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ABSTRACT

DEVELOPMENT OF AN OCTREE BASED GRID COARSENING AND
MULTIGRID FLOW SOLUTION

MAHMUTYAZICIOGLU, Emel
Ph. D., Department of Mechanical Engineering
Supervisor: Prof. Dr. Mehmet Haluk AKSEL
Co-Supervisor: Prof. Dr. Ismail Hakki TUNCER

September 2010, 167 pages

The multigrid technique is one of the most effective techniques to achieve the
reduction of the CPU cost for flow solvers. The multigrid strategy uses the
multilevel grids which are the coarsening subsets of fine grid. An explicit solver
rapidly reduces the high frequency errors on the computational grids. Since high
frequency errors on coarse grids correspond to low frequency errors on fine grids,
cycling through the coarse grid levels rapidly reduces the errors ranging from high-
to-low frequency. The aim of this study is, therefore, to accelerate SENSE3D solver

developed by TUBITAK-SAGE by implementating multigrid concept.

In this work, a novel grid coarsening method suitable for cell-centered
hybrid/unstructured grids is developed to provide the cells with high aspect ratio.
This new grid coarsening technique relies on the agglomeration of cells based on

their distribution on octree data structure. Then, the multigrid strategy is



implemented to the baseline flow solver. During this implementation, the flux
calculation along the face loops is modified without changing cell-centered scheme.

The performance of the coarsening algorithm is investigated for all grid types in
two and three dimension. The grid coarsening algorithm produces well defined,
nested, body fitted coarser grids with aspect ratios of one and the coarse grids have
similar characteristics of Cartesian grids. Then, the multigrid flow solutions are
obtained at inviscid, laminar and turbulent flows. It is shown that, the convergence
accelerations are up to 14 times for inviscid flows and in a range of 4 to 110 fold for

turbulent flow solutions.

Keywords: Computational Fluid Dynamic, Multigrid, Agglomeration, Grid

Coarsening, Unstructured Grid.
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SEKIZDAL VERi YAPISI iLE COZUM AGI SEYREKLESTIRME
YONTEMI VE COK KATMANLI AKIS COZUMLEMELERININ
GELISTIiRILMESI

MAHMUTYAZICIOGLU, Emel
Doktora, Makina Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Mehmet Haluk AKSEL
Ortak Tez Yoneticisi: Prof. Dr. Ismail Hakki TUNCER

Eylul 2010, 167 sayfa

Cok katmanli ¢oziim teknigi, akis ¢Oziiciileri i¢in ¢Oziim zamani azaltiminda en
etkin yontemlerden biri olarak goriilmektedir. Cok katmanli ¢éziim teknigi sik
¢Ozlim agindan tlireyen ardisik seyreklestirilmis ¢6ziim aglarini ¢alistirmaktir. Acik
uclu ¢oziiciiler yiiksek frekansh hatalar1 hizli bir sekilde diistirebilmektedir. Sik
¢ozlim aginda diisiik frekansta bulunan hatalar, seyrek ¢6ziim aglarinda yiiksek
frekans hatalara denk geldiginden, ¢ok katmanli ¢6ziim yonteminde diisiikten
yiiksege tiim frekanslardaki hatalar olduk¢a hizli bir sekilde diismektedir. Bu
nedenle, bu c¢alismanin amaci ¢oklu ¢oziim ag1 tekniginin TUBITAK-SAGE
tarafindan gelistirilen SENSE3D akis ¢oziiciilerine uygulanmasi ve bu yazilimlarin

yakinsama hizlarinin artirtlmasidir.

Bu calismada, ii¢ boyutlu ¢ok katmanl ¢6ziim uygulamalarinda kullanilmak Uzere,
dizensiz/melez ¢6ziim aglar1 ve hiicre merkezli ¢oziiciilere uygun, yuksek en boy

oranina sahip hiicrelerden olusan ardigik seyreklestirilmis ¢o6ziim aglar1 olusturulma

Vi



yontemi gelistirilmigtir. Bu yeni seyreklestirme yontemi, hlicre merkezlerinin
sekizdal veri yapist kullanilarak birlestirilmesi temeline dayanmaktadir. Ardindan,
cok katmanli ¢6ziim teknigi temel c¢ozlclye uygulanmistir. Uygulama sirasinda
¢oziiciiniin hiicre merkezli yapisi bozulmadan, aki hesabinin kenar veya ylizey

dongiistinde olmas1 saglanmistir.

Seyrek ¢oziim aglarinin basarisi iki ve {i¢ boyutlu tim ¢6ziim agi tipleri kullanilarak
incelenmistir. Seyrek ¢6ziim aglar incelendiginde, olusan hiicrelerin geometri
Ozelligini bozmadigi, en boy oraninin yaklasik 1 oldugu ve seyreklesme seviyesi
yukseldikce kartezyen tip ¢oziim agina sahip oldugu goriilmektedir. Ardindan, ¢ok
katmanli ¢6ziim teknigine sahip yazilim kullanilarak agdasiz ve agdali ¢oziimler
elde edilmistir. Yapilan ¢oziimlemeler ile, ¢ok katmanli ¢6ziim yaklagiminin, diistik
hizli agdasiz ¢oziimlemelerde 14 kata kadar, agdali ¢oziimlerde ise 4 ila 110 kat

arasinda hizlanma oranlarina sahip oldugu gosterilmistir.

Anahtar Kelimeler: Hesaplamali Akiskanlar Dinamigi, Cok Katmanli Coziim,

Birlestirme Algoritmasi, C6ziim Ag1 Seyreklestirme, Diizensiz Cozim Agi.
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CHAPTER 1

INTRODUCTION

Over the past decades, Computational Fluid Dynamics (CFD) has become a
valuable analysis tool for understanding the fluid flow. The use of computers has
become an integral part of the design process in the aerospace industry. In this
applied aerodynamics context, the discretizations of the Euler and/or Navier-Stokes
equations are almost exclusively performed by finite volume methods. The
pioneering work of Jameson began this evolution [1, 2, 3, 4]. During the 1980’s,
upwinding mechanisms were incorporated into finite volume algorithms leading to
increased robustness for applications with strong shocks, and perhaps more
importantly, to better resolution of viscous layers due to decreased numerical
dissipation in these regions [5, 6, 7, 8, 9]. The 1990’s saw major advances in the
application of finite volume methods to Navier-Stokes simulations, in particular to
the Reynolds-Averaged Navier-Stokes (RANS) equations and significant gains
were made in the use of unstructured meshes [10, 11, 12].

Solution of flow fields around complex geometries directly addresses to use
unstructured grids which do not need any connectivity information like structured
grid. Unstructured-grid methodology has emerged as a mature of CFD tool for rapid
aerodynamics analysis and design of complex configurations. It offers a
substantially reduced turnaround time for CFD solutions due primarily to the ease
and speed at which unstructured grids can be generated. Unstructured grids
composed of triangular and tetrahedral elements in 2D and 3D. Unstructured
meshes are also computationally feasible when the grid generation time concerned.
It can be said that the size of the mesh, which directly affects the memory



requirements of the numerical algorithm, can only be minimized with the usage of
unstructured grids [13]. Their main drawbacks, however, are the memory overhead
associated with storing grid connectivity information and the computer time
associated with indirect addressing. In addition, due to the lack of grid structure, it
is difficult to implement simple implicit schemes such as approximate factorization,
while explicit schemes suffer from slow convergence. In other words, the relaxation
schemes in these flow solvers efficiently eliminate high frequency error modes but
fail to reduce low frequency errors that hamper the flow convergence [10, 11, 13,
14]. Present-day convergence acceleration methods are mostly based on trying to
achieve the optimum balance between speed of convergence and cost of iterations
[15, 16].

The empirical verification of Moore's Law (i.e. doubling of computational power at
fixed cost every 18 months) over the last two decades has caused some to question
the need for improved convergence acceleration techniques, opting instead of
concentrating on incorporating additional physics through increased model
complexity and/or resolution. Unfortunately, the incorporation of additional physics
most often also increases the stiffness of the problem, resulting either in problems
which simply cannot be solved by simple solution techniques, or take even longer to
solve in spite of the availability of faster hardware. In the "Blue Book™ report on
scientific computing compiled by the National Science Foundation, a comparison of
the enabling hardware advances versus the enabling algorithmic advances,
reproduced here in Figure 1.1, serves to illustrate how the two fields have
contributed almost equally to the overall advances in near past-day simulation
capability [15].

The need for more efficient steady-state solution algorithms takes on even more
significance when one considers the trend from steady state Navier-Stokes solvers
to unsteady solvers, and design optimization capabilities, which involve the solution

of many intermediate steady-state or pseudo steady-state problems for each run.
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Figure 1.1 Illustration of advances due to algorithmic improvements and hardware

Due to the widespread usage of CFD in the Research & Development departments
of industrial outfits, there is need for enhancing any CFD tool used for industrial
purposes with techniques capable of reducing the CPU cost of a single computation.
According to literature survey about unstructured grids, there are many studies
about accelerating the CFD studies, generally by convergence acceleration

techniques and parallelization techniques, rather than solution technique directly.
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These acceleration techniques were investigated and it was determined that
multigrid (MG) is likely to be the most effective technique to achieve this goal [15,
17, 18]. It gives attractive results for convergence and accuracy rates. The basic idea
of a multigrid strategy is to accelerate the solution of a set of fine grid equations by
computing corrections on a coarser grid. The motivation for this approach comes
from an examination of the error of the numerical solution in the frequency domain.
Multigrid methods have been successfully utilized by several structured grid
Euler/Navier-Stokes solvers where a sequence of optimized coarser meshes can be
readily generated from a base fine grid. In the past decade, various multigrid
strategies have also been successfully demonstrated for the unstructured grid flow
solvers [10, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26].

1.1 Literature Survey

1.1.1 Overview of Multigrid Strategy

The basic idea of a MG strategy is to accelerate the solution of fine grid equations
by computing corrections on a coarser grid. High-frequency errors, which involve
local variations in the solution, are well annihilated by simple explicit methods.
Low-frequency or more global errors are much more insensitive to the application
of explicit methods. This is natural, considering the local nature of the information
employed in explicit schemes. In fact, the convergence rate of explicit schemes
usually consists of a rather rapid initial residual reduction phase, which gradually
develops into a much slower residual reduction phase, corresponding to a situation
where all high-frequency errors have been eliminated and low frequency errors

dominate, as shown in Figure 1.2.



i High Frequency
-~ Emor Reduction Region

e S
————
e

-
Low Frequency ~
Emor Reduction Region

lierations

Figure 1.2 Typical convergence characteristics of an explicit scheme

MG strategies capitalize on this rapid initial error reduction property of explicit
schemes. Typically, a MG scheme begins by eliminating the high-frequency errors
associated with an initial solution on the fine grid, using an explicit scheme. Once
this has been achieved, further fine grid iterations would result in convergence
degradation. Therefore, the solution is transferred to a coarser grid. On this grid, the
low-frequency errors of the fine grid manifest themselves as high-frequency errors,
and are thus eliminated efficiently using the same explicit scheme. The coarse-grid
corrections computed in this manner are interpolated back to the fine grid in order
to update the solution. This procedure can be applied recursively on a sequence of
coarser and coarser grids, where each grid-level is responsible for eliminating a
particular frequency bandwidth of errors. MG strategies are generally considered as
convergence acceleration techniques, rather than solution methods themselves. In
fact, they may be applied to any existing relaxation technique, explicit or implicit.
The success of the overall solution strategy depends on a close matching between



the bandwidth of errors in order to represent the entire error frequency range. These
errors can be efficiently smoothed on a given grid using the particular chosen

relaxation strategy, with a careful construction of a sequence of coarse grids.

MG methods have been successfully utilized by several structured grid
Euler/Navier-Stokes solvers where a sequence of optimized coarser meshes can be
readily generated from a base fine grid. They may also be employed to accelerate
the solution of the full non-linear equation set, or they may be used to operate on
the linear system which arises at each time-step in the implicit scheme of equations.
While applying multigrid to the solution of the linear system in an implicit scheme
affords certain advantages, and has been demonstrated successfully, it forfeits one
of the principle advantages of the multigrid method, which is the low memory

overheads required [14].

1.1.2 Background on Multigrid Strategy

The concept of using multiple grids as a means to accelerate convergence was first
proposed in 1964 by Federenko [27] for a Poisson-type problem on a rectangular
grid. It was not until 1977 when Brandt [28] presented his seminar paper that MG
became practical. MG convergence was studied for finite element systems in 1977
by Nicolaides [29], and proven for certain PDEs in 1978 by Hackbusch [30]. 1981
marked the appearance of a finite-volume solver by Jameson, Schmidt, and Turkel
[4]. The solver computed the Euler equations using an explicit five-stage Runge-
Kutta time-stepping scheme. The spatial discretization was a second-order finite-
volume technique, and was used in combination with an artificial dissipation
scheme that allowed for the accurate solution of shock waves in transonic flow. A
novel MG scheme for the solution of the Euler equations was proposed by Ni [31]
in 1982. Using structured grids, Ni solved the transonic flow over a bump having a
maximum height of 10 % of the chord in a channel of height one chord. Ni's scheme

uses Lax-Wendroff time-stepping and is second-order accurate except in the



neighborhood of shocks. Jameson [1, 32] presented a multigrid extension of his
1981 Euler code that significantly improved the convergence rate of the solver.
Jameson and Mavriplis introduced an algorithm that utilized unstructured grids
[33]. This work was continued by Mavriplis [34], utilizing a sequence of non-
nested, unstructured grids. This research demonstrated the feasibility of using
unrelated meshes to produce results that greatly improved the convergence rate over
that of single-grid, explicit solvers and was competitive with MG applied to
structured grids. The use of MG on unstructured grids, including extensions to 3D,
was also explored by Peraire et al. [35], Mavriplis [14], Morano and Dervieux [36],
Riemslagh and Dick [37], Ollivier-Gooch [38], Lassaline [26], Zuliani [39] and
Fidkowski [40]. In addition to the added complexity of intergrid operators, a
potential area of difficulty is the generation of a sequence of coarse grids for

unstructured fine grids.

1.1.3 Basic Principles of Multigrid Strategy

The basics of MG methods for both linear/nonlinear equations with details of
common MG cycles and intergrid transfer operators are given in this section. These
are the basic principles since they do not depend on the particular set of equations
being solved, the discretization and types of grids employed, or the dimensionality

of the problem.

1.1.3.1 Linear Systems (MG Correction Scheme)

A system of linear equations can be written as:
L(u)=f (1.1)

where L is a linear operator, u is the solution vector, and f is a forcing function.



The discrete approximation of the system on a grid characterized by spacing h is

written as
Lh(uh): fy (1.2)
where u, is the converged solution to the discrete system.

The current estimate of the solution u, is denoted as u,, which is obtained by
approximate solution techniques such as iterative technique. Since T, does not

satisfy the above equation exactly, the error can be defined as:

v, =0, —U, (1.3)
Now, Equation (1.2) can be written as:

L, (v, +0,) = f, (1.4)
which, since L is a linear operator, can be written as:

L, @,)+L,(v,)=f, (1.5)

The error v, can be represented on a coarser grid characterized by spacing H or 2h

provided that it is sufficiently smooth to prevent aliasing of high-frequency

components on the coarse grid. An approximation to v, can be calculated on the

coarse grid as:
L,v, =1 (f,-L0,) (1.6)

where 1, is referred to as the restriction operator, which transfers quantities from
the fine grid to the coarse grid. The subscripts h and H show the grid characterized
by spacing of fine and coarse grids respectively. The implementation of this

operator is described in the following section. It is seen that f, —Lu, is the



residual on the fine grid. Defining forcing function as f,, =1"(f —L.0,), it is

possible to write
L,v, = f, (1.7)

Once v,, is obtained, the fine grid level can be corrected using

e =0 + 15v, (1.8)
where 1}, the prolongation operator, which represents the interpolation of the
coarse grid corrections v, to the fine grid. Details of this operator are presented in a

later section.

Low-frequency error components can be efficiently eliminated on coarse grids at a
fraction of the cost of a fine grid calculation. Eliminating these error components on
the fine grid is very costly, as many more relaxation cycles are required than would
be on the coarse grid. In addition, this process can be performed recursively on
successively coarser grids with each coarse grid being used to compute a correction
to the next higher grid level.

1.1.3.2 Non-Linear Systems (Full Approximation Storage Scheme)

For systems of nonlinear equations, the step taken between Equations (1.4) and
(1.8) in the previous section cannot be performed, so a different formulation must
be used. Followings are the description of the Full Approximation Storage (FAS)
scheme [41].

L,u, can be substracted from both sides of Equation (1.4) to obtain a residual at the

right hand side as

Lh(vh + Uh)_ LhUh = fh - Lhﬁh =-T (1-9)



for the coarse grid. Then, the above equation becomes:

L, (17, +v, )- L, (17T, )= 17 (F, - LG, ) = -1, (1.10)
The coarse level grid solution, T, , can now be defined as:

LT, = f, (1.11)
with

u, = 1,0, +v, (1.12)

By rearranging these terms and introducing a new coarse grid variable called “the

coarse grid forcing function” (sometimes called the defect correction) as:
fy = IhH(fh - LhUh)+ Ly (I:lﬁh): Ly (thUh)— th (1.13)

Once U, is calculated, the fine grid solution is updated according to the following

relaxation.
0 =0+ 1, - 170 | (1.14)

The presence of the defect-correction term on the right-hand side ensures that the
fine grid problem is represented by the coarse grid discretization, and that both
coarse and fine grid equations converge to the same solution. This can be seen by
considering the case where fine grid equations have been solved exactly. In this
situation, the fine grid residuals all vanish, as does their interpolated result on the
coarse grid. The ability to directly handle non-linear problems is one of the great
advantages of MG algorithms.
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1.1.3.3 Intergrid Transfer Operators

The restriction of the solution from a fine grid to a coarser grid and the prolongation
of the correction from a coarser grid to a finer grid both utilize bilinear
interpolation. One of the key elements for the success of such a method is the
development of efficient transfer mechanisms between grids. Since the MG
algorithm makes use of finer cells, accurate state values are needed for coarse cells
[25].

For computational fluid dynamics problems, the most common choices are either
injection or some variant of linear interpolation. Injection corresponds to the
interpolation operator which preserves a constant function exactly. As an example,
the value of a coarse grid cell would be assigned to all constituent fine grid cells
which are contained inside the coarse grid cell by the injection operator. MG
methods for structured grid often employ bilinear (in two dimensions) and trilinear
(in three dimensions) inter-grid transfer operators. The simple piecewise linear
interpolation is easily implemented to MG methods for unstructured grid based on
triangular elements in two dimensions, and tetrahedral elements in three
dimensions, using the linear finite-element shape functions associated with these

elements. Piecewise linear interpolation operators preserve linear functions exactly.

The accuracy of the restriction and prolongation operators must be sufficient to
avoid introduction of excessive errors to the solutions, which can in turn have a

detrimental effect on convergence efficiency.

1.1.3.4 Cycling Strategies

A particular implementation of recursive coarse grid correction scheme is referred
as a multigrid cycle. Cycling strategies refer to techniques employed to determine

when to switch from one grid to the next, rather than to how to win a race on two

11



wheels. These can be divided into two basic approaches: adaptive and fixed cycling
strategies. Adaptive cycling methods involve the monitoring of the numerical
convergence process. When it is determined that the high-frequency errors on the
current grid have been effectively eliminated, usually by observing a sharp
slowdown in the convergence rate, the jump to a coarser grid is triggered. Although
adaptive cycling strategies may appear more desirable, practical considerations such
as simplicity and robustness usually result in the use of fixed cycling strategies,

where a fixed pattern of coarse and fine grid iterations is prescribed.

The most common cycling patterns are VV-cycle, W-cycle and full MG strategy. The
choice of a particular cycling strategy must necessarily consider the complexity of

the various grid levels.

1.1.3.4.1 V-cycle

The MG V-cycle, which is the most popular cycling strategy in the literature, begins
on the finest grid of the sequence, where one relaxation or time-step is performed.
The solution and residuals are then interpolated to the next coarser grid, where
another time-step is performed. This procedure is repeated on each coarser grid
until the coarsest grid of the sequence is reached seen in Figure 1.3. Then
refinement phase starts and the coarse grid corrections are prolongated back to each
successively finer grid. At the classical V-cycle strategy, single or multiple time-
steps on each grid level is performed. This refinement procedure is repeated until
the finest grid of the sequence is reached. At the particular variant of the V-cycle is
sometimes known as a saw-tooth cycle (Figure 1.3), the coarse grid corrections are
prolongated back to each successively finer grid until the finest grid is reached.
There is no time-stepping on the coarse-to-fine phase of the cycle. It has been

employed extensively for computational fluid dynamics problems.
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Figure 1.3 MG V-Cycle (T=time step, R=restriction, P=prolongation)

1.1.3.4.2 W-cycle

The W-cycle is the second common recursive strategy which weights coarse grids
more heavily, as shown in Figure 1.4. Like V-cycle, it begins on the finest grid of
the sequence, where one relaxation or time-step is performed, goes to the highest
level coarse grid. Then refinement phase starts and the coarse grid corrections are

prolongated back to each successively finer grid. However, different than the V-
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cycle appearances, it again goes to the high level coarse level before reaching the
root (fine) grid. The use of W-cycles is often found to be more efficient overall, and

more robust than V-cycles.

@0 00
e\

Figure 1.4 MG W-cycle (T=time step)

1.1.3.4.3 Full Multigrid (FMG)

The combination of mesh sequencing with a MG method (where the solution on the
current grid is initiated from a previously computed solution on a coarser grid)
results in a strategy known as FMG procedure. Beginning with an initial sequence
of grids, the solution on the finest grid of the sequence is obtained at the preliminary
stage by again using MG procedure. This sequence starts at fine or coarse grid
levels as seen in Figure 1.5-b and ¢ [15-41]. The procedure can be repeated, each
time adding a new finer grid to the sequence, until the desired solution accuracy has

been achieved, or the finest available mesh has been reached. After preliminary

14



stage, it continues the iterative stage using saw-tooth or classical V-cycle depicted
in Figure 1.5-a and b.
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1.1.4 Coarse Grid Construction Techniques for Unstructured Grids

The previous section described the basic principles of generic multigrid methods
without regards to the types of grids on which these methods are to be applied. The
main difficulty with unstructured multigrid methods is due to the construction of the
coarse grid levels for the solution of the fine-grid equations. For structured mesh
multigrid methods, a coarse mesh can be derived from a given fine mesh by
omitting every second point in each coordinate direction. Recursive application of
this procedure results in a sequence of coarse meshes where the complexity of the
meshes decreases by a factor of 4:1 in two dimensions and 8:1 in three dimensions,

for each successively coarser level.

For unstructured meshes, such techniques are no longer feasible. Due to the lack of
mesh structure, simple coarsening strategies do not result in consistent coarse grid
meshes. A variety of techniques have been proposed for unstructured multigrid
coarse mesh constructions. These vary from methods which attempt to reproduce
the nested property of structured mesh multigrid methods, to techniques which
permit the use of arbitrary (triangular or nontriangular) coarse meshes to algebraic
methods which never consider the construction of coarse meshes altogether [17]. In
general, all methods are capable of delivering similar efficiencies and the issues
involved in choosing a particular method include ease of implementation, degree of
automation, and robustness for highly complex geometries. With fully unstructured
meshes, where each point can have an arbitrary number of neighbors and the
elements are non-uniform, the problem is much more difficult, particularly in three

dimensions.

To date, six main and the most popular approaches towards grid coarsening on
unstructured meshes have become prevalent. The first approach for obtaining coarse
grid levels begins with the coarse mesh and generates finer nested levels by

subdividing the coarse grid cells. The other approach is non-nested approach with
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overset grids. In this approach, coarse grid levels are generated independently from
the finer levels using any grid generator. A more automated technique operates on a
fine grid by selecting a point to create the coarse grid using Delaunay triangulation
algorithm. For complex geometries, it is often difficult to generate a coarse grid
which preserves the original geometry. An alternative method which keeps away
from this problem is the agglomeration approach. This method agglomerates the
cells without creating any new edge or face. For complex geometries adaptive grid
methods can also be used. These algorithms detect the regions that have prominent
flow features and increase the grid resolution locally in such areas. Another method
which avoids the generation of coarse grid is the algebraic multigrid approach.
This method operates on the matrix rather than on the grid. In this section, the brief

theories of mentioned coarsening strategies will be presented.

1.1.4.1 Nested-Mesh Subdivision Method

One of the simplest unstructured mesh multigrid strategies is to generate a sequence
of finer meshes from an initial coarse mesh by recursively subdividing the cells of
the mesh [41, 43, 44], either globally, or adaptively. This results in a fully nested
sequence of grids, as shown in Figure 1.6, and enables a particularly simple
construction of the inter-grid transfer operators. For example, in the context of a
vertex scheme, the values at the vertices which are common to coarse and fine grids
are simply transferred by injection. Similarly, the newly introduced fine grid points
always lie midway along a coarse grid edge, and thus the values at these points may
be transferred by averaging the two values at the end points of the coarse grid

containing the edge, which corresponds to linear interpolation.
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Figure 1.6 Illustration of the nested mesh subdivision construction

For a cell-centered scheme, volume weighted restriction is easily achieved by
identifying the fine grid constituent cells of each coarse grid cell, and summing their
weighted values. Another advantage of this approach is that it can be easily
automated. This method has a somewhat inverted nature, i.e., it begins with a coarse
mesh and subsequently generates finer meshes, whereas most multigrid methods

begin with the finest mesh and construct coarser levels. There are several
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disadvantages associated with such a strategy. The most obvious one is the lack of
flexibility in handling problems on a specified fine grid of unknown origin. In fact,
this approach requires a tight coupling between the grid generation and the
multigrid solution strategies, and, thus has often been implemented in the context of
adaptive meshing problems. The other difficulties are somewhat more subtle, but
are interrelated. They concern with the ability of the coarsest initial grid to provide
efficient convergence properties for the multigrid algorithm, and the quality of the
resulting fine grid. In a multigrid process, the coarsest grid of the sequence
determines the convergence rate of the algorithm, while the finest grid determines
the accuracy of the solution. The present multigrid strategy places conflicting
demands on the coarse mesh construction. On the other hand, a very coarse mesh is
desired, since this enables a rapid multigrid convergence. However, the use of very
coarse initial mesh may result in poor quality fine meshes, particularly when using
simple subdivision refinement techniques. This, in turn, has a detrimental effect on

the solution accuracy.

1.1.4.2 Overset Meshes Method

An alternate approach to unstructured MG methods is to generate a sequence of
completely independent coarse and fine meshes, and use linear interpolation to
transfer variables back and forth between the various meshes of the sequence,
within a MG cycle [34, 35, 21, 36, 37, 45]. The meshes may be generated using any
grid generation technique, will generally be non-nested, and may not even contain
any common points, as shown in Figure 1.7. An essential step in the construction of
the inter-grid transfer operators is the determination of the enclosing triangle on one
grid for each vertex of the other grid. A native implementation of this operation
consists of checking every triangle on the first grid for each vertex of the second
grid. The other requirement is that they conform to the same domain boundaries.
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This technique is more flexible than the nested subdivision approach, since the fine
and coarse meshes are not constrained and may be optimized independently for
accuracy and speed of convergence, respectively. Furthermore, this approach can be
applied to a problem with a pre-specified fine mesh. On the other hand, the

construction of the inter-grid transfer operators becomes more involved.

Figure 1.7 Illustration of conservative residual restriction for overset meshes
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1.1.4.3 Re-triangulation Method

For automated coarse mesh production, the simple method is the removal of
selected fine grid vertices and the re-triangulation of the remaining grid points. The
re-triangulation procedure may be accomplished as a global operation, by
regenerating the triangulation of the remaining coarse grid points, or incrementally,
by removing each selected point sequentially and locally reconfiguring the mesh
connectivity. For example, a reverse Delaunay point-insertion may be utilized in
two-dimensions to remove mesh points [46, 47]. These techniques result in vertex-
nested meshes, where the coarse grid vertices form a subset of the fine grid vertices,
as shown in Figure 1.8. The triangulations themselves are not necessarily nested,
since the connectivity of the coarse mesh need not be related to that of the fine

mesh.

Figure 1.8 lllustration of vertex-nested coarse and fine mesh re-triangulation
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Although the vertex-nested property may be employed to simplify the construction
of the inter-grid transfer operators (i.e., for example the 1" operator reduces to

simple injection), the construction techniques discussed in the previous section for

overset-mesh MG methods are equally applicable in this case.

The point-removal procedure of automated coarsening strategies can be configured
to generate "optimal™ or near-optimal coarse meshes. This, of course, assumes some
definition of optimal coarsening. A common strategy is to attempt to reproduce the
coarsening characteristics encountered in structured mesh MG methods. Thus,
coarse meshes which contain approximately half the resolution of the originating
fine mesh in each coordinate direction throughout the entire domain are generally
sought [14].

On the other hand, there are some practical difficulties in constructing coarse mesh
levels for unstructured mesh MG algorithms; since, they do not address the issue of
the robustness of the coarse grid constructions. For example, it may often be found
that an automated coarsening procedure has removed one or several boundary mesh
points which critically define the geometry, and the resulting changes in the
geometry between grid levels produces a slowdown or failure of the MG algorithm.
In fact, the triangulation of a coarse point-set about a complex geometry can prove
to be a difficult task. For certain problems, the uniform coarsening characteristics of
maximal independent sets which minimize structured mesh MG methods may be far
from optimal. This is particularly true for problems with large disparities in length

scales and anisotropic problems.

1.1.4.4 Agglomeration Method

The object of agglomeration or sometime called volume weighted coarsening
technique is to derive a sets of coarse grids from a given fine grid and is based on a

neighborhood relation [48, 49, 50]. The coarse grids are constructed in two steps by
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volume agglomeration. In the first step, all the fine grid cells attached to the body
surface or a far-field boundary are identified and merged with its neighboring (only
those cells are eligible that are not already assigned to a previous coarser cell) cells
to form a new coarser cell. After all of these prioritized boundary cells are assigned
to a coarser cell, an unassigned fine grid cell on the agglomeration front is picked in
a random order and merged with its eligible neighbors to form a new coarser cell.
The procedure is repeated until all the fine grid cells are assigned to a coarser parent
cell. In the second step, a set of fine grid faces at the interface of a given pair of
coarser cells is used to render a single resultant face [15]. This step reduces the
number of faces in a coarse grid, which has a direct bearing on the computational

efficiency of the agglomeration MG technique.

Agglomeration methods are control-volume-based methods, and can thus be applied
to either cell centered or vertex-based schemes. For cell-centered schemes, the
control-volumes, themselves, are taken as the triangles themselves, whereas for a
vertex-based scheme the control volumes are taken as the cells defined by the dual

mesh formed by drawing the triangle median segments, as shown in Figure 1.9 [15].
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Figure 1.9 Median dual control volume for a triangular mesh in agglomeration

In other words, the idea of the agglomeration method is to fuse together or
agglomerate neighboring fine grid control volumes, creating a smaller set of larger
polygonal (or polyhedral in 3D) control volumes. This process can be performed
recursively, thus generating an entire sequence of coarse agglomerated meshes. The
degree of the coarse agglomerated polygons increases on each coarser mesh level,
but they always conform exactly to the original fine grid boundaries. Figure 1.10

shows the agglomeration method on a vertex-based scheme.
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Figure 1.10 Original fine mesh, its dual mesh and coarse agglomerated mesh levels
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The most important issue in agglomeration method is to decide the neighbor to
agglomerate and, consequently, to define the points for removal. The techniques
employed for creating the coarse agglomerated grids are similar to the automated
coarsening strategies described in the previous section. In fact, there is a duality
between agglomeration of control volumes and point removal. If each agglomerated
control volume is thought of as consisting of its seed point, i.e., the point
corresponding to the control volume from which the agglomeration process was
initiated, and its agglomerated control volumes (or corresponding points), as shown
in Figure 1.11, then the seed point corresponds to a point which is retained for the
coarse grid in the point removal procedure, and the agglomerated points correspond

to the deleted points.

Figure 1.11 Illlustration of seed point and agglomeration coarse grid construction

strategy
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1.1.4.5 Adaptive Multigrid Meshes Method

Adaptive grid methods have evolved as an efficient tool to obtain numerical
solutions without a priori knowledge of the nature and the resolution of the grid
necessary to efficiently capture the flow features. These algorithms detect the
regions that have prominent flow features and increase the grid resolution locally in
such areas. Furthermore, they coarsen the grid by deleting the cells over the regions
where flow features no longer exist. In MG applications, agglomeration type
coarsening algorithm is generally used [51, 52]. The data structures needed for the
implementation of adaptive algorithms on 3D unstructured grids are quite
complicated and this has been a challenging topic in itself and until recently not
many such schemes existed. Significant progress has been made during the

implementation of adaptive schemes for tetrahedral grids.

The coarser grids are used to propagate changes of the fine grid solution in time
properly and rapidly throughout the flow domain, thus accelerating the convergence
to the steady state, while at the same time maintaining the low truncation error on
the fine grid. Adaptive grid algorithms generally use methods, which employ
special upwind-like smoothing operators for shock-capturing and background
smoothing. The adaptive grids are created by the division of tetrahedral cells [53].

1.1.4.6 Algebraic Multigrid Method

Algebraic MG methods are methods that enable the efficient solution of systems of
algebraic equations, which are not necessarily derived from the spatial
discretization of a partial differential equation [54]. In fact, the notion of a grid, of
linear interpolation in space, and spatial smoothness are not always possible in this

context. Thus, algebraic MG methods require the redefinition of such concepts in
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the context of algebraic rather than geometric quantities, in order to make use of
traditional MG principles. The algebraic formula is given as:

X" = Gx™ +11|(A) ', — x| (1.15)

C

where G represents the fine grid smoother, and it is assumed that the coarse grid
matrix A. may be easily inverted. The above sequence of operators represents a MG
cycle having two-grids. This is described here for simplicity and in practice, a
multiple level cycle may be defined by recursive application of the above two-grid
procedure. A standard algebraic MG construction is to take the restriction operator

as the transpose of the prolongation operator:

W (I (1.16)

as was done in the overset-mesh MG algorithm, and to use the Galerkin coarse grid

operator construction to define the coarse level matrix, A.:

A=(5) Al (1.17)

Once these steps are taken, the complete algebraic MG algorithm is determined
solely by the definition of the prolongation operator and the set of coarse level
variables. Since geometric information is not available, the coarse level variable
sets must be determined from the algebraic information contained in the matrix A.
To do this, the graph of the matrix A can be used. The graph of a sparse matrix is
defined as the graph which is obtained by drawing an edge between the two vertices
which correspond to the row and column number of each non-zero entry in the
matrix. An algorithm which generates a maximal independent set of this graph may
be utilized to construct a coarse level subset of variables, just as in the
agglomeration or automated coarsening approaches for geometric MG. Algebraic
MG, however, adds an extra degree of sophistication to the process, by considering

the magnitude of the non-zero matrix entries. Coarsening is performed
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preferentially along edges associated with large matrix entries, since this represents
neighboring equations which are strongly coupled, and which will thus have similar

errors (i.e., the error distribution will be smooth in that direction).

One of the drawbacks of algebraic MG methods is the complexity of their
construction. The prolongation operator is not only used to transfer corrections from
coarser grids to finer ones, but also contributes to the construction of the coarse grid
operator. Thus, a prolongation operator with large or widely varying stencils may
result in considerably complex coarse grid operators. In fact, the coarse grid
operator is usually much denser (contains relatively more non-zero elements) than
the original fine grid operator, which results in increased coarse grid complexities
for the MG cycle. Thus, the construction of algebraic MG methods necessarily
involves a trade-off between accuracy of the operators and complexity of the coarse

grids.

1.2 Multigrid Adaptation: Motivation

Multigrid adaptation, as it is used in many different areas like CFD, acoustic, finite
element problems, are subject to speed any kind of platform and programming

language without losing accuracy and the performance requirements.

The Aerodynamic Design Team in TUBITAK-SAGE works with CFD tools to
make the final design of various air vehicles due to lack of a high speed wind tunnel
in Turkey. Besides the accuracy of the flow solver, the aerodynamic characteristics
of a newly designed air vehicle should be investigated to cover the overall flight
envelope. For this reason, a huge number of solutions is required to cover whole
domain. However, in general, it is not possible to obtain such large number of
solutions by using CFD tools, due to computational and time limitations of the
project. The main motivation in this study is, therefore, to accelerate SAGE Euler /
Navier Strokes Equation Solver (SENSE2D-SENSE3D) that is developed by
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TUBITAK-SAGE by implementing MG capability. In this context, a sufficient
number of solutions can be obtained to generate a safe aerodynamic database for the

projects.

1.3 Scope of the Research

The first objective of the thesis is to develop an automated grid coarsening
technique suitable for cell-centered hybrid/unstructured grids. The second objective
is to modify the baseline flow solvers, SENSE2D-SENSE3D, by making flux
calculation along the edge/face loops rather cells without changing cell-centered
scheme. Doing so, edge/face based solution algorithm can easily accommodate
complex cell structures with large number of edges in coarse MG levels. Final
objective is to implement the MG routines, flow variable and residual transfer

operators and cycling strategies to the baseline solver to finalize the MG adaptation.

1.4 Organization of Thesis

The thesis comprises six chapters. In Chapter 1, the idea, background and basics of
MG strategy with linear and nonlinear correction schemes, intergrid transfer

operators, cycling strategies are presented.

In Chapter 2, the overview of mesh construction techniques are summarized with
advantages and disadvantages and the agglomeration method is chosen for
utilization in this thesis. For agglomeration method, the algorithms for point
selection are investigated. Then, quadtree / octree data structure approach and a new
grid coarsening method, which is based on representation of the grid cells in a
quadtree/octree hierarchical data structure, are presented for 2 and 3 dimensions

with algorithms and flowcharts.
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In Chapter 3, Euler Navier Stokes Equation flow solvers, SENSE2D and SENSE3D
are explained as the baseline solver. Then, the modifications and validations on
baseline solver about flux calculation and MG adaptation are presented. Finally, all
MG algorithms (FAS application, cycling adaptation and intergrid transfer operators

between grids algorithms) are presented with flowcharts.

In Chapter 4, the grid coarsening strategy developed and MG adaptation on baseline
flow solver are investigated about performance on inviscid, laminar and turbulent
flow solution in 2D and 3D cases. At the test cases, the coarsening applications are
presented to show the success of newly generated grid coarsening technique on
variety of grid types. Then, the effects of MG variables on MG convergence
acceleration are investigated. Discussion on the results of computations and the

performance of the developed solver are also stated in this chapter.

In Chapter 5, the conclusions emerging from the present work are discussed. We
first discussed the efficiency and mesh dependency of the automated grid
coarsening method based on quadtree and octree data structure hierarchy. Then we
evaluated the acceleration of baseline code on inviscid, laminar and turbulent flow
solutions with implementing of MG strategy. Finally, some future work

recommendations are made.
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CHAPTER 2

GRID COARSENING

In this chapter, firstly, the reason for choosing the agglomeration coarsening
method in this thesis is explained and the studies in the literature about the point
removal algorithms used in this method are summarized. Then a new automated
grid coarsening technique suitable for cell-centered based hybrid/unstructured grid

developed in this study is presented.

2.1 Overview of Agglomeration Coarsening Method

The technical specifications of six main and the most popular approaches of grid
coarsening are summarized in literature survey presented in Section 1.1.4. All
coarsening techniques are compared according to automation capability,
implementation simplicity, nested property, time efficiency, accuracy and geometric
conservation in Table 2.1. Since it is a widely used method due to being fully
nested, easily automated, no geometry loss and high solution accuracy; the
agglomeration coarsening approach is the most powerful technique. In an
agglomeration method, grid cells are fused together to form a smaller set of larger
polygonal (or polyhedral in three dimensions) control volumes. For this reason, it
satisfies the requirement of this study and is decided to implement to baseline cell-

centered code in this thesis.
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For structured or Cartesian grids, a coarse grid can easily be derived from a given
fine grid by omitting every other point in each coordinate direction. A recursive
application of this procedure results in a sequence of coarse grids. The main
difficulty of agglomeration approach with unstructured MG methods is the selection
of the cells to be agglomerated (or sometimes called point removal) so that the new
cells formed can acceptable aspect ratios.

The different algorithms are presented about selection of the cells (or sometimes
called point removal) to be agglomerated in the literature. More popular point
removal procedure which is global coarsening algorithm is “Greedy type Frontal
Algorithm” by Mavriplis. The algorithm starts by selecting a starting vertex and
listing all of its neighbors. It continues by choosing a suitable control volume from
the list so that the aspect ratio of coarse cell is maximized. After that, the list of the
new cell information is updated and all vertices have been agglomerated until whole
domain is processed [34]. About this subject, many published studies can be found.
In the following part, agglomeration coarsening studies or point removal procedures
is summarized. Francescatto and Dervieux [55] propose a directional semi-
coarsening strategy based on Poisson’s equation using directional coarsening in a
structured grid domain. Their algorithm relies on two mechanisms. Firstly, the
‘local metrics’ are identified, i.e. the stretching direction and strength. Secondly,
agglomeration is adapted to local metrics. In order to build the local metrics,
algebraic MG idea is inspired. Ollivier-Gooch [56] presented a new approach to the
generation of coarse triangular and tetrahedral meshes that always produce a valid
coarse mesh at each level, regardless of the fine mesh input and the number of
coarse meshes generated. In this algorithm, an apex represents a boundary vertex at
which a sharp corner is formed and it is always included in the coarse mesh. A fold
is a line on the surface of a three-dimensional object where the surface normal is
discontinuous such as the trailing edge of a wing. For isotropic surface meshes,
every second fold vertex is retained. All fold vertices are retained, and every second

vertex along closely-spaced lines leaving the fold is also retained. A maximal
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independent set (MIS) of the remaining surface vertices is included in the coarse
mesh. Pseudo-structured interior mesh fragments are coarsened in much the same
way as the pseudo-structured surface mesh fragments. Finally, an MIS of the
remaining interior vertices is selected for inclusion in the coarse mesh. Ahlawat,
Johnson and Vanka [57] used a vertex based agglomeration algorithm that
agglomerates cells around a vertex. A vertex front moves inward from boundaries.
The algorithm parameterizes the cell fusion rate, which is the number of fine grid
cells that get fused into a coarse cell. It is equipped with automatic detection of
stretched grids, where it performs directional agglomeration and it has an algorithm
for improving grid quality by filling up sharp folds (hills and valleys) on coarse
cells. Waltz and Lohner [23] generated an algorithm, termed Dynamic Graph
Reduction with Swapping (DGRS), which is able to produce nested coarse grids
suitable for unstructured MG applications. The grid coarsening procedure can be
broken down into two basic parts: point selection and element reconnection. In the
point selection algorithm, the vertices take a hierarchy according to boundaries
while in the element reconnection algorithm, the dynamic reconnection, i.e.
reconnection during the point marking procedure, is found to be an efficient
approach. Chan and Zikatanov [58].considered a new and rather simple technique
for defining nested coarse spaces and the corresponding interpolation operators
based on the graph-theoretical approach The goal is to construct a coarse grid using
only the combinatorial (not the geometrical properties) of the graph of the
underlying fine grid. This coarse grid is formed by groups of elements and called
agglomerated macro elements. Okamoto, Nakahashi, Obayashi [59] propose a new
agglomeration algorithm to generate coarse grids for MG methods on unstructured
and hybrid grids. The algorithm, which is called a global coarsening algorithm, is
based on the edge coloring of the grids so that it can agglomerate any type of grids.
The edges marked according to the aspect ratio, which is calculated by using the
control volume comprising the two control volumes sharing each edge. Two control
volumes sharing the edge that give maximum aspect ratio are agglomerated into a

coarse control volume.
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2.2 The New Grid Coarsening Method Based on Quadtree / Octree Data

Structure

In this study, a new automated grid coarsening technique suitable for cell-centered
based hybrid/unstructured grid is developed for the MG implementation. The aim is
to group the finest mesh cells such a way that new generated levels and
corresponding cells have good aspect ratio. The new grid coarsening technique
relies on the agglomeration of hybrid/unstructured cells based on their distribution
on a quadtree and octree data structure for 2D and 3D applications, respectively.
This agglomeration strategy or point removal algorithm can be defined as globally
coarsening method by merging cells according to parent quadrant/octant or sub-

groups.

2.2.1 Overview of Quadtree / Octree Approach

Hierarchical data structures are becoming increasingly important representation
techniques in the area of computer graphics, image processing, computational
geometry, geographic information systems, and robotics. They are based on the
principle of recursive decomposition method. One such data structure is the
quadtree or octree [60]. The term quadtree or octree is used to describe a class of
hierarchical data structures whose common property is that they are based on the
principle of recursive decomposition of space. The most investigated quadtree /
octree approach for region representation is based on the successive subdivision of
the image array into four equal-sized quadrants / eight equal-sized octants. If the
array does not consist entirely of 1's or entirely of O's (i.e., the region does not cover
the entire array), it is then subdivided into child quadrants or octants until blocks are
obtained (possibly single pixels) that consist entirely of 1's or entirely of 0's; that is,

each block is entirely contained in the region or entirely disjoint from it.
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Thus the region quadtree can be characterized as a variable resolution data
structure. For example, consider the region shown in Figure 2.1-a, which is
represented by the 2° by 2° binary array in Figure 2.1-b. Observe that the 1's
correspond to picture elements (termed pixels) that are in the region and the 0's
correspond to picture elements that are outside the region. The resulting blocks for
the array of Figure 2.1-b are shown in Figure 2.1-c. This process is represented by a
tree of degree 4 (i.e., each nonleaf node has four children). The root node
corresponds to the entire array. Each child of a node represents a quadrant (labeled
in order NW, NE, SW, SE) of the region is represented by that node. The leaf nodes
of the tree correspond to those blocks for which no further subdivision is necessary.
A leaf node is said to be BLACK or WHITE, depending on whether its
corresponding block is entirely inside or entirely outside the represented region. All
nonleaf nodes are said to be GRAY. The quadtree representation for Figure 2.1-c is

shown in Figure 2.1-d.

The octants and octal tree can be also characterized as given in Figure 2.2. It is
observed that this process is represented by a tree of degree 8 (i.e., each nonleaf

node has eight children).
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Figure 2.1 A region, its binary array, its maximum block and the corresponding
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2.2.2 The Algorithms of Grid Coarsening Method Based on Quadtree /
Octree Data Structure

The grid coarsening algorithm can be divided in two steps. The first step is to form
the quadtree or octree data structure hierarchy of the input grid file. Then the
grouped fine meshes are agglomerated to create the coarse grid mesh. To obtain the
higher coarse grid level, the parent/child structure, which are formed during the data

structure hierarchy, is used.

2.2.2.1 Forming Quadtree / Octree Data Structure Algorithm

The quadrant or octant cells are created as imaginary cells over the cell domain such
a way that each quadrant covers maximum of four; each octant covers maximum of
eight cell center points. In other words, the quadtree / octree approaches are used for
grouping the finest mesh cells so that new generated levels and corresponding cells

have good aspect ratio. A sample quadtree structure is presented in Figure 2.3.
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Figure 2.3 A sample quadtree structure
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The flowchart of quadtree / octree data structure algorithm (subroutine
FORMQUADTREE or FORMOCTREE) is presented in Figure 2.4 and formation

the data structure algorithm for coarsening is described as follows:

Define the Top Quadrant / Octant

h

Get a New Cell

-

h

Place It to the Top Quadrant/

Octant
v
Check Localize the
ec Cell in
fravel Downihe e o if the Quadrant / Quadrant /
n ctant is Activ Octant
YES
Form 4 MNew Quadrants /8 Check
New Octants by Dividing the [+—YES If the Quadrant is NO
Parent Quadrant / Octant Full
Figure 2.4 The flowchart of forming quadtree/octree
1. The limits of the domain are found, the maximum length of domain

and cell center nodes are defined. The schematic view of the cell centered

nodes around an ellipse in 2D domain is presented in Figure 2.5.

2. The edge length of the largest quadrant/octant is defined as the

maximum length of domain.
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3. One cell center node point is selected. Starting from the largest
quadrant / octant, the appropriate quadrant / octant where the cell center is
located is found. The schematic view of quadrants and the cell center node

distribution on quadrants is given in Figure 2.6.

a) If the quadrant/octant is deactive (has divided already) (subroutine
GODOWN);

I. The quadrant / octant is divided into 4 or 8 (North-east,
north-west, south-east, south-west and upper and lower

position in 3D)

ii. The child quadrant/octant is found according to position of

the cell center node in processing

iii. The limits of the domain are changed according to the

position of the cell center point

v, Returns the decision without changing cell-center node in

processing
b) If quadrant/octant is full (subroutine NEWQUAD);
I. The quadrants/octants are deactiveated.
ii. The new quadrants/octants are generated.

iii. The cell centers, which are allocated before according to
position of cell center location, are distributed (subroutine
FINDPOS)

iv. Subroutine GODOWN is called with the cell center node in

process
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c) If quadrant/octant is active (the number of cell center of quadrant is

less than 4 or octant is less than 8)

d by one.

IS INCrease

The number of cell center nodes
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quadrants

2.2.2.2 Agglomeration Algorithm

During grouping of the finest mesh cells according to quadtree / octree data

structure, the quadrant / octant deepness level and parent-child relationship are also

stored for creating coarse grid levels. The second coarse level is generated by
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agglomerating the cells belongs the same active quadrant / octant which is located
at the end of the tip of the tree. The higher coarse grid levels are generated
according to deepness level of quadrant. The child cells of the quadrant which is
stated at defined deepness level are agglomerated and the coarse meshes are created

for the coarse level grids.

The flowchart of coarsening algorithm (subroutine COARSENING) is presented in
Figure 2.7 and the coarsening algorithm according to parent/child hierarchy can be

described as follows:

Set Coarse Grid Level L =1

l

Set the Max Quadtree/Octree Depth N

h 4

Start from the Bottom of the Tree

¥

. Take a Quadrant / Octant S ——h L0

Check
If the Grid
Coarsening Ratio
is Proper

Check
if All Quadrants /
Octants are
processed

Check If the
Quadrant / Octant is
Already Processed

YES

Store
Coarse Grid

If the Depth
of Quadrant / Octan,
is N

Level L

L=L+1 |

YES YES
! '

Agglomerate All the Cells in the Parent Quadrant / Octant
and Mark Them as Processed

Figure 2.7 The flowchart for the coarsening algorithm

45



1. The maximum / minimum deepness level of active quadrants is

found and the quadrants are ordered from the highest to lowest deepness

level.

2. The delta of deepness level from the tip of the branch according to

coarse grid level is defined.

3. One quadrant/octant is considered. If this quadrant/octant is active
and is not proceedede before, it is evaluated. (subroutine CELLGROUP);

a) If delta of deepness level is O;

The quadrant/octant which is in process is indicated by a
flag.

The quadrant/octant is dropped from the quadrant/octant

pool.

The active or deactive quadrant/octants are checked. If
quadrant/octant is active, the child quadrants/octants are
dropped to the pool and the original quadrant/octant are
erased until all quadrants are active. Then the cells from all
active quadrants/octants are collected. (subroutine
COLLECT)

b) If delta of deepness level is not 0;

The parent of the quadrant is found according to delta of

the deepness level

The parent quadrant/octant is checked whether it is
preceded before or not. If it is already proceed, the flag is

put to show that quadrant/octant is not in process.
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ii. If the parent is not proceeded, the deepness level of childs
belongs to the parent quadrant/octant is checked. If the
deepness level of all children higher that the quadrants that
is in process, the delta deepness level is decreased and the
process is repeated from finding the parent. If the deepness
level of all childs is equal or less then the quadrants that is

in process, COLLECT subroutine is repeated.

4, If the quadrant/octant is in process according to flag, the cells are
designated (subroutine DESIGNATION) with taking the first cell. The cells
that are grouped is checked whether that is irregular (no common edge / face

with the other cells) or not.

a) If the cell is irregular, the sub-groups of cells which are regular
inside are created (subroutine REARRANGE). Then DESIGNATION
process is repeated the with the sub-groups.

b) If the cell is not regular, the common edges/faces are erased and the
left and right cell number of active edges/faces are defined (Subroutine
ARRANGE).

5. The ratio between the size of candidate coarse grid level and the

previous (stored) coarse grid level is checked.

a) If the ratio is less than the desired ratio, the candidate coarse grid
level is accepted and, the coarse mesh properties are calculated and
stored (subroutine POST).

b) If ratio is greater than the desired ratio, the delta of deepness level is
increased and CELLGROUP subroutine is repeated.
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6. If the coarse grid level is prepared, the coarsening level and the delta of
deepness level are increased, and CELLGROUP subroutine is repeated.

To demonstrate the octree data structure, an unstructured grid over the cube is
prepared. The volume and surface meshes are shown in Figure 2.8. This grid
consists of 17,047 nodes and 97,451 cells. 1,660 cells lie on the cube surface. The
four agglomerated coarse grid levels are derived by octree based agglomeration
coarsening algorithm and they contain 37,322 — 14,374 — 4,676 and 647 cells from

second to fifth grid levels, respectively.

The volume cell bounds on the faces of cube are demonstrated (red color) at each
coarse level in Figure 2.9. It is obviously seen that, the octree data structure is
formed and the octree based coarser grids have characteristics similar to Cartesian
grids with good aspect ratios. The cubic volume becomes larger at higher levels of

coarsening similar to Cartesian volume meshes.
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Figure 2.8 Volume and surface meshes around cube

48



S
ah,
-

we
-7

g ISOSD
i

VSISV SIS
Y

Y N SANATAYATAY,
S
-

[~
=
ol

Grid level 2

A

N

.

/N
i

.'E
s
g
S4217
o
g

B Y

SHAVEVENLY,

]

Grid level 4

S N
TN
% 4%‘“ '

ol
"ﬂ‘*ui ~

; v\

T
At
A

N/
Args .
B
AR Al
,#’4&?,4

o
A TAY AV 4o
A N
AYAYAVAV AN L
|

WAV AN
B AV A o

Y,
Y AR Y

<7,

AV STATEY

7

Grid level 3

RS

B T )
o a2 B B

ATAY
N

PN
A S

|
W
7 ViV EWAT

e

NN

Vall %

Grid level 5

Figure 2.9 The coarse level grids on surface of cube.

49




CHAPTER 3

MULTIGRID IMPLEMENTATION

In this chapter, two dimensional and three dimensional Euler/Navier Stokes
Equation flow solvers, SENSE2D and SENSE3D developed by TUBITAK-SAGE
are explained as the baseline solver. After briefing the properties of solver, the
modifications for the flux calculation and MG adaptation are presented with
validation of modification. In the last section, the algorithms of all MG routines
(FAS application, cycling adaptation and transfer operators between grids

algorithms) with their flowcharts are explained.

3.1 The Baseline Euler / Navier Stokes Equation Flow Solver

The viscous flow solver, SAGE Euler / Navier Stokes Equation Solver (SENSE)
which is a computational fluid dynamics solver developed by TUBITAK-SAGE, is
taken as the baseline flow solver in this thesis. It is a hybrid / unstructured finite
volume method (FVM) solver. Flow variables are stored at cell centers and second
order Roe’s upwind flux computations are employed. The time dependent equations
are solved explicitly using the third order Runge-Kutta method with variable time-
stepping. The methods used at the two dimensional version called SENSE2D and
three dimensional version called SENSE3D are summarized in the following

sections [13].

50



3.1.1 Numerical Discretization Technique

SENSE2D/3D solver is formulated by using Finite Volume Method (FVM) that is
based on the physical concept of using macroscopic control volumes to numerically
solve the conservation laws of fluid motion. The use of integral form of the
governing equations is the basis of FVM. The direct discretization of the
conservation laws in integral form ensures that the mass, momentum and energy are
conserved over discrete control volumes. FVM takes full advantage of an arbitrary
mesh, where a large number of alternatives are available for the definition of the
control volumes for conservation laws. Its success is based not only on its relative
simplicity as compared to Finite Difference Method (FDM) and Finite Element
Method (FEM) approximations, but also on its flexibility and ability to unite ideas
from FEM with those from FDM.

There are mainly two approaches for the approximation of mass, momentum,
energy fluxes over the surface of control volumes in computational domain: cell

vertex and cell centered schemes.

In the cell centered formulation which is used in SENSE2D and SENSE3D solvers,
the flow properties are directly calculated at the center of the computational cell
which itself is the control volume for finite volume discretization, Figure 3.1. This
eliminates the need for the control volume generation affords. The most important
disadvantages of the cell centered formulation is the requirement for finite element
approximations to distribute the variables to the nodes, which may bring additional

numerical errors to the results.
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Figure 3.1 2-D and 3-D cell centered median dual cells

3.1.2 Numerical Scheme

SENSE2D/3D solver is based on upwind differencing which utilizes the
propagation of information within a mesh in accordance with the theory of
characteristics in constructing type-dependent differencing for components of the
information traveling in opposite directions in a separate and stable manner. There
is no need of scalar artificial dissipation formulas in upwind methods which are
necessary for second order central schemes to damp odd-even oscillations generated
especially in the vicinity of discontinuities. By using high order upwind methods,
shocks and expansion waves that are observed in high speed compressible flows can
be detected in a very sensitive and accurate manner. Although this approach is more
difficult than central differencing in computational sense, it brings the advantages of

being more robust, having high convergence speed and requiring less user
interaction.

In the flux-difference splitting schemes, Riemann problem on the cell faces are

solved locally. The conservative variables are taken as piecewise constant over the
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cells at each time step and time evolution is obtained by the solution of Riemann
problem at the cell faces. By this way, exact contributions of local Euler equations
are introduced to the numerical schemes which make sense in physical point of
view. Another important advantage of upwind schemes was that with the flux-
difference splitting scheme of Roe, the resolution of boundary layer details typically
requires only half as many points as with a central differencing code.

There exists basically two types of time stepping algorithms used both for
integrating governing flow equations in time to obtain steady state solution and for
unsteady applications: explicit and implicit time stepping algorithms. Although
implicit algorithms offer more stable and faster results, they have the shortcoming
of large amount of memory usage. Also, the implementation of implicit time
stepping algorithms especially for viscous flows is quite complicated. Most
commonly used method of time discretization technique which is explicit in nature
and of a high order of accuracy is the Runge-Kutta method. It achieves the accuracy
of a Taylor series approach without any need for the evaluation of higher order
derivatives. Explicit Runge-Kutta method is among the oldest and best-understood
schemes in the numerical analysis. The simplicity of explicit Runge-Kutta formula

lies in its self-contained, one-step nature.

3.1.3 Computational Grid

In order to eliminate the difficulty in generating high quality unstructured viscous
meshes within the boundary layer with the available grid generation tools, hybrid
grids can be used. Hybrid grids offer usage of structured high quality grids in the
vicinity of boundaries and usage of unstructured grids where dense mesh is not
required. By so, it is possible to obtain a computational mesh which is dense enough
to observe the boundary layer and which is small in terms of number of elements,
i.e. less memory usage and higher computational convergence rate. In Figure 3.2,
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high quality viscous structured mesh near a wall boundary with smoothly growing
unstructured mesh up to the far field is presented.

Figure 3.2 Hybrid/unstructured grid

3.2 Baseline Solver Modifications

The theory behind the baseline solver is explained in Section 3.1. For easily
adaptation of MG application, it is decided to change SENSE solver flux calculation
algorithm by changing the cell based loops to edge/face based loops without
changing the cell centered scheme. By doing so, due to the nested coarse grid
levels, which are obtained by using the agglomeration coarsening method, the
information can be easily transferred between grid levels. The second advantage is
that, following the edges/faces instead of cells needs less memory and it is time
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consuming by making calculation once at each edges/faces instead of two from both

sides of cells. For 2D and 3D applications, all routines are updated according to

edge/face loop and cell information is supplied by keeping only left and right

neighbor cells of each edge/face.

The second modification on the baseline solver is implementation of coarsening and

MG routines. In this modification, required variables are updated to carry the

information with the level variable.

During these modification studies, the following changes are made in both 2D and

3D solvers:

The input file is modified to render more user friendly (An input data file

format is updated and a sample file is given in APPENDIX A).

New default grid data file named grid_level_1.dat is added to obtain the
parallelism with the coarse grid levels about edge/face numbering.

The boundary condition code number is revised to put in a sequence with

negative numbering.

The output information file is prepared for configuration management ( A
sample output info file format is given in APPENDIX B).

The residual calculation for density, x velocity, y velocity, energy and

turbulent viscosity are added.

The mesh conversion algorithm is implemented from the generic format

(*.neu) to default formats is implemented.

A mesh connectivity output file is prepared to speed up the code when same

grid is used for different flow parameters
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3.2.1 Modifications about Flux Calculation

The executable that has been named as “MASTER” is first updated by changing the

cell based loops to edge/face based loops. MASTER performs the following jobs in

sequence. The flowchart of the solver is also presented in Figure 3.3.

1.

The size of the computational mesh is read and the memories to the

arrays are allocated (subroutine GETSIZE).

2.

The necessary input file which consists of properties about the

solver, flow, grid, multigrid, parameters and files for initialization and

finally iteration informations is loaded (subroutine CONFIG).

3.

4.

The computational mesh is loaded (subroutine GRID):

a) The existence of the input file is checked. If default input file
(grid_level_1.dat) exists, the mesh and connectivity are read. (subroutine
READGRID). If it does not exist, the generic input file is converted
(mesh.neu) to grid_level 1.dat and prepares the mesh and connectivity
(subroutine MESHCONVERSION).

b) The boundary condition inputs are checked and the inputs of

boundary conditions are updated.
c) The neighbors of each of cell are found (subroutine FINDNEIGH).

d) The numbers of each of the computational edges / faces are
designates and the right and left cell numbers of each edges/faces are
stored (subroutine FINDNEIGH).

The geometric properties of edge/faces (length/area, sinus and cosine

value, midpoint location) and cell areas/volumes are calculated (subroutine
SETGEOM).
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5. The computational mesh with side slip angle g and angle of attack

a is rotated to make the global x-axis coincident with the axis of trajectory

if & or g isnotequal 0° (subroutine TROTATE).

6. The computational domain is initialized with free stream conditions
or from the result of previous calculations (subroutine INIT).

7. The wall distances of each cell of domain are calculated for the
Spalart-Allmaras turbulence model (subroutine WALLDIST).

8. The flow solution is iterated for one step of iteration (subroutine
STEP).

a) The pressure values from conservative variables are calculated
(subroutine PRESSURE).

b) The local or global time steps for each cell are calculated at each
iteration steps (subroutine CALDTL).

c) The third order Runge-Kutta time stepping algorithm is started
(subroutine RK3). Each of the following three steps of this algorithm is

applied to every computational cell:

i.  The values of conservative variables are evaluated at cell
edges / faces, i.e. defines the left and right states at cell faces
(subroutine QFACE).

ii.  The boundary conditions to right state of the cell edges / faces

are intoduced (subroutine BC).

iii. The flux differences for edge/ face fluxes based on edge/face

loop are computed (subroutine ROE).
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iv. The viscous fluxes at each edge / face based on edge / face
loop are computed (subroutine VISCOUS).

v. The fluxes for each cell based on edge / face loop are

calculated.

vi. Implicit residual smoothing is applied (subroutine
SMOQTH).

vii. The pressure values from conservative variables are
calculated (subroutine PRESSURE).

d) The next third order Runge-Kutta time stepping algorithm are started
for the calculation of the turbulent viscosity after one full step Runge-
Kutta time stepping algorithm is finished for conservative variables
(subroutine SPALART).

e) The screen output or saving frequency is checked and if required, the
residual for each  partition are calculated  (subroutine
RESCALCULATION). The aerodynamic coefficients are evaluated by

integrating the pressure values over wall surfaces (subroutine LOADS).

f) The information file of the solution includes date, solver properties,
flow and grid properties, MG properties, results with computational and
CPU time, number of iteration or cycle, aerodynamic loads, logarithmic

residuals are prepared (subroutine OUT).

9. These steps are repeated until maximum number of iteration is reached

or a “stop” command comes from the “Master”.
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Figure 3.3 Algorithm for the baseline solver
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3.2.2 Validation of Updated Baseline Solver

To validate the new method in 2D, an unstructured grid over NACAQ0012 airfoil
with 9421 nodes and 18390 triangles generated for SENSE-2D solver as seen in
Figure 3.4. Both versions, the original solver called cell based loop during flux
calculation and updated solver called edge based loop during flux calculation, are
solved at a Mach number of 0.1, an angle of attack of 3° and a Reynolds number of
100,000. The residual is actually represented by the flux around the boundary of
control volume and is therefore related to the conservative variables. For this
reason, L2norm residual (which shows the sum of flux calculation of all variables)
is used for comparing the versions of the solvers. The results for the inviscid flow
are obtained by using first order discretization and residual history is presented in
Figure 3.5. It is seen that both 2D solvers are exactly equivalent to each other.
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Figure 3.4 2D unstructured grid over a NACA0012 airfoil
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Figure 3.5 Residual versus the number of iterations for 2D validation

For SENSE-3D solver, an unstructured grid around an ONERA M6 wing (shown in
Figure 3.6) having 255,156 nodes and 1,391,537 cells is used to validate the new
method. Both versions, the original code called cell based loop during flux
calculation and updated code called faced based loop during flux calculation, are
solved for a Mach number of 0.5. The results for the inviscid flow are obtained by
using first order discretization and residual history is presented in Figure 3.7. It is

also seen that both 3D solvers give exactly equivalent results.
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Figure 3.6 3D unstructured grid over an ONERA M6 wing
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Figure 3.7 Residual versus the number of iterations for 3D validation
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3.2.3 Modifications about Multigrid Adaptation

The main progam of the baseline code is modified according to MG
implementation. The grid coarsening algorithms that are FORMQUADTREE for
2D and FORMOCTREE for 3D presented in Figure 2.4 and COARSENING
presented in Figure 2.7 are implemented into the main program. These algorithms
are coded in a compact form and called if MG is active as indicated by red color in
Figure 3.8. FORMQUADTREE or FORMOCTREE subroutines are called after
reading grid properties and connectivity information. COARSENING subroutine is
called after calculating the geometric properties of edge/faces and cell
areas/volumes. The coarse level grid properties are calculated in this subroutine and
the deactive edges/faces are signed as “0” for responding coarse level. The
information about the left and right cell numbers of each active edge / face is stored

at each coarse level.

STEP subroutine is directly called if MG is deactive. If MG is active, MGRID
subroutine which will be defined as the following section is called by the STEP

subroutine with the level of coarsening information.

Finally, the other subroutines are modified to process the routines with checking
that the edge/face is active or deactive. If the edge/face is deactive, the process is
skipped and an active edge/face is sought. In addition, some arrays are updated to

store the information with the responding coarsening level.
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Figure 3.8 The updated algorithm for the baseline solver
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3.3 Multigrid Algorithms

For MG implementation, FAS scheme for solution, cycling strategies, (sawtooth, V-
cycle, W-cycle and FMG) transfer operators between grids, (restriction and
prolongation) and algebraic smoothers are prepared to implement MG capability to

baseline code.

3.3.1 FAS Algorithm

In the FAS scheme, all coarse grid levels are solved exactly at the same free flight
conditions using the same numerical discretization methods, CFL number and
boundary conditions as the fine grid solution. As an example, 3-level coarsening of
FAS concept explained at Section 1.1.3.2 is applied recursively and presented in
Table 3.1.
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3.3.2 Cycling Algorithms

Due to the simplicity and robustness, the fixed cycling strategy having a fixed
pattern of coarse and fine grids is preferred in this thesis. All common cycling

patterns, V-cycle, W-cycle and FMG, are adapted to the solver.

To operate the cycling routines, a compact executable program, called “MGRID”, is
prepared and adapted to baseline flow solver as shown Figure 3.3. MGRID master
routine aims the arrange level of solution according to cycling strategy and uses the
baseline solver subroutine for both fine and coarse level iteration. This subroutine

performs as the following sequence and its flowchart is presented in Figure 3.9.

1. The cycle logic is arranged for all kind of cycling strategies that are
V-cycle, W-cycle and preliminary stage of FMG. The logic of cycling is
modeled as 123454321 for V-cycle defined in Figure 1.3, 1234543454321
for W-cycle defined in Figure 1.4 with each digit showing the coarsening
level. 1 shows fine and 5 shows the 5th coarse grid level. FMG uses V-cycle
definition for the main part defined in Figure 1.5 (subroutine
CYCLEDEFINITION).

2. The preliminary stage of FMG is iterated if the desired cycling
strategy is FMG (subroutine PRECYCLE):

a) The repeat number of each V-cycles like 454, 34543 which constitute

the preliminary stage are defined according to cycle definition.

b) The coarse grid level number is defined starting from the initial V-
cycle definition and iteration step or transfer operators are addressed.

c) V-cycle that defined initially is iterated and V-cycle type is updated

by adding one level of finer grid.
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3. MG cycles are applied according to cycling definition (subroutine

MGCYCLE):

a)

The coarse grid level is defined from cycle definition and it is

compared with the prelevel that is already completed the process.

b)
direction),

If grid level is greater that the prelevel (towards to coarse

The flow parameters and residuals are restricted
(subroutine RESTRICTION).

The defined number of iteration is made and the solution is
obtained (subroutine STEP).

The prelevel is defined as level and the next grid level

number is chosen according to cycle definition.

If level is less that the prelevel (towards to fine direction),

The calculated errors for correction are prolonged
according to next finer grid level (subroutine
PROLONGATION).

The prelevel is defined level and the next grid level number
is chosen according to cycle definition.

4. The screen output or saving frequency is checked and if required, the
residual for each partition are calculated (subroutine RESCALCULATION)

and the aerodynamic coefficients are evaluated by integrating the pressure

values over wall surfaces (subroutine LOADS).

5. The info file of the solution includes date, solver properties, flow and

grid properties, MG properties, results with computational and CPU time,
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number of iteration or cycle, aerodynamic loads, logarithmic residuals are

prepared (subroutine OUT).
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Figure 3.9 Algorithm for the MGRID subroutine
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3.3.3 Intergrid Transfer Operators Algorithms

For 2D application, the area weighting rule and for 3D application, the volume

weighting rule is used to transfer flow variables from fine to coarse meshes, I,

Iy (u,) :% (3.1)

I (u,) = 2Vt (3.2)

zvcoarse

The residual is actually the fluxes around the boundary of control volume and is
therefore related to the time rate of change of conserved variables. In order for this
rate of change to be the same for all grids, it is necessary that the residual transfer

be conservative, that is, that the sums of the residual on the fine and coarse grids be
equal. For this reason, collection operator I,; does not use area/volume weighting,

but rafter just sums the residuals of finer meshes. These two collection operators

make up a process often called the restriction from one grid to a coarser grid.

The restriction and prolongation algorithms perform as the following sequences
respectively.

The conservative variables and residuals are restricted from fine to coarse
grid levels (subroutine RESTRICTION):

a)  The conservative variables of prelevels are appointed.

b)  The previous (finer) residual r, =(f, —r,) is updated as forcing

function values.

c)  The restricted new level conservative variables from finer meshes

that formed coarse mesh are generated by area/volume averaging.
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d)  The restricted new level residuals from finer meshes that formed

coarse mesh are generated by summation.

e) One iteration of flux calculation is made by restricted values
(subroutine FLUX).

f)  The forcing function of coarse meshes for the new coarse level is
prepared and the forcing function and the conservative variables are

stored as original forcing function with level information.

The conservative variables from coarser to finer grid levels are prolonged
(subroutine PROLONGATION):

a) The errors of conservative variables which are originally stored

during restriction are found (coarser level) (@™ —1'a™).

b)  The error values for the fine meshes that formed the coarse mesh

are designated by direct injection the error of coarse mesh.
c) If MG cycling type is sawtooth, the error smoothing is done.

d) The conservative variables of new coarse level are updated by

adding error values to conservative variables.

e) If MG cycling type is different then sawtooth type, the desired

number of iteration is done (subroutine STEP).

71



CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, the developed grid coarsening algorithm is applied to a variety of
grid structures to assess its performance and roboustness. The quadtree based grid
coarsening algorithm is used for two dimensional, octree based grid coarsening
algorithm is used for three dimensional grids. The performance of the multigrid
flow solvers, SENSE2D and SENSE3D which are modified, are investigated with
six validation and verification test cases. The time dependent equations are solved
explicitly using the third order Runge-Kutta method with variable time-stepping.

The solution algorithm proceeds by flux calculation on active edges.

Solutions of the validation cases are carried out on a HP Z600 Workstation. The
workstation is based on Intel Xeon X5570 2.93GHz 8MB 1333 FSB Quad Core
Processor with 12 GB 1333 MHz DDR3 ECC Registered RAM running under
Scientific Linux 5.3 operating system. X5570 series are using hafnium-based

Intel® 45nm hi-k metal gate silicon technology and Nehalem.

The flow cases studied in this thesis are listed at Table 4.1.
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Table 4.1 List of test cases

Case Dimension

Number

Casel |2D An inviscid flow solution over NACAQ012 airfoil

Case2 |2D A laminar flow solution over NACAO0012 airfoil

Case3 | 2D A turbulent flow solution over RAE2822 airfoil

Case4 | 3D An inviscid flow solution over ONERA M6 wing

Case5 |3D A laminar flow solution over a wing with NACAQ012
airfoil

Case6 | 3D A laminar flow solution over a wing with RAE2822 airfoil

The MG adaptation is first presented for an inviscid 2D solution over a NACA 0012
airfoil section with an unstructured grid. In the first part of this validation case, the
coarse grids, which are generated by the automated quadtree based grid coarsening
algorithm are presented. Then the efficiency of MG strategy on inviscid flow with
different cycling strategies are investigated with convergence speeds. In the solution
process, V-cycle, W-cycle and FMG multigrid strategies are applied and the
normalized continuity residual and convergence of the aerodynamic coefficients are
investigated with respect to CPU time. In the second part, MG efficiency is
investigated for different angle of attacks at a Mach number of 0.15 and different
Mach numbers at angle of attack of 3°. The density residuals convergence histories

are demonstrated for the flow parameters.

The second validation case, a hybrid/unstructured viscous type 2D grid over an
NACAOQ012 airfoil section is taken as a root grid and the laminar solutions are

obtained at low Reynolds numbers. Then, the MG efficiencies with respect to the
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grid level number, the coarsening ratio and the iteration count at coarse level

solutions are investigated.

In the third validation case, the automated grid coarsening algorithm is applied to a
hybrid/unstructured viscous type grid over an RAE2822 airfoil section. Then
viscous flow solution with one equation Spalart Allmaras turbulence model at a

transonic Mach number is obtained by using a single grid and V-cycle MG solution.

The fourth validation case that is the first validation case of 3D MG adaptation is
presented on an inviscid 3D solution with an unstructured grid over well known
validation geometry, ONERA M6. In the first part of this test case, the coarse grids
which are generated by the automated octree based grid coarsening algorithm are
presented. Then, MG efficiency with different cycling strategies are investigated
based on convergence speed ups. In the solution process, V-cycle, W-cycle and
FMG multigrid strategies are applied and the reduction of normalized density
residual and the convergence of aerodynamic coefficients are investigated with
respect to CPU time. In addition, the MG solution efficiencies based on the iteration

count at coarse level solutions are investigated.

In a fifth validation case, flow solution for a NACAOQ012 airfoil on a 3D structured
type grid is presented. First, the coarsening algorithm is applied to this structured
grid and the coarse grid levels are presented at surface and symmetry plane. Then,
the convergence of variations is investigated with convergence speeds on laminar
flow at low Reynolds number. In this test case, the MG efficiencies about the
iteration count at coarse level solutions are again investigated in the third part to see
the effect of solver type. Finally, MG efficiencies which are depent on the grid level

number and solver type used at coarse grid levels are presented.

Finally, the automated grid coarsening algorithm are applied a hybrid/unstructured
viscous type grid over a 0.2 chord wing with RAE2822 airfoil section. Then laminar
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flow solution at transonic Mach number is obtained by single grid and FMG

solution.

4.1 Case 1: An Inviscid Flow Solution over NACA0012 Airfoil

4.1.1 Grid Coarsening

Validation of the grid coarsening algorithm is performed on a 2D unstructured grid
for NACAO0012 airfoil with 9421 nodes and 18390 triangles shown in Figure 4.1.
An automated quadtree based grid coarsening algorithm is implemented to
unstructured grid around a NACAO0012 airfoil and quadtree structure is presented in

Figure 4.2.
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Figure 4.2 Quadtree structure for case 1
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A sequence of four coarse hybrid grids is generated with a maximum coarsening
ratio of about 40 %. The connectivity information between grids is obtained from
the data structure. The fine grid and coarser grids for MG levels with 3204, 1118,
441 and 156 cells from second to fifth grid levels are presented in Figure 4.3.
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The coarsening behavior around the airfoil is also seen from the close-up view
shown in Figure 4.4. When the coarse grid levels are investigated, the coarse
meshes have high quality cells with aspect ratios of about unity like Cartesian type
grids. The coarsening ratio effect is seen around the airfoil very clearly. In addition,

the coarse level grids keep the original anisotropic grid distribution at all coarse

levels.
08 0g
0B 0B
04 ¢ Y)Y 04 g
0z 0z
= 0 o 0
02 -0.2
04 L3 .
04 kit S .
0a - 06
nsa -08
04 02 0 02 04 0B 08B 1 12 14 04 02 0 02 04 06 08 1 12 14
X X
Level 2 Level 3
08 08
06 06
i ST
04 04
02 02
> 0 = 0
02 0z
04 04
0B 0B
08 -08
04 02 0 02 04 0B 08 1 12 14 04 02 0 02 04 08 08 1 12 14
X X
Level 4 Level 5

Figure 4.4 Coarse grid levels (close-up view) for case 1
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4.1.2 MG Efficiencies on Inviscid Solution

The single grid solution at a low Mach number of 0.15 and at an angle of attacks of
3° is obtained using the first order flux computations with a CFL number of 0.9.
The same solution is then obtained by applying V-cycle, W cycle and FMG
algorithms with 20 time steps at the fine grid level and 10 time steps at coarse grid
levels. The density distribution around the airfoil obtained from the single grid is
presented in Figure 4.5.Then, the distribution of the pressure coefficient computed
by the single grid and V-cycle MG, which reached the exactly same results, is given

in Figure 4.6.
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Figure 4.5 The density distribution around NACAOQ012 airfoil for case 1
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Figure 4.6 Distribution of the pressure coefficient around NACAQ012 airfoil for

case 1

The convergence histories of the single grid, V-cycle, W cycle and FMG cycle
solutions in terms of the variation of the normalized density residual are presented
in Figure 4.7. It is seen that, all multigrid solutions exhibit nearly the same converge
rate as expected and they are approximately 10 times faster than the single grid

solution without the MG. Such convergence acceleration is in agreement with the

findings in literature [61]
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Figure 4.7 Residual histories of single and MG solutions for case 1

The MG cycling strategies only differ during the initial iterations as observed from
Figure 4.8. FMG uses a classical V-cycle after the preliminary stage. Therefore
classical V-cycle and FMG cycling strategies give nearly same residuals after 50
seconds. W-cycle uses the coarse level grids more heavily due to the logic of
cycling. For this reason, the initial convergence is slower than the other cycling
strategies. Finally,FMG gives the fastest convergence due to the preliminary stage

due to having preliminary stage of the strategy.
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Figure 4.8 Residual histories of MG solutions at initial stages for case 1

Then, the cycling strategies are investigated according to the convergence of
aerodynamic loads in Figure 4.9 for the solutions with and without MG. Like
residual convergence characteristics, the histories of the convergence of
aerodynamic loads are similar and reach the same value after a few number of

iterations.

The convergence of aerodynamic loads for all MG cycles is investigated again at
the initial stage of the solution in detail. Within the first few seconds, FMG reaches
the final value of aerodynamic loads very rapidly without any oscillations as shown
in Figure 4.10. V-cycle and W-cycle converge the same value all about the same
CPU time.
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Figure 4.9 Convergence histories of aerodynamic coefficients for case 1
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Figure 4.10 Convergence of aerodynamic coefficients at the initial stage for case 1
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The runtime needed to reach 20 %, 10 %, 5 %, 1 % and 0.1 % error bands of
aerodynamic force coefficients with all cycling types and fine grid solution is
reported and the lifting and drag force acceleration ratios to reach the above error
bands with respect to single grid in terms of CPU time (clock time) are calculated.
The nondimensional CPU time according to time needed for single grid and speed
up ratios are presented for drag and lift force coefficients in Figure 4.11 and Figure

4.12 respectively.
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Figure 4.11 CPU time and speed up ratio for the drag coefficient convergences to
reach 20 %, 10 %, 5 %, 1 % and 0.1 % error band for case 1
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Figure 4.12 Plot of CPU time and speed up ratio for the lift coefficient

convergences to reach 20 %, 10 %, 5 %, 1% and 0.1 % error band for case 1

It is be observed that it is enourmously fast to reach especially 20 % error bands for
the force coefficients for all MG cycling strategies. It is found that to reach 5 %
error band, the drag coefficients for V-cycle and FMG solutions have approximately
20 times, W-cycle solution has 9 times, the lift coefficients for all MG solutions

have approximately 5 times faster convergence ratio than the baseline solution.
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4.1.3 Dependence of Flow Parameters for the Inviscid Solution

4.1.3.1 Mach Number Dependency

MG efficiencies at low subsonic, subsonic and transonic flow solutions with Mach
number of 0.15, 0.3, 0.45, 0.6 and 0.75 at 3° angle of attack and Reynolds number
of 3,000,000 are investigated using the V-cycle strategy. The unstructured fine grid
over NACAOQ012 airfoil with 18390 cells and its coarse level grids are used.

The residual histories for all cases with and without MG algorithm are presented in
Figure 4.13. It is seen that MG solutions converge to the same residual value of
their fine grid solutions. Except the low subsonic case, having a Mach number of
0.15, all MG solutions converge at the same time. Therefore, MG solutions are
more efficient in terms of the residual convergence, as the Mach number is
decreased. Although, MG solution at low Mach numbers is slightly different than
the other solutions, it is still very efficient when compared to the single grid

solution.
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Figure 4.13 Residual histories of single grid and MG solutions for a variety of Mach

numbers for case 1
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4.1.3.2 Angle of Attack Dependency

A set of angle of attacks, 0°, 3°, 6° 9° and 12° are studied at the same flow
conditions of Case 1. Like Case 1, the unstructured grid over NACAOQ012 airfoil
with 18390 cells and its coarse grid levels are used in this part. For comparison

purposes, V-cycle MG algorithm is applied to these inviscid cases.

The residual histories for all the cases with and without MG algorithm are presented
in Figure 4.14. It is seen that, the convergence rates are approximately the same and
do not depend on the angle of attack. In addition, the MG solution at 0° angle of
attack damps the oscillations similar to fine grid solution. The convergence histories

of aerodynamic loads also show similar characteristics at an angle of attack of 3°.
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Figure 4.14 Residual histories for the single grid and MG solutions for variety of

angle of attacks for case 1
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4.2 Case2: A Laminar Flow Solution over NACA0012 Airfoil

4.2.1 Grid Coarsening

The developed grid coarsening algorithm is next implemented on a 2D
hybrid/unstructured grid containing 23672 nodes and 33110 cells with
approximately boundary layer thickness of 0.08 m for 1 m chord length, as shown
in Figure 4.15. A sequence of four coarse level grids is generated with a maximum
coarsening ratio of about 40%. The coarse level grids for MG application have
5264, 1745, 636 and 237 cells.
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Figure 4.15 The boundary layer view for case 2
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The coarsening behavior around the airfoil is seen from the close-up view shown in
Figure 4.16. Like Case 1, the coarse grid levels have high quality cells with aspect

ratios of about unity similar to a Cartesian type grid. The coarse level grids keep the
original anisotropic grid distribution at all coarse levels.

Level 2 Level 3

Level 4 Level 5

Figure 4.16 Coarse grid levels (close-up view) for case 2

91



4.2.2 MG Efficiencies on Laminar Solution

This validation case is for laminar flow over NACAQ012 airfoil similar to Case 1 at
a low Reynolds number of 10000, a Mach number of 0.1 and an angle of attack of
3°. The solution using single grid is obtained using the first order flux computations
with a CFL number of 0.9. Then, the same solution is obtained by applying FMG
algorithms with 20 time steps at the fine grid level and 10 time steps at coarse grid
levels. The flow solutions at coarse grids for suppling the correction term to the fine
grid solution are obtained by using the inviscid solver. The velocity distribution and
boundary layer velocity profile, which are similar in the single grid and FMG
solutions, is presented in Figure 4.17.

o 0.5 1
X

Figure 4.17 The Mach number distribution and boundary layer velocity profile for

case 2
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The Mach number distribution in FMG solution at the coarse grid levels are

demonstrated in Figure 4.18. In addition, Mach distribution on coarse grid levels is

very regular since the original anisotropic grid distribution is kept at all levels.
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Figure 4.18 The grid (close up view) and Mach number distribution at coarse level

grids for case 2
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The convergence histories of the solutions in terms of the variation of the
normalized density residual are shown in Figure 4.19 and compared with the
convergence history of the single grid solution. As in the case of inviscid solutions,
the MG adaptation on laminar solution has very fast convergence capability with
respect to the single grid solution. A similar convergence rate is observed in the
variation of drag and lift force coefficients when the solutions with and without MG

are compared as shown in Figure 4.20.
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Figure 4.19 Residual histories of single and MG solutions for case 2
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Figure 4.20 Convergence histories of drag and lift force coefficients for case 2

The speed-up in the convergence of the drag and lift coefficients in fine grid level
without MG and FMG in terms of iteration step and in terms of CPU time (clock
time) is shown in Figure 4.21. Solution based on FMG is taken as a reference and
CPU times to reach 20 %, 10 %, 5 %, 1 % and 0.1 % error bands are recorded. It is
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seen that for viscous case, the single grid solution converges very slowly and,
therefore, MG solution acceleration rate is very efficient. Due to the initial
convergence speed of FMG, drag force coefficient reaches to 20 % error band, 97
times faster than the single grid solution. To reach 5 % error band, the drag and lift
coefficients in FMG solutions have approximately 25 and 4 times faster

convergence ratio than the single grid solution, respectively.
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Figure 4.21 Drag and lift coefficient convergence ratios with respect to time

iteration step and CPU time for case 2
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4.2.3 Effect of Coarsening Ratio between Grid Levels

In this part, the effect of coarsening ratio between coarse grid levels in MG
applications is investigated. Three set of coarse grid levels are generated with the
coarsening ratios of 25 %, 40 % and 55 %. The grid size of coarse grid levels is
tabulated in Table 4.2. The highest level coarse grids are shown in Figure 4.24,
Figure 4.23 and Figure 4.24.

Table 4.2 The grid size of coarse grid levels for coarsening ratios of 25 %, 40 % and

55 %
Coarsening Ratio
Level
Maximum 25% Maximum 40% Maximum 55%
2 5264 5264 15675
3 636 1745 5264
4 148 636 1745
5 29 237 636
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Figure 4.24 The highest coarse grid level having coarsening ratios of 55 % for case
2

The laminar flow solutions with different coarsening ratios using V-cycle MG at a
low Reynolds number of 10000, a Mach number of 0.1 and an angle of attack of 3°
are obtained. The convergence histories of the solutions in terms of the variation of
the normalized density residual are shown in Figure 4.25. It is seen that all coarse
grid levels with different coarsening ratio give approximately the same convergence
histories. However, as the coarsening ratio level is increased, load convergence
histories show oscillatory characteristics similar to the single grid solution as seen
in Figure 4.26. In addition, coarsening ratio of 40% gives the most rapid initial load

convergence without any oscillation.
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Figure 4.25 Residual histories of MG solutions with coarsening ratios of 25 %, 40

% and 55 % for case 2

100




1.4
1.2 N
{f \ - %25 coarsening ratio
1.0 i — %40 coarsening ratio
S | \ %55 coarsening ratio
— 08
c
]
-§ ; \
% 0.6 i \\
=]
E /
g 04
i} [\
LN
0.0 !
-0.2
0 5 10 15 20
CPU Time (s)
25
—%25 coarsening ratio
20 —%40 coarsening ratio
/\ %55 coarsening ratio
k=
2
£ 10 f
g \
8 /
[
3 05 /
i \
/
0.0 /
-0.5
0 5 10 15 20
CPU Time (s)

Figure 4.26 The convergence histories of drag and lift force coefficients for grid

coarsening ratios of 25 %, 40 % and 55 % for case 2
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4.2.4 Effect of Level Number on MG Efficiency

The efficiency of coarse grid level number on MG applications is investigated in
this section by using the coarse grid levels with the coarsening ratio of %40. The
laminar flow solutions are obtained with 2, 3, 4 and 5 grid levels using V-cycle MG
at a low Reynolds number of 10000, a Mach number of 0.1 and an angle of attack
of 3°. The convergence histories of the solutions in terms of the variation of the
normalized density residual and the load convergence histories are shown in Figure
4.27 and Figure 4.28 respectively. It is seen that MG solutions with different
number of coarse grid levels converge approximately at the same CPU time. 4-level
and 5-level MG solutions give similar characteristics in both residual and load
convergence histories except during the initial iterations. Finally, using high number
of coarser grid levels prevents the oscillatory characteristics coming from fine grid

solution.
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Figure 4.27 Residual histories of V-cycle MG solutions with different number of

coarse grid levels for case 2
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Figure 4.28 The convergence histories of drag and lift force coefficients with

different number of coarse grid levels for case 2
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4.25 Effect of Time Step Number at Coarse Grid Levels on MG Efficiency

The efficiency of iteration count at coarse grid levels is investigated in this section.
The alternatives are investigated in two groups. In the first group, the iteration count
is kept the same for fine and coarse grid levels. In the second group, the iteration
count is the same in the coarse level grids, but, it is doubled, twice iteration count at
the fine grid level. The iteration count alternatives are chosen as 5, 10, 20, 30 and

40 iteration counts at coarse levels.

The laminar flow solutions are obtained for all cases like previous sections using V-
cycle MG. The MG solutions with iteration counts of 30 and 40 in the first group
(i.e. 30 equal time step at fine and coarse grid levels) did not converge. Therefore
these alternatives are eliminated. The convergence histories of the solutions in terms

of the variation of the normalized density residual are presented in Figure 4.29.
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Figure 4.29 Residual histories of MG solutions for a variety of iteration count at

coarse grid levels for case 2

104



It is seen that, the second group solutions (with the number of iterations being
doubled at the fine grid level) are more preferable as long as the convergence of the
density residual is considered. The initial responses of MG solution with 20
iterations at coarse grid levels and 40 iterations at the fine grid level is the most
efficient when compared to the other alternatives. Although 30 time step alternative
converges (reaches normalized density residual of -12) more rapidly, it has

oscillatory characteristics and seems to be less robust.

Then, the load convergence histories for all alternatives are investigated and the
convergence histories of drag and lift forces are shown in Figure 4.30 by focusing
their initial behavior. It is seen that 30 iterations show different character than the
other alternatives especially for the convergence of the drag force. Solutions with
10 and 20 iterations show approximately the same character for the convergence of
the drag force. However, for the lift force, MG solution with 20 time iterations
accomodates oscillations over the initial part of convergence histories. The most
efficient iteration count for MG efficiency is found as 10 time steps at coarse grid

levels.
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Figure 4.30 The convergence histories of drag and lift force coefficients with a

variety of iteration counts at coarse grid levels for case 2
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4.3 Case3: A Turbulent Flow Solution over RAE2822 Airfoil

4.3.1 Grid Coarsening

The final 2D test case is a hybrid/unstructured grid over RAE2822 airfoil containing
89914 nodes and 130336 cells having a y+ value of 1, as shown in Figure 4.31. A
sequence of four coarse hybrid grids around a RAE2822 airfoil is generated with
again maximum coarsening ratio of about 40 %. The coarse level grids for the MG

application have 23638, 5323, 1853 and 679 cells. The highest level coarse grid is
demonstrated in Figure 4.32.
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Figure 4.31 The hybrid / unstructured grid for case 3.
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Figure 4.32 The highest level coarse grid for case 3
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Like the case studies in the previous sections, the coarse meshes have high quality

cells with aspect ratios of about unity similar to a Cartesian type grid.

4.3.2 MG Efficiencies on Turbulent Flow Solution

The flow field around the RAE 2822 airfoil has been computed for a free stream
Mach number of 0.729, an angle of attack of 2.31° and Reynolds number of 6.5
million. The single grid and FMG solutions are obtained using first order flux
computations with a CFL number of 0.1 using one-equation Spalart-Allmaras
turbulence model. The pressure distribution around RAE2822 airfoil is presented in
Figure 4.33 and compared with the experimental values taken from validation cases

given at www.cfd-online.org web site. It is seen that, the first order explicit solution

could not capture the shock location very accurately, which may be attributed to the
fully turbulent first order solution and the performance of the one-equation

turbulence model for transonic flows.
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Figure 4.33 Cp distributions around RAE2822 airfoil for case 3

Then, the same solution is obtained by applying V-cycle MG algorithm with 20
time steps at fine grid level and 10 time steps at coarse grid levels. The flow
solutions at coarse grids for supplying the correction term to the fine grid solution

are obtained by using inviscid solver.

The convergence histories of the transonic flow solutions in terms of the variation
of the normalized density residual are shown in Figure 4.34 and compared with the
convergence history of the single grid solution. It is apparent that V-cycle MG
solution when compared to baseline solution converges faster at least by a factor of
5.
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Figure 4.34 Residual histories of the single grid and MG solutions for case 3

A similar convergence rate is observed in the variation of drag and lift force
coefficients when the solutions with and without MG are compared as shown in

Figure 4.35.
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Figure 4.35 The convergence histories of drag and lift force coefficients for case 3

Solution based on FMG is taken as a reference value and CPU times to reach 20 %,
10 %, 5 %, 1 % and 0.1 % error bands are recorded. The lift force coefficient using

single grid did not converge exactly after 850000 time iteration. The speed-up ratios
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for drag and lift coefficients obtained by V-cycle MG and FMG are shown in Figure
4.36. To reach 5% error band, the drag coefficient has approximately 4 times, the
lift coefficient has approximately 6 times faster convergence ratio than the single

grid solution in both V-cycle MG and FMG solutions.
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Figure 4.36 Drag and lift coefficient convergence ratios with respect to time
iterations and CPU time for case 3
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4.4 Cased: An Inviscid Flow Solution over ONERA M6 Wing

4.4.1 Grid Coarsening

A very well known model, ONERA M6 wing, is used in many papers as a test case.
Pandya and Frink also used ONERA M6 wing geometry to obtain coarse level grids
for cell centered based tetrahedral unstructured grids using their volume
agglomeration technique [18]. This technique is described in two steps. In the first
step, all the fine grid cells attached to the body surface or a far-field boundary are
identified and merged with its neighboring cells to form a new coarser cell. After all
of these prioritized boundary cells are assigned to a coarser cell, an unassigned fine
grid cell on the agglomeration front is picked in a random order and merged with its
eligible neighbors to form a new coarser cell. The generated coarse level grids are

presented Figure 4.37.
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Figure 4.37 Coarse level grids generated by Pandya and Frink for ONERA M6 wing
[18]

An automated octree based grid coarsening algorithm developed in this study is
used for coarsening the unstructured grid around the same geometry, ONERA M6
wing. The fine grid level, shown in Figure 4.38, contains 255,156 nodes and
1,391,537 cells.
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Figure 4.38 Fine grid for case 4

A sequence of four coarser grids is generated with a maximum coarsening ratio of
40 % between the coarse grid levels having 546424, 99851, 31065 and 11456 cells
from second to fifth grid levels as shown in Figure 4.39. The connectivity
information between grids is obtained from the data tree via this parent / child
relationship. The coarser grids for MG levels are compared with the Pandya and
Frink’s study and it is seen that especially at high level coarse grids, which are
generated in this study keep the ratios of mesh sizes at fine grid level by grouping
the cells according to location of the octree deepness level. Doing so, the large sized
fine meshes become large sized coarse meshes and the number of fine mesh at each
coarse meshes are approximately the same. Finally, the octree based coarser grids
over the wing have again good aspect ratios and it produced better quality meshes at
coarse grid levels with respect to ones that are generated by using a globally
coarsening algorithm.
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Figure 4.39 Coarse grid levels for case 4
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Figure 4.37 Coarse grid levels for case 4 (continued)

4.4.2 Effect of MG Efficiencies on Inviscid Solution at Subsonic Mach
Numbers

The explicit single grid solution at a Mach number of 0.3 and an angle of attack of

0° is obtained by using inviscid, first order flux computations with a CFL number of
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0.2. The same inviscid solutions are also obtained using V-cycle, W-cycle and FMG
with 20 equal time steps at all grid levels. The Mach number distribution on the
wing and on the tip of the wing computed by the single grid is presented in Figure
4.40 and on the symmetry axis in Figure 4.41.

oy
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Figure 4.40 Mach number distribution on the ONERA M6 wing for case 4

Figure 4.41 Mach number distribution on symmetry axis for case 4
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The convergence histories of single grid, V-cycle, W cycle and FMG cycle
solutions in terms of the variation of the normalized density residual are presented
in Figure 4.42. It is seen that, all multigrid solutions exhibit approximately the same
converge rate as expected and converge very rapidly. MG solutions are
approximately 5 times faster than the single grid solution. Finally, it is noted that,
FMG solution reaches the converged result at the same time with V-cycle MG

without any oscillation.
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0 —V-cycle MG
W-cycle MG
-1 —FMG
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@
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Figure 4.42 Residual histories of single and MG solutions for case 4

Then, the convergence histories of aerodynamic loads given in Figure 4.43 are
investigated with and without multigrid solutions using V-cycle, W-cycle and FMG
cycling strategies. Like residual convergence characteristics, the convergence
histories of aerodynamic loads for MG solutions are similar and reach to at the same

values after a few numbers of iterations.
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Figure 4.43 Convergence histories of aerodynamic coefficients for case 4

The CPU times required to reach 20 %, 10 %, 5 %, 1 % and 0.1 % error bands of
aerodynamic force coefficients with all MG cycling types and the fine grid solution
are also analyzed and tabulated in Table 4.3 and Table 4.4
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. FMG solution is taken as a reference value and it is seen that the single grid
solution did not reach 0.1 % error band in 75,000 time steps. The speed up ratios
relative to the time required for the single grid solution are presented for drag and
lift force coefficients in Figure 4.45. It is observed that, the other MG cycling
strategies excluding the W-cycle reach to 1 % error band in the prediction of force
coefficients very fast, about 5 and 8 times faster than the single grid solution for the

convergence of drag and lift forces.

Table 4.3 The runtime required to reach 20 %, 10 %, 5 %, 1 % and 0.1 % error
bands of drag force coefficient

CPU time (seconds)
%
FINE V-cycle MG | W-cycle MG FMG

20 78,479 9,149 8,043 4,787
10 99,372 10,062 8,643 9,271
5 107,150 12,334 13,480 13,251

1 166,350 18,596 19,420 15,093
0.1 210,880 30,869 26,703 41,206

122



Table 4. 4 The runtime required to reach 20 %, 10 %, 5 %, 1 % and 0.1 % error

bands of lift force coefficients

CPU time (seconds)
%

FINE V-cycle MG | W-cycle MG FMG
20 185100 30869 57616 33736
10 203390 38966 66664 35926
5 218310 45780 76606 46080
1 254630 66625 104850 55583
0.1 - 101530 142560 88424
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Figure 4.44 Speed up ratios for the convergence of drag and lift coefficient to reach

20 %, 10 %, 5 %, 1 % and 0.1 % error band for case 4
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Figure 4.45 Speed up ratios for the convergence of drag and lift coefficient to reach
20 %, 10 %, 5 %, 1 % and 0.1 % error band for case 4

4.4.3 Effect of Iteration Time Step at Coarse Grid Level on MG Efficiencies

The efficiency of iteration count at coarse grid levels is investigated for three
dimensional inviscid solutions. The iteration step sizes are taken equivalent for fine
and coarse grid levels and MG solutions are obtained by 10, 20, 30 and 40 iteration
steps using V-cycle strategy. The convergence histories of the solutions in terms of
the variation of the normalized density residual are presented in Figure 4.46. It is
seen that, except for 10 iteration steps, all V-cycle MG solutions converge

approximately at the same time.
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Figure 4.46 Residual histories of MG solutions with a variety of iteration count at

coarse grid levels for case 4

Then, the load convergence histories for all alternatives are investigated and the
convergence histories of drag and lift force are shown in Figure 4.47 by focusing
the initial behavior of the solution. It is seen as the number of iteration steps are

increased, the number of oscillations and overshoots before convergence decreases.
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Figure 4.47 The convergence histories of drag and lift force coefficients for a

variety of iteration counts at coarse grid levels for case 4
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45 Case 5: Laminar Flow Solution over a Wing with NACAQ012 Airfoil

45.1 Grid Coarsening

An automated octree based data structure is next implemented on 3D fully
structured grid over a 0.25 chord wing with NACAQ0012 airfoil section. The fine
grid contains 679560 nodes and 640000 cells, as shown in Figure 4.48. A sequence
of four coarse hybrid grids is generated with again a maximum coarsening ratio of
about 40%. The coarse level grids for MG application have 152678, 60103, 16080
and 4506 cells. Coarse grid levels at the symmetry axis are presented in Figure 4.49,
while the surface meshes of fine and the highest level coarse grid are presented in
Figure 4.50.

RS R

Figure 4.48 The fine grid for case 5
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Figure 4.49 Coarse grid levels at the symmetry axis for case 5
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Figure 4.50 The surface meshes of fine and the highest level coarse grid for case 5

45.2 Effect of the MG Efficiencies on Laminar Flow

The single and MG solutions over a wing with NACAQ012 airfoil are obtained at a

low Reynolds number of 10000, a Mach number of 0.1 and an angle of attack of 3°

with CFL number of 0.1. V-cycle, W-cycle and FMG solutions are obtained with 20

time steps at all grid levels including the fine grid. For coarse grid iterations, the

inviscid solver is used but the calculated laminar face fluxes at fine grid level are

added as a constant term at active faces during flux calculations at the coarse grid

level.

The Mach number distribution and boundary layer velocity profile, which are

computed by the single grid and MG solutions, are similar to each other and they

are presented in Figure 4.51.
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Figure 4.51 The Mach number distribution and boundary layer velocity profile for
case 5
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The convergence histories of the solutions in terms of the variation of the
normalized density residual are shown in Figure 4.52 and compared with the
convergence history of the single grid solution. It is realized that, the residual
convergence behavior in two dimensional and three dimensional laminar solutions
are similar to each other. All cycling strategies give approximately same

convergence on laminar solutions except the initial stage of W-cycle.
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Figure 4.52 Residual histories of single and MG solutions for case 5

Then, the cycling strategies are investigated according to aerodynamic load
convergence in Figure 4.53 for the solutions with and without MG. Like residual
convergence characteristics, the histories of aerodynamic loads convergence are

similar and reach the same values after a few number of iterations.
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Figure 4.53 Convergence histories of drag and lift force coefficients for case 5

The CPU time needed to reach 20 %, 10 %, 5 %, 1 % and 0.1 % error bands of
aerodynamic force coefficients with FMG cycling type and the fine grid solution is

analyzed. FMG solution is taken as a reference value and it is seen that, the single
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grid solution did not reach 1 % and 0.1 % error band within 150,000 time steps. The
speed up ratios relative to time required for the single grid solution are presented for
drag and lift force coefficients in Figure 4.54. It is observed that, FMG solution
reach 5 % error band about 13 and 4 times faster than the single grid solution for lift

and drag forces, respevtively.
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Figure 4.54 Plot of speed up ratios of drag and lift coefficient convergences to reach
20%, 10%, 5% error band for case 4

4.5.3 Effect of the Solver Type at Coarse Level Solution on MG Efficiency

The turbulent MG solutions are obtained by solving the coarse levels by inviscid

solver. In this section, the effect of solver at coarse grid levels on MG efficiency is
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investigated. V-cycle MG solutions are obtained by solving laminar equations on

coarse levels at the same flow conditions which are given in previous section.

The convergence histories of both V-cycle MG solutions which differ at coarse
level solutions are presented in Figure 4.55. It is seen that, the residual convergence
behaviors for these two MG solutions are different and the residual of V-cycle MG
solution which has laminar solution at coarse levels did not reduce like the V-cycle
MG solution which has inviscid solution at coarse levels. It is concluded that the
errors coming from the coarse grid levels are fixed and they could not be reduced

by fine grid iterations.
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Figure 4.55 V-cycle MG solutions which differs at coarse level solution for case 4

Then, the solutions are investigated according to aerodynamic load convergence in
Figure 4.56. It is seen that, although both results converge to the same aerodynamic
parameters after some iterations, V-cycle MG solution which has inviscid solution

at coarse level give more efficient results.
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Figure 4.56 Convergence histories of drag and lift force coefficients obtained from
two types of V-cycle MG solutions for case 4
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4.5.4 Effect of Level Number on MG Efficiency

The efficiency of coarse grid level number on MG applications is investigated for
three dimensional problems in this section. The laminar flow solutions at a low
Reynolds number of 10000, a Mach number of 0.1 and an angle of attack of 3° are
obtained by using 2, 3 and 4 grid levels and compared to the solution with 5 grid
levels. The convergence histories of the solutions in terms of the variation of the
normalized density residual are shown in Figure 4.57. The same investigation is
presented in Section 4.2.4 for two dimensional laminar problems. The comparison
showed that, 5-level MG solution is more efficient for both 2D and 3D, but, the

efficiency of is more realizable in 3D laminar solutions.
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Figure 4.57 Residual histories of V-cycle MG solutions with different number of

coarse grid levels for case 5
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The load convergence histories of V-cycle MG solutions with different coarse grid
levels are shown in Figure 4.58. It is seen that 5-level MG solution is the most
efficient solution when the residual convergence history is considered. Finally,
using high number of coarser grid levels damps the oscillatory characteristics

coming from fine grid solution more successfully.
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Figure 4.58 The convergence histories of drag and lift force coefficients with

different number of coarse grid level for case 5
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455 Effect of the Iteration Time Step at Coarse Grid Levels on MG
Efficiency

The efficiency of iteration count at coarse grid levels are investigated for 2D
laminar solution in Section 4.2.5 and it found that the solution with 20 iteration
steps provides better convergence. In 3D inviscid flow solutions in Section 4.4.3, it
is found that the solution with 40 iteration steps provides best convergence. In this
section, the number of iterations for best convergence is again investigated for
laminar flows. The MG solutions with 10, 20, 30 and 40 coarse level iteration steps
using V-cycle strategy are studied. The convergence histories of the solutions in
terms of the variation of the normalized density residual are presented in Figure
4.59.
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Figure 4.59 Residual histories of MG solutions with a variety of iteration count at

coarse grid levels for case 5
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It is seen that, contrary to the 3D inviscid case, the solution with 20 iteration steps is
more successful in convergence histories when the variation of the normalized
density residual is considered. Therefore, 20 time steps at coarse grid levels should
be used for turbulent solutions and more iteration steps on inviscid solutions
whether it is two or three dimensional. This is due to the fact that the inviscid solver
is used at coarse grid levels for both inviscid and turbulent solutions. Therefore the

turbulent solution in fine grid should be updated more frequently.

4.6 Case 6: A Transonic Laminar Flow Solution over a Wing with RAE2822
Airfoil

4.6.1 Grid Coarsening

An automated octree based data structure is finally implemented on 3D
hybrid/unstructured grid over a 0.25 chord wing with RAE2822 airfoil section. The
fine grid contains 645718 nodes and 1570568 cells. The meshes on the wing and the
symmetry axis are demonstrated in Figure 4.60. A sequence of four coarse hybrid
grids is generated in this time with a maximum coarsening ratio of about 50%. The
coarse level grids for MG application have 655788, 154885, 33223 and 12067 cells.

Coarse grid levels at the symmetry axis are presented in Figure 4.61.
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Figure 4.60 The meshes on the wing and the symmetry axis for case 6
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Figure 4.61 Coarse grid levels at the symmetry axis for case 6

4.6.2 Effect of the MG Efficiencies on Laminar Flow

The single and FMG solution over a wing with RAE2822 airfoil are obtained at a
transonic Mach number of 0.729, Reynolds number of 6,500,000 and an angle of
attack of 2.31° with CFL number of 0.1. FMG solution is obtained again with 20
time steps at all grid levels including the fine grid. For coarse grid iterations, the
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inviscid solver is used but the calculated laminar face fluxes at fine grid level are
added as a constant term at active faces during flux calculations at the coarse grid
level. The pressure coefficient distributions over the airfoil, which are computed by
FMG solutions and the experimental values which are already given in Section 4.2
are presented in Figure 4.62. It is seen that, the first order laminar solution catched
the shock location but the strength of the shock is calculated less according to

experimental values.
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Figure 4.62 The pressure coefficient distributions over the airfoil for case 6

The convergence history of FMG solution in terms of the variation of the
normalized density residual is shown in Figure 4.63 and compared with the
convergence history of the single grid solution. It is realized that, the residual
convergence behavior in two dimensional and three dimensional laminar solutions

are similar to each other.
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Figure 4.63 Residual histories of single and FMG solution for case 6

Then, the solutions are investigated according to aerodynamic load convergence in
Figure 4.64 for the solutions with and without MG. FMG solution converges rapidly
like the other test cases, but it is seen that, in transonic flow regime, MG solution is

less efficient compared with the other laminar test cases.
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Figure 4.64 Convergence histories of drag and lift force coefficients for case 6
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CHAPTER S

CONCLUSION

In this thesis work, it is aimed to accelerate SAGE Euler / Navier Strokes Equation
Solver developed by TUBITAK-SAGE. While preparing the CFD tool,
unstructured-grid methodology was chosen for rapid aerodynamics analysis and
design of complex configurations. According to literature survey about unstructured
grids, there are many studies about accelerating the CFD studies, generally by
convergence acceleration techniques and parallelization techniques, rather than
solution technique directly. These acceleration techniques are invested and it is seen

that multigrid is likely to be the most effective technique to achieve this goal.

Since, the basic idea of a multigrid strategy is to accelerate the solution of a set of
fine grid equations by computing corrections on a coarser grid; it has been
successfully demonstrated for specially structured and Cartesian grid due to the
easy generation of the coarse grid levels. Besides, in the past decade, various
multigrid strategies have also been demonstrated for the unstructured grid flow
solvers. It is clearly seen that, the most difficult subject on implementation
multigrid strategy to code with unstructured grid is generating the coarse grid
levels. It is obviously seen that, the agglomeration coarsening approach is the most
powerful technique and is a widely used method due to being fully nested, easily
automated, no geometry loss and high solution accuracy. In an agglomeration
method, grid cells are fused together to form a smaller set of larger polygonal (or
polyhedral in three dimensions) control volumes. Since, it satisfies the requirement
of this study, agglomeration coarsening approach is chosen for generating coarse
grid levels. The main difficulty of agglomeration approach with unstructured MG

methods is the selection of the cells to be agglomerated.
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In this research, a novel grid coarsening method for hybrid/unstructured grids is
developed to provide an aspect ratio of the cells about one at all coarse grid levels.
The new grid coarsening technique relies on the agglomeration of
hybrid/unstructured cells based on cell center localization on a quadtree and octree
data structure for 2D and 3D applications respectively. This agglomeration strategy
or point removal algorithm can be define as globally coarsening method by merging
cells according to parent quadrant/octant or sub-groups. The coarsening algorithm
can be summarized in two steps. In first one, the quadrant or octant cells are created
as imaginary cells over the cell domain such a way that each quadrant covers
maximum four; each octant covers maximum eight cell center points. Then, the
finest mesh cells are grouped according to quadtree / octree data structure, in other
words the parent/child structure. The coarsening algorithm is automated and

implemented to baseline flow solver to make user-friendly.

Besides generating the coarse grid levels, the baseline flow solver is modified
during this study. The viscous flow solver, SAGE Euler / Navier Stokes Equation
Solver (SENSE) is a hybrid / unstructured finite volume method (FVM) solver,
flow variables are stored at cell centers and second order Roe’s upwind flux
computations are employed. The time dependent equations are solved explicitly
using the third order Runge-Kutta method with variable time-stepping. For easily
adaptation of multigrid application, it is decided to change SENSE solver flux
calculation algorithm by changing the cell based loops to edge/face based loops
without changing the cell centered scheme. By doing so, due to the nested coarse
grid levels, which are obtained by using the agglomeration coarsening method, the
information can be easily transferred between grid levels. The second advantage is
that, following the edges/faces instead of cells needs less memory and it is time
consuming by reducing calculation once for each edges/faces. After that, the
modifications are validated in two and three dimension by obtaining the same L2
norm residuals (which shows the sum of all variables flux calculation) at both

versions. Final modification on baseline flow solver about multigrid adaptation is
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adding the checking algorithm that shows the edge/face is active or deactive. If the
edge/face is deactive, the process is skipped and continues for the active edge/face.
Doing so, some arrays are updated to store the information with the responding

coarsening level.

Finally, the multigrid algorithms developed are implemented to the baseline code.
The full approximation storage scheme is chosen to directly handle non-linear
problems. In this scheme, the defect-correction term appears on the right-hand side
and it ensures that the fine grid problem is represented by the coarse grid
discretization. Therefore, fine and coarse grid levels are solved using exactly same
free flight conditions, numerical discretization methods, CFL number and boundary
conditions. Both coarse and fine grid equations converge to the same solution with
different accuracies. Due to the simplicity and robustness, the fixed cycling strategy
where has a fixed pattern of coarse and fine grid is preferred in this thesis. All
common cycling patterns, V-cycle, W-cycle and FMG, are adapted to the solver.
The restriction of the solution from a finer to coarser grid and the prolongation of
the correction from a coarser grid to a finer grid are implemented by using simple
injection. For 2D application, the area weighting rule and for 3D application the
volume weighting rule is used to restrict the flow variables. The restriction for
residual is just summing the residuals of finer meshes that form the coarse mesh.

The prolongation of errors from coarse to fine meshes are made by simple injection.

The performance of the developed grid coarsening algorithm is investigated with
six test cases with unstructured, structured and hybrid grids for both 2D and 3D.
The quadtree based grid coarsening algorithm is used for two dimensional, octree
based grid coarsening algorithm is used for three dimensional test cases. Firstly,
fully unstructured fine grids are used over NACAOQ0012 airfoil for 2D and ONERA
M6 wing for 3D. Then hybrid grid over NACAO0012 airfoil for 2D and structured
grid over a wing with NACA0012 airfoil for 3D which are suitable for low
Reynolds number laminar flow are preferred. Finally, a hybrid grid over RAE2822
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airfoil for 2D with very small initial boundary layer cells and a hybrid grid over a
wing with RAE2822 airfoil for 3D, which is suitable for laminar mesh for transonic
flow solution, are prepared. A sequence of four coarse hybrid grids for each grid is
generated with a maximum coarsening ratio of about 40% and 50 %. When the
coarse grid levels are investigated, the coarse meshes have high quality cells with
aspect ratios of about one like Cartesian type grid. The coarsening ratio effect is
seen around the airfoil very clearly. In addition, the coarse level grids keep the

original anisotropic grid distribution at all coarse levels.

Then the multigrid efficiencies of SENSE2D and SENSE3D are investigated using

three different solvers: inviscid, laminar and turbulent.

The performance of MG solution on inviscid flow solutions for 2D and 3D is
investigated in the first and fourth validation cases, using V-cycle, W-cycle and
FMG cycling strategies at subsonic flow conditions. For both dimension, all
multigrid solutions converge very fast in terms of the variation of the normalized
density residual and they are approximately 10 times for 2D and 5 times for 3D
faster than the single grid solution without the MG. The MG cycling strategies
shows vey similar behavior and especially at initial iterations, FMG gives the fastest
convergence. It is found that to reach 5% error band, the drag coefficients in MG
solutions have approximately 20 fold in 2D and 12 fold in 3D, the lift coefficients in
MG solutions have approximately 5 fold for both 2D and 3D faster convergence

ratio than the baseline solution.

The performance of MG solution on laminar flow solutions for 2D and 3D is
investigated in the second and fifth validation cases at low Reynolds number. It is
seen that for viscous case, the single grid solution converges very hardly and
therefore MG solution acceleration rate is very efficient. To reach 5% error band,
the drag coefficient in FMG solutions has approximately 25 fold for 2D and 13 fold
for 3D, the lift coefficient in FMG solutions has approximately 4 fold for both 2D

and 3D faster convergence ratio than the single grid solution. In addition the
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efficiency on laminar flow at transonic regime is investigated in the sixth test case
for 3D applications. The performance of MG strategy for this case is still very

efficient but it has less speed up ratio with respect to other laminar solutions.

The performance of MG solution on turbulent flow solutions for 2D is investigated
in the third validation cases at transonic Mach number. It is seen that, the explicit
turbulent flow solution restricted the CFL condition considerably. Furthermore, the
number of iterations for convergence is about one order of magnitude greater than
the laminar flow solutions. Finally, flow solution does not predict the shock location
accurately, which may be attributed to the fully turbulent first order solution and the
performance of the one-equation turbulence model for transonic flows. In addition
to that, to reach 0.1% error band, the drag coefficient in FMG solutions has
approximately 7 fold, the lift coefficient in FMG solutions has approximately 6 fold
faster convergence ratio than the single grid solution.

In the validation cases, the dependency of the multigrid solutions on the flow
parameters and MG variables is also investigated. The solutions at Mach number of
0.15, 0.3, 0.45, 0.6 and 0.75 are obtained at the same flow conditions and except the
low subsonic case, all MG solutions converge at the same time. Therefore while
decreasing Mach number; MG solutions are more efficient about residual
convergence. With respect to the angle of attack, 0°, 3°, 6°, 9° and 12° are studied
at the same flow conditions, the multigrid convergence rates are approximately
same and do not depend on the angle of attack parameter. The efficiency of
coarsening ratio between coarse grid levels on MG applications is investigated. It is
seen that all coarse grid levels with different coarsening ratio give approximately
same convergence histories, but, coarsening ratio of 40% gives the most rapid initial
load convergence without any oscillation. The efficiency of coarse grid level
number on MG applications is investigated using the coarse grid levels with the
coarsening ratio of %40. Since, using high number of coarser grid levels prevents
the oscillation characteristics coming from fine grid solution, 5-level MG solutions,
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especially in 3D applications, is more efficient on convergence. The efficiency of
iteration count at coarse grid levels on MG convergence is investigated. Since, the
inviscid solver is used at coarse grid levels for both inviscid and turbulent solutions,
the step number should be chosen according to solver. Although, 20 time step at
coarse grid levels gives most powerful results for turbulent solution, increasing the
step number in inviscid cases prevents the oscillations and overshoots before

convergence.

As an overall conclusion, the automated grid coarsening algorithm and multigrid
flow solvers are developed for unstructured/hybrid grids and cell-centered scheme.
It is shown that the computational cost is reduced significantly. As a future work it
can be stated that, the solvers should be updated by adding different type turbulence
models besides one equation Spallart Almaras model. In addition, especially for
three dimension applications, the parallel solving capability to multigrid flow solver
is absolutely necessary. Finally, on multigrid application, the variety of the transfer

mechanisms and turbulent solver techniques at coarse grid level can be increased.
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APPENDIX A

SAMPLE INPUT FILE FORMAT

1 --> Solver selection 1: Explicit, 2: Implicit

1 --> Solver order 1:1st order, 2:2nd order

1 --> Flux Algorithm 1: ROE, 2:HARTEN

0 --> Viscosity 0: Inviscid; 1: Laminar; 2: Spalart-Allmaras
0 --> Implicit Residual Smoothing 0: Closed; 1:Open

0 --> Time Step Selection 0: local, 1: global
0.5  --> Courant-Friedrich-Levy Number

0.1  -->Inflow Mach Number

2.33e+6 --> Reynolds #

1. --> Inflow Pressure [Non-dim]

--> Inflow Temperature [Non-dim]

--> QOutflow Pressure [Non-dim](For Cascade Flows)
--> Normalized base Pressure [Pbase/Pin]

--> Alpha [°]

--> Beta [°]

--> Reference Length [m]

., 0., 0 --> Center Of Mass [m]

--> Min. time step (=0 dtmin calculated, else dtmin=amindt)

cokRrocoorRE

2 --> Multigrid Type
0: without MG,1: Sawtooth MG,
2: Classical V MG,3: Full MG
5 --> Multigrid Level
10 --> # of iteration at each level during cycle
40 --> The maximum coarsening ratio (%) between grid levels
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--> Printing coarse grids (1) or not (0)
--> Preparing the techplot for coarse levels (1) or not (0)
--> Reading pre-prepared coarse grids

--> |nitial value for turbulent working variable - Spalart-Allmaras
--> [nput data file is used (1) or not (0)

--> [nput file name

--> Tecplot output 0:no output; 1:Surface; 2:Volume; 3:Both

--> Total # of cycle (Required if MG active)

--> Total # of iteration (Required if MG off)

--> Frequency of the residual to be printed on screen

--> Maximum physical time for run [sec](for unsteady problems)

--> Frequency for the solution to be saved (If MG is active it is cycle freq.)
--> Order of magnitude for the residual to be reduced

160



APPENDIX B

SAMPLE INFORMATION OUTPUT FILE FORMAT

20100409

Solver . Explicit

Solver Order : First Order

Flux Model : ROE

Viscosity - Inviscid

Imp. Residual Smoothing  : Closed

Time Stepping : Local

CFL Number :0.900000000000000

Inflow Mach Number : 0.150000000000000

Reynolds # : 3000000.00000000

Angle of Attack : 3.00000000000000

Reference Length [m] : 1.00000000000000

Center Of Mass [m] : 0.000000E+000 0.000000E+000
Mesh Size :2D 18390

Multigrid Level 5
Multigrid Cycle -V cycle
Grid level cells : 9012 3204 1118 441
# of ite. at each level 10
RESULTS
Computational Time . 38.4092874547207
# of Iteration : 40000
# of cycle : 2000
CD : 8.985221953226218E-003
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CL : 0.319051662827522

Cm : 4.002696485797786E-003
Logarithmic residual 12 :-11.6768130465795
Logarithmic residual rho :-11.7030125704998
Logarithmic residual u . -11.3314484052987
Logarithmic residual v :-11.6153427179718
Logarithmic residual e :-11.7155838143928
First residual 12 : 3.623711568108460E-005
First residual rho : 1.248872619352622E-005
First residual u : 5.869368324626266E-006
First residual v 1 1.166253722652242E-005
First residual e : 3.141171774763823E-005
CPU time (seconds) : 3553.82173600000
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