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ABSTRACT

PARAMETER ESTIMATION IN GENERALIZED PARTIAL LINEAR MODELS
WITH CONIC QUADRATIC PROGRAMMING

Çelik, Gül

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Gerhard-Wilhelm WEBER

Co-Supervisor : Prof. Dr. Bülent KARASÖZEN

September 2010, 103 pages

In statistics, regression analysis is a technique, used to understand and model the

relationship between a dependent variable and one or more independent variables.

Multiple Adaptive Regression Spline (MARS ) is a form of regression analysis. It is a

non-parametric regression technique and can be seen as an extension of linear models

that automatically models non-linearities and interactions. MARS is very important

in both classification and regression, with an increasing number of applications in

many areas of science, economy and technology.

In our study, we analyzed Generalized Partial Linear Models (GPLMs), which are

particular semiparametric models. GPLMs separate input variables into two parts

and additively integrates classical linear models with nonlinear model part. In order

to smooth this nonparametric part, we use Conic Multiple Adaptive Regression Spline

(CMARS ), which is a modified form of MARS. MARS is very benefical for high

dimensional problems and does not require any particular class of relationship between

the regressor variables and outcome variable of interest. This technique offers a great
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advantage for fitting nonlinear multivariate functions. Also, the contribution of the

basis functions can be estimated by MARS, so that both the additive and interaction

effects of the regressors are allowed to determine the dependent variable. There are

two steps in the MARS algorithm: the forward and backward stepwise algorithms. In

the first step, the model is constructed by adding basis functions until a maximum

level of complexity is reached. Conversely, in the second step, the backward stepwise

algorithm reduces the complexity by throwing the least significant basis functions from

the model.

In this thesis, we suggest not using backward stepwise algorithm, instead, we employ

a Penalized Residual Sum of Squares (PRSS ). We construct PRSS for MARS as a

Tikhonov Regularization Problem. We treat this problem using continuous optimiza-

tion techniques which we consider to become an important complementary technology

and alternative to the concept of the backward stepwise algorithm. Especially, we ap-

ply the elegant framework of Conic Quadratic Programming (CQP) an area of convex

optimization that is very well-structured, hereby, resembling linear programming and,

therefore, permitting the use of interior point methods.

At the end of this study, we compare CQP with Tikhonov Regularization problem

for two different data sets, which are with and without interaction effects. Moreover,

by using two another data sets, we make a comparison between CMARS and two

other classification methods which are Infinite Kernel Learning (IKL) and Tikhonov

Regularization whose results are obtained from the thesis [49], which is on progress.

Keywords: Generalized Partial Linear Models, MARS, CMARS, Tikhonov Regular-

ization, Conic Quadratic Programming
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ÖZ

GENELLEŞTİRİLMİŞ PARÇALI DOĞRUSAL MODELLERDE İKİNCİ
DERECEDEN KONİK KARESEL PROGRAMLAMA YÖNTEMİ İLE

PARAMETRE TAHMİNİ

Çelik, Gül

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Gerhard-Wilhelm Weber

Ortak Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Eylül 2010, 103 sayfa

İstatistikde, regresyon analizi, bağımlı değişken ve bir veya daha fazla bağımsız değişken

arasındaki ilişkiyi anlamak ve modellemek için kullanılan bir yöntemdir. Çok değişkenli

uyarlanabilir regresyon eğrileri (MARS), regresyon analizinin bir formudur. MARS

parametrik olmayan bir regresyon tekniğidir ve doğrusal olmayan ve etkileşimli model-

leri otomatik modelleyen doğrusal modellerin gelişmiş halidir. Hem sınıflandırma hem

de regresyonda çok büyük bir öneme sahip olan MARS, ekonomi, bilim ve teknoloji

alanında giderek artan bir şekilde uygulanmaktadır.

Bu çalışmada biz, belirli parçalı modeller olan genelleştirilmiş parçalı doğrusal mod-

elleri (GPLMs) inceledik. GPLMs bağımsız değişkenleri iki kısma ayırarak, klasik

doğrusal modellerle doğrusal olmayan modelleri eklemeli olarak birleştirir. Doğrusal

olmayan kısmı düzenlemek için MARS’ın düzeltilmiş şekli olan konik çok değişkenli

uyarlanabilir regresyon eğrilerini (CMARS) kullanmayı amaçlamaktayız. MARS, çok

boyutlu problemlerin çözümünde elverişli bir yöntemdir; ve bağımsız değişkenlerle

bağımlı değişken arasında belirli bir ilişki biçimi öngörmez. Bu teknik, doğrusal ol-
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mayan çok değişkenli fonksiyonlara uygun model oluşturma için büyük bir avantaj

sunar. Ayrıca, bağımlı değişkeni tanımlamak için bağımsız değişkenlerin eklemeli

ve etkileşimsel katkılarına yer vermektedir. MARS algoritması ekleyerek ve eley-

erek ilerleyen iki aşamalı bir algoritmadan oluşmaktadır. İlk aşamada, maksimum

karmaşıklık düzeyine ulaşıncaya dek temel fonksiyonlar eklenerek model yapılandırılır.

İkinci aşamada ise, modele katkısı en az fonksiyonlar elenir.

Bu tezde biz, MARS’ın ikinci aşamasını oluşturan geriye doğru eleme yöntemini kul-

lanmayı önermiyor, onun yerine penaltı yöntemini kullanmayı önermekteyiz. Bu sebe-

ple, bir Tikhonov düzenleme problemi olarak MARS için cezalandırılmış hata kareler

toplamı oluşturduk. Bu problemi ele alırken, geriye doğru eleme yöntemine bir al-

ternatif ve önemli bir tamamlayıcı teknik olarak düşündüğümüz sürekli optimizasyon

tekniklerini kullandık. Özellikle, iyi yapılandırılmış, doğrusal programlamaya ben-

zeyen ve bundan dolayı da iç nokta yöntemlerini kullanmaya olanak sağlayan ikinci

dereceden konik karesel programlamayı (CQP) kullandık.

Son olarak bu çalışmada biz, etkileşimli ve etkileşimsiz iki farklı veri kümesi için, ikinci

dereceden konik karesel programlamayı, Tikhonov düzenleme problemi ile karşılaştırıyoruz.

Ayrıca, başka iki veri kümeleri için, konik çok değişkenli uyarlanabilir regresyon

eğrileri (CMARS) metodunu, sonuçları yayınlanacak olan tezden [49] gelen, diger iki

sınıflandırma yöntemi olan Tikhonov düzenleme problemi ve sonsuz çekirdek öğrenimi

(IKL) ile kıyaslıyoruz.

Anahtar Kelimeler: Genelleştirilmiş Parçalı Doğrusal Modeller, MARS, CMARS,

Tikhonov Düzenleme, İkinci Dereceden Konik Karesel Programlama
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CHAPTER 1

INTRODUCTION

The analysis of regression includes various methods for analyzing and modeling a

finite number of variables, when the emphasis of interest is on the connection between

one dependent variable and one or several independent variables. We may investigate

how the typical value of the dependent one changes when any one of the independent

variables becomes changed a bit, while the other independent variables are kept fixed

(“ceteris paribus”). Regression is mostly employed for forecasting and prediction,

where it strongly overlaps with the field of machine learning.

Various regression models are in wide use. The most famous is Linear Regression

Models (LRM). Generalized Linear Models (GLM) mean an extension of process of

the linear modeling which allows models to fit into data that obey probability distri-

butions different from the Normal distribution, e.g., the Poisson, Binomial, Gamma.

Furthermore, in classical linear models, GLM mean a relaxation of the requirement of

the constant variance that is required for hypothesis testing [63]. The second widely

applied statistical models are generalized linear models. They encompass traditional

linear models with normal errors, probit and logistic models for binary data, loglinear

models for multinomial data and many other models, e.g., the Binomial, Poisson, Nor-

mal and Gamma distribution. They can be formulated as generalized linear models

through a suitable link function and response probability distribution.

As a linear technique GLM, GLM shares the usual shortcomings of linear modeling

(LM) approach sometimes. At the beginning, both base on the assumption that the

data follow a distribution of the exponential family. Moreover, they are affected from

multi-collinearity, missing values and outliers in the data set. What is more, it is hard
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to employ GLM for selecting significant predictors and their interactions. Finally,

categorical predictors with a big numbers of categories may cause unreliable results

for sparsity-related issues [51].

There exists a popular approach handling these problems effectively, called Data Min-

ing. These techniques are usually fast, and they easily choose predictors and in-

teractions. Further, they are minimally affected with outliers, missing values and

collinearity, and they process high-level categorical predictors effectively [51]. Data

mining approach is one of the most important techniques of scientific and technologic

studies. It is an interdisciplinary complicated process, dealing with results of exper-

iments, records, questionnaires and measurements, etc.. This process implies some

difficulties, e.g., inaccurate predictions and computational time, interpretability and

transfering results into different computational systems. Furthermore, complex data

sets are another challenge in data mining. This motivates innovative data mining

techniques.

An important data mining tool, Multiple Adaptive Regression Spline (MARS ), is very

beneficial, for high-dimensional problems. In fact, it does not impose any specific

dependence between predictor and dependent variables. However, it estimates the

contribution of basis functions so that the additive and interaction effects of the pre-

dictors as well can determine the dependent variable.

Employing MARS to enhance GLM speeds up the model-building process considerably

and makes it more efficient [51]. In this thesis, we shall analyze Generalized Partial

Linear Models (GPLMs), a particular semiparametric model of interest, which is

an extension of GLM by a nonparametric component. There, in GPLM, a single

nonparametric component joins the usual parametric terms. This means that, GPLM

decomposes input variables into two sets and additively combines traditional linear

models with nonlinear part of the model.

GPLMs are appreciated as a popular statistical modeling methodology because of its

flexibility to many statistical problems and its availability by software to fit these

models. The special form of GPLMs can be identified as semiparametric models,

because the usual parametric terms are enhanced by a nonparametric component of

some continuous covariate. A great advantages of semiparametric models is made up
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of a certain grouping, e.g., linear and nonlinear or parametric and nonparametric that

could be done for the features or input dimensions to select suitable submodels for

them in a specific manner.

Our aim in this study is to combine GPLM with a different form of MARS. The al-

gorithm of MARS has two steps, the forward and backward stepwise algorithms, in

order to estimate the model function. In the forward step, the model is constructed

by adding basis functions until a maximum level of complexity is achieved. In the

backward stepwise algorithm, it removes the least significant basis functions from the

model. In this thesis, we suggest to use Penalized Residual Sum of Squares (PRSS),

instead of the backward algorithm in order to handle the complexity and the accu-

racy of the model. We built PRSS, changing the form of MARS into a Tikhonov

Regularization Problem. In order to solve this problem, we use a continuous optimiza-

tion technique called Conic Quadratic Programming (CQP ), providing an alternative

modeling approach for MARS, named Conic Multivariate Adaptive Regression Splines

(CMARS). Here ‘C’ represents not only the word conic but also convex and contin-

uous.

In this thesis, we give brief information about a literature review of regression models

in Chapter 2. Moreover, this chapter includes an exhaustive information about Conic

Quadratic Programming and the two other classification methods, that are Infinite

Kernel Learning (IKL), a modern method of Machine Learning (support vector ma-

chine) and Tikhonov Regularization Problem which are detailly included in the thesis

[49], which is on progress. Besides, after giving detailed explanation about MARS

and its modified version CMARS algorithm, we mention the regularization of both

linear and nonlinear parts theoretically in Chapter 3. This chapter also contains a

numerical example of regularization for nonlinear part by using CMARS and com-

parison of the two methods, Tikhonov Regularization and CQP for with and without

interaction data sets. Furthermore, in this chapter, we make a comparison by using

some statistical performance measures between CMARS and two other classification

methods that are IKL and Tikhonov Regularization whose results are obtained from

the thesis [49], which is on progress, for two data sets. At Chapter 4, we conclude

with an outlook to future studies.
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CHAPTER 2

LITERATURE SURVEY AND BACKGROUND

2.1 Linear Regression Models

In modern statistics, linear regression is an approach to model the relationship between

a scalar variable y, and one or more variables denoted by X and, as a vector, by y .

In linear regression, models of the unknown parameters are estimated from the data

using linear functions so that such models are called “linear models”. The general

form of a Linear Regression Model (LRM) has the following form [68]:

y = β0 + β1x1 + β2x2 + . . .+ βkxk + ε

= XTβ + ε,

where y is the response variable, xi (i = 1, 2, . . . , k) are the independent variables and

ε is the unobserved random variable that adds noise to the linear relationship between

variables. Error terms are assumed to be white noise that means they are normally

distributed and mutually independent zero mean random variables, each with the

same variance σ2. The intercept term β0, also referred as ‘bias’ in some fields, and

the regression coefficients βi are the unknown parameters representing the degree of

the relationship between independent and dependent variables. In fact, statistical

estimation and inference in linear regression focuses on the vector β.

Many methods have been developed for parameter estimation and inference in linear

regression. However, Least-Squares Estimation (LSE) is the simplest and most popular

one. The logic of the LSE method is to minimize the sum of squared residuals. In some

situations, it is not practical to use LSE, instead, a more general form is attractive,

known as Maximum Likelihood Estimation (MLE) [40]. Both techniques aims to get
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the best line minimizing the sum of the squares of the vertical distances of the points

from the hyperplane.

2.1.1 Least-Squares Estimation Technique

As a powerful but still simple prediction technique, the least-squares estimation can

be considered as a method for fitting data. The model which is simple univariate

linear with N observations has the following form:

yi = β0 + β1xi + εi for i = 1, 2, . . . , N.

Here, N is the number of the data with E(εi) = 0 and V ar(εi) = σ2. β0 and β1 are

the unkown regression coefficients and they can be estimated by least-squares method.

Here, the aim is to minimize the function of residual sum of the squares (RSS) between

y and its expected value. This RSS function can be displayed as follows:

RSS(β0, β1) =
N∑
i=1

(yi − E(yi))2 =
N∑
i=1

(yi − β0 − β1xi)2.

To minimize this function, the following system of equations should be solved

∂RSS

∂β0
= 0,

∂RSS

∂β1
= 0,

N∑
i=1

yi = nβ̂0 + β̂1

N∑
i=1

xi,

N∑
i=1

xiyi = β̂0

N∑
i=1

xi + β̂1

N∑
i=1

x2
i .

Then, the least-square (LS) estimates of β0 and beta1 can be found

β̂0 =
∑N

i=1 x
2
i

∑N
i=1 yi −

∑N
i=1 xi

∑N
i=1 xiyi

n
∑N

i=1 x
2
i − (

∑N
i=1 xi)2

, β̂1 =
N
∑N

i=1 xiyi −
∑N

i=1 xi
∑N

i=1 yi

N
∑N

i=1 x
2
i − (

∑N
i=1 xi)2

.

As the LS estimators have minimum variance among all linear unbiased estimators,

they are also known as Best Linear Unbiased Estimators (BLUEs) [5].

Furthermore, there can be more than one independent variable, let us say k variables,

then, Multiple Linear Regression (MLR) model is employed. In this model, the data

can be shown as in Table 2.1 [65]:
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Table 2.1: Data for Multiple Linear Regression

y x1 x2 . . . xk

y1 x11 x12 . . . x1k

y2 x21 x22 . . . x2k
...

...
...

...
yN xN1 xN2 . . . xNk

It is possible to state the model as follows:

yi = β0 +
k∑
j=1

βjxij + εi for i = 1, 2, . . . , N.

Here, we suppose that there is no correlation between errors and they are random

variables having a zero mean and constant variance V ar(εi) = σ2. RSS in MLR can

be displayed as:

RSS(β) =
N∑
i=1

(yi − E(yi))2 =
N∑
i=1

yi − β0 −
k∑
j=1

xijβj

2

.

Actually, as there are N equations with k + 1 unknown regression parameters and a

quadratic function of parameters, it is more practical to represent it in matrix notation

[40]:

y = Xβ + ε, (2.1)

where N shows the number of observations in the data set, and X is the N × (k+ 1)

independent variable matrix, y is the N × 1 response vector; β is the (k + 1) × 1

regression coefficients vector including the intercept term and ε is the N × 1-vector of

random errors. Hence, we can represent RSS in the following form [40]:

RSS(β) = (y −Xβ)T (y −Xβ) = ‖y −Xβ‖22 , (2.2)

where ‖.‖2 denotes the Euclidean norm.

If we differentiate RSS with respect to β, we obtain

∇RSS(β) = −2X T (y −Xβ).

By equating the first derivative of RSS to zero, we reach the normal equations

X T (y −Xβ) = 0 [40]. We can write it as follows:

X TXβ = X Ty .
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When X TX is not singular, then, we can get the unique solution by using the following

form:

β̂ = (X TX )−1X Ty ,

where the fitted values can be represented by [40]

ŷ = X β̂ = X (X TX )−1X Ty .

However, when the X TX is singular, then, we can use the Singular Value Decompo-

sition (SVD) method to solve the normal equations [40].

2.1.2 Maximum Likelihood Estimation Technique

Least-squares estimation is a very useful technique, however, it does not make much

sense in some situations. Then, MLE is an alternative estimation method as long as

the distribution of the errors is known. Actually, MLE is a more common approach

and shows better statistical properties than LSE [40] such as being more efficient. For

instance, Least-Square (LS) estimators have the minimum variance among linear esti-

mators only, however, Maximum Likelihood (ML) estimators have minimum variance

among all other unbiased estimators.

Providing the selected probability distribution model, the likelihood of a set of data

shows the probability of getting that particular set of data. The values of the un-

known parameters which maximize the sample likelihood are called as the Maximum

Likelihood Estimates or MLE’s [75].

In LS method, there is no need for distributional assumptions, however, in MLE

we have to know the distribution. Assuming that errors are random, uncorrelated

and normally distributed with variances σ2
i (i = 1, 2, . . . , N), we can obtain the ML

estimates of (2.1). The probability density function for yi (i = 1, 2, . . . , N) can be

shown as follows:

f(yi|β,σ) =
1√

2πσ2
i

exp
[
− 1

2σ2
i

(yi − E(yi))2

]
. (2.3)

Here, σ is a diagonal matrix with diagonal entries σ1, σ2,. . ., σN , which are assumed to

be equal to a constant term, σ. Since the likelihood function is the joint multiplications
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of each density function yi, the likelihood function of (2.3) has the following form:

L(β,σ|y) =
N∏
i=1

f(yi)

=
1

(2π)N/2
∏N
i=1 σi

N∏
i=1

exp
[
− 1

2σ2
i

(yi − (Xβ)i)2

]
and, if σi = σ (i = 1, 2, . . . , N) :

= (2πσ2)−N/2 exp

[
N∑
i=1

(
−1
2σ2

(yi − (Xβ)i)2

)
,

]
For mathematical convenience, it is better to take the logarithm of the function.

Hence, it becomes:

ln L = −N
2

ln (2πσ2)− 1
2σ2

N∑
i=1

(yi − (Xβ)i)2 (2.4)

= −N
2

ln (2πσ2)− 1
2σ2

(y −Xβ)T (y −Xβ)

= −N
2

ln (2πσ2)− 1
2σ2

RSS(β).

Here, RSS(β) is same as in (2.2). Clearly, the former part of the equation consists of

constant terms like N , π and σ so it can be ignored. Whereas in the latter part, RSS

is not constant and to maximize the function, RSS should be minimized regarding β.

Thus, it looks as the same least-square problem mentioned previously. That means

the MLE method gives completely same estimates with LSE if the errors are random

and distributed normally [5, 40, 75].

If variance is not constant and there is heteroscedasticity (σi 6= σj for all i 6= j) among

uncorrelated error terms which have a multivariate normal distribution with a known

covariance matrix, then, we also should include standard deviation σi in equation

(2.4). Our new minimization problem gets the following form:

min
β

N∑
i=1

(yi − (Xβ)i)2

σ2
i

.

Employing a diagonal weight matrix W := diag(1/σ1, 1/σ2, . . . , 1/σN ), the system of

equations becomes

yw = Xwβ + ε,

where Xw := WX and yw := Wy . If X T
wXw is not singular, then we reach the MLE

of β for a weighted system by using the following equation:

β̂
∗

= (X T
wXw)−1X T

wyw.
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These two methods, MLE and LSE, provide parameter estimators which have many

good properties. However, both of them are sensitive to the outliers [75].

2.2 Nonlinear Regression Models

In world, the relationship between variables is not always linear. In some situations,

the actual relationship can have a curvature model, instead of a straight line or a flat

plane. Thus, there exist nonlinear regression models to fit these nonlinear relation-

ships.

Nonlinear regression models can form any kind of relationship between dependent

and independent variables. The response variables are nonlinear functions of model

parameters along with one or more regressor variables. Actually, the general form of

all regression models has the following notation:

Y = f(x ,θ) + ε.

Here, θ=(θ1, θ2, . . . , θk)T is a (k × 1)-vector of unknown parameters, ε is an un-

correlated random error term with zero mean and variances σ2
i (i = 1, 2, . . . , N).

f(x ,θ) represents the expectation function for the nonlinear regression model and

x = (x1, x2, . . . , xk)T is an input vector of regressor variables [68]. Besides, the whole

equation may be displayed in vector notation as follows:

y = η(θ) + ε,

where η(θ) := (f(x 1,θ), f(x 2,θ), . . . , f(xN ,θ))T and ε represents the residual vector.

There are various techniques used for nonlinear regression modeling such as Nonlin-

ear Regression methods, Maximum Likelihood Estimation method, the Levenberg-

Marquardt Method and the Gauss-Newton method [106].

2.3 Generalized Linear Models

Generalized Linear Models (GLM) has a wide range of application fields such as clas-

sification and regression. It can search for linear and nonlinear relationships between

a continuous, or binomial, multinomial categorical response variable and categorical
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or continuous regressor variables in a flexible way. This method may be used even

when the assumptions of normality and constant variance have failed [68].

Some widely used types of GLM can be regarded as special applications of generalized

linear models, e.g., binomial and multinomial logit and prohibit regression models. In

a GLM, the dependence of the mean value of a response variable to linear predictors

is provided by a nonlinear link function allowing the response variable Y to be any

member of an exponential family of distributions. The basic structure of a GLM is as

follows:

µi = h(ηi) = h(X T
i β), where µi = E(Yi), for i = 1, 2, . . . , N, (2.5)

where h is the smooth link function, N is the number of data, X T
i is the ith row of

the model matrix X and β represents the vector of unknown regression coefficients.

Moreover, a GLM generally makes the following assumptions; the response variable is

independent and its distribution can be any of member of exponential density family.

It has the following form [105]:

fθ(y) = exp
(
yθ − b(θ)
a(φ)

+ c(y, φ)
)
, (2.6)

where b, a, c represents arbitrary functions, φ is an arbitrary scale parameter and θ

is known as natural or canonical parameter.

There are many statistical models widely in GLMs. For instance: classical linear

models with normal errors, logistic and prohibit models for binary data, log-linear

models for multinomial data. There are also some other distributions such as Poisson,

Binomial, Gamma and Normal Distributions, etc.. It is possible to represent them

as a GLM by choosing a suitable link function and a response probability distribu-

tion. When the identity function is preferred as the link function and it is normally

distributed, then ordinary linear models becomes a special case of GLMs.

In this part, let us give an example to illustrate the logic. The exponential form of
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normal distribution can be displayed in the following way:

f(y) :=
1√

2πσ2
exp

(
−(y − µ)2

2σ2

)
=

1√
2πσ2

exp
(
−y

2 + µ2 − 2yµ
2σ2

)
= exp

(
− y2

2σ2
− µ2

2σ2
+
yµ

σ2
− log(

√
2πσ2)

)
.

It can turn into the form of an exponential family by replacing

µ = θ and b(θ) = θ2

2 ,

σ = φ and a(φ) = σ2,

c(y, φ) = −y2
4φ2 − log(

√
2πφ2).

Thus, our distribution takes the form in (2.6) and looks as follows:

f(y, θ, φ) = exp
(

2yθ − θ2

2φ2
− y2

2φ2
− log(

√
2πφ2)

)
. (2.7)

2.4 Generalized Partial Linear Models

Generalized Partial Linear Model (GPLM ) is an extension of the generalized linear

models with a modification that there is a single nonparametric component. The

model of GPLM is represented as follows [94]

E(Y |X ,T ) = G(X Tβ + γ(T )). (2.8)

Here, β = (β1, β2, . . . , βm)T is a finite dimensional parameter and γ(·) is a smooth

function that is estimated by B-splines. The term X denotes an m-variable random

vector typically represents discrete covariables, while T means a q-variate random

vector of continuous covariables that are modeled in a nonparametric way.

The log-likelihood function of L is represented by the composite form L(θ(β, γ)) to

emphasize the roles of predictors, parameters, and of the unknown curve. Thus, the

straightforward maximization of the log-likelihood function is no longer suitable as

an estimation technique. This cause overfitting when there no constraints on β. In

fact, it usually renders the parameters β unidentifiable. However, the maximization

is possible via maximizing a penalized form of log-likelihood, as long as we make weak
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constraints on γ by the smoothness assumption. Hence, the penalized log-likelihood

is maximized [94]

`(η, y) := L(θ(β, γ)− 1
2
τ

∫ b

a
(γ′′(t))2dt.

Here, H(µ) := η(X ,T ) = X Tβ+ γ(T ) and G := H−1 is a function linking the mean

of the dependent variable to the regressors.

Besides, ` represents the log-likelihood of the linear predictor and the second term

with integral is the part for penalization, and τ is a smoothing parameter. This

parameter controls the balance between accuracy of the data fitting and its complexity

(or smoothness) [15]. Smoothing provides us the guarantee that the estimation is

robust enough regarding noise in data and any forms of perturbation [94].

2.4.1 B-Splines

Introduced by Isaac Jacob Schoenberg, B-spline is the short form of basis spline.

Functions of B-spline have a minimal support about a given degree, domain partition

and smoothness. Every spline function of a given degree, smoothness and domain

partition can be represented as a linear combination of B-splines of that same degree

and smoothness, and over that partition regarding a fundamental theorem [9].

B-splines composed of polynomial pieces where a special connection among pieces

exists. In a B-spline, every control point is linked to a basis function. The curve is as

follows [94]:

γ(t) :=
r∑
j=1

λjBj,k(t) (t ∈ [a, b]),

where Bi,k(t) are basis functions of degree k, λ1, λ2, . . . , λr are r control parameters,

t= (t1, t2, . . . , tq)T is a knot vector with a ≤ tj < tj+1 ≤ b, and should be specified by

k = q − r − 1. This defines the values of t at which the pieces of the curve included.

Here are some important examples:

- Zero-Degree B-spline:

Bj,0(t) =

 1, tj ≤ t ≤ tj+1,

0, otherwise,
for j = 1, 2, . . . , q;
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- k-degree B-spline [94]:

Bj,k(t) =
t− tj

tj+k − tj
Bj,k−1(t)−

tj+k+1 − t
tj+k+1 − tj+1

Bj+1,k−1(t) (k ≥ 1);

for k ≥ 2, its derivative is

d

dx
Bj,k(t) =

k

tj+k − tj
Bj,k−1(t) +

k

tj+k+1 − tj+1
Bj+1,k−1(t).

Moreover, B-spline bases overlap with each other. For instance, first-degree B-spline

bases overlap with two neighbors, second-degree B-spline bases with four-degree B-

splines, and so far.

Some characteristics of B-splines are as follows [94]:

- it is consisting of k + 1 polynomial pieces, each of degree k;

- the polynomial pieces are joining at k inner knots;

- at the joining points, derivatives up to order k − 1 are coinciding;

- on a domain spanned by k+2 knots, a B-spline basis function is positive; outside,

it is zero;

- it overlaps with 2k polynomial pieces of its neighbors except at boundaries;

- k + 1 B-splines basis functions are nonzero at a given point t.

2.4.2 Methods of Estimation

Maximization of likelihood turns out to need an iterative least-squares approach; how-

ever, estimation and inference for GLMs base on the theory of maximum likelihood

estimation. generalized partial linear model (GPLM) is a particular semiparamet-

ric model of interest which augments the generalized linear models in that the usual

parametric terms are extended by a single nonparametric component. In general, the

estimation methods for GPLM base on the approach that an estimate of β̂ can be

found for a known γ(·) and an estimate of γ̂(·) can be found for a known β. In the

present thesis, we shall focus on different types of estimation of γ(·) and β based on

B-splines.
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2.4.2.1 Penalized Maximum Likelihood

We want to consider the GPLM model (2.8), where we assume that G = H−1 is a

link function. However, the model can be regarded as semiparametric GLM since all

terms are linear except one; this means:

H(µ) = η(X ,T ) = X Tβ + γ(T ) =
m∑
j=1

Xjβj + γ(T ) (i = 1, 2, . . . , N). (2.9)

For the sake of simplicity, the observation values ti of T in GPLM are thought to be

one-dimensional. On that framework, µi = G(ηi) and

ηi = H(µi) = X T
i β + γ(ti). (2.10)

Let us apply penalized maximum likelihood estimation to prevent from overfitting.

That technique is characterized by a score function ∂`(η, y)/∂η. For our model, the

penalized maximum criterion is given by [94]

j(β, γ) = `(η, y)− 1
2
τ

∫ b

a
(γ′′(t))2dt. (2.11)

Since we estimate the model by penalized maximum likelihood, we want to maximize

(2.11); for this we desire to minimize the second part. We shall do this by employing

B-splines through the local scoring algorithm. Therefore, we write a k degree B-spline

with knots at the value ti (i = 1, 2, . . . , N) instead of γ(t). We will have N −2 interior

points and N + k − 1 unknown parameters.

Thus, we arrive at a representation

γ(t) :=
v∑
j=1

λjBj,k(t),

where λj are coefficients, ν=N + k − 1 and Bj,k = Bj are B-spline basis functions.

The vectorial form looks this way:

γ(t) = Bλ,

with γ(t):= (γ(t1), . . . , γ(tN ))T , B= (Bij) i=1,2,...,N
j=1,2,...,ν

being a (N×ν)-matrix of Bij :=

Bj(ti), and λ= (λ1, λ2, . . . , λν)T .

Defining a (ν×ν)-matrix K= (Kkl)k,l=1,2,...,N matrix by Kkl :=
∫ b
a B
′′
k(t)B′′l (t)dt, then

the penalized maximum criterion (2.11) can be stated by

j(β,γ) := l(η,y)− 1
2
τλTKλ. (2.12)
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Assuming N ≥ ν and that B is of full rank, let us insert the least-squares estima-

tion λ = (BTB)−1BTγ(t) into (2.12) and we write M :=B(BTB)−1K(BTB)−1BT .

Then, we obtain

j(β,γ) = l(η,y)− 1
2
τγTMγ. (2.13)

To solve the minimization problem of (2.13) now, we have to find the optimal estima-

tors β̂ and γ̂. We introduce g1 :=X β and g2 :=γ(t); then (2.10) becomes

H(µ) = η(X, t) = g1 + g2;

here X is an (N×m)-matrix, and g1 and g2 are N-vectors of entries X T
i β and γ(ti),

respectively. The subsequent system of equations needs be solved to maximize (2.11)

over (g1 and g2):
∂j(β,γ)
∂g1

= (
∂η

∂g1
)T
∂`(η,y)
∂η

= 0, (2.14)

∂j(β,γ)
∂g2

= (
∂η

∂g2
)T
∂`(η,y)
∂η

− τM g2 = 0.

The system equations are nonlinear in η and g2. For finding a solution, they are

linearized around a current guess η0 and yield a Newton-Raphson type equation:

∂`(η,y)
∂η

≈ ∂`(η,y)
∂η

|η0 +
∂2`(η,y)
∂ηηT

|η0 (η − η0) = 0. (2.15)

Using (2.15) in (2.14), setting r:=∂`(η,y)/∂η and C:=−∂2`(η,y)/∂ηηT , we come to

the following matrix representation:C C

C C + τM

g11 − g10

g2
1 − g20

 =

 r

r − τMg0
2

 , (2.16)

with (g0
1,g0

2) → (g1
1,g1

2) being a Newton-Raphson step, C and r are calculated at

η0. For a more simple form for (2.16), we set h:=η0+C−1r and SB:=(C+τM)−1C,

which is a weighted B-spline operator. Herewith, (2.16) becomes C C

SB I

g1
1

g1
2

 =

 C
SB

h. (2.17)

Multiplying the upper row with C−1 and the second row with (C + τM )−1, we may

transform it into the formg1
1

g1
2

 =

Xβ1

γ1

 =

 h− g1
2

SB(h− g1
1)

 . (2.18)
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Then, β̂ and γ̂ can be explicitly found without any iteration (inner loop backfitting),

and
ĝ1 = Xβ̂ = XXTC(I − SB)X−1

XTC(I − SB)h,

ĝ2 = γ̂ = SB(h−Xβ̂).
(2.19)

Here X=(xij)i=1,2,...,N ; j=1,2,...,m is the regression matrix for the values xi and h is the

adjusted dependent variable. Moreover, SB generates a weighted B-spline smoothing

on the variable ti with weights given by C=−∂2` (η,y)/∂ ηηT .

Newton-Raphson updates serve to solve a weighted, penalized quadratic criterion.

That criterion local by approximates the penalized log-likelihood. From the updated

(β̂, γ̂), the outer loop has to be iterated to redefine η and, by this, h and C. Then,

the loop is repeated until convergence is regarded sufficient [28]. Since the outer loop

is just some Newton-Raphson step, some step size optimization is conducted, and the

outer loop will converge. Now, we consider a trial value, of the form

ηφ := φη1 + (1− φ)η0, (2.20)

with gs (s = 1, 2) defined. Therefore, (2.20) becomes a Newton-Raphson step of size

φ; we maximize j(η(φ)) with respect to φ [94]. Convergence is ensured by the standard

results on the Newton-Raphson procedure [76].

For asymptotic properties of these models we refer to [28, 39]. Considering the equa-

tions (2.19), we get

E(β̂) = β +XTC(I − SB)X}−1XTC(I − SB)Bλ,

Cov(β̂) = (XTC(I − SB)X}−1XTC(I − SB)2X(XTC(I − SB)X}−1.

Here {XTC(I-SB)X}−1XTC(I-SB)Bλ can be seen as the estimated correction

term.

Furthermore, considering equations (2.18)-(2.19), the functions g1 and g2 are esti-

mated by linear mapping, or smoother, applied to the adjusted dependent variable h,

with weight C given by the information matrix. With RB being the weighted additive

fit operator, by convergence we get

η̂ = RB(η̂ +C−1r̂),

= RBh,
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with r̂=∂`(η,y)/∂η|η̂ [94]. Changing from h, RB and C to their asymptotic versions

h0, RB0 and C0, with h≈h0 having mean η0 and variance C−1
0 φ ≈ C−1φ, then,

Cov(η̂) ≈ RB0C
−1
0 RT

B0
φ

≈ RBC
−1RT

Bφ,

and

Cov(ĝs) ≈ RBsC
−1RT

Bsφ (s = 1, 2).

In fact, RBj is the matrix producing ĝj from h based on B-splines. We note that η̂ is

asymptotically distributed as N(η0, RB0C
−1
0 RT

B0
φ) [39].

2.4.2.2 Least-Squares: Penalized Iteratively Re-Weighted:

By the penalized iteratively reweighted least-squares (P−IRLS) method, the penalized

likelihood is maximized. Denoting β̂ and γ̂ as the estimated parameter vectors of β

and γ, and η
[p]
i =XT

i β̂ + T̂ , µ[p]
i = H−1(η[p]

i ), respectively, G(η[p]
i ) being the inverse

function of the link at the pth iteration, we can represent (2.17) as the linear system

that leads to g1 and g2. Eventually, we minimize the following term to find the

(p+ 1)th estimate of the linear predictor η[p+1]:

‖C [p](h[p] − η)‖2 + τγTMγ. (2.21)

Here, ‖.‖2 is the Euclidean norm, and h[p] is the iteratively adjusted dependent vari-

able. It is stated by

h
[p]
i := η

[p]
i +H ′(µ[p]

i )(yi − µ[p]
i ),

with H ′ being the first derivative of H with respect to β, and C [p] being a diagonal

weight matrix with elements C [p]
ii := 1/V (µ[p]

i )H ′(µ[p]
i )2. Here, V (µ[p]

i ) is proportional

to the variance of Yi according to the current estimate µ[p]
i . Using γ(t)=Bλ in the

function (2.21), it looks in the following way:

‖C [p](h[p] −Xβ −Bλ‖2 + τλTKλ. (2.22)

Let us assume K to be of rank z < v [28]. We can write JTKJ=I, T TKT=0 and

JTT=0, J and T being two matrices with ν rows and with full column ranks z and

ν-z, respectively. Representing

λ = Tδ + Jε, (2.23)
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with vectors δ and ε being vectors of dimensions z and ν-z, respectively. The objective

term (2.21) now takes the form

||C [p](h[p] − [X,βT ]

β
δ

−BJε)‖2 + τεTε.

Let us split its minimization through separating to solution with respect to β and δ

from the one on ε, with an application of Householder decomposition [21]. Herewith,

we may write

QT
1C

[p][X,BT ] = R, QT
2C

[p][X,BT ] = 0,

Q=[Q1,Q2] being orthogonal and R being upper triangular and of full rank m+ν−z.

By this, our problem becomes as minimization of

‖QT
1C

khk −R

β
δ

−QT
1C

kBJε‖2 (2.24)

with respect to (β,δ), provided ε based on a minimization of

‖QT
2C

khk −QT
2C

kBJε‖2 + τεTε. (2.25)

With an appropriate selection of β and δ, given ε, the term (2.24) can be set to

zero. When we take H:=QT
2C

khk and V :=QT
2C

kBJ , (2.25) becomes the following

problem of minimization

‖H − V ε‖2 + τεTε,

which is a kind of a Tikhonov regularization problem [3]. Its solution is

ε̃ = (V TV + τI)−1V TH.

Now, we can find the other parameters viaβ̃
δ̃

 = R−1QT
2C

k(H −BJε̃).

Then, our vector λ̃ can be computed by (2.23) and, hence, η[p+1]=Xβ̃+Bλ̃ may be

computed. Our matrices J and T can be calculated by a Cholesky and Householder

transformation [21].
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2.4.2.3 The Choice for Penalty Parameters: An Alternative

Both the penalized maximum likelihood method and also the P-IRLS methods in-

clude the smoothing parameter τ . For estimating this parameter, there exist two

widely applied methods: Generalized Cross Validation (GCV ) and minimization of

an UnBiased Risk Estimator (UBRE) [15]. But, here, we state an alternative method,

which is known as conic quadratic programming [94].

Turning back to equation (2.22) and employing a Cholesky decomposition, with K

being a (ν×ν)-matrix K such that K=UTU , then, the objective term is

‖Wϕ− v‖2 + τ‖Uλ‖22. (2.26)

Here, our notation is ϕ:=(βT ,λT )T , W :=C [p](X,B) and v:=C [p]h[p].

By this, our problem (2.26) turns into an optimization constrained problem:

minimize G(ϕ) subject to g(λ) ≤ 0, (2.27)

with G(ϕ) := ‖Wϕ − v‖2 and g(λ):= ‖Uλ‖2 − M , and M ≥ 0 which is prese-

lected with some tolerance before or adapted within of a process of learning. Now,

optimization problem (2.27) can be written in the following equivalent form:

minimize t,

subject to |Wϕ− v‖22 ≤ t2,

‖Uλ‖2 ≤M, t ≥ 0,

where W and V are (N×(m+v))- and (v×v)-matrices, while ϕ and v are (m+v)-

and n-vectors. Then, our optimization problem becomes:

minimize t,

subject to ‖Wϕ− v‖2 ≤ t,

‖Uλ‖2 ≤
√
M. (2.28)

Applying continuous optimization methods, by the general conic quadratic optimiza-

tion programming [70]

minimize cTx

subject to ‖Dix− di‖2 ≤ pTi x− qi (i = 1, 2, . . . , k),
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it can be understood that our minimization problem is such a conic quadratic pro-

gramming problem, where

c = (1,0Tm+v)
T , x = (t,ϕT )T = (t,βT ,λT )T , D1 = (0N ,W ), d1 = v,

p1 = (1, 0, . . . , 0)T , q1 = 0, D2 = (0v,0v×m,U), d2 = 0v, p2 = 0m+v+1

and q2 = −
√
M .

Problem (2.28) is studied and evaluated for stating the dual to this problem soon, and

our principal looks in the following way now:

minimize t,

subject to ψ :=

0N W

1 0Tm+v

 t

ϕ

+

−v

0

 ,

ρ :=

0v 0v×m U

0 0Tm 0Tv

 t

ϕ

+

 0v
√
M

 ,

ψ ∈ LN+1,ρ ∈ Lv+1.

Here LN+1, Lv+1 are the (N + 1)- and (v+ 1)-dimensional second-order (or ice-cream

or Lorentz ) cones, given by:

Lν+1 := { x = (x1, x2, . . . , xν+1)T ∈ Rν+1 |

xν+1 ≥
√
x2

1 + . . .+ x2
ν } (ν ≥ 1).

The dual problem to the latter problem is defined by

maximize (vT , 0)K 1 + (0Tv ,−
√
M)K 2

subject to

 0TN 1

W T 0m+v

K 1 +


0Tv 0

0m×v 0m

UT 0v

K 2 =

 1

0m+v

 ,

K 1 ∈ LN+1,K 2 ∈ Lv+1.

Traditional polynomial time algorithms may be applied to solve convex optimization

problems such as semi-definite programming, geometric programming and, in par-

ticular, Conic Quadratic Problems. But, these algorithms employ local information

on the objective function only and have constraints. For solving “well-structured”

convex problems such as conic quadratic problems, Interior Point Methods [72, 83],
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introduced firstly by Karmarkar in 1984, are preferred. Those methods, also called

Barrier Methods, are based on both the primal and the dual problem. They admit

better complexity bounds and allows better practical performance. Furthermore, they

guarantee feasibility throughout the entire iteration procedures. In contrast, Penalty

Methods and Tikhonov Regularization can be considered as Exterior Point Methods

with possible infeasibility [94].

By now, it has been explained that a spline regression problem can be stated either as a

Tikhonov regularization problem or as a conic quadratic problem. The following chap-

ters will closely introduce both Tikhonov regularization and Conic quadratic problems

that we connect with multiple adaptive regression splines (MARS) for the nonlinear

arbitrary function γ(t). This approach is called adaptive because the selection of basis

functions is data-based and specific to the problem at hand. Via this combination,

conic multivariate adaptive regression splines (CMARS) will be introduced.

2.4.3 On Motivations and Various Applications

A great advantage in Generalized Partial Linear Models (GPLMs) consists in a cer-

tain grouping which could be done for the input dimensions or features to assign

appropriate submodels specifically [94]. We know linear and nonlinear ones, as well

as parametrical and nonparametrical ones. We may use Inverse Problem techniques,

e.g., Tikhonov regularization [3], to separate linear models from nonlinear or nonpara-

metrical ones, for the linear submodels separately, within the entire GPLMs. Such a

particular representation of submodels provides a better accuracy and a better stabil-

ity (regularity) under noise in the data.

We state the following real-world motivations, all of them related with important

modern applications; they all can lead to GPLMs.

(i) Empirical knowledge and data bases (contributing to a linear submodel) and expert

knowledge, e.g., in the financial or actuarial sectors, contributing to a nonlinear model;

in the field of understanding the role of expert knowledge is still too little understood

yet [94].

(ii) Staying in the field of financial markets and representing different processes by
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stochastic differential equations (possibly discretized) and Lévy processes, the deter-

ministic drift term could be stated by a linear submodel, while stochastic diffusion

term (possibly simulated) and the compound Poisson processes on jump behavior

might be expresed by a nonlinear model [94].

(iii) A linear submodel may easily represent given (open) information, but a nonlinear

submodel could encompass hidden information such as, e.g., Hidden Markov Models.

This model distinction of “non-hidden” versus “hidden” can be applied in speech or

image processing, in the financial sector of loan banking and credit risk, etc. but also

in physics [94].

Grouping of input dimensions or features mentioned above is preformed in reality by

data mining, especially, by clustering and by classification [102]. Let us give three

areas of examples. Actually, (α), Taylan, Weber and Beck (2007) [91] clustered time

points of the change of prices at some stock exchange. (β), Weber et al. (2007) [94] re-

gressed credit default to the individual features of the credit takers (firms or countries).

(γ), in the modeling and estimation work of Kropat, Weber and Pedamallu (2009) [55]

on regulatory networks, a distinction is presented between target variables (e.g., from

nature, medicine or emissions) and environmental variables (e.g., of toxic substances

or from finance). Within both categories, items (variables, dimensions of features,

or actors) are clustered according to whether they are regarded to be stochastically

dependent or correlated with each other. That is practically realized by clustering via

the geometrical positions of all the given data points and, as valuations, ellipsoids are

raised over the clusters to reflect these mutual relationships. We emphasize that this

approach also led to the introduction of ellipsoid collaborative games by Alparslan

Gök and Weber (2009) [1, 100, 101].

2.5 Tikhonov Regularization

Problems that have an exist and unique solution depending continuously on the data

are known as well-posed. However, the ones that are not well-posed are called as

ill-posed. There are some methods to turn these ill-conditioned problems into well-

posed. Tikhonov regularization, also known as ridge regression, is one of the most

commonly used method [52].
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The standard approach to solve an over determined system of linear equations given

as

Xβ = y .

It is known as linear least-squares and seeks to minimize the residual

‖Xβ − y‖22.

Singular value decomposition (SVD) of the coefficient matrix X of a regarded linear

systems of equations can simply express the Tikhonov solution [3].

Methods for determining a suitable regularization parameter can be divided into two

main classes. The first one consists of the methods based on knowledge, or a good

estimate, of error norm and the second one includes the methods that do not require

any knowledge about error norm. The discrepancy principle is an example of the first

class while the Cross-Validation and L-curve are examples of the second class.

To regularize the solution of a discrete ill-posed problem the discrepancy principle can

be used by assuming that a reasonable level for δ = ‖Xβ − y‖22 is known [3]. It is

possible to compute an appropriate value for the parameter of Tikhonov regularization

when the norm of the solution of the error-free problem or the norm of the error in the

data is known. All solutions with ‖Xβ-y‖22 ≤ δ are considered under the discrepancy

principle, and the one minimizing the norm of β is preferable. Since the norm (length)

‖β‖2 of β represents the complexity of the possible solution, it is usually preferred to

obtain a solution minimizing the norm of first- or second-order derivative of β [3],

min
β

‖β‖2 such that ‖Xβ − y‖22 ≤ δ.

As δ increases, the set of feasible models expands, and the minimum value of ‖β‖2

decreases. We can show this minimization problem by considering problems of the

form

min
β

‖Xβ − y‖22 such that ‖β‖2 ≤ ε. (2.29)

As ε decreases, the set of all feasible solutions becomes smaller, and the minimum

value of increases ‖Xβ − y‖22 increases.

In many important applications the norm of the error is not explicitly known. In this

case the L-curve is a popular approach for choosing a suitable regularization parameter

[35].
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By applying Lagrange multipliers to the problem (2.29), we obtain:

min
β

‖Xβ − y‖22 + ϕ2‖β‖22, (2.30)

where the Lagrange multiplier λ = ϕ2 is the tradeoff parameter between the two parts.

Since an appropriate regularization parameter should properly balance the two parts,

L-curve is used to control the tradeoff. When plotting the optimal values of ‖β‖22
versus ‖Xβ − y‖22 on a log-log scale, as ‖β‖22 is a strictly decreasing function of ϕ

and ‖Xβ − y‖22 is a strictly increasing function of ϕ, the resulting curve often has a

characteristic L shape [35]. The transition between under- and over-regularizations

regions is taking place the ‘corner’ of the L-curve, and the value of λ at this corner

corresponds to the optimal value of the regularization parameter [34].

Different kinds of Tikhonov regularization represented by minimization problems are

mentioned. For some appropriate choice of the values δ, ε and ϕ, these problems have

the same solution. These problems can be solved using SVD [3]. However, in many

situations, a solution minimizing the norm of first- or second-order derivative of β

is preferred. First- or second-order difference quotients of β, regarded as a function

evaluated at the ‘points’ j and j +1, give these derivatives. First- and second-order

derivatives are approximated by using these difference quotients; all of them are com-

prised of products Lβ of β. Here, L is a matrix representing the discrete differential

operators of first and second order respectively, and the optimization problem takes

the following form:

min
β
‖y −Xβ‖22 + ϕ2 ‖Lβ‖22 . (2.31)

The optimization problem in (2.30), can be considered as a special case of (2.31) where

the unit matrix (L = I) is used. As mentioned, this zeroth-order Tikhonov Regular-

ization is solved by using SV D. For higher-order Tikhonov Regularization problems

generalized singular value decomposition (GSV D) is used. (For more information,

please refer to [49].)

2.6 Conic Quadratic Programming

Convex programming deals with problems, which arise frequently in many different

application fields, consisting of minimizing a convex function over a convex set. These
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programs are not only computationally tractable but they also have theoretically effi-

cient solution methods. Convex programming consists of several important specially

structured classes of problems like: semidefinite programming, second order cone pro-

gramming, and geometric programming. These methods are very effective methods

for linear, conic quadratic and semidefinite programming, all are examples of conic

problems [91].

Several “generic” families of conic problems are of special interest, both from the

viewpoint of theory and applications. The cones underlying these problems are sim-

ple enough, so that one can describe explicitly the dual cone; as a result, the general

duality machinery we have developed becomes “algorithmic”, as in the Linear Pro-

gramming case. Moreover, in many cases this “algorithmic duality machinery” allows

to understand more deeply the original model, to convert it into equivalent forms

better suited for numerical processing, etc.. The relative simplicity of the underlying

cones also enables one to develop efficient computational methods for the correspond-

ing conic problems. The most famous example of a “nice” generic conic problem is,

doubtless, Linear Programming (LP); however, it is not the only problem of this sort.

Two other nice generic conic problems of extreme importance are Conic Quadratic

and Semidefinite programs [71]. In this part, we will consider the former one, CQP.

We consider a conic quadratic (and, in particular, a quadratically constrained) opti-

mization problem with uncertain data, known only to reside in some uncertainty set

U. The robust counterpart of such a problem leads usually to an NP-hard semidefinite

problem; this is the case for example when U is given as intersection of ellipsoids, or

as an n-dimensional box. For these cases we build a single, explicit semidefinite pro-

gram, which approximates the NP-hard robust counterpart, and we derive an estimate

on the quality of the approximation, which is independent of the dimensions of the

underlying conic quadratic problem [7].

A generic conic problem can be written as follows [71]:

min
x

cT x , where Ax − b ∈ K, (2.32)

where K is a cone of direct product of m cones, each of them being either semidefinite

or second-order cones:

K := Sk1+ × . . .× S
kp
+ ×Lkp−1 × . . .×Lkm ⊆ E := Sk1+ × . . .× S

kp
+ ×Rkp−1 × . . .×Rkm .
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A conic quadratic problem is a conic problem [71]. Geometrically, a conic problem is

to minimize a linear functional over the intersection of affine plane and cone [71].

min
x

cT x subject to Ax − b ≥K 0

for which the cone K is a direct product of several ice-cream cones:

K := Lk1 × . . .× Lkm ⊆ E, (2.33)

and the k-dimensional ice-cream (second-order, Lorentz) cone Lk is given as follows:

Lk :=
{
x = (x1, x2, . . . , xk)T ∈ Rk | xk ≥

√
x2

1 + x2
2 + . . .+ x2

k−1

}
(k ≥ 2).

In general, a conic quadratic problem can be defined as an optimization problem with

linear objective and finitely many “ice-cream constraints”

Aix − bi ≥Lki 0 (i = 1, 2, ..., N).

Thus, a CQ problem can be written as [71]

min
x

cT x subject to Aix − bi ≥Lki 0 (i = 1, 2, ..., N).

By partitioning the data matrix [Ai, bi] given by

[Ai, bi] =

D i d i

pTi qi

 ,
where D i is of the size (ki − 1)× (dim x ), we can write the problem as follows:

min
x

cT x , subject to ‖D ix − d i‖2 ≤ pTi x − qi (i = 1, 2, ...,m). (2.34)

This is the most explicit form that is preferred to use. In this form, D i are matrices

of the same row dimensions as x , d i are vectors of the same dimensions as the column

dimensions of the matrices D i, pi are vectors of the same dimensions as x and qi are

real numbers [71].

2.6.1 Solution Methods for Conic Quadratic Programming

In order to solve convex optimization problems like LP, semidefinite programming, ge-

ometric programming and also, conic quadratic problems, classical polynomial time
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algorithms can be applied. Because of using local information on the objective func-

tion and constraints, these algorithms have some disadvantages. Thus, to solve “well-

structured” convex problems such as CQ problems, there are Interior Point algorithms

(IPMs) [72]. If an optimization problem is given by

min
x

cT x , where x ∈ Ω ⊆ Rn,

Ω is generally assumed to be closed and convex, and IPMs generally base on the

interior points of this feasible set. Then, an interior penalty function (barrier) F (x)

is considered, well defined (smooth and strongly convex) in the interior of Ω and

“blowing up” as a sequences from the interior int Ω approaches a boundary point of

Ω [106]:

x k ∈ int Ω (k ∈ N0), lim
k→∞

x k ∈ ∂Ω ⇒ F (x k)→∞ (k →∞).

Now, we arrive at a parametric family of functions, Ft(x ), generated by our objective

interior penalty function Ft(x ) := tcTx + F (x ) : int Ω→ R . Here, we assume that

the penalty parameter t is nonnegative. Under mild regularity assumptions,

• every function Ft(·) gets its minimum over the interior of Ω, the minimizers x ∗(t)

being unique,

• the central path x ∗(t) is a smooth curve, and all its limiting points (as t → ∞)

belong to the set of optimal solution of above optimization problem [106].

The advantages of these algorithms can be stated as follows; they can employ the

structure of the problem, allow better complexity bounds for the indicated generic

problems and exhibit a much better practical performance [106].

2.6.2 Complexity of Conic Quadratic Programming

Let us consider the following conic quadratic optimization program:

min
x

cT x , subject to ‖D ix − d i‖2 ≤ pTi x − qi (i = 1, 2, . . . , k), ‖x‖2 ≤ t,
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where the matrices Di are of the type ni × n, pi, x ∈ Rn and di ∈ Rn
i . Let further use

the data above be represented in the way of [71]

Data(2.34) := [k; n; n1; . . . ; c; D1,d1,p1, q1; . . . ,Dk,dk,pk, qk; t]

and

Size(2.34) := dim Data(2.34) :=

(
k +

k∑
i=1

ni

)
(n + 1) + k + n + 3.

The arithmetic complexity of ε-solution is given by

Compl(2.34, ε) := O(1)(k + 1)1/2n

(
n2 + k +

k∑
i=1

ni2
)

Digits(2.34, ε),

where

Digits(2.34, ε) := ln((Size(2.34)) + ‖Data(2.34)‖1ε2)/ε

is defined as the number of accuracy digits in an ε-solution to (2.34), referring to the

sum (or l1) norm [91].

2.6.3 MOSEK

The MOSEK as a MATLAB add-on toolbox is an optimization tool for solving large-

scale mathematical optimization problems. More information can be found in the

website of MOSEK, http://www.mosek.com.

By using MOSEK optimization toolbox, it is possible to solve the following large-scale

optimization problems:

• Linear problems,

• Conic quadratic problems,

• Quadratic and quadratically constrained problems,
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• General convex nonlinear problems,

• Mixed integer linear, conic and quadratic problems.

Besides, it can be used to solve (constrained) linear least-squares and, one and infinity

norm estimation problems. Each of these optimization problems are solved by one of

the following optimizers in MOSEK:

• Interior-point optimizer ,

• Conic interior-point optimizer ,

• Primal simplex optimizer ,

• Mixed integer optimizer .

As there are different optimizers, they can produce different types of solutions. For

example, the interior-point optimizers produces a general interior-point solution while

the simplex optimizer produces a basic solution.

MOSEK has some technical highlights [95]. Problem size is only limited by the avail-

able memory. It has an interior-point optimizer with basis identification. Besides,

there are both primal and dual simplex optimizers for linear programming. It has a

very efficient presolver for reducing problem size before optimization. Moreover, it

has a capability to solve one problem with different optimizers simultaneously and to

read and write industry standard formats such as MPS, LP and XML.

In addition to Matlab Toolbox, there are some other programming languages that

MOSEK is compatible such as C/C++, Java, NET and Python [95].

2.7 Infinite Kernel Learning

Data classification is a popular subject in machine learning, which is a scientific dis-

cipline that is concerned with the design and development of algorithms that allow

computers to evolve behaviors based on empirical data, such as from sensor data or

databases. One of the characteristics of machine learning is to automatically learn
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to find complex patterns and arrive intelligent decisions regarding data. Here, the

problem arises in that the set of all possible behaviors given all feasible inputs is

too complex to express. Support vector machines, Bayes point machines, Gaussian

processes, and Kernel principal component analysis are some Kernel-based methods

which represent a major development in machine learning algorithms [47].

2.7.1 Support Vector Machines

SVMs are a set of related supervised learning techniques employed for regression and

classification. Given a set of training examples, each marked as belonging to one of

two categories, an SVM training algorithm builds a model that predicts whether a

new example falls into one category or the other. A SVM produce a hyperplane or

set of hyperplanes in a high or infinite dimensional space, that may be applied in

classification, regression or other tasks. Generally, the larger the margin, the lower

the generalization error of the classifier. Thus, a good separation is provided by the

hyperplane which has the largest distance to the nearest training data points of any

class (the so-called functional margin) [45].

2.7.2 Kernel Learning

Nonlinear data can also be classified by Machine learning algorithms. Multiple kernel

methods are helpful, particularly, when the data is heterogeneous and large-scale. The

main idea of multiple kernel learning is to combine finitely many pre-chosen kernels

in a convex combination [85]

kβ(x i,x j) :=
K∑
κ=1

βκkκ(x i,x j) , where i, j = 1, 2, . . . , N. (2.35)

In this study, an integral refine the sum in (2.35). In [4], semi-definite programming

models a multiple kernel reformulation to choose the optimum weights of correspond-

ing kernels. However, this is not good regarding computation time because of semi-

definite programming. This reformulation is advanced in [85] by semi-infinite linear
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programming with the optimization model:

max
θ,β

θ (θ ∈ R,β ∈ RK)

such that β > 0 ,
K∑
κ=1

βκ = 1,

K∑
κ=1

βκSκ(α) > θ ∀α ∈ RN with 0 6 α 6 C1 and
N∑
i=1

yiαi = 0,

(2.36)

where 1 = (1, 1, 1, . . . , 1)T ∈ RN .

As the finite combinations of kernels are limited up to a finite choice, this may not

represent the similarity or dissimilarity of data points, particularly, for highly non-

linearly distributed and large-scaled ones. Therefore, a new combination of infinitely

many kernels in Riemann-Stieltjes integral form is proposed in [78, 80] by employing

infinite and semi-infinite programming considering all elements in kernel space, named

as infinitely kernel learning (IKL) [78, 79, 80]. Thus, the problem becomes infinite in

both its dimension and its number of constraints, and called as infinite programming

(IP ). An infinite combination has the following form:

kβ(xi, xj) :=
∫

Ω
k(xi, xj , ω)dβ(ω), (2.37)

where β is a monotonically increasing function of integral 1, or just a probability

measure on Ω and ω ∈ Ω is a kernel parameter. The kernel function k(xi, xj , ω)

is assumed to be a twice continuously differentiable function with respect to ω, i.e.,

k(xi, xj , ·) ∈ C2. As infinitely many kernels is offered to cope with the restriction of

the kernel combination given by finitely many pre-chosen kernels. Here, the questions

on which combination of kernels and on the structure of the mixture of kernels arise.

We can record (“scanning”) all possible alternatives of kernels from the kernel space

by using this new formulation, and thus, the uniformity is also protected. Infinitely

many kernels mean infinitely many coefficients where they are expressed with an

increasing monotonic function via positive measures [78, 79]. The formulation of IKL

in [78, 79, 80] is represented as follows:

max
θ,β

θ (θ ∈ R, β : a positive measure on Ω)

such that θ −
∫

Ω T (ω,α)dβ(ω) 6 0 (α ∈ A),∫
Ω dβ(ω) = 1,

(2.38)
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where T (ω,α) := S(ω,α) −
∑N

i=1 αi, S(ω,α) := 1
2

∑N
i,j=1 αiαjyiyjk(x i,x j , ω) and

Ω := [0, 1] and A := {α ∈ RN | 0 6 α 6 C1 and
∑N

i=1 αiyi = 0} are our index sets.

Because of the inequality constraint, there are infinitely various inequality constraints,

uniform in α ∈ A, and the state variable β is from an infinite dimensional space.

Thus, our problem is one of infinite programming (IP) [2]. The dual of (2.38) can be

displayed as

min
σ,ρ

σ (σ ∈ R, ρ : a positive measure on A)

such that σ −
∫
A T (ω,α)dρ(α) > 0 (ω ∈ Ω),∫

A dρ(α) = 1.

(2.39)

Because of the conditions
∫

Ω dβ(ω) = 1 and
∫
A dρ(α) = 1, positive measures β (or ρ)

are probability measures, which are parameterized in this thesis through the proba-

bility density functions as in [78, 79].

Therefore, it can be seen that the primal IKL formulation (2.38) and the dual IKL

formulation (2.39) are very familiar such that there is maximization instead of min-

imization and the direction of inequalities in the constraints are reversed in (2.39).

As well, the index set A and the variable α turn into Ω and ω, respectively. The

objective functions of both the dual and the primal, θ and σ, are continuous and both

index sets are compact. On the other hand, the primal and the dual problem are not

same on the way that the sets of inequality constraints are explained [81]. (For more

information, please refer to [49].)
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CHAPTER 3

METHODS

3.1 Multivariate Adaptive Regression Splines

As an adaptive regression procedure, Multivariate Adaptive Regression Splines(MARS)

is useful technique for solving high dimensional problems (many explanatory vari-

ables). It is developed by Friedman in 1991 [26] and an important tool in statistics

as well as in classification and regression. Besides, it shows a great promise for fitting

nonlinear multivariate functions. By using piecewise linear regressions, MARS builds

flexible models and nonlinearity of the models is approximated by having different

regression slopes in the corresponding intervals of each predictor. The intervals un-

derlying those pieces are closed and non-overlapping except of their boundaries, so

the slope of each regression line can change from one interval to another one if there

is a “knot” defined in between.

Predictor variables in the final model and their respective knots are found by a fast

but intensive search procedure. As well as searching variables one by one, MARS also

looks for interactions between variables in any degree [20]. The procedure of MARS

can be thought of as a generalization of stepwise linear regression but it also considers

transformations and interactions between the variables as well as using a stepwise

procedure to introduce and delete explanatory variables. The algorithm of MARS

works by partitioning each of the explanatory variables into regions, with each region

having its own regression equation. Moreover, MARS has an advantage to estimate

the contributions of the basis functions so that both the additive and the interactive

effects of the predictors are allowed to determine the response variable [92].
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The MARS method has a two-stage process to generate a model: forward and back-

ward. In the first stage, an extra large number of basis functions (BFs) is constructed

that overfit the data. Although an overfit model has a good fit to the data used to

build the model, it is not generalized well to new data. To build a model with a better

generalization ability, the backward pass prunes the model.

The BFs represent distinct intervals of every predictor divided by knots, and every

possible knot location is tested. In fact, a MARS model is a linear summation of

certain BFs in each dimension, and interactions among them, if existing. The BFs

contributing least to the overall performance are removed from the model as initially,

in the forward construction, it includes many incorrect terms. Thus, in the backward

step, the “complexity” of the model is reduced without decreasing the fit to the data.

MARS is capable of reliably tracking very complex data structures that often hide in

high dimensions by allowing arbitrary shapes of BFs and their interactions [20].

Before introducing the deep concepts of MARS, let us give the word by word defi-

nition of MARS. The first word, “multivariate”, means that it is able to deal with

multidimensional data, examine individual features and possible interactions among

them. The second word “adaptive” means selective since MARS automatically deletes

certain number of predictors if they do not contribute enough to the performance of

the final model. The word “regression” indicates the commonly used statistical term,

often represented as a general prediction function (linear case):

Y = β0 +
k∑
j=1

βjxj + ε,

where Y is the response variable, β0 is the constant term, βj are the coefficients and

xj are the predictor variables.

Finally, the last word “splines” means a wide class of piecewise defined functions that

are used in applications requiring data interpolation or smoothing. A spline can be

developed by dividing the region into a conventional number of regions. A knot is the

boundary between regions. By obtaining a sufficient number of knots, any shape can

be well approximated [106].
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3.1.1 The Procedure of MARS

MARS is a nonparametric modeling approach. Although parametric modeling meth-

ods such as linear regression are relatively easy to improve and interpret, compared

with nonparametric ones, they have a limited flexibility and work well only if the

true underlying relationship is close to the pre-specified approximated function in the

model. In order to overcome the drawbacks of the usual parametric approaches, non-

parametric models are developed locally over specific subregions of the data. The

data are searched for an optimum number of subregions and a simple function is op-

timally fit to the realizations in each subregion [107]. The nonlinearity of a model is

approximated by using separate linear regression slopes in separate intervals of the

independent variable space.

Let us state the general model:

Y = f(x1, x2, . . . , xp) + ε

= f(x ) + ε,

where Y is a (continuous or binary) response variable, x = (x1, x2, . . . , xp)T is a vector

of predictor variables, f is an unknown function, and the error term ε is white noise

(ε ∼ N(0, σ2)).

MARS can be expressed in an expanded form of the piecewise linear basis functions,

(x − t)+ and (t − x)+ with a knotting value at t. The following two functions are

truncated linear ones, where x ∈ R [40]:

(x− t)+ :=

 x− t, if x > t,

0, otherwise,
(t− x)+ :=

 t− x, if x < t,

0, otherwise.
(3.1)

In equation (3.1), (·)+ means that only the positive parts are used, otherwise it is given

a zero value. These truncated functions are piecewise linear nonsmooth splines. The

two functions are named as a reflected pair. Here, the objective is to form reflected

pairs for each input xj with knots at each observed value xij of that input. Then, the

collection of the BFs can be written as [12]

C := {(xj − t)+, (t− xj)+ | t ∈ {x1,j , x2,j , ..., xN,j} , j ∈ {1, 2, ..., p}} .
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If all of the input values are different from each other, there will be 2Np BFs in total.

Besides, even each BF depends only on a single xj , it is considered as a function over

the whole input space Rp [40].

In higher dimensions, BFs that are the tensor products of univariate spline functions

are used to generalize spline fitting. Hence, multivariate spline BFs are as follows:

Bm(x ) :=
Km∏
k=1

(
skm · (xv(km) − tkm)

)
+
,

where Km is the total number of truncated linear functions in the mth BF, xv(km) is

the input variable corresponding to the kth truncated linear function in the mth basis

function, tkm is the corresponding knot value and skm ∈ {±1} [106].

Although the model-building strategy is similar to a forward stepwise linear regression,

it is allowed to use functions from the set C and their products, instead of using the

original inputs. Hence, the model takes the following form:

Y = f̂(x ) + ε = c0 +
M∑
m=1

cmBm(x ) + ε, (3.2)

where c0 is the intercept term and M is the number of BFs in the current model [20].

As in linear regression, given some choices for the Bm, the coefficients cm are estimated

by using the least-squares method. The construction of the functions Bm is the most

important concept to generate the model. The model construction starts with only the

constant function B0(x ) = 1, and all functions in the set C are candidate functions.

The possible function forms of BFs Bm(x ) are as follows [54]:

• 1,

• xj ,

• (xj − tk)+,

• xlxj ,

• (xj − tk)+xl, and

• (xj − tk)+(xl − th)+.
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Each BF must have different input variables in the MARS algorithm. Therefore, the

BFs above obtained from two multiplied BFs use different input variables such as

xj , xl and tk, th are their corresponding knots. At each stage, we consider as a new

basis function pair all products of a function Bm in the model set M with one of the

reflected pairs in C. Then, the model set M is extended with the terms of the form

ĈM+1Bl(x )(xj − t)+ + ĈM+2Bl(x )(t− xj)+;

that provides the largest decrease in training error [40]. Here, the coefficients ĈM+1

and ĈM+2 are estimated by least-squares method as well as all the other M+1 coef-

ficients in the model. The process keeps continuing until the model set M includes

some preset maximum number of terms. This process shows that the model set M

actually has an iterative built up procedure.

There are some possible basis function candidates [54]:

• xj (j = 1, 2, . . . , p),

• (xj − tk)+, if xj is already in the model,

• xlxj , if xl and xj are already in the model,

• (xj − tk)+xl if xlxj and (xj − tk)+ are already basis functions,

• (xj − tk)+(xl − th)+, if (xj − tk)+xl and (xl − th)+xj are already in the model.

As these conditions force linear terms to be involved, this provides a better inter-

pretability of the final model.

At the end of this process, a large model equation (3.2) is obtained. However, it

includes some unnecessary variables and typically overfits the data. Thus, a backward

deletion procedure is needed to detect and discard these variables. For this, the term

whose removal causes the smallest increase in RSS is deleted at each stage. This

process provides an estimated best model f̂M of each size (number of terms) M . In

order to estimate the optimal value of M , cross-validation can be used. However, for

computational savings, the MARS procedure uses generalized cross-validation. This
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criterion, also known as lack-of-fit criterion, is defined as [26]

LOFf̂M = GCVFriedman :=
1
N

N∑
i=1

(yi − f̂M (x i))2/(1− C(M)/N)2,

C(M) = trace(B(BTB)−1BT ) + 1,

where N is the number of data samples, C(M) is the cost penalty measures of a

model containing M basis functions, and B is an (M ×N)-matrix. Indeed, C(M) is

the number of fitted parameters. The numerator is the usual RSS, which is penalized

by the denominator. This denominator helps to balance the increasing variance in the

case where the model complexity increases.

Moreover, when there are r linearly independent BFs in the model and K knots were

selected in the forward stage, then, C(M) = r+cK. Here, the quantity c shows a cost

for each BF optimization, generally equal to 3 [40]. However, if the model is additive,

then a penalty of c = 2 is used. Besides, a smaller C(M) generates a larger model

with more BFs while a larger C(M) creates a smaller model with less BFs. Using lack

of fit criteria, the best model is reached along the backward sequence that minimizes

generalized cross-validation [20, 40].

MARS is a special procedure in that it uses piecewise linear BFs and has a particular

model strategy. A key characteristics of the piecewise linear BFs is their ability to

operate locally; they are zero over a part of their range. When they are multiplied

together, the result is nonzero only over the small part of the factor space where

both component functions are nonzero. Hence, the regression surface is built up by

using nonzero components locally - just where they are needed. Other basis functions

such as polynomials can be used, however, this would produce a nonzero product

everywhere, and would not work as well.

The fact that each input can appear at most once in a product is a limitation put on

the formation of model terms. This avoids the formation of higher-order powers of

an input, which increases or decreases too sharply near the boundaries of the factor

space. Such higher-order powers can be approximated in a more stable way by using

piecewise linear functions.

It is a useful option in the MARS procedure to set an upper limit on the order of
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interaction. For example, choosing two as a limit allows pairwise products of piecewise

linear functions but not a three-fold or any higher way of products. This can be helpful

to interpret the final model. An upper limit of one results in an additive model [40].

3.1.2 Software of MARS

In this thesis, the MARS models are fitted using MARS (Version 2, Salford Systems,

San Diego, Calif., USA) [106]. The MARS package developed by Salford Systems is

available at [14]. MARS allows the user to set control parameters to explore different

models and find the “best” model. The maximum number of knots is determined

by trial and error. Besides, the maximum number of interactions can be more than

the degree of two (2-way interaction). It is a well designed piece of software that

implements MARS technique with user-friendly graphical interface.

3.1.3 Advantages and Disadvantages of MARS

Compared other Algorithms

MARS is a useful and flexible regression technique that applies a modified recursive

partitioning strategy for simplifying high-dimensional problems. Although recursive

partitioning regression is a powerful method, it has some shortcomings such as dis-

continuity at the subregion boundaries and MARS overcomes these limitations with

a modified form of it [107].

Besides, it is able to identify a relatively small number of predictor variables which

are complex transformations of initial variables. As well, it is not computationally

intensive and is straightforward to implement in order to look for interactions. MARS

identifies interactions and also produces graphs that help visualize and understand

interactions [19]. Both the additive and the interactive effects of the predictors are

allowed to determine the response variable. MARS can handle complex (nonlinear)

relationships and interactions as well as providing an interpretable model. MARS has

automated capabilities for handling missing data, a common feature of large databases

[11].

MARS is a similar approach to CART . They are both capable of modeling complex
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relationship between variables without strong model assumptions. Besides, unlike

neural networks, both of them can detect “important” independent variables through

the built tree and basis functions when there are many potential variables. Moreover,

CART and MARS train huge data in a short time and decrease the modeling time as

well as producing easily interpreted models [108]. The similarity of the two methods

is mainly on the partitioning of intervals, where two symmetric BFs are created at

the knot location. However, in two ways MARS differs from decision tree techniques:

(i) In the recursive partitioning strategy, MARS assigns a coefficient (a slope) to each

part. In other words, while techniques such as CART use step functions to model

the response variable, which leads to discontinuous models, MARS uses continuous

piecewise linear functions. This continuity provides a more effective way to model

nonlinearities and a more accurate model [99]. (ii) The recursive partitioning often

results in a poor predictive ability for even low-order performance functions when new

data are introduced. The MARS method overcomes these two problems of recursive

partitioning regression to increase accuracy. In fact, the MARS algorithm is a modified

recursive partitioning algorithm which has important advantages compared to other

recursive partitioning algorithms.

As it is an exhaustive procedure to search for nonlinearities and interactions, there is

a risk of overfitting. However, setting a lower maximum number of BFs and a higher

“cost” per knot helps to prevent from this problem [26].

In the following section, we will present a modification on the theory of MARS by the

use of modern continuous optimization. While the backward stepwise algorithm and

GCV are mentioned as model-free approaches, now we are going to turn to an inte-

grated model-based approach in the next. For this one, continuous optimization will

be used, in the form of a penalized optimization problem and, then, a conic quadratic

optimization problem. Thus, an alternative version of MARS, called CMARS is

achieved.

3.2 Conic Multivariate Adaptive Regression Splines

In the previous section, we explained MARS as a nonparametric regression proce-

dure for high dimensional data with details. In this section, however, we introduce a
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modified version of MARS called as Conic Multivariate Adaptive Regression Splines

(CMARS). Here, “C” represents the word conic as well as convex and continuous.

MARS is a nonparametric regression procedure that makes no specific assumption

about the underlying functional relationship between the dependent and independent

variables to estimate general functions of high dimensional arguments given sparse

data. The algorithm of MARS for estimating the model function consists of two al-

gorithms, the forward and the backward stepwise algorithms. In CMARS, instead of

using the backward stepwise algorithm, we can construct a penalized residual sum

of squares for MARS as a Tikhonov regularization problem and treat this problem

employing continuous optimization techniques. These techniques, in particular the

framework of conic quadratic programming, are considered as an important com-

plementary technology and model based alternative to the concept of the backward

stepwise algorithm [92].

For CMARS, we use the following notation for the piecewise linear BFs:

c+(x, τ) = (+(x− τ))+, c−(x, τ) = (−(x− τ))+, (3.3)

where (q)+ := max{0, q} and τ is an univariate knot. Besides, we consider again

the notation introduced previously in Subsection 3.1.1 to represent the relationship

between input and dependent variables:

Y = f(X ) + ε, (3.4)

where Y is a response variable, X = (X1, X2, . . . , Xp)T is a vector of predictor vari-

ables and ε is additive random variable with zero mean and finite variance. Re-

flected pairs for each input Xj (j = 1, 2, . . . , k) with k-dimensional knots τ i =

(τi,1, τi,2, . . . , τi,k)T at or just nearby each input data vectors x̃ i = (x̃i,1, x̃i,2, . . . , x̃i,p)T

of that input (i = 1, 2, . . . , N) are constructed. Such a nearby placement indicates

a slight modification as in the previous section, the knots’ values are equal to input

values. Indeed, it may be assumed that without loss of generality τi,j 6= x̃i,j for all i

and j, so that it is possible to prevent from nondifferentiability in our optimization

problem later on. Even, if the knots τi,j far away from the input values x̃i,j provide a

better data fit, they can be chosen.
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Let use the following formulation for the set of BFs:

℘ := {(xj − τ)+, (τ − xj)+|τ ∈ {x1,j , x2,j , . . . , xN,j}, j ∈ {1, 2, . . . , k}} . (3.5)

If all of the input values are different from each other, there will be 2Np BFs in total.

Thus, we can represent f(xi) by a linear combination which is successively built up

by basis functions and the intercept θ0, such that (3.4) becomes

Y = θ0 +
M∑
m=1

θmψm(X ) + ε. (3.6)

Here, θm is the unknown coefficient for the mth basis function (m = 1, 2, . . . ,M), θ0 is

the constant term, ψm (m = 1, . . . ,M) represents a basis function from ℘ or product

of two or more such functions, ψm is taken from a set of M linearly independent basis

elements. A set of eligible knots τi,j is assigned separately for each input variable

dimension and is chosen to approximately coincide with the input levels represented

in the data. By multiplying an existing basis function with a truncated linear function

involving a new variable, interaction basis functions are created. In this case, both

the existing basis function and the newly created interaction basis function are used

in the MARS approximation.

Provided the observations represented by the data xi (i = 1, . . . , N), the form of the

mth basis function is as follows [92]:

ψm(x ) :=
Km∏
j=1

(sκmj · (xκmj − τκmj ))+, (3.7)

where Km is the number of truncated linear functions multiplied in the mth basis

function, xκmj is the input variable corresponding to the jth truncated linear function

in the mth basis function, τκmj is the knot value corresponding to the variable xκmj ,

and sκmj is the selected sign +1 or -1.

To compare the possible basis functions, a lack-of-fit criterion can be used. Besides,

it is possible to restrict the search for new basis functions to a maximum order of

interactions. For example, if only up to two-factor interactions are permitted, then

Km ≤ 2 would be a suitable restriction.

In MARS, the backward stepwise algorithm is used to prevent from over-fitting by

decreasing the complexity of the model without degrading the fit to the data. This
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algorithm does this by removing from the model basis functions that contributes

to the smallest increase in the residual squared error at each stage, producing an

optimally estimated model f̂α with respect to each number of terms, called α which

expresses some complexity of our estimation. To estimate the optimal value of α,

generalized cross-validation can be used which shows the lack-of-fit when using MARS.

In CMARS, this criterion is defined as follows [15]:

GCV :=
∑N

i=1(yi − f̂α(x i))2

N(1−M(α)/N)2
, (3.8)

where M (α) := u + dK. Here, N is the number of sample observations, u is the

number of linearly independent basis functions, K is the number of knots selected

in the forward process, and d is a cost for basis-function optimization as well as a

smoothing parameter for the procedure.

In this study, we propose to not employ the backward stepwise algorithm to estimate

the function f(x ). Instead, we will use penalty terms in addition to the least-squares

estimation in order to control the lack-of-fit from the viewpoint of the complexity of

the estimation.

3.2.1 The Penalized Residual Sum of Squares Problem

Let us use the penalized residual sum of squares with basis functions having been

accumulated in the forward stepwise algorithm. PRSS has the following form:

PRSS =
N∑
i=1

(yi − f(x̃i))
2 +

Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm,

(3.9)

where V (m) = {KM
j | j = 1, 2, . . . ,Km} is the variable set associated with the mth ba-

sis function, ψm, tm = (tm1 , tm2 , . . . , tmKm )T represents the vector of variables which

contribute to the mth basis function ψm. The penalty parameter λm is nonnegative

(λm ≥ 0) for any value of m. This parameter establishes the tradeoff between both

accuracy, i.e., a small sum of error squares, and not too high a complexity. In this

thesis, we tackle that tradeoff by penalty methods, such as regularization techniques

[3] and by conic quadratic programming [8, 70].

The integrals of the first-order derivatives measure the flatness of the model functions
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while the integrals of the second-order derivatives measure unstability and complexity

inscribed into the model (via the model functions) [40, 90]. Furthermore, we refer to

D α
r,sψm(tm) :=

∂ αψm
∂α1tmr ∂α2tms

(tm) (3.10)

for α = (α1, α2)
T , | α| = α1 + α2, where α1, α2 ∈ (0, 1).

Indeed, we note that in any case where αi = 2, the derivative Dα
r,sψm(tm) vanishes,

and by addressing indices r < s, we have applied Schwarz’s Theorem. Finally, since

all the regarded derivatives of any function ψm exist except on a set of measure zero,

the integrals and entire optimization problems are well-defined [93].

If we consider the representations (3.6) and (3.7) in (3.9), then the objective function

(3.9) will be as follows [93]:

PRSS =
N∑
i=1

(
ỹi − θ0 −

M∑
m=1

θmψm(x̃mi )−
Mmax∑
m=M+1

θmψm(x̃mi )

)2

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm, (3.11)

where the vector x̃ i = (x̃i,1, x̃i,2, . . . , x̃i,q)
T denotes any of the input vectors while

x̃mi =
(
x̃i,κ1 , x̃i,κ2 , . . . , x̃i,κKm

)T
shows the corresponding projection vectors of x̃ i onto

those coordinates that contribute to the mth basis function, ψm, which are related

with the ith output ỹi.

As the second-order derivatives of the piecewise linear functions ψm (m = 1, 2, ...,M)

and, thus, the penalty terms related are vanishing. Now, we can rearrange the repre-

sentation of PRSS as follows:

PRSS :=
N∑
i=1

(yi − ψ(d̃ i)T θ)2

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm, (3.12)

where ψ(d̃ i) = (1, ψ1(x̃ 1
i ), ψ2(x̃ 2

i ), . . . , ψM (x̃Mi ), ψM+1(x̃M+1
i ), . . . , ψMmax(x̃Mmax

i ))T ,

θ:= (θ0, θ1, . . . , θMmax)T with the point d̃ i := (x̃ 1
i , x̃

2
i , . . . , x̃

M
i , x̃

M+1
i , . . . , x̃Mmax

i )T in

the argument. To approximate the multi-dimensional integrals∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm,
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the discretizations and model approximations are used. Then, we write the discretized

form of the integrals as follows:∫
Qm

θ2
m

[
D α
r,sψm(tm)

]2
dtm ≈

∑
(σj)j∈{1,2,...,Km}∈{0,1,...,N+1}Km

θ2
m·

D α
r,sψm(x̃

l
κm
j

σ
κm
j
,κmj

, ..., x̃
l
κm
Km

σ
κm
Km

,κmKm

)

2

·
Km∏
j=1

x̃
l
κm
j

σ
κm+1
j

,κmj

− x̃
l
κm
j

σ
κm
j
,κmj

 .

We can rearrange PRSS in this form:

PRSS ≈
N∑
i=1

(
yi − θTψ(d̃ i)

)2

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∑
(σ
κj )

θ2m ·

D α
r,s ψm(x̃

l
κm
j

σ
κm
j
,κmj

, . . . , x̃
l
κm
Km

σ
κm
Km

,κm
Km

)

2

·
Km∏
j=1

(
x̃
l
κm
j

σ
κj+1

,κmj

− x̃
l
κm
j

σ
κj
,κmj

)
, (3.13)

where (σκj )j∈{1,2,...,p} ∈ {0, 1, 2, ..., N + 1}Km . Let us introduce some more notation

related with the sequence (σκj ) [93]:

x̂mi =

x̃
l
κm
j

σ
κm
j
,κmj

, . . . , x̃
l
κm
Km

σ
κm
Km

,κmKm

 , ∆x̂mi :=
Km∏
j=1

(
x̃
l
κm
j

σ
κj+1

,κmj

− x̃
l
κm
j

σ
κj
,κmj

)
. (3.14)

It is possible to approximate PRSS by using (3.14) as follows:

PRSS ≈
N∑
i=1

(
yi − θTψ(d̃ i)

)2

+
Mmax∑
m=1

λmθ
2
m

(N+1)Km∑
i=1

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

[
D α
r,sψm(x̂mi )

]2
∆x̂mi .

(3.15)

For a short representation, we can rewrite the approximate relation (3.13) as in the

following:

PRSS ≈
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+
Mmax∑
m=1

λm

(N+1)Km∑
i=1

L2
imθ

2
m, (3.16)

where ψ(d̃) =
(
ψ(d̃1), . . . ,ψ(d̃N )

)T
is an (N × (Mmax+1))-matrix and the numbers
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L2
im are defined by their roots

Lim :=


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

[
D α
r,sψm(x̂mi )

]2
∆x̂mi


1/2

.

3.2.2 Tikhonov Regularization Applied

In this part, we will represent PRSS as a Tikhonov regularization problem [3]. If we

consider equation (3.16), we can write PRSS as follows [93]:

PRSS ≈
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+
Mmax∑
m=1

λm

(N+1)Km∑
i=1

L2
imθ

2
m

=
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+


[
L1mθm, L2mθm, . . . , L(N+1)Kmmθm

]


L1mθm

L2mθm
...

L(N+1)Kmmθm




=

∥∥∥y −ψ(d̃)θ
∥∥∥2

2
+
Mmax∑
m=1

λm‖Lmθm‖22

=
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+ λ1‖L1θ1‖22 + λ2‖L2θ2‖22 + . . .+ λMmax‖LMmaxθMmax‖22,

(3.17)

where Lm := (L1m, L2m, . . . , L(N+1)Km ,m)T (m = 1, 2, . . . ,Mmax). To turn this equa-

tion into a Tikhonov Regularization Problem with a single tradeoff parameter, we

make a uniform penalization by taking the same λ for each derivative term, i.e.,

λ1 = λ2 = . . . = λMmax =: λ, where λm ≥ 0 (m = 1, 2, . . . ,Mmax). Thus, the

approximation is in the following form:

PRSS ≈
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+ λ‖Lθ‖22, (3.18)

where θ is an ((Mmax + 1) × 1)-parameter vector to be estimated through the data

points and L is a diagonal (Mmax + 1)×(Mmax + 1)-matrix as follows:

L =


0 0 · · · 0

0 L1 · · · 0
...

...
. . .

...

0 0 · · · LMmax

 . (3.19)
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Hence, our PRSS problem turns into a Tikhonov regularization problem (2.31), where

λ = ϕ2 for some ϕ ∈ R [3].

Tikhonov regularization problem has multiple objective functions through a linear

combination of
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
and ‖Lθ‖22. We select the solution such that it mini-

mizes both first objective function
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
and second objective (‖Lθ‖22) in the

sense of a compromise (tradeoff) solution. For a new contribution to the dependence

of locally linear embedding on regularization parameter(s) we refer to [67].

Moreover, our PRSS problem also can be turned into a Conic Quadratic Problem.

In Section 3.4, the implementation of CMARS algorithm will be explained with two

numerical examples. Furthermore, we will compare the Tikhonov regularization solu-

tions whose results are obtained from the thesis [49], which is on progress, with the

ones coming from Conic Quadratic Programming.

3.2.3 An Alternative for Tikhonov Regularization Problem with Conic

Quadratic Programming

The Tikhonov regularization problem (3.18) can be expressed as a CQP problem.

Indeed, based on an appropriate choice of a bound M̃ , we state the following opti-

mization problem:

min
θ

∥∥∥ψ(d̃)θ − y
∥∥∥2

2

subject to ‖Lθ‖22 ≤ M̃. (3.20)

Let us underline that this choice of M̃ should be the outcome of a careful learning

process, with the help of model-free or model-based methods [40]. In (3.20), we

have the least-squares objective function
∥∥∥ψ(d̃)θ − y

∥∥∥2

2
and the inequality constraint

function −‖Lθ‖22 + M̃ which is requested to be nonnegative for feasibility. Now, we

equivalently write our optimization problem as follows:

min
t,θ

t,

subject to
∥∥∥ψ(d̃)θ − y

∥∥∥2

2
≤ t2,

‖Lθ‖22 ≤ M̃, t ≥ 0. (3.21)
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or equivalently again,

min
t,θ

t,

subject to
∥∥∥ψ(d̃)θ − y

∥∥∥
2
≤ t,

‖Lθ‖2 ≤
√
M̃. (3.22)

By using modern methods of continuous optimization techniques, especially, from CQP

where we use the basic notation as follows [91]:

min
x

cTx , subject to ‖D ix − d i‖22 ≤ pTi x − q i (i = 1, 2, ..., k). (3.23)

In fact, we see that our optimization problem is such a CQP program with

c = (1,0TMmax+1)T , x = (t,θT )T , D1 = (0N ,ψ(d̃)), d1 = y , p1 = (1, 0, ..., 0)T , q1 = 0,

D2 = (0Mmax+1,L), d2 = 0Mmax+1, p2 = 0Mmax+2 and q2 = −
√
M̃.

In order to write the optimality condition, the dual problem and the primal dual

optimal solution for this problem, and we firstly reformulate the problem (3.22) as

follows:

min
t,θ

t,

such that χ :=

0N ψ(d̃)

1 0TMmax+1

 t
θ

+

−y

0

 ,
η :=

0Mmax+1 L

0 0TMmax+1

 t
θ

+

0Mmax+1√
M̃

 ,
χ ∈ LN+1, η ∈ LMmax+2, (3.24)

where LN+1, LMmax+2 are the (N + 1)- and (Mmax + 2)-dimensional ice-cream (or

second-order, or Lorentz) cones, defined by:

Lp+1 :=
{

x = (x1, x2, ..., xp+1)T ∈ Rp+1 | xp+1 ≥
√
x2

1 + x2
2 + ...+ x2

p

}
(p ≥ 1).

The dual problem to the latter primal one is given by

max (yT , 0)ω1 +
(
0TMmax+1,−

√
M̃
)
ω2

such that χ :=

 0TN 1

ψ(d̃) 0TMmax+1

ω1 +

0TMmax+1 0

LT 0Mmax+1

ω2 =

 1

0Mmax+1

 ,
ω1 ∈ LN+1, ω2 ∈ LMmax+2. (3.25)
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Furthermore, (t,θ,χ,η,ω1,ω2) is a primal dual optimal solution if and only if [93]

χ :=

0N ψ(d̃)

1 0TMmax+1

 t
θ

+

−y

0

 ,
η :=

0Mmax+1 L

0 0TMmax+1

 t
θ

+

0Mmax+1√
M̃

 ,
 0TN 1

ψ(d̃) 0TMmax+1

ω1 +

0TMmax+1 0

LT 0Mmax+1

ω2 =

 1

0Mmax+1

 ,
ωT1 χ = 0, ωT2 η = 0,

ω1 ∈ LN+1, ω2 ∈ LMmax+2,

χ ∈ LN+1, η ∈ LMmax+2. (3.26)

In order to provide with some fundamental facts on the solution methods for CQP

and convex problem classes beyond [93], we have stated the Section 2.6 of this thesis.

In this section, we investigated CMARS model which based on the regularization of

the complexity term. In the following section, we also mention the regularization of

linear part (RSS term) which is investigated in [89].

3.3 The Generalized Partial Linear Model with CMARS

The GPLM model is given in Section 2.4 by the following formula:

E(Y |X ,T ) = G(X Tβ + γ(T )),

where β = (β1, β2, . . . , βm)T is a finite dimensional parameter and γ(·) is a smooth

function which we try to estimate by CMARS. Also, we assume that some vectors

X and T come from a decomposition of explanatory variables. Here, X denotes

an m-variable random vector which typically covers discrete covariables, and T is a

q-variate random vector of continuous covariables to be modeled in a nonparametric

way.

There are different kinds of estimation methods for a generalized partial linear model

(GPLM). Müller (2001) [89] studied different estimation methods based on kernel

methods and test procedures on the correct specification of this model. In this thesis,

49



we focus on special types of estimation of γ(·) by CMARS and β by least-square

estimation with Tikhonov Regularization [89].

3.3.1 Least-Squares Estimation with Tikhonov Regularization

Let us recall the model (2.8), where G = H−1 is assumed to be a known link function

which connects the mean of the dependent variable, µ = E(Y |X, T ), to the predictors.

Here, the equation (2.8) can be considered as a semiparametric GLM as in the equation

(2.9), because all terms are linear except one; i.e,

H(µ) = η(X,T ) = XTβ + γ(T ) =
m∑
j=1

Xjβj + γ(T ). (3.27)

Now, to obtain the GPLM, we consider observation values yi, xi, ti (i = 1, 2, . . . , n).

Then, µi = G(ηi) and ηi=H(µi)=xTi β+γ(ti) with smooth function γ(·).

To determine the knots of MARS based on the resulting residuals, we apply linear

least-squares estimation with Tikhonov regularization on the given data to find a

vector β (including intercept term), for a pre-estimation of parametric part:

ypreproc = X Tβpreproc + ε = β0 +
m∑
j=1

Xjβj + ε, (3.28)

In order to estimate the regression coefficients, the method of least-squares is used;

βpreproc = (β0, β1, β2, . . . , βm)T in ypreproc = β0 +
∑m

j=1Xjβj to minimize the residual

sum of squares (RSS). Tikhonov Regularization proposed an approximate solution to

(3.28) by minimizing a quadratic functional:

min
βpreproc

‖ypreproc −Xβpreproc‖22 + λ‖Lβpreproc‖22, (3.29)

where λ is a regularization parameter between the first and the second part. The

terms ypreproc and βpreproc represent the response vector and unknown coefficients,

respectively. They are obtained by solving a Tikhonov regularization problem (3.29).

Generally, a Tikhonov regularization problem may comprise higher-order Tikhonov

regularization and it can be solved using generalized singular value decomposition

(GSVD). After getting the regression coefficients, the linear least-squares model is

subtracted (without intercept) at the data from corresponding responses

y − X̄βpreproc = ŷ = η. (3.30)
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where X̄ is the design matrix X , except its first column, and ŷ is the resulting vector

of residuals, regarded as our new observations. On our input data and these new

responses, we establish our knot selection by MARS.

3.3.2 CMARS Method for the Nonparametric Part

In the model (2.8), γ(·) is a smooth function which we try to estimate by Conic

Multivariate Adaptive Regression Splines (CMARS) which is an alternative technique

to multivariate adaptive regression splines (MARS).

Here, as done previously in (3.6), γ(ti) can be represented by a linear combination of

successively built up by basis functions and the intercept θ0. Then, (2.9) becomes as

follows:

ηi = H(µ) = xTi β + θ0 +
M∑
m=1

θmψm(ti). (3.31)

Here, θm is the unknown coefficient for the mth basis function (m = 1, . . . ,M), θ0 is

the constant term, ψm (m = 1, . . . ,M) represents a basis function from ℘ or a product

of two or more such functions, ψm is taken from a set of M linearly independent basis

elements. A set of eligible knots τi,j (selected by MARS with reference to the residual

vector) is assigned separately for each input variable dimension, and it is chosen to

approximately coincide with the input levels represented in the data. By multiplying

an existing basis function with a truncated linear function involving a new variable,

interaction basis functions are created. In this case, both the existing basis function

and the newly created interaction basis function are used in the MARS approximation.

Provided the observations represented by the data ti (i = 1, . . . , N), the form of the

mth basis function is as follows [92]:

ψm(t) :=
Km∏
j=1

(sκmj · (tκmj − τκmj ))+, (3.32)

where Km is the number of truncated linear functions multiplied in the mth basis

function, tκmj is the input variable corresponding to the jth truncated linear function

in the mth basis function, τκmj is the knot value corresponding to the variable tκmj ,

and sκmj is the selected sign +1 or -1.
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In MARS, the backward stepwise algorithm is used to prevent from over-fitting by

decreasing the complexity of the model without degrading the fit to the data. This

algorithm does this by removing from the model basis functions that contribute to

the smallest increase in the residual squared error at each stage, producing an op-

timally estimated model γ̂α with respect to each number of terms, called α, which

expresses some complexity of our estimation. To estimate the optimal value of α, gen-

eralized cross-validation can be used which shows the lack-of-fit when using MARS.

In CMARS, this criterion is defined as follows [15]:

GCV :=
∑N

i=1(ηi − xTi β̂ − γ̂α(ti))2

(1−M (α)/N)2
, (3.33)

where M (α) := u + dK [89]. Here, N is the number of sample observations, u is

the number of linearly independent basis functions, K is the number of knots selected

in the forward process, and d is a cost for basis-function optimization as well as a

smoothing parameter for the procedure.

As in CMARS model, in order to estimate the function γ(t), we propose to employ the

penalty terms in addition to the least-squares estimation instead of the backward step-

wise algorithm in order to control the lack-of-fit from the viewpoint of the complexity

of the estimation.

3.3.3 The Penalized Residual Sum of Squares Problem for GPLM with

CMARS

It is possible to write the equation (2.9) as follows:

η = H(µi) = xTi β +ψT (t i)θ, (3.34)

where θ=(θ0, θ1, . . . , θM )T andψ(d̃i)=(ψ1(ti), ψ2(ti), . . . , ψM (ti)). The penalized resid-

ual sum of squares (PRSS) with basis functions having been accumulated in the for-

ward stepwise algorithm for the GPLM model with CMARS is as follows:

PRSS =
N∑
i=1

(
ηi − xTi β −ψT (t i)θ

)2
+

Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm, (3.35)
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where V (m) = {KM
j | j = 1, 2, . . . ,Km} is the variable set associated with the mth

basis function, ψm, tm = (tm1 , tm2 , . . . , tmKm )T represents the vector of variables

which contribute to the mth basis function ψm. Furthermore, we refer to

D α
r,sψm(tm) :=

∂ αψm
∂α1tmr ∂α2tms

(tm) (3.36)

for α = (α1, α2)
T , | α| = α1 +α2, where α1, α2 ∈ {0, 1}. The optimization problem bases

on the tradeoff between both accuracy, i.e., a small sum of error squares, and not

too high a complexity. This tradeoff is established through the penalty parameters

λm. In this study, we tackle that tradeoff by penalty methods, such as regularization

techniques and by conic quadratic programming. In subsection 3.3.4, we shall extend

this regularization by including Tikhonov regularization of the linear part.

If we consider the representations (3.31) and (3.32) in (3.35), then the objective func-

tion (3.35) will be as follows [93]:

PRSS =
N∑
i=1

(
ηi − xTi β − θ0 −

M∑
m=1

θmψm(tmi )−
Mmax∑
m=M+1

θmψm(tmi )

)2

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm, (3.37)

where the vector t i = (ti,1, ti,2, . . . , ti,q)
T denotes any of the input vectors while tmi =(

ti,κ1 , ti,κ2 , . . . , ti,κKm

)T
shows the corresponding projection vectors of t i onto those

coordinates that contribute to the mth basis function, ψm, which are related with the

ith link function ηi. We recall that those coordinates are collected in the set V (m).

Let us note here that the second-order derivatives of the piecewise linear functions ψm

(m = 1, 2, ...,M) and, hence, the penalty terms related are vanishing. Now, we can

rearrange the representation of PRSS as follows:

PRSS :=
N∑
i=1

(yi − xTi β − ψ(d̃i)T θ)2

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm, (3.38)

where ψ(d̃ i) = (1, ψ1(t1
i ), ψ2(t2

i ), . . . , ψM (tMi ), ψM+1(tM+1
i ), . . . , ψMmax(tMmax

i ))T ,

θ:= (θ0, θ1, . . . , θMmax)T with the point d̃ i := (t1
i , t

2
i , . . . , t

M
i , t

M+1
i , . . . , tMmax

i )T in
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the argument. To approximate the multi-dimensional integrals∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm,

the discretizations and model approximations are used. Then, we write the discretized

form of the integrals as follows:∫
Qm

θ2
m

[
D α
r,sψm(tm)

]2
dtm ≈

∑
(σj)j∈{1,2,...,Km}∈{0,1,2,...,N+1}Km

θ2
m·

D α
r,sψm(t

l
κm
j

σ
κm
j
,κmj

, ..., t
l
κm
Km

σ
κm
Km

,κmKm

)

2

·
Km∏
j=1

t
l
κm
j

σ
κm+1
j

,κmj

− t
l
κm
j

σ
κm
j
,κmj

 .

We can rearrange PRSS in this form:

PRSS ≈
N∑
i=1

(
ηi − xTi β −ψ(d̃ i)Tθ

)2

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∑
(σ
κj )

θ2m ·

D α
r,s ψm(t

l
κm
j

σ
κm
j
,κmj

, . . . , t
l
κm
Km

σ
κm
Km

,κm
Km

)

2

·
Km∏
j=1

(
t
l
κm
j

σ
κj+1

,κmj

− t
l
κm
j

σ
κj
,κmj

)
, (3.39)

where (σκj )j∈{1,2,...,p} ∈ {0, 1, 2, ..., N + 1}Km . Let us introduce some more notation

related with the sequence (σκj ) [93]:

t̂
m
i =

t
l
κm
j

σ
κm
j
,κmj

, . . . , t
l
κm
Km

σ
κm
Km

,κmKm

 , ∆t̂
m
i :=

Km∏
j=1

(
t
l
κm
j

σ
κj+1

,κmj

− t
l
κm
j

σ
κj
,κmj

)
. (3.40)

It is possible to approximate PRSS by using (3.40) as follows:

PRSS ≈
N∑
i=1

(
ηi − xTi β −ψ(d̃ i)Tθ

)2

+
Mmax∑
m=1

λmθ
2
m

(N+1)Km∑
i=1

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

[
D α
r,sψm(t̂

m
i )
]2

∆t̂
m
i .

(3.41)

For a short representation, we can rewrite the approximate relation (3.39) as in the

following:

PRSS ≈
∥∥∥η −Xβ −ψ(d̃)θ

∥∥∥2

2
+
Mmax∑
m=1

λm

(N+1)Km∑
i=1

L2
imθ

2
m, (3.42)
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where ψ(d̃) =
(
ψ(d̃1), . . . ,ψ(d̃N )

)T
is an (N × (Mmax+1))-matrix and the numbers

L2
im are defined by their roots

Lim :=


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

[
D α
r,sψm(t̂

m
i )
]2

∆t̂
m
i


1/2

.

3.3.4 Tikhonov Regularization Applied in GPLM with CMARS

If we consider equation (3.42), we can write PRSS as follows [93]:

PRSS ≈ ‖η −X ∗β∗‖22 +
Mmax∑
m=1

λm

(N+1)Km∑
i=1

L2
imθ

2
m, (3.43)

where X ∗ = (X , ψ(d̃)) is a block matrix constructed by (N × p)-matrix X and

(N× (Mmax + 1))-matrix ψ(d̃), β∗ = (βT , θT )T is a vector constructed β and θ vec-

tors. Then, we deal with the linear systems equations of η = X ∗β∗, approximately.

This problem may be ill-posed (irregular or unstable). For this reason, we approach

our problem PRSS as a Tikhonov regularization problem [70] because Tikhonov regu-

larization belongs to the most commonly used methods of making ill-posed problems

well-posed (regular or stable). A Tikhonov solution can be expressed quite easily in

terms of singular value decomposition (SVD) of the coefficient matrix X ∗ of a regarded

linear system of equations η = X ∗β∗.

For this purpose we consider formula (3.43) again, arranging it as follows:

PRSS ≈ ‖η −X ∗β∗‖22 +
Mmax∑
m=1

λm

(N+1)Km∑
i=1

L2
imθ

2
m

=
Mmax∑
m=1

λm

[
(L1mθm)2 + (L2mθm)2 + . . .+ (L(N+1)Kmmθm)2

]
= ‖η −X ∗β∗‖22 +

Mmax∑
m=1

λm‖Lmθm‖22, (3.44)

where Lm := (L1m, L2m, . . . , L(N+1)Km ,m)T (m = 1, 2, . . . ,Mmax). To turn this equa-

tion into a Tikhonov Regularization Problem with a single tradeoff parameter, we

make a uniform penalization by taking the same λ for each derivative term, i.e.,

λ1 = λ2 = . . . = λMmax =: λ, where λm ≥ 0 (m = 1, 2, . . . ,Mmax). Thus, the
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approximation is in the following form:

PRSS ≈ ‖η −X ∗β∗‖22 + λ‖Lθ‖22, (3.45)

where θ is an ((Mmax + 1) × 1)-parameter vector to be estimated through the data

points and L is a diagonal (Mmax + 1)×(Mmax + 1)-matrix with first column L0 =

0N+1Km and the other columns being the vectors Lm introduced above. Let us con-

sider the high-dimensional matrix L∗ = (R∗, L), where R∗ is an ((Mmax + 1) × p)-

regularization matrix with entries being first or second derivative of β. These deriva-

tives are given by first- or second-order difference quotients of β, regarded as a func-

tion that is evaluated at the points i and i + 1. These difference quotients approx-

imate first- and second-order derivatives; altogether, they are comprised by prod-

ucts R∗β of β with matrices R∗ that represent the discrete differential operators of

first- and second order, respectively. Then, our PRSS problem looks as a classical

Tikhonov regularization problem [70] with ϕ > 0, i.e., λ = ϕ2 for some ϕ ∈ R is as fol-

low. Our Tikhonov regularization problem has multiple objective functions through a

linear combination of ‖η −X ∗β∗‖22 and ‖X ∗β∗‖22. We select the solution such that it

minimizes both the objective function ‖η −X ∗β∗‖22 and the regularization objective

‖L∗β∗‖22 in the sense of a compromise (tradeoff) solution. For a new contribution to

the dependence of locally linear embedding on regularization parameter(s) we refer to

[67]. Now, our PRSS problem can again be turned into a conic quadratic problem.

3.3.5 An Alternative for Tikhonov Regularization Problem with Conic

Quadratic Programming

As we mentioned in the previous section, the Tikhonov regularization problem (3.45)

can be expressed as a CQP problem. Indeed, based on an appropriate choice of a

bound M̃ , we state the following optimization problem:

min ‖η −X ∗β∗‖22

subject to ‖L∗β∗‖22 ≤ M̃. (3.46)

Let us underline that this choice of M̃ should be the outcome of a careful learning

process, with the help of model-free or model-based methods [40]. In (3.46), we

have the least-squares objective function ‖η −X ∗β∗‖22 and the inequality constraint
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function −‖L∗β∗‖22 +M̃ which is requested to be nonnegative for feasibility. Now, we

equivalently write our optimization problem as follows:

min
z,β∗

z,

subject to ‖η −X ∗β∗‖22 ≤ z
2,

‖L∗β∗‖22 ≤ M̃, z ≥ 0. (3.47)

or equivalently again,

min
z,β∗

z,

subject to ‖η −X ∗β∗‖2 ≤ z,

‖L∗β∗‖2 ≤
√
M̃. (3.48)

A CQP problem is generally expressed as the following [91]:

min
u

cTu , subject to ‖D iu − d i‖22 ≤ pTi u − qi (i = 1, 2, . . . , k). (3.49)

In fact, we see that our optimization problem is such a CQP program with

c = (1,0TMmax+1)T , u = (z,β∗T )T , D1 = (0N ,X ∗), d1 = η, p1 = (1, 0, . . . , 0)T , q1 = 0,

D2 = (0Mmax+1,L
∗), d2 = 0Mmax+1, p2 = 0Mmax+p+2 and q2 = −

√
M̃.

Having written the Tikhonov regularization task for GPLM including MARS for γ(T )

and estimating it with a CQP problem, we will call it CGPLMARS. CGPLMARS

provides a solution by applying the developed CQP techniques. These kinds of well-

structured convex optimization problems have also been used by Weber et al. for

new approaches to regression and classification. In this respect, CGPLMARS has the

advantage of higher speed and less complexity, and it permits the use of interior point

methods [39].

In order to write the optimality condition, the dual problem and the primal dual

optimal solution for this problem, and we firstly reformulate the problem (3.22) as
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follows:

min
z,η∗

z,

such that χ :=

0N X ∗

1 0TMmax+1+p

 z
β∗

+

−η
0

 ,
τ :=

0Mmax+1 L∗

0 0TMmax+1+p

 z
β∗

+

0Mmax+1√
M̃

 ,
χ ∈ LN+1, τ ∈ LMmax+2, (3.50)

where LN+1, LMmax+2 are the (N + 1)- and (Mmax + 2)-dimensional ice-cream (or

second-order, or Lorentz) cones, defined by

Lp+1 :=
{

x = (x1, x2, ..., xN+1)T ∈ RN+1 | xN+1 ≥
√
x2

1 + x2
2 + ...+ x2

N

}
(N ≥ 1).

The dual problem to the latter primal one is given by

max (ηT , 0)ω1 +
(
0TMmax+1,−

√
M̃
)
ω2

such that

 0TN 1

ψ(d̃) 0TMmax+1

ω1 +

0TMmax+1 0

L∗T 0Mmax+1+p

ω2 =

 1

0Mmax+1+p

 ,
ω1 ∈ LN+1, ω2 ∈ LMmax+2. (3.51)

Moreover, (z,β∗,χ, τ ,ω1,ω2) is a primal dual optimal solution if and only if

χ :=

0N X ∗

1 0TMmax+1+p

 z
β∗

+

−η
0

 ,
τ :=

0Mmax+1 L∗

0 0TMmax+1+p

 z
β∗

+

0Mmax+1√
M̃

 ,
 0TN 1

X ∗T 0TMmax+1+p

ω1 +

0TMmax+1 0

L∗T 0Mmax+1+p

ω2 =

 1

0Mmax+1+p

 ,
ωT1 χ = 0, ωT2 η = 0,

ω1 ∈ LN+1, ω2 ∈ LMmax+2,

χ ∈ LN+1, τ ∈ LMmax+2. (3.52)

The parametrical upper bound M̃ in a constraint of the CQP and the penalty pa-

rameter λ in the PRSS are related. We can determine λ via Tikhonov regularization.
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According to a large (finite) number of parameter values, this regularization method

utilises an efficiency curve that comes from a plotting of the optimal solutions to

problem (3.18). There are two axes which can be plotted in a coordinate scheme. At

one axis, the complexity is denoted, whereas the other axis stands for the length of

the residual vector (or goodness-of-fit). In this method, there is an L-curve under

logarithmical scales employed and with some “kink” (corner) kind of a point on the

efficiency boundary that has a more pronounced L shape now. This point is regarded

to be the closest one to the origin and it is therefore often chosen, together with the

corresponding penalty parameter [3].

In the following, we shall focus on the nonlinear part of GPLM and approach it by the

help of CMARS. Herewith, for the sake of simplicity, we disregard the linear model

part, knowing, however, how we have to argue and proceed in the presence of the

linear part.

In the numerical example of this thesis, we restricted ourselves on the regularization

of nonparametric part and we explained it with details in the Section 3.4.

3.4 Numerical Examples on the Use of CMARS

In this part we use two continuous data sets; one has interaction and the other has

no interaction between variables. We apply both Tikhonov Regularization and Conic

Quadratic Programming to predict the response variable. By this, we aim to view how

CMARS or Tikhonov Regularization estimates the response variable. Data without

interaction has three variables and 25 observations (taken from Mendenhal and Sincich

(1994) [59], p. 678) while data within interaction contains five predictor variables and

contains 32 observations (taken from Myers and Montgomery (2002) [68], p. 71).

We find basis functions by MARS and applied Conic Quadratic Programming with

MOSEK to estimate the unknown regression coefficients.

Here, x is a generic variable in the space of Rl ({l ∈ 1, 2, 3}) for the data without

interaction and in the space of Rl (l ∈ {1, 2, . . . , 5}) for the data within interaction.
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3.4.1 Example without Interaction Data

In order to build the MARS model by trial and error we set the maximum number

of BFs to four, i.e., Mmax = 4, with no interaction. Then the number of maximum

basis functions which are constructed by using MARS version 2 developed by Salford

Systems are as follows:

ψ1(x ) = max {0, x1 − 14.11} ,

ψ2(x ) = max {0, 14.11− x1} ,

ψ3(x ) = max {0, x1 − 12.01} ,

ψ4(x ) = max {0, 12.01− x1} ,

Here, ψ1 and ψ2 are the standard BF and mirror image (reflected) BF for the predictor

variable x1. Let us note that the knot point for ψ1 and for ψ2 is 14.11. Similarly, ψ3

and ψ4 are the standard BF and mirror image (reflected) BF for the predictor variable

x1. Let us note that the knot point for ψ3 and for ψ4 is 12.01.

To prevent our optimization problem from nondifferentiability, we choose the knot

values very close to the input values of the data point. Below we select knot values

for corresponding BFs:

For ψ1: τ1,1 = 14.11, τ̃1,1 = 14.10, which is not equal to τ1,1 = 14.11, but very close

to it.

For ψ2: τ1,1 = 14.11, τ̃1,1 = 14.10, which is not equal to τ1,1 = 14.11, but very close

to it.

For ψ3: τ25,1 = 12.01, τ̃25,1 = 12.00, which is not equal to τ25,1 = 12.01, but very close

to it.

For ψ4: τ25,1 = 12.01, τ̃25,1 = 12.00, which is not equal to τ25,1 = 12.01 but very close

to it.
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Then, the BFs of the (3.7) form can be written as follows:

ψ1 : K1 = 1,

xκ1
1

= x1,

τκ1
1

= 14.11,

sκ1
1

= +1,

ψ1(t1) =
K1∏
j=1

(
sκ1

1
· (xκ1

1
− τκ1

1
)
)

+

=
(
sκ1

1
· (xκ1

1
− τκ1

1
)
)

+
,

and

ψ2 : K2 = 1,

xκ2
1

= x1,

τκ2
1

= 14.11,

sκ2
1

= −1,

ψ2(t2) =
K2∏
j=1

(
sκ2

1
· (xκ2

1
− τκ2

1
)
)

+

=
(
sκ2

1
· (xκ2

1
− τκ2

1
)
)

+
,

and

ψ3 : K3 = 1,

xκ3
1

= x1,

τκ3
1

= 12.01,

sκ3
1

= +1,

ψ3(t3) =
K3∏
j=1

(
sκ3

1
· (xκ3

1
− τκ3

1
)
)

+

=
(
sκ3

1
· (xκ3

1
− τκ3

1
)
)

+
,
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and

ψ4 : K4 = 1,

xκ4
1

= x1,

τκ4
1

= 12.01,

sκ4
1

= −1,

ψ4(t4) =
K4∏
j=1

(
sκ4

1
· (xκ4

1
− τκ4

1
)
)

+

=
(
sκ4

1
· (xκ4

1
− τκ4

1
)
)

+
.

As a result, the large model becomes

y = θ0 +
M∑
m=1

θmψm(x ) + ε,

= θ0 + θ1 max {0, x1 − 14.11}+ θ2 max {0, 14.11− x1}+ θ3 max {0, x1 − 12.01}

+θ4 max {0, 12.01− x1} .

Next, we can write the PRSS objective function in (3.9) as follows:

PRSS =
25∑
i=1

(
yi − θTψ(d̃ i)

)2
+

4∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm

=
25∑
i=1

(
yi − θTψ(d̃ i)

)2
+ λ1

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V1

∫
θ2

1

[
D α
r,sψ1(t1)

]2
dt1



+λ2

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V2

∫
θ2

2

[
D α
r,sψ2(t2)

]2
dt2



+λ3

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V3

∫
θ2

3

[
D α
r,sψ3(t3)

]2
dt3



+λ4

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V4

∫
θ2

4

[
D α
r,sψ4(t4)

]2
dt4

 .
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All evaluations for the notations Vm and tm (for m = 1, . . . , 4) in the above equation

are given below:

V1 =
{
κ1
j |j = 1

}
= {1} , t1 = (t11)T = (x1),

V2 =
{
κ2
j |j = 1

}
= {1} , t2 = (t21)T = (x1),

V3 =
{
κ3
j |j = 1

}
= {1} , t3 = (t31)T = (x1),

V4 =
{
κ4
j |j = 1

}
= {1} , t4 = (t41)T = (x1).

Besides, the corresponding derivatives for the BFs D α
r,sψm(tm) (for m = 1, . . . , 4) are

stated below. For the BF ψ1(t1), there is no interaction, so: r = s = 1. The sum of

indicated first- and second-order derivatives for ψ1 is

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V1

[
D α
r,sψ1(t1)

]2
dt1,

where

| α| = 1 : D1
1ψ1(t1) :=

∂ψ1

∂t11
(t1) =

∂ψ1

∂x1
(x1) =

 1, if x1 > 14.11,

0, otherwise;

| α| = 2 : D2
1ψ1(t1) :=

∂2ψ1

∂t11∂t
1
1

(t1) =
∂2ψ1

∂x1∂x1
(x1) = 0 for all x1.

For the BF ψ2(t2), there is no interaction, so: r = s = 1. The sum of indicated first-

and second-order derivatives for ψ2 is

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V2

[
D α
r,sψ2(t2)

]2
dt2,

where

| α| = 1 : D1
1ψ2(t2) :=

∂ψ2

∂t21
(t2) =

∂ψ2

∂x1
(x1) =

 −1, if x1 < 14.11,

0, otherwise;

| α| = 2 : D2
1ψ2(t2) :=

∂2ψ2

∂t21∂t
2
1

(t2) =
∂2ψ2

∂x1∂x1
(x1) = 0 for all x1.

For the BF ψ3(t3), there is no interaction, so: r = s = 1. The sum of indicated first-

and second-order derivatives for ψ3 is

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V3

[
D α
r,sψ3(t3)

]2
dt3,
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where

| α| = 1 : D1
1ψ3(t3) :=

∂ψ3

∂t31
(t3) =

∂ψ3

∂x1
(x1) =

 1, if x1 > 12.01,

0, otherwise;

| α| = 2 : D2
1ψ3(t3) :=

∂2ψ3

∂t31∂t
3
1

(t3) =
∂2ψ3

∂x1∂x1
(x1) = 0 for all x1.

For the BF ψ4(t4), there is no interaction, so: r = s = 1. The sum of indicated first-

and second-order derivatives for ψ4 is

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V4

[
D α
r,sψ4(t4)

]2
dt4,

where

| α| = 1 : D1
1ψ4(t4) :=

∂ψ4

∂t41
(t4) =

∂ψ4

∂x1
(x1) =

 −1, if x1 < 12.01,

0, otherwise;

| α| = 2 : D2
1ψ4(t4) :=

∂2ψ4

∂t41∂t
4
1

(t4) =
∂2ψ4

∂x1∂x1
(x1) = 0 for all x1.

Therefore, the PRSS objective function in (3.9) has the following form:

PRSS =
25∑
i=1

(
yi − θTψ(d̃ i)

)2

+
4∑

m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm.

If λ1 = λ2 = ... = λMmax =: λ, our problem becomes a Tikhonov regularization

problem. In fact, the PRSS function to be minimized becomes approximated in the

following way:

PRSS ≈
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+ λ ‖Lθ‖22 .

The first part of the PRSS objective function and that of the Tikhonov regularization

problem are equal to each other. But the second part is equal in an approximative

sense:

25∑
i=1

(
yi − θTψ(d̃ i)

)2
=
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
,
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4∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm ≈ λ ‖Lθ‖22 .

The following values represent RSS by its parts, as we list them below. The whole

RSS with a tabular form can be seen in Appendix A.

25∑
i=1

(
yi − θTψ(d̃ i)

)2
= (13.6− θ0 − (max{0, 14.1− 14.11})θ1 −

(max{0, 14.11− 14.1})θ2 −

(max{0, 14.1− 12.01})θ3 −

(max{0, 12.01− 14.1})θ4)2 +

(16.6− θ0 − (max{0, 16− 14.11})θ1 −

(max{0, 14.11− 16})θ2 −

(max{0, 16− 12.01})θ3 −

(max{0, 12.01− 16})θ4)2 +
...

(14.9− θ0 − (max{0, 12− 14.11})θ1 −

(max{0, 14.11− 12})θ2 −

(max{0, 12− 12.01})θ3 −

(max{0, 12.01− 12})θ4)2.

When the maximum functions are computed, the RSS looks as follows:

25∑
i=1

(
yi − θTψ(d̃ i)

)2
= (13.6− θ0 − 0.01θ2 − 2.9θ3)2 +

(16.6− θ0 − 1.89θ1 − 3.99θ3)2 +
...

(14.9− θ0 − 2.11θ2 − 0.01θ4)2,

and writing into vector notation gives us the following form:

= (13.6− θ0 − 0.01θ2 − 2.9θ3)T (13.6− θ0 − 0.01θ2 − 2.9θ3)+
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(16.6− θ0 − 1.89θ1 − 3.99θ3)T (16.6− θ0 − 1.89θ1 − 3.99θ3)+
...

(14.9− θ0 − 2.11θ2 − 0.01θ4)T (14.9− θ0 − 2.11θ2 − 0.01θ4).

If we turn the above summation into matrix notation, we get the subsequent repre-

sentation. So, the value of the first part of PRSS, which is RSS, has been found:
25∑
i=1

(
yi − θTψ(d̃ i)

)2
=

(
y −ψ(d̃)θ

)T (
y −ψ(d̃)θ

)
= ‖y −ψ(d̃)θ‖22.

By discretizing, the multi-dimensional integral in the second part of equation (3.12)

takes the form of (3.15). The discretized form is denoted by L and at the end, the

formulation as given in equation (3.18) can be obtained.

The Lm (m = 1, . . . , 4) values corresponding to BFs ψ1, ψ2, ψ3 and ψ4 are calculated

as follows:

L1 =
(N+1)K1∑
i=1


 2∑

|α|=1
α=(α1,α2)T

∑
r<s

r,s∈V1

[
D α
r,s (max {0, x1 − 14.11})

]2(x̃lκ1
1
σκ1 +1,κ1

1

− x̃
l
κ1
1
σκ1 ,κ

1
1

) ,
= 3.9243,

L2 =
(N+1)K2∑
i=1


 2∑

|α|=1
α=(α1,α2)T

∑
r<s

r,s∈V2

[
D α
r,s (max {0, 14.11− x1})

]2(x̃lκ2
1
σκ1 +1,κ2

1

− x̃
l
κ2
1
σκ1 ,κ

2
1

) ,
= 3.6878,

L3 =
(N+1)K3∑
i=1


 2∑

|α|=1
α=(α1,α2)T

∑
r<s

r,s∈V3

[
D α
r,s (max {0, x1 − 12.01})

]2(x̃lκ3
1
σκ1 +1,κ3

1

− x̃
l
κ3
1
σκ1 ,κ

3
1

) ,
= 4.1833,

L4 =
(N+1)K4∑
i=1


 2∑

|α|=1
α=(α1,α2)T

∑
r<s

r,s∈V4

[
D α
r,s (max {0, 12.01− x1})

]2(x̃lκ4
1
σκ1 +1,κ4

1

− x̃
l
κ4
1
σκ1 ,κ

4
1

) ,
= 3.3912.

L =



0 0 0 0 0

0 3.9243 0 0 0

0 0 3.6878 0 0

0 0 0 4.1833 0

0 0 0 0 3.3912


.
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Note that the first column elements of L are all zero and the diagonal elements of this

matrix are Lm (m = 1, 2, 3, 4) as introduced above.

In the equation (3.18), ‖Lθ‖22 is the squared norm of Lθ which is:

‖Lθ‖22 = (θ1 · (3.9243))2 + (θ2 · (3.6878))2 + (θ3 · (4.1833))2 +

(θ4 · (3.3912))2 . (3.53)

From the equations (3.16) and (3.44), we can calculate the objective function PRSS for

the numerical example. As we mentioned before, PRSS is a Tikhonov Regularization

Problem. To solve this problem, we can reformulate PRSS as a CQP problem as

follows:

min
t,θ

t,

subject to
∥∥∥ψ(d̃)θ − y

∥∥∥
2
≤ t,

‖Lθ‖2 ≤
√
M̃.

PRSS and CQP have different notations, but they have the same solution for appro-

priate choice of the λ and
√
M̃ . When decreasing the values of λ and

√
M̃ a bit,

the minimum value of the ‖ψ(d̃)θ − y‖2 increases for both PRSS and CQP that are

minimization problems.

Our previous CQP problem can be rewritten as follows:

min
t,θ

t,

subject to 13.6− θ0 − 0.01θ2 − 2.9θ3 = θ5,

16.6− θ0 − 1.89θ1 − 3.99θ3 = θ6,

23.5− θ0 − 15.77θ1 − 17.87θ3 = θ7,

10.20− θ0 − 6.11θ2 − 4.01θ4 = θ8,

5.4− θ0 − 10.01θ2 − 7.91θ4 = θ9,

15− θ0 − 0.89θ1 − 2.99θ3 = θ10,

9− θ0 − 5.31θ2 − 3.21θ4 = θ11,

12.3− θ0 − 1.71θ2 − 0.39θ3 = θ12,
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16.3− θ0 − 2.49θ1 − 4.59θ3 = θ13,

15.4− θ0 − 0.79θ1 − 2.79θ3 = θ14,

13− θ0 − 0.41θ2 − 1.69θ3 = θ15,

14.4− θ0 − 0.99θ1 − 3.09θ3 = θ16,

10− θ0 − 6.31θ2 − 4.21θ4 = θ17,

10.20− θ0 − 2.71θ2 − 0.61θ4 = θ18,

9.5− θ0 − 5.11θ2 − 3.01θ4 = θ19,

1.5− θ0 − 13.11θ2 − 11.01θ4 = θ20,

18.5− θ0 − 2.89θ1 − 4.99θ3 = θ21,

12.6− θ0 − 1.31θ2 − 0.79θ3 = θ22,

17.5− θ0 − 1.69θ1 − 3.79θ3 = θ23,

4.9− θ0 − 9.61θ2 − 7.51θ4 = θ24,

15.9− θ0 − 0.39θ1 − 2.49θ3 = θ25,

8.5− θ0 − 6.81θ2 − 4.71θ4 = θ26,

10.6− θ0 − 5.51θ2 − 3.41θ4 = θ27,

13.9− θ0 − 1.09θ1 − 3.19θ3 = θ28,

14.9− θ0 − 2.11θ2 − 0.01θ4 = θ29,(
29∑
i=5

θ2
i

)1/2

≤ t,

(
34∑
i=30

θ2
i

)1/2

≤
√
M̃,

where θ30 = 0θ1, θ31 = 3.9243θ1, θ32 = 3.6878θ2, θ33 = 4.1833θ3, θ34 = 3.3912θ4.

As can be seen from the equation (3.18), our problem involves 25 linear constraints

and two quadratic cones. For solving our numerical problem, we transform it into

the MOSEK format. For this transformation, we introduce new unknown variables

(θ5,. . . ,θ34), to the linear notations in these two quadratic cones. Therefore, the

notations in the cones are simplified and we write them as constraints. MOSEK uses an

interior-point optimizer to solve the considered CQP problem. It is a well-recognized

implementation of the homogeneous and self-dual algorithm. We use model-free (train

and error) method for different
√
M̃ values in our example. By using different

√
M̃
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values when solving our CMARS model in MOSEK, we reach several solutions that

are based on four BFs.

3.4.2 Example with Interaction Data

While implementing the CMARS algorithm, first, the MARS model is built by using

the Salford MARS v.2 [60]. In the construction of the model, the maximum number

of BFs (Mmax) and the highest degree of interactions are determined by trial and

error. In this example, Mmax and the highest degree of interactions are assigned to be

five and two, respectively. As a result the largest model built in the forward MARS

algorithm by the software contains the following BFs:

ψ1(x ) = max {0, x2 − 2.21} ,

ψ2(x ) = max {0, 2.21− x2} ,

ψ3(x ) = max {0, x4 − 0.26} ,

ψ4(x ) = max {0, x1 − 1601} ·max {0, x4 − 0.26} ,

ψ5(x ) = max {0, x5 − 0.71} ·max {0, x4 − 0.26} .

Here, ψ1 and ψ2 are the standard BF and mirror image (reflected) BF for the predictor

variable x2. Let us note that the knot point for ψ1 and for ψ2 is 2.21. BF ψ4, on

the other hand, uses the function ψ3 to express the interaction between the predictor

variables x1 and x4. Similarly, ψ5 represents the interaction between the predictor

variables x4 and x5.

To prevent our optimization problem from nondifferentiability, we choose the knot

values very close to the input values of the data point. Below we select knot values

for corresponding BFs:

For ψ1:

τ18,2 = 2.21, τ̃18,2 = 2.20, which is not equal to τ18,2 = 2.21, but very close to it.

For ψ2:

τ18,2 = 2.21, τ̃18,2 = 2.20, which is not equal to τ18,2 = 2.21, but very close to it.
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For ψ3:

τ1,4 = 0.26, τ̃1,4 = 0.25, which is not equal to τ1,4 = 0.26, but very close to it.

For ψ4:

τ6,1 = 1601, τ̃6,1 = 1600, which is not equal to τ6,1 = 1601, but very close to it.

τ1,4 = 0.26, τ̃1,4 = 0.25, which is not equal to τ1,4 = 0.26, but very close to it.

For ψ5:

τ25,5 = 0.71, τ̃25,5 = 0.70, which is not equal to τ25,5 = 0.71, but very close to it.

τ6,4 = 0.26, τ̃6,4 = 0.25, which is not equal to τ6,4 = 0.26, but very close to it.

Then, the BFs of the (3.7) form can be written as follows:

ψ1 : K1 = 1,

xκ1
1

= x2,

τκ1
1

= 2.21,

sκ1
1

= +1,

ψ1(t1) =
K1∏
j=1

(
sκ1

1
· (xκ1

1
− τκ1

1
)
)

+

=
(
sκ1

1
· (xκ1

1
− τκ1

1
)
)

+
,

and

ψ2 : K2 = 1,

xκ2
1

= x2,

τκ2
1

= 2.21,

sκ2
1

= −1,

ψ2(t2) =
K2∏
j=1

(
sκ2

1
· (xκ2

1
− τκ2

1
)
)

+

=
(
sκ2

1
· (xκ2

1
− τκ2

1
)
)

+
,
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and

ψ3 : K3 = 1,

xκ3
1

= x4,

τκ3
1

= 0.26,

sκ3
1

= +1,

ψ3(t3) =
K3∏
j=1

(
sκ3

1
· (xκ3

1
− τκ3

1
)
)

+

=
(
sκ3

1
· (xκ3

1
− τκ3

1
)
)

+
,

and

ψ4 : K4 = 2,

xκ4
1

= x1, xκ4
2

= x4,

τκ4
1

= 0.26, τκ4
2

= 2.21,

sκ4
1

= +1, sκ4
2

= +1,

ψ4(t4) =
K4∏
j=1

(
sκ4

j
· (xκ4

j
− τκ4

j
)
)

+

=
(
sκ4

1
· (xκ4

1
− τκ4

1
)
)

+
·
(
sκ4

2
.(xκ4

2
− τκ4

2
)
)

+
,

and

ψ5 : K5 = 2,

xκ5
1

= x5, xκ5
2

= x5,

τκ5
1

= 0.71, τκ5
2

= 2.21,

sκ5
1

= +1, sκ5
2

= +1,

ψ5(t5) =
K5∏
j=1

(
sκ5

j
· (xκ5

j
− τκ5

j
)
)

+

=
(
sκ5

1
· (xκ5

1
− τκ5

1
)
)

+
·
(
sκ5

2
.(xκ5

2
− τκ5

2
)
)

+
.
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As a result, the large model becomes

y = θ0 +
M∑
m=1

θmψm(x ) + ε,

= θ0 + θ1 max {0, x2 − 2.21}+ θ2 max {0, 2.21− x2}+ θ3 max {0, x4 − 0.26}

+θ4 max {0, x1 − 1601} ·max {0, x4 − 0.26}

+θ5 max {0, x5 − 0.71} ·max {0, x4 − 0.26}+ ε.

Next, we can write the PRSS objective function in (3.9) as follows:

PRSS =
32∑
i=1

(
yi − θTψ(d̃ i)

)2
+

5∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm

=
32∑
i=1

(
yi − θTψ(d̃ i)

)2
+ λ1

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V1

∫
θ2

1

[
D α
r,sψ1(t1)

]2
dt1



+λ2

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V2

∫
θ2

2

[
D α
r,sψ2(t2)

]2
dt2



+λ3

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V3

∫
θ2

3

[
D α
r,sψ3(t3)

]2
dt3



+λ4

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V4

∫
θ2

4

[
D α
r,sψ4(t4)

]2
dt4



+λ5

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V5

∫
θ2

5

[
D α
r,sψ5(t5)

]2
dt5

 .

All evaluations for the notations Vm and tm (for m = 1, . . . , 5) in the above equation

are given below:

V1 =
{
κ1
j |j = 1

}
= {2} , t1 = (t11)T = (x2),

V2 =
{
κ2
j |j = 1

}
= {2} , t2 = (t21)T = (x2),

V3 =
{
κ3
j |j = 1

}
= {4} , t3 = (t31)T = (x4),

V4 =
{
κ4
j |j = 1, 2

}
= {1, 4} , t4 = (t41, t

4
2)T = (x1, x4),

V5 =
{
κ5
j |j = 1, 2

}
= {4, 5} , t5 = (t51, t

5
2)T = (x4, x5).
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Besides, the corresponding derivatives for the BFs D α
r,sψm(tm) (for m = 1, . . . , 5) are

stated in the following.

For the BF ψ1(t1), there is no interaction, so: r = s = 2. The sum of indicated first-

and second-order derivatives for ψ1 is

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V1

[
D α
r,sψ1(t1)

]2
dt1,

where

| α| = 1 : D1
2ψ1(t1) :=

∂ψ1

∂t11
(t1) =

∂ψ1

∂x2
(x2) =

 −1, if x2 > 2.21,

0, otherwise;

| α| = 2 : D2
2ψ1(t1) :=

∂2ψ1

∂t11∂t
1
1

(t1) =
∂2ψ1

∂x2∂x2
(x2) = 0 for all x2.

For the BF ψ2(t2), there is no interaction, so: r = s = 2. The sum of indicated first-

and second-order derivatives for ψ2 is

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V2

[
D α
r,sψ2(t2)

]2
dt2,

where

| α| = 1 : D1
2ψ2(t2) :=

∂ψ2

∂t21
(t2) =

∂ψ2

∂x2
(x2) =

 1, if x2 < 2.21,

0, otherwise;

| α| = 2 : D2
2ψ2(t2) :=

∂2ψ2

∂t21∂t
2
1

(t2) =
∂2ψ2

∂x2∂x2
(x2) = 0 for all x2.

For the BF ψ3(t3), there is no interaction, so: r = s = 4. The sum of indicated first-

and second-order derivatives for ψ3 is

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V3

[
D α
r,sψ3(t3)

]2
dt3,

where

| α| = 1 : D1
4ψ3(t3) :=

∂ψ3

∂t31
(t3) =

∂ψ3

∂x4
(x4) =

 1, if x4 > 0.26,

0, otherwise;

| α| = 2 : D2
4ψ3(t3) :=

∂2ψ3

∂t31∂t
3
1

(t3) =
∂2ψ3

∂x4∂x4
(x4) = 0 for all x4.
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For the BF ψ4(t4), on the other hand, there is an interaction between the predictors

x1 and x4, and r = 1 and s = 4, so: r < s. Then, the sum of indicated first- and

second-order derivatives of ψ4 can be written as

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V4

[
D α
r,sψ4(t4)

]2
dt4,

where

| α| = 1 : D1
1,4ψ4(t4) :=

∂ψ4

∂t41
(t4) =

∂ψ4

∂x1
(x1, x4) =

 max {0, x4 − 0.26} , if x1 > 1601,

0, otherwise;

D1
1,4ψ4(t4) :=

∂ψ4

∂t42
(t4) =

∂ψ4

∂x4
(x1, x4) =

 max {0, x1 − 1601} , if x4 > 0.26,

0, otherwise;

| α| = 2 : D2
1,4ψ4(t4) :=

∂2ψ4

∂t41∂t
4
2

(t4) =
∂2ψ4

∂x1∂x4
(x1, x4) =

 1, if x4 > 0.26

0, otherwise.

For the BF ψ5(t5), on the other hand, there is an interaction between the predictors

x4 and x5, and r = 4 and s = 5, so: r < s. Then, the sum of indicated first- and

second-order derivatives of ψ5 can be written as:

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V5

[
D α
r,sψ5(t5)

]2
dt5,

where

| α| = 1 : D1
4,5ψ5(t5) :=

∂ψ5

∂t51
(t5) =

∂ψ5

∂x4
(x4, x5) =

 max {0, x5 − 0.71} , if x4 > 0.26,

0, otherwise;

D1
4,5ψ5(t5) :=

∂ψ5

∂t52
(t5) =

∂ψ5

∂x5
(x4, x5) =

 max {0, x4 − 0.26} , if x5 > 0.71,

0, otherwise;

| α| = 2 : D2
4,5ψ5(t5) :=

∂2ψ5

∂t51∂t
5
2

(t5) =
∂2ψ5

∂x4∂x5
(x4, x5) =

 1, if x5 > 0.71,

0, otherwise.
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Therefore, the PRSS objective function in (3.9) has the following form:

PRSS =
32∑
i=1

(
yi − θTψ(d̃ i)

)2

+
5∑

m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm.

If λ1 = λ2 = ... = λMmax =: λ, then the namely by a Tikhonov regularization problem:

PRSS function to be minimized becomes approximated is as follows:

PRSS ≈
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+ λ ‖Lθ‖22 .

The first part of the PRSS objective function and that of the Tikhonov regularization

problem are equal to each other. But the second part is equal in an approximative

sense:

32∑
i=1

(
yi − θTψ(d̃ i)

)2
=
∥∥∥y −ψ(d̃)θ

∥∥∥2

2

5∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm ≈ λ ‖Lθ‖22 .

The following values represent RSS by its parts, as we list them below. The whole

RSS with a tabular form can be seen in Appendix A.

32∑
i=1

(
yi − θTψ(d̃ i)

)2
= (0.013− θ0 − (max{0, 0.58− 2.21})θ1 −

(max{0, 2.21− 0.58})θ2 −

(max{0, 0.25− 0.26})θ3 −

(max{0, 1650− 1601})(max{0, 0.25− 0.26})θ4 −

(max{0, 0.9− 0.71})(max{0, 0.25− 0.26})θ5)2 +

(0.016− θ0 − (max{0, 0.66− 2.21})θ1 −

(max{0, 2.21− 0.66})θ2 −

(max{0, 0.33− 0.26})θ3 −

(max{0, 1650− 1601})(max{0, 0.33− 0.26})θ4−
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(max{0, 0.9− 0.71})(max{0, 0.33− 0.26})θ5)2 +
...

(0.068− θ0 − (max{0, 18.5− 2.21})θ1 −

(max{0, 2.21− 18.5})θ2 −

(max{0, 1.5− 0.26})θ3 −

(max{0, 1700− 1601})(max{0, 1.5− 0.26})θ4 −

(max{0, 0.7− 0.71})(max{0, 1.5− 0.26})θ5)2.

When the maximum functions are computed, the RSS terms looks as follows:

32∑
i=1

(
yi − θTψ(d̃ i)

)2
= (0.013− θ0 − 1.63θ2)2 +

(0.016− θ0 − 1.55θ2 − 0.07θ3 − 3.43θ4 − 0.0133θ5)2 +
...

(0.068− θ0 − 16.29θ1 − 1.24θ3 − 122, 76θ4)2.

and writing into vector notation gives us the following form:

= (0.013− θ0 − 1.63θ2)T (0.013− θ0 − 1.63θ2)+

(0.016− θ0 − 1.55θ2 − 0.07θ3 − 3.43θ4 − 0.0133θ5)T

(0.016− θ0 − 1.55θ2 − 0.07θ3 − 3.43θ4 − 0.0133θ5)+

...

(0.068− θ0− 16.29θ1− 1.24θ3− 122, 76θ4)T (0.068− θ0− 16.29θ1− 1.24θ3− 122, 76θ4).

If we turn the above summation into matrix notation, we get the subsequent repre-

sentation. So, the value of the first part of PRSS, which is RSS, has been found:

32∑
i=1

(
yi − θTψ(d̃ i)

)2
=

(
y −ψ(d̃)θ

)T (
y −ψ(d̃)θ

)
= ‖y −ψ(d̃)θ‖22.

By discretizing, the multi-dimensional integral in the second part of equation (3.12)

takes the form of (3.15). The discretized form is denoted by L and at the end, the

formulation as given in equation (3.18) can be obtained.
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The values Lm (m = 1, . . . , 5) corresponding to BFs ψ1, ψ2, ψ3, ψ4 and ψ5 are calcu-

lated as follows:

L1 =
(N+1)K1∑
i=1


 2∑

|α|=1
α=(α1,α2)T

∑
r<s

r,s∈V1

[
D α
r,s (max {0, x2 − 2.21})

]2(x̃lκ1
1
σκ1 +1,κ1

1

− x̃
l
κ1
1
σκ1 ,κ

1
1

)
= 3.9497,

L2 =
(N+1)K2∑
i=1


 2∑

|α|=1
α=(α1,α2)T

∑
r<s

r,s∈V2

[
D α
r,s (max {0, 2.21− x2})

]2(x̃lκ2
1
σκ1 +1,κ2

1

− x̃
l
κ2
1
σκ1 ,κ

2
1

)
= 1.5875,

L3 =
(N+1)K3∑
i=1


 2∑

|α|=1
α=(α1,α2)T

∑
r<s

r,s∈V3

[
D α
r,s (max {0, x4 − 0.26})

]2(x̃lκ3
1
σκ1 +1,κ3

1

− x̃
l
κ3
1
σκ1 ,κ

3
1

)
= 1.1958,

L4 =

(N+1)K4∑
i=1


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V4

[
D α
r,sψ4(t4)

]2
(x̃lκ4

1
σκ1

+1,κ4
1

− x̃
l
κ4
1
σκ1

,κ4
1

)
.

(
x̃
l
κ4
2
σκ2

+1,κ4
2

− x̃
l
κ4
2
σκ1

,κ4
2

)
= 9.9015,

L5 =

(N+1)K5∑
i=1


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V5

[
D α
r,sψ5(t5)

]2
(x̃lκ5

1
σκ1

+1,κ5
1

− x̃
l
κ5
1
σκ1

,κ5
1

)
.

(
x̃
l
κ5
2
σκ2

+1,κ5
2

− x̃
l
κ5
2
σκ1

,κ5
2

)
= 0.1975.

L =



0 0 0 0 0 0

0 3.9497 0 0 0 0

0 0 1.5875 0 0 0

0 0 0 1.1958 0 0

0 0 0 0 9.9015 0

0 0 0 0 0 0.1975


.

Note that the first column elements of L are all zero and the diagonal elements of this

matrix are Lm (m = 1, 2, ..., 5) as introduced above.
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In the equation (5.25), ‖Lθ‖22 is the squared norm of Lθ which is:

‖Lθ‖22 = (θ1 · (3.9497))2 + (θ2 · (1.5875))2 + (θ3 · (1.1958))2 + (θ4 · (9.9015))2 +

(θ5 · (0.1975))2 . (3.54)

We can calculate the objective function PRSS for the numerical example from the

equations (3.16) and (3.44). As we mentioned before, PRSS is the Tikhonov Regular-

ization Problem. To solve this problem, we can reformulate PRSS as a CQP problem

as follows:

min
t,θ

t,

subject to
∥∥∥ψ(d̃)θ − y

∥∥∥
2
≤ t,

‖Lθ‖2 ≤
√
M̃, (3.55)

PRSS and CQP have different notations, but they have the same solution for appro-

priate choice of the parameter λ and
√
M̃ . When decreasing the values of λ and

√
M̃

a bit, the minimum value of ‖ψ(d̃)θ − y‖2 increases for both PRSS and CQP that

are minimization problems.

Our previous CQP problem can be rewritten as follows:

min
t,θ

t,

subject to 0.013− θ0 − 1.63θ2 = θ6,

0.016− θ0 − 1.55θ2 − 0.07θ3 − 3.43θ4 − 0.0133θ5 = θ7,

0.015− θ0 − 1.55θ2 − 0.07θ3 − 3.43θ4 − 0.0133θ5 = θ8,

0.016− θ0 − 1.55θ2 − 0.07θ3 − 3.43θ4 − 0.0168θ5 = θ9,

0.015− θ0 − 1.55θ2 − 0.07θ3 − 0.0203θ5 = θ10,

0.016− θ0 − 1.55θ2 − 0.07θ3 − 0.0203θ5 = θ11,

0.014− θ0 − 1.21θ2 − 0.24θ3 − 11, 76θ4 − 0.0216θ5 = θ12,

0.021− θ0 − 1.04θ2 − 0.32θ3 − 15, 68θ4 − 0.0288θ5 = θ13,

0.018− θ0 − 1.04θ2 − 0.32θ3 − 15, 68θ4 − 0.0288θ5 = θ14,

0.019− θ0 − 1.04θ2 − 0.32θ3 − 15, 68θ4 − 0.0288θ5 = θ15,

0.021− θ0 − 1.04θ2 − 0.32θ3 − 15, 68θ4 − 0.0608θ5 = θ16,
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0.019− θ0 − 1.04θ2 − 0.32θ3 − 15, 68θ4 − 0.0608θ5 = θ17,

0.021− θ0 − 1.04θ2 − 0.32θ3 − 15, 68θ4 − 0.0608θ5 = θ18,

0.025− θ0 − 1.01θ2 − 0.84θ3 − 41, 16θ4 − 0.0756θ5 = θ19,

0.025− θ0 − 0.21θ2 − 0.74θ3 − 36, 26θ4 − 0.0666θ5 = θ20,

0.026− θ0 − 0.21θ2 − 0.84θ3 − 41, 16θ4 − 0.0756θ5 = θ21,

0.024− θ0 − 0.01θ2 − 0.84θ3 − 41, 16θ4 − 0.0756θ5 = θ22,

0.025− θ0 − 0.01θ2 − 0.84θ3 − 41, 16θ4 − 0.0756θ5 = θ23,

0.024− θ0 − 0.01θ2 − 0.84θ3 − 41, 16θ4 − 0.0756θ5 = θ24,

0.025− θ0 − 0.01θ2 − 0.84θ3 − 41, 16θ4 − 0.1596θ5 = θ25,

0.027− θ0 − 0.01θ2 − 0.84θ3 − 41, 16θ4 − 0.1596θ5 = θ26,

0.026− θ0 − 0.01θ2 − 1.24θ3 − 60, 76θ4 − 0.2356θ5 = θ27,

0.029− θ0 − 0.79θ1 − 1.24θ3 − 60, 76θ4 − 0.1116θ5 = θ28,

0.03− θ0 − 0.79θ1 − 1.24θ3 − 60, 76θ4 = θ29,

0.028− θ0 − 0.79θ1 − 1.24θ3 − 60, 76θ4 − 0.0496θ5 = θ30,

0.032− θ0 − 0.79θ1 − 1.4θ3 − 68, 6θ4 − 0.196θ5 = θ31,

0.033− θ0 − 1.12θ1 − 1.24θ3 − 60, 76θ4 − 0.1116θ5 = θ32,

0.039− θ0 − 1.79θ1 − 1.24θ3 − 122, 76θ4 = θ33,

0.04− θ0 − 1.79θ1 − 1.24θ3 − 60, 76θ4 = θ34,

0.035− θ0 − 1.79θ1 − 1.24θ3 − 60, 76θ4 − 0.1736θ5 = θ35,

0.056− θ0 − 10.29θ1 − 1.24θ3 − 122, 76θ4 = θ36,

0.068− θ0 − 16.29θ1 − 1.24θ3 − 122, 76θ4 = θ37,

(
37∑
i=6

θ2
i

)1/2

≤ t,

(
43∑
i=38

θ2
i

)1/2

≤
√
M̃,

where θ38 = 0θ1, θ39 = 3.9497θ1, θ40 = 1.5875θ2, θ41 = 1.1958θ3, θ42 = 9.9015θ4,

θ43 = 0.1975θ5. As can be seen from the equation (3.18), our problem involves 32

linear constraints and two quadratic cones. For solving our numerical problem, we
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transform it into the MOSEK format. For this transformation, we introduce new

unknown variables (θ6,. . . ,θ43), to the linear notations in these two quadratic cones.

Therefore, the notations in the cones are simplified and we write them as constraints.

MOSEK uses an interior-point optimizer to solve CQP problem. It is a well-recognized

implementation of the homogeneous and self-dual algorithm. We use model-free (train

and error) method for different
√
M̃ values in our example. By using different

√
M̃

values when solving our CMARS model in MOSEK, we reach several solutions that

are based on five BFs.

In our optimization problem, the values
√
M̃ can be regarded as a model-free method.

We note that our family of optimization problems, indexed by M̃ , can be considered as

a problem of parametric programming. If the
√
M̃ values are accessed in our CMARS

code, CMARS provides us several solutions, each of them based on 5 BFs.

In the next section, we apply CMARS to different sizes and types of data sets. The

results obtained from the algorithms with solving Conic Quadratic Programming for

the “without interaction” and also “with interaction” data sets, are also compared

with Tikhonov Regularization Problem whose results are obtained from the thesis [49],

which is on progress, according to various different general performance comparison

criteria.

3.5 Validation Approach and Comparison Measures

3.5.1 Introduction

In our applications, to compare the Tikhonov Regularization Problem, whose results

are obtained from the thesis [49], which is on progress, with Conic Quadratic Program-

ming methods, we use two different data sets that are “continuous” (real-valued). The

first data set has no interaction and the other has interaction between variables. We

wanted to see how CQP or Tikhonov estimates the response variable.

For the comparison, the Linear Regression Models (LRMs) are also developed for no

interaction and interaction training and test data sets by using the stepwise regression

algorithm [74]. While developing LRMs, assumptions related to Least Square Error
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(LSE) are all tested. If any one is not validated, corrective measures such as trans-

formation of the response or predictor(s) are taken. In addition to LRMs, MARS

models are built by using Salford MARS software program [60]. Then, CQP models

are constructed by running the MATLAB code developed by the authors [62] and

MOSEK code developed by the authors [95].

In order to evaluate the CQP and Tikhonov methods’ performance, we employed sev-

eral measures [106]. The performance measures we employed in our applications and

their general notations are as follows;

General Notation

• yi is an ith observed response value,

• ŷi is an ith fitted response,

• ȳ is a mean response,

• N is a number of observations,

• p is a number of terms in the model,

• ¯̂y is a mean fitted response,

• s(y)2 is a sample variance for observed response,

• s(ŷ)2 is a sample variance for observed response,

• ei = yi − ŷi is an ith ordinary residual,

• hi is a leverage value for the ith observation, which is the ith diagonal element of

the hat matrix, H . The hat matrix is H =X (X TX )−1X T , where X : (N× p) design

matrix and rank (X ) = p (p ≤ N).

3.5.2 Comparison Measures

i. r

This value is a correlation coefficient that is a measure of how well linear association

between the actual and the predicted response values [97]. The formula is

r :=

∑n
i=1

(y−ȳ)(ŷ−¯̂y)
(n−1)√

s(y)2s(ŷ)2
such that− 1 ≤ r ≤ +1,
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where y is the actual response variables, ŷ is the predicted response variables and

ȳ is the mean of actual values. Here, s(y) is the standard deviations of actual and

s(ŷ) is the standard deviations of predicted response variable. If r closes to -1, there

is a strong but negative relationship; and if r closes to 1, there is a strong positive

relationship between the actual and the predicted response variables. The degree of

relationship decreases as it approaches zero [97].

ii. Prediction Error Sum of Squares (PRESS)

PRESS shows that predictive ability of our model. It is actually the sum of squares

of the prediction error. The smaller the PRESS the better it is [97]. The formula is

PRESS :=
n∑
i=1

(
ei

1− hi

)2

.

iii. R2

R2 is a coefficient of determination that provides a measure of how well future out-

comes are likely to be predicted by the model. The higher the R2, the better the

model fits your data [97]. Its formula is

R2 := 1− RSS

SSTotal
= 1−

(∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

)
.

iv. Adjusted R2

This value is a modification of R2 that adjusts for the number of explanatory terms

in a model. Unlike R2, the Adjusted R2 increases only if the new term improves the

model more than would be expected by chance. So, it is useful for comparing mod-

els with different numbers of predictors. The higher the Adjusted R2, the better the

model fits your data [97]. Its formula is

R2
Adj := 1− MSError

MSTotal
= 1−

(∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

)(
N − 1

N − p− 1

)
.

v. Predicted R2

The predictedR2 shows that how well the model predicts responses for our new ob-

servations. The higher Predicted R2 value suggests that our model has a greater
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predictive ability. The higher the Predicted R2, the better it is [97]. Its formula is

R2(pred) := 1− PRESS

SSTotal
= 1−

∑N
i=1

(
ei

1−hi

)2

1−
∑N

i=1(yi − ȳ)2
.

vi. Mean Square Error (MSE)

MSE of an estimator is one of many ways to quantify the difference between an es-

timator and the true value of the quantity being estimated. The smaller MSE, the

better it is [97]. The formula is

MSE :=
1
N

N∑
i=1

(yi − ŷi)2.

vii. Root Mean Square Error (RMSE)

RMSE is a frequently-used measure of the differences between values predicted by a

model or an estimator and the values actually observed from the thing being modeled

or estimated. RMSE is a good measure of precision. The smaller RMSE, the better

it is [97]. A model independent formula is

RMSE :=
√
MSE =

√√√√ 1
N − p− 1

N∑
i=1

(yi − ŷi)2.

viii. Average Absolute Error (AAE)

This value AAE measures the average magnitude of error. The smaller AAE, the

better it is [97]. The formula is

AAE :=
1
N

N∑
i=1

|yi − ŷi|.

ix. Average Absolute Percentage Error (AAPE)

AAPE measures the scale relative error. The smaller AAPE, the better it is [97]. The

formula is
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AAPE :=
100
N

N∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ .

3.6 Numerical Results of the Conic Quadratic Problems

We used Matlab programming language (Matlab R2007a) and MOSEK which is in-

troduces in Subsection 3.1.1 for our CQP method, in our numerical examples.

At first, we employ the command Generalized Singular Value Decomposition (GSV D)

with the matrices BF and L as inputs of this command, in our application. After that,

we use MOSEK program to get the unknown regression coefficients. The M value,

which is our regularization parameter, plays a key role in the estimation of coefficients

and it should be chosen with care. The L-curve criterion can be used to decide the M

value. We choose the value which corresponds to the corner of the L-curve, the point

with maximum curvature.

In this study, we run the program many times, each time with a different M values

(M > 0), and observe how the result changes. Then, we calculated the RSS and

‖Lθ‖2 values, for each solution. Therefore, the range of M can be decided, where its

end points (the first value and the last value) are stabilized.

In this thesis, we examined two different data sets which are with and without inter-

action, respectively. We compared results of the data sets and saw which data sets

have better results when CQP is employed. While doing comparisons, we use some

statistical tools, such as: R2
adj , r, RMSE and AAE. The results are illustrated in

the following Table 3.1:

Table 3.1: Conic Quadratic Programming for the two data sets

No Interaction Interaction
Measure Mfirst Mcorner Mlast Mfirst Mcorner Mlast

AAE 3.6566 0.9581 0.9571 0.0080 0.0015 0.0014
R2

adj −0.2631 0.9258 0.9264 −0.2399 0.9602 0.9663
RMSE 5.3269 1.2910 1.2861 0.0132 0.0024 0.0022

r 0.8635 0.9703 0.9704 0.9346 0.9839 0.9863
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From Table 3.1 we can easily observe that CQP gives better solutions for the data

set with interaction than for the ones with no interaction for different M values. For

all three points from with interaction data, the AAE and RMSE results are smaller

than from without interaction data. Lower AAE and RMSE indicates that CQP

solution provides more accurate results for data sets with interaction. Also, r for the

data with interaction is closer to 1 than with use of the data without interaction. This

means that there is a better linear association between the actual and the predicted

response values at the data with interaction for all three values: Mfirst, Mcorner and

Mlast : Mfirst < Mcorner < Mlast.

For both data sets, Mlast gives better results than Mfirst and Mcorner. Since both

data set have higher R2
adj criteria values, which shows that the model fit is better at

Mlast; lower AAE and RMSE indicate that the CQP solution provides more accurate

results for data sets at the point Mlast and r closer to 1. This shows us that there

is a better linear association between the actual and the predicted response values

at Mlast for the with and the without interaction data sets. We can obviously see

that as the M value decreases, the error rates AAE and RMSE gets bigger, while

R2
adj decreases. This means that our model gets worse to explain the variation in the

response variable.

Moreover, we get the following L-curves, obtained by plotting values of RSS versus

‖Lθ‖2, for the two data sets :

Figure 3.1: L-curve, RSS vs. norm of Lθ for the data with no interaction.
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Figure 3.2: L-curve, RSS vs. norm of Lθ for the data with interaction.

In the next section, we will compare the CQP results with Tikhonov Regularization

results obtained from the thesis [49], which is on progress, on the two data sets with

interaction and without interaction, for the end points and corner points.

3.7 Comparison of the Results for the Two Methods

(Tikhonov Regularization and CQP)

3.7.1 Data with No Interaction

1. At Initial Values (Mfirst − λfirst)

The results for Mfirst (for CQP) and λfirst (for Tikhonov) are as follows:

Table 3.2: Comparison of CQP and Tikhonov Regularization (Mfirst − λfirst)

Measure CQP Tikhonov
AAE 3.6566 0.9571
R2

adj −0.2631 0.9264
RMSE 5.3269 1.2861

r 0.8635 0.9704

From Table 3.2, it is obviously seen that Tikhonov solver is better at the initial points

according to all the statistical measures for this data. For Tikhonov regularization, a
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higher R2
adj and a lower RMSE indicate a good model fit and high accuracy rate,

respectively. Besides, for both method, the r value is high meaning that there is a

good linear relationship between the actual and predicted values. However, Tikhonov

is a bit much better.

2. At Last Values (Mlast − λlast)

The results for Mlast (for CQP) and λlast (for Tikhonov), where Mlast > Mfirst and

λlast > λfirst, are as follows:

Table 3.3: Comparison of CQP and Tikhonov Regularization (Mlast − λlast)

Measure CQP Tikhonov
AAE 0.9571 3.6566
R2

adj 0.9264 −0.2631
RMSE 1.2861 5.3269

r 0.9704 0.9703

From Table 3.3, it is obviously seen that CQP results are much better than the ones

from Tikhonov Regularization at the last points, according to all statistical measures

for this data set. While for CQP, a higher R2
adj and a lower RMSE indicates a good

model fit and high accuracy rate, respectively, for Tikhonov the situation is reverse.

Moreover, again, the r value is high, even approximately equal, meaning that there is

a good linear relationship between the actual and predicted values for both method.

3. At Corner Values (Mcorner − λcorner)

The results forMcorner (for CQP) and λcorner (for Tikhonov), whereMlast > Mcorner >

Mfirst and λlast > λcorner > λfirst, are as follows:

Table 3.4: Comparison of CQP and Tikhonov Regularization at corner point
(Mcorner − λcorner)

Measure CQP Tikhonov
AAE 0.9581 0.9548
R2

adj 0.9258 0.9260
RMSE 1.2910 1.2895

r 0.9703 0.9704
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From Table 3.4, the performance measure results are nearly same for two methods.

However, AAE and RMSE is slightly lower than that of CQP which shows that

Tikhonov solver gives more accurate results than CQP for this data. Moreover, R2
adj

result are higher for Tikhonov regularization. Besides, for both two methods, the r

value is high meaning that there is a good linear relationship between the actual and

predicted values. Although Tikhonov is a bit better, both methods give similar results

for the without interaction data set.

In conclusion, when we look at Tables 3.2 and 3.3, we see that the performance

measures give the same results for λfirst and Mlast, and the results are, again, ap-

proximately the same for λlast and Mfirst. This can be due to the fact that CQP uses

interior point while Tikhonov uses exterior point method [94, 39, 72].

3.7.2 Data with Interaction

1. At Initial Values (Mfirst − λfirst)

The results for Mfirst (for CQP) and λfirst (for Tikhonov) are as follows:

Table 3.5: Comparison of CQP and Tikhonov Regularization (Mfirst − λfirst)

Measure CQP Tikhonov
AAE 0.0080 0.0014
R2

adj −0.2399 0.9663
RMSE 0.0132 0.0022

r 0.9346 0.9863

As can be seen from Table 3.5, all the performance measures show that Tikhonov

solver is better at the initial points for this data. For Tikhonov regularization, a higher

R2
adj and lower RMSE and AAE indicate a better model fit and higher accuracy

rate, respectively. Besides, for both method, r value is high meaning that there is a

good linear relationship between the actual and predicted values.

2. At Last Values (Mlast − λlast)

The results for Mlast (for CQP) and λlast (for Tikhonov) where Mlast > Mfirst and

λlast > λfirst, are as follows:
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Table 3.6: Comparison of CQP and Tikhonov Regularization (Mlast − λlast)

Measure CQP Tikhonov
AAE 0.0014 0.0079
R2

adj 0.9663 −0.2072
RMSE 0.0022 0.0130

r 0.9863 0.9318

As can be seen from Table 3.6, at the last points, all the performance measures show

that CQP results are better than the ones from Tikhonov regularization for this data

set. While, for CQP, a higherR2
adj and a lowerRMSE indicates a better model fit and

higher accuracy rate, respectively, for Tikhonov regularization method, the situation

is reverse. Moreover, again, r value is high, even approximately equal, meaning that

there is a good linear relationship between the actual and predicted values for both

method.

3. At Corner Values (Mcorner − λcorner)

The results forMcorner (for CQP) and λcorner (for Tikhonov), whereMlast > Mcorner >

Mfirst and λlast > λcorner > λfirst, are as follows:

Table 3.7: Comparison of CQP and Tikhonov Regularization at corner points
(Mcorner − λcorner)

Measure CQP Tikhonov
AAE 0.0015 0.0017
R2

adj 0.9602 0.9404
RMSE 0.0024 0.0029

r 0.9839 0.9762

From Table 3.7, the results show that both methods are approximately as good as

each other at the corner point. However, CQP is a bit better than Tikhonov solver as

it has smaller error rate AAE and RMSE as well as higher R2
adj and r for this data.

In conclusion, looking at Tables 3.5 and 3.6, again we see the same results at initial λ

and last M values, while they are approximately equal for last λ and first M values.

This can be due to the fact that CQP uses interior point while Tikhonov uses exterior

point method [39, 72, 94].
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3.8 Comparison of the Results for the three Methods

(CMARS, Tikhonov and IKL)

In this part, we want to see the performance of CMARS method according to the

two other classification methods, Tikhonov Regularization and IKL, whose results are

obtained from the thesis [49], which is on progress. We compared the three method by

using the homogeneous data set, Votes and heterogeneous data set, Hepatitis. Data

descriptions are given in Table 3.8:

Table 3.8: Data set description

Data set # instances # attributes attribute characteristics
Votes 52 16 categorical
Hepatitis 155 19 integer, real and categorical

Here, first column represents the name of the data set, second column represents the

number of data, third column represents the number of features, and fourth column

shows the types of data sets, respectively.

Normalized data sets are used and a 5-fold cross validation is applied, in all techniques.

As the performance measures of IKL toolbox are Mean Error rate, Std Dev Error and

Mean AUC, we calculate these values for CMARS and Tikhonov Regularization is

calculated in the thesis [49], which is on progress, to make a comparison and reach

the following Table 3.9:

Table 3.9: Comparison of the methods IKL, Tikhonov and CMARS

Votes Hepatitis
Measure IKL Tikhonov CMARS IKL Tikhonov CMARS
Mean Error 0.2091 0.0020 0.1145 0.1936 0.0019 0.1935
Std Dev Error 0.1469 0.0010 0.1109 0.0456 0.0003 0.0510
Mean AUC 0.81 0.65 0.68 0.64 0.98 0.91

Here, the Std Dev Error is the standard deviation of errors over 5-fold cross-validation.

From table above, for V otes data, it is seen that Tikhonov performs the lowest mean

error with the lowest standard deviation of errors. However, prediction accuracy is

smaller than CMARS and IKL. Although IKL does not have the smallest error rates,
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this method’s prediction accuracy rate is the biggest. On the other hand, for the

Hepatitis data set, the performance of Tikhonov is better than that of CMARS and

IKL. Specifically, even the Mean Error and Std Dev Error is the smallest and the

AUC shows that Tikhonov gave more accurate results than CMARS and IKL for this

data. Note that, as the AUC tends to 1, the better the prediction accuracy [25].

As all three methods aim to help for the classification of heterogeneous data, perfor-

mance measures are closer in each method. However, Table 3.9 shows that CMARS

provides a better accuracy for the heterogeneous data Hepatitis from IKL, but Tikhonov

is the best; while IKL shows a better performance for the homogenous data Votes.
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CHAPTER 4

CONCLUSION AND FUTURE RESEARCH

In this thesis, we worked on a further introduction of modern continuous optimization

into statistical learning. We presented Generalized Partial Linear Models (GPLMs),

which have a great advantage that consists in some grouping that could be done for the

input dimensions or features to assign appropriate submodels specifically [94], with

B-splines and the parameter estimation for them.

In this study, we combined GPLM with a modified form of Multivariate Adaptive Re-

gression Splines (MARS ). The MARS algorithm is modified by constructing Penalized

Residual Sum of Squares (PRSS), instead of the usual backward stepwise algorithm

of MARS, as a Tikhonov Regularization Problem. This problem is solved by using

continuous optimization, Conic Quadratic Programming (CQP). This provides us an

alternative modeling technique for MARS, which is called as Conic Multivariate Adap-

tive Regression Splines (CMARS).

After solving our numerical example for the two data sets, which are with and without

interaction, with an optimization method, CQP; we compared the results of them,

according to some statistical measures. For both data sets, we discovered that the

last value of M gives better results than the first value of M and the corner value of

M.

Moreover, we made comparison our CQP results with Tikhonov Regularization results

that are obtained from the thesis [49], which is on progress, at different parameter

values by using the two different data sets. For both data sets, we observed that

Tikhonov solver gives better results than CQP at initial parameter values, while CQP

is better at last points. Actually, they give almost the same results at the initial

92



parameter of Tikhonov Regularization and at last parameter of CQP. Likewise, they

are approximately equal at the last parameter of Tikhonov Regularization and at the

initial parameter of CQP. This can be due to the fact that CQP uses interior point

while Tikhonov Regularization uses exterior point method.

We also compared the two methods at corner points and observe that they are approx-

imately equal for both data sets. However, with a slight difference, Tikhonov gives

better results for the data with no interaction. As well, CMARS is slightly better for

the data with interaction, as we expect.

In this study, in order to see the performance of CMARS method for the hetero-

geneous data Hepatitis and for the homogenous data Votes, according to two other

classification methods that are Infinite Kernel Learning (IKL) and Tikhonov Regular-

ization whose results are obtained from the thesis [49], which is on progress, we make

a comparison by the help of some statistical performance measures; Mean Error, Std

Dev Error and Mean AUC. We observed that IKL has the biggest prediction accuracy

rate for the homogenous data set, Votes, when we look at the Mean AUC values.

However, the Mean and Std Dev Error rate of IKL is higher than that of CMARS and

Tikhonov Regularization. On the other hand, for the nonhomogeneous data set, that

is Hepatitis, Tikhonov has better results for all measures.

In this thesis, we focused on GPLM and the optimization methods. We analyzed

data sets and represented comparisons. As a future study, a further analysis and

algorithmical development of the special subclass of GPLMs of this thesis can be

done. In the near future, the utilization of these results and further implementations

of the methods to various application areas such as, e.g., prediction of credit default in

financial mathematics is possible. Besides, identification and investigation of further

important model subclasses of GPLMs can be searched. Moreover, future analysis,

comparison and, if possible, partial combination of GPLMs and IKL can be studied.
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APPENDIX A

RSS in Numerical Examples

When the maximum functions are computed, the terms of the RSS with a tabular

form are as follows:

Table A.1: Function RSS became addressed in Subsection 3.4.1

Y θ0 θ1 θ2 θ3 θ4

d1 13.6 1 0 0.01 2.9 0
d2 16.6 1 1.89 0 3.99 0
d3 23.5 1 15.77 0 17.87 0
d4 10.20 1 0 6.11 0 4.01
d5 5.4 1 0 10.01 0 7.91
d6 15 1 0.89 0 2.99 0
d7 9 1 0 5.31 0 3.21
d8 12.3 1 0 1.71 0.39 0
d9 16.3 1 2.49 0 4.59 0
d10 15.4 1 0.79 0 2.79 0
d11 13 1 0 0.41 1.69 0
d12 14.4 1 0.99 0 3.09 0
d13 10 1 0 6.31 0 4.21
d14 10.2 1 0 2.71 0 0.61
d15 9.5 1 0 5.11 0 3.01
d16 1.5 1 0 13.11 0 11.01
d17 18.5 1 2.89 0 4.99 0
d18 12.6 1 0 1.31 0.79 0
d19 17.5 1 1.69 0 3.79 0
d20 4.9 1 0 9.61 0 7.51
d21 15.9 1 0.39 0 2.49 0
d22 8.5 1 0 6.81 0 4.71
d23 10.6 1 0 5.51 0 3.41
d24 13.9 1 1.09 0 3.19 0
d25 14.9 1 0 2.11 0 0.01
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When the maximum functions are computed, the terms of the RSS with a tabular

form are as follows:

Table A.2: Function RSS became addressed in Subsection 3.4.2

Y θ0 θ1 θ2 θ3 θ4 θ5

d1 0.13 1 0 1.63 0 0 0
d2 0.016 1 0 1.55 0.07 3.43 0.0133
d3 0.015 1 0 1.55 0.07 3.43 0.0133
d4 0.016 1 0 1.55 0.07 3.43 0.0168
d5 0.015 1 0 1.55 0.07 0 0.0203
d6 0.016 1 0 1.55 0.07 0 0.0203
d7 0.014 1 0 1.21 0.24 11.76 0.0216
d8 0.021 1 0 1.04 0.32 15.68 0.0288
d9 0.018 1 0 1.04 0.32 15.68 0.0288
d10 0.019 1 0 1.04 0.32 15.68 0.0288
d11 0.021 1 0 1.04 0.32 15.68 0.0608
d12 0.019 1 0 1.04 0.32 15.68 0.0608
d13 0.021 1 0 1.04 0.32 15.68 0.0608
d14 0.025 1 0 1.01 0.84 41.16 0.0756
d15 0.025 1 0 0.21 0.74 36.26 0.0666
d16 0.026 1 0 0.21 0.84 41.16 0.0756
d17 0.024 1 0 0.01 0.84 41.16 0.0756
d18 0.025 1 0 0.01 0.84 41.16 0.0756
d19 0.024 1 0 0.01 0.84 41.16 0.0756
d20 0.025 1 0 0.01 0.84 41.16 0.1596
d21 0.027 1 0 0.01 0.84 41.16 0.1596
d22 0.026 1 0 0.01 1.24 60.76 0.2356
d23 0.029 1 0.79 0 1.24 60.76 0.1116
d24 0.03 1 0.79 0 1.24 60.76 0
d25 0.028 1 0.79 1.24 1.24 60.76 0.0496
d26 0.032 1 0.79 0 1.4 68.6 0.196
d27 0.033 1 1..12 0 1.24 60.76 0.1116
d28 0.039 1 1.79 0 1.24 122.76 0
d29 0.04 1 1.79 0 1.24 60.76 0
d30 0.035 1 1.79 0 1.24 60.76 0.1736
d31 0.056 1 10.29 0 1.24 122.76 0
d32 0.068 1 16.29 0 1.24 122.76 0
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