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ABSTRACT 

 

THE EFFECT OF TEMPORAL AGGREGATION ON 

UNIVARIATE TIME SERIES ANALYSIS 

 

Sarıaslan, Nazlı  

M.Sc., Department of Statistics 

Supervisor: Asst. Prof. Dr. Ceylan Talu Yozgatlıgil 

 

September 2010, 150 pages 

 

Most of the time series are constructed by some kind of aggregation and temporal 

aggregation that can be defined as aggregation over consecutive time periods. 

Temporal aggregation takes an important role in time series analysis since the choice 

of time unit clearly influences the type of model and forecast results. A totally 

different time series model can be fitted on the same variable over different time 

periods. In this thesis, the effect of temporal aggregation on univariate time series 

models is studied by considering modeling and forecasting procedure via a 

simulation study and an application based on a southern oscillation data set. 

Simulation study shows how the model, mean square forecast error and estimated 

parameters change when temporally aggregated data is used for different orders of 

aggregation and sample sizes. Furthermore, the effect of temporal aggregation is also 

demonstrated through southern oscillation data set for different orders of 

aggregation. It is observed that the effect of temporal aggregation should be taken 

into account for data analysis since temporal aggregation can give rise to misleading 

results and inferences. 

Keywords: Temporal Aggregation, ARMA models, Univariate Time Series Analysis 
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ÖZ 

 

ZAMANSAL TOPLULAŞMANIN TEK DEĞİŞKENLİ ZAMAN  

SERİSİ ANALİZİNE ETKİSİ 

 

 

Sarıaslan, Nazlı 

 

Yüksek Lisans, İstatistik Bölümü 

 

Tez Yöneticisi: Yrd. Doç. Dr. Ceylan Talu Yozgatlıgil 

 

Eylül 2010, 150 sayfa 

 

Zaman serilerinin çoğu  çeşitli bir araya getirme yöntemleri ile oluşturulmaktadır ve 

zamansal toplulaştırma birbirini izleyen zaman dönemlerinin bir araya getirilmesi 

şeklinde tanımlanabilir. Zamansal toplulaştırma zaman serisi analizlerinde önemli bir 

rol üstlenmektedir çünkü zaman biriminin seçimi, modeli ve öngörü sonuçlarını 

etkilemektedir. Tamamen değişik bir model aynı değişkenin değişik zaman 

dönemleri için uygun olabilmektedir. Bu tezde, modelleme ve öngörü süreçleri göz 

önünde bulundurularak zamansal toplulaştırmanın tek değişkenli zaman serileri 

üstündeki etkisi benzetim çalışması ve güney salınımları veri setine dayanan 

uygulamayla çalışılmıştır. Benzetim çalışması, değişik toplulaştırma dereceleri ve 

örnek büyüklükleri için zamansal toplulaştırılmış veri kullanıldığında  modelin, 

ortalama karesel öngörü hatasının ve tahmin edilen parametrelerin nasıl değiştiğini 

göstermiştir. Ayrıca, zamansal toplulaştırmanın değişik toplulaştırma dereceleri için 

etkileri güney salınımları veri seti kullanılarak da gösterilmiştir. Zamansal 

toplulaştırmanın yanlış sonuçlara ve çıkarımlara yol açması sebebiyle zamansal 

toplulaştırma  etkisinin dikkate alınması gerektiği anlaşılmıştır. 

Anahtar Kelimeler: Zamansal toplulaştırma, ARMA modelleri, Tek Değişkenli 

Zaman Serisi Analizi 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Temporal Aggregation and Related Literature Survey 

A time series model is proposed in terms of basic time unit 𝑡. Although the model 

can be tested against observable data from a designed experiment in terms of the 

same time unit 𝑡 , in some cases the time frequency of the observed data may not be 

the same as the assumed time unit 𝑡. Generally, observable data are obtained through 

aggregation and to receive meaningful results it is necessary to know the effect of 

aggregation on model structure, parameter estimation and forecasting.  

 

A time series variable can be a flow variable or a stock variable. The values of the 

flow variable are obtained through temporal aggregation while the values of the 

stock variable are obtained through systematic sampling. Industrial production, gross 

domestic product, public deficit, financial returns can be given as examples of the 

flow variable and interest rate, unemployment rate, price of a commodity can be 

given as examples of the stock variable. In this study, flow variables and temporal 

aggregation will be considered. Let 𝑧𝑡  be the equally spaced basic series and assume 

that the observed time series 𝑍𝑇  is the 𝑚-period non-overlapping aggregates of 𝑧𝑡  

defined as 

 

𝑍𝑇 =  𝑧𝑚𝑇−𝑗

𝑚−1

𝑗=0

=  1 + 𝐵 + ⋯ + 𝐵𝑚−1 𝑧𝑚𝑇  , 
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where 𝐵 is the backshift operator, 𝑇 is aggregate time unit and 𝑚 is fixed order of 

aggregation. 𝑍𝑇  is called an aggregate series and 𝑧𝑡  is called basic or nonaggregate 

series. The number of observations of 𝑍𝑇  is 𝑁= 𝑛/𝑚  , where  𝑛  is the sample size 

of the basic series and 𝑚 is the aggregation period.   

 

An early example of research in the literature of aggregation is Quenouille (1958), 

where the effect of aggregation on stationary univariate series is discussed. 

Quenouille studied  the stationary ARMA models with autoregressive order of 𝑝 and 

moving average order not greater than 𝑝. Telser (1967) dealt with the structure of the 

aggregate sequence of an autoregressive system. Telser indicated that simple least 

squares estimates of the autoregressive coefficients are not consistent. He showed 

that it is possible to estimate the autoregressive coefficients consistently based on 

equally spaced sample of moving sums of basic data for non-overlapping discrete 

intervals. In his paper, he also reported that a purely AR(𝑝) model transforms into a 

mixed ARMA(𝑝,𝑞) model where the roots of the AR polynomial of the aggregate 

series model are the 𝑚th
 powers of the nonaggregate series AR polynomial. 

Amemiya and Wu (1972) also showed that if the original variable follows a 𝑝th
 order 

autoregressive system, then mixed model for the aggregates follows a 𝑝th
 order 

autoregressive system and 𝑞th order moving average system, where 𝑞 is the largest 

integer satisfying 𝑞𝑚 <  𝑝 + 1  𝑚 − 1 + 1. This means that 𝑞 is at most equal to 𝑝 

and if 𝑚 ≥ 𝑝 + 1, then 𝑞 = 𝑝. Moreover, Amemiya and Wu proved that the moving 

average part was invertible. Brewer (1973) studied the effect of aggregation on the 

ARMA(𝑝,𝑞) model. He mentioned that nonaggregate ARMA(𝑝,𝑞) model can be 

transformed to an aggregate ARMA(𝑝,𝑟) model, where 𝑟 =  𝑝 + 1 + (𝑞 − 𝑝 −

1)/𝑚  ( 𝑥  is used to denote the integer part of 𝑥 ). Brewer also presented a 

generalization of the results obtained by Amemiya and Wu for ARMA models with 

exogenous variables (ARMAX models). Tiao (1972) was the first researcher who 

discussed the effects of aggregation on nonstationary univariate series. Tiao studied 

the aggregation effect on the integrated moving average models, IMA(𝑑,𝑞) and he 

showed when 𝑚 →  ∞ the limiting model for the aggregates exists and equals to 

IMA(𝑑,𝑑) process, which is independent of 𝑝 and 𝑞. Tiao and Wei (1976) considered 
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the effect of temporal aggregation on the dynamic relationships between two discrete 

time series variables. Given the dynamic model 

 

 𝑧𝑡 =  
𝑦𝑡

𝑥𝑡
 =  

𝑣 𝐵 𝜏(𝐵) 𝜇(𝐵)
𝜏(𝐵) 0

  
𝑎𝑡

𝑒𝑡
  , 

 

where 𝑎𝑡  ~ N(0, 𝜎𝑎
2  ) and 𝑒𝑡  ~ N(0, 𝜎𝑒

2 ) are independent, in terms of some basic time 

unit 𝑡, they obtained the corresponding model for the aggregate series. In their paper, 

it was shown that temporal aggregation can lead to a substantial loss in parameter 

estimation while the loss in prediction efficiency is much less severe. Wei (1978a) 

considered the effect of temporal aggregation on parameter estimation in a finite 

distributed lag model through the least squares procedure. The loss in efficiency due 

to aggregation was discussed and it was seen that the loss depends not only on the 

level of aggregation but also on the nature of input variable. Wei (1978b) studied 

aggregation effect on univariate multiplicative seasonal time series models. Wei 

revealed that for a stochastic time series model of order  𝑝, 𝑑, 𝑞 × (𝑃, 𝐷, 𝑄)𝑠, the 

corresponding model for the aggregates of 𝑚-component nonoverlapping sum is of 

order  𝑝, 𝑑, 𝑟 × (𝑃, 𝐷, 𝑄)𝑆 where 𝑠 = 𝑚𝑆 for some integer 𝑆 and 𝑟 =  𝑝 + 𝑑 + 1 +

𝑞−𝑝−𝑑−1

𝑚
 . Also, it was mentioned that when 𝑚 ≥ 𝑆, aggregation reduces a seasonal 

model to a regular ARIMA model. Stram and Wei (1986b) dealt with the relationship 

of autocovariances between the nonaggregate and aggregate series. In their paper, the 

form of aggregate autocovariance function was computed and explained based on 

nonaggregate autocovariance function. Furthermore, Stram and Wei showed that 𝑚th 

order aggregate series of a stationary AR(𝑝) process follows an ARMA(𝑀,𝑁) 

process where 𝑀 is calculated by the help of set theory and 𝑁 =  𝑝 + 1 −
(𝑝+1)

𝑚
 −

(𝑝 − 𝑀). Lütkepohl (1986) discussed forecasting aggregated vector ARMA 

processes. In his study, mean squared forecasting error was taken into account to 

determine the forecast accuracy. Drost and Nijman (1993) derived temporal 

aggregated data models by using ARMA models with symmetric GARCH errors. 

They pointed out that temporal aggregated data models are in the conditional 
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heteroskedasticity of the GARCH form. Mamingi (1996) studied the effect of 

temporal aggregation on the Granger causality in error correction models by using 

Monte Carlo experiments. Marcellino (1999) investigated the temporal aggregated 

process when the nonaggregate series follows vector ARIMA  process. In his study, 

the effects of temporal aggregation on a set of characteristics such as causality and 

cointegration are considered. Breitung and Swanson (2002) studied the temporal 

aggregation effect on Granger causality relations in VAR models based on large 

aggregation intervals. They mentioned several conditions that cover the informal 

content of error covariance matrices and the casual structure of VAR. Shellman 

(2004) dealt with how temporal aggregation affects the decisions on VAR parameter 

estimates, significance levels, Granger causality tests and impulse response functions 

based on event data. Silvestrini and Veredas (2008) presented an overview of 

temporal aggregation methods for univariate and multivariate time series models and 

they also gave some empirical applications. Teles, Wei and Hodgess (2008) 

investigated the effects of aggregate time series on the Dickey-Fuller test for a unit 

root. They determined that aggregate time series has an impact both on the empirical 

significance level and on the power of the test. Also, they presented critical point 

tables for the tests based on aggregate time series and showed their adequacy. In this 

thesis, the effects of temporal aggregation on univariate time series models will be 

studied. Through a simulation study the effect of temporal aggregation on real data 

will be discussed and comparison between the theoretical and the observed model fit 

will be presented. 

 

1.2 Basic Time Series Concepts 

A time series can be explained as an ordered sequence of observations where 

observations are taken at equally spaced intervals. 

 

Time series analysis is a field in statistics and econometrics. While most of the 

statistical methods depend on the assumption that the observations are independent,  

in time series analysis the observations are dependent. Also, statistical methods are 

generally used for making comments about population based on a sample. However, 
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in time series analysis it is almost impossible to have more than one observation at a 

given time point (Akgün, 2003). 

  

Time series can be seen in variety of areas. Agriculture, economics, engineering, 

medical studies, meteorology and social studies are some areas where time series is 

observed and studied. For instance, in economics daily closing stock prices, weekly 

interest rates, quarterly sales, yearly earnings can be regarded as time series. 

 

Time series analysis has two major objectives. The first one is to model the 

stochastic mechanism that generates the observed series, and the second one is to 

forecast future values based on history. 

 

In order to model the stochastic mechanism that generates the observed series, a vital 

assumption which is called stationarity is needed. The basic idea of stationarity can 

be described as the probability laws governing the process which do not change with 

time (Akgün, 2003). In this thesis stationary series are considered.  

 

A time series is said to be strictly stationary if  the statistical properties of the time 

series are unaffected by a change of time origin. Moreover, a time series is said to be 

covariance stationary if the first and second order moments of the time series are 

unaffected by a change of time origin. A strict stationary process is always a 

covariance process while a covariance process is a strict stationary process if and 

only if the covariance process is normally distributed. In practice, it is enough to take 

covariance stationary processes and in this thesis study the term stationarity 

corresponds to covariance stationary. 

 

By using the fact that covariance stationary process does not depend on time but 

rather depends on time intervals, the autocovariance function can be calculated 

easily. As a result of this, the autocorrelation function and the partial autocorrelation 

function, which have important roles to detect a time series model, can be found in a 

simple way. Autocorrelation function is useful for determining moving average 
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orders, and partial autocorrelation function, which gives direct correlation between 

two observations of a time series, is useful for determining autoregressive orders. 

 

Models for stationary series can be studied under the Autoregressive Moving 

Average (ARMA) models which are also called Box-Jenkins models.  A Moving 

Average (MA) model of order 𝑞 is represented as a linear combination of present and 

𝑞 past terms of white noise error terms. White noise error terms are independently 

and identically distributed random variables with constant mean and variance. 

Moreover, an Autoregressive (AR) model of order 𝑝 is represented as a linear 

combination of 𝑝 past values of itself plus a white noise error term. Lastly, an 

Autoregressive Moving Average (ARMA) model of order (𝑝,𝑞) is represented as a 

linear combination of present and 𝑞 past terms of white noise error terms and 𝑝 past 

values of itself. In thesis study, moving average, autoregressive and autoregressive 

moving average processes are explained in detail with their autocovariance, 

autocorrelation and partial autocorrelation functions. 

 

Autoregressive moving average models are constructed based on basic time unit 𝑡. 

As mentioned in previous section, the time frequency of observed data may not be 

the same as the assumed time unit 𝑡. Generally, temporal aggregation is used for the 

observable data and it is important to know the effect of aggregation on model 

structure, parameter estimation and forecasting procedure.  

 

1.3 The Relationship between the Basic Series and Aggregate Series 

As stated before, there exists a relationship between the basic series 𝑧𝑡  and the 

aggregate series 𝑍𝑇 . Firstly, let 𝑧𝑡  be the equally spaced basic series and its 𝑑th 

difference 𝑤𝑡 = (1 − 𝐵)𝑑𝑧𝑡   follows a covariance stationary process with zero mean. 

Also, define the aggregate series 𝑍𝑇  , whose 𝑑th difference is 𝑈𝑇 = (1 − 𝐵)𝑑𝑍𝑇 , as 

𝑍𝑇 = 𝐼𝑚𝑇 .  So 𝐼𝑡 = (1 + 𝐵 + ⋯ + 𝐵𝑚−1)𝑧𝑡  . Then  

 1 − 𝐵 𝑍𝑇 = 𝑍𝑇 − 𝑍𝑇−1 

                                                                           = 𝐼𝑚𝑇 − 𝐼𝑚(𝑇−1)  
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                                                                        =  1 − 𝐵𝑚 𝐼𝑚𝑇  .                                   (1.3.1) 

By using the Equation 1.3.1 

𝑈𝑇 = (1 − 𝐵)𝑑𝑍𝑇  

= (1 − 𝐵𝑚)𝑑𝐼𝑚𝑇  

  =   1 + 𝐵 + ⋯ + 𝐵𝑚−1  1 − 𝐵  𝑑(1 + 𝐵 + ⋯ + 𝐵𝑚−1)𝑧𝑚𝑇  

= (1 + 𝐵 + ⋯ + 𝐵𝑚−1)𝑑+1(1 − 𝐵)𝑑𝑧𝑚𝑇  

= (1 + 𝐵 + ⋯ + 𝐵𝑚−1)𝑑+1𝑤𝑚𝑇  . 

Since 𝑈𝑇  is finite sum of covariance stationary process 𝑤𝑡 , 𝑈𝑇  is also a covariance 

stationary process. So, the basic stationarity assumption is not affected by 

aggregation (Wei, 2006,  pp. 508). 

 

Moreover, Stram and Wei (1986b) explained the relationship between the 

autocovariance functions of 𝑤𝑡  and 𝑈𝑇  by using the following equation 

 

      𝛾𝑈 𝑘 = (1 + 𝐵 + ⋯ + 𝐵𝑚−1)2(𝑑+1)𝛾𝑤  𝑚𝑘 +  𝑑 + 1  𝑚 − 1   .               (1.3.2) 

 

Equation 1.3.2 can be written in the matrix form like 

                               

𝛾𝑈(0)
𝛾𝑈(1)

⋮
𝛾𝑈(𝑘)

 = 𝐴

 
 
 
 
 
 

𝛾𝑤 [− 𝑑 + 1  𝑚 − 1 ]

𝛾𝑤 [− 𝑑 + 1  𝑚 − 1 + 1]
⋮

𝛾𝑤(0)
⋮

𝛾𝑤 [𝑚𝑘 +  𝑑 + 1  𝑚 − 1 ] 
 
 
 
 
 

 ,                             (1.3.3) 

where 𝐴 is the coefficient matrix which is equal to 

 
 
 
 

𝐶 0𝑚𝑘

0𝑚 𝐶 0𝑚(𝑘−1)

⋮
0𝑚𝑘 𝐶  

 
 
 

 , 
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where 0𝑚  and 0𝑚𝑘  denote the 1 × 𝑚 vector of zeros and 𝑚 × 𝑘 matrix of zeros 

respectively. 𝐶 is a 1 × [2 𝑑 + 1  𝑚 − 1 + 1] vector which shows the coefficients 

in the polynomial (1 + 𝐵 + ⋯ + 𝐵𝑚−1)2(𝑑+1) (Wei, 2006, pp. 509). 

 

Since 𝑤𝑡  is a stationary process, 𝛾𝑤 𝑘 = 𝛾𝑤 −𝑘  for all 𝑘. Then Equation 1.3.3 can 

be reduced as 

 

𝛾𝑈(0)
𝛾𝑈(1)

⋮
𝛾𝑈(𝑘)

 =  𝐴𝑚
𝑑  

𝛾𝑤(0)
𝛾𝑤(1)

⋮
𝛾𝑤 [𝑚𝑘 +  𝑑 + 1  𝑚 − 1 ]

  , 

 

where 𝐴𝑚
𝑑  is constructed by deleting the first (𝑑 − 1)(𝑚 − 1) columns of the matrix 

𝐴 and adding these columns to the proper remaining columns of the matrix 𝐴 (Wei, 

2006, pp. 509). 

 

1.4 Aims and Scope of the Study 

The aim of this thesis is to use theoretical information related to temporally 

aggregated series in empirical studies and to check whether the theoretical inferences 

are valid in empirical studies or not. Also, we attempt to introduce the temporal 

aggregation issue to scientific researchers because we cannot see any study related to 

temporal aggregation in some of the countries, like  Turkey. So, we want to show 

that practitioners should prefer to use nonaggregate series for data analysis to get 

reliable results. 

 

In this chapter, the basic information about time series and temporal aggregation was 

given. Furthermore, the related literature survey about temporal aggregation was 

discussed for univariate and multivariate time series. As mentioned, our study will 

focus on univariate time series. The studies related to temporal aggregation of 

univariate series gave theoretical proofs about the aggregation affect. They showed 

the relationship between temporally aggregated series and basic series.  
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Also, they presented how the model changes when the series are temporally 

aggregated. However, in these studies generally theoretical proofs were given and a 

detailed application related to theory did not take a place. In this study, we will try to 

give an application related to theory with the help of a simulation study and an 

application based on a data set. 

 

In Chapter 2, the autoregressive models will be discussed. The information about 

AR(1), AR(2) and the general AR(𝑝) processes will be given by considering the 

autocovariance, autocorrelation and partial autocorrelation functions. Temporal 

aggregation of the AR(1), AR(2) and the general AR(𝑝) processes will also be 

explained and the models belong to aggregated series will be shown theoretically. 

 

Similarly, Chapter 3 will be about the moving average models. MA(1), MA(2) and 

the general MA(𝑞) processes will be introduced and the properties of their 

autocovariance, autocorrelation and partial autocorrelation functions will be given. 

Temporal aggregation of MA(1), MA(2) and the general MA(𝑞) models will be 

discussed by using the information in Section 1.3 and the theoretical results of 

temporal aggregation will be represented. 

 

The autoregressive moving average models will be considered in Chapter 4. 

ARMA(1,1)  and the general ARMA(𝑝,𝑞) processes will be examined like Chapter 2 

and 3. The general theoretical aggregated models for ARMA(1,1)  and the general 

ARMA(𝑝,𝑞) processes will be introduced and  the theoretical model changes will be 

presented. 

 

After  the theoretical expressions, Chapter 5 will show the effects of temporal 

aggregation through a simulation study. The simulation study will be based on  

Teles, Wei and Hodgess (2008), where a simulation study shows the relative 

frequencies of the best empirical aggregate models for 𝑍𝑇  from an AR(1) process for 

different orders of aggregation and parameter values. They selected the best fitted 

model of 𝑍𝑇  based on Akaike’s Information Criterion (Akaike, 1974) but they did 
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not take into account the significance of the estimated parameters for aggregated 

models. Also, they are only interested in parameter values greater than or equal 0.9 

for the basic AR(1) series since they test a unit root based on aggregate time series. 

Our simulation study in Chapter 5 will be an expanded form of the simulation study 

of the article. First of all, we will attach importance to significance of the parameters 

for aggregated series. The best fitted aggregate models will be selected by looking at 

the significance of estimated parameters and Akaike’s information criterion. Also, 

for the basic series we will be interested in various positive and negative model 

parameters. In our simulation study for different aggregate orders and sample sizes 

the frequencies of best fitted aggregate models will be obtained from AR(1), AR(2), 

MA(1), MA(2) and ARMA(1,1), while Teles, Wei and Hodgess  simulated 240 

observations only from AR(1) process. Moreover, in Chapter 5 the tables related to 

mean square forecast errors and the estimated parameters of best fitted aggregated 

models will be given to observe the aggregation effect in detail. 

 

Chapter 6 will focus on the impact of temporal aggregation based on a real life data 

set. A monthly data set related to southern oscillations, which are used for predicting  

the atmospheric and oceanic event El-Nino, between years 1955 and 1992 is 

selected. Firstly, data set will be analyzed without making any change and a model 

which can be thought as basic model will be fitted to this data. Then the series will 

be temporally aggregated by taking consecutive sums of original data series for 𝑚=3, 

𝑚=6 and 𝑚=12, respectively. For each 𝑚 value, temporally aggregated models will 

be constructed and the differences between them will be observed. 

 

Finally, in Chapter 7 summary of the study and important findings related to 

simulation study and data application will be given. 
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CHAPTER 2 

 

TEMPORAL AGGREGATION OF AUTOREGRESSIVE PROCESSES 

 

 

In this chapter, we aim to show the effect of temporal aggregation on the 

autoregressive processes. For simplicity of the calculations, zero mean  

autoregressive processes will be considered. 

 

A zero mean autoregressive process of order 𝑝 can be shown as follows: 

 

𝑧𝑡 = ∅1𝑧𝑡−1 + ⋯ + ∅𝑝𝑧𝑡−𝑝 + 𝑎𝑡  , 

or 

∅𝑝 𝐵 𝑧𝑡 = 𝑎𝑡  , 

where 

∅𝑝 𝐵 = (1 − ∅1𝐵 − ⋯− ∅𝑝𝐵
𝑝) and {𝑎𝑡} is a zero mean white noise process with 

constant variance 𝜎𝑎
2. 

 

As seen the AR(𝑝) model is in the inverted form and the summation is finite. So,  it 

can be said that a finite autoregressive process is always invertible. If the roots of  

∅𝑝 𝐵 = 0 lie outside the unit circle,  then the autoregressive process is stationary. 
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2.1 The First Order Autoregressive,  AR(1) Process 

 

A zero mean AR(1) process can be shown as follows: 

 

𝑧𝑡 = ∅1𝑧𝑡−1 + 𝑎𝑡  , 

or 

 1 − ∅1𝐵 𝑧𝑡 = 𝑎𝑡  , 

where 

{𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

 Assuming the stationarity, the mean of 𝑧𝑡   is equal to zero. The informal 

proof  can be shown as follows:  

𝐸 𝑧𝑡 = ∅1𝐸 𝑧𝑡−1 + 𝐸(𝑎𝑡) 

𝜇 = ∅1𝜇 +  0 

 1 − ∅1 𝜇 = 0. 

If ∅1 = 1, then 𝑧𝑡  will be a random walk process which is not stationary. Since the 

stationarity condition is assumed,  𝜇 = 0. 

 Assuming the stationarity, the variance of 𝑧𝑡  is equal to 
𝜎𝑎

2

1−∅1
2 . It can be shown 

as follows: 

𝑉𝑎𝑟 𝑧𝑡 = 𝑉𝑎𝑟(∅1𝑧𝑡−1 + 𝑎𝑡) 

                                                   = ∅1
2𝑉𝑎𝑟 𝑧𝑡−1 + 2∅1𝐶𝑜𝑣 𝑧𝑡−1 , 𝑎𝑡 + 𝑉𝑎𝑟 𝑎𝑡          

                                                   = ∅1
2𝑉𝑎𝑟 𝑧𝑡 + 𝜎𝑎

2 

  =
𝜎𝑎

2

1 − ∅1
2 . 
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2.1.1 The Autocovariance Function of AR(1) Process 

 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−𝑘 = 𝐶𝑜𝑣 ∅1𝑧𝑡−1 + 𝑎𝑡  , 𝑧𝑡−𝑘 . 

Assuming the stationarity, 

For 𝑘=0; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡 = 𝛾0 = 𝑉𝑎𝑟 𝑧𝑡 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + 𝑎𝑡  , 𝑧𝑡) 

                                                                      = ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡 + 𝐶𝑜𝑣 (𝑎𝑡 , 𝑧𝑡) 

                                                 = ∅1𝛾1 + 𝐶𝑜𝑣(𝑎𝑡 , 𝑧𝑡) 

𝐶𝑜𝑣 𝑎𝑡 , 𝑧𝑡 = 𝐶𝑜𝑣(𝑎𝑡 , ∅1𝑧𝑡−1 + 𝑎𝑡) 

= 𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡 + ∅1𝐶𝑜𝑣(𝑧𝑡−1, 𝑎𝑡) 

= 𝜎𝑎
2. 

Then, 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡 = 𝛾0 = 𝑉𝑎𝑟 𝑧𝑡 = ∅1𝛾1 + 𝜎𝑎
2. 

For 𝑘=1; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−1 = 𝛾1 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + 𝑎𝑡  , 𝑧𝑡−1) 

                                                         = ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−1 + 𝐶𝑜𝑣(𝑎𝑡 , 𝑧𝑡−1) 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−1 = 𝛾1 = ∅1𝛾0. 

For 𝑘=2; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−2 = 𝛾2 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + 𝑎𝑡  , 𝑧𝑡−2) 

                                                         = ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−2 + 𝐶𝑜𝑣(𝑎𝑡 , 𝑧𝑡−2) 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−2 = 𝛾2 = ∅1𝛾1 = ∅1
2𝛾0. 
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For 𝑘=3; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−3 = 𝛾3 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + 𝑎𝑡  , 𝑧𝑡−3) 

                                                         = ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−3 + 𝐶𝑜𝑣(𝑎𝑡 , 𝑧𝑡−3) 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−3 = 𝛾3 = ∅1𝛾2 = ∅1
3𝛾0. 

So,  𝛾𝑘 =

 
 

    
𝜎2

1−∅2
, 𝑘 = 0

∅1
𝑘𝛾0, 𝑘 ≥ 1

   . 

 

2.1.2 The Autocorrelation Function of AR(1) Process 

  

𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−𝑘   =  𝜌𝑘 =  
𝐶𝑜𝑣(𝑧𝑡 , 𝑧𝑡−𝑘)

 𝑉𝑎𝑟(𝑧𝑡)  𝑉𝑎𝑟(𝑧𝑡−𝑘)
=

𝛾𝑘

𝛾0
 . 

For 𝑘=1; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−1 = 𝜌1 =
𝛾1

𝛾0
=

∅1𝛾0

𝛾0
= ∅1. 

For 𝑘=2; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−2 = 𝜌2 =
𝛾2

𝛾0
=

∅1
2𝛾0

𝛾0
= ∅1

2. 

For 𝑘=3; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−3 = 𝜌3 =
𝛾3

𝛾0
=

∅1
3𝛾0

𝛾0
= ∅1

3. 

So for 𝑘 ≥ 1 

𝜌𝑘 =  ∅1
𝑘   . 

As seen, the autocorrelation function of AR(1) process decays exponentially or 

oscillating depending on the sign of the parameter ∅1. 



 

15 
 

2.1.3 The Partial Autocorrelation Function of AR(1) Process 

 

It is known that partial autocorrelation function gives the direct correlation and it is 

denoted by 

∅𝑘𝑘 = 𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−𝑘  𝑧𝑡−1, 𝑧𝑡−2, … , 𝑧𝑡−(𝑘−1)) , 

∅11 = 𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−1 = 𝜌1  , 

∅22 = 𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−2|𝑧𝑡−1  , 

∅33 = 𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−3|𝑧𝑡−1, 𝑧𝑡−2  , 

⋮ 

The partial autocorrelation function can be calculated by the help of Yule-Walker 

equations. Yule-Walker equations for AR(𝑝) process are defined as 

 

          𝜌𝑘 = ∅1𝜌𝑘−1 + ∅2𝜌𝑘−2 + ⋯ + ∅𝑝𝜌𝑘−𝑝       for    𝑘 ≥1 ,                          (2.1.3.1) 

 

where ∅1, ∅2, …  , ∅𝑝  correspond to partial autocorrelation and can be thought as 

∅𝑝1, ∅𝑝2, …  , ∅𝑝𝑝 , respectively. 

Levinson and Durbin’s recursive formula is an option for calculating the partial 

autocorrelation function (Durbin,1960). Levinson and Durbin’s recursive formula is 

                

 ∅𝑘𝑘 =

 
 
 

 
 𝜌1                ,   𝑘 = 1

𝜌𝑘− ∅𝑘−1,𝑗𝜌𝑘−𝑗
𝑘−1
𝑗=1

1− ∅𝑘−1,𝑗𝜌𝑗
𝑘−1
𝑗=1

,   𝑘 ≥ 1

    ,                                                              (2.1.3.2) 
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where 

     ∅𝑘𝑗 =  

∅𝑘−1,𝑗 − ∅𝑘𝑘∅𝑘−1,𝑘−𝑗 ,   𝑗 = 1,2,3, … , 𝑘 − 1

∅𝑘𝑘                      ,  𝑗 ≥ 𝑘

  .   

                      

By using Equation 2.1.3.2 

∅11 = 𝜌1 = ∅1 , 

∅22 =
𝜌2 − ∅11𝜌1

1 − ∅11𝜌1
 . 

From Equation 2.1.3.1 for AR(1) process 

𝜌2 = ∅1𝜌1 , 

which is equivalent to 

𝜌2 = ∅11𝜌1. 

Then, 

∅22 =
∅11𝜌1 − ∅11𝜌1

1 − ∅11𝜌1
= 0 , 

∅33 =
𝜌3 − (∅21𝜌2 + ∅22𝜌1)

1 − (∅21𝜌1 + ∅22𝜌2)
  , 

∅21 = ∅11 − ∅22∅11 = ∅11 . 

From Equation 2.1.3.1 for AR(1) process 

𝜌3 = ∅1𝜌2 , 

which is equivalent to 

𝜌3 = ∅11𝜌2. 
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Then, 

∅33 =
∅11𝜌1 − ∅11𝜌1

1 − ∅11𝜌1
= 0. 

 

So,    ∅𝑘𝑘 =  

𝜌1 = ∅1, 𝑘 = 1

0      , 𝑘 ≥ 2

     . 

The partial autocorrelation function of AR(1) process cuts off after lag 1. 

 

2.2 The Second Order Autoregressive,  AR(2) Process 

 

A zero mean AR(2) process can be shown as follows: 

 

𝑧𝑡 = ∅1𝑧𝑡−1 + ∅2𝑧𝑡−2 + 𝑎𝑡  , 

or 

 1 − ∅1𝐵 − ∅2𝐵
2 𝑧𝑡 = 𝑎𝑡  , 

where {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

 Assuming the stationarity, the mean of 𝑧𝑡   is equal to zero. The informal 

proof can be shown as follows:  

𝐸 𝑧𝑡 = ∅1𝐸 𝑧𝑡−1 + ∅2𝐸 𝑧𝑡−2 + 𝐸(𝑎𝑡) 

𝜇 = ∅1𝜇 + ∅2𝜇 +  0 

 1 − ∅1 − ∅2 𝜇 = 0. 

If ∅1 + ∅2 = 1, then the stationarity condition ∅1 + ∅2< 1  is not valid. Since the 

stationarity condition is assumed, 𝜇 = 0. 
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2.2.1 The Autocovariance Function of AR(2) Process 

 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−𝑘 = 𝐶𝑜𝑣 ∅1𝑧𝑡−1 + ∅2𝑧𝑡−2+ 𝑎𝑡  , 𝑧𝑡−𝑘 . 

Assuming the stationarity, 

For 𝑘 = 0; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡 = 𝛾0 = 𝑉𝑎𝑟 𝑧𝑡 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + ∅2𝑧𝑡−2 + 𝑎𝑡  , 𝑧𝑡) 

                                                     = ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡 + ∅2𝐶𝑜𝑣 𝑧𝑡−2, 𝑧𝑡 + 𝐶𝑜𝑣(𝑎𝑡 , 𝑧𝑡)  

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡 = 𝛾0 = ∅1𝛾1 + ∅2𝛾2 + 𝜎𝑎
2. 

For 𝑘 = 1; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−1 = 𝛾1 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + ∅2𝑧𝑡−2 + 𝑎𝑡  , 𝑧𝑡−1) 

                                              = ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−1 + ∅2𝐶𝑜𝑣 𝑧𝑡−2, 𝑧𝑡−1 + 𝐶𝑜𝑣(𝑎𝑡 , 𝑧𝑡−1)  

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−1 = 𝛾1 = ∅1𝛾0 + ∅2𝛾1. 

For 𝑘 = 2; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−2 = 𝛾2 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + ∅2𝑧𝑡−2 + 𝑎𝑡  , 𝑧𝑡−2) 

                                            = ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−2 + ∅2𝐶𝑜𝑣 𝑧𝑡−2, 𝑧𝑡−2 + 𝐶𝑜𝑣(𝑎𝑡 , 𝑧𝑡−2)  

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−2 = 𝛾2 = ∅1𝛾1 + ∅2𝛾0. 

For 𝑘 = 3; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−3 = 𝛾3 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + ∅2𝑧𝑡−2 + 𝑎𝑡  , 𝑧𝑡−3) 

                                            = ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−3 + ∅2𝐶𝑜𝑣 𝑧𝑡−2, 𝑧𝑡−3 + 𝐶𝑜𝑣(𝑎𝑡 , 𝑧𝑡−3)  

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−3 = 𝛾3 = ∅1𝛾2 + ∅2𝛾1. 
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So,    𝛾𝑘 =  

∅1𝛾1 + ∅2𝛾2 +  𝜎𝑎
2 ,    𝑘 = 0

∅1𝛾𝑘−1 + ∅2𝛾𝑘−2,    𝑘 ≥ 1

   . 

                    

2.2.2 The Autocorrelation Function of AR(2) Process  

𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−𝑘   =  𝜌𝑘 =  
𝐶𝑜𝑣(𝑧𝑡 , 𝑧𝑡−𝑘)

 𝑉𝑎𝑟(𝑧𝑡)  𝑉𝑎𝑟(𝑧𝑡−𝑘)
=

𝛾𝑘

𝛾0
 . 

 

For 𝑘=1; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−1 = 𝜌1 =
𝛾1

𝛾0
=

∅1𝛾0 + ∅2𝛾1

𝛾0
= ∅1 + ∅2𝜌1. 

For 𝑘=2; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−2 = 𝜌2 =
𝛾2

𝛾0
=

∅1𝛾1 + ∅2𝛾0

𝛾0
= ∅1𝜌1 + ∅2. 

For 𝑘=3; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−3 = 𝜌3 =
𝛾3

𝛾0
=

∅1𝛾2 + ∅2𝛾1

𝛾0
= ∅1𝜌2 + ∅2𝜌1. 

Thus, 

                                          𝜌𝑘 =  ∅1𝜌𝑘−1 + ∅2𝜌𝑘−2                  for    𝑘≥ 1, 

Above calculations show that the autocorrelation function of AR(2) process decays 

exponentially or oscillating depending on the sign and magnitude of the parameters 

∅1 and ∅2. 

 

2.2.3 The Partial Autocorrelation Function of AR(2) Process 

 

By using Equation 2.1.3.2 
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∅11 = 𝜌1 =
∅1

1 − ∅2
 , 

∅22 =
𝜌2 − ∅11𝜌1

1 − ∅11𝜌1
=

𝜌2 − 𝜌1
2

1 − 𝜌1
2 =

∅2[ 1 − ∅2 
2 − ∅1

2]

(1 − ∅2)2 − ∅1
2  , 

∅33 =
𝜌3 − (∅21𝜌2 + ∅22𝜌1)

1 − (∅21𝜌1 + ∅22𝜌2)
. 

From Equation 2.1.3.1 on page 15 for AR(2) process 

𝜌3 = ∅1𝜌2 + ∅2𝜌1 , 

which is equivalent to 

𝜌3 = ∅21𝜌2 + ∅22𝜌1. 

Then, 

∅33 =
 ∅21𝜌2 + ∅22𝜌1 −  ∅21𝜌2 + ∅22𝜌1 

1 − (∅21𝜌1 + ∅22𝜌2)
= 0 , 

∅44 =
𝜌4 − (∅31𝜌3 + ∅32𝜌2 + ∅33𝜌1)

1 − (∅31𝜌1 + ∅32𝜌2 + ∅33𝜌3)
 , 

∅31 = ∅21 − ∅33∅22 = ∅21  , 

∅32 = ∅22 − ∅33∅21 = ∅22 . 

From Equation 2.1.3.1 on page 15 for AR(2) process 

𝜌4 = ∅1𝜌3 + ∅2𝜌2 , 

which is equivalent to 

𝜌4 = ∅21𝜌3 + ∅22𝜌2. 

Then, 

∅44 =
 ∅21𝜌3 + ∅22𝜌2 − (∅21𝜌3 + ∅22𝜌2)

1 − (∅21𝜌1 + ∅22𝜌2)
= 0. 
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So,  ∅𝑘𝑘 =

 
  
 

  
 

∅1

1−∅2
            , 𝑘 = 1

∅2  1−∅2 
2−∅1

2 

 1−∅2 2−∅1
2  , 𝑘 = 2

0             , 𝑘 ≥ 3

   .   

The partial autocorrelation function of AR(2) process cuts off after lag 2. 

 

2.3 The General 𝒑th
 Order Autoregressive,  AR(𝒑) Process 

 

A zero mean AR(p) model can be shown as follows: 

 

𝑧𝑡 = ∅1𝑧𝑡−1 + ⋯ + ∅𝑝𝑧𝑡−𝑝 + 𝑎𝑡  , 

or 

 1 − ∅1𝐵 − ⋯− ∅𝑝𝐵
𝑝 𝑧𝑡 = 𝑎𝑡  , 

where 

{𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

 Assuming the stationarity, the mean of 𝑧𝑡   is equal to zero. The informal 

proof can be shown as follows:  

𝐸 𝑧𝑡 = ∅1𝐸 𝑧𝑡−1 + ∅2𝐸 𝑧𝑡−2 + ⋯ + ∅𝑝𝐸 𝑧𝑡−𝑝 + 𝐸(𝑎𝑡) 

𝜇 = ∅1𝜇 + ∅2𝜇 + ⋯ + ∅𝑝𝜇 + 0 

 1 − ∅1 − ∅2 − ⋯− ∅𝑝 𝜇 = 0. 

If ∅1 + ∅2 + ⋯ + ∅𝑝 = 1, then the stationarity condition ∅1 + ∅2 + ⋯ + ∅𝑝< 1  is 

not valid. Since the stationarity condition is assumed, 𝜇 = 0. 
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2.3.1 The Autocovariance Function of AR(𝒑) Process 

 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−𝑘 = 𝐶𝑜𝑣 ∅1𝑧𝑡−1 + ⋯ + ∅𝑝𝑧𝑡−𝑝+ 𝑎𝑡  , 𝑧𝑡−𝑘 . 

 

Assuming the stationarity, 

For 𝑘 = 0; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡 = 𝛾0 = 𝑉𝑎𝑟 𝑧𝑡 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + ⋯ + ∅𝑝𝑧𝑡−𝑝 + 𝑎𝑡  , 𝑧𝑡) 

                                = ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡 + ⋯ + ∅𝑝𝐶𝑜𝑣 𝑧𝑡−𝑝 , 𝑧𝑡 + 𝐶𝑜𝑣(𝑎𝑡 , 𝑧𝑡) 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡 = 𝛾0 = ∅1𝛾1 + ⋯ + ∅𝑝𝛾𝑝 + 𝜎𝑎
2 . 

For 𝑘 = 1; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−1 = 𝛾1 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + ⋯ + ∅𝑝𝑧𝑡−𝑝 + 𝑎𝑡  , 𝑧𝑡−1) 

                                    = ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−1 + ⋯ + ∅𝑝𝐶𝑜𝑣 𝑧𝑡−𝑝 , 𝑧𝑡−1 + 𝐶𝑜𝑣 𝑎𝑡 , 𝑧𝑡−1   

                         𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−1 = 𝛾1 = ∅1𝛾0 + ⋯ + ∅𝑝𝛾1−𝑝 . 

For 𝑘 = 2; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−2 = 𝛾2 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + ⋯ + ∅𝑝𝑧𝑡−𝑝 + 𝑎𝑡  , 𝑧𝑡−2) 

                                    = ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−2 + ⋯ + ∅𝑝𝐶𝑜𝑣 𝑧𝑡−𝑝 , 𝑧𝑡−2 + 𝐶𝑜𝑣(𝑎𝑡 , 𝑧𝑡−2)  

     𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−2 = 𝛾2 = ∅1𝛾1 + ⋯ + ∅𝑝𝛾2−𝑝 . 

For 𝑘 = 3; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−3 = 𝛾3 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + ⋯ + ∅𝑝𝑧𝑡−𝑝 + 𝑎𝑡  , 𝑧𝑡−3) 

                                   = ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−3 + ⋯ + ∅𝑝𝐶𝑜𝑣 𝑧𝑡−𝑝 , 𝑧𝑡−3 + 𝐶𝑜𝑣(𝑎𝑡 , 𝑧𝑡−2)  

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−3 = 𝛾3 = ∅1𝛾2 + ⋯ + ∅𝑝𝛾3−𝑝 . 
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So,   𝛾𝑘 =  

∅1𝛾1 + ⋯ + ∅𝑝𝛾𝑝 +  𝜎𝑎
2 , 𝑘 = 0

∅1𝛾𝑘−1 + ⋯ + ∅𝑝𝛾𝑘−𝑝 , 𝑘 ≥ 1

    . 

 

2.3.2 The Autocorrelation Function of AR(p) Process  

 

𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−𝑘   =  𝜌𝑘 =  
𝐶𝑜𝑣(𝑧𝑡 , 𝑧𝑡−𝑘)

 𝑉𝑎𝑟(𝑧𝑡)  𝑉𝑎𝑟(𝑧𝑡−𝑘)
=

𝛾𝑘

𝛾0
. 

 

For 𝑘=1; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−1 = 𝜌1 =
𝛾1

𝛾0
=

∅1𝛾0 + ⋯ + ∅𝑝𝛾1−𝑝

𝛾0
= ∅1 + ⋯ + ∅𝑝𝜌1−𝑝 . 

For 𝑘=2; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−2 = 𝜌2 =
𝛾2

𝛾0
=

∅1𝛾1 + ⋯ + ∅𝑝𝛾2−𝑝

𝛾0
= ∅1𝜌1 + ⋯ + ∅𝑝𝜌2−𝑝 . 

For 𝑘=3; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−3 = 𝜌3 =
𝛾3

𝛾0
=

∅1𝛾2 + ⋯ + ∅𝑝𝛾3−𝑝

𝛾0
= ∅1𝜌2 + ⋯ + ∅𝑝𝜌3−𝑝 . 

Hence, 

                                  𝜌𝑘 =  ∅1𝜌𝑘−1 + ⋯ + ∅𝑝𝜌𝑘−𝑝           for   𝑘 ≥ 1, 

 

The above calculations show that the autocorrelation function of AR(𝑝) process 

decays exponentially or oscillating depending on the sign and magnitude of the 

parameters ∅1 , ∅2 , ... , ∅𝑝 . 
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2.3.3 The Partial Autocorrelation Function of AR(p) Process 

 

As stated at the Equation 2.1.3.1 on page 15 the Yule-Walker equations for AR(𝑝) 

process is 

 

                                 𝜌𝑘 =  ∅1𝜌𝑘−1 + ⋯ + ∅𝑝𝜌𝑘−𝑝                for 𝑘 ≥ 1, 

It is logical to think like 

 ∅1 corresponds to ∅𝑝1  

 ∅2 corresponds to ∅𝑝2  

              ⋮  

 ∅𝑝  corresponds to ∅𝑝𝑝   

Then, 

𝜌1 =  ∅11 + ∅22𝜌1 + ⋯ + ∅𝑝𝑝𝜌1−𝑝  ,  

𝜌2 =  ∅11𝜌1 + ∅22 + ⋯ + ∅𝑝𝑝𝜌2−𝑝  ,  

𝜌3 =  ∅11𝜌2 + ∅22𝜌1 + ⋯ + ∅𝑝𝑝𝜌3−𝑝  ,  

                                   ⋮  

𝜌𝑝 =  ∅11𝜌𝑝−1 + ∅22𝜌𝑝−2 + ⋯ + ∅𝑝𝑝  ,  

                                    ⋮  

𝜌𝑝+𝑗 =  ∅11𝜌𝑝+𝑗−1 + ∅22𝜌𝑝+𝑗−2 + ⋯ + ∅𝑝𝑝𝜌𝑗 .  

It is understood that  𝜌𝑘   can be expressed in terms of ∅11 , ∅22 , … , ∅𝑝𝑝  when 𝑘 ≥ 𝑝. 

Therefore, for   𝑘 > 𝑝 

∅𝑘𝑘 = 0. 

The partial autocorrelation function of AR(𝑝) process cuts off after lag 𝑝. 
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2.4 Temporal Aggregation of AR(1) Process 

 

Suppose that the basic series follows a zero mean AR(1) model 

(1 − ∅1𝐵)𝑧𝑡 = 𝑎𝑡  , 

where {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

Temporal aggregation of AR(1) process will be explained by looking at 𝑚=3 case. 

The aggregated series with aggregation period is 

𝑍𝑇 =  1 + 𝐵 + 𝐵2 𝑧3𝑇  , 

where 𝑚=3 and 𝑑=0. 

Letting ∅𝑝 𝐵 =  (1 − 𝛿𝑗
𝑝
𝑗=1 𝐵) and multiplying   

 1−𝛿𝑗
𝑚 𝐵𝑚  

 1−𝛿𝑗𝐵 
  

(1−𝐵𝑚 )𝑑+1

(1−𝐵)𝑑+1  𝑝
𝑗=1  on 

both sides of nonaggregate series 𝑧𝑡  : 

 1 − 𝛿1
3𝐵3  1 − 𝐵3 

 1 − 𝛿1𝐵  1 − 𝐵 
 1 − ∅1𝐵 𝑧𝑡 =

 1 − 𝛿1
3𝐵3  1 − 𝐵3 

 1 − 𝛿1𝐵  1 − 𝐵 
𝑎𝑡  

 1 − 𝛿1
3𝐵3  1 + 𝐵 + 𝐵2 𝑧𝑡 = (1 + 𝛿1𝐵 + 𝛿1

2𝐵2) 1 + 𝐵 + 𝐵2 𝑎𝑡  

 

Substitute 𝑡 for 3𝑇 

 1 + 𝐵 + 𝐵2 − 𝛿1
3𝐵3 − 𝛿1

3𝐵4 − 𝛿1
3𝐵5 𝑧3𝑇 = [1 +  1 + 𝛿1 𝐵 +  1 + 𝛿1 + 𝛿1

2 𝐵2 +

 𝛿1 + 𝛿1
2 𝐵3 + 𝛿1

2𝐵4]𝑎3𝑇  

𝑧3𝑇 + 𝑧3𝑇−1 + 𝑧3𝑇−2 − 𝛿1
3𝑧3𝑇−3 − 𝛿1

3𝑧3𝑇−4 − 𝛿1
3𝑧3𝑇−5 = 𝑎3𝑇 +  1 + 𝛿1 𝑎3𝑇−1 +

 1 + 𝛿1 + 𝛿1
2 𝑎3𝑇−2 +  𝛿1 + 𝛿1

2 𝑎3𝑇−3 + 𝛿1
2𝑎3𝑇−4  

𝑍𝑇 − 𝛿1
3𝑍𝑇−1 = 𝑎3𝑇 +  1 + 𝛿1 𝑎3𝑇−1 +  1 + 𝛿1 + 𝛿1

2 𝑎3𝑇−2 +  𝛿1 + 𝛿1
2 𝑎3𝑇−3

+ 𝛿1
2𝑎3𝑇−4 
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Say  1 − 𝛿1
3𝐵 𝑍𝑇 = 𝑋3𝑇 . 

 

It is obvious that 𝐶𝑜𝑣(𝑋3𝑇 , 𝑋3 𝑇−𝐾 ) will be equal to zero if 𝐾 is greater than the 

integer part of  
4

3
 which is equal to 1 (Amemiya and Wu, 1972). 

 

Consequently, the aggregated series of an AR(1) model follows an ARMA(1,1) 

model when 𝑚=3. 

 1 − 𝛿1
3𝐵 𝑍𝑇 =  1 − 𝛽1𝐵 𝐴𝑇 , 

where {𝐴𝑇} is a zero mean white noise process with constant variance 𝜎𝐴
2. 

The parameters 𝛽1 and  𝜎𝐴
2 of the aggregate series 𝑍𝑇  are functions of ∅1 and  𝜎𝑎

2. 

Also, it is useful to state that the root of AR polynomial of the aggregate series, 𝑍𝑇  is 

the third power of the root of AR polynomial of the basic series 𝑧𝑡  (Telser, 1967). 

 

2.5 Temporal Aggregation of AR(2) Process 

 

Suppose that the basic series follows a zero mean AR(2) model 

(1 − ∅1𝐵 − ∅2𝐵
2)𝑧𝑡 = 𝑎𝑡  , 

where {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

Temporal aggregation of AR(2) process will be explained by looking at 𝑚=3 case. 

The aggregated series with aggregation period is 

𝑍𝑇 =  1 + 𝐵 + 𝐵2 𝑧3𝑇  , 

where 𝑚=3 and 𝑑=0. 
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Letting ∅𝑝 𝐵 =  (1 − 𝛿𝑗
𝑝
𝑗=1 𝐵) and multiplying   

 1−𝛿𝑗
𝑚 𝐵𝑚  

 1−𝛿𝑗𝐵 
  

(1−𝐵𝑚 )𝑑+1

(1−𝐵)𝑑+1
 𝑝

𝑗=1  on 

both sides of basic series 𝑧𝑡  : 

       
 1−𝛿1

3𝐵3  1−𝛿2
3𝐵3 

 1−𝛿1𝐵  1−𝛿2𝐵 

 1−𝐵3 

 1−𝐵 
 1 − ∅1𝐵 − ∅2𝐵

2 𝑧𝑡 =
 1−𝛿1

3𝐵3  1−𝛿2
3𝐵3 

 1−𝛿1𝐵  1−𝛿2𝐵 

 1−𝐵3 

 1−𝐵 
𝑎𝑡   

 1 − 𝛿1
3𝐵3  1 − 𝛿2

3𝐵3  1 + 𝐵 + 𝐵2 𝑧𝑡 = (1 + 𝛿1𝐵 + 𝛿1
2𝐵2)(1 + 𝛿2𝐵 +

𝛿2
2𝐵2) 1 + 𝐵 + 𝐵2 𝑎𝑡   

 

 

Substitute 𝑡 for 3𝑇 

 

 

Say  1 − 𝛿1
3𝐵  1 − 𝛿2

3𝐵 𝑍𝑇 = 𝑋3𝑇 . 
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It is obvious that 𝐶𝑜𝑣(𝑋3𝑇 , 𝑋3 𝑇−𝐾 ) will be equal to zero if 𝐾 is greater than 2 

(Amemiya and Wu, 1972). 

 

Consequently, the aggregated series of an AR(2) model follows an ARMA(2,2) 

model when 𝑚=3. 

 1 − 𝛿1
3𝐵  1 − 𝛿2

3𝐵 𝑍𝑇 =  1 − 𝛽1𝐵 − 𝛽2𝐵
2 𝐴𝑇  , 

where {𝐴𝑇} is a zero mean white noise process with constant variance 𝜎𝐴
2. 

The parameters 𝛽1, 𝛽2 and  𝜎𝐴
2 of the aggregate series 𝑍𝑇  are functions of ∅1 , ∅2 and 

 𝜎𝑎
2. Also, it is useful to state that the roots of AR polynomial of the aggregate series 

𝑍𝑇  are the third power of the root of AR polynomial of the basic series 𝑧𝑡  (Telser, 

1967). 

 

2.6 Temporal Aggregation of AR(𝒑) Process 

 

Suppose that the basic series follows a zero mean AR(𝑝) model 

(1 − ∅1𝐵 − ⋯− ∅𝑝𝐵
𝑝)𝑧𝑡 = 𝑎𝑡  , 

where {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2.  

The aggregated series with aggregation period is 

𝑍𝑇 =  1 + 𝐵 + 𝐵2 𝑧3𝑇  , 

where 𝑚=3 and 𝑑=0. 

Letting ∅𝑝 𝐵 =  (1 − 𝛿𝑗
𝑝
𝑗=1 𝐵) and multiplying   

 1−𝛿𝑗
𝑚 𝐵𝑚  

 1−𝛿𝑗𝐵 
  

(1−𝐵𝑚 )𝑑+1

(1−𝐵)𝑑+1  𝑝
𝑗=1  on 

both sides of basic series 𝑧𝑡  : 

  1 − 𝛿1
3𝐵3  1 − 𝛿2

3𝐵3 …  1 − 𝛿𝑝
3𝐵3 

 1 − 𝛿1𝐵  1 − 𝛿2𝐵 …  1 − 𝛿𝑝𝐵 

 1 − 𝐵3 

 1 − 𝐵 
 1 − ∅1𝐵 − ⋯− ∅𝑝𝐵

𝑝 𝑧𝑡

=
  1 − 𝛿1

3𝐵3  1 − 𝛿2
3𝐵3 …  1 − 𝛿𝑝

3𝐵3 

 1 − 𝛿1𝐵  1 − 𝛿2𝐵 …  1 − 𝛿𝑝𝐵 
 
 1 − 𝐵3 

 1 − 𝐵 
𝑎𝑡  
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Substitute 𝑡 for 3𝑇 

 

Say  1 − 𝛿1
3𝐵  1 − 𝛿2

3𝐵 …  1 − 𝛿𝑝
3𝐵 𝑍𝑇 = 𝑋3𝑇 

𝑋3𝑇 =  1 + 𝛿1𝐵 + 𝛿1
2𝐵2  1 + 𝛿2𝐵 + 𝛿2

2𝐵2 …  1 + 𝛿𝑝𝐵 + 𝛿𝑝
2𝐵2  1 + 𝐵 + 𝐵2 𝑎3𝑇 .  

After several calculations it can be easily seen that 𝐶𝑜𝑣 𝑋3𝑇 , 𝑋3 𝑇−𝐾  = 0 if 𝐾 is 

greater than the integer part of 
2 𝑝+1 

3
 (Amemiya and Wu, 1972). 

Consequently, the  aggregated series of an AR(𝑝) model follows an 

ARMA(𝑝, 
2(𝑝+1)

3
 ) model when 𝑚=3. 

 1 − 𝛿1
3𝐵  1 − 𝛿2

3𝐵 …  1 − 𝛿𝑝
3𝐵 𝑍𝑇

= (1 − 𝛽1𝐵 − 𝛽2𝐵
2 − ⋯− 𝛽

 
2(𝑝+1)

3
 
𝐵

 
2(𝑝+1)

3
 
)𝐴𝑇  , 

where {𝐴𝑇} is a zero mean white noise process with constant variance 𝜎𝐴
2. 

The parameters 𝛽1, 𝛽2 , …, 𝛽
 

2(𝑝+1)

3
  
and  𝜎𝐴

2 of the aggregate series 𝑍𝑇  are functions 

of ∅1 , ∅2  ,…,∅𝑝  and  𝜎𝑎
2. Also, it is useful to state that the roots of AR polynomial 

of the aggregate series 𝑍𝑇  are the third power of the roots of AR polynomial of the 

nonaggregate series 𝑧𝑡  (Telser, 1967). 

For general 𝑚𝑡ℎ   order aggregate is 

𝑍𝑇 =  1 + 𝐵 + 𝐵2 𝑧𝑚𝑇 , 
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where  𝑑=0. 

Letting ∅𝑝 𝐵 =  (1 − 𝛿𝑗
𝑝
𝑗=1 𝐵) and multiplying   

 1−𝛿𝑗
𝑚 𝐵𝑚  

 1−𝛿𝑗𝐵 
  

(1−𝐵𝑚 )𝑑+1

(1−𝐵)𝑑+1  𝑝
𝑗=1  on 

both sides of basic series 𝑧𝑡  : 

  1 − 𝛿1
𝑚𝐵𝑚  1 − 𝛿2

𝑚𝐵𝑚 …  1 − 𝛿𝑝
𝑚𝐵𝑚 

 1 − 𝛿1𝐵  1 − 𝛿2𝐵 … 1 − 𝛿𝑝𝐵 

 1 − 𝐵𝑚 

 1 − 𝐵 
 1 − ∅1𝐵 − ⋯− ∅𝑝𝐵

𝑝 𝑧𝑡

=
  1 − 𝛿1

𝑚𝐵𝑚  1 − 𝛿2
𝑚𝐵𝑚 …  1 − 𝛿𝑝

𝑚𝐵𝑚 

 1 − 𝛿1𝐵  1 − 𝛿2𝐵 …  1 − 𝛿𝑝𝐵 
 
 1 − 𝐵𝑚 

 1 − 𝐵 
𝑎𝑡  . 

When the above equation is written in the explicit form, it is found that the 𝑚𝑡ℎ   

aggregate of an AR(𝑝) model is an ARMA(𝑝,  
(𝑚−1)(𝑝+1)

𝑚
 ) (Amemiya and Wu, 

1972). 

 (1 − 𝛿𝑗
𝑚𝐵)𝑍𝑇

𝑝

𝑗=1

=  1 − 𝛽1𝐵 − 𝛽2𝐵
2 − ⋯− 𝛽

 
 𝑚−1  𝑝+1 

𝑚
 
𝐵

 
 𝑚−1  𝑝+1 

𝑚
 
 𝐴𝑇  , 

where {𝐴𝑇} is a zero mean white noise process with constant variance 𝜎𝐴
2. 

The parameters 𝛽1, 𝛽2 , …, 𝛽
 

(𝑚−1)(𝑝+1)

𝑚
 
 and  𝜎𝐴

2 of the aggregate series 𝑍𝑇  are 

functions of ∅1 , ∅2  ,…,∅𝑝and  𝜎𝑎
2. Also, it is useful to state that the roots of AR 

polynomial of the aggregate series 𝑍𝑇  are the 𝑚𝑡ℎ  power of the roots of AR 

polynomial of the nonaggregate series 𝑧𝑡  (Telser, 1967). 
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CHAPTER 3 

 

TEMPORAL AGGREGATION OF MOVING AVERAGE PROCESSES 

 

 

In this chapter, the effect of temporal aggregation on moving average processes will 

be discussed. For simplicity of the calculations, zero mean moving average processes 

will be considered. 

 

A moving average process of order 𝑞 can be shown as follows: 

 

                                                     𝑧𝑡 =  𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯− 𝜃𝑞𝑎𝑡−𝑞  ,  

or 

𝑧𝑡 =  𝜃 𝐵 𝑎𝑡 , 

where 

𝜃 𝐵 = (1 − 𝜃1𝐵 − ⋯− 𝜃𝑞𝐵
𝑞  )  and {𝑎𝑡} is a zero mean white noise process with 

constant variance 𝜎𝑎
2. 

 

As it can be seen, the MA(𝑞) model is in the random shock form and the summation 

is finite. So, it can be said that a finite moving average process is always stationary. 

If the roots of 𝜃 𝐵 = 0 lie outside the unit circle then the moving average process is 

invertible.
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3.1 The First Order Moving Average, MA(1) Process 

 

A zero mean MA(1) process can be shown as follows: 

 

𝑧𝑡 =  𝑎𝑡  − 𝜃1 𝑎𝑡−1 , 

or 

𝑧𝑡 =  1 − 𝜃1𝐵 𝑎𝑡  , 

where {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

 The mean of 𝑧𝑡  is equal to zero since {𝑎𝑡} is a zero mean white noise process. 

𝐸 𝑧𝑡 = 0 . 

 

 The variance of 𝑧𝑡  is equal to (1 + 𝜃1
2)𝜎𝑎

2. It can be shown as follows: 

𝑉𝑎𝑟 𝑧𝑡 = 𝑉𝑎𝑟 𝑎𝑡 − 𝜃1𝑎𝑡−1  

                                           = 𝑉𝑎𝑟 𝑎𝑡 + 𝜃1
2𝑉𝑎𝑟 𝑎𝑡−1 − 2𝜃1𝐶𝑜𝑣(𝑎𝑡  , 𝑎𝑡−1)  

                                            =  𝜎𝑎
2 +  𝜃1

2𝜎𝑎
2 =  1 +  𝜃1

2 𝜎𝑎
2 .  

 

3.1.1 The Autocovariance Function of MA(1) Process 

 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−𝑘 = 𝐶𝑜𝑣 𝑎𝑡 − 𝜃1𝑎𝑡−1 , 𝑎𝑡−𝑘 − 𝜃1𝑎𝑡−𝑘−1 . 

For 𝑘=0 ; 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡 = 𝛾0 = 𝑉𝑎𝑟 𝑧𝑡 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 , 𝑎𝑡 − 𝜃1𝑎𝑡−1) 

                                        = 𝐶𝑜𝑣 𝑎𝑡  , 𝑎𝑡 − 2𝜃1𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−1 + 𝜃1
2𝐶𝑜𝑣(𝑎𝑡−1, 𝑎𝑡−1)  

                           𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡 = 𝛾0 =  𝜎𝑎  
2 + 𝜃1

2𝜎𝑎
2 =  1 + 𝜃1

2 𝜎𝑎
2. 

For 𝑘=1 ; 

𝐶𝑜𝑣  𝑧𝑡  , 𝑧𝑡−1 = 𝛾1 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 , 𝑎𝑡−1 − 𝜃1𝑎𝑡−2) 
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        = 𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−1 − 𝜃1𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−2 − 𝜃1𝐶𝑜𝑣 𝑎𝑡−1 , 𝑎𝑡−1 + 𝜃1
2𝐶𝑜𝑣(𝑎𝑡−1, 𝑎𝑡−2)  

𝐶𝑜𝑣  𝑧𝑡   , 𝑧𝑡−1 = 𝛾1 = −𝜃1𝜎𝑎
2 . 

For 𝑘=2 ; 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−2 = 𝛾2 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 , 𝑎𝑡−2 − 𝜃1𝑎𝑡−3) 

= 𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−2 − 𝜃1𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−3 − 𝜃1𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−2 + 𝜃1
2𝐶𝑜𝑣(𝑎𝑡−1, 𝑎𝑡−3) 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−2 = 𝛾2 = 0. 

For 𝑘=3 ; 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−3 = 𝛾3 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 , 𝑎𝑡−3 − 𝜃1𝑎𝑡−4) 

= 𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−3 − 𝜃1𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−4 − 𝜃1𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−3 + 𝜃1
2𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−4  

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−3 = 𝛾3 = 0. 

 

So,  𝛾𝑘 =

 
  
 

  
 
 1 + 𝜃1

2 𝜎𝑎
2 , 𝑘 = 0

−𝜃1𝜎𝑎
2       , 𝑘 = 1

0          , 𝑘 > 1

    . 

 

3.1.2 The Autocorrelation Function of MA(1) Process 

 

𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−𝑘   =  𝜌𝑘 =  
𝐶𝑜𝑣(𝑧𝑡 , 𝑧𝑡−𝑘)

 𝑉𝑎𝑟(𝑧𝑡)  𝑉𝑎𝑟(𝑧𝑡−𝑘)
=

𝛾𝑘

𝛾0
 . 

 

For 𝑘=1; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−1 = 𝜌1 =
𝛾1

𝛾0
=

−𝜃1𝜎𝑎
2

(1 + 𝜃1
2)𝜎𝑎

2
=  

−𝜃1

(1 + 𝜃1
2)

 . 
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For 𝑘=2; 

𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−2 = 𝜌2 =
𝛾2

𝛾0
= 0. 

For 𝑘=3; 

𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−3 = 𝜌3 =
𝛾3

𝛾0
= 0. 

So,  𝜌𝑘 =

 
 

 
−𝜃1

(1+𝜃1
2)

, 𝑘 = 1

0     , 𝑘 ≥ 2

    . 

Above calculations show that the autocorrelation function of MA(1) process cuts off 

after lag 1. 

 

3.1.3 The Partial Autocorrelation Function of MA(1) Process 

 

By using Equation 2.1.3.2 on page 15 

 

∅11 = 𝜌1 =
−𝜃1

1 + 𝜃1
2 =

−𝜃1(1 − 𝜃1
2)

1 − 𝜃1
4   , 

∅22 =
−𝜌1

2

1 − 𝜌1
2 =

−𝜃1
2

1 + 𝜃1
2 + 𝜃1

4 =
−𝜃1

2(1 − 𝜃1
2)

1 − 𝜃1
6  , 

∅33 =
𝜌1

3

1 − 2𝜌1
2 =

−𝜃1
3

1 + 𝜃1
2 + 𝜃1

4 + 𝜃1
6 =

−𝜃1
3(1 − 𝜃1

2)

1 − 𝜃1
8 . 

For 𝑘 ≥ 1; 

∅𝑘𝑘 =
−𝜃1

𝑘(1 − 𝜃1
2)

1 − 𝜃1
2(𝑘+1)

 . 

As it can be seen, the partial autocorrelation function of MA(1) process does not cut 

off after lag 1. It shows exponential or oscillating decay depending on the parameter 
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𝜃1. If the sign of 𝜃1 is positive, then the partial autocovariance function shows 

exponential decay and if the sign of 𝜃1 is negative, then it shows oscillating decay. 

 

3.2 The Second Order Moving Average, MA(2) Process 

 

A zero mean MA(2) process can be shown as follows: 

𝑧𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 , 

or 

𝑧𝑡  =  1 − 𝜃1𝐵 − 𝜃2𝐵
2 𝑎𝑡  , 

where {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

 The mean of 𝑧𝑡  is equal to zero since {𝑎𝑡} is a zero mean white noise process. 

𝐸 𝑧𝑡 = 0 . 

3.2.1 The Autocovariance Function of MA(2) Process 

 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−𝑘 = 𝐶𝑜𝑣 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 ,  𝑎𝑡−𝑘 − 𝜃1𝑎𝑡−𝑘−1 − 𝜃2𝑎𝑡−𝑘−2  . 

 

For 𝑘=0 ; 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡   = 𝛾0 = 𝑉𝑎𝑟 𝑧𝑡 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 ,  𝑎𝑡 − 𝜃1𝑎𝑡−1 −

𝜃2𝑎𝑡−2 )  

= 𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡 − 2𝜃1𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−1 − 2𝜃2𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−2 + 𝜃1
2𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−1 +

2𝜃1𝜃2𝐶𝑜𝑣(𝑎𝑡−1, 𝑎𝑡−2) + 𝜃2
2𝐶𝑜𝑣 𝑎𝑡−2, 𝑎𝑡−2   

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡   = 𝛾0 = 𝜎𝑎
2 + 𝜃1

2𝜎𝑎
2 +  𝜃2

2𝜎𝑎
2 =  1 + 𝜃1

2 + 𝜃2
2 𝜎𝑎

2. 

For 𝑘=1 ; 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−1 = 𝛾1 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 ,  𝑎𝑡−1 − 𝜃1𝑎𝑡−2 − 𝜃2𝑎𝑡−3 ) 
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= 𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−1  − 𝜃1𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−2 − 𝜃2𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−3 − 𝜃1𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−1 +

(𝜃1
2 − 𝜃2)𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−2 + 𝜃1𝜃2𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−3 + 𝜃1𝜃2𝐶𝑜𝑣 𝑎𝑡−2, 𝑎𝑡−2 +

𝜃2
2𝐶𝑜𝑣 𝑎𝑡−2, 𝑎𝑡−3   

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−1 = 𝛾1 = −𝜃1𝜎𝑎
2 + 𝜃1𝜃2𝜎𝑎

2 = −𝜃1 1 − 𝜃2 𝜎𝑎
2. 

For 𝑘=2 ; 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−2 = 𝛾2 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 ,  𝑎𝑡−2 − 𝜃1𝑎𝑡−3 − 𝜃2𝑎𝑡−4 ) 

= 𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−2  − 𝜃1𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−3 − 𝜃2𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−4 − 𝜃1𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−2 +

𝜃1
2𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−3 + 𝜃1𝜃2𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−4 −

𝜃2𝐶𝑜𝑣(𝑎𝑡−2, 𝑎𝑡−2) + 𝜃1𝜃2𝐶𝑜𝑣 𝑎𝑡−2, 𝑎𝑡−3 + 𝜃2
2𝐶𝑜𝑣 𝑎𝑡−2, 𝑎𝑡−4   

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−2 = 𝛾2 = −𝜃2𝜎𝑎
2. 

For 𝑘=3; 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−3 = 𝛾3 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 ,  𝑎𝑡−3 − 𝜃1𝑎𝑡−4 − 𝜃2𝑎𝑡−5 ) 

= 𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−3  − 𝜃1𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−4 − 𝜃2𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−5 − 𝜃1𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−3 +

𝜃1
2𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−4 + 𝜃1𝜃2𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−5 −

𝜃2𝐶𝑜𝑣(𝑎𝑡−2, 𝑎𝑡−3) + 𝜃1𝜃2𝐶𝑜𝑣 𝑎𝑡−2, 𝑎𝑡−4 + 𝜃2
2𝐶𝑜𝑣 𝑎𝑡−2, 𝑎𝑡−5   

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−3 = 𝛾3 = 0. 

For 𝑘=4; 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−4 = 𝛾4 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 ,  𝑎𝑡−4 − 𝜃1𝑎𝑡−5 − 𝜃2𝑎𝑡−6 ) 

= 𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−4  − 𝜃1𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−5 − 𝜃2𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡−6 − 𝜃1𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−4 +

𝜃1
2𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−5 + 𝜃1𝜃2𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−6 −

𝜃2𝐶𝑜𝑣(𝑎𝑡−2, 𝑎𝑡−4) + 𝜃1𝜃2𝐶𝑜𝑣 𝑎𝑡−2, 𝑎𝑡−5 + 𝜃2
2𝐶𝑜𝑣 𝑎𝑡−2, 𝑎𝑡−6   

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−4 = 𝛾4 = 0. 
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So,  𝛾𝑘 =

 
 
 
 
 

 
 
 
 
 1 + 𝜃1

2 + 𝜃2
2 𝜎𝑎

2, 𝑘 = 0

−𝜃1 1 − 𝜃2 𝜎𝑎
2, 𝑘 = 1

−𝜃2𝜎𝑎
2       , 𝑘 = 2

0           , 𝑘 > 2

    .    

  

3.2.2 The Autocorrelation Function of MA(2) Process 

𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−𝑘   =  𝜌𝑘 =  
𝐶𝑜𝑣(𝑧𝑡 , 𝑧𝑡−𝑘)

 𝑉𝑎𝑟(𝑧𝑡)  𝑉𝑎𝑟(𝑧𝑡−𝑘)
=

𝛾𝑘

𝛾0
 . 

For 𝑘=1; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−1 = 𝜌1 =
𝛾1

𝛾0
=

−𝜃1(1 − 𝜃2)𝜎𝑎
2

(1 + 𝜃1
2 + 𝜃2

2)𝜎𝑎
2

=  
−𝜃1(1 − 𝜃2)

1 + 𝜃1
2 + 𝜃2

2  .  

 

For 𝑘=2; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−2 = 𝜌2 =
𝛾2

𝛾0
=

−𝜃2𝜎𝑎
2

(1 + 𝜃1
2 + 𝜃2

2)𝜎𝑎
2

=  
−𝜃2

1 + 𝜃1
2 + 𝜃2

2 .  

For 𝑘=3; 

𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−3 = 𝜌3 =
𝛾3

𝛾0
= 0 . 

For 𝑘=4; 

𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−4 = 𝜌4 =
𝛾4

𝛾0
= 0 . 
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So,  𝜌𝑘 =

 
  
 

  
 

−𝜃1(1−𝜃2)

1+𝜃1
2+𝜃2

2 , 𝑘 = 1

−𝜃2

1+𝜃1
2+𝜃2

2   , 𝑘 = 2

0       , 𝑘 > 2

    . 

                       

As it can be seen, the autocorrelation function of MA(2) process cuts off after lag 2. 

 

3.2.3 The Partial Autocorrelation Function of MA(2) Process 

 

By the help of Equation 2.1.3.2 on page 15 the partial autocorrelation function of 

MA(2) process is found as 

∅11 = 𝜌1 , 

∅22 =
𝜌2 − 𝜌1

2

1 − 𝜌1
2  , 

∅33 =
𝜌1

3 − 𝜌1𝜌2(2 − 𝜌2)

1 − 𝜌2
2 − 2𝜌1

2(1 − 𝜌2)
 , 

⋮ 

As seen, the partial autocorrelation function of MA(2) process does not cut off after 

lag 2. It shows exponential or oscillating decay depending on the sign and magnitude 

of 𝜃1 and 𝜃2. 

 

3.3 The General 𝒒th
 Order Moving Average,  MA(𝒒) Process 

 

A zero mean MA(𝑞) model can be shown as follows: 

 

𝑧𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯− 𝜃𝑞𝑎𝑡−𝑞  , 
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or 

𝑧𝑡 =  1 − 𝜃1𝐵 − 𝜃2𝐵
2 − ⋯− 𝜃𝑞𝐵

𝑞 𝑎𝑡  , 

where {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

 The mean of 𝑧𝑡  is equal to zero since {𝑎𝑡} is a zero mean white noise process. 

𝐸 𝑧𝑡 = 0. 

 

3.3.1 The Autocovariance Function of MA(q) Process 

 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−𝑘 = 𝐶𝑜𝑣 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯− 𝜃𝑞𝑎𝑡−𝑞 ,  𝑎𝑡−𝑘 − 𝜃1𝑎𝑡−𝑘−1

− 𝜃2𝑎𝑡−𝑘−2 − ⋯− 𝜃𝑞𝑎𝑡−𝑘−𝑞 . 

For 𝑘=0; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡 = 𝑉𝑎𝑟 𝑧𝑡 = 𝛾0 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯− 𝜃𝑞𝑎𝑡−𝑞 ,  𝑎𝑡 −

𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯− 𝜃𝑞𝑎𝑡−𝑞)   

= 𝐶𝑜𝑣 𝑎𝑡 , 𝑎𝑡 + 𝜃1
2𝐶𝑜𝑣 𝑎𝑡−1, 𝑎𝑡−1 + 𝜃2

2𝐶𝑜𝑣 𝑎𝑡−2, 𝑎𝑡−2 + ⋯

+ 𝜃𝑞
2𝐶𝑜𝑣 𝑎𝑡−𝑞 , 𝑎𝑡−𝑞  

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡 = 𝑉𝑎𝑟 𝑧𝑡 = 𝛾0 = 𝜎𝑎
2 + 𝜃1

2𝜎𝑎
2 + 𝜃2

2𝜎𝑎
2 + ⋯ + 𝜃𝑞

2𝜎𝑎
2

=  1 + 𝜃1
2 + 𝜃2

2 + ⋯ + 𝜃𝑞
2 𝜎𝑎

2. 

For 𝑘=1; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−1 = 𝛾1 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯− 𝜃𝑞𝑎𝑡−𝑞 ,  𝑎𝑡−1 − 𝜃1𝑎𝑡−2 −

𝜃2𝑎𝑡−3 − ⋯− 𝜃𝑞𝑎𝑡−1−𝑞)  

= −𝜃1𝐶𝑜𝑣 𝑎𝑡−1 , 𝑎𝑡−1 + 𝜃1𝜃2𝐶𝑜𝑣 𝑎𝑡−2, 𝑎𝑡−2 + 𝜃2𝜃3𝐶𝑜𝑣 𝑎𝑡−3, 𝑎𝑡−3 + ⋯ +

       𝜃𝑞−1𝜃𝑞𝐶𝑜𝑣(𝑎𝑡−1−𝑞 , 𝑎𝑡−1−𝑞)  

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−1 = 𝛾1 = −𝜃1𝜎𝑎
2 + 𝜃1𝜃2𝜎𝑎

2 + 𝜃2𝜃3𝜎𝑎
2 + ⋯ + 𝜃𝑞−1𝜃𝑞𝜎𝑎

2 

=  −𝜃1 + 𝜃1𝜃2 + 𝜃2𝜃3 + ⋯ + 𝜃𝑞−1𝜃𝑞  𝜎𝑎
2.  
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For 𝑘=2; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−2 = 𝛾2 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯− 𝜃𝑞𝑎𝑡−𝑞 ,  𝑎𝑡−2 − 𝜃1𝑎𝑡−3 −

𝜃2𝑎𝑡−4 − ⋯− 𝜃𝑞𝑎𝑡−2−𝑞)  

= −𝜃2𝐶𝑜𝑣 𝑎𝑡−2 , 𝑎𝑡−2 + 𝜃1𝜃3𝐶𝑜𝑣 𝑎𝑡−3, 𝑎𝑡−3 + 𝜃2𝜃4𝐶𝑜𝑣 𝑎𝑡−4, 𝑎𝑡−4 + ⋯ +

      𝜃𝑞−2𝜃𝑞𝐶𝑜𝑣(𝑎𝑡−2−𝑞 , 𝑎𝑡−2−𝑞)  

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−2 = 𝛾2 = −𝜃2𝜎𝑎
2 + 𝜃1𝜃3𝜎𝑎

2 + 𝜃2𝜃4𝜎𝑎
2 + ⋯ + 𝜃𝑞−2𝜃𝑞𝜎𝑎

2 

=  −𝜃2 + 𝜃1𝜃3 + 𝜃2𝜃4 + ⋯ + 𝜃𝑞−2𝜃𝑞  𝜎𝑎
2. 

For 𝑘=3; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−3 = 𝛾3 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯− 𝜃𝑞𝑎𝑡−𝑞 ,  𝑎𝑡−3 − 𝜃1𝑎𝑡−4 −

𝜃2𝑎𝑡−5 − ⋯− 𝜃𝑞𝑎𝑡−3−𝑞)  

= −𝜃3𝐶𝑜𝑣 𝑎𝑡−3 , 𝑎𝑡−3 + 𝜃1𝜃4𝐶𝑜𝑣 𝑎𝑡−4, 𝑎𝑡−4 + 𝜃2𝜃5𝐶𝑜𝑣 𝑎𝑡−5, 𝑎𝑡−5 + ⋯ +

      𝜃𝑞−3𝜃𝑞𝐶𝑜𝑣(𝑎𝑡−3−𝑞 , 𝑎𝑡−3−𝑞)  

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−3 = 𝛾3 = −𝜃3𝜎𝑎
2 + 𝜃1𝜃4𝜎𝑎

2 + 𝜃2𝜃5𝜎𝑎
2 + ⋯ + 𝜃𝑞−3𝜃𝑞𝜎𝑎

2 

=  −𝜃3 + 𝜃1𝜃4 + 𝜃2𝜃5 + ⋯ + 𝜃𝑞−3𝜃𝑞  𝜎𝑎
2. 

For 𝑘=𝑞; 

𝐶𝑜𝑣 𝑧, 𝑧𝑡−𝑞 = 𝛾𝑞 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯− 𝜃𝑞𝑎𝑡−𝑞 ,  𝑎𝑡−𝑞 −

𝜃1𝑎𝑡−𝑞−1 − 𝜃2𝑎𝑡−𝑞−2 − ⋯− 𝜃𝑞𝑎𝑡−2𝑞)  

𝐶𝑜𝑣 𝑧, 𝑧𝑡−𝑞 = 𝛾𝑞 = −𝜃𝑞𝜎𝑎
2. 

 

For 𝑘=𝑞+1; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−𝑞−1 = 𝛾𝑞+1 = 𝐶𝑜𝑣(𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯− 𝜃𝑞𝑎𝑡−𝑞 ,  𝑎𝑡−𝑞−1 −

𝜃1𝑎𝑡−𝑞−2 −𝜃2𝑎𝑡−𝑞−3 − ⋯− 𝜃𝑞𝑎𝑡−2𝑞−1) 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−𝑞−1 = 𝛾𝑞+1 = 0.  



 

41 
 

 

So,  𝛾𝑘 =  

𝜎𝑎
2  𝜃𝑗

𝑞−𝑘
𝑗=0 𝜃𝑗 +𝑘 , 𝑘 = 0,1,2, … , 𝑞

0              , 𝑘 > 𝑞

  .   

 

where  𝜃0 is defined to be -1. 

 

3.3.2 The Autocorrelation Function of MA(𝒒) Process 

 

𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−𝑘   =  𝜌𝑘 =  
𝐶𝑜𝑣(𝑧𝑡 , 𝑧𝑡−𝑘)

 𝑉𝑎𝑟(𝑧𝑡)  𝑉𝑎𝑟(𝑧𝑡−𝑘)
=

𝛾𝑘

𝛾0
. 

 

So,  𝜌𝑘 =

 
 
 

 
  𝜃𝑗

𝑞−𝑘
𝑗=0 𝜃𝑗+𝑘  

1+𝜃1
2+𝜃2

2+⋯+𝜃𝑞
2 , 𝑘 = 1,2, … , 𝑞

0              , 𝑘 > 𝑞

  .    

  

where  𝜃0 is defined to be -1. 

As it can be seen the autocorrelation function of MA(𝑞) process cuts off after lag 𝑞. 

 

3.3.3 The Partial Autocorrelation Function Of MA(𝒒) Process 

 

It can be easily understood that the partial autocorrelation function of MA(𝑞) process 

does not cut off after lag 𝑞 by looking at the partial autocorrelation functions of 

MA(1) and MA(2) processes. The partial autocorrelation function shows exponential 

or oscillating decay depending on the sign and magnitude of parameters 

𝜃1 , 𝜃2 , …  , 𝜃𝑞 . 
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3.4 Temporal Aggregation of MA(1) Process 

 

Suppose that the basic series follows a zero mean MA(1) model 

𝑧𝑡 =  1 − 𝜃1𝐵 𝑎𝑡  , 

where {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

As stated  

   𝛾𝑘 =

 
  
 

  
 
 1 + 𝜃1

2 𝜎𝑎
2 , 𝑘 = 0

−𝜃1𝜎𝑎
2      , 𝑘 = 1

0          , 𝑘 > 1

     . 

 

Temporal aggregation of MA(1) process will be explained by looking at 𝑚=3 case.  

The aggregated series with aggregation period is 

𝑍𝑇 = (1 + 𝐵 + 𝐵2)𝑧3𝑇 

𝑍𝑇 =  1 + 𝐵 + 𝐵2 (𝑎3𝑇 − 𝜃1𝑎3𝑇−1) 

𝑍𝑇 = 𝑎3𝑇 − 𝜃1𝑎3𝑇−1 + 𝑎3𝑇−1 − 𝜃1𝑎3𝑇−2 + 𝑎3𝑇−2 − 𝜃1𝑎3𝑇−3 

𝑍𝑇 = 𝑎3𝑇 +  1 − 𝜃1 𝑎3𝑇−1 +  1 − 𝜃1 𝑎3𝑇−2 − 𝜃1𝑎3𝑇−3 , 

and the autocovariance function for  𝑍𝑇  is 

 

It can be easily seen that the autocovariance function is equal to zero when 𝑘>1. 

Since the autocovariance function of 𝑍𝑇  cuts off after lag 1, the aggregated series of 

an MA(1) model follows an MA(1) model when 𝑚=3. 
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Also, the third aggregate of an MA(1) model can be found from Equation 1.3.2 on 

page 7 

𝛾𝑈 𝑘 = (1 + 𝐵 + ⋯ + 𝐵𝑚−1)2(𝑑+1)𝛾𝑤  𝑚𝑘 +  𝑑 + 1  𝑚 − 1   , 

where 𝑚=3 and 𝑑=0 

𝛾𝑍 𝑘 =  1 + 𝐵 + 𝐵2 2𝛾𝑧(3𝑘 + 2) 

𝛾𝑍 𝑘 = (1 + 2𝐵 + 𝐵2 + 2𝐵2 + 2𝐵3 + 𝐵4)𝛾𝑧(3𝑘 + 2) 

𝛾𝑍 𝑘 = (1 + 2𝐵 + 3𝐵2 + 2𝐵3 + 𝐵4)𝛾𝑧(3𝑘 + 2) 

 

𝛾𝑍(0)
𝛾𝑍(1)
𝛾𝑍(2)
𝛾𝑍(3)

 =  

1 2 3 2 1 0 0 0 0 0 0 0 0 0
0 0 0 1 2 3 2 1 0 0 0 0 0 0
0 0 0 0 0 0 1 2 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0 1 2 3 2 1

 

 
 
 
 
 
 
𝛾𝑧(−2)
𝛾𝑧(−1)
𝛾𝑧(0)

𝛾𝑧(1)
⋮

𝛾𝑧(11) 
 
 
 
 
 

 

 

𝛾𝑍(0)
𝛾𝑍(1)
𝛾𝑍(2)
𝛾𝑍(3)

 =  

3 4 2 0 0 0 0 0 0 0 0 0
0 1 2 3 2 1 0 0 0 0 0 0
0 0 0 0 1 2 3 2 1 0 0 0
0 0 0 0 0 0 0 1 2 3 2 1

  

𝛾𝑧(0)
𝛾𝑧(1)

⋮
𝛾𝑧(11)

  

 

𝛾𝑍(0)
𝛾𝑍(1)
𝛾𝑍(2)
𝛾𝑍(3)

 =  

3𝛾𝑧 0 + 4𝛾𝑧 1 

𝛾𝑧(1)
0
0

  . 

As seen from the above equation the third aggregate of an MA(1) model is an MA(1) 

model. 

𝑍𝑇 =  1 − Θ1𝐵 𝐴𝑇  , 

where {𝐴𝑇} is a zero mean white noise process with constant variance 𝜎𝐴
2. 

𝛾𝑍 0 =  1 + Θ1
2 𝜎𝐴

2 = 3 1 + 𝜃1
2 𝜎𝑎

2 + 4(−𝜃1)𝜎𝑎
2 

𝛾𝑍 1 = −Θ1𝜎𝐴
2 = −𝜃1𝜎𝑎

2. 
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The parameters Θ1 and 𝜎𝐴
2 of the aggregate model 𝑍𝑇  can be found as a function of 

𝜃1 and 𝜎𝑎
2 by solving  

1 + Θ1
2

−Θ1
=

3 1 + 𝜃1
2 + 4(−𝜃1)

−𝜃1
 , 

and 

𝜎𝐴
2 =

−𝜃1𝜎𝑎
2

−Θ1
 . 

 

3.5 Temporal Aggregation of MA(2) Process 

 

Suppose that the basic series follows a zero mean MA(2) model 

𝑧𝑡  =  1 − 𝜃1𝐵 − 𝜃2𝐵
2 𝑎𝑡  , 

where {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

As stated 

 𝛾𝑘 =

 
 
 
 
 

 
 
 
 
 1 + 𝜃1

2 + 𝜃2
2 𝜎𝑎

2, 𝑘 = 0

−𝜃1 1 − 𝜃2 𝜎𝑎
2, 𝑘 = 1

−𝜃2𝜎𝑎
2        , 𝑘 = 2

0           , 𝑘 > 2

    . 

Temporal aggregation of MA(2) process will be explained by looking at m=3 case. 

The aggregated series with aggregation period is 

𝑍𝑇 = (1 + 𝐵 + 𝐵2)𝑧3𝑇 

𝑍𝑇 =  1 + 𝐵 + 𝐵2 (𝑎3𝑇 − 𝜃1𝑎3𝑇−1 − 𝜃2𝑎3𝑇−2) 

𝑍𝑇 = 𝑎3𝑇 − 𝜃1𝑎3𝑇−1 − 𝜃2𝑎3𝑇−2 + 𝑎3𝑇−1 − 𝜃1𝑎3𝑇−2 − 𝜃2𝑎3𝑇−3 + 𝑎3𝑇−2 −

𝜃1𝑎3𝑇−3 −  𝜃2𝑎3𝑇−4  
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𝑍𝑇 = 𝑎3𝑇 +  1 − 𝜃1 𝑎3𝑇−1 +  1 − 𝜃1 − 𝜃2 𝑎3𝑇−2 −  𝜃1 + 𝜃2 𝑎3𝑇−3 − 𝜃2𝑎3𝑇−4 , 

and the autocovariance function for  𝑍𝑇   is 

 

It can be easily seen that the autocovariance function is equal to zero when 𝑘> 
4

3
 . 

Since 𝑇 can take integer values, the autocovariance function is equal to zero when 

𝑘>1. So, the aggregated series of an MA(2) model follows an MA(1) model when 

𝑚=3. 

Also,  the third aggregate of an MA(2) model can be found from the Equation 1.3.2 

on page 7 

𝛾𝑈 𝑘 = (1 + 𝐵 + ⋯ + 𝐵𝑚−1)2(𝑑+1)𝛾𝑤  𝑚𝑘 +  𝑑 + 1  𝑚 − 1   , 

where 𝑑=0 and 𝑚=3  

𝛾𝑍 𝑘 =  1 + 𝐵 + 𝐵2 2𝛾𝑧(3𝑘 + 2) 

𝛾𝑍 𝑘 = (1 + 2𝐵 + 𝐵2 + 2𝐵2 + 2𝐵3 + 𝐵4)𝛾𝑧(3𝑘 + 2) 

𝛾𝑍 𝑘 = (1 + 2𝐵 + 3𝐵2 + 2𝐵3 + 𝐵4)𝛾𝑧(3𝑘 + 2) 

 

𝛾𝑍(0)
𝛾𝑍(1)
𝛾𝑍(2)
𝛾𝑍(3)

 =  

1 2 3 2 1 0 0 0 0 0 0 0 0 0
0 0 0 1 2 3 2 1 0 0 0 0 0 0
0 0 0 0 0 0 1 2 3 2 1 0 0 0
0 0 0 0 0 0 0 0 0 1 2 3 2 1

 

 
 
 
 
 
 
𝛾𝑧(−2)
𝛾𝑧(−1)
𝛾𝑧(0)
𝛾𝑧(1)

⋮
𝛾𝑧(11) 

 
 
 
 
 

 

 

𝛾𝑍(0)
𝛾𝑍(1)

𝛾𝑍(2)
𝛾𝑍(3)

 =  

3 4 2 0 0 0 0 0 0 0 0 0
0 1 2 3 2 1 0 0 0 0 0 0
0 0 0 0 1 2 3 2 1 0 0 0
0 0 0 0 0 0 0 1 2 3 2 1

  

𝛾𝑧(0)
𝛾𝑧(1)

⋮
𝛾𝑧(11)
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𝛾𝑍(0)
𝛾𝑍(1)
𝛾𝑍(2)
𝛾𝑍(3)

 =  

3𝛾𝑧 0 + 4𝛾𝑧 1 + 2𝛾𝑧(2)

𝛾𝑧 1 + 2𝛾𝑧(2)
0
0

  . 

As seen from the above equation the aggregated series of an MA(2) model follows 

an MA(1) model when 𝑚=3. 

𝑍𝑇 = (1 − Θ1𝐵)𝐴𝑇 

where {𝐴𝑇} is a zero mean white noise process with constant variance 𝜎𝐴
2. 

𝛾𝑍 0 =  1 + Θ1
2 𝜎𝐴

2 = 3 1 + 𝜃1
2 + 𝜃2

2 𝜎𝑎
2 + 4 −𝜃1 + 𝜃1𝜃2 𝜎𝑎

2 + 2(−𝜃2)𝜎𝑎
2 

𝛾𝑍 1 = −Θ1𝜎𝐴
2 = (−𝜃1+𝜃1𝜃2)𝜎𝑎

2 + 2 −𝜃2 𝜎𝑎
2. 

The parameters Θ1 and 𝜎𝐴
2 of the aggregate model 𝑍𝑇  can be found as a function of 

𝜃1 and 𝜎𝑎
2 by solving  

1 + Θ1
2

−Θ1
=

3 1 + 𝜃1
2 + 𝜃2

2 + 4 −𝜃1 + 𝜃1𝜃2 + 2(−𝜃2)

(−𝜃1 + 𝜃1𝜃2) + 2(−𝜃2)
 , 

and 

𝜎𝐴
2 =

(−𝜃1+𝜃1𝜃2)𝜎𝑎
2 + 2(−𝜃2)𝜎𝑎

2

−Θ1
 . 

 

3.6 Temporal Aggregation of MA(𝒒) Process 

 

Suppose that the basic series follows a zero mean MA(𝑞) model 

𝑧𝑡 =  1 − 𝜃1𝐵 − 𝜃2𝐵
2 − ⋯− 𝜃𝑞𝐵

𝑞 𝑎𝑡  , 

where {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

As stated  
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𝛾𝑘 =  

𝜎𝑎
2  𝜃𝑗

𝑞−𝑘
𝑗=0 𝜃𝑗 +𝑘 , 𝑘 = 0,1,2, … , 𝑞

0              , 𝑘 > 𝑞

  .    

The aggregated series with aggregation period is 

𝑍𝑇 = (1 + 𝐵 + 𝐵2)𝑧3𝑇 

 

𝑍𝑇 =  1 + 𝐵 + 𝐵2  𝑎3𝑇 − 𝜃1𝑎3𝑇−1 − 𝜃2𝑎3𝑇−2 − ⋯− 𝜃𝑞𝑎3𝑇−𝑞  

𝑍𝑇 = 𝑎3𝑇 − 𝜃1𝑎3𝑇−1 − 𝜃2𝑎3𝑇−2 − ⋯− 𝜃𝑞𝑎3𝑇−𝑞 + 𝑎3𝑇−1 − 𝜃1𝑎3𝑇−2 − 𝜃2𝑎3𝑇−3

− ⋯− 𝜃𝑞𝑎3𝑇−𝑞−1 + 𝑎3𝑇−2 − 𝜃1𝑎3𝑇−3 − 𝜃2𝑎3𝑇−4 − ⋯− 𝜃𝑞𝑎3𝑇−𝑞−2 

𝑍𝑇 = 𝑎3𝑇 +  1 − 𝜃1 𝑎3𝑇−1 +  1 − 𝜃1 − 𝜃2 𝑎3𝑇−2 + ⋯− 𝜃𝑞𝑎3𝑇−𝑞−2 , 

and the autocovariance function for  𝑍𝑇   is 

 

 

It is seen that the autocovariance function is equal to zero when 𝑘 is greater than the 

integer part of  
𝑞+2

3
 . So, the  aggregated series of an MA(1) model follows an 

MA(𝑁0) model where 𝑁0 is less than or equal to  
𝑞+2

3
 and 𝑚=3. 

Also, from the Equation 1.3.2 on page 7 

𝛾𝑈 𝑘 = (1 + 𝐵 + ⋯ + 𝐵𝑚−1)2(𝑑+1)𝛾𝑤  𝑚𝑘 +  𝑑 + 1  𝑚 − 1   , 

it can be seen that 𝛾𝑈 𝑘  is the linear transformation of 𝛾𝑤 𝑗  where 𝑗 is between 

𝑚𝑘 −  𝑑 + 1 (𝑚 − 1) and 𝑚𝑘 +  𝑑 + 1 (𝑚 − 1). 

So 𝛾𝑈(𝑙) is a weighted sum of 𝛾𝑤(𝑘) where 

𝑚𝑙 −  𝑑 + 1  𝑚 − 1 ≤ 𝑘 ≤ 𝑚𝑙 +  𝑑 + 1  𝑚 − 1  . 

Since 𝛾𝑤 𝑘 = 0 for  𝑘 > 𝑞 , 𝛾𝑈 𝑙 = 0 for 𝑙 > 𝑞∗ = 𝑑 + 1 +
(𝑞−𝑑−1)

𝑚
. 



 

48 
 

The nonzero autocovariances of  𝑈𝑇  are  𝛾𝑈 0  , 𝛾𝑈 1  ,…, 𝛾𝑈 𝑞∗  which means the 

autocorrelation function of 𝑈𝑇  cuts off after lag 𝑞∗. Then it can be said that 𝑈𝑇  

follows an IMA(𝑑,𝑁0) process (Wei, 2006, pp. 511) 

𝑈𝑇 = (1 − 𝐵)𝑑𝑍𝑇 =  1 − Θ1𝐵 − Θ2𝐵
2 …− Θ𝑁0

𝐵𝑁0 𝐴𝑇 , 

where {𝐴𝑇} is a zero mean white noise process with constant variance 𝜎𝐴
2 and  

𝑁0 ≤ 𝑞∗ =  𝑑 + 1 +
(𝑞−𝑑−1)

𝑚
 . 

In this thesis work, stationary time series models are considered that is 𝑑 can be 

thought as zero. Then the 𝑚th order aggregate model of MA(𝑞) process will follow 

an MA(𝑁0) process 

𝑍𝑇 =  1 − Θ1𝐵 − Θ2𝐵
2 …− Θ𝑁0

𝐵𝑁0 𝐴𝑇  , 

where {𝐴𝑇} is a zero mean white noise process with constant variance 𝜎𝐴
2 and  

𝑁0 ≤ 𝑞∗ =  1 +
(𝑞 − 1)

𝑚
 . 

The parameters  Θ𝑖’s and 𝜎𝐴
2 of the 𝑚th order aggregate model 𝑍𝑇  are the functions 

of θ𝑖’s and 𝜎𝑎
2. 
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CHAPTER 4 

 

TEMPORAL AGGREGATION OF AUTOREGRESSIVE MOVING 

AVERAGE PROCESSES 

 

 

In this chapter, the effect of temporal aggregation on ARMA processes will be 

explained. For simplicity of the calculations, zero mean autoregressive moving 

average processes will be considered. 

 

A zero mean autoregressive moving average process of order 𝑝 for autoregressive 

part and 𝑞 for moving average part can be shown as follows: 

 

 𝑧𝑡 = ∅1𝑧𝑡−1 + ⋯ + ∅𝑝𝑧𝑡−𝑝 +  𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯− 𝜃𝑞𝑎𝑡−𝑞  , 

or 

 ∅(𝐵) 𝑧𝑡 =  𝜃 𝐵 𝑎𝑡 , 

where ∅ 𝐵 = (1 − ∅1𝐵 − ⋯− ∅𝑝𝐵
𝑝 ) , 𝜃 𝐵 = (1 − 𝜃1𝐵 − ⋯− 𝜃𝑞𝐵

𝑞  )  and {𝑎𝑡} 

is a zero mean white noise process with constant variance 𝜎𝑎
2. 

 

As seen the ARMA(𝑝,𝑞) model is neither in random shock form nor in inverted 

form. For stationarity the roots of t ∅𝑝 𝐵 = 0 must lie outside the unit circle and for 

invertibility the roots of  𝜃𝑝 𝐵 = 0 must lie outside the unit circle. 
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4.1 The ARMA(1,1) Process 

 

A zero mean ARMA(1,1) process can be shown as follows: 

𝑧𝑡 = ∅1𝑧𝑡−1 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 , 

or 

 1 − ∅1𝐵 𝑧𝑡 =  1 − 𝜃1𝐵 𝑎𝑡  , 

where {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

 Assuming the stationarity, the mean of 𝑧𝑡   is equal to zero. The informal 

proof can be shown as follows:  

𝐸 𝑧𝑡 = ∅1𝐸 𝑧𝑡−1 + 𝐸 𝑎𝑡 − 𝜃1𝐸(𝑎𝑡−1) 

𝜇 = ∅1𝜇 +  0 

 1 − ∅1 𝜇 = 0. 

If ∅1 = 1, then 𝑧𝑡  is not stationary. Since the stationarity condition is assumed,  

𝜇 = 0. 

 Assuming the stationarity,  the variance of 𝑧𝑡  is equal to 
1+𝜃1

2−2∅1𝜃1

1−∅1
2 𝜎𝑎

2 . It can 

be shown as follows: 

𝑉𝑎𝑟 𝑧𝑡 = 𝑉𝑎𝑟(∅1𝑧𝑡−1 + 𝑎𝑡 − 𝜃1𝑎𝑡−1) 

                      = 𝑉𝑎𝑟 ∅1𝑧𝑡−1 + 𝑎𝑡 − 2𝐶𝑜𝑣 ∅1𝑧𝑡−1 + 𝑎𝑡  , 𝜃1𝑎𝑡−1 + 𝜃1
2𝑉𝑎𝑟(𝑎𝑡−1)  

= ∅1
2𝑉𝑎𝑟 𝑧𝑡−1 + 𝜎𝑎

2 − 2∅1𝜃1𝜎𝑎
2 + 𝜃1

2𝜎𝑎
2 

=
1 − 2∅1𝜃1 + 𝜃1

2

1 − ∅1
2 𝜎𝑎

2  . 

4.1.1 The Autocovariance Function of ARMA(1,1) Process 

 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−𝑘 = 𝐶𝑜𝑣 ∅1𝑧𝑡−1 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 , 𝑧𝑡−𝑘 . 
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Assuming the stationarity, 

For k=0; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡 = 𝛾0 = 𝑉𝑎𝑟 𝑧𝑡 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 , 𝑧𝑡) 

                                          = ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡 + 𝐶𝑜𝑣 𝑎𝑡 , 𝑧𝑡 − 𝜃1𝐶𝑜𝑣(𝑎𝑡−1, 𝑧𝑡) 

                                            = ∅1𝛾1 + 𝜎𝑎
2 − 𝜃1𝐶𝑜𝑣(𝑎𝑡−1, ∅1𝑧𝑡−1 + 𝑎𝑡 − 𝜃1𝑎𝑡−1) 

        = ∅1𝛾1 + 𝜎𝑎
2 − 𝜃1∅1𝜎𝑎

2 + 𝜃1
2𝜎𝑎

2 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡 = 𝛾0 = ∅1𝛾1 +  1 − 𝜃1∅1 + 𝜃1
2 𝜎𝑎

2. 

For 𝑘=1; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−1 = 𝛾1 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 , 𝑧𝑡−1) 

= ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−1 + 𝐶𝑜𝑣 𝑎𝑡 , 𝑧𝑡−1 − 𝜃1𝐶𝑜𝑣(𝑎𝑡−1, 𝑧𝑡−1) 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−1 = 𝛾1 = ∅1𝛾0 − 𝜃1𝜎𝑎
2. 

For 𝑘=2; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−2 = 𝛾2 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 , 𝑧𝑡−2) 

= ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−2 + 𝐶𝑜𝑣 𝑎𝑡 , 𝑧𝑡−2 − 𝜃1𝐶𝑜𝑣(𝑎𝑡−1, 𝑧𝑡−2) 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−2 = 𝛾2 = ∅1𝛾1. 

For 𝑘=3; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−3 = 𝛾3 = 𝐶𝑜𝑣(∅1𝑧𝑡−1 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 , 𝑧𝑡−3) 

= ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−3 + 𝐶𝑜𝑣 𝑎𝑡 , 𝑧𝑡−3 − 𝜃1𝐶𝑜𝑣(𝑎𝑡−1, 𝑧𝑡−3) 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−3 = 𝛾3 = ∅1𝛾2. 
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So, 𝛾𝑘 =

 
 
 
 

 
 
 

1−2∅1𝜃1+𝜃1
2

1−∅1
2 𝜎𝑎

2, 𝑘 = 0

 ∅1−𝜃1  1−∅1𝜃1 

1−∅1
2 𝜎𝑎

2, 𝑘 = 1

∅1𝛾𝑘−1        , 𝑘 > 1

   . 

  

4.1.2 The Autocorrelation Function of ARMA(1,1) Process 

  

𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−𝑘   =  𝜌𝑘 =  
𝐶𝑜𝑣(𝑧𝑡 , 𝑧𝑡−𝑘)

 𝑉𝑎𝑟(𝑧𝑡)  𝑉𝑎𝑟(𝑧𝑡−𝑘)
=

𝛾𝑘

𝛾0
. 

 

For 𝑘=1; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−1 = 𝜌1 =
𝛾1

𝛾0
=

 ∅1 − 𝜃1 (1 − ∅1𝜃1)

1 − 2∅1𝜃1 + 𝜃1
2 . 

For 𝑘=2; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−2 = 𝜌2 =
𝛾2

𝛾0
=

∅1𝛾1

𝛾0
= ∅1𝜌1. 

For 𝑘=3; 

𝐶𝑜𝑟𝑟 𝑧𝑡 , 𝑧𝑡−3 = 𝜌3 =
𝛾3

𝛾0
=

∅1𝛾2

𝛾0
= ∅1𝜌2. 

 

So,  𝜌𝑘 =

 
 

 
 ∅1−𝜃1 (1−∅1𝜃1)

1−2∅1𝜃1+𝜃1
2 , 𝑘 = 1

∅1𝜌𝑘−1      , 𝑘 > 1

    . 

                               

As it can be seen, the autocorrelation function of ARMA(1,1) process reflects the  
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properties of AR(1) process autocorrelation function and MA(1) process 

autocorrelation function. The MA(1) effect can be observed by looking at 𝜌1 and the 

AR(1) effect can be observed by looking at 𝜌1, 𝜌2 , … . The autocorrelation function 

of ARMA(1,1) process shows exponential or oscillating decay  after lag one 

depending on the sign and magnitude of ∅1. 

 

4.1.3 The Partial Autocorrelation Function of ARMA(1,1) Process 

 

The calculation of  the partial autocorrelation function of ARMA(1,1) process needs 

complicated calculations and giving the general form of the partial autocorrelation 

function of ARMA(1,1) process is difficult. Still, the shape of the partial 

autocorrelation function of ARMA(1,1) process can be predicted since it reflects the 

properties of AR(1) process partial autocorrelation function and MA(1) process 

partial autocorrelation function. Since the partial autocorrelation functions of AR(1) 

and MA(1) processes are known from previous sections, it can be said that the AR(1) 

effect is observed at lag one and MA(1) effect is observed after lag one. So, the 

partial autocorrelation function of ARMA(1,1) process shows exponential or 

oscillating decay  after lag one depending on the sign and magnitude of  𝜃1 similar to 

the autocorrelation function of ARMA(1,1) process. 

 

4.2  The General ARMA(𝒑,𝒒) Process 

 

A zero mean ARMA(𝑝,𝑞) model can be shown as follows: 

𝑧𝑡 = ∅1𝑧𝑡−1 + ⋯ + ∅𝑝𝑧𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯− 𝜃𝑞𝑎𝑡−𝑞  , 

or 

 1 − ∅1𝐵 − ⋯− ∅𝑝𝐵
𝑝 𝑧𝑡 =  1 − 𝜃1𝐵 − ⋯− 𝜃𝑞𝐵

𝑞 𝑎𝑡  , 

where {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

 Assuming the stationarity, the mean of 𝑧𝑡   is equal to zero. The informal 

proof can be shown as follows:  
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𝐸 𝑧𝑡 = ∅1𝐸 𝑧𝑡−1 + ⋯ + ∅𝑝𝐸 𝑧𝑡−𝑝 + 𝐸 𝑎𝑡 − 𝜃1𝐸 𝑎𝑡−1 − ⋯

− 𝜃𝑞𝐸 𝑎𝑡−𝑞  

𝜇 = ∅1𝜇 + ⋯ + ∅𝑝𝜇 +  0 

 1 − ∅1 − ⋯− ∅𝑝 𝜇 = 0. 

If ∅1 + ⋯ + ∅𝑝 = 1, then 𝑧𝑡  is not stationary. Since the stationarity condition is 

assumed,  𝜇 = 0. 

 

4.2.1 The Autocovariance Function of ARMA(𝒑,𝒒) Process 

 

𝐶𝑜𝑣 𝑧𝑡  , 𝑧𝑡−𝑘 = 𝐶𝑜𝑣 ∅1𝑧𝑡−1 + ⋯ + ∅𝑝𝑧𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯−  𝜃𝑞𝑎𝑡−𝑞 , 𝑧𝑡−𝑘 . 

Assuming the stationarity, 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−𝑘 = ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−𝑘 + ⋯ + ∅𝑝𝐶𝑜𝑣 𝑧𝑡−𝑝 , 𝑧𝑡−𝑘 + 𝐶𝑜𝑣 𝑎𝑡 , 𝑧𝑡−𝑘 −

𝜃1𝐶𝑜𝑣 𝑎𝑡−1, 𝑧𝑡−𝑘 − ⋯− 𝜃𝑞𝐶𝑜𝑣 𝑎𝑡−𝑞 , 𝑧𝑡−𝑘 .  

For 𝑘=0 ; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡 = 𝑉𝑎𝑟 𝑧𝑡 = 𝛾0 

= ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡 + ⋯ + ∅𝑝𝐶𝑜𝑣 𝑧𝑡−𝑝 , 𝑧𝑡 + 𝐶𝑜𝑣 𝑎𝑡 , 𝑧𝑡 − 𝜃1𝐶𝑜𝑣 𝑎𝑡−1, 𝑧𝑡 − ⋯−

𝜃𝑞𝐶𝑜𝑣 𝑎𝑡−𝑞 , 𝑧𝑡   

= ∅1𝛾1 + ⋯ + ∅𝑝𝛾𝑝 + 𝜎𝑎
2 − 𝜃1∅1𝜎𝑎

2 + 𝜃1
2𝜎𝑎

2 − ⋯− 𝜃𝑝∅𝑝𝜎𝑎
2 + 𝜃𝑝

2𝜎𝑎
2 + 𝜃𝑝+1

2 𝜎𝑎
2 +

⋯ + 𝜃𝑞
2𝜎𝑎

2  

 

For 𝑘=1; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−1 = 𝛾1 
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= ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−1 + ⋯ + ∅𝑝𝐶𝑜𝑣 𝑧𝑡−𝑝 , 𝑧𝑡−1 + 𝐶𝑜𝑣 𝑎𝑡 , 𝑧𝑡−1 −

𝜃1𝐶𝑜𝑣 𝑎𝑡−1, 𝑧𝑡−1 − ⋯− 𝜃𝑞𝐶𝑜𝑣 𝑎𝑡−𝑞 , 𝑧𝑡−1   

= ∅1𝛾0 + ⋯ + ∅𝑝𝛾1−𝑝 − 𝜃1𝜎𝑎
2 − ⋯ + 𝜃𝑞𝜃𝑞−1𝜎𝑎

2 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−1 = 𝛾1 =  ∅1𝛾0 + ⋯ + ∅𝑝𝛾1−𝑝 +  −𝜃1 − ⋯ + 𝜃𝑞𝜃𝑞−1 𝜎𝑎
2. 

For k=2; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−2 = 𝛾2 

= ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−2 + ⋯ + ∅𝑝𝐶𝑜𝑣 𝑧𝑡−𝑝 , 𝑧𝑡−2 + 𝐶𝑜𝑣 𝑎𝑡 , 𝑧𝑡−2 −

𝜃1𝐶𝑜𝑣 𝑎𝑡−1, 𝑧𝑡−2 − ⋯− 𝜃𝑞𝐶𝑜𝑣 𝑎𝑡−𝑞 , 𝑧𝑡−2   

= ∅1𝛾1 + ⋯ + ∅𝑝𝛾2−𝑝 − 𝜃2𝜎𝑎
2 − ⋯ + 𝜃𝑞𝜃𝑞−2𝜎𝑎

2 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−2 = 𝛾2 =  ∅1𝛾0 + ⋯ + ∅𝑝𝛾2−𝑝 +  −𝜃2 − ⋯ + 𝜃𝑞𝜃𝑞−2 𝜎𝑎
2 . 

For 𝑘=𝑞; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−𝑞 = 𝛾𝑞  

= ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−𝑞 + ⋯ + ∅𝑝𝐶𝑜𝑣 𝑧𝑡−𝑝 , 𝑧𝑡−𝑞 + 𝐶𝑜𝑣 𝑎𝑡 , 𝑧𝑡−𝑞 −

𝜃1𝐶𝑜𝑣 𝑎𝑡−1, 𝑧𝑡−𝑞 − ⋯− 𝜃𝑞𝐶𝑜𝑣 𝑎𝑡−𝑞 , 𝑧𝑡−𝑞   

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−𝑞 = 𝛾𝑞 = ∅1𝛾𝑞−1 + ⋯ + ∅𝑝𝛾𝑞−𝑝 − 𝜃𝑞𝜎𝑎
2 . 

For 𝑘= 𝑞+1; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−𝑞−1 = 𝛾𝑞+1 

= ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−𝑞−1 + ⋯ + ∅𝑝𝐶𝑜𝑣 𝑧𝑡−𝑝 , 𝑧𝑡−𝑞−1 + 𝐶𝑜𝑣 𝑎𝑡 , 𝑧𝑡−𝑞−1 

− 𝜃1𝐶𝑜𝑣 𝑎𝑡−1, 𝑧𝑡−𝑞−1 − ⋯− 𝜃𝑞𝐶𝑜𝑣 𝑎𝑡−𝑞 , 𝑧𝑡−𝑞−1  

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−𝑞−1 = 𝛾𝑞+1 = ∅1𝛾𝑞 + ⋯ + ∅𝑝𝛾𝑞+1−𝑝 . 

For 𝑘=𝑞+2; 

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−𝑞−2 = 𝛾𝑞+2 
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= ∅1𝐶𝑜𝑣 𝑧𝑡−1, 𝑧𝑡−𝑞−2 + ⋯ + ∅𝑝𝐶𝑜𝑣 𝑧𝑡−𝑝 , 𝑧𝑡−𝑞−2 + 𝐶𝑜𝑣 𝑎𝑡 , 𝑧𝑡−𝑞−2 

− 𝜃1𝐶𝑜𝑣 𝑎𝑡−1, 𝑧𝑡−𝑞−2 − ⋯− 𝜃𝑞𝐶𝑜𝑣 𝑎𝑡−𝑞 , 𝑧𝑡−𝑞−2  

𝐶𝑜𝑣 𝑧𝑡 , 𝑧𝑡−𝑞−2 = 𝛾𝑞+2 = ∅1𝛾𝑞+1 + ⋯ + ∅𝑝𝛾𝑞+2−𝑝 . 

So , 

 

𝛾𝑘 =

 
 
 
 
 

 
 
 
 

(∅1𝛾1 + ⋯ + ∅𝑝𝛾𝑝) + (1 − 𝜃1∅1 + 𝜃1
2 − ⋯− 𝜃𝑝∅𝑝 + 𝜃𝑝

2 + 𝜃𝑝+1
2 +

 … + 𝜃𝑞
2)𝜎𝑎

2                                                                                        , 𝑘 = 0

      ∅1𝛾𝑘−1 + ⋯ + ∅𝑝𝛾𝑘−𝑝 +  −𝜃𝑘 − ⋯ + 𝜃𝑞𝜃𝑞−𝑘 𝜎𝑎
2                        , 𝑘 = 1,2, … , 𝑞

∅1𝛾𝑘−1 + ⋯ + ∅𝑝𝛾𝑘−𝑝                                                          , 𝑘 ≥ 𝑞 + 1

  .   

 

4.2.2 The Autocorrelation Function of ARMA(𝒑,𝒒) Process  

𝐶𝑜𝑟𝑟 𝑧𝑡  , 𝑧𝑡−𝑘   =  𝜌𝑘 =  
𝐶𝑜𝑣(𝑧𝑡 , 𝑧𝑡−𝑘)

 𝑉𝑎𝑟(𝑧𝑡)  𝑉𝑎𝑟(𝑧𝑡−𝑘)
=

𝛾𝑘

𝛾0
 . 

By looking at the autocovariance function of ARMA(𝑝,𝑞) process it can be 

concluded that                     

𝜌𝑘 =

 
 
 

 
 

 ∅1𝛾𝑘−1+⋯+∅𝑝𝛾𝑘−𝑝  +(−𝜃𝑘−⋯+𝜃𝑞𝜃𝑞−𝑘)

(∅1𝛾1+⋯+∅𝑝𝛾𝑝 )+(1−𝜃1∅1+𝜃1
2−⋯−𝜃𝑝∅𝑝 +𝜃𝑝

2+𝜃𝑝+1
2 +⋯+𝜃𝑞

2) 
, 𝑘 = 1,2, … , 𝑞

∅1𝜌𝑘−1 + ⋯ + ∅𝑝𝜌𝑘−𝑝                            , 𝑘 ≥ 𝑞 + 1

   .  

 

 The autocorrelation function of ARMA(𝑝,𝑞) process reflects the properties of AR(𝑝) 

process autocorrelation function and MA(𝑞) process autocorrelation function. The 

MA(𝑞) effect can be observed by looking at 𝜌1, 𝜌2 , …  , 𝜌𝑞  and the AR(𝑝) effect can 
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be observed by looking at 𝜌𝑞+1, 𝜌𝑞+2, … .The autocorrelation function of 

ARMA(𝑝,𝑞) process shows exponential or oscillating decay  after lag 𝑞 depending 

on the sign and magnitude of ∅1, ∅2, …  , ∅𝑝 . 

 

4.2.3 The Partial Autocorrelation Function of ARMA(𝒑,𝒒) Process  

 

Giving the general form of the partial autocorrelation function of ARMA(𝑝,𝑞) 

process is difficult like ARMA(1,1) process since it needs complicated calculations. 

Still, the shape of the partial autocorrelation function of ARMA(𝑝,𝑞) process can be 

predicted since it reflects the properties of AR(𝑝) process partial autocorrelation 

function and MA(𝑞) process partial autocorrelation function. Since the partial 

autocorrelation functions of AR(𝑝) and MA(𝑞) processes are known from previous 

sections, it can be said that the AR(𝑝) effect is observed at lags 1,2,…,𝑝  and MA(𝑞) 

effect is observed after lag p+1. So, the partial autocorrelation function of 

ARMA(𝑝,𝑞) process shows exponential or oscillating decay  after lag 𝑝 depending 

on the sign and magnitude of  𝜃1, 𝜃2 , …  , 𝜃𝑞 . 

 

4.3 Temporal Aggregation of ARMA(1,1) Process 

 

Suppose that the basic series follows a zero mean ARMA(1,1) model 

𝑧𝑡 = ∅1𝑧𝑡−1 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 , 

or 

 1 − ∅1𝐵 𝑧𝑡 =  1 − 𝜃1𝐵 𝑎𝑡  , 

where 

 {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

 The polynomials ∅𝑝(𝐵) and 𝜃𝑞(𝐵) have no roots in common and the roots of 

∅𝑝(𝐵) and 𝜃𝑞(𝐵) are outside the unit circle. 

 The model has no hidden periodicity of order 𝑚. A model has hidden 

periodicity of order m if  𝛿𝑖 ≠  𝛿𝑗  ( the roots of ∅𝑝(𝐵) ) but 𝛿𝑖
𝑚 = 𝛿𝑗

𝑚 . 
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Temporal aggregation of ARMA(1,1) process is explained by looking at 𝑚=3 case. 

The model for its third order aggregate is 

𝑍𝑇 = (1 + 𝐵 + 𝐵2)𝑧3𝑇 

where 𝑚=3 and 𝑑=0. 

Letting ∅𝑝 𝐵 =  (1 − 𝛿𝑗
𝑝
𝑗=1 𝐵) and multiplying   

 1−𝛿𝑗
𝑚 𝐵𝑚  

 1−𝛿𝑗𝐵 
  

(1−𝐵𝑚 )𝑑+1

(1−𝐵)𝑑+1
 𝑝

𝑗=1  on 

both sides of basic series 𝑧𝑡  : 

 1 − 𝛿1
3𝐵3  1 − 𝐵3 

 1 − 𝛿1𝐵  1 − 𝐵 
 1 − ∅1𝐵 𝑧𝑡 =

 1 − 𝛿1
3𝐵3  1 − 𝐵3 

 1 − 𝛿1𝐵  1 − 𝐵 
 1 − 𝜃1𝐵 𝑎𝑡  

 1 − 𝛿1
3𝐵3  1 + 𝐵 + 𝐵2 𝑧𝑡 = (1 + 𝛿1𝐵 + 𝛿1

2𝐵2) 1 + 𝐵 + 𝐵2  1 − 𝜃1𝐵 𝑎𝑡  

 1 + 𝐵 + 𝐵2 − 𝛿1
3𝐵3 − 𝛿1

3𝐵4 − 𝛿1
3𝐵5 𝑧𝑡 = [1 +  1 + 𝛿1 𝐵 +  1 + 𝛿1 + 𝛿1

2 𝐵2 +

 𝛿1 + 𝛿1
2 𝐵3 + 𝛿1

2𝐵4] 1 − 𝜃1𝐵 𝑎𝑡   

 

Substitute 𝑡 for 3𝑇 

 

𝑍𝑇 − 𝛿1
3𝑍𝑇−1 = 𝑎3𝑇 +  1 + 𝛿1 − 𝜃1 𝑎3(𝑇−

1

3
)

+  1 + 𝛿1 + 𝛿1
2 − 𝜃1 − 𝜃1𝛿1 𝑎3(𝑇−

2

3
)

+

 𝛿1 + 𝛿1
2 − 𝜃1 − 𝜃1𝛿1 − 𝜃1𝛿1

2 𝑎3(𝑇−1) + (𝛿1
2 − 𝜃1𝛿1 − 𝜃1𝛿1

2)𝑎
3(𝑇−

4

3
)
− 𝜃1𝛿1

2𝑎
3 𝑇−

5

3
 
.  

Say  1 − 𝛿1
3𝐵 𝑍𝑇 = 𝑋3𝑇 .  
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It is obvious that 𝐶𝑜𝑣(𝑋3𝑇 , 𝑋3 𝑇−𝐾 ) will be equal to zero if K is greater than the 

integer part of  
5

3
 which is equal to 1 (Brewer, 1973). 

Consequently, the aggregated series of an ARMA(1,1) model follows an ARMA(1,1) 

model when 𝑚=3. 

 1 − 𝛿1
3𝐵 𝑍𝑇 = (1 − 𝛽1𝐵)𝐴𝑇  

where {𝐴𝑇} is a zero mean white noise process with constant variance 𝜎𝐴
2. 

The parameters 𝛽1 and  𝜎𝐴
2 of the aggregate series 𝑍𝑇  are functions of ∅1 , 𝜃1 and 

 𝜎𝑎
2. Also it is useful to state that the root of AR polynomial of the aggregate series 

𝑍𝑇  is the third power of the root of AR polynomial of the nonaggregate series 𝑧𝑡  . 

 

4.4 Temporal Aggregation of ARMA(𝒑,𝒒) Process 

 

Suppose that the basic series follows a zero mean ARMA(𝑝,𝑞) model 

𝑧𝑡 = ∅1𝑧𝑡−1 + ⋯ + ∅𝑝𝑧𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯− 𝜃𝑞𝑎𝑡−𝑞  , 

or 

 1 − ∅1𝐵 − ⋯− ∅𝑝𝐵
𝑝 𝑧𝑡 =  1 − 𝜃1𝐵 − ⋯− 𝜃𝑞𝐵

𝑞 𝑎𝑡  

where 

 {𝑎𝑡} is a zero mean white noise process with constant variance 𝜎𝑎
2. 

 The polynomials ∅𝑝(𝐵) and 𝜃𝑞(𝐵) have no roots in common and the roots of 

∅𝑝(𝐵) and 𝜃𝑞(𝐵) are outside the unit circle. 

 The model has no hidden periodicity of order 𝑚. A model has hidden 

periodicity of order 𝑚 if  𝛿𝑖 ≠  𝛿𝑗  ( the roots of ∅𝑝(𝐵) ) but 𝛿𝑖
𝑚 = 𝛿𝑗

𝑚 . 

The model for its third order aggregate is 

𝑍𝑇 = (1 + 𝐵 + 𝐵2)𝑧3𝑇 

where 𝑚=3 and 𝑑=0. 
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Letting ∅𝑝 𝐵 =  (1 − 𝛿𝑗
𝑝
𝑗=1 𝐵) and multiplying   

 1−𝛿𝑗
𝑚 𝐵𝑚  

 1−𝛿𝑗𝐵 
  

(1−𝐵𝑚 )𝑑+1

(1−𝐵)𝑑+1
 𝑝

𝑗=1  on 

both sides of nonaggregate series 𝑧𝑡  : 

  1 − 𝛿1
3𝐵3  1 − 𝛿2

3𝐵3 …  1 − 𝛿𝑝
3𝐵3 

 1 − 𝛿1𝐵  1 − 𝛿2𝐵 … 1 − 𝛿𝑝𝐵 

 1 − 𝐵3 

 1 − 𝐵 
 1 − ∅1𝐵 − ⋯− ∅𝑝𝐵

𝑝 𝑧𝑡

=
  1 − 𝛿1

3𝐵3  1 − 𝛿2
3𝐵3 …  1 − 𝛿𝑝

3𝐵3 

 1 − 𝛿1𝐵  1 − 𝛿2𝐵 …  1 − 𝛿𝑝𝐵 
 
 1 − 𝐵3 

 1 − 𝐵 
 1 − 𝜃1𝐵 − ⋯

− 𝜃𝑞𝐵
𝑞 𝑎𝑡  

Substitute 𝑡 for 3𝑇 

 

Say  1 − 𝛿1
3𝐵  1 − 𝛿2

3𝐵 …  1 − 𝛿𝑝
3𝐵 𝑍𝑇 = 𝑋3𝑇  , 

 

After several calculations it can be easily seen that 𝐶𝑜𝑣 𝑋3𝑇 , 𝑋3 𝑇−𝐾  = 0 if 𝐾 is 

greater than the integer part of 
2 𝑝+1 +𝑞

3
 (Brewer, 1973). 

Consequently, the aggregated series of an ARMA(𝑝,𝑞) model follows an 

ARMA(p, 
2 𝑝+1 +𝑞

3
 ) model when 𝑚=3. 

 1 − 𝛿1
3𝐵  1 − 𝛿2

3𝐵 …  1 − 𝛿𝑝
3𝐵 𝑍𝑇

=  1 − 𝛽1𝐵 − 𝛽2𝐵
2 − ⋯− 𝛽

 
2 𝑝+1 +𝑞

3
 
𝐵

 
2 𝑝+1 +𝑞

3
 
 𝐴𝑇  ,   
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where {𝐴𝑇} is a zero mean white noise process with constant variance 𝜎𝐴
2. 

The parameters 𝛽1, 𝛽2 , …, 𝛽
 

2 𝑝+1 +𝑞

3
 
 and  𝜎𝐴

2 of the aggregate series 𝑍𝑇  are 

functions of ∅1 , ∅2  ,…,∅𝑝and 𝜃1, 𝜃2 , … , 𝜃𝑞  and  𝜎𝑎
2.  Also, it is useful to state that 

the roots of AR polynomial of the aggregate series 𝑍𝑇  are the third power of the roots 

of AR polynomial of the basic series 𝑧𝑡  . 

For general 𝑚𝑡ℎ   order aggregate is  

𝑍𝑇 =  1 + 𝐵 + 𝐵2 𝑧𝑚𝑇  , 

where  𝑑=0. 

Letting ∅𝑝 𝐵 =  (1 − 𝛿𝑗
𝑝
𝑗=1 𝐵) and multiplying   

 1−𝛿𝑗
𝑚 𝐵𝑚  

 1−𝛿𝑗𝐵 
  

(1−𝐵𝑚 )𝑑+1

(1−𝐵)𝑑+1  𝑝
𝑗=1  on 

both sides of nonaggregate series 𝑧𝑡  : 

  1−𝛿1
𝑚 𝐵𝑚   1−𝛿2

𝑚 𝐵𝑚  … 1−𝛿𝑝
𝑚 𝐵𝑚  

 1−𝛿1𝐵  1−𝛿2𝐵 … 1−𝛿𝑝𝐵 

 1−𝐵𝑚  

 1−𝐵 
 1 − ∅1𝐵 − ⋯− ∅𝑝𝐵

𝑝 𝑧𝑡 =

  1−𝛿1
𝑚 𝐵𝑚   1−𝛿2

𝑚 𝐵𝑚  … 1−𝛿𝑝
𝑚 𝐵𝑚  

 1−𝛿1𝐵  1−𝛿2𝐵 … 1−𝛿𝑝𝐵 
 
 1−𝐵𝑚  

 1−𝐵 
 1 − 𝜃1𝐵 − ⋯− 𝜃𝑞𝐵

𝑞 𝑎𝑡 .  

When the above equation is written in the explicit form, it is found that the 𝑚𝑡ℎ   

aggregate of an ARMA(𝑝,𝑞) model is an ARMA(𝑝,  𝑝 + 1 +
𝑞−𝑝−1

𝑚
 ) (Brewer, 

1973). 

 (1 − 𝛿𝑗
𝑚𝐵)𝑍𝑇

𝑝

𝑗=1

=  1 − 𝛽1𝐵 − 𝛽2𝐵
2 − ⋯− 𝛽

 𝑝+1+
𝑞−𝑝−1

𝑚
 
𝐵 𝑝+1+

𝑞−𝑝−1
𝑚

  𝐴𝑇  , 

where {𝐴𝑇} is a zero mean white noise process with constant variance 𝜎𝐴
2. 

The parameters 𝛽1, 𝛽2 , …, 𝛽
 𝑝+1+

𝑞−𝑝−1

𝑚
 
 and  𝜎𝐴

2 of the aggregate series 𝑍𝑇  are 

functions of ∅1 , ∅2  ,…,∅𝑝  and  𝜃1, 𝜃2 , … , 𝜃𝑞  and  𝜎𝑎
2 . Also, it is useful to state that 

the roots of AR polynomial of the aggregate series 𝑍𝑇  are the 𝑚𝑡ℎ  power of the roots 

of AR polynomial of the basic series 𝑧𝑡  . 
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CHAPTER 5 

 

SIMULATION STUDY 

 

 

The aim of this chapter is to show how the model, mean square forecast errors and 

estimated parameters change when the aggregate series is used instead of basic 

series. These changes will be illustrated by simulation studies. 

 

Simulation studies for 1000 replications are conducted by using a computer program 

R 2.10.0 and the results of simulation studies will be summarized in five sections. In 

these sections, the effect of aggregation will be explained for the basic series belongs 

to AR(1), AR(2), MA(1), MA(2) and ARMA(1,1) models, respectively. In each 

section, simulation results will be given according to basic series’ parameter value(s), 

order of aggregation and sample size. For the basic series’ parameter value, both 

positive and negative parameter values will be considered by taking into account 

stationarity. Also, the parameter values will be selected in a wide range to see 

whether the magnitude of basic model parameter affects the temporal aggregation or 

not. For instance, parameter values -0.9 and 0.9 for AR(1) process would be useful to 

understand how the results change if the basic model parameter is close to unit root. 

Three, six and twelve will be used for the order of aggregation because in real life 

generally data are aggregated as quarterly, semi annually and annually. It is expected 

to receive worse results as order of aggregation increases. For the sample size, 

𝑛=120, 𝑛=300 and 𝑛=900 will be evaluated and it is expected to have better results 

as sample size increases. 

 

Mainly, there will be three tables for each section. First table shows the frequencies 

of best fitted models according to Akaike’s Information Criterion for the aggregate
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series. The aggregate model will be determined by considering the significance of 

parameters and for instance an AR(2) model like 𝑍𝑇 = 𝛽1𝑍𝑇−1 + 𝛽2𝑍𝑇−2 + 𝐴𝑇  will 

be selected by looking at the significance of the 𝛽2  parameter and the significance of 

𝛽1 parameter will not be taken into consideration for selecting the aggregate model ( 

α = 0.05 level will be used for significance). If two or more models will be fitted for 

the aggregate series, the best model will be chosen according to Akaike’s 

Information Criterion. The aggregate model that have smallest Akaike’s Information 

Criterion will be chosen as best fitted aggregate model. By looking at this table, it 

can be observed that how the model shifts, if the aggregate series is used for orders 

of aggregation and sample sizes stated above. The frequently selected best aggregate 

models will be shown in bold face. ( Also, WN stands for white noise process. )  

 

Second table shows the mean square forecast errors of the best fitted models for 

aggregated series and the basic series. As it is known, mean square forecast error is 

used for measuring the difference between the observed value of the data and the 

forecasted value. So, it is expected to have lower mean square forecast error values 

for basic series compared to aggregate series for sample sizes and orders of 

aggregation stated above. In order to calculate the mean square forecast error values 

last fifteen observations will be used for basic series and last five observations will 

be used for aggregate series. The mean square forecast errors listed in the tables will 

be the average values by taking into account the frequencies which take place at 

frequency tables. If the frequency of best fitted aggregate model is zero, then the 

mean square forecast error belong to this aggregate model will not be shown and it 

will be colored with black.  

 

There exists some forecast accuracy measures like mean square error, absolute error, 

mean absolute percentage error. In our simulation study, using mean square forecast 

error as a measure of forecast accuracy is appropriate since Chen and Yang (2004) 

stated that mean square forecast error performs better if the error terms are normally 

distributed. Also, Chen and Yang (2004) discussed the problems related with mean 

absolute percentage error. Moreover, Janacek and Swift (1993) reveals that mean 

square error is an useful forecast accuracy measure for the prediction error.  
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Lastly, the third table illustrates the parameter change due to temporal aggregation. 

The estimated parameters of best fitted models for aggregate series can be seen from 

the third table. Also, the estimated parameter values listed in the tables will be the 

average values by taking into account the frequencies which take place at frequency 

tables. Again, like mean square forecast error table, if the frequency of best fitted 

aggregate model is zero, then the estimated parameter value(s) belong to this 

aggregate model will not be shown and black color will be used for the coverage.  

 

5.1 Simulation Results for AR(1) Model 

 

As stated before, the aggregate model from an AR(1) process is an ARMA(1,1) 

model when 𝑚=3, 𝑚=6 and 𝑚=12. However, this theoretical aggregate model can 

change depending on the basic model parameter, order of aggregation and the sample 

size. 

 

 

Table 5.1.1 Frequencies of Best Fitted Aggregate Models for AR(1) 
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Simulation results of Table 5.5.1 reveals that the frequently selected best fitted 

aggregated model is generally AR(1) or white noise in empirical studies. Here, in this 

simulation study white noise model is selected as best fitted aggregate model when 

all of the aggregate model parameters belong to AR(1), ARMA(1,1), AR(2), AR(3) 

and AR(4) are insignificant. For the parameter values -0.1 and 0.1, the white noise is  

frequently selected and for other parameter values AR(1) is chosen for 𝑚=3 case. As 

it is expected when the order of aggregation increases, aggregate model shifts from 

AR(1) to white noise. It can be useful to state that AR(2) and AR(3) are not 

frequently selected as best fitted aggregated model for all conditions. Also, it is 

expected to have more clear results for large sample sizes but the results do not show 

big changes when sample size increases except 𝑚=12 and 𝑛=120 case.  

 

Table 5.1.2 Mean Square Forecast Errors of Best Fitted Aggregate Models 

for AR(1) 
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When the results of Table 5.1.2 are analyzed, it is clearly seen that basic model has 

lower mean square forecast error than best fitted aggregated models’ mean square 

forecast errors as expected. Moreover, it is observed that the mean square forecast 

errors for the best fitted aggregate models increase as the order of aggregation 

increases. For ∅ = -0.9 and 𝑚=6 case, there exists a problem that minimum mean 

square error belongs to white noise for 𝑛=120, AR(1) for 𝑛=300 and AR(4) for 

𝑛=900 . This problem may be occurred because of the basic model parameter value 

which is very close to the negative unit root that creates nonstationarity. In general, it 

can be said that mean square forecast errors show an increase when the series is 

temporally aggregated. 

 

In Table 5.1.3, we present the mean of estimated parameters for best fitted aggregate 

models. For ARMA(1,1)  case, the first box indicates the autoregressive parameter  

and the second box indicates the moving average parameter. Estimated parameter for 

best fitted aggregate AR(1) model is not always the same as the basic model 

parameter as expected. So, temporal aggregation changes the estimated parameter for 

the basic series from an AR(1) process.  Also as stated in previous chapters,  the 

roots of AR polynomial of the best fitted aggregate ARMA(1,1) model are 

theoretically expected to be the 𝑚th power of roots of AR polynomial of the basic 

model. However, this theoretical result cannot be observed from Table 5.1.3 for the 

best fitted aggregate ARMA(1,1) model. 

 

5.2 Simulation Results for AR(2) Model 

 

Theoretical aggregate model for AR(2) process is ARMA(2,2) model for 𝑚=3, 𝑚=6 

and 𝑚=12. The simulation studies will also consider AR(1), ARMA(1,1), AR(2) and 

white noise processes for the aggregate model since theoretical results may change in 

empirical studies. 

 

Basic series are modeled for various parameter values and stationarity conditions are 

taken into consideration. The stationarity conditions for AR(2) model can be 

summarized as ∅1 + ∅2 < 1 ,  ∅2 − ∅1 < 1 and −1 <  ∅2 < 1. 
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Table 5.1.3 Estimated Parameter Values of Best Fitted Aggregate Models 

for AR(1) 
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Table 5.2.1 Frequencies of Best Fitted Aggregate Models for AR(2) 
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The results of Table 5.2.1 indicate that generally theoretical aggregate model 

ARMA(2,2) is the frequently selected best fitted aggregated model for ∅1=0.1 - ∅2 = 

0.1 and ∅1= -0.1 - ∅2 = -0.1 when 𝑚 =3 and 𝑚 =6. AR (2) is the frequently selected 

best fitted aggregated model for ∅1= -0.1 - ∅2 = 0.8 and ∅1= -0.1 - ∅2 = -0.8 when 𝑚 

=3. Furthermore, frequently selected best fitted aggregated model for 𝑚 =12 and 𝑛 

=120 case is AR(2) independent of the parameter values. This shows that reliable 

results cannot be obtained for higher orders of aggregation and small sample sizes. 

Also, white noise is frequently selected best fitted aggregated model for small sample 

sizes and high orders of aggregation. In this section, white noise is selected if all of 

the best fitted aggregate models listed in Table 5.2.1 have insignificant parameters 

like previous section.    

 

All of the results of Table 5.2.2 show that the average of mean square forecast errors 

belong to basic model smaller than best fitted aggregate models’ mean square 

forecast errors. Again, it is observed that mean square  forecast error increases as the 

orders of aggregation increase. Especially, for 𝑚=12 case, the best fitted aggregated 

models have larger mean square forecast errors. It is obvious that aggregated models 

have worse forecast values compared to the forecasted values from the basic model. 

Also the forecast values get worsen as the order of aggregation increases. 

 

For Table 5.2.3, when the best fitted aggregated model is ARMA(1,1) the first box 

shows the estimated parameter for the autoregressive part and the second box shows 

the estimated parameter for the moving average part. Similarly, when the best fitted 

aggregated model is ARMA(2,2),  the first two box show the estimated parameter for 

the autoregressive  part and the others show the estimated parameter for the moving 

average part. It is clearly seen that when the best fitted aggregated model is AR(2) 

the estimated parameters mostly different than the basic model parameters from 

Table 5.2.3. Also as stated in previously, the roots of AR polynomial of the best 

fitted aggregate ARMA(2,2) model are theoretically expected to be the 𝑚th power of 

roots of AR polynomial of the basic model. However, this theoretical result cannot 

be observed from Table 5.2.3 for the best fitted aggregate ARMA(2,2) model.  
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Table 5.2.2 Mean Square Forecast Errors of Best Fitted Aggregate Models  

for AR(2) 
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Table 5.2.3 Estimated Parameter Values of Best Fitted Aggregate Models  

for AR(2) 
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Table 5.2.3 (Continued) 
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5.3 Simulation Results for MA(1) Model 

As mentioned, the temporally aggregated model for MA(1) model is an MA(1) 

model for 𝑚 =3, 𝑚=6 and 𝑚=12. The simulation studies also take into consideration 

MA(2) model and white noise for the aggregated series.  

 

Table 5.3.1 Frequencies of Best Fitted Aggregate Models for MA(1) 

 

 

 

The results of Table 5.3.1 show that generally frequently selected best fitted 

aggregate model is white noise. White noise is frequently selected best fitted 

aggregate model when 𝜃 is equal to -0.1, 0.1, 0.5 and 0.9 for 𝑚=3, 𝑚=6 and 𝑚=12.  
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Again in this section white noise is selected if all of the parameter values belong to 

MA(1) and MA(2) models are insignificant. MA(1) is frequently selected best fitted 

aggregate model when 𝜃 is equal to -0.9 for 𝑚=3 and 𝑚=6. Also, MA(1) is 

frequently selected best fitted aggregate model when 𝜃 is equal to -0.5 and 𝑚=3. It is 

clearly seen that MA(2) model is not frequently selected best fitted aggregate model 

for all conditions. In summary, empirical studies show that aggregate model for 

MA(1) is white noise for positive basic model parameter and the frequency of 

aggregate white noise model increases as the negative basic model parameter 

increases. 

 

 

Table 5.3.2 Mean Square Forecast Errors of Best Fitted Aggregate Models 

for MA(1) 

 



 

75 
 

The simulation results which take place at Table 5.3.2 reveals that mean square 

forecast errors of basic model are less than mean square forecast errors of best fitted 

aggregated models. There is a problem when θ = -0.9 which similar to the problem 

that exists in section 5.1. Some mean square forecast errors of the best aggregated 

models are less than the mean square forecast errors of basic series. Again, this 

problem might arise from the parameter value which is very close to negative unit 

root. Furthermore, as expected, mean square forecast errors increase, when the order 

of aggregation increases. 

 

Table 5.3.3 Estimated Parameter Values of Best Fitted Aggregate Models 

for MA(1) 
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As seen from Table 5.3.3 estimated parameters of best fitted aggregated models 

change depend on the sample size and the order of aggregation. For 𝑚=12 and 

𝑛=120 case, the estimated MA(1) parameter value of aggregate series is very close to 

-1 which can be thought as a sign of noninvertibility. Again, it is clearly seen that the 

results of small sample sizes and high order of aggregation are not reliable. When 

MA(1) is the best fitted aggregated model, the estimated parameter is not the same as 

parameter value of basic series. So, temporal aggregation plays a role in parameter 

estimation. 

 

5.4 Simulation Results for MA(2) Model 

The theoretical aggregate model of MA(2) process is an MA(1) model. Also, in 

simulation studies MA(2) model and white noise are taken into account similar to 

section 5.3. 

 

Table 5.4.1 Frequencies of Best Fitted Aggregate Models for MA(2) 
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The results of Table 5.4.1 indicate that the aggregate model of MA(2) process is an 

MA(1) model or white noise in empirical studies. Most of the frequently selected 

best fitted aggregate models are white noise. Especially when 𝜃1=0.1 - 𝜃2=0.1, all of 

the frequently selected best fitted aggregate models are white noise. Moreover, the 

frequently selected best fitted aggregate model is white noise for 𝑚=12 and 𝑛=120 

case independent of basic model parameter values. In this simulation study, white 

noise is selected as best fitted aggregate model when all of the parameters belong to 

MA(1) and MA(2) models are insignificant. MA(1) is frequently selected best fitted 

aggregate model for  smaller order of aggregation but when  𝜃1= - 0.1 - 𝜃2= -0.8 and 

𝜃1= - 0.3 - 𝜃2= -0.5, MA(1) is frequently selected best fitted aggregate model for all 

conditions except 𝑚=12 and 𝑛=120 case. 

 

When the results of Table 5.4.2 are analyzed, again it is understood that the mean 

square forecast errors of basic model are less than the mean square forecast errors of 

best fitted aggregate models. Furthermore, as expected the mean square forecast 

errors of best fitted aggregate models increase when the order of aggregation 

increases. The simulation results of Table 5.4.2 verify our claim that aggregate 

models have worse forecast values than basic models. 

 

As seen from Table 5.4.3, estimated parameters for best fitted aggregated models 

change when the sample size and order of aggregation change. Specifically, for 

𝑚=12 and 𝑛=120 case the estimated parameter of best fitted aggregate model MA(1) 

is very close to -1 and this satisfies aggregate model might have invertibility 

problems. Also, the basic model parameters and best fitted aggregate model MA(2) 

estimated parameters are not consistent most of the conditions. So, again it can be 

said that temporal aggregation affects the parameter estimation. 
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Table 5.4.2 Mean Square Forecast Errors of Best Fitted Aggregate Models 

for MA(2) 
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Table 5.4.3 Estimated Parameter Values of Best Fitted Aggregate Models 

for MA(2) 

 

 

 

5.5 Simulation Results for ARMA(1,1) 

As it is stated before, when the basic series follows an ARMA(1,1) process then the 

aggregated model is also an ARMA(1,1) model theoretically for 𝑚 = 3, 𝑚 = 6 and 𝑚 

= 12. In the simulation studies, for aggregate series AR(1), AR(2), ARMA(2,2) 

models and white noise are also considered. Again, in this section white noise is 

selected as best fitted aggregate model if all of the parameters belong to AR(1), 

AR(2) and ARMA(2,2) are insignificant. 
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Table 5.5.1 Frequencies of Best Fitted Aggregate Models for ARMA(1,1) 
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Table 5.5.2 Mean Square Forecast Errors of Best Fitted Aggregate Models 

for ARMA(1,1) 

 

 



 

82 
 

Table 5.5.3 Estimated Parameter Values of Best Fitted Aggregate Models 

for ARMA(1,1) 
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Table 5.5.3 (Continued) 
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The results of Table 5.5.1 indicate that theoretical aggregate model ARMA(1,1) is 

frequently best fitted aggregate model only when Φ=0.3 - θ= - 0.1 and Φ= 0.3 -  θ= - 

0.1 for 𝑚= 3 and 𝑛 = 120 case. ARMA(2,2) is generally chosen as frequently 

selected best fitted aggregate model and the frequency of best fitted aggregate 

ARMA(2,2) model is close to the frequency of aggregate ARMA(1,1) model. AR(1) 

is also frequently selected as the best aggregate model especially for Φ= - 0.3- θ= - 

0.5 and Φ= - 0.1- θ= - 0.8 . Moreover, it is clearly seen that for 𝑚=12 and 𝑛 = 120 

case frequently best selected model is AR(2) without depending on the basic model 

parameters. As expected, when the sample size decreases and the order of 

aggregation increases, frequently selected best fitted aggregate model becomes white 

noise. Similar to previous sections, it is understood that temporal aggregation is 

effective on model selection and causes model shifts from basic model. 

The simulation results of Table 5.5.2 again points out that basic model have smaller 

mean square forecast error than aggregate model mean square forecast errors. There 

exists a problem similar to previous sections 5.1 and 5.3. For Φ= -0.1 – θ = -0.8 and 

Φ= -0.3 – θ = -0.5 some  of the mean square forecast errors of best fitted aggregated 

models are larger than mean square forecast errors of the basic series. Again, this 

problem may arise from the parameter values of the basic model. Also, it is easily 

observed that mean square forecast errors of the best fitted aggregated models 

increase as the order of aggregation increases. 

The mean of estimated parameters for the best fitted aggregate models can be seen 

from Table 5.5.3. It can be clearly seen that estimated parameter values changes 

according to aggregation level and sample size. The worst results are obtained for 

𝑚=12 and 𝑛 =120 cases, most of the estimated parameters are very close to -1 or 1 

which can be thought as an indicator of nonstationarity or noninvertibility. 

Furthermore, estimated parameters of the best fitted aggregated model ARMA(1,1) 

are not consistent with the parameters of the basic series for most of the conditions. 

Also, as stated before, the roots of AR polynomial of the best fitted aggregate 

ARMA(1,1) model are the 𝑚th power of the roots of AR polynomial of the basic 

model. However, this cannot be observed from Table 5.5.3.  It can be concluded that 

temporal aggregation of ARMA(1,1) model affects the parameter estimation.
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CHAPTER 6 

 

APPLICATION 

 

 

In this chapter, a real life data set will be used in order to show the effects of 

temporal aggregation. The data set is taken from Engineering Statistics Handbook 

web page (http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4412.htm, last 

visited on August 2010) . It is consisted of monthly observations between dates 1955 

and 1992 and the data set is about the southern oscillation. Southern oscillation can 

be explained as the difference between Tahiti and the Darwin Islands according to 

barometric pressure. Southern oscillations are used for predicting El-Nino which is 

an atmospheric and oceanic event. Repeated southern oscillation values less than -1 

can be thought as an indicator of El-Nino. 

This chapter has four sections which analyze the data when 𝑚=0, 𝑚=3, 𝑚=6 and 

𝑚=12, respectively. In each section, a model will be identified for the data set after 

the diagnostic checks for the residuals and based on this model, the estimated 

parameters and mean square forecast errors will be determined. For basic series last 

fifteen observations and for aggregated series last five observations will be used for 

calculating mean square errors. The data analyses are conducted by the help of 

computer programs R 2.10.0 and E-Views 6. 

It is useful to give brief information about the residual tests used in diagnostic 

checks. Ljung-Box Test, Jarque-Bera Test and Breusch-Pagan Test will be used in 

data analysis.  

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4412.htm
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 Ljung-Box Test: It is also known as modified Box-Pierce Test and used for 

detecting serial autocorrelation between residuals. The test hypothesis is 

 

𝐻0: 𝜌1 = 𝜌2 = ⋯ = 𝜌𝐾  , 

with the test statistic 

 

𝑄 = 𝑛 𝑛 + 2  
𝜌 𝑘

2

𝑛 − 𝑘

𝐾

𝑘=1

 , 

 

where 𝐾 is the maximum lag length, 𝑛 is the number of observations and 𝜌 𝑘  

is the sample autocorrelation at lag 𝑘. 

 

𝑄 statistic follows the 𝜒2(𝐾 − 𝑝 − 𝑞)  (For a detailed discussion see Ljung 

and Box, 1978). 

 

 Jarque-Bera Test: It is used for testing the normality of error terms. The null 

hypothesis is the normality of residuals. Jarque-Bera tests whether the 

coefficient of skewness and coefficient of excess kurtosis are jointly equal to 

zero. 

 

Jarque-Bera test statistic is 

 

𝐽𝐵 = 𝑛  
𝛽1

2

6
+

(𝛽2 − 3)2

24
  , 

 

where 𝛽1 is the skewness and 𝛽2 is the kurtosis. 

 

𝐽𝐵 statistic follows the 𝜒2(2)  (For detailed discussion see Jarque and Bera, 

1981). 
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 Breusch-Pagan Test: It is used to detect heteroskedasticity. The null 

hypothesis is the homoskedasticity of the residuals. Breush-Pagan test fits a 

linear regression model to the residuals and rejects if too much variance is 

explained by the explanatory variables of the artificial regression model 

(Zeileis and Hothorn, 2002).  

 

The Breusch-Pagan test statistic is 

 

𝐿𝑀 = 𝑛𝑅𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙
2  , 

 

𝐿𝑀 statistic follows the 𝜒2(𝑟)  where 𝑟 is the number of regressors without 

the constant term in the artificial regression model. (For detailed discussion 

Breusch and Pagan, 1979) 

 

6.1 Data Analysis for Basic Series 

 

As stated before, the data set consists of monthly observations between 1955 and 

1992 which means that there are 456 observations. So, data set will be analyzed for 

441 observations since  last fifteen observations will be used for calculating mean 

square errors for the fitted and observed values . 

 

First of all, it is needed to look at the time series plot of the data to make a visual 

inspection for stationarity. If time series plot satisfies stationarity, the Augmented 

Dickey Fuller test (Said and Dickey, 1984) will be conducted to be sure about the 

stationarity. 

 

Then, autocorrelation and partial autocorrelation function plots will be analyzed for 

making an estimation about the orders of the ARIMA model. 
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Figure 6.1.1 Time series, ACF and PACF Plots for the Basic Series 

 

The time series plot in the Figure 6.1.1 is an indicator for stationarity because the 

mean and the dispersion seem constant and no extreme values are seen. Also, there is 

no need to check the trend and we do not suspect from seasonality by looking at this 

time series plot. The seasonality graph of E-Views 6 can be used for checking 

seasonality of the basic series. 
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Figure 6.1.2 Seasonality Graph for the Basic Series 

 

As seen, means of the months are very close to each other which means that 

seasonality will not be taken into consideration in the model identification part. 

Stationarity must be also tested by a statistical analysis and Augmented Dickey 

Fuller test is used to make a decision about the stationarity by the help of R 2.10.0. 

 

Table 6.1.1 Augmented Dickey Fuller Test for the Basic Series 
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Table 6.1.1 reveals that the series is stationary since the 𝑝-value is smaller than the 

alpha value which is equal to 0.05. Since all the conditions satisfy stationarity, the 

autocorrelation and partial autocorrelation plots which take place at Figure 6.1.1 can 

be analyzed.  The autocorrelation function shows oscillating decay and the partial 

autocorrelation function cuts off after lag four. So, AR(4) model will be fitted. 

 

Table 6.1.2  AR(4) Model for the Basic Series 

 

 

 

The intercept parameter removed from the model since its 𝑝-value is larger than the 

alpha value 0.05. The stepwise ARIMA procedure is not applied to be consistent 

with Chapter 5. In simulation studies we considered only the 𝑝-value of ar4 

parameter and ar3 parameter will be in the model although its 𝑝-value is larger than 

0.05. Before forecasting, diagnostic check will be useful to get more reliable results. 

 

Figure 6.1.3 indicates that there exists no problem about the diagnostic checks. 

Standardized residuals do not show a specific pattern and residuals seem 

uncorrelated. There exists no significant spike at ACF of Residuals except lag zero 

and 𝑝-values for Ljung-Box statistics are larger than 0.05 which means that error 

terms are uncorrelated. 
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Figure 6.1.3 Diagnostic Check for the Basic Series 

 

Table 6.1.3 Jarque-Bera Test Results for the Basic Series 
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Table 6.1.3 shows that residuals are distributed normally since 𝑝-value is relatively 

large and there is not enough evidence to reject the null hypothesis. The normality 

assumption is also tested by Shapiro-Wilk normality test and the 𝑝 -value is found as 

0.5483. So, the null hypothesis of Shapiro-Wilk test , which is similar to the null 

hypothesis of Jarque-Bera test, cannot be rejected. 

 

Table 6.1.4 Breusch-Pagan Test Results for the Basic Series 

 

 

 

Table 6.1.4 indicates that residuals have constant variance since we cannot reject the 

null hypothesis by considering the 𝑝-value in the Table 6.1.4. 

 

There exists no problem for diagnostic checks so forecasting can be done based on 

AR(4) model. 

 

 

Table 6.1.5  Forecasted Values for the Basic Series 
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The mean  square  error is computed by using the forecasting values and the original 

data set values. After making calculations the mean square forecast error is found as 

1.516959. This value will be used in the following sections to make comparison. 

 

6.2 Data Analysis for Aggregate Series when 𝒎=3 

In this section, basic series is temporally aggregated for 𝑚 =3 and the data set is 

consists of quarterly observations between 1955 and 1992. The quarterly 

observations are obtained by summing consecutive three observations of the basic 

data set. The last five observations used for calculating mean square error and so 147 

observations are used for analysis. The same procedure applied in Section 6.1 will be 

used for this section. 

 

Figure 6.2.1 shows the time series, autocorrelation function and partial 

autocorrelation functions. Time series plot is important to decide on stationarity. The 

time series plot in Figure 6.2.1 shows that series is stationary since mean and 

dispersion seems constant. 

 

There is no need to suspect from seasonality since basic series does not have 

seasonality effect and this can be understood by looking at Figure 6.2.2. 

 

By looking at Table 6.2.1, it can be concluded that aggregated series is stationary. 

Since we do not have any problem about stationarity, the autocorrelation and partial 

autocorrelation plots in Figure 6.2.1 can be analyzed. Since autocorrelation function 

plot shows oscillating decay after lag two and partial function plot shows oscillating 

decay after lag four, ARMA(4,2) model can be fitted to the aggregated series. 

Furthermore, theoretically it is expected that aggregated series would follow an 

ARMA(4,3) model when 𝑚=3 since basic series follows an AR(4) process. 
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Figure 6.2.1  Time series, ACF and PACF Plots for the Aggregate Series when 

𝑚=3 

 

Table 6.2.1 Augmented Dickey Fuller Test for the Aggregate Series when 𝑚=3 
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Figure 6.2.2 Seasonality Graph for the Aggregate Series when 𝑚=3 

 

 

Table 6.2.2  AR(4) Model for the Aggregate Series when 𝑚=3 

 

 

 

Table 6.2.2 shows the results of  AR(4) model since the moving average part and 

intercept found insignificant. The ar2 and ar3 are also seen insignificant but as stated 

since ar4 is significant, we do not drop them from the model. 
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Figure 6.2.3 shows that there exists no problem about the diagnostic checks. 

Standardized residuals do not show a specific pattern and residuals seem 

uncorrelated. There exists no significant spike at ACF of Residuals except lag zero 

and 𝑝-values for Ljung-Box statistics are larger than 0.05 which means that error 

terms are uncorrelated. 

 

Table 6.2.3 Jarque-Bera Test Results for the Aggregate Series when 𝑚 =3 

 

 

Table 6.2.3 reveals that the null hypothesis of  Jarque-Bera  test cannot be rejected. 

So, residuals have normal distribution. Also, the normality assumption is satisfied by 

Shapiro-Wilk normality test. The 𝑝 - value belongs to Shapiro-Wilk normality test is 

0.5129 which indicates that residuals are normally distributed. 

 

Table 6.2.4 Breusch-Pagan Test Results for the Aggregate Series when 𝑚 =3 

 

 

Table 6.2.4 illustrates that there exists no heteroskedasticity problem for the 

aggregated series. Since 𝑝-value is relatively large, the null hypothesis cannot be 

rejected. So, residuals  have constant variance. 
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Figure 6.2.3 Diagnostic Check for the Aggregate Series when 𝑚=3 

 

 

Since all of the diagnostic checks are satisfied, forecast values based on this model 

can be obtained. 
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Table 6.2.5  Forecasted Values for the Aggregate Series when 𝑚=3 

 

 

 

The mean square forecast error is computed as 15.56546 which is larger than the 

mean square forecast error that corresponds to basic series.  

 

6.3 Data Analysis for Aggregate  Series when 𝒎=6 

In this section, the basic series is aggregated for 𝑚=6 by summing consecutive six 

observations of the basic series and the series will be consisted of semi annually 

observations between 1955 and 1992. There will be 76 observations and last five 

observations are used for calculating mean square error. So, data will be analyzed by 

using 71 observations. Again, the same procedure  applied in previous sections will 

be conducted. 

Since the mean and dispersion seems constant, time series plot in Figure 6.3.1 

indicates that series is stationary. Also, the seasonality effect cannot be observed and 

this can be also understood by looking at Figure 6.3.2. 

 

Table 6.3.1 also shows that the series is stationary. The null hypothesis is rejected 

since  𝑝-value is smaller than the alpha level 0.05.  

 

Since stationarity condition is satisfied, the autocorrelation and partial 

autocorrelation can be examined. The autocorrelation function plot shows oscillating 

decay after lag one and the partial autocorrelation function plot shows oscillating 

decay after lag two. So, ARMA(2,1) can be fitted for the aggregated series. 
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Furthermore, theoretical aggregate for the series is an ARMA(4,4) when 𝑚=6 

because the basic series follows an AR(4) process. 

 

 

 

Figure 6.3.1 Time series, ACF and PACF Plots for the Aggregate Series when 𝑚=6 
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Table 6.3.1 Augmented Dickey Fuller Test for the Aggregate Series when 𝑚=6 

 

 

 

Figure 6.3.2 Seasonality Graph for the Aggregate Series when 𝑚=6 

 

Table 6.3.2  AR(2) Model for the Aggregate Series when 𝑚=6 
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The results for AR(2) model is obtained because moving average part and intercept 

are insignificant at alpha 0.05 level. Figure 6.3.3 shows the results of diagnostic 

checks based on AR(2) model. As seen, standardized residuals do not have a specific 

pattern and residuals seem to be uncorrelated. The ACF of Residuals has no 

significant spike except lag zero and the 𝑝-values for Ljung-Box statistics are larger 

than alpha level 0.05 which means that residuals are uncorrelated. 

 

Table 6.3.3 Jarque-Bera Test Results for the Aggregate Series when 𝑚 =6 

 

 

The null hypothesis of Jarque-Bera test cannot be rejected at 0.05 alpha level and it is 

concluded that residuals have normal distribution. Moreover, the normality 

assumption satisfied by Shapiro-Wilk normality test . The 𝑝-value belongs to 

Shapiro-Wilk test is 0.2343 which indicates that residuals are normally distributed. 

 

Table 6.3.4 Breusch-Pagan Test Results for the Aggregate Series when 𝑚 =6 

 

 

It can be said that residuals have constant variance by looking at Table 6.3.4 since 

the 𝑝-value is relatively large. All the diagnostic check conditions are satisfied so 

forecasting can be done based on AR(2) model. 
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Figure 6.3.3 Diagnostic Check for the Aggregate Series when 𝑚=6 

 

Table 6.3.5  Forecasted Values for the Aggregate Series when 𝑚=6 
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The  calculated mean square forecast error is 45.64593 which is larger than the mean 

square forecast errors of basic series and aggregate series when 𝑚=3. 

 

6.4 Data Analysis for Aggregated Series when 𝒎=12 

 

The basic series is aggregated for 𝑚=12 by summing twelve consecutive 

observations of the basic series and the data set is consisted of annually observations 

between 1955 and 1992. Since last five observations are used for mean square error, 

33 observations will be used for the data analysis. 

Stationarity condition is satisfied visually since by looking at the time series plot in 

Figure 6.4.1 it can be concluded that mean and dispersion seems to be constant. 

Moreover, no seasonal effect is observed from the time series plot as expected 

because the basic series is aggregated for 𝑚 =12. Since the observations are 

annually, seasonal graph cannot be obtained from E-Views 6. In order to be sure 

about stationarity, Augmented Dickey Fuller test is conducted and the results can be 

seen from Table 6.4.1. 

 

Table 6.4.1 Augmented Dickey Fuller Test for the Aggregate Series when 𝑚=12 

 

 

Table 6.4.1 points out that the series is stationary because 𝑝-value is relatively small. 

Since stationarity condition is also satisfied by Augmented Dickey Fuller test, the 

autocorrelation and partial autocorrelation function plots can be examined. All the 

lags are within critical bands for both of the plots. This means that white noise will 

be fitted for aggregate series when 𝑚=12. Although theoretically aggregated series 
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should follow an ARMA(4,4) model for 𝑚=12, white noise will be used for 

estimation. 

 

 

Figure 6.4.1 Time series, ACF and PACF Plots for the Aggregate Series when 𝑚=12 
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Table 6.4.2  White Noise for the Aggregate Series when 𝑚=12 

 

 

 

Table 6.4.2 shows that intercept parameter is insignificant since the 𝑝-value is 

relatively large. The white noise model will be conducted without intercept and the 

model without intercept is used for diagnostic checks and forecasting. 

 

Figure 6.4.3 shows that there exists no problem with diagnostic checks. The 

standardized residuals do not have an obvious pattern. Also, ACF of Residuals and 

𝑝 values for Ljung-Box statistic reveals that residuals are uncorrelated. 

 

Table 6.4.3 Jarque-Bera Test Results for the Aggregate Series when 𝑚 =12 

 

 

 

As seen from Table 6.4.3, the residuals distributed normally since 𝑝-value is 

relatively large. Also, the 𝑝-value of Shapiro-Wilk normality test equals to 0.7983 

which indicates that residuals have normal distribution. 
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Figure 6.4.2 Diagnostic Check for the Aggregate Series when 𝑚=12 

 

 

Table 6.4.4 Breusch-Pagan Test Results for the Aggregate Series when 𝑚 =12 
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It can be understood that residuals have constant variance by considering the 𝑝-value 

at Table 6.4.4. All of the diagnostic check assumptions are satisfied and forecasting 

can be done for finding mean square forecast error. 

 

Table 6.4.5  Forecasted Values for the Aggregated Series when 𝑚=12 

 

 

All the forecasted values are zero because our model is white noise without intercept. 

 

The mean square error is computed as 100.198 which is the largest mean square error 

value among basic series and aggregated series when 𝑚=3 and 𝑚=6. 

 

6.5 The Summary of Data Analysis 

 

The data set is about the southern oscillation which shows  the difference between 

Tahiti and the Darwin Islands according to barometric pressure. The data set consists 

of monthly observations between 1955 and 1992 which means that data set has 456 

observations. The data set firstly analyzed by using 456 observations. Firstly, the 

model was identified by using 451 observations and the last fifteen observations 

were used for calculating mean square forecast error. An AR(4) model is fitted for 

the basic series. The diagnostic checks which test the uncorrelatedness, normality 

and  homoskedasticity of residuals did not reveal a problem for residuals and so the 

basic AR(4) model was used for forecasting and mean square forecast error was 

obtained for the basic series. Then, the data set was temporally aggregated by 

summing consecutive three observations of the basic series. So, the new data are 
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consisted of quarterly observations between 1955 and 1992 and it has 152 

observations. Last five observations were used for the mean square forecast error and 

the data analysis was conducted according to 147 observations. Theoretically an 

ARMA (4,3) model is expected for the quarterly data set but again an AR(4) model 

which satisfied all diagnostic checks for residuals  was fitted for the aggregate series. 

Although the fitted model is the same as the fitted model of the basic series, the 

estimated parameters and mean square forecast error were changed. The aggregate 

model for quarterly series has worse forecast values compared to the forecast values 

of basic series since the quarterly aggregated series has larger mean square forecast 

error. The data series was also aggregated by summing consecutive six observations 

which means that the data set with monthly observations is converted to a data set 

with semi annually observations. The new aggregate series has 76 observations and 

again last five observations were used for calculating mean square forecast error. The 

data analysis was conducted based on 71 observations and an AR(2) model which 

satisfied all the diagnostic checks was fitted to the series. Again, it was understood 

that theoretical results are not valid since theoretically an ARMA(4,4) model is 

expected for this data set. As seen the fitted model was changed and the mean square 

forecast error based on forecasted values from AR(2) model is larger than both of the 

mean square forecast errors of basic series and the quarterly aggregated series. 

Lastly, the basic series was temporally aggregated by summing consecutive twelve 

observations so the new data set has 38 yearly observations. Again 33 observations 

were used for model fitting and last five observations were used for mean square 

forecast error. It was seen that the new model for the yearly aggregated series was 

white noise although theoretically an ARMA(4,4) model is expected.  Since a white 

noise model without an intercept was fitted all of the forecasted values were equal to 

zero. The yearly aggregated series has the largest mean square forecast error among 

all the series analyzed. In conclusion, it is seen that the mean square forecast error 

increases as the order of aggregation increase. Also, it is seen that theoretically 

introduced temporally aggregate models are not valid for this data set. However, it is 

necessary to state that and the aggregate series for all orders of aggregation were 

stationary with no seasonality effect as theoretically expected since the basic series 

was stationary with no seasonality.  
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CHAPTER 7    

 

CONCLUSION 

 

 

Temporal aggregation can be defined as aggregation over consecutive time periods. 

In time series analysis, temporal aggregation is important since a totally different 

model can be fitted which gives worse forecasts than the forecasts obtained by the 

basic series for observations of the same variable over time periods. Temporal 

aggregation is preferred because simpler models which have more clear comments  

can be obtained by temporal aggregation. However, a scientist should be aware of the 

effects of temporal aggregation on the data set. In some countries, we cannot see a 

study about the temporal aggregation and our aim is to introduce the temporal 

aggregation concept and its effects to scientific researchers. Our study can be a 

reference for further research about the importance of using nonaggregate series. 

 

The study focuses on the effects of temporal aggregation on univariate time series 

and discusses how the model, parameter estimates and mean square forecast errors 

change, when temporally aggregated data are  used instead of basic series. In order to 

understand the temporal aggregation effect theoretically, the univariate time series 

models are introduced with their autocorrelation and partial autocorrelation 

functions. The summary of how the autocorrelation and partial autocorrelation 

behave for the univariate time series can be seen from Table 7.1. 

 

Based on the autocovariance function of univariate series, it is found that how the 

model changes when the series is temporally aggregated. The calculations for finding 

the temporal aggregate models for autoregressive, moving average and 

autoregressive moving average processes discussed through this study. 
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Also, the summary of how the model changes theoretically when the series is 

aggregated can be seen from Table 7.2 (𝑚 is the order of aggregation and  𝑥  is used 

to denote the integer part of 𝑥)  

 

 

 

Table 7.1 The ACF and PACF Patterns for Univariate Time series 

 

Process ACF PACF 

AR(𝑝) 
Shows exponential or 

oscillating decay 
Cuts-off after lag p 

MA(𝑞) Cuts-off after lag 𝑞 
Shows exponential or 

oscillating decay 

ARMA(𝑝, 𝑞) 
Decays exponentially or 

oscillatory after lag 𝑞 

Shows exponential or 

oscillating decay 𝑝 

 

 

 

Table 7.2 Temporal Aggregate Models for Univariate Time series 

 

Basic Model Temporal Aggregate Model 

AR(𝑝) ARMA(𝑝,  
 𝑚−1 (𝑝+1)

𝑚
 ) 

MA(𝑞) MA( 1 +
(𝑞−1)

𝑚
 ) 

ARMA(𝑝, 𝑞) ARMA(𝑝,  𝑝 + 1 +
𝑞−𝑝−1

𝑚
  

 

 

After theoretical expressions through a simulation study, the effect of temporal 

aggregation on real data is discussed and comparison between the theoretical and the 

observed model fit are presented. Simulation study is based on the article of Teles, 

Wei and Hodges (2008).  
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They developed a simulation study which shows the frequencies of best fitted 

aggregated models based on Akaike’s information criteria for basic AR(1) model for 

a near unit root case. They gave the results for 𝑛=240 and basic model parameters 

close to unit root when 𝑚 = 4, 𝑚 = 6 and 𝑚 = 12. The simulation study in this thesis 

is more comprehensive, because the frequencies of the best fitted aggregate models 

not only based on Akaike’s information criterion. The significance of the aggregate 

model parameters are taken into consideration and if two or more models fitted to the 

aggregate series, model which has smaller Akaike’s information criterion is selected. 

The frequency tables for the best fitted aggregate series are presented for basic 

AR(1), AR(2), MA(1), MA(2) and ARMA(1,1). The basic model parameter values 

are not only the values close to unit root, they are selected in a wide range. Also, the 

orders of aggregation are taken as three, six and twelve because in real life the data 

sets are generally aggregated quarterly, semi annually and annually. The simulation 

studies are conducted for the sample sizes 120, 300 and 900 to see how sample size 

affects the temporal aggregation. Furthermore, mean square forecast error and 

parameter estimate tables are given apart from frequency tables. Mean square 

forecast error tables show the average mean square forecast error values based on the 

frequencies. Similarly, parameter estimate tables show the average parameter 

estimate values based on the frequencies. Basically simulation results reveal that 

 

 Frequently the best fitted model for the aggregate series is generally different 

from the basic model and different models are fitted depending on the sample 

size and order of aggregation. The change of the fitted models can be seen 

more apparently for large orders of aggregation and small sample sizes. 

 

 The mean square forecast errors belong to best fitted aggregate models are 

larger than mean square forecast error belong to basic series. This indicates 

that forecasted values for the aggregate series worse than the forecasted 

values for the basic series. Also, it is seen that as order of aggregation 

increases the mean square forecast errors increase. 
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 The parameter estimates show that different parameters are estimated for 

different orders of aggregation and sample sizes. The theoretical results for 

the parameter estimation which take place Chapter 2, 3 and 4 cannot be 

observed in the simulation study. 

 

The detail information about the simulation study can be seen from Chapter 5. 

 

Also, a real life data set is analyzed to see the effect of temporal aggregation on 

model structure, parameter estimation and forecasting. A data set about the southern 

oscillation is selected. The data set is consisted of 456 monthly observations between 

the years 1955 and 1992. Firstly, data is analyzed without making any aggregation. 

An AR(4) model which satisfies all the diagnostic checks for residuals is fitted by 

using 441 observations and last fifteen observations are used for calculating mean 

square forecast error. Then, the data set is aggregated by summing consecutive three 

observations and the new data set consists of quarterly observations between years 

1955 and 1992. Although theoretically an ARMA(4,3) model is expected for the data 

series, an AR(4) model which satisfies all residual diagnostic checks is fitted with 

147 observations and last five observations are used for calculating mean square 

forecast error. The fitted model is the same as with the fitted model of the basic data 

set but the parameter estimates and mean square forecast error change. The mean 

square forecast error is larger than the mean square forecast error of basic series. The 

data set is also aggregated by summing six consecutive observations of the basic data 

set and the new data set is consisted of semi annually observations between years 

1955 and 1992. Although an ARMA(4,4) model is expected for the data set, an 

AR(2) model which satisfies all the diagnostic checks for residuals is fitted by using 

71 observations and last five observations are used for mean square forecast error. 

The mean square forecast error is larger than the mean square forecast errors of basic 

and quarterly aggregate series. Finally, the data set is aggregated by summing 

consecutive twelve observations and the new data set is consisted of annually 38 

observations. Theoretically, an ARMA(4,4) model is expected for the data set but the 

fitted model is white noise.  
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Since a white noise model without an intercept is fitted, all of the five forecasted 

values are equal to zero and the mean square forecast error belongs to annually 

aggregated data set is the largest mean square forecast error. Also by data analysis, it 

is seen that as the order of aggregation increases, the mean square forecast error 

increases. Furthermore, it is understood that  theoretical results may not be always 

valid for the application. The details about the data analysis can be seen from 

Chapter 6. 

 

Finally, temporal aggregation subject needs more investigation since the studies 

related to this subject are limited. Especially, in some countries there exists no 

studies about temporal aggregation and we hope this study can be a reference about 

temporal aggregation. This thesis study focuses on the effects of temporal 

aggregation on univariate time series and in the future the effects of temporal 

aggregation on multivariate time series can be investigated. Also, in order to prevent 

the information loss occurred because of aggregation, disaggregation methods  can 

be studied for both univariate and multivariate time series.  
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APPENDIX A 

 

R CODES FOR AR(1) SIMULATION 

 

 

cat("\n","Enter order of aggregation,sample size,phi value","\n") 

pp<-scan(n=3)  

oa<-pp[1] 

size<-pp[2] 

par<-pp[3] 

cwp <- function (object){ 

# 

# cwp <--> ``coefficients with p-values'' 

# 

     coef <- coef(object) 

     if (length(coef) > 0) { 

         mask <- object$mask 

         sdev <- sqrt(diag(vcov(object))) 

         t.rat <- rep(NA, length(mask)) 

         t.rat[mask] <- coef[mask]/sdev 

         pt <- 2 * pnorm(-abs(t.rat)) 

         setmp <- rep(NA, length(mask)) 

         setmp[mask] <- sdev 

         sum <- rbind(coef, setmp, t.rat, pt) 

         dimnames(sum) <- list(c("coef", "s.e.", "t ratio", "p-value"), 

             names(coef)) 

         return(sum) 

     } else return(NA) 

 

} 

count1<-function(object){            #function for AR(1) model# 

fit1.pred<-predict(object,n.ahead=5) 

error1=0 

for(m in 1:5){ 

error1=error1+(simag.ar1[(size/oa)-5+m]-fit1.pred$pred[m])^2 

} 

meanerror1=error1/5
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c[1]=c[1]+cwp(object)[1,1]   

x<-c(1,meanerror1,c[1]) 

return(x) 

} 

 

count2<-function(object){          # function for ARMA(1,1) model # 

fit2.pred<-predict(object,n.ahead=5) 

error2=0 

for(m in 1:5){ 

error2=error2+(simag.ar1[(size/oa)-5+m]-fit2.pred$pred[m])^2 

} 

meanerror2=error2/5 

c[2]=c[2]+cwp(object)[1,1] 

c[3]=c[3]+cwp(object)[1,2] 

y<-c(1,meanerror2,c[2],c[3]) 

return(y) 

} 

count3<-function(object){           # function for AR(2) model # 

fit3.pred<-predict(object,n.ahead=5) 

error3=0 

for(m in 1:5){ 

error3=error3+(simag.ar1[(size/oa)-5+m]-fit3.pred$pred[m])^2 

} 

meanerror3=error3/5 

if(cwp(object)[4,1]<0.05) c[4]=c[4]+cwp(object)[1,1] 

c[5]=c[5]+cwp(object)[1,2] 

z<-c(1,meanerror3,c[4],c[5]) 

return(z) 

} 

count4<-function(object){    # function for AR(3) model # 

fit4.pred<-predict(object,n.ahead=5) 

error4=0 

for(m in 1:5){ 

error4=error4+(simag.ar1[(size/oa)-5+m]-fit4.pred$pred[m])^2 

} 

meanerror4=error4/5 

if(cwp(object)[4,1]<0.05) c[6]=c[6]+cwp(object)[1,1] 

if(cwp(object)[4,2]<0.05) c[7]=c[7]+cwp(object)[1,2] 

c[8]=c[8]+cwp(object)[1,3] 

w<-c(1,meanerror4,c[6],c[7],c[8]) 

return(w) 

} 
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count5<-function(object){      # function for AR(4) model # 

fit5.pred<-predict(fit5,n.ahead=5) 

error5=0 

for(m in 1:5){ 

error5=error5+(simag.ar1[(size/oa)-5+m]-fit5.pred$pred[m])^2 

} 

meanerror5=error5/5 

if(cwp(object)[4,1]<0.05) c[9]=c[9]+cwp(object)[1,1] 

if(cwp(object)[4,2]<0.05) c[10]=c[10]+cwp(object)[1,2] 

if(cwp(object)[4,3]<0.05) c[11]=c[11]+cwp(object)[1,3] 

c[12]=c[12]+cwp(object)[1,4] 

t<-c(1,meanerror5,c[9],c[10],c[11],c[12]) 

return(t) 

} 

c<-mat.or.vec(12,1) ; x2<-mat.or.vec(3,1) ; y2<-mat.or.vec(4,1) ; z2<-

mat.or.vec(4,1) ; w2<-mat.or.vec(5,1) ; t2<-mat.or.vec(6,1) 

f<-0;g<-0;summeanerror0<-0;summeanerror6<-0;q<-1000;a<-0 

ssim.ar1<-c();ssimag.ar1<-c() 

for(j in 1:3){ 

while(q>0){ 

for(i in 1:q){ 

sim.ar1<-arima.sim(list(ar=c(par)),n=size)  # AR(1) basic series # 

for(j in 1:size-15){ 

ssim.ar1[j]=sim.ar1[j] 

} 

fit0<-arima(ssim.ar1,order=c(1,0,0)) # AR(1) basic fitted model # 

a<-a+1 

fit0.pred<-predict(fit0,n.ahead=15) 

error0=0 

for(m in 1:15){ 

error0=error0+(sim.ar1[size-15+m]-fit0.pred$pred[m])^2 

} 

meanerror0=error0/15 

summeanerror0=summeanerror0+meanerror0 

k<-matrix(sim.ar1,nrow=oa) 

simag.ar1<-apply(k,2,sum)   # aggregate series# 

for(j in 1:(size/oa)-5){ 

ssimag.ar1[j]=simag.ar1[j] 

} 

fit1<-try(arima(ssimag.ar1,order=c(1,0,0)),TRUE)  # AR(1) aggregate fitted model # 

fit2<-try(arima(ssimag.ar1,order=c(1,0,1)),TRUE) # ARMA(1,1) agg. fitted model # 

fit3<-try(arima(ssimag.ar1,order=c(2,0,0)),TRUE) # AR(2) aggregate fitted model #  
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fit4<-try(arima(ssimag.ar1,order=c(3,0,0)),TRUE) # AR(3) aggregate fitted model # 

fit5<-try(arima(ssimag.ar1,order=c(4,0,0)),TRUE) # AR(4) aggregate fitted model # 

fit6<-try(arima(ssimag.ar1,order=c(0,0,0)),TRUE) # WN aggregate fitted model # 

if(!inherits(fit1,"try-error") && !inherits(fit2,"try-error") && !inherits(fit3,"try-

error") && !inherits(fit4,"try-error") && !inherits(fit5,"try-error") && 

!inherits(fit6,"try-error")){ 

aic<-c(fit1$aic,fit2$aic,fit3$aic,fit4$aic,fit5$aic) 

if(!is.na(cwp(fit1)[4,1]) && !is.na(cwp(fit2)[4,1]) && !is.na(cwp(fit2)[4,2]) && 

!is.na(cwp(fit3)[4,1]) && !is.na(cwp(fit3)[4,2]) && !is.na(cwp(fit4)[4,1]) && 

!is.na(cwp(fit4)[4,2]) && !is.na(cwp(fit4)[4,3]) && !is.na(cwp(fit5)[4,1]) && 

!is.na(cwp(fit5)[4,2]) && !is.na(cwp(fit5)[4,3]) && !is.na(cwp(fit5)[4,4])){ 

 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]<0.05){# all models# 

if(min(aic) == fit1$aic ) x2=x2+count1(fit1) 

if(min(aic) == fit2$aic ) y2=y2+count2(fit2) 

if(min(aic) == fit3$aic ) z2=z2+count3(fit3) 

if(min(aic) == fit4$aic ) w2=w2+count4(fit4) 

if(min(aic) == fit5$aic ) t2=t2+count5(fit5) 

}else 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]>0.05){#not AR(4)# 

if(fit1$aic < fit2$aic && fit1$aic < fit3$aic && fit1$aic < fit4$aic) 

x2=x2+count1(fit1) 

if(fit2$aic < fit1$aic && fit2$aic < fit3$aic && fit2$aic < fit4$aic) 

y2=y2+count2(fit2) 

if(fit3$aic < fit1$aic && fit3$aic < fit2$aic && fit3$aic < fit4$aic) 

z2=z2+count3(fit3) 

if(fit4$aic < fit1$aic && fit4$aic < fit2$aic && fit4$aic < fit3$aic) 

w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]<0.05){#not AR(3)# 

if(fit1$aic < fit2$aic && fit1$aic < fit3$aic && fit1$aic < fit5$aic) 

x2=x2+count1(fit1) 

if(fit2$aic < fit1$aic && fit2$aic < fit3$aic && fit2$aic < fit5$aic) 

y2=y2+count2(fit2) 

if(fit3$aic < fit1$aic && fit3$aic < fit2$aic && fit3$aic < fit5$aic) 

z2=z2+count3(fit3) 

if(fit5$aic < fit1$aic && fit5$aic < fit2$aic && fit5$aic < fit3$aic) 

t2=t2+count5(fit5) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]<0.05){#not AR(1)# 
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if(fit2$aic<fit3$aic && fit2$aic<fit4$aic && fit2$aic<fit5$aic) y2=y2+count2(fit2) 

if(fit3$aic<fit2$aic && fit3$aic<fit4$aic && fit3$aic<fit5$aic) z2=z2+count3(fit3) 

if(fit4$aic<fit2$aic && fit4$aic<fit3$aic && fit4$aic<fit5$aic) w2=w2+count4(fit4) 

if(fit5$aic<fit2$aic && fit5$aic<fit3$aic && fit5$aic<fit4$aic) t2=t2+count5(fit5) 

}else 

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1] > 0.05 || cwp(fit2)[4,2] > 0.05) && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]<0.05){#not 

ARMA(1,1) # 

if(fit1$aic < fit3$aic && fit1$aic < fit4$aic && fit1$aic<fit5$aic) 

x2=x2+count1(fit1) 

if(fit3$aic < fit1$aic && fit3$aic < fit4$aic && fit3$aic<fit5$aic) 

z2=z2+count3(fit3) 

if(fit4$aic < fit1$aic && fit4$aic < fit3$aic && fit4$aic<fit5$aic) 

w2=w2+count4(fit4) 

if(fit5$aic < fit1$aic && fit5$aic < fit3$aic && fit5$aic<fit4$aic) t2=t2+count5(fit5) 

}else 

 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]<0.05){# not AR(2)# 

if(fit1$aic<fit2$aic && fit1$aic<fit4$aic && fit1$aic<fit5$aic) x2=x2+count1(fit1) 

if(fit2$aic<fit1$aic && fit2$aic<fit4$aic && fit2$aic<fit5$aic) y2=y2+count2(fit2) 

if(fit4$aic<fit1$aic && fit4$aic<fit2$aic && fit4$aic<fit5$aic) w2=w2+count4(fit4) 

if(fit5$aic<fit1$aic && fit5$aic<fit2$aic && fit5$aic<fit4$aic) t2=t2+count5(fit5) 

}else 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]>0.05){#not AR(3), 

AR(4)# 

if(fit1$aic<fit2$aic && fit1$aic<fit3$aic) x2=x2+count1(fit1) 

if(fit2$aic<fit1$aic && fit2$aic<fit3$aic) y2=y2+count2(fit2) 

if(fit3$aic<fit1$aic && fit3$aic<fit2$aic) z2=z2+count3(fit3) 

}else 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]>0.05){ ){#not 

AR(2), AR(4)# 

if(fit1$aic<fit2$aic && fit1$aic<fit4$aic) x2=x2+count1(fit1) 

if(fit2$aic<fit1$aic && fit2$aic<fit4$aic) y2=y2+count2(fit2) 

if(fit4$aic<fit1$aic && fit4$aic<fit2$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]<0.05){ ){#not 

AR(2), AR(3)# 

if(fit1$aic<fit2$aic && fit1$aic<fit5$aic) x2=x2+count1(fit1) 

if(fit2$aic<fit1$aic && fit2$aic<fit5$aic) y2=y2+count2(fit2) 

if(fit5$aic<fit1$aic && fit5$aic<fit2$aic) t2=t2+count5(fit5) 
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}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]>0.05){ ){#not 

AR(1), AR(4)# 

if(fit2$aic<fit3$aic && fit2$aic<fit4$aic) x2=x2+count1(fit1) 

if(fit3$aic<fit2$aic && fit3$aic<fit4$aic) z2=z2+count3(fit3) 

if(fit4$aic<fit2$aic && fit4$aic<fit3$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]<0.05){ ){#not 

AR(1), AR(3)# 

if(fit2$aic<fit3$aic && fit2$aic<fit5$aic) y2=y2+count2(fit2) 

if(fit3$aic<fit2$aic && fit3$aic<fit5$aic) z2=z2+count3(fit3) 

if(fit5$aic<fit2$aic && fit5$aic<fit3$aic) t2=t2+count5(fit5) 

}else 

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]>0.05){ ){ #not 

ARMA(1,1), AR(4)# 

if(fit1$aic<fit3$aic && fit1$aic<fit4$aic) x2=x2+count1(fit1) 

if(fit3$aic<fit1$aic && fit3$aic<fit4$aic) z2=z2+count3(fit3) 

if(fit4$aic<fit1$aic && fit4$aic<fit3$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]<0.05){ #not 

ARMA(1,1), AR(3)# 

if(fit1$aic<fit3$aic && fit1$aic<fit5$aic) x2=x2+count1(fit1) 

if(fit3$aic<fit1$aic && fit3$aic<fit5$aic) z2=z2+count3(fit3) 

if(fit5$aic<fit1$aic && fit5$aic<fit3$aic) t2=t2+count5(fit5) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]<0.05){ #not AR(1), 

AR(3)# 

if(fit2$aic<fit4$aic && fit2$aic<fit5$aic) y2=y2+count2(fit2) 

if(fit4$aic<fit2$aic && fit4$aic<fit5$aic) w2=w2+count4(fit4) 

if(fit5$aic<fit2$aic && fit5$aic<fit4$aic) t2=t2+count5(fit5) 

}else 

if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]<0.05){ #not AR(1), 

ARMA(1,1)# 

if(fit3$aic<fit4$aic && fit3$aic<fit5$aic) z2=z2+count3(fit3) 

if(fit4$aic<fit3$aic && fit4$aic<fit5$aic) w2=w2+count4(fit4) 

if(fit5$aic<fit3$aic && fit5$aic<fit4$aic) t2=t2+count5(fit5) 

}else 
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if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]<0.05){ 

if(fit1$aic<fit4$aic && fit1$aic<fit5$aic) x2=x2+count1(fit1) 

if(fit4$aic<fit1$aic && fit4$aic<fit5$aic) w2=w2+count4(fit4) 

if(fit5$aic<fit1$aic && fit5$aic<fit4$aic) t2=t2+count5(fit5) 

}else 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]>0.05){ # AR(1), 

ARMA (1,1) # 

if(fit1$aic<fit2$aic) x2=x2+count1(fit1) 

if(fit2$aic<fit1$aic) y2=y2+count2(fit2) 

}else 

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]>0.05){# AR(1), 

AR(2) # 

if(fit1$aic<fit3$aic) x2=x2+count1(fit1) 

if(fit3$aic<fit1$aic) z2=z2+count3(fit3) 

}else  

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]>0.05){ ){# AR(1), 

AR(3) # 

if(fit1$aic<fit4$aic) x2=x2+count1(fit1) 

if(fit4$aic<fit1$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]<0.05){ ){# AR(1), 

AR(4) # 

if(fit1$aic<fit5$aic) x2=x2+count1(fit1) 

if(fit5$aic<fit1$aic) t2=t2+count5(fit5) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]>0.05){ # 

ARMA(1,1), AR(2) # 

if(fit2$aic<fit3$aic) y2=y2+count2(fit2) 

if(fit3$aic<fit2$aic) z2=z2+count3(fit3) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]>0.05){ 

#ARMA(1,1) , AR(3) # 

if(fit2$aic<fit4$aic) y2=y2+count2(fit2) 

if(fit4$aic<fit2$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]<0.05){ ){ 
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# ARMA(1,1), AR(4) # 

if(fit2$aic<fit5$aic) y2=y2+count2(fit2) 

if(fit5$aic<fit2$aic) t2=t2+count5(fit5) 

}else 

if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]>0.05){# AR(2) , 

AR(3) # 

if(fit3$aic<fit4$aic) z2=z2+count3(fit3) 

if(fit4$aic<fit3$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]<0.05){# AR(2), 

AR(4) # 

if(fit3$aic<fit5$aic) z2=z2+count3(fit3) 

if(fit5$aic<fit3$aic) t2=t2+count5(fit5) 

}else 

if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]<0.05){ # AR(3), 

AR(4) # 

if(fit4$aic<fit5$aic) w2=w2+count4(fit4) 

if(fit5$aic<fit4$aic) t2=t2+count5(fit5) 

}else 

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]>0.05){ # AR(1) # 

x2=x2+count1(fit1) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]>0.05){ # 

ARMA(1,1) # 

y2=y2+count2(fit2) 

}else 

if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]>0.05){ # AR(2) # 

z2=z2+count3(fit3) 

}else 

if(cwp(fit1)[4,1]>0.05 &&(cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]<0.05 && cwp(fit5)[4,4]>0.05){ # AR(3) # 

w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]<0.05){ # AR(4) # 

t2=t2+count5(fit5) 

}else 



 

126 
 

if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,3]>0.05 && cwp(fit5)[4,4]>0.05){ # WN# 

f=f+1 

fit6.pred<-predict(fit6,n.ahead=5) 

error6=0 

for(m in 1:5){ 

error6=error6+(simag.ar1[(size/oa)-5+m]-fit6.pred$pred[m])^2 

} 

meanerror6=error6/5 

summeanerror6=summeanerror6+meanerror6 

}else 

g=g+1 

} 

} 

} 

q=1000-(x2[1]+y2[1]+z2[1]+w2[1]+t2[1]+f+g) 

} 

} 

f1=x2[1] # frequency of aggregate AR(1) # 

f2=y2[1] # frequency of aggregate ARMA(1,1) # 

f3=z2[1] # frequency of aggregate AR(2) # 

f4=w2[1] # frequency of aggregate AR(3) # 

f5=t2[1] # frequency of aggregate AR(4) # 

f6=f #frequency of WN # 

f7=g # check whether g is equal to zero or not # 

 

meanmeanerror0<-summeanerror0/a # MSE of basic model# 

meanmeanerror1<-x2[2]/x2[1] # MSE of aggregate AR(1) model # 

meanmeanerror2<-y2[2]/y2[1] # MSE of aggregate ARMA(1,1) model # 

meanmeanerror3<-z2[2]/z2[1]  # MSE of aggregate AR(2) model # 

meanmeanerror4<-w2[2]/w2[1] # MSE of aggregate AR(3) model # 

meanmeanerror5<-t2[2]/t2[1] # MSE of aggregate AR(4) model # 

meanmeanerror6<-summeanerror6/f # MSE of aggregate WN model # 

 

coef1 <- x2[3]/x2[1] # coefficient of AR(1) model # 

coef2 <- y2[3]/y2[1] ; coef3 <- y2[4]/y2[1] # coefficients of ARMA(1,1) model # 

coef4 <- z2[3]/z2[1] ; coef5 <- z2[4]/z2[1] # coefficients of AR(2) model # 

coef6 <- w2[3]/w2[1] ; coef7 <- w2[4]/w2[1] ; coef8 <- w2[5]/w2[1] # coefficients 

of AR(3) model # 

coef9 <- t2[3]/t2[1]; coef10 <- t2[4]/t2[1]; coef11 <- t2[5]/t2[1]; coef12 <- t2[6]/t2[1] 

# coefficients of AR(4) model # 
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APPENDİX B 

 

R CODES FOR AR(2) SIMULATION 

 

 

cat("\n","Enter order of aggregation,sample size,phi values","\n") 

pp<-scan(n=4)  

 

oa<-pp[1] 

size<-pp[2] 

par1<-pp[3] 

par2<-pp[4] 

 

cwp <- function (object){ 

# 

# cwp <--> ``coefficients with p-values'' 

# 

     coef <- coef(object) 

     if (length(coef) > 0) { 

         mask <- object$mask 

         sdev <- sqrt(diag(vcov(object))) 

         t.rat <- rep(NA, length(mask)) 

         t.rat[mask] <- coef[mask]/sdev 

         pt <- 2 * pnorm(-abs(t.rat)) 

         setmp <- rep(NA, length(mask)) 

         setmp[mask] <- sdev 

         sum <- rbind(coef, setmp, t.rat, pt) 

         dimnames(sum) <- list(c("coef", "s.e.", "t ratio", "p-value"), 

             names(coef)) 

         return(sum) 

     } else return(NA) 

} 

count1<-function(object){ # function for aggregate AR(1) model # 

fit1.pred<-predict(object,n.ahead=5) 

error1=0 

for(m in 1:5){ 

error1=error1+(simag.ar1[((size/oa)-5)+m]-fit1.pred$pred[m])^2



 

128 
 

} 

meanerror1=error1/5 

c[1]=c[1]+cwp(object)[1,1] 

x<-c(1,meanerror1,c[1]) 

return(x) 

} 

count2<-function(object){ # function for  aggregate ARMA(1,1) model # 

fit2.pred<-predict(object,n.ahead=5) 

error2=0 

for(m in 1:5){ 

error2=error2+(simag.ar1[((size/oa)-5)+m]-fit2.pred$pred[m])^2 

} 

meanerror2=error2/5 

c[2]=c[2]+cwp(object)[1,1] 

c[3]=c[3]+cwp(object)[1,2] 

y<-c(1,meanerror2,c[2],c[3]) 

return(y) 

} 

count3<-function(object){ # function for aggregate AR(2) model # 

fit3.pred<-predict(object,n.ahead=5) 

error3=0 

for(m in 1:5){ 

error3=error3+(simag.ar1[((size/oa)-5)+m]-fit3.pred$pred[m])^2 

} 

meanerror3=error3/5 

if(cwp(object)[4,1]<0.05) c[4]=c[4]+cwp(object)[1,1] 

c[5]=c[5]+cwp(object)[1,2] 

z<-c(1,meanerror3,c[4],c[5]) 

return(z) 

} 

count4<-function(object){ # function for ARMA(2,2) model # 

fit4.pred<-predict(object,n.ahead=5) 

error4=0 

for(m in 1:5){ 

error4=error4+(simag.ar1[((size/oa)-5)+m]-fit4.pred$pred[m])^2 

} 

meanerror4=error4/5 

if(cwp(object)[4,1]<0.05) c[6]=c[6]+cwp(object)[1,1] 

if(cwp(object)[4,3]<0.05) c[8]=c[8]+cwp(object)[1,3] 

c[7]=c[7]+cwp(object)[1,2] 

c[9]=c[9]+cwp(object)[1,4] 

w<-c(1,meanerror4,c[6],c[7],c[8],c[9]) 



 

129 
 

return(w) 

} 

c<-mat.or.vec(9,1) ; x2<-mat.or.vec(3,1) ; y2<-mat.or.vec(4,1) ; z2<-mat.or.vec(4,1) 

; w2<-mat.or.vec(6,1)  

f<-0;g<-0;summeanerror0<-0;summeanerror6<-0;q<-1000;a<-0 

ssim.ar1<-c();ssimag.ar1<-c() 

for(j in 1:3){ 

while(q>0){ 

for(i in 1:q){ 

sim.ar1<-arima.sim(list(ar=c(par1,par2)),n=size) # AR(2) basic series # 

for(j in 1:(size-15)){ 

ssim.ar1[j]=sim.ar1[j] 

} 

fit0<-arima(ssim.ar1,order=c(2,0,0)) # AR(2) basic fitted model # 

a<-a+1 

fit0.pred<-predict(fit0,n.ahead=15) 

error0=0 

for(m in 1:15){ 

error0=error0+(sim.ar1[(size-15)+m]-fit0.pred$pred[m])^2 

} 

meanerror0=error0/15 

summeanerror0=summeanerror0+meanerror0 

k<-matrix(sim.ar1,nrow=oa) 

simag.ar1<-apply(k,2,sum) # aggregated series # 

for(j in 1:((size/oa)-5)){ 

ssimag.ar1[j]=simag.ar1[j] 

} 

fit1<-try(arima(ssimag.ar1,order=c(1,0,0)),TRUE) # Aggregate AR(1) fit # 

fit2<-try(arima(ssimag.ar1,order=c(1,0,1)),TRUE) # Aggregate ARMA(1,1) fit # 

fit3<-try(arima(ssimag.ar1,order=c(2,0,0)),TRUE) # Aggregate AR(2) fit # 

fit4<-try(arima(ssimag.ar1,order=c(2,0,2)),TRUE) # Aggregate ARMA(2,2) fit # 

fit6<-try(arima(ssimag.ar1,order=c(0,0,0)),TRUE) # Aggregate WN fit # 

 

if(!inherits(fit1,"try-error") && !inherits(fit2,"try-error") && !inherits(fit3,"try-

error") && !inherits(fit4,"try-error") && !inherits(fit6,"try-error")){ 

aic<-c(fit1$aic,fit2$aic,fit3$aic,fit4$aic) 

if(!is.na(cwp(fit1)[4,1]) && !is.na(cwp(fit2)[4,1]) && !is.na(cwp(fit2)[4,2]) && 

!is.na(cwp(fit3)[4,1]) && !is.na(cwp(fit3)[4,2]) && !is.na(cwp(fit4)[4,1]) && 

!is.na(cwp(fit4)[4,2]) && !is.na(cwp(fit4)[4,3]) && !is.na(cwp(fit4)[4,4])){ 

 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){ #all models# 

if(min(aic) == fit1$aic ) x2=x2+count1(fit1) 
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if(min(aic) == fit2$aic ) y2=y2+count2(fit2) 

if(min(aic) == fit3$aic ) z2=z2+count3(fit3) 

if(min(aic) == fit4$aic ) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){ # not 

ARMA(2,2) # 

if(fit1$aic < fit2$aic && fit1$aic < fit3$aic) x2=x2+count1(fit1) 

if(fit2$aic < fit1$aic && fit2$aic < fit3$aic) y2=y2+count2(fit2) 

if(fit3$aic < fit1$aic && fit3$aic < fit2$aic) z2=z2+count3(fit3) 

}else 

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){ #not 

ARMA(1,1) # 

if(fit1$aic < fit3$aic && fit1$aic < fit4$aic) x2=x2+count1(fit1) 

if(fit3$aic < fit1$aic && fit3$aic < fit4$aic) z2=z2+count3(fit3) 

if(fit4$aic < fit1$aic && fit4$aic < fit3$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){ #not AR(1)# 

if(fit2$aic<fit3$aic && fit2$aic<fit4$aic) y2=y2+count2(fit2) 

if(fit3$aic<fit2$aic && fit3$aic<fit4$aic) z2=z2+count3(fit3) 

if(fit4$aic<fit2$aic && fit4$aic<fit3$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1] < 0.05 && cwp(fit2)[4,2] <0.05 && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){ #not AR(2)# 

if(fit1$aic < fit2$aic && fit1$aic < fit4$aic) x2=x2+count1(fit1) 

if(fit2$aic < fit1$aic && fit2$aic < fit4$aic) y2=y2+count2(fit2) 

if(fit4$aic < fit1$aic && fit4$aic < fit2$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]>0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){# AR(1), 

ARMA(1,1) # 

if(fit1$aic<fit2$aic) x2=x2+count1(fit1) 

if(fit2$aic<fit1$aic) y2=y2+count2(fit2) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){#ARMA(1,1) , 

AR(2) # 

if(fit2$aic<fit3$aic) y2=y2+count2(fit2) 

if(fit3$aic<fit2$aic) z2=z2+count3(fit3) 

}else 

if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){ 
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# AR(2) , ARMA (2,2) # 

if(fit3$aic<fit4$aic) z2=z2+count3(fit3) 

if(fit4$aic<fit3$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){ # AR(1) , 

AR(2) # 

if(fit1$aic<fit3$aic) x2=x2+count1(fit1) 

if(fit3$aic<fit1$aic) z2=z2+count3(fit3) 

}else 

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){ # AR(1), 

ARMA(1,1) # 

if(fit1$aic<fit4$aic) x2=x2+count1(fit1) 

if(fit4$aic<fit1$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){ # 

ARMA(1,1) , ARMA (2,2) # 

if(fit2$aic<fit4$aic) y2=y2+count2(fit2) 

if(fit4$aic<fit2$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){ # AR(1) # 

x2=x2+count1(fit1) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]>0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){#ARMA(1,1)# 

y2=y2+count2(fit2) 

}else 

if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){ # AR(2) # 

z2=z2+count3(fit3) 

}else 

if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 &&cwp(fit4)[4,2]<0.05 &&cwp(fit4)[4,4]<0.05){#ARMA(2,2)# 

w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){ #WN# 

f=f+1 

fit6.pred<-predict(fit6,n.ahead=5) 

error6=0 

for(m in 1:5){ 
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error6=error6+(simag.ar1[((size/oa)-5)+m]-fit6.pred$pred[m])^2 

} 

meanerror6=error6/5 

summeanerror6=summeanerror6+meanerror6 

}else 

g=g+1 

} 

} 

} 

q=1000-(x2[1]+y2[1]+z2[1]+w2[1]+f+g) 

} 

} 

 

 

f1=x2[1]     # frequency of aggregate AR(1) model # 

f2=y2[1]     # frequency of aggregate ARMA(1,1) model # 

f3=z2[1]    # frequency of aggregate AR(2) model # 

f4=w2[1]   # frequency of aggregate ARMA(1,1) model # 

f6=f      # frequency of aggregate WN model # 

f7=g     # to control whether g is equal to zero or not # 

 

meanmeanerror0<-summeanerror0/a  # MSE of aggregate AR(1) model # 

meanmeanerror1<-x2[2]/x2[1]           # MSE of aggregate ARMA(1,1) model # 

meanmeanerror2<-y2[2]/y2[1]           # MSE of aggregate AR(2) model # 

meanmeanerror3<-z2[2]/z2[1]           # MSE of aggregate ARMA(1,1) model # 

meanmeanerror4<-w2[2]/w2[1]         # MSE of aggregate WN model # 

meanmeanerror6<-summeanerror6/f  # MSE of aggregate WN model # 

 

coef1 <- x2[3]/x2[1] # coefficient of aggregate AR(1) model # 

coef2 <- y2[3]/y2[1] ; coef3 <- y2[4]/y2[1] # coefficients of aggregate ARMA(1,1) 

model # 

coef4 <- z2[3]/z2[1] ; coef5 <- z2[4]/z2[1] #coefficients of aggregate AR(2) model # 

coef6 <- w2[3]/w2[1] ; coef7 <- w2[4]/w2[1] ; coef8 <- w2[5]/w2[1] ; coef9 <- 

w2[6]/w2[1]    # coefficients of aggregate ARMA(2,2) model # 
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APPENDIX C 

 

R CODES FOR MA(1) SIMULATON 

 

 

cat("\n","Enter order of aggregation,sample size,theta value","\n") 

pp<-scan(n=3)  

 

oa<-pp[1] 

size<-pp[2] 

par<-pp[3] 

 

cwp <- function (object){ 

# 

# cwp <--> ``coefficients with p-values'' 

# 

     coef <- coef(object) 

     if (length(coef) > 0) { 

         mask <- object$mask 

         sdev <- sqrt(diag(vcov(object))) 

         t.rat <- rep(NA, length(mask)) 

         t.rat[mask] <- coef[mask]/sdev 

         pt <- 2 * pnorm(-abs(t.rat)) 

         setmp <- rep(NA, length(mask)) 

         setmp[mask] <- sdev 

         sum <- rbind(coef, setmp, t.rat, pt) 

         dimnames(sum) <- list(c("coef", "s.e.", "t ratio", "p-value"), 

             names(coef)) 

         return(sum) 

     } else return(NA) 

} 

 

count1<-function(object){ # function for aggregate MA(1) model # 

fit1.pred<-predict(object,n.ahead=5) 

error1=0 

for(m in 1:5){ 

error1=error1+(simag.ma1[((size/oa)-5)+m]-fit1.pred$pred[m])^2
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} 

meanerror1=error1/5 

c[1]=c[1]+cwp(object)[1,1] 

x<-c(1,meanerror1,c[1]) 

return(x) 

} 

count2<-function(object){ # function for aggregate MA(2) model # 

fit2.pred<-predict(object,n.ahead=5) 

error2=0 

for(m in 1:5){ 

error2=error2+(simag.ma1[((size/oa)-5)+m]-fit2.pred$pred[m])^2 

} 

meanerror2=error2/5 

if(cwp(object)[4,1]<0.05) c[2]=c[2]+cwp(object)[1,1] 

c[3]=c[3]+cwp(object)[1,2] 

y<-c(1,meanerror2,c[2],c[3]) 

return(y) 

} 

c<-mat.or.vec(3,1) ; x2<-mat.or.vec(3,1) ; y2<-mat.or.vec(4,1)  

f<-0;g<-0;summeanerror0<-0;summeanerror3<-0;q<-1000;a<-0 

ssim.ma1<-c();ssimag.ma1<-c() 

 

for(j in 1:3){ 

while(q>0){ 

for(i in 1:q){ 

sim.ma1<-arima.sim(list(ma=c(par)),n=size) # MA(1) basic series # 

for(j in 1:(size-15)){ 

ssim.ma1[j]=sim.ma1[j] 

} 

fit0<-arima(ssim.ma1,order=c(0,0,1)) # MA(1) basic fitted model # 

a<-a+1 

fit0.pred<-predict(fit0,n.ahead=15) 

error0=0 

for(m in 1:15){ 

error0=error0+(sim.ma1[(size-15)+m]-fit0.pred$pred[m])^2 

} 

meanerror0=error0/15 

summeanerror0=summeanerror0+meanerror0 

k<-matrix(sim.ma1,nrow=oa) 

simag.ma1<-apply(k,2,sum) # aggregate series # 

for(j in 1:((size/oa)-5)){ 

ssimag.ma1[j]=simag.ma1[j] 
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} 

fit1<-try(arima(ssimag.ma1,order=c(0,0,1)),TRUE) # aggregate MA(1) fit # 

fit2<-try(arima(ssimag.ma1,order=c(0,0,2)),TRUE) # aggregate MA (2) fit # 

fit3<-try(arima(ssimag.ma1,order=c(0,0,0)),TRUE) # aggregate WN fit # 

 

if(!inherits(fit1,"try-error") && !inherits(fit2,"try-error") && !inherits(fit3,"try-

error")){ 

aic<-c(fit1$aic,fit2$aic) 

if(!is.na(cwp(fit1)[4,1]) && !is.na(cwp(fit2)[4,1]) && !is.na(cwp(fit2)[4,2])){ 

 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,2]<0.05){ # all models # 

if(min(aic) == fit1$aic ) x2=x2+count1(fit1) 

if(min(aic) == fit2$aic ) y2=y2+count2(fit2) 

}else 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,2]>0.05){ # MA(1) # 

x2=x2+count1(fit1) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,2]<0.05){ # MA(2) # 

y2=y2+count2(fit2) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,2]>0.05){ # WN # 

f=f+1 

fit3.pred<-predict(fit3,n.ahead=5) 

error3=0 

for(m in 1:5){ 

error3=error3+(simag.ma1[((size/oa)-5)+m]-fit3.pred$pred[m])^2 

} 

meanerror3=error3/5 

summeanerror3=summeanerror3+meanerror3 

}else 

g=g+1 

} 

} 

} 

q=1000-(x2[1]+y2[1]+f+g) 

} 

} 
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f1=x2[1]  # frequency of aggregate MA(1) model # 

f2=y2[1]  # frequency of aggregate MA(2) model # 

f6=f  # frequency of WN model # 

f7=g # to control whether g is equal to zero or not # 

 

 

meanmeanerror0<-summeanerror0/a # MSE of basic model # 

meanmeanerror1<-x2[2]/x2[1]  #  MSE of aggregate MA(1) model # 

meanmeanerror2<-y2[2]/y2[1]  # MSE of aggregate MA(2) model # 

meanmeanerror3<-summeanerror3/f   #MSE of WN model # 

 

 

coef1 <- x2[3]/x2[1] # coefficient of aggregate AR(1) model # 

coef2 <- y2[3]/y2[1] ; coef3 <- y2[4]/y2[1] #coefficients of aggregate AR(2) model # 
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APPENDIX D 

 

R CODES FOR MA(2) SIMULATION 

 

 

cat("\n","Enter order of aggregation,sample size,theta values","\n") 

pp<-scan(n=4)  

 

oa<-pp[1] 

size<-pp[2] 

par1<-pp[3] 

par2<-pp[4] 

 

cwp <- function (object){ 

# 

# cwp <--> ``coefficients with p-values'' 

# 

     coef <- coef(object) 

     if (length(coef) > 0) { 

         mask <- object$mask 

         sdev <- sqrt(diag(vcov(object))) 

         t.rat <- rep(NA, length(mask)) 

         t.rat[mask] <- coef[mask]/sdev 

         pt <- 2 * pnorm(-abs(t.rat)) 

         setmp <- rep(NA, length(mask)) 

         setmp[mask] <- sdev 

         sum <- rbind(coef, setmp, t.rat, pt) 

         dimnames(sum) <- list(c("coef", "s.e.", "t ratio", "p-value"), 

             names(coef)) 

         return(sum) 

     } else return(NA) 

} 

 

count1<-function(object){ # fuction for aggregate MA(1) model # 

fit1.pred<-predict(object,n.ahead=5) 

error1=0 

for(m in 1:5){
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error1=error1+(simag.ma1[((size/oa)-5)+m]-fit1.pred$pred[m])^2} 

meanerror1=error1/5 

c[1]=c[1]+cwp(object)[1,1] 

x<-c(1,meanerror1,c[1]) 

return(x) 

} 

count2<-function(object){ # function for aggregate MA(2) model # 

fit2.pred<-predict(object,n.ahead=5) 

error2=0 

for(m in 1:5){ 

error2=error2+(simag.ma1[((size/oa)-5)+m]-fit2.pred$pred[m])^2 

} 

meanerror2=error2/5 

if(cwp(object)[4,1]<0.05) c[2]=c[2]+cwp(object)[1,1] 

c[3]=c[3]+cwp(object)[1,2] 

y<-c(1,meanerror2,c[2],c[3]) 

return(y) 

} 

c<-mat.or.vec(3,1) ; x2<-mat.or.vec(3,1) ; y2<-mat.or.vec(4,1)  

f<-0;g<-0;summeanerror0<-0;summeanerror3<-0;q<-1000;a<-0 

ssim.ma1<-c();ssimag.ma1<-c() 

for(j in 1:3){ 

while(q>0){ 

for(i in 1:q){ 

sim.ma1<-arima.sim(list(ma=c(par1,par2)),n=size) # basic MA(2) series # 

for(j in 1:(size-15)){ 

ssim.ma1[j]=sim.ma1[j] 

} 

fit0<-arima(ssim.ma1,order=c(0,0,2)) # MA(2) basic fitted model # 

a<-a+1 

fit0.pred<-predict(fit0,n.ahead=15) 

error0=0 

for(m in 1:15){ 

error0=error0+(sim.ma1[(size-15)+m]-fit0.pred$pred[m])^2 

} 

meanerror0=error0/15 

summeanerror0=summeanerror0+meanerror0 

k<-matrix(sim.ma1,nrow=oa) 

simag.ma1<-apply(k,2,sum) # aggregate series # 

for(j in 1:((size/oa)-5)){ 

ssimag.ma1[j]=simag.ma1[j] 

} 
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fit1<-try(arima(ssimag.ma1,order=c(0,0,1)),TRUE) # aggregate MA(1) fit # 

fit2<-try(arima(ssimag.ma1,order=c(0,0,2)),TRUE) # aggregate MA(2) fit # 

fit3<-try(arima(ssimag.ma1,order=c(0,0,0)),TRUE) # aggregate WN fit # 

 

if(!inherits(fit1,"try-error") && !inherits(fit2,"try-error") && !inherits(fit3,"try-

error")){ 

aic<-c(fit1$aic,fit2$aic) 

if(!is.na(cwp(fit1)[4,1]) && !is.na(cwp(fit2)[4,1]) && !is.na(cwp(fit2)[4,2])){ 

 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,2]<0.05){ # MA(1), MA(2) # 

if(min(aic) == fit1$aic ) x2=x2+count1(fit1) 

if(min(aic) == fit2$aic ) y2=y2+count2(fit2) 

}else 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,2]>0.05){ # MA(1) # 

x2=x2+count1(fit1) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,2]<0.05){ # MA(2) # 

y2=y2+count2(fit2) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,2]>0.05){ # WN # 

f=f+1 

fit3.pred<-predict(fit3,n.ahead=5) 

error3=0 

for(m in 1:5){ 

error3=error3+(simag.ma1[((size/oa)-5)+m]-fit3.pred$pred[m])^2 

} 

meanerror3=error3/5 

summeanerror3=summeanerror3+meanerror3 

}else 

g=g+1 

 

} 

} 

} 

q=1000-(x2[1]+y2[1]+f+g) 

} 

} 

 

 

f1=x2[1]  # frequency of aggregate MA(1) model # 

f2=y2[1]  # frequency of aggregate MA(2) model # 

f6=f  # frequency of aggregate WN model # 
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f7=g # to control whether g is equal to zero or not # 

 

meanmeanerror0<-summeanerror0/a # MSE of basic model # 

meanmeanerror1<-x2[2]/x2[1]     # MSE of aggregate MA(1) model # 

meanmeanerror2<-y2[2]/y2[1]     # MSE of aggregate MA(2) model # 

meanmeanerror3<-summeanerror3/f  #MSE of aggregate WN model # 

 

 

coef1 <- x2[3]/x2[1] # coefficient of aggregate MA(1) model # 

coef2 <- y2[3]/y2[1] ; coef3 <- y2[4]/y2[1]    #coefficients of aggregate MA(2) 

model # 
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APPENDIX E 

 

R CODES FOR ARMA(1,1) SIMULATION 

 

 

cat("\n", "Enter order of aggregation, sample size, phi values","\n") 

pp<-scan(n=4)  

 

oa<-pp[1] 

size<-pp[2] 

par1<-pp[3] 

par2<-pp[4] 

 

cwp <- function (object){ 

# 

# cwp <--> ``coefficients with p-values'' 

# 

     coef <- coef(object) 

     if (length(coef) > 0) { 

         mask <- object$mask 

         sdev <- sqrt(diag(vcov(object))) 

         t.rat <- rep(NA, length(mask)) 

         t.rat[mask] <- coef[mask]/sdev 

         pt <- 2 * pnorm(-abs(t.rat)) 

         setmp <- rep(NA, length(mask)) 

         setmp[mask] <- sdev 

         sum <- rbind(coef, setmp, t.rat, pt) 

         dimnames(sum) <- list(c("coef", "s.e.", "t ratio", "p-value"), 

             names(coef)) 

         return(sum) 

     } else return(NA) 

} 

count1<-function(object){ # function for AR(1) model # 

fit1.pred<-predict(object,n.ahead=5) 

error1=0 

for(m in 1:5)
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error1=error1+(simag.ar1[((size/oa)-5)+m]-fit1.pred$pred[m])^2 

} 

meanerror1=error1/5 

c[1]=c[1]+cwp(object)[1,1] 

x<-c(1,meanerror1,c[1]) 

return(x) 

} 

count2<-function(object){ # function for ARMA(1,1) model # 

fit2.pred<-predict(object,n.ahead=5) 

error2=0 

for(m in 1:5){ 

error2=error2+(simag.ar1[((size/oa)-5)+m]-fit2.pred$pred[m])^2 

} 

meanerror2=error2/5 

c[2]=c[2]+cwp(object)[1,1] 

c[3]=c[3]+cwp(object)[1,2] 

y<-c(1,meanerror2,c[2],c[3]) 

return(y) 

} 

count3<-function(object){ # function for AR(2) model # 

fit3.pred<-predict(object,n.ahead=5) 

error3=0 

for(m in 1:5){ 

error3=error3+(simag.ar1[((size/oa)-5)+m]-fit3.pred$pred[m])^2 

} 

meanerror3=error3/5 

if(cwp(object)[4,1]<0.05) c[4]=c[4]+cwp(object)[1,1] 

c[5]=c[5]+cwp(object)[1,2] 

z<-c(1,meanerror3,c[4],c[5]) 

return(z) 

} 

count4<-function(object){ # function for ARMA (2,2) model # 

fit4.pred<-predict(object,n.ahead=5) 

error4=0 

for(m in 1:5){ 

error4=error4+(simag.ar1[((size/oa)-5)+m]-fit4.pred$pred[m])^2 

} 

meanerror4=error4/5 

if(cwp(object)[4,1]<0.05) c[6]=c[6]+cwp(object)[1,1] 

if(cwp(object)[4,3]<0.05) c[8]=c[8]+cwp(object)[1,3] 

c[7]=c[7]+cwp(object)[1,2] 

c[9]=c[9]+cwp(object)[1,4] 
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w<-c(1,meanerror4,c[6],c[7],c[8],c[9]) 

return(w) 

} 

c<-mat.or.vec(9,1) ; x2<-mat.or.vec(3,1) ; y2<-mat.or.vec(4,1) ; z2<-mat.or.vec(4,1) 

; w2<-mat.or.vec(6,1)  

f<-0;g<-0;summeanerror0<-0;summeanerror6<-0;q<-1000;a<-0 

ssim.ar1<-c();ssimag.ar1<-c() 

for(j in 1:3){ 

while(q>0){ 

for(i in 1:q){ 

sim.ar1<-arima.sim(list(ar=c(par1),ma=c(par2)),n=size) # ARMA (1,1) basic series # 

for(j in 1:(size-15)){ 

ssim.ar1[j]=sim.ar1[j] 

} 

fit0<-arima(ssim.ar1,order=c(1,0,1)) # ARMA(1,1) basic model fit # 

a<-a+1 

fit0.pred<-predict(fit0,n.ahead=15) 

error0=0 

for(m in 1:15){ 

error0=error0+(sim.ar1[(size-15)+m]-fit0.pred$pred[m])^2 

} 

meanerror0=error0/15 

summeanerror0=summeanerror0+meanerror0 

k<-matrix(sim.ar1,nrow=oa) 

simag.ar1<-apply(k,2,sum) # aggregate series # 

for(j in 1:((size/oa)-5)){ 

ssimag.ar1[j]=simag.ar1[j] 

} 

fit1<-try(arima(ssimag.ar1,order=c(1,0,0)),TRUE) # AR(1) aggregate fit # 

fit2<-try(arima(ssimag.ar1,order=c(1,0,1)),TRUE) # ARMA(1,1) aggregate fit # 

fit3<-try(arima(ssimag.ar1,order=c(2,0,0)),TRUE) # AR(2) aggregate fit # 

fit4<-try(arima(ssimag.ar1,order=c(2,0,2)),TRUE) # ARMA(2,2) aggregate fit # 

fit6<-try(arima(ssimag.ar1,order=c(0,0,0)),TRUE) # WN aggregate fit # 

 

if(!inherits(fit1,"try-error") && !inherits(fit2,"try-error") && !inherits(fit3,"try-

error") && !inherits(fit4,"try-error") && !inherits(fit6,"try-error")){ 

aic<-c(fit1$aic,fit2$aic,fit3$aic,fit4$aic) 

if(!is.na(cwp(fit1)[4,1]) && !is.na(cwp(fit2)[4,1]) && !is.na(cwp(fit2)[4,2]) && 

!is.na(cwp(fit3)[4,1]) && !is.na(cwp(fit3)[4,2]) && !is.na(cwp(fit4)[4,1]) && 

!is.na(cwp(fit4)[4,2]) && !is.na(cwp(fit4)[4,3]) && !is.na(cwp(fit4)[4,4])){ 

 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){#all models# 
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if(min(aic) == fit1$aic ) x2=x2+count1(fit1) 

if(min(aic) == fit2$aic ) y2=y2+count2(fit2) 

if(min(aic) == fit3$aic ) z2=z2+count3(fit3) 

if(min(aic) == fit4$aic ) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){#not 

ARMA(2,2)# 

if(fit1$aic < fit2$aic && fit1$aic < fit3$aic) x2=x2+count1(fit1) 

if(fit2$aic < fit1$aic && fit2$aic < fit3$aic) y2=y2+count2(fit2) 

if(fit3$aic < fit1$aic && fit3$aic < fit2$aic) z2=z2+count3(fit3) 

}else 

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){# not 

ARMA(1,1) # 

if(fit1$aic < fit3$aic && fit1$aic < fit4$aic) x2=x2+count1(fit1) 

if(fit3$aic < fit1$aic && fit3$aic < fit4$aic) z2=z2+count3(fit3) 

if(fit4$aic < fit1$aic && fit4$aic < fit3$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){#not AR(1)# 

if(fit2$aic<fit3$aic && fit2$aic<fit4$aic) y2=y2+count2(fit2) 

if(fit3$aic<fit2$aic && fit3$aic<fit4$aic) z2=z2+count3(fit3) 

if(fit4$aic<fit2$aic && fit4$aic<fit3$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1] < 0.05 && cwp(fit2)[4,2] <0.05 && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){#not AR(2)# 

if(fit1$aic < fit2$aic && fit1$aic < fit4$aic) x2=x2+count1(fit1) 

if(fit2$aic < fit1$aic && fit2$aic < fit4$aic) y2=y2+count2(fit2) 

if(fit4$aic < fit1$aic && fit4$aic < fit2$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]<0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]>0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){# AR(1), 

ARMA(1,1) # 

if(fit1$aic<fit2$aic) x2=x2+count1(fit1) 

if(fit2$aic<fit1$aic) y2=y2+count2(fit2) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]<0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){# ARMA(1,1), 

AR(2) # 

if(fit2$aic<fit3$aic) y2=y2+count2(fit2) 

if(fit3$aic<fit2$aic) z2=z2+count3(fit3) 

}else 
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if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){# AR(2), 

ARMA(2,2) # 

if(fit3$aic<fit4$aic) z2=z2+count3(fit3) 

if(fit4$aic<fit3$aic) w2=w2+count4(fit4) 

}else 

 

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){# AR(1), 

AR(2) # 

if(fit1$aic<fit3$aic) x2=x2+count1(fit1) 

if(fit3$aic<fit1$aic) z2=z2+count3(fit3) 

}else 

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){ # AR(1), 

ARMA(2,2) # 

if(fit1$aic<fit4$aic) x2=x2+count1(fit1) 

if(fit4$aic<fit1$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){ 

#ARMA(1,1) , ARMA(2,2) # 

if(fit2$aic<fit4$aic) y2=y2+count2(fit2) 

if(fit4$aic<fit2$aic) w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]<0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){ #AR(1)# 

x2=x2+count1(fit1) 

}else 

if(cwp(fit1)[4,1]>0.05 && cwp(fit2)[4,1]<0.05 && cwp(fit2)[4,2]<0.05 && 

cwp(fit3)[4,2]>0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){#ARMA(1,1)# 

y2=y2+count2(fit2) 

}else 

if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]<0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){# AR(2) # 

z2=z2+count3(fit3) 

}else 

if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && cwp(fit4)[4,2]<0.05 && cwp(fit4)[4,4]<0.05){# 

ARMA(2,2) # 

w2=w2+count4(fit4) 

}else 

if(cwp(fit1)[4,1]>0.05 && (cwp(fit2)[4,1]>0.05 || cwp(fit2)[4,2]>0.05) && 

cwp(fit3)[4,2]>0.05 && (cwp(fit4)[4,2]>0.05 || cwp(fit4)[4,4]>0.05)){ # WN # 
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f=f+1 

fit6.pred<-predict(fit6,n.ahead=5) 

error6=0 

for(m in 1:5){ 

error6=error6+(simag.ar1[((size/oa)-5)+m]-fit6.pred$pred[m])^2 

} 

meanerror6=error6/5 

summeanerror6=summeanerror6+meanerror6 

}else 

g=g+1 

} 

} 

} 

q=1000-(x2[1]+y2[1]+z2[1]+w2[1]+f+g) 

} 

} 

 

 

f1=x2[1]  # frequency of aggregate AR(1) model # 

f2=y2[1]  # frequency of aggregate ARMA(1,1) model # 

f3=z2[1]  # frequency of aggregate AR(2) model # 

f4=w2[1]  # frequency of aggregate ARMA(2,2) model # 

f6=f    # frequency of WN model # 

f7=g  # to control whether g is equal to zero or not # 

 

 

meanmeanerror0<-summeanerror0/a # MSE of basic model # 

meanmeanerror1<-x2[2]/x2[1]  # MSE of aggregate AR(1) model # 

meanmeanerror2<-y2[2]/y2[1]  # MSE of aggregate ARMA(1,1) model # 

meanmeanerror3<-z2[2]/z2[1] # MSE of aggregate AR(2) model # 

meanmeanerror4<-w2[2]/w2[1]  # MSE of aggregate ARMA(2,2) model # 

meanmeanerror6<-summeanerror6/f #MSE of aggregate WN model # 

 

coef1 <- x2[3]/x2[1] # coefficient of AR(1) model # 

coef2 <- y2[3]/y2[1] ; coef3 <- y2[4]/y2[1] # coefficients of ARMA(1,1) model # 

coef4 <- z2[3]/z2[1] ; coef5 <- z2[4]/z2[1] # coefficients of AR(2) model # 

coef6 <- w2[3]/w2[1] ; coef7 <- w2[4]/w2[1] ; coef8 <- w2[5]/w2[1] ; coef9 <- 

w2[6]/w2[1]   # coefficients of ARMA(2,2) model # 
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APPENDIX F 

 

R CODES FOR BASIC SERIES ANALYSIS 

 

 

> basic<-read.table("basic.txt") 

> library(tseries) 

> library(forecast) 

> library(lmtest) 

> basicseries<-data.frame(basic)[,1] 

> tsdisplay(basicseries) 

> adf.test(basicseries) 

> fitbasic<-arima(basicseries,order=c(4,0,0)) 

> cwp(fitbasic) 

> fitbasic<-arima(basicseries,order=c(4,0,0),include.mean=FALSE) 

> cwp(fitbasic) 

> tsdiag(fitbasic) 

> jarque.bera.test(fitbasic$residuals) 

>shapiro.test(fitbasic$residuals) 

> basicseries1<-embed(basicseries,5)[,1] 

> basicseries2<-embed(basicseries,5)[,2] 

> basicseries3<-embed(basicseries,5)[,3] 

> basicseries4<-embed(basicseries,5)[,4] 

> basicseriess<-basicseries[1:437] 

> basicseries.model<-

basicseriess~basicseries1+basicseries2+basicseries3+basicseries4 

> var1.model<-

~I(basicseries1^2)+I(basicseries2^2)+I(basicseries3^2)+I(basicseries4^2) 

> bptest(basicseries.model,var1.model) 

> predict.basicseries<-predict(fitbasic,n.ahead=15) 

> predict.basicseries 

> x<-c(-1.5,-0.8,-2.3,-3.4,-1.4,-3,-1.4,0,-1.2,-0.8,0,0,-1.9,-0.9,-1.1) 

> error=0 

> for(i in 1:15){ 

+ error=error+(x[i]-predict.basicseries$pred[i])^2 

+ } 

> meanerror=error/15 

> meanerror 

 

 



 

148 
 

APPENDIX G 

 

R CODES FOR AGGREGATE SERIES WHEN 𝒎=3 

 

 

> quarter<-read.table("quarter.txt") 

> library(tseries) ; library(forecast) ; library(lmtest) 

> quarterseries<-data.frame(quarter)[,1] 

> tsdisplay(quarterseries) ; adf.test(quarterseries) 

> fitquarter<-arima(quarterseries,order=c(4,0,2)) 

> cwp(fitquarter) 

> fitquarter<-arima(quarterseries,order=c(4,0,2),include.mean=FALSE) 

> cwp(fitquarter) 

> fitquarter<-arima(quarterseries,order=c(4,0,1)) 

> cwp(fitquarter) 

> fitquarter<-arima(quarterseries,order=c(4,0,1),include.mean=FALSE) 

> cwp(fitquarter) 

> fitquarter<-arima(quarterseries,order=c(4,0,0)) 

> cwp(fitquarter) 

> fitquarter<-arima(quarterseries,order=c(4,0,0),include.mean=FALSE) 

> cwp(fitquarter) 

> tsdiag(fitquarter) 

> jarque.bera.test(fitquarter$residuals) 

>shapiro.test(fitquarter$residuals) 

> quarterseries1<-embed(quarterseries,5)[,1] 

> quarterseries2<-embed(quarterseries,5)[,2] 

> quarterseries3<-embed(quarterseries,5)[,3] 

> quarterseries4<-embed(quarterseries,5)[,4] 

> quarterseriess<-quarterseries[1:143] 

> quarterseries.model<-

quarterseriess~quarterseries1+quarterseries2+quarterseries3+quarterseries4 

> var2.model<-

~I(quarterseries1^2)+I(quarterseries2^2)+I(quarterseries3^2)+I(quarterseries4^2) 

> bptest(quarterseries.model,var2.model) 

> predict.quarterseries<-predict(fitquarter,n.ahead=5) 

> predict.quarterseries 

> error<-0 

> y<-c(-4.6,-7.8,-2.6,-0.8,-3.9) 

> for(i in 1:5){ 

+ error=error+(y[i]-predict.quarterseries$pred[i])^2 

+ } 

> meanerror=error/5 
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APPENDIX H 

 

R CODES FOR AGGREFATE SERIES WHEN 𝐦=6 

 

 

> semiannual<-read.table("semiannual.txt") 

> library(tseries) ; library(forecast) ; library(lmtest) 

> semiannualseries<-data.frame(semiannual)[,1] 

> tsdisplay(semiannualseries) ; adf.test(semiannualseries) 

> fitsemiannual<-arima(semiannualseries,order=c(2,0,1)) 

> cwp(fitsemiannual) 

> fitsemiannual<-arima(semiannualseries,order=c(2,0,1),include.mean=0) 

> cwp(fitsemiannual) 

> fitsemiannual<-arima(semiannualseries,order=c(2,0,0)) 

> cwp(fitsemiannual) 

> fitsemiannual<-arima(semiannualseries,order=c(2,0,0),include.mean=0) 

> cwp(fitsemiannual) 

> tsdiag(fitsemiannual) 

> jarque.bera.test(fitsemiannual$residuals) ; shapiro.test(fitsemiannual$residuals) 

> semiannualseries1<-embed(semiannualseries,3)[,1] 

> semiannualseries2<-embed(semiannualseries,3)[,2] 

> semiannualseriess<-semiannualseries[1:69] 

> semiannual.model<-semiannualseriess~semiannualseries1+semiannualseries2 

> var3.model<-~I(semiannualseries1^2)+I(semiannualseries2^2) 

> bptest(semiannual.model,var3.model) 

> predict.semiannualseries<-predict(fitsemiannual,n.ahead=5) 

> predict.semiannualseries 

> error<-0 

> z<-c(-1.8,-3.9,-7.5,-10.4,-4.7) 

> for(i in 1:5){ 

+ error=error+(z[i]-predict.semiannualseries$pred[i])^2 

+ } 

> meanerror=error/5 

> meanerror  
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APPENDIX I 

 

R CODES FOR AGGREGATE SERIES WHEN 𝐦=12 

 

 

> annual<-read.table("annual.txt") 

> library(tseries) 

> library(forecast) 

> library(lmtest) 

> annualseries<-data.frame(annual)[,1] 

> tsdisplay(annualseries) 

> adf.test(annualseries,k=1) 

> fitannual<-arima(annualseries,order=c(0,0,0)) 

> cwp(fitannual) 

> fitannual<-arima(annualseries,order=c(0,0,0),include.mean=FALSE) 

> tsdiag(fitannual) 

> jarque.bera.test(fitannual$residuals) 

> shapiro.test(fitannual$residuals) 

> annualseriess<-annualseries[1:32] 

> annual.model<-annualseriess ~ annualseriess 

> fitannualresiduals2<-embed(fitannual$residuals,2)[,1] 

> var4.model<-~I(fitannualresiduals2^2) 

> bptest(annual.model,var4.model) 

> predict.annualseries<-predict(fitannual,n.ahead=5) 

> predict.annualseries 

> error=0 

> w<-c(8.9,6.6,-4.5,-11.4,-15.1) 

> for(i in 1:5){ 

+ error=error+(w[i]-predict.annualseries$pred[i])^2 

+ } 

> meanerror=error/5 

> meanerror 

 

 


