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ABSTRACT 
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Kurtulmuş, Ergin 

M.Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Reşit Soylu 

 

September 2010, 184 Pages 

 

 

In recent years, there has been a significant increase in the interest for snake like 

modular robots due to their superior locomotion capabilities in terms of 

versatility, adaptability and scalability. Passive wheeled planar snake like robots 

are a major category and they are being actively researched. 

Due to the nonholonomic constraints imposed on them, certain configurations 

lead to the singularity which must be avoided at all costs. Furthermore, it is vital 

to generate a locomotion pattern such that they can track a wide range of 

trajectories. All of these objectives must be accomplished smoothly and in an 

energy efficient manner. Studies indicate that meeting all of these requirements 

is a challenging problem. 

In this study, a novel form of the serpenoid curve is proposed in order to make 

the robot track arbitrary paths. A controller has been designed using the 

feedback linearization method. Afterwards, a new performance measure, 
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considering both the efficiency and sustainability of the locomotion, has been 

proposed to evaluate the locomotion. Optimal parameters for the proposed 

serpenoid curve and the linear controller have been determined for efficient 

locomotion by running series of simulations. Relations between the locomotion 

performance, locomotion speed and eigenvalues of the linear controller have 

been demonstrated. Simulation results show striking differences between the 

locomotion by using the proposed serpenoid curve with optimal parameters and 

the locomotion by purely tracking a given path.  Obtained results also indicate 

that the aforementioned requirements are met successfully and confirm the 

validity and consistency of the proposed performance measure. 

 

Keywords: Locomotion control, snake like robot, nonholonomic constraints, 

feedback linearization, serpenoid curve, optimal locomotion, trajectory tracking, 

singularity avoidance.  
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YILAN BENZERİ MODÜLER BİR ROBOTUN 

 HAREKET VE KONTROLÜ 

 

Kurtulmuş, Ergin 

Yüksek Lisans., Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Reşit Soylu 

 

Eylül 2010, 184 Sayfa 

 

 

Son yıllarda, çok yönlülük, uyum sağlayabilme, ve uyarlanabilirlik bağlamında 

üstün hareket yeteneklerinden dolayı yılan benzeri modüler robotlara olan ilgide 

önemli bir artış vardır. Pasif tekerlekli, düzlemsel, yılan benzeri robotlar ana 

kategorilerden birini oluşturmakta ve aktif şekilde araştırılmaktadırlar. 

Bu tür robotların üzerine empoze edilen holonomik olmayan kısıtlar nedeniyle 

bazı konfigürasyonlar her ne pahasına olursa olsun kaçınılması gereken tekillik 

durumuna yol açabilmektedirler. Dahası, çok çeşitli yörüngeleri takip 

edebilmelerini sağlayacak bir hareket paterni üretmek oldukça önemlidir. Tüm 

bunlar yumuşak geçişli ve enerji etkin bir şekilde başarılmalıdır.  Bir çok 

çalışma tüm bu gereksinimleri sağlamanın zorlu bir problem olduğunu 

göstermektedir.  

Rastgele seçilmiş yolları takip edebilmek amacıyla yeni tür bir serpenoid eğri 

tanımlanmıştır. Geri besleme doğrusallaştırması yöntemiyle bir kontrolcü 

tasarlanmıştır. Ardından, hareketi değerlendirmek amacıyla, hareketin hem 
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etkinliğini hem de sürdürülebilirliğini göz önüne alan yeni bir performans ölçütü 

önerilmiştir.  Çoklu simulasyonlar koşturularak, önerilen serpenoid eğrisi ve 

doğrusal kontrolcü için etkin hareketi sağlayacak optimal parametreler 

belirlenmiştir. Hareket performansı, hareket hızı ve doğrusal kontrolcünün 

özdeğerleri arasındaki ilişkiler gösterilmiştir. Simulasyon sonuçları, optimal 

parametrelere sahip önerilen serpenoid eğrisiyle yapılan hareket ile yalın bir 

şekilde verilen yolu takip eden hareket arasındaki çarpıcı farkları 

göstermektedir. Elde edilen sonuçlar, bahsedilen gereksinimlerin başarıyla 

sağlandığını ve önerilen performans ölçütünün geçerliliğini ve tutarlılığını 

göstermektedir. 

 

Anahtar Kelimeler: Hareket denetimi, yılan benzeri robot, holonomik olmayan 

kısıtlar, geri besleme doğrusallaştırması, serpenoid eğrisi, optimal hareket, 

yörünge takibi, tekillikten kaçınma. 
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NOMENCLATURE 

NOMENCLATURE 

 

m   Mass of a single module of the modular robot. 

J Moment of inertia of a single module about its z-axis through the 

center of gravity. 

xi x-coordinate of the center of gravity of the i
th

 module measured 

in the absolute frame. 

yi y-coordinate of the center of gravity of the i
th

 module measured 

in the absolute frame. 

θi Orientation angle of the i
th

 module measured in the absolute 

frame. 

φi Joint angle between the (i+1)
th

 and i
th

 module. 

l Distance between the center of gravity of a module and one of 

the identical joints. 

xh x-coordinate of the robot head measured in the absolute frame. 

yh y-coordinate of the robot head measured in the absolute frame. 

xr x-coordinate of the robot head reference trajectory (modified 

serpenoid curve) measured in the absolute frame. 

yr y-coordinate of the robot head reference trajectory (modified 

serpenoid curve) measured in the absolute frame. 

xt x-coordinate of the robot head task trajectory measured in the 

absolute frame. 
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yt y-coordinate of the robot head task trajectory measured in the 

absolute frame. 

x

te  Difference between the x-coordinates of actual robot head 

position and reference task trajectory. 

y

te  Difference between the x-coordinates of actual robot head 

position and reference task trajectory. 

x

re  Difference between the x-coordinates of actual robot head 

position and reference modified serpenoid curve. 

y

re  Difference between the x-coordinates of actual robot head 

position and reference modified serpenoid curve. 

acts
 
 Curve length of the actual path of the robot head between starting 

and end points of the locomotion. 

effp
 
 Effective locomotion displacement of the robot head during its 

locomotion. 

R

if  
 Total rolling (tangential) friction force acting on the i

th 
module. 

N

if  Total normal (lateral) friction force acting on the i
th 

module. 

max

Nf  Maximum normal (lateral) friction force that the ground can 

apply on a module. 

µN Coefficient of friction in the normal direction to the respective 

module. 

µR Coefficient of friction in the tangential direction to the respective 

module. 
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dφ Damping coefficient in the revolute joints. 

ui Control torque applied by the i
th

 motor situated in between the i
th

 

and (i+1)
th

 modules. 

α Initial winding angle of the serpenoid curve. 

Kn Number of S-shapes in one period of the serpenoid curve. 

L Total effective length of the robot 

s Path length along the serpenoid curve from the beginning to the 

current point of the curve. 

υi Synthetic control input signal for the i
th

 actuator (motor). 

λi Lagrangian multiplier corresponding the i
th

 module. 

γ Compensation angle for the modified serpenoid curve. 

Pi Rotational power supplied by the i
th

 actuator during the 

locomotion. 

E Total energy consumption of the robot for a specific time of 

locomotion. 

v Tracing speed of the robot head along its trajectory. 

H Performance measure related to the locomotion of the robot. 

α* Optimal value of α. 

Kn* Optimal value of Kn. 

ωx Natural frequency of the linear system dynamics in the x 

direction. 

ωy Natural frequency of the linear system dynamics in the y 

direction
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CHAPTER 1 

 

INTRODUCTION 

1  INTRODUCTION 

1.1 Inspiration From Biological Snakes 

The nature, through hundreds of millions of years of evolution, has granted the 

limbless animals rather interesting gait abilities unique to them. These unique 

abilities have proven to be highly effective in the harsh competition environment 

of the earth where the principal of “survival of the fittest” has been and is the most 

vital phenomenon behind the dynamics of evolution. Crawling creatures like 

snakes utilize locomotion patterns and gait mechanics fundamentally different 

from those that walk, swim, hop or fly which are abundantly seen in nature [1]. 

This fact originates from the lack of limbs “as we know them”. Depending on 

certain conditions, the crawling locomotion can be as efficient as legged 

locomotion [2]. Besides, snakes in nature have extreme adaptability to the 

environment: they can continue locomotion on rough terrains, narrow passages, on 

steep cliffs, muddy ponds, in lakes, in the seas, in the tropical areas as well as in 

vast deserts [3]. Snakes are well adapted to moving on unstable surfaces like sand 

dunes or on marshlands because they can distribute their weight uniformly over 

the whole body and hence can propel themselves in a kinematically stable gait 

during the locomotion [4]. Their ability to survive originates from this very 

extreme adaptability, which in turn originates from their redundant body 

morphology. This explains why hundreds of species of snakes are existent in 

almost every habitable part of the world. Having about 2900 species in total, their 

size varies from 10 cm long thread snake to pythons and anacondas of up to 
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7.6 meters in length [5]. Snake, which is a vertebrate animal, depending on the 

species, has about 100-400 vertebrae in its backbone (largest number of any 

animal). The interconnections in the snake vertebrae are one of the most complex 

ones in nature. Despite the fact that only simple relative angular rotations are 

possible between two adjacent vertebrae, accumulation of these small rotations is 

able to generate large angular displacements.  

 

Figure 1.1: Illustration of Snake Vertebrae. Adapted from [6] 

 

The vertebrae of the snake consist of ball and socket joints with included 

projections which allow certain amount of lateral and ventral angular 

displacements about 10-20 degrees and 2-3 degrees respectively [6], [7]. An 

illustration of the snake vertebrae can be seen in Figure 1.1. This remarkable 

vertebral structure of the snake effectively reduces the possible twists in the spinal 

cord during locomotion.  

Snakes compose of repeated structures of joints and membranes. Unlike the other  



 

 

3 

 

limbed vertebrae in nature, they have only three distinct skeleton parts: skull, 

vertebrae and ribs [6], [7]. This feature makes them physiologically quite simple 

but at the same time robust to many sort of unexpected events and fluctuations in 

their surroundings. In case a part of the snake body fails to function for some 

reason, the whole body is able to continue to locomote. The redundancy of the 

snake body makes them quite versatile and scalable. Hence, they can utilize their 

bodies both as locomotors and manipulators [8]. This phenomenon can be 

observed when a snake moves through leafs approaching its prey and curling and 

wrapping around it tightly to eventually clench it.  

An interesting feature of the snake body is its skin. Snake skin is composed of 

small scales with adjustable orientations. Each scale has its own muscular unit in 

 

 

Figure 1.2: Ventral scales on the skin of a Python. Public Image 

 

the neuromuscular system to control the orientation [9]. In Figure 1.2, rows of 

scales of a Python can be seen. Snakes use their scales to reduce the friction in the 
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preferred direction during the locomotion while some species can use the edges to 

grip branches. The basics of the propulsion of snakes on the ground are heavily 

dependent on the frictional anisotropy of their scales. According to the 

experiments done in [1], overlapping belly (ventral) scales of snakes snag on 

ground asperities. This process provides the snake a preferred direction of sliding 

on surfaces satisfying certain conditions like having sufficient roughness and 

compliance. 

 

Figure 1.3: Schematic diagram of directions of frictional forces acting on a snake 

by the ground. Adapted from [1].  

 

Frictional anisotropy is the notion of difference between the principal directions of 

frictional forces applied by the ground to the snake body during the locomotion. In 

Figure 1.3, µt, µn and µb are the sliding coefficients of friction in tangential, normal 

and backwards directions, respectively. Tangent and the normal unit vectors to the 

snake body are also depicted in Figure 1.3. Experiment results in [1] indicate µt = 

μtμb

μn
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0.11 ± 0.011 when sliding forward, µb = 0.14 ± 0.015 when sliding backwards, µn 

= 0.20 ± 0.015 when sliding towards its flanks (sliding along the normal direction) 

on cloth surface using the least square estimation. These findings are mostly in 

agreement with the results in [10]. Furthermore, in their experiments, they 

observed that when the snakes are left to move on smooth surfaces they fail to 

generate any effective locomotion. This is attributed to the fact that, when the 

surface is relatively smooth, snakes cannot find any asperities for their scales to 

grind on and hence friction coefficients turn out to be almost independent of the 

direction. Thus, lack of anisotropy in the friction coefficients prevents the snake 

from performing displacements in the desired directions. However, snakes 

observed in nature are known to dynamically change their frictional interactions 

with the environment depending on numerous factors by adjusting their scales or 

by lifting their body in rather complex manners. Hence, it is not always very 

straight forward to assume certain coefficients of friction for them. 

Despite seemingly high frictional forces imposed on them during their locomotion, 

it has been shown that they need comparable amount of energy to other 

morphologically similar animals [8], [2]. This fact can be explained by the 

following aspects: 

 

 The bodies of snakes are not lifted significantly during their locomotion. 

Hence, they do not do considerable amount of work against the gravity 

 Because of their simple repetitive body structure, they do not need to move 

their appendages which is the case in legged animals [2], [7]. 

 Despite the high frictional forces during the locomotion, direction of the 

translational velocity of the snakes differs considerably from the direction 

of the applied friction by the ground. 
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The last listed aspect prevents the snake from doing work against the frictional 

force applied by the ground. This very fact forms the core of the fundamental 

principal in the undulatory locomotion of snakes.  

1.2 Locomotion of Snakes In Nature 

There are major classes of motion patterns (gaits) of the snakes observed in nature. 

These are lateral undulation, concertina locomotion and sidewinding locomotion 

and they can be briefly outlined as follows: 

 

1.2.1 Lateral Undulation 

 

Lateral undulation is the locomotion gait that is used most abundantly by the 

snakes in nature. It is basically performed in the forms of propagating waves from 

the head to the tail of the snake by making use of the friction between the snake 

body and the ground. All of the body sections move simultaneously leaving sinus 

like traces on the ground as shown in Figure 1.4 a). It requires three contact points 

for continuous locomotion: two points to produce a propulsive force and a third 

one to regulate the direction of this force [11]. With the help of its scales, the 

snake sticks to the ground to prevent side slipping as much as possible. This type 

of gait is mainly observed on rough and muddy surfaces. 

 

1.2.2 Concertina Locomotion 

 

This kind of locomotion attains its name from a musical instrument similar to an 

accordion. Basically the snake folds and twists a certain part of its body and keeps 

it fixed while the rest of the body sections use it to push themselves forward as  
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Figure 1.4:  a) Lateral undulation and b) Concertina locomotion. Adapted from 

Casssell Illustrated [12] 

 

shown in Figure 1.4 b).  Consecutively every section takes the role of the fixed 

part and the whole body moves forward. This kind of gait is employed on the 

ground having a low effective area like tree branches and narrow passages.  

1.2.3 Sidewinding Locomotion 

 

Sidewinding might be the most startling form of gait encountered in snakes. This 

type of gait is usually utilized by snakes living in deserts where they have to move 

on the grounds with low shear strengths like sand. Basically the snake raises and 

oscillates its body in a travelling wave leaving two contact patches as shown in 

Figure 1.5 on the sand. As result a down force is applied by the snake body on the 

ground to minimize slippage. A total of one kilometer of continuous locomotion 

distances have been reported by utilizing sidewinding [13]. 
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Figure 1.5: Sidewinding locomotion. Adapted from [6] 

 

1.3 Range of Application of Snake Robots 

Having a versatile and scalable structure, snake like modular robots have recently 

found quite vast areas of utilization. Apart from having locomotive abilities (which 

is the main focus of interest of this study) fixing the head (or tail) of these kind of 

robots quickly transforms them into manipulators. Although the robots which 

make use of actively propelled wheels have been extensively used and proved their 

success with high speeds and efficiency, when it comes to maintaining the 

locomotion on rough terrains or narrow passages, these mechanisms are visibly 

overcame by the snake like modular robots. The main areas of application of the 

serpentine robots can be categorized as exploration, inspection, medical, 

dangerous and hazardous environments, surveillance, reconnaissance, routing and 

most significantly search and rescue operations.  Modular snake like robots can be 

used to reach for people trapped in collapsed buildings after earthquakes. They can 

sneak into narrow passages and provide the wounded with water, food and 

medicine. Snake robots with search and rescue capabilities are being researched by 

Carnegie Mellon University Biorobotics laboratory as in [14].  Serpentine robots 
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can be used in planetary exploration missions where unknown extreme conditions 

and terrains are involved. Such robots are currently being developed by Nasa 

Ames Research Center. Another important utilization area for the snake robots are 

inspection and surveillance of structures and zones which may be quite dangerous 

and hazardous for human beings such as nuclear power plants, military zones 

covered mines and long pipeline networks. Also, the snake like robots can be used 

for military and civil reconnaissance purposes such as intelligence gathering about 

the enemy fronts and surveillance of international borders. Furthermore, snake 

robots are being developed for surgical purposes with their ability to maneuver 

inside the human chest and internal organs. Due to the fact that the mechanisms of 

propulsion of snakes are quite similar in water and on the ground, by proper 

sealing of the modules and the joints they can also be used in marine 

environments. One such example is the amphibious snake-like robot "ACM-R5" 

developed by the Hirose-Fukushima Robotics Lab [15]. It is able to locomote both 

in the sea and on the ground. 
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CHAPTER 2 

 

LITERATURE SURVEY 

2 LITERATURE SURVEY 

 

In this chapter, what has been done in the area of serpentine robots will be 

surveyed. Also the main difficulties and problems in generating locomotion for the 

snake like robots will be described. Finally, the goal and scope of this thesis will 

be given with an accompanying layout which will describe the order and 

methodology of the study.  

2.1 Survey of Modular Snake Like Mobile Robots 

As have been stated in the survey study [16], J. Gray was the first one to make 

research in serpentine locomotion in a qualitative manner in his paper [7] in 1946, 

while Shigeo Hirose was the first one to realize a functioning biologically inspired 

snake like robot in 1972. However, in [6] it is stated that earliest serpentine 

mechanism can be dated back to 1920’s by the Russian constructivist artist Petr 

Miturich. He designed several mechanisms called volnoviki intended to work on 

the ground, in water and even in the air. All of his designs were passive ones 

without any power source or control.  The serpentine robot developed by Hirose 

was called Active Cord Mechanism model ACM III which was 2 m long with 20 

one-DOF joints as shown in Figure 2.1. The robot was put on passive wheels and 

the forward locomotion was accomplished by activating the joints to the sides in 

different patterns. The Active Cord Mechanism was the inception and many other  
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Figure 2.1: Active Cord Mechanism model ACM III [17], Adapted from Oxford 

University Press 

 

snake like robots have been developed afterwards by many researchers with 

several different names with several different locomotion methods and aims. 

Especially during the last fifteen years, there has been a significant increase in the 

published literature on serpentine robots [18]. Snake like robot designs in the 

literature can be categorized according to different criteria. These include whether 

wheels are employed or not, activeness or passiveness of the wheels if they are 

employed, the type of gait (locomotion pattern) used and the dimension of the 

working space (2D or 3D).  Frequently, the robots developed belong to more than 

one of these categories. Another categorization is the type of the mathematical 

model used to represent the robot and it usually depends on the design. These are 

mainly kinematic and dynamic models. Kinematic models ignore the dynamics of 

the system and generally focus on geometric aspects of the motion. It generally 

employs modeling techniques like the well known Denavit-Hartenberg convention, 

backbone curve and nonholonomic constraints. Kinematic models are usually used 

when wheels are employed during the locomotion since interaction between the 

ground and modules through friction are ignored. It is assumed that the wheels do 
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not slip to the sideways to represent the ideal snake skin properties.  Some of the 

examples in the literature can be listed as [19], [20] and [21]. Most of the time, 

snake robots which are modeled considering the dynamics are without wheels. 

That is because the friction forces acting from the ground becomes significant. In 

dynamic models, generally the most widely used methods to derive the equations 

of motion of the system are Newton-Euler formulation and the Lagrangian 

formulation. As it should be, these two methods give the same results when the 

modules of the robots are considered to be rigid bodies. However, both of the 

methods have some advantages. Newton-Euler formulation is convenient when it 

is necessary to find the torques to be applied to attain a certain motion, while the 

Lagrangian formulation is very suitable when the complete time histories of the 

states or generalized coordinates of the robot are necessary [22]. Some of the 

published literature which uses dynamic models of snake robots can be listed as 

[23], [24], [25] and [26]. Of these papers, [23] and [26] use a robot model with 

passive wheels employed similar to the model in [17] except that the wheel axes 

are fixed,  while [24] and [26] utilize a robot model without any wheels where 

friction and contact forces play a significant role. These listed papers provide 

mathematical models which are easy to implement and commonly cited in 

literature. In the models where no wheels are employed, several friction models 

are developed using a Coulomb friction, viscous friction model or a combination 

of both, which can be found in [23], [27], [28] and [6]. Such models attempt to 

construct friction models which can mimic the anisotropic friction ( R N  ) 

properties of the snake skin as much as possible.  This anisotropy is attained 

maximally and even is exaggerated when the passive wheels are employed. It is 

still not clear what kind of friction and dynamic modeling is superior to each other 

as each has some advantages and disadvantages depending on simulation and 

analysis purposes of the particular cases. Apart from how the snake like robots are 

constructed, how to make them locomote in a reasonable manner is of high 

significance. In its broadest meaning, the control methods used to make snake like 

robots locomote can be divided into three main categories: sine-based approaches, 

model based approaches and CPG (Central Pattern Generator) based approaches. 
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Sine based approaches use simple sinusoidal functions to generate the reference 

signals for the actuators as in papers [29] and [30]. Advantage of this method is its 

simplicity and explicitly defined frequency, amplitude and wavelength of the 

reference signals. However, the major disadvantage is the inability to modify these 

simple sinusoidal functions online as such modifications lead to jerky signal in 

turn leading to possible damages to the actuators and power transmission systems. 

Apart from totally ignoring the robot model at all, it is not easy to integrate 

feedback signals to simple sinusoidal functions used as joint references [31].  

Model based approaches, as the names implies, relies on the kinematic or the 

dynamic model of the robot. All of the papers mentioned so far and that will be 

mentioned apply model based control strategies unless otherwise is stated. Model 

based approaches make it possible to analyze the overall systems and determine 

the optimal parameters and the most efficient gaits, as well as allowing necessary 

feedbacks. This means, they are quite suitable for designing controllers. However, 

synthesized controllers cannot be always manipulated online and the accuracy of 

the developed models might sometimes decrease due to unexpected changes in the 

environment or uncertainty of the model parameters. CPG based approaches 

mainly aim to generate rhythmic patterns of locomotion like the locomotion 

mechanisms observed in the central neural systems of animals. CPGs use sets of 

dynamical systems (sets of differential equations) like coupled nonlinear 

oscillators or neural networks and their solutions, as limit cycles are used to 

generate the reference signals in the form of travelling waves. Some of the papers 

where CPG is used to control the locomotion are [31], [32], [33], [34] and [35]. In 

CPG based control architectures, the final forms of limit cycles can be modulated 

online and smoothly and hence allowing the operators of the robots to manipulate 

the overall locomotion. However, being a still actively researched area, it is still 

unclear how to design a CPG to obtain a particular locomotion pattern. That is 

because, most of the times, they do not have explicit relations between their 

parameters and the locomotion parameters [31]. A comprehensive survey on state 

of the art snake inspired robots can be found in [8] where several snake like robots 

are listed with their photographs, categorized and evaluated. List of some selected 
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snake like robots with their dimensions and performance are given in Table 2.1 

which is adapted from [8]. 

 

Table 2.1: List of some selected snake like robots. Adapted from [8] 

Robot Type 
Length 

(mm) 

Cross 

Section 

(m
2
) 

Weight 

(kg) 

Velocity 

(mm/s) 

ACM III [17] 
Passive 

Wheels 
2000 0.023 28 400 

AmphiBot II [36] 
Passive 

Wheels 
770 0.002 - 400 

OmniTread (OT-8) [37] 

Without 

Wheels 

3D 

1270 0.034 13.6 100 

JL-I [38] 

Modular, 

Separable, 

Without 

Wheels 

1050 0.038 21 180 

CMU  

(Carnegie Mellon Uni.) 

3D, 

Without 

Wheels 

840 0.003 1.26 102 

Slim Slime Robot (SSR) [39] 
Without 

Wheels 
730 0.013 12 60 

 

Snake like robots with passive wheels have a different locomotion mechanism than 

other wheeled mobile robots, because the wheels are not driven. Instead, the joints 

connecting the modules are driven. Such a mechanism is the main area of interest 

of this thesis. This is because, frictional anisotropy can be represented without 

complicated friction models and it is quite suitable for lateral undulation. Lateral 

undulation has been observed to be one of the fastest forms of gaits in natural 

snakes [7] and is therefore widely adopted for serpentine robots. Locomotion 
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control of snake like robots with one-DOF joints and passive wheels are discussed 

in papers like [24], [25], [40], [41] and [42] with different control techniques and 

approaches. Passive wheels are attached at the center of gravity of each module 

and prevent side slipping. Two examples of such snake like robots can be seen in 

Figure 2.2 and Figure 2.3. In robots with passive wheels and with no side slip 

constraint, there are certain singular configurations in which the robot cannot 

locomote. Those are the straight line and circular configurations. Hence, it 

becomes of uttermost importance to avoid those singularity postures. To avoid  

 

 

Figure 2.2: ACM-R5 (Shigeo Hirose, Hirose-Fukushima Robotics Lab) 

 

 

Figure 2.3: AmphiBot II (Alessandro Crespi, Biologically Inspired Robotics Group at 

Ecole Polytechnique Fédérale de Lausanne) [36] 
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the singular configurations, Hirose proposed the serpenoid curve mimicking the 

natural winding motion of snakes in his seminal study [17]. Details and properties 

of this curve will be given in Chapter 6. Although singular postures are 

successfully avoided using his proposed approach, exact position or direction 

control of the robot is quite difficult, since the gait is a fixed structure. In [24], a 

control law for the robot head, based on Lyapunov function method, is proposed 

and the exact position control is achieved. Although exact position control is 

achieved, the control inputs turned out to be non-smooth and peaky. Then they 

attempted to use Hirose’s serpenoid curve as a reference for the robot head and 

managed to decrease the magnitude of the control input by about 2/3. However, 

because of the nature of the serpenoid curve, the reference is still fixed and cannot 

cover arbitrary trajectories. Also in their study they attempted to tune the 

parameters of the serpenoid curve such that the applied control torques become 

minimal. As it will be clear in our simulations afterwards, obtaining a low profile 

for the actuator inputs does not necessarily imply low levels of energy 

consumption. Hence, their study lacks the energy consumption considerations. In 

the commonly cited paper [25], authors define a new manipulability measure such 

that it is high when large acceleration of the robot head can be obtained with small 

lateral forces (applied by the ground to the modules). By doing this, they attempt 

to avoid singularity, since the singularity condition implies the divergence of these 

lateral forces. Then they construct an acceleration based control. In this control 

strategy, they set a reference acceleration for the robot head such that it makes the 

robot head track a desired trajectory and maximize their newly defined 

manipulability. Although they succeeded in avoiding the singularity, obtained 

control inputs still have irregular and peaky profiles even when following a 

straight line. What is more, they tell nothing about the energy efficiency of the 

performed locomotion. Hence, it is not an easy task to design a control system for 

a snake like passive wheeled robot which avoids the singularity, tracks an arbitrary 

trajectory and at the same time is energy efficient. 
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2.2 Goal of the Thesis 

The focus of this thesis is on a generic modular snake like robot with passive 

wheels which is composed of five modules. The goals of this study can be 

summarized as follows 

 

 To synthesize a closed loop controller for the robot which generates a 

forward locomotion pattern 

 To make the robot follow any arbitrary feasible path 

 To avoid the singularity configuration 

 To obtain an energy efficient locomotion pattern which results in small and 

smooth lateral forces. 

 

Indeed, all of the mentioned goals are closely interrelated with each other. 

Utilizing a serpenoid curve does not allow tracking arbitrary tracks because of its 

definition and nature.  However, in several papers even where classical optimal 

control methods are employed, obtained locomotion patterns are compared to 

Hirose’s serpenoid curve and it is concluded that the results are successful since 

they resemble it. That is because, if followed, the serpenoid curve has proved itself 

to be very efficient in terms leading to smooth and low actuator torques and 

avoiding singularity. On that account, what will be done can be briefly 

summarized as follows 

 Tangential friction will be integrated to the dynamic model given in [24] 

and [25] in order to improve the model 

 A controller will be designed by feedback linearization 
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 A modified version of the serpenoid curve will be proposed in order to 

track arbitrary trajectories 

 A new rational performance measure will be proposed in order to evaluate 

the locomotion. 

  Parameters which lead to optimally efficient locomotion will be 

determined by using the defined performance measure. 

 

2.3 Layout of the Thesis 

In Chapter 3, the kinematics of the robot will be discussed. Also the nonholonomic 

no side slip constraints and the singularity condition will be defined. In Chapter 4, 

the dynamics of the robot will be obtained by using the Lagrangian formulation. 

Also the tangential friction forces will be incorporated in the obtained equations of 

motion of the system. In Chapter 5, the equations of motion of the system will be 

represented in the state space. Afterwards, a controller will be synthesized using 

the feedback linearization technique. Also the stability and controllability issues of 

the system will be discussed. Finally, by running simulations, it will be shown that, 

under certain circumstances, the robot converges to the singularity. In Chapter 6, 

Hirose’s serpenoid curve will be introduced. Then a modified serpenoid curve will 

be proposed which enables the robot to track arbitrary trajectories. Finally, 

simulations will be performed in order to observe how the robot successfully 

tracks the modified serpenoid curve as a reference. In Chapter 7, a new 

performance measure will be introduced. Afterwards, optimal parameters will be 

determined accordingly. In Chapter 8, discussion of the obtained results will be 

presented. Finally, the conclusion and possible future works will be given.  
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CHAPTER 3 

 

KINEMATICS OF THE MODULAR ROBOT 

3 KINEMATICS OF THE MODULAR ROBOT 

 

General kinematic relations governing the overall structure and locomotion of the 

modular snake like robot will be given in this chapter. A brief introduction to the 

nature of nonholonomic constraints will be presented. Utilization of Pfaffian type 

constraints in the modular robot will be discussed.   

3.1 Kinematic Representation 

The robot
1
 is designated to move or locomote in the x-y plane 

2  of the 

Euclidean space 
3 . The robot is composed of five links which are consecutively 

connected by four revolute joints as shown in Figure 3.1. The links are called “the 

modules” because of their identical geometrical and dynamical structures. The 

modules of the robot are equipped with wheels in order to prevent the possible side 

slipping during the locomotion. The wheel axis is parallel to the normal direction 

of the module and located exactly at the vertical projection of the center of gravity. 

Longitudinal distance from the C.G (center of gravity) of a module to the center of 

a joint is l as shown in Figure 3.2.  “The robot head” is the location on the first 

module coincident with the “would be joint” location. That is to say, while all of 

the modules include two joints, the first module includes a joint and a “head”  

                                                 
1
 The modular snake like robot under discussion will be referred simply as “the robot” wherever 

appropriate. 
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instead of a joint. The wheels at each module are passive with a locally “fixed” 

axis of rotation. This means axis of wheels is fixed to the modules with no relative 

translation or rotation. The sole actuation source of the robot is provided by the 

four identical DC motors which are assumed to apply necessary torques at the 

necessary angular speeds. Each identical module has a mass m and a moment of 

inertia J  (about its CG). 

 

Figure 3.1: Kinematic Representation of the Modular Robot 

 

General kinematic representation of the overall system is depicted in Figure 3.1. 

The robotic system is treated as an open-chain manipulator where modules form a 

single serial chain and consecutive modules are connected by one-DOF revolute 

joints. The modules are indexed from 1 to 5, the revolute joints are indexed from 1 

to 4 where the i
th

 joint connects the i
th 

module to the (i+1)
th

 module. Module 0 is 

assumed to be the ground which is fixed to the global inertial frame. θi is the  

x

y
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orientation of the i
th 

module measured in the global frame as shown in Figure 3.1. 

Furthermore, (xi,yi) denotes the coordinates of the center of mass of the i
th

 module 

measured in the global frame. 

The head position of the robot is denoted by 
2( , )h hx y  , again in the global 

frame. The relative joint angle (simply joint angle) i  is defined as the difference 

between the two consecutive orientations. Namely: 

 1       1, , 1i i i i m        (3.1) 

The configuration variables of a locomoting robot can be always partitioned into 

two classes [42]. The first class of configuration variables defines the position of 

the robot. Here, the position of the robot is taken to be the position and orientation 

of the right-handed frame attached to it. In our case this frame is located at (xh,yh) 

with z-axis pointing out of the paper. That is to say: 
3, ,  where   x y z z x y . 

The second class of configuration variables defines the internal configuration of 

the robot. This class of configuration variables is often called “shape variables” as 

they determine the overall posture or shape of the mechanism. A manifold of 

dimension n is a smooth n dimensional hypersurface which is locally 

homoemorphic to 
n . That is to say, a manifold includes 

n as a subset but also 

includes generalized surfaces 
n . The set of all possible shapes are generally 

described by a manifold M while set of all positions i.e., set of all frame 

displacements, are described by a manifold G where G is a Lie group. Hence, the 

total configuration space is Q G M  . The position and shape variables are 

interconnected by kinematic constraints of the system. Through manipulation of 

the shape variables, the position variables can be modified. Generally, the 

relationship between the manifolds G and M is a connection.  G which represents 

the position configuration space of the robot is the product space of 
2  with 

SO(2), which is denoted by SE(2). That is to say: 

 
2 2(2) {( , ) : , (2)} (2)SE r R r R SO SO       (3.2) 
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Here [ , ]T

h hr x y and SO(2) represents the orientation of the frame affixed at the 

robot head with respect to the global fixed frame i.e., it is a special orthogonal 

matrix satisfying certain properties or simply rotation group of 
2 . Then SE(2) is 

a Lie group representing the smooth  manifold G. SE(2) formally stands for the 

special Euclidean group of two dimensions [43]. These two dimensions are the 

group of translations and rotations on the plane. The set of joint variables given by 

the absolute joint angles [0,2 )i  for the i
th

 module in the mechanism is 

associated with the unit circle. This unit circle is denoted by 
1 . Hence, 

1

i   , 

which is measured in the counter clockwise sense along the direction of the 

rotation axis. This means that counter clockwise rotations on the x-y plane in 

Figure 3.1 are considered to be positive. Also from equation (3.1) , [0,2 )i  for 

the i
th

 joint in the robot which is again associated with the unit circle 
1 . Thus, the 

shape configuration space (joint space) of the robot, M is given by: 

 
1 1nM       (3.3) 

where 
p  represents the p-torus defined to be the Cartesian product of p-many 

1  

Hence, in our case where p is 4, leads to: 

 
1 1 1 1(2) ( )Q G M SE           (3.4) 

Since i and i  are topologically equivalent, configuration space Q can be defined 

by either i  or i , whichever is appropriate. Therefore, Q can also be defined as 

 
2 1 1 1 1 1Q             (3.5) 

 Thus, the total configuration variables q of the system can be expressed as: 

 1 1 2 3 4 5 6 7( , , ) ( , , , , , , )nq q q q q q q q q q Q    (3.6) 

Referring to Figure 3.1, the angular and the position coordinates of the robot can 
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be defined as: 

 

1
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3

4

5

  and  
h

h

x
r

y





 





 
 
   
    
   
 
  

 (3.7) 

Thus, 
2mq  , where m=5, represents a vector of generalized coordinates in the 

7 dimensional hyper surface and it is expressed as: 
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5

h

h

q
r

x

y












 
 
 
 

   
     
   

 
 
 
 

  (3.8) 

Q becomes a 7 dimensional manifold which is smooth differentiable (
 ) since it 

is a Lie group
2
, and it is locally diffeomorphic to 

7 . That means the robot is 

kinematically redundant, since the degree of freedom is 7 while the workspace is 

in
2 . The most general mathematical definition of undulatory locomotion of 

mechanism of a serial linked class robot can be given as: 

Definition: Undulatory locomotion is the process of generating net displacements 

of a robotic mechanism via a coupling of internal deformations to a continuous 

interaction between the robot and its environment [42]. 

Thus, mechanically, the robot propels itself through constant modulation of joint 

variables i  to generate a net displacement in r. This definition is also a natural 

                                                 
2
 Properties of Lie groups and general definitions can be found in Appendix A. 
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one as it formalizes the principle of undulatory terrestrial locomotion seen in 

nature: displacement through coordinated body shape change. 

Although the whole kinematics of the robot can be thought as a serial planar 

manipulator, there are two major differences unique to serpentine robots: 

 All of the modules (links) of the robot translate in 
2  as well as rotating 

about the vertical axis. 

 The modules are in constant interaction with the environment through the 

friction forces applied by the ground. 

These subtle looking major differences from the serial planar robotic manipulators 

alter both the kinematic and the dynamic behavior of the system dramatically.  

3.2 Geometric Relations Governing the Modular Robot 

Referring to Figure 3.1, the position and the velocity of the center of gravity of i
th

 

module can be expressed as: 

 

1

1

1

1

2 cos cos

 1, ,

2 sin sin

i

i h j i

j

i

i h j i

j

x x l l

i m

y y l l

 

 










   




  





  (3.9) 

By taking time derivatives of the position variables, the following velocity 

expressions for the center of gravity of i
th

 module are obtained: 
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1

1

1

2 sin sin

 1, ,

2 cos cos

i

i h j j i i

j

i
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   

   










   


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  
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



  
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  

 (3.10) 
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3.3 Nonholonomic Constraints and Overall Kinematics 

A general geometric constraint that can be imposed on a mechanical system is of 

the form: 

 ( ) 0     1, ,ih q i k n    (3.11) 

These classes of constraints depend solely on the generalized coordinates, q , and 

restrict the possible motions of the system to an (n-k) dimensional submanifold of 

the n dimensional manifold Q. A mechanical system may also be subject to 

kinematic constraints apart from the usual geometric ones. Kinematic constraints 

may also involve time derivatives of the generalized coordinates (first order 

kinematic constraints) expressed in the form: 

 ( , ) 0     1, ,ia q q i k n     (3.12) 

In most practical engineering applications, equation (3.12) is linear in the 

velocities and is expressed in the form: 

( ) 0     1, ,           or           ( ) 0ia q q i k n A q q      (3.13) 

where ( ) k nA q   and ( )ia q  is the row vector describing one constraint on the 

directions in which q is allowed to evolve. These types of constraints are called 

Pfaffian type constraints.  Pfaffian constraints sometimes can be integrable.  That 

is to say, there may exist k functions hi such that 

 

 
( ( ))

( )        1, ,i
i

h q t
a q i k n

q


  


  (3.14) 

Existence of k functions hi satisfying equation (3.14) means that the constraints are 

indeed geometric and restricts the whole motion to a submanifold of lower 

dimension [44]. A set of Pfaffian constraints is called holonomic if they are 
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integrable (geometric constraints) and is called nonholonomic, otherwise. In the 

case of the nonholonomic constraints, although at each certain state 

(configuration), the set of all possible infinitesimal motions (velocities) are 

restricted to the (n-k) dimensional null space of the constraint matrix ( )A q , it is 

still possible to reach any configuration in Q, provided that the system evolves 

through the feasible velocities [43]. However, this is not the case in holonomic 

constraints where any configuration may not be reached due to the geometric 

restrictions. Determining whether a set of constraints imposed on a mechanical 

system is integrable or not (i.e. holonomic or nonholonomic) is not obvious and 

requires application of tools from differential geometry. 

 

Figure 3.2: Representation of the no side-slip condition for the i
th

 module 

 

The wheels attached to each module prevent the modules from side slipping at any 

instant of locomotion. This is kinematically equivalent to the notion of having zero 

velocity of the center of gravity of each module along the normal direction. As 

depicted in Figure 3.2, the direction of the translational velocity of the center of 

x

y

O

Center of gravity

vi

θi

ix

l

l

iy
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gravity of the i
th

 module vi, coincides with its longitudinal direction. In other 

words, no component of vi is along the normal direction.  

Having said this, the nonholonomic constraints governing the kinematics can be 

expressed as follows: 

 sin cos 0 , for 1, ,5i i i ix y i       (3.15) 

 

Substituting equation (3.10) into equation (3.15) leads to: 

1
2

1

1
2

1

sin 2 sin sin sin

( cos 2 cos cos cos ) 0       1, ,5

i

h i j i j i i

j

i

h i j i j i i

j

x l l

y l l i

     

     









  

   





 

  
 (3.16) 

Simplifying equation (3.16) leads to: 

    

1

1

cos sin 2 cos( ) 0       1, ,5
i

h i h i j i j i

j

y x l l i     




           (3.17) 

The kinematic equations and the structure of the system are identical with the ones 

in [24] and to the one in [25], except for the measurement of the absolute 

orientation i  of the i
th

 module such that it is measured from the x-axis in the 

counter clockwise direction in this study while it is measured from the y-axis in the 

clockwise direction in [24].  Equation (3.17) can be put into the generic Pfaffian 

form by collecting the terms linear in the derivatives of generalized coordinates, 

1 2 3 4 5

T

h hq x y       
       . Keeping the same notation convention as in 

[24] and in [25], the following Pfaffian form is obtained: 
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





 (3.18) 

Equation (3.18) is identical with the one in [24], except for the last two columns, 

because of the different orientation conventions. It can be written in a partitioned 

form as: 

   0A BF F
r

 
  

 




 (3.19) 

where θ and r are defined in equation  (3.7) while FA and FB can be given as 

follows : 
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    
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  (3.20) 
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sin cos

sin cos

sin cos
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  (3.21) 

From equation (3.19) : 

 1 5 2

     where

A B

Fr

F F F


 



 

 


 (3.22) 

Multiplying equation (3.19) by
1

AF 
, leads to: 
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   5 7

5 ( ) ( ) 0       ( )I F A q q A q
r


 

 
    

 


 


 (3.23) 

Hence, the constrained kinematic relations of the robot are in their most general 

form described by equation (3.13). Also from equation (3.1): 

       

1 1 0 0 0

0 1 1 0 0
   where 

0 0 1 1 0

0 0 0 1 1

T TE E 

 
 


  
 
 

 

 (3.24) 

E
T
 is simply the transformation matrix between the absolute orientations and the 

joint angles.  

 

 

Figure 3.3: Illustration of the singular configurations of the modular robot. a) 

Circular shape configuration, b) Straight shape configuration 
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Taking the time derivative of equation (3.24) and using equation (3.22)  gives: 

 
TE Fr    (3.25) 

Lemma:
TE F which is of size ( 1) 2m  , drops rank if and only if 

1 2 1   (mod )m        holds [24]. 

This means 
TE F drops ranks when the robot body shape becomes straight as in 

Figure 3.3.b) where 1 2 4 0       or it forms an arc of a perfect ring as in 

Figure 3.3.a) where 
o

1 2 4 30      . 

Since m = 5 in our case (five modules), matrix 
TE F is of size (4 2) and can 

posses a rank of min(4,2) = 2, at most. Equation (3.25) defines the relation 

between the joint velocities of the robot and the robot head velocity. Since a 

spatial manipulator Jacobian maps the joints velocity vector at each configuration 

θ to the corresponding velocity of the end-effector [43], it can be concluded that 

( )TE F 
 turns out to be the Jacobian of the robot.  In our case, kinematically, the 

head of the robot can be considered to be the end-effector. Here  ( )TE F 
 

represents the Moore-Penrose pseudoinverse (the generalized pseudoinverse) [45] 

of 
TE F . If the columns of 

TE F  are linearly independent then its Moore-Penrose 

pseudoinverse exists and becomes the left inverse of 
TE F  [46]. Hence, rank 

deficiency of 
TE F implies inexistence of its Moore-Penrose pseudoinverse and 

thus implies singularity. Mechanically it means that, when the singularity occurs, 

regardless of the value of   the robot cannot be driven fully since only a limited 

subset of r can be generated. As explained in [24], when a modular robot 

possesses only two joints (three modules) with values 1 and 2 , the condition 

1 2   holds inevitably at some time instance during the locomotion in order to 

generate a symmetrical undulation.  Therefore, at least four modules are needed to 

successfully generate the undulatory locomotion without attaining the singular 

configuration.  
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Furthermore, due to the mathematical nature of the nonholonomic constraints, they 

do not decrease the overall degree of freedom of the system like the holonomic 

(geometric) constraints do which are expressed in equation (3.9). If the holonomic 

constraints given by equation (3.9) or the nonholonomic constraints given by 

equation (3.23) had not existed, there would be a total of 

3 2 5 3 2 15 2 17m        degrees of freedom. Here, three degrees of 

freedom come from translation of each module in x and y directions and 

orientation of each module with respect to the global fixed frame. Other extra two 

degrees of freedom comes from consideration of robot head position  ,h hx y as 

independent. It is clear that it does not make any sense and physically the robot 

would have 15 degrees of freedom if none of its module were connected.  ,h hx y  

are counted as extra two degrees of freedom for algebraic consistency.  

Automatically, set of 2m holonomic (geometric) constraint equations given by 

equation (3.9) where 5m  , reduces the degree of freedom of the system by 10 to 

7. This means that the robot configuration is restricted to a 7 dimensional smooth 

manifold and this configuration is uniquely determined by the generalized 

coordinates 
7q . However, it can be seen that imposition of nonholonomic 

constraints given by equation (3.23) does not reduce degree of freedom of the 

system. That is to say, while equation (3.9) dictates which configuration is allowed 

to attain, equation (3.23) dictates how this configuration is allowed to attain.  

Namely, the robot can be driven to any configuration as long as the generalized 

velocities q  obey equation (3.23). Furthermore there is a strong relationship 

between the accessibility and complete nonholonomy for the nonlinear systems 

with drift, and between controllability and complete nonholonomy for the driftless 

nonlinear systems [47], [48], [49], [50]. 
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CHAPTER 4 

 

DYNAMICS OF THE MODULAR ROBOT 

 

4 DYNAMICS OF THE MODULAR ROBOT 

Equation of motion of the n-module system is derived in [24] using the Lagrangian 

energy methods. Based on these equations, improvements are made regarding the 

rolling friction (tangential) force acting on the modules. In the derivation of the 

equations of motion in [24], coefficients of friction of translational and rotational 

motion are taken as linearly dependent on the velocities as if the system were 

moving on a fluid (a viscous friction model). This approach automatically makes 

these coefficients as damping constants. Although this assumption renders the 

mathematics of the dynamics a lot simpler, it is far from representing the actual 

dynamics. However, these set of equations are widely adopted in literature, for 

example in [25], [40], [51] and [26]. As an extreme example, in [52], they assumed 

zero rolling (tangential) friction and a boundless (infinitely large) normal friction 

at the wheels. 

4.1 External Forces Acting On the System 

During the locomotion of the robot, the externally applied forces can be 

categorized as the ones originating from the environment and the ones generated 

by the actuators of the system. Forces applied by the environment are in the form 

of friction. Nature of the applied friction force is rather complicated and still 

several studies are carried to fully comprehend and model it in a quantitative 

manner. A number of models describing the anisotropic friction characteristics of  
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snake locomotion are put forward. These anisotropic friction models combine 

Coulomb friction and viscous friction models with assumed friction ellipses in 

order to have a better estimation. However, in order not to complicate the physical 

model and to focus on the actual goal of the thesis, an approach based on simple 

Coulomb friction will be utilized. In Figure 4.1, the classical free body diagram for 

 

Figure 4.1: Free Body diagram for a single module 

  

a single module of the robot is shown. The forces acting on the i
th

 module (with 

mass m and moment of inertia J) due to the interaction with the environment are 

the rolling friction forces acting on two wheels 1 2,
R R

i if f and the normal (lateral) 

friction forces acting on the two wheels 1 2,
N N

i if f  . The reaction forces ,x y

i if f  are 

the forces applied by the (i-1)
th

 module to the i
th

 module in the x and y directions, 

respectively. Similarly, the reaction forces 
1 1,x y

i if f 
 are the forces applied by the 

(i+1)
th

 module to the i
th

 module in the x and y directions, respectively. Clearly, the 



 

 

34 

 

reaction forces applied by the i
th

 module to (i-1)
th

 and (i+1)
th

 modules are the same 

in magnitude but in opposite directions. The damping torques generated at the i
th

 

revolute joint is simply 
id . On each module (except for the head and tail 

modules, where there is only one) there are two identical motors. These motors 

apply the control torques iu and 1iu  to the i
th

 module as shown in Figure 4.1. 

Clearly from action-reaction principle, the application of the control torque 1iu  to 

the i
th

 module by the (i+1)
th

 actuator implies application of control torque 1iu  to 

the (i+1)
th

 module. It is convenient to lump symmetrical frictional forces to the 

center of gravity of each module by assuming that 1 2R R

i if f and 1 2N N

i if f . The 

resulting normal and rolling friction forces then become 

 

2 1 1

2 1 1

2
 1, ,

2

R R RR

i i i i

N N NN

i i i i

f f f f
i m

f f f f

   


   

  (4.1) 

These lumped forces are also depicted in Figure 4.1. Thus the vector of control 

torques becomes: 
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u

u
u

u

u

 
 
  
 
 
 

  (4.2) 

 Vector of normal frictional forces are given by: 

 

1

2

5

3

4

5

N

N

N N

N
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f

f

f f

f

f

 
 
 
  
 
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 
 

  (4.3) 

And the vector of rolling frictional forces is given by: 
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1
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5
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5

R

R

R R

R

R

f

f

f f

f

f

 
 
 
  
 
 
 
 

  (4.4) 

As explained in Chapter 1, tangential frictional forces acting on snakes are 

considerably smaller than normal (lateral) ones. In the same manner,  Rf   

should be substantially smaller than Nf  . Although this is the case when the 

locomotion surface is smooth with small disparities due to employment of passive 

wheels, it well may not be the case on rough surfaces. Hence, consideration of 

rolling friction is helpful in obtaining a more realistic simulation in such cases. 

Since ,    for   1, ,4x y

i if f i    are internal forces when the robotic system is 

considered as a whole body and since Euler-Lagrange equations of motion will be 

employed, they are not necessary for the dynamic analysis. However, these joint 

forces can be readily found after solving the system dynamics, whenever needed. 

4.2 Equations of Motion 

Equations of motion of the system have already been derived in [24] and used by 

many in literature. These equations of motion are derived using the Lagrangian 

approach since it provides a convenient mathematical representation of the 

dynamics for control purposes. What is more, in this approach, internal structural 

forces which are out of the focus of this study, are eliminated. Starting with the 

kinetic energy and using the generalized coordinates given by equation (3.8), the 

kinetic energy of the system is given by 

  2 2 2

1

1 1
( )

2 2

m
T

i i iT m x y J q M q            (4.5) 
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where 5m  , and  M   is the  7 7 positive definite symmetric generalized 

inertia matrix of the system depending only on the orientation variables   and 

system constants m, L, J. Since the robot operates on the x-y plane and 

gravitational acceleration acts in the negative z-direction, the potential energy is 

always constant, i.e. U = c, where c is a constant.  Dissipative energy of the system 

is given by 

  
1

2

1

1 1

2 2

n
T

iD d q N q 


      (4.6) 

where  N  is a  7 7 matrix depending only on the orientation variables   and 

damping constant d of the revolute joints. Thus, the Lagrangian of the system 

becomes L T U T   since c can be taken as zero. Here, dissipative energy 

given by equation (4.6) is different from the one in [24] as the friction forces 

acting on the module are not assumed to be viscous in this study. D is actually, a 

Rayleigh dissipation function with its most general form 
1 1

1

2

n n

ij i j

i j

D c q q
 

      [53] 

where cij are the general damping coefficients. The general Euler-Lagrange 

equation as expressed in [54] is 

 +    1, ,i i

i i i

d L L D
Q i n

dt q q q


  
   

  


 
 (4.7) 

Here k=n+2 is the number of total generalized coordinates.  
1

m
j

i j

j i

p
Q F

q





   is 

the generalized force including all of the externally applied non conservative 

forces Fj by the environment (excluding the damping forces due to the revolute 

joints which is 
i

D

q



 
). Here, jp denotes the position vector of the point of 

application of the externally applied force Fj   and m is the number of Fj’s. Thus in 

general, Qi becomes the mapping of the rolling and normal friction forces to the 

generalized coordinate space. i , on the other hand, is the mapping of the actuator 
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forces (motor torques u in our case) to the generalized coordinate space. By using 

the principle of virtual work  T Tu u      
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 
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 (4.8) 

where u and u are the actuator torques in generalized coordinate space and joint 

space, respectively. The Lagrangian equations of motion of the robot given by 

equation (4.7) do not include the kinematic constraints imposed on it. Thus, the 

Pfaffian constraints expressed by equation (3.23) are to be incorporated into 

equation (4.7). 

4.3 Friction as Generalized External Force 

As mentioned earlier, the external forces acting on the system by the environment 

are rolling (or sliding) friction and normal friction. Normal friction is assumed to 

be Coulomb friction which is the force that prevents the modules from side 

slipping. That is to say, normal friction 
Nf  acts as a constraint force to ensure that 

equation (3.23) holds at all times. Constraint forces for a set of Pfaffian constraints 

prevent the motion of the system in the directions that would violate the 

constraints. These directions are given by the rows of the matrix   5 7A q  in 

equation (3.23) . These constraint forces are at the configuration space q Q  [43] 

and they are given by  

 ( )TA q    (4.9) 
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where 

1

2

5

3

4

5





 





 
 
 
  
 
 
  

 is the vector whose elements are the Lagrange multipliers 

which give the relative magnitudes of the constraint forces acting on each module. 

Here it is assumed that the constraints are everywhere smooth and linearly 

independent and the forces of constraint do no work on the overall system which is 

called d’Alembert’s principle. [43]. This assumption is trivially justified as long as 

equation (3.23) holds, at all times. Thus, the equation of motion of the system is 

formed by considering the constraint forces as external forces acting on the 

system. Therefore, the equations of motion of the system including the kinematic 

constraints are given as 

   
 

5
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Fr r r
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  


  
 (4.10) 

where   7 7,C     is the Coriolis matrix of the system, while  ,C
r


 

 
 
 





gives 

the Coriolis and centrifugal forces. Furthermore, 
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 is the vector of 

generalized forces. Substituting equation (3.10) into equation (4.5)   7 7M    

is obtained to be: 
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(4.11) 

Furthermore the i,j
th

 element of the Coriolis matrix  ,C   is defined to be [54] 
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where mij is the i,j
th

 element of the inertia matrix  M  and the term 

1

2

ij kjik
kji

j j i

m mm
c

q q q

   
   

    

is called the Christoffel symbol of the first kind. Then 

using equation (4.11) and (4.12) ,  ,C   can be found to be 
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(4.13) 

 

Lemma: System matrices in equation (4.10) satisfy the following properties [43]: 

   1.    7 7M    is symmetric and positive definite 

   2       7 72 ,M C      is a skew symmetric matrix. 

Skew symmetricity of    2 ,M C    is called the passivity property since it 

states that when any nonconservative force is absent in the system, the net energy 

of the system is conserved. This property is fundamentally used in control 

strategies employed in robotic manipulators.  [43]. 
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Furthermore, from equation (4.6) 
7 7N  can be obtained to be 
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 (4.14) 

Thus, it is seen that damping matrix N solely depends on the damping coefficient 

d
of the revolute joints (as opposed to the one in [24] where it also depends on   

because of the previously stated reasons). Hence, there are n=7 configuration 

variables q and k Lagrangian multipliers 1, , k   which makes a total of n+k = 

7+5 =12 unknowns. At the same time, there are n nonlinear second order 

differential equations expressed in equation (4.10) and k constraints equations 

expressed in equation (3.23) making n+k=12 equations in total. Here, it is 

assumed that the initial configuration 0 0( )q t q  and the actuator torques are 

known. Therefore solving equations (3.23) and (4.10) simultaneously completely 

describes the system dynamics for all times in the simulation. In our case,   is a 

function of configuration q , its velocity q , its acceleration q , actuator control 

torques u and the rolling friction 
Rf .  

The normal friction forces 
Nf  are the constraint forces which ensure that no 

motion occurs along the constrained directions and they are included in equation 

(4.10) in the form given by equation (4.9). Therefore Q  on the right hand side of 

equation (4.10) is due to only the rolling friction forces . Here, the notion of rolling 

friction represents a general frictional term 
Rf  and it may also represent a sliding 

friction with a higher value than the rolling one. Thus, the generalized force Qi  

[54] is as follows  
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1

    1, ,7
k

jR

i j

j i

p
Q f i

q


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
   (4.15) 

where k is the number of external forces contributing to Qi , (which is 5 in our case 

since it is assumed that five lumped distinct rolling friction forces are given by 

equation (4.4) ) and pj is the point of application of 
R

jf . Thus  

 ˆˆ       1, ,5j j jp x ı y j j     (4.16) 

Using equation (3.9) pj can be written as a function of ,h hx y  and  . Thus pj can 

be expressed in terms qi. Also in the same manner 
R

jf  can be decomposed to its 

components as: 

     ˆˆcos sin       1, ,5R R R

i i i i if f ı f j i   


  (4.17) 

 

Figure 4.2: Illustration of the lumped rolling friction with its components 
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In Figure 4.2 , 
R

if , its decomposition and pi is illustrated where vi is the assumed 

direction of translational velocity of the i
th

 module. Thus, 
R

if is modeled to be 

always in the opposite direction of vi as will be discussed later in detail. 

Substituting equation (4.16) and equation (4.17)  into equation (4.15), the 

following expressions for the generalized forces Qi  are obtained 
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 (4.18) 

 

From equation (4.18), it is observed that each individual generalized force 

5, ,iQ Q   depends on the orientation angles and the rolling frictions with 

succeeding index numbers, i.e. 
, 1 5, ,i i    and 1 2 5, , ,R R R

i if f f   where i starts from 

one.  Therefore, it is quite logical to have 5 0Q  since otherwise it would have been 

in the form  5 6 6 52 sinRQ Lf    which is rather irrelevant because there is not a 

sixth module.  Furthermore, it turns out that 6Q
 
and 7Q , which are the generalized 

forces in the equation of motion corresponding to the translational generalized 

coordinates hx and hy , depends on 
1, 2 5, ,    and 1 2 5, , ,R R Rf f f . Actually it is seen 

that they are the summation of the components of 1 2 5, , ,R R Rf f f  in the respective 

directions. This is again quite sound since the generalized forces effecting the 

overall location of the robot should somehow depend on all of the individual 

rolling friction forces. 
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Equation (4.18) can be written in the more compact form 

   RQ Z f  (4.19) 

where   7 5Z   is given by 

  

       

     

   

 

         

         

2 1 3 1 4 1 5 1

3 2 4 2 5 2

4 3 5 3

5 4

1 2 3 4 5

1 2 3 4 5

0 2 sin 2 sin 2 sin 2 sin

0 0 2 sin 2 sin 2 sin

0 0 0 2 sin 2 sin

0 0 0 0 2 sin

0 0 0 0 0

cos cos cos cos cos

sin sin sin sin sin

l l l l

l l l

l l

Z l

       

     

   

  

    

    

     
 

   
  
 

  
 
 
 
 
 

 (4.20) 

 

Detailed modeling of the friction phenomena is a broad area of research in 

tribology and there are different models at different complexities. However, 

utilization of Coulomb’s dry friction model serves well for many engineering 

applications, as it has been successfully applied for numerous practical problems. 

Energy dissipation during rolling or sliding has been studied under three headings 

in [55] where a detailed discussion about the nature friction can be found. 

 Friction and slip on the contact surfaces of bodies on micro scale 

 Inelastic deformation of the materials 

 Physical roughness of the contact surfaces 

As stated in [55], rolling friction force can be formulated as R f

Rf N  where R is 

the coefficient of rolling friction which depends on the contacting materials, 

contact conditions and the radius of wheels. fN is the normal force acting on the 

contact surface which is simply mg in our case, where g is the gravitational 

acceleration. Hence, mathematically, rolling friction can be treated as Coulomb 

friction simply with a different coefficient of friction.  Coulomb dry friction model 

depends on the following observations [56] 
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 Frictional force generated is directly proportional to the applied normal 

load. 

 Frictional force is independent of the contact area of two bodies. 

 Kinetic friction is independent of the sliding speeds of two bodies. 

As stated in [56] these observations are first recorded by Leonardo Da Vinci and 

then formalized and explained by Charles Coulomb.  Hence, dry friction model for 

sliding or rolling may be described mathematically as 
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Figure 4.3: Plot of Dry Friction Model 

As can be seen from equation (4.21) R

if is a discontinuous function due to having 

many values at 0iv  . However, in literature it is assumed that 0R

if   at  0iv   

[56]. Here, from Figure 3.2 it is observed that translational velocity of the i
th
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module is cos sini i i i iv x y    as shown in Figure 3.2  Illustration of the standard 

dry friction model can be seen in Figure 4.3. Utilization of the piece-wise constant 

dry friction model illustrated in Figure 4.3 poses mathematical difficulties during 

the solution of the Euler-Lagrange equations of motion given by equation (4.10). 

Thus, it is convenient to use a continuous and a smooth enough mathematical 

expression as an approximation of the dry friction.  One suggestion that is given in 

[56] is in the following form 

  
2

arctan c    R

i R i if mg v v


    (4.22) 

 

 

Figure 4.4: Plot of Dry Friction Model suggested by [56] 

 

According to the dry friction model given by equation (4.22) there is a smooth 

transition from the asymptote Rmg to the asymptote Rmg due to the inverse 
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convergence to the mentioned asymptotes. Plot of the smoothed out dry friction 

model is given in Figure 4.4 . As can be seen, friction force is again assumed to be 

zero when the translational velocity vanishes.  Although it is known that equation 

(4.22) is an approximation to the reality, it must be somehow better than equation 

(4.21). This is because nothing in nature is so “piece-wise” and so “discontinuous” 

and there are always some transitions no matter how sharp or abrupt.  However, 

one thing that may be “not so correct” in equation (4.22) is the notion of having 

zero frictional force when the modules are not moving. Indeed, when there is no 

motion, there is still a frictional force resisting the motion which  is in the opposite 

direction of net force.  

4.4 Reduced Equations of Motion 

Equations of motion of the system including the nonholonomic constraints are 

given in their most general form in equation (4.10). It is reduced by simply 

multiplying by 
2

TF I    
from left [24] in order to eliminate the Lagrangian 

multipliers   . 2

TF I  
is the transpose of the null space of the constraint matrix 

 A q given by equation (3.23). From equation (3.22) one obtains 

 Fr Fr      (4.23) 

 Using equations (3.22), (4.10), (4.20), and (4.23), the following equation is 

obtained 

        

   

 
 
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F I M F I C F I N

r rr

Eu
I

F I F I F I Z f
F

  

 


     
                 

    

 
                   

    
 

 (4.24) 
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Equation (4.24) may be written in the form  

      ' ' '

2, T T RM r C r N r F Eu F I Z f         
    (4.25) 

 

where the primed matrices in equation (4.25) are as follows 

       

   

     

'

2

2

'

2 2

2

'

2

2

, , 0 0

0 0

T

T T

T

F
M F I M

I

F
F

C F I C F I M
I

F
N F I N

I

 

    

 
    

 

 
   

            
    

  

 
    

 



 
 (4.26) 

where    ' 2 2 ' 2 2, ,M C      and 
' 2 2N  are the reduced inertia matrix, 

the reduced Coriolis matrix and the reduced damping matrix, respectively. 

 ,F    and  ,F   ,which is the total time derivative of  ,F   , are given in 

the Appendix A due to their lengthy forms. Equation (4.25) is identical to the ones 

in [24], [25] and [40] except for the term   2

T RF I Z f  
 which accounts for the 

rolling or sliding friction forces and for different damping matrix N, which is due 

to  the different scope of damping assumptions. 
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CHAPTER 5 

 

STATE SPACE REALIZATION AND CONTROL 

5 STATE SPACE REALIZATION AND CONTROL 

 

State space realization of the equations of motion of the system given in equation 

(4.10) will be given in this section. After expressing the nonlinear system in the 

standard form, the control objectives will be expressed in a quantitative manner. 

Considering the nonlinear dynamics of the robot, the feedback linearization 

method will be employed to control the head position.  Issues of controllability and 

stability will also be discussed.  

5.1 State Space Realization and Standard Form 

It is known that almost no phenomena in nature is completely linear and most of 

the time, the standard procedure of linear approximation about some possible 

operation points of the system fails to represent actual dynamics. The modular 

robot dealt with in our case is of no exception. Nonlinear system of the general 

form ( , )x f x u  sometimes has the special standard form
3
  

 
1

( ) ( )
m

i i

i

x f x g x u


   (5.1) 

where ,  x X u U   and X is a smooth differentiable manifold of dimension n 

while 
mU  for some m n with smooth functions  and if g . Then the system 

                                                 
3
 Here x has nothing to do with CG positions of  the modules in Chapter 2. It will represent state 

variables from now on 
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given by equation (5.1) is called a control-affine system [57]. Such systems are 

nonlinear in their dynamics, but they are linear concerning the applied control 

actions. Control-affine systems have a wide area of application in nonlinear 

control theory and have been studied thoroughly mainly by [58], [59]. Furthermore 

mathematical theory of nonholonomic systems is mainly restricted to control-

affine systems [57]. The term ( )f x in equation (5.1) is called the drift term and 

complicates the systems in the sense of controllability. However, because of the 

existence of the drift term it is not necessarily possible to make the derivatives of 

the states vanish [57].  

In the case of our modular robotic model, assuming that it has been successfully 

represented in the form given by equation (5.1), having a drift means that, during 

the continuous locomotion phase where the controllers will be working to satisfy 

some control objective set, x  is not going to vanish. This is because, in order to 

make x  equal to zero, it necessary to set the controllers such that 

1

( ) ( )
m

i i

i

g x u f x


   holds, which will conflict with the determined control 

objectives (unless it explicitly to stop the robot). Hence, it will not be necessary to 

deal with exact modeling of R

if  around the region 0iv 
 
to have a realistic 

simulation. That will be the case even if somehow it is attempted to stop the robot 

while it is moving because by the time the condition 0iv   holds, the robot 

locomotion will have already stopped. 

Referring to the final reduced equations of motion given by (4.25), there are two 

coupled nonlinear second order differential equations with two unknowns ,h hx y . 

Simply making the following variable transformations 

 

 
1 2

3 4

           

           

h h

h h

x x x y

x x x y

 

    (5.2) 
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 state space variables 

1

2

3

4

x

x r
x

x r

x

 
 

        
 
 


 in 

4 are obtained. Equation (4.25) and 

equation (5.2) lead to 

 1 3x x  (5.3) 

 2 4x x  (5.4) 

      13 3' ' '

2

4 4

,T R T
x x

M F I Z f F Eu C N
x x

   
     

         
    

 
  (5.5) 

Hence, the system has been successfully converted to the standard form 

   x f x g x u   , where from equations (5.3), (5.4) and (5.5)  

 

 

        

1

2

1 3' ' ' 1'

2
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0 0 1 0
0

0 0 0 1
0

0 0
,

0 0
T R

x

x
f x

x
M C N M F I Z f

x
    




    
    
     
     

               


 (5.6) 

 

  

  

 
1'

0 0 0 0

0 0 0 0

T

g x

M F E


 
 

  
 
 

 (5.7) 

where in equation (5.6)  the expression   ' ',C N   is a 2 2  matrix while the 

expression  2

T RF I Z f  
 is a 2 1 vector.  
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5.2 Control Objectives  

The main control objectives for the robot can be listed as follows 

1) To generate a sustainable successful forward locomotion of the robot. 

2) To make the head follow any prescribed feasible, smooth enough path 

during the locomotion. 

3) To avoid the singular configuration whose description is given in section 

3.3. 

4) To prevent the side slippage of each of the robot modules during the 

locomotion. 

These control problems are fundamentally different from those that kinematically 

and structurally look similar. In literature, these mechanical systems are called 

wheeled mobile robots (WMR) and they can be in a single unit or chained forms 

like n-link trailers. In WMRs, position and orientation (and/or their time 

derivatives) of the leading module are chosen to generate the locomotion as in 

[60], [61], [62], [63] and [64]. In traditional WMRs, the attached wheels are driven 

and the torques applied to them are the main sources of actuation. However, in our 

case, the wheels are passive without any actuation. Due this fact, the main 

difficulty arises from the problem of avoiding the singular configuration which 

occurs when 
TE F  becomes rank deficient as explained before. The first objective 

stated above is closely related to the fourth objective as the occurrence of 

singularity makes the robot cease. This explains the notion sustainable in the first 

objective. On the other hand, one can attach countless many meanings to the word 

successful concerning the locomotion. What it is meant by a successful locomotion 

actually will be made clearer during the following chapters. Namely its meaning 

will be quantified by defining a relevant and sound performance measure for 

success. The second objective clearly states that the robot needs to follow a 
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feasible desired path in 
2 . By feasible, it is meant that the curvature of the 

desired path should not breach the structural geometric limitations i.e., it should 

not enforce the robot modules to collide with each other. Thus, one of the 

objectives is to make the robot head track the given reference trajectory in task 

space. 

 

Figure 5.1: Illustration of the head position and the task trajectory to track 

 

In Figure 5.1, the robot head position vector ( )r t  and the reference task trajectory 

( )tr t to be tracked are illustrated. Here the parametric argument t is not necessarily 

the time. The global control objective is to minimize the error between ( )r t  and 

( )tr t . In a standard reference tracking or regulation problem this objective could 

be expressed in the following form 

 ( ) 0    as    t        where     ( ) ( ) ( )te t e t r t r t     (5.8) 
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Here in equation (5.8), t explicitly stands for time. Equation (5.8) actually dictates 

the exponential stability for ( )e t . However, in a challenging problem like ours, 

where it is attempted to track “any” feasible reference task trajectory, it is 

necessary somehow to relax the requirements. That is, since it is known that ( )tr t

might change its direction and radius of curvature abruptly, at some time instant 

during the locomotion actuators installed on the robot may not suffice to make 

equation (5.8) hold. They can only guarantee that ( )r t  is not far away from ( )tr t . 

Hence, equation (5.8) is modified as follows 

( )        t T     where       ,   and   ( ) ( ) ( )te t T e t r t r t         (5.9) 

Equation (5.9) [65] states that ( )e t at least never diverges, (for all times during the 

locomotion) since   is a bounded real positive number. Actually equation (5.9) 

requires the stability of ( )e t in the sense of Lyapunov. Selection of  determines 

the performance requirements from the control system. The fourth objective is 

actually the verification of our previous assumption that none of the modules side-

slips. The wheels are employed to prevent side slipping (nonholonomic kinematic 

constraint) and to reduce the friction force acting along the longitudinal direction. 

The maximum amount of normal frictional force that the ground can apply to a 

module of the robot 
max

Nf  is limited and is simply given by 

 max

N

Nf mg  (5.10) 

The constraint forces which ensure equation (3.23) holds for all times are 

generated by the normal friction forces applied by the ground. Hence, it is 

necessary to make sure that these constraints forces never exceed max

Nf . If any of the 

constraint forces required to make equation (3.23) hold exceeds max

Nf , no-slip 

condition will be violated and derived equations of motion for the robot will no 

longer be valid. Furthermore the violation of no side-slip condition will lead to 

energy dissipation due to the fact that friction, which is a nonconservative force, 

will then do some work against the direction of motion.  None of the mentioned 
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papers have elaborated the scope of validity of the no-side slip assumption. This is 

due their assumption that the ground can always apply the required friction force 

in order to prevent the modules from side slipping. However, this assumption may 

not be correct always (for example on slippery and muddy grounds or when the 

actuators apply a large torque or when the radius of curvature of the reference 

trajectory turns out to be small). 

5.3 Feedback Linearization and Control Law 

Mechanical systems that have less number of control inputs, m, than their degree 

of freedom n are called underactuated systems [66]. In our case n is seven and m is 

four as have been previously stated. Thus, without the consideration of the 

nonholonomic no-slip constraints of the first order , our robotic system can also be 

considered to be an underactuated one. However, due to the reasons stated in [67], 

the robot with the reduced equations of motion given by equation (4.25) becomes 

an over-actuated one. This is because in our case m k n  , where 4m  is the 

number of control inputs given by equation(4.2), 5k  is the number of 

nonholonomic constraints given by equation (3.15) and 7n  is the number of 

configuration variables given by equation (3.8). Mechanical systems with 

nonholonomic constraints that become over-actuated when reduced have been 

discussed in [68].  

Authors of [24] applied a Lyapunov based PD control approach while authors in 

[25] applied an acceleration based control where the head of the robot is made to 

follow a desired acceleration based on a newly proposed manipulability. Briefly, 

manipulability can be described as a measure to determine how far the robot is 

from the singular configuration. Authors of [69] defined a performance measure 

which mainly includes the head position error and the nonholonomic constraint 

forces imposed on the wheels. Then, a full state feedback control law which is 

obtained by the solution of the well known Riccati equation is applied. Here, the 

control law is developed based on a control technique known as feedback 
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linearization. Basically it is the transformation of a nonlinear system to a linear 

one by applying an appropriate full-state nonlinear feedback. It is rather different 

from a conventional linearization procedure where the equations of motion of the 

system are approximated by linear ones near the anticipated operating points. 

Feedback linearization is mathematically exact and represents the system 

dynamics without any approximation. In certain multibody robotic applications 

and WMR’s it reduces to the well known computed torque control method. 

However, it requires the exact knowledge of the system dynamics  and can be 

computationally expensive especially when the control action is to be applied 

online. Furthermore it may require inputs with high magnitudes from the actuators. 

However, for the case when the dynamical systems to be controlled are robotic 

manipulators or WMR’s, due to the boundedness of the inertia matrix the required 

control torques remain always bounded except for the singularity state. What is 

more, computational resources and technology available today are vast and 

exponentially increasing and they can meet the online computational demands. 

Furthermore, several reports from experimental results indicate a good tracking 

performance and this method is being widely applied nowadays [43].  

Consider an affine nonlinear time invariant system in the form  

 ( ) ( ) ;          ,  n mx f x g x u x u       (5.11) 

where ( )f x  and ( )g x  are smooth and differentiable vector fields on 
n and 

(0) 0f  . Using the definition in [54], for the input u  and the output 

( )y h x  (i.e., for the SISO case) the system given by equation (5.11) is said to 

be feedback linearizable if there exists a region 
nU  containing the origin, a 

diffeomorphism
4
 : nT U  and nonlinear feedback in the form 

 ( ) ( )x x u     (5.12) 

                                                 
4
 A diffeomorphism is a smooth ( )C

 locally invertible function such that it is differentiable, and 

its inverse exists and is also differentiable. 

 



 

 

56 

 

with ( ) 0x   on U such that transformed variables  

 ( )z T x  (5.13) 

satisfy the system of equations 

 z Az b   (5.14) 

where  

 

0 1 0 0 0

0 0 1 . 0

. .
       

. .

1 .

0 0 0 0 1

A b

   
   
   
   

    
   
   
   
   

 (5.15) 

 

The linear system given by equation (5.14) is the linearized form of equation 

(5.11) [54] and it is called controllable canonical form.  Here the new transformed 

variables z are given by equation (5.16): 

Lemma: If ( )y h x  is the output of the system (5.11) and linearizing the 

input-output of the system is the point of interest, the transformation function 

which linearizes the system is given by [70] 
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 (5.16) 



 

 

57 

 

where n is the relative degree
5
 of ( )y h x with respect to u around 0x  , ( )fL h x

is the Lie derivative of ( )h x in the direction of vector field ( )f x  given by the 

following definition. 

Definition: If : n nf   is a smooth vector field on 
n and : nh   is scalar, 

then Lie derivative is given by [54] 

 

1

1

0

( ) ( ) ( ) :

( )  for  1, ,

n
n

f i

i i

k k

f f F

f

h h
L h x f x f x

x x

L h L L h k n

L h h





 
  
 

 



  

  (5.17) 

Furthermore in equation (5.16),  

 

0 1 2

1

0

0

n

g f g f g f

n

g f

L L h L L h L L h

L L h





  




 (5.18) 

That means 1( ), ( )nT x T x are linearly independent of each other and of u, while 

( ) ( ) ( 1)( ) ( )n n n

f g fy L h x L L h x u    is the first derivative of the output which 

explicitly depends on the input u. Necessary and sufficient conditions under which 

the system given by equation (5.11) can be transformed to the one given by 

equation (5.14), derivation and proofs of the results given here can be found in 

[49], [58], [71], [65] and [72].  Hence,  , which is called exogenous input or 

synthetic input,  is simply a chain of integrators on the system output ( )y h x in 

the manner 
( )n

n

y t

t






. Since it also stands as a linear input to the linearized 

(transformed) system given by equation (5.14), it can be designed to satisfy the 

tracking or regulation requirements. Furthermore, equations  (5.12) and (5.16) lead 

to 

                                                 
5
 Definion of the relative degree will be given in Appendix A 
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( 1)

( ) ( )

( ) ( )

n

f

n

g f

x L h x

x L L h x



 




 (5.19) 

Thus, once the synthetic input   is designed, the actual required control input u 

can be obtained via the equation 

  
1

( )
( )

u x
x

 


   (5.20) 

Now, let r denote the relative degree of the system. In the case where r is less than 

the number of generalized coordinates (i.e. r n ) the nonlinear transformation 

given by equation (5.16) is able to transform only r-many coordinates. The 

remaining n-r coordinates which are generally called the internal states, can be 

found without any difficulty from the requirement that T(x) must be a 

diffeomorphism. However, when ( )t  is designed such that 1, rz z  converges to 

their desired values, control over those internal states 
n r  is lost such that 

they may even diverge. This problem is called internal stability and is mainly 

discussed by [71] and [49]. However, the details will not be given here since there 

will not be such a case in our problem.  

So far, the discussion about the input-output linearization of the system given by 

equation (5.11) has been limited to the single input-single output (SISO) case. 

However, when the reduced equations of motion given by equation (4.25) is 

observed, it should be noted that there are four distinct inputs. Furthermore, when 

the control or stabilization of the robot head around a desired trajectory is of 

interest, the head position is a natural choice for the output of the system. Thus the 

output can be defined to be 

 
1 1 2 1

2 2

( )

( )

h

h

xy h x
y r

yy h x

    
        
     

  (5.21) 

Hence, the system under consideration is a multi input-multi output (MIMO) one. 

Extension of input-output linearization to the square MIMO systems is discussed 
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in [59]. Generally, a square MIMO system is the one which has equal number of 

inputs and outputs. A necessary condition that input-output linearization method 

can be applied to square systems is that the decoupling matrix must be invertible.  

However, the system dynamics given by equations (5.11) and (5.21) is not a 

square system since there are four inputs and two outputs.  The cases where the 

MIMO systems are not square are discussed in [58] and [73] where it has been 

stated that a static state feedback can be applied to control the system provided that 

the decoupling matrix is not rank deficient. The background of input-output 

linearization and dynamic input-output decoupling can be found in [59]. Having 

said that, for the first output 1 1y h , equations (5.2), (5.3) and (5.21)  yield 
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 (5.22) 

Furthermore, for the second output 2 2y h , equations (5.2), (5.4) and (5.21)  yield 
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 (5.23) 

From equations (5.22), (5.23) and (5.5) it is seen that, input u appears for the first 

time in the second derivatives of 1y and 2y . Hence, it can concluded that our 

MIMO system has a vector relative degree (2,2) . Thus, taking the second 

derivative of each output, the following vector equations are obtained: 
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                           
 
 

 

   (5.24) 

where 
2 4( )B x  is the decoupling matrix with full rank in order to have a 

defined static feedback given by equation (5.24) [73]. That means it is necessary 

for the two rows of ( )B x  to be linearly independent from each other. Substituting 

equation (5.5) into equation (5.24)  the following equations are obtained  

       
2

11 3' ' '

22

2 4

,
f T R

f

L h x
M F I Z f C N

L h x
   

    
        

     

  (5.25) 

  
1'( ) TB x M F E


  (5.26) 

Thus, equations (5.14) and (5.24) yield the following input-output linearized 

system 
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 (5.27) 

where 

 

1

2

1

2

1
1 1 1

1 1 1 3

2 2 22

2 2 42

h

h

h

h

z xy h x

z xy h x

yy h xz

yy h xz

        
        
                   
        
          

 
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 (5.28) 

are the transformed coordinates given by equations (5.22), (5.23), (5.25) and (5.26)

. It should be noted that the linearized system given by equation (5.27) is the 
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augmentation of the SISO case equation (5.14). Letting 
jr  denote the relative 

degree of the j
th

 output of p-many outputs, by the definition a total of  
1

p

j

j

r




transformed coordinates are obtained. However, as have been shown in equation 

(5.22) and (5.23) , there exists a relative degree of two for each of the outputs 1y

and 2y . Thus, 
1

4
p

j

j

r


 , which equals to the number of state variables of the 

reduced system represented in the state-space by equations (5.3), (5.4) and (5.5). If 

this is the case, all of the original states of the system given by equations (5.3), 

(5.4) and (5.5) are observable in the transformed, decoupled and linearized system 

given by equation (5.27). This means there is no internal dynamics in the 

linearized control system, i.e. as long as the system is controlled such that the 

transformed states given by equation (5.28) stay bounded, the original system 

states will also be bounded [59]. That is to say, stability of the transformed system 

ensures the stability of the original nonlinear system.  

Since the aim is to track a given smooth feasible trajectory in the task space, the 

synthetic input   can now be readily designed as follows 
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    

  

  
 (5.29) 

The task space error te can be defined as 

 

x

t h t

y

t h t

e x x

e y y

 

 
 (5.30) 

where  ˆ ˆ
t t tr x i y j   is the parametric reference trajectory for the robot head. From 

equations (5.2), (5.3), (5.4) , (5.24), (5.29) and (5.30), the following error 

dynamics in the form of linear second order differential equations are obtained 
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 (5.31) 

where 
x

PK , 
x

vK and 
y

PK , 
y

vK  are the proportional and velocity gains for 
x

te and 
x

te , 

respectively. As have been mentioned earlier, the problem of tracking control of 

the modular robot by input-output feedback linearization is reduced to the 

computed torque control method in the means of error dynamics. 
x

PK , 
x

vK and 
y

PK

, 
y

vK  determines how the errors behave during the locomotion of the robot and 

they are the design parameters which affect how well the robot tracks the given 

trajectory. Once the control law for the synthetic input   given by equation (5.29) 

is designed, the actual control input from the equation (5.24) can be generated. 

When equation (5.24) is observed, it is seen that u cannot be isolated. That is 

because, a left inverse of the decoupling matrix 
2 4( )B x  does not exist since it 

has more columns than rows, it only has a right inverse [46]. Utilizing this fact, u 

can be synthesized such that equation (5.24) trivially holds. Hence, the actual 

control input can defined to be 
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       
 (5.32) 

where    ' 4 2( ) TB x F E M 


    is the right inverse of ( )B x . Expanding 

equation (5.32) to its most explicit form, the following feedback control law is 

obtained 
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 

                
 
 

  (5.33) 

with   to be designed as in equation (5.29). Once pK and vK is selected, the 

synthetic input   is available, and once   is available the actual control torques 

to be applied by the actuators is generated according to the law given above by 
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equation (5.33). That is to say, by simply selecting pK and vK  the nonlinear 

robotic system can controlled so as to make it follow the desired trajectory, unless 

the singularity state is encountered during the locomotion. 

The above control strategy can be thought of as two interlacing control loops 

interacting through coordinate transformation. The overall control architecture of 

the robot is given in Figure 5.2 

 

Figure 5.2: Overall control architecture of the modular robot 

 

In Figure 5.2, the inner loop represents the nonlinear dynamics of the system 

which includes the nonlinear controller derived from equation (5.32) and the 

nonlinear plant. The plant is the nonlinear equations of motion of the robot which 

were given by equation (4.25). The outer loop of the above control architecture is 

basically the linearized (transformed) system dynamics and consists of the 

coordinate transformation, reference input and the linear controller. In this control 
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block diagram, for reasons of simplicity, output channels of the transformation 

blocks represents directly the expressions denoted in the blocks themselves. That 

is to say, for example, instead of interpreting u as the multiplication of the 

synthetic input  by the block denoted by Nonlinear Controller in Figure 5.2, it 

should be understood that u actually equals to the value of the Nonlinear 

Controller itself. As expected, the inner and outer loops have a common output 

which is the head position of the robot.  

As have been mentioned earlier by referring to [43] and [54], the feedback 

linearization method simply reduces to the computed torque control method in the 

case of rigid manipulators. However, it should be noted that by applying the 

feedback linearization method an interesting feature in the system dynamics is 

observed. In equation (5.24), for an explicit expression of actual control input u it 

was necessary to obtain the left pseudo-inverse of the decoupling matrix ( )B x

which does not exist. Hence, u is designed to be as in equation (5.32) such that 

equation (5.24) holds. This implies that the control law that has been found is not 

unique. This arises from the fact that although through the application of 

nonholonomic constraints the system coordinates have been reduced  to two, there 

are still four independent control inputs to apply just like in the original system 

equations. However, it is a quite natural choice and resembles the fashion in which 

the control input is selected such that the time derivative of the Lyapunov function 

is negative definite in application of the Lyapunov based nonlinear control. By 

merely applying the computed torque method this fact could not be noticed. Also 

based on these results, one can attempt to analyze the possible non rigid dynamics 

cases in further studies.   

5.4 Stability and Controllability 

Stability and controllability of a dynamic control system is of uttermost 

importance since there would be no point in analyzing the system dynamics and 
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synthesizing a controller for the overall system if one, somehow, shows that the 

plant is unstable and/or uncontrollable in the region of interest. 

Although, physically, it may seem that the robotic system is obviously stable, it is 

nevertheless necessary to show that it indeed is, for the purposes of rigor and 

completeness. Stability of a control system implies that all of its states remain 

bounded during its operation. The states of the system is defined to be 
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y

h

y

xx

yx
x

xx

yx

  
  
   
  
  

   





. Hence, through the application of control torques dictated by 

equation (5.33), if it is  managed to make the head position of the robot bounded, 

the states 1x and 2x also become bounded. Also, from equation (5.5) it is observed 

that the states 3x and 4x  will also be bounded provided that the control input u and 

the robot head position are stable (bounded).  This is because the reduced inertia 

matrix  ' 2 2M   is positive definite, invertible and bounded. Thus to 

summarize, in order to have a stable system the following conditions must hold 

1) ( )    ( )    ;  ,  0h hx t y t t t         

2) ( )     ;  ,  0u t t t       

If it can be shown that the head position of the robot follows a bounded reference 

trajectory with bounded tracking error, it will be sufficient to ensure that the first 

condition holds. In order that the second condition for stability holds, from 

equation  (5.33) it is seen that ( )TF E 
, which is the right pseudo-inverse of 

TF E  , 

must exist.  For that, 
TF E needs to have a full rank. Noting that 

TF E is the 

transpose of the manipulator Jacobian given in equation (3.25), it is concluded that 

the second condition automatically reduces to the avoidance of singularity 

condition explained section 3.3.  In order to show that the tracking error is 

bounded, consider the following proposition. 
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Proposition:  If 2 2
0 0

,    
0 0

x x
p v

p vy y
p v

K K
K K

K K


   

     
    

 are symmetric, positive 

definite matrices, then the control law given by equation (5.33) applied to the 

system given by equation  (5.1) leads to exponential tracking [43]. 

The proof of the above proposition is straight forward and is given in [43] which 

can be found also in Appendix A.  It states that, by a proper selection of position 

and velocity gains, it can be guaranteed that error dynamics given by equation 

(5.31)  converges to zero in the steady state. Hence, as long as proper gains for 

error dynamics are selected, the first condition for stability holds.  Although it is 

only required that the tracking error is contained in a bounded region (marginal 

stability), according to the above preposition, a suitable selection of gains leads to 

absolute stability.    

If the nonlinear system given by equation (5.11) can be transformed to the 

linearized system given by equation (5.27) through feedback linearization, then the 

system is controllable. This is rather obvious, because the linearized system given 

by equation (5.27) is the augmentation of two controllable canonical systems 

given by equation (5.14). Thus, the transformed linearized system given by 

equation (5.27) automatically satisfies Kalman’s necessary and sufficient condition 

for controllability.  Through straight forward application of conditions to our 

system under which the feedback linearization can be realized, controllability can 

be proven. However, without checking these mentioned conditions, input-output 

linearization to the system has been directly applied and the linearized system is 

successfully obtained. Recall from equation (5.33) that, in order to cancel 

nonlinearities (i.e. to achieve feedback linearization) existence of ( )TF E 
is again 

a necessity. Hence, avoidance of the singularity condition turns out to be a 

required condition for both stabilizability and controllability. This shows us again 

that avoidance of singularity is of prime importance. 
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5.5 Convergence to Singularity 

As have been stated before, a proper selection of the design parameters pK and 

vK guarantees that the controlled robotic system is stable and controllable during 

its course tracking the given task trajectory as long as avoidance of the singularity 

configuration is attained. It is necessary to prevent the modules from converging to 

the singular configuration which occurs when 1 2 3 4   (mod )       . 

Consider now the following lemma: 

Lemma: When r  constant, 1 2 1 0  (mod )m         becomes a stable 

equilibrium of  ( )F r    [24]. 

The above lemma means that when it is attempted to control the velocity of the 

head of the robot to be constant, the robot becomes straight as depicted in Figure 

3.3 a). Based on the equations of motion of the robot given by equations (5.3), 

(5.4) and (5.5), a Matlab Simulink model has been built. The control law given by 

equation (5.33) is applied to this model in order to track a given reference input tr . 

The schematics of the Matlab Simulink model and related m-files are given 

Appendix B. In this section, the simulation of the robot will be dealt with when it 

is given an ordinary path to follow. Then, the general tracking behavior and the 

normal friction forces ,    1, ,5N

if i    applied by the ground to the individual 

modules during the simulation will be observed.  As it shall be recalled 
N

if are the 

constraint forces that prevent the modules from side slipping. In order to find these 

forces, it is necessary to obtain the Lagrangian multipliers ( )t during the 

simulation time. Observing equation (4.10) and referring to the expression and 

derivation to obtain ( )t for robotic manipulators in [43]. it is seen that the 

following equation gives ( )t at any simulation time in our case: 

 



 

 

68 

 

  
1

1 1 0 ( )

0

T

Eu

AM A AM Q C N q Aq


 
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   (5.34) 

where A is given by equation (3.23) and Q is given by equation (4.19).  Thus the 

Lagrangian multipliers can be calculated as a function of the configuration variable 

q , its time derivative q , applied control torques u and the tangential friction 

coefficient  R . Using state space equations of the motion given by equations 

(5.3), (5.4) and (5.5) together with the nonholonomic constraint equation given by 

(3.22) (and also with a given initial condition 0q q ) the configuration variable q

and q can be obtained as a function of time. Thus, then they can be substituted 

into equation  (5.34) to obtain the Lagrangian multipliers  . Using the principle of 

virtual work and referring to the result in [25], the vector of normal forces applied 

by the ground to modules 
Nf given by equation (4.3) is the obtained as follows: 

  
1

N T

Af F 


  (5.35) 

where AF  is given by equation (3.20). If equation (5.34) is observed, it is 

recognized that part of the constraint force originates from the control torques u 

and the rest is due to the velocity terms q . During a singularity condition the 

norm of the constraint force becomes very large (diverges) and the locomotion 

ceases. Through our Matlab Simulink model it is illustrated how the robot 

converges to the singular configuration when the head is given a definite path with 

a constant velocity as covered in the above Lemma. Firstly, the physical 

parameters of the robot are defined as follows:  

m (mass of a single module) = 0.792 kg, l = 0.1 m, J = 0.00269 kg.m
2
, 0.035R  , 

0.01d  .  
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Also from equation (5.31), it is seen that x

pK , x

vK and y

pK , y

vK  
determine the error 

dynamics x

te and y

te , respectively. That is, selection of x

pK , x

vK and y

pK , y

vK  

determines whether the error dynamics will be underdamped, critically damped or 

overdamped. Generally, a sluggish responding system is not desired but at the 

same time overshoot is not something desirable when the objective is to follow a 

trajectory when obstacles are around the way. Hence, designing a critically 

damped system is generally a good and simple engineering practice. That is 

because, when perturbed, critically damped systems will reach the steady-state 

value in minimum time without any overshoot. So, setting the damping 

coefficients of the linear second order system given by equation (5.31) to unity, i.e. 

1x y    , equation (5.31) leads to 
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, 2

, 2

x x

p x v x

y y

p y v y

K K

K K

 

 

 

 
 (5.36) 

where x and 
y are the respective natural  frequencies of the respective error 

dynamics which will determine their rate of decay. Equivalently, x and 
y

determine the speed of response to the location perturbation of the head position 

from its desired value. Then there are double eigenvalues placed at x for x

te and 

double eigenvalues placed at 
y for y

te . In the first simulation the natural 

frequencies are 2 /x y rad s   , meaning that equal weights are put on tracking 

in the x and y directions. Initially the modular robot is at rest, i.e. 

1 2 3 4 5(0) (0) (0) (0) (0) (0) (0) 0h hx y                 as the initial condition of 

the configuration variables. This will be the case for all of the following simulation 

cases in this study. Also, the initial conditions of the configuration variables of the 

robot are (0) 5,  (0) 10h hx y   and
1 2 3(0) 10 ,  (0) 10 ,  (0) 20 ,       

4 5(0) 15 ,  (0) 5     . It is required that the head of the robot follows the task 

trajectory given by ( ) 0.05 4.9tx t t    and ( ) 10.1ty t  , where the coordinates are 
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in meters and t denotes time
6
 in seconds. That is to say, it is required that the robot 

goes straight to the left with a velocity of 5 cm/s and with some initial position 

offset of 0.1 m.  Simulation is performed for 25 seconds using the developed 

Matlab Simulink model based on our previously constructed equations of motion 

and control law. 

 

Figure 5.3: Trajectory of the robot head and modules following a straight line with 

constant velocity reference 

 

In Figure 5.3, trajectories of the robot head ( ,h hx y ) and of the center of gravities 

of five modules ( 1 2 3 4 5, , , ,x x x x x ) are plotted starting from the initial condition for 

25 seconds. 

                                                 
6
 Unless otherwise stated explicitly, the variable t in expressions rt(t), xt(t), yt(t), x t(t) and y t(t) 

(which are related with the parametric equation of the task trajectory) does not denote time, 

throughout this study. Instead, it denotes a generic parameter. 
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Figure 5.4: Plot of x coordinates of robot head trajectory and reference trajectory  

 

In Figure 5.4, the plot of the x coordinate of the robot head trajectory hx is 

superimposed on the plot of the x coordinate of the reference task trajectory tx for 

all of the simulation time of 25 seconds. Also, similarly in Figure 5.5, the plot of y 

coordinates of the head hy  and the reference trajectory ty are superimposed. In 

Figure 5.6, plot of tracking errors in x direction x

te and in y direction y

te are 

superimposed for about 8 seconds which is enough to capture the overall 

dynamics. When all of the four figures, Figure 5.3, Figure 5.4, Figure 5.5 and 

Figure 5.6 are observed, it seems that the robot accomplishes its given task to 

follow the reference line given by ( ) 0.05 4.9tx t t    and ( ) 10.1ty t  . However, 

simply looking at Figure 5.3 is enough to see that, by following the given straight 

at steady state all of the joint angles ,   1, ,4i i  
 
converges to the same value of  
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Figure 5.5: Plot of y coordinates of robot head trajectory and reference trajectory 

 

Figure 5.6: Plot of tracking errors in x direction x

te and in y direction y

te  
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Figure 5.7: Plot of the joint angles ,   1, ,4i i    of the robot during a simulation 

time of 25 seconds 

 

zero degrees.  This fact is illustrated by Figure 5.7 where it is seen that 

,   1, ,4i i    converges to zero with different rates. The convergence rate to the 

steady state value (desired value) is fastest for 1 and slowest for 4 since the robot 

locomotes forwards, the heads leads and the other modules follow it with a certain 

phase lag, as expected. Furthermore occurrence of the singularity condition is 

further justified by Figure 5.8 and Figure 5.9. In Figure 5.8, the lateral forces 

1 5, ,N Nf f  applied by the ground to the modules through the wheels during the 

locomotion are plotted against time. In Figure 5.9, control torques 1 4, ,u u applied 

by the motors to the joints are plotted. Clearly, it is observed that both 1 4, ,u u and 

1 5, ,N Nf f diverge unboundedly after the singularity condition is approached. 
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Figure 5.8: Lateral forces 
1 5, ,N Nf f  applied by the ground to the modules 

through the wheels during the locomotion 

 

 

Figure 5.9: Torques 1 4, ,u u  applied by the actuators to the robot joints during the 

locomotion 
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That is, when the singularity is neared, in order to continue the oscillations and 

locomotion the actuators work harder without any help due to the reasons stated 

before. While the actuators apply gradually bigger torques, the ground applies 

bigger lateral forces to the modules in order to satisfy the nonholonomic no slip 

condition. This loop becomes inevitable and consequently both 1 4, ,u u and 

1 5, ,N Nf f diverge. Actually the torques applied by the actuators and the forces 

applied by the ground refer to the hypothetical values that should be applied. 

However, as usual, there are limits both for the actuators and for the ground. These 

limits are set by the capacity of the motors and the friction coefficient of the 

ground in the lateral (normal) direction. Hence, singularity means that the 

locomotion will inevitably stop. Also in Figure 5.10, the total power P(t) applied 

by the all of actuators combined to the system during the locomotion is plotted. 

The total power applied is simply given by the equation 

 

4

1

( ) ( ) ( )i i

i

P t t u t


   (5.37) 

Observing equation (5.37) it can be seen that all of the actuators (motors) are 

assumed to be regenerative and this assumption is used throughout this study. As it 

can be seen from Figure 5.10, some variable amount of power is applied to the 

system until the robot body aligns with the reference line and until the initial offset 

error of the head position is vanished. Afterwards a constant amount of power is 

applied to overcome the tangential friction applied by the ground. To conclude, it 

is necessary to provide the robot with a reference trajectory with non-constant 

velocity to avoid singularity and yet this trajectory must be applicable and 

reasonable. 
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Figure 5.10: Total power input by the all of the actuators to the system during the 

locomotion 
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CHAPTER 6 

 

MODIFIED SERPENOID CURVE 

6 MODIFIED SERPENOID CURVE 

 

In this chapter, the serpenoid curve developed by Hirose will be briefly 

introduced. Then, parameters defining the overall geometry of the serpenoid curve 

will be described. Afterwards, a novel modified serpenoid curve will be introduced 

whose aim is to map the task reference trajectory to a serpenoid curve. By 

mapping the reference task trajectory to a serpenoid curve, the controller is 

supplied with a tuned reference so that tracking it will not lead to the singular 

configuration. Lastly, the robot behavior will be simulated when it tracks the 

proposed new reference track and it will be observed that it avoids trapping into 

the singularity. 

6.1 Serpenoid Curve 

The robotic researcher Shigeo Hirose has thoroughly studied the locomotion 

patterns of living snakes and acquired biological inspirations from his 

investigations. In his seminal work [17], Hirose introduced the so called serpenoid 

curve which he demonstrates real snakes in nature closely follow during their most 

common locomotion patterns of lateral undulation. In his studies, close agreement 

has been found between the empirical data obtained from the gaits of natural 

snakes and the serpenoid curve on constant friction surfaces. He concludes that the 

serpentine motion follows a kind of serpenoid curve where the curvature along the 

snake body varies sinusoidally.  The curvature of the serpenoid curve is given in  
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[17] as 

 
2 2

( ) sin( )n nK K
s s

L L

 
    (6.1) 

where, referring to Figure 6.1, s is the body length along the body curve of the 

robot, α is the initial winding angle (the value of the tangential angle   when s 

equals to zero), nK is the number of S-shapes in the curve and L is total effective 

body length of the robot which is 10l in our case which means L = 1m. As 

explained in [17] in detail, this curvature is related to the muscular force a snake 

needs to form a certain body shape which justifies that the serpenoid curve is a 

natural selection for snake like movement simulation. This curve allows a smooth 

and continuous forward motion for the serpentine locomotion. By integrating 

equation (6.1) along the curve, the tangential angle at s can be found to be 

 
2

( ) cos( )nK
s s

L


   (6.2) 

The equations of the serpenoid curve are then given as 

 

 
0

0

( ) cos( ( ))

( ) sin( ( ))

s

s

x s d

y s d

  

  









 (6.3) 

where x(s) and y(s) stand for the displacements in the x and y directions along the 

body curve at s, respectively. Geometrical representation of the above mentioned 

parameters on the serpenoid curve is given in Figure 6.1. Based on his 

investigations, Hirose proposed that a modular vehicle composed of simple and 

repetitive parts which follows his serpenoid curve could accomplish locomotion 

through the application of internal torques to its modules imitating the natural 
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snakes which contract their muscles to generate creeping movement. Therefore, 

utilizing the serpenoid curve for snake like robotic applications has been a   

 

 

Figure 6.1: Serpenoid curve proposed by Hirose and its parameters 

 

common practice in the literature. That is because it is actually a form of gait of 

lateral undulation for snakes that they have developed for millions of years 

through evolution. Experimental studies also indicate that applied torques at joints 

are smooth, continuous with minimal energy consumption rates observed both in 

biological snakes and robotic ones. 

6.2 Parameters of Serpenoid Curve 

The above mentioned parameters determine the main geometrical features of the  
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Hirose’s serpenoid curve. When Figure 6.1 is observed, it is seen that the curve is 

actually oscillating symmetrically around its line of symmetry (x axis). Although it 

looks like a simple sinusoidal curve it is actually not. Obviously, if a robotic snake 

is made to follow the generic serpenoid curve given in Figure 6.1, at the macro 

scale it would simply follow the x axis. In order to also change the direction (at a 

macro scale) of the robot, the method of symmetrical line modulation has been 

proposed by Hirose. It simply modifies equation (6.1) by adding a constant c for 

turning motion as 

 
2 2

( ) sin( )n nK K
s s c

L L

 
     (6.4) 

which implies that equation (6.2) takes the form 

 
2

( ) cos( )nK
s s cs

L


    (6.5) 

By adding the constant c to the curvature, the robot is made to follow a circular 

curve at the macro scale. The effect of parameter α, nK and c on the serpenoid 

curve is illustrated in Figure 6.2, Figure 6.3 and Figure 6.4. L is taken as 1m (total 

body length of the robot) throughout all the following simulations and figures. As 

can be seen from the figures, the parameter α determines the severity of 

undulation, the parameter nK determines the number of S-shapes (number of 

periods) in unit length while c determines the radius of the circle at the macro 

scale. Apart from the method of line of symmetry modification first introduced in 

[17], other attempts have been made to modify the usual serpenoid curve so that 

the robotic snake can be given a definite direction to follow in a high level. Some 

of those attempts are the methods illustrated in [74]. In their work starting from 

equation (6.2), they obtain the relative angles   between the modules (joint 

angle). The joint angles i  are obtained by discretization of equation (6.2) in the 

form of 
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Figure 6.2: Effect of winding angle α on serpenoid curve 

 

Figure 6.3: Effect of parameter nK on serpenoid curve 
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Figure 6.4: Effect of parameter c on serpenoid curve 

 

 sin( ( 1) )i A t i      (6.6) 

Using their methods, such as amplitude modulation, phase modulation and side 

movement modulation on the joint angles i , the serpenoid curve is modified in a 

desired manner. Finally this modified form of the curve forms the actual reference 

trajectory to track.  There are very few studies in the literature concentrating on the 

turning motion of the robotic snake when it is made to follow the serpenoid curve. 

The usual approach is after defining all the joint angles i and modifying them 

such that the desired macroscopic shape of the serpenoid curve is obtained, the 

control torques are applied such that the actual joint angles closely follows the 

reference ones. 

Hence, by making the joint angles track the reference ones, the overall locomotion 

is made to follow the serpenoid curve. Also, by proper modification of   as 
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explained above, the serpenoid curve is given a certain direction at a macro scale. 

However, this is quite an implicit way to make the robot to follow a desired 

trajectory. That is because, the relation between the actual reference path to follow 

and the parameters used to modify the joint angles i  inferred from equation (6.2) 

is always implicit and indirect. This means that, using these methods, exact 

tracking of reference trajectories is not possible. Thus a new method of 

modification of the serpenoid curve is proposed such that it will be able to follow 

any feasible task trajectory exactly at a macro scale in an explicit way. 

6.3 Proposition of the Modified Serpenoid Curve 

The motivation behind our modified serpenoid curve is to be able to generate a 

serpenoid curve in an explicit and quantitative manner such that it can represent 

any feasible task trajectory at the macro scale.  

First it is observed that, for example, to generate a serpenoid curve that undulates 

around (represents) the line which makes an angle of  degrees with the positive x 

axis it is necessary to modify equation (6.2) as follows 

 
2

( ) cos( )nK
s s

L


     (6.7) 

Equation (6.7) basically means that an angle of   is deliberately added to the 

tangential angle ( )s of the serpenoid curve so that it performs its oscillations 

around the objective line (the one that makes an angle of  degrees with the 

positive x axis). Substituting equation (6.7) into equation (6.3) the new form of the 

serpenoid curve on the Cartesian coordinates is obtained as follows 
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0

0

2
( ) cos( cos( ) )

2
( ) sin( cos( ) )

s

n

s

n

K
x s d

L

K
y s d

L


   


   

 

 





 (6.8) 

Equation (6.8) can be solved using numerical integration methods only [17] when 

the initial conditions 0x and 0y are given. To illustrate a sample case, equation (6.8) 

has been integrated numerically by the built-in ODE solver of Matlab (ode45) for a 

total curve length of 2.4 meters (L = 2.4 m) with the initial conditions 

0 0(0) (0) 0x x y y    .  The angle , which will be called compensation angle 

for the modified serpenoid curve, is selected to be 60 so that it “follows” the line 

given by the equation 3y x . The other parameters are also assigned certain 

values. The result of the numerical integration is plotted in Figure 6.5 with line 

given by the equation 3y x  as the objective line.  

 

Figure 6.5: Modified serpenoid curve is made to follow an objective line 
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As can be seen in Figure 6.5, it oscillates around its objective line at the macro 

scale, starting from the origin. Hence, by modifying the initial conditions 0x and 0y

with the compensation angle   any given line on the Cartesian plane can be 

followed. While the parameter   determines the overall propagation direction of 

the the curve at a macro scale, the parameters nK and  are more about the 

internal geometrical shape of the curve. In another point of view, by modifying   

where the locomotion will proceed in the Cartesian plane can be determined; while 

by modifying nK and   the pattern in which the locomotion will proceed can be 

determined. However, so far the serpenoid curve can only be made to follow 

straight lines. Obviously, it is required to make it follow any feasable curve on the 

plane so that a tuned reference trajectory for the head of the robot can be 

generated. By doing that, it will be possible to fit a serpenoid curve around the 

given task trajectory which will serve as the objective curve instead of the 

objective line.  

Thus, once the robot head is made to follow this fitted serpenoid curve instead of 

the original given task trajectory, the singularity conditions will be avoided. That 

is because, due to the oscillatory patterns of the serpenoid curve the robot head 

will never have constant velocity reference trajectory. Hence, the joint angles   

will not be equal to each other in modulus  . Inspiring by Figure 6.5, and 

observing that in order to follow a curve with constant slope (which is a line) a 

constant compenstation angle  is added, we propose that in order to follow a 

generic curve, the companstation angle   should vary with the slope of the curve. 

Specifically, it is required that at point s on the to-be-fitted-serpenoid-curve, the 

compensation angle should be equal to the tangent angle at point ts  which is the 

intersection of the normal drawn to the objective curve from the point s with the 

objective curve itself. Geometrical underpinnings of the modified serpenoid curve 

is illustrated in Figure 6.6. Then it is noted that the compensation angle ( )ts
 
now 

depends on the objective curve itself and hence the location s on the serpenoid  
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Figure 6.6: Construction of the Modified Serpenoid Curve 

 

curve. Here s denotes the path length along the modified serpenoid curve and ts  

is simply a parameter to define the objective curve parametrically (not necessarily 

the path length along the the objective curve).  Let ( )x s and ( )y s denote the x and 

y coordinates of the modified serpenoid curve at s. Also let ( )t tx s and ( )t ty s

denote the x and y coordinates of the objective curve (task trajectory) at ts . Then, 

one may obtain 
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t t t t

y s y s y s
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which simply states that, multiplication of the slope of the line connecting the 

point at s and the point at ts with the slope of the objective curve at ts  is minus 

one. In equation (6.9) 
( )

( ) t t
t t

t

dy s
y s

ds
  and 

( )
( ) t t

t t

t

dx s
x s

ds
 . 

Also from Figure 6.6, the compenstation angle can be defined as follows 

  ( ) atan2 ( ), ( )t t t t ts y s x s     (6.10) 

Combining equation (6.8) and (6.10) the following two differential equations are 

obtained which define the modified serpenoid curve as 

 

  
2( )

cos cos( ) atan2 ( ), ( )n
t t t t

Kdx s
s y s x s

ds L



 

  
 

   (6.11) 

 

  
2( )

sin cos( ) atan2 ( ), ( )n
t t t t

Kdy s
s y s x s

ds L



 

  
 

   (6.12) 

  

Equations (6.11) and (6.12) are simply the result of substituting equation (6.10) 

into equation (6.8) and then differentiating with respect to s. The core form of the 

third governing differential equation is equation (6.9). However, care must taken 

when dealing with this equation. This is because; there are two conditions when 

equation (6.9) diverges. These conditions are  

 

1) ( ) ( ) 0t tx s x s   

2) 
( )
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t t

t t

y s

x s





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It is vital to avoid these singularity conditions as they would create problems 

during the numerical solution of the differential equations of the modified 

serpenoid curve. However, the above mentioned conditions are mutually 

exclusive, i.e. when the first one occurs the second does not and vice versa. This 

mutual exclusivity results from the manner in which the modified serpenoid curve 

is defined. The first condition corresponds to the case when the mentioned normal 

in Figure 6.6 is perpendicular to the global x axis and that is when the slope of the 

objective curve vanishes, i.e. 
( )

0
( )

t t

t t

y s

x s





. The second condition corresponds to the 

case when the mentioned normal in Figure 6.6 is parallel to the global x axis and 

when 
( )

( )

t t

t t

y s

x s





. Equation (6.9) is simply multiplied by  ( ) ( )t tx s x s  so that 

the singularity case can be cancelled which occurs when ( ) ( ) 0t tx s x s 
 
and 

finally 

  
( )

( ) ( ) ( ) ( ) 0
( )

t t
t t t t

t t

y s
y s y s x s x s

x s
   




 (6.13) 

Thus, when ( ) ( ) 0t tx s x s  , equation (6.9) is actually multiplied by zero. For that 

reason, the validity of equation (6.13) must be checked when ( ) ( ) 0t tx s x s  . 

Observing again Figure 6.6, it is noted that when ( ) ( ) 0t tx s x s   the slope of the 

objective curve also vanishes, i.e. 
( )

0
( )

t t

t t

y s

x s





 as ( ) ( ) 0t tx s x s  . Hence, it can 

be concluded that equation (6.13) is valid and equivalent to equation (6.9) even 

when ( ) ( ) 0t tx s x s  . In order to cancel the second singularity condition which 

will occur during the numerical solution of the differential equations, equation 

(6.13) is now multiplied by 
( )

( )

t t

t t

x s

y s




and gives  
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 
( )

( ) ( ) ( ) ( ) 0
( )

t t
t t t t

t t

x s
y s y s x s x s

y s
   




 (6.14) 

Following the same logic and noting that 
( )

( )

t t

t t

y s

x s





 implies 

( )
0

( )

t t

t t

x s

y s





, 

equation (6.13) is actually multiplied by zero when the second singularity 

condition occurs.  

However, since 
( )

0
( )

t t

t t

x s

y s





 implies ( ) ( ) 0t ty s y s  , equation (6.14) is valid and 

equivalent to equation (6.13) even when 
( )

0
( )

t t

t t

x s

y s





. Hence, it is concluded that 

during the solution of the differential equations of the modified  serpenoid curve  

represented by equations (6.9), (6.11) and (6.12); instead of equation (6.9), 

equation (6.13) must be used around the first singularity condition and equation 

(6.14) must be used around the second singularity condition. At any point other 

than these two mentioned singularity points, either equation (6.13) or equation 

(6.14) can be used safely. To conclude, the complete set of differential equations 

of the proposed modified serpenoid curve are obtained as follows 

 

 

 

 

 

2( )
cos cos( ) atan2 ( ), ( )

2( )
sin cos( ) atan2 ( ), ( )

( ) ( )
( ) ( ) ( ) ( ) 0     if    

( ) ( )

( )
( ) ( ) ( ) (

( )

n
t t t t

n
t t t t

t t t t
t t t t

t t t t

t t
t t t

t t

Kdx s
s y s x s

ds L

Kdy s
s y s x s

ds L

x s y s
y s y s x s x s

y s x s

y s
y s y s x s x

x s







 
  

 

 
  

 

    

  

 

 

 

 




) 0     otherwisets





 


 (6.15) 

 



 

 

90 

 

When the equation set (6.15) is examined, it is seen that it is implicit i.e. the 

highest order derivatives cannot be collected at one side of each individual 

equation. For this special case, a special built-in differential equation solver of 

Matlab, called ode15i is utilized. Implementation of equation (6.15) for ode15i and 

the complete Matlab code for generation of the modified serpenoid curve that fits 

around any given parametric curve on a plane is given in Appendix B.  To 

illustrate the generation of the modified serpenoid curve, two sample reference 

trajectory is given parametrically to be 2ˆ ˆ ˆ ˆ( ) ( 5) ( 10)t t t t t tr s x i y j s i s j       for 

task trajectories are given in Figure 6.7 and Figure 6.8. In Figure 6.7, the reference 

0 5.5ts  which corresponds to the parabolic curve given in Cartesian 

coordinates as 
2 10 35y x x   for 0 10.5x  . The solution starts from the 

initial condition 0 0( , ) (5,10)x y  which, for example, may represent the initial head 

position of the robot. It is preferred to represent the task trajectories parametrically  

 

Figure 6.7: Fitting of the Modified serpenoid curve to the objective curve 
2ˆ ˆ( ) ( 5) ( 10)tr t t i t j     for 0 5.5t   from the initial point 0 0( , ) (5,10)x y    
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instead of the Cartesian coordinates since parametric representation is more 

flexible, compact and complete for numerical solution of equation (6.15). Also in 

Figure 6.7 and Figure 6.8, parameter t is substituted for ts for simplicity. In Figure 

6.8 the serpenoid curve is fitted to the parametric objective curve
 

ˆ ˆ( ) ( 4sin( ) 5) (8cos( ) 2)
2 4

t t t tr s s i s j
 

      for 0 8ts   which forms a sort of  

figure “eight” with initial point 0 0( , ) (5,10)x y  , again.  

 

Figure 6.8 : Fitting of the Modified serpenoid curve to the objective curve 

ˆ ˆ( ) ( 4sin( ) 5) (8sin( ) 2)
2 4

tr t t i t j
 

      starting from the initial point 

0 0( , ) (5,10)x y   
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If this curve were to be represented in Cartesian coordinates four different 

equations and associated end points would be needed. When Figure 6.7 and Figure 

6.8 are examined it is noted that the modified serpenoid curve smoothly undulates 

around the reference task trajectory and exactly follows it at a macro scale. Thus, 

instead of the original task trajectory the controller is supplied with the modified 

serpenoid curve. This leads to the modification of the overall control architecture 

given in Figure 5.2. Accordingly, the new overall control architecture of the 

modular robot is given in  Figure 6.9. It is constructed by supplying the modified 

serpenoid curve fitted to the task trajectory as reference. Thus, from now on, 

instead of ˆ ˆ
t t tr x i y j  , ˆ ˆ

r r rr x i y j   will be used as the reference to the control 

system and it denotes the generated modified serpenoid curve. Also, in Figure 6.9 

there is a block named Optimizer. 



 

 

 

 

9
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Figure 6.9: Overall control architecture with modified serpenoid curve as reference 
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This block provides the modified serpenoid curve generator with the optimal 

values of nK and   which are denoted by 
*

nK and * , respectively. The way in 

which 
*

nK and * are determined will be explained in Chapter 7. Dashed arrows in 

Figure 6.9 show that there are inputs to the optimizer other than the task trajectory 

to determine 
*

nK and * , which will be clarified in Chapter 7, again. 

6.4 Tracking of the Modified Serpenoid Curve 

As have been observed in section 5.5, when the robot head is made to follow a 

reference trajectory with a constant velocity, although it successfully tracks the 

reference it eventually converges to the singularity condition. After that it is no 

more able to continue locomotion. An Interesting observation about the simulation 

that has been performed in section 5.5 is that: when the tracking errors 
x

te and 
y

te

are made to converge identically to zero, the robot converges also to the 

singularity conditions. Hence, the trick here is to make the tracking errors swirl 

around zero such that the robot tracks the reference at a macro scale. That was 

exactly the motivation behind our development of the modified serpenoid curve.  

Thus, instead of subscript “t” for the errors and the reference track, the subscript 

“r” will be used for them which will denote the modified serpenoid curve instead 

of the original task trajectory.  Thus, that is the case given in Figure 6.9 which is 

constructed by using the modified serpenoid curve as the reference input. Here, the 

improvements made by utilizing the modified serpenoid curve ( )rr t  instead of the 

original task trajectory ( )tr t will be demonstrated. For that, the same structural 

parameters of the robot as in the simulation made in section 5.5 will be used.  

Also, instead of giving an initial position offset for the head position, the reference 

trajectory will start exactly at (5,10). Thus, the task trajectory 

ˆ ˆ( )  ( 0.05 5) 10tr t t i j     for 0 100t   will be used with ˆ ˆ( ) ( ) ( )r r rr t x t i y t j 
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which is the numerical solution of the equation set given by (6.15). This is 

because, from now on, how the robot performs on a given trajectory will be 

focused on (instead of how it will correct the initial errors). One important issue to 

discuss here is the mapping between the numerical solution of the set of 

differential equations given by (6.15) and ˆ ˆ( ) ( ) ( )r r rr t x t i y t j  . In equation (6.15)

, as have been stated before, the parameter s in ( )x s and in ( )y s denotes the path 

length along the serpenoid curve, while the parameter t in ( )rr t denotes the actual 

simulation time. Hence, if it is simply defined 

 s vt  (6.16) 

where v is the speed of the head of the robot along the serpenoid curve, then, it 

follows 

 
( ) ( )

( ) ( )

r

r

x t x vt

y t y vt




 (6.17) 

It means that at time t, ( )x vt and ( )y vt are evaluated, since ( )x s and ( )y s are the 

known solutions of equation (6.15), and assigned to ( )rx t and ( )ry t , respectively. 

Here, since analytical solution of equation (6.15) is not possible, the evaluation of 

( )x vt and ( )y vt is to be performed by interpolation. 

Let us set 0.05 m/sv  . Firstly, ( )x s and ( )y s are obtained by solving equation 

(6.15) for the selected serpenoid curve parameters 
3


  , 2nK L . The solution 

is given in Figure 6.10.  4 rad/sx y    is set for the linear controller, 

anticipating that an oscillatory reference will be tracked now instead of a linear 

one. The simulation is run for 35 seconds and the results are summarized in figures 

from Figure 6.11 to Figure 6.17. The constant -0.05 in the task trajectory 

ˆ ˆ( )  ( 0.05 5) 10tr t t i j   
 
has absolutely no significance as it could be any 

negative number. 
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Figure 6.10: Superposition of the task trajectory ˆ ˆ( )  ( 0.05 5) 10tr t t i j   
 
to its 

fitted serpenoid curve ˆ ˆ( ) ( ) ( )r r rr t x t i y t j   

 

Figure 6.11: Trajectory of the robot head and modules following the reference 

ˆ ˆ( ) ( ) ( )r r rr t x t i y t j 
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Figure 6.12: Trajectory of the robot head superimposed on the reference 

ˆ ˆ( ) ( ) ( )r r rr t x t i y t j 
 

 

Figure 6.13: Robot head tracking errors 
x

re and 
y

re in x and y directions, 

respectively. 
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Figure 6.14: Joint angles ,   1, ,4i i    of the robot during the locomotion  

 

Figure 6.15: Lateral forces 1 5, ,N Nf f  applied by the ground to the modules 

through the wheels during the locomotion 
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Figure 6.16: Torques 1 4, ,u u  applied by the actuators to the robot joints during 

the locomotion 

 

Figure 6.17: Total power input by the all of the actuators to the system during the 

locomotion 
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That is because it no more sets the velocity, but only serves for the purpose of 

defining the geometry of the path to be followed at the macro scale. Here the 

parameter v defines how fast the robot locomotes, instead. In Figure 6.11, it is 

observed how the robot performs the sinusoidal locomotion where the head leads 

and other modules follow.  In Figure 6.12 and Figure 6.13 it can be seen how the 

robot head follows the generated serpenoid curve. Especially in Figure 6.13, it is 

seen that the error in the y direction of the head position oscillates around zero 

while the error in the x direction oscillates around -0.018 m, approximately. This 

fundamental difference arises from the very nature of the requirement imposed on 

the robot: to trace the serpenoid curve which is fitted around a task trajectory 

propagating in the negative x direction, with a certain velocity v. Oscillating 

around a negative value means that the robot always lags in the x direction along 

which the locomotion propagates. Hence, having a lag in the direction of 

locomotion is due to the critically damped linear controller that has been designed. 

Consequently, one can simply increase x in order to decrease the lag in the x 

direction when the robot follows a line. Finally, examining Figure 6.14, Figure 

6.15 and Figure 6.16, it is observed that what has been aimed has been 

accomplished i.e., singularity has been successfully avoided with a compromise of 

oscillating about 0.08 m around the actual trajectory.  Indeed, it is not even a real 

compromise considering the fact that the robot is almost imitating how the real 

biological snakes locomote and 0.08 m is not even half length of a single module. 

In Figure 6.14 it is seen that the joint angles of the robot, in the steady state, 

oscillates with a common amplitude and a common frequency only differing with 

a constant phase difference consecutively from the head to the tail (from the first 

module to the fifth). This shows us that the snake robot moves in the form of a 

travelling wave just like the real snakes. Since the joint angles do not converge to a 

common value, singularity does not occur. In Figure 6.15 and Figure 6.16, the 

lateral forces 1 5, ,N Nf f and actuator torques 1 4, ,u u not only stay bounded (as 

opposed to the ones in Figure 5.8 and Figure 5.9), but their magnitudes are also 
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significantly reduced. In Figure 6.17, total power input to the system by the 

actuators is given. Even during the steady state, total power input is oscillatory as 

it is now the multiplication of two oscillatory quantities (joint velocity and torque 

input).  

What has been simulated in this case study was actually the locomotion of the 

robot following a straight line. It could have been done by using the classical 

serpenoid curve equation (6.3), developed by Hirose, instead of solving equation 

(6.15). Now, the locomotion of the robot on a complicated path will be simulated 

which can be realized only using our proposed modified serpenoid curve (if 

serpenoid curve method is to be used). As a more complicated path, the eight 

shaped path given in Figure 6.8 will be taken, with different dimensions 

appropriate for the simulation purposes. The simulation will be started with the 

same initial conditions and parameters. The only difference is that the robot will 

track the serpenoid curve fitted to the aforementioned eight shaped parametric 

curve. As have been mentioned earlier the modified serpenoid curve can be 

followed as closely as desired simply by increasing the position and velocity gains, 

or the natural frequencies x and y . Again, 8 rad/sx y    are set for this 

simulation. Also v = 0.20 m/s is set, which means that the robot will locomote 4 

times faster than before. In order not to deal with how the overall system will 

respond to the initial position offset error, the initial position error is set to zero. 

Observing Figure 6.15, it is seen that starting from the rest, to increase the speed of 

the head to the given v, the actuators work harder which give rise to abrupt jumps 

in the lateral forces. In order to make this transient period milder, the desired v is 

modified as given in Figure 6.18, instead of a simple step one. In Figure 6.18, v is 

defined as 
2

0.2  for  0 t < 3
9

t
v   and 0.2  for t 3v   , where t is the simulation 

time. Considering a long duration of operation of the snake robot for a given task 

in a real world environment, using a head speed profile as in Figure 6.18 will not 

affect the overall task.  
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Figure 6.18: Desired speed of the robot head along the modified serpenoid curve 

 

Figure 6.19: Trajectory of the robot head and the modules following the reference 

ˆ ˆ( ) ( ) ( )r r rr t x t i y t j 
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Figure 6.20: ( , )h hx y with trajectories of reference ( )rr t and task ( )tr t  

 

Figure 6.21: Robot head tracking errors 
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Figure 6.22: Joint angles ,   1, ,4i i    of the robot during the locomotion 

 

Figure 6.23: Lateral forces 1 5, ,N Nf f  applied by the ground to the modules 
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Figure 6.24: Torques 1 4, ,u u  applied by the actuators to the robot joints 

 

Figure 6.25: Total power input by all of the actuators to the system 
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Figure 6.26: Actual speed v of the robot head along the trajectory 

 

This time the simulation is ran for 50 seconds with 2nK L  and / 3  again. 

The task trajectory for this simulation is the eight shaped curve given by the 

parametric equation 
1 ˆ ˆ( ) ( sin( ) 5) (2.25sin( ) 7.75)
2 2 4

tr t t i t j
 
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. The results of this simulation are thoroughly summarized by Figure 6.19 to 
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curvature of the curve changes increases. Hence, larger nK and α brings about a 

deterioration in tracking performance. On the same basis, task trajectories with a 

high rate of change of curvature are difficult track, by intuition. For example, 

tracking errors are minimal if the given task trajectories are linear or perfect 

circles, since their curvatures are always constant. That is why natural frequencies 

x  and y are increased when the task trajectory is switched from a linear one to a 

more complicated eight shaped curve given in Figure 6.20. Interestingly, if nK  is 

decreased, deviation from the given trajectory increases which is illustrated in 

Figure 6.3. When Figure 6.22, Figure 6.23 and Figure 6.24 are examined it can be 

seen that the locomotion is performed smoothly and stably. That is to say, no 

matter how abruptly the task trajectory changes its curvature, no radical jumps on 

the time histories of   1 4, ,  , 1 5, ,N Nf f and 1 4, ,u u  are observed. That is 

mainly because our modified serpenoid curve behaves like a buffer between the 

task trajectory and the snake robot, smoothing out sharp turns and twists. It is like; 

the differential equation solver (ode 15i) receives ( )tr t as input and interprets it in a 

form which is suitable for the snake robot to “understand”. In Figure 6.25, total 

power consumption during the locomotion is plotted, while in Figure 6.26 the 

actual tracing speed v is plotted. Total energy consumption is simply the area 

under the total power input curve (Figure 6.25) and it turns out to be 21.217 Joules 

for this simulation. Striking similarities between the trends in these figures are not 

unexpected since power consumption is directly proportional to speed. In Figure 

6.26 it should be noted that the actual v deviates from the desired one given in 

Figure 6.18. This deviation is directly related with the tracking errors and 

correlates with the trends given in Figure 6.19, Figure 6.20 and Figure 6.21.  

Graphical representation of the dynamic simulation is constructed in Matlab 

virtual reality toolbox and is attached to Matlab Simulink in real time. 
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a) t = 12 seconds 

 

b) t = 41 seconds 
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c) t = 43 seconds 

Figure 6.27: Snapshots from the Matlab VRML during the locomotion simulation 

 

A few snapshots recorded at selected time instances during the simulation are 

given in Figure 6.27. The graphical model of the robot is built according to the 

mentioned specifications and is connected to the related configuration variables of 

the system environment. These configuration variables are the result of the 

simulation which is run online. Simply reducing the parameter nK , with 

everything else kept the same, results in an increase in tracking performance. To 

demonstrate, nK is decreased from 2L to L and the simulation is ran again. The 

simulation results for 2nK L  are summarized by the figures from Figure 6.28 to 

Figure 6.34. In Figure 6.28, Figure 6.29 and Figure 6.30, it is seen that even 

though maximum values of the tracking errors remained roughly the same, the 

tracking performance is improved, nevertheless. That is because the errors became 

less oscillatory. Also, since it is a derivative term, the maximum error in tracing  
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speed v decreased which can be seen if Figure 6.29 and Figure 6.26 are compared. 

When Figure 6.32 and Figure 6.23 are compared to each other it is observed that 

by decreasing nK from 2L to L, the lateral forces acting on the modules decreased 

although there has been an increase in the initial response. However, when   Figure 

6.33 is examined, where torques applied by the actuators are given, and compared 

with Figure 6.24, it is notable that by decreasing nK from 2L to L, the actuator 

torques are decreased. This decrease in the applied actuator torques is the general 

trend during the locomotion of the robot. In order to explain the increase in the 

lateral forces, equation (5.34) must be understood. There are two main constituents 

of the Lagrangian multipliers and hence the lateral forces: the ones caused by the 

input torques and the ones caused by the centrifugal (velocity) terms. If the ones 

caused by the input torques dominate, then the same change trends exist for lateral 

forces and the input torques, and if the ones caused by the velocity terms q

dominate then the opposite change trends exist. Thus in our case it can be  

 

Figure 6.28: Trajectory of the robot head and modules following the reference 

superimposed on ( )tr t  
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Figure 6.29: Actual speed v of the robot head along the trajectory 

 

Figure 6.30: Robot head tracking errors 
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Figure 6.31: Joint angles ,   1, ,4i i    of the robot during the locomotion 

 

Figure 6.32: Lateral forces 1 5, ,N Nf f  applied by the ground to the modules 
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Figure 6.33: Torques 1 4, ,u u  applied by the actuators to the robot joints 

 

Figure 6.34: Total power input by all of the actuators to the system 
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concluded that if nK  is increased from L to 2L, although torques applied by the 

actuators decrease, increase in the contribution of the velocity terms dominates. It 

is intuitive to conclude that the contribution of the velocity terms in equation 

(5.34) increase with an increase in nK , α, tracing speed v and with a decrease in 

radius of curvature of task trajectory ( )tr t . Total power input P(t) to the system by 

all of the actuators is given in Figure 6.34, which again correlates with the plot of 

the tracing speed v in Figure 6.29. Total energy consumed during a locomotion 

period of 50 seconds (which corresponds to a 10 m of total path length traveled) is 

calculated to be 14.169 Joules, from the area under the curve in Figure 6.34. That 

means, the energy consumption of the snake robot decreased about 33.2 % (from 

21.217 Joules to 14.169 Joules) simply by decreasing the parameter nK from 2L to 

L, while the speed at which it has locomoted remained the same. It is interesting to 

note that although torques applied by the actuators increased total energy 

consumption decreased. This is clearly due the fact that the rates at which the joint 

angles ,   1, ,4i i    changed, i.e., joint velocities ,   1, ,4i i   , remarkably 

decreased. This can be observed if Figure 6.22 is compared with Figure 6.31, 

where the time histories of joint angles are given for the case nK L . Thus, it can 

be concluded that, there are some favorable values for nK and   for a given path 

with a given tracing speed v such that the robot consumes less energy or minimizes 

some (to be selected) performance measure. Clearly, it would be quite meaningful 

to attempt to determine them and this will be exactly the scope of the next chapter, 

Chapter 7. 
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CHAPTER 7 

 

OPTIMALLY EFFICIENT LOCOMOTION 

7 OPTIMALLY EFFICIENT LOCOMOTION 

 

In this chapter, the conditions under which the locomotion of the modular snake 

robot becomes optimally efficient will be investigated. As in any optimization 

problem, a performance measure will defined. Afterwards, simulations of the robot 

to obtain optimal parameters will be performed. Then the results of the simulations 

will be presented and the obtained results will be discussed. Finally, how the 

selection of eigenvalues of the linear controller (i.e. selection of natural 

frequencies x and y ) and different tangential friction coefficients affect the 

locomotion performance and the optimal parameters will be elaborated on. 

7.1 Determination of the Objective Function 

Firstly, it should be noted that our locomotion, and hence to be found optimally 

efficient locomotion, is confined to our modified serpenoid curve introduced 

before. That is to say, it is assumed that what is best for the snake robot in terms of 

locomotion is our modified serpenoid curve and it is attempted to determine its 

parameters which optimize the performance measure or the objective function. It is 

assumed that a task trajectory ( )tr t  is given to track, with a certain tracing speed v, 

and the environment of locomotion ( N  and R ). The aim here is to grasp the 

overall picture of efficiency dynamics of the robot locomotion, rather than 

searching for the exact numerical values of the parameters that optimize the 

objective function, using some methods like simulated annealing, genetic 
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algorithms etc. For that reason, it is more vital to determine “relations” instead of 

determining of optimal points, which is the core interest of classical optimization 

problems. Whatever method is used for attaining the dynamics of the most 

efficient locomotion, it is necessary to know exactly and quantitatively what is 

sought for, that is, it is necessary to determine a sound performance measure 

simple, yet comprehensive enough for leading us to where actually desired.  

Hence, in order to determine a reasonable measure, it should be made clear what is 

“good” and what is “bad” for the locomotion in a universal and objective manner.  

As a starting point, and as one of the most fundamental and reasonable measures in 

dynamics, it is required that the locomotion is performed by consuming low 

energy. Furthermore, it is deliberately required that the robot “moves” as the name 

locomotion implies. If solely the total energy consumption E is considered as a 

measure, certainly the most efficient action would be to stay at rest indefinitely as 

it requires zero amount of energy. Obviously, this is not something desired, at all. 

Referring to Figure 7.1, it is seen that while the robot undulates about the given 

task trajectory ( )tr t depending on the initial winding angle α, the robot head goes 

sideways. That is to say, if α is increased, the deviation of the robot head from the 

given task trajectory also increases. Obviously, this deviation is minimal (zero 

deviation) when 0  (it is the case when the modified serpenoid curve ( )rr t  

coincides with the task trajectory ( )tr t ) and maximal when 90   .  It is seen that 

the displacement of the head to the sideways does not actually serve for 

locomotion. For that reason, instead of the curve length acts  of the actual path of 

the robot head ( ( ), ( ))h hx t y t  between the starting point 0 0( ( ), ( ))h hx t y t  and the end 

point ( ( ), ( ))h f h fx t y t  of the locomotion, the curve length effp  is considered as the 

measure of the locomotion displacement. Here 0t is the initial time (starting time) 

of the locomotion at which all of the system is at rest and always taken as zero, 

while ft is the final time of the locomotion. Hence, effp is called the effective 

displacement of the locomotion and it is defined to be the curve length of ( )tr t  
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Figure 7.1: Illustration of effective locomotive displacement of the robot 

 

between the starting point 0 0( ( ), ( ))h hx t y t and the projection of ( ( ), ( ))h f h fx t y t on 

( )tr t  itself. It should be noted here again that the parameter t in ( ( ), ( ))h hx t y t  and 

in ( )tr t are not to be taken as the same. That is, while the parameter t in 

( ( ), ( ))h hx t y t  is explicitly the locomotion time, the t in ( )tr t is a generic one. 

Hence, if  
't  is let to be the independent generic parameter of 

'( )tr t , the equation 

for effp  is given as follows 

 

' '
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' ' '
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     (7.1) 

4.4 4.5 4.6 4.7 4.8 4.9 5
8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4

x (m)

y
 (

m
)

 

 

(x
h
,y

h
) - Head Trajectory

r
r
(t) - Modified serpenoid curve

r
t
(t) - Task Trajectory

End Point

Starting Point

Projection of End Point on Task Trajectory



 

 

118 

 

where '

ft is the value of 't at which the distance from the point ( ( ), ( ))h f h fx t y t  to 

the 
'( )tr t is minimal i.e., at '

ft ,  2 2
' '( ) ( ) ( ) ( )h f t h f tx t x t y t y t          is minimal. 

Thus, '

ft is the solution for 't  of the equation given by 

' ' ' ' '( ) 2 ( ) ( ) ( ) 2 ( ) ( ) ( ) 0h f t t h f t tg t x t x t x t y t y t y t             (7.2) 

Since 
'( )tr t is completely and explicitly given, the root of equation (7.2) can readily 

be found numerically or analytically depending on 
'( )tr t . Here, it is assumed that 

equation (7.2) always has a unique root. The conditions that violate this 

assumption include when the circle centered at the end point of locomotion 

( ( ), ( ))h f h fx t y t  with a radius of 
2 2

' '( ) ( ) ( ) ( )h f t f h f t fx t x t y t y t         intersects more 

than one point on curve 
'( )tr t . Observing Figure 7.1, it can be concluded that these 

conditions correspond to the task trajectories having radius of curvatures  smaller 

than the amplitude of the modified serpenoid curve (measured from corresponding 

symmetrical line)  along the related section of the curve. These conditions 

constitute a subset of the previously mentioned reference task trajectories which 

are not feasable.  Thus, it would be quite meaningful if the perfomance measure 

includes the term related to the total energy consumption of the robot per unit 

effective displacement of locomotion, which turns out to be 
eff

E

p
. Observing the 

results obtained in the simulation performed in section 5.5 where the robot is made 

to follow a straight line “directly” without  utilizing a serpenoid curve, low energy 

consumption rates at steady state are obtained. What is more, this required power 

input given in Figure 5.10 is to overcome the friction. The same simulation is 

repeated by setting the tangential friction coefficient 0R  and damping in the 

joints 0d   and as expected, the power consumption reduced to zero at steady 

state. That is because, once all of the modules’s orientations are aligned with  the 

straight line and once the specified speed is reached, no action is required from the  
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actuators anymore. However, if the task trajectory somehow deviates from a 

straight line at some point during the locomotion, actuators become useless, as the 

singularity will have already occurred by setting the same  orientation for all of the 

modules. From this point on, actuators start to apply maximum amount of torque 

they could without any help or eventually make the modules side slip by causing 

the lateral forces , 1, ,5N

if i    exceed the maximum amount of friction force 

max

N

Nf mg  that the ground can apply. This is the case even when tangential 

friction (rolling friction) is present as illustrated in the simulation performed in 

section 5.5. One might argue that when the tangential friction is present, even 

when all of the modules start to align to a long enough straight line (i.e., joint 

angles , 1, ,4i i   start to converge to zero) and even when the specified speed is 

reached, energy dissipation due to tangential friction would result in a decrease in 

the speed of the robot head and consequently, to regulate the speed, the actuators 

would inevitably apply some amount of torque. Hence, this constant application of 

torque by the actuators will keep the robot “alive” and prevent it from converging 

to the singularity. Unfortunately, the simulation results in section 5.5 tell us this is 

not the fact. This might be attributed to the fact that the regulatory actions of the 

joint actuators to overcome the friction do not serve for the purpose of preventing 

the modules from aligning with the straight line. This might be the physical reason 

for the mathematical lemma given in section 5.5. All of these lead to the point that 

the notion of minimizing the energy consumption of the robot is not enough to 

demote divergence or having large magnitudes (which might be the case even 

when the modified serpenoid curve is utilized) of actuator torques. It is concluded 

from the results obtained in Chapter 6 that, setting small values for nK and 

decreases the oscillation frequency and wave height of the serpenoid curve, 

respectively. Also, small values of   generates a modified serpenoid curve that 

looks similar to the original task trajectory
7
 (or at least with small deviations).  

                                                 
7
 Indeed, setting  to zero generates a curve identical to the task trajectory. 
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When those cases coincide with the case when the task trajectory includes 

subsections with relatively low amount of rate of change of curvature, actuators 

apply relatively large magnitudes of torques. To sum up, decreasing nK and 

decreases the total energy consumption, increases the effective locomotion 

displacement effp , and decreases the deviation of the actual robot path from the 

nominal one (task trajectory tr ). However, at the same time, decreasing nK
 
and 

leads to an increase in the torques applied by the actuators to the module joints. If 

that was not the case, 0  would be set simply and there would be no need for a 

serpenoid curve or its proposed modified version. Hence, there well may be cases 

where, although the robot locomotes with low power requirement, large amount of 

input torques are required from the actuators, which would be impractical or even 

impossible. Even if the required torques are applicable, large torques may lead to 

large amount of lateral forces which in turn may lead to side slip or wear of 

module wheels in long times of operation of the robot. Thus, instead of 

considering applied joint torques to demote in the performance measure, directly 

to consider the lateral forces applied by the ground to the modules would be more 

meaningful. That is because, observing equation (5.34) and (5.35), there is a direct 

relation between the actuator torques and lateral forces. Thus, divergence of the 

actuator torques implies the divergence of lateral forces applied to the modules and 

vice versa (if the velocity of the configuration variables q  stay bounded, which is 

always the case). Also, by considering the lateral forces applied, the centrifugal 

(velocity) terms in equation (5.34) are also covered, which means any abrupt 

twists and turns in actual path followed by the robot are also demoted.  From 

Figure 7.1, it is seen that the actual path length followed by the robot head is the 

curve length of the robot head trajectory and is simply given by 

 
0

( ) ( )

ft t

act h h

t

s x t y t dt





     (7.3) 
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The term act

eff

s

p
becomes unity when the modified serpenoid curve is not utilized at 

all and the robot head perfectly follows the task trajectory. In the light of our 

discussions about the locomotion of the robot, generally, the more the robot head 

follows a wavy path (the more the rate at which the radius of curvature of the path 

changes) constrained to our modified serpenoid curve, the less become the lateral 

forces experienced by the modules; however, the more becomes the term act

eff

s

p
. 

The term act

eff

s

p
 

implicitly quantifies the relative amount of time the modules are 

exposed to the lateral forces applied by the ground, in a compact and simple 

manner. In the ideal case (where the head exactly tracks the reference task 

trajectory ( )tr t ) 1act

eff

s

p
  , while 1act

eff

s

p
 , otherwise. That means, although the 

magnitude of the lateral forces decreases, the amount of time that these forces are 

experienced by the modules increases, up to some certain value and is detrimental 

for structural integrity. Thus, trying to minimize the term N act
rms

eff

s
f

p
 

, instead of 

simply the term N

rmsf , seems quite sound.  Hence, determining a measure of the 

form  

 

1 2

1

N act
rms

eff eff

H
sE

f
p p

 




 (7.4) 

would be rather meaningful and our aim will be to maximize the performance 

measure H.  Here the term 
N

rmsf
 
in equation (7.4) denotes the norm (Euclidean 

norm) of the root mean square-lateral force vector 
N

rmsf whose elements are simply 

the root mean squares of the elements of original lateral force vector 
Nf .  
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In other words, 
N

rmsf is defined as 

  

1

2
2

3

0

4

5

1
,  where     ( )

f

rms

rms
t t

N rmsrms
rms i i

f trms

rms

f

f

f f f t dtf
t

f

f





 
 
 
  
 
 
 
 

  (7.5) 

leading to 

 
2 2

1 5, ,N rms rms

rmsf f f          (7.6) 

 

and where  1 and 2 are simply weighting coefficients. Also it should be noted 

that by including the lateral force vector 
Nf  (instead of the actuator input vector 

u ), the performance measure has been split into two independent components. 

One of them is efficiency and the second one is sustainability. Obviously, the term  

1

eff

E

p
  quantifies how effective the robot locomotes and the term 

2

N act
rms

eff

s
f

p
   

quantifies the sustainability and both of them have the units of force, namely 

Newtons. Furthermore, to give them equal emphasis, weighting coefficients are 

intuitively set as 1 2 1   in equation (7.4). The sustainability term  

2

N act
rms

eff

s
f

p
  , gives a measure about both the singularity condition and the 

severity of the wear on the modules. Inclusion of the both of the terms in the 

performance measure H is necessary for a compromise between the efficiency and 

the sustainability. 
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7.2 Simulation of the Dynamic System 

As have been mentioned before, the snake robot is modeled in Matlab Simulink 

based on the derived equations of motion of the system given by equation (4.25) 

and equation (3.22)  and synthesized controller given by the equation (5.33). A 

sample task trajectory is selected which is already given as 

1 ˆ ˆ( ) ( sin( ) 5) (2.25sin( ) 7.75)
2 2 4

tr t t i t j
 

      for 0 8t   and plotted in Figure 

6.20. This path has been selected to represent a general trajectory including both 

straight and curved parts. However, to handle repeated simulations and to decrease 

the total amount of simulation time, the simulation will be run for 25 seconds 

instead of 50 seconds. Although it roughly corresponds to the half the total path 

length spanned it turns out to be enough to represent the general task trajectory 

profile. A fixed step size of 0.01 seconds is used in Matlab Simulink and the built 

in ODE solver ode3 has been utilized. Detailed block diagram of the Matlab 

Simulink model is given in Appendix B. Also, as mentioned before, using Matlab 

Virtual Reality Modeling toolbox, all of the needed configuration variables of the 

simulation environment are mapped to the graphical representation of the robot 

model for online animation.  This graphical representation has been created using a 

3D solid modeling software and the model is converted to wrml format in order 

that Matlab Simulink can link it with the block diagrams.  The general control 

architecture as implemented in Matlab Simulink is given in Figure 7.2. Here, each 

block diagram includes lower level block diagrams (subsystems) and the analytical 

equations of motions and the control law are implemented in m-files as much as 

possible. In Figure 7.2, the interpreted reference trajectory means the modified 

serpenoid curve ( )rr t fitted on the task trajectory ( )tr t . All of the components 

given in Figure 7.2 are working simultaneously, online and in the real time. When 

it is compared with Figure 6.9 , it is seen that the components of the overall control 

architecture which are working offline are excluded in Figure 7.2. These 

components are the Modified Serpenoid Curve Generator and the Optimizer. 



 

 

 

 

1
2
4 

            

Figure 7.2: Implementation of modeling and control of the robot in Matlab Simulink
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Modified Serpenoid Curve Generator, as its name implies, solves the set of 

differential equations given by equation (6.15) and provides the obtained solution 

for ( )rr t to the mentioned block diagram in Figure 7.2, before the simulation starts. 

Optimizer determines the parameters 
*

nK  and * which causes the robot to 

locomote in the most efficient way. Online and offline layers of the 

 

Figure 7.3: Online and offline layers of the overall control architecture 

 

overall control architecture is depicted in Figure 7.3. The missing inputs to the 

optimizer denoted as dotted lines in Figure 6.9 are clearly given in Figure 7.3. 
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quantities are employed by the optimizer to maximize the performance measure H 

given by equation (7.4). What is meant by the online and offline run is that, the 

online part is run in the real time while the modified serpenoid curve generator of 

the offline part provides the online part with the reference trajectory, initially.  

After the online simulation is completed, the mentioned quantities are fedback to 

the optimizer in order to determine H, and 
*

nK and * accordingly (after several 

online simulations).  

7.3 Pareto Optimization of the Objective Function 

Looking at the performance measure H given by equation (7.4) , it is a function of 

nK , α, the structural parameters of the modular robot which are L, J, m, and the 

number of modules, the gravitational acceleration g, the tangential friction 

coefficient R , damping constant d  of the revolute  joints, the natural frequencies 

of the linear controller x and y , the speed at which the robot head traces the 

modified serpenoid curve  v and even the task trajectory ( )tr t itself.  Considering 

all of these and assuming that H depends on a total of z-many parameters, in order 

to find the optimal ones it is necessary to span the 
z space or at least it is 

necessary to apply the search algorithms or the optimization methods to the 
z

space, whatever they are. Obviously this would require enormous amounts of 

processing power and time and yet, most of the obtained results may serve for no 

practical purpose or might not be able to justify the allocated resources. Pareto 

efficiency is a concept originally from economics first introduced by Vilfredo 

Pareto, and has been successfully applied to engineering. In its broadest terms, 

pareto efficient situations are those in which an outcome (a measure in our case) 

cannot be increased further without hurting at least one player (with a game 

theoretic approach) [75]. This idea can be adapted to our case such that the 

performance measure H cannot be further increased without changing other  
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parameters which are assumed to be constant. On that account, considering that the 

relations are more of interest than the points and considering what can be tuned in 

a given situation, it is meaningful to determine the optimal parameters 
*

nK and *

for a given tracing speed v and then determine how 
*

nK and * changes with the 

tracing speed v. The first series of simulations are run for the parameters given by 

Table 7.1 for v = 0.10 m/s 

 

Table 7.1: Parameters used for the 1
st
 series of simulations 

 m (kg) J (kg.m
2
) L (m) R  

x y   

(rad/s) 

d  

(N.s/rad) 

v (m/s) 

Value 0.792 0.00269 1 0.035 8 0.01 0.10 

 

Firstly the performance measure H is constructed on a grid. This grid (region) is 

spanned by  0.5 ,3nK L L  and 15 ,85   
   and is composed of a total of 36 

points, i.e. each of nK and  have been partitioned to have 6 equidistant points. 

Simulation results of the first series of simulations are summarized by Figure 7.4 

and Figure 7.5.  In Figure 7.4, performance measure H has been generated as a 

surface by running repeated simulations on the mentioned grid points. In Figure 

7.5, the contour plot of the performance measure surface is given.   It is simply the 

collection of isolines along which the value of the performance measure is 

constant, i.e. H = c. It gives thorough information about the change trend of H as 

well as the optimal values 
*

nK  and * . It can be concluded that for the parameters 

given in Table 7.1, H has a maximum value of about 0.2030 and attains this 

maximum at the optimal parameters 
* 2.5nK L  and * 57   .  Having said that, 

one point must be clarified: 
*

nK  and * illustrated in Figure 7.3 actually denotes 

the values after the optimal parameters are found and used for simulation.  
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Figure 7.4: Surface of the performance measure H over the region spanned by 

parameters and /nK L  for v = 0.10 m/s 

 

 

Figure 7.5: Contour plot of performance measure H for v = 0.10 m/s 
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If a usual cycle of optimization is to be considered, then * symbols should be 

dropped, i.e. they must be thought as simply nK  and α.  Then, the simulation is 

repeated for the list of parameters given in Table 7.2, i.e. the tracing speed v is 

increased to 0.15 m/s while keeping the rest of the parameters unchanged. The 

result of this simulation is given by the figures Figure 7.6 and Figure 7.7. When 

they are examined, it is seen that the maximum value of H turns out to be about 

0.1880 and it is attained at the optimal values  
* 2nK L  and * 57   . Comparing it 

with the first simulation it is seen that by increasing the tracing speed v from 0.10 

m/s to 0.15 m/s, the maximum efficiency of the locomotion decreased from 0.2030 

to 0.1880, 
*

nK  decreased from 2.5L to 2L while * remained the same. Continuing 

in the same manner, the third and the fourth set of simulations are performed with 

the parameters given in Table 7.3 and Table 7.4, respectively. In the third set of 

simulations, the tracing speed v is increased to 0.20 m/s and in the fourth to 0.25 

m/s. Results of the third set of simulations are given in Figure 7.8 and Figure 7.9, 

while those of the fourth are given in Figure 7.10 and Figure 7.11. It is observed 

that by increasing v to 0.20 m/s from 0.15 m/s, the maximum of H decreased to 

0.1630 and 
*

nK decreased to 1.5L, while * remained the same at 57 , again.  

 

Table 7.2: Parameters used for the 2
nd

 series of simulations 

 m (kg) J (kg.m
2
) L (m) R  

x y   

(rad/s) 

d  

(N.s/rad) 

v (m/s) 

Value 0.792 0.00269 1 0.035 8 0.01 0.15 
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Figure 7.6: Surface of the performance measure H over the region spanned by 

parameters and /nK L  for v = 0.15 m/s 

 

Figure 7.7: Contour plot of performance measure H for v =0.15 m/s 
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When v is increased to 0.25, it is notable that, the maximum value of H decreases 

again to about 0.1530, while 
*

nK  decreases to 1.5L, and no change occurs in α
* 

as 

before. After performing these four sets of simulations where the tracing speed v 

has been gradually increased, it should be noted that the performance degrades 

with increasing speed. This can be attributed to the nature of the performance 

measure H defined in equation (7.4). This is because, although there is no reason 

for the term 
1

eff

E

p
  to change with v, it is quite obvious that the term 

2

N act
rms

eff

s
f

p
  

will increase with increasing v, since to go faster the actuators will apply bigger 

torques and the velocity terms in equation (5.34) will increase with increasing v. 

Combining the results of all the simulations performed, the pareto frontier is 

constructed between the tracing speed v and the parameter /nK L  and it is given 

by Figure 7.12. Pareto frontier is simply the set of choices which are pareto 

optimal with respect a given measure. Any of the points (choices) which lie on the 

pareto frontier dominates the ones which do not lie on the pareto frontier. 

However, none of the points on the pareto frontier is dominated by each other.  

 

 

Table 7.3: Parameters used for the 3
rd

 series of simulations 

 m (kg) J (kg.m
2
) L (m) R  

x y   

(rad/s) 

d  

(N.s/rad) 

v (m/s) 

Value 0.792 0.00269 1 0.035 8 0.01 0.20 

 

 



 

 

132 

 

 

Figure 7.8: Surface of the performance measure H over the region spanned by 

parameters and /nK L  for v = 0.20 m/s 

 

Figure 7.9: Contour plot of performance measure H for v =0.20 m/s 
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Obviously, the pareto frontier between the tracing speed v and * is the constant 

line * 57   .  When the obtained results are considered, it can be concluded that if 

the overall locomotion speed is increased by increasing the tracing speed v, 
*

nK

decreases. Recalling that nK determines the undulation frequency of the modified 

serpenoid curve, it quite a meaningful result.  

Table 7.4: Parameters used for the 4
th

 series of simulations 

 m (kg) J (kg.m
2
) L (m) R  

x y   

(rad/s) 

d  

(N.s/rad) 
v (m/s) 

Value 0.792 0.00269 1 0.035 8 0.01 0.25 

 

 

 

Figure 7.10: Surface of the performance measure H over the region spanned by 

parameters and /nK L  for v = 0.25 m/s 
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Figure 7.11: Contour plot of performance measure H for v =0.25 m/s 

 

 

Figure 7.12: Pareto frontier for the performance measure H determined by 
* /nK L

and tracing speed v 
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That can be interpreted in the following way: to compensate for the increased 

locomotion speed, the snake robot decreases its undulation frequency to locomote 

in an optimally efficient manner. What is interesting is that * is not affected by 

the locomotion speed. 

7.4 Effect of Eigenvalues and the Friction Coefficient 

The effect of eigenvalues (or the natural frequencies x and y ) and the tangential 

friction coefficient R on the optimal parameters 
*

nK and * .will also be 

investigated. First tracing speed v is set to 0.15 m/s and the parameters are set as 

given in Table 7.5 where the natural frequencies are decreased from 8 rad/s to 4 

rad/s. Then, using the same tracing speed, the natural frequencies are increased to 

16 rad/s this time, i.e. the parameters given in Table 7.6 are used.  

Results of the fifth set of simulations are summarized by Figure 7.13 and Figure 

7.14, while the results of the sixth one are summarized by Figure 7.15 and Figure 

7.16. When the results of the second set of simulation and the fifth one are 

compared with each other, it is seen that by decreasing the natural frequencies of 

the linear controller form 8 rad/s to 4 rad/s, *  decreased from 57  to 43 , while 

*

nK  stayed at the same value of 2L.  

 

Table 7.5: Parameters used for the 5
th

 series of simulations 

 m (kg) J (kg.m
2
) L (m) R  

x y   

(rad/s) 

d  

(N.s/rad) 
v (m/s) 

Value 0.792 0.00269 1 0.035 4 0.01 0.15 
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Figure 7.13: Surface of the performance measure H over the region spanned by 

parameters and /nK L  for v = 0.15 m/s and 4 /x y rad s    

 

Figure 7.14: Contour plot of performance measure H for v =0.15 m/s and 

4 /x y rad s    
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It is known that eigenvalues of the linear controller and hence the natural 

frequencies x and y are directly related with the tracking performance of the 

robot head. It seems that reducing them to 4 rad/s degrades the tracking 

performance considerably and to reduce these tracking errors (deviation from the 

modified serpenoid curve) the robot chooses to locomote with a lower initial 

winding angle  . Thus, decreasing the deviation from the modified serpenoid 

curve leads to a more efficient locomotion. This can be easily confirmed by 

comparing Figure 7.7 and Figure 7.14, where at 8 /x y rad s    , H has a 

maximum value of 0.1880 and at 4 /x y rad s   , this value decreased to 

0.1685.  In the sixth set of simulation, the natural frequencies are simply increased 

to 16 rad/s. Observing Figure 7.15 and Figure 7.16, it is seen that increasing the 

natural frequencies from 8 rad/s to 16 rad/s did not change the optimal values 

* 2nK L  and * 57   . However, increasing the natural frequencies (and thus 

further pushing the eigenvalues to the left) increased the maximum value of H to 

0.1930 from 0.1880 which can be seen if compare Figure 7.7 and Figure 7.16.  

Important conclusions can be made simply by analyzing the results of the fifth and 

the sixth set of simulations. Firstly, it seems that, up from certain values of natural 

frequencies, the specific form of the serpenoid curve (and hence the gait of the 

snake robot) for an optimally efficient locomotion does not change. That is 

because nK and  sets this specific form of gait and they settle down to certain 

optimal values once the robot head follows the modified serpenoid curve, well 

enough. In order to further justify this conclusion and to obtain a more complete 

picture, simulations for the natural frequencies 12 /x y rad s    and 

20 /x y rad s   have also been performed, without changing the rest of the 

parameters. The same optimal values 
* 2nK L  and * 57   are obtained for both 

12 /x y rad s  
 
and  20 /x y rad s   , as expected. For that reason, 

individual simulation results for the mentioned natural frequencies are omitted. 

However, maximum values of the performance measure H are obtained to be  
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Table 7.6: Parameters used for the 6
th

 series of simulations 

 m (kg) J (kg.m
2
) L (m) R  

x y   

(rad/s) 

d  

(N.s/rad) 
v (m/s) 

Value 0.792 0.00269 1 0.035 16 0.01 0.15 

 

 

 

 

Figure 7.15: Surface of the performance measure H over the region spanned by 

parameters and /nK L  for v = 0.15 m/s and 16 /x y rad s    

0
20

40
60

80
100

0

1

2

3

0

0.05

0.1

0.15

0.2

  (Degrees)K
n
/L

P
e
rf

o
rm

a
n
c
e
 M

e
a
s
u
re

 (
H

)



 

 

139 

 

 

Figure 7.16: Contour plot of performance measure H for v =0.15 m/s and 

16 /x y rad s    

 

0.1910 and 0.1945 respectively. How the locomotion performance (maximum 

value of the performance measure H) varies with eigenvalues (i.e., natural 

frequencies x y   ) of the linear controller is given in Figure 7.17. Another 

valuable conclusion that can be made from these simulations is that: the fact that 

increasing the natural frequencies and making the robot track our modified 

serpenoid curve more closely makes the robot locomote more efficiently confirms 

and interconnects the followings:  
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Figure 7.17: Variation of the locomotion performance with natural frequencies of 

the linear controller 

 

 Validity of our proposed modified serpenoid curve to generate a smooth 
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parameters given in Table 7.7 and Table 7.8, where R  
is decreased ten times to 

0.0035 and increased ten times to 0.35, respectively. Results for the seventh set of 

simulations are given by Figure 7.18 and Figure 7.19 and those for the eighth are 

given in Figure 7.20 and Figure 7.21. Observing Figure 7.18 and Figure 7.19 and 

comparing to the results of the second set of simulations, it is observed that 

decreasing the tangential friction coefficient decreased the optimal value 
*

nK  to L 

from 2L while * stayed at its usual optimal value of 57 .  A decrease in R

resulted in a dramatic increase in the maximum value of H from 0.1880 to 1.020, 

which is an expected results since R is the main cause of energy dissipation 

during the locomotion. Observing Figure 7.20 and Figure 7.21 and comparing the 

results again with those of the second set of simulations, increasing R , increased 

*

nK  to 2.5L from L , and * to 71 from 57 . As expected, a dramatic decrease in 

the maximum value of H to 0.0235 from 0.1880 can be observed. Considering the 

results of these two last sets of simulations, it is noted that a decrease in R allows 

the robot to locomote by less undulation (as 
*

nK  decreased to L from 2L) while an 

increase in R forces the robot to undulate and to go sideways as much as possible 

to overcome the friction. Actually, this result correlates with and explains the 

similar behavior observed also in natural snakes. On muddy and rough grounds 

they move in a more wavy and oscillatory manner and while on relatively 

smoother surfaces they perform the locomotion in a more linear way. Since it is 

known that the manner in which 
*

nK  and * changes with changing R  
determines 

the manner in which the gait of the robot changes with R , these results also 

confirm again the validity and consistency of the selected performance measure H.  
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Table 7.7: Parameters used for the 7
th

 series of simulations 

 m (kg) J (kg.m
2
) L (m) R  

x y   

(rad/s) 

d  

(N.s/rad) 

v (m/s) 

Value 0.792 0.00269 1 0.0035 8 0.01 0.15 

 

 

 

 

Figure 7.18: Surface of the performance measure H over the region spanned by 

parameters and /nK L  for v = 0.15 m/s and 0.0035R   
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Figure 7.19: Contour plot of performance measure H for v =0.15 m/s and 

0.0035R   

 

 

 

 

Table 7.8: Parameters used for the 8
th

 series of simulations 

 m (kg) J (kg.m
2
) L (m) R  

x y   

(rad/s) 

d  

(N.s/rad) 
v (m/s) 

Value 0.792 0.00269 1 0.35 8 0.01 0.15 
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Figure 7.20: Surface of the performance measure H over the region spanned by 

parameters and /nK L  for v = 0.15 m/s and 0.35R   

 

Figure 7.21: Contour plot of performance measure H for v =0.15 m/s and 

0.35R 
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CHAPTER 8 

 

DISCUSSION OF RESULTS AND 

CONCLUSION 

8 DISCUSSION OF RESULTS AND CONCLUSION 

8.1 Discussion of Results 

One could argue that since purely (without using our modified serpenoid curve) 

following the given eight-shape-like task trajectory would imply that the condition 

given by lemma in section 3.3 (which simply states that singularity occurs when 

all of the joint angles equals to each other in modulus  ) will not be met, there 

would be no need for the modified serpenoid curve when the task trajectory is not 

strictly a linear one. Although it is true that the singularity condition will not be 

met in those cases, simply observing Figure 7.6, for example, shows how the 

performance measure H dramatically degrades when 0  is approached
8
 

(although the point 0  is not explicitly included in the grid). To demonstrate 

this degradation clearly, a simulation has been performed using the parameters 

given in Table 7.2 and for 0  and for 25 seconds. The results of the simulation 

are given by Figure 8.1, Figure 8.2 and Figure 8.3. From these figures, one can see 

that although the overall deviation from the task trajectory decreases considerably, 

the price to be paid for that is the drastic increases in the lateral forces and motor 

torques applied by the actuators.  

                                                 
8
  As have been stated before, setting 0  means the modified serpenoid curve is exactly 

equivalent to the given task trajectory 
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Figure 8.1: Trajectory of the robot head and modules following the reference 

ˆ ˆ( ) ( ) ( )r r rr t x t i y t j 
 

 

Figure 8.2: Lateral forces 1 5, ,N Nf f  applied by the ground to the modules  
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Figure 8.3: Torques 1 4, ,u u  applied by the actuators to the robot joints 
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maximum amount of friction that can be applied by the ground to a single module 

N  
is 0.8 and knowing that mass of a single module m = 0.792 kg, then the 

maximum available lateral force is simply max 6.215 NN

Nf m g  .  This means 

that in order for the no slip condition to hold, the maximum of the lateral forces 

1 2 3 4 5[ ]N N N N Nf f f f f should not exceed max 6.215 NNf  . Observing Figure 8.2, it is 

seen that 200 N of lateral friction force is needed to prevent the modules from side 

slipping which is obviously impossible for a mass of 0.792 kg.  To compare these 

results with those of the optimal one, the simulation results of the optimal 

locomotion (whose performance measure was found to be 0.1880) from the second 

set of simulation which also uses the same parameters (but with 
*

nK and * ) are 

given in Figure 8.4, Figure 8.5 and Figure 8.6. When these figures are observed, 

the striking differences between the optimal locomotion and the locomotion with 

0  can be clearly seen. 

 

 

Figure 8.4: Trajectory of the robot head and modules following the reference 
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Figure 8.5: Lateral forces 1 5, ,N Nf f  applied by the ground to the modules 

 

Figure 8.6: Torques 1 4, ,u u  applied by the actuators to the robot joints 
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First, it should be noted that, the optimal one has considerably smoother and lower 

profiles for lateral forces and actuator torques. Having the maximum amount of 

necessary lateral force about 3.5 N, a normal friction coefficient of 0.45R  is 

enough to prevent the robot from side slipping. However, this time a total of 6.18 

Joules of energy is consumed. One cannot even call this a trade-off compared to 

4.77 Joules. That is because, locomoting with 4.77 Joules of energy consumption 

is not possible due to high and oscillatory lateral and actuator forces and even if it 

is made possible somehow, it will not be sustainable.   

One could also argue that, reasoning from the lemma given in section 5.4, if the 

speed at which the head traces the task trajectory is varied somehow about its 

nominal value, the singularity condition could also be avoided without utilizing the 

modified serpenoid curve. However, it should be noted that this lemma is a one 

sided implication. That is to say, constancy of the robot head velocity does not 

cover all of the cases which lead to the singularity i.e., the cases where the head 

velocity is not constant may still lead to the singularity condition. To illustrate 

what happens when the speed of the head is varied and the modified serpenoid 

curve is not employed the first simulation performed in section 5.4 will be 

repeated, with a robot head speed 0.05 0.005sin( )v t  , this time. This means the 

speed is varied 10 % sinusoidally around the nominal value of 0.05 m/s along the 

task trajectory ' ˆ ˆ( ) ( ' 5) 10tr t t i j     , where the parameter t is explicitly the time 

and the parameter 
't  is a generic parameter. The simulation results are given by 

Figure 8.7, Figure 8.8, Figure 8.9 and Figure 8.10. When they are observed, it can 

be easily seen that the idea of varying the speed around a nominal value simply 

does not work as both of the actuator torques and the lateral forces diverge. This 

result might be attributed to the fact that although the controllers constantly work 

to attain the speed profile given by Figure 8.7, nothing is being done actually to 

prevent the joint angles ,   1, ,4i i  
 
from converging to zero as depicted in 

Figure 8.10.   
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Figure 8.7: Actual speed v of the robot head along the trajectory 

 

Figure 8.8: Lateral forces 1 5, ,N Nf f  applied by the ground to the modules 
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Figure 8.9: Torques 1 4, ,u u  applied by the actuators to the robot joints 

 

Figure 8.10: Joint angles ,   1, ,4i i    of the robot during the locomotion 
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This convergence is due to the fact that regardless of its reference speed, the robot 

head always tracks the points lying on the given straight line.  Consequently, all of 

the modules align with the given straight line i.e. their respective orientations 

converge to the same constant value at steady state. 

Furthermore, it should be noted that inclusion of initial errors (error between the 

initial robot head position and the initial reference point) has been avoided as 

much as possible. However, even if the initial head position error is avoided by 

setting the initial head position to the initial point of the reference trajectory, 

transient periods are still observed in the simulation results which are especially 

visible in the lateral force and the applied joint torques histories. This results from 

the fact that at the start of the simulation, the controller, implicitly, attempts to 

align the overall orientation of the robot to the initial curvature of the reference 

path by modifying the joint angles.  

It is also interesting to compare Figure 8.6 with Figure 8.3. As have been stated 

before, the modified serpenoid curve acts somewhat as a filter which rejects the 

effects of the reference path (task trajectory) as if it were a disturbance. As a result, 

regardless of the task trajectory to track, the actuators apply similar profiles of 

torques. However, if the modified serpenoid curve is not utilized, one can even 

roughly anticipate the trajectory followed simply by observing the actuator torque 

profile as in Figure 8.3.  

Observing Figure 7.17, it can be clearly seen that, the further the eigenvalues of 

the linear controller are pushed to the left in the complex plane, the better the 

modified serpenoid curve is tracked. Eventually, this better tracking results in a 

higher locomotion performance i.e., a higher value of H is obtained. This result is 

enough to show that, the proposed modified serpenoid curve is still in alignment 

with the basic principles of the original serpenoid curve proposed by Hirose: to 

generate smooth and energy efficient gaits for snake like robots. However, we 

cannot increase the natural frequencies of the linear controller indefinitely. One  
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reason for that is the physical limitation of the real implementation of the gains. 

The other reason is the nature of the feedback linearization method. Controllers 

designed by feedback linearization method are generally more suitable for 

trajectory tracking problems than the regulating ones, as high gains may lead to 

oscillatory transient periods in the response of the system to initial errors such that, 

even some moderate amount of initial position error in the robot head may 

generate large lateral forces and actuators torques. Also, during the long periods of 

locomotion of the robot, there may be deviations from the reference path due to 

unexpected reasons such as collision with an obstacle. As a result, the controllers 

implemented with high gains may command the actuators to apply large joint 

torques (which automatically implies large lateral forces) in order to set the robot 

head to its path again by trying to reduce these perturbations.  

On the other hand, one could consider driving at least one pair of the passive 

wheels attached to the modules. In such a case, all of the singularity conditions 

could be eliminated by simply driving the actuated wheel during and/or around the 

singularity region. This actuation will disrupt the singularity formation by forcing 

the module attached with the active wheels forward (or backward). However, 

driving one pair of wheels dramatically changes the governing dynamics. On that 

account, the question of when and how to drive this pair of wheels, in combination 

with the joint actuators, in order to obtain a smooth, energy efficient and 

singularity free locomotion with an ability to track arbitrary trajectories seems to 

be rather challenging. This topic can be the subject of another study. 

8.2 Conclusion 

To conclude, the goals set at the beginning of this study have been reached 

successfully. In other words, by introducing the modified serpenoid curve, the 

robot is enabled to track any given task trajectory smoothly and exactly (at the 

macro scale). At the same time, the singularity has been avoided automatically due 

to the nature of serpenoid curve. While accomplishing these, the locomotion is 



 

 

155 

 

maintained to be energy efficient and sustainable by introducing a rational 

performance measure. Based on this performance measure, several locomotion 

patterns are evaluated to obtain optimal parameters leading to an efficient 

locomotion. Furthermore, the relationship between the optimal modified serpenoid 

curve parameters and the locomotion speed has been obtained. On the other hand, 

effect of eigenvalues and the coefficient of friction in the tangential direction on 

the locomotion performance has been illustrated. The major improvements and 

contributions introduced in thesis can be listed as follows 

1) The tangential friction forces have been introduced into the equations of 

motion of the robot and the affect of these forces on the locomotion 

performance has been demonstrated. 

2) The feedback linearization method has been applied directly to control the 

robot head. 

3) A modified version of the serpenoid curve has been proposed in order to 

make the robot locomote along any feasible arbitrarily defined trajectory.  

4)  A rational performance measure has been proposed which takes into 

consideration both efficiency and sustainability.  

 

By performing several simulations, the validity, consistency and the rationality of 

the proposed performance measure has been demonstrated.  

Notably, due to their universal natures, the proposed novel modified serpenoid 

curve and the performance measure can be readily and successfully applied to a 

wide range of snake robots to generate locomotion and evaluate it, respectively.   
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8.3 Future Work 

In the future works, the following issues can be elaborated: 

 Eigenvalues of the linear controller can be designed in an adaptive manner 

so as to obtain milder responses for the actuator torques and lateral forces 

when initial condition errors are present. 

 Some sophisticated optimization methods can be applied in order to obtain 

the optimal locomotion parameters online. 

 Constants α1 and α2 in the performance measure H can be determined in 

such a manner that the resultant optimal locomotion is performed at the 

maximum attainable tracing speed v such that the robot modules are on the 

merge of side slipping. This can be done using neural networks, online. 

 All of the design parameters like ωx = ωy , Kn
*
 and α

*
 can be set  adaptively 

during the locomotion when the environment changes (friction coefficients, 

damping constants). 

 A detailed study could be made on how and when to drive at least one pair 

of the wheels in order to avoid singularity. 

 The no side slip condition could be relaxed in order to determine the 

locomotion patterns and performance exhibited when the modules slip 

sideways. 
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APPENDIX A 

APPENDIX A: SYSTEM MATRICES AND SOME PRELIMINARIES 

SYSTEM MATRICES AND SOME 

PRELIMINARIES 
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A.3   PROOF OF THE EXPONENTIAL TRACKING PROPOSITION 

The proof of the exponential tracking proposition given in section 5.4 is as 

follows: (adapted from [43]) 

Let the error dynamics of a first order linear system be given by 

0

p v

A

Ie ed

K Ke edt

    
           


 

where , n n

p vK K  are positive definite symmetric matrices (in our case they are  

0 0
,

0 0

x x
p v

p vy y
p v

K K
K K

K K

   
    
    

). Let also   be an eigenvalue of A with the 

corresponding eigenvector 2

1 2( , ) , 0n      . Then it leads to 

 



 

 

169 

 

21 1

1 22 2
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I

K K K K

 


  

      
                

 

Since  0 0     then 0  is not an eigenvalue of A. Furthermore, if  0 

then 2 10 0    . Hence, it is seen that 2 1, 0    and the assumption 
1 1   

can be made without loss of generality. Then it follows that 

2 * 2 * * * *

1 1 1 2 1 1 2 1 1 1 1( )p v p vK K K K                     

where *

1 is the complex conjugate transpose of 1 . Finally, since *

1 1 0pK     

and *

1 1 0vK    , it follows that 

2 0        , 0         

Thus, the real part of   is negative and hence, the error dynamics exponentially 

converges to zero. 

 

A.4   LIE GROUPS AND THE LIE ALGEBRA 

Lie Groups, which constitute a special class of analytical manifolds, and the 

associated Lie Algebra are important concepts in differential geometry and 

algebraic topology. Also, they have wide areas of application in differential 

geometric control theories and methods. Basic definitions and the results given 

below are compiled from [76]. 

 

Definition:  A Lie Group G is an analytical manifold which is also endowed with 

a group structure (i.e., G is a set with two structures: G is a group and G is a 

manifold) such that the multiplication map 

;    ( , )G G G g h gh    

 



 

 

170 

 

and the inversion map 

1;    G G g g   

are also analytic i.e., both of them are C


maps. 

If the elements ,g h G , the associated left translation Lg, on G by g is given as 

: ;    gL G G h gh 
 

 

and the associated right translation Rg, on G by g is given as 

: ;    gR G G h hg   

Following from the properties of Lie Groups, both  Lg and Rg are diffeomorphisms 

and dLg and dRg denote their corresponding differentials. 

 

Definition:  The Lie Group Bracket. Let  X and Y be analytic vector fields on an n 

dimensional manifold M. The Lie Bracket [X,Y] is defined to be the unique 

operator such that 

 , ] X Y Y XX Y
L L L L L    

holds, where XL  is the Lie derivative with respect to X. Let  1, nx x be the local 

coordinates around the point x M  and let 

( ) ( )  ;   ( ) ( )i i

i i

x x

X x X x Y x Y x
x x

 
 

 
 

From the most general definition of the Lie bracket 

 , ( ) ( ( )) ( ( ))X Y f X Y f Y X f   
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The Lie bracket of the vector fields X and Y is defined to be vector field 

 , ( )
j j

i i

i j i j

x x

Y X
X Y x X Y

x x x x

   
 

   
 

in local coordinates. 

Definition:  Lie Algebra. A Lie algebra is a real vector space constructed on the 

bilinear operator Lie bracket   .,. : g g g  such that for all , ,x y z g  the  

properties 

   

     

, ,                                                   (skew symmetricity)

, , , , , , 0                 (Jacobi identity)

x y y x

x y z y z x z x y

 

            

 

hold. 

  

A.5   THE VECTOR RELATIVE DEGREE OF MIMO SYSTEMS 

 

Definition: Relative Degree. Consider the nonlinear affine time invariant system 

given by  

( ) ( ) ;           ,    

( )

n m

p

x f x g x u x u

y h x

   

 

  


 

where f(x), g(x) and h(x)are smooth, and h(x) is the output vector of the system. If 

p=1, i.e., ( )y h x   is the scalar output of the system, it is said that y = h(x) has 

a relative degree r with respect to the input u if; 

1) Lgh(x) = (LgLfh)(x) = (LgLf 
2
h)(x) = (LgLf 

r-2
h)(x) = 0 identically, in the 

neighborhood of  x = 0 

2) (LgLf 
r-1

h)(x) ≠ 0  at  x = 0 
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Basically, r  is the number of times the output  y = h(x) must be differentiated so 

that the input u appears in its expression explicitly [58].  

Definition: The Vector Relative Degree. Consider now the square MIMO system 

1

( ) ( ) ;          ,    

( )       {1, , };         2,   

m
n m

j

j

i i

x f x g x u x u

y h x i p p m p



   

   

  



 

Let ri,m be the relative degree for each yi. Then, for 
{1, , } ,{1, , },  mini j m i ji m r r    

is the number of times each output yi has to be differentiated so that at least one of 

the inputs appear explicitly in its expression.  This means 

1
( ) ( ) ( )i i ir r r

i f i g f iy L h x L L h x u t


   

Combining all of these m equations leads to 

1

2

1

2

2

( ) ( ) ;    ( ) ,  ( )

m

r

r

m m m

r

y

y
A x B x u A x B x

y



 
 
     
 
 
  

 


 

Then,   1

1, , m

mr r    is called the vector relative degree of the square MIMO 

system if B(x) is invertible [58] . If the system is a non square one with p m  and 

( ) m pB x  , then the decoupling matrix B(x) has to be right invertible [73]. 
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APPENDIX B 

APPENDIX B: MATLAB BLOCK DIAGRAMS AND CODES 

MATLAB BLOCK DIAGRAMS AND CODES 

 

Matlab Simulink block diagrams of the dynamic model of the snake robot are 

given in this appendix.  Also, the developed  matlab  m-files to generate the 

modified serpenoid curve are given. Subsystems and m-files are referred by their 

names which are given in their containing systems and m-files, respectively.
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B.1    MATLAB BLOCK DIAGRAM OF THE OVERALL CONTROL ARCHITECTURE 
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B.2    MATLAB BLOCK DIAGRAM “MODULAR ROBOT MODEL” AS THE NONLINEAR PLANT 
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B.3    MATLAB BLOCK DIAGRAM “ABSOLUTE MODULE ANGLES” FOR ANGLES 
1 5, , 
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 B.4    MATLAB BLOCK DIAGRAM “INTERPRETED REFERENCE TRAJECTORY”
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B.5    MATLAB BLOCK DIAGRAM “MAPPING FROM MODIFIED 

SERPENOID CURVE TO REFERENCE X ” 
9 

 

 

                                                 
9
  Matlab Block Diagram “Mapping From Modified Serpenoid Curve To Reference y” has the same 

structure except for that, interpolators receive y(s) as the input, instead of x(s). 
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B.6    MATLAB M-FILES FOR THE MODIFIED SERPENOID CURVE 

 

%----------------------------------------------------------------- 
% Locomotion And Control of A Modular Snake Like Robot 

% Function serpany: called by solver ode15i in script file 

% SerpToDesired.m 

%----------------------------------------------------------------- 

  
function Z = serpany(s,x,xprime) 

  
global OldAngle AbsAngle; 

  
tfinal = 100; 
dt = 0.01; 
Z = zeros(3,1); 

  
r = task(dt,tfinal); 
t =0:dt:tfinal; 

  
Pars = SetSerp(); 
a = Pars(1); 
b= Pars(2); 

  
xr = interp1(t,r(:,1),x(3)); 
yr = interp1(t,r(:,2),x(3)); 

 
xrd = interp1(t,r(:,3),x(3)); 
yrd = interp1(t,r(:,4),x(3)); 

 
if (s == 0) 

  
SetOldAngle(atan2(yrd,xrd)); 
SetAbsAngle(atan2(yrd,xrd)); 
end 

  
NewAngle = atan2(yrd,xrd); 

  

  
if NewAngle*OldAngle < 0 

     
    if NewAngle-OldAngle < -pi 

         
        NewAngle = NewAngle + 2*pi; 

         
    elseif NewAngle-OldAngle > pi 

        
        

 NewAngle = NewAngle - 2*pi; 

 

 
    end 
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end 

   
SetAbsAngle(AbsAngle+(NewAngle-OldAngle));  

  
NDir = atan2((x(2)-yr),(x(1)-xr)); 
TDir = atan2(yrd,xrd); 

  
NormalAng = pi/2; 

 
Z(1) = xprime(1) - cos(a*cos(b*s)+ AbsAngle); 
Z(2) = xprime(2) - sin(a*cos(b*s)+ AbsAngle); 

  
 if abs(abs(TDir)-pi/2)*180/pi > 5 

  
    Z(3) = ((x(2)-yr))*(yrd/xrd) + 1*(x(1)-xr) ; 

  
 else 

     
   Z(3) = ((x(2)-yr)) + (x(1)-xr)*(xrd/yrd) ; 

  
 end 

  
SetOldAngle(atan2(yrd,xrd)); 

  
End 

 
%---------------------End of function serpany.m------------------- 

 

%----------------------------------------------------------------- 
% Function task: called by the function serpany 

% It descritizes the task trajectory and its time derivatives   

%----------------------------------------------------------------- 

 
function r = task(dt,tc) 

  
t=0:dt:tc; 

  
sizet = size(t); 
sizet = sizet(1,2); 

  

  
r = zeros(sizet,4,1); 

 
 for z=1:sizet 

 
r(z,1) = -0.5*sin(t(z)*pi/2)+5 ; % x-coordinate of the reference  

 
r(z,2) = 2.25*cos(t(z)*pi/4) + 7.75;% y-coordinate of the %       

% reference task path 

 
end 
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for z=2:sizet-1 
  r(z,3) = (r(z+1,1)-r(z-1,1))/(2*dt) ; % xdot of the reference  
  r(z,4) = (r(z+1,2)-r(z-1,2))/(2*dt);% ydot of the reference  
end 

  
r(1,3) = r(2,3) ;%initial xdot 
r(1,4) = r(2,4) ;%initial ydot 

  
r(sizet,3) = r(sizet-1,3) ;%final xdot 
r(sizet,4) = r(sizet-1,4) ;%final ydot 

  
end 

 
%---------------------End of function task.m---------------------- 

 

%----------------------------------------------------------------- 
% Matlab Script SerpToDesired.m: map fitted ferpenoid curve co  

% the referense trajectory. This reference is then forwarded to  

% the linear controller 

%----------------------------------------------------------------- 

  
global Spath ; 

  
Spath = zeros(6,1); 

  
options = odeset('RelTol', 1e-6); 
dt = 0.01; 
tfinal = 10; 

 
tspan = 0:dt:150; % time span of the simulation 
v = 0.03 ;        % m/s ,speed of the head on the serpenoid curve,  
sspan = v*tspan ; % curve length of the serpenoid curve 

  
ds = dt*v ; 

  
TimeCount = size(tspan); 
TimeCount = TimeCount(1,2); 

  
Headini = [5 10]; 

Spath = zeros(TimeCount,6,1); 

  
Pars = SetSerp(); 

 
a = Pars(1); 
b = Pars(2); 

  
y0 = [5; 10; 0]; 
yp0 = [cos(a*cos(b)+atan2(0,0)); sin(a*cos(b)+atan2(0,0)); 0]; 

  
[T,Y] = ode15i(@serpany,sspan,y0,yp0,options); 
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rt = task(dt,Y(TimeCount,3)*1.1); % reference task trajectory to  

% the final point robot head 

 
for z=1:TimeCount 

     
    Spath(z,1,1) = Y(z,1); % get the x-pos of Serpenoid Curve 
    Spath(z,4,1) = Y(z,2); % get the y-pos of Serpenoid Curve 

  
end 

  
for z=2:TimeCount-1 

     
    Spath(z,2,1) = (Spath(z+1,1,1)-Spath(z-1,1,1))/ds; % set the     

% xdot  
    Spath(z,5,1) = (Spath(z+1,4,1)-Spath(z-1,4,1))/ds; % set the  

% ydot  
end 

  
Spath(1,2,1) = Spath(2,2,1) ; % set the initial xdot 
Spath(TimeCount,2,1) = Spath(TimeCount-1,2,1) ; % set the final   

% xdot 

  
Spath(1,5,1) = Spath(2,5,1) ;% set the initial ydot 
Spath(TimeCount,5,1) = Spath(TimeCount-1,5,1); % set the final    

% ydot 

  
for z=2:TimeCount-1 

     
    Spath(z,3,1) = (Spath(z+1,2,1)-Spath(z-1,2,1))/ds; % set the  

% xdotdot 
    Spath(z,6,1) = (Spath(z-1,5,1)-Spath(z-1,5,1))/ds; % set the  

% ydotdot 
end 

  
   Spath(1,3,1) = Spath(2,3,1);  % set the initial xdotdot 
   Spath(TimeCount,3,1) = Spath(TimeCount-1,3,1) ;  % set the 

final xdotdot 

    
   Spath(1,6,1) = Spath(2,6,1); % set the initial ydotdot 

   Spath(TimeCount,6,1) = Spath(TimeCount-1,6,1); % set the final 

% ydotdot 

 
%---------------------End of script SerpToDesired.m--------------- 
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B.7    MATLAB M-FILE FOR THE OPTIMIZATION PROCEDURE 

%----------------------------------------------------------------- 
% Matlab Script opt.m: runs the opitimization cylce   

% It runs the constructed matlab model for selected parameters in 

% the selected ranges 
%----------------------------------------------------------------- 

 
global alpha kn; 

  
imax = 6; 
jmax = 6; 
dt = 0.01; 

  
H = zeros(imax,jmax); 

  
ispan = linspace(15,85,imax); 
jspan = linspace(0.5,3,jmax); 

  
SimCounter = 0; 

  
SimTime = 25 ; 
stime = 0:dt:SimTime; 

  
tstart = tic; 

  
for i = 1:imax % alpha in degrees 

     
    for j = 1:jmax % Kn 

         
        tstart = tic; 

         
        JLatF = 0; 

         
        Parsx = SetOpt(ispan(i),jspan(j)); 
        alpha = pi*Parsx(1)/180; 
        kn = Parsx(2); 

         
        SerpToDesired; 
        warning off all; 
        sim('Robot_Control_Architecture'); 
         

        GetEnergy; 

 
        for z=2:6 
        JLatF = JLatF + trapz(x(:,1),LatForce(:,z).^2)/x(end,1); 
        End 

 

        dist = (x(end,2)-rt(:,1)).^2+(x(end,3)-rt(:,2)).^2; 
        index = find(dist == min(dist)); 

 
        time = 0:dt:index*dt; 

 

 



 

184 

 

        rt = task(dt,index*dt); % reference task trajectory 

 
        plength = trapz(time, sqrt(rt(:,3).^2+rt(:,4).^2)); 
        stime = 0:dt:SimTime; 

        rlength = trapz(stime, sqrt(x(:,4).^2+x(:,5).^2)); 

         
        J = plength/(Energy+rlength*sqrt(JLatF)); 

         
        [maxa,ind] = max(H(:)); 
        [m,n] = ind2sub(size(H),ind) 

         
        SimCounter = SimCounter + 1; 
        H(i,j)= J ; 
        display(SimCounter); 
        stime = toc(tstart); 

     
    end 

     
end 

 

%---------------------End of script opt.m--------------------- 
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