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ABSTRACT

CAMERA MOTION BLUR AND ITS EFFECT ON FEATURE DETECTORS

Üzer, Ferit

M.S., Department of Electrical and Electronics Engineering

Supervisor : Asst. Prof. Dr. Afs.ar Saranlı

September 2010, 90 pages

Perception, hence the usage of visual sensors is indispensable in mobile and autonomous

robotics. Visual sensors such as cameras, rigidly mounted on a robot frame are the most

common usage scenario. In this case, the motion of the camera due to the motion ofthe

moving platform as well as the resulting shocks or vibrations causes a number of distortions

on video frame sequences. Two most important ones are the frame-to-frame changes of the

line-of-sight (LOS) and the presence of motion blur in individual frames.The latter of these

two, namely motion blur plays a particularly dominant role in determining the performance of

many vision algorithms used in mobile robotics. It is caused by the relative motion between

the vision sensor and the scene during the exposure time of the frame. Motionblur is clearly

an undesirable phenomenon in computer vision not only because it degrades the quality of

images but also causes other feature extraction procedures to degradeor fail. Although there

are many studies on feature based tracking, navigation, object recognition algorithms in the

computer vision and robotics literature, there is no comprehensive work onthe effects of

motion blur on different image features and their extraction.

In this thesis, a survey of existing models of motion blur and approaches to motion deblurring
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is presented. We review recent literature on motion blur and deblurring andwe focus our

attention on motion blur induced degradation of a number of popular feature detectors. We

investigate and characterize this degradation using video sequences captured by the vision

system of a mobile legged robot platform. Harris Corner detector, Canny Edge detector and

Scale Invariant Feature Transform (SIFT) are chosen as the popular feature detectors that are

most commonly used for mobile robotics applications. The performance degradation of these

feature detectors due to motion blur are categorized to analyze the effect of legged locomotion

on feature performance for perception. These analysis results are obtained as a first step

towards the stabilization and restoration of video sequences captured by our experimental

legged robotic platform and towards the development of motion blur robust vision system.

Keywords: motion blur, motion blur models/ identification, feature detectors, Harris Corner,

Canny Edge, sift, matching.

v



ÖZ

KAMERA HAREKET BULANIKLI ĞI VE ÖZNİTELİK VEKT ÖRLEṘINE ETKILERI

Üzer, Ferit

Yüksek Lisans, Elektrik ve Elektronik M̈uhendislĭgi Bölümü

Tez Yöneticisi : Yard. Doç. Dr. Afs.ar Saranlı

Eylül 2010, 90 sayfa

Algılama bu sebeple g̈orüntüleme sens̈orlerinin kullanımı mobil ve otonom robotlar da kac.ı-

nılmazdır. Roboẗuzerine monte edilmis. kamera gibi g̈orüntüleme sens̈orleri c.ok kullanılan

uygulamalardır. Bu durumda hareketli platformun harekinden ve aynı zamanda olus.an s.ok ve

titres.imlerden kaynaklanan kamera hareketi video kareleriüzerinde c.es.itli bozulmalara yol

ac.maktadır. Bunlardan en̈onemli ikisi videoda bir kareden diğer kareye gec.erken ki g̈orüs.

alanında ki dĕgis.iklikler ve video karelerinin her birinde olus.an hareket bulanıklığıdır. Bu

ikiliden hareket bulanıklı̆gı olarak adlandırılan etki mobil robotlarda kullanılan görüntü al-

goritmalarının performans değerlendirmesinde daha baskın veözel bir rol oynar. Bu etki

görüntü sens̈orü ve sahne arasındaki görüntüleme s̈uresince gerc.ekles.en g̈orece hareket se-

bebiyle olus.maktadır. Hareket bulanıklığı hem g̈orüntü kalitesini d̈us.ürmesi hem de g̈orüntü

özelliklerini belirleyen yordamların bas.arısız olmasına sebep olması dolayısıyla bilgisayarla

görme alanında istenmeyen bir fenomendir. Robotik ve bilgisayarlı görme literaẗuründeözel-

lik temelli takip, yer ÿon belirleme, nesne tanımlama algoritmaları ile ilgili pek c.ok c.alıs.ma

olmasına răgmen, hareket bulanıklığının g̈orüntü özellikleri ve onların belirlenmesïuzerin-

deki etkisiüzerine kapsamlı bir c.alıs.ma bulunmamaktadır.
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Bu tezde, var olan hareket bulanıklığı modelleri ve bu sorunu giderme yaklas.ımlarıüzerine de-

taylı bir inceleme yapılmıs.tır. Hareket bulanıklı̆gı ve bulanıklı̆gı gidermeüzerine son yıllarda

yapılan c.alıs.maları inceleyip video karelerindëoznitelik vekẗorleri c.ıkarımı üzerinde bula-

nıklık sebepli olus.an negatif etkiler̈uzerine odaklandık. Bu negatif etki mobil bacaklı robot

platformuüzerinde bulunan g̈orüntüleme sistemi tarafından kaydedilen görüntü serileri kul-

lanılarak incelenip karakterize edilmis.tir. Harris kös.e algılayıcısı, Canny kenar algılayıcısı ve

yerel dĕgis.mezöznitelikleri bulan SIFT mobil robotik uygulamalarında sık kullanılan popüler

öznitelik algılayıcıları olarak sec.ilmis.tir. Bu öznitelik algılayıcılarının performanslarındaki

negatif etki bacaklı hareketin̈oznitelik algılayıcılarının algılama ac.ısından performansları

üzerindeki etkisini analiz etmek ic.in kategorize edilmis.tir. Bu analiz sonuc.ları deneysel ba-

caklı robot platformu tarafından kaydedilen video serilerinin sabit hale getirilmesi ve yenilen-

mesi ÿonündeki ve de hareket bulanıklığına kars.ı gürbüz bir g̈orüntüleme sistemi gelis.tiril-

mesi ÿonündeki ilk adım olarak g̈orülmektedir.

Anahtar Kelimeler: hareket bulanığı, hareket bulanığı modelleri/ tanımlamäoznitelik vekẗor-

leri, Harris Kös.e öznitelik vekẗorü algılayıcısı, Canny Kenar̈oznitelik vekẗorü algılayıcısı,

sift, es.les.tırme.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Motion blur is the result of the relative motion between the camera and the sceneover the

period of exposure determined by the mechanical or electronic shutter speed. In an image,

projection of any point in the scene moving with respect to the camera will be a certain curve

on the sensor rather than a point. Thus it will look ”blurred” along the direction of relative

motion. In other words, this blurring may appear on the image of a moving objector on the

image of a static scene where the camera has moved during capture. The amount of motion

blur increases as either the exposure time or the speed of the relative motion between the

camera and the scene increases, and it becomes more apparent at higher resolutions since

more pixels are effected.

Motion Blur can be used for aesthetic purposes in photography such as for emphasizing the

dynamic nature of a scene. For example, using motion blur effect is the common way of

showing a sense of speed in sports photography especially in motor sports. It has also been

used in computer graphics to create more realistic images because appearance of motion blur

is a strong perceptual cue for the illusion of object motion [46], [31], [63], [21], [10], [37],

[57]. Moreover, it looks natural in a film or a television image sequence because the human

eye behaves in much the same way. Several representations and models for motion blur

in human and machine vision have been proposed [1], [23], [27], [42]. Motion blur can

also be used to extract motion information or other structure information from individual

images and hence can be used for perception. For example, motion blur hasbeen used in the

literature to obtain motion and scene 3D structure information [59], [58], [54], [20], [18], [16],
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a) b)

c) d)

Figure 1.1: The effect of motion blur. Sharp image taken by using tripod is shown at a),
horizontal motion blurred image is shown at b), vertical motion blurred image is shown in c)
and rotational motion blurred image is shown at d).

[14]. Despite its usefulness to human viewers, motion blur is an extensive image distortion

and undesired effect in a large number of other applications. In photography, a perfectly

fixed camera and a static scene is necessary to capture the sharpest, mostdetailed image so

motion blur is considered to be an effect that can significantly degrade image quality. Fig. 1.1

demonstrates real examples of images that are blurred by simple linear horizontal and vertical

motions. In practice, it is much more complicated and every single image is likely to be

uniquely blurred because of the large space of possible motion paths.3

Motion blur degrades and distorts the video frames as well. A video is alwaysexpected to

be of high-quality so that people feel comfortable when they use it and computer vision algo-

rithms work well on it but the motion blur will spoil this by affecting severely the perception

of the frame sequence content. A motion deblurring step is necessary to be applied to video

in many applications such as surveillance [28], [12], and the visual tracking applications [29],

[30], [27]. In a surveillance system, motion blur deteriorates the effectiveness of object ex-

traction and identification and complicates the task of event detection. Also in thecase of

visual tracking, rapid camera motions cause image features to move large distances in a sin-

gle frame. Indeed such distortions may cause the failure of many feature extraction algorithms
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such as edge detection [11], corner detection [25] and scale-invariant feature transform (sift)

[38], [39], which are used in visual tracking applications. Although these feature detectors are

widely used in many robot vision algorithm and well known in literature, there isno specific

work which analyzes their performance under motion blur effect.

Perception therefore usage of sensors is indispensable in mobile and autonomous robotics.

Vision sensor rigidly mounted on a robot is one of the most common scenario among of the

sensors used in robotics. In this case, motion of camera due to the moving platform, shocks

or vibrations causes several distortions on video frame sequences. Infact, the oscillation of

the line-of-sight (LOS) and the motion blur in frames are these distortions which is common

when the visual sensor is mounted on a moving platform such as a mobile robot.

If the motion of the robot is smooth,then the corresponding video sequence recorded by the

camera will be smooth too. However, it is almost impossible to obtain smooth motion espe-

cially in outdoor and legged robotics due to irregularities of the terrain, obstacles in the way

of the robot, friction in the moving parts, vibration induced by motors and legs.All these

undesired conditions in the robot motion propagate to the camera, making the camera output

very hard for humans to view and to operate or for a robot vision algorithmto process. For

this problem, image stabilization defined as the process of removing scene oscillation and

making the video sequence less shaky is necessary.

The second distorting effect called as motion blur in each frame is the result of relative motion

between the camera and the scene during the exposure time. This relative motion smears the

frames and so makes the perception of details more hard as it is discussed in the paragraphs

above. The velocity of the robot (imaging platform) and the exposure time of the camera affect

the intense and severity of motion blur. Thus, even the smooth component of the motion

results in motion blur in frames which is different than the reasons of LOS effect although

large vibration amplitude and high frequency increase both effects. For this distortion effect,

motion deblurring can be used as a front-end system in a variety of robot vision algorithms or

simply as a visualization tool.

The relative effects of these two types of degradations on the ability of human observers to

recognize targets are investigated in the work of Adrian Stern [2]. The result of this study

clarifies that motion blur has the main reason for perception degradation in thecase of severe

vibrations. Another work on humanoid robot [47] shows that the classical feature detectors
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and descriptors do not work well in presence of motion blur although they are proved to work

well for wheeled robot. Therefore, motion blur should be considered and deblurring of the

frames should be emphasized when designing dynamic imaging system especially in our case

on RHex.

In our research, the effect of motion blur on well-known feature detectors such as Harris cor-

ner and Canny edge detectors are investigated on the video sequences as a first step through

the stabilization and restoration of video sequences captured by RHex platform. The perfor-

mance of these detectors are evaluated by running our imaging platform RHex in different

velocities. Such an analysis is critical for good experimental practice with theaim of obtain-

ing knowledge about how legged locomotion of our robot propagates to camera and about the

degradations on perception of important features in frames. Since feature based algorithms is

used in many robot vision algorithms such as visual tracking, navigation etc.

RHex is a robotic platform that consists of a rigid body with six compliant c shaped legs,

each possessing one independent actuator. It is designed to have exhibited general mobility

over general terrain approaching the complexity and diversity of the natural landscape. In

such a platform, it is impossible to minimize shocks and vibrations by proper design due

to its priorities on mechanically simple and autonomous design criteria. These shocks and

vibrations due to leg locomotion makes the camera output very jittery and blurredthat is very

hard for human operator and causes robot vision tasks to fail becauseof the adverse effect of

motion blur.

1.2 Methodology and Outline of the Thesis

Our method is based on experimental characterization of motion blur on the mostpopular and

well known feature detectors such as Harris Corner detector, Canny edge detector and SIFT.

We investigate and characterize the degradation due to motion blur using videosequences

captured by the vision system of a mobile legged robot platform. Although manyrobot vision

algorithms in literature are based on these feature detectors, there is no specific work which

analyzes their performance under motion blur effect.

The performance degradation of these well known feature detectors due to motion blur are

systematically categorized to analyze the effect of legged locomotion on feature performance
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for perception. These analysis results are obtained as a first step towards the stabilization and

restoration of video sequences captured by our experimental legged robotic platform.

This thesis consist of 5 chapters. We start with the introduction to the motion blurphe-

nomenon and necessary background in Chapter 2. Later in Section 2.1 and Section 2.2, blur

models and blur identification methods are classified. Then, the most popular feature detec-

tors used in robot vision applications such as Harris Corner, Canny Edge Detector and Scale

Invariant Feature Detector are given in Chapter 3. The reason why these feature detectors

are selected is explained in Section 3.1. The performance degradation of these feature detec-

tors due to motion blur are categorized to analyze the effect of legged locomotion on feature

performance for perception. These categories are discussed in Section 3.5

In Chapter 4 a comprehensive evaluation of feature detectors under motion blur is given in

Chapter 2. Firstly, experimental scenario is explained and then evaluation criteria is given.

These analysis results are presented for each feature detector for each video sequence. The

conclusions and future work are given in Chapter 5. All of the algorithms throughout the

thesis are implemented on MATLAB.
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CHAPTER 2

LITERATURE REVIEW ON MOTION BLUR, BLUR MODELS

AND BLUR IDENTIFICATION

As we briefly discussed motion blur is an important problem in computer vision. There-

fore, motion deblurring is an inevitable step to increase the success of the computer vision

algorithms especially in mobile robotics where the camera is generally exposed toextensive

motion.

Motion deblurring can be defined as the deconvolution with a global Point Spread Function

(PSF) for images distorted by linear motion or as the deconvolution with a spatiallyvarying

PSF for images distorted by more complex motion paths. Moreover, it can be divided in two

parts: motion estimation and deconvolution. The first part deals with the challenge to identify

the path the camera has followed during the image capture process. The second part uses this

information to reverse the convolution during the image formation process in order to restore

the sharp picture.

Although our focus is on robot vision, the literature is divided in photography and video

capture;

Blind deconvolution can be called as traditional deblurring methods in the literature. These

methods obtain an estimate PSF and try to deconvolve the blurred image with that estimated

PSF at the same time. Richardson-Lucy [50], [40] and Wiener deconvolution [62] are the

notable examples of traditional deblurring. Deblurring images and spectra [24] and the well-

known image processing book named as digital image processing [22] provide comprehensive

literature survey on these traditional methods.

The main deficiency of these traditional methods is ringing effect in the deblurred images.
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Several studies focus on reducing ringing artifacts. Such as total variation regularization

is used with Richardson-Lucy algorithm [45] and another example is that gradient sparsity

constraints are added to Richardson-Lucy algorithm [34] for the same aim.A multi scale non-

blind deconvolution method is another example work [67] to improve the resultingdeblurred

images.

The main difficulty of this problem comes from PSF estimation or deconvolution step. There-

fore, there are also some interesting works which try to make these steps easier. Using sup-

plementary data besides vision data and constraining the deblurring procedure lately become

popular in the literature. Using natural image statistic [19] as a constraint in deconvolution

problem can be counted as one of the leading example to these methods. Usingalpha mask

of the blurred region is another interesting idea to make PSF estimation step easier [26]. An-

other leading and the most interesting idea for our work proposed by Raskar et al. [48] first.

Changing the shutter time of a consumer camera according to a predetermined isthe main

idea of their work. By doing this, it is aimed to obtain better PSF for deblurring process.

There are other methods which use more than one image to get better results in the end of

deconvolution step. Bascle et al. Using blurred video input and obtaining asingle unblurred

high-resolution image [5] is the first example of this idea in the literature. Thereare also many

recent works based on this idea of making the PSF estimation easier. Leadingexamples are

processing one noisy and one blurred image [66] and working on images blurred in horizontal

and vertical directions [49]. Extension of [49] is to deblur without orthogonality condition

[13]. A recent version of the work of Bascle [5] offers to deblur a video sequence by using

high-resolution photographs [8]. However this fails if the scenes are not static. Using a fast

low-resolution camera with a high-resolution and slow camera is proposed byBen-Ezra and

Nayar [6], [7]. The main idea of using the extra camera is to obtain accuratePSF estimation

and to use it for deblurring high-resolution video sequence. One extension of this work for an

other aim is to put one low-resolution and one high-resolution video camerasparallel to each

other and run them in different frame rates [36]. The most related work with ours is the work

by Agrawal et al. [3] proposed ”PSF null-filling”. In this work, smooth PSFs are obtained

by changing the exposure time according to predetermined sequence while video recording

procedure is going on.

A global PSF assumption which is not valid for spatially-varying motion blur is thecommon
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feature of the methods mentioned above. Recently, there are also works which deal with

spatially-varying case. Such as single image based method make use of image statistics with

a stable background assumption [33]. Another idea [4] is to divide an imageinto small regions

which can be assumed to have same PSF or another version of this idea [15]is to work on

a pair of blurry images and is to do the local PSFs estimation step and deconvolution step at

the same time. For moving object case, the usage of supplementary camera is shown in the

work of Ben-Ezra and Nayar [7]. Although these methods deal with spatially-varying case

[33], [4], [15], [7], they still work on spatially-invariant local PSF assumption. Without this

assumption space-variant blur is considered in the work [53] which focus on only rotational

movement of camera. In contrast to this work, space-variant blur is considered for a camera

moving without rotation in the work by [55]. Unfortunately, the motion trajectoryused in this

work is far from the real trajectory of a handheld camera.

In addition to all these remarkable studies, there are interesting works whichtries to get rid of

motion blur by the fusion of visual and inertial measurements especially in augmented reality

literature [64], [65] although their main aim is not to get motion deblurred imagesor frames.

The most recent and interesting work for our case is proposed by Klein and Drummond [29].

They used rotational measurements from rate gyroscopes not only to provide the visual sensor

with a pose prediction, but also to modify the operation of the sensor’s edgedetection.

2.1 Motion Blur Models

First, we need a mathematical model that relates the given blurred image to the unknown

”ideal” image in order to deblur an image. An ”ideal” image can be considered as one that

captures a moment in time instantaneously and therefore with no motion blur. However, it is

not possible in practice. The exposure time defines a temporal box filter which causes blur if

there is relative motion between camera and scene due to the fact that this boxfilter destroys

important high frequency spatial details.

It is well known that homogeneous blurring which means that blurring is in exactly the same

way at every spatial location of image can be defined by convolution in the spatial domain

2.1, 2.2 or by a product operation in the frequency domain 2.3;

z= u ∗ h
[

x, y
]

=

∫

u (x− s, y− t) h (s, t) dsdt (2.1)
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for discrete case;

z=
N−1
∑

k=0

M−1
∑

l=0

u (i − k, j − l) h (k, l) (2.2)

Z = U (w1,w2) .H (w1,w2) (2.3)

whereu is an ideal image,h is called the convolution kernel or point-spread function (PSF)

andz is the blurred image. The PSF is an energy density function that describes the amount

of time light from a single point in the scene exposes each (x,y) pixel positionin the image

detector.

This spatially invariant PSFh which models homogeneous blurring should satisfy these;

• The physics of the underlying image formation processh

• If the image is real-valued, thenh is also real-valued.

• The PSFh must satisfy the following energy conservation constraint:

z=
∫ ∞

−∞

∫ ∞

−∞

h (x, y) dxdy= 1, (2.4)

and in discrete case:

z=
N−1
∑

i=0

M−1
∑

j=0

h (i, j) dxdy= 1, (2.5)

The simple model can only be used under the homogeneity condition. If the focal length of

camera is short or camera rotates significantly about the optical axis, then the intensity of

blur changes in the image. In other words, it becomes a complex function of depth of scene

and relative motion between camera and scene [55]. Therefore, spatiallyinvariant PSF is not

sufficient to model the complex blur caused by leg locomotion. More general linearoperation

is necessary to define this spatially varying blur.

z= u∗̂h
[

x, y
]

=

∫

u (x− s, y− t) h (x− s, y− t; s, t) dsdt (2.6)

whereu is an ideal image,h is PSF andz is the blurred image again. Note that equation(2.1)

is the special case of equation(2.6) in the sense ofh does not change with image coordinates

x and y. Therefore equation(2.6) can be called as space-variant convolution. If also noise is
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u(x,y) h(x,y)

n(x,y)

z(x,y)

Page 1

Figure 2.1: The model of motion blur diagram

considered, then complete models of motion blurring is illustrated on figure 2.1. It can be

formulated as in 2.7, 2.8.

z= u ∗ h
[

x, y
]

+ n (x, y) . (2.7)

z= u∗̂h
[

x, y
]

+ n (x, y) . (2.8)

n(x,y)modeled as an additive term is the noise. Generally, white noise with zero mean isused.

It is statistically formulated as in [56];

E
[

n (x, y)
]

≈

N−1
∑

l1

M−1
∑

l2

n (l1, l2) = 0 (2.9a)

Rw (l1, l2) ≈



















σ2
n if l1 = l2 = 0

0 otherwise
(2.9b)

Motion blur is basically the result of the relative motion between the imaging sensor and the

scene over the period of exposure determined by the shutter speed. Therefore, it changes due

to the type of motion. This can be in the form of a translation, a rotation, a sudden change

of scale, or some combinations of all these and it is quite hard to construct a universal model

that covers all of these blur processes. In fact, it is already categorized according to the type

of relative motion between camera and scene. In the following the most common motion blur

models in the literature will be given.
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2.1.1 1D Linear Motion Blur Model

When there is a steady motion between a planar scene perpendicular to the optical axis and the

camera in a plane parallel to the scene over the period of exposure [0, texposure] , the resulting

psf is a space invariant 1-D rectangular impulse in the direction of motion;

h (x, y) =



















1
L if − L

2 ≤ x ≤ L
2 andy = 0

0 otherwise
(2.10)

where the intensity of the PSFL = vrelativetexposure. When this relative motion makes an angle

with the horizontal axis of the scene over the period of exposure;

h (x, y) =



















1
L if

√

x2 + y2 ≤ L and x
y = − tanφ

0 otherwise
(2.11)

If ϕ is assumed 0, then the discrete version of equation 2.11 can be obtained approximately;

h (i, j) =



































1
L if n1 = 0, |n2| ≤

⌊

L−1
2

⌋

1
L

{

(L − 1) − 2
⌊

L−1
2

⌋}

if n1 = 0, |n2| =
⌈

L−1
2

⌉

0 otherwise

(2.12)

2.1.2 Rotational Blur model

When there is a rotational motion between a scene and the camera over the period of exposure

T = [0, texposure], rotation motion blurred images are recorded. Unfortunately, homogeneous

blurring assumption is not valid here because blurring paths of rotation motionblurred image

are circular arcs and the blurring extents are varied with the radius r. Therefore, rotational

movements caused to spattially-variant blur on images.

Rotation motion blurred image can be formulated as in the work of Wang Wenying et al. [61];

z=
1
T

∫ T

0
u (x− x0 (t) , y0 (t)) dt. (2.13)

where x0 (t) = r cos(ωt), y0 (t) = r sin(ωt), r =
√

x2 + y2 andω is the angular velocity
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of rotation. If image plane is represented in polar coordinate system, then rotation motion

blurred image can be formulated as in equation 2.14;

z(r, θ) =
1
T

∫ T

0
u (r, θ − ωt) dt. (2.14)

where(r, θ) is the polar coordinate of image point. Let’s change the parameters of equation

2.14 asl = rθ s= rωt, Nr = rωT and suffix r;

zr (l) =
1
Nr

∫ Nr

0
ur (l − s) ds. (2.15)

The discrete version of equation 2.15;

zr (i) =
1
Nr

[ur (i) + ur (i − 1) + . . . + ur (i − Nr + 1)] . (2.16)

wherei = 1,2, . . . ,Mr andMr is the period of pixels sequences in the blurring circular arc.

Then PSF in discrete form can be written as

hr (i) =



















1
Nr

if 1 ≤ i ≤ Nr

0 if Nr < i ≤ Mr

(2.17)

Then if equation 2.16 is revisited for simplification;

zr (i) =
Nr
∑

m=0

ur (m) hr (m) = ur (i) ∗ hr (i) . (2.18)

wherehr (i) is PSF which blurs the image rotationally,Nr = rωT is the blur intensity and

θ = ωT shows angle of blurring during the exposure time T. There is a correlation between

blur intensityNr and radius r, therefore, the blurring intensity can be identified separately

with different radius. The intensity of blur can be obtained by calculating the blur angle due

to the fact thatθ is constant when r is changing. After all, the PSF is obtained when the blur

intensity is identified.

As it is mentioned above, the intensity of blur changes with radius r.Therefore, it is important

to find the center of rotation and then to obtain the pixels along circular blurringarcs. For
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example, center of the blur is taken as the center of image in the work of Wang Wenying et al.

[61] and then the idea of Bresenham’s circle generation algorithm is used toobtain the pixels

on the circular arcs.

Another example is the work of Georg Klein and Tom Drummond [30], it is againassumed

that there is no translation and camera rotates with constant angular velocity about a center of

rotation. It has two steps that determine the axis of rotation and then the intensityof blur. All

points in the image are blurred rotationally on circular arcs which have common center and

there is no blur function at the perpendicular direction towards the center of blurring circles.

Therefore, edges of image that arise radially from center on the blurringarcs are degraded

by blur, while edges lays tangentially from center on the arcs are preserved. In the first step

this observation is taken into account so edge detector is used to find the center of blurring

circles which is the most perpendicular to all remaining edges of the blurred image. At the

second step, blur intensity is calculated with a sign ambiguity in blur magnitude by using the

observation that the blur length cannot exceed the length of the shortest intensity ramp if the

first step gives the center of the blur correctly and the samples are therefore taken along the

direction of blur.

2.1.3 Radial Blur model

Radial blur sometimes referred to as a zoom blur is a type of spatially-variantmotion blur

which occurs while a visual sensor is moving rapidly towards an object of interest during the

acquisition process. In this type of blurring the apparent motion is different at each point in

the object. In other words, there is an increasing blur while moving outward from the center

of the image. Figure 2.2 demonstrates the model of the blur and how blur smearsare directed

along radial lines. While camera is coming closer to the object, camera’s field ofview triangle

is getting smaller however there is no change on the size of the object as it is shown on the

left side of the Figure 2.2. If the exposure time of camera is significant comparatively to the

relative velocity and distance between camera and object of interest, then the image will be

radially blurred due to the time-dependent scaling factor of the object in the camera image

plane. Aerial photography and video-based missile systems can be givenas example situation

where this problem may occur.

There are only few works on radial blurred images in the literature [60], [9]. The mathematical
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a ) b)

Figure 2.2: The model of Radial blur is given ata and how radial lines smears from blur
center is given atb.

model proposed by Webster and Reeves [60] which is based on transformation of a spatially-

invariant blur into a spatially-variant system on a new coordinate system is given here as the

model of radial blur 2.19;

zθ (φ) =
∫ T

0
uθ (r (φ, t)) dt. (2.19)

The blur turns out to be one dimensional for any givenθ, therefore the equation 2.19 is given

with a subscriptθ. Whereuθ is the sharp image,zθ is the radially blurred image, r is the

object-plane radial coordinate,θ is the angular coordinate in both the object plane and sensor

plane which shows the angle of of every position r,φ is taken to be the viewing angle related

with a particular pixel in the sensor which has similar function in the sensor plane with r in

the object plane and t represents the time.

r = x tan(φ) ,
dx
dt
= −v. (2.20)

where x is the horizontal spatial coordinate which also shows the distance between camera

and object of the interest and v is the camera speed. By applying a changeof variables on

equation 2.19
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zθ (φ) =
1
v

∫ x0

x0−vT
uθ (x tan(φ)) dx. (2.21)

Here, it is aimed to obtain spatially invariant blur model which can be called as a convolution

model. The limits of integration is will be changed with logarithmic terms and integrand will

contain an exponential term due to achieve this aim.

c = log(x) + log(tan(φ)) , ec = x tan(φ) . (2.22)

By differentiating equation (2.22)

dz=
1
x

dx=
tan(φ)

ec dx

dx=
1

tan(φ)
ecdc

(2.23)

If equations (2.22), (2.23) are combined with the equation (2.21);

z̃θ (α) =
∫ ρ2+α

ρ1+α

mθ (c) dc. (2.24)

where

mθ (c) = ecuθ
(

ec) , ρi = log(di) , α = log(tan(φ))

d1 = x0 − vT, d2 = x0

For simplification it can be written as multiplying the integrand by a pulse function;

z̃θ (α) =
∫ ∞

−∞

[

δ (c− (ρ1 + α)) δ (c− (ρ2 + α))
]

mθ (c) dc

(2.25)

=
[

δ (c− α − ρ1) δ (c− α − ρ2)
]

∗mθ (α)
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Blur operation of the work by Webster [60] can be explained in discrete form by explaining

their radial sampling method. Radial sampling can be divided into two steps. Firstly, lines

of pixels from the center of image to the boundary of image are determined with acertain

angle difference consecutively. As a second step, samples are taken by annularregion method

which has an increasing sampling density from inner parts to outer parts of image on each

line and each radial line of points corresponds a column to build a radial blurred image.

2.2 Motion Blur Identification

If the PSF of the motion blur is not given a priori in image deblurring process, the first step is

to model the motion blur. Once motion blur is modeled, the parameters of motion blur model

must be obtained. This step is called as motion blur identification. If the blur modelis chosen

as linear uniform motion blur, then the blur identification is to estimate the length and the

direction of the motion, for example. Therefore, motion blur identification is a crucial step for

deblurring algorithms. There has been many methods proposed for motion blur identification

in the image processing community. These methods can be discussed in 3 groups as single

image based, multiple images based and external measurements based methods.

2.2.1 Based on single image features

If the relative motion between the camera and the scene is known exactly, the PSF can be

calculated analytically. However, extra sensors are necessary to achieve this. Estimating the

blur by using the captured image itself is still the most common scenario in literature although

it is really a hard problem.

By using single image without any extra knowledge on the motion is called as singleimage

blind deconvolution and it is the most ill-posed hardest type among motion deblurmethods

due to the fact that there are more unknowns than knowns. In spite of being an ill-posed prob-

lem, it has been studied well in the literature. In fact, it is very common problem especially

in digital photography due to the camera shake and low lighting conditions whichcause long

exposure time in consumer cameras. To overcome the difficulties of this problem, limited mo-

tion types are chosen to constrain the problem or statistical methods are usedas an auxiliary

knowledge.
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In traditional methods PSF is generally modeled as a low pass filter caused by uniform motion

and these methods fail for intensive blurred image case. However, the work of Fergus et al.

[19] showed that his method can work under intensively and complex blur.That is why it

is one of the most successful work done with a single image. It depends onthe fact that

natural scene images have certain distributions of image gradients. Therefore heavy-tailed

distributions in the gradients of natural images are used while unblurred imageand blur kernel

are estimated. But even in this work some manual inputs are necessary.

Recent work of Shan et al. [52] model motion blur as maximum a posteriori (MAP) problem.

It tries to estimate the parameters of PSF by iterative optimization which may even start

from a rough initial kernel estimate. This method has three main contributions. By using a

new image noise model, the errors caused by image noise estimation and errorscaused by

blur kernel estimation is separated. While the parameters of PSF is being refined, a new

smoothness constraint is used to suppress ringing artifacts. Finally, computationally hard

steps of optimization algorithm is moved to be done in the frequency domain.

Another motion blur identification method from a single image is proposed by usingtheα-

motion blur constraint model, [17]. This method depends on digital matting [35] isthe process

of extracting a foreground object from an image along with an opacity estimatefor each pixel

covered by the object. It is derived from the assumption that there is a linear constraint

between the image derivatives of theα-channel, the motion blur parameters, and a simple

binary free parameter (i.e.,+1 or -1). Therefore,α-channel of the image is considered instead

of working on blurred image.

These methods are mostly used for motion blur in digital photography becausethere is no

chance to capture multiple images or use external sensors in small high resolution cameras. In

robotic applications, multiple images based methods and usage of external sensors are more

common. Similarly, we also concentrate on video sequences captured by ourexperimental

robotic platform.

2.2.2 Based on multiple images

As it is mentioned in the Section 2.2.1, blind deconvolution approaches should be used if

the relative motion between camera and the scene is not given. One method to cope with
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this significantly challenging problem is to use multiple images. Moreover, more complex

motion models than it can be considered in the methods based on single image can be and are

considered in the methods based on multiple images by using extra information coming from

additional images.

An early example of this idea is proposed by Bascle et al. [5] which takes a blurred image

sequence as input and gives a single unblurred high-resolution image asoutput. In Bascle’s

work, it is assumed that the motion is stable and does not change frame to framewhich means

that direction of the motion blur is the same in all frames. Therefore, identification of motion

blur can be done by motion analysis of frame sequence such as motion blur direction is the

common estimated motion direction and the blur intensity is proportional to the common

estimated motion magnitude.

However, motion blur direction can be different from one frame to other frame in reality

especially in robotic applications. Rav-Acha and Peleg [49] work on two blurred images

which have different blur direction (perpendicular to each other). A Gaussian pyramid which

goes from the smoothed and sub-sampled images to the high-resolution images isused to

estimate the blur parameters for each images.

Another interesting work among the multiple image based methods is proposed by Cho et

al. [15] to deal with spatially variant motion blur. Sequential frames from a video is used

for deblurring and first, each frame is segmented into small regions in which motion can be

assumed as uniform. Then PSFs’ identifaction for each region is done by energy minimization

approach.

The most interesting work for our research is the work by Agrawal [3] which can be counted

among the multiple image based methods, although it also has control on the exposure time

of the camera. Instead of recording the video with a constant exposure time, exposure time is

being changed frame to frame according to determined exposure time sequence. This gives

frames blurred in the same direction but in different magnitudes which is called invertible

PSFs because the zeros of PSFs in frequency domain are eliminated by combining other PSFs

from frame sequence recorded in different exposure times. This exposure time sequence is

repeated while recording the video and the frames which has same exposure time are matched

to identify the motion blur parameters.
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Using multiple images or video sequences supply us more information about motionand it

may even turn the ill-posed problem into a well-posed problem. Even if it is applied for 1D

motion, there is even an approach among the multiple image based algorithms to copewith the

non-invertible corruption by obtaining invertible PSFs [3]. We are planningto improve this

approach for more complex motion cases and then to integrate this approach into our robotic

application to achieve a much more robust vision sub-system in the presenceof legged motion

and the resulting visual disturbances.

2.2.3 Based on external measurements

As it is mentioned at the beginning of Section 2.2.1, the restoration problem will be much

easier if the motion is known as a priori knowledge. That is why, there are works which

try to use inertial sensors for accurate motion knowledge. Inertial sensor such as an Inertial

Measurement Unit (IMU) is robust to even sudden and large motions and can work at higher

frequencies than usual cameras. The weak part of these sensors is the accumulative error dur-

ing integration time. Therefore they are not capable of identification and deblurring without

image data.

The work of Klein and Drummond uses gyroscope and camera data togetherto increase the

performance of their parametric edge detection algorithm. Although their aim is toobtain

better tracking performance, motion parameters as a motion matrix is estimated by using

combined gyroscope and camera data. Moreover, the improvement in the edge detection step

of the algorithm that they achieved by using motion estimation is one of the motivationpoint

for us to analyze feature detectors under motion blur.
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CHAPTER 3

IMAGE FEATURE DETECTORS FOR ROBOTIC

APPLICATIONS

3.1 Importance of Feature Detectors For Robotic Applications

A local feature is an image pattern which differs from its immediate neighborhood. It is usu-

ally associated with a change of an image property or several properties simultaneously, al-

though it is not necessarily localized exactly on this change. The image properties commonly

considered are intensity, color, and texture. Local features can be points, but also edgels or

small image patches. Typically, some measurements are taken from a region centered on a

local feature and converted into descriptors.

The descriptors can then be used for various applications in computer vision and robotics.

In object recognition, it is important to find a mapping between model and image.Another

example can be given as navigation algorithms in mobile robotics. Most real-world envi-

ronments provide salient features which are useful for navigation and can be extracted from

vision data. It turns out that features with a simple geometry are a good choice as they are

relatively easy to obtain and of frequent occurrence in man-made environments.

Mobility requires the knowledge of one’s own position in the environment. Feature based

algorithms gain have important role for localizing a robot precisely and robustly particularly

when continuously updating the robot’s pose during motion in real-time. Mobility requires

further a map of the environment in which one is supposed to navigate. Extracting features

from sensory data is crucial that the robot can start to build a map of a previously unknown

environment autonomously.

20



3.2 Harris Corner Detector

The basic idea of the corner detection is to find points where two edges meet. In other words,

it aims to find high gradient in two directions. And one of the most popular corner detec-

tor algorithm is Harris corner detector because it is reasonably invariantto rotation, different

sampling and quantization, small changes of scale and small affine transformations, illumi-

nation variation and image noise [51]. It is used in many computer vision applications such

as matching, finding correspondence, tracking and so on. Therefore, The derivation of the

Harris corner detector [25] is presented in this part of the report.

The Harris corner detector is based on the local auto-correlation function of a signal. The

local auto-correlation function captures the structure of the local neighborhood by measuring

the changes of the signal with patches shifted by a small amount in all directions. A discrete

predecessor of the Harris detector was proposed by Moravec [44].

The auto-correlation function can be written as;

c (x, y) =
∑

W

[

I (xi , yi) − I (xi + ∆x, yi + ∆y)
]2 (3.1)

where I denotes the image function, (xi ,yi) are the points in the window W centered on (x,y)

and a shift(∆x,∆y).

If the shifted function is approximated by the first-order Taylor expansion;

I (xi + yi + ∆y) ≈ I (xi , yi)+ Ix (xi , yi)∆x+ Iy (xi , yi)∆y = I (xi , yi)+
[

Ix (xi , yi) Iy (xi , yi)
]


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

(3.2)

whereIx, Iy are partial derivatives of I(x,y).
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If we substitute approximation equation (3.2) into equation (3.1),

c (x, y) =
∑

W

[

I (xi , yi) − I (xi + ∆x, yi + ∆y)
]2 (3.3)

=
∑

W


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
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where matrix Q(x,y) captures the intensity structure of the local neighborhood. Eigenvalues

of matrix Q(x, y) gives us a measure such as;

• If the local auto-correlation function is flat which shows that both eigenvalues are small,

then the windowed image region is of approximately constant intensity.

• If the local auto-correlation function is ridge shaped which shows that there is one

strong eigenvalue , then this indicates an edge.

• If the local auto-correlation function is sharply peaked which shows thatboth eigenval-

ues are strong, then this indicates a corner.

In this report, the Harris corner code by Peter Kovesi [32] is utilized as the Harris Corner

code. The flow of the algorithm can be visualized in Fig. 3.1. For each frame, the algorithm

is run and the 18 corner positions on the image are found.

3.3 Canny Edge Detector

Edges in images are areas with strong intensity contrasts from one pixel to thenext which

shows that outlines of an object and boundaries between objects and the background in the
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Figure 3.1: Flowchart of Harris corner detector algorithm
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image. Edge detection is a fundamental tool used in most image processing applications as a

preprocessing step to feature extraction and object segmentation.

The Canny algorithm is one of the most commonly used image processing tools, detecting

edges in a very robust manner and using an optimal detector which is basedon finding as

many real edges in the image as possible by minimizing the error rate, marking edges as close

as possible to the edge in the real image to maximize localization, and marking edgesonly

once without false edges created by image noise.

Canny’s work is based on expressing the preceding criterias mathematically and then find

optimal solutions to these formulations. Using numerical optimization with 1-D step edges

corrupted by additive white Gaussian noise led to the conclusion that a goodapproximation

to the optimal step edge detector is the first derivative of a Gaussian:

d
dx

e
−x

2σ2 =
−x

σ2
e
−x2

2σ2 (3.9)

1-D approach works by applying in the direction of the edge normal. However, the direction of

the normal is not known beforehand in 2-D. Therefore, 1-D edge detector should be applied

in all possible directions while it is being generalized to 2-D. Smoothing the image with

a circular 2-D Gaussian function, computing the gradient of the result andthen using the

gradient magnitude and direction is a good approximation for this.

Let In(x, y) denote the nth frame of input video andG(x, y) denote the Gaussian function;

G (x, y) = e−
(x2+y2)

2σ2 (3.10)

Smoothed imageIn
s (x, y) is obtained by convolving G andIn;

In
s (x, y) = G (x, y) ∗ In (x, y) (3.11)

This step is followed by computing the gradient magnitude and direction;

gx =
∂In

∂x
= In (x+ 1, y) − In (x, y) (3.12)
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gy =
∂In

∂y
= In (x, y+ 1) − In (x, y) (3.13)

M (x, y) =
√

g2
x + g2

y (3.14)

and

α (x, y) = arctan

[

gx

gy

]

(3.15)

M (x, y) contains wide ridges around local maxima because it is generated by using the gra-

dient. Therefore the next step is using nonmaxima suppression to thin those ridges. It can be

formulated as;

• Find the direction of all possible edge directiondk that is closest toα (x, y) in the given

region.

• If the value ofM(x, y) is less than at least one of its neighbors alongdk, thengN (x, y) =

0 which means that it is suppressed otherwisegN (x, y) = M (x, y).

After obtaining nonmaxima-suppressed imagegN (x, y), the final step is to thresholdgN (x, y)

to reduce false edge points. Canny’s algorithm uses hysteresis thresholding which contains

two thresholds such as upper thresholdTH and a lower thresholdTL. Thresholding step can

be formulated as

gNH (x, y) = gN (x, y) ≥ TH (3.16)

and

gNL (x, y) = gN (x, y) ≥ TL (3.17)

Due to the fact thatgNL contains all the nonzero pixelsgNH, it should be eliminated;

gNL (x, y) = gNL (x, y) − gNH (x, y) (3.18)
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The nonzero pixels ingNH (x, y) andgNL (x, y) are called as strong and weak edges, respec-

tively. After the thresholding step, all strong pixels ingNH (x, y) are marked as valid edge

pixels. Depending on the value of upper thresholdTH, the edges ingNH (x, y) typically have

gaps. Longer edges are formed using the following procedure:

1. Locate the next unvisited edge pixel, p, ingNH (x, y).

2. Mark as valid edge pixels all the weak pixels ingNL (x, y) that are connected to p using

8-connectivity.

3. If all nonzero pixels ingNH (x, y) have been visited go to Step 4. Else return to first

step.

4. Set to zero all pixels ingNL (x, y) that were not marked as valid edge pixels.

In this report, the Canny edge code by Peter Kovesi [32] is utilized as the Canny Corner code.

The flow of the algorithm can be visualized in Fig. 3.2. For each frame, the algorithm is

run and the edges on the checkerboard plate are trying to obtain.In summary,the Canny edge

detection algorithm works in a multi-stage process;

• Smoothing the image and eliminating the noise by convolving with a Gaussian filter.

• Finding the gradient magnitude and orientation using finite-difference approximations

for the partial derivatives.

• Applying non-maximal suppression to the gradient magnitude for finding the local max-

ima in the direction of the gradient.

• Using hysteresis thresholding algorithm which has some adaptivity to the localcontent

of the image to detect and link edges.

3.4 SIFT: Scale Invariant Feature Transform

In general a good local feature should have these key properties;

• It should be easy to extract.
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• It should be easy to match.

• It should be robust to image noise.

• It should be robust to illumination changes.

• It should be robust to minor changes in viewpoint.

• It should be independent from rotation and scaling.

Scale Invariant Feature Transform (SIFT) developed by David Lowe[38] is a powerful image

feature detection and extraction method which claims to satisfy most of these properties such

as independence from scale and rotation as well as being robust to affine distortions viewpoint

changes, noise and illumination changes. Besides, being highly distinctive,SIFT’s features

can be correctly matched against a large database of features. In view of these favorable

properties, SIFT has gained huge popularity in many areas, such as object recognition, stereo

matching, 3D structure estimation and motion tracking. Therefore, it is also an important

approach for robot vision applications.

SIFT algorithm takes gray-scale input images and the main steps of detection for SIFT feature;

• Interest points candidates are found by scale-space extrema detection

• Location, scale and contrast is calculated for each candidate keypoints and unstable

keypoints are discarded.

• Orientation assignment for each keypoint location are done by calculating local gradient

directions.

• Keypoint descriptors are constructed by using the local gradients around each keypoint

at the selected scale.

First of all,local extrema of difference-of-Gaussian filters at different scales are the interest

points for SIFT algorithm. Therefore, candidate keypoints which are stable against scale

change are to be detected by searching among all possible scales.

Variable scale Gaussian function given in equation 3.19 is used as scale space kernel.
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G (x, y, σ) = 1/
(

2πσ2
)

e−(x2+y2)/σ2
. (3.19)

By using equation 3.19, the scale space of an imput imageI (x, y) can be obtained as;

L (x, y, σ) = G (x, y, σ) ∗ I (x, y) . (3.20)

Difference-of-Gaussian function which is the difference between two images at scaleskσ and

σ is used for detection of keypoints locations and it is given by

D (x, y, σ) = (G (x, y, kσ) −G (x, y, σ)) ∗ I (x, y) (3.21)

= L (x, y, kσ) − L (x, y, σ) (3.22)

Difference of Gaussian (DoG) images from adjacent images are generated as the first step of

SIFT algorithm towards the detection of interest points. The difference of Gaussian function

is chosen because it is efficient function to compute and it provides an approximation to the

scale-normalized Laplacian of Gaussianσ2∇2G which gives the most stable scale invariant

image features. Figure 3.3 shows the computation of the difference-of-Gaussian function.

As it is seen in figure 3.3, the input image is convolved by Gaussians and the scale space

images are obtained. These scale space images are grouped by octaves.The scale of each

image in each octave differs from the scale of previous image by a constant factor k. After the

value of k is choosen, a fixed number of s intervals per octave is obtained.The relationship

between k and s is given as;

k = 21/s. (3.23)

Therefore, the last image in each octave has twice the scale of the first imageof each octave.

s+3 images are created for each octave to be able to find local-extrema througha complete

octave. As it is shown in the right side of figure 3.3, the difference-of-Gaussian images are

obtained by taking the difference of adjacent blurred image in each octave. The first image of

the following octave is obtained by downsampling by 2 the last image of the previous octave.
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Figure 3.3: Figure shows that the scale space images which are obtained byconvolving the
input image by Gaussians with different scale factors and the computation of the difference-
of-Gaussian images [39].
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Figure 3.4: Each pixel marked with ”x” with its 26 neighbors in 3×3×3 neighborhood which
consists 8 on the same scale image, 9 on the scale above image and the 9 on the scale below
image [39].

Keypoints of SIFT are obtained by searching for the local maxima and minima ofthe DoG

function. Local minima and maxima detection is shown on figure 3.4. At this step, each pixel

is compared with its 8 neighbors on the same scale image, plus 9 correspondingneighbors on

the one scale above image and one scale below image. The pixel is selected asa candidate

keypoint if it is local maximum or minimum point.
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After determining candidate keypoints, a 3D quadratic function is fit to the nearby pixels of

the candidate keypoints to increase the stability [41]. By this step;

• Low contrast keypoints are eliminated.

• Keypoints chosen among the edge points are eliminated.

• Orientation of keypoints are calculated in sub-pixel accuracy.

The Taylor series expansion of the DoG function is used in this approach [41]. If the origin

of it is shifted to the sample point;

D (x) = D +
∂DT

∂x
+

1
2

xT ∂
2D

∂x2
x. (3.24)

In equation 3.24, D and its derivatives are calculated at the sample point and x = (x, y, σ)T is

the offset from this point. The derivative of this equation (3.24) with respect to xand equating

it to zero gives the location of extrema point ˆx;

x̂ = −
∂2D−1

∂x2

∂D
∂x
. (3.25)

If the offset of the accurate keypoint location from the sample point location ˆx is greater than

0.5 in any direction; the extremum which means that accurate location is closer toanother

pixel. In such a case, the sample point is changed and the same procedureis repeated for the

new one. Sub-pixel localization is satisfied as adding the final offsetx̂ value to the location of

the sample point.

Another aim of this step is to eliminate keypoints with low contrast in their neighborhood.

This can be achieved by substituting equation (3.25) into equation (3.24). Itincrease the

stability of keypoints and mathematically results as;

D (x̂) = D +
1
2
∂DT

∂x
x̂. (3.26)

If the value ofD (x̂) for a candidate keypoint is less than 0.03 (pixel values are assumed to be

in the range [0,1]), this point is eliminated.
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Another stability problem is caused by the keypoints chosen along the edges. These points

are mostly unstable and sensitive to noise; therefore, it will be mentioned howthese points are

removed in this step. The principle curvatures of DoG function at stable points are compara-

bly large in both directions; however, the DoG function at points lying along edges directions

has small principle curvatures along the direction and a large principal curvature in the per-

pendicular direction.

The principal curvatures can be calculated by using the eigenvalues of the Hessian matrix;

H =





















Dxx Dxy

Dxy Dyy





















(3.27)

The eigenvalues of the Hessian matrix are proportional to the principal curvatures of the

DOG function. At this point, the main idea of Harris Corner Detector is used [25]. That is,

there is no need to compute eigenvalues explicitly because only the ratio of the eigenvalues is

necessary. Letα andβ are eigenvalues of Hessian matrix H and the ratio between them given

as;

α = rβ. (3.28)

If the trace of H and determinant of H is calculated;

Tr (H) = Dxx+ Dyy = α + β (3.29)

Det(H) = DxxDyy−
(

Dxy

)2
= αβ (3.30)

As it is shown in equations 3.29 and 3.30, the trace of Hessian gives us the sum of the eigen-

values of H and the determinant of Hessian matrix gives us the product of the eigenvalues of

H. Then;

Tr (H)2

Det(H)
=

(α + β)2

αβ
=

(rβ + β)2

rβ2
=

(r + 1)2

r
. (3.31)

The result of the equation 3.31 depends on the ratio r not the eigenvalues.This ratio has the

minimum value when r is equal to 1. In other words, it has the minimum value when the
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eigenvalues of H are equal to each other. Therefore, comparing this value against a threshold

is sufficient to check the ratio of the principal curves of DoG function instead of calculating

each eigenvalue. This threshold is given as 10 in the paper of Lowe [39].

After the stable keypoints are selected with their locations in sub-pixel accuracy, a scale and

rotation invariant descriptor should be assigned to each keypoint to characterize it. This de-

scriptor is obtained by computing a gradient orientation histogram in the neighborhood of the

keypoint. Here, invariance in scale can be achieved by selecting the Gaussian smoothed image

L(x,y) which has the closest scale to the scale of the keypoint, and determining its orientation

on this image. Similarly, invariance in rotation can be achieved by assigning an orientation to

each keypoint, and computing the keypoint descriptor relative to this orientation.

For each keypoint, these calculated orientations around a keypoint are added up to a histogram

which has 36 bins for 360◦ range. The contribution of each neighboring sample is weighted

by the gradient magnitude and a Gaussian function with a scale that is 1.5 times thescale

of the keypoint. Peaks of the histogram correspond to dominant orientations. That is, the

direction of the histogram maximum, and any other direction within 80% of the maximum

value corresponds to a new keypoint. Hence, SIFT may give some keypoints which have the

same location at the end. But these have different orientations and also increase the matching

stability. For better localization, the last step of orientation assigment is to fit a parabola to

the 3 histogram values around the peak.

Figure 3.5 shows how to obtain the feature descriptor. These arrows represent local gradient

magnitudes and orientations. Here, the Gaussian image closest in scale to the keypoint’s scale

gives the orientation data. The gradient magnitudes are weighted by a Gaussian with scale

1.5 times the scale of the keypoint, and added up to a histogram to construct thedescriptor.

A set of orientation histograms on 4× 4 pixel neighborhoods is used to compute the feature

descriptor. The gradient samples have affect on both of its adjacent histogram entries which

depend on the original orientation of the sample and the central value of the bin ’d’. This

weighting factor is taken as (1-d).
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Figure 3.5: The figure on the left shows that gradient magnitudes and orientations of the local
image in a 8x8 neighborhood of the keypoint. These are weighted by a Gaussian window,
represented by the overlaid circle. The figure on the right shows the magnitudes of histogram
entries in 4× 4 regions [39].
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As it is shown in figure 3.5, histograms have 8 bins each, and each descriptor contains an array

of 4 histograms around the keypoint. Therefore, a SIFT feature vectorhas 4× 4 × 8 = 128

elements.Each histogram entry represents an element of the descriptor vector. The SIFT code

by A. Vedaldi is used as the SIFT code in this thesis.

3.5 Effects of Motion Blur on Feature Detectors

Although there are many feature based algorithms and work related with motion deblurring in

computer vision literature, there is no work which investigates the specific effects of motion

blur on feature detectors. Therefore, we create an evaluation procedure to characterize feature

detectors.

Mainly all feature detectors have three fundamental aims.

• A good feature detector should detect all features without giving fake features. In fact

the features found by detector should be the real correct features.

• A good feature detector should assign all features in their real coordinates or as close as

possible to their real coordinates. In fact, any feature should be foundwith minimum

distance to real feature.

• A good feature detector should be robust to the image noise. In fact, thereshould not

be multiple features found by detector around a single feature.

The essence of our work is in expressing these criteria and then attempting toevaluate feature

detectors according to these under motion blur effect.
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CHAPTER 4

EXPERIMENTAL EVALUATION OF FEATURE DETECTORS

UNDER MOTION BLUR

4.1 Experimental Scenario

In our work, PointGrey Flea2 camera is used. As illustrated in Fig. 4.1(a) it can fit into the

small, tight spaces. That is why it is commonly preferred in mobile robotics applications. It is

mounted on our mobile robotic platform RHex and connected to pc via IEEE 1394b interface

as it is shown at Fig. 4.1(b).

All the experiments were held in Robotics and autonomous systems laboratory.A straight

route was defined for our robot to walk in different speeds through 3.5 meter path. 3 by 4

checkerboard pattern which is shown at Fig. 4.2 were placed at the end of this 3.5 meter

path in the lab environment. This experimental setup can be visualized better bythe help of

Fig. 4.3.
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(a) Flea 2 camera

(b) SensoRHex

Figure 4.1: The Point Grey Flea2 camera is shown with our experimental robotic platform
SensoRHex (a) and (b)
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Figure 4.2: 3 by 4 Checkerboard plate.

Start Point End Point

Experiment Range

3.5 meters

SensoRHex Camera

Checkerboard

Plate

0.3 meter

Prohibited Zone

Figure 4.3: Drawing of experimental setup for evaluating feature detectors on motion blurred
frames due to legged locomotion.
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Video sequences were recorded at a 640 x 480 resolution with a 25 frames per second frame

rate in the avi format by using RHex vision library functions on linux platform.Five test

video sequences were recorded;

• VSeq 1 was recorded while RHex was standing sti,ll half meter in front of checkerboard

plate.

• VSeq 2 was recorded while RHex was approaching to the Checkerboardplate from 4.5

meters with 0.1 velocity coefficient at its slowest walking mode which corresponds to

0.14 m/sec.

• VSeq 3 was recorded while RHex was approaching to the Checkerboardplate from 4.5

meters with 0.4 velocity coefficient at its slow walking mode which corresponds to 0.16

m/sec.

• VSeq 4 was recorded while RHex was approaching to the Checkerboardplate from 4.5

meters with 0.8 velocity coefficient at its fast walking mode which corresponds to 0.25

m/sec.

• VSeq 5 was recorded while RHex was approaching to the Checkerboardplate from 4.5

meters with 1.0 velocity coefficient at its fastest walking mode which corresponds to

0.40 m/sec.

Table 4.1: Speed coefficients of the experimental robotic platform which are used in experi-
ments and the corresponding speed values in m/sec.

Velocity Coefficients Corresponding Speeds inm/sec
0.1 0.14 m/sec
0.4 0.16 m/sec
0.8 0.25 m/sec
1.0 0.40 m/sec

Fig. 4.4 demonstrates some sample frames from VSeq 4 that were recorded while RHex is

running forward and backward to show how the world looks like from RHex’s eye. In our

experiments, we use forward part of the videos which were recorded while RHex was moving

forward. Backward locomotion of the robot degrades the video frames more intensively due

to its structure of c shape legs and its walking gate.
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Figure 4.4: The image of checkerboard changes through the video frames while RHex is
running forward and backward by moderate velocity.

In our work, we investigate performance of harris corner, canny edge detector and sift on the

video frames captured by the camera mounted on RHex. The aim of the research is to exploit

the effect of legged locomotion on the output of camera, to obtain an idea about possible

deblurring methods and to develop an objective performance criteria in motiondeblurring by

using the motion blur effect on the performance of well known image feature detectors while

preparing this experimental scenario.

4.2 Evaluation Criteria

Investigating performance of harris corner, canny edge detector andsift, we need to measure

the detection capabilities and the robustness of the methods under motion blur. Intuitively, the

evaluation criteria compare the algorithms based on the following behaviors,

• detection rate of interested features on the specified pattern in motion blurredframes.

These are classified as ”detected” or ”missed”.

• ability of not generating any false (or spurious) features due to noise ormotion blur

related artifacts. These are classified as ”false alarm”.

• ability to align the features without any unexpected splitting features. These are classi-

fied as ”false split features”.
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According to these conditions, performance measures are obtained.

4.3 Experiments with Harris Corner Detector

The first video which was recorded while robot was standing still is used as a reference data.

The parameters of algorithm is set and tested according to this video. Later,the performance

of harris corner detector algorithm is investigated on other test video sequences respectively.

51 frames and 18 corners in each frame for all 5 video sequences are considered when tests

are applied. Firstly, a blur intensity and blur angle is obtained on the most upper-left corner

which is marked as the first corner by using equation (4.1) and equation (4.2) for each frame.

Let f be the number of frames andc be the number of corner in each frame.

∆xf ,c =

√

(

xr
f ,c − xe

f ,c

)2
(4.1)

φ f ,c = arctan















xr
f ,c

xe
f ,c















(4.2)

wherexr andxe denote the real coordinates of corner selected by hand on the frame andthe

estimated coordinates of corner calculated by harris corner detector algorithm on the frame,

respectively. Moreover, equation (4.1) is also used for calculating the error in each detected

corner. Fig. 4.5 shows average estimated accuracy errors in corner location of the each frame

for the test video sequences. In Fig. 4.5, the peak points which are shown above 15 correspond

to frames that are entirely missed in the sense of corner detection. This situation is manifested

more clearly in Table 4.2 which shows that total averages of each video.

Vseq 2 is the first and the slowest motion video sequence that we used in ourexperiments.

It was recorded while RHEx was in its walking mode with 0.1 velocity coefficient. In order

to see the performance of Harris Corner detector, we have analyzed missed corner rate, error

rate of the detected corners, possible false alarms and false splitting effect on this video.

Missed corners appeared in only five frames among 51 frames and only one frame among

these five is completely lost which means that none of 18 corners can be detected by algorithm.

These results are demonstrated in the Figure 4.6. It shows that corners could be missed only

if there is an intensive motion blur.
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Figure 4.5: Average estimated accuracy errors in corner location for test videos with four
test locomotion velocities. The peak points marked above 15 correspond to frames that are
entirely missed in the sense of corner detection.
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Figure 4.6: The number of missed corners in each frame of the first test video recorded while
RHex was walking with 0.1 velocity coefficient at its slowest walking mode.
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Table 4.2: Average errors of video sequences.

Eave Ṽ Number of
”all missed” Frames

Vseq 2 1.7897 0.1 1

Vseq 3 1.9835 0.4 1/51 · 100

Vseq 4 2.1216 0.8 14/51 · 100

Vseq 5 2.9331 1.0 30/51 · 100

Table 4.3: The average rates per corner for Vseq 2

Average Missed Corner rate 5.2000
Average Strabismus rate 4.5385
Average Cross-eyed corner rate14.2308

The false splitting effect which means that single feature point response can not be achieved

was seen in 13 frames among 51 frames in this video sequence. Due to this effect, algorithm

finds two or more corners around the true single corner. This effect is mostly seen at the

inner corners of pattern and is a good way to parametrize the effect of motion blur even if the

frames are not degraded intensively. These results are demonstrated inthe figure 4.7. Figure

4.7 shows the number of corners that are degraded by this effect in each frame.

In this video sequence, there is no false alarm which means a fake corneron the plate is

not observed. This was achieved due to the carefully fixed threshold value of the algorithm.

Besides, the texture of the image is not so complicated as to cause this kind of artificial

features.

Vseq 3 is the second motion video sequence that we used in our experiments.It was recorded

while RHex was in its walking mode with 0.4 velocity coefficient. In order to see the per-
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Figure 4.7: The false splitting effect in each frame of the first test video recorded while RHex
was walking with 0.1 velocity coefficient at its slowest walking mode.

Table 4.4: The average rates per corner for Vseq 3

Average Missed Corner rate 6.2500
Average Strabismus rate 4.6800
Average Cross-eyed corner rate14.3200

formance of Harris Corner detector, we have analyzed missed corner rate, error rate of the

detected corners, possible false alarms and false splitting effect on this video.

Missed corners appeared in only eight frames among 51 frames and only one frame among

this eight is completely lost which means that none of 18 corners can be detected by algorithm.

In one more frame among these eight, 16 corners could not be observed.Except for these two

frames, the average missed rate is 2.67 in the other six distorted frames. These results are

demonstrated in the Figure 4.8. It shows that corners could be missed only ifthere is an

intensive motion blur so this sequence was distorted moderately.

The false splitting effect which reveals that single feature point response can not be achieved

was seen in 25 frames among 51 frames of this video sequence. That meanshalf of this

sequence is degraded by false splitting effect. Due to this effect, algorithm finds two or more

corners around the true corner instead of one. This effect is mostly seen at the inner corners
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Figure 4.8: The number of missed corners in each frame of the second testvideo recorded
while RHex was walking with 0.4 velocity coefficient at its slow walking mode.

of pattern and is a good way to parametrize the effect of motion blur even if the frames is not

degraded intensively. These results are demonstrated in the Figure 4.9. Figure 4.9 shows the

number of corners that are degraded by this effect in each frame.

In this video sequence, there is no false alarm which means a fake corneron the plate is not

observed. This is because of the carefully fixed threshold value of the algorithm. And also

the texture of the image is not so complicated to cause this kind of artificial features.
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Figure 4.9: The false splitting effect in each frame of the second test video recorded while
RHex was walking with 0.4 velocity coefficient at its slow walking mode.
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Figure 4.10: The number of missed corners in each frame of the third test video recorded
while RHex was walking with 0.8 velocity coefficient at its fast walking mode.

Vseq 4 is the third motion video sequence that we used in our experiments. It was recorded

while RHex was in its walking mode with 0.8 velocity coefficient. In order to see the per-

formance of Harris Corner detector, we have analyzed missed corner rate, error rate of the

detected corners, possible false alarms and false splitting effect on this video.

Missed corners appeared in only 28 frames among 51 frames and 14 frames among this 28 are

completely lost which means that none of 18 corners can be detected by algorithm. Except for

these 14 frames, the average missed rate is 5.43 in the other distorted frames. These results

are demonstrated in the figure 4.10. It shows that these video sequence isdistorted intensively.

Table 4.5: The average rates per corner for Vseq 4

Average Missed Corner rate 11.7143
Average Strabismus rate 4.5556
Average Cross-eyed corner rate12.3333

The false splitting effect which means that single feature point response can not be achieved

was seen in 18 frames among 51 frames in this video sequence. Although the speed of the

robot in Vseq 4 is higher than Vseq 3, the false split corner rates are lower here. It is due to the
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Figure 4.11: The false splitting effect in each frame of the third test video recorded while
RHex was walking with 0.8 velocity coefficient at its fast walking mode.

high missed corner rate in Vseq 4. 14 frames are already lost completely andmissed corners

are seen 28 frames in total. These are two times higher than the missed corner rates in Vseq

3. This effect is mostly seen at the inner corners of pattern and a good way to parametrize

the effect of motion blur especially when the frames are not degraded intensively. These

results are demonstrated in the figure 4.11. Figure 4.11 shows the number ofcorners that are

degraded by this effect in each frame.

In this video sequence, there is no false alarm which means a fake corneron the plate is

not observed. This was achieved due to the carefully fixed threshold value of the algorithm.

Besides, the texture of the image is not so complicated as to cause this kind of artificial

features. .

As the last sequence, Vseq 5 is the fourth and the fastest motion video sequence that we used

in our experiments. It was recorded while RHex was in its walking mode with 1.0 velocity

coefficient. In order to see the performance of Harris Corner detector, we have analyzed

missed corner rate, error rate of the detected corners, possible false alarms and false splitting

effect on this video.

Missed corners appeared in only 46 frames among 51 frames and 30 frames among this 46 are

completely lost which means that none of 18 corners can be detected by algorithm. Except
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Figure 4.12: The number of missed corners in each frame of the fourth testvideo recorded
while RHex was walking with 1.0 velocity coefficient at its fastest walking mode.

Table 4.6: The average rates per corner for Vseq 5

Average Missed Corner rate 14.4348
Average Strabismus rate 3.6250
Average Cross-eyed corner rate14.4348

for these 30 frames, the average missed rate is 7.7500 in the other distorted frame. These

results are demonstrated in the Figure 4.12. It shows that these video sequence is distorted

completely.

The false splitting effect which means that single feature point response can not be achieved

was seen in 15 frames among 51 frames in this video sequence. Although the speed of the

robot in Vseq 5 is higher than Vseq 4 and Vseq 3, the strabismus rates are lower here. It is

again due to the high missed corner rate in Vseq 5. 30 frames are lost completely and missed

corners are seen in 46 frames in total which means that all sequence is almost lost in the sense

of feature detection. These are two and three times higher than the missed corner rates in

Vseq 4 and Vseq 3 respectively. These results are demonstrated in the figure 4.13. Figure

4.13 shows the number of corners that are degraded by this effect in each frame.
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Figure 4.13: The false splitting effect in each frame of the fourth test video recorded while
RHex was walking with 1.0 velocity coefficient at its fastest walking mode.

This effect is mostly seen at the inner corners of pattern. It gives good results while the

intensity of blur is not so high. However, it is a good way to parametrize the effect of motion

blur even if it is combined with missed corner rate. After threshold value of thealgorithm is

set in the first video, we haven’t faced false alarms which means that there are no fake corners

on irrelevant parts of the checkerboard plate during experiments. As in previous cases, this

was achieved due to the carefully fixed threshold value of the algorithm andon the condition

that the texture of the image is not so complicated as to cause this kind of artificialfeatures.
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4.4 Experiments with Canny Edge Detector

The first video which was recorded while robot was standing without movingis used as a

reference data. The parameters of algorithm is set and tested accordingto this first video.

And then, the performance of canny edge detector algorithm is investigatedon other 4 test

video sequences respectively.

51 frames and 24 edges in each frame for all 5 video sequences were taken into account for

tests. The performance of canny edge detector were evaluated in two parts. Firstly as a blur

metric and secondly as it was done for Harris corner detector.

Edges were separated into two groups: the edges lying along the x-axis and the edges lying

along the y-axis. The first part of the Canny algorithm contains calculatingimage derivatives

which is called gradient image. As the first step of our performance evaluation, the gradient

image was used with aim to observe the smoothing effect of blur on edges along x and y axes.

Therefore, the thickness of edge locations were used as a motion blur metricof frames. As

the second part of our performance evaluation, we have analyzed missed edge rate, possible

false alarms and false splitting effect on frames. The first motionless video is used to calculate

reference thickness of edges and to set the algorithm parameters.

The first video is motionless so it is used as reference video. The parameters of algorithm

such asσ, TH andTL were set on this video sequence. Image derivatives were taken and

the thickness of edges were calculated. One example frame and its derivative is shown in the

Figure 4.14(b) and 4.14(b)

Vseq 2 is the first and the slowest motion video sequence that we used in ourexperiments.

It was recorded while RHex was in its walking mode with 0.1 velocity coefficient. In order

to observe the smoothing effect of blur on edges and its effects on the performance of Canny

Corner detector, we have analyzed thickness of edges missed edge rate, possible false alarms

and false splitting effect on this video.

As the first part of our experiment, the calculated edge thicknesses alongx and y axes are

shown in the Figure 4.15. The green line shows the reference thickness calculated on the

motionless video sequence Vseq 1 and the red and green plots show average thickness of the

edges along x axis and y axis respectively. It is observed that the blur along x axis is more
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(a) One example frame of Vseq 1

(b) Derivative of this frame

Figure 4.14: One example frame and its derivative
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Figure 4.15: The average of edge thickness. Average thickness of edges along x axis is shown
in red and average thickness of edges along y axis is shown in blue. The green shows the
reference.

intensive than the blur along y axis for this video sequence Vseq 2.

Missed edges appeared in 2 frames among 51 frames and its average rate per frame is 3 in the

2 distorted frames. These results are demonstrated in the Figure 4.16. It shows that blur is not

intensive in this sequence.

False edges due to noise in motion blurred frames appeared in only 6 frames among 51 frames

and its average rate per frame is 1.33. These results are demonstrated in the Figure 4.17.

The false splitting effect which means that single edge response can not be achieved was seen

in only 3 frames among 51 frames in this video sequence. It is an expected result because

robot’s velocity was really slow. Only at 5th and 51st frames, all the edgesalong x axis

entirely degraded by this effect. These results are demonstrated in the Figure 4.18.

Vseq 3 is the second motion video sequence that we used in our experiments.It was recorded

while SensoRHex was in its walking mode with 0.4 velocity coefficient. In order to observe

the smoothing effect of blur on edges and its effects on the performance of Canny Corner

detector, we have analyzed thickness of edges missed edge rate, possible false alarms and
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Figure 4.16: The number of missed edges in each frame of the second test video recorded
while RHex was walking with 0.1 velocity coefficient at its slowest walking mode.
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Figure 4.17: The number of False edges in each frame of the second test video recorded while
SensoRHex was walking with 0.1 velocity coefficient at its slowest walking mode.
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Figure 4.18: The number of edges on which false splitting effect is seen in each frame of the
second test video recorded while SensoRHex was walking with 0.1 velocity coefficient at its
slowest walking mode.

false splitting effect on this video.

As the first part of our experiment, the calculated edge thicknesses alongx and y axes are

shown in the Figure 4.19. The green line shows the reference thickness calculated on the

motionless video sequence Vseq 2 and the red and green plots show average thickness of the

edges along x axis and y axis respectively. It is observed that this videosequence contains

moderate blur on both axis.

Missed edges appeared in 2 frames among 51 frames and its average rate per frame is 1.5 in

the 2 distorted frames. These results are demonstrated in the Figure 4.20. Itshows that there

is not so intensive blur that may cause canny to fail in this sequence.

False edges due to noise in motion blurred frames appeared in only 10 framesamong 51

frames and its average rate per frame is 1.9. These results are demonstrated in the Figure

4.20. We should consider on the missed edge rate and false rate edge together. Missed edge

rate does not increase so fast because threshold values set more reluctantly but it causes false

alarms.

The false splitting effect which means that single edge response can not be achieved were
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Figure 4.19: The average of edge thickness. Red line shows average thickness of edges along
x axis and blue line shows average thickness of edges a long y axis. The green line shows the
reference.
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Figure 4.20: The number of missed edges in each frame of the second test video recorded
while RHex was walking with 0.1 velocity coefficient.
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Figure 4.21: The number of False edges in each frame of the second test video recorded while
RHex was walking with 0.4 velocity coefficient.

seen in only 7 frames among 51 frames in this video sequence. Its average is5.71 an expected

result because robot’s velocity was really low. Almost all the edges along xaxis degraded by

this effect only at two frames. These results are demonstrated in the Figure 4.22.

Vseq 4 is the third motion video sequence that we used in our experiments. It was recorded

while SensoRHex was in its walking mode with 0.8 velocity coefficient. In order to observe

the smoothing effect of blur on edges and its effects on the performance of Canny Corner

detector, we have analyzed thickness of edges missed edge rate, possible false alarms and

false splitting effect on this video.

As the first part of our experiment, the calculated edge thicknesses alongx and y axes are

shown in the Figure 4.23. The green line shows the reference thickness calculated on the

motionless video sequence Vseq 2 and the red and green plots show average thickness of the

edges along x axis and y axis respectively. It is observed that this videosequence contains

intensive blur on both axis. Especially the blur between 20 and 35th frames degrades the

edges x-axis intensively.

Missed edges appeared in 15 frames among 51 frames and its average rateper frame is 4 in

the 15 distorted frames. Moreover there are two frames in which half of the features are lost.
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Figure 4.22: The number of edges on which false splitting effect is seen in each frame of the
second test video recorded while SensoRHex was walking with 0.4 velocity coefficient at its
walking mode.
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Figure 4.23: The average of edge thickness. Red shows average thickness of edges along x
axis and blue shows average thickness of edges a long x axis. The green shows the reference.
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Figure 4.24: The number of missed edges in each frame of the second test video recorded
while RHex was walking with 0.8 velocity coefficient.

These results are demonstrated in the Figure 4.24. It shows that there is intensive blur that

may cause canny fails in this sequence.

False edges due to noise in motion blurred frames appeared in 25 frames among 51 frames

which means half of the sequence and its average rate per frame is 2. These results are

demonstrated in the Figure 4.25. That shows that this degradation is very common in video

sequence.

The false splitting effect which means that single edge response can not be achieved was seen

in only 19 frames among 51 frames in this video sequence. Its average is 3.47. Almost half

of the sequences degraded by this and it is more intensive at two frames. These results are

demonstrated in the Figure 4.26.
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Figure 4.25: The number of False edges in each frame of the third test videorecorded while
RHex was walking with 0.8 velocity coefficient.
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Figure 4.26: The number of edges on which false splitting effect is seen in each frame of the
second test video recorded while SensoRHex was walking with 0.8 velocity coefficient at its
fast walking mode.
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Figure 4.27: The average of edge thickness for the test video which hasthe highest velocity.
Red line shows average thickness of edges a long x axis and blue line shows average thickness
of edges a long y axis. Green line is the reference thickness if there is no motion

Vseq 5 is the last and the fastest motion video sequence that we used in our experiments.

It was recorded while SesnoRHex was in its walking mode with 1.0 velocity coefficient. In

order to observe the smoothing effect of blur on edges and its effects on the performance of

Canny Corner detector, we have analyzed thickness of edges missed edge rate, possible false

alarms and false splitting effect on this video.

İn the first part of our experiment, the calculated edge thicknesses alongx and y axes, as

shown in the Figure 4.27. The green line shows the reference thickness calculated on the

motionless video sequence Vseq 5 and the red and green plots show average thickness of the

edges along x axis and y axis respectively. It is observed that this videosequence contains

intensive blur on both axis. Both of the axises are distorted by motion blur intensively.

Missed edges appeared in 36 frames among 51 frames and its average rateper frame is 6.97

in the 36 distorted frames. Moreover, there are 6 frames in which all edgesare nearly lost.

These results are demonstrated in the Figure 4.28. It shows that this sequence is completely

distorted.

False edges due to noise in motion blurred frames appeared in only 41 framesamong 51
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Figure 4.28: The number of missed edges in each frame of the second test video recorded
while RHex was walking with 1.0 velocity coefficient.

frames and its average rate per frame is 2.82. These results are demonstrated in the Figure

4.29. These findings show that Canny edge detector can not work properly at all under this

high amount of blur.

The false splitting effect which means that single edge response can not be achieved were seen

in only 30 frames among 51 frames in this video sequence. Its average is 34.26. Moreover the

average of false split edges is 9 and almost half of the sequences degraded by this although

missed edges rates are so high too. These results are demonstrated in the Figure 4.30 which

shows the number of edges that are degraded by this effect in each frame.

These figures show that this sequence recorded at the highest speedof walking mode of our

experimental robotic platform SensoRHex is completely lost in the sense of edge detection.
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Figure 4.29: The number of False edges in each frame of the second test video recorded while
RHex was walking with 1.0 velocity coefficient.
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Figure 4.30: The number of edges on which false splitting effect is seen in each frame of the
second test video recorded while SensoRHex was walking with 1.0 velocity coefficient at its
fastest walking mode.
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Figure 4.31: The number of SIFT matches for each frame without motion blur.

4.5 Experiments with SIFT

In this section, SIFT performance analyze in the context of matching is performed on the

motion blurred frames. Although there are some works [43] which considerthe effect of

focus blur, there is not specific work which consider the effect of motion blur.

As we use for other feature detectors in the sections in Section 4.3 and Section 4.4, we use

the same real test video sequences with four test locomotion velocities for sift performance

analyze. The video sequence which is recorded without motion is used to show how algorithm

works with sharp frames. The number of correct matches for each frameof test video without

motion is demonstrated in the Figure 4.31.

The rate of false matches for each frame due to the noise is also calculated asa performance

measure for SIFT algorithm. Then it is normalized by dividing it with the number of matches

in this frame. The percentage of normalized false matches’ rate is shown in theFigure 4.32.

As it is expected, the percentage of miss matches is really so low on the sharp frames.

The first and the slowest motion video is recorded with the 0.1 velocity coefficient of our

experimental robotic platform and in its walking mode. The number of correctmatches for
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Figure 4.32: The percentage of SIFT normalized false matches for each frame without motion
blur.

each frame of test video without motion is demonstrated in the Figure 4.33. As wecan see

from the figure 4.33, there is a significant difference with the values obtained with sharp

frames although the velocity is low and degradation of motion blur is only visible in some

individual frames.

The rate of false matches for each frame due to motion blur is also calculated and there is a

sudden and unexpected increase in the percentage of the false matches ifthe low test velocity

is considered. The percentage of normalized false matches’ rate is shownin the Figure 4.34.

Moreover the percentage of false match rate is above 50%. It is becausethis match contains

two intensively blurred consecutive frames as it is shown in figure 4.35. Although the velocity

of the robot is low, the reason of this intensive blur is assumed that the camera catch the exact

moment when the front leg hit the ground. Due to the flexible c-shape legs, these moments

when the leg thouch the ground or leaving the ground creates extra shocks and disturbance on

the robot’s platform.

The second motion video with 0.4 velocity coefficient of our experimental robotic platform

is used for the same analysis. The number of correct matches continues to decrease as the

velocity of the robotic platform increases. The difference of correct matches rate between the
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Figure 4.33: The number of SIFT matches for each frame of the test video with 0.1 test
locomotion velocity.
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Figure 4.34: The percentage of SIFT false matches for each frame of thetest video with 0.1
test locomotion velocity.
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Figure 4.35: The 25th match in the video sequence with 0.1 test locomotion velocity. The
percentage of SIFT false matches for these frames is 56.52 which is unexpectedly higher than
the average of sequence.

frames with 0.1 velocity and frames with 0.4 velocity is not as big as the difference between

frames without motion and frames with 0.1 velocity but still there is a meaningful decrease.

The results are shown in the Figure 4.36.

If the percentage of false sift matches is considered, it can be seen in theFigure 4.37. The

first half of the video sequence is degraded by motion blur more than the second half. Al-

though motion blur effects many frames, there are still well-conditioned frames in the sense

of feature detection between heavily blurred consecutive frames. This gives chance to develop

interpolation/smoothing approaches where the feature computation for the corrupted frame is

corrected by means of considering surrounding frames instead of applying more complex

deblurring algorithms.

Vseq4 is the video sequence recorded while our experimental robotic platform is in the fast

walking mode. Figure 4.38 demonstrates the correct match rate and figure 4.39 demonstrates

the percentage of missed matches. As it is seen from the figures, there areeven four com-

pletely missed frames in the sense of SIFT matches. Especially after the first half of the

sequence, we can say that all frames are heavily corrupted by motion blur. Therefore, it is not

so feasible to consider interpolation methods especially for the second half of the sequence.

Figure 4.40 is given as an example of one type of completely missed frames in thissequence.

In this case, both frames are heavily blurred and it is impossible to make any match. The

other type of completely missed frames is one frame heavily blurred and following frame is

relatively better but sift algorithm fails as in figure 4.41.
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Figure 4.36: The number of SIFT matches for each frame of the test video with 0.4 test
locomotion velocity.
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Figure 4.37: The percentage of SIFT false matches for each frame of thetest video with 0.4
test locomotion velocity.
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Figure 4.38: The number of SIFT matches for each frame of the test video with 0.8 test
locomotion velocity.
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Figure 4.39: The percentage of SIFT false matches for each frame of thetest video with 0.8
test locomotion velocity.
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Figure 4.40: Example to the first type of completely missed match in this sequence with 0.8
velocity. Both of the frames are heavily blurred.

Figure 4.41: Example to the second type of completely missed match in this sequence with
0.8 velocity. Both of the frames are heavily blurred.
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Figure 4.42: The number of SIFT matches for each frame of the test video with 1.0 test
locomotion velocity.

Vseq5 which is recorded while our experimental robotic platform is walking at its fastest

mode. Figure 4.42 and figure 4.43 show that this sequence is all heavily blurred and SIFT can

not give relevant and robust result except of 10 frames among 51 frames.
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Figure 4.43: The percentage of SIFT false matches for each frame of thetest video with 1.0
test locomotion velocity.
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Figure 4.44: Sensitivity analysis of Harris corner detector based on threshold for the most
blurred frame of the first test video recorded while our experimental robotic platform RHex
was walking with 0.1 velocity coefficient at its slowest walking mode.

4.6 Input Parameters Analysis of Feature Detectors

We tried to fix the parameters manually based on obtaining minimum number of fake de-

tections in our experimental tests. Limited number of frames used in the tests and limited

number of parameters in selected algorithms allowed us to have done this withoutusing extra

optimization methods.

In this section, one form of sensitivity analysis of feature detectors is given for each fea-

ture detector algorithm. The first algorithm used in our experimental tests wasHarris corner

detector. Variance of Gaussian as smoothing function and a threshold value were the input pa-

rameters chosen by the user. Due to the fact that we were dealing with motion blurred frames,

we chose the variance parameter of smoothing function minimum. And then the changes in

threshold parameter left as an effect on the performance of the algorithm.

The performance of Harris corner detector is given in a determined threshold interval as

[500,1600]. To be able to show this, one among the most blurred frames and one among

the most sharpest frames were chosen in each video sequence. Figures 4.44 and 4.45 show

the performance of algorithm on the first test video while threshold values are changing in the

given interval.
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Figure 4.45: Sensitivity analysis of Harris corner detector based on threshold for one of the
sharpest frame of the first test video recorded while our experimental robotic platform RHex
was walking with 0.1 velocity coefficient at its slowest walking mode.

Figures 4.46 and 4.47 show the performance of algorithm on the first test video while thresh-

old values are changing in the given interval.

Figure 4.48 shows the performance of algorithm on the first test video whilethreshold values

are changing in the given interval. For this sequence, the highly blurred frames are completely

lost on the sense of corner detection. Even at small threshold values, algorithm can not find

more than 2-3 correct corners among 18 corners. Therefore, only one moderately blurred

frame is used for this analysis.

Although the number of the missed corners are less at small threshold values, this causes high

number of false split corners at the sharp and degraded by moderate blur frames. Therefore,

we prefer high threshold values during our experimental tests with Harris corner detector.

This analysis is also done for Canny Edge Detector. Again, variance of smoothing function is

set to be the minimum value because we are working with motion blurred frames. Different

than Harris corner detector, canny uses two threshold values which aregiven as high and low.

This test is done between the intervals such as for the low threshold [0.01 : 0.1] and for the

high threshold value [0.1 : 1.0].

The results for the first video are given in the figures 4.49 and 4.50.

Figures 4.51 and 4.52 show how the performance of the algorithm changeson the second test

video sequence.
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Figure 4.46: Sensitivity analysis of Harris corner detector based on threshold for the most
blurred frame of the test video recorded while our experimental robotic platform RHex was
walking with 0.4 velocity coefficient at its slowest walking mode.
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Figure 4.47: Sensitivity analysis of Harris corner detector based on threshold for one of the
sharpest frame of the test video recorded while our experimental roboticplatform RHex was
walking with 0.1 velocity coefficient at its slowest walking mode.
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Figure 4.48: Sensitivity analysis of Harris corner detector based on threshold for one of the
blurred frame of the test video recorded while our experimental robotic platform RHex was
walking with 0.1 velocity coefficient at its slowest walking mode.
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Figure 4.49: Sensitivity analysis of Canny edge detector based on threshold for the most
blurred frame of the first test video recorded while our experimental robotic platform RHex
was walking with 0.1 velocity coefficient at its slowest walking mode.
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Figure 4.50: Sensitivity analysis of Canny edge detector based on threshold for one of the
sharpest frame of the first test video recorded while our experimental robotic platform RHex
was walking with 0.1 velocity coefficient at its slowest walking mode.
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Figure 4.51: Sensitivity analysis of Canny edge detector based on threshold for the most
blurred frame of the test video recorded while our experimental robotic platform RHex was
walking with 0.4 velocity coefficient at its slowest walking mode.
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Figure 4.52: Sensitivity analysis of Canny edge detector based on threshold for one of the
sharpest frame of the test video recorded while our experimental roboticplatform RHex was
walking with 0.1 velocity coefficient at its slowest walking mode.

For the other two videos which were recorded at higher velocities of our robotic experimental

platform, the most blurred frames do not give us any information for this analysis. Giving

small threshold values increases fake detection and does not show any improvement to find

any correct edges. Therefore, only moderately blurred frames in these video sequences are

used for this test. Figure 4.53 shows the results of one of the sharp frame which is so rare in

the fastest sequence.

The figures show that finding the optimal threshold value value for our experiments are mostly

obvious especially if the most important criteria is to obtain small number of fake features.

Low threshold values increases the detected corner even in the some of highly blurred frames

but it cases many fake corner in other moderately blurred or less blurredframes. In fact

having no feature in the highly blurred frames and having less correct features but without

fakes is more valuable for our evaluation and blur estimation idea. In our case, we prefer

high threshold values with this reason. The code of Lowe is implemented with his given

optimum parameters for SIFT therefore we haven’t made any extra sensitivity analysis for

this algorithm.
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Figure 4.53: Sensitivity analysis of Canny edge detector based on threshold for one of the
sharpest frame of the test video recorded while our experimental roboticplatform RHex was
walking with 1.0 velocity coefficient at its slowest walking mode.

4.7 Discussions on Experimental Results

Systematic experimental characterization of motion blur effect on well-known and popular

feature detectors such as Harris corner detector, Canny edge detector and SIFT was per-

formed. The severity of motion blur investigated in 4 videos by changing the speed parameters

of our experimental robotic platform. To be able to classify the results, new degradation types

were proposed on frames.

The results related with Harris Corner Detector were categorized under two groups. The re-

sults were obtained while experimental robotic platform were walking in slow speeds such as

0.14 m/sec and 0.16 m/sec and the results were obtained while experimental robotic platform

were walking in fast walking speeds such as 0.25 m/sec and 0.40 m/sec.

In the first case, the main reason of the highly degraded image featured is due to vibrations

and shocks. These vibrations caused by the leg locomotion of our experimental hexapod robot

and the shocks occurred if the legs of robot touches the ground duringexposure time of the

camera. We analyzed only two seconds of the video due the limitations of our short running

path and limited field of view of the camera and these kind of highly damaged frameswere

observed one or two times among this 2 second video part. The most valuable degradation

type among the proposed one is the number of missed corners. After some amount of motion

80



blur, we could not observe false split corners because we almost lost the texture of the target

plain. The number of false split corners gives us information if the frame is degraded by

moderate motion blur. This effect mostly appeared in the inner corners of the checkerboard

plate. In fact, it was firstly seen at inner corners and then at outer corners proportional to the

amount of blur. The other reason of motion blur based on the speed of robot is so limited in

these video sequences because of the slow walking of our experimental robotic platform.

In the second case, most of the frames are highly degraded by motion blur.Due to fact that our

experimental platform walked in high speeds, the observed movements especially in roll and

pitch angle is high. And when this movements combined with shocks explained above, this

resulted in more common and more severe corner feature degradation in the frames. Missed

corners and false split corners observed almost all the frames in these two video sequences.

Therefore, the combination of the number of missed corners and false splitcorners gave us

information about the amount of the motion blur. False alarms never observedon the results

of Harris corner detector. This was mostly related with the texture of the target plain and the

chosen threshold value of the algorithm.

The results related with Canny edge detector were also investigated as it wasdone for Harris

corner detector. In addition to these, the first part of the Canny edge detector that gave the

derivatives of the image along x and y axes used for estimation of the amountof motion blur.

These estimation results were relevant with the results that were obtained from the number of

missed edges and the number of false split edges. Especially, if edge thicknesses in a frame

are high in both directions, then this frame had also high number of missed and false split

edges.

The results related with SIFT were categorized with different performance measure. The

matching rate between the frames in our 4 different video sequences was investigated and

the performance measure defined on this criteria. The number of correctmatches and the

percentage of false matches were calculated for each frame. Although thisalgorithm claims

that it is robust to the motion blur, there is a sudden change between motionlessand motion

video sequences. Especially if there is intense motion blur, it completely failed tomatch the

features on the target plain.
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CHAPTER 5

CONCLUSIONS

In this thesis, we performed systematic experimental characterization of motionblur effect

on well-known and popular feature detectors. The aim was to analyze the effect of motion

blur for the purposes of perception and to plan which methods would be necessary to achieve

robustness against motion blur. Our aim was to develop a technique which is robust under the

legged motion and the resulting visual disturbances. Therefore, experimental performance

evaluation of Harris corner detector, Canny edge detector and SIFT in the existence of real

motion blur was presented here.

We first presented a survey of existing models of motion blur and approaches to motion de-

blurring and reviewed recent literature on motion blur and deblurring in Chapter 2. We fo-

cused our attention on motion blur induced degradation of a number of popular feature detec-

tors. In Chapter 3 we presented the necessary background for Harris corner detector, Canny

edge detector and SIFT, and an overview of the effects of motion blur on these feature detec-

tors. The results of the study supported that motion blur is clearly an undesirable phenomenon

in computer vision not only because it degrades the quality of images but alsocauses other

feature extraction procedures to degrade or fail.

The performance degradation of these feature detectors due to motion blurwere categorized

to analyze the effect of legged locomotion on feature performance for perception in Chapter 4.

In our tests, we used 5 real video sequences which were captured by the vision system of a

mobile legged robot platform. We have put a target pattern in the field of view of the robot

camera and focused on the features of this pattern in our experiments. These analyses results

were classified under proposed degradation types such as missed or detected features, false

alarm, false split features, correct match rate and percentage of false matches. All these find-

82



ings were obtained as a first step towards the stabilization and restoration ofvideo sequences

captured by our experimental legged robotic platform and towards the development of motion

blur robust vision system.

The performance of feature detectors were almost always degraded by motion blur. Moreover,

the experiments showed that there are two types of motion blur effect on our video sequences

which depend on the velocity of robot platform. The first effect is seen at low velocities

such as 0.1 and 0.4. Motion blur in these video sequences effected only a small number

of consecutive frames, or even a singular frame which were/was surrounded by relatively

sharp frames in the sense of feature detection and image quality. Accordingto us, these

degraded frames which appear unexpectedly in the sequence, happened due to the shocks and

stretching effect of c-shape legs when they touch the ground. The second effect was seen at

high velocities such as 0.8 and 1.0. This time motion blur affected more than a small number

of frames. These video sequences contained big number of corrupted frames, or almost all

frames in the sequences were corrupted. This had two reasons: the shocks and stretching

effect of c-shape legs increased while their turning periods increased andthe relative motion

between the scene and the camera increased while robot platform started moving faster.

Finally, we considered the performance of selected well-known feature detectors under mo-

tion blur effect due to legged locomotion. Our future work is planned on achieving motion

blur robust feature detectors especially for the video sequences in which the first type of mo-

tion blur effect is seen. As for the second type of motion blur effect, we are planning to

continue our studies on improving inverse filtering method based on accuratemotion estimate

which can be obtained by the help of inertial measurement unit.

5.1 Future Work

The thesis work is part of our long term objective of working with visual sensor data on legged

robots where serious platform motion effect the quality of the captured video frames. Motion

Blur is one of the most important degradations that have an effect on the performance of sub-

sequent perception algorithms. As a follow up to the present work where we have attempted

to carefully characterize the effects of motion blur on some important feature extraction algo-

rithms, we need to continue our investigation in a number of directions where wewill attempt
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to compensate for motion blur.

Firstly, based on the observation that motion blur sometimes heavily effect only a small num-

ber of consecutive frames, or even a singular frame, we will attempt to develop interpola-

tion/smoothing approaches where the feature computation for the corrupted frame is corrected

by means of considering surrounding frames.

For cases where more than a small number of frames are corrupted or cases where the high

quality frame images themselves are required for the robot user, we will consider motion

blur correction techniques for individual frames or frame sequences as surveyed in the survey

section of the thesis. These approaches are mostly based on inverse filtering techniques where

an accurate estimation of the motion is very important.

In fact, there may be two fundamental different approaches to blur compensation depending

on the application requirements. For the case images are only required for the subsequent

features, the first approach may directly compensate/correct the features themselves rather

than deblurring the source image. Feature interpolation just discussed belongs to this cate-

gory. A second approach for application where the video frames are themselves required (e.g.

operator surveillance ), deblurring or inverse filtering of frames shouldbe followed by better

feature extraction.

Although the motion can often be estimated to some degree from the individual frame itself

or the sequence of frames, we have plans to consider the use of an Inertial sensor such as an

Inertial Measurement Unit (IMU) to estimate the corrupting motion. This is a sensor readily

available on most robotic platforms and is able to measure accelerations along the three body

axes and turn rates around them. Hence, the sensor is very powerful for accurately measuring

motion leading to the motion blur. We hope an accurate estimation of the motion will giveus

a better chance of constructing successful inverse filters.

We are aware that motion blur is a non-invertible corruption when a single frame is considered.

However, there are approaches in the literature that we have outlined in Chapter 2 that can

consider multiple frames with certain properties in order to recover an individual frame with

much higher success. We hope to integrate these approaches into our robotic application

to achieve a much more robust vision sub-system in the presence of leggedmotion and the

resulting visual disturbances.
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APPENDIX A

FRAMES OF THE TEST VIDEO SEQUENCES
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Figure A.1: 1025 to 1042 frames of the test video recorded while our experimental robotic
platform RHex was walking with 0.1 velocity coefficient.
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Figure A.2: 1043 to 1060 frames of the test video recorded while our experimental robotic
platform RHex was walking with 0.1 velocity coefficient.
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Figure A.3: 1061 to 1075 frames of the test video recorded while our experimental robotic
platform RHex was walking with 0.4 velocity coefficient.
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Figure A.4: 1425 to 1442 frames of the test video recorded while our experimental robotic
platform RHex was walking with 0.4 velocity coefficient.
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Figure A.5: 1443 to 1460 frames of the test video recorded while our experimental robotic
platform RHex was walking with 0.4 velocity coefficient.
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Figure A.6: 1461 to 1475 frames of the test video recorded while our experimental robotic
platform RHex was walking with 0.4 velocity coefficient.
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Figure A.7: 725 to 742 frames of the test video recorded while our experimental robotic
platform RHex was walking with 0.8 velocity coefficient.
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Figure A.8: 743 to 760 frames of the test video recorded while our experimental robotic
platform RHex was walking with 0.8 velocity coefficient.
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Figure A.9: 761 to 775 frames of the test video recorded while our experimental robotic
platform RHex was walking with 0.8 velocity coefficient.

99



Figure A.10: 440 to 457 frames of the test video recorded while our experimental robotic
platform RHex was walking with 1.0 velocity coefficient.
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Figure A.11: 458 to 475 frames of the test video recorded while our experimental robotic
platform RHex was walking with 1.0 velocity coefficient.
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Figure A.12: 476 to 490 frames of the test video recorded while our experimental robotic
platform RHex was walking with 1.0 velocity coefficient.
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