the interfaces between the different regions are

represented and enter into consideration in computation of forward problem [13, 45].

On the other hand, three-dimensional torso model is represented numerically in volume meth-

ods. Volume methods include the finite-difference, finite-element, and finite-volume methods.

In these methods, torso is represented by three-dimensional grid of discrete points or it is

approximated by a combination of volume elements of simple geometrical shapes such as

tetrahedra or hexahedra.

In surface methods, torso model represented with fewer elements. However, the potential

at every element is combined with the potential at every other element. Consequently, the

coefficient matrix that characterizes the set of equations is completely full. However, torso

is modeled more complex with more elements in volume methods. Thus, the coefficient

matrix is large. However, it is sparse since the potential at each point relates only to only the

potentials at its nearest neighbors [13].

2.4 Inverse Problem of Electrocardiography

In the inverse problem of electrocardiography, a large number of body surface potentials are

used to reconstruct the cardiac source and to understand the heart’s electrical activity. In

addition to measured ECG signal, information about the patient’s anatomy and knowledge of

the physical properties of the human body are also considered in solving the inverse problem.

It is a great noninvasive technique, which provides practical information on the functionality

of heart.

However, the inverse problem does not have a unique solution, i.e. different cardiac source

distributions may result in the same body surface potentials. This non-uniqueness problem

is overcome by the use of simplified models for cardiac sources. Fixed dipole, moving

dipole, multiple dipoles, multipoles, the epicardial potential distribution, and the activation

isochrones on the heart surface are examples of simplified models of heart. These models

introduce implicit constraints that allow the model parameters to be uniquely calculated from

torso potentials [13, 46].
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Another difficulty encountered in the inverse problem of electrocardiography should be han-

dled is ill-posed nature. Ill-posedness, i.e. ill-conditioned, is due to discretization and smooth-

ing. And it means that the inverse solution is very sensitive to small perturbations in the

measurement and to the errors in the model. In other words, solution is unstable and can

oscillate wildly with small noise. This ill-posedness increases with the complexity of the as-

sumed model. This ill-posed nature has to be stabilized through the use of some regularization

methods [16] or computational statistical methods. These regularization methods stabilize so-

lution usually by imposing additional explicit spatial and temporal constraints to the problem

[13, 42, 46].

As mentioned earlier, the heart may be represented sources with simplified models, such as

fixed dipole, moving dipole, multiple dipoles, multipoles, the epicardial potential distribution

and the heart-surface activation isochrones on the surface of the heart. In the fixed dipole

model, cardiac source is represented by a simple dipole with fixed location and variable ori-

entation and magnitude. In the moving-dipole case, heart sources modeled by one or two

dipoles having variable location as well as varying amplitude and orientation. In other words,

cardiac dipole can move and/or rotate (six degrees of freedom) [47]. The multiple dipole

models include several dipoles, each located at certain region of the heart. These dipoles

have fixed location, varying magnitude and varying or fixed orientation [14].In the multipole

representation, heart is modeled by a series of multipole current sources (dipole, quadrupole,

octupole, hexadecapole, etc.). Each multipole component is located at a fixed common origin

[13, 14].

One of the most widely used cardiac source model in the inverse problem of electrocardio-

graphy is epicardial potentials [48]. There is a relationship between epicardial and body

surface potentials that depends on body geometry in this type of formulation. Epicardial po-

tentials have proved to be a true reflection of the electrical activity of heart that occurs in the

myocardium [37]. The main epicardial electrical activities such as the start of stimulus, ex-

citation, repolarization and movement of stimulus can be easily observed from reconstructed

inverse epicardial potential maps [36]. Due to the relation between epicardial potentials and

electrical activities in the myocardium, heart surface potentials are used for representing the

cardiac source in this thesis. Details of the model and the formulation of the inverse ECG

problem are described in Chapter 3.
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2.5 Mathematical Optimization

In one of the methods that is used in thesis, inverse ECG problem is formulated as convex

optimization problem in order to regularize the problem with the spatio-temporal constraints.

Because of this, this section introduces mathematical optimization. Certain types of optimiza-

tion problems and their formulation and their general properties are represented.

Basically, optimization can be described as choosing best element from some set of alterna-

tives. The desire to solve a problem in an optimal way is so common, as a result optimization

arise in almost every area of application.

An optimization problem has the form:

minimize
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.
(2.1)

where

x = (x1, . . . , xn): optimization variable vector,

f0(x) : Rn → R: objective function, the functions,

fi(x) : Rn → R, i = 1, . . . ,m.: constraint functions,

A vector x∗ is called optimal solution, if it has the smallest objective value satisfying the

constraints.

Solution procedure for a class of optimization problem is an algorithm that calculates the

solution for the problem in a given accuracy. The effectiveness of these algorithms varies

substantially. Specific forms of the objective and constraint functions, how many variables

and constraints there are, and special structure, such as sparsity, are important factors that

affect the effectiveness of the algorithms [49]. Even the objective and constraint functions are

simple and well known, the general optimization problem may still be surprisingly difficult

to solve. But, there are some important exceptions to the general rule that most optimization

problems are difficult to find a solution.[49]. Certain problem classes such as least-squares

problems, linear programs and convex optimization problems can be solved efficiently and

reliably.
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2.5.1 Least-squares problems

A least-squares problem is an optimization problem that has no constraints (i.e., m = 0) and

it has an objective in the form of a sum of squares:

minimize f0(x) = ‖Ax − b‖22 =
∑k

i=1 (ai
T − bi)

2

Here A ∈ Rk+n (with k ≥ n), ai
T are the rows of A and the vector x ∈ Rnis the optimization

variable.

The solution of a least-squares problem can be reduced to solving a set of linear equations,

(AT A)x = AT b

so we have the analytical solution x = (AT A)−1AT b.

2.5.2 Linear programming

Another impotant type of optimization problems is linear programming. In linear program-

ming, the objective and constraint functions are all linear:

minimize cT x

subject to ai
T x ≤ bi, i = 1, . . . ,m.

(2.2)

where the vectors c, a1, . . . , am ∈ Rn and scalars b1, . . . , bm ∈ R are problem parameters that

specify the objective and constraint functions.

There is no analytical solution or a formula to find a solution for a linear program. However,

there are a lots of very effective methods to solve linear programming problems, such as

Dantzig’s simplex method and interior point method [49].

2.5.3 Convex optimization

A convex optimization problem has the following form
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minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m.
(2.3)

where functions f0, . . . , fm : Rn → R are convex, i.e., satisfy

fi(αx + βy) ≤ α fi(x) + β fi(y)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0. The least-squares problems and

linear programming problems are special cases of the convex optimization problems [49].

There is no simple formula to find a solution for a convex optimization problems. However,

there are very effective methods such as interior-point method to the convex optimization

problems. Interior-point method works very well in practice [49].

2.5.4 Nonlinear optimization

If objective or constraint functions are not linear in an optimization problem it is called non-

linear optimization (or nonlinear programming). It is the most general form and there are no

effective methods in solving a nonlinear programming problem. Even simple problems with

a few variables can not be solved easily.The methods for solution of a general nonlinear pro-

gramming problem therefore take several different approaches, each of which involves some

compromise [49].

2.6 Entropy Optimization

Minimum Relative Entropy Method is one of the methods in solution of inverse ECG problem.

Thus, in this section entropy optimization concepts and principles of maximum entropy and

minimum relative entropy is explained shortly.

2.6.1 Entropy and Self Information Concepts

The word entropy is a widely used term in thermodynamics. It represents measure of energy in

a thermodynamic system according to the temperature and the heat entering the system. [50].
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Entropy is not a fundamentally intuitive subject, but it is something defined via equations. It

describes the randomness and uncertainty in a system.

However, the information theory entropy is different from the entropy definition in thermo-

dynamics [51]. The concept of entropy of random variables and processes is suggested by

Claude E. Shannon [52, 53]. Entropy, uncertainty and related information measures provide

useful tools in description of behavior of a random process [52].

The Shannon’s entropy is a measure of information. It is used in a wide range of disciplines

such as statistical mechanics, thermodynamics, statistical inference, business, finance, pattern

recognition, queueing theory, information theory, parameter estimation and linear/nonlinear

programming [50].

In information theory, entropy, self information and uncertainty are closely related terms. Self

information is an information measure that is associated with the occurrence of an event. For

a random experiment with probability mass function px(i), the self information associated

with the outcome
{
X = xi

}
is denoted by

h(pi) = log( 1
pi

) = −log(pi)

where pi = px(i) = P(X = i).

By this definition, following properties of self information can be derived easily:

(i) Self Information has always a non-negative value: h(p) ≥ 0

(ii) One can get no information from the occurrence of the event that has probability 1: h(1) =

0

(iii) The information that we get from observing the two independent events is the sum of the

two information functions: h(p1 × p2) = h(p1) + h(p2)

(iv) Self information, a measure of information, is a monotonic and continuous function of

probability mass function.

By definition, the amount of information in a probabilistic event depends on only the proba-

bility of that event. It is clear that knowledge of the actual outcome of the random experiment

eliminates the uncertainty and increases the information associated with it. It is also clear
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that occurrence of an event with smaller probability gives more information, i.e. larger self-

information.

Shannon entropy is a usable measure of the uncertainty or information associated with a

random variable. It is closely related with the self information term. Shannon entropy is an

expected value that quantifies the information contained in a message.

Entropy concept may be expressed more easily with an example. Suppose that we have a

source that emits n symbols {a1, a2, ..., an} with probabilities {p1, p2, ..., pn}, respectively. And

assume that these symbols are emitted independently. Then the average amount of informa-

tion from each symbol in the stream can be calculated as follows:

The symbol ai has log( 1
pi

) information from a particular observation. In a stream with N

observations, symbol ai is seen approximately N × pi times. Thus, in the N independent

observations, we get total information htotal of

htotal =
∑n

i=1(N × pi) × log( 1
pi

)

where
∑n

i=1 pi = 1.

Then, the average information that is get from the observed symbol will be

H(P) = (1/N) × htotal = (1/N) ×
n∑

i=1

(N × pi) × log(
1
pi

)

=

n∑
i=1

pi × log(
1
pi

)

(2.4)

This result about average information, associated with a random variable with a probability

distribution, leads to definition of Shannon’s entropy. Entropy function H(P) is the expected

value of self-information h(p) and it is defined as [50, 52, 54]:

For discrete case with a probability distribution P = {p1, p2, ..., pn} where
∑n

i=1 pi = 1,
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H(P) =

n∑
i=1

pi × log(
1
pi

)

= −

n∑
i=1

pi × log(pi)

= E
{

log
[

1
p

]}
= E {h(P)}

(2.5)

and for continuous case with a probability distribution P(x)

H(P) =
∫

P(x)log [1/P(x)] d(x)

Given a probability distribution P = {p1, p2, . . . , pn} where
∑n

i=1 pi = 1, entropy function

H(P) has an important property, known as Gibbs inequality. This property is

0 ≤ H(P) ≤ log(n)

If entropy is zero, i.e. H(P) = 0 , then one of the pi’s is one and all the rest are zero. That is,

minimum entropy is zero and it is achieved by occurrence of an event that has probability 1

(no information).

Similarly, H(P) = log(n)is achieved only when all of the events have the same probability

1/n. This means that the maximum of the entropy function is the logarithm of the number of

possible events. And it occurs when all the events are equally likely.

2.6.2 Principle of Maximum Entropy

The principle of maximum entropy is a postulate that states that the most likely probability

distribution satisfying a given set of constraints has the largest entropy. In other words, the

probability distribution that best represents the current state of knowledge has the maximum

entropy. The probability distribution that maximizes the entropy is the true probability distri-

bution subject to known constraints.

25



The principle of maximum entropy is often used to obtain prior probability distributions of

random variable with known constraints. Then, this obtained distribution may be used to

select the prior distribution that is need by other methods such as Bayesian approach [55, 56].

Jaynes [57, 56, 58] claims that the maximum entropy method produces optimal solution for

prior distribution subject to available constraints.

The method of maximum entropy is selecting a prior distribution that has the largest pos-

sible entropy subject to the limitations imposed by the known information. Formulation of

maximum entropy method is for discrete case:

maximize H(P) =

n∑
i=1

pilog
[
1/pi

]
subject to

n∑
i=1

pi = 1

pi ≥ 0
n∑

i=1

pi f k
i ≤ fk, k = 1, . . . ,m.

(2.6)

The maximum entropy gives optimal solution for the available information. For example, if

there is no information about distribution, i.e. the parameters have any value in a finite range,

the entropy is maximized with uniform distribution. If there is prior information consisting

of the mean value, upper and lower limit of random variable then entropy is maximized with

a truncated exponential distribution [59, 60]. If there is prior information consisting of the

mean value, and variance of random variable then entropy maximization leads to a normal

distribution [60].

2.6.3 Principle of Minimum Relative Entropy

The principle of minimum relative entropy (MRE) is a method of statistical inference that

was first introduced by Kullback [61]. Similar to the Bayesian MAP estimation, it is used to

update the prior probability distribution to a new posterior probability distribution using the

new data about random variable.

In information theory, relative entropy (or Kullback-Leibler divergence) is a measure of dif-

ference between two probability distributions P and Q. This divergence is a nonsymmetrical
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measure i.e. Kullback-Leibler distance from P to Q is not necessarily equals to the Kullback-

Leibler distance from Q to P. For two probability distributions q(x) and p(x) for a random

variable X, the relative entropy of Q with respect to P is given as:

H(Q, P) = Eq {log [Q/P]}

=

n∑
i=1

qilog
[
qi/pi

]
(2.7)

Relative entropy function is a nonnegative function i.e. H(Q, P) ≥ 0. And H(Q, P) = 0, when

p(x) and q(x) are identical.

According to the principle of minimum relative entropy, also called principle of minimum

discrimination information, we choose a probability distribution q(x) that minimizes relative

entropy function subject to given constraints. This led to choose a new distribution q(x) that

has minimum distance from p(x) and that satisfies the given constraints. By this way, a new

probability distribution q(x), that is closest to the prior distribution p(x), is obtained using the

new information in the forced constraints.

The principles of maximum entropy and minimum relative entropy are not completely differ-

ent things. Actually, maximum entropy method is a special case of minimization of relative-

entropy. They are equivalent to each other when the prior is a uniform distribution [62, 63, 64].

In other words, minimization of relative-entropy is identical to the maximization of Shannon

entropy, if there is no specific prior information about the distribution of random variable and

all prior probabilities are taken to be equal.

Minimum relative entropy method is a powerful tool in order to find an unknown posterior

distribution when there exists a prior distribution and limitations about the random variable

that are obtained from measurements[65]. The relative entropy minimization has application

in various disciplines such as statistical physics, information theory, and financial mathemat-

ics [66]. It is also used for the solution of inverse problems [67, 61, 68, 69, 59].
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CHAPTER 3

THEORY

3.1 Definition and Formulation of the Inverse ECG Problem

Forward problem of electrocardiography aims to estimate the body potential from the known

electrical activity of heart using an equivalent cardiac source model. However in inverse

problem, aim is reconstructing source using the electrical information available on the torso

surface. In this thesis, inverse ECG problem that involves epicardium potentials as cardiac

source is studied.

Epicardium potentials and body potential distribution is related with a discrete formulation in

the forward equation. This relation is linear and formulated as follows:

dk = Gmk + nk, k = 1, 2, 3, . . . ,T (3.1)

where,

dk is an Mx1 vector of recorded torso potentials from different electrodes on body surface at

the time instant k,

mk is the Nx1 vector of epicardial potentials from different points on heart surface at the time

instant k,

G is the MxN matrix representing the forward transfer matrix,

nk is the measurement noise of the same dimensions as the body surface vector,

and k and T are a discrete time index and the number of time samples, respectively.
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Matrix G depends on body geometry and it is the forward transfer matrix. In inverse elec-

trocardiography, the torso potentials dk and transfer matrix G are known and the source, epi-

cardial potential vector mk , is unknown. The transfer matrix G shown in Equation 3.1 is

estimated from the geometry and conductivities of the organs within the thorax using Bound-

ary Element Method (BEM). An important issue is that observations (measurements) always

contain some amount of noise.

One characteristic of the inverse problem is its ill-posed nature due to discretization and

smoothing. It means that the reconstructed solution is unstable and can oscillate wildly with

even a small noise. This property is also termed as ill-conditioning because the condition

number of the transfer matrix G is very high. Due to this ill-conditioning, this problem can

not be solved directly by estimating the inverse of the transfer matrix G. This ill-posed nature

needs to be stabilized by using some regularization methods or statistical computational meth-

ods. The ill-conditioning of the inverse ECG problem will be analyzed in the later sections.

3.1.1 State Transition Matrix (STM)

When the epicardial potentials are recorded over a period of time, it can be observed that these

potentials are continuous over that period, i.e. these potentials are temporally related. Thus it

may be possible to represent the epicardial potentials in successive time instant as a function

of previous time slot potentials on heart surface. This can be shown as:

mk = fk(mk−1), k = 1, 2, 3, . . . ,T (3.2)

Equation 3.2 represents the spatio-temporal relationship of epicardial potentials for two suc-

cessive time instants. This equation can be linearized and approximated in the form:

mk = Fmk−1 + wk, k = 1, 2, 3, . . . ,T (3.3)

where, F is the NxN state transition matrix (STM) which determines the relation between the

epicardial potentials of two successive time instants

wk is the Nx1 process noise vector
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Inverse ECG problem takes the above form with the insertion of this equation into the formu-

lation:

dk = Gmk + nk, k = 1, 2, 3, . . . ,T

mk = Fmk−1 + wk, k = 1, 2, 3, . . . ,T

(3.4)

One possible choice for the state transition matrix is identity matrix. However, this is not

enough for representing both spatial and temporal relations of the nodes. The determination

of the state transition matrix is a problem for this kind of formulation. There are several

methods for this such as using epicardial potentials. However, this is not an easy task since

epicardial potentials are also unknown. In this thesis, various STMs are used and tested in

solution of inverse ECG problem.

3.1.2 The Moore-Penrose (Generalized) Pseudo-inverse Matrix

The Moore-Penrose pseudo-inverse is a general way to find the solution to linear equations

in the form of d = Gm. The pseudo-inverse of transfer matrix G is represented by G+. The

matrix G+ is the unique matrix that satisfies the following properties:

i.GG+G = G

ii.G+GG+ = G+

iii.(GG+)∗ = GG+(GG+ is Hermitian)

iv.(G+G)∗ = G+G(G+G is Hermitian)

The pseudo-inverse matrix G+ is estimated in the following way for the following different

cases:

-If M = N and G is full rank G+ = G−1.

-If M > N and G is full rank i.e. it has a rank number N (in this case there are more con-

straining equations than there are free variables), the solution is the one that minimizes the
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quantity ‖d −Gm‖2. In this case, it is not generally possible find a solution to the all equa-

tions. The pseudo-inverse of forward matrix G gives the solution such that G+m+ is closest to

the measurements d in least-square sense. And G+ is equal to (GTG)−1GT .

-If M < N and G is full rank i.e. it has a rank number N (in this case there are more free

variables than there are constraining equations) then the solution minimizes the L2-norm of

m. In this case, there are generally an infinite number of solutions, and the pseudo inverse

solution is the particular solution whose L2-norm is minimal. And G+ is equal to GT (GGT )−1.

- If the rank of G is less than both M and N, the generalized pseudo-inverse solution en-

capsulates the behavior of both of the two previous cases, minimizing both of the quantities

‖d −Gm‖2 and ‖m‖2. In this case, the pseudo-inverse is can not be obtained directly from the

transfer matrix G as in two previous cases. However, it can be computed using the methods

such as Singular Value Decomposition.

In the next section, computation of generalized pseudo-inverse of a matrix and its properties

will be discussed.

3.1.3 Singular Value Decomposition (SVD) and Pseudo-inverse Solution

Singular value decomposition (SVD) is a method of analyzing and solving ill-conditioned

linear problems. In the SVD, MxN matrix G is factored into the following form [55].

G = US VT (3.5)

where

U is an MxM orthogonal matrix with columns that are unit basis vectors spanning the data

space, RM. V is an NxN orthogonal matrix with columns that are basis vectors spanning the

model space, RN . S is an MxN diagonal matrix with diagonal elements called singular values

(eigenvalues).

The singular values along the diagonal of S are arranged in decreasing order, s1 ≥ s2 ≥ . . . ≥

smin(M,N) ≥ 0.Here some of the singular values may be zero. Then we represent the S in the

following form where the p is the number of non-zere singular values. Here p is the rank of
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transfer matrix G.

S =

S p 0

0 0

 (3.6)

Then the SVD representation of matrix G becomes the following forms:

G =
[
U.,1,U.,2, . . . ,U.,m

] S p 0

0 0

[V.,1,V.,2, . . . ,V.,m]T

= [Up,U0]

S p 0

0 0

 [Vp,V0
]T

(3.7)

where U.,i and V., j are columns of matrices U and V . Then the Equation 3.7 can be simplified

into [55]:

G = UpS pVT
p (3.8)

The columns of Up form an orthonormal basis for R(G) and the columns of Vp form an

orthonormal basis for R(GT ). In other words, columns of Up represent a basis of measurement

(data) space and the columns of Vp represent a basis of model space.

The SVD can be used to compute a generalized inverse of G. It satisfies the desirable inverse

properties of Moore-Penrose pseudo-inverse described in previous section. The generalized

inverse is [55]

G+ = VpS −1
p UT

p (3.9)

Using the generalized inverse matrix G+ one can estimate the pseudo inverse solution. It is

defined as:

m+ = G+d

= VpS −1
p UT

p d

(3.10)
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We can also write the equation in 3.10 as a linear combination of the columns of Vp. It is

shown as:

m+ = VpS −1
p UT

p d =

p∑
i=1

UT
.i d
si

V.i (3.11)

The equations in 3.10 and 3.11 can be used to estimate the least square solutions of d = Gm

which satisfies

m̃ = a
m

rgmin‖d −Gm‖2 (3.12)

The vectors U.,i in Equation 3.11 form a basis for measurement space whereas the vectors

V.,i form a basis for source space. In the presence of a noise in measurements, measurement

d will have a nonzero projection onto each of the directions specified by the vectors U.,i .

In the presence of a very small si in the denominator of Equation 3.11, we will have a very

large coefficient for the corresponding vector V.,i and the basis vectors V.,i with small singular

values will dominate the solution. The singular values si decreases with increasing i. The

number of zero-crossing of eigenvectors U.,i and V.,i is growing with decreasing eigenvalues

si. In other words, the eigenvectors with smaller eigenvalues represent the higher spatial

frequencies. Thus, the generalized inverse solution, or the least square solution becomes a

noise amplifier in the presence of high frequency components in measurement noise. In this

case, even a slightly perturbed data results in unstable solutions.

The instability of the solution can measured by a measure called condition number. This con-

dition number is computed from the transfer matrix G and it reflects the how the equations

formed in the problem. The higher condition numbers means more ill-conditioned problems

and in this case we get more unstable solutions. The least square solution can be regularized

by decreasing the amplifying effect of smaller singular values. This achieved by regulariza-

tion method such as TSVD and Tikhonov solution. In the next section we will represent

regularization methods that are studied in this thesis.

3.2 Regularization Methods for Solving Inverse ECG Problem

As mentioned in previous section, the least square solution is unstable and can oscillate wildly

with small noise due to the ill-posed nature of the ECG inverse problem. The ill-posed nature
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needs to be stabilized by using some regularization methods. In this part of thesis, some

studied regularization methods will be discussed.

3.2.1 Tikhonov Regularization

Tikhonov regularization is a widely used method in stabilizing the ill-posed problems. In

Tikhonov regularization, a regularization term is introduced into the formulation in 3.12 and

the method solves the following minimization problem:

mλ = min
arg m

{
‖d − Am‖22 + λ ‖Rm‖22

}
(3.13)

where mλis the estimated solution for a particular regularization parameter λ, A is the transfer

function between the heart and the torso and ‖Rm‖22 term is the regularization constraint. The

equation 3.13 has an analytical solution as follows:

mλ = (AT A + λRT R)
−1

AT d (3.14)

Tikhonov or regularization matrix R is a regularization operator. It is usually chosen as the

identity matrix R = I and the equation in 3.13 is called zero order Tikhonov regularization

in that case. In zero order Tikhonov regularization amplitudes of the norms of epicardial

potentials are penalized. In the first-order and second-order Tikhonov regularization, the

surface gradient and the surface Laplacian of the epicardial potential values are penalized,

respectively.

In this thesis, zero-order Tikhonov regularization is studied. This technique attempts to mini-

mize both the energy of the desired solution and the residual errors of fitness to ECG data. The

first term in Equation 3.13 represents the residual errors of fitness to ECG data and second

term represents the energy of the solution.The zero-order Tikhonov regularization solution

Gm = d, has the following unique solution in terms of singular values:

mλ =

k∑
i=1

s2
i

s2
i + λ2

UT
.,id

si
V.,i (3.15)

where k = min(M,N).
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The quantities fi =
s2

i
s2

i +λ2 in equation 3.15 is called the filter factors. This term avoids the

amplification in the small values of singular values.

The regularization parameter λ plays an important role in Equation 3.13. As λ → 0 the

estimate approaches the least-squares solution and as λ → ∞ the estimate tends to zero.

Thus, Tikhonov regularization method needs decision optimal regularization parameter before

implementation. There are some methods to find the optimal regularization parameter such

as L-curve, GCV (Generalized Cross Validation), QUASI (Quasi Optimality Criterion).In this

thesis, the optimal regularization parameter (λopt) is estimated by using L-curve method. In

L-curve method, L-shaped curve is obtained by plotting the norms ‖d −Gm‖2 and ‖m‖2 on

log-log scale.

The main advantage of Tikhonov regularization is that it does not need prior information in

order to solve the inverse problem. It also creates a robust and reasonable solution to a certain

degree. However, due to L2-norm (energy) minimization, edges in the estimated solutions are

smoothed and solutions may contain limited information and some misinformation about the

real data.

3.2.2 Conic Quadratic Programming

Conic Quadratic Problem is an optimization problem with linear objective and finitely many

ice-cream (or second-orderLorentz) cone constraints. It is a type of convex nonlinear opti-

mization problems and its computational complexity lies between linear programming (LP)

problems and general convex nonlinear problems. It has the following form[70]:

min
arg x

cT x

subject to ‖Dix − di‖2 ≤ cT
i x − qi ( for i = 1, 2, ....k )

(3.16)

where c,Di, di, ci and qi are vectors.

Most convex quadratic programming and quadratically constrained programming problems

can be formulated as conic optimization problems. Conic Quadratic Programming can be

used as an alternative optimization technique to Tikhonov Regularization for regularizing and

solving the inverse problems. Tikhonov Regularization formulation given equation 3.13 can

be reformulated as the following optimization problem [70]:
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min
arg m

‖Gm − d‖22

subject to ‖Rm‖22 ≤ M
(3.17)

The objective function in optimization problem 3.17 is not linear, it has a quadratic form.

In order to obtain a linear objective function, the quadratic objective function in 3.17 can be

moved to the list of constraints and we write the following equivalent equation:

min
arg m,t

t

subject to ‖Gm − d‖22 ≤ t2

‖Rm‖22 ≤ M

(3.18)

The formulation in 3.17 is also equivalent to the following conic quadratic formulation:

min
arg m,t

t

subject to ‖Gm − d‖2 ≤ t

‖Rm‖2 ≤
√

M

(3.19)

For each value of the penalty parameter λ in Equation 3.13, there exists a corresponding

bound parameter, M, in equation 3.19 that gives the same solution. The bound parameter , M,

limits the total energy of the solution, this kind of formulation is useful when we have a prior

knowledge about the total energy of the solution. However, the equation 3.19 does not have

an analytical solution while the problem 3.13 can be solved directly using the equation 3.14.

3.2.3 Two Step Tikhonov Regularization - Linearly Constrained Optimization

As mentioned in section 3.2.1, Tikhonov regularization provides a stabilized solution to the ill-

posed inverse problems. However, the accuracy of the estimated solutions using this method

strongly depends on the choice of regularization parameter. Optimal choice of the regular-

ization parameter results in more accurate solutions. There some methods those enable to

choose regularization parameter without any prior information about the solution. If we have

any a priori knowledge about the data or geometry errors, this prior information can be used
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to obtain an optimal value of the regularization parameter. In addition, imposing constraints

depending on the prior information about the solution can improve the obtained solution.

However, having proper prior information is difficult. Iakovidis[15] proposed a method de-

riving constraints in the form of linear bounds on the values of the solution without any a

priori knowledge of either the data or geometry errors or of any particular characteristics

of the epicardial potentials. The method is based on the assumptions that the over regular-

ized (λover << λopt) zero-order Tikhonov regularization generates smoother solutions tend

to recover more accurately the distribution of the positive and negative values of epicardial

potentials or, equivalently, to recover more accurately the zero line of epicardial potentials

whereas under-regularized solution corresponding to under-regularized (λopt << λunder) zero-

order Tikhonov inverse solution, recovers more accurately the magnitudes and location of

the extrema. Therefore, Iakovidis[15] examined a two-step Tikhonov regularization to obtain

more accurate solutions than the unconstrained Tikhonov method can provide. In the first

step, Tikhonov regularization applied to the problem in order to obtain a accurate around the

zero line. Then, we derive a solution set shown in equation 3.20 in the form of linear bounds

the using the obtained over-regularized solution. At the second step, the problem is solved

with an under-regularization parameter by imposing this solution set as constraint. In other

words, we try to construct an under-regularized solution that satisfies the solution set M.

M =
{
m ∈ Rn|ai ≤ mi ≤ bi, i = 1, 2, . . . , n

}

(3.20)

where,

ai = ε, bi = K when mi
t0 > ε > 0,

ai = −K, bi = −ε when mi
t0 < −ε < 0,

ai = mi
t0 , bi = mi

t0 when
∣∣∣mi

t0

∣∣∣ < ε
Here, ε is small positive number that defines the value around zero while K is large number

defines the upper bound on the magnitudes of the epicardial potentials.In this thesis, both

zero-order Tikhonov Regularization and a two step zero-order Tikhonov Regularization are

used to obtain the desired solution of inverse ECG problem. In the thesis, K is taken as infinity.

Method is tested with various over-regularization and under -regularization parameters and ε

values.

37



3.2.4 Twomey Regularization

Twomey regularization is a modified form of Tikhonov regularization. This technique at-

tempts to simultaneously minimize the distance between the desired solution and the pre-

diction about solution and the residual errors of fitness to ECG data. This minimization is

represented as:

mk+1 = min
argmk+1

{
‖dk+1 −Gmk+1‖

2
2 + λopt ‖mk+1 − Fmk‖

2
2

}
(3.21)

The prediction or initial estimate of solution can be obtained by multiplication of STM and

previous time instant solution as in Equation 3.21.

3.2.5 Admissible Solution Approach

In literature, there are methods which consist of two or more steps to find a solution that

satisfies certain constraints. It is aimed to satisfy only a single constraint in each step. In

obtaining a solution in multiple-steps, it is easy to get a solution in each step. However,

decision on the strategy to combine these solutions and obtaining a good posterior solution is

a problem.

Instead of finding a solution in multiple-steps, Ahmad et. Al. [17] reported an admissible

solution approach to inverse electrocardiography that allows easier integration of multiple

constraints simultaneously. The problem is now treated as finding one solution in the set of

solutions that satisfy all these constraints. Any solution that simultaneously satisfies all the

constraints is said to be admissible.

In admissible solution approach, it is concentrated on incorporating multiple constraints into

the inverse problem formulation. Inverse problem reformulated as a convex optimization

problem and problem is solved by using convex optimization methods. The motivation for

imposing multiple constraints in inverse electrocardiography is described by Srinidhi [18] as

1) No single priori constraint is clearly superior from a physical point of view, but many have

some validity.

2) Some constraints, needed to stabilize the solution, may introduce bias. By using more than
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one constraint one can hope to reduce the severity of each constraint.

Most of the approaches in inverse electrocardiography regularization are L2-norm based con-

straints as in Tikhonov regularization. However, these kinds of constraints generally are

smoothing constraints. The drawback is that regions of large potential gradients are smoothed

out as an effect of these kinds of constraints. In this thesis, admissible approach is one of the

studied methods. In this method, I have formulated both L2 and L1 (TV) norm constraints

in the same problem. L2 norm constraint bounds the total energy of solution. The effect

of L2 norm constraint is same as the Tikhonov regularization. L1 norms include potential

gradients depending on topology and position of nodes. Similar to L2 norm constraint, the

L1 (TV) norm constraints make solution spatially regularized. However, L1 norm constraint

based regularization methods do not penalize edges (discontinuous transitions) in the model

whereas L2 norm based constraint regularization methods such as Tikhonov regularization

tend to broaden peaks in the solution. In order to recover edges more accurately, both L2 and

L1 norm constraints are imposed into the formulation of inverse problem as in 3.22.

Activation wavefronts are characterized by a large spatial gradient separating the depolarized

and the repolarized tissue on the epicardium. An activation wavefront is formally similar

to an edge on an image. The TV norm is essentially an L1 norm of the gradient of the

image and has the property that it suppresses small oscillations and spikes but allows or even

encourages edges. Unlike the L2 norm based methods, TV norm based methods are non-linear

and therefore are computationally complex.

In the admissible solution approach that is studied in this thesis, both L2 and L1 norm based

constraints are simultaneously used to regularize the solution. Formulation of this method is

as follows:

mk = min
argmk

{
‖dk −Gmk‖

2
2 + λ1 ‖mk‖

2
2 + λ1 ‖mk‖

2
2 + λ2 ‖Gθmk‖

2
1 + λ3

∥∥∥Gφmk
∥∥∥2

1

}
(3.22)

The first two terms in Equation 3.22 contain L2 norm and other two contain L1 norm. L2

norms are similar to the norms in the Tikhonov regularization method. However,L1 norms

include potential gradients depending on topology and position of nodes.
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3.2.5.1 Spatial Gradient Estimation

Due to non-uniform spatial sampling and the highly irregular geometry of the heart, gradient

estimation on its surface is non-trivial.

The method for gradient estimation is based on a triangulated geometric representation of the

epicardial surface. Consider a node on the heart surface, p0, and let f(x, y) denote the value

of the potentials at p0 where (x, y) denotes the position of p0 on the surface in some local

coordinate system. The Taylor series expansion yields:

f (x + h, y) = f (x, y) + h
∂ f
∂x
|p0 +

1
2

h2 ∂
2 f
∂x2 |p0 + . . . (3.23)

Similarly,

f (x, y + h) = f (x, y) + h
∂ f
∂x
|p0 +

1
2

h2 ∂
2 f
∂x2 |p0 + . . . (3.24)

Therefore, the gradient at p0 along the x coordinate may be approximated as

∂ f
∂x

=
f (x + h, y) − f (x − h, y)

2h
(3.25)

Similarly, the gradient at p0 along the y coordinate may be approximated as

∂ f
∂x

=
f (x, y + h) − f (x, y − h)

2h
(3.26)

Equations 3.25 and 3.26 are known as central difference equations. On a regular geometry

gradient matrices can be estimated easily using these central difference equations. However,

heart has an irregular geometry and nodes are non-uniformly distributed over the surface of

heart. Therefore following procedure followed in order to estimate gradient matrices:

1) Select a central node

2) Find the first order neighbors of central node po.
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3) Determine surface that passes through central node po and best fits to its first order neigh-

bors

4) Project the coordinates of the first order neighbors onto the best fit surface

5) Change the coordinate system so that all the points on the plane are now represented with

two dimensions instead of three and projection of central node is at the origin.

6) Get distance of projections of neighboring nodes from origin and calculate average distance

from origin.

7) Linearly interpolate/extrapolate all potentials to average distance (onto a circle)

8) Determine the two closest points to x+ axis from both sides of x+ axis; similarly determine

the two closest points to x- axis, y+ axis and y- axis.

9) Find the potential on x+ axis by averaging the potential of closest points to x+ axis. Then

find the potential on to x- axis, y+ axis and y- axis using similar method.

10) Find the gradients using Equation 3.25 and Equation 3.26.

Repeat the same procedure 1-10 for each node by changing central node.

Gradient matrices Gθand Gφ are obtained by using the procedure above.

3.2.5.2 Implementation of Admissible Solution Method

In order to solve the minimization problem in 3.22 is reformulated as convex optimization

problem:

min
argmk

‖dk −Gmk‖
2
2

subject to ‖mk‖
2
2 ≤ ε1

‖Gθmk‖
2
1 ≤ ε2∥∥∥Gφmk
∥∥∥2

1 ≤ ε3

(3.27)

Actually, equation 3.22 is a Lagrange dual problem of the convex optimization problem in

3.27. In other words, equation 3.22 is a weighted sum of the objective and constraint functions

41



in 3.27. For each weighting factors λi in 3.22, there is a corresponding constant value of bound

parameter εi that makes the problems 3.22 and 3.27 equivalent.

The problem in 3.27 is solved by using the CVX toolbox. CVX is a Matlab-based modeling

system for disciplined convex optimization. In order to solve the problem in 3.27 constraint

parameter values ε1, ε2 and ε3 are need to determine. The problem is solved using different

constraint parameters that are obtained from Tikhonov solution and real epicardial potential

distributions. The details about the reconstructed solutions by different constraint parameters

are represented in section 4.4.

3.3 Minimum Relative Entropy Method in the Solution of Inverse ECG Prob-

lem

The minimum entropy method is a useful method in solution of the problem of linear inverse

problems [67]. These Inverse problems have a form d = Gm where m is a vector of unknown

model parameters, d is a vector of measurements and G is the forward transfer matrix. MRE

method is a method of statistical inference that treats the elements of m as random variables

and obtains the solution as mean value of posterior distribution using the prior information

and measurements. The prior information, which is used in this thesis, contains the lower and

upper limits of m and a prior expected value of m.

3.3.1 Motivation

In literature, there are some statistical methods -such as Bayesian MAP Estimation [20] that

use prior information in order to solve inverse ECG problem. The truth of the posterior

distribution, obtained through this method, is highly dependent on the prior distribution. If

the prior distribution is close to the actual data then the results are good. Otherwise, the

posterior distribution may be irrelevant to the actual model parameters. In addition, detailed

prior information is necessary in order to get a good result. The regularization methods such as

truncated singular value decomposition and Tikhonov regularization are also used in solution

of inverse ECG problem. Prior information about the model parameters is not necessary for

these methods. However, the results of these methods may have limited relevance to the real

model parameters.
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The minimum relative entropy method is a useful tool to find a posterior distribution when

there is a prior distribution and constraints on the random variable obtained from the measure-

ments. It gives the optimal solution to the information available. Therefore, it can be used to

obtain good results with robust prior information of model parameters. In this thesis, MRE

method is studied in order to get better results with limited prior information.

3.3.2 Overview of MRE Method

In this method, linear inverse ECG problem is formulated in the the form d = Gm, where

m is a vector of unknown model parameters (epicardial potentials), d is a vector of mea-

surements (torso potentials) and G is the forward transfer matrix. The model parameters

(epicardial potentials) m are handled as random variable and the solution is obtained as mean

value of distribution using the prior information about epicardial potentials. The prior infor-

mation used in this thesis involves the upper and lower limits of m and the average value of

m. A posterior distribution (solution) for m is obtained by using this prior information and

measurements of torso potentials d.

Method consists of two steps. In the first step, a prior distribution is generated by maxi-

mization of entropy subject to prior information i.e. the lower and upper bounds of m and

expected value of m. In the second step, a posterior distribution (solution) for m is obtained

by minimizing entropy relative to prior distribution and subject to imposed constraints by

measurements. The details of these stages are represented in the latter parts of this chapter.

3.3.3 Generating Prior Distribution - Maximum Entropy Method

In the first step of this method, a prior distribution is produced whose entropy is maximized

subject to the forced constraints. These constraints are the lower and upper bounds of model

parameters m and expected value of m.

In inverse ECG problem, model parameters are assumed to have independent elements. There-

fore, p(m) =
∏M

i=1 p(mi) where M is the number of model parameters. We have also assumed

that lower bound for each element is zero. For non-zero lower bounds, this is done by a

change of random variable. Then the formulation of maximization of entropy step is as given:
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maximize H(p) =

∫
p(m)ln

[
1/p(m)

]
dm

subject to
∫

p(m)dm = 1∫
p(m)midm = si

0 ≤ mi ≤ Ui

(3.28)

where si is the mean of parameter i and Ui is the upper bound of parameter i.

It is shown by Woodbury [59] that the maximum entropy distribution is a multivariable trun-

cated exponential distribution for independent continuous random variables with a zero lower

bounds, upper bounds Ui and means si. This prior distribution is

p(mi) =
βiexp(−βimi)

1 − exp(−βiUi)
, for βi , 0

p(mi) =
1
Ui
, for βi = 0

p(m) =

M∏
i=1

p(mi)

(3.29)

where βi is a Lagrange multiplier whose value is determined by

−(βiUi + 1)exp(−βiUi) + 1
βi

[
1 − exp(−βiUi)

] = si (3.30)

3.3.4 Estimation of the Posterior Distribution - MRE Method

In the second step of this method, aim is to obtain a posterior distribution that is an estimate of

the true distribution. This is achieved by minimizing the entropy of the posterior distribution,

q(m) , relative to the prior distribution, p(m) , subject to the measurements. In the minimiza-

tion of entropy of the posterior distribution, q(m), we have two constraints: the normalization

constraint
∫

q(m)dm = 1 , and the requirement of the mean of the posterior distribution fit

the measured data d = Gm̂ where d is the measured data and m̂ is the mean of the posterior

distribution. Formulation of this minimization as follows:

44



minimize H(q, p) =

∫
q(m)ln

[
q(m)/p(m)

]
dm

subject to
∫

q(m)dm = 1

d j =

∫
m

q(m)
M∑

i=1

g jimidm

(3.31)

where d j is the jth measured data point, g ji is the j, ith element of the G matrix and mi is the

ith model parameter for j = 1, 2, 3, . . . ,N and i = 1, 2, 3, . . . ,M.

The first constraint in minimization is a normalization factor while the second one is the

measured data. Measured data constraint enables model to agree with the measurement. This

optimization problem can be rewritten by the method of Lagrange multiplier by minimizing:

φ = H(q, p) + µ

[∫
q(m)dm − 1

]
+

N∑
j=1

λ j

∫
m

q(m)
M∑

i=1

g jimidm − d j

 (3.32)

where µ and λ are Lagrange Multipliers.

Minimizing variation in φ with respect to q(m) yields [59, 71]:

0 = ln
[
q(m)/p(m)

]
+ 1 + µ +

N∑
j=1

λ j

 M∑
i=1

g jimi

 (3.33)

This equation results in following expression:

q(m) = cp(m)exp

− N∑
j=1

λ j

M∑
i=1

g jimi


 (3.34)

where c = exp(−1 − µ). Then, the resulting posterior distribution takes the form

q(mi) =
αiexp(−αimi)

1 − exp(−αiUi)
, for αi , 0

q(mi) =
1
Ui
, for αi = 0

q(m) =

M∏
i=1

q(mi)

(3.35)

where αi = βi +
∑N

i=1 λ jg ji.
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Finally, solution of problem is obtained by calculating the mean of posterior distribution and

it is:

m̂i =
1 − (αiUi + 1)exp(−αiUi)
αi

[
1 − exp(−αiUi)

] for αi , 0

m̂i =
Ui

2
for αi = 0

(3.36)

The Lagrange multipliers µ and λ j’s are calculated using the the two constraints: normaliza-

tion and measurements. λ j’s are estimated from the following equation satisfying the mea-

surement constraint:

d j =

M∑
i=1

g jim̂i(λ) (3.37)

where m̂i is the expected value of the reconstructed model parameter mi and it is a is function

the Lagrange multipliers λ = [λ1, λ2, ...λ j]T .

However, 3.37 may cause a over-fitting in model parameters or it may be non-existing due

to the invisible set in problem formulation. In order to avoid the over-fitting and to account

for measurement and model errors, the measurement contraint in 3.31 is replaced the the

following constraint: ∥∥∥d −Gm̂
∥∥∥2

2 ≤ ε
2 (3.38)

The inequality in 3.38 yields the reconstructed solution to fit the measurement data within a

specified tolerance. The inequality in 3.38 can be rewritten in the following form:

N∑
j=1

d j −

M∑
i=1

g jim̂i(λ)


2

≤ ε2 (3.39)

The data constraint in 3.39 when λ statisfies the following nonlinear equation:

d j −

M∑
i=1

g jim̂i(λ) + ε
λ j

‖λ‖
= 0 (3.40)

The details for estimation of the Lagrange multipliers are shown in the following section.

3.3.5 Implementation of MRE Method

The MRE method that is represented above is implemented in MATLAB. In this section,

several numerical issues in implementation and the details of the estimation of Lagrange mul-

tipliers in equation 3.40 will be represented in this section.
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3.3.5.1 Estimation of Prior Distribution

The equations given in section 3.3.3 for the estimation of the prior distribution using maxi-

mum entropy method assume the lower bound of the model parameter as zero. For non-zero

lower bounds, the problem is reformulated by change of variable. For this purpose, m = mL +l

where m is the true solution, mL is the corresponding model solution for a zero lower bound

and l is the vector of the lower bound of the true solution. Similiarly, measurement data d is

modified as dL = d −Gl for using in problem. The upper bounds and the expected values are

also replaced by Ui − li and si − li respectively.

The equations for the estimation of the prior distribution are given in 3.29 in terms of the

Lagrange multipliers, βi. In order to find a prior distribution, first we need to determine the

values of the Lagrange multipliers, βi individually using the equation 3.30. The Lagrange

multipliers are estimated from the equation 3.30 using the bisection method which is a robust

method in finding the root of an equation. The method repeatedly bisects an interval then

selects a subinterval in which a root must lie for further processing.

3.3.5.2 Estimation of Posterior Distribution

The posterior distribution can be estimated using the equations in 3.35. However, we need to

determine the values of the Lagrange multipliers, λ j’s, which are used in calculation of the

values αi = βi +
∑N

i=1 λ jg ji. The values of the Lagrange multipliers, λ j, are calculated using

the Newton-Raphson method to solve the equation 3.40. We define :

F(λ) j = d j −

M∑
i=1

g jim̂i(λ) + ε
λ j

‖λ‖
(3.41)

Then, we use Newton-Raphson method to solve for the zeroes of F(λ) j iteratively using

λk = λk−1 −

(
∂F
∂λ
|λk−1

)−1

Fk−1 (3.42)

where the superscripts k denote the iteration number. The terms of the Jacobian matrix,

∂F/∂λ, are
∂F j

∂λl
= −

M∑
i=1

g ji

[
∂m̂i

∂αi
gli

]
+

ε

‖λ‖

[
δ jl −

λ jλl

‖λ‖2

]
(3.43)

where l=1,2....N δ jl is the Kronecker delta and
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m̂i

∂αi
=
α2

i U2
i exp(−αiUi) −

[
1 − exp(−αiUi)

]2

α2
i
[
1 − exp(−αiUi)

]2 (3.44)

The iterations are carried out until ‖F‖ /(1+‖d‖) is less than a reasonable tolerance or iteration

number reaches to user-defined the maximum iteration number. we need to make several

asymptotic approximations to solve these equations numerically.
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, first we explain the simulation data that is used for solving inverse problem.

In the later subsections, the reconstruction results of inverse problem of electrocardiography

for different methods are given.

4.1 Experimental Data and Validation Of Methods

As mentioned in previous sections, inverse ECG problem is the estimation of cardiac sources

using the body surface measurements and the volume conductor model. In this thesis, epi-

cardial potentials are used the equivalent cardiac source. Therefore, our aim in this study is

estimating the epicardial potentials using body surface potentials and forward transfer matrix.

Therefore, in order to solve the inverse problem, we need the body surface potentials and the

forward transfer matrix.

The forward transfer matrix describing the relation between the epicardial potentials and the

body surface potentials is estimated by boundary element method [13, 45] using conductivity

values in the torso model. The torso model contains thorax volume and the lungs i.e. thorax

volume and the lungs have different conductivities.

The body surface potentials used in reconstruction of the epicardial potentials are simulated

using the true epicardial potentials instead of taking the measurements from a body surface. In

other words, the body surface measurements are estimated from the true epicardial potentials

by solving forward electrocardiography problem. First, the epicardial potential measurements

are multiplied by the forward transfer matrix estimated using torso geometry and a torso noise

is added to the product. The obtained results from this process are used as body surface

49



measurements. Finally, the simulated body surface potentials are used in inverse problem in

order to reconstruct the epicardial potentials.

The true epicardial potentials used in simulation of the body surface potentials and in vali-

dation of reconstructed solution of the inverse problem were measured from an isolated dog

heart. The measurements were taken by a team at University of Utah Nora Eccles Harrison

Cardiovascular Research and Training Institute (CVRTI) [72, 73]. The isolated dog heart was

perfused by from a second dog’s circulatory system and suspended in an electrolytic tank that

had an adolescence thorax shape. The epicardial potentials were recorded from 490 points

with 1 kHz sample rate using a nylon sock electrode with silver wires slipped over the ventri-

cles. The forward transfer matrix relates these 490 points with 771 points on body surface.

In order to compare the reconstructed solutions from the inverse problem using different meth-

ods and the true epicardial potentials recorded from a dog heart, we have used correlation

coefficient (CC) and relative difference measurement star (RDMS) values. The higher CC

and the lower RDMS values are correspond to more accurate solutions. In addition to these

quantitative values, we have also compared the reconstructed epicardial potentials with the

true ones by plotting 3D potential maps. For this purpose, map3d software [74] prepared in

CVRTI was used.

4.2 Reconstruction of Solution By Conic Quadratic Programming

As mentioned in the methods section, Conic Quadratic Programming is an alternative tech-

nique for regularizing and solving the inverse problem instead of using Tikhonov Regulariza-

tion. The formulation of Tikhonov Regularization that is represented in equation 4.1 and the

formulation in equation 4.2 are equivalent. For each value of the penalty parameter δ in Equa-

tion 4.1, there exists a corresponding bound parameter in equation 4.2 that gives the same

solution. The value of the parameter δ can be chosen by several methods such as ”composite

residual and smoothing operator” (CRESO) and L-curve method [2]. In this thesis L-curve

method is used to find the optimum penalty parameter. L-curve is a log scale plot that is ob-

tained by putting each of the two norms in equation 4.1 onto one axis and plotting them in log

scale. In this method, the corner of the L shaped curve enables both of these norms to attain

low values simultaneously. Therefore, the value of the penalty parameter is selected at the
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corner of L-curve. By this way, L-curve method enables to select a penalty parameter with-

out any prior information. However, if we have prior information about the bound parameter

such as the knowledge of the bound for the total energy of the solution, it may be useful to

formulate the regularization problem as in equation 4.2. The equation 4.1 can be solved using

Conic Quadratic Programming technique.

min
m
‖Gm − d‖22 + δ2‖Rm‖22 (4.1)

minimize
arg m

‖Gm − d‖22

subject to ‖Rm‖22 ≤ M
(4.2)

In the following subsections, Conic Quadratic Programming will be tested for solving 4 dif-

ferent cases of the inverse ECG problem and performance of method will be compared with

Tikhonov Regularization. In two cases, only Gaussian white noise is added to measurements

at two different levels (30 dB and 10 dB). In other two cases, the effects of geometric errors

due to the shift in heart location and error in cardiac size will be investigated.

4.2.1 Conic Quadratic Programming Results of 30 dB Gaussian White Noise Added

Measurements

In the first scenario of the test of Conic Quadratic Programming method, Gaussian white

noise with 30 dB SNR is added to the body surface measurements that are simulated from

the real epicardial potentials. Then, the noisy data is used for the solution of inverse problem.

In Conic Quadratic Programming method, we need a priori information about the Euclidean

(L2) norm of the solution (epicardial potentials). This prior is included in equation 4.2 as

a constraint that bounds the total energy of the solution. Thus, we need to obtain the total

energy of the solution. For this purpose, we have used the optimal Tikhonov solution since

the inverse problem can be solved without any prior by Tikhonov Regularization. In other

words, the prior about the total energy of the solution can be obtained by means of Tikhonov

results.

For that purpose, we have compared the Euclidean norm of the real epicardial potentials with

the Euclidean norm of the optimal Tikhonov solutions at the first stage. It is observed that the
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total energy of the optimal Tikhonov solution is always less than the total energy of the real

epicardial potentials at the each time instant of the QRS interval for 30 dB noisy data as shown

in Figure 4.1.According to this plot, it is possible to obtain the norms that are much closer to

the norm of real epicardial potentials than the case in the Tikhonov solution by multiplying

the norm of Tikhonov solution by a scaling factor. Therefore, the norms of optimal Tikhonov

solution is multiplied by a scaling factor and the resultant norms can be used as prior for Conic

Quadratic Programming. If we use the norm of the Tikhonov Solution without multiplying

by a scaling factor as prior, we will obtain the same solution with Tikhonov Solution since

Tikhonov Regularization and Conic Quadratic Programming are identically formulated. The

average CC and RDMS values in a QRS interval for different norms that are obtained by

multiplying the norm of Tikhonov solution are given in 4.1.

Figure 4.1: L2 Norms of Epicardial Potential For Real Data and Tikhonov Solution

As given in Table 4.1, the best solution is obtained when scaling factor is equal to 1.0. This

is the case where the Conic Quadratic programming yields a solution identical to optimal

Tikhonov solution. When scaling factor is less than 1, the epicardial potential solutions have

worse CC and RDMS values than the values in the optimal Tikhonov solution case. These

results are expected by looking into the norms that are shown in Figure 4.1. By Figure 4.1, it

is also expected that better solutions can be obtained when scaling factor is 1.1 and 1.2 since
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Table 4.1: Averages and standard deviations of CC and RDMS values for different norms that
are obtained by multiplying the norm of Tikhonov solution with different scaling factors

Scaling Factor Average CC ± std Average RDMS ± std
0.8 0.6952±0.1999 0.7101±0.1734
0.9 0.7288±0.1979 0.6635±0.1873
1.0 0.7698±0.1958 0.6039±0.2060
1.1 0.7621±0.1730 0.6269±0.1777
1.2 0.7241±0.1544 0.6889±0.1482
1.3 0.6824±0.1403 0.7984±0.1271
1.4 0.6426±0.1288 0.8018±0.1109

the norms at these scales are much more similar to the norm of real epicardial potentials.

However, the results are different from the expected ones as shown in Table 4.1.

Figure 4.2 shows the CC and RDMS plots of these results for different time instants in the

QRS interval. These plots show that scaling the norm of optimal Tikhonov solution with

a scalar greater than 1 leads to better the solution at [0 − 25] ms interval and [75 − 97] ms

interval. One common property of these intervals is that the norm of epicardial potentials in

these intervals is lower than the half of the maximum norm in the whole QRS interval. Thus,

this result leads us to the idea of scaling the lower norms by greater scales and higher norms

by lower scales. In order to do this, we have established a heuristic function that depends on

the norm of the optimal Tikhonov solution at that time instant and the maximum norm of real

epicardial potential over the whole QRS interval. This heuristic function is used to determine

the bound for the L2- norm (Euclidian norm) of solution. This heuristic function is:

fh(
∥∥∥mopt

∥∥∥) =


6maxnorm−‖mopt‖2

5maxnorm

∥∥∥mopt
∥∥∥

2 if
∥∥∥mopt

∥∥∥
2 < 3maxnorm

9maxnorm
5 otherwise

(4.3)

where maxnorm is the maximum value of the L2- norm of real epicardial potentials
∥∥∥mopt

∥∥∥
2

is the L2-norm of optimal Tikhonov solution.

The maximum value of the L2-norm of real epicardial potentials in a QRS interval is 331 for

the data used in this study. Therefore, this value is taken as 350 for the estimation of the

heuristic function in Equation 4.3. The characteristic of this heuristic function with respect to
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Figure 4.2: The CC and RDMS values of different norm bounds
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the norm of optimal Tikhonov solution is shown in 4.3 for the maximum norm real epicardial

norm taken as 350.

Figure 4.3: The characteristic of the heuristic function that is used for determining the upper
bound of L2-norm of solution

This heuristic function enables to generate the prior information that will be used as the total

energy of the solution in Conic Quadratic Programming method. The new L2-norm bound

obtained by this function, the L2-norms of the real epicardial potentials and optimal Tikhonov

solution epicardial potentials are shown in Figure 4.4. As seen in this figure, the new norms

built by heuristic function are much more similar to the norm of real epicardial potentials.

The average CC and RDMS values of the results that are reconstructed by putting these norm

values into Conic Quadratic Programming method as constrain is given in Table 4.2. The

CC plot of these results in a QRS interval is also shown in 4.5. As seen in Figure 4.5, the

heuristic function leads to a small improvement at the beginning of the stimulus in a QRS

interval.

Epicardial maps estimated from these methods and real epicardial map are shown in Figure
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Table 4.2: Averages and standard deviations of CC and RDMS values for optimal Tikhonov
solution and solution using heuristic function

Method Average CC ± std Average RDMS ± std
Tikhonov 0.7698±0.1958 0.6039±0.2060
Heuristic 0.7753±0.1742 0.6054±0.1881

Figure 4.4: The L2- Norms for 30 dB noisy data
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Figure 4.5: The CCvalue for optimal Tikhonov solution and solution using heuristic function

4.6. As seen from this figure and Figure 4.5, heuristic function provides a solution very

similar to optimal Tikhonov solution, but it slightly improves the reconstructed solution at

some time instants in QRS interval.

4.2.2 Conic Quadratic Programming Results of 10 dB Gaussian White Noise Added

Measurements

In this section, we have tested the Conic Quadratic Programming method with 10 dB noisy

measurement data. Similar to the previous section, Euclidean norms of the real epicardial po-

tentials and optimal Tikhonov solutions and the bound values that are obtained using heuristic

function is plotted in Figure 4.7 for comparison. It is observed that the total energy of the

optimal Tikhonov solution is always less than the total energy of the real epicardial potentials.

It is also clear that the heuristic function generates the norms which are much similar to the

norms of the real epicardial potentials at the each time instant of the QRS interval.

The average CC and RDMS values of the results that are reconstructed by using different

bound constraints are given in Table 4.3. The CC plot of these results in a QRS interval is
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Figure 4.6: Epicardial Maps of Solution at 61 ms after stimulus for 30dB Noisy Data
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Figure 4.7: The Euclidean Norms for 10 dB noisy data
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also shown in Figure 4.8. As seen in this figure, heuristic function enables us to generate

better solutions interms of the CC measure almost during the whole QRS interval. It is also

observed that the heuristic function leads to better improvement compared to the Tikhonov

solution in 10 dB noisy case than in the 30 dB case.

Table 4.3: Averages and standard deviations of CC and RDMS values of different test methods
for 10 dB Noisy Data

Method Average CC ± std Average RDMS ± std
0.8 scale 0.5349 ± 0.2978 0.8719 ± 0.2475
0.9 scale 0.5563 ± 0.2968 0.8457 ± 0.2552

1 scale (Tikhonov) 0.5796 ± 0.2899 0.8196 ± 0.2621
1.1 scale 0.5958 ± 0.2721 0.8039 ± 0.2601
1.2 scale 0.5995 ± 0.2505 0.8123 ± 0.2403
1.3 scale 0.5885 ± 0.235 0.8323 ± 0.2193
1.4 scale 0.574 ± 0.2214 0.8545 ± 0.2002
Heuristic 0.6123 ± 0.2599 0.7946 ± 0.2553

In Figure 4.9, the epicardial maps that are estimated for the 44 milliseconds after the stimulus

is shown. In 10 dB noisy case, the heuristic function yields a more significant improvement

on Tikhonov solution than in the 30 dB noisy case. It can be also observed that smaller norms

lead to smoother solutions whereas higher norms lead to oscillating results.

4.2.3 Conic Quadratic Programming Results of 30 dB Gaussian White Noise Added

Measurements with 0.6 Scale Geometric Error

In this subsection, the inverse problem having 30 dB Gaussian white noise added measure-

ments has been solved using the transfer matrix calculated by wrong estimation of heart’s

size. This geometric error has been created by adjusting the heart’s size with a scalar of 0.6.

We have generated and solved this problem in order to investigate the performance of Conic

Quadratic Programming in geometric error.

We have first generated the measurement data (torso potentials) using real epicardial potentials

and true transfer matrix. Then we have added a 30 dB Gaussian noise to these results. Finally,

this inverse problem was solved by Conic Quadratic Programming method using the transfer

matrix calculated by wrong estimation of heart’s size. Similar to the previous subsections,

different bound values were used as the norm constraint in Equation 4.2 .
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Figure 4.8: The CC values of different methods in a QRS interval
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Figure 4.9: Epicardial Maps of solutions at 44 ms after stimulus for 10 dB Noisy Data
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In Figure 4.10, the norms of the real epicardial potentials and optimal Tikhonov solutions

and the bound values that are obtained using heuristic function are shown. Here, the norm

of optimal Tikhonov solution is much greater than the the real epicardial potential norms

which differs from the previous cases where the problem do not have the geometric errors.

The norm values that are generated by heuristic function are also much similar to the norms

real epicardial potentials for this inverse problem. However, the norm generated by heuristic

function has the shape of the norm of optimal Tikhonov solution.

We have solved this inverse problem having 30 dB measurement error and geometric error

originated from the wrong estimation of cardiac size using different bounds for L2-norms.

The results of Conic Quadratic Programming using different bounds of the norm are shown

in Table 4.4. Average CC and RDMS values in this table indicate that the best result is

estimated by the bound values generated by heuristic function. The heuristic function provides

significant improvements in CC and RDMS values. The CC values over a QRS interval are

also shown in Figure 4.11. As seen from this figure, the conic quadratic programming that

has constraint bounds from heuristic function yields the best CC values nearly whole interval.

Table 4.4: Averages and standard deviations of CC and RDMS values of different test methods
for 30 dB Noisy Data with 0.6 Scale Geometric Error

Method Average CC ± std Average RDMS ± std
0.8 scale 0.5741 ± 0.2628 0.822 ± 0.2475
0.9 scale 0.5751 ± 0.3218 0.8305 ± 0.2516

1 scale (Tikhonov) 0.5895 ± 0.2915 0.8316 ± 0.2421
1.1 scale 0.609 ± 0.2495 0.8327 ± 0.2276
1.2 scale 0.6126 ± 0.2247 0.8413 ± 0.2112
1.3 scale 0.6072 ± 0.2075 0.8547 ± 0.1952
1.4 scale 0.5968 ± 0.1941 0.8711 ± 0.1802
Heuristic 0.6307 ± 0.2356 0.801 ± 0.2329

The epicardial potential maps are shown in Figure 4.12 in order to analyze the reconstructed

solution in a three dimensional view. The improvement in reconstructed epicardial potential

using the heuristic function is also apparent in this figure. This solution is smoother than the

other reconstructed solution, but it is closer to the real epicardial potential distribution.
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Figure 4.10: The Euclidean Norms for 30 dB Noisy Data with 0.6 Scale Geometric Error
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Figure 4.11: The CC values of different methods in a QRS interval for 30 dB Noisy Data with
0.6 Scale Geometric Error
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Figure 4.12: Epicardial Maps of solutions at 51 ms after stimulus for 30 dB Noisy Data with
0.6 Scale Geometric Error
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4.2.4 Conic Quadratic Programming Results of 30 dB Gaussian White Noise Added

Measurements with 15mm Shifted Geometric Error

The inverse problem studied in this subsection involves the errors due to the noise in measure-

ments and shift in the location of heart. Errors in measurements are similar to the previous

sections, a 30 dB noise added to the simulated torso potentials. However, geometric error

is originated from wrong location of heart at mediastinum. Here, we have reconstructed the

epicardial potential from noisy torso potential using the transfer matrix estimated from the

wrong location of heart, instead of true transfer matrix.

This problem was also solved using different bound constraints. These bound values were

obtained by scaling the norm of optimal Tikhonov solution or using the norm of optimal

solution and heuristic function. In Figure 4.13, the norms of the real epicardial potentials

and optimal Tikhonov solutions and the bound values obtained from heuristic function are

plotted. The norm values that are generated by heuristic function have the shape of the norm

of optimal Tikhonov solution, however, they are closer to the real norms.

In Table 4.5, the average CC and RDMS values of reconstructed solutions using different

bound constraints in Conic Quadratic Programming are given. The results in this case are

quite different from three cases represented in the previous cases. The highest CC values

were obtained by using the bounds generated by scaling norm optimal Tikhonov solution

with 0.8. Figure 4.14 also supports this result. 0.8 scaled norms lead to the highest CC values

nearly over whole QRS interval. In addition, heuristic generates worse CC and RDMS values

than the optimal Tikhonov solution.

Table 4.5: Averages and standard deviations of CC and RDMS values of different test methods
for 30 dB Noisy Data with 15mm Shifted Geometric Error

Method Average CC ± std Average RDMS ± std
0.8 scale 0.5815 ± 0.1802 0.8474 ± 0.1452
0.9 scale 0.5578 ± 0.162 0.8795 ± 0.1398

1 scale (Tikhonov) 0.5328 ± 0.1422 0.9133 ± 0.1310
1.1 scale 0.5013 ± 0.1179 0.9519 ± 0.1107
1.2 scale 0.4696 ± 0.1078 0.9872 ± 0.0970
1.3 scale 0.4408 ± 0.103 1.0179 ± 0.0897
1.4 scale 0.4151 ± 0.1008 1.0444 ± 0.0861
Heuristic 0.5282 ± 0.1249 0.9239 ± 0.1160

Epicardial potential maps drawn in Figure 4.15 illustrate the reconstructed potential distri-
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butions 43 ms after the stimulus. This figure also shows that the closest result to the real

epicardial potentials is obtained by narrowing the norm bound with 0.8 scaling factor. More-

over, results of optimal Tikhonov solution and heuristic function are very similar. This is an

expected result since constraints of both methods are very similar. Having better result by

narrowing bound constraint is also meaningful since optimal Tikhonov solution has greater

norm than the real epicardial potential norm as shown in Figure 4.13.

Figure 4.13: The Euclidean Norms for 30 dB Noisy Data with 15mm Shifted Geometric Error

The results in all cases show that Conic Quadratic Programming method provides an improve-

ment in reconstructed solution, if we have a prior knowledge about the norm of solution. This

consequence is valid for the inverse problem having both measurement error and/or geomet-

ric error. This is more obvious when geometric error is present since the norm of optimal

Tikhonov solution is quite different from the norm of real epicardial potentials.
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Figure 4.14: The CC values of different methods in a QRS interval for 30 dB Noisy Data with
15mm Shifted Geometric Error

4.3 Linearly Constrained Tikhonov Solutions

In this section, results of a two step Tikhonov regularization method consisting of over-

regularized and under-regularized solutions are represented. As mentioned in previous sec-

tions, Tikhonov regularization technique does not need a priori knowledge of the properties of

the solution or the error to solve inverse problem. The over-regularized solutions in Tikhonov

regularization provide smoother solutions tend to recover more accurately the distribution of

the positive and negative values of epicardial potentials or, equivalently, to recover more ac-

curately the zero line of epicardial potentials. On the other hand, under-regularized solutions

recover more accurately the magnitudes and location of the extrema in epicardial distributions

[15]. The method that is applied in this section is based on these principles and it solves the

problem in two steps without any prior information. At the first step, problem is solved with a

regularization parameter that is bigger than the optimal value of the regularization parameter.

This provides a smoother solution that recovers more accurately the zero line of epicardial

potentials. This solution is then used to derive constraints in the form of linear bounds on the

values of the solution. At the second step, problem is solved with an under-regularizing pa-

rameter by imposing these linear bound constraints. The details of the method are represented
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Figure 4.15: Epicardial Maps of solutions at 43 ms after stimulus for 30 dB Noisy Data with
15mm Shifted Geometric Error
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in section 3.2.3.

In the following subsections, the linearly constrained Tikhonov regularization method will be

tested for solving 4 different cases of the inverse ECG problem and performance of method

will be compared with Tikhonov Regularization. In two cases, only Gaussian white noise

is added to measurements at two different levels (30 dB and 10 dB). In other two cases,

geometric errors due to the shift in heart location and error in cardiac size is present in addition

to measurement errors.

4.3.1 Linearly Constrained Tikhonov Results of 30 dB Gaussian White Noise Added

Measurements

In the first step of the test of method, Gaussian white noise with 30 dB SNR is added to

the body surface measurements that are simulated from the real epicardial potentials and this

noisy data is used for the solution of inverse problem. The construction of the solution set in

linearly constrained Tikhonov Regularization method depends on the choice of the three pa-

rameter values. These parameters are over-regularization parameter λo, under-regularization

parameter λu and the band parameter ε that describes the width of the bound around the base-

line. Different values for these parameters result in different reconstructed results. During the

tests, this method is studied with different values of these parameters.

As mention before, the over-regularization parameter, λo, is higher than optimal regulariza-

tion parameter λopt. Thus, we have used different values of the over-regularization parameter

obtained by multiplying optimal regularization parameter with a scaling factor between 1 and

2. Similarly, we have obtained values of the under-regularization parameter, λu, which is

smaller than the value of optimal regularization parameter, by multiplying optimal regular-

ization parameter with a scaling factor between 0.4 and 0.8. We have taken the value of band

parameter ε in 3.20 as a small positive number that corresponds to a value 1% of the norm of

optimal Tikhonov solution. Instead of using zero as baseline, we have selected the mean of

optimal Tikhonov solution as baseline. During the test of method, we have observed that this

choice gives better results than the choice of zero as baseline.

The average CC and RDMS values of the results that are reconstructed by using different over-

regularization and under-regularization parameters are given in Table 4.6 and Table 4.7. The
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CC and RDMS values in these tables show the slight improvement in reconstructed solutions.

The best results for linearly constrained Tikhonov Regularization are obtained when the value

of λo is around the 1.2 times the value of λopt and the value of λu is around 0.5 times the value

of λopt. The CC plot of the case where the value of λo is scaled value of λopt with 1.2 and the

value of λu is is scaled value of λopt with 0.5 and optimal Tikhonov solution in a QRS interval

is also shown in Figure 4.16. Figure 4.17 shows the epicardial maps of the same results.

Table 4.6: Averages of CC values of the reconstructed solution using different regularization
parameters for 30 dB Noisy Data (optimal Tikhonov solution has 0.7698 CC value)

H
HHH

HHλo

λu 0.4 0.5 0.6 0.7 0.8

1 0 .778 0 .7804 0 .7799 0 .778 0.7755
1 .2 0 .7768 0 .7793 0 .7788 0 .777 0.7746
1 .4 0 .7677 0 .7776 0 .7774 0 .7757 0.7734
1 .6 0 .7503 0 .7684 0 .7757 0 .7742 0.772
1 .8 0 .7306 0 .76 0 .7705 0 .7727 0.7705

Table 4.7: Averages of RDMS values of the reconstructed solution using different regulariza-
tion parameters for 30 dB Noisy Data (optimal Tikhonov solution has 0.6039 RDMS value)

HHH
HHHλo

λu 0.4 0.5 0.6 0.7 0.8

1 0 .5993 0 .5932 0 .5924 0 .594 0.5968
1 .2 0 .6008 0 .5944 0 .5934 0 .5949 0.5977
1 .4 0 .6118 0 .5966 0 .5953 0 .5965 0.5991
1 .6 0 .6341 0 .6077 0 .5977 0 .5987 0.601
1 .8 0 .6577 0 .6181 0 .6037 0 .6007 0.6029

4.3.2 Linearly Constrained Tikhonov Regularization Results of 10 dB Gaussian White

Noise Added Measurements

In this section, the results of linearly constrained Tikhonov Regularization method for 10 dB

noise measurement added data will be represented. Similar to previous section, we have tested

this method with different values of over-regularization parameter λo, under-regularization

parameter λu and the band parameter ε.

The average CC and RDMS values of the reconstructed solutions by using different over-

regularization and under-regularization parameters are given in Table 4.8 and 4.9. In these

results, the band parameter ε is taken as 1% of the norm of optimal Tikhonov solution. Similar
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Figure 4.16: The CC values of Tikhonov Solution and Linearly Constrained Tikhonov Solu-
tion in a QRS interval for 30 dB Noisy Data

to previous section, the CC plot of the solutions where the value of λo is 1.2 times the value

of λopt and the value of λu is 0.5 times the value of λopt and the CC plot of optimal Tikhonov

solutions in a QRS interval are also shown in Figure 4.18. In Figure 4.19, the epicardial

maps of the these results are shown.

Table 4.8: Averages of CC values of the reconstructed solution using different regularization
parameters for 10 dB Noisy Data (optimal Tikhonov solution has 0.5796 CC value)

HH
HHHHλo

λu 0.4 0.5 0.6 0.7 0.8

1 0 .6033 0 .6048 0 .6022 0 .5974 0.5916
1 .2 0 .5957 0 .5978 0 .5961 0 .5919 0.5866
1 .4 0 .5873 0 .5904 0 .5894 0 .5858 0.5811
1 .6 0 .5797 0 .5837 0 .5831 0 .5799 0.5757
1 .8 0 .5739 0 .5784 0 .5779 0 .5751 0.5713

Similar to 30 dB noisy measurements, linearly constrained Tikhonov Regularization provides

a slight improvement in reconstruction of epicardial potential distribution when compared

with Tikhonov solution.
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Figure 4.17: Epicardial Maps of Solution at 25th ms

Table 4.9: Averages of RDMS values of the reconstructed solution using different regulariza-
tion parameters for 10 dB Noisy Data (optimal Tikhonov solution has 0.8196 RDMS value)

H
HHH

HHλo

λu 0.4 0.5 0.6 0.7 0.8

1 0 .802 0 .7971 0 .7982 0 .8022 0.8076
1 .2 0 .81 0 .8047 0 .8046 0 .8079 0.8126
1 .4 0 .8191 0 .8126 0 .8118 0 .8143 0.8184
1 .6 0 .8275 0 .8203 0 .819 0 .821 0.8245
1 .8 0 .8347 0 .8272 0 .8256 0 .8272 0.8303
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Figure 4.18: The CC values of Tikhonov Solution and Linearly Constrained Tikhonov Solu-
tion in a QRS interval for 10 dB Noisy Data

4.3.3 Linearly Constrained Tikhonov Regularization Results of 30 dB Gaussian White

Noise Added Measurements with 0.6 Scale Geometric Error

We have also tested the linearly constrained Tikhonov Regularization method for the inverse

problem having an error in heart’s size in addition to 30 dB measurement noise. We have

followed the same way in two previous cases. The inverse problem has been solved with

different values of over-regularization parameter λo, under-regularization parameter λu and

the band parameter ε.

We have used the average CC and RDMS values of the reconstructed solutions in validation

of method. These average CC and RDMS values for different over-regularization and under-

regularization parameters are given in Table 4.10and Table 4.11. The average CC and RDMS

results in these tables show that it is possible to obtain a slight improvement in reconstructed

solution by two step Tikhonov regularization. However, this improvement is limited. In Fig-

ure 4.20, the CC plots of optimal Tikhonov solutions and the reconstructed solutions where

the value of λo is 1.2 times the value of λopt and the value of λu is 0.5 times the value of λopt

are shown in a QRS interval. The epicardial maps of these results 65 ms after the stimulus are
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Figure 4.19: Epicardial Maps of Solution at 42 ms for 10dB Noisy Data
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also shown in Figure 4.21. These epicardial maps show that two step Tikhonov regularization

and zero order Tikhonov regularization produces very similar results and the improvement in

estimated solution from linearly constrained Tikhonov solution is very limited when it is com-

pared with zero order Tikhonov solution.

Table 4.10: Averages of CC values of the reconstructed solution using different regularization
parameters for 30 dB Noisy Data with 0.6 Scale Geometric Error (optimal Tikhonov solution
has 0.5895 CC value)

H
HHH

HHλo

λu 0.4 0.5 0.6 0.7 0.8

1 0.6076 0.609 0.6071 0.6033 0.5986
1.2 0.5858 0.5953 0.5947 0.5924 0.5896
1.4 0.57 0.5838 0.5841 0.5826 0.5808
1.6 0.5611 0.5724 0.5763 0.5755 0.5743
1.8 0.556 0.5644 0.5718 0.5715 0.5707

Table 4.11: Averages of RDMS values of the reconstructed solution using different regular-
ization parameters for 30 dB Noisy Data with 0.6 Scale Geometric Error (optimal Tikhonov
solution has 0.8316 RDMS value)

HH
HHHHλo

λu 0.4 0.5 0.6 0.7 0.8

1 0.8372 0.8312 0.8294 0.8295 0.8302
1.2 0.8558 0.838 0.8345 0.8332 0.8328
1.4 0.8691 0.845 0.8399 0.8375 0.8363
1.6 0.8765 0.8557 0.8452 0.8418 0.8399
1.8 0.8817 0.8649 0.8492 0.8452 0.8427

4.3.4 Linearly Constrained Tikhonov Regularization Results of 30 dB Gaussian White

Noise Added Measurements with 15mm Shift Geometric Error

In this part, results of linearly constrained Tikhonov regularization method for the inverse

problem having a geometric error due to the wrong location of heart and a measurement

error will be represented. During the tests of method, we have repeated the procedure similar

to the previous cases i.e. different over-regularization and under-regularization parameters

have been used for the estimation of solution. The average CC and RDMS values of the

reconstructed solutions are given in Table 4.12 and Table 4.13. The results for the geometric

error due to the shift in location of heart differ from the results of previous cases since the

method cannot provide an improvement when we compare with Tikhonov solution. This
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Figure 4.20: The CC values of Tikhonov Solution and Linearly Constrained Tikhonov Solu-
tion in a QRS interval for 0.6 Scale Geometric Error

78



Figure 4.21: Epicardial Maps of Solution at 65 ms for 0.6 Scale Geometric Error
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consequence is also obvious in the Figure 4.22 and Figure 4.23 showing the CC plot of

reconstructed solutions in a QRS interval and epicardial maps, respectively.

Table 4.12: Averages of CC values of the reconstructed solution using different regularization
parameters for 30 dB Noisy Data with 15mm Shifted Geometric Error (optimal Tikhonov
solution has 0.5328 CC value)

HHH
HHHλo

λu 0.4 0.5 0.6 0.7 0.8

1 0.4866 0.4999 0.5095 0.517 0.5231
1.2 0.4833 0.4975 0.5079 0.516 0.5226
1.4 0.4749 0.4954 0.5064 0.5149 0.5218
1.6 0.4713 0.4926 0.5041 0.5131 0.5204
1.8 0.4663 0.4824 0.5017 0.5111 0.5187

Table 4.13: Averages of RDMS values of the reconstructed solution using different regulariza-
tion parameters for 30 dB Noisy Data with 15mm Shifted Geometric Error (optimal Tikhonov
solution has 0.9133 RDMS value)

HH
HHHHλo

λu 0.4 0.5 0.6 0.7 0.8

1 0.9665 0.9518 0.9408 0.9321 0.9248
1.2 0.9692 0.9536 0.9419 0.9327 0.925
1.4 0.9781 0.9554 0.9432 0.9335 0.9256
1.6 0.9813 0.9581 0.9454 0.9352 0.9269
1.8 0.9864 0.9688 0.9478 0.9372 0.9286

4.4 Regularization of Inverse ECG Problem with Multiple Constraints

Instead of using single constraint, which usually leads to biased solutions, it is aimed to

obtain qualified solution by regularizing the problem with multiple spatial constraints. For this

purpose, we studied the convex optimization problem described in equation 3.22 in section

sec:AdmSol. We have formulated the problem into the equivalent form shown in Equation

4.4 in order to solve problem by the CVX toolbox.

min
arg mk

‖dk −Gmk‖
2
2

subject to ‖mk‖
2
2 ≤ ε1

‖Gθmk‖
2
1 ≤ ε2∥∥∥Gφmk
∥∥∥2

1 ≤ ε3

(4.4)
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Figure 4.22: The CC values of Tikhonov Solution and Linearly Constrained Tikhonov Solu-
tion in a QRS interval for 15mm Shifted Geometric Error
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Figure 4.23: Epicardial Maps of Solutions at 65 ms for 15 mm Shifted Geometric Errors
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In order to estimate a solution by this method, we need to develop the constraint values ε1,

ε2 and ε3 . We developed different constraint values based on the optimal Tikhonov solution

and exact epicardial potentials. We have investigated the performance of method for differ-

ent cases including different measurement error in data and geometric error in model as in

previous methods.

In the following subsections, method is studied with different data having different level of

noise and different geometric errors in model. For each case, we used different constraints

values that were developed from the optimal Tikhonov solution and exact solution. We will

investigate the validation of solution by means of CC and RDMS values and epicardial maps

as in previous methods.

4.4.1 Results of 30 dB Gaussian White Noise Added Measurements by Imposing Mul-

tiple Constraints

Here we will discuss the simulation results of the inverse ECG problem having 30 dB noise in

measurements and true geometry model. The transfer matrix G that is used for reconstruction

of solution is the same as the one used for forward simulation of problem. However, measure-

ments have 30 dB Gaussian noise. This problem is solved using the formulation in equation

4.4. We have used different constraint values ε1, ε2 and ε3 in equation 4.4 during the test of

method.

These constraints values, ε1, ε2 and ε3, were generated by different methods. First, we have

used real epicardial potentials in order to obtain these values. The value of ε1 was directly

computed by taking the L- norm of epicardial potentials. Similarly, values of , ε2 and ε3 were

calculated by taking the L1-norm of the result of the gradient matrices times the real potential

values. This is an unrealistic case since we use the real potential that we try to estimate. As

a second method, we have optimal Tikhonov solution in order to develop constraint values.

Here we have computed the L2-norm of the Tikhonov solution and L1-norms of gradient

matrices times Tikhonov solution and we have obtained the values ε1,tik, ε2,tik and ε3,tik, re-

spectively. Then, we have generated different ε1, ε2 and ε3 values by multiplying the values of

ε1,tik, ε2,tik and ε3,tik with different scaling factors. In other words, we calculated the constraint

values in the following way:
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ε1 = α1ε1,tik

ε2 = α2ε2,tik

ε3 = α2ε3,tik

(4.5)

Finally, we have used the heuristic function described in Equation 4.3 in order to establish

the value of ε1. This function had been used in Conic Quadratic Programming as a heuris-

tic method. Similarly, we have used this function in multiple constraint regularization as a

heuristic method. In the heuristic method, the constraint values, ε2 and ε3 were computed

from optimal Tikhonov solution as shown in Equation 4.5. The average CC value of the

reconstructed result using the norm values of the real epicardial potentials is 0.73 and the av-

erage RDMS this result is 0.67 whereas these values are 0.77 and 0.60 for optimal Tikhonov

solution, respectively. The average CC and RDMS values of reconstructed solution using the

true epicardial potentials are worse than the values of optimal Tikhonov solution. This is a

surprising result that we get worse result even when we have used the real potentials deter-

mination of the constraint values. When we examined the results more closely, we found

out that the norm values of real epicardial potentials are higher than the optimal Tikhonov

solution. These higher norm values lead to a over-fitting in solution of inverse problem and

due to this over-fitting we get more unstable and inaccurate solutions. The epicardial maps of

reconstructed solution are shown in Figure 4.25.

As a second approach, we have used the optimal Tikhonov solution in building the constraint

values. We have estimated the epicardial potentials using different constraint values generated

by multiplying the norm values of the optimal Tikhonov solution with different scaling fac-

tors as shown in equation 4.5. Table 4.14 shows the average CC values of the reconstructed

solution by different scaling factors α1 and α2. The same results are also illustrated in Fig-

ure 4.24. The average RDMS values of the estimated solutions are also given in Table 4.15.

As seen in these tables, we have the most accurate results when the scaling factors α1 is

around 1.05 and α2 is around 0.8. This is an expected result, since our aim in imposing mul-

tiple constraints is obtaining more accurate results by enlarging the energy constraint used in

Tikhonov regularization. The expansion in energy norm provides a decrease in smoothing

effect of Tikhonov solution, however, it causes an over-fitting and instability in reconstructed
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solution. This instability is handled by imposing narrower L1-norms. As seen in average CC

and RDMS tables, change in α2 affects the results less than the change in the value of α1.

Table 4.14: Averages of CC values of the reconstructed solution using different scaling factors
for 30 dB Noisy Data (optimal Tikhonov solution has 0. 77 CC value)

H
HHH

HHα1

α2 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

0.70 0.665 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666 0.666
0.75 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68
0.80 0.696 0.695 0.695 0.695 0.695 0.695 0.695 0.695 0.695 0.695
0.85 0.714 0.712 0.711 0.711 0.711 0.711 0.711 0.711 0.711 0.711
0.90 0.734 0.732 0.73 0.729 0.729 0.729 0.729 0.729 0.729 0.729
0.95 0.756 0.756 0.754 0.751 0.75 0.749 0.749 0.749 0.749 0.749
1.00 0.776 0.78 0.78 0.778 0.775 0.772 0.77 0.77 0.77 0.77
1.05 0.784 0.79 0.793 0.792 0.789 0.786 0.783 0.78 0.777 0.775
1.10 0.775 0.784 0.788 0.789 0.788 0.785 0.782 0.779 0.776 0.773
1.15 0.755 0.766 0.772 0.774 0.774 0.773 0.772 0.769 0.767 0.764

heuristic 0.779 0.789 0.795 0.797 - - - - - -

Table 4.15: Averages of RDMS values of the reconstructed solution using different scaling
factors for 30 dB Noisy Data (optimal Tikhonov solution has 0. 604 RDMS value)

H
HHH

HHα1

α2 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

0.70 0.751 0.751 0.751 0.751 0.751 0.751 0.751 0.751 0.751 0.751
0.75 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73
0.80 0.708 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71
0.85 0.683 0.686 0.688 0.688 0.688 0.688 0.688 0.688 0.688 0.688
0.90 0.654 0.658 0.661 0.663 0.663 0.663 0.663 0.663 0.663 0.663
0.95 0.62 0.622 0.625 0.63 0.633 0.634 0.634 0.634 0.634 0.634
1.00 0.589 0.584 0.585 0.589 0.595 0.599 0.604 0.604 0.604 0.604
1.05 0.581 0.57 0.568 0.57 0.575 0.58 0.587 0.592 0.597 0.601
1.10 0.601 0.587 0.581 0.58 0.582 0.587 0.592 0.598 0.603 0.609
1.15 0.635 0.619 0.611 0.607 0.607 0.609 0.612 0.617 0.621 0.626

heuristic 0.59 0.574 0.566 0.564 - - - - - -

As mentioned before, we have also used the heuristic function in Equation 4.3 as a heuristic

approach in order to construct the value of ε1. In the heuristic approach, the constraint values,

ε2 and ε3 were determined from optimal Tikhonov solution using Equation 4.5. In the last

rows of Table 4.14 and Table 4.15, the average CC and RDMS values of the reconstructed

solution by the heuristic approach are given. As shown in these tables the average CC and

RDMS values are better than the values of the results reconstructed using the exact epicardial

potentials and optimal Tikhonov solution.
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Figure 4.24: The Average CC values of solutions using different scaling factors in construc-
tion constraint values
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In Figure 4.25, the epicardial maps of reconstructed solutions by imposing different constraint

values into the problem Equation 4.4 are shown. These maps show that the solutions by

this method have sharper edges than the optimal Tikhonov solution. However, the estimated

solution in Figure 4.25-d using the norms of exact epicardial potentials has mislocalized

extremas. This originates from the fact that the norms of the real potentials are much higher

than the optimal Tikhonov solution and this causes under-regularized solutions. As in this

figure, we get more accurate results using the heuristic function.

4.4.2 Results of 10 dB Gaussian White Noise Added Measurements by Imposing Mul-

tiple Constraints

In this section, we represent the obtained results of 10 dB noisy data by imposing the multiple

constraints into formulation shown in Equation 4.4. We have repeated the same procedure

mentioned in section 4.4.1 to compare the reconstructed solution of different constraints. We

have used the true epicardial potential norms, optimal Tikhonov norms and heuristic function

outputs in construction of constraint values as in previous section.

The average CC and RDMS values of obtained solution using the exact potential norms are

0.58 and 0.851, respectively. The obtained average CC and RDMS values over a QRS interval

by using the optimal Tikhonov solution and the heuristic function are also given in Table 4.16

and Table 4.17. As in section previous section, we have the best CC and RDMS values by

heuristic approach.

Epicardial maps of reconstructed solution and the true epicardial potentials 45 ms after the

stimulus is illustrated in Figure 4.26. This figure also supports the results shown in the

average CC and average RDMS value tables. Similar to the 30 dB noisy case, we get the most

accurate results by using the heuristic function. The edges of estimated solution using this

method are sharper than the edges in optimal Tikhonov solution. The reconstructed solution

using the norm of exact epicardial potential contains wrong extrema in the potential map.
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Figure 4.25: Epicardial Potential Maps for 30 dB noisy data : a) Colormap b) Real Potential
Distribution at the 40ms c) Optimal Tikhonov Solution d) Reconstructed solution using real
norms in multiple constraints imposed method e) Reconstructed solution by imposing the
constraint values as ε1 = 1.05ε1,tik, ε2 = 0.8ε2,tik and ε3 = 0.8ε3,tik f)Reconstructed solution
from heuristic method
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Table 4.16: Averages of CC values of the reconstructed solution using different scaling factors
for 10 dB Noisy Data (optimal Tikhonov solution has 0. 58 CC value)

H
HHH

HHα1

α2 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

0.70 0.519 0.517 0.517 0.516 0.517 0.516 0.516 0.516 0.516 0.516
0.75 0.53 0.528 0.528 0.526 0.527 0.527 0.527 0.527 0.527 0.527
0.80 0.542 0.54 0.538 0.537 0.537 0.537 0.537 0.537 0.537 0.537
0.85 0.554 0.552 0.549 0.548 0.547 0.547 0.547 0.547 0.547 0.547
0.90 0.566 0.564 0.562 0.56 0.558 0.557 0.558 0.558 0.558 0.558
0.95 0.578 0.577 0.576 0.573 0.571 0.569 0.568 0.57 0.569 0.569
1.00 0.59 0.59 0.589 0.587 0.585 0.583 0.581 0.581 0.58 0.581
1.05 0.601 0.604 0.604 0.602 0.6 0.598 0.597 0.594 0.593 0.593
1.10 0.609 0.614 0.616 0.614 0.613 0.611 0.608 0.606 0.604 0.603
1.15 0.611 0.618 0.622 0.623 0.621 0.619 0.617 0.614 0.612 0.609

heuristic 0.618 0.623 0.626 0.626 - - - - - -

Table 4.17: Averages of RDMS values of the reconstructed solution using different scaling
factors for 10 dB Noisy Data (optimal Tikhonov solution has 0.819 RDMS value)

H
HHH

HHα1

α2 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

0.70 0.894 0.896 0.896 0.897 0.896 0.897 0.897 0.897 0.897 0.897
0.75 0.879 0.882 0.883 0.884 0.884 0.884 0.884 0.884 0.884 0.883
0.80 0.864 0.867 0.869 0.87 0.871 0.871 0.871 0.871 0.871 0.871
0.85 0.849 0.852 0.855 0.856 0.858 0.858 0.858 0.858 0.858 0.858
0.90 0.834 0.837 0.84 0.842 0.844 0.845 0.845 0.845 0.845 0.845
0.95 0.82 0.822 0.823 0.826 0.829 0.831 0.832 0.831 0.832 0.832
1.00 0.807 0.807 0.808 0.811 0.813 0.816 0.819 0.819 0.819 0.819
1.05 0.797 0.793 0.793 0.795 0.798 0.8 0.803 0.806 0.808 0.807
1.10 0.791 0.784 0.782 0.784 0.786 0.789 0.792 0.795 0.798 0.8
1.15 0.794 0.784 0.779 0.778 0.78 0.783 0.786 0.789 0.793 0.796

heuristic 0.786 0.78 0.777 0.777 - - - - - -
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Figure 4.26: Epicardial Potential Maps for 10 dB noisy data : a) Colormap b) Real Potential
Distribution at the 45ms c) Optimal Tikhonov Solution d) Reconstructed solution using real
norms in multiple constraints imposed method e) Reconstructed solution by imposing the
constraint values as ε1 = 1.05ε1,tik, ε2 = 0.8ε2,tik and ε3 = 0.8ε3,tik f)Reconstructed solution
from heuristic method
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4.4.3 Results of 30 dB Noisy Measurement Containing 0.6 Scale Geometric Error by

Imposing Multiple Constraints

In this subsection, we have used the 30 dB noisy data as body surface potentials and we

have solved this problem using the wrong estimated transfer matrix due to 0.6 scaled cardiac

size. Similar to the two previous cases, we have imposed different constraints into problem

formulation.

During the validation of the method, we have first imposed the norms estimated from the real

epicardial potentials. The average CC and RDMS values are 0.642 and 0.822, respectively.

This result is better than the optimal Tikhonov solution. We have also solved the problem

using the norms obtained from optimal Tikhonov solution and heuristic function. The average

CC and RDMS values of the attained solutions are shown in Figures 4.22 and 4.23. Similar to

the previous cases, the best average CC and RDMS values over a QRS interval were achieved

by means of the heuristic function.

The epicardial potential maps of the reconstructed solutions using the different norm con-

straints are shown in Figure 4.27. As seen in this figure, we have the most accurate solution

in the heuristic function results. It enables the more accurate magnitudes and the correct po-

sition of extrema whereas the optimal Tikhonov solution has incorrect magnitudes and wrong

positioned extrema. In case, the real epicardial norms provide smoother solutions since this

norms are narrower than the norms of the optimal Tikhonov solution. This result differs from

the two previous cases where inverse problem does not contain any geometric error. In the

previous two cases, real potentials norms are higher than the norms of optimal Tikhonov

solution.

4.4.4 Results of the Inverse Problem Containing 30 dB Noisy Measurements and 15

Shift Geometric Error by Imposing Multiple Constraints

In this subsection, we have reconstructed the solution of a inverse problem having 30 dB

measurement noise and geometric error due to the wrong placed heart at the mediastinum by

imposing multiple norm constraints. The geometric error is added to the problem by shifting

the heart 15mm and by obtaining a new transfer matrix for the new position of the heart. This

problem is also solved using different constraints obtained from real epicardial potentials and
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Table 4.18: Averages of CC values of the reconstructed solution of the problem containing
the 30 dB Noise Data and 0.6 Scale Geometric Error using different scaling factors (optimal
Tikhonov solution has 0.589 CC value)

HHH
HHHα1

α2 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

0.70 0.571 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
0.75 0.575 0.574 0.573 0.573 0.573 0.573 0.573 0.573 0.573 0.573
0.80 0.578 0.576 0.575 0.574 0.574 0.574 0.574 0.574 0.574 0.574
0.85 0.582 0.579 0.577 0.575 0.575 0.575 0.575 0.575 0.575 0.575
0.90 0.585 0.582 0.58 0.577 0.576 0.575 0.575 0.575 0.575 0.575
0.95 0.589 0.588 0.586 0.583 0.581 0.579 0.579 0.579 0.579 0.579
1.00 0.596 0.598 0.598 0.597 0.595 0.592 0.589 0.589 0.589 0.589
1.05 0.602 0.608 0.611 0.611 0.61 0.608 0.605 0.603 0.602 0.602
1.10 0.601 0.61 0.616 0.619 0.619 0.618 0.616 0.613 0.611 0.61
1.15 0.594 0.605 0.614 0.619 0.622 0.622 0.621 0.62 0.618 0.616

heuristic 0.639 0.637 0.636 0.634 - - - - - -

Table 4.19: Averages of RDMS values of the reconstructed solution of the problem containing
the 30 dB Noise Data and 0.6 Scale Geometric Error using different scaling factors (optimal
Tikhonov solution has 0.832 RDMS value)

HHH
HHHα1

α2 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

0.70 0.819 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82
0.75 0.818 0.819 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82
0.80 0.817 0.82 0.821 0.822 0.822 0.822 0.822 0.822 0.822 0.822
0.85 0.817 0.821 0.824 0.825 0.826 0.826 0.826 0.826 0.826 0.826
0.90 0.819 0.822 0.825 0.829 0.83 0.831 0.831 0.831 0.831 0.831
0.95 0.822 0.822 0.825 0.828 0.831 0.833 0.833 0.833 0.833 0.833
1.00 0.826 0.822 0.821 0.823 0.825 0.829 0.832 0.832 0.832 0.832
1.05 0.834 0.825 0.82 0.819 0.821 0.823 0.827 0.829 0.831 0.831
1.10 0.847 0.834 0.826 0.822 0.821 0.822 0.824 0.827 0.829 0.832
1.15 0.862 0.848 0.837 0.829 0.825 0.824 0.824 0.826 0.829 0.831

heuristic 0.796 0.797 0.798 0.799 - - - - - -
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Figure 4.27: Epicardial Potential Maps for 30 dB noisy data with 0.6 Scale Geometric Er-
ror: a) Colormap b) Real Potential Distribution at the 49 ms c) Optimal Tikhonov Solution
d) Reconstructed solution using real norms in multiple constraints imposed method e) Re-
constructed solution by imposing the constraint values as ε1 = 1.05ε1,tik, ε2 = 0.8ε2,tik and
ε3 = 0.8ε3,tik f)Reconstructed solution from heuristic method
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optimal Tikhonov solution.

We have obtained 0.579 and 0.865 as average CC and RDMS values, respectively, over a

QRS interval using the true norms estimated from exact epicardial potentials. This result

implies an improvement when we compare the optimal Tikhonov solution results where the

average CC value is 0.533 and average RDMS value is 0.913. This inverse problem was

also solved with the constraint values estimated by multiplication of optimal Tikhonov norms

with different scaling factor as in previous inverse problems. The results differ from the

previous cases when we compare the average CC and RDMS values of estimated solutions.

In the previous cases, we have achieved the improvement in Tikhonov solution by enlarging

the L2-norm constraint and narrowing the L1-norm constraints. However, in this case, we

have attained improvement in average CC and RDMS values by narrowing both L2-norm and

the L1-norm constraints. Actually, this shows that the optimal Tikhonov solution using the

optimum regularization parameter obtained from L-curve method is not the true optimal one.

In other words, we can achieve a similar improvement in Tikhonov solution for this problem

by only over-regularizing the Tikhonov solution instead of narrowing the all of the constraints.

The constraints obtained from heuristic function did not yield an improvement in solutions

for this problem. The epicardial potential maps of reconstructed. solution are illustrated

in Figure 4.28. As seen in this figure most accurate results are achieved by imposing the

constraint values obtained from the exact epicardial potentials.

When we investigate all these results for different cases involving different level of noise in

measurements and different errors in geometry, we are generally able to achieve improvement

in reconstructed solution by imposing multiple constraints. We can derive that imposing mul-

tiple constraints into problem formulation yields an improvement in reconstructed solutions.

We get the recovered solutions more accurately in the magnitudes and location of the ex-

trema. The edges of the recovered solutions also become sharper by imposing multiple norm

constraints.

4.5 Reconstruction of Solution by the MRE Method

As mentioned in section 3.3, MRE method is an optimization technique that can be used in

reconstruction of solution of linear inverse problems. In order to estimate a solution using the

94



Table 4.20: Averages of CC values of the reconstructed solutions using different scaling fac-
tors for 30 dB Noisy Data with 15mm Shifted Geometric Error (optimal Tikhonov solution
has 0.533 CC value)

HHH
HHHα1

α2 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

0.70 0.597 0.597 0.598 0.598 0.598 0.598 0.598 0.598 0.598 0.598
0.75 0.59 0.59 0.591 0.591 0.591 0.591 0.591 0.591 0.591 0.591
0.80 0.581 0.581 0.581 0.581 0.581 0.581 0.581 0.581 0.581 0.581
0.85 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57
0.90 0.559 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558
0.95 0.548 0.548 0.547 0.547 0.546 0.546 0.546 0.546 0.546 0.546
1.00 0.536 0.535 0.535 0.534 0.534 0.533 0.533 0.533 0.533 0.533
1.05 0.521 0.522 0.521 0.52 0.519 0.519 0.518 0.518 0.518 0.518
1.10 0.503 0.505 0.505 0.505 0.504 0.503 0.503 0.503 0.502 0.502
1.15 0.485 0.488 0.489 0.489 0.489 0.488 0.488 0.488 0.487 0.487

heuristic 0.523 0.531 0.532 0.531 - - - - - -

Table 4.21: Averages of RDMS values of the reconstructed solutions using different scaling
factors for 30 dB Noisy Data with 15mm Shifted Geometric Error (optimal Tikhonov solution
has 0.913 RDMS value)

HHH
HHHα1

α2 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15

0.70 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824
0.75 0.834 0.834 0.834 0.834 0.834 0.834 0.834 0.834 0.834 0.834
0.80 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847 0.847
0.85 0.862 0.862 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863
0.90 0.877 0.878 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.879
0.95 0.892 0.893 0.893 0.894 0.895 0.895 0.895 0.895 0.895 0.895
1.00 0.909 0.909 0.91 0.911 0.912 0.913 0.913 0.913 0.913 0.913
1.05 0.928 0.927 0.929 0.93 0.931 0.931 0.932 0.932 0.933 0.933
1.10 0.948 0.946 0.946 0.947 0.948 0.949 0.95 0.95 0.951 0.951
1.15 0.968 0.965 0.964 0.965 0.965 0.966 0.966 0.967 0.967 0.968

heuristic 0.92 0.919 0.918 0.919 - - - - - -
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Figure 4.28: Epicardial Potential Maps for 30 dB noisy data with 15 mm Shift Geometric
Error: a) Colormap b) Real Potential Distribution at the 39 ms c) Optimal Tikhonov Solu-
tion d) Reconstructed solution using real norms in multiple constraints imposed method e)
Reconstructed solution by imposing the constraint values as ε1 = 1.05ε1,tik, ε2 = 0.8ε2,tik and
ε3 = 0.8ε3,tik f)Reconstructed solution from heuristic method

96



MRE method, we need to impose the values of the upper, lower bounds of the model param-

eters and prior expected value of the model parameters into the formulation of optimization

problem, respectively Ui, Li, si. In addition, we need to determine the norm of the residual

error ε = ‖Gm − d‖ in order to estimate the posterior distribution. The norm of the residual

error is important in how the posterior solution fits the measurement data. Very small values

of the residual norm, ε, may lead to the over-fitting problem in the reconstructed solution or it

may lead to an infeasible set that that result in no convergence of the method, while very big

ε values cause the solutions that are irrelevant to the measurements.

The MRE method was tested with 4 different cases of the inverse ECG problem as in the

previous methods presented in this Chapter. These cases are the inverse problems that contain

different levels of Gaussian torso measurement noise and the geometric errors due to the shift

in location of the heart and due to the wrong size of cardiac. The MRE method was tested with

different prior expected value of the epicardial potentials while the upper and lower bounds

of the epicardial potentials was taken as -45mV and +35 mV, respectively. In order to have

an prior information about the solution, we have used different different training sets. For the

training sets, the maximum and minimum values of potential value at any node over a QRS

interval are 32 mV and -43 mV, respectively.

4.5.1 MRE Method Results of 30 dB Gaussian White Noise Added Measurements

In this section, MRE results of the reconstructed solutions of the inverse ECG problem having

a 30 dB measurement data will be represented. As mentioned in section 3.3.3, we need

upper, lower bounds of the epicardial potentials and the prior expected value of the epicardial

potentials in order to estimate a prior distribution of the epicardial potentials using maximum

entropy method. As mentioned above, during the test of MRE method, the upper values, Ui,

and lower values, Li, were taken as +35 mV and -45 mV, respectively. These values were same

for all nodes and they were constant over the whole QRS interval. However, we have used

different expected values of the epicardial potentials as prior knowledge. We have obtained

the prior expected values using different techniques. These techniques are:

Fix Mean: The means of the epicardial potentials are taken as -5mV (midpoint of -45 and 35

mV) over the whole QRS interval and it is the same for all nodes.
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Identity STM: The means of the epicardial potential, s, are estimated using the previous time

instant solution of the MRE. For the first time instant they are taken as 0 for all nodes and

for the remaining time instants they are estimated by multiplying 0.5 with the previous time

solution i.e. si,t = 0.5mi,t−1 for t = 2, 3... where i is the ith node, t is the time instant, si,t is the

mean at time t and mi,t−1 is the MRE solution at t − 1.

Training Set STM: The means of the epicardial potentials, s, are estimated by multiplying

the previous time instant solution of the MRE with the state transition matrix obtained from

a training set i.e. st = Ftrainmt−1 for t = 2, 3... where st is the expected value vector of the

epicardial potentials at time t, mt−1 is the MRE solution vector at t−1 and Ftrain is the training

set STM. For the first time instant, the expected values of the epicardial potentials are taken

as 0 for all nodes.

Real STM: The means of the epicardial potential, s, are estimated by multiplying the previ-

ous time instant solution of the MRE with the state transition matrix obtained from the true

epicardial potentials i.e. st = Frealmt−1 for t = 2, 3... where st is the expected value vector of

the epicardial potentials at time t, mt−1 is the MRE solution vector at t− 1 and Freal is the real

STM. For the first time instant, the expected values of the epicardial potentials are taken as 0

for all nodes.

In table 4.22, average CC and RDMS values of the reconstructed solutions using different

prior mean values are given. The CC plots of the obtained solutions over a QRS interval are

also shown in Figure 4.29 . The results of the reconstructed solutions using constant value

-5 mV and previous time instant solution times 0.5 as a prior expected value of the model

parameters are very close to the optimal Tikhonov solution when we compare the CC values

and RDMS values. However, the approaches that are using training set STM and the real

STM in estimation of the prior expected value of the epicardial potentials yield a significant

improvement in reconstructed solution.

Epicardial maps of the reconstructed solutions are also illustrated in Figure 4.30. These re-

sults show that we obtain solutions very similar to the optimal Tikhonov solution in fix value

method where prior mean was taken as -5mV and in identity STM method where prior mean

was estimated from previous time solution. However, the approaches in which prior mean

values are estimated from training set STM and real STM, we have obtained a significant

improvement in reconstructed solutions. The details and the edges in the epicardial potentials
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Table 4.22: Averages values of CC and RDMS values of 30 dB noisy data reconstructed
solutions using MRE Method

Method Average CC Average RDMS
Tikhonov 0.7698 0.6039

Fix Mean Sol. 0.7746 0.6082
Identity Stm Sol. 0.7825 0.5809
Training Stm Sol. 0.8358 0.4819

Real Stm Sol. 0.8852 0.3647

Figure 4.29: The CC values of different methods
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maps for these approaches are much similar to the real epicardial map.

4.5.2 MRE Method Results of 10 dB Gaussian White Noise Added Measurements

Similar to the section 4.5.1, we have examined the results of the MRE method for 10 dB

noisy measurements. The same procedure was followed during the tests. We have used the

Ui and Li bound values as 35 mV and -45 mV, respectively and we have the same approaches

described in section 4.5.1 in calculation of a prior expected value of the epicardial potentials.

Similar to the section 4.5.1, the residual norm, ε, was determined by solving the problem first

using Tikhonov method and then estimating the norm value ‖d −Gmtik‖2.

In table 4.23 , average CC and RDMS values of the reconstructed solutions by different ap-

proaches in calculation of prior mean values are given. The CC plots of the obtained solutions

over a QRS interval are also shown in Figure 4.31. Similar to the results in section 4.5.1,

the first two approaches, fix mean and identity STM generate similar results to the optimal

Tikhonov solution. This is an expected result since the prior information that is used in esti-

mating a prior distribution is very simple and it does not contain specific information about

the real epicardial potentials. In addition, we use the same residual norm, ε, as the residual

norm of the optimal Tikhonov solution. However, the other two approaches, training set STM

and real STM improve the average CC and RDMS values.

Table 4.23: Averages values of CC and RDMS values of 10 dB noisy data reconstructed
solutions using MRE Method

Method Average CC Average RDMS
Tikhonov 0.5796 0.8503

Fix Mean Sol. 0.5824 0.8401
Identity Stm Sol. 0.6068 0.7920
Training Stm Sol. 0.7672 0.5894

Real Stm Sol. 0.7678 0.5662

In Figure 4.32, epicardial maps of the reconstructed solutions by MRE method are also illus-

trated. These maps also support the results mentioned above. The first two approaches used

in calculation of prior mean of the epicardial potentials yield the similar results to the optimal

Tikhonov solution while the last two approaches improve the obtained solutions. Especially
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Figure 4.30: Epicardial Potential Maps of reconstructed solutions using MRE Method for 30
dB noisy data: a) Real Potential Distribution at the 50 ms b) Optimal Tikhonov Solution c)
Reconstructed solution using -5 mV as mean value d) Reconstructed solution using the mean
as identity matrix times previous time instant solution e) Reconstructed solution using the
mean as training set stm matrix times previous time instant solution f) Reconstructed solution
using the mean as real set stm matrix times previous time instant solution
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Figure 4.31: The CC values of different methods for 10 dB Noisy Measurements
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in real STM case, the reconstructed solution can recover the details of the true epicardial

potential map.

4.5.3 MRE Method Results of 30 dB Noisy Data with 0.6 Scaling Geometric Error

In this section, the results of the reconstructed solution of an inverse ECG problem containing

a geometric error due to the wrong size of the heart will be represented. The MRE method

was examined with the same Ui and Li bound values in previous two cases. The expected

values of the epicardial potentials were obtained using the same method in section 4.5.1.

However, the residual norm used in this section was calculated using the true epicardial po-

tentials i.e. ε = ‖d −Gmreal‖2. During the tests, we have first the residual norms obtained

from the optimal Tikhonov solution as previous two cases, inverse problems containing only

noisy measurements. However, we have observed that the residual norms obtained from the

optimal Tikhonov solution were small so that they caused the infeasible sets and the MRE

method could not converge to a solution. Therefore, the residual norms estimated from the

real epicardial potentials were used.

In table 4.24 , average CC and RDMS values of the reconstructed solutions by different ap-

proaches in calculation of prior mean values are given. The CC plots of the obtained solutions

over a QRS interval are also shown in Figure 4.33 . Similar to previous sections, the signif-

icant improvement in average CC and RDMS values could be obtained by using the training

set STM and real STM. The average CC values of the fix mean and identity STM solutions are

close to the average CC value of the optimal Tikhonov solution. In Figure 4.33, we observe

that the CC plots of the these two approaches have different shapes than the optimal Tikhonov

solution CC plot. This differs from the inverse ECG problems containing only measurement

noise. Actually, this result is expected since we have used the residual norms that were differ-

ent from the residual norms of the optimal Tikhonov solution.

In 4.34, epicardial maps of the reconstructed solution for 50ms after the stimulus are shown.

From this figure, we can see that the estimated solution using the training set STM and real

STM are very similar to the true epicardial maps. In the fix mean and identity STM solutions,

we have obtained smoother solutions than the optimal Tikhonov solution. However, the in-

correct extreme points in optimal Tikhonov solution disappears in these solutions. Therefore,

even if we could not obtain a significant improvement in CC values, these approaches provide
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Figure 4.32: Epicardial Potential Maps of reconstructed solutions using MRE Method for 10
dB noisy data: a) Real Potential Distribution at the 50 ms b) Optimal Tikhonov Solution c)
Reconstructed solution using -5 mV as mean value d) Reconstructed solution using the mean
as identity matrix times previous time instant solution e) Reconstructed solution using the
mean as training set stm matrix times previous time instant solution f) Reconstructed solution
using the mean as real set stm matrix times previous time instant solution
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Table 4.24: Averages values of CC and RDMS values of reconstructed solutions using MRE
Method for 30 dB noisy data with 0.6 scaling geometric error

Method Average CC Average RDMS
Tikhonov 0.5895 0.8465

Fix Mean Sol. 0.6060 0.8401
Identity Stm Sol. 0.6087 0.8442
Training Stm Sol. 0.7167 0.7057

Real Stm Sol. 0.6910 0.7467

Figure 4.33: The CC plots of different methods for 30 dB noisy data with 0.6 scaling geomet-
ric error
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solutions smoother but more accurate than the optimal Tikhonov solution.

4.5.4 MRE Method Results of 30 dB noisy data with 15mm shift geometric error

In this section, the results of the reconstructed solution of an inverse ECG problem containing

a geometric error due to the wrong location of the heart will be represented. During the tests

the same Ui and Li bound values and the same method for obtaining expected values of the

epicardial potentials in previous sections are used. The residual norm used in this section was

calculated using the true epicardial potentials i.e. ε = ‖d −Gmreal‖2 similar to the section

4.5.3.

In table 4.25 , average CC and RDMS values of the reconstructed solutions by different ap-

proaches in calculation of prior mean values are given. The MRE method provides improve-

ment in the average CC and RDMS. Even in fix mean and identity STM solutions, we have

obtained nearly %10 improvement in average CC and RDMS values. The CC plots of the

obtained solutions over a QRS interval are also shown in Figure 4.35.

Table 4.25: Averages values of CC and RDMS values of reconstructed solutions using MRE
Method for 30 dB noisy data with 15mm shift geometric error

Method Average CC Average RDMS
Tikhonov 0.5328 0.9133

Fix Mean Sol. 0.6143 0.8401
Identity Stm Sol. 0.6305 0.8009
Training Stm Sol. 0.7506 0.6434

Real Stm Sol. 0.7896 0.5902

In Figure 4.36, epicardial maps of the reconstructed solution for 50 ms after the stimulus are

shown. From this figure, we can observe the improvements in the estimated solution using the

training set STM and real STM. Similar to the section 4.5.3, the fix mean and identity STM

approaches provide solutions that are smoother but more accurate than the optimal Tikhonov

solution.
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Figure 4.34: Epicardial Potential Maps of reconstructed solutions using MRE Method for
30 dB noisy data with 0.6 scaling geometric error: a) Real Potential Distribution at the 50
ms b) Optimal Tikhonov Solution c) Reconstructed solution using -5 mV as mean value d)
Reconstructed solution using the mean as identity matrix times previous time instant solution
e) Reconstructed solution using the mean as training set stm matrix times previous time instant
solution f) Reconstructed solution using the mean as real set stm matrix times previous time
instant solution
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Figure 4.35: The CC plots of different methods for 30 dB Noisy Data with 15mm Shift
Geometric Error
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Figure 4.36: Epicardial Potential Maps of reconstructed solutions using MRE Method for
30 dB noisy data with 15mm shift geometric error: a) Real Potential Distribution at the 50
ms b) Optimal Tikhonov Solution c) Reconstructed solution using -5 mV as mean value d)
Reconstructed solution using the mean as identity matrix times previous time instant solution
e) Reconstructed solution using the mean as training set stm matrix times previous time instant
solution f) Reconstructed solution using the mean as real set stm matrix times previous time
instant solution
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CHAPTER 5

CONCLUSIONS

5.1 Performance of Each Method

In this study, we have used 4 different solution methods for inverse problem of ECG. These

methods are Conic Quadratic Programming, linearly constrained Tikhonov regularization,

admissible solution approach (convex optimization with multiple constraints) and the MRE

Method. The reconstructed results of these methods are compared with the optimal Tikhonov

solution and the real epicardial potentials.The improvement in Conic Quadratic Programming,

linearly constrained Tikhonov regularization and admissible solution is very limited. How-

ever, by using MRE method it is possible to obtain more accurate results compared to the

Tikhonov solution.

As mentioned in the Theory Chapter, Conic Quadratic Programming has the equivalent for-

mulation as the Tikhonov regularization. For each penalty parameter in Tikhonov regulariza-

tion there is a corresponding bound value of the energy norm in Conic Quadratic Program-

ming. The penalty parameter can be determined using a method such as the L-curve method.

However, if we have prior information about the norm of the epicardial potentials it is more

useful to use the norm values instead of using the penalty parameter. In results section it is

shown that the L-curve method provides penalty parameters very close to the true optimal

penalty parameters when the inverse problem contains only measurement noise and it does

not take into account the geometric errors. However, in case of geometric errors, it provides

penalty parameters that differ from the true optimal penalty parameter, especially when the

geometric error is due to the shift in location of the heart. Therefore, determination of the

optimal penalty parameter used in Tikhonov regularization is a problem. However, it may
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be possible to obtain optimal bound parameter (norm of the epicardial potentials) used in

Conic Quadratic Programming if we have prior information about the norm of the epicardial

potentials. In section 4.2, we have developed a heuristic function that estimates the optimal

norm value using the maximum norm in real epicardial potentials and the norm of the op-

timal Tikhonov solution. The heuristic approach yields the better solution than the optimal

Tikhonov solution that is estimated using the L-curve, however, the improvements in recon-

structed solutions are limited. We have also observed that it is not possible to obtain better

results even when we have used the norm of the real epicardial in Conic Quadratic Program-

ming as the bound value of norm of the potential. Due to the ill-posed nature of the problem,

this interesting result is obtained. The norm of the real epicardial may lead to the under-

regularized or over-regularized solutions depending on the noise level. However, the heuristic

approach proposed in this thesis combines the optimal Tikhonov solution and the norm of the

true potentials and it generates improvement in estimated solutions.

The second method studied in this thesis is the linearly constrained Tikhonov solution that

composed of two step Tikhonov regularization. The method proposed by Iakovidis [15] gen-

erates a prior information by solving the problem using an over-regularization parameter and

then it estimates the solution by solving the problem using an under-regularization parameter

and the prior information at the first step. The results obtained in this thesis differs from the

results in [15]. We could not obtain a significant improvement in reconstructed solutions.

This is possibly due to the geometric model used in [15] differs from our geometric model.

Iakovidis [15] have used a spherical geometry.

The admissible solution is another method studied in this thesis. In this method, we obtain

a convex optimization problem by imposing multiple constraints that depend on the prior

information about the real epicardial potentials. Then, we try to improve the solutions by im-

posing this multiple constraints into the formulation of the problem. We have examined this

method using different prior information. The prior information was generated by adjusting

the optimal Tikhonov solutions. Since we have used the optimal Tikhonov solutions in con-

struction of the prior information, the improvements in reconstructed solution is limited and

obtained solutions are similar to the optimal Tikhonov solution. However, we have obtained

%1-2 improvement in CC values when we compare the results with the optimal Tikhonov

solution. Instead of constructing the prior information from optimal Tikhonov solution, it

may be useful different prior information in admissible solution. However, obtaining a good
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prior is problem. In admissible solution, we have used the heuristic function developed for

Conic Quadratic Programming in order to generate prior information about the norm of the

solutions. The heuristic function yields an improvement here, too. The iterative calculation of

the solution is the weakness of the method. It needs long time, 100 times more than Tikhonov

method, to reconstruct a solution.

Finally, we have studied the Minimum relative entropy method in reconstruction the epicar-

dial potentials. The method needs the prior information about the upper and lower bound of

the epicardial potentials and the expected value of the epicardial potentials. It generates a

posterior distribution using the prior distribution that is generated from the prior information.

The method also needs the residual norm of the reconstructed solution as an input parameter

in order to fit the posterior distribution to the measurements to some extent. In the presence

of the only measurement noise in inverse problem, we have used the residual norm that was

calculated from the optimal Tikhonov solution. In this case, we have obtained significant

improvement if we have a good prior about the expected value of the epicardial potentials.

The prior about the expected value of the potentials can be estimated using the training set

STM and real STM. In other words, we have a good estimate of STM, we obtain a significant

improvement in reconstructed solutions. In the presence of a geometric noise in inverse prob-

lem, the residual norm calculated by the optimal Tikhonov solution generates an infeasible

set and the method cannot converge to a solution. Therefore, we have used the residual norms

calculated from the real potentials in the presence of geometric noise. When we used the real

potentials to calculate the residual norms, we have obtained improvements about %10 in CC

value of reconstructed solution.

5.2 Future Work

• The constraint parameter used as upper limit for total energy of the solution in Conic

Quadratic Programming was estimated from the real potentials and optimal Tikhonov

solution in this study. Estimation of this constraint parameter directly from torso po-

tentials could be studied.

• The MRE method was tested with different prior information about the lower, upper

and and mean values of epicardial potentials. Generation of proper prior lower, upper

and and mean values of epicardial potentials in MRE method could be studied as a
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future work.

• The residual norm value used in MRE method determines the fitting level of recon-

structed solution with body surface measurements. Therefore, it is very important in

reconstruction of solution. During this study, it is observed that determination of an

appropriate value of residual norm is a problem in the presence of geometric noise in

inverse problem. Determination of residual norm value that leads to proper fitting of

model parameters to the measurements could be studied.
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