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ABSTRACT 

DEVELOPMENT OF AN OCTREE BASED GRID COARSENING AND 

MULTIGRID FLOW SOLUTION 

 

MAHMUTYAZICIOĞLU, Emel 

Ph. D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Mehmet Haluk AKSEL 

Co-Supervisor: Prof. Dr. İsmail Hakkı TUNCER 

 

September 2010, 167 pages 

 

 

The multigrid technique is one of the most effective techniques to achieve the 

reduction of the CPU cost for flow solvers. The multigrid strategy uses the 

multilevel grids which are the coarsening subsets of fine grid. An explicit solver 

rapidly reduces the high frequency errors on the computational grids. Since high 

frequency errors on coarse grids correspond to low frequency errors on fine grids, 

cycling through the coarse grid levels rapidly reduces the errors ranging from high-

to-low frequency. The aim of this study is, therefore, to accelerate SENSE3D solver 

developed by TUBITAK-SAGE by implementating multigrid concept. 

In this work, a novel grid coarsening method suitable for cell-centered 

hybrid/unstructured grids is developed to provide the cells with high aspect ratio. 

This new grid coarsening technique relies on the agglomeration of cells based on 

their distribution on octree data structure. Then, the multigrid strategy is 
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implemented to the baseline flow solver. During this implementation, the flux 

calculation along the face loops is modified without changing cell-centered scheme.  

The performance of the coarsening algorithm is investigated for all grid types in 

two and three dimension. The grid coarsening algorithm produces well defined, 

nested, body fitted coarser grids with aspect ratios of one and the coarse grids have 

similar characteristics of Cartesian grids. Then, the multigrid flow solutions are 

obtained at inviscid, laminar and turbulent flows. It is shown that, the convergence 

accelerations are up to 14 times for inviscid flows and in a range of 4 to 110 fold for 

turbulent flow solutions.  

 

Keywords: Computational Fluid Dynamic, Multigrid, Agglomeration, Grid 

Coarsening, Unstructured Grid. 
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ÖZ 

SEKİZDAL VERİ YAPISI İLE ÇÖZÜM AĞI SEYREKLEŞTİRME 

YÖNTEMİ VE ÇOK KATMANLI AKIŞ ÇÖZÜMLEMELERİNİN 

GELİŞTİRİLMESİ 

 

MAHMUTYAZICIOĞLU, Emel 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mehmet Haluk AKSEL 

Ortak Tez Yöneticisi: Prof. Dr. İsmail Hakkı TUNCER 

 

Eylül 2010, 167 sayfa 

 
 

Çok katmanlı çözüm tekniği, akış çözücüleri için çözüm zamanı azaltımında en 

etkin yöntemlerden biri olarak görülmektedir. Çok katmanlı çözüm tekniği sık 

çözüm ağından türeyen ardışık seyrekleştirilmiş çözüm ağlarını çalıştırmaktır. Açık 

uçlu çözücüler yüksek frekanslı hataları hızlı bir şekilde düşürebilmektedir. Sık 

çözüm ağında düşük frekansta bulunan hatalar, seyrek çözüm ağlarında yüksek 

frekans hatalara denk geldiğinden, çok katmanlı çözüm yönteminde düşükten 

yükseğe tüm frekanslardaki hatalar oldukça hızlı bir şekilde düşmektedir. Bu 

nedenle, bu çalışmanın amacı çoklu çözüm ağı tekniğinin TÜBİTAK-SAGE 

tarafından geliştirilen SENSE3D akış çözücülerine uygulanması ve bu yazılımların 

yakınsama hızlarının artırılmasıdır.  

Bu çalışmada, üç boyutlu çok katmanlı çözüm uygulamalarında kullanılmak üzere, 

düzensiz/melez çözüm ağları ve hücre merkezli çözücülere uygun, yüksek en boy 

oranına sahip hücrelerden oluşan ardışık seyrekleştirilmiş çözüm ağları oluşturulma 
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yöntemi geliştirilmiştir. Bu yeni seyrekleştirme yöntemi, hücre merkezlerinin 

sekizdal veri yapısı kullanılarak birleştirilmesi temeline dayanmaktadır. Ardından, 

çok katmanlı çözüm tekniği temel çözücüye uygulanmıştır. Uygulama sırasında 

çözücünün hücre merkezli yapısı bozulmadan, akı hesabının kenar veya yüzey 

döngüsünde olması sağlanmıştır.  

Seyrek çözüm ağlarının başarısı iki ve üç boyutlu tüm çözüm ağı tipleri kullanılarak 

incelenmiştir. Seyrek çözüm ağları incelendiğinde, oluşan hücrelerin geometri 

özelliğini bozmadığı, en boy oranının yaklaşık 1 olduğu ve seyrekleşme seviyesi 

yükseldikçe kartezyen tip çözüm ağına sahip olduğu görülmektedir. Ardından, çok 

katmanlı çözüm tekniğine sahip yazılım kullanılarak ağdasız ve ağdalı çözümler 

elde edilmiştir. Yapılan çözümlemeler ile, çok katmanlı çözüm yaklaşımının, düşük 

hızlı ağdasız çözümlemelerde 14 kata kadar, ağdalı çözümlerde ise 4 ila 110 kat 

arasında hızlanma oranlarına sahip olduğu gösterilmiştir.  

 

Anahtar Kelimeler: Hesaplamalı Akışkanlar Dinamiği, Çok Katmanlı Çözüm, 

Birleştirme Algoritması, Çözüm Ağı Seyrekleştirme, Düzensiz Çözüm Ağı.  
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CHAPTER 1  

INTRODUCTION 

 

Over the past decades, Computational Fluid Dynamics (CFD) has become a 

valuable analysis tool for understanding the fluid flow. The use of computers has 

become an integral part of the design process in the aerospace industry. In this 

applied aerodynamics context, the discretizations of the Euler and/or Navier-Stokes 

equations are almost exclusively performed by finite volume methods. The 

pioneering work of Jameson began this evolution [1, 2, 3, 4]. During the 1980’s, 

upwinding mechanisms were incorporated into finite volume algorithms leading to 

increased robustness for applications with strong shocks, and perhaps more 

importantly, to better resolution of viscous layers due to decreased numerical 

dissipation in these regions [5, 6, 7, 8, 9]. The 1990’s saw major advances in the 

application of finite volume methods to Navier-Stokes simulations, in particular to 

the Reynolds-Averaged Navier-Stokes (RANS) equations and significant gains 

were made in the use of unstructured meshes [10, 11, 12].  

Solution of flow fields around complex geometries directly addresses to use 

unstructured grids which do not need any connectivity information like structured 

grid. Unstructured-grid methodology has emerged as a mature of CFD tool for rapid 

aerodynamics analysis and design of complex configurations. It offers a 

substantially reduced turnaround time for CFD solutions due primarily to the ease 

and speed at which unstructured grids can be generated. Unstructured grids 

composed of triangular and tetrahedral elements in 2D and 3D. Unstructured 

meshes are also computationally feasible when the grid generation time concerned. 

It can be said that the size of the mesh, which directly affects the memory 
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requirements of the numerical algorithm, can only be minimized with the usage of 

unstructured grids [13]. Their main drawbacks, however, are the memory overhead 

associated with storing grid connectivity information and the computer time 

associated with indirect addressing. In addition, due to the lack of grid structure, it 

is difficult to implement simple implicit schemes such as approximate factorization, 

while explicit schemes suffer from slow convergence. In other words, the relaxation 

schemes in these flow solvers efficiently eliminate high frequency error modes but 

fail to reduce low frequency errors that hamper the flow convergence [10, 11, 13, 

14]. Present-day convergence acceleration methods are mostly based on trying to 

achieve the optimum balance between speed of convergence and cost of iterations 

[15, 16].  

The empirical verification of Moore's Law (i.e. doubling of computational power at 

fixed cost every 18 months) over the last two decades has caused some to question 

the need for improved convergence acceleration techniques, opting instead of 

concentrating on incorporating additional physics through increased model 

complexity and/or resolution. Unfortunately, the incorporation of additional physics 

most often also increases the stiffness of the problem, resulting either in problems 

which simply cannot be solved by simple solution techniques, or take even longer to 

solve in spite of the availability of faster hardware. In the "Blue Book" report on 

scientific computing compiled by the National Science Foundation, a comparison of 

the enabling hardware advances versus the enabling algorithmic advances, 

reproduced here in Figure 1.1, serves to illustrate how the two fields have 

contributed almost equally to the overall advances in near past-day simulation 

capability [15].  

The need for more efficient steady-state solution algorithms takes on even more 

significance when one considers the trend from steady state Navier-Stokes solvers 

to unsteady solvers, and design optimization capabilities, which involve the solution 

of many intermediate steady-state or pseudo steady-state problems for each run. 
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(a) 

 

(b) 

Figure 1.1 Illustration of advances due to algorithmic improvements and hardware 

Due to the widespread usage of CFD in the Research & Development departments 

of industrial outfits, there is need for enhancing any CFD tool used for industrial 

purposes with techniques capable of reducing the CPU cost of a single computation. 

According to literature survey about unstructured grids, there are many studies 

about accelerating the CFD studies, generally by convergence acceleration 

techniques and parallelization techniques, rather than solution technique directly. 
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These acceleration techniques were investigated and it was determined that 

multigrid (MG) is likely to be the most effective technique to achieve this goal [15, 

17, 18]. It gives attractive results for convergence and accuracy rates. The basic idea 

of a multigrid strategy is to accelerate the solution of a set of fine grid equations by 

computing corrections on a coarser grid. The motivation for this approach comes 

from an examination of the error of the numerical solution in the frequency domain. 

Multigrid methods have been successfully utilized by several structured grid 

Euler/Navier-Stokes solvers where a sequence of optimized coarser meshes can be 

readily generated from a base fine grid. In the past decade, various multigrid 

strategies have also been successfully demonstrated for the unstructured grid flow 

solvers [10, 14, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26]. 

1.1 Literature Survey 

1.1.1 Overview of Multigrid Strategy 

The basic idea of a MG strategy is to accelerate the solution of fine grid equations 

by computing corrections on a coarser grid. High-frequency errors, which involve 

local variations in the solution, are well annihilated by simple explicit methods. 

Low-frequency or more global errors are much more insensitive to the application 

of explicit methods. This is natural, considering the local nature of the information 

employed in explicit schemes. In fact, the convergence rate of explicit schemes 

usually consists of a rather rapid initial residual reduction phase, which gradually 

develops into a much slower residual reduction phase, corresponding to a situation 

where all high-frequency errors have been eliminated and low frequency errors 

dominate, as shown in Figure 1.2. 
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Figure 1.2 Typical convergence characteristics of an explicit scheme 

MG strategies capitalize on this rapid initial error reduction property of explicit 

schemes. Typically, a MG scheme begins by eliminating the high-frequency errors 

associated with an initial solution on the fine grid, using an explicit scheme. Once 

this has been achieved, further fine grid iterations would result in convergence 

degradation. Therefore, the solution is transferred to a coarser grid. On this grid, the 

low-frequency errors of the fine grid manifest themselves as high-frequency errors, 

and are thus eliminated efficiently using the same explicit scheme. The coarse-grid 

corrections computed in this manner are interpolated back to the fine grid in order 

to update the solution. This procedure can be applied recursively on a sequence of 

coarser and coarser grids, where each grid-level is responsible for eliminating a 

particular frequency bandwidth of errors. MG strategies are generally considered as 

convergence acceleration techniques, rather than solution methods themselves. In 

fact, they may be applied to any existing relaxation technique, explicit or implicit. 

The success of the overall solution strategy depends on a close matching between 
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the bandwidth of errors in order to represent the entire error frequency range. These 

errors can be efficiently smoothed on a given grid using the particular chosen 

relaxation strategy, with a careful construction of a sequence of coarse grids. 

MG methods have been successfully utilized by several structured grid 

Euler/Navier-Stokes solvers where a sequence of optimized coarser meshes can be 

readily generated from a base fine grid. They may also be employed to accelerate 

the solution of the full non-linear equation set, or they may be used to operate on 

the linear system which arises at each time-step in the implicit scheme of equations. 

While applying multigrid to the solution of the linear system in an implicit scheme 

affords certain advantages, and has been demonstrated successfully, it forfeits one 

of the principle advantages of the multigrid method, which is the low memory 

overheads required [14]. 

1.1.2 Background on Multigrid Strategy 

The concept of using multiple grids as a means to accelerate convergence was first 

proposed in 1964 by Federenko [27] for a Poisson-type problem on a rectangular 

grid. It was not until 1977 when Brandt [28] presented his seminar paper that MG 

became practical. MG convergence was studied for finite element systems in 1977 

by Nicolaides [29], and proven for certain PDEs in 1978 by Hackbusch [30]. 1981 

marked the appearance of a finite-volume solver by Jameson, Schmidt, and Turkel 

[4]. The solver computed the Euler equations using an explicit five-stage Runge-

Kutta time-stepping scheme. The spatial discretization was a second-order finite-

volume technique, and was used in combination with an artificial dissipation 

scheme that allowed for the accurate solution of shock waves in transonic flow. A 

novel MG scheme for the solution of the Euler equations was proposed by Ni [31] 

in 1982. Using structured grids, Ni solved the transonic flow over a bump having a 

maximum height of 10 % of the chord in a channel of height one chord. Ni's scheme 

uses Lax-Wendroff time-stepping and is second-order accurate except in the 
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neighborhood of shocks. Jameson [1, 32] presented a multigrid extension of his 

1981 Euler code that significantly improved the convergence rate of the solver. 

Jameson and Mavriplis introduced an algorithm that utilized unstructured grids 

[33]. This work was continued by Mavriplis [34], utilizing a sequence of non-

nested, unstructured grids. This research demonstrated the feasibility of using 

unrelated meshes to produce results that greatly improved the convergence rate over 

that of single-grid, explicit solvers and was competitive with MG applied to 

structured grids. The use of MG on unstructured grids, including extensions to 3D, 

was also explored by Peraire et al. [35], Mavriplis [14], Morano and Dervieux [36], 

Riemslagh and Dick [37], Ollivier-Gooch [38], Lassaline [26], Zuliani [39] and 

Fidkowski [40]. In addition to the added complexity of intergrid operators, a 

potential area of difficulty is the generation of a sequence of coarse grids for 

unstructured fine grids.  

1.1.3 Basic Principles of Multigrid Strategy 

The basics of MG methods for both linear/nonlinear equations with details of 

common MG cycles and intergrid transfer operators are given in this section. These 

are the basic principles since they do not depend on the particular set of equations 

being solved, the discretization and types of grids employed, or the dimensionality 

of the problem.  

1.1.3.1 Linear Systems (MG Correction Scheme) 

A system of linear equations can be written as:  

fuL =)(         (1.1) 

where L is a linear operator, u is the solution vector, and f is a forcing function.  
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The discrete approximation of the system on a grid characterized by spacing h is 

written as 

( ) hhh fuL =         (1.2) 

where hu  is the converged solution to the discrete system. 

The current estimate of the solution hu is denoted as hu , which is obtained by 

approximate solution techniques such as iterative technique. Since hu  does not 

satisfy the above equation exactly, the error can be defined as: 

hhh uuv −≡         (1.3) 

Now, Equation (1.2) can be written as: 

hhhh fuvL =+ )(        (1.4) 

which, since L is a linear operator, can be written as:  

hhhhh fvLuL =+ )()(        (1.5) 

The error hv  can be represented on a coarser grid characterized by spacing H or 2h 

provided that it is sufficiently smooth to prevent aliasing of high-frequency 

components on the coarse grid. An approximation to hv  can be calculated on the 

coarse grid as: 

)( hhh
H
hHH uLfIvL −=       (1.6) 

where H
hI  is referred to as the restriction operator, which transfers quantities from 

the fine grid to the coarse grid. The subscripts h and H show the grid characterized 

by spacing of fine and coarse grids respectively. The implementation of this 

operator is described in the following section. It is seen that hhh uLf −  is the 
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residual on the fine grid. Defining forcing function as ( )hhh
H
hH uLfIf −= , it is 

possible to write 

HHH fvL =         (1.7) 

Once Hv  is obtained, the fine grid level can be corrected using 

H
h
H

old
h

new
h vIuu +=        (1.8) 

where h
HI , the prolongation operator, which represents the interpolation of the 

coarse grid corrections Hv  to the fine grid. Details of this operator are presented in a 

later section. 

Low-frequency error components can be efficiently eliminated on coarse grids at a 

fraction of the cost of a fine grid calculation. Eliminating these error components on 

the fine grid is very costly, as many more relaxation cycles are required than would 

be on the coarse grid. In addition, this process can be performed recursively on 

successively coarser grids with each coarse grid being used to compute a correction 

to the next higher grid level.  

1.1.3.2 Non-Linear Systems (Full Approximation Storage Scheme) 

For systems of nonlinear equations, the step taken between Equations (1.4) and 

(1.8) in the previous section cannot be performed, so a different formulation must 

be used. Followings are the description of the Full Approximation Storage (FAS) 

scheme [41]. 

hhuL  can be substracted from both sides of Equation (1.4) to obtain a residual at the 

right hand side as 

( ) hhhhhhhhh ruLfuLuvL −=−=−+      (1.9) 
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for the coarse grid. Then, the above equation becomes: 

( ) ( ) ( ) h
H
hhhh

H
hh

H
hHHh

H
hH rIuLfIuILvuIL −=−=−+    (1.10) 

The coarse level grid solution, Hu , can now be defined as: 

HHH fuL =         (1.11) 

with 

Hh
H
hH vuIu +=        (1.12) 

By rearranging these terms and introducing a new coarse grid variable called “the 

coarse grid forcing function” (sometimes called the defect correction) as: 

( ) ( ) ( ) h
H
hh

H
hHh

H
hHhhh

H
hH rIuILuILuLfIf −=+−=    (1.13) 

Once Hu  is calculated, the fine grid solution is updated according to the following 

relaxation. 

[ ]old
h

H
hH

h
H

old
h

new
h uIuIuu −+=       (1.14) 

The presence of the defect-correction term on the right-hand side ensures that the 

fine grid problem is represented by the coarse grid discretization, and that both 

coarse and fine grid equations converge to the same solution. This can be seen by 

considering the case where fine grid equations have been solved exactly. In this 

situation, the fine grid residuals all vanish, as does their interpolated result on the 

coarse grid. The ability to directly handle non-linear problems is one of the great 

advantages of MG algorithms. 
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1.1.3.3 Intergrid Transfer Operators 

The restriction of the solution from a fine grid to a coarser grid and the prolongation 

of the correction from a coarser grid to a finer grid both utilize bilinear 

interpolation. One of the key elements for the success of such a method is the 

development of efficient transfer mechanisms between grids. Since the MG 

algorithm makes use of finer cells, accurate state values are needed for coarse cells 

[25]. 

For computational fluid dynamics problems, the most common choices are either 

injection or some variant of linear interpolation. Injection corresponds to the 

interpolation operator which preserves a constant function exactly. As an example, 

the value of a coarse grid cell would be assigned to all constituent fine grid cells 

which are contained inside the coarse grid cell by the injection operator. MG 

methods for structured grid often employ bilinear (in two dimensions) and trilinear 

(in three dimensions) inter-grid transfer operators. The simple piecewise linear 

interpolation is easily implemented to MG methods for unstructured grid based on 

triangular elements in two dimensions, and tetrahedral elements in three 

dimensions, using the linear finite-element shape functions associated with these 

elements. Piecewise linear interpolation operators preserve linear functions exactly. 

The accuracy of the restriction and prolongation operators must be sufficient to 

avoid introduction of excessive errors to the solutions, which can in turn have a 

detrimental effect on convergence efficiency. 

1.1.3.4 Cycling Strategies 

A particular implementation of recursive coarse grid correction scheme is referred 

as a multigrid cycle. Cycling strategies refer to techniques employed to determine 

when to switch from one grid to the next, rather than to how to win a race on two 
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wheels. These can be divided into two basic approaches: adaptive and fixed cycling 

strategies. Adaptive cycling methods involve the monitoring of the numerical 

convergence process. When it is determined that the high-frequency errors on the 

current grid have been effectively eliminated, usually by observing a sharp 

slowdown in the convergence rate, the jump to a coarser grid is triggered. Although 

adaptive cycling strategies may appear more desirable, practical considerations such 

as simplicity and robustness usually result in the use of fixed cycling strategies, 

where a fixed pattern of coarse and fine grid iterations is prescribed. 

The most common cycling patterns are V-cycle, W-cycle and full MG strategy. The 

choice of a particular cycling strategy must necessarily consider the complexity of 

the various grid levels. 

1.1.3.4.1 V-cycle 

The MG V-cycle, which is the most popular cycling strategy in the literature, begins 

on the finest grid of the sequence, where one relaxation or time-step is performed. 

The solution and residuals are then interpolated to the next coarser grid, where 

another time-step is performed. This procedure is repeated on each coarser grid 

until the coarsest grid of the sequence is reached seen in Figure 1.3. Then 

refinement phase starts and the coarse grid corrections are prolongated back to each 

successively finer grid. At the classical V-cycle strategy, single or multiple time-

steps on each grid level is performed. This refinement procedure is repeated until 

the finest grid of the sequence is reached. At the particular variant of the V-cycle is 

sometimes known as a saw-tooth cycle (Figure 1.3), the coarse grid corrections are 

prolongated back to each successively finer grid until the finest grid is reached. 

There is no time-stepping on the coarse-to-fine phase of the cycle. It has been 

employed extensively for computational fluid dynamics problems. 
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Classical V-cycle 

 

Sawtooth V-cycle 

Figure 1.3 MG V-Cycle (T=time step, R=restriction, P=prolongation) 

1.1.3.4.2 W-cycle 

The W-cycle is the second common recursive strategy which weights coarse grids 

more heavily, as shown in Figure 1.4. Like V-cycle, it begins on the finest grid of 

the sequence, where one relaxation or time-step is performed, goes to the highest 

level coarse grid. Then refinement phase starts and the coarse grid corrections are 

prolongated back to each successively finer grid. However, different than the V-
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cycle appearances, it again goes to the high level coarse level before reaching the 

root (fine) grid. The use of W-cycles is often found to be more efficient overall, and 

more robust than V-cycles. 

 

Figure 1.4 MG W-cycle (T=time step) 

1.1.3.4.3 Full Multigrid (FMG) 

The combination of mesh sequencing with a MG method (where the solution on the 

current grid is initiated from a previously computed solution on a coarser grid) 

results in a strategy known as FMG procedure. Beginning with an initial sequence 

of grids, the solution on the finest grid of the sequence is obtained at the preliminary 

stage by again using MG procedure. This sequence starts at fine or coarse grid 

levels as seen in Figure 1.5-b and c [15-41]. The procedure can be repeated, each 

time adding a new finer grid to the sequence, until the desired solution accuracy has 

been achieved, or the finest available mesh has been reached. After preliminary 
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stage, it continues the iterative stage using saw-tooth or classical V-cycle depicted 

in Figure 1.5-a and b. 

 

(a) (T=Time Step, R=Restriction, P=Prolongation) 

 

(b) 

 

(c) (s=Smoothing, D=Direct Solving, R=Restriction, RT=Prolongation) 

Figure 1.5 FMG strategy 
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1.1.4 Coarse Grid Construction Techniques for Unstructured Grids 

The previous section described the basic principles of generic multigrid methods 

without regards to the types of grids on which these methods are to be applied. The 

main difficulty with unstructured multigrid methods is due to the construction of the 

coarse grid levels for the solution of the fine-grid equations. For structured mesh 

multigrid methods, a coarse mesh can be derived from a given fine mesh by 

omitting every second point in each coordinate direction. Recursive application of 

this procedure results in a sequence of coarse meshes where the complexity of the 

meshes decreases by a factor of 4:1 in two dimensions and 8:1 in three dimensions, 

for each successively coarser level. 

For unstructured meshes, such techniques are no longer feasible. Due to the lack of 

mesh structure, simple coarsening strategies do not result in consistent coarse grid 

meshes. A variety of techniques have been proposed for unstructured multigrid 

coarse mesh constructions. These vary from methods which attempt to reproduce 

the nested property of structured mesh multigrid methods, to techniques which 

permit the use of arbitrary (triangular or nontriangular) coarse meshes to algebraic 

methods which never consider the construction of coarse meshes altogether [17]. In 

general, all methods are capable of delivering similar efficiencies and the issues 

involved in choosing a particular method include ease of implementation, degree of 

automation, and robustness for highly complex geometries. With fully unstructured 

meshes, where each point can have an arbitrary number of neighbors and the 

elements are non-uniform, the problem is much more difficult, particularly in three 

dimensions. 

To date, six main and the most popular approaches towards grid coarsening on 

unstructured meshes have become prevalent. The first approach for obtaining coarse 

grid levels begins with the coarse mesh and generates finer nested levels by 

subdividing the coarse grid cells. The other approach is non-nested approach with 
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overset grids. In this approach, coarse grid levels are generated independently from 

the finer levels using any grid generator. A more automated technique operates on a 

fine grid by selecting a point to create the coarse grid using Delaunay triangulation 

algorithm. For complex geometries, it is often difficult to generate a coarse grid 

which preserves the original geometry. An alternative method which keeps away 

from this problem is the agglomeration approach. This method agglomerates the 

cells without creating any new edge or face. For complex geometries adaptive grid 

methods can also be used. These algorithms detect the regions that have prominent 

flow features and increase the grid resolution locally in such areas. Another method 

which avoids the generation of coarse grid is the algebraic multigrid approach. 

This method operates on the matrix rather than on the grid. In this section, the brief 

theories of mentioned coarsening strategies will be presented.  

1.1.4.1 Nested-Mesh Subdivision Method 

One of the simplest unstructured mesh multigrid strategies is to generate a sequence 

of finer meshes from an initial coarse mesh by recursively subdividing the cells of 

the mesh [41, 43, 44], either globally, or adaptively. This results in a fully nested 

sequence of grids, as shown in Figure 1.6, and enables a particularly simple 

construction of the inter-grid transfer operators. For example, in the context of a 

vertex scheme, the values at the vertices which are common to coarse and fine grids 

are simply transferred by injection. Similarly, the newly introduced fine grid points 

always lie midway along a coarse grid edge, and thus the values at these points may 

be transferred by averaging the two values at the end points of the coarse grid 

containing the edge, which corresponds to linear interpolation. 
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Figure 1.6 Illustration of the nested mesh subdivision construction 

For a cell-centered scheme, volume weighted restriction is easily achieved by 

identifying the fine grid constituent cells of each coarse grid cell, and summing their 

weighted values. Another advantage of this approach is that it can be easily 

automated. This method has a somewhat inverted nature, i.e., it begins with a coarse 

mesh and subsequently generates finer meshes, whereas most multigrid methods 

begin with the finest mesh and construct coarser levels. There are several 
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disadvantages associated with such a strategy. The most obvious one is the lack of 

flexibility in handling problems on a specified fine grid of unknown origin. In fact, 

this approach requires a tight coupling between the grid generation and the 

multigrid solution strategies, and, thus has often been implemented in the context of 

adaptive meshing problems. The other difficulties are somewhat more subtle, but 

are interrelated. They concern with the ability of the coarsest initial grid to provide 

efficient convergence properties for the multigrid algorithm, and the quality of the 

resulting fine grid. In a multigrid process, the coarsest grid of the sequence 

determines the convergence rate of the algorithm, while the finest grid determines 

the accuracy of the solution. The present multigrid strategy places conflicting 

demands on the coarse mesh construction. On the other hand, a very coarse mesh is 

desired, since this enables a rapid multigrid convergence. However, the use of very 

coarse initial mesh may result in poor quality fine meshes, particularly when using 

simple subdivision refinement techniques. This, in turn, has a detrimental effect on 

the solution accuracy. 

1.1.4.2 Overset Meshes Method 

An alternate approach to unstructured MG methods is to generate a sequence of 

completely independent coarse and fine meshes, and use linear interpolation to 

transfer variables back and forth between the various meshes of the sequence, 

within a MG cycle [34, 35, 21, 36, 37, 45]. The meshes may be generated using any 

grid generation technique, will generally be non-nested, and may not even contain 

any common points, as shown in Figure 1.7. An essential step in the construction of 

the inter-grid transfer operators is the determination of the enclosing triangle on one 

grid for each vertex of the other grid. A native implementation of this operation 

consists of checking every triangle on the first grid for each vertex of the second 

grid. The other requirement is that they conform to the same domain boundaries.  
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This technique is more flexible than the nested subdivision approach, since the fine 

and coarse meshes are not constrained and may be optimized independently for 

accuracy and speed of convergence, respectively. Furthermore, this approach can be 

applied to a problem with a pre-specified fine mesh. On the other hand, the 

construction of the inter-grid transfer operators becomes more involved. 

 

 

Figure 1.7 Illustration of conservative residual restriction for overset meshes 
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1.1.4.3 Re-triangulation Method 

For automated coarse mesh production, the simple method is the removal of 

selected fine grid vertices and the re-triangulation of the remaining grid points. The 

re-triangulation procedure may be accomplished as a global operation, by 

regenerating the triangulation of the remaining coarse grid points, or incrementally, 

by removing each selected point sequentially and locally reconfiguring the mesh 

connectivity. For example, a reverse Delaunay point-insertion may be utilized in 

two-dimensions to remove mesh points [46, 47]. These techniques result in vertex-

nested meshes, where the coarse grid vertices form a subset of the fine grid vertices, 

as shown in Figure 1.8. The triangulations themselves are not necessarily nested, 

since the connectivity of the coarse mesh need not be related to that of the fine 

mesh. 

 

Figure 1.8 Illustration of vertex-nested coarse and fine mesh re-triangulation  
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Although the vertex-nested property may be employed to simplify the construction 

of the inter-grid transfer operators (i.e., for example the H
hI  operator reduces to 

simple injection), the construction techniques discussed in the previous section for 

overset-mesh MG methods are equally applicable in this case.  

The point-removal procedure of automated coarsening strategies can be configured 

to generate "optimal" or near-optimal coarse meshes. This, of course, assumes some 

definition of optimal coarsening. A common strategy is to attempt to reproduce the 

coarsening characteristics encountered in structured mesh MG methods. Thus, 

coarse meshes which contain approximately half the resolution of the originating 

fine mesh in each coordinate direction throughout the entire domain are generally 

sought [14]. 

On the other hand, there are some practical difficulties in constructing coarse mesh 

levels for unstructured mesh MG algorithms; since, they do not address the issue of 

the robustness of the coarse grid constructions. For example, it may often be found 

that an automated coarsening procedure has removed one or several boundary mesh 

points which critically define the geometry, and the resulting changes in the 

geometry between grid levels produces a slowdown or failure of the MG algorithm. 

In fact, the triangulation of a coarse point-set about a complex geometry can prove 

to be a difficult task. For certain problems, the uniform coarsening characteristics of 

maximal independent sets which minimize structured mesh MG methods may be far 

from optimal. This is particularly true for problems with large disparities in length 

scales and anisotropic problems. 

1.1.4.4 Agglomeration Method 

The object of agglomeration or sometime called volume weighted coarsening 

technique is to derive a sets of coarse grids from a given fine grid and is based on a 

neighborhood relation [48, 49, 50]. The coarse grids are constructed in two steps by 
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volume agglomeration. In the first step, all the fine grid cells attached to the body 

surface or a far-field boundary are identified and merged with its neighboring (only 

those cells are eligible that are not already assigned to a previous coarser cell) cells 

to form a new coarser cell. After all of these prioritized boundary cells are assigned 

to a coarser cell, an unassigned fine grid cell on the agglomeration front is picked in 

a random order and merged with its eligible neighbors to form a new coarser cell. 

The procedure is repeated until all the fine grid cells are assigned to a coarser parent 

cell. In the second step, a set of fine grid faces at the interface of a given pair of 

coarser cells is used to render a single resultant face [15]. This step reduces the 

number of faces in a coarse grid, which has a direct bearing on the computational 

efficiency of the agglomeration MG technique. 

Agglomeration methods are control-volume-based methods, and can thus be applied 

to either cell centered or vertex-based schemes. For cell-centered schemes, the 

control-volumes, themselves, are taken as the triangles themselves, whereas for a 

vertex-based scheme the control volumes are taken as the cells defined by the dual 

mesh formed by drawing the triangle median segments, as shown in Figure 1.9 [15]. 
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Figure 1.9 Median dual control volume for a triangular mesh in agglomeration 

In other words, the idea of the agglomeration method is to fuse together or 

agglomerate neighboring fine grid control volumes, creating a smaller set of larger 

polygonal (or polyhedral in 3D) control volumes. This process can be performed 

recursively, thus generating an entire sequence of coarse agglomerated meshes. The 

degree of the coarse agglomerated polygons increases on each coarser mesh level, 

but they always conform exactly to the original fine grid boundaries. Figure 1.10 

shows the agglomeration method on a vertex-based scheme. 
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Figure 1.10 Original fine mesh, its dual mesh and coarse agglomerated mesh levels 
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The most important issue in agglomeration method is to decide the neighbor to 

agglomerate and, consequently, to define the points for removal. The techniques 

employed for creating the coarse agglomerated grids are similar to the automated 

coarsening strategies described in the previous section. In fact, there is a duality 

between agglomeration of control volumes and point removal. If each agglomerated 

control volume is thought of as consisting of its seed point, i.e., the point 

corresponding to the control volume from which the agglomeration process was 

initiated, and its agglomerated control volumes (or corresponding points), as shown 

in Figure 1.11, then the seed point corresponds to a point which is retained for the 

coarse grid in the point removal procedure, and the agglomerated points correspond 

to the deleted points. 

 

Figure 1.11 Illustration of seed point and agglomeration coarse grid construction 

strategy 
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1.1.4.5 Adaptive Multigrid Meshes Method 

Adaptive grid methods have evolved as an efficient tool to obtain numerical 

solutions without a priori knowledge of the nature and the resolution of the grid 

necessary to efficiently capture the flow features. These algorithms detect the 

regions that have prominent flow features and increase the grid resolution locally in 

such areas. Furthermore, they coarsen the grid by deleting the cells over the regions 

where flow features no longer exist. In MG applications, agglomeration type 

coarsening algorithm is generally used [51, 52]. The data structures needed for the 

implementation of adaptive algorithms on 3D unstructured grids are quite 

complicated and this has been a challenging topic in itself and until recently not 

many such schemes existed. Significant progress has been made during the 

implementation of adaptive schemes for tetrahedral grids. 

The coarser grids are used to propagate changes of the fine grid solution in time 

properly and rapidly throughout the flow domain, thus accelerating the convergence 

to the steady state, while at the same time maintaining the low truncation error on 

the fine grid. Adaptive grid algorithms generally use methods, which employ 

special upwind-like smoothing operators for shock-capturing and background 

smoothing. The adaptive grids are created by the division of tetrahedral cells [53]. 

1.1.4.6 Algebraic Multigrid Method 

Algebraic MG methods are methods that enable the efficient solution of systems of 

algebraic equations, which are not necessarily derived from the spatial 

discretization of a partial differential equation [54]. In fact, the notion of a grid, of 

linear interpolation in space, and spatial smoothness are not always possible in this 

context. Thus, algebraic MG methods require the redefinition of such concepts in 
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the context of algebraic rather than geometric quantities, in order to make use of 

traditional MG principles. The algebraic formula is given as: 

( )[ ]old
ccc

h
H

oldnew xbAIGxx −+= −1      (1.15) 

where G represents the fine grid smoother, and it is assumed that the coarse grid 

matrix Ac may be easily inverted. The above sequence of operators represents a MG 

cycle having two-grids. This is described here for simplicity and in practice, a 

multiple level cycle may be defined by recursive application of the above two-grid 

procedure. A standard algebraic MG construction is to take the restriction operator 

as the transpose of the prolongation operator: 

( )TH
h

h
H II =         (1.16) 

as was done in the overset-mesh MG algorithm, and to use the Galerkin coarse grid 

operator construction to define the coarse level matrix, Ac: 

( ) h
H

Th
Hc AIIA =        (1.17) 

Once these steps are taken, the complete algebraic MG algorithm is determined 

solely by the definition of the prolongation operator and the set of coarse level 

variables. Since geometric information is not available, the coarse level variable 

sets must be determined from the algebraic information contained in the matrix A. 

To do this, the graph of the matrix A can be used. The graph of a sparse matrix is 

defined as the graph which is obtained by drawing an edge between the two vertices 

which correspond to the row and column number of each non-zero entry in the 

matrix. An algorithm which generates a maximal independent set of this graph may 

be utilized to construct a coarse level subset of variables, just as in the 

agglomeration or automated coarsening approaches for geometric MG. Algebraic 

MG, however, adds an extra degree of sophistication to the process, by considering 

the magnitude of the non-zero matrix entries. Coarsening is performed 
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preferentially along edges associated with large matrix entries, since this represents 

neighboring equations which are strongly coupled, and which will thus have similar 

errors (i.e., the error distribution will be smooth in that direction). 

One of the drawbacks of algebraic MG methods is the complexity of their 

construction. The prolongation operator is not only used to transfer corrections from 

coarser grids to finer ones, but also contributes to the construction of the coarse grid 

operator. Thus, a prolongation operator with large or widely varying stencils may 

result in considerably complex coarse grid operators. In fact, the coarse grid 

operator is usually much denser (contains relatively more non-zero elements) than 

the original fine grid operator, which results in increased coarse grid complexities 

for the MG cycle. Thus, the construction of algebraic MG methods necessarily 

involves a trade-off between accuracy of the operators and complexity of the coarse 

grids. 

1.2 Multigrid Adaptation: Motivation 

Multigrid adaptation, as it is used in many different areas like CFD, acoustic, finite 

element problems, are subject to speed any kind of platform and programming 

language without losing accuracy and the performance requirements. 

The Aerodynamic Design Team in TÜBİTAK-SAGE works with CFD tools to 

make the final design of various air vehicles due to lack of a high speed wind tunnel 

in Turkey. Besides the accuracy of the flow solver, the aerodynamic characteristics 

of a newly designed air vehicle should be investigated to cover the overall flight 

envelope. For this reason, a huge number of solutions is required to cover whole 

domain. However, in general, it is not possible to obtain such large number of 

solutions by using CFD tools, due to computational and time limitations of the 

project. The main motivation in this study is, therefore, to accelerate SAGE Euler / 

Navier Strokes Equation Solver (SENSE2D-SENSE3D) that is developed by 
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TUBITAK-SAGE by implementing MG capability. In this context, a sufficient 

number of solutions can be obtained to generate a safe aerodynamic database for the 

projects. 

1.3 Scope of the Research 

The first objective of the thesis is to develop an automated grid coarsening 

technique suitable for cell-centered hybrid/unstructured grids. The second objective 

is to modify the baseline flow solvers, SENSE2D-SENSE3D, by making flux 

calculation along the edge/face loops rather cells without changing cell-centered 

scheme. Doing so, edge/face based solution algorithm can easily accommodate 

complex cell structures with large number of edges in coarse MG levels. Final 

objective is to implement the MG routines, flow variable and residual transfer 

operators and cycling strategies to the baseline solver to finalize the MG adaptation.  

1.4 Organization of Thesis 

The thesis comprises six chapters. In Chapter 1, the idea, background and basics of 

MG strategy with linear and nonlinear correction schemes, intergrid transfer 

operators, cycling strategies are presented. 

In Chapter 2, the overview of mesh construction techniques are summarized with 

advantages and disadvantages and the agglomeration method is chosen for 

utilization in this thesis. For agglomeration method, the algorithms for point 

selection are investigated. Then, quadtree / octree data structure approach and a new 

grid coarsening method, which is based on representation of the grid cells in a 

quadtree/octree hierarchical data structure, are presented for 2 and 3 dimensions 

with algorithms and flowcharts.  
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In Chapter 3, Euler Navier Stokes Equation flow solvers, SENSE2D and SENSE3D 

are explained as the baseline solver. Then, the modifications and validations on 

baseline solver about flux calculation and MG adaptation are presented. Finally, all 

MG algorithms (FAS application, cycling adaptation and intergrid transfer operators 

between grids algorithms) are presented with flowcharts. 

In Chapter 4, the grid coarsening strategy developed and MG adaptation on baseline 

flow solver are investigated about performance on inviscid, laminar and turbulent 

flow solution in 2D and 3D cases. At the test cases, the coarsening applications are 

presented to show the success of newly generated grid coarsening technique on 

variety of grid types. Then, the effects of MG variables on MG convergence 

acceleration are investigated. Discussion on the results of computations and the 

performance of the developed solver are also stated in this chapter. 

In Chapter 5, the conclusions emerging from the present work are discussed. We 

first discussed the efficiency and mesh dependency of the automated grid 

coarsening method based on quadtree and octree data structure hierarchy. Then we 

evaluated the acceleration of baseline code on inviscid, laminar and turbulent flow 

solutions with implementing of MG strategy. Finally, some future work 

recommendations are made. 
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CHAPTER 2  

GRID COARSENING 

 

In this chapter, firstly, the reason for choosing the agglomeration coarsening 

method in this thesis is explained and the studies in the literature about the point 

removal algorithms used in this method are summarized. Then a new automated 

grid coarsening technique suitable for cell-centered based hybrid/unstructured grid 

developed in this study is presented.  

2.1 Overview of Agglomeration Coarsening Method 

The technical specifications of six main and the most popular approaches of grid 

coarsening are summarized in literature survey presented in Section 1.1.4. All 

coarsening techniques are compared according to automation capability, 

implementation simplicity, nested property, time efficiency, accuracy and geometric 

conservation in Table 2.1. Since it is a widely used method due to being fully 

nested, easily automated, no geometry loss and high solution accuracy; the 

agglomeration coarsening approach is the most powerful technique. In an 

agglomeration method, grid cells are fused together to form a smaller set of larger 

polygonal (or polyhedral in three dimensions) control volumes. For this reason, it 

satisfies the requirement of this study and is decided to implement to baseline cell-

centered code in this thesis.  
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For structured or Cartesian grids, a coarse grid can easily be derived from a given 

fine grid by omitting every other point in each coordinate direction. A recursive 

application of this procedure results in a sequence of coarse grids. The main 

difficulty of agglomeration approach with unstructured MG methods is the selection 

of the cells to be agglomerated (or sometimes called point removal) so that the new 

cells formed can acceptable aspect ratios.  

The different algorithms are presented about selection of the cells (or sometimes 

called point removal) to be agglomerated in the literature. More popular point 

removal procedure which is global coarsening algorithm is “Greedy type Frontal 

Algorithm” by Mavriplis. The algorithm starts by selecting a starting vertex and 

listing all of its neighbors. It continues by choosing a suitable control volume from 

the list so that the aspect ratio of coarse cell is maximized. After that, the list of the 

new cell information is updated and all vertices have been agglomerated until whole 

domain is processed [34]. About this subject, many published studies can be found. 

In the following part, agglomeration coarsening studies or point removal procedures 

is summarized. Francescatto and Dervieux [55] propose a directional semi-

coarsening strategy based on Poisson’s equation using directional coarsening in a 

structured grid domain. Their algorithm relies on two mechanisms. Firstly, the 

‘local metrics’ are identified, i.e. the stretching direction and strength. Secondly, 

agglomeration is adapted to local metrics. In order to build the local metrics, 

algebraic MG idea is inspired. Ollivier-Gooch [56] presented a new approach to the 

generation of coarse triangular and tetrahedral meshes that always produce a valid 

coarse mesh at each level, regardless of the fine mesh input and the number of 

coarse meshes generated. In this algorithm, an apex represents a boundary vertex at 

which a sharp corner is formed and it is always included in the coarse mesh. A fold 

is a line on the surface of a three-dimensional object where the surface normal is 

discontinuous such as the trailing edge of a wing. For isotropic surface meshes, 

every second fold vertex is retained. All fold vertices are retained, and every second 

vertex along closely-spaced lines leaving the fold is also retained. A maximal 
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independent set (MIS) of the remaining surface vertices is included in the coarse 

mesh. Pseudo-structured interior mesh fragments are coarsened in much the same 

way as the pseudo-structured surface mesh fragments. Finally, an MIS of the 

remaining interior vertices is selected for inclusion in the coarse mesh. Ahlawat, 

Johnson and Vanka [57] used a vertex based agglomeration algorithm that 

agglomerates cells around a vertex. A vertex front moves inward from boundaries. 

The algorithm parameterizes the cell fusion rate, which is the number of fine grid 

cells that get fused into a coarse cell. It is equipped with automatic detection of 

stretched grids, where it performs directional agglomeration and it has an algorithm 

for improving grid quality by filling up sharp folds (hills and valleys) on coarse 

cells. Waltz and Löhner [23] generated an algorithm, termed Dynamic Graph 

Reduction with Swapping (DGRS), which is able to produce nested coarse grids 

suitable for unstructured MG applications. The grid coarsening procedure can be 

broken down into two basic parts: point selection and element reconnection. In the 

point selection algorithm, the vertices take a hierarchy according to boundaries 

while in the element reconnection algorithm, the dynamic reconnection, i.e. 

reconnection during the point marking procedure, is found to be an efficient 

approach. Chan and Zikatanov [58].considered a new and rather simple technique 

for defining nested coarse spaces and the corresponding interpolation operators 

based on the graph-theoretical approach  The goal is to construct a coarse grid using 

only the combinatorial (not the geometrical properties) of the graph of the 

underlying fine grid. This coarse grid is formed by groups of elements and called 

agglomerated macro elements. Okamoto, Nakahashi, Obayashi [59] propose a new 

agglomeration algorithm to generate coarse grids for MG methods on unstructured 

and hybrid grids. The algorithm, which is called a global coarsening algorithm, is 

based on the edge coloring of the grids so that it can agglomerate any type of grids. 

The edges marked according to the aspect ratio, which is calculated by using the 

control volume comprising the two control volumes sharing each edge. Two control 

volumes sharing the edge that give maximum aspect ratio are agglomerated into a 

coarse control volume. 
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2.2 The New Grid Coarsening Method Based on Quadtree / Octree Data 

Structure  

In this study, a new automated grid coarsening technique suitable for cell-centered 

based hybrid/unstructured grid is developed for the MG implementation. The aim is 

to group the finest mesh cells such a way that new generated levels and 

corresponding cells have good aspect ratio. The new grid coarsening technique 

relies on the agglomeration of hybrid/unstructured cells based on their distribution 

on a quadtree and octree data structure for 2D and 3D applications, respectively. 

This agglomeration strategy or point removal algorithm can be defined as globally 

coarsening method by merging cells according to parent quadrant/octant or sub-

groups. 

2.2.1 Overview of Quadtree / Octree Approach 

Hierarchical data structures are becoming increasingly important representation 

techniques in the area of computer graphics, image processing, computational 

geometry, geographic information systems, and robotics. They are based on the 

principle of recursive decomposition method. One such data structure is the 

quadtree or octree [60]. The term quadtree or octree is used to describe a class of 

hierarchical data structures whose common property is that they are based on the 

principle of recursive decomposition of space. The most investigated quadtree / 

octree approach for region representation is based on the successive subdivision of 

the image array into four equal-sized quadrants / eight equal-sized octants. If the 

array does not consist entirely of 1's or entirely of 0's (i.e., the region does not cover 

the entire array), it is then subdivided into child quadrants or octants until blocks are 

obtained (possibly single pixels) that consist entirely of 1's or entirely of 0's; that is, 

each block is entirely contained in the region or entirely disjoint from it. 
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Thus the region quadtree can be characterized as a variable resolution data 

structure. For example, consider the region shown in Figure 2.1-a, which is 

represented by the 23 by 23 binary array in Figure 2.1-b. Observe that the 1's 

correspond to picture elements (termed pixels) that are in the region and the 0's 

correspond to picture elements that are outside the region. The resulting blocks for 

the array of Figure 2.1-b are shown in Figure 2.1-c. This process is represented by a 

tree of degree 4 (i.e., each nonleaf node has four children). The root node 

corresponds to the entire array. Each child of a node represents a quadrant (labeled 

in order NW, NE, SW, SE) of the region is represented by that node. The leaf nodes 

of the tree correspond to those blocks for which no further subdivision is necessary. 

A leaf node is said to be BLACK or WHITE, depending on whether its 

corresponding block is entirely inside or entirely outside the represented region. All 

nonleaf nodes are said to be GRAY. The quadtree representation for Figure 2.1-c is 

shown in Figure 2.1-d. 

The octants and octal tree can be also characterized as given in Figure 2.2. It is 

observed that this process is represented by a tree of degree 8 (i.e., each nonleaf 

node has eight children). 
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Figure 2.1 A region, its binary array, its maximum block and the corresponding 

quadtree [60] 

 

Figure 2.2 Cells octree example [60] 
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2.2.2 The Algorithms of Grid Coarsening Method Based on Quadtree / 

Octree Data Structure  

The grid coarsening algorithm can be divided in two steps. The first step is to form 

the quadtree or octree data structure hierarchy of the input grid file. Then the 

grouped fine meshes are agglomerated to create the coarse grid mesh. To obtain the 

higher coarse grid level, the parent/child structure, which are formed during the data 

structure hierarchy, is used. 

2.2.2.1 Forming Quadtree / Octree Data Structure Algorithm 

The quadrant or octant cells are created as imaginary cells over the cell domain such 

a way that each quadrant covers maximum of four; each octant covers maximum of 

eight cell center points. In other words, the quadtree / octree approaches are used for 

grouping the finest mesh cells so that new generated levels and corresponding cells 

have good aspect ratio. A sample quadtree structure is presented in Figure 2.3. 

Deepth 
Level

1

2

3

4

5

Active Quadrant 

Divided Quadrant  

Figure 2.3 A sample quadtree structure 
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The flowchart of quadtree / octree data structure algorithm (subroutine 

FORMQUADTREE or FORMOCTREE) is presented in Figure 2.4 and formation 

the data structure algorithm for coarsening is described as follows: 

 

Figure 2.4 The flowchart of forming quadtree/octree 

1. The limits of the domain are found, the maximum length of domain 

and cell center nodes are defined. The schematic view of the cell centered 

nodes around an ellipse in 2D domain is presented in Figure 2.5. 

2. The edge length of the largest quadrant/octant is defined as the 

maximum length of domain. 
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3. One cell center node point is selected. Starting from the largest 

quadrant / octant, the appropriate quadrant / octant where the cell center is 

located is found. The schematic view of quadrants and the cell center node 

distribution on quadrants is given in Figure 2.6. 

a) If the quadrant/octant is deactive (has divided already) (subroutine 

GODOWN); 

i. The quadrant / octant is divided into 4 or 8 (North-east, 

north-west, south-east, south-west and upper and lower 

position in 3D) 

ii. The child quadrant/octant is found according to position of 

the cell center node in processing 

iii. The limits of the domain are changed according to the 

position of the cell center point 

iv. Returns the decision without changing cell-center node in 

processing 

b) If quadrant/octant is full (subroutine NEWQUAD); 

i. The quadrants/octants are deactiveated. 

ii. The new quadrants/octants are generated.  

iii. The cell centers, which are allocated before according to 

position of cell center location, are distributed (subroutine 

FINDPOS) 

iv. Subroutine GODOWN is called with the cell center node in 

process 
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c) If quadrant/octant is active (the number of cell center of quadrant is 

less than 4 or octant is less than 8);  

i. The number of cell center nodes is increased by one. 

ii. The cell-center node in process is allocated to the quadrant 

or octant. 

 

 

Figure 2.5 The schematic views of the cell center nodes 
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Figure 2.6 Schematic view of quadrants and the distribution of cell center nodes on 

quadrants 

2.2.2.2 Agglomeration Algorithm 

During grouping of the finest mesh cells according to quadtree / octree data 

structure, the quadrant / octant deepness level and parent-child relationship are also 

stored for creating coarse grid levels. The second coarse level is generated by 
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agglomerating the cells belongs the same active quadrant / octant which is located 

at the end of the tip of the tree. The higher coarse grid levels are generated 

according to deepness level of quadrant. The child cells of the quadrant which is 

stated at defined deepness level are agglomerated and the coarse meshes are created 

for the coarse level grids.  

The flowchart of coarsening algorithm (subroutine COARSENING) is presented in 

Figure 2.7 and the coarsening algorithm according to parent/child hierarchy can be 

described as follows: 

 

Figure 2.7 The flowchart for the coarsening algorithm 
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1. The maximum / minimum deepness level of active quadrants is 

found and the quadrants are ordered from the highest to lowest deepness 

level. 

2. The delta of deepness level from the tip of the branch according to 

coarse grid level is defined.  

3. One quadrant/octant is considered. If this quadrant/octant is active 

and is not proceedede before, it is evaluated. (subroutine CELLGROUP);  

a) If delta of deepness level is 0; 

i. The quadrant/octant which is in process is indicated by a 

flag.  

ii. The quadrant/octant is dropped from the quadrant/octant 

pool.  

iii. The active or deactive quadrant/octants are checked. If 

quadrant/octant is active, the child quadrants/octants are 

dropped to the pool and the original quadrant/octant are 

erased until all quadrants are active. Then the cells from all 

active quadrants/octants are collected. (subroutine 

COLLECT) 

b) If delta of deepness level is not 0; 

i. The parent of the quadrant is found according to delta of 

the deepness level 

ii. The parent quadrant/octant is checked whether it is 

preceded before or not. If it is already proceed, the flag is 

put to show that quadrant/octant is not in process. 
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iii. If the parent is not proceeded, the deepness level of childs 

belongs to the parent quadrant/octant is checked. If the 

deepness level of all children higher that the quadrants that 

is in process, the delta deepness level is decreased and the 

process is repeated from finding the parent. If the deepness 

level of all childs is equal or less then the quadrants that is 

in process, COLLECT subroutine is repeated.  

4. If the quadrant/octant is in process according to flag, the cells are 

designated (subroutine DESIGNATION) with taking the first cell. The cells 

that are grouped is checked whether that is irregular (no common edge / face 

with the other cells) or not. 

a) If the cell is irregular, the sub-groups of cells which are regular 

inside are created (subroutine REARRANGE). Then DESIGNATION 

process is repeated the with the sub-groups. 

b) If the cell is not regular, the common edges/faces are erased and the 

left and right cell number of active edges/faces are defined (Subroutine 

ARRANGE). 

5. The ratio between the size of candidate coarse grid level and the 

previous (stored) coarse grid level is checked. 

a) If the ratio is less than the desired ratio, the candidate coarse grid 

level is accepted and, the coarse mesh properties are calculated and 

stored (subroutine POST). 

b) If ratio is greater than the desired ratio, the delta of deepness level is 

increased and CELLGROUP subroutine is repeated.  
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6. If the coarse grid level is prepared, the coarsening level and the delta of 

deepness level are increased, and CELLGROUP subroutine is repeated. 

To demonstrate the octree data structure, an unstructured grid over the cube is 

prepared. The volume and surface meshes are shown in Figure 2.8. This grid 

consists of 17,047 nodes and 97,451 cells. 1,660 cells lie on the cube surface. The 

four agglomerated coarse grid levels are derived by octree based agglomeration 

coarsening algorithm and they contain 37,322 – 14,374 – 4,676 and 647 cells from 

second to fifth grid levels, respectively.  

The volume cell bounds on the faces of cube are demonstrated (red color) at each 

coarse level in Figure 2.9. It is obviously seen that, the octree data structure is 

formed and the octree based coarser grids have characteristics similar to Cartesian 

grids with good aspect ratios. The cubic volume becomes larger at higher levels of 

coarsening similar to Cartesian volume meshes.  

 

Figure 2.8 Volume and surface meshes around cube  
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Figure 2.9 The coarse level grids on surface of cube. 
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CHAPTER 3  

MULTIGRID IMPLEMENTATION 

 

In this chapter, two dimensional and three dimensional Euler/Navier Stokes 

Equation flow solvers, SENSE2D and SENSE3D developed by TUBITAK-SAGE 

are explained as the baseline solver. After briefing the properties of solver, the 

modifications for the flux calculation and MG adaptation are presented with 

validation of modification. In the last section, the algorithms of all MG routines 

(FAS application, cycling adaptation and transfer operators between grids 

algorithms) with their flowcharts are explained.  

3.1 The Baseline Euler / Navier Stokes Equation Flow Solver 

The viscous flow solver, SAGE Euler / Navier Stokes Equation Solver (SENSE) 

which is a computational fluid dynamics solver developed by TÜBİTAK-SAGE, is 

taken as the baseline flow solver in this thesis. It is a hybrid / unstructured finite 

volume method (FVM) solver. Flow variables are stored at cell centers and second 

order Roe’s upwind flux computations are employed. The time dependent equations 

are solved explicitly using the third order Runge-Kutta method with variable time-

stepping. The methods used at the two dimensional version called SENSE2D and 

three dimensional version called SENSE3D are summarized in the following 

sections [13]. 
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3.1.1 Numerical Discretization Technique 

SENSE2D/3D solver is formulated by using Finite Volume Method (FVM) that is 

based on the physical concept of using macroscopic control volumes to numerically 

solve the conservation laws of fluid motion. The use of integral form of the 

governing equations is the basis of FVM. The direct discretization of the 

conservation laws in integral form ensures that the mass, momentum and energy are 

conserved over discrete control volumes. FVM takes full advantage of an arbitrary 

mesh, where a large number of alternatives are available for the definition of the 

control volumes for conservation laws. Its success is based not only on its relative 

simplicity as compared to Finite Difference Method (FDM) and Finite Element 

Method (FEM) approximations, but also on its flexibility and ability to unite ideas 

from FEM with those from FDM. 

There are mainly two approaches for the approximation of mass, momentum, 

energy fluxes over the surface of control volumes in computational domain: cell 

vertex and cell centered schemes. 

In the cell centered formulation which is used in SENSE2D and SENSE3D solvers, 

the flow properties are directly calculated at the center of the computational cell 

which itself is the control volume for finite volume discretization, Figure 3.1. This 

eliminates the need for the control volume generation affords. The most important 

disadvantages of the cell centered formulation is the requirement for finite element 

approximations to distribute the variables to the nodes, which may bring additional 

numerical errors to the results. 
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Figure 3.1 2-D and 3-D cell centered median dual cells 

3.1.2 Numerical Scheme 

SENSE2D/3D solver is based on upwind differencing which utilizes the 

propagation of information within a mesh in accordance with the theory of 

characteristics in constructing type-dependent differencing for components of the 

information traveling in opposite directions in a separate and stable manner. There 

is no need of scalar artificial dissipation formulas in upwind methods which are 

necessary for second order central schemes to damp odd-even oscillations generated 

especially in the vicinity of discontinuities. By using high order upwind methods, 

shocks and expansion waves that are observed in high speed compressible flows can 

be detected in a very sensitive and accurate manner. Although this approach is more 

difficult than central differencing in computational sense, it brings the advantages of 

being more robust, having high convergence speed and requiring less user 

interaction. 

In the flux-difference splitting schemes, Riemann problem on the cell faces are 

solved locally. The conservative variables are taken as piecewise constant over the 
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cells at each time step and time evolution is obtained by the solution of Riemann 

problem at the cell faces. By this way, exact contributions of local Euler equations 

are introduced to the numerical schemes which make sense in physical point of 

view. Another important advantage of upwind schemes was that with the flux-

difference splitting scheme of Roe, the resolution of boundary layer details typically 

requires only half as many points as with a central differencing code. 

There exists basically two types of time stepping algorithms used both for 

integrating governing flow equations in time to obtain steady state solution and for 

unsteady applications: explicit and implicit time stepping algorithms. Although 

implicit algorithms offer more stable and faster results, they have the shortcoming 

of large amount of memory usage. Also, the implementation of implicit time 

stepping algorithms especially for viscous flows is quite complicated. Most 

commonly used method of time discretization technique which is explicit in nature 

and of a high order of accuracy is the Runge-Kutta method. It achieves the accuracy 

of a Taylor series approach without any need for the evaluation of higher order 

derivatives. Explicit Runge-Kutta method is among the oldest and best-understood 

schemes in the numerical analysis. The simplicity of explicit Runge-Kutta formula 

lies in its self-contained, one-step nature. 

3.1.3 Computational Grid 

In order to eliminate the difficulty in generating high quality unstructured viscous 

meshes within the boundary layer with the available grid generation tools, hybrid 

grids can be used. Hybrid grids offer usage of structured high quality grids in the 

vicinity of boundaries and usage of unstructured grids where dense mesh is not 

required. By so, it is possible to obtain a computational mesh which is dense enough 

to observe the boundary layer and which is small in terms of number of elements, 

i.e. less memory usage and higher computational convergence rate. In Figure 3.2, 
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high quality viscous structured mesh near a wall boundary with smoothly growing 

unstructured mesh up to the far field is presented. 

 

Figure 3.2 Hybrid/unstructured grid  

3.2 Baseline Solver Modifications 

The theory behind the baseline solver is explained in Section 3.1. For easily 

adaptation of MG application, it is decided to change SENSE solver flux calculation 

algorithm by changing the cell based loops to edge/face based loops without 

changing the cell centered scheme. By doing so, due to the nested coarse grid 

levels, which are obtained by using the agglomeration coarsening method, the 

information can be easily transferred between grid levels. The second advantage is 

that, following the edges/faces instead of cells needs less memory and it is time 
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consuming by making calculation once at each edges/faces instead of two from both 

sides of cells. For 2D and 3D applications, all routines are updated according to 

edge/face loop and cell information is supplied by keeping only left and right 

neighbor cells of each edge/face. 

The second modification on the baseline solver is implementation of coarsening and 

MG routines. In this modification, required variables are updated to carry the 

information with the level variable. 

During these modification studies, the following changes are made in both 2D and 

3D solvers: 

• The input file is modified to render more user friendly (An input data file 

format is updated and a sample file is given in APPENDIX A). 

• New default grid data file named grid_level_1.dat is added to obtain the 

parallelism with the coarse grid levels about edge/face numbering. 

• The boundary condition code number is revised to put in a sequence with 

negative numbering. 

• The output information file is prepared for configuration management ( A 

sample output info file format is given in APPENDIX B). 

• The residual calculation for density, x velocity, y velocity, energy and 

turbulent viscosity are added. 

• The mesh conversion algorithm is implemented from the generic format 

(*.neu) to default formats is implemented. 

• A mesh connectivity output file is prepared to speed up the code when same 

grid is used for different flow parameters 
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3.2.1 Modifications about Flux Calculation 

The executable that has been named as “MASTER” is first updated by changing the 

cell based loops to edge/face based loops. MASTER performs the following jobs in 

sequence. The flowchart of the solver is also presented in Figure 3.3. 

1. The size of the computational mesh is read and the memories to the 

arrays are allocated (subroutine GETSIZE). 

2. The necessary input file which consists of properties about the 

solver, flow, grid, multigrid, parameters and files for initialization and 

finally iteration informations is loaded (subroutine CONFIG). 

3. The computational mesh is loaded (subroutine GRID):  

a) The existence of the input file is checked. If default input file 

(grid_level_1.dat) exists, the mesh and connectivity are read. (subroutine 

READGRID). If it does not exist, the generic input file is converted 

(mesh.neu) to grid_level_1.dat and prepares the mesh and connectivity 

(subroutine MESHCONVERSION). 

b) The boundary condition inputs are checked and the inputs of 

boundary conditions are updated.  

c) The neighbors of each of cell are found (subroutine FINDNEIGH). 

d) The numbers of each of the computational edges / faces are 

designates and the right and left cell numbers of each edges/faces are 

stored (subroutine FINDNEIGH). 

4. The geometric properties of edge/faces (length/area, sinus and cosine 

value, midpoint location) and cell areas/volumes are calculated (subroutine 

SETGEOM).  
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5. The computational mesh with side slip angle β  and angle of attack 

α  is rotated to make the global x-axis coincident with the axis of trajectory 

if α  or β  is not equal 0° (subroutine TROTATE). 

6. The computational domain is initialized with free stream conditions 

or from the result of previous calculations (subroutine INIT). 

7. The wall distances of each cell of domain are calculated for the 

Spalart-Allmaras turbulence model (subroutine WALLDIST). 

8. The flow solution is iterated for one step of iteration (subroutine 

STEP). 

a) The pressure values from conservative variables are calculated 

(subroutine PRESSURE). 

b) The local or global time steps for each cell are calculated at each 

iteration steps (subroutine CALDTL). 

c) The third order Runge-Kutta time stepping algorithm is started 

(subroutine RK3). Each of the following three steps of this algorithm is 

applied to every computational cell: 

i. The values of conservative variables are evaluated at cell 

edges / faces, i.e. defines the left and right states at cell faces 

(subroutine QFACE). 

ii. The boundary conditions to right state of the cell edges / faces 

are intoduced (subroutine BC). 

iii. The flux differences for edge/ face fluxes based on edge/face 

loop are computed (subroutine ROE). 
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iv. The viscous fluxes at each edge / face based on edge / face 

loop are computed (subroutine VISCOUS). 

v. The fluxes for each cell based on edge / face loop are 

calculated.  

vi. Implicit residual smoothing is applied (subroutine 

SMOOTH). 

vii. The pressure values from conservative variables are 

calculated (subroutine PRESSURE). 

d) The next third order Runge-Kutta time stepping algorithm are started 

for the calculation of the turbulent viscosity after one full step Runge-

Kutta time stepping algorithm is finished for conservative variables 

(subroutine SPALART). 

e) The screen output or saving frequency is checked and if required, the 

residual for each partition are calculated (subroutine 

RESCALCULATION). The aerodynamic coefficients are evaluated by 

integrating the pressure values over wall surfaces (subroutine LOADS). 

f) The information file of the solution includes date, solver properties, 

flow and grid properties, MG properties, results with computational and 

CPU time, number of iteration or cycle, aerodynamic loads, logarithmic 

residuals are prepared (subroutine OUT).   

9. These steps are repeated until maximum number of iteration is reached 

or a “stop” command comes from the “Master”. 
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Figure 3.3 Algorithm for the baseline solver 
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3.2.2 Validation of Updated Baseline Solver  

To validate the new method in 2D, an unstructured grid over NACA0012 airfoil 

with 9421 nodes and 18390 triangles generated for SENSE-2D solver as seen in 

Figure 3.4. Both versions, the original solver called cell based loop during flux 

calculation and updated solver called edge based loop during flux calculation, are 

solved at a Mach number of 0.1, an angle of attack of 3° and a Reynolds number of 

100,000. The residual is actually represented by the flux around the boundary of 

control volume and is therefore related to the conservative variables. For this 

reason, L2norm residual (which shows the sum of flux calculation of all variables) 

is used for comparing the versions of the solvers. The results for the inviscid flow 

are obtained by using first order discretization and residual history is presented in 

Figure 3.5. It is seen that both 2D solvers are exactly equivalent to each other. 

 

Figure 3.4 2D unstructured grid over a NACA0012 airfoil 
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Figure 3.5 Residual versus the number of iterations for 2D validation 

For SENSE-3D solver, an unstructured grid around an ONERA M6 wing (shown in 

Figure 3.6) having 255,156 nodes and 1,391,537 cells is used to validate the new 

method. Both versions, the original code called cell based loop during flux 

calculation and updated code called faced based loop during flux calculation, are 

solved for a Mach number of 0.5. The results for the inviscid flow are obtained by 

using first order discretization and residual history is presented in Figure 3.7. It is 

also seen that both 3D solvers give exactly equivalent results. 
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Figure 3.6 3D unstructured grid over an ONERA M6 wing 
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Figure 3.7 Residual versus the number of iterations for 3D validation 
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3.2.3 Modifications about Multigrid Adaptation 

The main progam of the baseline code is modified according to MG 

implementation. The grid coarsening algorithms that are FORMQUADTREE for 

2D and FORMOCTREE for 3D presented in Figure 2.4 and COARSENING 

presented in Figure 2.7 are implemented into the main program. These algorithms 

are coded in a compact form and called if MG is active as indicated by red color in 

Figure 3.8. FORMQUADTREE or FORMOCTREE subroutines are called after 

reading grid properties and connectivity information. COARSENING subroutine is 

called after calculating the geometric properties of edge/faces and cell 

areas/volumes. The coarse level grid properties are calculated in this subroutine and 

the deactive edges/faces are signed as “0” for responding coarse level. The 

information about the left and right cell numbers of each active edge / face is stored 

at each coarse level. 

STEP subroutine is directly called if MG is deactive. If MG is active, MGRID 

subroutine which will be defined as the following section is called by the STEP 

subroutine with the level of coarsening information.  

Finally, the other subroutines are modified to process the routines with checking 

that the edge/face is active or deactive. If the edge/face is deactive, the process is 

skipped and an active edge/face is sought. In addition, some arrays are updated to 

store the information with the responding coarsening level. 
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Figure 3.8 The updated algorithm for the baseline solver  
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3.3 Multigrid Algorithms 

For MG implementation, FAS scheme for solution, cycling strategies, (sawtooth, V-

cycle, W-cycle and FMG) transfer operators between grids, (restriction and 

prolongation) and algebraic smoothers are prepared to implement MG capability to 

baseline code. 

3.3.1 FAS Algorithm 

In the FAS scheme, all coarse grid levels are solved exactly at the same free flight 

conditions using the same numerical discretization methods, CFL number and 

boundary conditions as the fine grid solution. As an example, 3-level coarsening of 

FAS concept explained at Section 1.1.3.2 is applied recursively and presented in 

Table 3.1. 
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3.3.2 Cycling Algorithms 

Due to the simplicity and robustness, the fixed cycling strategy having a fixed 

pattern of coarse and fine grids is preferred in this thesis. All common cycling 

patterns, V-cycle, W-cycle and FMG, are adapted to the solver.  

To operate the cycling routines, a compact executable program, called “MGRID”, is 

prepared and adapted to baseline flow solver as shown Figure 3.3. MGRID master 

routine aims the arrange level of solution according to cycling strategy and uses the 

baseline solver subroutine for both fine and coarse level iteration. This subroutine 

performs as the following sequence and its flowchart is presented in Figure 3.9. 

1. The cycle logic is arranged for all kind of cycling strategies that are 

V-cycle, W-cycle and preliminary stage of FMG. The logic of cycling is 

modeled as 123454321 for V-cycle defined in Figure 1.3, 1234543454321 

for W-cycle defined in Figure 1.4 with each digit showing the coarsening 

level. 1 shows fine and 5 shows the 5th coarse grid level. FMG uses V-cycle 

definition for the main part defined in Figure 1.5 (subroutine 

CYCLEDEFINITION). 

2. The preliminary stage of FMG is iterated if the desired cycling 

strategy is FMG (subroutine PRECYCLE): 

a) The repeat number of each V-cycles like 454, 34543 which constitute 

the preliminary stage are defined according to cycle definition. 

b) The coarse grid level number is defined starting from the initial V-

cycle definition and iteration step or transfer operators are addressed. 

c) V-cycle that defined initially is iterated and V-cycle type is updated 

by adding one level of finer grid. 
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3. MG cycles are applied according to cycling definition (subroutine 

MGCYCLE): 

a) The coarse grid level is defined from cycle definition and it is 

compared with the prelevel that is already completed the process. 

b) If grid level is greater that the prelevel (towards to coarse 

direction), 

i. The flow parameters and residuals are restricted 

(subroutine RESTRICTION). 

ii. The defined number of iteration is made and the solution is 

obtained (subroutine STEP). 

iii. The prelevel is defined as level and the next grid level 

number is chosen according to cycle definition. 

c) If level is less that the prelevel (towards to fine direction), 

i. The calculated errors for correction are prolonged 

according to next finer grid level (subroutine 

PROLONGATION). 

ii. The prelevel is defined level and the next grid level number 

is chosen according to cycle definition. 

4. The screen output or saving frequency is checked and if required, the 

residual for each partition are calculated (subroutine RESCALCULATION) 

and the aerodynamic coefficients are evaluated by integrating the pressure 

values over wall surfaces (subroutine LOADS). 

5. The info file of the solution includes date, solver properties, flow and 

grid properties, MG properties, results with computational and CPU time, 
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number of iteration or cycle, aerodynamic loads, logarithmic residuals are 

prepared (subroutine OUT).   

 

Figure 3.9 Algorithm for the MGRID subroutine  
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3.3.3 Intergrid Transfer Operators Algorithms 

For 2D application, the area weighting rule and for 3D application, the volume 

weighting rule is used to transfer flow variables from fine to coarse meshes, H
hI  

∑
∑=

coarse

hfine
h

H
h A

uA
uI )(        (3.1) 

∑
∑=

coarse

hfine
h

H
h V

uV
uI )(        (3.2) 

The residual is actually the fluxes around the boundary of control volume and is 

therefore related to the time rate of change of conserved variables. In order for this 

rate of change to be the same for all grids, it is necessary that the residual transfer 

be conservative, that is, that the sums of the residual on the fine and coarse grids be 

equal. For this reason, collection operator h
HI  does not use area/volume weighting, 

but rafter just sums the residuals of finer meshes. These two collection operators 

make up a process often called the restriction from one grid to a coarser grid. 

The restriction and prolongation algorithms perform as the following sequences 

respectively. 

The conservative variables and residuals are restricted from fine to coarse 

grid levels (subroutine RESTRICTION): 

a) The conservative variables of prelevels are appointed. 

b) The previous (finer) residual )( hhh rfr −=  is updated as forcing 

function values.  

c) The restricted new level conservative variables from finer meshes 

that formed coarse mesh are generated by area/volume averaging.  



 71 

d) The restricted new level residuals from finer meshes that formed 

coarse mesh are generated by summation.  

e) One iteration of flux calculation is made by restricted values 

(subroutine FLUX). 

f) The forcing function of coarse meshes for the new coarse level is 

prepared and the forcing function and the conservative variables are 

stored as original forcing function with level information. 

The conservative variables from coarser to finer grid levels are prolonged 

(subroutine PROLONGATION): 

a) The errors of conservative variables which are originally stored 

during restriction are found (coarser level) )( old
h

H
h

new
H uIu − . 

b) The error values for the fine meshes that formed the coarse mesh 

are designated by direct injection the error of coarse mesh. 

c) If MG cycling type is sawtooth, the error smoothing is done. 

d) The conservative variables of new coarse level are updated by 

adding error values to conservative variables. 

e) If MG cycling type is different then sawtooth type, the desired 

number of iteration is done (subroutine STEP). 
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CHAPTER 4  

RESULTS AND DISCUSSION 

 

In this chapter, the developed grid coarsening algorithm is applied to a variety of 

grid structures to assess its performance and roboustness. The quadtree based grid 

coarsening algorithm is used for two dimensional, octree based grid coarsening 

algorithm is used for three dimensional grids. The performance of the multigrid 

flow solvers, SENSE2D and SENSE3D which are modified, are investigated with 

six validation and verification test cases. The time dependent equations are solved 

explicitly using the third order Runge-Kutta method with variable time-stepping. 

The solution algorithm proceeds by flux calculation on active edges.  

Solutions of the validation cases are carried out on a HP Z600 Workstation. The 

workstation is based on Intel Xeon X5570 2.93GHz 8MB 1333 FSB Quad Core 

Processor with 12 GB 1333 MHz DDR3 ECC Registered RAM running under 

Scientific  Linux 5.3 operating system. X5570 series are using hafnium-based 

Intel® 45nm hi-k metal gate silicon technology and Nehalem.  

The flow cases studied in this thesis are listed at Table 4.1.  
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Table 4.1 List of test cases 

Case 

Number 

Dimension  

Case 1 2D An inviscid flow solution over NACA0012 airfoil 

Case 2 2D A laminar flow solution over NACA0012 airfoil 

Case 3 2D A turbulent flow solution over RAE2822 airfoil 

Case 4 3D An inviscid flow solution over ONERA M6 wing 

Case 5 3D A laminar flow solution over a wing with NACA0012 

airfoil 

Case 6 3D A laminar flow solution over a wing with RAE2822 airfoil 

The MG adaptation is first presented for an inviscid 2D solution over a NACA 0012 

airfoil section with an unstructured grid. In the first part of this validation case, the 

coarse grids, which are generated by the automated quadtree based grid coarsening 

algorithm are presented. Then the efficiency of MG strategy on inviscid flow with 

different cycling strategies are investigated with convergence speeds. In the solution 

process, V-cycle, W-cycle and FMG multigrid strategies are applied and the 

normalized continuity residual and convergence of the aerodynamic coefficients are 

investigated with respect to CPU time. In the second part, MG efficiency is 

investigated for different angle of attacks at a Mach number of 0.15 and different 

Mach numbers at angle of attack of 3°. The density residuals convergence histories 

are demonstrated for the flow parameters.  

The second validation case, a hybrid/unstructured viscous type 2D grid over an 

NACA0012 airfoil section is taken as a root grid and the laminar solutions are 

obtained at low Reynolds numbers. Then, the MG efficiencies with respect to the 
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grid level number, the coarsening ratio and the iteration count at coarse level 

solutions are investigated.  

In the third validation case, the automated grid coarsening algorithm is applied to a 

hybrid/unstructured viscous type grid over an RAE2822 airfoil section. Then 

viscous flow solution with one equation Spalart Allmaras turbulence model at a 

transonic Mach number is obtained by using a single grid and V-cycle MG solution. 

The fourth validation case that is the first validation case of 3D MG adaptation is 

presented on an inviscid 3D solution with an unstructured grid over well known 

validation geometry, ONERA M6. In the first part of this test case, the coarse grids 

which are generated by the automated octree based grid coarsening algorithm are 

presented. Then, MG efficiency with different cycling strategies are investigated 

based on convergence speed ups. In the solution process, V-cycle, W-cycle and 

FMG multigrid strategies are applied and the reduction of normalized density 

residual and the convergence of aerodynamic coefficients are investigated with 

respect to CPU time. In addition, the MG solution efficiencies based on the iteration 

count at coarse level solutions are investigated. 

In a fifth validation case, flow solution for a NACA0012 airfoil on a 3D structured 

type grid is presented. First, the coarsening algorithm is applied to this structured 

grid and the coarse grid levels are presented at surface and symmetry plane. Then, 

the convergence of variations is investigated with convergence speeds on laminar 

flow at low Reynolds number. In this test case, the MG efficiencies about the 

iteration count at coarse level solutions are again investigated in the third part to see 

the effect of solver type. Finally, MG efficiencies which are depent on the grid level 

number and solver type used at coarse grid levels are presented. 

Finally, the automated grid coarsening algorithm are applied a hybrid/unstructured 

viscous type grid over a 0.2 chord wing with RAE2822 airfoil section. Then laminar 
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flow solution at transonic Mach number is obtained by single grid and FMG 

solution. 

4.1 Case 1: An Inviscid Flow Solution over NACA0012 Airfoil 

4.1.1 Grid Coarsening 

Validation of the grid coarsening algorithm is performed on a 2D unstructured grid 

for NACA0012 airfoil with 9421 nodes and 18390 triangles shown in Figure 4.1. 

An automated quadtree based grid coarsening algorithm is implemented to 

unstructured grid around a NACA0012 airfoil and quadtree structure is presented in 

Figure 4.2. 
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Figure 4.1 Fine grid for case 1 
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Figure 4.2 Quadtree structure for case 1 
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A sequence of four coarse hybrid grids is generated with a maximum coarsening 

ratio of about 40 %. The connectivity information between grids is obtained from 

the data structure. The fine grid and coarser grids for MG levels with 3204, 1118, 

441 and 156 cells from second to fifth grid levels are presented in Figure 4.3.  

  

Level 2 Level 3 

  

Level 4 Level 5 

Figure 4.3 Coarse grid levels for case 1 
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The coarsening behavior around the airfoil is also seen from the close-up view 

shown in Figure 4.4. When the coarse grid levels are investigated, the coarse 

meshes have high quality cells with aspect ratios of about unity like Cartesian type 

grids. The coarsening ratio effect is seen around the airfoil very clearly. In addition, 

the coarse level grids keep the original anisotropic grid distribution at all coarse 

levels. 

  

Level 2 Level 3 

  

Level 4 Level 5 

Figure 4.4 Coarse grid levels (close-up view) for case 1 
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4.1.2 MG Efficiencies on Inviscid Solution 

The single grid solution at a low Mach number of 0.15 and at an angle of attacks of 

3° is obtained using the first order flux computations with a CFL number of 0.9. 

The same solution is then obtained by applying V-cycle, W cycle and FMG 

algorithms with 20 time steps at the fine grid level and 10 time steps at coarse grid 

levels. The density distribution around the airfoil obtained from the single grid is 

presented in Figure 4.5.Then, the distribution of the pressure coefficient computed 

by the single grid and V-cycle MG, which reached the exactly same results, is given 

in Figure 4.6.  

 

Figure 4.5 The density distribution around NACA0012 airfoil for case 1 
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Figure 4.6 Distribution of the pressure coefficient around NACA0012 airfoil for 

case 1 

The convergence histories of the single grid, V-cycle, W cycle and FMG cycle 

solutions in terms of the variation of the normalized density residual are presented 

in Figure 4.7. It is seen that, all multigrid solutions exhibit nearly the same converge 

rate as expected and they are approximately 10 times faster than the single grid 

solution without the MG. Such convergence acceleration is in agreement with the 

findings in literature [61]  
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Figure 4.7 Residual histories of single and MG solutions for case 1 

The MG cycling strategies only differ during the initial iterations as observed from 

Figure 4.8. FMG uses a classical V-cycle after the preliminary stage. Therefore 

classical V-cycle and FMG cycling strategies give nearly same residuals after 50 

seconds. W-cycle uses the coarse level grids more heavily due to the logic of 

cycling. For this reason, the initial convergence is slower than the other cycling 

strategies. Finally,FMG gives the fastest convergence due to the preliminary stage 

due to having preliminary stage of the strategy. 
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Figure 4.8 Residual histories of MG solutions at initial stages for case 1 

Then, the cycling strategies are investigated according to the convergence of 

aerodynamic loads in Figure 4.9 for the solutions with and without MG. Like 

residual convergence characteristics, the histories of the convergence of 

aerodynamic loads are similar and reach the same value after a few number of 

iterations.  

The convergence of aerodynamic loads for all MG cycles is investigated again at 

the initial stage of the solution in detail. Within the first few seconds, FMG reaches 

the final value of aerodynamic loads very rapidly without any oscillations as shown 

in Figure 4.10. V-cycle and W-cycle converge the same value all about the same 

CPU time. 
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Figure 4.9 Convergence histories of aerodynamic coefficients for case 1 



 85 

 

 

 

Figure 4.10 Convergence of aerodynamic coefficients at the initial stage for case 1 
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The runtime needed to reach 20 %, 10 %, 5 %, 1 % and 0.1 % error bands of 

aerodynamic force coefficients with all cycling types and fine grid solution is 

reported and the lifting and drag force acceleration ratios to reach the above error 

bands with respect to single grid in terms of CPU time (clock time) are calculated. 

The nondimensional CPU time according to time needed for single grid and speed 

up ratios are presented for drag and lift force coefficients in Figure 4.11 and Figure 

4.12 respectively.  

 

 

Figure 4.11 CPU time and speed up ratio for the drag coefficient convergences to 

reach 20 %, 10 %, 5 %, 1 % and 0.1 % error band for case 1 
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Figure 4.12 Plot of CPU time and speed up ratio for the lift coefficient 

convergences to reach 20 %, 10 %, 5 %, 1% and 0.1 % error band for case 1 

It is be observed that it is enourmously fast to reach especially 20 % error bands for 

the force coefficients for all MG cycling strategies. It is found that to reach 5 % 

error band, the drag coefficients for V-cycle and FMG solutions have approximately 

20 times, W-cycle solution has 9 times, the lift coefficients for all MG solutions 

have approximately 5 times faster convergence ratio than the baseline solution. 
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4.1.3 Dependence of Flow Parameters for the Inviscid Solution 

4.1.3.1 Mach Number Dependency 

MG efficiencies at low subsonic, subsonic and transonic flow solutions with Mach 

number of 0.15 , 0.3, 0.45, 0.6 and 0.75 at 3° angle of attack and Reynolds number 

of 3,000,000 are investigated using the V-cycle strategy. The unstructured fine grid 

over NACA0012 airfoil with 18390 cells and its coarse level grids are used.  

The residual histories for all cases with and without MG algorithm are presented in 

Figure 4.13. It is seen that MG solutions converge to the same residual value of  

their fine grid solutions. Except the low subsonic case, having a Mach number of 

0.15, all MG solutions converge at the same time. Therefore, MG solutions are 

more efficient in terms of the residual convergence, as the Mach number is 

decreased. Although, MG solution at low Mach numbers is slightly different than 

the other solutions, it is still very efficient when compared to the single grid 

solution.  

 

Figure 4.13 Residual histories of single grid and MG solutions for a variety of Mach 

numbers for case 1 
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4.1.3.2 Angle of Attack Dependency 

A set of angle of attacks, 0°, 3°, 6°, 9° and 12° are studied at the same flow 

conditions of Case 1. Like Case 1, the unstructured grid over NACA0012 airfoil 

with 18390 cells and its coarse grid levels are used in this part. For comparison 

purposes, V-cycle MG algorithm is applied to these inviscid cases.  

The residual histories for all the cases with and without MG algorithm are presented 

in Figure 4.14. It is seen that, the convergence rates are approximately the same and 

do not depend on the angle of attack. In addition, the MG solution at 0° angle of 

attack damps the oscillations similar to fine grid solution. The convergence histories 

of aerodynamic loads also show similar characteristics at an angle of attack of 3°.  

 

Figure 4.14 Residual histories for the single grid and MG solutions for variety of 

angle of attacks for case 1 
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4.2 Case2: A Laminar Flow Solution over NACA0012 Airfoil 

4.2.1 Grid Coarsening 

The developed grid coarsening algorithm is next implemented on a 2D 

hybrid/unstructured grid containing 23672 nodes and 33110 cells with 

approximately boundary layer thickness of 0.08 m for 1 m chord length, as shown 

in Figure 4.15. A sequence of four coarse level grids is generated with a maximum 

coarsening ratio of about 40%. The coarse level grids for MG application have 

5264, 1745, 636 and 237 cells. 

 

Figure 4.15 The boundary layer view for case 2 
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The coarsening behavior around the airfoil is seen from the close-up view shown in 

Figure 4.16. Like Case 1, the coarse grid levels have high quality cells with aspect 

ratios of about unity similar to a Cartesian type grid. The coarse level grids keep the 

original anisotropic grid distribution at all coarse levels.  

  

Level 2 Level 3 

  

Level 4 Level 5 

Figure 4.16 Coarse grid levels (close-up view) for case 2 
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4.2.2 MG Efficiencies on Laminar Solution 

This validation case is for laminar flow over NACA0012 airfoil similar to Case 1 at 

a low Reynolds number of 10000, a Mach number of 0.1 and an angle of attack of 

3°. The solution using single grid is obtained using the first order flux computations 

with a CFL number of 0.9. Then, the same solution is obtained by applying FMG 

algorithms with 20 time steps at the fine grid level and 10 time steps at coarse grid 

levels. The flow solutions at coarse grids for suppling the correction term to the fine 

grid solution are obtained by using the inviscid solver. The velocity distribution and 

boundary layer velocity profile, which are similar in the single grid and FMG 

solutions, is presented in Figure 4.17. 

 

Figure 4.17 The Mach number distribution and boundary layer velocity profile for 

case 2  
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The Mach number distribution in FMG solution at the coarse grid levels are 

demonstrated in Figure 4.18. In addition, Mach distribution on coarse grid levels is 

very regular since the original anisotropic grid distribution is kept at all levels.   

  

Level 2 Level 3 

  

Level 4 Level 5 

Figure 4.18 The grid (close up view) and Mach number distribution at coarse level 

grids for case 2 
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The convergence histories of the solutions in terms of the variation of the 

normalized density residual are shown in Figure 4.19 and compared with the 

convergence history of the single grid solution. As in the case of inviscid solutions, 

the MG adaptation on laminar solution has very fast convergence capability with 

respect to the single grid solution. A similar convergence rate is observed in the 

variation of drag and lift force coefficients when the solutions with and without MG 

are compared as shown in Figure 4.20. 

 

Figure 4.19 Residual histories of single and MG solutions for case 2 
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Figure 4.20 Convergence histories of drag and lift force coefficients for case 2 

The speed-up in the convergence of the drag and lift coefficients in fine grid level 

without MG and FMG in terms of iteration step and in terms of CPU time (clock 

time) is shown in Figure 4.21. Solution based on FMG is taken as a reference and 

CPU times to reach 20 %, 10 %, 5 %, 1 % and 0.1 % error bands are recorded. It is 
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seen that for viscous case, the single grid solution converges very slowly and, 

therefore, MG solution acceleration rate is very efficient. Due to the initial 

convergence speed of FMG, drag force coefficient reaches to 20 % error band, 97 

times faster than the single grid solution. To reach 5 % error band, the drag and lift 

coefficients in FMG solutions have approximately 25 and 4 times faster 

convergence ratio than the single grid solution, respectively. 

 

 

Figure 4.21 Drag and lift coefficient convergence ratios with respect to time 

iteration step and CPU time for case 2 
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4.2.3 Effect of Coarsening Ratio between Grid Levels 

In this part, the effect of coarsening ratio between coarse grid levels in MG 

applications is investigated. Three set of coarse grid levels are generated with the 

coarsening ratios of 25 %, 40 % and 55 %. The grid size of coarse grid levels is 

tabulated in Table 4.2. The highest level coarse grids are shown in Figure 4.24, 

Figure 4.23 and Figure 4.24. 

Table 4.2 The grid size of coarse grid levels for coarsening ratios of 25 %, 40 % and 

55 % 

Level 
Coarsening Ratio 

Maximum 25% Maximum 40% Maximum 55% 

2 5264 5264 15675 

3 636 1745 5264 

4 148 636 1745 

5 29 237 636 
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Figure 4.22 The highest coarse grid level having coarsening ratios of 25 % for case 

2 

 

Figure 4.23 The highest coarse grid level having coarsening ratios of 40 % for case 

2 
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Figure 4.24 The highest coarse grid level having coarsening ratios of 55 % for case 

2 

The laminar flow solutions with different coarsening ratios using V-cycle MG at a 

low Reynolds number of 10000, a Mach number of 0.1 and an angle of attack of 3° 

are obtained. The convergence histories of the solutions in terms of the variation of 

the normalized density residual are shown in Figure 4.25. It is seen that all coarse 

grid levels with different coarsening ratio give approximately the same convergence 

histories. However, as the coarsening ratio level is increased, load convergence 

histories show oscillatory characteristics similar to the single grid solution as seen 

in Figure 4.26. In addition, coarsening ratio of 40% gives the most rapid initial load 

convergence without any oscillation. 
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Figure 4.25 Residual histories of MG solutions with coarsening ratios of 25 %, 40 

% and 55 % for case 2  
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Figure 4.26 The convergence histories of drag and lift force coefficients for grid 

coarsening ratios of 25 %, 40 % and 55 % for case 2 
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4.2.4 Effect of Level Number on MG Efficiency 

The efficiency of coarse grid level number on MG applications is investigated in 

this section by using the coarse grid levels with the coarsening ratio of %40. The 

laminar flow solutions are obtained with 2, 3, 4 and 5 grid levels using V-cycle MG 

at a low Reynolds number of 10000, a Mach number of 0.1 and an angle of attack 

of 3°. The convergence histories of the solutions in terms of the variation of the 

normalized density residual and the load convergence histories are shown in Figure 

4.27 and Figure 4.28 respectively. It is seen that MG solutions with different 

number of coarse grid levels converge approximately at the same CPU time. 4-level 

and 5-level MG solutions give similar characteristics in both residual and load 

convergence histories except during the initial iterations. Finally, using high number 

of coarser grid levels prevents the oscillatory characteristics coming from fine grid 

solution.  

 

Figure 4.27 Residual histories of V-cycle MG solutions with different number of 

coarse grid levels for case 2 
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Figure 4.28 The convergence histories of drag and lift force coefficients with 

different number of coarse grid levels for case 2 
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4.2.5 Effect of Time Step Number at Coarse Grid Levels on MG Efficiency 

The efficiency of iteration count at coarse grid levels is investigated in this section. 

The alternatives are investigated in two groups. In the first group, the iteration count 

is kept the same for fine and coarse grid levels. In the second group, the iteration 

count is the same in the coarse level grids, but, it is doubled, twice iteration count at 

the fine grid level. The iteration count alternatives are chosen as 5, 10, 20, 30 and 

40 iteration counts at coarse levels.  

The laminar flow solutions are obtained for all cases like previous sections using V-

cycle MG. The MG solutions with iteration counts of 30 and 40 in the first group 

(i.e. 30 equal time step at fine and coarse grid levels) did not converge. Therefore 

these alternatives are eliminated. The convergence histories of the solutions in terms 

of the variation of the normalized density residual are presented in Figure 4.29.  

 

Figure 4.29 Residual histories of MG solutions for a variety of iteration count at 

coarse grid levels for case 2  



 105 

It is seen that, the second group solutions (with the number of iterations being 

doubled at the fine grid level) are more preferable as long as the convergence of the 

density residual is considered. The initial responses of MG solution with 20 

iterations at coarse grid levels and 40 iterations at the fine grid level is the most 

efficient when compared to the other alternatives. Although 30 time step alternative 

converges (reaches normalized density residual of -12) more rapidly, it has 

oscillatory characteristics and seems to be less robust. 

Then, the load convergence histories for all alternatives are investigated and the 

convergence histories of drag and lift forces are shown in Figure 4.30 by focusing 

their initial behavior. It is seen that 30 iterations show different character than the 

other alternatives especially for the convergence of the drag force. Solutions with 

10 and 20 iterations show approximately the same character for the convergence of 

the drag force. However, for the lift force, MG solution with 20 time iterations 

accomodates oscillations over the initial part of convergence histories. The most 

efficient iteration count for MG efficiency is found as 10 time steps at coarse grid 

levels.  
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Figure 4.30 The convergence histories of drag and lift force coefficients with a 

variety of iteration counts at coarse grid levels for case 2 
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4.3 Case3: A Turbulent Flow Solution over RAE2822 Airfoil 

4.3.1 Grid Coarsening 

The final 2D test case is a hybrid/unstructured grid over RAE2822 airfoil containing 

89914 nodes and 130336 cells having a y+ value of 1, as shown in Figure 4.31. A 

sequence of four coarse hybrid grids around a RAE2822 airfoil is generated with 

again maximum coarsening ratio of about 40 %. The coarse level grids for the MG 

application have 23638, 5323, 1853 and 679 cells. The highest level coarse grid is 

demonstrated in Figure 4.32. 

 

Figure 4.31 The hybrid / unstructured grid for case 3.  
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Figure 4.32 The highest level coarse grid for case 3 
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Like the case studies in the previous sections, the coarse meshes have high quality 

cells with aspect ratios of about unity similar to a Cartesian type grid.  

4.3.2 MG Efficiencies on Turbulent Flow Solution 

The flow field around the RAE 2822 airfoil has been computed for a free stream 

Mach number of 0.729, an angle of attack of 2.31° and Reynolds number of 6.5 

million. The single grid and FMG solutions are obtained using first order flux 

computations with a CFL number of 0.1 using one-equation Spalart-Allmaras 

turbulence model. The pressure distribution around RAE2822 airfoil is presented in 

Figure 4.33 and compared with the experimental values taken from validation cases 

given at www.cfd-online.org web site. It is seen that, the first order explicit solution 

could not capture the shock location very accurately, which may be attributed to the 

fully turbulent first order solution and the performance of the one-equation 

turbulence model for transonic flows. 

 

http://www.cfd-online.org/�
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Figure 4.33 Cp distributions around RAE2822 airfoil for case 3  

Then, the same solution is obtained by applying V-cycle MG algorithm with 20 

time steps at fine grid level and 10 time steps at coarse grid levels. The flow 

solutions at coarse grids for supplying the correction term to the fine grid solution 

are obtained by using inviscid solver.  

The convergence histories of the transonic flow solutions in terms of the variation 

of the normalized density residual are shown in Figure 4.34 and compared with the 

convergence history of the single grid solution. It is apparent that V-cycle MG 

solution when compared to baseline solution converges faster at least by a factor of 

5. 
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Figure 4.34 Residual histories of the single grid and MG solutions for case 3 

A similar convergence rate is observed in the variation of drag and lift force 

coefficients when the solutions with and without MG are compared as shown in 

Figure 4.35. 
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Figure 4.35 The convergence histories of drag and lift force coefficients for case 3 

Solution based on FMG is taken as a reference value and CPU times to reach 20 %, 

10 %, 5 %, 1 % and 0.1 % error bands are recorded. The lift force coefficient using 

single grid did not converge exactly after 850000 time iteration. The speed-up ratios 
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for drag and lift coefficients obtained by V-cycle MG and FMG are shown in Figure 

4.36. To reach 5% error band, the drag coefficient has approximately 4 times, the 

lift coefficient has approximately 6 times faster convergence ratio than the single 

grid solution in both V-cycle MG and FMG solutions. 

 

 

Figure 4.36 Drag and lift coefficient convergence ratios with respect to time 

iterations and CPU time for case 3 
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4.4 Case4: An Inviscid Flow Solution over ONERA M6 Wing 

4.4.1 Grid Coarsening 

A very well known model, ONERA M6 wing, is used in many papers as a test case. 

Pandya and Frink also used ONERA M6 wing geometry to obtain coarse level grids 

for cell centered based tetrahedral unstructured grids using their volume 

agglomeration technique [18]. This technique is described in two steps. In the first 

step, all the fine grid cells attached to the body surface or a far-field boundary are 

identified and merged with its neighboring cells to form a new coarser cell. After all 

of these prioritized boundary cells are assigned to a coarser cell, an unassigned fine 

grid cell on the agglomeration front is picked in a random order and merged with its 

eligible neighbors to form a new coarser cell. The generated coarse level grids are 

presented Figure 4.37.  
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Figure 4.37 Coarse level grids generated by Pandya and Frink for ONERA M6 wing 

[18] 

An automated octree based grid coarsening algorithm developed in this study is 

used for coarsening the unstructured grid around the same geometry, ONERA M6 

wing. The fine grid level, shown in Figure 4.38, contains 255,156 nodes and 

1,391,537 cells.  
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Figure 4.38 Fine grid for case 4 

A sequence of four coarser grids is generated with a maximum coarsening ratio of 

40 % between the coarse grid levels having 546424, 99851, 31065 and 11456 cells 

from second to fifth grid levels as shown in Figure 4.39. The connectivity 

information between grids is obtained from the data tree via this parent / child 

relationship. The coarser grids for MG levels are compared with the Pandya and 

Frink’s study and it is seen that especially at high level coarse grids, which are 

generated in this study keep the ratios of mesh sizes at fine grid level by grouping 

the cells according to location of the octree deepness level. Doing so, the large sized 

fine meshes become large sized coarse meshes and the number of fine mesh at each 

coarse meshes are approximately the same. Finally, the octree based coarser grids 

over the wing have again good aspect ratios and it produced better quality meshes at 

coarse grid levels with respect to ones that are generated by using a globally 

coarsening algorithm. 
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Level 2 

 
 

Level 3 

Figure 4.39 Coarse grid levels for case 4 
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Level 4 

 
 

Level 5 

Figure 4.37 Coarse grid levels for case 4 (continued) 

4.4.2 Effect of MG Efficiencies on Inviscid Solution at Subsonic Mach 

Numbers 

The explicit single grid solution at a Mach number of 0.3 and an angle of attack of 

0° is obtained by using inviscid, first order flux computations with a CFL number of 
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0.2. The same inviscid solutions are also obtained using V-cycle, W-cycle and FMG 

with 20 equal time steps at all grid levels. The Mach number distribution on the 

wing and on the tip of the wing computed by the single grid is presented in Figure 

4.40 and on the symmetry axis in Figure 4.41.  

  

Figure 4.40 Mach number distribution on the ONERA M6 wing for case 4 

 

Figure 4.41 Mach number distribution on symmetry axis for case 4 
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The convergence histories of single grid, V-cycle, W cycle and FMG cycle 

solutions in terms of the variation of the normalized density residual are presented 

in Figure 4.42. It is seen that, all multigrid solutions exhibit approximately the same 

converge rate as expected and converge very rapidly. MG solutions are 

approximately 5 times faster than the single grid solution. Finally, it is noted that, 

FMG solution reaches the converged result at the same time with V-cycle MG 

without any oscillation.  

 

Figure 4.42 Residual histories of single and MG solutions for case 4  

Then, the convergence histories of aerodynamic loads given in Figure 4.43 are 

investigated with and without multigrid solutions using V-cycle, W-cycle and FMG 

cycling strategies. Like residual convergence characteristics, the convergence 

histories of aerodynamic loads for MG solutions are similar and reach to at the same 

values after a few numbers of iterations. 
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Figure 4.43 Convergence histories of aerodynamic coefficients for case 4 

The CPU times required to reach 20 %, 10 %, 5 %, 1 % and 0.1 % error bands of 

aerodynamic force coefficients with all MG cycling types and the fine grid solution 

are also analyzed and tabulated in Table 4.3 and Table 4.4 
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. FMG solution is taken as a reference value and it is seen that the single grid 

solution did not reach 0.1 % error band in 75,000 time steps. The speed up ratios 

relative to the time required for the single grid solution are presented for drag and 

lift force coefficients in Figure 4.45. It is observed that, the other MG cycling 

strategies excluding the W-cycle reach to 1 % error band in the prediction of force 

coefficients very fast, about 5 and 8 times faster than the single grid solution for the 

convergence of drag and lift forces.  

Table 4.3 The runtime required to reach 20 %, 10 %, 5 %, 1 % and 0.1 % error 

bands of drag force coefficient 

% 
CPU time (seconds) 

FINE V-cycle MG W-cycle MG FMG 

20 78,479 9,149 8,043 4,787 

10 99,372 10,062 8,643 9,271 

5 107,150 12,334 13,480 13,251 

1 166,350 18,596 19,420 15,093 

0.1 210,880 30,869 26,703 41,206 

 

 

 

 



 123 

Table 4. 4 The runtime required to reach 20 %, 10 %, 5 %, 1 % and 0.1 % error 

bands of lift force coefficients 

% 
CPU time (seconds) 

FINE V-cycle MG W-cycle MG FMG 

20 185100 30869 57616 33736 

10 203390 38966 66664 35926 

5 218310 45780 76606 46080 

1 254630 66625 104850 55583 

0.1 - 101530 142560 88424 

 
 

 

Figure 4.44 Speed up ratios for the convergence of drag and lift coefficient to reach 

20 %, 10 %, 5 %, 1 % and 0.1 % error band for case 4 
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Figure 4.45 Speed up ratios for the convergence of drag and lift coefficient to reach 

20 %, 10 %, 5 %, 1 % and 0.1 % error band for case 4 

4.4.3 Effect of Iteration Time Step at Coarse Grid Level on MG Efficiencies  

The efficiency of iteration count at coarse grid levels is investigated for three 

dimensional inviscid solutions. The iteration step sizes are taken equivalent for fine 

and coarse grid levels and MG solutions are obtained by 10, 20, 30 and 40 iteration 

steps using V-cycle strategy. The convergence histories of the solutions in terms of 

the variation of the normalized density residual are presented in Figure 4.46. It is 

seen that, except for 10 iteration steps, all V-cycle MG solutions converge 

approximately at the same time.  
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Figure 4.46 Residual histories of MG solutions with a variety of iteration count at 

coarse grid levels for case 4  

Then, the load convergence histories for all alternatives are investigated and the 

convergence histories of drag and lift force are shown in Figure 4.47 by focusing 

the initial behavior of the solution. It is seen as the number of iteration steps are 

increased, the number of oscillations and overshoots before convergence decreases.  
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Figure 4.47 The convergence histories of drag and lift force coefficients for a 

variety of iteration counts at coarse grid levels for case 4 
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4.5 Case 5: Laminar Flow Solution over a Wing with NACA0012 Airfoil 

4.5.1 Grid Coarsening 

An automated octree based data structure is next implemented on 3D fully 

structured grid over a 0.25 chord wing with NACA0012 airfoil section. The fine 

grid contains 679560 nodes and 640000 cells, as shown in Figure 4.48. A sequence 

of four coarse hybrid grids is generated with again a maximum coarsening ratio of 

about 40%. The coarse level grids for MG application have 152678, 60103, 16080 

and 4506 cells. Coarse grid levels at the symmetry axis are presented in Figure 4.49, 

while the surface meshes of fine and the highest level coarse grid are presented in 

Figure 4.50.  

 

Figure 4.48 The fine grid for case 5 
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Level 2 Level 3 

  

Level 4 Level 5 

Figure 4.49 Coarse grid levels at the symmetry axis for case 5 
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Figure 4.50 The surface meshes of fine and the highest level coarse grid for case 5 

4.5.2 Effect of the MG Efficiencies on Laminar Flow 

The single and MG solutions over a wing with NACA0012 airfoil are obtained at a 

low Reynolds number of 10000, a Mach number of 0.1 and an angle of attack of 3° 

with CFL number of 0.1. V-cycle, W-cycle and FMG solutions are obtained with 20 

time steps at all grid levels including the fine grid. For coarse grid iterations, the 

inviscid solver is used but the calculated laminar face fluxes at fine grid level are 

added as a constant term at active faces during flux calculations at the coarse grid 

level. 

The Mach number distribution and boundary layer velocity profile, which are  

computed by the single grid and MG solutions, are similar to each other and they 

are presented in Figure 4.51.  
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Figure 4.51 The Mach number distribution and boundary layer velocity profile for 

case 5  
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The convergence histories of the solutions in terms of the variation of the 

normalized density residual are shown in Figure 4.52 and compared with the 

convergence history of the single grid solution. It is realized that, the residual 

convergence behavior in two dimensional and three dimensional laminar solutions 

are similar to each other. All cycling strategies give approximately same 

convergence on laminar solutions except the initial stage of W-cycle.  

 

Figure 4.52 Residual histories of single and MG solutions for case 5 

Then, the cycling strategies are investigated according to aerodynamic load 

convergence in Figure 4.53 for the solutions with and without MG. Like residual 

convergence characteristics, the histories of aerodynamic loads convergence are 

similar and reach the same values after a few number of iterations.  
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Figure 4.53 Convergence histories of drag and lift force coefficients for case 5 

The CPU time needed to reach 20 %, 10 %, 5 %, 1 % and 0.1 % error bands of 

aerodynamic force coefficients with FMG cycling type and the fine grid solution is 

analyzed. FMG solution is taken as a reference value and it is seen that, the single 
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grid solution did not reach 1 % and 0.1 % error band within 150,000 time steps. The 

speed up ratios relative to time required for the single grid solution are presented for 

drag and lift force coefficients in Figure 4.54. It is observed that, FMG solution 

reach 5 % error band about 13 and 4 times faster than the single grid solution for lift 

and drag forces, respevtively. 

 

Figure 4.54 Plot of speed up ratios of drag and lift coefficient convergences to reach 

20%, 10%, 5% error band for case 4 

4.5.3 Effect of the Solver Type at Coarse Level Solution on MG Efficiency 

The turbulent MG solutions are obtained by solving the coarse levels by inviscid 

solver. In this section, the effect of solver at coarse grid levels on MG efficiency is 
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investigated. V-cycle MG solutions are obtained by solving laminar equations on 

coarse levels at the same flow conditions which are given in previous section.  

The convergence histories of both V-cycle MG solutions which differ at coarse 

level solutions are presented in Figure 4.55. It is seen that, the residual convergence 

behaviors for these two MG solutions are different and the residual of V-cycle MG 

solution which has laminar solution at coarse levels did not reduce like the V-cycle 

MG solution which has inviscid solution at coarse levels. It is concluded that the 

errors coming from the coarse grid levels are fixed and they could not be reduced 

by fine grid iterations. 

 

Figure 4.55 V-cycle MG solutions which differs at coarse level solution for case 4 

Then, the solutions are investigated according to aerodynamic load convergence in 

Figure 4.56. It is seen that, although both results converge to the same aerodynamic 

parameters after some iterations, V-cycle MG solution which has inviscid solution 

at coarse level give more efficient results. 
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Figure 4.56 Convergence histories of drag and lift force coefficients obtained from 

two types of V-cycle MG solutions for case 4 
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4.5.4 Effect of Level Number on MG Efficiency 

The efficiency of coarse grid level number on MG applications is investigated for  

three dimensional problems in this section. The laminar flow solutions at a low 

Reynolds number of 10000, a Mach number of 0.1 and an angle of attack of 3° are 

obtained by using 2, 3 and 4 grid levels and compared to the solution with 5 grid 

levels. The convergence histories of the solutions in terms of the variation of the 

normalized density residual are shown in Figure 4.57. The same investigation is 

presented in Section 4.2.4 for two dimensional laminar problems. The comparison 

showed that, 5-level MG solution is more efficient for both 2D and 3D, but, the 

efficiency of is more realizable in 3D laminar solutions.  

 

Figure 4.57 Residual histories of V-cycle MG solutions with different number of 

coarse grid levels for case 5 
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The load convergence histories of V-cycle MG solutions with different coarse grid 

levels are shown in Figure 4.58. It is seen that 5-level MG solution is the most 

efficient solution when the residual convergence history is considered. Finally, 

using high number of coarser grid levels damps the oscillatory characteristics 

coming from fine grid solution more successfully. 

 

 

Figure 4.58 The convergence histories of drag and lift force coefficients with 

different number of coarse grid level for case 5 
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4.5.5 Effect of the Iteration Time Step at Coarse Grid Levels on MG 

Efficiency 

The efficiency of iteration count at coarse grid levels are investigated for 2D 

laminar solution in Section 4.2.5 and it found that the solution with 20 iteration 

steps provides better convergence. In 3D inviscid flow solutions in Section 4.4.3, it 

is found that the solution with 40 iteration steps provides best convergence. In this 

section, the number of iterations for best convergence is again investigated for 

laminar flows. The MG solutions with 10, 20, 30 and 40 coarse level iteration steps 

using V-cycle strategy are studied. The convergence histories of the solutions in 

terms of the variation of the normalized density residual are presented in Figure 

4.59.  

 

Figure 4.59 Residual histories of MG solutions with a variety of iteration count at 

coarse grid levels for case 5  
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It is seen that, contrary to the 3D inviscid case, the solution with 20 iteration steps is 

more successful in convergence histories when the variation of the normalized 

density residual is considered. Therefore, 20 time steps at coarse grid levels should 

be used for turbulent solutions and more iteration steps on inviscid solutions 

whether it is two or three dimensional. This is due to the fact that the inviscid solver 

is used at coarse grid levels for both inviscid and turbulent solutions. Therefore the 

turbulent solution in fine grid should be updated more frequently.  

4.6 Case 6: A Transonic Laminar Flow Solution over a Wing with RAE2822 

Airfoil 

4.6.1 Grid Coarsening 

An automated octree based data structure is finally implemented on 3D 

hybrid/unstructured grid over a 0.25 chord wing with RAE2822 airfoil section. The 

fine grid contains 645718 nodes and 1570568 cells. The meshes on the wing and the 

symmetry axis are demonstrated in Figure 4.60. A sequence of four coarse hybrid 

grids is generated in this time with a maximum coarsening ratio of about 50%. The 

coarse level grids for MG application have 655788, 154885, 33223 and 12067 cells. 

Coarse grid levels at the symmetry axis are presented in Figure 4.61. 
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Figure 4.60 The meshes on the wing and the symmetry axis for case 6 
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Level 2 Level 3 

  

Level 4 Level 5 

Figure 4.61 Coarse grid levels at the symmetry axis for case 6 

4.6.2 Effect of the MG Efficiencies on Laminar Flow 

The single and FMG solution over a wing with RAE2822 airfoil are obtained at a 

transonic Mach number of 0.729, Reynolds number of 6,500,000 and an angle of 

attack of 2.31° with CFL number of 0.1. FMG solution is obtained again with 20 

time steps at all grid levels including the fine grid. For coarse grid iterations, the 
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inviscid solver is used but the calculated laminar face fluxes at fine grid level are 

added as a constant term at active faces during flux calculations at the coarse grid 

level. The pressure coefficient distributions over the airfoil, which are computed by 

FMG solutions and the experimental values which are already given in Section 4.2 

are presented in Figure 4.62. It is seen that, the first order laminar solution catched 

the shock location but the strength of the shock is calculated less according to 

experimental values.  

 

Figure 4.62 The pressure coefficient distributions over the airfoil for case 6  

The convergence history of FMG solution in terms of the variation of the 

normalized density residual is shown in Figure 4.63 and compared with the 

convergence history of the single grid solution. It is realized that, the residual 

convergence behavior in two dimensional and three dimensional laminar solutions 

are similar to each other.  
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Figure 4.63 Residual histories of single and FMG solution for case 6 

Then, the solutions are investigated according to aerodynamic load convergence in 

Figure 4.64 for the solutions with and without MG. FMG solution converges rapidly 

like the other test cases, but it is seen that, in transonic flow regime, MG solution is 

less efficient compared with the other laminar test cases. 
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Figure 4.64 Convergence histories of drag and lift force coefficients for case 6 
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CHAPTER 5  

CONCLUSION 

 
In this thesis work, it is aimed to accelerate SAGE Euler / Navier Strokes Equation 

Solver developed by TUBITAK-SAGE. While preparing the CFD tool, 

unstructured-grid methodology was chosen for rapid aerodynamics analysis and 

design of complex configurations. According to literature survey about unstructured 

grids, there are many studies about accelerating the CFD studies, generally by 

convergence acceleration techniques and parallelization techniques, rather than 

solution technique directly. These acceleration techniques are invested and it is seen 

that multigrid is likely to be the most effective technique to achieve this goal.  

Since, the basic idea of a multigrid strategy is to accelerate the solution of a set of 

fine grid equations by computing corrections on a coarser grid; it has been 

successfully demonstrated for specially structured and Cartesian grid due to the 

easy generation of the coarse grid levels. Besides, in the past decade, various 

multigrid strategies have also been demonstrated for the unstructured grid flow 

solvers. It is clearly seen that, the most difficult subject on implementation 

multigrid strategy to code with unstructured grid is generating the coarse grid 

levels. It is obviously seen that, the agglomeration coarsening approach is the most 

powerful technique and is a widely used method due to being fully nested, easily 

automated, no geometry loss and high solution accuracy. In an agglomeration 

method, grid cells are fused together to form a smaller set of larger polygonal (or 

polyhedral in three dimensions) control volumes. Since, it satisfies the requirement 

of this study, agglomeration coarsening approach is chosen for generating coarse 

grid levels. The main difficulty of agglomeration approach with unstructured MG 

methods is the selection of the cells to be agglomerated.  
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In this research, a novel grid coarsening method for hybrid/unstructured grids is 

developed to provide an aspect ratio of the cells about one at all coarse grid levels. 

The new grid coarsening technique relies on the agglomeration of 

hybrid/unstructured cells based on cell center localization on a quadtree and octree 

data structure for 2D and 3D applications respectively. This agglomeration strategy 

or point removal algorithm can be define as globally coarsening method by merging 

cells according to parent quadrant/octant or sub-groups. The coarsening algorithm 

can be summarized in two steps. In first one, the quadrant or octant cells are created 

as imaginary cells over the cell domain such a way that each quadrant covers 

maximum four; each octant covers maximum eight cell center points. Then, the 

finest mesh cells are grouped according to quadtree / octree data structure, in other 

words the parent/child structure. The coarsening algorithm is automated and 

implemented to baseline flow solver to make user-friendly. 

Besides generating the coarse grid levels, the baseline flow solver is modified 

during this study. The viscous flow solver, SAGE Euler / Navier Stokes Equation 

Solver (SENSE) is a hybrid / unstructured finite volume method (FVM) solver, 

flow variables are stored at cell centers and second order Roe’s upwind flux 

computations are employed. The time dependent equations are solved explicitly 

using the third order Runge-Kutta method with variable time-stepping. For easily 

adaptation of multigrid application, it is decided to change SENSE solver flux 

calculation algorithm by changing the cell based loops to edge/face based loops 

without changing the cell centered scheme. By doing so, due to the nested coarse 

grid levels, which are obtained by using the agglomeration coarsening method, the 

information can be easily transferred between grid levels. The second advantage is 

that, following the edges/faces instead of cells needs less memory and it is time 

consuming by reducing calculation once for each edges/faces. After that, the 

modifications are validated in two and three dimension by obtaining the same L2 

norm residuals (which shows the sum of all variables flux calculation) at both 

versions. Final modification on baseline flow solver about multigrid adaptation is 
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adding the checking algorithm that shows the edge/face is active or deactive. If the 

edge/face is deactive, the process is skipped and continues for the active edge/face. 

Doing so, some arrays are updated to store the information with the responding 

coarsening level. 

Finally, the multigrid algorithms developed are implemented to the baseline code. 

The full approximation storage scheme is chosen to directly handle non-linear 

problems. In this scheme, the defect-correction term appears on the right-hand side 

and it ensures that the fine grid problem is represented by the coarse grid 

discretization. Therefore, fine and coarse grid levels are solved using exactly same 

free flight conditions, numerical discretization methods, CFL number and boundary 

conditions. Both coarse and fine grid equations converge to the same solution with 

different accuracies. Due to the simplicity and robustness, the fixed cycling strategy 

where has a fixed pattern of coarse and fine grid is preferred in this thesis. All 

common cycling patterns, V-cycle, W-cycle and FMG, are adapted to the solver. 

The restriction of the solution from a finer to coarser grid and the prolongation of 

the correction from a coarser grid to a finer grid are implemented by using simple 

injection. For 2D application, the area weighting rule and for 3D application the 

volume weighting rule is used to restrict the flow variables. The restriction for 

residual is just summing the residuals of finer meshes that form the coarse mesh. 

The prolongation of errors from coarse to fine meshes are made by simple injection. 

The performance of the developed grid coarsening algorithm is investigated with 

six test cases with unstructured, structured and hybrid grids for both 2D and 3D. 

The quadtree based grid coarsening algorithm is used for two dimensional, octree 

based grid coarsening algorithm is used for three dimensional test cases. Firstly, 

fully unstructured fine grids are used over NACA0012 airfoil for 2D and ONERA 

M6 wing for 3D. Then hybrid grid over NACA0012 airfoil for 2D and structured 

grid over a wing with NACA0012 airfoil for 3D which are suitable for low 

Reynolds number laminar flow are preferred. Finally, a hybrid grid over RAE2822 
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airfoil for 2D with very small initial boundary layer cells and a hybrid grid over a 

wing with RAE2822 airfoil for 3D, which is suitable for laminar mesh for transonic 

flow solution, are prepared. A sequence of four coarse hybrid grids for each grid is 

generated with a maximum coarsening ratio of about 40% and 50 %. When the 

coarse grid levels are investigated, the coarse meshes have high quality cells with 

aspect ratios of about one like Cartesian type grid. The coarsening ratio effect is 

seen around the airfoil very clearly. In addition, the coarse level grids keep the 

original anisotropic grid distribution at all coarse levels. 

Then the multigrid efficiencies of SENSE2D and SENSE3D are investigated using 

three different solvers: inviscid, laminar and turbulent.  

The performance of MG solution on inviscid flow solutions for 2D and 3D is 

investigated in the first and fourth validation cases, using V-cycle, W-cycle and 

FMG cycling strategies at subsonic flow conditions. For both dimension, all 

multigrid solutions converge very fast in terms of the variation of the normalized 

density residual and they are approximately 10 times for 2D and 5 times for 3D 

faster than the single grid solution without the MG. The MG cycling strategies 

shows vey similar behavior and especially at initial iterations, FMG gives the fastest 

convergence. It is found that to reach 5% error band, the drag coefficients in MG 

solutions have approximately 20 fold in 2D and 12 fold in 3D, the lift coefficients in 

MG solutions have approximately 5 fold for both 2D and 3D faster convergence 

ratio than the baseline solution. 

The performance of MG solution on laminar flow solutions for 2D and 3D is 

investigated in the second and fifth validation cases at low Reynolds number. It is 

seen that for viscous case, the single grid solution converges very hardly and 

therefore MG solution acceleration rate is very efficient. To reach 5% error band, 

the drag coefficient in FMG solutions has approximately 25 fold for 2D and 13 fold 

for 3D, the lift coefficient in FMG solutions has approximately 4 fold for both 2D 

and 3D faster convergence ratio than the single grid solution. In addition the 
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efficiency on laminar flow at transonic regime is investigated in the sixth test case 

for 3D applications. The performance of MG strategy for this case is still very 

efficient but it has less speed up ratio with respect to other laminar solutions. 

The performance of MG solution on turbulent flow solutions for 2D is investigated 

in the third validation cases at transonic Mach number. It is seen that, the explicit 

turbulent flow solution restricted the CFL condition considerably. Furthermore, the 

number of iterations for convergence is about one order of magnitude greater than 

the laminar flow solutions. Finally, flow solution does not predict the shock location 

accurately, which may be attributed to the fully turbulent first order solution and the 

performance of the one-equation turbulence model for transonic flows. In addition 

to that, to reach 0.1% error band, the drag coefficient in FMG solutions has 

approximately 7 fold, the lift coefficient in FMG solutions has approximately 6 fold 

faster convergence ratio than the single grid solution. 

In the validation cases, the dependency of the multigrid solutions on the flow 

parameters and MG variables is also investigated. The solutions at Mach number of 

0.15, 0.3, 0.45, 0.6 and 0.75 are obtained at the same flow conditions and except the 

low subsonic case, all MG solutions converge at the same time. Therefore while 

decreasing Mach number; MG solutions are more efficient about residual 

convergence. With respect to the angle of attack, 0°, 3°, 6°, 9° and 12° are studied 

at the same flow conditions, the multigrid convergence rates are approximately 

same and do not depend on the angle of attack parameter. The efficiency of 

coarsening ratio between coarse grid levels on MG applications is investigated. It is 

seen that all coarse grid levels with different coarsening ratio give approximately 

same convergence histories, but, coarsening ratio of 40% gives the most rapid initial 

load convergence without any oscillation. The efficiency of coarse grid level 

number on MG applications is investigated using the coarse grid levels with the 

coarsening ratio of %40. Since, using high number of coarser grid levels prevents 

the oscillation characteristics coming from fine grid solution, 5-level MG solutions, 
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especially in 3D applications, is more efficient on convergence. The efficiency of 

iteration count at coarse grid levels on MG convergence is investigated. Since, the 

inviscid solver is used at coarse grid levels for both inviscid and turbulent solutions, 

the step number should be chosen according to solver. Although, 20 time step at 

coarse grid levels gives most powerful results for turbulent solution, increasing the 

step number in inviscid cases prevents the oscillations and overshoots before 

convergence. 

As an overall conclusion, the automated grid coarsening algorithm and multigrid 

flow solvers are developed for unstructured/hybrid grids and cell-centered scheme. 

It is shown that the computational cost is reduced significantly. As a future work it 

can be stated that, the solvers should be updated by adding different type turbulence 

models besides one equation Spallart Almaras model. In addition, especially for 

three dimension applications, the parallel solving capability to multigrid flow solver 

is absolutely necessary. Finally, on multigrid application, the variety of the transfer 

mechanisms and turbulent solver techniques at coarse grid level can be increased. 
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APPENDIX A 

SAMPLE INPUT FILE FORMAT 

------------------------------------------------------------------------------------------- 
SENSE 3D INPUT FILE 

------------------------------------------------------------------------------------------- 
SOLVER 

------------------------------------------------------------------------------------------- 
1 --> Solver selection 1: Explicit, 2: Implicit 
1 --> Solver order 1:1st order, 2:2nd order 
1 --> Flux Algorithm 1: ROE, 2:HARTEN 
0 --> Viscosity 0: Inviscid; 1: Laminar; 2: Spalart-Allmaras  
0 --> Implicit Residual Smoothing 0: Closed; 1:Open 
0 --> Time Step Selection 0: local, 1: global    
0.5 --> Courant-Friedrich-Levy Number 
------------------------------------------------------------------------------------------- 

FLOW & GRID PROPERTIES 
------------------------------------------------------------------------------------------- 
0.1 --> Inflow Mach Number 
2.33e+6  --> Reynolds # 
1. --> Inflow Pressure [Non-dim] 
1. --> Inflow Temperature [Non-dim] 
1. --> Outflow Pressure [Non-dim](For Cascade Flows) 
0. --> Normalized base Pressure [Pbase/Pin] 
0. --> Alpha [°] 
0. --> Beta [°] 
1. --> Reference Length [m]    
0., 0., 0 --> Center Of Mass [m] 
0. --> Min. time step (=0 dtmin calculated, else dtmin=amindt)   
------------------------------------------------------------------------------------------- 
 MULTIGRID PROPERTIES 
------------------------------------------------------------------------------------------- 
2 --> Multigrid Type  

0: without MG,1: Sawtooth MG,  
2: Classical V MG,3: Full MG 

5 --> Multigrid Level 
10 --> # of iteration at each level during cycle    
40 --> The maximum coarsening ratio (%) between grid levels 
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1 --> Printing coarse grids (1) or not (0) 
1 --> Preparing the techplot for coarse levels (1) or not (0) 
0 --> Reading pre-prepared coarse grids       
------------------------------------------------------------------------------------------- 
 PARAMETERS & FILES FOR INITIALIZING 
------------------------------------------------------------------------------------------- 
1.0  --> Initial value for turbulent working variable - Spalart-Allmaras 
0.0  --> Input data file is used (1) or not (0) 
q.end  --> Input file name 
3  --> Tecplot output 0:no output; 1:Surface; 2:Volume; 3:Both 
------------------------------------------------------------------------------------------- 
 ITERATION PROPERTIES 
------------------------------------------------------------------------------------------- 
1000 --> Total # of cycle (Required if MG active) 
1 --> Total # of iteration (Required if MG off) 
1 --> Frequency of the residual to be printed on screen 
1.e10 --> Maximum physical time for run [sec](for unsteady problems) 
10 --> Frequency for the solution to be saved (If MG is active it is cycle freq.) 
5. --> Order of magnitude for the residual to be reduced 
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APPENDIX B  

SAMPLE INFORMATION OUTPUT FILE FORMAT 

        20100409 
------------------------------------------------------------------------------------------- 

SOLVER PROPERTIES 
------------------------------------------------------------------------------------------- 
 Solver    : Explicit 
 Solver Order   : First Order 
 Flux Model   : ROE 
 Viscosity   : Inviscid 
 Imp. Residual Smoothing : Closed 
 Time Stepping  : Local 
 CFL Number   : 0.900000000000000      
------------------------------------------------------------------------------------------- 

FLOW & GRID PROPERTIES 
------------------------------------------------------------------------------------------- 
 Inflow Mach Number : 0.150000000000000      
 Reynolds #   : 3000000.00000000      
 Angle of Attack  : 3.00000000000000      
 Reference Length [m] : 1.00000000000000      
 Center Of Mass [m]  : 0.000000E+000  0.000000E+000 
 Mesh Size   : 2D       18390 
------------------------------------------------------------------------------------------- 

MULTIGRID PROPERTIES 
------------------------------------------------------------------------------------------- 
 Multigrid Level  : 5 
 Multigrid Cycle  : V cycle 
 Grid level cells  :  9012        3204        1118         441 
 # of ite. at each level  : 10 
------------------------------------------------------------------------------------------- 

RESULTS 
------------------------------------------------------------------------------------------- 
 Computational Time  : 38.4092874547207      
 # of Iteration   : 40000 
 # of cycle   : 2000 
CD    : 8.985221953226218E-003 
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CL    : 0.319051662827522      
Cm    : 4.002696485797786E-003 
Logarithmic residual l2 : -11.6768130465795      
Logarithmic residual rho : -11.7030125704998      
Logarithmic residual u : -11.3314484052987      
Logarithmic residual v : -11.6153427179718      
Logarithmic residual e : -11.7155838143928      
First residual l2  : 3.623711568108460E-005 
First residual rho  : 1.248872619352622E-005 
First residual u  : 5.869368324626266E-006 
First residual v  : 1.166253722652242E-005 
First residual e  : 3.141171774763823E-005 
CPU time (seconds)  : 3553.82173600000      
------------------------------------------------------------------------------------------- 
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