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ABSTRACT 

 

RADIAL POINT INTERPOLATION METHOD 
FOR PLANE ELASTICITY PROBLEMS 

 

Yıldırım, Okan 

M.Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Suha Oral 

September 2010, 72 pages 

 

Meshfree methods have become strong alternatives to conventional numerical 

methods used in solid mechanics after significant progress in recent years. Radial 

point interpolation method (RPIM) is a meshfree method based on Galerkin 

formulation and constructs shape functions which enable easy imposition of 

essential boundary conditions. This thesis analyses plane elasticity problems using 

RPIM. A computer code implementing RPIM for the solution of plane elasticity 

problems is developed. Selected problems are solved and the effect of shape 

parameters on the accuracy of RPIM with and without polynomial terms added in 

the interpolation is studied. The optimal shape parameters are determined for plane 

elasticity problems. 

Keywords: Meshfree methods, radial basis function, plane elasticity 
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ÖZ 

 

DÜZLEM ELASTİSİTE PROBLEMLERİ İÇİN 
RADYAL NOKTA İNTERPOLASYON YÖNTEMİ 

 

Yıldırım, Okan 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Suha Oral 

Eylül 2010, 72 sayfa 

 

Ağsız yöntemler son yıllardaki önemli gelişmelerin ardından katı mekaniğinde 

kullanılan klasik sayısal yöntemlere güçlü alternatifler olmuşlardır. Radyal nokta 

interpolasyon yöntemi (RNİY) Galerkin formulasyonuna dayanan bir ağsız 

yöntemdir ve sınır koşullarının kolayca uygulanmasını sağlayan şekil fonksiyonları 

oluşturur. Bu tez RNİY’yi kullanarak düzlem elastisite problemlerini analiz eder. 

Düzlem elastisite problemlerinin çözümü için RNİY’yi kullanan bir bilgisayar kodu 

geliştirilmiştir. Seçilen problemler çözülmüş ve şekil parametrelerinin RNİY’nin 

doğruluğu üzerindeki etkileri interpolasyonda polinom terimleri eklenmiş ve 

eklenmemiş halde çalışılmıştır. Düzlem elastisite problemleri için en uygun şekil 

parametreleri belirlenmiştir. 

Anahtar Kelimeler: Ağsız yöntemler, radyal tabanlı foksiyon, düzlem elastisite 
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CHAPTER 1 

 

1INTRODUCTION 

 

 

For the simulation of physical problems, partial differential equations which govern 

the physical phenomena in the problem have to be solved. In most of the cases, it is 

difficult to obtain an exact solution of the partial differential equation for a real 

problem due to complexity of the problem. Conventional approach for the solutions 

of these partial differential equations  is to use numerical methods where the 

solutions are approximated. A number of powerful numerical methods such as the 

finite difference method (FDM), the finite volume method (FVM) and the finite 

element method (FEM) have been developed using the idea of transforming a 

complex problem of partial differential equations into a simple discrete 

mathematical model. The common feature of these methods is the reliance on a 

mesh. In all these methods, the problem domain where the partial differential 

equations are defined are discretized into subdomains. A continuous domain of 

these discrete subdomains forms a mesh and a priori connectivity information 

between nodes introduced in the problem domain for the discretization is required. 

The finite element method (FEM) is very well established mesh based numerical 

method for the solution of the partial differential equations in the most of 

engineering solid mechanics problems. It discretizes the problem domain into 

meshes, so called elements, with predefined connectivity between nodes. The 

solution in each element is approximated by shape functions. Then applying proper 

formulation principles and using element based shape functions, a set of discrete 

system of equations for the discretized problem domain is formed. Although the 
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FEM is the most frequently used and dominant numerical tool, it has still some 

mesh related problems of mesh based methods. Some of the significant drawbacks 

of mesh based methods, especially for FEM, which were highlighted in literature 

[26,33,34,35] can be listed as follows: 

• Mesh generation is a costly process and the most time consuming step in the 

simulation. It is not a fully automated process and human intervention is 

generally required especially for three dimensional cases. 

• Finer meshes ,which eventually increase the computational cost, is generally 

required for the accurate representation of the boundaries of the problem 

domain and to obtain accurate results in problems with high gradients or a 

distinct local character. 

• Severe distortion of elements in the simulation of problems including large 

geometry changes such as those in large deformation and shape optimization 

problem decreases the numerical accuracy considerably in mesh based 

methods. Mesh based methods are also not well suited to solve crack 

propagation problems where the arbitrary or complex paths of cracks must 

be modelled. Remeshing throughout the evolution of the problem is one way 

of dealing with these types of problems. To increase the numerical accuracy, 

meshing is repeated at each successive stage of the simulation so that severe 

distortion of elements is avoided and mesh lines remains coincident with 

any moving discontinuities. However, remeshing introduces some 

difficulties such as projection of field variables between meshes in each step 

and requires high computational cost especially for large three dimensional 

problems. 

Dependence on a mesh can be seen the main cause of above drawbacks and then the 

first comes to mind as a solution is to eliminate the mesh. 
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1.1 Meshfree Methods 

Meshfree methods, as the name implies, were developed to overcome the 

dependence on the mesh which is used to discretize the problem domain in mesh 

based methods and offer an alternative way of solving engineering  problems 

without dealing with difficulties introduced by a mesh. In these methods, the 

approximate solution for partial differential is obtained using a set of scattered 

nodes without need an additional mesh. Meshfree methods represent the problem 

domain with arbitrarily distributed nodes in the problem domain and on its 

boundary. In the absence of a mesh, shape functions are constructed for particular 

points using the nodes in a small local domain, generally called the support domain, 

of the point. As the location of point changes, shape function changes. However, 

FEM uses element based shape functions and shape functions are the same for all 

the same type of elements. Meshfree methods use the same formulation principles 

as FEM to obtain a set of discrete system of equations. But, the procedure differs 

than FEM due to the difference in approximation technique of meshfree methods. 

When compared to mesh based numerical methods, some of the advantages of 

meshfree methods highlighted in literature [26,33,34,35] can be listed as follows: 

• The cost of mesh generation in the simulation is eliminated since the 

discretization is based on nodes in meshfree methods. Node generation is a 

rather simple process when compared to mesh generation process and can be 

performed fully automated manner by a computer. 

• The absence of a mesh means that no connectivity information between 

nodes is needed before the simulation. Connectivity is defined during run as 

a part of computation.  

• Adaptive analysis can be performed simply by adding nodes in the regions 

where a better accuracy is desired. 
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• Problems including large geometry changes which generally require 

remeshing in mesh based methods can be easily handled by changing the 

connectivity information with time.  

• Boundaries of the problem can be represented accurately by meshfree 

discretization. 

1.2 Literature Survey  

Meshfree methods have attracted attention of researchers due to their distinctive 

properties and significant improvement has been achieved for the solution of partial 

differential equations in engineering problems so far. A group of these methods use 

collocation techniques to discretize the strong form of the governing differential 

equation to obtain the discrete system of equations. These methods are called 

meshfree strong form methods (or meshfree methods based on strong form). 

Another group, called meshfree weak form methods (or meshfree methods based on 

weak form), approximates the weak form of governing differential equations to 

form the discrete system equations. In the latter, weak form requires numerical 

integration globally or locally over the problem domain. First, to present the 

significant improvements in meshfree methods, a general survey of meshfree 

methods is given. Later, related to subject of the thesis, a survey about the usage of 

radial basis functions in meshfree methods is presented. As being older methods 

than meshfree weak form methods, an overview of meshfree strong form methods is 

given in general survey part first. 

One of the oldest and famous meshfree methods is the smoothed particle 

hydrodynamics (SPH) which was introduced by Lucy [1] and Gingold, Monaghan 

[2] in 1977. They both used the SPH to model the astrophysical problems. It 

approximates the strong form of governing differential equation with kernel 

approximation which has a finite integral form.  
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Another mesh free strong form method is finite difference method at arbitrary 

irregular grids or generalized finite difference method (GFDM) which was proposed 

by Liszka and Orkisz [3] in 1980. 

The finite point method (FPM) was proposed by Onate et al [4] in 1996. FPM is 

based on weighted least square interpolation of point data and point collocation 

technique for the evaluation of approximation integrals. It has been applied to fluid 

mechanics [5], [6] and elasticity problems [7]. 

In 1992, Nayroles et al [8] proposed diffuse element method (DEM) which is the 

first meshfree method based on weak form. They used in Galerkin weak form the 

moving least square (MLS) approximation. which was originated by 

mathematicians  Lancaster and Salkauskas [9] for surface fitting in 1981. When 

compared to FEM, DEM has various advantages especially for evaluating the 

derivatives of unknown functions.  

In 1994, Belytschko et al [10] further modified the DEM and developed the element 

free Galerkin method (EFGM). To improve numerical accuracy, they introduced 

several modifications in evaluation of the approximation derivatives, imposing the 

essential boundary conditions and numerical integration. EFGM has become a 

popular method and been applied to different classes of problems successfully. 

The reproducing kernel particle method (RPKM) which was introduced by Liu et al 

[11] in 1995 is another example of meshfree method based on weak from. They 

added correction function to kernel approximations to improve the continuity in 

SPH. RPKM has the advantages of SPH and also gives much more accurate results 

due to addition of correction function. RPKM has also a strong form version 

proposed by Aluru [12] in 2000. 

Duarte and Oden [13] and Babuska and Melenk [14] showed that methods based on 

MLS approximations are specific instances of partitions of unity (PU). Using the 
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PU concept, Babuska and Melenk [14] introduced the partition of unity finite 

element method (PUFEM). Duarte and Oden [13] proposed the Hp clouds method 

which is a meshfree weak form method based on h and p enrichment of the 

approximation functions in 1996. 

In 1997, Mukherjee and Mukherjee [15] proposed the boundary node method 

(BNM) in which MLS approximations used in EFGM were combined with the 

boundary integral equations (BIE). The idea behind the BNM is to retain 

dimensionality advantage of BIE and meshfree property of MLS. 

In 1998, Atluri and Zhu [16] introduced a truly meshfree method so called the 

meshless local Petrov-Galerkin method (MLPG) based on the local symmetric 

weak-form (LSWF) and MLS. The main idea for the development of the MLPG is 

to avoid the shadow elements needed for the evaluation of domain integrals in 

EFGM. In MLPG, integrals are evaluated only over regularly-shaped subdomains 

and their boundaries. 

In 1999, Liu and Gu [17] proposed the point interpolation method (PIM) to replace 

the MLS approximation used for shape function construction in meshfree methods 

such as DEM, EFGM and MLG. The MLS approximation introduces some 

difficulties in the imposition of essential boundary conditions due to lack of 

Kronecker delta function property of the shape functions constructed. In PIM, shape 

functions have the Kronecker delta function property and simple forms when 

compared to the ones constructed with MLS. The original PIM was based on the 

Galerkin weak form and used polynomial PIM shape functions.  

Improving and applying PIM to local Petrov-Galerkin formulation, the local point 

interpolation method (LPIM) was developed by Liu and Gu [18].  

In 2002, Liu and Gu [23] proposed Meshfree weak-strong form (MWS) method 

which was based on the idea of combining the strong form and local weak form to 
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develop a truly meshfree method. For the nodes on the natural boundaries, the local 

weak form is used and for the rest of the nodes, strong form is used. So, the nodes 

on the natural boundaries only requires numerical integration. It is more accurate 

and stable than meshfree strong form methods and more efficient than meshfree 

weak form methods. 

In 1990, multiquadric radial basis functions were first used by Kansa [25] to solve 

partial differential equations. Approximations based on radial basis functions were 

used in meshfree methods also by other researchers, one example is radial basis 

functions used in MLPG approaches for the solutions of three dimensional elasticity 

problems by Han and Atluri [28].  

PIM with polynomial basis function suffers from the singularity of moment matrix 

in the interpolation. To guarantee non-singular moment matrix, some special 

techniques proposed in PIM. Matrix triangularization algorithm (MTA) which was 

developed by Liu and Gu [20] is one of these techniques. Another technique is the 

introduction of radial functions as the basis. Wang and Liu [19] replaced the 

polynomial basis functions in PIM with radial basis functions and developed the 

radial point interpolation method (RPIM). The RPIM was also applied to local 

Petrov-Galerkin formulation and the local radial point interpolation method 

(LRPIM) was developed by Liu and Gu [21] in 2001. Combining with boundary 

integral equation, boundary types of PIM and RPIM was also formulated as the 

boundary point interpolation method (BPIM) and the boundary radial point 

interpolation method (BRPIM) respectively by Liu GR and Gu [22]. 

Wang and Liu [31] and Liu and Gu [32] investigated the effect of shape parameters 

of radial basis functions in two dimensional meshfree methods and recomended 

some optimal shape parameters. 
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1.3 Objective and Scope of the Study 

The main objective of this study is to implement the radial point interpolation 

method (RPIM) as a meshfree method to analyze plane elasticity problems and to 

study the effect of shape parameters of radial basis functions on the accuracy of 

RPIM. To this end, a computer code implementing RPIM with multiquadric (MQ) 

basis functions has been developed for the solution of plane elasticity problems. 

Problems whose analytical solutions are available in literature have been selected 

and solved with developed code. The effect of shape parameters on the accuracy has 

been studied through stress error analysis and the optimal shape parameters of MQ 

radial basis functions have been determined to achieve the best accuracy for plane 

elasticity problems. 

Thesis report is organized as follows: 

• In Chapter 2, a brief information about plane elasticity is provided and the 

relevant equations for plane elasticity for the formulation of RPIM are 

presented. 

• In Chapter 3, domain representation, shape function construction method, 

formulation, numerical integration, imposition of essential boundary 

conditions and general procedure in the RPIM are described. 

• In Chapter 4, for several problems, numerical results of stress error analysis 

study on the accuracy of the RPIM for different shape parameters and 

discussions of results are presented.  

• In Chapter 5, conclusions drawn according to results obtained in Chapter 4 

are provided.   
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CHAPTER 2 

 

2PLANE ELASTICITY 

 

 

Under the action external forces, solids and structures made of solids deform. 

Depending on the material property, this deformation can disappear and initial form 

can be recovered. Elasticity is the property of a structural material to return its 

initial undeformed form completely after removal of external forces acting on it. In 

this deformation, the rate of displacement at a point in the solid is called strain. 

Internal forces are introduced in the solid, to balance the external forces. Magnitude 

of these forces are defined by their intensities. This intensity is called stress. 

Elasticity theory establishes mathematical model to determine the stress, strain and 

displacement distribution in elastic solid under the action of external forces.  

In many cases, materials display a behaviour such that the stress and strain vary 

proportionally up to a limit. This behaviour is called linearly elastic behaviour and 

the limit is called proportional limit.  

Materials can be anisotropic or isotropic depending on the variation of material 

property with direction. Material displaying direction-dependent properties is called 

anisotropic. If the material properties are identical in all directions at a point, then 

the material is called isotropic.  

It is not an efficient way to solve all real problems using governing elasticity field 

equations developed for three-dimensional problems. Simplified formulations have 

been developed taking the advantages related to geometry, loading and boundary 
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conditions. Plane elasticity is a special case where a three dimensional problem is 

simplified to one involving two dimensions only. 

In this thesis, plane elasticity problems for linearly elastic and isotropic are 

considered therefore the relevant information will be given further in this chapter 

for the formulation of radial point interpolation method. 

There are two basic cases of plane elasticity. One is the plane stress and the other is 

plane strain. If a plate whose thickness in z direction is very small in comparison to 

the dimensions in other directions is loaded by forces acting in the plane of the plate 

and uniformly distributed over the thickness as seen in Figure 2-1, the stresses in z 

direction are all zero. The state of stress is then specified by σx, σy, τxy only and 

called the plane stress. These components are functions of  x and y only. A similar 

simplification can be obtained for the state of strain also. Consider an infinitely long 

cylindrical or prismatic body subjected to the load laterally as seen in Figure 2-2. 

Assuming the load to be function of x and y only, all the sections experience the 

same deformation and therefore the strain components in the z direction are all zero. 

This deformation state is referred to as plain strain. 

 

Figure 2-1 Plane stress case 
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Figure 2-2 Plane strain case 

2.1 Equations for Plane Elasticity 

After simplifications, the relevant equations left for plane elasticity are the 

followings. 

The displacements are given as 

[ ]Tvu=u          (2.1) 

The stress components in vector notation are expressed as 

[ ]Txyyx τσσ=σ         (2.2) 

The strain components in vector notation expressed as 

[ ]Txyyx εεε=ε         (2.3) 

The strain-displacement relationships can be written as  

x
v

y
uε

y
vε

x
uε xyyyxx ∂

∂
+

∂
∂

=
∂
∂

=
∂
∂

=     (2.4) 
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or in matrix notation 

Luε =          (2.5) 

where the differential operator L is expressed as      

⎥
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⎥
⎥
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∂
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0

L         (2.6) 

The linear stress-strain relationship in the matrix notation is expressed as 

Dεσ =          (2.7) 

where matrix D for isotropic material in the plane stress case is given by 
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for isotropic material in the plane strain case is given by 
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Equations of equilibrium for static problem are expressed as 
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or in matrix notation 

0bσL =+T          (2.11) 

where the body force vector b is given by  

⎭
⎬
⎫

⎩
⎨
⎧

=
y

x

b
b

b          (2.12) 

The natural and essential boundary conditions can be expressed respectively as 

tσn =   on the natural boundary tΓ     (2.13) 

uu =   on the essential boundary uΓ     (2.14) 

where t  is the vector of prescribed surface tractions on the natural boundary tΓ  and 

given by 

[ ]Tyx tt=t          (2.15) 

n is the unit outward normal vector on the boundaryΓ  and u  is  the vector of 

prescribed displacements on the essential boundary uΓ  and given by  

[ ]Tvu=u          (2.16) 
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CHAPTER 3 

 

3RADIAL POINT INTERPOLATION METHOD 

 

 

Point interpolation method (PIM) was first offered by Liu and Gu [17] in 1999 as an 

alternative shape function construction method to moving least squares (MLS) used 

in EFGM. In PIM, approximation is constructed in a way that interpolation function 

satisfies the values of variables at field nodes in the support domain. So, different 

then MLS, shape functions constructed with PIM possesses the Kronecker delta 

function property meaning that the essential boundary conditions can be imposed 

easily. PIM uses Galerkin weak form to obtain discrete system equations. 

Evaluation of the integrals in weak form requires to use a quadrature integration 

scheme. In PIM, integration is performed using Gauss quadrature with a 

background mesh.  

Original PIM uses polynomials as basis functions, radial point interpolation method 

(RPIM) is a type of PIM where radial basis functions are introduced as basis to 

avoid a non-singular moment matrix in the construction of approximation. 

This chapter presents the general procedure of RPIM including domain 

representation, construction of shape functions, formulation of RPIM, evaluation of 

integrals and imposition of essential boundary conditions. 
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3.1 Domain Representation 

Since the approximation is constructed in terms of nodes in RPIM as in all meshfree 

methods, the first step is representation of the problem domain with nodes. PIM 

represents the problem domain with a set of arbitrarily distributed nodes in the 

problem domain and on its boundary as seen in Figure 3-1.  

 

Figure 3-1 Domain representation 

In this thesis, for problems having simple geometries nodes are generated by simply 

inputting the coordinates of the nodes. For problems having relatively complex 

geometries, node generation is performed using MSC Patran. First, solid body of 

the problem is modelled then mesh of finite elements is created. Then just using the 

nodes and discarding the elements, nodal representation of the problem domain and 

its boundaries is obtained. 
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3.2 Construction of Shape Functions  

Liu [26] classified point interpolation method (PIM) as a finite series representation 

method for the function approximation. PIM interpolates the field variables by 

enforcing the interpolation function pass through the function values at each 

scattered node within the defined support of domain. 

The number of surrounding nodes to interpolate the function value at a point is 

determined by the support domain of the point. In this thesis, circular support 

domains (see Figure 3-2) are used and a fixed number of nodes is used in the 

support domain of each point. 

 

Figure 3-2 Support domain of a point 

Let u(x) be field variable function defined in the problem domain. The domain is 

represented by a set of arbitrarily distributed nodes in the problem domain and its 

boundary. In PIM, approximation for the function u(x) within a support domain at 

point x is given by  
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( ) ( )∑
=

=
n

i
ii aBu

1

xx         (3.1) 

where Bi(x) are basis functions defined in spatial coordinates xT=[x, y] for two 

dimensional problems, n is the number of the surrounding nodes in the support 

domain of point x and ai are the coefficients of the basis functions Bi(x). 

Liu and Gu [17] first used polynomial functions as basis functions. Using 

polynomial basis functions may result a non-singular moment matrix in the shape 

function construction. Some techniques have been proposed to avoid a non singular 

moment matrix. One of these techniques is to use radial basis function proposed by 

Wang and Liu [19] in the function approximation. 

Choosing radial basis functions as the basis, Equation 3.1 is written as  

( ) ∑
=

=
n

i
ii aRu

1
)(xx         (3.2) 

where Ri(x) are the radial basis functions defined in spatial coordinates xT=[x, y] for 

two dimensional problems. In the radial basis function Ri(x), the variable is the 

distance r between the point of interest x and a node at xi. For two dimensional 

case, r is expressed as: 

( ) ( )22
ii yyxxr −+−=        (3.3) 

Multiquadric (MQ), Gaussian, thin plate spline and logarithmic radial basis 

functions are often used radial basis functions. In this thesis, only MQ radial basis 

functions will be considered. MQ radial basis function is given by, 

( ) ( )qii CryxR 22, +=         (3.4) 
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where q and C are shape parameters. Dimensionless formulation of MQ radial basis 

functions has the form [26]. 

( ) ( )( )qcii cdryxR 22, +=        (3.5) 

where c is the dimensionless shape parameter and dc is the average nodal spacing in 

the local support domain of point x.  

The consistency of shape function is defined as the ability to reproduce the 

complete order of polynomial. The RPIM shape functions are not consistent i.e., 

they can not reproduce linear field function exactly. Wang and Liu [24] proposed to 

use radial basis function with polynomial basis functions up to linear orders to 

ensure the consistency of RPIM shape functions. 

Adding polynomials basis functions, Equation 3.2 becomes 

( ) ( ) ( )∑∑
==

+=
m

j
jj

n

i
ii bpaRu

11
xxx       (3.6) 

where pj(x) are the monomials in spatial coordinates xT=[x, y] for two dimensional 

problems, m is the number of polynomial basis functions and bj are the 

corresponding coefficients for the polynomial basis functions pj(x). 

Equation 3.6 can be written in the matrix form as 

( ) ( ) ( )bxpaxRx TT +=u        (3.7) 

where the vector R of radial basis functions has the form 

( ) ( ) ( ) ( )[ ]xxxxR nRRR ,.....,, 21
T =       (3.8) 
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the vector p of polynomial terms has the form  

( ) ( ) ( ) ( )[ ]xxxxp mppp ,.....,, 21
T =       (3.9) 

the vector a is written as 

[ ]naaa ,.....,, 21
T =a         (3.10) 

and the vector b is written as 

[ ]mbbb ,.....,, 21
T =b         (3.11) 

One may determine, the coefficients ai and bj by enforcing interpolation function 

u(x) satisfy the nodal values at n surrounding nodes in the support domain of point 

x. Therefore, at each node, we have  

( ) ( )bpaR iii xxu TT +=        (3.12) 

Equation 3.12 can be written in the matrix form as 

bPaRU ms += 0         (3.13) 

where the vector Us is 

[ ]ns uuu ...21
T =U        (3.14) 

the moment matrix of radial basis functions, R0 is expressed as 
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the moment matrix of polynomial terms Pm is expressed as  
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In order to have an unique solution, the following constraints are imposed for the 

polynomial terms 

( ) mjap
m

i
iij ,....,2,10 ==∑ x       (3.17) 

or in matrix form 

0aP =T
m          (3.18) 

Combining Equations 3.13 and 3.18, the following equation is obtained 
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or 
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Solving Equation 3.20, we have  
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Equation 3.7 can be re-written as 

( ) ( ) ( ) ( ) ( )[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=+=

b
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xpxRbxpaxRx TTTTu     (3.22) 

Substituting Equation 3.21 into Equation 3.22 gives 
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where the RPIM shape functions are expressed as 

( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) ( )[ ]xxxxxx

GxpxRΦ

mnnnn ΦΦΦΦΦΦ +++

−

=
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....

~

2111

1TTT

 (3.24) 

The RPIM shape functions corresponding to nodal variables are expressed as 

( ) ( ) ( )[ ]xxxΦ nΦΦΦ ..21
T =       (3.25) 

Equation 3.23 can be written as 

( ) ( )∑
=

=
n

i
ii uxΦu

1

x         (3.26) 
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3.3 RPIM Formulation 

A plane elasticity problem can be defined with the equilibrium equation given by  

Equation 2.11 in the global domain Ω  as  

0bσL =+T   in  Ω        (3.27) 

where L, σ and b are given by Equations 2.6, 2.7 and 2.12 respectively 

and with the natural and essential boundary conditions given by Equation 2.13 on 

the natural boundary tΓ  and Equation 2.14 on the essential boundary 

uΓ respectively as 

tσn =    on  tΓ        (3.28) 

uu =    on  uΓ        (3.29) 

where n is the unit outward normal vector on the boundary Γ  and t , u  and u  are 

given by Equations 2.15, 2.1 and 2.16. 

The displacements u and v can be written with the approximation 3.26 as 

( ) ( )∑
=

=
n

i
ii uxΦu

1
x         (3.30) 

( ) ( )∑
=

=
n

i
ii vxΦv

1
x         (3.31) 

Combining Equations 3.30 and 3.31, we have 
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Substitution of Equation 3.32 into strain-displacement relationship given by 

Equation 2.5 yields 
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Substituting Equation 3.33 into stress-strain relationship given by Equation 2.7, we 

have 

∑∑ ===
n

I
II

n

I
II uDBuBDDεσ       (3.35) 

The Galerkin weak-form for the plane elasticity defined by Equations 3.27, 3.28 

and 3.29 can be written using virtual work principle as 

∫ ∫∫
Ω ΓΩ

=Γ−Ω−Ω 0tubuσε
t

δδδ ddd TTT      (3.36) 

where the first term is work done by internal force, the second term is work done by 

body force and the last term is work done by external force.  

Substituting Equations 3.32, 3.33 and 3.35 into equation 3.36 final discrete system 

equations can be obtained as follows 
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n covers the nodes in the local support domain, to include all nodes in the problem 

domain, summation limits must be changed from n to N which is the total number 

of nodes in the problem domain. 

0fufuuKu =∂−∂−∂ ∑∑∑∑
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where Kij is the nodal stiffness matrix in the form of   

∫
Ω

Ω= dT
jiij DBBK         (3.40) 

b
if is the nodal body force vector in the form of 

∫
Ω

Ω= dTbΦf i
b
i         (3.41) 

and t
if  is the nodal traction force vector in the form of 

∫
Γ

Ω=
t

i
t
i dTtΦf           (3.42) 

Equation 3.39 can further be written as 

0FUFUKUU =∂−∂−∂ tb TTT       (3.43) 
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( ) 0FFKUU =−−∂ tbT        (3.44) 

where U is the global displacement vector, K is global stiffness matrix which is 

assembled using Kij, Fb is the global body force vector which is assembled using b
if  

and Ft is the global traction force vector which is assembled using t
if . Equation 

3.44 can be satisfied only if 

0FFKU =−− tb         (3.45) 

Finally, writing the global body force vector Fb and the global traction force vector 

Ft
 together as the global force vector F, the final discrete system equation can be 

obtained as 

0FKU =−          (3.46) 

FKU =          (3.47) 

3.4 Evaluation of Integrals 

Formulation of RPIM for a plane elasticity problem is presented in Section 3.3 

through the use of Galerkin weak form to obtain discrete system equations. As all 

other meshfree methods based Galerkin weak form, RPIM requires a quadrature 

integration scheme to evaluate the integrals in the weak form. Two area integrals in 

Equations 3.40 and 3.41 and one line integral in Equation 3.42 appear in the steps of 

formulation. RPIM uses Gauss quadrature to evaluate these integrals numerically 

with a background mesh. This can be seen a disadvantage of RPIM and the 

requirement of a mesh for integration makes impossible to see the method as a truly 

meshfree method. However, background mesh is used just for integration and 

independent of the nodes used to construct approximation for the field variables. 
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From this point of view, RPIM can be seen as meshfree in terms of approximation 

of field variables only. Different than the mesh in FEM which is used for both 

approximation and numerical integration, a suitable background mesh to ensure a 

numerical integration of desired accuracy is enough in RPIM.  

In this thesis, quadrilateral background mesh is used for the numerical integration in 

the studied problems. For problems with simple geometry, background mesh is 

defined by entering the coordinates of corner points of quadrilateral elements and 

defining the connectivity information in between the elements. For complex 

geometries studied, a background mesh is generated using MSC Patran.  

3.5 Imposition of Essential Boundary Conditions 

In Meshfree methods using MLS method for the shape function construction, 

imposition of essential boundary conditions requires special techniques due to the 

fact that approximation does not satisfy the values of variables at field nodes. 

However, in PIM and also RPIM, shape functions constructed possesses the 

Kronecker delta function property i.e., the approximation satisfies the values of 

variables at field nodes. This property of the shape function RPIM enables easy 

imposition of essential boundary conditions as in FEM, so no special treatment is 

required. 

3.6 RPIM Procedure 

Implementation of RPIM for a plane elasticity problem can be realized according to 

the following step by step procedure: 

1. Model the geometry of the problem. 

2. Generate a finite number of nodes to represent the problem domain and its 

boundaries. 
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3. Generate a background mesh and Gauss points for the numerical integration 

for Gauss quadrature. 

4. Determine the nodes to support the approximation at each Gauss point. 

5. Create shape functions iΦ  and its derivatives iB  for the nodes in the 

support domain of each Gauss point. 

6. Perform numerical integration to find the contribution of each Gauss point in 

the problem domain to nodal stiffness matrices Kij and nodal body force 

vector b
if  and to find the contribution of each Gauss point on the problem 

domain boundary to nodal traction force vector t
if . 

7. Form the global stiffness matrix K by assembling the nodal stiffness 

matrices Kij and global force vector F by assembling the nodal force vectors 
b
if and t

if . 

8. Solve linear system equation to find the displacements U at all nodes. 

9. Calculate stress and strain at all nodes. 
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CHAPTER 4 

 

4NUMERICAL EXAMPLES AND DISCUSSION 

 

 

A computer code implementing RPIM with multiquadric (MQ) radial basis 

functions for the solution of plane elasticity problems is developed using Fortran 

programming language. In this chapter, a number of plane elasticity problems is 

solved with the code to illustrate the performance of RPIM and the effect of shape 

parameters (c, q) of MQ radial basis functions on the accuracy of RPIM is studied 

through stress error analysis. Problems whose analytical solutions are available in 

the literature are selected for accurate error analysis. Selected problems includes 

cantilever beam loaded at the end, infinite plate with circular hole under uniform 

far-field load, thick-walled hollow cylinder under uniform internal pressure and 

curved beam loaded at the end. Meshfree models of the problems are defined and 

suitable background meshes are applied for accurate numerical integration. Each 

problem is solved for a range of values of c and q with and without polynomial 

terms added in the interpolation and to illustrate the effect of shape parameters on 

the numerical accuracy, error values are plotted for different values c and q. In all 

studied problems, linear basis functions (m=3) added as polynomial terms. 

Numerical results of error analysis are discussed for each problem and the optimal 

shape parameters common to all problems are determined. Deflection and stress 

plots with the optimal shape parameters are also presented. 

For the purpose of error analysis, a relative percentage of stress error is defined as 
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where e  and ϕ  are given by 
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4.1 Cantilever Beam Loaded at the End 

The problem of a cantilever beam having a narrow rectangular cross section of unit 

width with a load P at the end is shown in Figure 4-1. End load is distributed 

parabolically along the end and has a resultant of P. 

 

Figure 4-1 Cantilever beam loaded at the end 
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Analytical solution of the problem is given as follows [30]. 

The displacement component in x direction is 
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The displacement component in y direction is 
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where moment of inertia is given by 

12

3hI =          (4.6) 

The normal stress component in x direction is 

( )
I

yxlP
x

−
−=σ         (4.7) 

The normal stress component in y direction is 

0=yσ           (4.8) 
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The shear stress is 
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xyτ         (4.9) 

Analytical displacement solutions given by Equations 4.4 and 4.5 are prescribed at 

the left end in numerical model. Parabolic end load is distributed according to 

Equation 4.9 at right end. 

Parameters for this problem are chosen as in Table 4-1. 

Table 4-1 Parameters for the problem of cantilever beam loaded at the end 

Parameter Value 

Load, P -500 N 

Young’s modulus, E 30000000 N/mm2 

Poisson’s ratio, υ  0.3 

Height, h 18 mm 

Length, l 90 mm 
 

The problem is solved for plane stress case. The domain of cantilever beam is 

modelled using 217 regularly distributed field nodes as shown in Figure 4-2. A 

background mesh of 80 rectangular cells as shown in Figure 4-3 are used for 

numerical integration. 4*4 Gauss points are used in each cell. Circular support 

domains are defined and fixed number (30) of nodes is used in support domain of 

each Gauss point for displacement interpolation. 
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Figure 4-2 Node distribution for cantilever beam problem 

 

Figure 4-3 Background mesh for cantilever beam problem 
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Figure 4-4 Effect of parameter q for different values of c on the relative stress error 

in cantilever beam problem 

First, the problem is solved with given parameters above for different values of 

shape parameters c and q without polynomial terms added in the interpolation.  

Figure 4-4 shows the variation of the relative percentage stress error with respect to 

q for different values of c. It is seen that error makes minimum around integer 

values of parameter q but not exactly at integer values for different values of 

parameter c. This is the observation made by Wang and Liu [31] and the optimal 

value recommended for parameter q is 1.03. It also observed from Figure 4-4 that 

the sensitivity of error decreases with respect to q when parameter c increases. 
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Figure 4-5 Effect of parameter c for q=1.03 and 2.03 on the relative stress error in 

cantilever beam problem 

Following the observations from Figure 4-4, values of parameter q is fixed to 1.03 

and 2.03 and the effect of parameter c on the relative percentage stress error is 

plotted as shown in Figure 4-5. Considering the results for both values of parameter 

q, the minimum error is obtained at c=3.0 for q=1.03. This is in the range found for 

c (3.0-7.0) by Liu and Gu [32]. 
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Figure 4-6 Effect of parameter q for different values of c with polynomial terms on 

the relative stress error in cantilever beam problem 

Next, the problem is solved for different values of shape parameters c and q with 

polynomial terms added in the interpolation to see whether optimal values of 

parameters c and q changes or not. Figure 4-6 shows effect of parameter q on the 

relative percentage stress error for different values of c with polynomial terms 

added. Results show that the addition of polynomial terms decreases the error 

considerably. This is the observation made by Wang and Liu [31]. It is also 

observed that the addition of polynomial terms decreases the sensitivity of the error 

with respect to variations in both parameters c and q and in contrast to the case 

without polynomial terms, optimal values for parameter q varies for different values 

of parameter c. As the parameter c increases the optimal value of parameter q 

decreases and the minimum value of error increases. 
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Figure 4-7 Effect of parameter c for q=1.03 and 2.03 with polynomial terms on the 

relative stress error in cantilever beam problem 

Values of parameter q is fixed to 1.03 and 2.03 and the effect of parameter c on the 

relative percentage stress error with polynomial terms is plotted as shown in Figure 

4-7. Variation of the error with respect to parameter c for q=1.03 is similar to the 

case with polynomial terms and c=3.0 again gives the minimum error. However, 

considering the results for both values of parameter q, the minimum error is 

obtained  at c=0.0 for q=2.03.  

 Figure 4-8 shows the deflection v at y=0 for shape parameter q=2.03 and c=0.0 

with polynomial terms. Figure 4-9, Figure 4-10 and Figure 4-11 show distribution 

of σx, σy and τxy respectively at x=l/2 for shape parameter q=2.03 and c=0.0 with 

polynomial terms. 
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Figure 4-8 The deflection v at y=0 for shape parameter q=2.03 and c=0.0 with 

polynomial terms in cantilever beam problem 

 

Figure 4-9 Distribution of σx at x=l/2 for shape parameter q=2.03 and c=0.0 with 

polynomial terms in cantilever beam problem 
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Figure 4-10 Distribution of σy at x=l/2 for shape parameter q=2.03 and c=0.0 with 

polynomial terms in cantilever beam problem 

 

Figure 4-11 Distribution of τxy at x=l/2 for shape parameter q=2.03 and c=0.0 with 

polynomial terms in cantilever beam problem. 
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4.2 Infinite Plate with Circular Hole Under Uniform Far-Field Load 

An infinite plate with circular hole subjected to uniform far-field load in x direction 

is shown in Figure 4-12. 

 

Figure 4-12 Infinite plate with circular hole under uniform far-field load 

Analytical solution for this problem is given as follows [30],  

The normal stress component in x direction is 
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The normal stress component in y direction is 
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where (r,ө) are the polar coordinates and ө is measured from the positive x axis 

counterclockwise. 

The shear stress is 
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The displacement components are 
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where G is shear modulus given by  

 ( )ν+=
12
EG

         (4.15) 

and κ is Kolosov constant given by 
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The solution of a square finite plate with an edge length ten times greater than 

radius of the hole  is very close to solution of the infinite plate. Considering the 

symmetry of the problem also, only one quarter of the plate is modelled as shown in 

Figure 4-13. 

 

Figure 4-13 Upper right quarter model of square finite plate with circular hole under 

uniform far-field load 
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Parameters for this problem are given in Table 4-2. 

Table 4-2 Parameters for the problem of square finite plate with circular hole under 

uniform far-field load 

Parameter Value 

Load, S 1.0 N/m 

Young’s modulus, E 1000 N/m2 

Poisson’s ratio, υ  0.3 

a 1.0 m 

b 5.0 m 
 

The problem is solved for plane stress case. The domain of upper right quarter of 

square finite plate with circular hole is modelled using 293 distributed field nodes 

as shown in Figure 4-14. A background mesh of 99 quadrilateral cells as shown in 

Figure 4-15 are used for numerical integration. 4*4 Gauss points are used in each 

cell. Circular support domains are defined and fixed number (30) of nodes is used in 

support domain of each Gauss point for displacement interpolation. 
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Figure 4-14 Node distribution for infinite plate with circular hole problem 

 

Figure 4-15 Background mesh for infinite plate with circular hole problem 
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Figure 4-16 Effect of parameter q for different values of c on the relative stress 

error in infinite plate with circular hole problem 

First, the problem is solved with given parameters above for different values of 

shape parameters c and q without polynomial terms added in the interpolation.  

Figure 4-16 shows the effect of parameter q on the relative percentage stress error 

for different values of c. Similar to the cantilever beam problem, it is observed that 

error makes minimum around integer values (1 and 2) of parameter q for different 

values of parameter c. But this time, variation in error is less sensitive to parameter 

q. 
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Figure 4-17 Effect of parameter c for q=1.03 and 2.03 on the relative stress error in 

infinite plate with circular hole problem 

Again values of parameter q is fixed to 1.03 and 2.03 and the effect of parameter c 

in the range of 0.0 - 7.0 on the relative percentage stress error is plotted as shown in 

Figure 4-17.  It seen that optimal values of parameter c change when compared to 

the cantilever beam problem. For both values of parameter q, optimal value of c is 

close to 0.0. This is out of the  range found for c (3.0-7.0) by Liu and Gu [32].  
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Figure 4-18 Effect of parameter q for different values of c with polynomial terms on 

the relative stress error in infinite plate with circular hole problem 

Next, the problem is solved for different values of shape parameters c and q with 

polynomial terms added in the interpolation to see whether optimal values of 

parameters c and q changes or not.  Figure 4-18 shows effect of parameter q on the 

relative percentage stress error for different values of c with polynomial terms 

added. The sensitivity of the error with respect to variations in both parameters c 

and q decreases with the addition of polynomial terms. Similar observations can be 

made for the optimal values of parameters as the cantilever beam problem. As the 

parameter c increases the optimal value of parameter q decreases and the minimum 

value of error increases. 
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Figure 4-19 Effect of parameter c for q=1.03 and 2.03 with polynomial terms on the 

relative stress error in infinite plate with circular hole problem 

Figure 4-19 shows the effect of parameter c for q=1.03 and 2.03 with polynomial 

terms on the relative percentage stress error. The minimum error is obtained  at 

c=0.0 for q=2.03. It is also observed that optimal values of parameter c do not 

change with the addition of polynomial terms. This is different than the observation 

in cantilever beam problem where addition of polynomial terms change the optimal 

value of parameter c for q=2.03. 
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4.3 Thick-Walled Hollow Cylinder Under Uniform Internal Pressure 

Another plane elasticity problem considered is a hollow thick-walled cylinder 

subjected to a uniform internal pressure p shown in Figure 4-20. 

 

Figure 4-20 Hollow thick-walled cylinder subjected to a uniform internal pressure 

Analytical solution for this problem is given as follows[30]  

The normal stress component in radial direction is 
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The normal stress component in tangential direction is  
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The displacement component in radial direction is 
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Parameters for this problem are chosen as in Table 4-3. 

Table 4-3 Parameters for the problem of hollow thick-walled cylinder subjected to a 

uniform internal pressure  

Parameter Value 

Load, P 100 N/mm 

Young’s modulus, E 12000 N/mm2 

Poisson’s ratio, υ  0.3 

Inner radius, a 10.0 mm 

Outer radius, b 25.0 mm 
 

Considering the symmetry of the problem, only one quarter of the is modelled as 

shown in Figure 4-21. 
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Figure 4-21 Upper right quarter model of hollow thick-walled cylinder subjected to 

a uniform internal pressure 

The problem is solved for plane strain case. The domain of upper right quarter of 

hollow thick-walled cylinder is modelled using 189 distributed field nodes as shown 

in Figure 4-22. A background mesh of 78 quadrilateral cells as shown in Figure 

4-23 are used for numerical integration. 4*4 Gauss points are used in each cell. 

Circular support domains are defined and fixed number (30) of nodes is used in 

support domain of each Gauss point for displacement interpolation. 

 



 51

 

Figure 4-22 Node distribution for hollow thick-walled cylinder problem 

 

Figure 4-23 Background mesh for hollow thick-walled cylinder problem 
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Figure 4-24 Effect of parameter q for different values of c on the relative stress 

error in hollow thick-walled cylinder problem 

First, the problem is solved with given parameters above for different values of 

shape parameters c and q without polynomial terms added in the interpolation.  

Figure 4-24 shows the variation of the relative percentage stress error with respect 

to q for different values of c. Similar to results of the previous problems, error 

makes minimum around integer values of parameter q for different values of 

parameter c. As observed in the cantilever beam problem, the sensitivity of error 

decreases with respect to q when parameter c increases. 
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Figure 4-25 Effect of parameter c for q=1.03 and 2.03 on the relative stress error in 

hollow thick-walled cylinder problem 

The effect of parameter c on the relative percentage stress error for q=1.03 and 2.03 

is plotted as shown in Figure 4-25. Results are similar to those of infinite plate with 

circular hole problem. For both values of parameter q, optimal value of c is close to 

0.0.  
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Figure 4-26 Effect of parameter q for different values of c with polynomial terms on 

the relative stress error in hollow thick-walled cylinder problem 

Next, the problem is solved for different values of shape parameters c and q with 

polynomial terms added in the interpolation to see whether optimal values of 

parameters c and q changes or not. Figure 4-26 shows effect of parameter q on the 

relative percentage stress error for different values of c with polynomial terms 

added. Similar observations can be made as previous examples for the sensitivity 

and the decrease in error and the variation of optimal shape parameters with the 

addition of polynomial terms.  
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Figure 4-27 Effect of parameter c for q=1.03 and 2.03 with polynomial terms on the 

relative stress error in hollow thick-walled cylinder problem 

Figure 4-27shows the effect of parameter c for q=1.03 and 2.03 with polynomial 

terms on the relative percentage stress error. Results are again similar to those of 

infinite plate with circular hole problem. The minimum error is obtained  at c=0.0 

for q=2.03 and the optimal values of parameter c do not change with the addition of 

polynomial terms.  

Figure 4-28 and Figure 4-29 show distribution of ur at ө=45o and at r=10 

respectively for shape parameter q=2.03 and c=0.0 with polynomial terms. Figure 

4-30 shows distribution of σr at ө=45o
 for shape parameter q=2.03 and c=0.0 with 

polynomial terms. Figure 4-31 shows distribution of σө at ө=45o
 for shape parameter 

q=2.03 and c=0.0 with polynomial terms. 
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Figure 4-28 Distribution of ur at ө=45o for shape parameter q=2.03 and c=0.0 with 

polynomial terms in hollow thick-walled cylinder problem 

 

Figure 4-29 Distribution of ur at r=10 for shape parameter q=2.03 and c=0.0 with 

polynomial terms in hollow thick-walled cylinder problem 
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Figure 4-30 Distribution of σr at ө=45o
 for shape parameter q=2.03 and c=0.0 with 

polynomial terms in hollow thick-walled cylinder problem 

 

Figure 4-31 Distribution of σө at ө=45o
 for shape parameter q=2.03 and c=0.0 with 

polynomial terms in hollow thick-walled cylinder problem  
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4.4 Curved Beam  Loaded at The End 

Finally, the problem of a curved beam having a narrow rectangular cross section of 

unit width with a circular axis constrained at the upper end and bent by a force P 

applied at the lower end in the radial direction as shown in Figure 4-32.  

 

Figure 4-32 Curved beam loaded at the end 

Analytical solution of the problem is given as follows [30]. 

The normal stress component in radial direction is 
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The normal stress component in tangential direction is 
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and the shear stress is 
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where (r, ө) are the polar coordinates and ө is measured from the positive x axis 

counterclockwise and the constants A, B, D and N are given as, 
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The displacement components are 
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where the constants K and L are given as, 
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Parameters for this problem are chosen as in Table 4-4. 

Table 4-4 Parameters for the problem of curved beam loaded at the end  

Parameter Value 

Load, P 1000 N/mm 

Young’s modulus, E 30000000 N/mm2 

Poisson’s ratio, υ  0.3 

Inner radius, a 18 mm 

Outer radius, b 24 mm 
 

The problem is solved for plane stress case. The domain of curved beam  is 

modelled using 273 distributed field nodes as shown in Figure 4-33. A background 

mesh of 100 quadrilateral cells as shown in Figure 4-34 are used for numerical 

integration. 4*4 Gauss points are used in each cell. Circular support domains are 

defined and fixed number (30) of nodes is used in support domain of each Gauss 

point for displacement interpolation. 
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Figure 4-33 Node distribution for curved beam problem 

 

Figure 4-34 Background mesh for curved beam problem 
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Figure 4-35 Effect of parameter q for different values of c on the relative stress 

error in curved beam problem 

First, the problem is solved with given parameters above for different values of 

shape parameters c and q without polynomial terms added in the interpolation.  

Figure 4-35 shows the variation of the relative percentage stress error with respect 

to q for different values of c. Results are very similar to those of cantilever beam. 

So the same observations are valid here.  
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Figure 4-36 Effect of parameter c for q=1.03 and 2.03 on the relative stress error in 

curved beam problem 

Values of parameter q is fixed to 1.03 and 2.03 and the effect of parameter c on the 

relative percentage stress error is plotted as shown in Figure 4-36. Considering the 

results for both values of parameter q, the minimum error is obtained at c=2.0 for 

q=1.03. 
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Figure 4-37 Effect of parameter q for different values of c with polynomial terms on 

the relative stress error in cantilever beam problem 

Next, the problem is solved for different values of shape parameters c and q with 

polynomial terms added in the interpolation to see whether optimal values of 

parameters c and q changes or not. Figure 4-37 shows effect of parameter q on the 

relative percentage stress error for different values of c with polynomial terms 

added. Again results are very similar to those of cantilever beam problem with 

polynomial terms.  
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Figure 4-38 Effect of parameter c for q=1.03 and 2.03 with polynomial terms on the 

relative stress error in cantilever beam problem 

Values of parameter q is fixed to 1.03 and 2.03 and the effect of parameter c on the 

relative percentage stress error with polynomial terms is plotted as shown in Figure 

4-38. Variation of the error with to parameter c for q=1.03 is similar to the case with 

polynomial terms and c=2.0 again gives the minimum error. However, considering 

the results for both values of parameter q, the minimum error is obtained  at c=0.0 

for q=2.03.  

Figure 4-39 shows the deflection ur at r=21 mm for shape parameter q=2.03 and 

c=0.0 with polynomial terms in cantilever beam problem. Figure 4-40, Figure 4-41 

and Figure 4-42 show distribution of σr, σө and τrө respectively at  ө =450 for shape 

parameter q=2.03 and c=0.0 with polynomial terms. 
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Figure 4-39 The deflection ur at r=21 mm for shape parameter q=2.03 and c=0.0 

with polynomial terms in cantilever beam problem. 

 

Figure 4-40 Distribution of σr at ө=450 for shape parameter q=2.03 and c=0.0 with 

polynomial terms in cantilever beam problem. 
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Figure 4-41 Distribution of σө at ө=450 for shape parameter q=2.03 and c=0.0 with 

polynomial terms in cantilever beam problem. 

 

Figure 4-42 Distribution of τrө at ө=450 for shape parameter q=2.03 and c=0.0 with 

polynomial terms in cantilever beam problem. 



 68

 

CHAPTER 5 

 

5CONCLUSION 

 

 

In this thesis, meshfree RPIM with MQ radial basis functions is implemented to 

analyze plane elasticity problems. A computer code implementing RPIM is 

developed with Fortran programming language and the effect of shape parameters 

on the accuracy of RPIM is studied through a stress error analysis to determine the 

optimal shape parameters. 

Plane elasticity problems including cantilever beam loaded at the end, infinite plate 

with circular hole under uniform far-field load and thick-walled hollow cylinder 

under uniform internal pressure, whose analytical solutions are available in 

literature, are solved to illustrate the performance of RPIM. 

A relative percentage stress error is defined for the error analysis. In each problem, 

effect of shape parameters of MQ radial basis functions is studied first without 

polynomial terms. Numerical results showed that shape parameter q around 1 and 2 

gives accurate results. So, the effect of parameter c is studied with the value of 

parameter q is fixed to 1.03 to 2.03 and it is observed that the optimal value of 

parameter c differs for all studied problems. Second, the effect of parameters with 

polynomial terms added is studied. Numerical results showed that the optimal 

values of both parameters q and c are consistent for all studied problems. Parameter 

q around 2 and parameter c=0.0 gives the most accurate solution. It is also observed 

that the addition of polynomial terms reduces the relative stress error considerably 

for each case. 



 69

  

REFERENCES 

 

 

[1]  Lucy, L. B., “A Numerical Approach to the Testing of the Fission 
Hypothesis”, The Astronomical Journal, 82, pp. 1013–1024, 1977. 

[2] Gingold, R. A. and Monaghan, J. J., “Smoothed Particle Hydrodynamics: 
Theory and Application to Non-Spherical Stars”, Monthly Notices of the 
Royal Astronomical Society, 181, pp. 375–389, 1977. 

[3] Liszka, T. and Orkisz, J., “The finite difference methods at arbitrary 
irregular grids and its applications in applied mechanics” Computers and 
Structures, 11, pp. 83-95, 1980. 

[4] Onate, E., Idelsohn, S., Zienkiewicz, O.C. and Taylor, R. L., “A finite point 
method in computational mechanic. Applications to convective transport and 
fluid flow” International Journal for Numerical Methods in Engineering, 39, 
pp. 3839 –3866, 1996. 

[5] Onate, E., Idelsohn, S., Zienkiewicz, O. C., Taylor, R. L. and  and Sacco, C., 
“A Stabilized Finite Point Method for Analysis of Fluid Mechanics 
Problems”, Computer Methods in Applied Mechanics and Engineering, 139, 
pp. 315–346, 1996. 

[6] Onate, E.  and Idelsohn, S., “A Mesh Free Finite Point Method for 
Advective-Diffusive Transport and Fluid Flow Problems”, Computational 
Mechanics, 21, pp. 283–292, 1998. 

[7] Onate, E., Perazzo, F. and Miquel, J., “A Finite Point Method For Elasticity 
Problems”, Computers and Structures, 79, pp. 2151–2163, 2001. 



 70

[8] Nayroles, B., Touzot, G. And Villon, P., “Generalizing the Finite Element 
Method: Diffuse Approximation and Diffuse Elements”, Computational 
Mechanics, 10, pp. 307–318, 1992. 

[9] Lancaster, P. and Salkauskas, K., “Surfaces generated by moving least 
squares methods” Mathematics of Computation, 37, pp. 141–158, 1981. 

[10] Belytschko, T., Lu, Y. Y. and Gu, L., “Element-Free Galerkin Methods”, 
International Journal for Numerical Methods in Engineering, 37, pp. 229–
256, 1994. 

[11] Liu, W. K., Jun, S. and Zhang, Y.F., “Reproducing Kernel Particle 
Methods”, International Journal for Numerical Methods in Fluids, 20, pp. 
1081–1106, 1995. 

[12]  Aluru, N. R., “A point collocation method based on reproducing kernel 
approximations”, International Journal Numerical Methods in Engineering, 
47, pp. 1083–1121, 2000. 

[13] Duarte C.A. and Oden, J.T., “Hp clouds - a meshless method to solve 
boundary-value problems”, Computational Methods in Applied Mechanics 
and Engineering, 139:237–262, 1996 

[14] Babuska, I. and Melenk, J. M. “The partition of unity finite element method: 
Basic theory and applications,” Comput. Methods Appl. Mech. Eng. 139, 
pp. 289–315, 1996. 

[15] Mukherjee, Y. X. and Mukherjee, S. , “Boundary node method for potential 
Problems”, International Journal for Numerical Methods in Engineering vol. 
40, pp. 797-815, 1997. 

[16] Atluri, S. N. and Zhu, T., “A New Meshless Local Petrov-Galerkin (MLPG) 
Approach in Computational Mechanics”, Computational Mechanics, vol. 22, 
pp. 117–127, 1998. 

[17] Liu, G. R. and Gu, Y. T., “A Point Interpolation Method in Proceeding”, 4th 
Asia–Pacific Conference on Computational Mechanics, Singapore, pp. 
1009–1014, December 1999. 



 71

[18] Liu, G. R. and Gu, Y.T., “A Local Point Interpolation Method for Stress 
Analysis of Two-Dimensional Solids”, Structural Engineering and 
Mechanics, 11, pp .221–236, 2001. 

[19] Wang, J. G. and Liu, G. R., “Radial point interpolation method for 
elastoplastic problems in Proceeding” 1st Structural Conference on 
Structural Stabilify and Dynamics, Taipei, Taiwan, pp. 703-708, 7-9 
December 2000. 

[20]  Liu, G. R. and Gu, Y. T., “A matrix triangularization algorithm for point 
interpolation method, in Proc.” Asia-Pacific Vibration Conference, 
Bangchun, W., Ed., November, Hangzhou, China, pp. 1151-1154, 2001. 

[21] Liu, G. R. and Gu, Y. T., “A local radial point interpolation method (LR-
PIM) for free vibration analyses of 2-D solids” Journal of Sound and 
Vibration, vol. 246, pp. 29-46, 2001. 

[22] Liu, G. R. and Gu, Y. T., “Boundary meshfree methods based on the 
boundary point interpolation methods, Engineering Analysis with Boundary 
Elements, vol. 28, pp. 475-487, 2004. 

[23] Liu, G. R. and Gu, Y.T., “A meshfree method: Meshfree Weak-Strong 
(MWS) form method, for 2-D solids”, Computational Mechanics, vol. 33, 
pp. 2-14, 2003. 

[24] Wang, J. G. and Liu, G. R., “A point interpolation meshless method based 
on radial basis functions”, International Journal for Numerical Methods in 
Engineering, vol. 54, pp. 1623-1648, 2002. 

[25] Kansa, E. J., “Multiquadrics - A Scattered Data Approximation Scheme with 
Applications to Computational Fluid-Dynamics - I,” Computers & 
Mathematics with Applications, vol. 19, no. 8/9, pp. 127–145, 1990. 

[26] Liu, G. R., “Mesh Free Methods - Moving beyond the Finite Element 
Method”, First Edition, CRC Press, USA, 2003. 

[27] T. Zhu, J. D. Zhang, and S. N. Atluri, “A local boundary integral equation 
(LBIE) method in computational mechanics and meshless discretization 
approach,” Comput. Mech., vol. 21, pp. 223–235, 1998. 



 72

[28] Han, Z. D. and Atluri, S. N. “Meshless Local Petrov-Galerkin (MLPG) 
approaches for solving 3D Problems in elasto-statics”, Computer Modeling 
in Engineering and Science, vol.6, pp.169-188, 2004. 

[30] Timoshenko, S. and Goodier, J., “Theory of Elasticity”, Third Edition, 
McGraw-Hill, New York, 1987.  

[31] Wang, J.G. and Liu, G. R., “On the optimal shape parameters of radial basis 
functions used for 2-D meshless methods”, Comput. Methods Appl. Mech. 
Engrg., pp. 2611-2630, 2002.  

[32] Liu, G. R. and Gu, Y. T., “An Introduction to Meshfree Methods and Their 
Programming”, First Edition, Springer, Netherlands, 2005.  

[33] Li, S. and Liu, W. K., “Meshfree and Particle Methods and Their 
Applications”, App. Mech. Rev., vol.55, 2002. 

[34] Liu, H. and Shi, P.,  “Meshfree Particle Method”, Proceedings of the Ninth 
IEEE International Conference on Computer Vision, vol.2, pp.289-296, 
2003. 

[35] Huerta, A., Belytschko, T., Fernandez-Mendez, S. and Rabczuk, T., 
“Meshfree Methods”, Encyclopedia of Computational Mechanics, 2004. 


