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Department of Mathematics, METU

Committee Member 3 Assist. Prof. Dr. Cem İyigün
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ABSTRACT

PARAMETER ESTIMATION IN GENERALIZED PARTIAL LINEAR MODELS
WITH TIKHANOV REGULARIZATION

Kayhan, Belgin

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Bülent Karasözen

Co-Supervisor : Prof. Dr. Gerhard-Wilhelm Weber

September 2010, 101 pages

Regression analysis refers to techniques for modeling and analyzing several variables

in statistical learning. There are various types of regression models. In our study,

we analyzed Generalized Partial Linear Models (GPLMs), which decomposes input

variables into two sets, and additively combines classical linear models with nonlinear

model part. By separating linear models from nonlinear ones, an inverse problem

method Tikhonov regularization was applied for the nonlinear submodels separately,

within the entire GPLM. Such a particular representation of submodels provides both

a better accuracy and a better stability (regularity) under noise in the data.

We aim to smooth the nonparametric part of GPLM by using a modified form of Mul-

tiple Adaptive Regression Spline (MARS ) which is very useful for high-dimensional

problems and does not impose any specific relationship between the predictor and

dependent variables. Instead, it can estimate the contribution of the basis functions

so that both the additive and interaction effects of the predictors are allowed to de-

termine the dependent variable. The MARS algorithm has two steps: the forward
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and backward stepwise algorithms. In the first one, the model is built by adding basis

functions until a maximum level of complexity is reached. On the other hand, the

backward stepwise algorithm starts with removing the least significant basis functions

from the model.

In this study, we propose to use a penalized residual sum of squares (PRSS) instead

of the backward stepwise algorithm and construct PRSS for MARS as a Tikhonov

regularization problem. Besides, we provide numeric example with two data sets; one

has interaction and the other one does not have. As well as studying the regular-

ization of the nonparametric part, we also mention theoretically the regularization

of the parametric part. Furthermore, we make a comparison between Infinite Kernel

Learning (IKL) and Tikhonov regularization by using two data sets, with the differ-

ence consisting in the (non-)homogeneity of the data set. The thesis concludes with

an outlook on future research.

Keywords: Generalized Partial Linear Model, Tikhonov Regularization, CMARS, It-

eratively Reweighted Penalty Methods, Kernel Learning
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ÖZ

GENELLEŞTİRİLMİŞ PARÇALI DOĞRUSAL MODELLERDE TİKHANOV
DÜZENLEME İLE PARAMETRE TAHMİNİ

Kayhan, Belgin

Yüksek Lisans, Bilimsel Hesaplama

Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Ortak Tez Yöneticisi : Prof. Dr. Gerhard-Wilhelm Weber

Eylül 2010, 101 sayfa

Regresyon analizi, istatistiksel öğrenmede çok sayıda bağımsız değişkenin modellendiği

ve analiz edildiği bir yöntemdir. Birçok regresyon model çeşidi vardır. Bu çalısmada

biz, genelleştirilmiş parçalı doğrusal modelleri inceledik. Genelleştirilmiş parçalı doğrusal

modeller bağımsız değişkenleri iki kısma ayırarak, klasik doğrusal modellerle doğrusal

olmayan modelleri eklemeli olarak birleştirir. Doğrusal modelleri doğrusal olmayan

modellerden ayırarak, tüm genelleştirilmiş parçalı doğrusal modeller arasında, doğrusal

olmayan kısım için bir ters problem yöntemi olan Tikhonov duzenlemesi uygulanmıştır.

Alt modellerin bu şekilde gösterimi gürültü içeren verilerde daha iyi bir tutarlılık ve

doğruluk sağlamaktadır.

Bu çalışmada, doğrusal olmayan kısmı düzenlemek için çok değişkenli uyarlanabilir

regresyon eğrilerini (MARS) değiştirerek kullanmayı amaçlamaktayız. Çok boyutlu

problemlerin çözümünde elverişli bir yöntem olan MARS, bağımsız değişkenlerle bağımlı

değişken arasında belirli bir ilişki biçimi öngörmez. Onun yerine, bağımlı değişkeni

tanımlamak için bağımsız değişkenlerin eklemeli ve etkileşimsel katkılarına yer verir.
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MARS algoritması ekleyerek ve eleyerek ilerleyen iki aşamalı bir algoritmadan oluşmaktadır.

İlk aşamada en yüksek karmaşıklık düzeyine ulaşıncaya kadar temel fonksiyonlar ek-

lenerek model yapılandırılır. İkinci aşamada ise modele katkısı en az fonksiyonlar

eklenir.

Bu çalısmada biz, MARS’in ikinci aşamasını oluşturan geriye doğru eleme yöntemi yer-

ine penaltı yöntemini kullanmayı önermekteyiz. Bu amaçla, bir Tikhonov düzenlemesi

problemi olarak MARS icin cezalandırılmıs hata kareler toplamı oluşturmaktadır.

Bununla birlikte, etkileşimli ve etkileşimsiz iki veri kümesi kullanarak sayısal bir örnek

vermekteyiz. Parametrik kısmın düzenlenmesi çalışmasına ek olarak parametrik ol-

mayan kısmın düzenlenmesinden de teorik olarak bahsetmekteyiz. Ayrıca, sonsuz

çekirdek öğrenimi (IKL) ile Tikhonov, homojen ve homojen olmayan iki kümesini seti

kullanılarak karşılaştırılmaktayız. Tez, ileriki çalışmalara bir bakış açısı sağlayarak

sonlanmaktadır.

Anahtar Kelimeler: Genelleştirilmiş parçalı doğrusal modeller, Tikhonov düzenleme,

CMARS, Tekrarlı ve yeniden ağırlıklandırılan ceza yöntemi, Çekirdek öğrenimi
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CHAPTER 1

INTRODUCTION

Regression analysis refers to techniques for modeling and analyzing several variables,

when the focus is on the relationship between a dependent variable and one or more

independent variables. There are various types of regression models. Familiar methods

such as linear regression and ordinary least-squares regression are parametric ones,

because it is possible to define the regression function in terms of a finite number of

unknown parameters that are estimated from the data. Nonparametric regression,

however, refers to techniques that allow the regression function to lie in a specified set

of functions, which may be infinite-dimensional.

The most widely known regression model is Linear Regression Models (LRM). Gen-

eralized Linear Models (GLM) are an extension of the linear modeling process that

allows models to be fit to data that follow probability distributions other than the

Normal distribution, such as the Poisson, Binomial, Gamma, etc.. Generalized Linear

Models also relax the requirement of the constant variance equality which is required

for hypothesis tests in traditional linear models [61].

However, GLM being a linear technique shares the common shortcomings of the linear

modeling (LM) approach. Firstly, both need the assumption that data has a distribu-

tion of exponential family. Secondly, they are affected by multi-collinearity, outliers

and missing values in the data. Besides, it is difficult to use GLM for selecting im-

portant predictors and their interactions. Finally, categorical predictors with large

numbers of categories can lead to unreliable results due to sparsity-related issues [49].

Data mining is a very popular approach dealing with these problems effectively. Data

mining techniques are typically fast, and easily select predictors and their interactions.
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Besides, they are minimally affected with missing values, outliers or collinearity. As

well, they effectively process high-level categorical predictors [49]. As a data mining

technique, Multiple Adaptive Regression Spline (MARS ) is very useful for high dimen-

sional problems and does not impose any specific relationship between the predictor

and dependent variables. Instead, it can estimate the contribution of the basis func-

tions so that both the additive and interaction effects of the predictors are allowed to

determine the dependent variable.

The use of MARS to enhance GLM building makes the model-building process consid-

erably faster and more efficient [49]. In this study, we will analysis an extended form

of GLM, which is known as Generalized Partial Linear Models (GPLMs). In GPLM,

the usual parametric terms are augmented by a single nonparametric component. In

other words, GPLM decomposes input variables into two sets and additively combines

classical linear models with nonlinear model part.

Generalized partial linear models have a great advantage that consists in some grouping

which could be done for the input dimensions or features in order to assign appropriate

submodels specifically [92]. There are linear, nonlinear ones as well as parametrical and

nonparametrical ones. By separating linear models from nonlinear or nonparametrical

ones, inverse problem methods such as Tikhonov regularization [3] can be applied

for the linear submodels separately, within the entire GPLMs. Such a particular

representation of submodels provides both a better accuracy and a better stability

(regularity) under noise in the data.

In this thesis, we aim to integrate GPLM with a modified form of MARS. The MARS

algorithm has two steps to estimate the model function: these are the forward and

backward stepwise algorithms. In the first one, the model is built by adding basis

functions until a maximum level of complexity is reached. Whereas, in the backward

stepwise algorithm, it starts removing the least significant basis functions from the

model. In this study, we propose to use penalized residual sum of squares (PRSS)

to the control complexity and accuracy of the model instead of the backward algo-

rithm and treat it as an optimization problem. This alternative method to the back-

ward stepwise algorithm provides an alternative modeling approach for MARS, named

Conic Multivariate Adaptive Regression Splines (CMARS). Here ‘C’ represents not

2



only the word conic but also convex and continuous.

By using penalty terms, we built PRSS changing the form into a Tikhonov regular-

ization problem and solve it by using regularization toolbox of MATLAB. As well as

studying the regularization of the nonparametric part, we also mention theoretically

the regularization of the parametric part. However, for the sake of simplicity, we

disregard the parametric part, knowing, however, how to deal with in the presence

of linear part. Besides, we provide numerical examples for the regularization of the

nonparametric part with two data sets; one has interaction and the other does not

have.

Furthermore, we also focused on a classification technique, Infinite Kernel Learning

(IKL) which is a modern method of Machine Learning (support vector machines).

Classification is easier if the data is linear. However, if it is not, then, kernels are very

helpful as it is possible to project data into a higher dimensional feature space where

usual linear classifiers can be applied to classify the data as if the data is linear. If

the data is huge, there is need for many kernels and multiple kernel learning is used

for heterogeneous and large-scale data. Our method, Infinite Kernel Learning (IKL),

is based on the motivation of multiple kernel learning. Besides, we analyze three

data sets and display the results. Besides, we make a comparison between the two

methods; IKL and Tikhonov regularization. For this aim, we use two data sets with

the difference consisting in the (non-)homogeneity of the data. After analyzing the

data sets, we compare the results of the methods by using some statistical performance

measures. We conclude with an outlook to future studies.
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CHAPTER 2

LITERATURE SURVEY AND BACKGROUND

2.1 Linear Regression Models

Linear Regression is a statistical technique that correlates the change in the dependent

(response) variable to the independent (regressor) variable(s). In linear regression, the

model is not necessarily linear in the independent variables. Instead it depends linearly

on the unknown parameters and has a linearly additive relationship. The general form

of a Linear Regression Model (LRM) is as follows [66]:

y = β0 + β1x1 + β2x2 + . . .+ βkxk + ε.

Here, y represents the response variable, xi (i = 1, 2, . . . , k) represent the independent

variables and ε is the unobserved random error term. It is assumed that errors are

normally distributed and mutually independent zero mean random variables, each

with the same variance σ2. Besides, β0 is the intercept term, also known as ‘bias’ in

some fields, and the parameters βi are unknown regression coefficients measuring the

strength of the relationship between independent and dependent variables. In other

words, they explain the expected change in y corresponding to the one unit change in

xi assuming ceteris paribus. If it is positive, y increases as x increases.

In general, the goal of linear regression is to find the line that best predicts the

dependent variable from a set of data. Numerous procedures have been developed

for this purpose but least-squares estimation (LSE) is the most popular one by far.

However, in some cases it is not useful and it is preferred to use a more general form of

it, which is called as maximum likelihood estimation (MLE) [39]. Both methods find

the line that minimizes the sum of the squares of the vertical distances of the points
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from the hyperplane.

2.1.1 Least-Squares Estimation Method

The least-squares method is a simple but powerful prediction method. It can be

interpreted as a method of fitting data. For the simple univariate linear model with

N observations, the model is

yi = β0 + β1xi + εi for i = 1, 2, . . . , N,

whereN is the number of the data with E(εi) = 0 and V ar(εi) = σ2. The least-squares

estimates of β0 and β1 can be found by minimizing the function of the residual sum

of the squares (RSS) between y and its expected value:

RSS(β0, β1) =

N∑
i=1

(yi − E(yi))
2 =

N∑
i=1

(yi − β0 − β1xi)
2.

To estimated values of β0 and β1 can be found by minimizing the following equations:

∂RSS

∂β0
= 0,

∂RSS

∂β1
= 0.

The LS estimators are often referred to as Best Linear Unbiased Estimators (BLUEs),

since the LS estimators have minimum variance among all linear unbiased estimators

[5].

There can be more than one regressor variable, let us say k variables, then, we use

Multiple Linear Regression (MLR) model. In MLR, the data looks like as in Table

2.1 [63]:

Table 2.1: Data for Multiple Linear Regression

y x1 x2 . . . xk

y1 x11 x12 . . . x1k

y2 x21 x22 . . . x2k
...

...
...

...
yN xN1 xN2 . . . xNk

5



The model can be written as:

yi = β0 +
k∑
j=1

βjxij + εi for i = 1, 2, . . . , N,

where errors are assumed to be uncorrelated random variables with E(εi) = 0 and

V ar(εi) = σ2. In MLR, RSS is as follows:

RSS(β) =
N∑
i=1

yi − β0 −
k∑
j=1

xijβj

2

.

Since there are N equations with k+ 1 unknown parameters and also it is a quadratic

function of the parameters, it is more practical to write in matrix form [39]:

y = Xβ + ε. (2.1)

Here, y is the N × 1 response vector; β is the (k + 1) × 1 regression coefficients

vector including the intercept; ε is the N ×1 random error vector; N is the number of

observations in the data set, and X is the N × (k + 1) independent variable (design)

matrix, defined as follows by the input data Xi,j (i = 1, 2,. . . , N ; j = 1, 2,. . . , k):

X =


1 X11 ... X1k

1 X21 ... X2k

...
...

...

1 XN1 ... XNk

 .

Then, RSS can be represented as follows [39]:

RSS(β) = (y −Xβ)T (y −Xβ) = ‖y −Xβ‖22 . (2.2)

Here, ‖.‖2 is the Euclidean norm.

Differentiating RSS with respect to β results in

∇RSS(β) = −2X T (y −Xβ).

After setting the first derivative of RSS to zero, we get the normal equations [39]

X TXβ = X Ty .

If X TX is nonsingular, the unique solution can be obtained and the fitted values are

defined as

ŷ = X β̂ = X (X TX )−1X Ty .

However, if X TX is singular, then the Singular Value Decomposition (SVD) method

is used to obtain solutions for the normal equations.

6



2.1.2 Maximum Likelihood Estimation Method

Least-squares estimation is a very convenient method, however, in some cases it does

not make much sense. If the distribution of the errors is known, then MLE is an

alternative estimation method. In fact, it is a more general approach and has better

statistical properties than LSE [39]. For example, while Least Square(LS) estimators

have minimum variance among only linear estimators, Maximum Likelihood (ML)

estimators have minimum variance when compared to all other unbiased estimators,

so this method is more efficient than LS method.

The likelihood of a set of data is the probability of obtaining that particular set of

data, given the chosen probability distribution model. The values of the unknown pa-

rameters that maximize the sample likelihood are known as the Maximum Likelihood

Estimates or MLE’s [73].

In LS method, we do not need any distributional assumption, whereas in MLE we

need to know the distribution. By assuming that random errors of data points are

uncorrelated and normally distributed with variances σ2
i (i = 1, 2, . . . , N), we can

derive the ML estimates of the equation (2.1). The probability density function for yi

(i = 1, 2, . . . , N) is as follows:

f(yi|β,σ) =
1√

2πσ2
i

exp

[
− 1

2σ2
i

(yi − E(yi))
2

]
, (2.3)

where σ is a diagonal matrix with diagonal entries σ1, σ2,. . ., σN , that is assumed to

be equal to a constant term, σ. As the likelihood function consists of the joint mul-

tiplications of each density function yi, when σi = σ (i = 1, 2, . . . , N), the likelihood

function of the equation (2.3) looks like :

L(β,σ|y) =

N∏
i=1

f(yi)

= (2πσ2)−N/2 exp

[
N∑
i=1

(
−1

2σ2
(yi − (Xβ)i)

2

)]
.

It is more practical to take the logarithm of the likelihood function. Thus, the log-

likelihood is:

ln L = −N
2

ln (2πσ2)− 1

2σ2
(y −Xβ)T (y −Xβ)

= −N
2

ln (2πσ2)− 1

2σ2
RSS(β),
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where RSS(β) is same as in equation (2.2). Obviously, the first part consists of

constant terms like N , π and σ, so we can ignore it. In the second part, on the other

hand, RSS is not constant and to maximize the log-likelihood function, we need to

minimize RSS with respect to β. Then, it turns to the same least-square problem

mentioned before. This means that the MLE method gives identical estimates with

LSE when the errors are random and normally distributed [5, 39, 73].

When there is heteroscedasticity (σi 6= σj for all i 6= j) among uncorrelated error terms

that follow a multivariate normal distribution with a known covariance matrix, then

we should also consider standard deviation σi in equation (2.4). Our new minimization

problem looks like

min
β

N∑
i=1

(yi − (Xβ)i)
2

σ2
i

.

By using a diagonal weight matrix W := diag(1/σ1, 1/σ2, . . . , 1/σN ), the new system

of equations is

yw = Xwβ + ε,

where Xw := WX and yw := Wy . If X T
wXw is nonsingular, then the MLE of β for

a weighted system is obtained by the following equation:

β̂
∗

= (X T
wXw)−1X T

wyw.

Although both MLE and LSE methods provide parameter estimators that have many

good properties, they are sensitive to the presence of outliers [73].

2.1.3 Nonlinear Regression Models

In real life, it is not always possible to see a linear relationship between variables.

Sometimes the true relationship to be modeled may be curved, rather than a straight

line or a flat plane. Then, to fit something like this, we need nonlinear regression

models.

Nonlinear Estimation is a general fitting procedure that will estimate any kind of

relationship between dependent and independent variables. The dependent variables

are modeled as a nonlinear function of model parameters and one or more independent

8



variables. In general, all regression models may be stated as:

Y = f(x ,θ) + ε,

where θ is a (k × 1)-vector of unknown parameters θ=(θ1, θ2, . . . , θk)
T , ε is an un-

correlated random error term with variances σ2
i (i = 1, 2, . . . , N) and a zero of

mean, f(x ;θ) is the expectation function for the nonlinear regression model and

x = (x1, x2, . . . , xk)
T is an input vector [66]. Entire equation can be comprised in

vector notation by the following system:

y = η(θ) + ε,

where η(θ) := (f(x 1,θ), f(x 2,θ), . . . , f(xN ,θ))T and ε is the vector of residual.

There are many methods for nonlinear regression models: Nonlinear Regression meth-

ods, Maximum Likelihood Estimation method, the Gauss-Newton method and the

Levenberg-Marquardt Method [104].

2.2 Generalized Linear Models

Generalized Linear Models (GLM) are used in many areas of prediction, in regression

and classification as well. It makes it possible to flexibly look for linear and nonlinear

relationships between a continuous, or binomial, multinomial categorical dependent

variable and categorical or continuous predictor variables. This approach is used when

the normality and constant variance assumptions are not satisfied [66].

A number of widely used types of analysis can be considered as special applications

of generalized linear models, such as binomial and multinomial logit and prohibit re-

gression models. In generalized linear models, the mean value of a dependent variable

depends on a linear predictor through a nonlinear link function and allows the re-

sponse variable Y ; its probability distribution to be any member of an exponential

family of distributions which has the basic structure

µi = h(ηi) = h(X T
i β), where µi = E(Yi), for i = 1, 2, . . . , N. (2.4)

Here, N is the number of data, h denotes the smooth link function, X T
i is the ith row

of the model matrix X and β is the vector of unknown parameters.
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A GLM usually makes the distribution assumptions that the response variable is

independent and can have any distribution from an exponential density family. It has

the following form [103]:

fθ(y) = exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
, (2.5)

where b, a, c are arbitrary functions, φ is an arbitrary, so-called scale parameter and

θ is known as the canonical parameter of the distribution.

Many widely used statistical models are belonging to GLMs. For example: classi-

cal linear models with normal errors, logistic and prohibit models for binary data,

log-linear models for multinomial data, Poisson, Binomial, Gamma and Normal Dis-

tribution, etc.. These can be formulated as a GLM by selecting an appropriate link

function and a response probability distribution. If the identity function is chosen as

the link along with the normal distribution, then ordinary linear models are recovered

as a special case.

2.2.1 Properties of the Exponential Family Distributions

Before finding the mean and variance of Y in θ, we give the following to properties:

• E( ∂
2

∂θ2
l(y, θ, φ)) = 0, where l(y, θ, φ) := log(f(y, θ, φ)),

• E( ∂
2

∂θ2
l(y, θ, φ)) = −E( ∂∂θ l(y, θ, φ))2.

Both statements follow from the well-known result that the integral of a probability

function is always equal to one over the whole range:∫
f(y, θ, φ)dy = 1.

The first property can be derived by taking the derivative with respect to θ∫
∂f(y, θ, φ)

∂θ
dy = 0,

∫ (
∂ log(f(y, θ, φ))

∂θ

)
f(y, θ, φ)dy = 0.

The right-hand sight correspond the expectation of ∂ log(f(y,θ,φ)
∂θ . Thus,

E

(
∂ log(f(y, θ, φ)

∂θ

)
= 0. (2.6)
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The second property is obtained taking the second derivative with respect to θ:

∂
∫

(∂ log(f(y,θ,φ))
∂θ )f(y, θ, φ)dy

∂θ
= 0,

∫
∂2l(y, θ, φ)f(y, θ, φ)dy

∂θ2
+

∫
∂l(y, θ, φ)

∂θ

∂f

∂θ
dy = 0,

E

(
∂2l(y, θ, φ)

∂θ2

)
= −E

(
(
∂l(y, θ, φ)

∂θ
)2

)
. (2.7)

It is easy to find the mean and variance of Y by means of θ. From the form of the

exponential density (2.5), it follows that

l(y, θ, φ) =
yθ − b(θ)
a(φ)

+ c(y, φ). (2.8)

By taking the derivative and using the expectation of (2.8), we get:

E

(
∂l(y, θ, φ)

∂θ

)
=
E(y)− b′(θ)

a(φ)
.

The left-hand side is zero by (2.6). Hence,

E(y) = b′(θ) = µ. (2.9)

The variance can be found by taking one more derivative:

∂2l(y, θ, φ)

∂θ2
= −b

′′(θ)

a(φ)
.

From (2.7), we obtain

E

(
∂2l(y, θ, φ)

∂θ2

)
= −E

(
∂(l(y, θ, φ))

∂θ

)2

= E

(
−b
′′(θ)

a(φ)

)
.

By evaluating the derivative of (2.8), we get:

−E(
y − b′(θ)
a(φ)

)2 = −b
′′(θ)

a(φ)
, −E(y − µ)2

a2(φ)
= −b

′′(θ)

a(φ)
,

V ar(y) = b′′(θ)a(φ). (2.10)

This form covers all the cases of practical interest here. For example, it allows the

possibility of unequal variances in models based on the normal distribution.
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2.2.2 Estimation

While the maximization of likelihood turns out to need an iterative least-squares

approach, the estimation and inference for GLM are based on the theory of MLE. Even

though the estimation needs a numerical approximation, each step of the iteration

can be given by a weighted least-squares fit. Since the weights are varying during

the iteration, the likelihood is optimized by an iteratively reweighted least squares

algorithm IRLS.

2.2.3 Maximum Likelihood and Deviance Minimization

As stated before, Y is a vector ofN response variables denoted by Y = (Y1, Y2, . . . , YN )T

and member of exponential family distribution with canonical parameter θi, which is

determined by µi (via equation (2.8)) and, hence, by β ultimately. Given a vector Y,

maximum likelihood estimation of β is possible.

The sample log-likelihood of the vector Y is

`(Y,µ,φ) :=
N∑
i=1

`(Yi, θi, φ), where µ = (µ1, µ2, . . . , µN )T , (2.11)

with θi is a function of ηi = XT
i β and `(Yi, θi, φ) = log(Yi, θi, φ).

Although the estimation method of choice for β is maximum-likelihood, there exists an

alternative method, the so-called Minimization of Deviance [64]. The scaled deviance

is defined as follows:

D(Y,µ,φ) := 2`(Y,µmax,φ)− `(Y,µ,φ).

Here, µmax is the vector that maximizes the saturated model. Since the term `(Y,µmax,φ)

does not depend on β, the minimization of the scaled deviance is equivalent to the

maximization of the sample log-likelihood (2.11).

The non-scaled deviance is shown with the following equation [64];

D(Y,µ) = D(Y,µ,φ)a(φ). (2.12)

The non-scaled devianceD(Y,µ) can be thought as the GLM equivalent of the residual

sum of squares (RSS) in linear regression, since it compares the log-likelihood ` for

the model µ with the maximal achievable value of ` [64].
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The maximum likelihood representation of (2.12) can be found by using (2.8) in equa-

tion (2.11). Thus,

`(Y,µ,φ) =

N∑
i=1

(
Yiθi − b(θi)

a(φ)
− c(Yi, φ)). (2.13)

As seen before, neither a(φ) nor c(Yi, φ) depends on the unknown parameter vector β

(through θ). Therefore, it is sufficient to consider

N∑
i=1

(Yiθi − b(θi)) (2.14)

for the maximization. By taking derivative of (2.14) and denoting it as the gradient

∇(β) =
∂

∂β
[−2

N∑
i=1

(Yiθi − b(θi))] = −2
N∑
i=1

(Yi − b′(θi))
∂

∂β
θi,

our optimization problem becomes ∇(β)=0. This is a nonlinear system of equations

in β and an iterative solution has to be computed.

2.2.4 Iteratively Re-Weighted Least Squares Algorithms

Iteratively Re-weighted Least Squares Algorithm (IRLS) is a method to find the max-

imum likelihood estimates of a generalized linear model.

Two well-known iterative maximum likelihood algorithms are Fisher-scoring and New-

ton-Raphson. Both algorithms give the same parameter estimates; however, the esti-

mated covariance matrix of the parameter estimators may differ slightly. This is due

to the fact that the Fisher-scoring method is based on the expected information ma-

trix while the Newton-Raphson method is based on the observed information matrix.

In the case of a binary logit model, the observed and expected information matrices

are identical, resulting in identical estimated covariance matrices for both algorithms.

In our optimization problem, the smoothness of the link function allows us to compute

the Hessian of D(Y ,µ), denoted by H(β), so that Newton-Raphson algorithm can be

applied using the following iteration steps [64]:

β̂
new

= β̂
old − (H(β̂

old
))−1∇(β̂

old
).

By replacing the Hessian by its expectation, it turns out to be the Fisher scoring

algorithm [64]:

β̂
new

= β̂
old − (EH(β̂

old
))−1∇(β̂

old
).
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For these iterations, there exists some simple representations. We have the following

equation (from (2.4) and (2.9)):

µi = h(ηi) = h(XT
i β) = b′(θi).

By taking the derivative of the right-hand term with respect to β, we get:

h′(XT
i β)Xi = b′′(θi)

∂

∂β
θi,

∂θi
∂β

=
h′(ηi)

V (µi)
Xi,

where V (µi) = b′′(θi). Now, one more derivative is taken:

∂2

∂ββT
θi =

h′′(ηi)V (µi)− h′(ηi)2V ′(µi)

V (µi)2
X iX

T
i .

Hence, the gradient and the Hessian of the deviance can be expressed by [64]:

∇(β) = −2
N∑
i=1

(Yi − µi)
h′(ηi)

V (µi)
X i,

H(β) = 2

N∑
i=1

(
h′(ηi)

2

V (µi)
− (Yi − µi)

h′′(ηi)V (µi)− h′(ηi)2V ′(µi)

V (µi)2
)XiXi

T .

The expectation of H(β) in the Fisher scoring algorithm equals

EH(β) = 2

N∑
i=1

(
h′(ηi)

2

V (µi)
)X iX

T
i .

Then, the Fisher Scoring iteration step for β can be expressed with the following

formula [64]:

βnew = βold + (X TWX )−1X T Ỹ = (X TWX )−1X TWZ ,

with the weight matrix is W := diag(h
′(η1)2

V (µ1) , . . . ,
h′(ηn)2

V (µn) ) and with the vectors Ỹ =

(Ỹ1, . . . , Ỹn)T ,Z = (Z1, . . . , Zn)T , by Ỹi = Yi−µi
h′(ηi)

and Zi = ηi + Ỹi = Xi
Tβold + Yi−µi

h′(ηi)

(i = 1, 2, . . . , N).

Since the weights are recalculated in each step, it is called as the iteratively reweighted

least squares (IRLS) algorithm. For the Newton-Raphson algorithm a representation

equivalent to above can be found, only the weight matrix W is different in our case

of the Fisher scoring iteration.

The iteration will be stopped when the parameter estimate and/or the deviance do not

change significantly anymore. Then, β̂ is the final parameter of the iteration process.
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2.3 Generalized Partial Linear Models

A Generalized Partial Linear Model (GPLM ) extends the GLM in that the usual

parametric terms are augmented by a single nonparametric component.

2.3.1 Introduction

The GPLM model is given by [92]

E(Y |X ,T ) = G(X Tβ + γ(T )), (2.15)

where β = (β1, β2, . . . , βm)T is a finite dimensional parameter and γ(·) is a smooth

function which we try to estimate by B-splines. Here, X denotes an m-variable

random vector which typically covers discrete covariables, and T is a q-variate random

vector of continuous covariables to be modeled in a nonparametric way.

Straightforward maximization of the log-likelihood function L, which is written in the

composite form L(θ(β, γ)) to emphasize the roles of predictors, parameters, and of

the unknown curve is no longer appropriate as a method of estimation. This leads

to overfitting in the absence of any constraints on β. Indeed, it typically renders

the parameters β unidentifiable. But progress is possible by maximizing instead a

penalized version of log-likelihood, if we are willing to place weak constraints on the

form of γ by assuming that it is smooth. Thus, we maximize the penalized log-

likelihood [92]

`(η, y) := L(θ(β, γ)− 1

2
τ

∫ b

a
(γ′′(t))2dt,

where H(µ) := η(X ,T ) = X Tβ+ γ(T ), and G := H−1 is a link function which links

the mean of the response variable to the predictors.

Here, ` represents the log-likelihood of the linear predictor and the second term is the

penalizing part, and τ is a smoothing parameter that controls the trade-off between

accuracy of the data fitting and its smoothness (or complexity) [14]. By smoothing, it

is desired to guarantee that the estimation is sufficiently robust with respect to noise

in data and other forms of perturbation [92].
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2.3.2 The Mathematical Tool of Splines

Models that closely fit the data is preferable in any regression procedure. Transfor-

mations of the response variable is a method to improve the fit and may help to fix

violations of model assumptions such as constant error variance. Also a predictor vari-

able can be divided into logical categories (e.g., weight categories), or additional terms

that are functions of the existing predictors such as quadratic or cubic terms can be

added. Nonetheless, methods such as spline modeling, taking into consideration the

variation in the relationship between the predictor variable and the response variable,

may provide a better fit both within and between levels of the predictor variable. Still

no one is the best approach, as some modeling methods may produce better results

for predicted values (e.g., narrower confidence intervals) than other methods, depend-

ing on the data. Greenland (1995) [28], indicating that categorical analysis does not

make use of within category information and is based on an unrealistic model for

dose-response and trends, propose to use spline regression (and fractional polynomial

regression) as an alternative method to categorical analysis for dose response and

trend analysis. Spline regression is based on more realistic category-specific models

that are especially beneficial when subjected to nonlinearity [45].

Splines either line or curve are usually required to be continuous and smooth. Univari-

ate polynomial splines are piecewise polynomials in one variable of some degree k with

function values and the first k-1 derivatives that agree at the points where they join.

These points that mark one transition to the next are referred to as break points, inte-

rior knots, or simply knots [23, 80]. Knots provide the curve freedom to turn as well as

follow the data more closely. Although splines with few knots are generally smoother

than splines with many knots, the fit of the spline function to the data increases by

allowing more knots [32]. For any given set of knots, the smooth spline is computed

by multiple regression on an appropriate set of basis elements, or basis functions rep-

resenting the particular family of piecewise polynomials. The truncated-power series

basis is a simple choice of basis functions for piecewise splines [92]. Although concep-

tually simple, truncated power series are not attractive numerically, because they can

allow big rounding problems. Despite there are many types of splines and estimation

procedures [23, 30], in this thesis we will focus on GPLM by using B-splines. B-spline
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bases, on the other hand, allow for efficient elegant computations even when there is

a huge number of knots [8].

2.3.2.1 B-Splines

The term B-spline was introduced by Isaac Jacob Schoenberg and is the short form of

basis spline. B-spline functions have a minimal support regarding over a given degree,

smoothness, and domain partition. According to a fundamental theorem, every spline

function of a given degree, smoothness, and domain partition, can be outlined as a

linear combination of B-splines of that same degree and smoothness, and over that

same partition [8].

B-splines consist of polynomial pieces having a special connection among pieces. In a

B-spline, each control point is connected with a basis function. The curve is [92]

γ(t) :=
r∑
j=1

λjBj,k(t) (t ∈ [a, b]),

where λ1, λ2, . . . , λr are r control parameters, Bi,k(t) are basis functions of degree k,

t= (t1, t2, . . . , tq)
T is a knot vector with a ≤ tj < tj+1 ≤ b, and must be specified by

k = q − r − 1. This determines the values of t at which the pieces of the curve join.

Let us note some important examples:

• Zero-Degree B-spline:

Bj,0(t) =

 1, tj ≤ t ≤ tj+1,

0, otherwise,
for j = 1, 2, . . . , q;

• k-degree B-spline [92]:

Bj,k(t) =
t− tj

tj+k − tj
Bj,k−1(t)−

tj+k+1 − t
tj+k+1 − tj+1

Bj+1,k−1(t) (k ≥ 1);

for k ≥ 2, its derivative is

d

dx
Bj,k(t) =

k

tj+k − tj
Bj,k−1(t) +

k

tj+k+1 − tj+1
Bj+1,k−1(t).

B-spline bases overlap with each other. For example, first-degree B-spline bases over-

lap with two neighbors, second-degree B-spline bases with four-degree ones, and this

continues like this.
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Some properties of a B-spline are [92]:

• it consists of k + 1 polynomial pieces, each of degree k;

• the polynomial pieces join at k inner knots;

• at the joining points, derivatives up to order k − 1 coincide;

• a B-spline basis function is positive on a domain spanned by k+2 knots; outside,

it is zero;

• except at boundaries, it overlaps with 2k polynomial pieces of its neighbours;

• at a given point t, k + 1 B-splines basis functions are nonzero.

2.3.3 Estimation Methods

Although the maximization of likelihood turns out to require an iterative least-squares

approach, estimation and inference for GLMs are based on the theory of maximum

likelihood estimation. A particular semiparametric model of interest is the generalized

partial linear model (GPLM) which extends the generalized linear models in that

the usual parametric terms are augmented by a single nonparametric component.

Generally, the estimation methods for GPLM are based on the idea that an estimate

of β̂ can be found for a known γ(·) and an estimate of γ̂(·) can be found for a known

β. In this thesis, we will focus on different types of estimation of γ(·) and β based on

B-splines.

2.3.3.1 Penalized Maximum Likelihood

Let us consider the GPLM model (2.15) in the introduction part, where it is assumed

that G = H−1 is a link function. Here, however, the model can be thought as semi-

parametric GLM since all terms are linear except one; i.e.,

H(µ) = η(X ,T ) = X Tβ + γ(T ) =
m∑
j=1

Xjβj + γ(T ) (i = 1, 2, . . . , N). (2.16)

For simplicity, the observation values ti of T in GPLM are considered one-dimensional.

Then, µi = G(ηi) and

ηi = H(µi) = X T
i β + γ(ti). (2.17)
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We will use penalized maximum likelihood estimation to avoid overfitting. This

method is characterized through a score function ∂`(η, y)/∂η. For this model the

penalized maximum criterion is given by [92]:

j(β, γ) = `(η, y)− 1

2
τ

∫ b

a
(γ′′(t))2dt. (2.18)

As we estimate the model by penalized maximum likelihood, we desire to maximize

(2.18) and for this we minimize the second part. We will do it by using B-splines

through the local scoring algorithm, so we write a k degree B-spline with knots at

the value ti (i = 1, 2, . . . , N) instead of γ(t). There will be N − 2 interior points and

N + k − 1 unknown parameters.

Hence, we reach a representation

γ(t) :=

v∑
j=1

λjBj,k(t),

where λj are coefficients, Bj,k = Bj are B-spline basis functions and ν=N + k − 1.

The vector notation is as follows:

γ(t) = Bλ,

where γ(t):= (γ(t1), . . . , γ(tN ))T and B= (Bij) i=1,2,...,N
j=1,2,...,ν

is a (N×ν)-matrix of Bij :=

Bj(ti), and λ= (λ1, λ2, . . . , λν)T .

If we define a (ν×ν)-matrix K= (Kkl)k,l=1,2,...,N matrix by Kkl :=
∫ b
a B
′′
k(t)B′′l (t)dt,

then the penalized maximum criterion (2.18) can be written as

j(β,γ) := l(η,y)− 1

2
τλTKλ. (2.19)

By assuming N ≥ ν and that B has full rank, we insert the least-squares estimation

λ = (BTB)−1BTγ(t) into equation (2.19) and writeM :=B(BTB)−1K(BTB)−1BT ,

then we get

j(β,γ) = l(η,y)− 1

2
τγTMγ. (2.20)

Now, to solve the minimization problem of (2.20), we need to find the optimal esti-

mators β̂ and γ̂. Let us denote g1 :=X β and g2 :=γ(t); then (2.17) will be

H(µ) = η(X, t) = g1 + g2,
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where X is an (N×m)-matrix, and g1 and g2 are N-vectors of entries X T
i β and γ(ti),

respectively. The following system of equations should be solved to maximize (2.18)

over g1 and g2:
∂j(β,γ)

∂g1
= (

∂η

∂g1
)T
∂`(η,y)

∂η
= 0, (2.21)

∂j(β,γ)

∂g2
= (

∂η

∂g2
)T
∂`(η,y)

∂η
− τM g2 = 0.

These system equations are nonlinear in η and g2. To reach a solution, they are

linearized around a current guess η0 and obtain a Newton-Raphson type equation:

∂`(η,y)

∂η
≈ ∂`(η,y)

∂η
|η0 +

∂2`(η,y)

∂ηηT
|η0 (η − η0) = 0. (2.22)

By using (2.22) in (2.21), and putting r:=∂`(η,y)/∂η and C:=−∂2`(η,y)/∂ηηT , we

reach the following matrix notation:C C

C C + τM

g11 − g10

g2
1 − g20

 =

 r

r − τMg0
2

 , (2.23)

where (g01,g02) → (g11,g12) is a Newton-Raphson step, and C and r are evaluated at

η0. To have a more simple form for the equation (2.23), let us put h:=η0+C−1r,

and SB:=(C+τM)−1C that is a weighted B-spline operator. Then, (2.23) takes the

form  C C

SB I

g11
g12

 =

 C
SB

h. (2.24)

If we multiply the upper row with C−1 and the second row with (C + τM )−1, we

can transform it to g11
g12

 =

Xβ1

γ1

 =

 h− g12
SB(h− g11)

 . (2.25)

Here, β̂ and γ̂ can be found explicitly with no iteration (inner loop backfitting); then,

ĝ1 = Xβ̂ = XXTC(I − SB)X
−1
XTC(I − SB)h,

ĝ2 = γ̂ = SB(h−Xβ̂),
(2.26)

where X=(xij)i=1,2,...,N ; j=1,2,...,m is the regression matrix for the values xi and h

is the adjusted dependent variable. Furthermore, SB computes a weighted B-spline

smoothing on the variable ti with weights given by C=−∂2` (η,y)/∂ ηηT .

Newton-Raphson updates solve a weighted and penalized quadratic criterion. This

criterion is a local approximation of the penalized log-likelihood. From the updated
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(β̂, γ̂), the outer loop must be iterated to update η and, thus, h and C. Then, the

loop is repeated until convergence is sufficient [27]. As the outer loop is simply a

Newton-Raphson step, a step size optimization is performed, and the outer loop will

convergence. Let us consider a trial value of the form

ηφ := φη1 + (1− φ)η0, (2.27)

with gs (s = 1, 2) defined. Thus, (2.27) becomes a Newton-Raphson step of size φ

and we maximize j(η(φ)) over φ [92]. Convergence is ensured by the standard results

on the Newton-Raphson procedure [74].

The asymptotic properties of these models can be found in [27, 38]. By considering

the equations (2.26), we obtain

E(β̂) = β +XTC(I − SB)X}−1XTC(I − SB)Bλ,

Cov(β̂) = (XTC(I − SB)X}−1XTC(I − SB)2X(XTC(I − SB)X}−1,

where {XTC(I-SB)X}−1XTC(I-SB)Bλ is the estimated correction term.

Besides, considering the equations (2.25)-(2.26), the functions g1 and g2 are estimated

by linear mapping or the smoother applied to the adjusted dependent variable h, with

weight C given by the information matrix. When RB is the weighted additive fit

operator, then, by convergence,

η̂ = RB(η̂ +C−1r̂) = RBh,

where r̂=∂`(η,y)/∂η|η̂ [92]. By changing from h, RB and C to their asymptotic

versions h0, RB0 and C0, where h≈h0 has mean η0 and variance C−1
0 φ ≈ C−1φ.

Then,

Cov(η̂) ≈ RB0C
−1
0 RT

B0
φ

≈ RBC
−1RT

Bφ,

and

Cov(ĝs) ≈ RBsC
−1RT

Bsφ (s = 1, 2).

Here, RBj is the matrix producing ĝj from h based on B-splines. Besides, η̂ is

asymptotically distributed as N(η0, RB0C
−1
0 RT

B0
φ) [38].
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2.3.3.2 Penalized Iteratively Re-Weighted Least Squares

The penalized likelihood is maximized by the penalized iteratively reweighted least

squares (P − IRLS) method. By denoting β̂ and γ̂ as the estimated parameter

vectors of β and γ, and η
[p]
i =XT

i β̂ + T̂ , µ
[p]
i = H−1(η

[p]
i ), respectively, where G(η

[p]
i )

is the inverse function of the link at the pth iteration. Thus, we can express (2.24) as

the linear system that finds g1 and g2. Finally, we minimize the following equation

to find the (p+ 1)th estimate of the linear predictor η[p+1]:

‖C [p](h[p] − η)‖2 + τγTMγ, (2.28)

where ‖.‖2 is the Euclidean norm and h[p] is the iteratively adjusted dependent vari-

able. It is expressed by

h
[p]
i := η

[p]
i +H ′(µ

[p]
i )(yi − µ[p]

i ),

where H ′ is the first derivative of H with respect to β and C [p] is a diagonal weight

matrix with elements C
[p]
ii := 1/V (µ

[p]
i )H ′(µ

[p]
i )2, where V (µ

[p]
i ) is proportional to the

variance of Yi according to the current estimate µ
[p]
i . By using γ(t)=Bλ in (2.28),

then it looks as follows:

‖C [p](h[p] −Xβ −Bλ‖2 + τλTKλ. (2.29)

Here we assume that K is of rank z < v [27]. It is possible to write JTKJ=I,

T TKT=0 and JTT=0, where J and T are two matrices with ν rows and with full

column ranks z and ν-z, respectively. Rewriting

λ = Tδ + Jε, (2.30)

with vectors δ and ε of dimensions z and ν-z, respectively. Now, the term (2.28)

becomes

||C [p](h[p] − [X,βT ]

β
δ

−BJε)‖2 + τεTε.

We can split its minimization by separating to solution with respect to β and δ from

the one on ε, by using Householder decomposition [20]. Then, we can write

QT
1C

[p][X,BT ] = R, QT
2C

[p][X,BT ] = 0,
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where Q=[Q1,Q2] is orthogonal and R is nonsingular, upper triangular and of full

rank m+ ν − z. Then, our problem turns to minimize the sum of

‖QT
1C

khk −R

β
δ

−QT
1C

kBJε‖2 (2.31)

with respect to (β,δ), given ε based on minimizing

‖QT
2C

khk −QT
2C

kBJε‖2 + τεTε. (2.32)

By an appropriate choice of β and δ, given ε, the term (2.31) can be set to zero. If

we take H:=QT
2C

khk and V :=QT
2C

kBJ , (2.32) becomes the minimization problem

‖H − V ε‖2 + τεTε,

that is a Tikhonov regularization problem [3]. The solution is

ε̃ = (V TV + τI)−1V TH.

We can find other parameters asβ̃
δ̃

 = R−1QT
2C

k(H −BJε̃).

The vector λ̃ can be computed from (2.30) and thus, η[p+1]=Xβ̃+Bλ̃ can be com-

puted. The matrices J and T can be computed via a Cholesky and Householder

transformation [20].

2.3.3.3 An Alternative to the Choice for Penalty Parameters

Penalized maximum likelihood method and also P-IRLS methods both contain the

smoothing parameter τ . To estimate this parameter, there are two commonly used

methods; Generalized Cross Validation (GCV ) and minimization of an UnBiased Risk

Estimator (UBRE) [14]. However, here, we will mention an alternative method, called

conic quadratic programming [92].

If we turn back to equation (2.29) and use Cholesky Decomposition, where K is a

(ν×ν)-matrix K such that K=UTU , then, the equation is:

‖Wϕ− v‖2 + τ‖Uλ‖22. (2.33)
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Here, ϕ:=(βT ,λT )T , W :=C [p](X,B) and v:=C [p]h[p].

Then, the problem (2.33) turns into an optimization problem with constraints:

min G(ϕ) subject to g(λ) ≤ 0, (2.34)

where G(ϕ) := ‖Wϕ − v‖2 and g(λ):= ‖Uλ‖2 −M , and M ≥ 0 which is chosen

with some tolerance before or adapted in a learning process. Then, the optimization

problem (2.34) can be equivalently written in the following form:

min t,

subject to |Wϕ− v‖22 ≤ t2,

‖Uλ‖2 ≤M, t ≥ 0,

where W and V are (N×(m+v))- and (v×v)-matrices, while ϕ and v are (m+v)-

and n-vectors. Then, our optimization problem becomes:

min t,

subject to ‖Wϕ− v‖2 ≤ t,

‖Uλ‖2 ≤
√
M. (2.35)

By use of continuous optimization techniques, from conic quadratic optimization pro-

gramming [68]:

min cTx,

subject to ‖Dix− di‖2 ≤ pTi x− qi (i = 1, 2, . . . , k).

it can be seen that the minimization problem is a conic quadratic programming prob-

lem with

c = (1,0Tm+v)
T , x = (t,ϕT )T = (t,βT ,λT )T , D1 = (0N ,W ), d1 = v,

p1 = (1, 0, . . . , 0)T , q1 = 0, D2 = (0v,0v×m,U), d2 = 0v, p2 = 0m+v+1

and q2 = −
√
M .

Equation (2.35) is reformulated for writing the dual problem to this problem and it
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looks as follows:

min t,

subject to ψ :=

0N W

1 0Tm+v

 t

ϕ

+

−v

0

 ,

ρ :=

0v 0v×m U

0 0Tm 0Tv

 t

ϕ

+

 0v
√
M

 ,

ψ ∈ LN+1,ρ ∈ Lv+1,

where LN+1, Lv+1 are the (N+1)- and (v+1)-dimensional ice-cream (or second-order,

or Lorentz ) cones, defined by:

Ll+1 := { x = (x1, x2, . . . , xl+1)T ∈ Rl+1 |

xl+1 ≥
√
x2

1 + . . .+ x2
l } (l ≥ 1).

The dual problem to the latter problem is given by

max (vT , 0)K 1 + (0Tv ,−
√
M)K 2

such that

 0TN 1

W T 0m+v

K 1 +


0Tv 0

0m×v 0m

UT 0v

K 2 =

 1

0m+v

 ,

K 1 ∈ LN+1,K 2 ∈ Lv+1.

Classical polynomial time algorithms can be used to solve convex optimization prob-

lems such as semi-definite programming, geometric programming and, in particular,

Conic Quadratic Problems. However, these algorithms use only local information on

the objective function and have constraints. To solve “well-structured” convex prob-

lems like conic quadratic problems, Interior Point Methods [81, 70] firstly introduced

by Karmarkar in 1984, are used. These methods (also called Barrier Methods) are

based on both the given (primal) and the dual problem. They allow better complexity

bounds and performs better practical performance. As well, they guarantee feasibil-

ity throughout the entire iteration procedures, while penalty methods and Tikhonov

regularization can be regarded as Exterior Point Methods with possible infeasibility

[92].

Until now, it is explained that a spline regression problem can be presented either as

a Tikhonov regularization problem or as a conic quadratic problem. In the following
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chapters, we will explain about both Tikhonov regularization and Conic quadratic

problems which we connect with multiple adaptive regression splines (MARS) for our

nonlinear arbitrary function γ(t). This is called as adaptive because the selection of

basis functions is data-based and specific to the problem at hand. By this connection,

conic multivariate adaptive regression splines (CMARS) will be introduced.

2.3.4 Motivations and Applications

Generalized partial linear models (GPLMs) has a great advantage that consists in

some grouping which could be done for the input dimensions or features in order to

assign appropriate submodels specifically [92]. There are linear, nonlinear ones as well

as parametrical and nonparametrical ones. By separating linear models from nonlinear

or nonparametrical ones, inverse problem methods such as Tikhonov regularization [3]

can be applied for the linear submodels separately, within the entire GPLMs. Such a

particular representation of submodels provides both a better accuracy and a better

stability (regularity) under noise in the data.

Among the real-word motivations which lead to GPLMs, there are the following ones,

all of them related with important modern applications [92]:

(i) General empirical knowledge and data bases (contributing to a linear submodel)

and expert knowledge, e.g., in the financial or actuarial sectors, contributing to a

nonlinear model; in the field of understanding the role of expert knowledge, still too

little is understood yet.

(ii) Remaining in the area of financial markets and representing various processes by

stochastic differential equations and Lévy processes, the deterministic drift term could

be stated by a linear submodel whereas the (possibly simulated) stochastic diffusion

term and the compound Poisson processes on jump behaviour could be represented

by a nonlinear model.

(iii) While a linear submodel may easily represent given (open) information, a nonlin-

ear submodel could collect hidden information such as, e.g., Hidden Markov Models.

This model distinction between non-hidden and hidden can be used in speech pro-

cessing, image processing, in the financial sector of, e.g., loan banking and credit risk,
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and in physics.

The grouping of input dimensions or features mentioned above is in reality done by

the help of data mining, especially, by clustering and classification [100]. In fact,

firstly, Taylan, Weber and Beck (2007) [89] clustered time points of the change of

prices at some stock exchange. Secondly, Weber et al. (2007) [92] regressed credit

default to the features of the credit takers. Thirdly, in the modeling and estimation

work of Kropat, Weber and Pedamallu (2009) [53] on regulatory networks, a distinc-

tion is made between target variables (e.g., from biology, medicine or emissions) and

environmental variables (e.g., of toxic substances or from finance). In both categories,

items (variables, dimensions of features, or actors) are clustered according to whether

they are considered to be related with each other - stochastically dependent or corre-

lated. This is practically done by means of clustering via the geometrical positions of

all the given data points, and ellipsoids are raised on the clusters to represent these

mutual relationships. Let us underline that this idea also led to the introduction of

ellipsoid games by Alparslan Gök and Weber (2009) [1, 98, 99].

2.4 Tikhonov Regularization

Ill-posed problems are frequently encountered in many fields of science. The term

itself has its origins in the early 20th century and was introduced by Hadamard who

wrongly believed that ill-posed problems did not model real world problems, but later

it appeared that it was possible. According to Hadamard, a linear problem is called

as well posed if it satisfies the following three conditions: (i) existence, (ii) uniqueness,

and (iii) stability. However, if at least one or more of these conditions are not satisfied,

then the problem is said to be ill-posed [50]. Inverse problems, where the values of

some model parameters are obtained from the observed data, are often ill-posed.

There are some methods to turn these ill-conditioned problems into well-posed. These

methods are established on the so-called regularization techniques. The principal goal

of regularization is to incorporate more information about the desired solution in

order to stabilize the problem and find a useful and stable solution. One of the most

commonly used methods is Tikhonov regularization named by Andrey Tychonoff in

1984 [29]. In statistics, it is also known as ridge regression. The most basic version of
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this method is as follows:

min
β

‖Xβ − y‖22 + ϕ2‖β‖22, (2.36)

where ϕ2 = λ ∈ R+ is the regularization or tradeoff parameter.

In Tikhonov regularization, the regularized solution is thought as a minimizer of a

weighted combination of the residual norm and a side constraint. As the weight

given to the minimization of the side constraint is controlled by the regularization

parameter, the quality of the solution is determined by that parameter. A parameter

that can fairly balance between the residual error and the regularization error, i.e.,

in stability of the approximate solution, is considered as an optimal regularization

parameter [50]. When the norm of the error in data or the norm of the solution of the

error-free problem is available, it is possible to consider and compute a suitable value

for the regularization parameter [25].

By the application of Tikhonov regularization to ill-posed equations, the regularization

parameter brings the optimal rate of convergence for the approximations. However,

when the rates of convergence are derived, assumptions about the nature of the sta-

bilization (i.e., the choice of the semi-norm in the Tikhonov regularization) and the

regularity imposed on the solution should be made [67]. Actually, there is a trade-off

between stabilization and regularity in terms of convergence rate.

2.4.1 Choosing the Regularization Parameters in Tikhonov Regulariza-

tion

A method incorporating information about the solution size as well as using infor-

mation about the residual size is a desired method for choosing the regularization

parameter for discrete ill-posed problems. In fact, it is desired to reach a fair balance

to keep both of these values small.

Although there are several possible methods to find a suitable choice of the regulariza-

tion parameter, it is possible to divide these methods into two main categories. The

first method is based on a posteriori strategy for choosing the regularization parame-

ter, i.e., knowledge or a good estimate of error norm is needed, while the second one

includes the methods that do not require any knowledge about error norm. In fact, it
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is based on a priori knowledge of a structure of the input error, meaning that the error

terms on the right-hand side can be considered as white noise, uncorrelated zero-mean

random variables with a common variance [50]. While the discrepancy principle is an

example of the first category, the Cross-Validation and L-curve are examples of the

second [33].

The L-curve criterion is a useful method for determining the regularization parameter

especially when data includes noise. It is first introduced by Lawson and Hanson in

1974 [55]. This method is established on plotting the norm of the regularized solu-

tion versus the corresponding residual norm, and to select a regularization parameter

related to the characteristic L-shaped ‘corner’ of the graph. The transition between

under- and over-regularization regions is taking place this corner. There are two

meanings of the ‘corner’: according to first meaning, it is the point, where the curve is

closest to the origin and to the second, it is the point, where the curvature is maximum

[37]. Specifically, the L-curve has two characteristic parts: “flat” part and an almost

“vertical” part [50]. In the more horizontal part, as the regularization parameter is

too large, the solution is dominated by the regularization errors and thus solutions are

oversmoothed. However, in the vertical part, the regularization parameter is too small

and the solution is dominated by the right-hand side errors and thus solutions are un-

dersmoothed. In other words, solutions are affected by the regularization parameter,

not by any other additional properties of the problem, e.g., a statistical distribution

of the errors [50]. Hence, an appropriate choice of this parameter is very crucial for

ill-posed problems.

In linear scale, it is difficult to view the features of the L-curve because of the large

range of values for the two norms. However, when drawn in double logarithmic scale,

it is possible to see the features of the curve. The corner of the L-curve is clearly seen.

As well, particular scalings of the right-hand side and the solution simply shift the

L-curve horizontally and vertically [50]. Thus, it is better to analyze the L-curve in

the double logarithmic scale.

As it shows how the regularized solution varies by the change in the regularization

parameter, L-curve is important for Tikhonov regularization in the analysis of discrete

ill-posed problems. The corner of the L-curve corresponds to a good balance between

29



the minimization of the sizes because, at this corner, the solution changes from being

dominated by the regularization errors to being dominated by the errors on right-hand

side, and also the corresponding regularization parameter is a good parameter [50].

In fact, the value at this corner corresponds to the optimal value of the regularization

parameter [33].

2.4.2 Choosing a Good Solution in Tikhonov Regularization

Tikhonov solution can be expressed easily in terms of the singular value decomposition

(SV D) of the coefficient matrix X :

Xβ = y ,

where X is an ill-conditioned matrix. There can be numerous least-squares solutions

for a general linear least-squares problem. When the data contain noise and noise is

not fitted exactly in any point, then, as long as the norm of the residual ‖Xβ − y‖2

is minimized enough, there can be many solutions that fit the data well.

In Tikhonov regularization, we consider all solutions with ‖Xβ − y‖2 under the dis-

crepancy principle [3], and select the one that minimizes the norm of β. Since the

norm (length) ‖β‖2 represents the complexity of the possible solution, it is usually

preferred to obtain a solution minimizing the norm of β. Besides, by minimizing, any

unnecessary features can be removed from the regularized solution and the model can

show a better fit to data.

Different kinds of Tikhonov regularization are represented as minimization problems.

Under the discrepancy principle, all solutions with ‖Xβ−y‖2 are considered, and we

select the one that minimizes the norm of β,

min
β

‖β‖2 such that ‖Xβ − y‖2 ≤ δ. (2.37)

In the first optimization problem (2.37), as δ increases, the set of feasible models

expands, and the minimum value of ‖β‖2 decreases.

Next, we introduce the problem

min
β

‖Xβ − y‖2 such that ‖β‖2 ≤ ε. (2.38)
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In this second optimization problem, as ε decreases, the set of feasible solutions be-

comes smaller, and the minimum value of ‖Xβ − y‖2 increases.

There is also a third option to consider: a dampened LS problem. This form is obtained

by applying a Lagrange multiplier to the problem (2.38). Then, we get

min
β

‖Xβ − y‖22 + ϕ2‖β‖22, (2.39)

where λ = ϕ2 is the Lagrange multiplier and ϕ is the regularization parameter

between the two parts.

These three problems can reach the same solution for appropriate choices of δ, ε and

ϕ [34]. We will deal with the third option, solving the damped least-squares form of

the problem (2.39).

As ‖β‖2 is a a strictly decreasing function of ϕ and ‖Xβ − y‖2 increasing function

of ϕ, the curve of optimal values of these norms often looks like an L-curve on log-log

scale.

It is possible to compute an appropriate value for the parameter of Tikhonov regular-

ization when the norm of the solution of the error-free problem is known or when the

norm of the error is known. However, in many important applications, the norm of the

error is not explicitly known. In this case, the L-curve is a popular approach for choos-

ing a suitable regularization parameter [34]. Actually, L-curve is used to control the

trade-off so that the regularization parameter could properly balance the two parts.

Besides, λ also controls the sensitivity of the regularized solution (coefficients of basis

functions) to perturbations in y and β, and the perturbation bound is proportional

to λ−1 [35]. Hence, this regularization parameter is an important quantity controlling

the properties of the regularized solution, λ should therefore be chosen with care.

If we plot the optimal values of ‖β‖22 versus ‖Xβ − y‖22 on a log-log scale, as ‖β‖22 is

a strictly decreasing function of ϕ and ‖Xβ − y‖22 is a strictly increasing function of

ϕ, we can see that the curve has a characteristic L shape.
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2.4.3 Solution of Zeroth-Order Tikhonov Regularization Problems

In the previous part, different kinds of Tikhonov regularization represented by mini-

mization problems are mentioned and stated that for some appropriate choice of the

values δ, ε and ϕ, these problems can have the same solution. These problems may

be solved by using singular value decomposition, or SVD [3].

In the SVD [54], an (N ×m)-matrix X is defined as

X = USV T ,

where U and V are orthogonal matrices and S is an (N × m)-matrix where the

nonnegative diagonal elements are called singular values. The SVD matrices can be

computed in MATLAB by the svd command.

The problem (2.39) is a damped least-squares problem with a penalization term ϕ and

it can be solved by the method of normal equations. The set of constraint equations

for a 0th-order Tikhonov regularization solution of Xβ − y :

(X TX + ϕ2I )β = X Ty . (2.40)

Applying SV D of X , the equation (2.40) can be written as

(VSTU TUSV T + ϕ2I )β = VSTU Ty .

As (VSTSV T + ϕ2I )β = VSTU Ty is nonsingular for ϕ 6= 0, this problem has a

unique solution:

X ϕ =

k∑
i=1

si
2

si2 + ϕ2

(U .,i)
Ty

si
V .,i where k = min{N,m}.

Here, the quantities

fi :=
si

2

si2 + ϕ2

are called filter factors. The filter factors control the contribution of the singular

values (and their corresponding singular vectors) to the solution. If si << ϕ, then

fi ≈ 0 and if si >> ϕ, then fi ≈ 1. For more details of this application we refer to [3].

In many cases, however, instead of using SVD solution, a solution that minimizes the

norm of first- or second-order derivative of β is preferred. Here, the matrix L will
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be used to differentiate β. Matrices that are used to discriminate β for the aim of

regularization are referred to as roughening matrices [3].

These first- or second-order derivatives are approximated from the first- or second-

order difference quotients of β, regarded as a function evaluated at the “points” j and

j +1. All of them are composed of products Lβ of β with matrices L representing the

discrete differential operators of first and second order, respectively. They are band

structure matrices with values -1, 1 and 1, -2, 1 on the band, respectively [3].

If the unit matrix (L = I ) is used, then the optimization problem in (2.39) can be

considered as a special case of (2.41). This type of problem is called as 0th-order

Tikhonov regularization problem and it can be solved by the method of SVD. However,

in general, the matrix L is different from the identity matrix, and this type of problems

is known as higher-order regularization problems.

In first-order Tikhonov regularization, the damped least-squared problem

min
β
‖y −Xβ‖22 + ϕ2 ‖Lβ‖22 (2.41)

is solved by using the matrix L:

L =



−1 1

−1 1 0

...

0 −1 1

−1 1


. (2.42)

In the second-order Tikhonov regularization, the matrix L is as follows:

L =



−1 −2 1

1 −2 1 0

...

0 1 −2 1

1 −2 1


. (2.43)

In (2.42), ‖Lβ‖2 is a finite-difference approximation proportional to the first derivative

of β, while it is proportional to the second derivative of β in (2.43). As ‖Lβ‖2 is

zero for any constant model, not just for β = 0 , it is a semi-norm. In (2.43), the
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minimization of the seminorm ‖Lβ‖2 penalizes solutions that are rough in a second

order derivative sense.

To solve higher-order problems, the generalized singular value decomposition, or Higher-

Order Tikhonov Regularization (GSV D) is used [34, 36]. The GSVD enables the so-

lution to the damped least-squares equation (2.39) to be expressed as a sum of filter

factors times generalized singular vectors.

2.5 Regularization Toolbox

In this thesis, MATLAB Regularization toolbox is used [35]. It is a Matlab package

for the analysis and solution of discrete ill-posed problems.

Ill-posed problems and regularization methods for computing stabilized solutions to

the ill-posed problems occur frequently enough in science and engineering to make

it worth-while to present a general framework for their numerical treatment. The

purpose of this package of MATLAB routines is to provide the user with easy-to-use

routines, based on numerically robust and efficient algorithms, for doing experiments

with analysis and solution of discrete ill-posed problems by means of regularization

methods.

This toolbox contains a number of useful functions such as gsvd, cgsvd, discrep, dsvd,

lsqi, tgsvd, and Tikhonov for under-determined problems. Singular value decompo-

sition (SVD) is a commonly used numerical tool for analysis of discrete ill-posed

problems when there is only one matrix. However, when there is a matrix-pair, the

generalized singular value decomposition (GSVD) is used. The SVD reveals all the

difficulties associated with the ill-conditioning of a matrix while the GSVD of the

matrix-pair yields important insight into the regularization problem involving both

the coefficient matrix (basis function matrix) and the regularization matrix L [35].

Specifically, the useful commands for performing Tikhonov regularization are l curve

for plotting the L-curve, l corner for estimating the corner using a smoothed spline

interpolation method, and Tikhonov for computing the solution for a particular value

of λ, where λ = ϕ2 is the regularization parameter that controls the weight given to

minimization of the side constraint relative to minimization of the residual norm as
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in the equation (2.39). As this parameter controls the sensitivity of the regularized

solution (coefficients of basis functions) to perturbations in y and β, it is an important

quantity and should therefore be chosen with care. The L-curve criterion can be used

to decide about this parameter. The corner of this curve, the point with maximum

curvature, corresponds to the place this parameter should be chosen. Thus, l curve

and l corner commands are helpful here.

2.6 Infinite Kernel Learning

2.6.1 Introduction to Support Vector Machines

Classifying data is a common task in machine learning. A major focus of machine

learning research is to automatically learn to recognize complex patterns and make

intelligent decisions based on data; the difficulty lies in the fact that the set of all

possible behaviors given all possible inputs is too complex to describe. Kernel-based

techniques such as support vector machines, Bayes point machines, kernel principal

component analysis, and Gaussian processes represent a major development in ma-

chine learning algorithms [46].

SVMs are a set of related supervised learning methods used for classification and re-

gression. A SVM constructs a hyperplane or set of hyperplanes in a high or infinite

dimensional space, which can be used for classification, regression or other tasks. In-

tuitively, a good separation is achieved by the hyperplane that has the largest distance

to the nearest training datapoints of any class (the so-called functional margin), since

in general the larger the margin the lower the generalization error of the classifier [44].

In the case of support vector machines, a data point is viewed as a p-dimensional

vector (a list of p numbers), and we want to know whether we can separate such

points with a (p− 1)-dimensional hyperplane. This is called a linear classifier. There

are many hyperplanes that might classify the data. One reasonable choice as the

best hyperplane is the one that represents the largest separation, or margin, between

the two classes. So we choose the hyperplane so that the distance from it to the

nearest data point on each side is maximized. If such a hyperplane exists, it is known

as the maximum-margin hyperplane and the linear classifier it defines is known as a
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maximum margin classifier [44].

Multiclass SVM aims to assign labels to instances by using support vector machines,

where the labels are drawn from a finite set of several elements. The dominating

approach for doing so is to reduce the single multiclass problem into multiple binary

classification problems. Each of the problems yields a binary classifier, which is as-

sumed to produce an output function that gives relatively large values for examples

from the positive class and relatively small values for examples belonging to the neg-

ative class. Two common methods to build such binary classifiers are where each

classifier distinguishes between (i) one of the labels to the rest (one-versus-all) or (ii)

between every pair of classes (one-versus-one). Classification of new instances for one-

versus-all case is done by a winner-takes-all strategy, in which the classifier with the

highest output function assigns the class (it is important that the output functions

be calibrated to produce comparable scores). For the one-versus-one approach, clas-

sification is done by a max-wins voting strategy, in which every classifier assigns the

instance to one of the two classes, then the vote for the assigned class is increased by

one vote, and finally the class with most votes determines the instance classification.

2.6.2 Kernel Learning

Machine learning algorithms can also be used to classify nonlinear data. Especially,

when the data is large-scale and heterogeneous, multiple kernel methods are helpful.

Note that a single kernel is used to map the input space to a higher dimensional

feature space. The logic of multiple kernel learning is to use finitely many pre-chosen

kernels together in a convex combination [83]

kβ(x i,x j) :=

K∑
κ=1

βκkκ(x i,x j) , where i, j = 1, 2, . . . , N. (2.44)

The sum in (2.44) is refined by an integral in the present study. A multiple kernel

reformulation is modeled via semi-definite programming for choosing the optimum

weights of corresponding kernels in [4]. However, this has some negative effects re-

garding computation time due to semi-definite programming. This reformulation is
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enhanced in [83] via semi-infinite linear programming by using optimization model

max
θ,β

θ (θ ∈ R,β ∈ RK)

such that β > 0 ,
K∑
κ=1

βκ = 1,

K∑
κ=1

βκSκ(α) > θ ∀α ∈ RN with 0 6 α 6 C1 and
N∑
i=1

yiαi = 0,

(2.45)

where 1 = (1, 1, 1, . . . , 1)T ∈ RN .

However, there is a limitation on the finite combinations of kernels such that they

are restricted up to a finite choice. This restriction does not permit always to display

the similarity or dissimilarity of data points, especially for large-scaled and highly

nonlinearly distributed ones. A finite combination may not work here. Thus, a new

combination of infinitely many kernels in Riemann-Stieltjes integral form is suggested

in [76, 78] by using infinite and semi-infinite programming considering all elements in

kernel space which is named infinitely kernel learning (IKL) [76, 77, 78]. Then, the

problem becomes infinite in both its number of constraints and its dimension; which

is known as infinite programming (IP ). An infinite combination has the following

form:

kβ(xi, xj) :=

∫
Ω
k(xi, xj , ω)dβ(ω), (2.46)

with ω ∈ Ω being a kernel parameter and β being a monotonically increasing function

of integral 1, or just a probability measure on Ω. Moreover, the function k(xi, xj , ω) is

supposed to be a twice continuously differentiable function over ω, e.g., k(xi, xj , ·) ∈

C2. As infinitely many kernels is suggested to deal with the restriction of the kernel

combination composed by finitely many pre-chosen kernels, then, the questions on

which combinations of kernels and on the structure of the mixture of kernels appear,

and it may be solved, i.e., by homotopies [76, 77, 78].

This new formulation gives the chance to record (“scanning”) all possible choices of

kernels from the kernel space and, thus, it is possible to keep the uniformity. Infinitely

many kernels result in infinitely numerous coefficients and these coefficients are de-

scribed by an increasing monotonic function through positive measures [76, 77]. The
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formulation of IKL in [76, 77, 78] is as follows:

max
θ,β

θ (θ ∈ R, β : a positive measure on Ω)

such that θ −
∫

Ω T (ω,α)dβ(ω) 6 0 (α ∈ A),∫
Ω dβ(ω) = 1,

(2.47)

where T (ω,α) := S(ω,α) −
∑N

i=1 αi, S(ω,α) := 1
2

∑N
i,j=1 αiαjyiyjk(x i,x j , ω) and

Ω := [0, 1] and A := {α ∈ RN | 0 6 α 6 C1 and
∑N

i=1 αiyi = 0} are our index sets.

There exist infinitely numerous inequality constraints due to the inequality constraint,

uniform in α ∈ A, and the state variable β comes from an infinite dimensional space.

Hence, our problem becomes one of infinite programming (IP) [2]. The dual of (2.47)

can be represented as

min
σ,ρ

σ (σ ∈ R, ρ : a positive measure on A)

such that σ −
∫
A T (ω,α)dρ(α) > 0 (ω ∈ Ω),∫

A dρ(α) = 1.

(2.48)

Due to the conditions
∫

Ω dβ(ω) = 1 and
∫
A dρ(α) = 1, positive measures β (or ρ) are

probability measures and these measures are parameterized in the present study by

the probability density functions as in [76, 77].

Here, we observe that the primal IKL formulation (2.47) and the dual one (2.48)

looks like each other except that minimization is replaced with maximization and the

direction of inequalities in the constraints are reversed in (2.48). Besides, the index

set A and the variable α becomes Ω and ω, respectively. Both index sets are compact

and the objective functions of both the dual and the primal, θ and σ, are continuous.

Although there exists similarity, the primal and the dual problem are different on the

way how the sets of inequality constraints are described [79].

It is explained in [79] that after a parametrization, the primal (or dual) problem

has variables in finite dimension as instead of optimizing over the measure β, in an

infinite dimensional space, it is minimized over the pdf parameter vector ℘P . This

permits to express the infinite programming problem by semi-infinite programming

(SIP) as the variables are in a finite dimension and there are infinitely numerous

inequality constraints. Hence, the primal problem becomes the following SIP with

additional constraint functions uPi (℘P) and vPj (℘P), coming from the definition of
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the parameter sets related to the specific pdf function of the primal problem [76, 77]:

(Primal SIP ) min
θ,℘P

−θ

such that
∫

Ω T (ω,α)fP(ω;℘P)d(ω)− θ ≥ 0 (α ∈ A),

uPi (℘P) = 0 (i ∈ IP),

vPj (℘P) ≥ 0 (j ∈ JP).

(2.49)

2.6.2.1 Exchange and Conceptual Reduction Methods

To solve SIP problems, discretization [41] can be employed. It is based on a selection

of finitely many points from the infinite index set of inequality constraints. Here, these

infinite index sets, respectively, are A and Ω for the primal and the dual problems.

The discretized primal SIP problem of (2.49) can be expressed as follows:

P (Ak) min
θ,℘P

−θ

subject to gP((θ,℘P),α) :=
∫

Ω T (ω,α)fP(ω;℘P)dω − θ > 0 (α ∈ Ak),

uPi (℘P) = 0 (i ∈ IP),

vPj (℘P) ≥ 0 (j ∈ JP).

(2.50)

Here, P (·) represents the primal, k shows the iteration step (not a kernel function),

Ak ⊆ RN is the discretized set. As well, Ωk can be expressed by a one-dimensional

uniform grid, which means discretfization of a chosen set where all elements x =

(x1, x2, . . . , xl)
T have same spacing over their ith coordinate (i = 1, 2, . . . , l). For

instance, all columns have the same spacing and all of the rows have the same spacing,

but not necessarily the same as the column spacing, in R2.

An alternative, also more powerful method, to discretization is exchange method

(PEM) [40, 41, 86, 96]. It is a method between discretization and the reduction

ansatz [41] in the sense of refinement and complexity of the algorithm. The discretized

upper level problem P (Ak) (2.50) is approximately solved when a discretization Ak is

given, whereas the solution of the lower level problem

min
α

g((θ, β),α) (2.51)

subject to α ∈ A
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is achieved, firstly. The discretization points of Ak are updated in a next iteration. The

iteration stops when the algorithm terminates with regard to some stopping criterion.

The adaptive exchange algorithm to the algorithm primal problem is given in [79].

Another alternative method is the conceptual reduction method (PCRM) that is based

on local reduction starting with an arbitrary point x ∗ (not necessarily feasible) for

the SIP problem. It solves the lower level problem at that point, e.g., it solves Q(x ∗)

to get all the local minima y1,y2, . . . ,yr of Q(x ∗) (finiteness of local minnima is

assumed):

Q(x̄ ) min
y

g(x̄ ,y)

such that uk(y) = 0 (k ∈ K) and v`(y) ≥ 0 (` ∈ L).
(2.52)

As the infinite index sets are compact, and the differentiability, nondegeneracy and

continuity assumptions hold, then, by Theorem of Heine-Borel there are finitely many

local minima of the lower level problem Q(x ) indeed (cf. [101]). The adaptive algo-

rithm is given in [79].

In Chapter 3, we will analyze two data sets, homogenous and heterogenous, respec-

tively by IKL and by CMARS techniques. Then, we compare them over the two data

sets and observe which technique is good for which data.
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CHAPTER 3

METHODS

3.1 Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) is developed by Friedman in 1991

[25]. It is an important tool in statistics as well as in classification and regression. As

an adaptive regression procedure, it is useful for solving high dimensional problems

(many explanatory variables). Besides, it shows a great promise for fitting nonlinear

multivariate functions. MARS builds flexible models through piecewise linear regres-

sions, and nonlinearity of the models is approximated by having different regression

slopes in the corresponding intervals of each predictor. As the intervals underlying

those pieces, except of their boundaries, are closed and non-overlapping, the slope of

each regression line can change from one interval to another one if there is a “knot”

defined in between.

The search for finding the predictor variables in the final model and their respective

knots is a fast but intensive procedure. MARS searches variables one by one as well as

looking for interactions between variables in any degree [19]. The procedure of MARS

is simply a generalization of stepwise linear regression. It uses a stepwise procedure to

introduce and delete explanatory variables, but also it considers transformations and

interactions between the variables. In the algorithm of MARS, each of the explanatory

variables is partitioned into regions that each region has its own regression equation.

Besides, as MARS has an advantage to estimate the contributions of the basis func-

tions, both the additive and the interactive effects of the predictors are allowed to

determine the response variable [90].
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The algorithm of MARS includes a two-stage process to generate a model: forward and

backward. In the first stage, an overfitted model is produced including an extra large

number of basis functions (BFs). However, an overfitted model is not generalized

well to new data, even it has a good fit to the data used to build the model. Thus,

the backward step is used to prune the model and achieve a model that has a better

generalization ability.

The BFs represent distinct intervals of every predictor divided by knots, and every

possible knot location is tested. In fact, a MARS model is a linear summation of

certain BFs in each dimension, and interactions among them, if existing. The BFs

contributing least to the overall performance are removed from the model as initially

the model includes many incorrect terms in the forward step. Thus, this removing

in the backward step provides to reduce the “complexity” of the model without de-

creasing the fit to the data. Besides, by allowing arbitrary shapes of BFs and their

interactions, MARS is capable of reliably tracking very complex data structures that

often hide in high dimensions [19].

3.1.1 Word by Word Definition of MARS

The first word, “multivariate”, means that it is able to deal with multidimensional

data, examine individual features and possible interactions among them. The second

word “adaptive” means selective since MARS automatically deletes certain number of

predictors when their contribution to the final model is trivial. The word “regression”

indicates the commonly used statistical term, often represented as a general prediction

function (linear case):

Y = β0 +

k∑
j=1

βjxj + ε,

where Y is the response variable, β0 is the constant term, βj are the coefficients and

xj are the predictor variables.

Finally, the last word “splines” means a wide class of piecewise defined functions used

in applications requiring data interpolation or smoothing. A spline can be developed

by dividing the region into a conventional number of regions and a knot is the boundary

between regions. By obtaining a sufficient number of knots, any shape can be well
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approximated [104].

3.1.2 The Procedure of MARS

Parametric modeling methods such as linear regression are relatively easy to improve

and interpret when compared to nonparametric ones. However, they have a limited

flexibility and work well only if the underlying assumptions are satisfied. Thus, to

overcome the drawbacks of the usual parametric approaches, nonparametric models

are developed locally over specific subregions of the data. MARS is one of the non-

parametric modeling approaches. The data are searched for an optimum number of

subregions and a simple function is optimally fit to the realizations in each subregion

[105]. The nonlinearity of a model is approximated by using separate linear regression

slopes in separate intervals of the independent variable space.

The general model can be stated as follows:

Y = f(x1, x2, . . . , xp) + ε

= f(x ) + ε,

where f is an unknown function, Y is a continuous or binary response variable, x =

(x1, x2, . . . , xp)
T is a vector of predictor variables and the error term ε is white noise

(ε ∼ N(0, σ2)).

It is possible to express MARS in an expanded form of the piecewise linear basis

functions, (x−t)+ and (t−x)+ with a knotting value at t. The following two functions

are truncated linear ones, where x ∈ R [39]:

(x− t)+ :=

 x− t, if x > t,

0, otherwise,
(t− x)+ :=

 t− x, if x < t,

0, otherwise.
(3.1)

In equation (3.1), (·)+ indicates the use of only the positive parts. These two truncated

functions are piecewise linear nonsmooth splines and they are called as a reflected pair.

Here, the aim is to form reflected pairs for each input xj with knots at each observed

value xij of that input. Then, the collection of the BFs can be written as [11]

C := {(xj − t)+, (t− xj)+ | t ∈ {x1,j , x2,j , ..., xN,j} , j ∈ {1, 2, ..., p}} .
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There will be 2Np BFs in total when all input values are different from each other.

As well, even each BF depends only on a single xj , it is considered as a function over

the whole input space Rp [39].

BFs that are the tensor products of univariate spline functions are used to generalize

spline fitting in higher dimensions. Thus, multivariate spline BFs are as follows:

Bm(x ) :=

Km∏
k=1

(
skm · (xv(km) − tkm)

)
+
,

where Km is the total number of truncated linear functions in the mth BF, xv(km) is

the input variable corresponding to the kth truncated linear function in the mth basis

function, tkm is the corresponding knot value and skm ∈ {±1} [104].

The model-building strategy looks like a forward stepwise linear regression. However,

here the functions from the set C and their products are used instead of the original

inputs. Thus, we reach the following model:

Y = f̂(x ) + ε = c0 +

M∑
m=1

cmBm(x ) + ε, (3.2)

where c0 is the intercept term and M is the number of BFs in the current model [19].

The coefficients cm are estimated by least-squares method given some choices for the

Bm as in linear regression. Thus, the most important concept to generate the model

is the construction of the functions Bm. The model construction starts with only the

constant function B0(x ) = 1, and all functions in the set C are candidate functions.

The possible function forms of BFs Bm(x ) are as follows [52]:

• 1,

• xj ,

• (xj − tk)+,

• xlxj ,

• (xj − tk)+xl, and

• (xj − tk)+(xl − th)+.
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Here, the point is that each BF must have different input variables in the MARS

algorithm. Therefore, the BFs above which are obtained from two multiplied BFs use

different input variables such as xj , xl, and tk, th are their corresponding knots. At

each stage, we consider as a new basis function pair all products of a function Bm

in the model set M with one of the reflected pairs in C. Then, the model set M is

extended with the terms of the form

ĈM+1Bl(x )(xj − t)+ + ĈM+2Bl(x )(t− xj)+;

that provides the largest decrease in training error [39]. Here, the coefficients ĈM+1,

ĈM+2 and also all the other M+1 coefficients in the model are estimated by least-

squares method. The process finishes when the model set M has some preset maximum

number of terms. Thus, it is clear that the model set M has an iterative built up

procedure.

Some possible basis function candidates are as follows [52]:

• xj (j = 1, 2, . . . , p),

• (xj − tk)+, if xj is already in the model,

• xlxj , if xl and xj are already in the model,

• (xj − tk)+xl if xlxj and (xj − tk)+ are already basis functions,

• (xj − tk)+(xl − th)+, if (xj − tk)+xl and (xl − th)+xj are already in the model.

Thus, linear terms are involved in the final model providing a better interpretability

of the model.

3.1.3 Lack-of-Fit Criterion

A large model equation (3.2) including some unnecessary variables and typically over-

fitting the data is obtained at the end of the procedure above. In order to detect

and remove these variables, a backward deletion procedure is necessary. In this pro-

cedure, the term whose removal leads the smallest increase in RSS is deleted at each

stage. At the end of this process, an estimated best model f̂M of each size (number
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of terms) M is obtained. Here, cross-validation can be used to estimate the optimal

value of M . However, for computational savings, the MARS procedure uses general-

ized cross-validation. This criterion, also known as lack-of-fit criterion, is defined as

[25]

LOFf̂M = GCVFriedman :=
1

N

N∑
i=1

(yi − f̂M (x i))
2/(1− C(M)/N)2,

C(M) = trace(B(BTB)−1BT ) + 1.

Here, N is the number of data samples, C(M) is the cost penalty measures of a model

containing M basis functions, and B is an (M × N)-matrix. Indeed, C(M) is the

number of fitted parameters. The numerator is the usual RSS and it is penalized by

the denominator. This denominator helps to balance the increasing variance in the

case where the model complexity increases.

Besides, when there are r linearly independent BFs in the model and K knots were

selected in the forward stage, then, the cost penalty measure is C(M) = r+cK. Here,

the quantity c represents a cost for each BF optimization and it is generally equal to

3 [39]. However, if the model is additive, then a penalty of c = 2 is used. Moreover,

a smaller C(M) produces a larger model with more BFs while a larger C(M) creates

a smaller model with less BFs. By the help of lack-of-fit criteria, the best model is

obtained along the backward sequence minimizing generalized cross-validation [19, 39].

The use of piecewise linear BFs and the particular model strategy it has, make MARS

a special procedure. The piecewise linear BFs are important because they can operate

locally; they are zero over a part of their range. If they are multiplied each other, the

result is nonzero only over the small part of the factor space where both component

functions are nonzero. Hence, the regression surface is built up by using nonzero

components locally - just where they are needed. Besides, other basis functions such as

polynomials can be used. However, this would produce a nonzero product everywhere,

and would not work well.

The limitation put on the formation of model terms that each input can appear at

most once in a product helps to avoid the formation of higher-order powers of an input,

which increases or decreases too sharply near the boundaries of the factor space. It is
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possible to approximate such higher-order powers in a more stable way by the help of

piecewise linear functions.

Moreover, the possibility to set an upper limit on the order of interaction is a useful

option in the MARS procedure. For instance, if we choose two as a limit, then

a three-fold or any higher way of products are not allowed. Instead, this limit just

allows pairwise products of piecewise linear functions which can be helpful to interpret

the final model. One as an upper limit brings about an additive model [39].

3.1.4 MARS Software Package

The MARS software used in this study is MARS Version 2, Salford Systems, San

Diego, Calif., USA [104]. MARS helps to find the “best” model by allowing the user

to set control parameters to explore different models. Thus, the maximum number of

knots is determined by trial and error. Besides, there is no restriction on the maximum

number of interactions, it can be more than the degree of two (2-way interaction).

Moreover, MARS is a well designed software that implements MARS technique with

user-friendly graphical interface. Developed by Salford Systems, the MARS package

is available at [13].

Thus far, MARS is introduced and explained with details. In the following part,

however, we will mention about CMARS, which is a modified form of MARS and

an integrated model-based approach. In this method, continuous optimization will

be used, in the form of a penalized optimization problem and then, optimization

techniques will be applied to solve the problem. This newly introduced method is

known as CMARS and will be explained in the following section.

3.2 Conic Multivariate Adaptive Regression Splines

In this section, we introduce a modified version of MARS known as Conic Multivariate

Adaptive Regression Splines (CMARS). Here, “C” represents the word conic as well

as convex and continuous.

Being a useful and flexible nonparametric regression technique, MARS has two algo-
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rithms to estimate the model function: the forward and the backward stepwise algo-

rithms. In CMARS, however, we can construct a penalized residual sum of squares

instead of the backward stepwise algorithm, and treat this function as an optimization

problem.

The notation for the piecewise linear BFs in CMARS is as follows:

c+(x, τ) = (+(x− τ))+, c−(x, τ) = (−(x− τ))+, (3.3)

where [q]+ := max{0, q} and τ is an univariate knot. As well, the notation to represent

the relationship between input and response variables has the following form:

Y = f(X ) + ε, (3.4)

where Y is a response variable, X = (X1, X2, . . . , Xp)
T is a vector of predictor vari-

ables and the additive random variable ε is white noise.

Reflected pairs for each input Xj (j = 1, 2, . . . , k) with k-dimensional knots τ i =

(τi,1, τi,2, . . . , τi,k)
T at or just nearby each input data vectors x̃ i = (x̃i,1, x̃i,2, . . . , x̃i,p)

T

of that input (i = 1, 2, . . . , N) are constructed. As in the previous section, such a

nearby placement indicates a slight modification so that knots’ values are not equal

to the input values. In fact, to prevent from nondifferentiability in our optimization

problem, it may be assumed that without loss of generality τi,j 6= x̃i,j for all i and j.

Even, the knots τi,j far away from the input values x̃i,j but providing a better data

fit can be selected.

The formulation for the set of BFs is as follows:

℘ := {(xj − τ)+, (τ − xj)+|τ ∈ {x1,j , x2,j , . . . , xN,j}, j ∈ {1, 2, . . . , k}} . (3.5)

When all the input values are different from each other, the number of total BFs will

be 2Np. Hence, it is possible to write f(X ) as a linear combination of successively

built up basis functions and the intercept θ0. Then, (2.16) has the following form:

Y = θ0 +

M∑
m=1

θmψm(X ) + ε. (3.6)

where θm is the unknown coefficient for the mth basis function (m = 1, 2, . . . ,M), θ0 is

the constant term, ψm (m = 1, . . . ,M) represents a basis function from ℘ or product

48



of two or more such functions, ψm is taken from a set of M linearly independent basis

elements. A set of eligible knots τi,j is assigned separately for each input variable

dimension and is chosen to approximately coincide with the input levels represented

in the data. Interaction basis functions are created by multiplying an existing basis

function with a truncated linear function involving a new variable.

The form of the mth basis function provided the observations represented by the data

xi (i = 1, . . . , N) is as follows [90]:

ψm(x ) :=

Km∏
j=1

(
sκmj · (xκmj − τκmj )

)
+
, (3.7)

where Km is the number of truncated linear functions multiplied in the mth basis

function, xκmj is the input variable corresponding to the jth truncated linear function

in the mth basis function, τκmj is the knot value corresponding to the variable xκmj ,

and sκmj is the selected sign +1 or -1.

As in the previous section, a lack-of-fit criterion can be used to compare the possible

basis functions. As well, we can restrict the search for new basis functions to a maxi-

mum order of interactions. For instance, if it is allowed up to two-factor interactions,

then, Km ≤ 2 is a proper limitation.

To decrease the complexity of the model together with not reducing the fit to the data,

the backward stepwise algorithm is used in MARS. Basis functions that contributes

to the smallest increase in the residual squared error are removed from the model at

each stage, producing an optimally estimated model f̂α with respect to each number

of terms, called α which expresses some complexity of our estimation. To estimate the

optimal value of α, generalized cross-validation can be used. This criterion is defined

as follows [14]:

GCV :=

∑N
i=1(yi − f̂α(x i))

2

N(1 −M(α)/N)2
, (3.8)

where M (α) := u + dK. Here, N is the number of sample observations, u is the

number of linearly independent basis functions, K is the number of knots selected

in the forward process, and d is a cost for basis-function optimization and also a

smoothing parameter for the procedure.

In this thesis, to estimate the function f(X ), we propose to employ penalty terms,

instead of the backward stepwise algorithm, in addition to the least-squares estimation
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in order to control the lack-of-fit from the viewpoint of the complexity of the estimation.

3.2.1 The Penalized Residual Sum of Squares

For the MARS model with Mmax BFs having been collected in the forward stepwise

algorithm, let us use penalized residual sum of squares (PRSS) instead of backward

elimination. The PRSS form for the MARS model is as follows:

PRSS =
N∑
i=1

(yi − f(x̃i))
2 +

Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm,

(3.9)

where V (m) = {KM
j |j = 1, 2, . . . ,Km} is the variable set associated with themth basis

function, ψm, tm = (tm1 , tm2 , . . . , tmKm )T represents the vector of variables which

contribute to the mth basis function ψm. The penalty parameter λm is nonnegative

(λm ≥ 0) for any value of m. This parameter establishes the tradeoff between both

accuracy, i.e., a small sum of error squares, and not too high a complexity.

The flatness of the model functions is measured with the integrals of the first-order

derivatives, and unstability and complexity inscribed into the model (via the model

functions) are measured with while the integrals of the second-order derivatives [39,

88]. Besides, we refer to

D α
r,sψm(tm) :=

∂ αψm
∂α1tmr ∂α2tms

(tm) (3.10)

for α = (α1, α2)
T , | α| = α1 + α2, where α1, α2 ∈ {0, 1}.

Note that, in any case where αi = 2, the derivative Dα
r,sψm(tm) vanishes, and by

addressing indices r < s, we have applied Schwarz’s Theorem. Finally, since all the

regarded derivatives of any function ψm exist except on a set of measure zero, the

integrals and entire optimization problems are well-defined [91].

By using the representations (3.6) and (3.7) in (3.9), the objective function (3.9) has
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the following form [91]:

PRSS =

N∑
i=1

(
ỹi − θ0 −

M∑
m=1

θmψm(x̃mi )−
Mmax∑
m=M+1

θmψm(x̃mi )

)2

+

Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm, (3.11)

where the vector x̃ i = (x̃i,1, x̃i,2, . . . , x̃i,q)
T denotes any of the input vectors while

x̃mi =
(
x̃i,κ1 , x̃i,κ2 , . . . , x̃i,κKm

)T
shows the corresponding projection vectors of x̃ i onto

those coordinates that contribute to the mth basis function, ψm, which are related

with the ith link function yi. Here, we recall that those coordinates are collected in

the set V (m).

As the second-order derivatives of the piecewise linear functions ψm (m = 1, 2, ...,M)

and, thus, the penalty terms related are vanishing, we can rearrange the representation

of PRSS as follows:

PRSS :=
N∑
i=1

(yi − ψ(d̃ i)
Tθ)2 +

Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm, (3.12)

where ψ(d̃ i) = (1, ψ1(x̃ 1
i ), ψ2(x̃ 2

i ), . . . , ψM (x̃Mi ), ψM+1(x̃M+1
i ), . . . , ψMmax(x̃Mmax

i ))T ,

θ:= (θ0, θ1, . . . , θMmax)T with the point d̃ i := (x̃ 1
i , x̃

2
i , . . . , x̃

M
i , x̃

M+1
i , . . . , x̃Mmax

i )T in

the argument. The multi-dimensional integrals∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm,

are approximated by using discretized forms of them instead [91]. Then, the form of

the integrals is as follows:∫
Qm

θ2
m

[
D α
r,sψm(tm)

]2
dtm ≈

∑
(σj)j∈(1,2,...,Km)∈{0,1,2,...,N+1}Km

θ2
m·

D α
r,sψm(t

l
κm
j

σ
κm
j
,κmj

, ..., t
l
κm
Km

σ
κm
Km

,κmKm

)

2

·
Km∏
j=1

t
l
κm
j

σ
κm+1
j

,κmj

− t
l
κm
j

σ
κm
j
,κmj

 .
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We can rearrange PRSS in the following form:

PRSS ≈
N∑
i=1

(
yi − θTψ(d̃ i)

)2

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∑
(σ
κj )

θ2m ·

D α
r,s ψm(x̃

l
κm
j

σ
κm
j
,κmj

, . . . , x̃
l
κm
Km

σ
κm
Km

,κm
Km

)

2

·
Km∏
j=1

(
x̃
l
κm
j

σ
κj+1

,κmj

− x̃
l
κm
j

σ
κj
,κmj

)
, (3.13)

where (σκj )j∈{1,2,...,p} ∈ {0, 1, 2, ..., N + 1}Km . There are some more notation related

with the sequence (σκj ) [91]:

x̂mi =

x̃
l
κm
j

σ
κm
j
,κmj

, . . . , x̃
l
κm
Km

σ
κm
Km

,κmKm

 , ∆x̂mi :=

Km∏
j=1

(
x̃
l
κm
j

σ
κj+1

,κmj

− x̃
l
κm
j

σ
κj
,κmj

)
. (3.14)

PRSS can be approximated by using (3.14) as follows:

PRSS ≈
N∑
i=1

(
yi − θTψ(d̃ i)

)2

+

Mmax∑
m=1

λmθ
2
m

(N+1)Km∑
i=1

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

[
D α
r,sψm(x̂mi )

]2
∆x̂mi .

(3.15)

The approximate relation (3.13) can be written in a short form as follows:

PRSS ≈
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+

Mmax∑
m=1

λm

(N+1)Km∑
i=1

L2
imθ

2
m, (3.16)

where ψ(d̃) =
(
ψ(d̃1), . . . ,ψ(d̃N )

)T
is an (N × (Mmax+1))-matrix and the numbers

L2
im are defined by their roots

Lim :=


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

[
D α
r,sψm(x̂mi )

]2
∆x̂mi


1/2

.
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3.2.2 Application of Tikhonov Regularization

Here, PRSS is considered as a Tikhonov regularization problem [3] by using the

equation (3.16) and it can be written as follows [91]:

PRSS ≈
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+

Mmax∑
m=1

λm

(N+1)Km∑
i=1

L2
imθ

2
m

=
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+

Mmax∑
m=1

λm

[L1mθm, . . . , L(N+1)Kmmθm

]
L1mθm

...

L(N+1)Kmmθm




=
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+

Mmax∑
m=1

λm‖Lmθm‖22

=
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+ λ1‖L1θ1‖22 + . . .+ λMmax‖LMmaxθMmax‖22,

where Lm := (L1m, . . . , L(N+1)Km ,m)T (m = 1, 2, . . . ,Mmax). By making a uniform

penalization by taking the same λ for each derivative term, e.g., λ1 = λ2 = . . . =

λMmax =: λ, where λm ≥ 0 (m = 1, 2, . . . ,Mmax), PRSS turns into a Tikhonov

regularization problem with a single tradeoff parameter. Then, the approximation

becomes

PRSS ≈
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+ λ‖Lθ‖22 (3.17)

with θ being an ((Mmax + 1)× 1)-parameter vector to be estimated through the data

points and L is a diagonal (Mmax + 1)×(Mmax + 1)-matrix as follows:

L =


0 0 · · · 0

0 L1 · · · 0
...

...
. . .

...

0 0 · · · LMmax

 .

Hence, the PRSS becomes a Tikhonov regularization problem (2.41), where λ = ϕ2

for some ϕ ∈ R [3]. Our Tikhonov regularization problem has multiple objective

functions through a linear combination of
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
and ‖Lθ‖22. The solution that

minimizes both first objective function
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
and second objective (‖Lθ‖22)

is a desired solution in the sense of a compromise (tradeoff) solution. We refer to [64]

for a new contribution to the dependence of locally linear embedding on regularization

parameter(s).
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In this section, we investigated CMARS model which is based on the regularization of

the nonparametric part in a GPLM. In the following section, however, we also mention

the regularization of linear part which is investigated in [87].

3.3 The Generalized Partial Linear Model with CMARS

Until now, we focused on the regularization of the nonlinear part of for a generalized

partial linear model (GPLM) by Tikhonov regularization. We did not deal with the

linear model part for the sake of simplicity, knowing, however, how we have to argue

and proceed in the presence of the linear part. In this section, however, we will make

an introduction to the regularization of the linear part by CMARS approach.

Previously, in Subsection 2.3.1, the GPLM model is given by the following formula

[92]:

E(Y |X ,T ) = G(X Tβ + γ(T )),

where β = (β1, β2, . . . , βm)T is a finite dimensional parameter, γ(·) is a smooth func-

tion, X is an m-variable random vector typically covering discrete covariables, and T

is a q-variate random vector of continuous covariables to be modeled in a nonpara-

metric way.

There are many different methods to estimate the unknown parameters in a GPLM.

In this study, however, we focus on special types of estimation γ(·) by CMARS and

β by least-square estimation with Tikhonov regularization [87].

3.3.1 Least-Squares Estimation with Tikhonov Regularization

Assuming that G = H−1 is a known link function connecting the mean of the depen-

dent variable, µ = E(Y |X, T ), to the predictors, the equation (2.15) can be written

as follows:

H(µ) = η(X ,T ) = X Tβ + γ(T ) =
m∑
j=1

Xjβj + γ(T ). (3.18)

This can be considered as a semiparametric generalized linear model as all terms are

linear except one. In this equation, µi = G(ηi) and ηi=H(µi)=x
T
i β+γ(ti), where γ(·)

is a smooth function.
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The unknown parameter β of the parametric part is pre-estimated by linear least-

squares estimators with Tikhonov regularization. By the help of this method, we

minimize the residual sum of squares (RSS):

ypreproc = XTβpreproc + ε = β0 +

m∑
j=1

Xjβj + ε, (3.19)

where βpreproc = (β0, β1, β2, . . . , βm)T and ypreproc are our given response data vector

y . Tikhonov regularization proposed an approximate solution to (3.19) by minimizing

the quadratic functional:

min
βpreproc

‖ypreproc −Xβpreproc‖22 + λ‖Lβpreproc‖22, (3.20)

where λ is a tradeoff parameter between accuracy and complexity. By solving Tikhonov

regularization problem (3.20), the response vector ypreproc and the unknown coeffi-

cients βpreproc are found. Then, as the regression coefficients are obtained, the linear

least-squares model is subtracted (without intercept) from corresponding responses

y − X̄βpreproc = ŷ = η. (3.21)

Here, X̄ is the design matrix X , except its first column, and ŷ is the resulting vector

of residuals, redefined as our new observations. We use ŷ to determine the knots (via

MARS) for our CMARS application.

3.3.2 CMARS Technique for the Nonparametric Part

Now, to estimate the parameter γ(·) of the nonparametric part, we use Conic Multi-

variate Adaptive Regression Splines (CMARS) approach.

The equation (3.18) can be rewritten by using basis functions as in the equation (3.6).

That’s, γ(ti) can be written as a linear combination of successively built up by basis

functions and the intercept θ0 as follows:

ηi = H(µ) = xTi β + θ0 +

M∑
m=1

θmψm(ti), (3.22)

where ψm (m = 1, . . . ,M) represents a basis function from ℘ or a product of two or

more such functions, ψm is taken from a set of M linearly independent basis elements,

and θm are the unknown coefficients for the mth basis function (m = 1, . . . ,M), θ0
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is the constant term. For each input variable dimension, a set of eligible knots τi,j ,

selected by MARS with reference to the residual vector, is assigned separately for

each dimension, and this set is chosen to approximately coincide with the input levels

represented in the data.

Here, the form of the mth basis function is same with the equation (3.6) in CMARS

except the variable t instead of x . The form of BF is as follows:

ψm(t) :=

Km∏
j=1

(sκmj · (tκmj − τκmj ))+, (3.23)

where ti (i = 1, . . . , N) are the observations provided and tκmj is the input variable

corresponding to the jth truncated linear function in the mth basis function, τκmj is

the knot value corresponding to the variable tκmj , and sκmj is the selected sign +1 or

-1.

As in CMARS, a lack-of-fit criterion can be used to compare the possible basis func-

tions and the search for new basis functions can be restricted to a maximum order of

interactions. For example, if only up to two-factor interactions are permitted, then

Km ≤ 2 would be our restriction. As explained in Section 3.2, this algorithm does this

by removing from the model basis functions that contribute to the smallest increase

in the residual squared error at each stage, producing an optimally estimated model

γ̂α with respect to each number of terms, called α, which expresses some complexity

of our estimation. Again, to estimate the lack-of-fit, GCV criterion can be used to

estimate the optimal value of α. In this GPLM with CMARS model, GCV is similar

to the equation (3.8) and can be defined as follows:

GCV :=

∑N
i=1(ηi − xTi β̂ − γ̂α(t i))

2

(1−M (α)/N)2
, (3.24)

where M (α) := u + dK [87]. Here, N is the number of sample observations, u is

the number of linearly independent basis functions, K is the number of knots selected

in the forward process, and d is a cost for basis-function optimization as well as a

smoothing parameter for the procedure.

To estimate the function γ(t), we propose to employ the penalty terms in addition

to the least-squares estimation instead of the backward stepwise algorithm. Thus,

it is possible to control the lack-of-fit from the viewpoint of the complexity of the

estimation.
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3.3.3 The Penalized Residual Sum of Squares Problem for GPLM with

CMARS

The equation (2.16) can be written as follows:

η = H(µi) = xTi β +ψT (t i)θ, (3.25)

where θ=(θ0, θ1, . . . , θM )T and ψ(d̃i)=(ψ1(ti), ψ2(ti), . . . , ψM (ti)). The form of the

penalized residual sum of squares (PRSS) for the GPLM with CMARS is as follows:

PRSS =
N∑
i=1

(
ηi − xTi β −ψT (t i)θ

)2
+

Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm, (3.26)

where V (m) = {KM
j |j = 1, 2, . . . ,Km} is the variable set associated with the mth

basis function ψm, tm = (tm1 , tm2 , . . . , tmKm )T represents the vector of variables which

contribute to the mth basis function ψm. This equation is similar to the the PRSS

of CMARS, however, here, the parameter of the parametric part, xTi β, is included in

the PRSS. Moreover, we refer to

D α
r,sψm(tm) :=

∂ αψm
∂α1tmr ∂α2tms

(tm) (3.27)

for α = (α1, α2)
T , | α| = α1 + α2, where α1, α2 ∈ {0, 1}.

The objective function PRSS has the following form when the representations (3.22)

and (3.23) are used in (3.26):

PRSS =

N∑
i=1

(
ηi − xTi β − θ0 −

M∑
m=1

θmψm(tmi )−
Mmax∑
m=M+1

θmψm(tmi )

)2

+

Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm, (3.28)

where the vector t i = (ti,1, ti,2, . . . , ti,q)
T denotes any of the input vectors while tmi =(

ti,κ1 , ti,κ2 , . . . , ti,κKm

)T
shows the corresponding projection vectors of t i onto those

coordinates that contribute to the mth basis function ψm, which are related with the

ith link function ηi [91].
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As the second-order derivatives of the piecewise linear functions ψm (m = 1, 2, ...,M)

and, hence, the related penalty terms are vanishing, we can rearrange the representa-

tion of PRSS as follows:

PRSS :=

N∑
i=1

(yi − xTi β − ψ(d̃i)
T θ)2

+

Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm, (3.29)

where ψ(d̃ i) = (1, ψ1(t1
i ), ψ2(t2

i ), . . . , ψM (tMi ), ψM+1(tM+1
i ), . . . , ψMmax(tMmax

i ))T ,

θ:= (θ0, θ1, . . . , θMmax)T with the point d̃ i := (t1
i , t

2
i , . . . , t

M
i , t

M+1
i , . . . , tMmax

i )T in

the argument. To approximate the multi-dimensional integrals∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm,

the discretizations and model approximations are used. Then, the discretized form of

the integrals can be written as:∫
Qm

θ2
m

[
D α
r,sψm(tm)

]2
dtm ≈

∑
(σj)j∈{1,2,...,Km}∈{0,1,...,N+1}Km

θ2
m·

D α
r,sψm(x̃

l
κm
j

σ
κm
j
,κmj

, ..., x̃
l
κm
Km

σ
κm
Km

,κmKm

)

2

·
Km∏
j=1

x̃
l
κm
j

σ
κm+1
j

,κmj

− x̃
l
κm
j

σ
κm
j
,κmj

 .

The PRSS can be represented in the following form:

PRSS ≈
N∑
i=1

(
ηi − xTi β −ψ(d̃ i)

Tθ
)2

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∑
(σ
κj )

θ2m ·

D α
r,s ψm(t

l
κm
j

σ
κm
j
,κmj

, . . . , t
l
κm
Km

σ
κm
Km

,κm
Km

)

2

·
Km∏
j=1

(
t
l
κm
j

σ
κj+1

,κmj

− t
l
κm
j

σ
κj
,κmj

)
, (3.30)

where (σκj )j∈{1,2,...,p} ∈ {0, 1, 2, ..., N + 1}Km . There are some more notation related

with the sequence (σκj ) [91]:

t̂
m
i =

t
l
κm
j

σ
κm
j
,κmj

, . . . , t
l
κm
Km

σ
κm
Km

,κmKm

 , ∆t̂
m
i :=

Km∏
j=1

(
t
l
κm
j

σ
κj+1

,κmj

− t
l
κm
j

σ
κj
,κmj

)
. (3.31)
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It is possible to approximate PRSS by using (3.31) as follows:

PRSS ≈
N∑
i=1

(
ηi − xTi β −ψ(d̃ i)

Tθ
)2

+

Mmax∑
m=1

λmθ
2
m

(N+1)Km∑
i=1

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

[
D α
r,sψm(t̂

m
i )
]2

∆t̂
m
i .

(3.32)

The approximate relation in (3.30) can be written with a shorter representation as

follows:

PRSS ≈
∥∥∥η −Xβ −ψ(d̃)θ

∥∥∥2

2
+

Mmax∑
m=1

λm

(N+1)Km∑
i=1

L2
imθ

2
m, (3.33)

where ψ(d̃) =
(
ψ(d̃1), . . . ,ψ(d̃N )

)T
is an (N × (Mmax+1))-matrix and the numbers

L2
im are defined by their roots

Lim :=


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

[
D α
r,sψm(t̂

m
i )
]2

∆t̂
m
i


1/2

.

3.3.4 Application of Tikhonov Regularization in GPLM with CMARS

The equation (3.33) can also be written as [91]:

PRSS ≈ ‖η −X ∗β∗‖22 +

Mmax∑
m=1

λm

(N+1)Km∑
i=1

L2
imθ

2
m, (3.34)

where X ∗ = (X ψ(d̃)) is a block matrix constructed by (N × p)-matrix X and

(N × (Mmax + 1)) matrix ψ(d̃), β∗ = (βT , θT )T is a vector constructed β and θ

vectors.

Then, we deal with the linear systems equations of η = X ∗β∗, approximately. As

this problem may be ill-posed (irregular or unstable), we approach PRSS function as

a Tikhonov regularization problem [68]. A Tikhonov solution can be expressed quite

easily in terms of singular value decomposition (SVD) of the coefficient matrix X ∗ of

a regarded linear system of equations η = X ∗β∗.
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Hence, we consider formula (3.34) and arrange it as follows:

PRSS ≈ ‖η −X ∗β∗‖22 +

Mmax∑
m=1

λm

(N+1)Km∑
i=1

L2
imθ

2
m

=

Mmax∑
m=1

λm

[
(L1mθm)2 + (L2mθm)2 + . . .+ (L(N+1)Kmmθm)2

]
= ‖η −X ∗β∗‖22 +

Mmax∑
m=1

λm‖Lmθm‖22, (3.35)

where Lm := (L1m, L2m, . . . , L(N+1)Km ,m)T (m = 1, 2, . . . ,Mmax). By making a uni-

form penalization by taking the same λ for each derivative term, i.e., λ1 = λ2 = . . . =

λMmax =: λ, where λm ≥ 0 (m = 1, 2, . . . ,Mmax), the equation 3.35 can be turned

into a Tikhonov Regularization Problem with a single tradeoff parameter. Then, it

looks as follows:

PRSS ≈ ‖η −X ∗β∗‖22 + λ‖Lθ‖22, (3.36)

where θ is an ((Mmax + 1) × 1)-parameter vector and L is a diagonal (Mmax +

1)×(Mmax + 1)-matrix with first column L0 = 0N+1Km and the other columns be-

ing the vectors Lm defined above. Let us consider the high-dimensional matrix

L∗ = (R∗, L), where R∗ is an ((Mmax + 1) × p)-matrix with entries being first

or second derivative of β. These derivatives are obtained from first- or second-order

difference quotients of β, considered as a function which is calculated at the points i

and i + 1. These difference quotients approximate first- and second-order derivatives;

altogether, they are composed of products R∗β of β with matrices R∗ that show,

respectively, the discrete differential operators of first- and second order. Hence, our

PRSS problem becomes a classical Tikhonov regularization problem [68] with ϕ > 0,

e.g., λ = ϕ2 for some ϕ ∈ R. Our Tikhonov regularization problem has multiple

objective functions through a linear combination of ‖η −X ∗β∗‖22 and ‖X ∗β∗‖22. We

choose the solution which minimizes the objective function ‖η −X ∗β∗‖22 and also the

regularization objective ‖L∗β∗‖22 in the sense of a compromise (tradeoff) solution. We

refer to [64] for a new contribution to the dependence of locally linear embedding on

regularization parameter(s).

Thus far, we explained the theory of the regularizing both the parametric and nonpara-

metric parts of a GPLM by CMARS approach. Herewith, for the sake of simplicity,

we disregard the linear model part, knowing, however, how we have to argue and
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proceed in the presence of the linear part. And thus, we restricted ourselves on the

regularization of nonparametric part in the numerical example of this thesis which is

explained with details in the following chapter.

3.4 Numeric Example

In this part, we provide two numeric examples to the regularization of nonparametric

part by Tikhonov regularization. For this aim, we use two different types of continuous

data; one has interaction between variables and the other does not have. As MARS

[25] is able to deal with complex data structures in high dimensions reliably by allowing

arbitrary shapes of BFs and their interactions [19], we are expecting better results for

data including interaction.

Basis functions are found by MARS version 2 developed by Salford Systems and

regression coefficients are estimated by using Tikhonov regularization in MATLAB.

3.4.1 Data with No Interaction

For this study, we used a data set with three predictor variables (x1, x2, x3) and 25

observations (taken from Mendenhal and Sincich (1994) [57], p. 678). As the MARS

model is constructed by trial and error, we set the maximum number of BFs to four,

i.e., Mmax = 4. The basis functions constructed by MARS are as follows:

ψ1(x ) = max {0, x1 − 14.11} ,

ψ2(x ) = max {0, 14.11− x1} ,

ψ3(x ) = max {0, x1 − 12.01} ,

ψ4(x ) = max {0, 12.01− x1} ,

ψ1 and ψ2 are standard and reflected BFs for the predictor variable x1, respectively.

The knot point for ψ1 and for ψ2 is 14.11. As well, ψ3 and ψ4 are the standard and

mirror image BFs for the predictor variable x1. The knot point for ψ3 and for ψ4 is

12.01.
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The knot values are selected to be very close to the input values of the data point,

not exactly same, so that it is possible to differentiate the optimization problem. The

selected knot values for corresponding BFs are stated below.

For ψ1: τ1,1 = 14.11, τ̃1,1 = 14.10, which is not equal to τ1,1 = 14.11 but very close

to it.

For ψ2: τ̃1,1 = 14.10, where τ1,1 = 14.11.

For ψ3: τ̃25,1 = 12.00, where τ25,1 = 12.01.

For ψ4: τ̃25,1 = 12.00, where τ25,1 = 12.01.

Then, the BFs of the form can be written as follows:

ψ1 : K1 = 1,

xκ11 = x1,

τκ11 = 14.11,

sκ11 = +1,

ψ1(t1) =

K1∏
j=1

(
sκ11 · (xκ11 − τκ11)

)
+

=
(
sκ11 · (xκ11 − τκ11)

)
+
,

and

ψ2 : K2 = 1,

xκ21 = x1,

τκ21 = 14.11,

sκ21 = −1,

ψ2(t2) =

K2∏
j=1

(
sκ21 · (xκ21 − τκ21)

)
+

=
(
sκ21 · (xκ21 − τκ21)

)
+
,
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and

ψ3 : K3 = 1,

xκ31 = x1,

τκ31 = 12.01,

sκ31 = +1,

ψ3(t3) =

K3∏
j=1

(
sκ31 · (xκ31 − τκ31)

)
+

=
(
sκ31 · (xκ31 − τκ31)

)
+
,

and

ψ4 : K4 = 1,

xκ41 = x1,

τκ41 = 12.01,

sκ41 = −1,

ψ4(t4) =

K4∏
j=1

(
sκ41 · (xκ41 − τκ41)

)
+

=
(
sκ41 · (xκ41 − τκ41)

)
+
,

Hence, the large model can be written as:

y = θ0 +

M∑
m=1

θmψm(x ) + ε,

= θ0 + θ1 max {0, x1 − 14.11}+ θ2 max {0, 14.11− x1}+ θ3 max {0, x1 − 12.01}

+θ4 max {0, 12.01− x1}+ ε.
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The objective function PRSS in (3.9) can be written as:

PRSS =
25∑
i=1

(yi − f(x̃ i))
2 +

4∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm

=

25∑
i=1

(
yi − θTψ(d̃ i)

)2
+ λ1

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V1

∫
θ2

1

[
D α
r,sψ1(t1)

]2
dt1



+λ2

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V2

∫
θ2

2

[
D α
r,sψ2(t2)

]2
dt2



+λ3

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V3

∫
θ2

3

[
D α
r,sψ3(t3)

]2
dt3



+λ4

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V4

∫
θ2

4

[
D α
r,sψ4(t4)

]2
dt4.



All evaluations for the notations Vm and tm (for m = 1, . . . , 4) in the above equation

are given below:

V1 =
{
κ1
j |j = 1

}
= {1} , t1 = (t11)T = (x1)T ,

V2 =
{
κ2
j |j = 1

}
= {1} , t2 = (t21)T = (x1)T ,

V3 =
{
κ3
j |j = 1

}
= {1} , t3 = (t31)T = (x1)T ,

V4 =
{
κ4
j |j = 1

}
= {1} , t4 = (t41)T = (x1)T .

Moreover, the corresponding derivatives for the BFs D α
r,sψm(tm) (for m = 1, . . . , 4)

are written below.

As there is no interaction for ψ1, r = s = 1. The sum of indicated first- and second-

order derivatives for ψ1 is:

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V1

[
D α
r,sψ1(t1)

]2
dt1,
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where

| α| = 1 : D1
1ψ1(t1) :=

∂ψ1

∂t11
(t1) =

∂ψ1

∂x1
(x1) =

 1, if x1 > 14.11 ,

0, otherwise.

| α| = 2 : D2
1ψ1(t1) :=

∂2ψ1

∂t11∂t
1
1

(t1) =
∂2ψ1

∂x1∂x1
(x1) = 0 for all x1.

As there is no interaction for ψ2, r = s = 1. The sum of indicated first- and second-

order derivatives for ψ2 is:

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V2

[
D α
r,sψ2(t2)

]2
dt2,

where

| α| = 1 : D1
1ψ2(t2) :=

∂ψ2

∂t21
(t2) =

∂ψ2

∂x1
(x1) =

 −1, if x1 < 14.11

0, otherwise.

| α| = 2 : D2
1ψ2(t2) :=

∂2ψ2

∂t21∂t
2
1

(t2) =
∂2ψ2

∂x1∂x1
(x1) = 0 for all x1.

Again there is no interaction for the BF ψ3(t3), so: r = s = 1. The sum of indicated

first- and second-order derivatives for ψ3 is:

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V3

[
D α
r,sψ3(t3)

]2
dt3,

where

| α| = 1 : D1
1ψ3(t3) :=

∂ψ3

∂t31
(t3) =

∂ψ3

∂x1
(x1) =

 1, if x1 > 12.01 ,

0, otherwise.

| α| = 2 : D2
1ψ3(t3) :=

∂2ψ3

∂t31∂t
3
1

(t3) =
∂2ψ3

∂x1∂x1
(x1) = 0 for all x1.

For the BF ψ4(t4), there is no interaction; so: r = s = 1. The sum of indicated first-

and second-order derivatives for ψ4 is:

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V4

[
D α
r,sψ4(t4)

]2
dt4,

where

| α| = 1 : D1
1ψ4(t4) :=

∂ψ4

∂t41
(t4) =

∂ψ4

∂x1
(x1) =

 −1, if x1 < 12.01 ,

0, otherwise.

| α| = 2 : D2
1ψ4(t4) :=

∂2ψ4

∂t41∂t
4
1

(t4) =
∂2ψ4

∂x1∂x1
(x1) = 0 for all x1.
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Hence, the PRSS objective function in (3.9) becomes:

PRSS =

25∑
i=1

(
yi − θTψ(d̃ i)

)2

+
4∑

m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm.

Assuming that λ1 = λ2 = ... = λMmax =: λ, then PRSS turns into the Tikhonov

regularization form:

PRSS ≈
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+ λ ‖Lθ‖22 .

Here, the first parts of the PRSS objective function and the Tikhonov regularization

problem are equal to each other while the second parts are approximately equal.

25∑
i=1

(
yi − θTψ(d̃ i)

)2
=
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
,

4∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm ≈ λ ‖Lθ‖22 .

The RSS values are presented below (the complete form of RSS can be seen in Ap-

pendix A):

25∑
i=1

(
yi − θTψ(d̃ i)

)2
= (13.6− θ0 − (max{0, 14.1− 14.11})θ1 −

(max{0, 14.11− 14.1})θ2 −

(max{0, 14.1− 12.01})θ3 −

(max{0, 12.01− 14.1})θ4)2 +

(16.6− θ0 − (max{0, 16− 14.11})θ1 −

(max{0, 14.11− 16})θ2 −
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(max{0, 16− 12.01})θ3 −

(max{0, 12.01− 16})θ4)2 +

...

(14.9− θ0 − (max{0, 12− 14.11})θ1 −

(max{0, 14.11− 12})θ2 −

(max{0, 12− 12.01})θ3 −

(max{0, 12.01− 12})θ4)2.

By computing the maximum functions, the form of the RSS is as follows:

25∑
i=1

(
yi − θTψ(d̃ i)

)2
= (13.6− θ0 − 0.01θ2 − 2.9θ3)2 +

(16.6− θ0 − 1.89θ1 − 3.99θ3)2 +

...

(14.9− θ0 − 2.11θ2 − 0.01θ4)2

= (13.6− θ0 − 0.01θ2 − 2.9θ3)T (13.6− θ0 − 0.01θ2 − 2.9θ3)+

(16.6− θ0 − 1.89θ1 − 3.99θ3)T (16.6− θ0 − 1.89θ1 − 3.99θ3)+

(23.5− θ0 − 15.77θ1 − 17.87θ3)T (23.5− θ0 − 15.77θ1 − 17.87θ3)+

...

(13.9− θ0 − 1.09θ1 − 3.19θ3)T (13.9− θ0 − 1.09θ1 − 3.19θ3)+

(14.9− θ0 − 2.11θ2 − 0.01θ4)T (14.9− θ0 − 2.11θ2 − 0.01θ4).

We can change the form of the above summation into vector notation and get the

representation below. Thus, RSS which is the first part of PRSS is as follows:

25∑
i=1

(
yi − θTψ(d̃ i)

)2
=

(
y −ψ(d̃)θ

)T (
y −ψ(d̃)θ

)
= ‖y −ψ(d̃)θ‖22.

Thus, it can be seen that the first parts of the PRSS function and Tikhonov regular-

ization form are equal.
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Now, we focus on the second parts which are approximately equal. the multi-dimensional

integral in the second part of the equation (3.12) takes the form of (3.15) after dis-

cretization and this discretized form is denoted by L. Then, we reach the formulation

in equation (2.41).

The Lm (m = 1, . . . , 4) values corresponding to BFs, ψ1, ψ2, ψ3, ψ4, are calculated as

follows:

L1 =
(N+1)K1∑
i=1


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V1

[
D α
r,s (max {0, x1 − 14.11})

]2(x̃lκ11
σκ1

+1,κ1
1

− x̃
l
κ11
σκ1

,κ1
1

)
= 3.9243,

L2 =
(N+1)K2∑
i=1


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V2

[
D α
r,s (max {0, 14.11− x1})

]2(x̃lκ21
σκ1

+1,κ2
1

− x̃
l
κ21
σκ1

,κ2
1

)
= 3.6878,

L3 =
(N+1)K3∑
i=1


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V3

[
D α
r,s (max {0, x1 − 12.01})

]2(x̃lκ31
σκ1

+1,κ3
1

− x̃
l
κ31
σκ1

,κ3
1

)
= 4.1833,

and

L4 =
(N+1)K4∑
i=1


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V4

[
D α
r,s (max {0, 12.01− x1})

]2(x̃lκ41
σκ1

+1,κ4
1

− x̃
l
κ41
σκ1

,κ4
1

)
= 3.3912,

L =



0 0 0 0 0

0 3.9243 0 0 0

0 0 3.6878 0 0

0 0 0 4.1833 0

0 0 0 0 3.3912


.

In the L matrix, the first column elements of L are all zero and the diagonal elements

of this matrix Lm (m = 1, 2, ..., 5) are as given above. Then, Lθ is as follows:

‖Lθ‖22 = (θ1 · (3.9243))2 + (θ2 · (3.6878))2 + (θ3 · (4.1833))2 + (θ4 · (3.3912))2 .
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3.4.2 Data with Interaction

For this study, we used a data set with five predictor variables (x1, x2, x3, x4, x5)

and 32 observations (taken from Myers and Montgomery (2002) [66] p. 71). The

MARS model is built by using the Salford MARS v.2 [58], and to construct the

model the maximum number of BFs (Mmax) and the highest degree of interactions

are determined by trial and error. In this data set, Mmax and the highest degree

of interactions are five and two, respectively. Hence, the largest model built in the

forward MARS algorithm by the software contains the following BFs:

ψ1(x ) = max {0, x2 − 2.21} ,

ψ2(x ) = max {0, 2.21− x2} ,

ψ3(x ) = max {0, x4 − 0.26} ,

ψ4(x ) = max {0, x1 − 1601} ·max {0, x4 − 0.26} ,

ψ5(x ) = max {0, x5 − 0.71} ·max {0, x4 − 0.26} .

Here, ψ1 and ψ2 are the standard and reflected BFs for the predictor variable x2. The

knot point for ψ1 and for ψ2 is 2.21. Besides, BF ψ4 uses the function ψ3 to express

the interaction between the predictor variables x1 and x4. As well, ψ5 represents the

interaction between the predictor variables x4 and x5.

As in the previous data set, we choose the knot values very close to the input values

of the data point so that it is possible to differentiate the optimization problem. The

selected knot values for corresponding BFs are written below.

For ψ1: τ18,2 = 2.21, τ̃18,2 = 2.2, which is not equal to τ18,2 = 2.21 but very close to it.

For ψ2: τ̃18,2 = 2.20 where, τ18,2 = 2.21.

For ψ3: τ̃1,4 = 0.25 where, τ1,4 = 0.26.

For ψ4: τ̃6,1 = 1600 where, τ6,1 = 1601, and τ̃1,4 = 0.25 where, τ1,4 = 0.26.

For ψ5: τ̃25,5 = 0.70 where, τ25,5 = 0.71, and τ̃6,4 = 0.25 where, τ6,4 = 0.26.
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Then, the BFs of the form can be written as follows:

ψ1 : K1 = 1,

xκ11 = x2,

τκ11 = 2.21,

sκ11 = +1,

ψ1(t1) =

K1∏
j=1

(
sκ11 · (xκ11 − τκ11)

)
+

=
(
sκ11 · (xκ11 − τκ11)

)
+
,

and

ψ2 : K2 = 1,

xκ21 = x2,

τκ21 = 2.21,

sκ21 = −1,

ψ2(t2) =

K2∏
j=1

(
sκ21 · (xκ21 − τκ21)

)
+

=
(
sκ21 · (xκ21 − τκ21)

)
+
,

and

ψ3 : K3 = 1,

xκ31 = x4,

τκ31 = 0.26,

sκ31 = +1,

ψ3(t3) =

K3∏
j=1

(
sκ31 · (xκ31 − τκ31)

)
+

=
(
sκ31 · (xκ31 − τκ31)

)
+
,
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and

ψ4 : K4 = 2,

xκ41 = x1, xκ42 = x4,

τκ41 = 0.26, τκ42 = 2.21,

sκ41 = +1, sκ42 = +1,

ψ4(t4) =

K4∏
j=1

[
sκ4j
· (xκ4j − τκ4j )

]
+

=
(
sκ41 · (xκ41 − τκ41)

)
+
·
(
sκ42 .(xκ42 − τκ42)

)
+
,

and

ψ5 : K5 = 2,

xκ51 = x5, xκ52 = x5,

τκ51 = 0.71, τκ52 = 2.21,

sκ51 = +1, sκ52 = +1,

ψ5(t5) =

K5∏
j=1

(
sκ5j
· (xκ5j − τκ5j )

)
+

=
(
sκ51 · (xκ51 − τκ51)

)
+
·
[
sκ52 .(xκ52 − τκ52)

]
+
.

Then, the large model can be written as follows:

y = θ0 +

M∑
m=1

θmψm(x ) + ε,

= θ0 + θ1 max {0, x2 − 2.21}+ θ2 max {0, 2.21− x2}+ θ3 max {0, x4 − 0.26}

+θ4 max {0, x1 − 1601} ·max {0, x4 − 0.26}

+θ5 max {0, x5 − 0.71} ·max {0, x4 − 0.26}+ ε.
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The PRSS objective function in (3.9) can be written as follows:

PRSS =
32∑
i=1

(
yi − θTψ(d̃ i)

)2
+

5∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm

=

32∑
i=1

(
yi − θTψ(d̃ i)

)2
+ λ1

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V1

∫
θ2

1

[
D α
r,sψ1(t1)

]2
dt1



+λ2

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V2

∫
θ2

2

[
D α
r,sψ2(t2)

]2
dt2



+λ3

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V3

∫
θ2

3

[
D α
r,sψ3(t3)

]2
dt3



+λ4

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V4

∫
θ2

4

[
D α
r,sψ4(t4)

]2
dt4



+λ5

 2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V5

∫
θ2

5

[
D α
r,sψ5(t5)

]2
dt5

 .

All evaluations for the notations Vm and tm (for m = 1, . . . , 5) in the above equation

are given below:

V1 =
{
κ1
j |j = 1

}
= {2} , t1 = (t11)T = (x2)T ,

V2 =
{
κ2
j |j = 1

}
= {2} , t2 = (t21)T = (x2)T ,

V3 =
{
κ3
j |j = 1

}
= {4} , t3 = (t31)T = (x4)T ,

V4 =
{
κ4
j |j = 1, 2

}
= {1, 4} , t4 = (t41, t

4
2)T = (x1, x4)T ,

V5 =
{
κ5
j |j = 1, 2

}
= {4, 5} , t5 = (t51, t

5
2)T = (x4, x5)T .

As well, the corresponding derivatives for the BFs D α
r,sψm(tm) (for m = 1, . . . , 5) are

stated below.

For the BF ψ1(t1), there is no interaction; so: r = s = 2. The sum of indicated first-

and second-order derivatives for ψ1 is:
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2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V1

[
D α
r,sψ1(t1)

]2
dt1,

where

| α| = 1 : D1
2ψ1(t1) :=

∂ψ1

∂t11
(t1) =

∂ψ1

∂x2
(x2) =

 −1, if x2 > 2.21 ,

0, otherwise,

| α| = 2 : D2
2ψ1(t1) :=

∂2ψ1

∂t11∂t
1
1

(t1) =
∂2ψ1

∂x2∂x2
(x2) = 0 for all x2.

For the BF ψ2(t2), there is no interaction; so: r = s = 2. The sum of indicated first-

and second-order derivatives for ψ2 is:

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V2

[
D α
r,sψ2(t2)

]2
dt2,

where

| α| = 1 : D1
2ψ2(t2) :=

∂ψ2

∂t21
(t2) =

∂ψ2

∂x2
(x2) =

 1, if x2 < 2.21 ,

0, otherwise,

| α| = 2 : D2
2ψ2(t2) :=

∂2ψ2

∂t21∂t
2
1

(t2) =
∂2ψ2

∂x2∂x2
(x2) = 0 for all x2.

For the BF ψ3(t3), there is no interaction; so: r = s = 4. The sum of indicated first-

and second-order derivatives for ψ3 is:

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V3

[
D α
r,sψ3(t3)

]2
dt3,

where

| α| = 1 : D1
4ψ3(t3) :=

∂ψ3

∂t31
(t3) =

∂ψ3

∂x4
(x4) =

 1, if x4 > 0.26 ,

0, otherwise ,

| α| = 2 : D2
4ψ3(t3) :=

∂2ψ3

∂t31∂t
3
1

(t3) =
∂2ψ3

∂x4∂x4
(x4) = 0 for all x4.

For the BF ψ4(t4), interaction exists between the predictors x1 and x4. Here, r = 1
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and s = 4 so: r < s. Then, the sum of indicated first- and second-order derivatives of

ψ4 can be written as:

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V4

[
D α
r,sψ4(t4)

]2
dt4,

where

| α| = 1 : D1
1,4ψ4(t4) :=

∂ψ4

∂t41
(t4) =

∂ψ4

∂x1
(x1, x4) =

 max {0, x4 − 0.26} , if x1 > 1601,

0, otherwise,

D1
1,4ψ4(t4) :=

∂ψ4

∂t42
(t4) =

∂ψ4

∂x4
(x1, x4) =

 max {0, x1 − 1601} , if x4 > 0.26,

0, otherwise;

| α| = 2 : D2
1,4ψ4(t4) :=

∂2ψ4

∂t41∂t
4
2

(t4) =
∂2ψ4

∂x1∂x4
(x1, x4) =

 1, if x4 > 0.26,

0, otherwise.

For the BF ψ5(t5), there is also an interaction between the predictors x4 and x5,

and r = 4 and s = 5 so: r < s. Then, the sum of indicated first- and second-order

derivatives of ψ5 can be written as:

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V5

[
D α
r,sψ5(t5)

]2
dt5,

where

| α| = 1 : D1
4,5ψ5(t5) :=

∂ψ5

∂t51
(t5) =

∂ψ5

∂x4
(x4, x5) =

 max {0, x5 − 0.71} , if x4 > 0.26,

0, otherwise,

D1
4,5ψ5(t5) :=

∂ψ5

∂t52
(t5) =

∂ψ5

∂x5
(x4, x5) =

 max {0, x4 − 0.26} , if x5 > 0.71,

0, otherwise;

| α| = 2 : D2
4,5ψ5(t5) :=

∂2ψ5

∂t51∂t
5
2

(t5) =
∂2ψ5

∂x4∂x5
(x4, x5) =

 1, if x5 > 0.71,

0, otherwise.
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The PRSS objective function in (3.9) has the following form:

PRSS =

32∑
i=1

(
yi − θTψ(d̃ i)

)2
(3.37)

+

5∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm. (3.38)

If λ1 = λ2 = ... = λMmax =: λ, then PRSS looks like a Tikhonov regularization

problem as follows:

PRSS ≈
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
+ λ ‖Lθ‖22 . (3.39)

Again, as in the previous example, we observe that the first parts of the PRSS objective

function (3.37) and the Tikhonov regularization problem (3.39) are equal to each other.

However, second parts are only approximately equal.

32∑
i=1

(
yi − θTψ(d̃ i)

)2
=
∥∥∥y −ψ(d̃)θ

∥∥∥2

2
,

5∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈Vm

∫
θ2
m

[
D α
r,sψm(tm)

]2
dtm ≈ λ ‖Lθ‖22 .

The RSS values are presented below (the complete form of RSS can be seen in Ap-

pendix A):

32∑
i=1

(
yi − θTψ(d̃ i)

)2
= (0.013− θ0 − (max{0, 0.58− 2.21})θ1 −

(max{0, 2.21− 0.58})θ2 −

(max{0, 0.25− 0.26})θ3 −

(max{0, 1650− 1601})(max{0, 0.25− 0.26})θ4 −
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(max{0, 0.9− 0.71})(max{0, 0.25− 0.26})θ5)2 +

(0.016− θ0 − (max{0, 0.66− 2.21})θ1 −

(max{0, 2.21− 0.66})θ2 −

(max{0, 0.33− 0.26})θ3 −

(max{0, 1650− 1601})(max{0, 0.33− 0.26})θ4 −

(max{0, 0.9− 0.71})(max{0, 0.33− 0.26})θ5)2 +

(0.015− θ0 − (max{0, 0.66− 2.21})θ1 −

(max{0, 2.21− 0.66})θ2 −

(max{0, 0.33− 0.26})θ3 −

(max{0, 1650− 1601})(max{0, 0.33− 0.26})θ4 −

(max{0, 0.9− 0.71})(max{0, 0.33− 0.26})θ5)2 +

...

(0.068− θ0 − (max{0, 18.5− 2.21})θ1 −

(max{0, 2.21− 18.5})θ2 −

(max{0, 1.5− 0.26})θ3 −

(max{0, 1700− 1601})(max{0, 1.5− 0.26})θ4 −

(max{0, 0.7− 0.71})(max{0, 1.5− 0.26})θ5)2.

By computing the maximum functions, the RSS terms has the following form:

32∑
i=1

(
yi − θTψ(d̃ i)

)2
= (0.013− θ0 − 1.63θ2)2 +

(0.016− θ0 − 1.55θ2 − 0.07θ3 − 3.43θ4 − 0.0133θ5)2 +

...

(0.068− θ0 − 16.29θ1 − 1.24θ3 − 122, 76θ4)2

and writing into vector notation is as follows:

= (0.013− θ0 − 1.63θ2)T (0.013− θ0 − 1.63θ2) +

(0.016− θ0 − 1.55θ2 − 0.07θ3 − 3.43θ4 − 0.0133θ5)T
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(0.016− θ0 − 1.55θ2 − 0.07θ3 − 3.43θ4 − 0.0133θ5) +

(0.015− θ0 − 1.55θ2 − 0.07θ3 − 3.43θ4 − 0.0133θ5)T

(0.015− θ0 − 1.55θ2 − 0.07θ3 − 3.43θ4 − 0.0133θ5)+

...

(0.056−θ0−10.29θ1−1.24θ3−122, 76θ4)T (0.056−θ0−10.29θ1−1.24θ3−122, 76θ4)+

(0.068− θ0− 16.29θ1− 1.24θ3− 122, 76θ4)T (0.068− θ0− 16.29θ1− 1.24θ3− 122, 76θ4).

As shown for the previous data set, we can change the form of the above summation

into vector notation and get the representation below. Thus, RSS which is the first

part of PRSS is as follows:

32∑
i=1

(
yi − θTψ(d̃ i)

)2
=

(
y −ψ(d̃)θ

)T (
y −ψ(d̃)θ

)
= ‖y −ψ(d̃)θ‖22.

As mentioned in the previous example, the multi-dimensional integral in the second

part of the equation (3.12) takes the form of (3.15) after discretization and this dis-

cretized form is denoted by L. Then, we reach the formulation in equation (2.41).

The Lm (m = 1, . . . , 5) values corresponding to BFs ψ1, ψ2, ψ3, ψ4 and ψ5 are calcu-

lated as follows:

L1 =
(N+1)K1∑
i=1


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V1

[
D α
r,s (max {0, x2 − 2.21})

]2(x̃lκ11
σκ1

+1,κ1
1

− x̃
l
κ11
σκ1

,κ1
1

)
= 3.9497,

L2 =
(N+1)K2∑
i=1


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V2

[
D α
r,s (max {0, 2.21− x2})

]2(x̃lκ21
σκ1

+1,κ2
1

− x̃
l
κ21
σκ1

,κ2
1

)
= 1.5875,

L3 =
(N+1)K3∑
i=1


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V3

[
D α
r,s (max {0, x4 − 0.26})

]2(x̃lκ31
σκ1

+1,κ3
1

− x̃
l
κ31
σκ1

,κ3
1

)
= 1.1958,
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L4 =

(N+1)K4∑
i=1


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V4

[
D α
r,sψ4(t4)

]2
(x̃lκ41

σκ1
+1,κ41

− x̃
l
κ41
σκ1

,κ41

)
.

(
x̃
l
κ42
σκ2

+1,κ42

− x̃
l
κ42
σκ1

,κ42

)
= 9.9015,

L5 =

(N+1)K5∑
i=1


 2∑

|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V5

[
D α
r,sψ5(t5)

]2
(x̃lκ51

σκ1
+1,κ51

− x̃
l
κ51
σκ1

,κ51

)
.

(
x̃
l
κ52
σκ2

+1,κ52

− x̃
l
κ52
σκ1

,κ52

)
= 0.1975.

Hence, the L matrix becomes a (6× 6)-diagonal matrix as given below:

L =



0 0 0 0 0 0

0 3.9497 0 0 0 0

0 0 1.5875 0 0 0

0 0 0 1.1958 0 0

0 0 0 0 9.9015 0

0 0 0 0 0 0.1975


.

In the L matrix, the first column elements of L are all zero and the diagonal elements

of this matrix Lm (m = 1, 2, ..., 5) are as given above. Then, Lθ is as follows:

‖Lθ‖22 = (θ1 · (3.9497))2 + (θ2 · (1.5875))2 + (θ3 · (1.1958))2 + (θ4 · (9.9015))2 +

(θ5 · (0.1975))2 .

This matrix L is used as an input in MATLAB Tikhonov regularization toolbox and

the results are displayed in Section 3.5.

3.5 Validation Approach and Comparison Measures

In our applications, we use two different real-valued continuous data sets. In the

first data, there is no interaction between variables, however, in the second one, there
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exists interaction between variables. In order to evaluate the performance of Tikhonov

regularization, we used various measures [104]. These performance measures and their

general notations are as follows;

• yi is an ith observed response value,

• ŷi is an ith fitted response,

• ȳ is a mean response,

• N is a number of observations,

• p is a number of terms in the model,

• ¯̂y is a mean fitted response,

• s(y)2 is a sample variance for observed response,

• ˆs(y)
2

is a sample variance for observed response,

• ei = yi − ŷi is an ith ordinary residual,

• hi is a leverage value for the ith observation, which is the ith diagonal element of

the hat matrix, H . The hat matrix is H =X (X TX )−1X T , where X : (N× p) design

matrix and rank (X ) = p (p ≤ N).

3.5.1 Comparison Measures

i. Correlation Coefficient r

Correlation coefficient is a measure to explain the linear relationship between the

actual and the predicted response values. There exists a strong positive or negative

relationship between the actual and the predicted response variables when r is close

to either 1 or -1, respectively. If it is zero, there exists no linear association between

actual and predicted values [95]. The formula of this measure can be written as follows:

r :=

∑n
i=1

(y−ȳ)(ŷ−¯̂y)
(n−1)√

s(y)2s(ŷ)2
such that− 1 ≤ r ≤ +1,

with y being the actual dependent variables, ŷ being the predicted dependent variables

and ȳ being the mean of actual values. Here, s(ŷ) is the standard deviation of predicted

response variable and s(y) is the standard deviation of actual response variable.

Here, we expect a high r value so that our estimators are good enough to predict the
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response variables as the original ones.

ii. Prediction Error Sum of Squares (PRESS)

PRESS is a measure related with the predictive ability of the model. In fact, it

is simply the sum of squares of the prediction error so the smaller the error the better

the predictive ability of the model [95]. Its formula has the following form:

PRESS :=
n∑
i=1

(
ei

1− hi
2
)
.

iii. The Coefficient of Determination R2

R2 is a measure to explain the ability of a model to predict new values. As the

value of R2 increases, the model fit to data gets better [95]. The formula of the

coefficient of determination can be represented as follows:

R2 := 1− RSS

SSTotal
= 1−

(∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

)
.

iv. Adjusted R2

Different from the R2, this measure adjusts regarding the number of explanatory

terms in a model. That’s, R2 can increase when you add a new variable to the model

but the Adjusted R2 increases only if the new term improves the model more than

would be expected by chance. Therefore, it is beneficial to compare models with dif-

ferent numbers of variables. Besides, the higher the Adjusted R2, the better the model

fits data [95]. Its formula is

R2
Adj := 1− MSError

MSTotal
= 1−

(∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

)(
N − 1

N − p− 1

)
.

v. Predicted R2

The predictedR2 measures the ability of the model to predict responses for new obser-

vations. The predictive ability of the model gets better when the Predicted R2 value
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increases [95]. Its formula can be written as follows:

R2(pred) := 1− PRESS

SSTotal
= 1−

∑N
i=1

(
ei

1−hi
2
)

1−
∑N

i=1(yi − ȳ)2
.

vi. Mean Square Error (MSE)

MSE measures the difference between predicted and actual values. If it is small,

it means that the error is small and the estimates are good enough. Therefore, the

smaller the MSE, the better it is [95]. Its formula has the following form:

MSE :=
1

N

N∑
i=1

(yi − ŷi).

vii. Root Mean Square Error (RMSE)

RMSE also quantifies the difference between predicted and actual values. It is fre-

quently used to measure the precision of the model. Again, as its value gets smaller,

the precision gets better [95]. A model independent formula is

RMSE :=
√
MSE =

√√√√ 1

N − p− 1

N∑
i=1

(yi − ŷi)2.

viii. Average Absolute Error (AAE)

AAE is a quantity used to measure how close predictions are to the actual outcomes.

As it is the average magnitude of error, it is better when its value gets smaller [95].

The formula can be represented as follows:

AAE :=
1

N

N∑
i=1

|yi − ŷi|.
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3.6 Numerical Results of the Tikhonov Regularization Problems

3.6.1 Introduction

In our numerical examples, we used MATLAB programming language (MATLAB

R2007a) and Tikhonov regularization toolbox introduced in Section 2.5. In the ap-

plication, we firstly employ the command generalized singular value decomposition

(GSV D) and use the matrices BF and L as inputs of this command. Moreover, we

benefit from the outputs of GSV D in Tikhonov solver (with the command ‘Tikhonov’)

together with the vectors y and λ. Then, this command returns us the unknown re-

gression coefficients.

In this study, as the regularization parameter λ plays a key role in the estimation

of coefficients, it should be chosen with care. The L-curve criterion can be used to

decide this parameter. The corner of this curve, the point with maximum curvature,

corresponds to the the place this parameter should be chosen.

In this study, we run the program many times, each time with a different λ value

(λ > 0), and observe how it changes. For each solution, we calculated the RSS and

‖Lθ‖2 values. We decided the range of λ as the points where these two, RSS and

‖Lθ‖2 are stabilized. For example; at the upper bound, as alpha increases, ‖Lθ‖2 is

always zero. As well, in the lower bound of λ, it starts from the point after which

‖Lθ‖2 starts to change.

We examined two different types of data; with and without interaction and measured

the performance of our solver by using some statistical tools such as R2
Adj , r, RMSE

and AAE.

3.6.2 Numerical Results of the Data with No Interaction

Tikhonov regularization is usually preferred for huge dimension data sets. In this

study, we first applied this technique to the data with no interaction. Firstly, we

examined it at end and corner λ values. Then, we observe the changes by using the

following performance criteria given in the following table:
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Table 3.1: The performance results at the end points

No Interaction

Measure λfirst λcorner λlast
AAE 0.9571 0.9548 3.6566
R2

adj 0.9264 0.9260 −0.2631
RMSE 1.2861 1.2895 5.3269

r 0.9704 0.9704 0.9703

By looking at this table, it is observed that the measure value of RMSE is increasing

as the tradeoff parameter λ increases. Correlation coefficient (r) is high for all λ values

which means that there is a good linear relationship between actual and predicted y

values for all solutions coming from Tikhonov regularization for this data set. Besides,

as λ increases, the RMSE gets bigger while the R2
Adj decreases. This means that our

model gets worse to explain the variation in response variable and does not have a

good fit as it has before. This is due to the over regularization as the larger the λ

(equivalent to a large amount of regularization), the smaller the solution seminorm at

the cost of a large residual norm, while it has a reverse effect for a small λ.

Moreover, we get the following loglog curve for this data set:

Figure 3.1: The Loglog curve for the data with no interaction
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3.6.3 Numerical Results of the Data with Interaction

In this part, we applied the Tikhonov solver to the data with interaction. We examined

it at the end and corner λ values, then we observe the following results:

Table 3.2: Tikhonov Regularization for the two data sets

Interaction

Measure λfirst λcorner λlast
AAE 0.0014 0.0015 0.0079
R2

adj 0.9663 0.96 −0.2072
RMSE 0.0022 0.0024 0.0130

r 0.9863 0.9838 0.9318

In this table, the measure value of RMSE and AAE is increasing as the tradeoff pa-

rameter λ increases. Even the correlation coefficient (r) is decreasing as λ increases,

it is very high for all λ values which means that there is a good linear relationship

between actual and predicted y values for all solutions coming from Tikhonov regu-

larization for this data set. Besides, we observe a decreasing R2
adj . This is due to the

over regularization again.

Moreover, we get the following loglog curve for this data set which is:

Figure 3.2: The Loglog curve for the data with interaction
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3.6.4 Comparison of the Results Regarding Data Types

We can compare results of the two data sets and see which one has better results

when Tikhonov regularization is employed. The results are illustrated in the following

table:

Table 3.3: Tikhonov Regularization for the two data sets

Interaction No Interaction

Measure λfirst λcorner λlast λfirst λcorner λlast
AAE 0.0014 0.0015 0.0079 0.9571 0.9548 3.6566
R2

adj 0.9663 0.96 −0.2072 0.9264 0.9260 −0.2631
RMSE 0.0022 0.0024 0.0130 1.2861 1.2895 5.3269

r 0.9863 0.9838 0.9318 0.9704 0.9704 0.9703

From Table 3.3, we see that the error rate ( AAE and RMSE) is lower for data set

with interaction than the set without interaction indicating that the accuracy rate is

higher for interaction data. Besides, other performance measures (r and R2
adj) are

also higher for the data with interaction. Both data sets have high R2 criteria values

which shows that the model fit is good for both data sets at λfirst and λlast.

3.7 IKL Analysis

In Chapter 2.6, we introduced one of classifying techniques used for heterogeneous

and large-scale data sets; infinite kernel learning. Here, we apply IKL on some data

sets and compare it with Tikhonov regularization. These data sets, Votes, Bupa

and Hepatitis, are from the well-known standard UCI machine learning repository1.

Except the homogeneous data set Votes, all are heterogeneous which means that data

set includes both discrete and continuous variables. Data descriptions are given in te

following table:

Here, in Table 3.4, first column shows the name of the data set, second is the number

of data, third is the number of features, and fourth one represents the types of data

sets, respectively.

1 available from http : //archive.ics.uci.edu/ml/
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Table 3.4: Data set description

Data set # instances # attributes attribute characteristics

Votes 52 16 categorical

Bupa 345 6 integer, real and categorical

Hepatitis 155 19 integer, real and categorical

In this study, we focused on PCRM and PEM algorithms with 5-fold cross-validation

and used Knitro solver on normalized data sets. Besides, active set, interior CG and

interior direct are the algorithms of the solver Knitro. The results are displayed in

Table B.1 in Appendix B.

In Table B.1, the values of Mean AUC, Std Dev Error and Mean Error show that

there are small differences between two methods except that the run time of PEM is

longer than that of PCRM.

Moreover, we like to see how the performance of Tikhonov regularization and IKL

differs compared to each other. In order to observe this, we applied them on two data

sets; Votes and Hepatitis, and compared the methods over these data sets. In the

following part, we share the results of this comparison.

3.8 Comparison of the Results for Tikhonov Regularization and IKL

In previous parts, we make separate analysis using Tikhonov regularization and IKL

on different data sets. However, in this part, we focus on the comparison of these

methods and for this aim, we also applied Tikhonov regularization on Votes and

Hepatitis data sets. We share the results in Table 3.8.

In both techniques, normalized data sets are used and a 5-fold cross validation is

applied. In IKL analysis, we used Primal Conceptual Reduction Method (PCRM)

and active set algorithm for both data sets.

We make the comparison over some performance measures which are automatically

obtained from IKL toolbox; Mean Error rate, Std Dev Error and Mean AUC. Here,

the Std Dev Error is the standard deviation of errors over 5-fold cross-validation.

However, for Tikhonov regularization we calculated these values by hand so that we

86



can compare them over the same scales. The results are displayed in the following

table:

Votes Hepatitis

Measure IKL TIKHONOV IKL TIKHONOV

Mean Error 0.2091 0.0020 0.1936 0.0019

Std Dev Error 0.1469 0.0010 0.0456 0.0003

Mean AUC 0.81 0.65 0.64 0.98

Table 3.5: Comparison of the methods IKL and Tikhonov Regularization

Here, AUC denotes the true positive rate and as AUC tends to 1, the prediction

accuracy gets better [24]. From table above, it is seen that Tikhonov solver performs

a lower error rate for V otes data. However, prediction accuracy is smaller than that

of IKL. For the Hepatitis data set, on the other hand, Tikhonov solver has a higher

prediction accuracy with a smaller error rate. Thus, Tikhonov regularization gives

more accurate results for Hepatitis data set than IKL.

Performance measures are closer in each method, however, Table 3.8 shows that

Tikhonov regularization provides a better accuracy for the heterogeneous data Hep-

atitis while IKL displays a better performance for the homogenous data Votes.
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CHAPTER 4

CONCLUSION AND FUTURE RESEARCH

The search to define the relationship between a response variable and its predictors

and modeling it is a commonly studied field. Regression analysis and classification

techniques are just some of them. In this thesis, both methods, a regression and a

classification, are studied.

We analysis Generalized Partial Linear Models (GPLMs) in which there is a sin-

gle nonparametric component together with usual parametric terms. Indeed, GPLM

decomposes input variables into two sets and additively combines classical linear mod-

els with nonlinear model part. Thus, it has a great advantage that consists in this

grouping which could be done for the input dimensions or features in order to assign

appropriate submodels specifically [92].

In this thesis, we combined GPLM with a modified form of MARS, named as Conic

Multivariate Adaptive Regression Splines (CMARS). We propose to use penalized

residual sum of squares (PRSS) to control complexity and accuracy of the model

instead of the backward algorithm. Then, we turn this PRSS function into a Tikhonov

regularization problem and solve it by using the regularization toolbox of MATLAB.

As well as studying the regularization of the nonparametric part, we also mentioned

theoretically the regularization of the parametric part. However, in the numerical

example, we disregard the parametric part for the sake of simplicity. We provided

two numeric examples by using two different data type; one has interaction between

variables and the other does not have.

In the numerical example, we observed that Tikhonov solver gave better results for
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both data at the first parameter values. At that points, estimation errors were small

and adjusted R2s were high which show a good model fit for both data. However,

as we increased the parameter value, we saw that error was increasing while model

fit was decreasing. Besides, compared two data with each other. For the data with

interaction, estimation error was smaller and adjusted R2 was higher than that of

data with no interaction at all parameter values. Actually, this is expected because

CMARS gives better results for huge and complex data sets.

Furthermore, we made an analysis by using a modern method of Machine Learn-

ing tool, Infinite Kernel Learning (IKL). To observe how this method differs from

CMARS with Tikhonov regularization, we compared their results on two data sets;

homogeneous data set Votes and heterogeneous data set Hepatitis. The data are dif-

ferent in that heterogeneous data set includes both discrete and continuous variables

while homogeneous data set can include just one type. Besides, to compare the two

methods, we used some statistical performance measures; Mean Error, Std Dev Er-

ror and Mean AUC which are automatically achieved from IKL toolbox. Then, we

calculated these values for Tikhonov regularization and compared the two methods.

Numerical results of these two data sets show that IKL gives more accurate results for

the homogenous data set, Votes. Even its error is bigger, it has a bigger Mean AUC

value than that Tikhonov solver. However, for the nonhomogeneous data set Hepati-

tis, Tikhonov solver has better results. It has a smaller error rate with a higher Mean

AUC value, showing that prediction accuracy of Tikhonov regularization is better for

the heterogeneous data set, Hepatitis.

In the following, there can be done more studies on the comparison of IKL and

CMARS. Moreover, future analysis and if possible, partial combination of GPLMs

and IKL can be studied.

In this thesis, we focus on Generalized Partial Linear Model and CMARS with Tikhonov

regularization. We analyze several data sets and display comparisons. It is also pos-

sible to do more studies on the comparison of CMARS by using Tikhonov solver and

conic quadratic programming CQP [69], an optimization technique. As CQP can em-

ploy the structure of the problem and allow better complexity bounds for the generic

problems, it can exhibit a much better practical performance [104]. Moreover, as well
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as comparing the performance of CMARS with Tikhonov and CQP each other, there

can be made comparisons together with IKL on many data sets.

Furthermore, as a future study, a further analysis and algorithmical development of the

special subclass of GPLMs of this thesis can be done. In the near future, the utilization

of these results and further implementations of the methods to various application

areas is possible. Besides, identification and investigation of further important model

subclasses of GPLMs can be searched.
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[83] S. Sonnenburg, G. Rätsch, C. Schafer and B. Schölkopf. Large scale multiple
kernel learning, J. Machine Learning Research, 2006.

[84] SPSS 16.0 GPL Reference Guide, Chicago, IL: SPSS Inc, 2007.
http://support.spss.com/ProductsExt/SPSS/Documentation/SPSSforWindows/
accessed 26 Ags. 2009.

[85] R.E. Steuer, Multiple Criteria Optimisation: Theory, Computation and Applica-
tion, New York: John Wiley and Sons, NY, 1986.

[86] G. Still, Semi-infinite programming: An introduction, preliminary version, Tech-
nical report, University of Twente Department of Applied Mathematics, En-
schede, The Netherlands, 2004.
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APPENDIX A

RSS in Numerical Examples

When the maximum functions are computed, the terms of the RSS with a tabular

form are as follows:

Table A.1: Function RSS became addressed in Subsection 3.4.1

Y θ0 θ1 θ2 θ3 θ4

d1 13.6 1 0 0.01 2.9 0

d2 16.6 1 1.89 0 3.99 0

d3 23.5 1 15.77 0 17.87 0

d4 10.20 1 0 6.11 0 4.01

d5 5.4 1 0 10.01 0 7.91

d6 15 1 0.89 0 2.99 0

d7 9 1 0 5.31 0 3.21

d8 12.3 1 0 1.71 0.39 0

d9 16.3 1 2.49 0 4.59 0

d10 15.4 1 0.79 0 2.79 0

d11 13 1 0 0.41 1.69 0

d12 14.4 1 0.99 0 3.09 0

d13 10 1 0 6.31 0 4.21

d14 10.2 1 0 2.71 0 0.61

d15 9.5 1 0 5.11 0 3.01

d16 1.5 1 0 13.11 0 11.01

d17 18.5 1 2.89 0 4.99 0

d18 12.6 1 0 1.31 0.79 0

d19 17.5 1 1.69 0 3.79 0

d20 4.9 1 0 9.61 0 7.51

d21 15.9 1 0.39 0 2.49 0

d22 8.5 1 0 6.81 0 4.71

d23 10.6 1 0 5.51 0 3.41

d24 13.9 1 1.09 0 3.19 0

d25 14.9 1 0 2.11 0 0.01
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When the maximum functions are computed, the terms of the RSS with a tabular

form are as follows:

Table A.2: Function RSS became addressed in Subsection 3.4.2

Y θ0 θ1 θ2 θ3 θ4 θ5

d1 0.13 1 0 1.63 0 0 0

d2 0.016 1 0 1.55 0.07 3.43 0.0133

d3 0.015 1 0 1.55 0.07 3.43 0.0133

d4 0.016 1 0 1.55 0.07 3.43 0.0168

d5 0.015 1 0 1.55 0.07 0 0.0203

d6 0.016 1 0 1.55 0.07 0 0.0203

d7 0.014 1 0 1.21 0.24 11.76 0.0216

d8 0.021 1 0 1.04 0.32 15.68 0.0288

d9 0.018 1 0 1.04 0.32 15.68 0.0288

d10 0.019 1 0 1.04 0.32 15.68 0.0288

d11 0.021 1 0 1.04 0.32 15.68 0.0608

d12 0.019 1 0 1.04 0.32 15.68 0.0608

d13 0.021 1 0 1.04 0.32 15.68 0.0608

d14 0.025 1 0 1.01 0.84 41.16 0.0756

d15 0.025 1 0 0.21 0.74 36.26 0.0666

d16 0.026 1 0 0.21 0.84 41.16 0.0756

d17 0.024 1 0 0.01 0.84 41.16 0.0756

d18 0.025 1 0 0.01 0.84 41.16 0.0756

d19 0.024 1 0 0.01 0.84 41.16 0.0756

d20 0.025 1 0 0.01 0.84 41.16 0.1596

d21 0.027 1 0 0.01 0.84 41.16 0.1596

d22 0.026 1 0 0.01 1.24 60.76 0.2356

d23 0.029 1 0.79 0 1.24 60.76 0.1116

d24 0.03 1 0.79 0 1.24 60.76 0

d25 0.028 1 0.79 1.24 1.24 60.76 0.0496

d26 0.032 1 0.79 0 1.4 68.6 0.196

d27 0.033 1 1..12 0 1.24 60.76 0.1116

d28 0.039 1 1.79 0 1.24 122.76 0

d29 0.04 1 1.79 0 1.24 60.76 0

d30 0.035 1 1.79 0 1.24 60.76 0.1736

d31 0.056 1 10.29 0 1.24 122.76 0

d32 0.068 1 16.29 0 1.24 122.76 0
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APPENDIX B

IKL Analysis of Three Data Sets

Figure B.1: Results of normalized data sets
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