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ABSTRACT

PROTEIN DOMAIN NETWORKS: ANALYSIS OF ATTACK TOLERANCE UNDR
VARIED CIRCUMSTANCES

Oguz, Saziye Deniz
M.S., Department of Scientific Computing
Supervisor : Assist. Prof. Dr. Hakdbktem

September 2010, 93 pages

Recently, there has been much interest in the resilience of complex netiwaeksdom fail-
ures and intentional attacks. The study of the network robustness isutetiiémportant by
several occasions. In one hand a higher degree of robustnes®it® @nd attacks may be
desired for maintaining the information flow in communication networks underkattagn
the other hand planning a very limited attack aimed at fragmenting a networkrinyvat of

minimum number of the most important nodes might have significant usage iresign.

Many real world networks were found to display scale free topology dety WWW, the

internet, social networks or regulatory gene and protein networks. elmetent studies it
was shown that while these networks have a surprising error tolerduetescale-free topol-
ogy makes them fragile under intentional attack, leaving the scientists a get@rhow to

improve the networks robustness against attacks.

In this thesis, we studied the protein domain co-occurrence network ef wéch displays
scale free topology generated with data from Biomart which links to Pfanbdséa Sev-

eral networks obtained from protein domain co-occurrence netwaikdpaxactly the same
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connectivity distribution were compared under attacks to investigate thenpsen that the
different networks with the same connectivity distribution do not need to hagathe attack
tolerances. In addition to this, we considered that the networks with the sammeadtivity
distribution have higher attack tolerance as we organize the same resoueceetter way.
Then, we checked for the variations of attack tolerance of the netwadtkdshve same connec-
tiviy distributions. Furthermore, we investigated whether there is an evolugianechanism
for having networks with higher or lower attack tolerances for the sameemivity distri-
bution. As a result of these investigations, thfetent networks with the same connectivity
distribution do not have the same attack tolerances under attack. In additios, ibwas ob-
served that the networks with the same connectivity distribution have higghek @olerances
as organizing the same resources in a better way which implies that there islatioa-
ary mechanism for having networks with higher attack tolerance for the sameectivity

distribution.

Keywords: Scale-free Networks, Protein Domain Networks, ConngcEvstribution of Net-

works, Attack Tolerance, Network Resilience
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PROTHN DOMAIN AGLARI: FARKLI KOSULLAR ALTINDA SALDIRI
TOLERANSININ ANALIZI

Oguz, Saziye Deniz
Y Uiksek Lisans, Bilimsel HesaplamaBmi
Tez Yoneticisi : Yrd. Dog. Dr. Haka®ktem

Eylul 2010, 93 sayfa

Karmasik @larin hatalar ve saldirilar karsisinda nasil davignbdircok bilim adaminin il-
gisini cekmektedir. glarin dayanikliiji izerine calismalar birgok agidanemlidir. Ornejin,
iletisim aglarinda bilgi akisininidzgiin s@lanabilmesiicin hatalara ve saldirilara karsi dayanik-
Iliginin yuksek olmasi istenmektedir. @@r yandan, @lari parcalamak icin en az sayida en
onemli yapl taslarini ¢ikartarak kisitli sayida saldiri planlamak ilac tasatananemli kul-

lanim alani bulmaktadir.

WWW, internet, sosyal@ar ve protein glari gibi bircok gercek glarin scale free topolo-
jik yapisina sahip oldju bulunmustur. Son zamanlarda yapilan calismalardagtaria
sasirtici derecede hatalara karsi dayanikli olduklari bulunuiigenyandan scale free topolo-
jik yapisina sahip olmalarindaituri saldirilara karsl ¢ok hassas olduklabeenmistir. Bu
durum bilimadanlarini bulir 6zellik gbsteren glarin saldirilara karsi dayanikginin nasil

arttinlabilec@i sorusu ile karsi karsiya birakmistir.

Bu tezde mayanin (S. cerevisiae) scale free topolojik yapiya sahip praieiaia dlar

Uzerine calistik. Calismalarimiz sirasinda Pfam veri bankasina ulasmsjiagan Biomart’
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taki verileri kullandik. Bu @dan ayni bglanti dajilimina sahip bircok @ elde ettik. Ayni
dagilima sahip farkli §larin saldirilar altinda ayni saldiri toleransibstermemesi gereki
varsayimi incelemek icin bu bircolgen saldiralar altinda saldiri dayanaldihi karsilastirdik.
Buna ek olarak, kaynaklari daha iyi organize etttikce ay@ldoati dajilimina sahip glarin
daha yiksek saldiri toleransina sahip olabilgcézerinde durduk. Sonra, aynidglant! daji-
hmina sahip glarin saldiri toleransi dgsimini kontrol ettik. Son olarak, ksek ya da
dudik saldir toleransina sahiflarin varolmasi icin evrimsel (gelisiminden kaynaklanan)
bir mekanizma olup olmagdini baktik. Bitin bu arastirmalarin sonucunda, aynglaati
dagilimina sahip @larin ayni saldin toleransiniogtermedji belirlendi. Ek olarak, kay-
naklari daha iyi organize etttikce aynidlanti dagilimina sahip glarin daha yiksek saldiri
toleransina sahip oldw ve bununda yksek saldiri toleransina sahiglarin varolmasi icin

evrimsel bir mekanizma olduna isaret etfji sonucuna varildi.

Anahtar Kelimeler: Scale Freedar, Protein Domain Alar, Aglarin Baglanirlik Dagilimi,

Saldin Toleransi, & Dayananikhigi
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CHAPTER 1

INTRODUCTION

Many real world systems can be represented by networks. A netwosdetsadiitems which is
called vertices or nodes with the connections either directly or indirectly leettiem, called
edges. The existing emprical and theoretical results indicate that complearke can be
divided into two main classes as random (exponential) networks and sealedtworks ac-
cording to the their degree (connectivty) distributiefk) (the probability that a node in the
network is connected tk other nodes). In the first class of networlgk) peaks at an av-
erage< k > and decays exponentially for large k. This class of networks was firdtesl

by Paul Eréds and Alfred Renyi. Erds-Renyi (ER) random network is a classical represen-
tation of exponential networks [17]. Exponential networks are homegenin connectivity
which means that most of the nodes in the network have approximately the sambemof
connections around k >, k ~< k >. But, recent studies show that most real-world systems
exhibit scale free structure. These real-world networks include thé Wide Web [5], the
internet [13], biological networks such as metobolic networks [22]tginadomain networks
[20], [23] and the author collaboration networks [24]. It was founat tstructure of these
networks can not be described by ER model, so Barabasi et al. ine@omodel called BA

model which explains the emergence of scale free structure in these ke{is}.

Scale free network exhibits a power law degree distribution in the fe¢kh ~ k™ where
gamma %" is free of characteristic scale and its value typically in the range2< 3. As
long as gammay” greater or equal to 1, its value may lie outside these bounds [25]. In
contrast to the exponential network, scale free networks are heterogevhich means that
most node has a few edges while few nodes in the networks has a hugermafratiges. This
feature in scale free network is deserved to be paid attention which impliesdtvabrk’s

property is determined by the most highly connected nodes.



The study of the network robustness receives a growing interest asea@rgist and is partic-
ularly important by several occasions. In one hand a higher degrebudtness to errors and
attacks may be desired for maintaining the information flow in communication neswiork
der attacks. On the other hand planning a very limited attack aimed at fragmamté@tgork
by removal of minimum number of the most important nodes might have signifisage in
drug design. The robustness of a network can be defined by its belader perturbations.
There are two general categories of such perturbations; erroelares: random removal
of nodes and attacks: the targeted removal of chosen nodes. Theeavagdls are chosen
during an attack is called amttack strategy Some attack strategies are introduced in [1],
[2]. There are also several methods to measure the robustness ofaknender failures and
attacks [1], [3], [5], [19]. Using these methods, authors comparedhetiwork models- scale
free and random networks under failures and attacks. They founddhke-free networks
display an unexpected degree of robustness, i.e., the ability of their tod@smunicate be-
ing undfected by even high failure rates. However, these networks are extreoiegrable
to intentional attacks, i.e., to the removal of a few number of highly connectgelsn On the
other hand, evolving networks with exponential connectivity distributi@nat as robust to

random failures, but more resilient to intentional attacks [1], [2], [4], [10].

In this work, we use protein domain co-occurence network of yease{8vesiae) generated
with data from Biomart (Pfam database) data management system. Domabeserevo-
lutionary units of proteins which are well-defined regions within a protein ¢hatevolve,
function and fold independently from the rest of the protein and have twair function.
These domains and nature of their interactions determine the function ofategnprin pro-
tein domain co-occurence network of yeast (S. cerevesiae), donmairepaesented by nodes
and two domains are considered as connected if they occur together inaiam @t least
once. Most biological networks including protein domain co-occurrereteork were found
to exhibit scale free topology [22], [20]. This scale free structurgpetpthe expectation
from biological network under failures such that as biological netwarksequired to func-
tion in various conditions, it is expected that they should have evolved to@ust structures
against structural and enviromental perturbations [26]. In this studyilveot compare scale
free networks and random networks under attacks which has beaedswidely in literature
[1], [2], [4]. Instead, we will compare several networks exhibitingledree structure, which

have exactly the same connectivity, under attacks. We analyze the ressistithe network



under attacks by studying how the size of the largest connected conipanies as a function

of the number of removed nodes.

Even the connectivity distribution is an important indicator of a network'ditptize features,
different networks with the same connectivity distribution do not need to hagathe attack
tolerances. Additionally, it can be considered that the networks with sanmectivity distri-
bution have higher attack tolerance as we organize the same resourtestar avay. Then, it
can be checked for the variations of attack tolerance of the networks witathe connectiv-
ity distributions. Furthermore, we investigate whether there is an evolutionechanism for
having networks with higher or lower attack tolerances for the same ctwihedistribution.
For these purposes, we wrote an algorithm such that we randomly ctientjeks of nodes
in protein domain co-occurence network of yeast conserving the ctivitye of the network.
Later, we analyze the attack tolerance of the randomly modified network§@mdthese
networks we extract the least and the most vulnerable networks undeksatie continue
collecting the least vulnerable network from the networks which are alsonaa from the
least vulnerable network and the most vulnerable network from the niedwdhich are also

obtained from the most vulnerable one.

In this thesis, basic definitions related to graph theory and network’sspgiep and models
are given briefly in Chapter 2. In Chapter 3, we introduce the methods tsuresattack
tolerance of networks which will be used in this work. This chapter also dedwcwomparison
of network models under attacks and failures. Chapter 4 contains theatplipart. Several
networks obtained by modifying the connections of nodes in the netwodoanpared under
attack which is done by using one of the methods and strategies introducdthpteC 3.

Chapter 5 concludes the thesis and further possible studies to extenddiseatieediscussed.



CHAPTER 2

BACKGROUND

2.1 Mathematical Background

Definitions and theorems in this part are mainly taken from [27], [28].

2.1.1 Basic Definitions

Any system of interconnected elements can conveniently be describeddng miea diagram
consisting of a set of points together with lines joining certain pairs of thes#spoFor
example, the points could represent people, with lines joining pairs of Bjesrdthe points
might be communication centers, with lines representing communication links. Nwaicie
such diagram one is mainly interesting in whether or not two given points aedjby line,

the manner in which they are joined is immaterial. A mathematical abstraction of sitmation

of this type gives rise to the concept of a graph.
Definition 2.1.1 A graph or a general graph is an ordered triple G= (V, E, ¢) where

1. V#0,
2. VNE=0,
3. ¢ : E = PY(V) is a map such thatg(e) |e {1, 2} for each ec E.

The elements of V are therticesof G the elements of E are tleelgesof G. The maw is

called anedgemagand the vertices iw(e) are called theendvertice®f the edge e.

L If Sis set, then the set of all subsets of S, dend?¢8)), is called thepower setof S. For example, If
S ={1,2,3}, thenP(S) = {0, {1}, {2}, {3}, {1, 2}.{1,3}.{2, 3}, {1, 2, 3}}.

4



Terminology: The total number of vertices in the graph (the cardinality of the/sg¢noted
| V |) is denoted adl and defines the order of the graph. We will refeN@s the size of the

network.

Example 2.1.2 Graphs are in most cases represented by diagrams consisting ofadots
represent the vertices, and curves drawn between the dots repirestre endvertices, which

represent the edge between vertices.

Figure 2.1: A graph with five vertices and six edges.

Consider the diagram shown in Figure 2.1. Here we see that GV, E, ¢) where V =

{V1, Vo, ..., V5}, E = {&1, &, ..., 65} and the edgemagp is given by

p(e1) = {v1, o},
#(€2) = ¢(€3) = {v1, 3},

¢(€4) = {V2,V3},
p(es) = {Vv3, Va},
¢(€s) = {Val.

The next definition presents the most basic terminology on graphs.

Definition 2.1.3 Let G= (V, E, ¢) be a graph

5



1. Vertices u and vin V aradjacent or neighbors, if they are the endvertices of some edge

ec E. Thatis they are adjacent, if there is ard= such that(e) = {u, v}.

2. Two distinct edges e and f aaeljacent to each other if they have common endvertex.

That isg(e) N ¢(f) # 0.
3. Avertex u and an edge airecident if u € ¢(e), that is if u is an endvertex of e.
4. Aloopis an edge whose endvertices are equal, thavig) |= 1.

5. We say that EC E is a set ofmultiple edges or parallel edges, if | E* |> 2 and all

e € E have the same set of endvertices. Thai(&s) = ¢(f') Ve, f € E .

6. A vertex u is calledsolated, if it is not an endvertex of any edge. That iszug(e)

VYee E.

When tackling a problem that can be phrased in graph-theoretic termsjtaftan be reduced

to a problem involving a graph having no multiple edges or any loop. Sughgm@onstitute

an important class callesimple graph Since there is at most one edge between a pair of
vertices in a simple graph, the edges are in one-to-one correspongigndkeir distinc end
vertices. Therefore, a simple graph can be defined without the edgermam Definition
2.1.1. Because of the importance of simple graphs, it is convenient to statdotineal

definition separately.

Definition 2.1.4 A simple graph is an ordered pair G= (V, E), where V is a nonempty set of
vertices and E is a set of 2-element subset of V, that is a simple grapyjréph that has no

self-loops or multi-edges

EC{X:XCV,[X|=2}={uv}:uveV,u+Vv}. (2.2)

Definition 2.1.5 Thecomplete graph on n vertices is the simple graph&K,, where

V(Kn) = {V19 V29 seesy Vn},
E(Kn) = {{vi,vj} : 1<i< j<n].

6



That is, every pair of distinct vertices is connected by an edge (Fig@je 2

Note: The complete grapKn has@ edges.

Figure 2.2: Complete gragk;.

Many properties of graphs must be stated in terms of numerical valuesiassowith the

graph or some of its components. The first such attribute, it is defined ¢gineedef a vertex.

Definition 2.1.6 Let G = (V,E, ¢) be a graph and v V a vertex of G. Thelegree of v,
denoted d(v), is defined by

dv) =[{ec E:ved(e). | o(€) =2} | +2|{ec E:veg(e),l4(€) =1} ].  (2.2)

Remark: For a graptG and a vertex € V(G) we have:

e If Gis a simple graph, thed(v) is the number of neighbors #fin G.

o If Gisageneral graph, thelfv) is the number of edges havings an endvertex, where

the loops are counted twice.

Theorem 2.1.7 For a graph G we have



Zd(u):2| E|. (2.3)

ueV

Definition 2.1.8 Let G = (V, E) be a graph and k be the degree of a vertex. To calculate the
average degree, all degrees are summed and divided by the total number of vertices in the

network:

N .
ke —Zij\'f(v'), (2.4)

where N is the total number of nodes in the network.

When studying a specific graph, many times our attention is focused solelgmecal part
of the graph, perhaps on a smaller graph lying inside the larger grapls.nidtivates the

following definition of a subgraph.

Definition 2.1.9 For graphs G = (V',E’,¢') and G= (V, E, ¢), we say that Gis asubgraph
of G, if

3. ¢'(6) = p(e) Yec E .

It is denoted the subgraph relation on graphs using the standard sobsgionc. That is, if
G is a subgraph of G, then it is written'G G. In particular, for simple graphs G= (V',E)
and G= (V,E), G is a subgraph of Gif VC V and E C E.

Example 2.1.10Consider the graph G given in Figure 2.3 (a). Figure 2.1.1 (b) shows a
subgraph GofG.



vl

v3

Figure 2.3: Subgraph.

Definition 2.1.11 A directed graph or digraph is an ordered tripIeG = (V, E,n) where

1. V£0,
2. VNE =0,

3. n:Em VxVisamap.

The set V is the set of vertices, and the set E the directed edges, offaf® = (u, v), then
u is called the tail of e and v the head of e.

If n(e) = (v,v), then e is called airected |oop.

Two directed edges e andare said to be parallel edgesij{e) = n(e). That is, the edges are

mapped onto the same ordered pair of vertices

Example 2.1.12 Consider the digrapl& = (V, E, ) with five vertices and six directed edge-
sas shown in Figure 2.4. Her&, = (V, E, 1)), where V= {v1, V2, V3, Va, Vs}, E = {€y, &, €3, €4, €5, €},
and the edgemaypis given by

n(er) = (vi, v2),
n(e2) = (va,va),
n(es) = (V1, Va),
n(es) = (V2. v3),
1(es) = (V3,Va),
n(€s) = (Va, Va).



In particular, the directed edgesas the directed loop.

Figure 2.4: A digraph with five vertices and six directed edges.

Definition 2.1.13 A digraph having no directed loops and no parallel directed edges is called

a simpledigraph.

Any simple digraplﬁ can be presented as an ordered ﬁait (V,E), whereV is a set of
vertices ance C V x V. Note that there is a slight fierence between a simple digraph and

having the edges represented by a subs¥gtxiV :

e A digraphG has representatio® = (V,E), whereE ¢ V x V if, only if, G has no

parallel directed edges.

e Adigraph is simple if, only ifG has a representatid® = (V, E), whereE c V x V and

G has no directed loops.

2.1.2 The Basic Representations for Graphs

From a mathematical point of view, it is convenient to define a graph by nefahs adja-

cency matrixA = (&jj)i j=12..n- Thisis aN x N matrix defined in the following definition:

Definition 2.1.14 We definghe adjancency matrix A of a graph G(V, E) asthgV | x |V |:

10



{ 1, if(i,]) e E
ajj = (2.5)
0, if(i,j)¢E.

We define the adjancency matrix representation of a digraph G in the samasway an
undirected graph. The adjacency matrix for a graph is symmetric, while jhercashy matrix

for a digraph is asymmetric.

Definition 2.1.15 A weighted graph is a graph that has a numeric label w(e) associated with
each edge e, called the weight of edge e. Edges weights can be intajeral numbers, or

real numbers, which represent a concept such as distance, cimmeosts, or #inity.

2.1.2.1 Paths and Cyles

Definition 2.1.16 1. Awalkin a graph G= (V, E, ¢) is an alternating sequence

(Vo, €1, V1, €2, ..., &, Vi)

of vertices and edges that begins and ends with a vertex. For eacflj...,k} the

endvertices ofjare j_; and \. That is

#(&) = {vi—1, Vi},

The vertex y is the initial vertex of the walk. The vertex ig the final vertex of the
walk. The initial or final vertex of a walk is also called an endvertex of thikkwBhe

natural number k is théenghtof the walk.
2. Atrail in G is a walk with all of its edges;ee, ..., & distinct
3. Apath in G is a walk with all of its verticesgyvy, ..., Vi distinct.

4. For verticesu and v in G, a u, v-walk (u, v-trail or u, v-path) is wakksfpectively trail

or path) with initial vertex u and final vertex v.

5. A walk or trail of length at least one dosed if the initial vertex and the final vertex

are the same. A closed trail is also callediacuit.

6. Acycleis a closed walk with distinc vertices except for the initial and final vertex,lwhic

are the same.

11



AssumingG is a simple graph, then a walk, trail, path, or cycle can be specified by arsegu
of verticesvp, vi, ..., Vi instead of Yo, €1, v1, &, ..., &, Vk). This is because a pair of adjacent

verticesvi_; andv; completely determine the only edge= {vi;_1,Vv;} between them.

Figure 2.5: Graph used to illustrate walks, trails, paths, and cycles.

Example 2.1.17 We illustrate Definition 2.1.16 using the graph=3V, E) with five vertices

and seven edges shown in Figure 2.5.

o W= (Vi, €, V3, €3, V1, €1, V2, €4, V3, €4, V2, €8, V5, €7, V)
Here w is a walk of lenght seven. Note that w is not a trail, since the egdgppears

twice. A walk that is not a trail is clearly not a path. Hence, w is not a path.

o t=(V1,€,V3,€3 V1, €1, V2, €5, V5€7, Va)
The walk t is a trail of length five. Note that t is not a path, since the vegteppears

twice.

* p=(V1,€2, V3, €4,V2, €5, V5, €7, Va)
The walk p is a path of length four.

o C1 = (V3,€2, V1, €, V3, €4, Vo, €8, V5, €7, V4, €5, V3)

12



The walk g is a closed walk of length six.

o Cp = (V3,€2, V1, €3,V3, €4, V2, €8, V5, €7, V4, €5, V3)

The walk g is a circuit of length six.

o C3 = (Va, €4, V2, €3, V5, €7, V4, €5, V3)

The walk g is a cycle of length four.

Figure 2.6 explains the relationship of the items from Definition 2.1.16 in anyngjvaphG.
An arrow from one oval down to another means that the first (uppet)amntains the items
in the secand (lower) oval, since the items in the first are more general thatertis in the
secand oval. So, for example, walks are more general than trails. Goivigttie diagram in
figure means that we are restricting the structure more and more. TherdiagFagure 2.6

is actually an example of a directed graph and, in fact, a poset.

closed walks

circuits

Figure 2.6: Relationships between various subgraphs and walks.
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2.1.2.2 Connectivity

Definition 2.1.18 A graph G isconnected, if for every pair of distinct vertices,u € V, the

graph G has a u,v-path. Otherwise we say that the graph is disconnected.

Figure 2.7: Grapl® is connected, bu®' is not.

As it can be seen in Figure 2.7, the graphis a made up of two connected parts. Each
segment is subgraph & that is itself connected. Such a connected part of a graph is called
a component (or connected componeait)the graph. The following definition states this

situation more formally.

Definition 2.1.19 Let G be a graph. Let ..., Hx be connected subgraphs of G whose vertex
sets and edge set are pairwise disjoint and such that they cover all ttieegeand edges of
G. Thatis,

V(G) = V(Hy) U ... UV(Hy)

E(G) = E(H1) U ... U E(Hy)

where (Hi) N V(H;) = E(Hj) n E(H;) = 0 for each distincti and j.

Then each of the subgraphs id calledcomponent or connected component of G.

Theorem 2.1.20Every graph G has a unique collection of connected compongnt. HHy.

In particular, the number k of connected components of G is uniquelyndieied by G.

Definition 2.1.21 Let G be a graph. The minimum number of vertices of G, whose removal

14



disconnects G, or creates a graph with a single vertex, is called the covitbeof G and is

denoted by (G). If k < x(G), then we say that G isk connected.

Definition 2.1.22 The local connectivity(x, y) of two non-adjacent vertices is the minimum
number of vertices seperating x from y. If x and y are adjacent vertibeg local connec-

tivity is defined agp(x,y) + 1 where H= G — xy.

Theorem 2.1.23(Menger): Let xy € G, X # y. There exists a set afx,y) independent

paths between x and y and this set is maximal.

2.1.2.3 Digraph Connectivity

Basically, there are two natural ways to view connectivity in digraph. Osarigly to adapt
directly the definition from graphs, and say that a digréob connected if, and only if, its
underlying graph is connected. In that case we sayGhatweakly connectedBy acompo-
nentof G it is simply mean that the subdigraph induced by the vertices of the corrison

component of the underlying gra@
The following definition, however, is a more common way of describing cctivity in di-
graphs.

Definition 2.1.24 A directed walk W in a digraphG is an alternating sequence

W = (Vo, €1, V1, €2, ..., &, Vk)

of vertices and directed edges, where for eaeh(L, 2, ..., k} the tail and head of;eare v_;

and v, respectively. That s,

n&) = (Vi—1, Vi).

The notion of an initial vertex, a final vertex, the lenght, a directed trail, act&d path, and
a directed u, v-walk, trail, path are the same as in Definition 2.1.16, but héseaitided the
words “directed” before each of the words “walk”, “trail”, and “path”. Likewise, the notion

of closed directed trail and path are called directed circuit and directedesyrespectively.

15



Remark: Since each directed edge has a unique tail and head, there is no ambiguitinigp w

a directed walk as

W = (e1, e, ..., &),

where it is understood that the initial vertex\fis the tail ofe; and the final vertex is the
head ofe.
Likewise, if our digraphG has no parallel directed edges, and hence the set of directed edges

is given by a subsdi C V x V, then we can write a directed walk as a sequence of vertices
W = (Vo, V1, ..., Vk).

It can be now stated the more common definition for connectivity in digragtiedstrong

connectivity, to emphasize itsfirence from weak connectivity.

Definition 2.1.25 A digraphG is strongly connected if for every pair uv € V(G) of distinct
vertices there is a directed walk from u to vGh

Thestrong components of G are maximal strongly connected subdigraph&of

v

Figure 2.8: The condition for strong connectivity in a diagraph.

Note: The definition 2.1.25 implies that for very pairv € V(G) of vertices there is a directed
path fromu to v and a directed path fromto u as well (by reversing the role af andv.)
Also note that these two directed paths, one fromo v and the other fronv to u, are not

necesssarily edge disjoint!

As it can be seen in Figure 2.8, the condition of digr&bheing strongly connected implies
that for every paiu, v € G of vertices there is a directed walk froato v in (?, as well as a

directed walk fromv back tou in G.

16



2.1.3 Giant Connected Component

The characteristic of networks discussed so for do not allow us to imaggiregtbbal topol-
ogy. To get real image of a network, we have to know its percolation prppes Figure 2.9
demonstrates, a network may consist of a number of disjoint parts-codmectgonent. The
standart notion of percolating cluster and percolation threshold for mietvave introduced

in the following way.

Figure 2.9: The general structure of an undirected network with the gtammected compo-
nent (GCC). The GCC plays the role of a percolating cluster. The réiseafetwork includes
separate finite-size clusters: finite connected components. Usually, this peferred to as
disconnected components (DC).

To begin with, suppose that the network is undirected. A distinct connectagonent of a
network is a set of mutually reachable vertices. The size of a conneatgzboent is the total
number of vertices in it. When the relative sizes of all connected compootatsetwork
tend to zero as the number of vertices in the network approaches infinihetierk is below
the percolation threshold. If the relative size of the largest connecf@daghes a finite (non-
zero) value in the limit of a large network, the network is above the percoldtieshold. In
such an event, the huge connected component plays the role of a fagcolaster. In graph
theory, this is called thgiant connected component (GCC)The general structure of an
undirected graph, when the giant connected componet is present) #héigure 2.9. The
rest of the network consists of separate finite connected componeaditidmally, these parts

are together referred to dssconnected component (DC)

Definition 2.1.26 The Giant Connected Component (GCC) of an undirected graph G=

17



(V,E), where V is the set of all vertices and E is the set of all edges, is the masatnaf

vertices Uc V such that every pair of vertices u and v in U are reachable from eaar.oth

The notion of the giant connected components are truly important. Thegateére a net-
work as a unit “organisim” and indicate its “health”. For example, an untiicegraph is only

a set of separate clusters if the GCC is absent.

2.2 Properties of Networks

2.2.1 Clustering Codficient

Nodes in many real systems exhibit a tendency to cluster, which can be eplal#ing the
clustering cofficient [12], a measure of the degree to which the neighbors of a particular
nodes are connected to each other. For example in a friendship ne@uafkects the degree

to which friend of a particular person are friends with each other as wetm&lly the clus-

tering codficent of node i is defined as

2n;

G k-1

(2.6)

where n denotes the number of links connecting theeighbors of node i to each other.

Accordingly, it can be definetthe average clustering cogfficient as

N
1
<C>= N;Ci' (2.7)

Note: The average degree k > and average clustering déeient< C > depends on the
number of nodes and links in the network. By contf@g{) (see Subsection 2.2.2) are inde-
pendent of the network’s size and therefore capture a networkérigdeatures which allows

them to be used to classify various networks.
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2.2.2 Degree (Connectivity) Distribution

Generally the degree of vertices in random networks are statistically distibMVe define
pk to be the fraction of vertices in the network that have dedre&quivalently py is the
probability that a vertex chosen uniformly at random has delgréeplot of py for any given
network can be formed by making a histogram of the degree of verticeshiBbogram is the

degree distribution for the network.

Knowing the degree distribution of each vertices in a network, it easy tdHimtbtal degree

distribution

N
PICN) = D pCS N, @8)

s=1

wherep(k, s, N) is the probability that the vertexin the network of sizé\ hask connections.
The following examples demonstrate typical degree distribution for networks

The poission distribution:

e (< k >)

Pl = K

(2.9)

Here,< k > is the average degree. A “classical random graph ” asymptotically hiathjsis
degree distribution, if its number of vertices approaches infinity underchsti@int that the

mean degree is fixed.

Classical random graphThis graph is defined by the following simple rules:

e The total number of vertices is fixed.

e Randomly chosen pairs of vertices are connected via undirected edges.

Exponential Distribution

P(k) ~ e (2.10)
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For instance, this is the degree distribution of “the growing random graph ”

Growing random graph:

e At each time step, a new vertex is added to the graph.

e Simultaneously, a pair of randomly chosen vertices is connected by as.edge

The Power-law distribution:

P(K) ~ k™, k # 0. (2.11)

Here,y > 1 is the exponent (or parameter) of the distribution whose value is typicallein th

range 2< vy < 3, although occasionally it may lie outside these bounds.

The power-law distribution contrast with the Poisson and Exponential distits. It has no
natural scale and, hence, may be called scale-free. Networks witldstighution are called

scale-free.

2.2.3 Network Models

Recent technological advances such as availability of computers and dtlcecased the
gathering of topological data on large network. This availability of topoldglesa and re-
cent theoretical advances led to great advances in the understahttieggeneral feature of
network structure and development [1], [5], [11], [12]. The existmgpirical and theoret-
ical results indicate that complex networks can be divided into two major sldssed on
their connectivity distributiorP(k) (representing the probability that a node in the network is
connected td other nodes): exponential networks and scale-free networks. Timerahe of

the network models is to explain the emergence and behavior of some of thempostant
network characteristics. As they play a crucial role in shaping the utasheling of complex

networks, it is needed to pay attention to some of the more important models.
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2.2.3.1 Exponential Networks (Random Networks)

This class of networks is characterized biP&) that peaks at an averagek > and decays
exponentially for largek. Because of this exponential behavior, random networks can be
called Exponential network. The most investigated examples of such expainnetworks

are the random graph model of Bsland Renyi [11] and the small-world model of Watts
and Strogatz [12], both leading to a fairly homogeneous network, in wtach eode has
approximately the same number of links~< k >. This property is illustrated in Figure

2.13.

The Erdos - Renyi (ER) model of random graph The simplest complex network model
was proposed by Paul Eid and Alfred Renyi in 1959. The Eid-Renyi (ER) model of a
random network (see Figure 2.11) starts with N nodes and connectpaiadi nodes with

probability p, creating a graph with approximate%'w randomly distributed links. The
distribution of connection of networks generated by this model follows asRwoislistribution

for largeN (see Figure 2.10) which indicates that most nodes have roughly the santenu
of links, approximately equal to the network’s average degree,>. The tail of the degree
distributionP(k) decreases exponentially, which indicates that nodes that significamthtele

from the average are extremely rare.

Despite its elegance, recent findings indicate that ER model can not ekpgaiopological
properties of real networks [7], [33]. In contrast to the Poissoniligion, for many social

and technological networks the number of nodes with a given degree/foigpower-law.

s

&

Piky

Figure 2.10: Degree distribution for random network. Random netwaggnt a peak distri-
bution [33].
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Niyve

Figure 2.11: Model of a random network [33].

2.2.3.2 Scale-free Networks

Results on the World-Wide Web (WWW) [5], the Internet [13] and othagdaretworks, [14],

[15] indicate that many systems belong to a class of inhomogeneous neftiisksoperty is
illustrated in Figure 2.13), called scale-free networks, for whi¢k) decays as a power-law,
that isP(k) ~ k™, free of a characteristic scale. Whereas the probability that a node has a
very large number of connectioks>< k > is practically prohibited in exponential networks,

highly connected nodes are statistically significant in scale-free networks

The Barabasi-Albert (BA) model of scale-free network: The inhomogeneous connectivity
distribution of many real netwoks is reproduced by the scale-free madgl [15] which
is based on two basic rulegrowth and preferential attachmentThe model start withmg
nodes. At every time stepa new node withM links is added to the network, which connects

to already existing nodé with probability [T, = wherek; is the degree of nodée

L
Yaky?
andJ is the index denoting the sum over network nodes. The network that isajeddy

this growth process has a power-law degree distribution that is charectdry the degree
exponenty = 3. Such distribution are seen as a straight line on a log-log plot (see Figure

2.12).
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log (P(k))

log (k)

Figure 2.12: Degree distribution for scale-free networks. Scale fedeanks present a
straight line in the log-log plot [33].

Growth and preferential attachment are jointly responsible for the emzzgdithe scale free
property in complex network and these two fundamental process haveralken the de-

velopment of real networks. For example, the World Wide Web has grown 1 to more

than 3-billion web pages over a 10-year period (growth process) mtitedNorld Wide Web

we are more familiar with highly connected web pages, and therefore ardikedyeto link

them (preferential attachment) [33].

Ty et

Exponential Scale-free

Figure 2.13: Visual illustration of the fierence between an exponential and a scale-free
network. This figure is taken from [1].
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2.2.4 Scale-free Networks

An important information to characterize a gra@his the degree of a verteéx That is, the
numberk; of edges incident with verteix Networks with power law degree distribution have
been focus of great deal of attention in the literature [16], [17]. Theyreferred as scale-
free networks [14], although it is only their degree distributions that eatesfree (The term
scale-free refers to an functional forf(x) that remains unchanged to within a multiplicative
factor under a rescaling of the independent variablén fact this means power law forms
since these are the only solutionsft@ax) = bf(x) and hence power-law and scale-free are
for the purposes, synonyms). It indicates the absence of a typicalindtie network (one
that could be used to characterize the rest of the nodes). This is in swatrgst to random
networks, for which the degree of all nodes is in the vicinity of the avedsggee, which
could be considered typical. However, scale-free networks coulty émscalled scale-rich
as well, as their main feature is the coexistence of nodes of widgbrelint degrees (scales),

from nodes with one or two links to major hubs.

Barabasi et al. focused their attention B(k), the degree distribution of a network, and
showed that many real large network as the World Wide Web, the internetbatietand
protein networks are scale free that is their degree distribution followsvardaw for large
k[7], [5], [18]. That is a scale-free network is one in which the pralistof a node having

k connection is proportional tk™, wherey is the degree exponent  y < 3). In this
sense scale-free network are heterogenous. Heterogenous negamisikl most vertices are
lowly connected, a huge number of edges is concentrated in a small nufrmmtes. Thus
network’s properties are determined by hubs (the most highly conneotisbh(see Figure

2.14).
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Figure 2.14: The network’s properties are determined by hubs (whitesh§8i3] .

2.3 Protein Domain Networks

Since proteins are the most essential structural components for living tliimgaintain their
cell functions properly, proteins are widely studied in biology. Althoughegins are unique,
they share certain common properties. For example, well-defined regitria & protein

can evolve, function and fold independently from the rest of the protainhave their own
function. They are called protein domains, and served as protein buildthogsh These
domains and nature of their interactions determine the function of the protaits, i can be

said that domains are basic evolutionary units of proteins.

Many biological systems can be represented by networks [20], [2], One of these net-
works is protein domain networks which include two networks type; proteinailo interac-
tion networks and protein domain co-occurence networks. The domdiiteattire of pro-
teins was studied by considering protein domains as nodes and theirwoere in proteins
as links, documenting again the emergence of a scale-free architedliréfbough meth-
ods and sources of domain information in [20] werffedient, the scale-free features of the

networks were found to be robust [18].

In this work, we focus on Protein domain co-occurrence network afty&acerevisiae) which
is formally defined by a set of nodes consisting of all domains which occtherprotein
sequence of the yeast proteome. Two domains are regarded as béiagtintdnked if they

occur in one of these protein sequences [21]. Protein domain corencernetwork of yeast
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(S.cerevisiae) which is obtained from Biomart (Pfam domain database)datagement

system is weighted and undirected.
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CHAPTER 3

NETWORK RESILIENCE

The property of resilience of networks to the removal of their vertices hwisicelated to de-
gree (connectivity) distribution is of great interest in the literature. Mésh® networks is
considered for their function on their connectivity, that is, the existehpatbs between pairs
of vertices. If we remove vertices from a network, the length of thesespethincrease, and
eventually vertex pairs will become disconnected and some of the verticelsagdime un-
reachable. As a result the network communication between them will be ylegti@esponse
of resilience of networks to such vertex removal can vary accordingtiwark model which

can be classified by their degree distributions.

The presence of a giant connected component in a network indicatesith@fua network.

In other words, if a network does not have a giant connected componrercan say that
that network consists of disconnected clusters (components). If weexw@nswer of the
guestion "When networks are tried to be destroyed what is the respbnséamrks to such
an attack?”, the variation of the giant component must also be studied hibsuattack does
not crucially diminish the giant component, the damage is not serious , buditinage is fatal

if it eliminates the giant component.

There are also a variety offirent ways in which we remove vertices anfiefient networks
show varying levels of resilience to such a vertex removal. For exampéecamd remove

vertices at random from a network,

Failure - Nodes are removed randomly which might be represent random petitur$, en-

vironmental factors etc.

or one could target some specific set of vertices, such as those with treshidggrees.
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Attack - Selected nodes are removed from the network which might represeatomyanized

and selective fects to the network like virus attacks.

The way the nodes are chosen during an attack is callettaok strategy There are dif-
ferent attack strategies which is introduced in [1], [2]. But, the most widalgied attack
strategy has been introduced in [1]. At each step the nodes with maxintakedsgemoved

by decreasing order of their degree. This attack can be called atagsical attack strategy

2.

There are several measures (methods) to analyze the resilience ofwleknt® failures or

attacks. Some of these are introduced in the following section.

3.1 Methods to Measure Error and Attack Tolerance of Complex Netvorks

3.1.1 Average Shortest Path

Average shortest path is a typical network statistic to measure the netwtakatof a net-
work. To define the average of the shortest path lengths between tticegdr, it is needed
first to construct the shortest path lengthbetween two vertices measured as the miminum
number of edges in the network for all nodes froto j. By definition,d;; > 1 with djj = 1

if there exists a direct edge betweleand j. The characteristic path lengthof graphG is

defined as the average of the shortest path lengths between two gemgciesy

1
L(G) = migeledij, (3.2)

whereN is the number of nodes in the network.

As it can be seen from Equation (3.1), this definition is valid onlg iis totally connected,
which means that there must exist at least a path connecting any coupetioey with a
finite number of steps. Otherwise, when frhit can not be reached tp thend;:j- = +oo

and consequentelyas given in (3.1), being divergent. When studying how the resilience of a

network are fected by the removal of nodes, one often encounters non-connexttearks.
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In such cases the alternative formalism can be used such thdfitheney of network [3].

If the network is connected, the average shortest path is greater wdaetthiork undergoes
disruptions. As some of the nodes are deleted, the shortest path may ke domgto the
deletion of these nodes, because some of these nodes may form partsbbttest path in
the network before disruptions. However, if the disruptions of the nétwor so severe that
the network is fragmented, the shortest paths between the fragmentedamatiether nodes
are infinity. Then the average shortest path becomes infinity. In this situ#teraverage

shortest path can only show that the network is fragmented [19].

3.1.2 Hificiency of the Network

To define the fiiciency of G, suppose that every node sends information along the network,
through its edges and assume that thie€iencye; in the communication between nodand
j is inversely proportional to the shortest distangg:= % ¥ i, j. With this definition, when
there is no path in the graph between i and;j,= +co and consistently;j= 0. The global

efficiency of the grapl® can be defined as:

_ 2ijeG €]
Egob = YN =1) = N(N T |;theG (3.2)

the global diciency is normalized, that is: 8 Egon(G) < 1. The maximum value of the
efficiencyEq0n(G) = 1 are obtained in the ideal case of a completely connected graph, i.e. in

the case in which the graph G has all tﬁ'gg;l) possible edges ardjj = 1V i, | [3].

As it is mentioned, if large number of nodes are removed, the network bescameennected
(consequentely as given in 3.1,being divergent, is an illdefined quantity). To overcome this
problem, the fiiciency of the network can be used to measure the response of the reetwork
to external factors because netwoiki@ency can be extended to non-connected networks.
That is, using of the féiciency measure to characterize scale-free networks allows to avoid

problems due to the divergence of the average distance [3].
The global diciency of the grapi® decreases when the network undergoes disruptions [3].
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3.1.3 Diameter of the Network

Diameter is defined as the longest shortest path between any pair of sfoalegtwork. It

characterizes the ability of two nodes to communicate with each other.

Dia = maxdij [i,] =1,2,...,N}, (3.3)

whereN is the number of nodes in the network.

Networks with a very large number of nodes can have quite a small diametesnihllerd
is, the shorter is the expected path between them; for example, the diameter\giNhV,
with over 800 million nodes, is around 19 [5] whereas social networks wigh six billion

individuals are believed to have a diameter of around six [6].

3.1.4 Size of the Giant Connected Component

The resilience of the network to failures or attacks can be analyzed byirsgudow the size
of the largest connected component varies as a function of the numteeno¥ved nodes. That
is, during the network fragmentation process it can be analyzed the tilisrap the network
topology by measuring properties of the giant cluster that remains codnautiiding size

S as fraction of the size of initially-connected network.

This method is introduced by Barabasi et al. [1] in the following way: “Whedes are
removed from a network, clusters of nodes whose links to the systenpdisamay be cutfd
(fragmented) from the main cluster. This fragmentation process is investigatmeasuring
the size of the largest clust&, shown as a fraction of the total system size, when a fraction
f of the nodes are removed either randomly or in an attack mode. It is fouhéothihe
exponential network, af increasesS displays a threshold-like behaviour such that far

fe, S = 0, wheref; is the threshold value. However, the response of a scale-free netiwvork
attacks and failures is ratherfidirent. For random failures no threshold for fragmentation is
observed; On the other hand, the response to attack of the scalefve@is similar (but

swifter) to the response to attack and failure of the exponential network.”
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3.2 Literature Review on the Comparison of the Behavior of Sca Free and

Random Network under Failures and Attacks

As we mentioned, complex networks can be divided into two major classesdaugto the
connectivity distributionp(k): exponential networks and scale-free networks. Exponential
networks are homogeneous in connectivity, which means most nodes inrkdtave ap-
proximately the same number of connections aroad>, k ~< k >. In contrast, many real
networks belong to a class of inhomogeneous, scale-free networfferedi from exponen-
tial networks, in scale-free network, a few highly connected nokles-( < k >) exist and

thus play a significantly important role in the network’s connectivity.

Previous study [1], [8], [9], [10] has shown that scale-free nekwalisplay an unexpected
degree of robustness, i.e., the ability of their nodes to communicate beiffgeted by even
unrealistically high failure rates. However, these networks are extrernéignable to inten-
tional attacks, i.e., to the removal of a few of highly connected nodes. Ty is rooted
in their heterogenity. On the other hand, evolving networks with exponestiahectivity
distribution (exponential network) are not as robust to random faillmgsmore resilient to
intentional attacks. This property is due to their homogeneity, exhibit a similaatalewith

respect to errors and attacks.

Random Netwark, Accidentsl Node Failure

, - ’ . P
7 P o I N
: %

Figure 3.1: The simulations of théfects of failures and attacks on scale-free and exponential
random networks. This figure is taken from [7].
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By Barabasi et al. [7], theffects of failures and attacks on scale-free and exponential random
networks are simulated. In this simulation shown in Figure 3.1, the diagramsms#ucted
using U.S. highway system which resembles to random networks and Uirg airstem for
scale-free networks. When the nodes are removed randomly, sealadtworks seem to be
much more robust than exponential random networks in terms of netwariectvity, but
they seem more vulnerable to intentional attacks. In failure, since nodagmoved ran-
domly, the probability that the removed nodes with low-degree is higher tharetheved
nodes with high-degree (hubs), as a resfieas of failure on network connectivity is ex-
pected to be small. On the other hand, in a intential attack the nodes with higredagr
removed, thusféect of attack on network connectivity is expected to be big, that is the net-
work connectivity can be heavily damaged. These results can be eldfesmn the simulation
shown in Figure 3.1. The first two diagrams show tlfe&s of random failure of nodes on

a random network (U.S. highway system) connectivity. The second tvgpadias show the
effect of random node removal on a scale free network (U.S. airline systamgctivity. The

last two diagrams show thetect of a hub attack on the scale-free network. Comparing the
second and the last two diagrams, it is seen that the network connectivigngyhdamaged
under attacks. All these results observed in this analysis can be exptgipeesence of hubs

in scale-free networks [7].

Barabasi et al. [1] again investigate thieet of failures and attacks on scale free and ex-
ponential random networks. But in this case changes in the diameter of ¢thg/pes of
networks are examined as a function of the fraction of nodes being reimdMeey com-
pare the exponential (E) and scale-free (SF) network models, eathiiagN = 10,000
nodes and 20, 000 links under failures and attacks in Figuré3.Z he triangle and square
symbols in Figure 3.%2a) correspond to the diameter of the exponential and scale-free net-
works respectively when a fraction f of the nodes are removed rand(@migr tolerance).
The diamond and circle symbols in Figure 822 show the response of the exponential and
the scale-free networks to attacks respectively, when the most hightyctad nodes are re-
moved. In Figure 3.2Zb), changes in the diameter of the Internet (scale-free network) under
random failures (squares) and attacks (circles) are shown. Iné=g8j2(c), changes in the
diameter of the World-Wide Web (scale-free network) under randomrésil(squares) and
attacks (circles) are shown. The results in Figure 3.2 agree with the psegliservation

that scale-free networks are more robust than exponential netwodes trilures, but more
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vulnerable to attacks. It can be also observed that failures or attackspomential random

networks causes almost the same amount of damage to the network.
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Figure 3.2: Changes in the diameter of the network as a function of the fraxtibe removed
nodes. This figure is taken from [1].

Barabasi et al. [1] continue to investigate tHeeet of failures and attacks on the two types
of networks by studying another method. They measured the size of thiecgiamected
componet and the average size of the disconnected component (ordsmatponents) as a
function of the fraction of nodes are removed either in a targeted wayhdomaly. In Figure
3.3, changes in the relative size of the largest clUst@pen symbols) and the average size of
the isolated clusters s > (filled symbols) are shown as function of the fraction of removed
nodesf for the same systems. The si@es defined as the fraction of nodes contained in
the largest cluster. In Figure 3(8), fragmentation of the exponential network under random
failures (squares) and attacks (circles) are shown. In Figuré€b3,3ragmentation of the
scale-free network under random failures ( squares) and attdokegtare shown. The inset
shows the error tolerance curves for the whole range wfdicating that the main cluster falls

apart only after it has been completely deflated. In Figure 8)&r({d @) show the &ect of
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failure and attack on the Internet and www, respectively. Again, It seoked that scale-free
networks are more robust than exponential networks and vulnarahiatss in contrast to

exponential network behave the same under failures and attacks.
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Figure 3.3: Changes in the relative size of the largest cl&tepen symbols) and the average

size of the isolated clustexss > (filled symbols) as function of the fraction of removed nodes
f for the same systems. This figure is taken from [1].
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CHAPTER 4

APPLICATIONS

In the previous section, the methods to measure the attack tolerance of comaplexks are
presented. In order to use these methods and analyze the network, ls@nges must be
made on the network. Protein domain co-occurence network of yeasté@igiae) which is
formatted into readable format by Pajek program is used to analyse the tttaicnce of
several networks. In the first part of this chapter, we first brieflyouhtice the structure of
Pfam protein domain co-occurrence network of yeast. Then, we meriaurt those changes
made on the network by using Pajek progtain the second part of this chapter we give some
statistics of protein domain co-occurrence network of yeast. In this thesisompare the
attack tolerance of the several networks which is obtained from protewaihoco-occurence
network of yeast. In the last part of this chapter, how we get thoseaavetwork from
protein domain co-occurence network of yeast and the analysis of tlek atlerance of
those networks are introduced. In order to get these several nstwdrkh have exactly
the same connectivity distribution with Protein domain co-occurrence netefoykast, a

program written in MATLAB is used.

4.1 Descriptions and Preparations of the Network Used in thépplications

Many biological systems can be represented by networks [20], [28], One of these net-
works is protein domain networks which include two network types; proteinaiio interac-
tion networks and protein domain co-occurence networks. As we mentioriettion 2.3,
a protein domain is a part of protein sequence and structure that care eftobetion, and

exist independently of the rest of the protein chain. Each domain formsnpax three-

! Pajek is a program for large -network analysis and visualization (BatagelMrvar 1998).
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dimensional structure and often can be independently stable and folded prfoteins con-

sist of several structural domains. One domain may appear in a varietyohitienarily

related proteins.

Table 4.1: Some examples of Pfam domains

Domain label (accession

) Description of domain

n

PF00069 Protein kinase domain
PF00730 HhH-GPD superfamily base excision DNA repair prote
PF02844 Phosphoribosylgycinamide synthetase, N domain

Protein domain co-occurrence network of yéashich is used in this application is con-

structed from Biomart data management system which links to Pfam domairadatam

Pfam domain databadecach domain is labeled. Table 4.1 demonstrates some examples of

such domains.

Table 4.2: Pfam protein domain co-occurrence network of yeast oltiim@ Biomart which
links to Pfam database.

domainl

domain2

occurrence in protein

PFO6747

PF08583

1

PF01288

PF00809

PF00293

PF05026

PF00293

PF09297

PF01118

PF02774

PF01119

PF08676

PF09261

PFO7748

PF01053

PF01212

PF05436

PF04648

PF08022

PF08030

PFO0033

PF00032

PF01734

PF00027

PF01237

PF00023

PF00730

PF00633

PF00730

PF07934

PF01233

PF02799

PF01232

PF08125

RIRR RN R RPN R R NN PP -

2 The construction of Pfam domain co-occurrence network of yeastweale by Stefan Wuchty.
3 The Pfam database is a large collection of protein families, each repeddgnmultiple sequence alignments
and hidden Markov models (HMMs).
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In Pfam domain co-occurrence network of yeast, domains are cownétbey co-appear in
the same proteins in yeast. Also, each link comes with a weight, reflecting theenaib
proteins the domains co-appeared in. Table 4.2 shows Pfam domain woerme network
of yeast before we make some changes on this data. In this table the domanfirstth
column (domainl) are connected with the domains in the second column (doraath#)e
third colum reflects the number of proteins the domains co-appeared imdandix A, the
whole Pfam domain co-occurrence network of yeast can be foundrdier to analyse this
network, we made some changes on the network by using Pajek progranstriibture of
a Pajek network file is a simple text file that can be typed out in any word gsocehat
exports plain text (see [29] for detailed description of Pajek program)}hik simple text
file, we attribute serial numbers to the vertices ranging from 1 to the numbhertdes and
Pajek automatically labeled the vertices. Table 4.3 shows the structure ofjékedpanain
co-occurrence network fite In this tabel, first, the data file specifies the number of vertices
(“vertices 1007”). Then, each vertex is identified on a separate line $Brial number, a
textual label (enclosed in quotation marks (* ")) and three real numbetsden 0 and 1,
which indicate the position of the vertex in three-dimensional space if the netsvdrawn.
This information is unnecessary for us so we ignore these numbers.vdgutas important
to note that the text label is crucial for the identification of vertices, bexaeigal numbers of
vertices may change during the analysis. We ignore the weight of the ketovsimplfy the
analysis. As a result our network is undirected and unweighted netwoeddition to this,
our network is a simple network that has no self-loops or multi-edges. Akenatwork are

formatted in pajek network file format, the network are ready for analysis.

4 This is a huge network file. It is avaliable, if you contact me via e-mail: d@metu.edu.tr
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Table 4.3: Partial listing of protein domain co-occurence network of yasgtstfile for Pajek.

*Vertices 1007

1 “v1” 0.1000 0.5000 0.5000
2 “v2" 0.1000 0.4975 0.5000
3 “v3” 0.1000 0.4950 0.5000
4 “v4” 0.1001 0.4925 0.5000
5 “v5” 0.1001 0.4900 0.5000
6 “v6” 0.1002 0.4875 0.5000
7 V7" 0.1003 0.4850 0.5000
8 “v8” 0.1004 0.4825 0.5000
9 “v9” 0.1005 0.4800 0.5000
10 “v10” 0.1006 0.4775 0.5000
*Edges

790 945 1

339 260 1

103 736 1

103 1002 1

308 499 2

309 966 2

998 840 1

296 327 1

760 698 2

854 856 8

Our network is unconnected network; it has 231 disconnected comizoaied a giant con-
nected component. Since we use the method; “size of the giant connectpdment” to

analyze the attack tolerance of the networks, we extract the giant dednemmponent of
protein domain co-occurence network of yeast by using Pajek progwsiter all we are

ready to produce several randomly modified networks, which have the sannectivity dis-
tribution with protein domain co-occurrence network, from the giant coaecomponent of
yeast network by using MATLAB (Part of the MATLAB code used in thisgess is written

by me and can be found in Appendix B).
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4.2 Statistics of Protein Domain Co-occurrence Network of &ast

To capture the network’s generic features and to get an idea abotiitbiige of the network,

we calculate some statistics of protein domain co-occurrence network stf yea

Table 4.4: Statistics of protein domain co-occurrence networks of ygasrevisiae).

. gc gc
Orgal’llsm Nnodes Nedges NCC NnodeS Nedges < k > C < k >gC y

S.cerevisiae 1007 1280 231 334 556 254 039 333 15

Table 4.4 summarizes the basic statistics of the domain co-occurrence nef\ockrevisia,
which are calculated with the help of Pajek and Matlab, that contain a gianectad com-
ponent ‘gc’ incorporates the majority of the domaif>,_, co-existing with many small,
connected componei.. and Ngggesis the number of edges in the largest component. Our
network is not a huge network, 1007 vertices and 1280 edges, compathe other networks

in [1], [5], [13], [24] and has a giant connected component with 334izes. Average degree

< k > and clustering cd@cientC of organisims are compared in [25] and it was found that
as level of organisims development increase both the average defgre@nd the clustering
codficientC gradually increases. We do not use the information of average dedceeand
clustering cofficientC anywhere in this anaysis. We just gave these values as an information

about the network.
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Freguency

—
D_¢

Degrees

Figure 4.1: Protein domain co-occurrence network of S.cerevisiae gisptales free be-
haviour. A network feature is characterized by the power law in the dedisribution
P(k) ~ k™ (' see Table 4.4 for detailed values).

As it was mentioned, the nodes are domains and two domains are conneetedijirected
edge if they occur together in one protein at least once. These comeedétine the edge set
of the network. Therefore the degree of a domain is the number of otineaids to which
it is connected. In our network, frequency distribution of degreealsvthe presence of
scale free topology. Thus frequency distribution follows a powerPéy ~ k™. The degree
distributionP(k) of the protein domain co-occurrence network of S. cerevisiae follqvesweer
law degree distribution with exponept= 1.5 (Figure 4.1). The result of this analysis is that
the scale free network topologically is dominated by few highly connectes fmbst highly
connected nodes). In addition to this, empirically, domain co-occurreetveork displays
power law degree distribution, power-law distributed, resulting in few \@stltaving many
edges and many vertices having few edges. In Table 4.5, the numbedes$ mdich have
one link (edge) is 485, and two links is 232, i.e., the number of nodes desea the links
they have increase. As it can be seen from the Table 4.5, at the endtabteéhe number
of nodes having 25 links is one. Thus, Table 4.5 shows emprically that theredisplays

power law degree distribution.
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Table 4.5: Frequency distribution of degree in protein domain co-occenagtwork of yeast
(S.cerevisiae).

Degree Freq Freq% CumFreq CumFreq% Representative(Vertex Label)

1 485  48.1629 485 48.1629 v5
2 232  23.0387 717 71.2016 v8
3 91 9.0367 808 80.2383 vll
4 73 7.2493 881 87.4876 v3
5 31 23.0387 912 90.5660 v24
6 20 1.9861 932 92.5521 v20
7 28 2.7805 960 95.3327 v4
8 12 1.1917 972 96.5243 v7
9 8 0.7944 980 97.3188 v2
10 5 0.4965 985 97.8153 v13
11 3 0.2979 988 98.1132 V63
13 4 0.3972 992 98.5104 V69
14 1 0.0993 993 98.6097 v35
15 3 0.2979 996 98.9076 v45
16 1 0.0993 997 99.0070 v558
17 1 0.0993 998 99.1063 vo21
18 3 0.2979 1001 99.4042 V6
19 3 0.2979 1004 99.7021 vl
21 1 0.0993 1005 99.8014 v21
23 1 0.0993 1006 99.9007 vO3
25 1 0.0993 1007 100.0000 v133

Sum 1007 100.0000

4.3 Analysis of Attack Tolerances of the Networks

In this thesis, we compare several networks exhibiting scale free steyetbich have exactly
the same connectivity with the original network, under attacks. We analgz®liustness of
the network to attacks by studying how the size of the largest connectedoempvaries as

a function of the number of removed nodes.

Even the connectivity distribution is an important indicator of a network'ditgize fea-

tures, diferent networks with the same connectivity distribution do not need to hawathe
attack tolerances. In addition to this, it can be considered that the netwithksame connec-
tivty distribution have higher attack tolerance as we organize the sameacesaon a better
way. Then, it can be checked for the variations of attack tolerance ofetveorks with the
same connectivity distributions. Furthermore, we investigate whether themesiglutionary

mechanism for having networks with higher or lower attack tolerances éosdime connec-
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tivity distribution. For these purposes, we wrote an algorithm to produgeralerandomly
modified networks having the same connectivity distribution with the original or&twthen
as we attack those networks we collect one of those network with a stratagi will be
mentioned in this chapter. Before we check these assumptions and invessgatewant
to mention about our attack strategy and the method to measure the attack ®lefrdne

network.

Attack Strategy: The way the nodes are chosen during an attack is calledgtack strategy
Some attack strategies introduced in [1], [2]. We use clasical attack séstsbich intro-
duced in [1]. In this attack strategy, we first begin to remove the most higinigected nodes

and continue to remove nodes by decreasing order of their degree.

The Method: Size of the Giant Connected ComponentThis method introduced by Barabasi
etal. in[1] is; “When nodes are removed from a network, clusters déaevhose links to the
system disappear may be cuf fragmented) from the main cluster. This fragmentation pro-
cess is investigated by measuring the size of the largest cl@stetnown as a fraction of the
total system size, when a fractidnof the nodes are removed either randomly or in an attack
mode. It is found that for the exponential network under attacks anddailand the scale
free networks under attack (see Subsection 3.1.4),iasreasesS displays a threshold-like
behaviour such that fof > f;, S ~ 0, wheref; is the threshold value.” We slightly modified
this method in the following way: We removed a fractibrof the nodes in an attack mode
(the most highly connected nodes removed first and continue removes bgd#ecreasing
order of their degree) like the method introduced in [1]. But, all nodes lwviere removed

in our analysis are belong to the giant connected component. Since otheconogcted
nodes not belong to the giant connected component doffext¢he size of giant connected
component, we ignored these nodes. In doing so, we accelerated ssansso, Concern-
ing the thresholds values, we considered that the threshold was reabbedver the size of
the giant connected component of the network becomes smaller than 2%ndfdleesystem

size and 5% of the begining size of the giant connected component ofttherke

The Strategy of Analysis: First produce four modified networks from the original network
having the same connectivity distribution with the original network by applyiegitgorithm
mentioned below (also see Table 4.6 and in Appendix B, it can be found wiailab code

for this algorithm). After finding attack tolerances of those networks, wieaothe least
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vulnerable network (displaying higher attack tolerance with respect tottie¥s) and the
most vulnerable network (displaying lower attack tolerance with respecetottters) among

those networks under attack. At this point we divide the analysis into two par

In the first part we produce four modified networks from the most vulnerable network by
applying the algorithm. After finding attack tolerances of those networkscallect the
most vulnerable network among those networks. We continue appliying ithe gaocedure

n times (in this analysis, we applied it 10 times). the second paytwe produce four mod-
ified networks from the least vulnerable networks by applying the algoritAfter attack
those networks, we collect the least vulnerable network among thoserkstWige continue

appliying the same procedundimes (in this analysis, we applied it 10 times).

Itis important to note that all networks in this analysis have the same conityedistribution
with the orginal networks. The strategy of the analysis mentioned above tsatied in Figure

4.2

NW 0

The Original
Network

Randomly modified

Networks by applying
NW 4

the algoritm on the | NW 3 |

original network

Randomly modified
Networks
by applying the

algoritm on NW1
and NW4

D Least Vulnarable Network

L 1 Most Vulnarable Network

Figure 4.2: lllustration of the strategy of analysis.

To check our assumptions mentioned above, we wrote an algoritm (TabldmtiB)s algo-
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rithm, we randomly change the links of the nodes in protein domain co-ocma reetwork of
yeast conserving the connectivity of the network. We can explain theeepsan the following
way: we randomly find a node say has 4 links degn;) = 4) and a node say, has 2 links
(dedny) = 2) which they are connected. After we found these two nodes we randeaaitgh
for two nodes sayz andng, which must be unconnected, must have dediegn;) — 1 = 3
anddedny) — 1 = 1, respectively. After found those nodes, we break the linkg@&nn, and
we connechs andns. Now n; andn, have degredegn;) = 3 anddedgn,) = 1 respectively
while degree ofiz andn, becomedegns) = 4 anddegns) = 2. As a result the connectivity
of the network does not changed. This process is illustrated in FigureMe3applied this

process 3% of the size of the giant connected component.

Example 4.3.1 We illustratethe algorithm using the graph G= (V, E) with seven vertices
and seven edges shown in Figure 4.3. Here we see that &, E) with V = {vy,...,,v7},

E = {(v1, W), (V1,V3), (V1, Va), (V1, V5), (V2, V5), (V3, Vs, (V3, V7)}. After applying the algorithm,

it is obtanied the modified graph’'G= (V', E') with seven vertices and seven edges, where

’

V' = {vi, ..., v7}, E = {(V1, Va), (Va, Va), (V1, Vs), (V2, Vis), (V3, Va), (Va, Ve, (V3, V7)}.

v4 v4

v5 v5

vl vl

v3 v2 v3 v2

v/ v/

v6 (%)vs

G G’

Figure 4.3: Graph used to illustrate the algorithm.
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Table 4.6: The algorithm of the analysis.

Algorithm: An algorithm for Randomly modifying the connections of vertices in a
GraphG = (V,E), whereV = {vy,V, ....,Vn}, E={(vi,Vj)}, I,j=1,2,....,n.

Input: A simple, connected, undirected graph= (V, E)

Output: A simple, connected, undirected randomly modified gr@pk: (V', E’)

=

Find adjancency matriA(G)nxn of G.
2 Compute degrees d& using A.
forp=1:10
Randomly find two vertices,, iy such that ¥a, ) € E, i.e., A(Va, Vp) = 1.
Find dedqv,) and deq\vp).
Search randomly for two verticeg, vg and dedVc) = degqva) — 1,
dedvg) = dedwp) — 1.
if A(ve,vg) =1
repeat the step 5
else
setA(Ve,Vq) =1, A(Va,Wp) =0
end

g b~ w

By applying the algorithm (just mentioned above) to the giant connected ewnpof pro-
tein domain co-occurrence network, we get four randomly modified nks¥@ving the same
connectivity distribution with the original network. Later, we analyze the kttalerance of
these four randomly modified networks and among these networks wetdkiganost vul-
nerable network and the least vulnerable network under attack. Thevoipstable network
means that it is fragmented faster than the other networks and the leasiablgneetwork
means that it is fragmented slower than the other networks as we remove. nd&ede-
termine the most vulnerable and the least vulnerable networks by compagitigrésholds
values of the networks. After extracting the most vulnerable and the le&strable net-
works, we again get four randomly modified networks from the most vabierand four
randomly modified networks from the least vulnerable network by applyiegldorithm. At
this point we divide the analysis into two ways. In the first way, we attackdberietworks
obtained from the most vulnerable network and we collect the most vuleanatwork from
these networks. We repeat this process and continue collecting the nhomtalle network
from the networks which are obtanied from the most vulnerable networthel second way,
we attack the four networks obtained from the least vulnerable netwatkvancollect the
least vulnerable network from these networks. We repeat this pracessontinue collecting

the least vulnerable network from the networks which are obtanied frere#st vulnerable
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network (see “the strategy of analysis” mentioned above). In Figure8,4£Aanges in the
relative size of the giant connected comporemais function of the fraction of removed nodes

f in the original network and first four networks in Tables 4.7 and 4.8 arelateul

Results of this analysis are shown in Table 4.7 and 4.8. In these tablesoldrealues at
which the network is fragmented are given. In Tables 4.7 and 4.8, th& siggT"v” which is
nearby the networks means that the network is the most vulnerable networigaother four
networks in Table 4.7 and the least vulnerable network among other foworkes in Table
4.8, and the star signx” which is nearby the networks in Table 4.7 means that the network is
fragmented later than the original network. In Table 4.7, the first anakeelysis1) in which
four networks collected from the original network, netwarkhaving the lowest threshold
value is the most vulnerable network. We choose this network to make thesimahand
continue like this. If we compare all threshold values in Table 4.7, all netoake diferent
thresholds values or same threshold values. Also, only the smallest pgag 8% of the
whole) networks has threshold values greater than the original netimoflable 4.8, the first
analysis (Analysisl) in which four networks collected from the originavoek, Network11
having the highest threshold value is the least vulnerable network. Viésettbis network to
make the Analysis 2 and continue like this. If we compare all threshold valuEebie 4.8,

all networks have dierent threshold values or same threshold values and all threshold values
of the network after Analysis 2 are larger than the threshold value of igaak network.

But, in contrast to the results in Table 4.7, as we continue our analysis tiehdiotesalues

of the networks increase. But, in Table 4.7, threshold values of the retwlornot decrease
but just become smaller than the threshold value of the original network asnimue the

analysis.

Results of this analysis indicate that the networks having the exactly the samectiwity
distribution have dterent attack tolerances. From the most vulnerable network analysis, it
can be observed that there is a selection which means that as we chowsestireetwork (the
worst network means that threshold value of this network is less than theadngtwork) ,

the probability that the network obtained from the worst network to becomedhst one is
high. This observation is derived from the result in the most vulneralieanke analysis: only
smallest part of the (5% of the whole) networks have threshold valuategtéan the original
network. But from the least vulnerable network analysis, we can ebsepattern such that

as we select the least vulnerable network from the least vulnerable nketiwaeshold value
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of the networks (i.e., attack tolerance of the network) increases. Thi esgl comparing
two analyses (the least vulnerable and the most vulnerable network esjaigdicate that
as we organize the same resources in a better way we can get a netwoakhigtier atack
tolerance. Additionally, all these results show that there is an evolutionachanesm for

having networks with higher attack tolerance for the same connectivity distoib
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Table 4.7:

The results of the most vulnerable network analysis.

Networks Threshold values ft)

The Original Network 0,046

Analysisl Networkl11 0,046
v' | Network12 0,036
Network1 3 0,038

Network14 0,036

Analysis2 v | Network21 0,036
Network22 0,040

Network2.3 0,046

Network24 0,042

Analysis3 Network31 0,044
Network32 0,046

v' | Network33 0,036
Network34 0,038

Analysis4 Network4 1 0,046
v' | Network4.2 0,046
Network4 3 0,046

Network4 4 0,046

Analysis5 Network5 1 0,040
Network5 2 0,046

Network5.3 0,040

v | Networkc 4 0,038
Analysis6é v | Network6 1 0,036
Network6.2 0,044

Network6 3 0,038

Network6 4 0,046

Analysis7 v' | Network7.1 0,038
Network7.2 0,046

Network7.3 0,040

network74 0,046

Analysis8 v | Network81 0,038
Network82 0,038

Network83 0,046

Network84 0,046

Analysis9 = | Network91 0,058
Network9 2 0,046

v | Network93 0,046

* | Network94 0,060
Analysis10 » | Network1Q1 0,058
* | Network102 0,060
Network1Q3 0,046

* | Network104 0,052
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Table 4.8:

The results of the least vulnerable network analysis.

Networks Threshold values ft)

The Original Network 0,046

Analysisl v | Network1l1l 0,046
Network1 2 0,036

Network1 3 0,038

Network14 0,036

Analysis2 Network2 1 0,036
v' | Network22 0,046
Network2.3 0,046

Network24 0,030

Analysis3 v | Network31 0,058
Network32 0,046

Network33 0,048

Network34 0,046

Analysis4 Network4 1 0,058
Network4.2 0,058

v | Network4.3 0,066
Network4 4 0,058

Analysis5 Network5 1 0,064
Network5 2 0,046

v | Network5.3 0,064
Network5 4 0,048

Analysis6 Network6 1 0,058
Network6.2 0,058

Network6 3 0,062

v | Network6 4 0,064
Analysis7 v' | Network7.1 0,066
Network7.2 0,058

Network7.3 0,066

network74 0,066

Analysis8 Network8 1 0,046
Network82 0,066

v" | Network83 0,066
Network84 0,066

Analysis9 Network9 1 0,070
Network9 2 0,060

v | Network93 0,070
Network94 0,068

Analysis10 Network1Q1 0,066
Network102 0,068

Network1Q3 0,080

Network104 0,068
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Figure 4.4. Changes in the relative size of the giant connected comp8ranfunction of
the fraction of removed nodedsin the original network.
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Figure 4.5: Changes in the relative size of the giant connected comp8ranfunction of
the fraction of removed nodefsin Network11.
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the fraction of removed nodesin Network1 3.
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CHAPTER 5

CONCLUSION

The stability or survivability of some complex networks undefetent circumstances has
received a growing interest among scientists. The study of the netwulktreess is particu-
larly important by several occasions. In one hand a higher degredos$tness to errors and
attacks may be desired for maintaining the information flow in communication network
der attacks. On the other hand, planning a very limited attack aimed at fragmamt@twork
by removal of minimum number of the most important nodes might have signifisate
in drug design. In this thesis, we studied protein domain co-occurrertemmeof yeast
generated with data from Biomart which links to Pfam database. Sevevabks obtained
from protein domain co-occurrence network having exactly the sameectmity distribu-
tion were compared under attacks. In this work, we investigated the assantipsiothe
different networks with the same connectivity distribution do not need to hawathe attack
tolerances. In addition to this, we considered that the networks with samedaority distri-
bution have higher attack tolerance as we organize the same resourdestteravay. Then,
we checked for the variations of attack tolerance of the networks with the sannectiviy
distributions. Furthermore, we investigated whether there is an evolutiomecitanism for

having networks with higher or lower attack tolerances for the same ctvibedistribution.

Firstly, we checked whether protein domain co-occurrence networleadtydisplays scale
free topology or not. We found that our network are scale free netgdisklaying power law
degree distribution). Investigation of the scale free topology is particulabprtant, since
many real world networks are scale free networks. Scale free netvdisglay unexpected
degree of robustness, i.e., the ability of their nodes to communicate beiffgetied by even

high failure rates. However these networks are extremely vulnerable tdional attacks.
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Then, since we want to compare the attack tolerance of the networks, terendeed the
attack strategy: remove nodes by decreasing order of their degrdebeamethod: size
of the giant connected component. To analyze the robustness of therkiébnattacks by
studying how the size of the largest connected component varies astefuof the number
of removed nodes, first we had to determine the size of the giant conremtgzbnent and
extract the giant connected component from the network. Extractioreadignt connected
component of the network is particularly important for us, since we madealysis on this

component.

To check our assumption and investigations we wrote an algorithm. We randbehged
the links of nodes in the giant connected component of protein domainaroreace network
of yeast while conserving the connectivity of the network. In doing sophtained several
randomly modified networks which have the same connectivity distribution witbrigaal
network. Then we attacked to those networks and collected the most vallmesiwork (the
most vulnerable network means that it is fragmented faster than the otherkevand the
least vulnerable network (the least vulnerable network means that igimémated slower than
the other networks) as we remove nodes. We determined the most vulnesbhtek and the
least vulnerable network by comparing the threshold values of the netwdft applied the
algorithm on the most vulnerable network and the least vulnerable netwoiitam several
randomly modified networks. We again attacked to those networks. Theoomtimued to
collect the most vulnerable network from the networks which also obtaired the most
vulnerable network and the least vulnerable network from the netwadnkshvalso obtained

from the least vulnerable network.

As a result, the networks having the exactly the same connectivity distribuaiandiferent
attack tolerance under attacks. In addition to this, from the most vulnerablerk analysis,
we observed that there is a selection which means that as we choose she@eaork (the
worst network means that thresholds value of this network is less thanigieabnetwork),
the probability that the network obtaining from the worst network to becomevtinst one is
high. This observation is derived from the result in the analysis: onlyrtfedlest part of the
(5% of the whole) networks has threshold values greater than the ongatvabrk. But, from
the least vulnerable network analysis, we observed a pattern suclsthat select the least
vulnerable network from the networks which also obtained from the |ledsérable network,

threshold values of the networks (i.e., attack tolerance of the networke@se. This result
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and comparing two analyses (the least vulnerable and the most vulneraktelnanalysis)
indicate that as we organize the same resources in a better way we cameggbek with an
higher attack tolerance. Also, all these results show that there is an enalytimechanism

for having networks with higher attack tolerance for the same connectisgitylaition.

The most important observations from this work is that there is a patternteatlas the
network with higher attack tolerance is selected from the network which slhagher at-
tack tolerance, attack tolerances of the networks increase. This abiearindicates that an
evolutinary mechanisim for having networks with higher attack tolerancéhifosame con-
nectivity distribution can be constructed. From these observations, #iauuesmes into
mind; given the connectivity of the network, how the network is organizetarbest way to
show high attack tolerance under attacks. For this purpose, a method mizertfee network
in a better way can be developed. In addition to this, another question askée; without
making an attack tolerance analysis and just only looking at the structuret(s& may mean
that how the links of the nodes in the network is organized) of the netwoitksthhe same
connectivity distribution, can it be observed how the network behavdsruattacks? Is it
possible to develop an algorithm for this purpose. All these questions wilMestigated as

a future work.
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APPENDIX A

PFAM PROTEIN DOMAIN CO-OCCURRENCE NETWORK
OF YEAST (S. CEREVISIAE)
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Table A.1: Pfam protein domain co-occurrence network of yeast olotefmen Biomart
which links to Pfam database.

domainl| domain2| occurrence in proteins
PF06747| PF08583 1
PF01288| PF00809
PF00293| PF05026
PF00293| PF09297
PF01118| PF02774
PF01119| PF08676
PF09261| PF07748
PF01053| PF01212
PF05436| PF04648
PF08022| PF08030
PF00033| PF00032
PF01734| PF00027
PF01237| PF00023
PF00730| PF00633
PF00730| PF07934
PF01233| PF02799
PF01232| PF08125
PF03127| PF02883
PF00636| PFO0035
PF00637| PF01394
PF08501| PF01488
PF04898| PF01493
PF04898| PF01645
PF08509| PF00211
PF00456| PF02780
PF00456| PF02779
PF05222| PF01262
PF04893| PF03878
PF01602| PF0O7718
PF01602| PF02883
PF01602| PF08752
PF05221| PF00670
PF01425| PF02626
PF01425| PF08443
PF01426| PF00249
PF01426| PF00439
PF01426| PF00628
PF04068| PF04034
PF04068| PF00037
PF01422| PF01424
PF04063| PF04064
PF01546| PFO7687
PF00493| PF01078
PF00498| PF0O7714

RINWRRR R RN R R IR RR PR R RNN R R R R RNN R R R RN P RN R R NN R R -
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PF00961

PF00115

PFO0078

PF00115

PF01348

PF00333

PF03719

PF00330

PF00694

PF00339

PF02752

PF04928

PF01909

PF04928

PF04926

PF02893

PF00566

PF02893

PF00201

PF02893

PF03033

PFO4677

PF04676

PF05739

PFO0787

PF02784

PF00278

PF02785

PF02436

PF02785

PF01425

PF02785

PF02655

PF02785

PF02626

PF02785

PF00682

PF02785

PF01039

PF02785

PF00364

PF02785

PF02222

PF02785

PF08443

PF02785

PF08326

PF02785

PF01071

PF02786

PF02436

PF02786

PF01425

PF02786

PF02655

PF02786

PF02626

PF02786

PF00185

PF02786

PF02785

PF02786

PF01039

PF02786

PF02787
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PF02786

PF00364

PF02786

PF02222

PF02786

PF00988

PF02786

PF01071

PF02786

PF00682

PF02786

PF00117

PF02786

PF08326

PF02786

PF02142

PF02786

PF02729

PF02786

PF08443

PF02787

PF00185

PF02787

PF02729

PF02801

PF01648

PF03946

PF00298

PF02148

PFO7576

PF00433

PF00130

PF00433

PF02185

PF02146

PF04574

PF02809

PF00904

PF02809

PFO0790

PF00349

PF03727

PF02142

PF00185

PF02142

PF02787

PF02142

PF00988

PF02142

PF02729

PF02142

PF00117

PF02142

PF01808

PF00439

PF08880

PF00439

PF02178

PF04815

PF00626

PF04810

PF00626

PF04810

PF04815

PF04810

PF08033

PF04810

PF04811

PF04811

PF00626

PF04811

PF04815

PF04811

PFO08033

PF00804

PFO05739

PF03129

PF02824

PF03129

PF09180

PF03129

PFO7973

PF05131

PF00637

PF00632

PF00168

PF00632

PF00397

PF02733

PF02734

PF02735

PF03730
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PF02736

PF00612

PF02736

PF00063

PF02736

PF01843

PF04565

PF00562

PF04565

PF04560

PF04565

PF04566

PF04565

PF04567

PF04565

PF06883

PF08032

PF00588

PF08033

PF00626

PFO08033

PF04815

PF08407

PF01644

PF08407

PF03142

PFO0888

PF08672

PF00181

PF03947

PF00890

PF02910

PF00899

PF05237

PF00899

PF02134

PF04321

PF01263

PF04321

PF02719

PF08534

PFO0578

PF01634

PF08029

PF01411

PF02272

PF01411

PFO7973

PF08242

PF08498

PF08242

PF01209

PF08242

PF03291

PF08242

PF02353

PF08242

PF01170
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PF08242
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PF08241

PF01170

PF08241

PF05148

PF08241

PF02353

PF08241

PF01209

PF08241

PF08498

PF08241

PF03291
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PF08240

PF00107
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PF08711

PFO7500

PF08506

PF03378

PF01417

PF00904

PF01417

PF02809

PF01417

PF01608

PF08712

PF01106

PF04072

PFO07646

PF04072

PF01344

PF08083

PF08084
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PF08082

PF08084

PF08082

PF08083

PF02194

PF08628

PF08326

PF01039

PF02190

PF05362

PF00153

PFO0036

PF01909

PF03828

PF01909

PF04926

PF00156

PF00310

PF02359

PF02933

PF03731

PF02735

PF03731

PF03730

PF01902

PF01042

PF00091

PF03953

PFO0096

PF01363

PF00096

PF02373

PF00096

PF00226

PF00096

PF02375

PF00096

PF02178

PFO0097

PF04757

PFO0097

PF01485

PFO0097

PF02037

PFO0097

PF00176

PFO0097

PFO7576

PFO0097

PF08647

PF00097

PF00271

PF00097

PF02148

PFO0097

PF01363

PFO0097

PF08797

PFO0097

PF00642

PFO0097

PF00498

PFO0097

PF00628

PFO0795

PF02540

PF04557

PF03950

PF04557

PF00749

PFO00790

PF03127

PFO0790

PF02883

PF00792

PF00613

PF00792

PF00454

PF03636

PF03633

PF03636

PF03632

PF04558

PF03950

PF04558

PF04557

PF04558

PF00749

PF03632

PF03633
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PFO7973

PF02824

PFO7973

PF02272

PFO0076

PFO0806

PFO0076

PF08662

PFO0076

PF00658

PFO0076

PF00641

PFO0076

PF05391

PFO0070

PF00310

PF00070

PF01645

PF00070

PF03486

PFO0070

PF01134

PFO0070

PF02852

PFO0070

PF04898

PFO0070

PF01493

PFO0071

PF08355

PF0O0071

PF01926

PF0O0071

PF08356

PF00071

PF00036

PF00071

PF00025

PF00072

PF00512

PFO0072

PF01163

PF00072

PF00447

PF00072

PF02518

PF04675

PF04679

PF02854

PF02847

PF02854

PF09088

PF02854

PF09090

PF03917

PF03199

PF00370

PF02782

PFO0078

PFO0098

PFO0078

PF09337

PFO0078

PF01348

PF02852

PF01134

PF02581

PF02110

PFO5773

PF01205

PFO5773

PF04408

PFO5773

PFO7717

PF00988

PF00185

PF00988

PF02787

PF00988

PF02729

PF01794

PF08030

PF01794

PF08022

PF08669

PF01571

PF08142

PF04950

PF02518

PF00204
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PF02518

PF00183

PF02518

PFO1119

PF02518

PF00521

PF02518

PF08676

PF02518

PF00512

PF00982

PF02358

PF08390

PF03798

PF08393

PF03028

PF08393

PFO7728

PF00382

PF00134

PF00382

PFO7741

PFO00383

PF00849

PF00479

PF02781

PFO0388

PF00387

PF00389

PF02826

PF00571

PF00654

PF00571

PF01595

PF00570

PF08066

PF00570

PF01612

PF02922

PF02806

PFO0575

PFO7541

PFO0575

PF04408

PFO0575

PFO7717

PF03983

PF08226

PF00085

PF00462

PF03986

PF03987

PF00205

PF02775

PF00204

PF00521

PFO07529

PF00176

PF00208

PF02812

PF04851

PF00176

PF04851

PF02889

PF04851

PF07529

PF04851

PF00270
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PF04851

PF00271
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PF04851

PF09110

PF04851

PF09111

PF00930

PF00326

PF02776

PFO2775

PF02776

PF00205

PF02770

PF01756

PF02772

PF02773

PF00939

PF03600

PF02779

PF00676

PF02779

PF02780
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PF00270

PF00627

PF00270

PF04408

PF00270

PF08148

PF00270

PF00570

PF00270

PF02889
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PF00270

PF00271

PF00270

PFO7717

PF00270

PFO5773

PF00270

PF08147

PF00271

PF00385

PF00271

PF00627
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PF00271

PF00176
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PF00271

PF04408

PF00271

PF07529

PF00271

PF08880

PF00271

PF08148

PF00271

PF00570

PF00271

PF02889

PF00271

PFO5773

PF00271

PFO0575

PF00271

PFO7717

PF00271

PF09110

PF00271

PF09111

PF00271

PF0O8797

PF00271

PF02178

PF00271

PF08658

PF00271

PF00439

PF00271

PF08147

PF00276

PF03939

PF00275

PF01487

PF00275

PF01202

PF00275

PF01488

PF00275

PF08501

PF07558

PFO7557

PF02178

PF04084

PF02178

PF08880

PF05195

PFO0557

PF05190

PF00488

PF05192

PF00488

PF05192

PF05190

PF05193

PF08367

PF08304

PF08302

PF08304

PF08303

PF00856

PF08236

PF03079

PFO07883
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PF01174

PF00117

PFO01174

PFO0977

PF01174

PFO07685

PF03486

PF02852

PF01170

PF08498

PF04825

PF04824

PFO7651

PF01608

PF07651

PF01417

PF09088

PF09090

PF06733

PFO6777

PF00682

PF02436

PF00682

PF08502

PF04983

PF04992

PF04983

PF04998

PF04983

PFO05001

PF04983

PFO5000

PF04983

PF04990

PF01073

PF07993

PF01073

PF04321

PF01073

PF01263

PF01073

PF02719

PF01073

PFO00550

PFO07653

PF00611

PF07653

PFO0063

PF07653

PF00241

PF07653

PF03983

PFO07653

PFO7647

PFO7653

PF03114

PFO7653

PF0O6017

PFO7653

PFO0790

PFO7653

PF00564

PFO7653

PF02809

PF07653

PF04366

PF07653

PF08226

PF01071

PF02436

PF01071

PF02769

PF01071

PF00682

PF01071

PF02844

PF01071

PF02843

PF01071

PF02222

PF01071

PF00586

PF01031

PF02212

PF01699

PF03733

PF01751

PF01131

PF08953

PF08954
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PF00581

PF00899

PF00581

PF05237

PF00581

PF00102

PF00581

PF00443

PF02259

PF02260

PF02259

PF08771

PF00586

PF02769

PF00586

PF02843

PF00586

PF02844

PF00587

PF00152

PFO0587

PF03129

PFO0587

PF01336

PF00587

PF09180

PFO0587

PF02824

PF00587

PF02403

PF00587

PF07973

PF01873

PF02020

PF08590

PF01713

PF00610

PF00611

PF00610

PFO0780

PF00610

PF00621

PF00610

PF00620

PF00611

PF00620

PF00612

PF03836

PF00612

PF01843

PF00613

PF00454

PF00616

PF00612

PF00616

PF03836

PF00617

PFO07653

PF00617

PFO0018

PF00617

PF00620

PF00618

PFO07653

PF00618

PF00620

PF00618

PF00018

PF00618

PF00617

PF01979

PFO07969

PF05204

PFO00306

PF05204

PF02874

PF05204

PFO0006

PF05204

PF05203

PF08567

PF03909

PF04212

PF09336

PF08565

PF08564
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PF08449

PF03151

PF05203

PFO0306

PF05203

PF02874

PF05203

PFO0006

PF01213

PF08603

PFO0750

PF05746

PFO0753

PFO07521

PF00752

PF00867

PF08443

PF02436

PF08443

PF00185

PF08443

PF02655

PF08443

PF02626

PF08443

PF00682

PF08443

PF02787

PF08443

PF02222

PF08443

PF00988

PF08443

PF02729

PF08443

PF00117

PF08443

PF02142

PF08443

PF01071

PF08621

PF08620

PF02205

PF00568

PF03810

PF08389

PF03810

PF08767

PF03810

PF03378

PF03810

PF08506

PF03810

PF02985

PFO0036

PF08355

PFO0036

PFO0387

PFO0036

PF08356

PFO0036

PFO0388

PF02207

PF02617

PF04433

PF00249

PF04433

PF00569

PF00534

PF08288

PF02655

PF02436

PF02655

PF00682

PF02655

PF02222

PF02655

PF01071

PF02558

PF08546

PFO00533

PF00041

PF00533

PF00249

PF00533

PF06732

RIRRINNNNN RN W R R R R RN R R R R R R R R R PR R R R R R PR A RN R R R Rk A

76




PF00533

PF01068

PF00533

PF09197

PFO00533

PF08519

PFO00533

PFO0817

PF02225

PF01546

PF02225

PF04253

PF02222

PF02436

PF02222

PF00682

PF02222

PF00731

PF02222

PF02787

PF00108

PF02803

PF00109

PF01648

PF00109

PF02801

PFO7732

PF00394

PF00106

PFO07993

PF00106

PF01263

PF00106

PF04321

PF00106

PF01575

PF00106

PF01370

PF00106

PF01073

PF00106

PF08659

PF00106

PF02719

PF02383

PF03372

PF01591

PFO0300

PF00249

PF09197

PF00249

PF03990

PF00249

PF00569

PF00327

PF08079

PF00240

PF09280

PF00240

PF01020

PF00240

PF01599

PFO0977

PF00117

PF00970

PF00175

PF00970

PF00042

PF02037

PF02891

PF03952

PF00113

PF00400

PF08625

PF00400

PF04003

PF00400

PFO7687

PF00400

PF01546

PF00400

PFO0097

PF00400

PF08149

PF00400

PF09070
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PF00400

PF08581

PF00400

PF08145

PF00400

PF04192

PF00400

PF06957

PF00400

PF08513

PF00400

PF04053

PF00400

PF00646

PF00400

PFO7569

PF00400

PF02985

PF00400

PF04158

PF00400

PF08953

PF00400

PF08954

PF00400

PF08324

PF00400

PF08154

PF00400

PF00637

PF00400

PF04047

PF00400

PF04494

PF03951

PF00120

PF00406

PF05191

PF09334

PF08264

PF09334

PF00133

PF09334

PF06827

PF02375

PF02373

PF09337

PF00098

PF04869

PF04871
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PF00172

PF04082
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PF00172

PF00989

PF00172

PF03902

PFO03031

PF00533

PF03033

PF00201

PF01138

PF03725

PF01137

PF05189

PF02729

PF00185

PF05378

PF01968

PF05378

PF02538

PF05020

PF05021

PF05388

PF00450

PF04263

PF04265

PF04389

PF02225

PF04389

PF01546

PF01472

PF08068

PF01398

PF08084

PF01398

PF08083

PF01398

PF08082

PF02020

PF00483
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PF01624

PF00488

PF01624

PF05190

PF01624

PF05192

PF01624

PF05188

PF03105

PF00023

PF03105

PF00939

PF03105

PF03124

PF03105

PF03600

PF03105

PF03009

PF03104

PF08996

PF03104

PF08490

PF03104

PF00136

PF06858

PF08155

PF08523

PF01381

PF01408

PF02894

PF01409

PF03147

PF02260

PF08064

PF02260

PF08771

PF06012

PF00632

PF06012

PF06025

PF08311

PF08171

PF02268

PF02751

PF02185

PF00130

PF00149

PFO05011

PF00149

PF04152

PF00149

PF08321

PF01369

PF09324

PF01368

PF02833

PFO0786

PFO7714

PFO0O787

PF09325

PFO0O787

PF00620

PFO0787

PF08628

PFO0787

PF02194

PFO0787

PF00018

PFO0787

PF07653

PFO0787

PF00564

PF03198

PFO07983

PF01363

PF02809

PF01363

PF01504

PF01363

PFO0790

PF01363

PF00118

PF00660

PF00399

PF0O0788

PF08509

PF00788

PF00211

PF01399

PF08375
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PF01399

PF05470
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PF00665

PFO7727
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PF00665

PF09337

PF00665

PFO0078

PF00665

PF00098

PF01494

PF08491

PF00043

PF00647

PF00044

PF02800

PF02985

PF01851

PF02985

PF00454

PF02985

PF01749

PF02985

PF00176

PF02985

PFO7539

PF02985

PF08752

PF02985

PFO0005

PF02985

PF02260

PF02985

PF01602

PF02985

PFO8771

PF02985

PF00271

PF02985

PF02259

PF02985

PF00514

PF00364

PF02436

PF00364

PF01425

PF00364

PF02655

PF00364

PF02626

PF00364

PF00682

PF00364

PF01039

PFO00364

PF02222

PF00364

PF00198

PF00364

PF08443

PF00364

PF02817

PF00364

PF08326

PF00364

PF01071

PF04768

PF01118

PF04768

PF02774

PF05743

PF00179

PF05742

PFO7723

PF07492

PF01204

PF00443

PF00917

PF00443

PF00627

PF00443

PF02148

PF08389

PF0O8767

PF00438

PF02773
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PF00438

PF02772

PF08385

PF03028

PF08385

PF08393

PF08385

PFO7728

PF00448

PF09201

PF00448

PF02978

PF02463

PF04423

PF02463

PF06470

PF01565

PF04030

PF01565

PF02913

PF02919

PF01028

PF04042

PF08418

PF00562

PF04560

PF00562

PF06883

PF00560

PF08509

PF00560

PFO0788

PF00560

PF01302

PF00560

PF00211

PF00561

PF04083

PF00561

PFO7819

PF07691

PF00624

PF00928

PF01217

PF02769

PF02844

PF02769

PF02843

PF00289

PF02436

PF00289

PF01425

PF00289

PF02655

PF00289

PF02626

PF00289

PF00185

PF00289

PF02785

PF00289

PF02786

PF00289

PF02787

PF00289

PF00364

PF00289

PF02222

PF00289

PF00988

PF00289

PF01071

PF00289

PF00682

PF00289

PFO0117

PF00289

PF08326

PF00289

PF02729

PF00289

PF02142

PF00289

PF01039

PF00289

PF08443
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PF00288

PF08544

PF00282

PF00464

PF00281

PF00673

PF01193

PF01000

PF03144

PF03764

PF03144

PF00679

PF03144

PF04760

PF03144

PF06421

PF03144

PF09173

PF03144

PF03143

PF03142

PF01644

PF03142

PF00173

PF0O0467

PF03439

PF0O0467

PF01479

PF00467

PFO0900

PF00467

PF08071

PF00467

PF01287

PF01068

PF04679

PF01068

PF04675

PF01068

PF01331

PF01068

PF03919

PF01061

PF07974

PF01061

PF06422

PF02719

PF01263

PF01728

PFO7780

PF08354

PF00698

PF08354

PF01575

PF08356

PF08355

PF08351

PF05127

PF08059

PFO0789

PF09110

PF09111

PF00628

PFO07500

PF00628

PF00249

PF00628

PF01388

PF00628

PF02373

PF00628

PFO7744

PF00628

PF02375

PF00628

PF00856

PF00627

PFO0077

PF00627

PF01412

PF00627

PF00240

PF00627

PF04408

PF00627

PF00036
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PF00627

PFO5773

PF00627

PF02148

PF00627

PFO7717

PF00627

PF09280

PF00621

PFO0780

PF00620

PF00412

PF00623

PF04983

PF00623

PF05000

PF00623

PF05001

PF00623

PF04998

PF00623

PF04992

PF00623

PF04990

PF00749

PF03950

PF08513

PF04494

PF08512

PF03531

PF03099

PF02237

PF04056

PFO7975

PF01202

PF01487

PF01202

PF01488

PF01202

PF08501

PF08630

PFO7535

PF01433

PF09127

PFO07690

PF00854

RRRRR R R RRRINR P W R W ww N R PR e

PFO07690

PF00083

w
(o3}

PF01575

PF00698

PF04408

PFO7717

PF08221

PF05645

PF08226

PFO0036

PF01074

PFO7748

PF01074

PF09261

PF00481

PF08509

PF00481

PFO0788

PF00481

PF00211

PF00481

PF00560

PF03485

PFO00750

PF03485

PF05746

PF02629

PF00549

PF00487

PF00173

PF03483

PF03484

PF07992

PF00310

PF07992

PF00890

N RR R RN R R R R R R RPN -

PF07992

PFO00070

=
o

PF07992

PF01645

=

83




PF07992

PF03486

PF07992

PF02852

PF07992

PF01134

PF07992

PF04898

PF07992

PF01266

PF07992

PF01493

PF07992

PF02910

PF04088

PF00018

PF04088

PF07653

PF01336

PF00152

PF01336

PF08784

PF01336

PF08646

PFO7991

PF01450

PF01331

PF03919

PF07994

PF01658

PF01968

PF02538

PF00133

PF08264

PF00133

PF06827

PF00132

PF00483

PF00132

PF02020

PF00134

PF08613

PF00134

PF02984

PF00136

PF08996

PF00136

PF08490

PF00258

PF01077

PF00258

PF03460

PF00258

PF08608

PF00258

PF00667

PF00258

PF04055

PF00310

PFO0733

PF00310

PF01380

PF00310

PF01493

PF00310

PF01645

PF00310

PF04898

PF03930

PF05202

PF03931

PF01466

RIRR R R RPN R R R R RO RN R W R R R R R RO R R R R NP R W -

84




PF00317

PF02867

PF00250

PF00498

PF00251

PF08244

PFO7574

PF08746

PF00256

PF01305

PF08644

PF08512

PF04715

PF00425

PF02181

PF06367

PF07993

PF04321

PF07993

PF01263

PFO07993

PF02719

PFO07993

PF00550

PF06978

PF08170

PFO0005

PF04068

RPN RN RN R R RO w N

PFO0005

PF01061

=
o

PFO0005

PF00385

=

PF00005

PF07974

=

PF00005

PF00037

=

PF00005

PF00664

=
o

PFO0005

PF06422

PFO0004

PF01426

PFO0004

PF01434

PFO0004

PF00533

PFO0004

PF02359

PFO0004

PF02861

PF00004

PF09336

PF00004

PF05362

PFO0004

PF06068

PFO0004

PF08542

PFO0004

PF02190

PFO0004

PF02933

PFO0004

PF04212

PFO0004

PF09262

RRR R W R R AR N R Wk o

PFO0004

PFO7728

=
o

PF00004

PFO7724

PF00004

PF08519

PFO0004

PF06480

PFO0004

PF00439

PFO0004

PF08740

PFO0006

PF00306

PFO0009

PF03764

PFO0009

PF00679

PFO0009

PF04760

RN D RRIN RN

PF00009

PF03144

=
w

PF00009

PF06421

=

85




PFO00009

PF09173

PFO0009

PF03143

PF00478

PF00571

PF08264

PF06827

PF06480

PF01434

PF01021

PFO7727

PF01021

PF00665

PF04082

PF03902

PF00583

PF09337

PF00583

PF00439

PFO00583

PF04055

PF06472

PFO0005

PF09235

PFO0788

PF06371

PF02181

PF06371

PF06367

PF04376

PF0O4377

PF08543

PF00294

PF08543

PF03070

PF06395

PF00621

PF01798

PF08156

PF00702

PF00403

PFO00702

PF00689

PF00702

PF08282

PF00702

PF06888

PF00875

PF03441

PF00704

PF03427

PF00705

PF02747

PF01096

PFO7500

PF01096

PFO8711

PF01154

PF08540

PF01479

PF00163

PF01479

PF00900

PF08303

PF08302

PF08265

PF05764

PFO07650

PF00189

PF08267

PFO1717

PF00684

PF01556

PF01926

PF06071

PF01926

PF08438

PF01926

PF01018

PF01926

PF06858

PF01926

PF08701

PF01926

PF08153

RRrRrRrRrNAR R R R R R R R R R R R RO RN R W R R RN RN R R R -

86




PF01926

PF02824

PF01926

PF08155

PF06025

PF00632

PF08069

PF00312

PF08066

PF01612

PF08060

PF01798

PF08060

PF08156

PF01487

PF08501

PF01487

PF01488

PF01761

PF01487

PFO1761

PF01202

PFO1761

PF08501

PFO01761

PF01488

PF01761

PF00275

PF00675

PF05193

PF00179

PF09288

PF01849

PF00627

PF00175

PF00258

PF00175

PF00042

PF00175

PFO0667

PF02373

PF01388

PF00176

PF00385

PF00176

PF08880

PF00176

PF09110

PF00176

PF09111

PF00176

PF08797

PF00176

PF08658

PF00176

PF00439

PF00176

PF02178

PF01842

PF02826

PF01842

PF00389

PF00170

PFO7716

PF00173

PF04116

PF00173

PF01645

PF00173

PF01070

PF00679

PF03764

PF00679

PF06421

PF01379

PF03900

PF00961

PFO0033

PF00961

PFO07453

PF01370

PF04321

PF01370

PF07993

PF01370

PF00550

RN RN R RARRRANN RN R RNN R R R W RN R R o R R R R R R RN W R R R RN

87




PF01370

PF01073

PF01370

PF01263

PF01370

PF02719

PF04571

PF08235

PF03871

PF01191

PF01503

PF00815

PF01502

PF01503

PF01502

PF00815

PF03876

PF00575

PF03876

PF08292

PFO0056

PF02866

PF01509

PF01472

PF01509

PF08068

PF00198

PF02817

PF08766

PF02201

PF02921

PF00355

PF08605

PF00533

PF03477

PF02867

PF03477

PF00317

PF08801

PF04044

PF00454

PF02260

PF00454

PF08064

PF00454

PF02259

PF00454

PF08771

PF04053

PF06957

PFO7714

PFO7647

PFO7714

PF02149

PFO7714

PFO00536

PF07714

PF00659

PF07714

PF08587

PF04055

PF06968

PF04055

PF08608

PFO7719

PF00149

PFO7719

PF00160

PFO7719

PF04049

PFO7719

PF08321

PF03372

PFO00560

PF03372

PF06839

PF02671

PF08295

PF00515

PF00149

PF00515

PF00160

PF00515

PF09145

PF00515

PF06424

RIRNR R R RPRRPRRNR R R RR R RRRNW RO R NN R RN R R R W R R R R PR R N k| o

88




PF00515

PFO7719

=
0]

PFO00515

PF04049

PF00515

PF08321

PF00514

PF01749

PFO7500

PFO7744

PF00224

PF02887

PF02492

PFO7683

PF00226

PF02889

PF00226

PF05207

PF00226

PFO7743

PF00226

PF01556

PF00226

PF00684

PF01212

PF00282

PF02882

PF01268

PF02881

PF09201

PF02881

PF00448

PF02881

PF02978

PF02880

PF00408

PF02885

PF00591

PF01210

PF07479

PF08282

PF03332

PF08282

PF0O6888

PF02798

PF00647

PF02798

PF00043

PF02790

PF00116

PF02150

PF01096

PF02874

PF00306

PF02874

PFO0006

PF02152

PF01288

PF02152

PF00809

PF00350

PF01031

PFO00350

PF02212

PF02870

PF01035

PF02879

PF00408

PF02879

PF02880

PF00291

PF00571

PF00291

PF00290

PF00291

PF00585

PF02878

PF00408

PF02878

PF02880

PF02878

PF02879

PF00428

PF00466

RN R RRNW RN R RABRW R ON R RN RN RN RN RO R R R RN R PP e

89




APPENDIX B

MATLAB CODE FOR THE ALGORITHM

The following code is designed to randomly change links of nodes in the rlebyaonserv-
ing the connectivity distribution of the network. It can be run directly bysfarring the code

into a MATLAB® editor.

% The following part of the code is taken from the internet.

% It reads a text file and outputs the adjacency matrix of the network.

load the_network.txt;

g=size (the_network);

N=2%g(1,1);
i=1;
for m=1:N/2
for n=1:2
G(1,i)= the_network(m,n);
i=i+1;
end
end
L=sort (G);

for i=1:(N-1)
while L(1,i)==L(1,i+1)
L(1,(i+1))=0;
L=sort (L);

end
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end

for j=1:N
if L(1,3)<=0
J=j+1;
end
if L(1,3)>0
Js
break
end
end
p=N-j+1;
m=1;
for t=j:N

C(1,m)=L(1,t);

m=m+1;
&
end
v=1;
for b=1:N/2
z= the_network(b,v);
q=v+1;
e= the_network(b,q);
for r=1:p
if z"= C(1,1);
r=r+l;
end
if z==C(1,r);
r;
break
end
end
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for y=1:p
if e"= C(1,y);

y=y+1;
end
if e==C(1,y);
ys
break
end
end
adj(r,y)=1;
adj(y,r)=1;
end
g=adj;

% (C) Saziye Deniz 0Oguz
% This algorithm randomly changes links of nodes in the network by
% conserving the connectivity distribution of the network.

% It outputs the randomly modified network.

gl=g;

degl=degree(gl);

for pp = 1:10

deg=degree(g);

m= 2;

while m > 1
row_index=randperm((size(the_network)*[1;0]));
row_index=row_index(1);
e=the_network(row_index, :);

vl=e(1,1)

v2=e(1l,2)

degvl=deg(1,vl)

degv2=deg(1,v2)

if degvl == 1 || degv2 == 1 || degvl == 13 || degv2==13 ||degvl == 18 ||
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degv2==18 || degvl == 21 || degv2 == 21 || degvl==23 || degv2==23 ||
degvl1==25 || degv2==25
m = m+l;

else

m=1;

end

x1=find(deg==degvl-1);

x2=find(deg==degv2-1);

n=2;

while n > 1
col_indexl=randperm((size(x1)*[0;1]1));
col_indexl=col_index1(1);
col_index2=randperm((size(x2)*[0;1]));
col_index2=col_index2(1);
v11=x1(1,col_index1)
v22=x2(1,col_index2)
x=g(vll, v22);

if x>0

n = n+l;
else

n=1;
end

end

g(vll, v22)=1; g(vl, v2)= 0;
g(v22, v11)=1; g(v2, v1)=0;
end

deg=degree(g);

gg = tril(g);

[ii, jj] = £ind(g9);
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