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ABSTRACT

CAMERA MOTION BLUR AND ITS EFFECT ON FEATURE DETECTORS

Uzer, Ferit
M.S., Department of Electrical and Electronics Engineering

Supervisor : Asst. Prof. Dr. Als Saranl

September 2010, 90 pages

Perception, hence the usage of visual sensors is indispensable in mubigiE@NOMous
robotics. Visual sensors such as cameras, rigidly mounted on a raimoé fare the most
common usage scenario. In this case, the motion of the camera due to the matien of
moving platform as well as the resulting shocks or vibrations causes a nafdhstortions
on video frame sequences. Two most important ones are the framevte-ffaanges of the
line-of-sight (LOS) and the presence of motion blur in individual franfése latter of these
two, namely motion blur plays a particularly dominant role in determining the padoce of
many vision algorithms used in mobile robotics. It is caused by the relative magtwebn
the vision sensor and the scene during the exposure time of the frame. Mhtids clearly
an undesirable phenomenon in computer vision not only because it ésdgtag quality of
images but also causes other feature extraction procedures to degfaileAlthough there
are many studies on feature based tracking, navigation, object recogalgiorithms in the
computer vision and robotics literature, there is no comprehensive wotkeodtects of

motion blur on dfferent image features and their extraction.
In this thesis, a survey of existing models of motion blur and approaches tomuaiaurring
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is presented. We review recent literature on motion blur and deblurringvaniicus our
attention on motion blur induced degradation of a number of popular featteetdes. We
investigate and characterize this degradation using video sequendeseddpy the vision
system of a mobile legged robot platform. Harris Corner detector, Cadgg Hetector and
Scale Invariant Feature Transform (SIFT) are chosen as the pdpatare detectors that are
most commonly used for mobile robotics applications. The performancediggra of these
feature detectors due to motion blur are categorized to analyzé&é#ut @ legged locomotion
on feature performance for perception. These analysis results tamex as a first step
towards the stabilization and restoration of video sequences capturedr lexmerimental

legged robotic platform and towards the development of motion blur rolgistivsystem.

Keywords: motion blur, motion blur modelsdentification, feature detectors, Harris Corner,

Canny Edge, sift, matching.



Oz

KAMERA HAREKET BULANIKLI GI VE OZNITELIK VEKT ORLERINE ETKILERI

Uzer, Ferit
Y iiksek Lisans, Elektrik ve Elektronik vhendislgi Bolumii

Tez Yoneticisi : Yard. Dog. Dr. Afar Saranli

Eylul 2010, 90 sayfa

Algilama bu sebepled@untileme sendrlerinin kullanimi mobil ve otonom robotlar da kac
nilmazdir. Robotizerine monte edilmikamera gibi gruntileme sendrleri cok kullanilan
uygulamalardir. Bu durumda hareketli platformun harekinden ve aynizdanalusin ok ve
titreamlerden kaynaklanan kamera hareketi video kardledrinde estli bozulmalara yol
aanaktadir. Bunlardan eénemli ikisi videoda bir kareden @eér kareye gesrken ki @rus
alaninda ki dgisiklikler ve video karelerinin her birinde olas hareket bulanikiidir. Bu
ikiliden hareket bulanikfi olarak adlandirilan etki mobil robotlarda kullanilaérignti al-
goritmalarinin performans gerlendirmesinde daha baskin #eel bir rol oynar. Bu etki
goruntll sendru ve sahne arasindakdgintileme $iresince gerkleen gorece hareket se-
bebiyle olusnaktadir. Hareket bulanikji hem @riintl kalitesini disirmesi hem de @untl
Ozelliklerini belirleyen yordamlarin basisiz olmasina sebep olmasi dolayisiyla bilgisayarla
gorme alaninda istenmeyen bir fenomendir. Robotik ve bilgisayéarimg literatirindeozel-
lik temelli takip, yer yon belirleme, nesne tanimlama algoritmalari ile ilgili pelk calisma
olmasina rgmen, hareket bulaniginin grintll 6zellikleri ve onlarin belirlenmedizerin-

deki etkisitizerine kapsamli biraligma bulunmamaktadir.
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Bu tezde, var olan hareket bulantimodelleri ve bu sorunu giderme yakilasari izerine de-
tayl bir inceleme yapilmts. Hareket bulanikgi ve bulanikigi gidermelizerine son yillarda
yapilan @hgmalari inceleyip video karelerind&znitelik vekbrleri ckarimi tizerinde bula-
niklik sebepli oluan negatif etkilefizerine odaklandik. Bu negatif etki mobil bacakl robot
platformutizerinde bulunan@untileme sistemi tarafindan kaydedileargnt serileri kul-
lanilarak incelenip karakterize edilntiis Harris kdse algilayicisi, Canny kenar algilayicisi ve
yerel dggismezoznitelikleri bulan SIFT mobil robotik uygulamalarinda sik kullanilan iplep
Oznitelik algilayicilari olarak sdémistir. Bu 0znitelik algilayicilarinin performanslarindaki
negatif etki bacakli hareketibznitelik algilayicilarinin algilama aandan performanslari
uzerindeki etkisini analiz etmekiit kategorize edilmir. Bu analiz sonulari deneysel ba-
cakli robot platformu tarafindan kaydedilen video serilerinin sabit haiglgeesi ve yenilen-
mesi yoniundeki ve de hareket bulani§ina kars girbliz bir goriintileme sistemi geltgil-

mesi yonundeki ilk adim olarak grilmektedir.

Anahtar Kelimeler: hareket bulaj hareket bulaijn modelleri/ tanimlamadznitelik vekbr-
leri, Harris Kose 0znitelik vekoru algilayicisi, Canny Kenabznitelik vekdru algilayicisi,

sift, ededirme.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Motion blur is the result of the relative motion between the camera and the sgen¢he
period of exposure determined by the mechanical or electronic shutted.spean image,
projection of any point in the scene moving with respect to the camera will beairt curve
on the sensor rather than a point. Thus it will look "blurred” along the tdwaf relative
motion. In other words, this blurring may appear on the image of a moving odnjext the
image of a static scene where the camera has moved during capture. Tha afmootion
blur increases as either the exposure time or the speed of the relative metioeeh the
camera and the scene increases, and it becomes more apparent atdsghgions since

more pixels areféected.

Motion Blur can be used for aesthetic purposes in photography suart amphasizing the
dynamic nature of a scene. For example, using motion Hfieceis the common way of
showing a sense of speed in sports photography especially in motor. sipdrds also been
used in computer graphics to create more realistic images because appeadnaotion blur
is a strong perceptual cue for the illusion of object motion [46], [31]],[6&L], [10], [37],
[57]. Moreover, it looks natural in a film or a television image sequencaure the human
eye behaves in much the same way. Several representations and modatstitm blur
in human and machine vision have been proposed [1], [23], [27]. [4&tion blur can
also be used to extract motion information or other structure information fraiwidual
images and hence can be used for perception. For example, motion bhedrassed in the

literature to obtain motion and scene 3D structure information [59], [58], [3@], [18], [16],



c)

Figure 1.1: The ffect of motion blur. Sharp image taken by using tripod is shown at a),
horizontal motion blurred image is shown at b), vertical motion blurred imagwoissin c)
and rotational motion blurred image is shown at d).

[14]. Despite its usefulness to human viewers, motion blur is an extensivesidisigprtion

and undesiredfiect in a large number of other applications. In photography, a perfectly
fixed camera and a static scene is necessary to capture the sharpestetaitet image so
motion blur is considered to be affect that can significantly degrade image quality. Fig. 1.1
demonstrates real examples of images that are blurred by simple lineantakied vertical
motions. In practice, it is much more complicated and every single image is likely to be

uniquely blurred because of the large space of possible motion paths.3

Motion blur degrades and distorts the video frames as well. A video is alesgyected to
be of high-quality so that people feel comfortable when they use it andw@myision algo-
rithms work well on it but the motion blur will spoil this byffecting severely the perception
of the frame sequence content. A motion deblurring step is necessary ppliedao video
in many applications such as surveillance [28], [12], and the visualitrg@pplications [29],
[30], [27]. In a surveillance system, motion blur deteriorates tiiecéveness of object ex-
traction and identification and complicates the task of event detection. Also icaeeof
visual tracking, rapid camera motions cause image features to move largedssta a sin-

gle frame. Indeed such distortions may cause the failure of many featuaetén algorithms
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such as edge detection [11], corner detection [25] and scale-inv&&tnre transform (sift)
[38], [39], which are used in visual tracking applications. Althougheffeature detectors are
widely used in many robot vision algorithm and well known in literature, thermispecific

work which analyzes their performance under motion bitect.

Perception therefore usage of sensors is indispensable in mobile ambraoigs robotics.
Vision sensor rigidly mounted on a robot is one of the most common scenariogaofithe
sensors used in robotics. In this case, motion of camera due to the movirggmplashocks
or vibrations causes several distortions on video frame sequencist,lthe oscillation of
the line-of-sight (LOS) and the motion blur in frames are these distortiondwihicommon

when the visual sensor is mounted on a moving platform such as a mobile robot.

If the motion of the robot is smooth,then the corresponding video sequeaceded by the
camera will be smooth too. However, it is almost impossible to obtain smooth motien esp
cially in outdoor and legged robotics due to irregularities of the terrain, olestin the way

of the robot, friction in the moving parts, vibration induced by motors and Iédisthese
undesired conditions in the robot motion propagate to the camera, makingnleeacautput
very hard for humans to view and to operate or for a robot vision algorithprocess. For
this problem, image stabilization defined as the process of removing sceahatioscand

making the video sequence less shaky is necessary.

The second distortingkect called as motion blur in each frame is the result of relative motion
between the camera and the scene during the exposure time. This relative smogiars the
frames and so makes the perception of details more hard as it is discussegardgraphs
above. The velocity of the robot (imaging platform) and the exposure timeaftimera fiect

the intense and severity of motion blur. Thus, even the smooth componerg aidtion
results in motion blur in frames which isftérent than the reasons of LO8ext although
large vibration amplitude and high frequency increase bfitfces. For this distortionfiect,
motion deblurring can be used as a front-end system in a variety of ridon\algorithms or

simply as a visualization tool.

The relative &ects of these two types of degradations on the ability of human observers to
recognize targets are investigated in the work of Adrian Stern [2]. Tédtref this study
clarifies that motion blur has the main reason for perception degradationdaskeof severe

vibrations. Another work on humanoid robot [47] shows that the clalsf@ature detectors



and descriptors do not work well in presence of motion blur although treegraved to work
well for wheeled robot. Therefore, motion blur should be considereddailurring of the
frames should be emphasized when designing dynamic imaging system ibgpeoia case

on RHex.

In our research, thefflect of motion blur on well-known feature detectors such as Harris cor-
ner and Canny edge detectors are investigated on the video sequemrcisastep through
the stabilization and restoration of video sequences captured by RHexrpiaff he perfor-
mance of these detectors are evaluated by running our imaging platform iRtdéferent
velocities. Such an analysis is critical for good experimental practice withithef obtain-

ing knowledge about how legged locomotion of our robot propagatesnereeand about the
degradations on perception of important features in frames. Sinceddmtsed algorithms is

used in many robot vision algorithms such as visual tracking, navigation etc.

RHex is a robotic platform that consists of a rigid body with six compliant ¢ stidegs,
each possessing one independent actuator. It is designed to hdvigeeixpeneral mobility
over general terrain approaching the complexity and diversity of thealdandscape. In
such a platform, it is impossible to minimize shocks and vibrations by properrddsig
to its priorities on mechanically simple and autonomous design criteria. Theskssaiod
vibrations due to leg locomotion makes the camera output very jittery and blhaeid very
hard for human operator and causes robot vision tasks to fail beoatiszadverseféect of

motion blur.

1.2 Methodology and Outline of the Thesis

Our method is based on experimental characterization of motion blur on thepomsar and
well known feature detectors such as Harris Corner detector, Calygydetector and SIFT.
We investigate and characterize the degradation due to motion blur usingsadeences
captured by the vision system of a mobile legged robot platform. Although mnadoy vision
algorithms in literature are based on these feature detectors, there isaiftcsperk which

analyzes their performance under motion bifie€t.

The performance degradation of these well known feature detectertoduotion blur are

systematically categorized to analyze tffieet of legged locomotion on feature performance
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for perception. These analysis results are obtained as a first stegl$avarstabilization and

restoration of video sequences captured by our experimental leggeticrplatform.

This thesis consist of 5 chapters. We start with the introduction to the motionphkey
nomenon and necessary background in Chapter 2. Later in Sectiond2Seation 2.2, blur
models and blur identification methods are classified. Then, the most popatiarefeletec-
tors used in robot vision applications such as Harris Corner, Canng Bdtgctor and Scale
Invariant Feature Detector are given in Chapter 3. The reason wbkg feature detectors
are selected is explained in Section 3.1. The performance degradati@seffdature detec-
tors due to motion blur are categorized to analyze tfeceof legged locomotion on feature

performance for perception. These categories are discussed inrS2étio

In Chapter 4 a comprehensive evaluation of feature detectors undemniduiois given in
Chapter 2. Firstly, experimental scenario is explained and then evaluatieneacis given.
These analysis results are presented for each feature detectocliovidao sequence. The
conclusions and future work are given in Chapter 5. All of the algorithmsutfhout the

thesis are implemented on MATLAB.



CHAPTER 2

LITERATURE REVIEW ON MOTION BLUR, BLUR MODELS
AND BLUR IDENTIFICATION

As we briefly discussed motion blur is an important problem in computer visidrerer
fore, motion deblurring is an inevitable step to increase the success of ifgutar vision
algorithms especially in mobile robotics where the camera is generally exposgtetsive

motion.

Motion deblurring can be defined as the deconvolution with a global Poima8dfunction
(PSF) for images distorted by linear motion or as the deconvolution with a spatailing
PSF for images distorted by more complex motion paths. Moreover, it cavioedlin two
parts: motion estimation and deconvolution. The first part deals with the cpaltendentify
the path the camera has followed during the image capture process. Dhe pact uses this
information to reverse the convolution during the image formation processl@ér tw restore

the sharp picture.

Although our focus is on robot vision, the literature is divided in photolgyagnd video

capture;

Blind deconvolution can be called as traditional deblurring methods in the literaiinese
methods obtain an estimate PSF and try to deconvolve the blurred image withtimatted
PSF at the same time. Richardson-Lucy [50], [40] and Wiener decaimol[62] are the
notable examples of traditional deblurring. Deblurring images and speetfand the well-
known image processing book named as digital image processing [22@mmprehensive

literature survey on these traditional methods.

The main deficiency of these traditional methods is ringiffgat in the deblurred images.



Several studies focus on reducing ringing artifacts. Such as totativarigegularization
is used with Richardson-Lucy algorithm [45] and another example is tlaalient sparsity
constraints are added to Richardson-Lucy algorithm [34] for the samefamulti scale non-
blind deconvolution method is another example work [67] to improve the reswaéhlyrred

images.

The main dfficulty of this problem comes from PSF estimation or deconvolution step. There-
fore, there are also some interesting works which try to make these stégs &séng sup-
plementary data besides vision data and constraining the deblurring predatély become
popular in the literature. Using natural image statistic [19] as a constrainicondelution
problem can be counted as one of the leading example to these methods alpbmgnask

of the blurred region is another interesting idea to make PSF estimation step[28kién-

other leading and the most interesting idea for our work proposed byaRashl. [48] first.
Changing the shutter time of a consumer camera according to a predetermihedriain

idea of their work. By doing this, it is aimed to obtain better PSF for deblurrioggss.

There are other methods which use more than one image to get better resudteimdtbf
deconvolution step. Bascle et al. Using blurred video input and obtaingirggée unblurred
high-resolution image [5] is the first example of this idea in the literature. Tdreralso many
recent works based on this idea of making the PSF estimation easier. Lexdimgles are
processing one noisy and one blurred image [66] and working on im&gesdin horizontal
and vertical directions [49]. Extension of [49] is to deblur without oriiaglity condition
[13]. A recent version of the work of Bascle [5ffers to deblur a video sequence by using
high-resolution photographs [8]. However this fails if the scenes arstatic. Using a fast
low-resolution camera with a high-resolution and slow camera is proposBetEzra and
Nayar [6], [7]. The main idea of using the extra camera is to obtain accBfeestimation
and to use it for deblurring high-resolution video sequence. One éateofthis work for an
other aim is to put one low-resolution and one high-resolution video carparaliel to each
other and run them in ffierent frame rates [36]. The most related work with ours is the work
by Agrawal et al. [3] proposed "PSF null-filling”. In this work, smoothFSare obtained
by changing the exposure time according to predetermined sequence ideitergcording

procedure is going on.

A global PSF assumption which is not valid for spatially-varying motion blur ictmamon



feature of the methods mentioned above. Recently, there are also woidis ddal with
spatially-varying case. Such as single image based method make use of tatagieswith
a stable background assumption [33]. Another idea [4] is to divide an im&msmall regions
which can be assumed to have same PSF or another version of this idea fd5fork on
a pair of blurry images and is to do the local PSFs estimation step and dedmvahep at
the same time. For moving object case, the usage of supplementary cameransirsithe
work of Ben-Ezra and Nayar [7]. Although these methods deal with dlyati@rying case
[33], [4], [15], [7], they still work on spatially-invariant local PSFsasnption. Without this
assumption space-variant blur is considered in the work [53] whichsfoouwnly rotational
movement of camera. In contrast to this work, space-variant blur isdemesl for a camera
moving without rotation in the work by [55]. Unfortunately, the motion trajectesgd in this

work is far from the real trajectory of a handheld camera.

In addition to all these remarkable studies, there are interesting works wigisho get rid of
motion blur by the fusion of visual and inertial measurements especially in anigcheeality
literature [64], [65] although their main aim is not to get motion deblurred imag&smes.
The most recent and interesting work for our case is proposed by KidiDeummond [29].
They used rotational measurements from rate gyroscopes not onlyidgtbe visual sensor

with a pose prediction, but also to modify the operation of the sensor'satgetion.

2.1 Motion Blur Models

First, we need a mathematical model that relates the given blurred image tokihewm
"ideal” image in order to deblur an image. An "ideal” image can be considesezha that
captures a moment in time instantaneously and therefore with no motion blur.veloutes

not possible in practice. The exposure time defines a temporal box filtehwaicses blur if
there is relative motion between camera and scene due to the fact that tHilsdoaestroys

important high frequency spatial details.

It is well known that homogeneous blurring which means that blurring is éctiyxthe same
way at every spatial location of image can be defined by convolution in thgakspomain

2.1, 2.2 or by a product operation in the frequency domain 2.3;
z:u*h[x,y]:fu(x—s,y—t)h(s,t)dsdt (2.2)
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for discrete case;

N-

._\
Z
|—\

u(i —kj-Dh(kI) (2.2)
k=0 |

Il
o

Z = U (wq, W) .H (wg, W) (2.3)

whereu is an ideal imageh is called the convolution kernel or point-spread function (PSF)
andzis the blurred image. The PSF is an energy density function that descrédasmtiunt

of time light from a single point in the scene exposes each (x,y) pixel positidme image

detector.

This spatially invariant PSR which models homogeneous blurring should satisfy these;

e The physics of the underlying image formation prodess
o If the image is real-valued, thdmnis also real-valued.

e The PSH must satisfy the following energy conservation constraint:

:IZIZh(x,y)dxdyz 1 (2.4)

M-

and in discrete case:

Z
|_\
H

h(i, j) dxdy= 1, (2.5)
j=0

I
o

The simple model can only be used under the homogeneity condition. If theléngth of
camera is short or camera rotates significantly about the optical axis, théntémsity of
blur changes in the image. In other words, it becomes a complex functiceptii @f scene
and relative motion between camera and scene [55]. Therefore, spemvalfiant PSF is not
suficient to model the complex blur caused by leg locomotion. More general lopesation

is necessary to define this spatially varying blur.

z:u;h[x,y]:fu(x—ay—t)h(x—s,y—t;s,t)dsdt (2.6)

whereu is an ideal imageh is PSF and is the blurred image again. Note that equation(2.1)
is the special case of equation(2.6) in the sendedifes not change with image coordinates

x and y. Therefore equation(2.6) can be called as space-variaviilatan. If also noise is
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u(xy) > h(xy)
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Figure 2.1: The model of motion blur diagram

considered, then complete models of motion blurring is illustrated on figure 2canlbe

formulated as in 2.7, 2.8.

z=uxh[xy]+n(xy). (2.7

z=uxh[x,y] + n(xy). (2.8)

n(x,y)modeled as an additive term is the noise. Generally, white noise with zero mesadis

It is statistically formulated as in [56];

N-1M-1

ENeey)]~ > > nlllo) =0 (2.9a)

1 b2
o2 ifli=1,=0

no TR (2.9b)
0 otherwise

R (I1,12) = {
Motion blur is basically the result of the relative motion between the imaging sansiathe
scene over the period of exposure determined by the shutter speedfdragit changes due
to the type of motion. This can be in the form of a translation, a rotation, a suclthnge
of scale, or some combinations of all these and it is quite hard to constructexsal model
that covers all of these blur processes. In fact, it is already categoaizcording to the type
of relative motion between camera and scene. In the following the most comntamritur

models in the literature will be given.
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2.1.1 1D Linear Motion Blur Model

When there is a steady motion between a planar scene perpendicular tti¢hksogis and the
camera in a plane parallel to the scene over the period of expostyg,faurd , the resulting

psf is a space invariant 1-D rectangular impulse in the direction of motion;

-~

if -t <x<Landy=0
h(xy) = z 2 y (2.10)
0 otherwise

where the intensity of the PSF= Vielativelexposure When this relative motion makes an angle

with the horizontal axis of the scene over the period of exposure;

if VX2+y2<L and§ = —tang

otherwise

(2.11)

O re

wa={

If ¢ is assumed 0, then the discrete version of equation 2.11 can be obtaimexiizapely;

i if ng =0,y < [%J
hi. )= t{L-n-2[S) if =0l =[] (2.12)
0 otherwise

2.1.2 Rotational Blur model

When there is a rotational motion between a scene and the camera oveiiddeopexposure
T = [0, texposurd, rotation motion blurred images are recorded. Unfortunately, homogeneo
blurring assumption is not valid here because blurring paths of rotation ntiored image
are circular arcs and the blurring extents are varied with the radius mefbine, rotational

movements caused to spattially-variant blur on images.

Rotation motion blurred image can be formulated as in the work of Wang Wentyaig[61];

T
z:%fo u(x—xg(t),yo(t)dt (2.13)

wherexg (t) = rcos(wt), yo(t) = rsin(wt), r = x2+y2 andw is the angular velocity
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of rotation. If image plane is represented in polar coordinate system, titetioromotion

blurred image can be formulated as in equation 2.14;

T
z(r,t9):_|—1_fO u(r, 0 — wt)dt. (2.14)

where(r, 6) is the polar coordinate of image point. Let's change the parameters of aguatio

2.14ad =r6s=rwt, N, = roT and sufifix r;
1
z () = —f u (I - 9)ds (2.15)
Nr Jo

The discrete version of equation 2.15;

zr(i):Nir[ur(i)+ur(i—1)+...+ur(i—Nr+1)]. (2.16)

wherei = 1,2,..., M, andM;, is the period of pixels sequences in the blurring circular arc.

Then PSF in discrete form can be written as

_ & ifl<i<N
hy (i) = ' (2.17)
0 ifN <i<M

Then if equation 2.16 is revisited for simplification;

Nr
z (i) = Z ur (M) he (M) = ur (i) = he (i) (2.18)
m=0

whereh; (i) is PSF which blurs the image rotationally; = rwT is the blur intensity and
0 = wT shows angle of blurring during the exposure time T. There is a correladtwelen
blur intensity N, and radius r, therefore, the blurring intensity can be identified separately
with different radius. The intensity of blur can be obtained by calculating the bijle aoe
to the fact thav is constant when r is changing. After all, the PSF is obtained when the blur

intensity is identified.

As it is mentioned above, the intensity of blur changes with radius r. Thexgfas important

to find the center of rotation and then to obtain the pixels along circular bluaricg; For

12



example, center of the blur is taken as the center of image in the work of Wangiig et al.
[61] and then the idea of Bresenham'’s circle generation algorithm is usdatdim the pixels

on the circular arcs.

Another example is the work of Georg Klein and Tom Drummond [30], it is agasumed
that there is no translation and camera rotates with constant angular velmmityeacenter of
rotation. It has two steps that determine the axis of rotation and then the intefisity. All
points in the image are blurred rotationally on circular arcs which have comemercand
there is no blur function at the perpendicular direction towards the cehbduroing circles.
Therefore, edges of image that arise radially from center on the bluarcgyare degraded
by blur, while edges lays tangentially from center on the arcs are pezbkeln the first step
this observation is taken into account so edge detector is used to find tiee oEhlurring
circles which is the most perpendicular to all remaining edges of the blurregeinrst the
second step, blur intensity is calculated with a sign ambiguity in blur magnitudeirny tire
observation that the blur length cannot exceed the length of the shotwsity ramp if the
first step gives the center of the blur correctly and the samples aredretaken along the

direction of blur.

2.1.3 Radial Blur model

Radial blur sometimes referred to as a zoom blur is a type of spatially-vamiatibon blur
which occurs while a visual sensor is moving rapidly towards an object@fast during the
acquisition process. In this type of blurring the apparent motionfisréint at each point in
the object. In other words, there is an increasing blur while moving outwanrd the center
of the image. Figure 2.2 demonstrates the model of the blur and how blur saneatisected
along radial lines. While camera is coming closer to the object, camera’s fielevofriangle
is getting smaller however there is no change on the size of the object as diisa sim the
left side of the Figure 2.2. If the exposure time of camera is significant catipely to the
relative velocity and distance between camera and object of interest, tnénadge will be
radially blurred due to the time-dependent scaling factor of the object indimei@ image
plane. Aerial photography and video-based missile systems can besgiexample situation

where this problem may occur.
There are only few works on radial blurred images in the literature [6])];The mathematical
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Figure 2.2: The model of Radial blur is given atand how radial lines smears from blur
center is given db.

model proposed by Webster and Reeves [60] which is based on tnawasion of a spatially-
invariant blur into a spatially-variant system on a new coordinate systeiveB gere as the

model of radial blur 2.19;

]
2(9) = fo s (r (6, 1)) it (2.19)

The blur turns out to be one dimensional for any gigetherefore the equation 2.19 is given
with a subscript). Whereu, is the sharp imagez is the radially blurred image, r is the
object-plane radial coordinatéjs the angular coordinate in both the object plane and sensor
plane which shows the angle of of every positios 1$ taken to be the viewing angle related
with a particular pixel in the sensor which has similar function in the sensoe piéth r in

the object plane and t represents the time.

r = xtan(¢), %( = —V. (2.20)

where x is the horizontal spatial coordinate which also shows the dist@taedn camera
and object of the interest and v is the camera speed. By applying a chimgeables on

equation 2.19
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X0
2@ = [ wixtan(@)dx (221)

X0~V

Here, it is aimed to obtain spatially invariant blur model which can be called asvaltition
model. The limits of integration is will be changed with logarithmic terms and integraihd w

contain an exponential term due to achieve this aim.

c =log(x) + log(tan(¢)), €° = xtan(¢). (2.22)

By differentiating equation (2.22)

dz= -dx= p dx
(2.23)
— C
= fan(@)© 4°
If equations (2.22), (2.23) are combined with the equation (2.21);
02+
z@= [  m©de (2.24)
p1ta

where

my (C) €Uy (€°), pi =log(di), « = log(tan(¢))

d = X -VT, d2=Xo

For simplification it can be written as multiplying the integrand by a pulse function;

% () fo [6(c— (p1+ )6 (C— (o2 + a))] my (6) dc

(2.25)

[6(c—a—-p1)d(C—a-p2)]*my(a)
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Blur operation of the work by Webster [60] can be explained in discreta fuy explaining
their radial sampling method. Radial sampling can be divided into two stepdlyHirges
of pixels from the center of image to the boundary of image are determined wihtan
angle diference consecutively. As a second step, samples are taken by argidarmethod
which has an increasing sampling density from inner parts to outer parts géioraeach

line and each radial line of points corresponds a column to build a radiaédlimage.

2.2 Motion Blur Identification

If the PSF of the motion blur is not given a priori in image deblurring prodbssfirst step is
to model the motion blur. Once motion blur is modeled, the parameters of motion blel mod
must be obtained. This step is called as motion blur identification. If the blur nsdebsen
as linear uniform motion blur, then the blur identification is to estimate the length @&nd th
direction of the motion, for example. Therefore, motion blur identification isiaiaf step for
deblurring algorithms. There has been many methods proposed for motraddaitification
in the image processing community. These methods can be discussed in 8 gsaipgle

image based, multiple images based and external measurements based methods.

2.2.1 Based on single image features

If the relative motion between the camera and the scene is known exactlySkhed? be
calculated analytically. However, extra sensors are necessary to@athie Estimating the
blur by using the captured image itself is still the most common scenario in literétinoegh

itis really a hard problem.

By using single image without any extra knowledge on the motion is called as &inagde
blind deconvolution and it is the most ill-posed hardest type among motion delelilnods
due to the fact that there are more unknowns than knowns. In spite of &eiitl-posed prob-
lem, it has been studied well in the literature. In fact, it is very common probfgracéally
in digital photography due to the camera shake and low lighting conditions whicse long
exposure time in consumer cameras. To overcome theudiies of this problem, limited mo-
tion types are chosen to constrain the problem or statistical methods arasuarduxiliary

knowledge.
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In traditional methods PSF is generally modeled as a low pass filter causaddryrumotion
and these methods fail for intensive blurred image case. However, ttkeofvBergus et al.
[19] showed that his method can work under intensively and complex Bhat is why it
is one of the most successful work done with a single image. It depentisediact that
natural scene images have certain distributions of image gradients. Giteehefavy-tailed
distributions in the gradients of natural images are used while unblurred mmadaur kernel

are estimated. But even in this work some manual inputs are necessary.

Recent work of Shan et al. [52] model motion blur as maximum a posterigkRMproblem.
It tries to estimate the parameters of PSF by iterative optimization which may ewén sta
from a rough initial kernel estimate. This method has three main contributionsisiBg a
new image noise model, the errors caused by image noise estimation andcatrsesl by
blur kernel estimation is separated. While the parameters of PSF is beingdreimew
smoothness constraint is used to suppress ringing artifacts. Finally, tatopally hard

steps of optimization algorithm is moved to be done in the frequency domain.

Another motion blur identification method from a single image is proposed by tiség
motion blur constraint model, [17]. This method depends on digital matting [8¢isrocess

of extracting a foreground object from an image along with an opacity estfioragach pixel
covered by the object. It is derived from the assumption that there is a looeetraint
between the image derivatives of thechannel, the motion blur parameters, and a simple
binary free parameter (i.et+,1 or -1). Thereforeg-channel of the image is considered instead

of working on blurred image.

These methods are mostly used for motion blur in digital photography betaergeis no
chance to capture multiple images or use external sensors in small highicescameras. In
robotic applications, multiple images based methods and usage of exters@issare more
common. Similarly, we also concentrate on video sequences captured byparmental

robotic platform.

2.2.2 Based on multiple images

As it is mentioned in the Section 2.2.1, blind deconvolution approaches sheulddal if

the relative motion between camera and the scene is not given. One methmuketavith
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this significantly challenging problem is to use multiple images. Moreover, morplex
motion models than it can be considered in the methods based on single imagearahare
considered in the methods based on multiple images by using extra informatiorgdoomn

additional images.

An early example of this idea is proposed by Bascle et al. [5] which takdgreetd image
sequence as input and gives a single unblurred high-resolution imamgepag. In Bascle’s
work, it is assumed that the motion is stable and does not change frame toAfhachemeans
that direction of the motion blur is the same in all frames. Therefore, identificafimotion
blur can be done by motion analysis of frame sequence such as motion bhirodiris the
common estimated motion direction and the blur intensity is proportional to the common

estimated motion magnitude.

However, motion blur direction can befiirent from one frame to other frame in reality
especially in robotic applications. Rav-Acha and Peleg [49] work on twardaduimages
which have dfferent blur direction (perpendicular to each other). A Gaussian pyraimichw
goes from the smoothed and sub-sampled images to the high-resolution imagesl i®

estimate the blur parameters for each images.

Another interesting work among the multiple image based methods is proposekiobgt C
al. [15] to deal with spatially variant motion blur. Sequential frames from awid used
for deblurring and first, each frame is segmented into small regions in whitlormzan be
assumed as uniform. Then PSFs’ identifaction for each region is doneebgyeminimization

approach.

The most interesting work for our research is the work by Agrawal [@ktv can be counted
among the multiple image based methods, although it also has control on themexpos

of the camera. Instead of recording the video with a constant exposurestip@sure time is
being changed frame to frame according to determined exposure time seqUdrs gives
frames blurred in the same direction but iffelient magnitudes which is called invertible
PSFs because the zeros of PSFs in frequency domain are eliminated bgiogrother PSFs
from frame sequence recorded ifffdrent exposure times. This exposure time sequence is
repeated while recording the video and the frames which has same exfiosiare matched

to identify the motion blur parameters.
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Using multiple images or video sequences supply us more information about raatioih
may even turn the ill-posed problem into a well-posed problem. Even if it is apfdielD
motion, there is even an approach among the multiple image based algorithms gtbape
non-invertible corruption by obtaining invertible PSFs [3]. We are plantinignprove this
approach for more complex motion cases and then to integrate this appraaoliiimobotic
application to achieve a much more robust vision sub-system in the presfdagged motion

and the resulting visual disturbances.

2.2.3 Based on external measurements

As it is mentioned at the beginning of Section 2.2.1, the restoration problem evithloch
easier if the motion is known as a priori knowledge. That is why, there ar&smvhich
try to use inertial sensors for accurate motion knowledge. Inertial ssnsb as an Inertial
Measurement Unit (IMU) is robust to even sudden and large motionsamdark at higher
frequencies than usual cameras. The weak part of these senseracstimulative error dur-
ing integration time. Therefore they are not capable of identification anldiriely without

image data.

The work of Klein and Drummond uses gyroscope and camera data togetherease the
performance of their parametric edge detection algorithm. Although their aimadbtéon
better tracking performance, motion parameters as a motion matrix is estimatethgy us
combined gyroscope and camera data. Moreover, the improvement ingbelekction step

of the algorithm that they achieved by using motion estimation is one of the motiyagioh

for us to analyze feature detectors under motion blur.

19



CHAPTER 3

IMAGE FEATURE DETECTORS FOR ROBOTIC
APPLICATIONS

3.1 Importance of Feature Detectors For Robotic Applicatims

A local feature is an image pattern whiclfdis from its immediate neighborhood. It is usu-
ally associated with a change of an image property or several propeniekaseously, al-
though it is not necessarily localized exactly on this change. The imagentiegpcommonly
considered are intensity, color, and texture. Local features canibtspbut also edgels or
small image patches. Typically, some measurements are taken from a regieredeon a

local feature and converted into descriptors.

The descriptors can then be used for various applications in computen & robotics.
In object recognition, it is important to find a mapping between model and imagether
example can be given as navigation algorithms in mobile robotics. Most re&d-envi-
ronments provide salient features which are useful for navigation amdbe extracted from
vision data. It turns out that features with a simple geometry are a goodecasithey are

relatively easy to obtain and of frequent occurrence in man-made anvinats.

Mobility requires the knowledge of one’s own position in the environment.tUfedased
algorithms gain have important role for localizing a robot precisely andstbbparticularly
when continuously updating the robot’s pose during motion in real-time. Mobéigyires
further a map of the environment in which one is supposed to navigate.cExgdeatures
from sensory data is crucial that the robot can start to build a map ofvéopsty unknown

environment autonomously.
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3.2 Harris Corner Detector

The basic idea of the corner detection is to find points where two edges me#ter words,
it aims to find high gradient in two directions. And one of the most popularesadetec-
tor algorithm is Harris corner detector because it is reasonably invadaatation, diferent
sampling and quantization, small changes of scale and sfiifiak dransformations, illumi-
nation variation and image noise [51]. It is used in many computer vision apphisasuch
as matching, finding correspondence, tracking and so on. Therdfoeederivation of the

Harris corner detector [25] is presented in this part of the report.

The Harris corner detector is based on the local auto-correlation funotia signal. The
local auto-correlation function captures the structure of the local nertlolod by measuring
the changes of the signal with patches shifted by a small amount in all direcfiodiscrete

predecessor of the Harris detector was proposed by Moravec [44].

The auto-correlation function can be written as;

cOuy) = Y 1106y — 1 (i + Axyi + Ay)[? (3.1)
W

where | denotes the image functiom;,Y;) are the points in the window W centered on (x,y)

and a shiftdx,Ay).

If the shifted function is approximated by the first-order Taylor expansion

L+ i+ AY) = 106 1)+ 1 06, Y0 Ax+ Iy 06, 1) Ay = 106, )+ 1 (06, 1) Ty (6, 0 |

AX
Ay
(3.2)

wherely, |y are partial derivatives of I(x,y).
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If we substitute approximation equation (3.2) into equation (3.1),

cOuy) = DI =106+ AXYi + AY)]° (3.3)
" 2
AX
= D106 = 1063 = [1x 06 yi) Ty (% ) U (3.4)
W Ay
2
A
- Z —[Ix(Xi,yi)Iy(Xi,Yi)] XU (3.5)
W Ay
2
AX
= [0y ly () D (3.6)
w Ay
v ))2 N\ N\
= [AxaY] 2w (x (%, %)) ZW(IX(XbM)ly(XlZ’M)) AX (3.7)
S (1 06, 30 Ty 06, 1)) Zw (ly 06, 1)) Ay
= [AxAY]Q(x.Y) (3.8)
Ay

where matrix Q(x,y) captures the intensity structure of the local neighbdthBigenvalues

of matrix Q(X, y) gives us a measure such as;
¢ Ifthe local auto-correlation function is flat which shows that both eigesegaare small,
then the windowed image region is of approximately constant intensity.

¢ If the local auto-correlation function is ridge shaped which shows thatk tiseone

strong eigenvalue , then this indicates an edge.
e If the local auto-correlation function is sharply peaked which showdaitbidt eigenval-

ues are strong, then this indicates a corner.

In this report, the Harris corner code by Peter Kovesi [32] is utilized asHarris Corner
code. The flow of the algorithm can be visualized in Fig. 3.1. For each frdraealgorithm

is run and the 18 corner positions on the image are found.

3.3 Canny Edge Detector

Edges in images are areas with strong intensity contrasts from one pixel texthavhich

shows that outlines of an object and boundaries between objects andckgrdund in the
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Figure 3.1: Flowchart of Harris corner detector algorithm
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image. Edge detection is a fundamental tool used in most image processiicg@mys as a

preprocessing step to feature extraction and object segmentation.

The Canny algorithm is one of the most commonly used image processing tetdstidg
edges in a very robust manner and using an optimal detector which is badedling as
many real edges in the image as possible by minimizing the error rate, markieg &siglose
as possible to the edge in the real image to maximize localization, and markingadges

once without false edges created by image noise.

Canny’s work is based on expressing the preceding criterias mathematicdlihen find
optimal solutions to these formulations. Using numerical optimization with 1-D stgesed
corrupted by additive white Gaussian noise led to the conclusion that aaggwdximation

to the optimal step edge detector is the first derivative of a Gaussian:

X RV
%(ezn - U—’z‘em (3.9)

1-D approach works by applying in the direction of the edge normal. Hewvéhe direction of
the normal is not known beforehand in 2-D. Therefore, 1-D edgecttgtehould be applied
in all possible directions while it is being generalized to 2-D. Smoothing the imaipe w
a circular 2-D Gaussian function, computing the gradient of the resulttzrd using the

gradient magnitude and direction is a good approximation for this.

Let I"(x, y) denote the nth frame of input video a@dx, y) denote the Gaussian function;

2+y2
G(xy) = e‘gET) (3.10)

Smoothed imagé] (x, y) is obtained by convolving G and;

I (%Y) = G(xy) 1" (xy) (3.11)

This step is followed by computing the gradient magnitude and direction;

n
gxz%zln(x+l,y)—ln(x,y) (3.12)
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gy=i=l”(x,y+1)—l”(x,y) (3.13)

M(XY) = /02 + 07 (3.14)

and
a(xy) = arctar{%} (3.15)
Oy

M (x,y) contains wide ridges around local maxima because it is generated by usiggath
dient. Therefore the next step is using nonmaxima suppression to thin ttigss.rlt can be

formulated as;

¢ Find the direction of all possible edge directidnthat is closest ta (X, y) in the given
region.
¢ If the value ofM(x, y) is less than at least one of its neighbors aldnghengy (X, y) =

0 which means that it is suppressed othervgis€x, y) = M (X, ).

After obtaining nonmaxima-suppressed imageXx, y), the final step is to thresholgh (x, y)
to reduce false edge points. Canny’s algorithm uses hysteresis tlieghwhich contains
two thresholds such as upper threshdjgdand a lower threshold,. Thresholding step can

be formulated as

OnH (X Y) =N (X Y) = T (3.16)

and

ane (X y) =on(Xy) 2 TL (3.17)

Due to the fact thagy. contains all the nonzero pixelg 4, it should be eliminated,;

anL (X Y) = One (X, Y) = ONH (X, Y) (3.18)
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The nonzero pixels igny (X, Y) andgny (X, y) are called as strong and weak edges, respec-

tively. After the thresholding step, all strong pixelsdry (%, y) are marked as valid edge

pixels. Depending on the value of upper threshbld the edges Ny (X, y) typically have

gaps. Longer edges are formed using the following procedure:

. Locate the next unvisited edge pixel, pgipy (X, Y).

. Mark as valid edge pixels all the weak pixelggip. (%, y) that are connected to p using

8-connectivity.

If all nonzero pixels ingny (X, y) have been visited go to Step 4. Else return to first

step.

Set to zero all pixels ignL (X, y) that were not marked as valid edge pixels.

In this report, the Canny edge code by Peter Kovesi [32] is utilized asdahaydCorner code.

The flow of the algorithm can be visualized in Fig. 3.2. For each frame, traitim is

run and the edges on the checkerboard plate are trying to obtain.In supim&snny edge

detection algorithm works in a multi-stage process;

3.4

Smoothing the image and eliminating the noise by convolving with a Gaussian filter.

Finding the gradient magnitude and orientation using finiteedknce approximations

for the partial derivatives.

Applying non-maximal suppression to the gradient magnitude for finding taé hoax-

ima in the direction of the gradient.

Using hysteresis thresholding algorithm which has some adaptivity to thedoctdnt

of the image to detect and link edges.

SIFT: Scale Invariant Feature Transform

In general a good local feature should have these key properties;

e It should be easy to extract.
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It should be easy to match.

It should be robust to image noise.

It should be robust to illumination changes.

It should be robust to minor changes in viewpoint.

It should be independent from rotation and scaling.

Scale Invariant Feature Transform (SIFT) developed by David LiB&Fis a powerful image
feature detection and extraction method which claims to satisfy most of thgserfies such
as independence from scale and rotation as well as being robdshdistortions viewpoint
changes, noise and illumination changes. Besides, being highly distin6tiv&'s features
can be correctly matched against a large database of features. In fvibese favorable
properties, SIFT has gained huge popularity in many areas, such asmgegnition, stereo
matching, 3D structure estimation and motion tracking. Therefore, it is also artamp

approach for robot vision applications.

SIFT algorithm takes gray-scale input images and the main steps of detect®IF T feature;

¢ Interest points candidates are found by scale-space extrema detection

e Location, scale and contrast is calculated for each candidate keypaihtsnstable

keypoints are discarded.

e Orientation assignment for each keypoint location are done by calculatakgmadient

directions.

o Keypoint descriptors are constructed by using the local gradientadeach keypoint

at the selected scale.

First of all,local extrema of dierence-of-Gaussian filters affidirent scales are the interest
points for SIFT algorithm. Therefore, candidate keypoints which ardestdminst scale

change are to be detected by searching among all possible scales.
Variable scale Gaussian function given in equation 3.19 is used as saakelsgnel.
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G(xY,0) = 1/ (2102) e (¥, (3.19)

By using equation 3.19, the scale space of an imput inh&gey) can be obtained as;

L(XY,0) =G(XY,o)=1(xYy). (3.20)

Difference-of-Gaussian function which is théelience between two images at sckieand

o is used for detection of keypoints locations and it is given by

D (xy,0) (G Y, ko) =G (X, y,0) = (X,y) (3.22)

L(x,y, ko) - L(Xy,0) (3.22)

Difference of Gaussian (DoG) images from adjacent images are genesaledfiast step of
SIFT algorithm towards the detection of interest points. Thkeince of Gaussian function
is chosen because it ishieient function to compute and it provides an approximation to the
scale-normalized Laplacian of Gaussiafiv°’G which gives the most stable scale invariant

image features. Figure 3.3 shows the computation of tfierdnce-of-Gaussian function.

As it is seen in figure 3.3, the input image is convolved by Gaussians anddle space
images are obtained. These scale space images are grouped by ottevesale of each
image in each octaveftiers from the scale of previous image by a constant factor k. After the
value of k is choosen, a fixed number of s intervals per octave is obtaiifedrelationship

between k and s is given as;

k = 2Ys, (3.23)

Therefore, the last image in each octave has twice the scale of the first ahegeh octave.

s+3 images are created for each octave to be able to find local-extrema traaaghplete
octave. As it is shown in the right side of figure 3.3, th&atience-of-Gaussian images are
obtained by taking the ffierence of adjacent blurred image in each octave. The firstimage of

the following octave is obtained by downsampling by 2 the last image of the pievictave.

29



Scale
[next
octave)

Scale
ifirst
octave)

Difference of
Gaussian Gaussian (DOG)

Figure 3.3: Figure shows that the scale space images which are obtaicedvmjving the
input image by Gaussians withffirent scale factors and the computation of tHéedénce-
of-Gaussian images [39].
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Figure 3.4: Each pixel marked with "x” with its 26 neighbors ir 3x 3 neighborhood which
consists 8 on the same scale image, 9 on the scale above image and the 9 atethelew
image [39].

Keypoints of SIFT are obtained by searching for the local maxima and minirtteeddoG
function. Local minima and maxima detection is shown on figure 3.4. At this step, @xel
is compared with its 8 neighbors on the same scale image, plus 9 correspoaidjhigors on
the one scale above image and one scale below image. The pixel is seleatedraidate

keypoint if it is local maximum or minimum point.
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After determining candidate keypoints, a 3D quadratic function is fit to thebggaxels of
the candidate keypoints to increase the stability [41]. By this step;

e Low contrast keypoints are eliminated.
e Keypoints chosen among the edge points are eliminated.

¢ Orientation of keypoints are calculated in sub-pixel accuracy.

The Taylor series expansion of the DoG function is used in this apprddghIf the origin

of it is shifted to the sample point;

DT 1 .6°D
D(x) =D+ 9D +§XTZ7X.

— (3.24)

In equation 3.24, D and its derivatives are calculated at the sample pdintaiix,y, o)" is
the dfset from this point. The derivative of this equation (3.24) with respecttiodkequating

it to zero gives the location of extrema poigt ~

8°D1 6D

K= —_—
ox2  Ox

(3.25)

If the offset of the accurate keypoint location from the sample point locatisrgreater than
0.5 in any direction; the extremum which means that accurate location is cloaaptioer
pixel. In such a case, the sample point is changed and the same proisedyreated for the
new one. Sub-pixel localization is satisfied as adding the fifiasébd<value to the location of

the sample point.

Another aim of this step is to eliminate keypoints with low contrast in their neigttmath
This can be achieved by substituting equation (3.25) into equation (3.24)crétase the

stability of keypoints and mathematically results as;

- 16D7 .
D(X) =D+ QWX (326)

If the value ofD (X) for a candidate keypoint is less than 0.03 (pixel values are assumed to be

in the range [01]), this point is eliminated.
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Another stability problem is caused by the keypoints chosen along the.et@igese points
are mostly unstable and sensitive to noise; therefore, it will be mentionethiese points are
removed in this step. The principle curvatures of DoG function at stablégpaia compara-
bly large in both directions; however, the DoG function at points lying alaiggs directions
has small principle curvatures along the direction and a large principehtcue in the per-

pendicular direction.

The principal curvatures can be calculated by using the eigenvalues Bgsian matrix;

(3.27)

The eigenvalues of the Hessian matrix are proportional to the principahtcues of the
DOG function. At this point, the main idea of Harris Corner Detector is usbfl [Bhat is,
there is no need to compute eigenvalues explicitly because only the ratio afjémeaues is
necessary. Lat andg are eigenvalues of Hessian matrix H and the ratio between them given

as;

a=rp. (3.28)

If the trace of H and determinant of H is calculated;

Tr(H) = Dyx+Dy=a+p (3.29)

Det(H) = DDy - (Dxy) = aB (3.30)

As it is shown in equations 3.29 and 3.30, the trace of Hessian gives usrthefshe eigen-
values of H and the determinant of Hessian matrix gives us the produa efgenvalues of

H. Then;

Tr(H)? (e+B)®  (B+p?> (r+1)°
DetH) o8 32 1 (3.31)

The result of the equation 3.31 depends on the ratio r not the eigenvahissatio has the

minimum value when r is equal to 1. In other words, it has the minimum value wleen th
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eigenvalues of H are equal to each other. Therefore, comparing thes against a threshold
is suficient to check the ratio of the principal curves of DoG function insteachlufutating

each eigenvalue. This threshold is given as 10 in the paper of Lowe [39]

After the stable keypoints are selected with their locations in sub-pixel acyua scale and
rotation invariant descriptor should be assigned to each keypoint taatkaee it. This de-
scriptor is obtained by computing a gradient orientation histogram in the rarigbdd of the
keypoint. Here, invariance in scale can be achieved by selecting thei@asmoothed image
L(x,y) which has the closest scale to the scale of the keypoint, and detegitmorientation
on this image. Similarly, invariance in rotation can be achieved by assigningeanaiion to

each keypoint, and computing the keypoint descriptor relative to this otiemta

For each keypoint, these calculated orientations around a keypoirtdaed ap to a histogram
which has 36 bins for 360range. The contribution of each neighboring sample is weighted
by the gradient magnitude and a Gaussian function with a scale that is 1.5 timssatbe

of the keypoint. Peaks of the histogram correspond to dominant oriergatiimat is, the
direction of the histogram maximum, and any other direction within 80% of the maximum
value corresponds to a new keypoint. Hence, SIFT may give some ikéypchich have the
same location at the end. But these hafBedent orientations and also increase the matching
stability. For better localization, the last step of orientation assigment is to fitzdo@la to

the 3 histogram values around the peak.

Figure 3.5 shows how to obtain the feature descriptor. These arrovnesesy local gradient
magnitudes and orientations. Here, the Gaussian image closest in scaledggbimis scale
gives the orientation data. The gradient magnitudes are weighted by ai@austh scale
1.5 times the scale of the keypoint, and added up to a histogram to constraesitrgtor.

A set of orientation histograms onxd4 pixel neighborhoods is used to compute the feature
descriptor. The gradient samples hatfieet on both of its adjacent histogram entries which
depend on the original orientation of the sample and the central value ofrthé'.b This

weighting factor is taken as (1-d).
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represented by the overlaid circle. The figure on the right shows theitndgs of histogram
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As itis shown in figure 3.5, histograms have 8 bins each, and each descoptains an array
of 4 histograms around the keypoint. Therefore, a SIFT feature vhaw#x 4 x 8 = 128
elements.Each histogram entry represents an element of the descriptor Vee SIFT code

by A. Vedaldi is used as the SIFT code in this thesis.

3.5 Hifects of Motion Blur on Feature Detectors

Although there are many feature based algorithms and work related with metiturdng in
computer vision literature, there is no work which investigates the spefiéicte of motion
blur on feature detectors. Therefore, we create an evaluation pnecedcharacterize feature

detectors.
Mainly all feature detectors have three fundamental aims.
e A good feature detector should detect all features without giving fe&ifes. In fact
the features found by detector should be the real correct features.

e A good feature detector should assign all features in their real cotedinaas close as
possible to their real coordinates. In fact, any feature should be faithdminimum

distance to real feature.

e A good feature detector should be robust to the image noise. In fact,shevéd not

be multiple features found by detector around a single feature.

The essence of our work is in expressing these criteria and then attempeivejuate feature

detectors according to these under motion bliga.
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CHAPTER 4

EXPERIMENTAL EVALUATION OF FEATURE DETECTORS
UNDER MOTION BLUR

4.1 Experimental Scenario

In our work, PointGrey Flea2 camera is used. As illustrated in Fig. 4.1(aniffit into the
small, tight spaces. That is why itis commonly preferred in mobile robotics atiglits. It is
mounted on our mobile robotic platform RHex and connected to pc via IEEENB®erface

as itis shown at Fig. 4.1(b).

All the experiments were held in Robotics and autonomous systems laboratatyaight
route was defined for our robot to walk infiirent speeds through 3.5 meter path. 3 by 4
checkerboard pattern which is shown at Fig. 4.2 were placed at thefethts 8.5 meter
path in the lab environment. This experimental setup can be visualized bettez hglp of

Fig. 4.3.
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(a) Flea 2 camera

N\ B-1200VA
S m eknovA

(b) SensoRHex

Figure 4.1: The Point Grey Flea2 camera is shown with our experimentalicqiiatform
SensoRHex (a) and (b)
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Figure 4.2: 3 by 4 Checkerboard plate.

(<€

Experiment Range
35 meters

Start Point

Figure 4.3: Drawing of experimental setup for evaluating feature detectomotion blurred
frames due to legged locomotion.
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Video sequences were recorded at a 640 x 480 resolution with a 25sfii@nsecond frame
rate in the avi format by using RHex vision library functions on linux platforRive test

video sequences were recorded;

e VSeq 1 was recorded while RHex was standing sti,ll half meter in front afl@rboard

plate.

e VVSeq 2 was recorded while RHex was approaching to the Checkerpladedrom 4.5
meters with 0.1 velocity cdBcient at its slowest walking mode which corresponds to

0.14 m'sec.

e VSeq 3 was recorded while RHex was approaching to the Checkerpladedrom 4.5
meters with 0.4 velocity caBcient at its slow walking mode which corresponds to 0.16

m/sec.

e VSeq 4 was recorded while RHex was approaching to the Checkerplaaedrom 4.5
meters with 0.8 velocity cdicient at its fast walking mode which corresponds to 0.25

m/sec.

e VSeq 5 was recorded while RHex was approaching to the Checkerplaaedrom 4.5
meters with 1.0 velocity cdBcient at its fastest walking mode which corresponds to

0.40 misec.

Table 4.1: Speed céicients of the experimental robotic platform which are used in experi-
ments and the corresponding speed values/gem

Velocity Cosdficients | Corresponding Speeds in/sec
0.1 0.14 msec
0.4 0.16 misec
0.8 0.25 misec
1.0 0.40 misec

Fig. 4.4 demonstrates some sample frames from VSeq 4 that were recdndedrkex is
running forward and backward to show how the world looks like from Réleye. In our
experiments, we use forward part of the videos which were recortidd RHex was moving
forward. Backward locomotion of the robot degrades the video frames mtensively due

to its structure of ¢ shape legs and its walking gate.
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Figure 4.4. The image of checkerboard changes through the videodradm& RHex is
running forward and backward by moderate velocity.

In our work, we investigate performance of harris corner, canny etector and sift on the
video frames captured by the camera mounted on RHex. The aim of thecteget exploit

the dfect of legged locomotion on the output of camera, to obtain an idea abosiblgos
deblurring methods and to develop an objective performance criteria in nosldarring by
using the motion blurféect on the performance of well known image feature detectors while

preparing this experimental scenario.

4.2 Evaluation Criteria

Investigating performance of harris corner, canny edge detectasifinde need to measure
the detection capabilities and the robustness of the methods under motiomtulitively, the

evaluation criteria compare the algorithms based on the following behaviors,

e detection rate of interested features on the specified pattern in motion bitanees.

These are classified as "detected” or "missed”.

e ability of not generating any false (or spurious) features due to noiseotion blur

related artifacts. These are classified as "false alarm”.

¢ ability to align the features without any unexpected splitting features. Theszassi-

fied as "false split features”.
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According to these conditions, performance measures are obtained.

4.3 Experiments with Harris Corner Detector

The first video which was recorded while robot was standing still is usedraference data.
The parameters of algorithm is set and tested according to this video. th&t@erformance

of harris corner detector algorithm is investigated on other test vide@segs respectively.

51 frames and 18 corners in each frame for all 5 video sequencesrasiglered when tests
are applied. Firstly, a blur intensity and blur angle is obtained on the most-lgipeorner
which is marked as the first corner by using equation (4.1) and equat@yfd4 each frame.

Letf be the number of frames awde the number of corner in each frame.

2
Axie = (X —%¢,) (4.1)
X
C
= arctan —— 4.2
e {xe] “2)

wherex” and x® denote the real coordinates of corner selected by hand on the frantleeand
estimated coordinates of corner calculated by harris corner detectoitlaigon the frame,
respectively. Moreover, equation (4.1) is also used for calculatingrtibe ie each detected
corner. Fig. 4.5 shows average estimated accuracy errors in cocaéploof the each frame
for the test video sequences. In Fig. 4.5, the peak points which arengimwve 15 correspond
to frames that are entirely missed in the sense of corner detection. This sitisatianifested

more clearly in Table 4.2 which shows that total averages of each video.

Vseq 2 is the first and the slowest motion video sequence that we used @xeniments.
It was recorded while RHEx was in its walking mode with 0.1 velocityffoient. In order
to see the performance of Harris Corner detector, we have analyzeednaissher rate, error

rate of the detected corners, possible false alarms and false splitéeg@n this video.

Missed corners appeared in only five frames among 51 frames and omlfrasne among
these five is completely lost which means that none of 18 corners can lotedidg algorithm.
These results are demonstrated in the Figure 4.6. It shows that cooudasbe missed only

if there is an intensive motion blur.
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Figure 4.5: Average estimated accuracy errors in corner location fovite=os with four
test locomotion velocities. The peak points marked above 15 corresporahted that are
entirely missed in the sense of corner detection.

The Number of Missed Corners in each frame
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Figure 4.6: The number of missed corners in each frame of the first tesi kedorded while
RHex was walking with 0.1 velocity cdigcient at its slowest walking mode.
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Table 4.2: Average errors of video sequences.

Eae | V Number of
"all missed” Frames
Vseq 2| 1.7897| 0.1 1
Vseq 3| 1.9835| 0.4 1/51-100
Vseq 4| 21216 | 0.8 14/51- 100
Vseq 5| 29331 1.0 30/51-100

Table 4.3: The average rates per corner for Vseq 2

Average Missed Corner rate 5.2000
Average Strabismus rate 4.5385
Average Cross-eyed corner ratel4.2308

The false splitting fect which means that single feature point response can not be achieved
was seen in 13 frames among 51 frames in this video sequence. Due tfigbisagorithm

finds two or more corners around the true single corner. Tfieckis mostly seen at the
inner corners of pattern and is a good way to parametrizeffbetef motion blur even if the
frames are not degraded intensively. These results are demonstrétedigure 4.7. Figure

4.7 shows the number of corners that are degraded byflieist & each frame.

In this video sequence, there is no false alarm which means a fake aorrtbe plate is
not observed. This was achieved due to the carefully fixed threshhld g&the algorithm.
Besides, the texture of the image is not so complicated as to cause this kintificiakr

features.

Vseq 3 is the second motion video sequence that we used in our experithestsrecorded

while RHex was in its walking mode with 0.4 velocity dbeient. In order to see the per-

44



False splitting effect in corner detection
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Figure 4.7: The false splittingiect in each frame of the first test video recorded while RHex
was walking with 0.1 velocity cdécient at its slowest walking mode.

Table 4.4: The average rates per corner for Vseq 3

Average Missed Corner rate || 6.2500
Average Strabismus rate 4.6800
Average Cross-eyed corner ratel4.3200

formance of Harris Corner detector, we have analyzed missed caitegrerror rate of the

detected corners, possible false alarms and false splitfiagt@n this video.

Missed corners appeared in only eight frames among 51 frames andranfyaimne among
this eight is completely lost which means that none of 18 corners can beetebgcalgorithm.
In one more frame among these eight, 16 corners could not be obsExapt for these two
frames, the average missed rate 872in the other six distorted frames. These results are
demonstrated in the Figure 4.8. It shows that corners could be missed dhbréf is an

intensive motion blur so this sequence was distorted moderately.

The false splitting fect which reveals that single feature point response can not be adhiev
was seen in 25 frames among 51 frames of this video sequence. That hadfobthis
sequence is degraded by false splittifigget. Due to this fect, algorithm finds two or more

corners around the true corner instead of one. Thiexeis mostly seen at the inner corners
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Figure 4.8: The number of missed corners in each frame of the seconddestrecorded
while RHex was walking with 0.4 velocity céi&cient at its slow walking mode.

of pattern and is a good way to parametrize tfiea of motion blur even if the frames is not
degraded intensively. These results are demonstrated in the Figurégluge #.9 shows the

number of corners that are degraded by tifisa in each frame.

In this video sequence, there is no false alarm which means a fake cortiee plate is not
observed. This is because of the carefully fixed threshold value oflgoeitam. And also

the texture of the image is not so complicated to cause this kind of artificial é&satur
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Figure 4.9: The false splittingfiect in each frame of the second test video recorded while
RHex was walking with 0.4 velocity cdigcient at its slow walking mode.
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Figure 4.10: The number of missed corners in each frame of the third tesi vétorded
while RHex was walking with 0.8 velocity cfiicient at its fast walking mode.

Vseq 4 is the third motion video sequence that we used in our experimentas leeorded
while RHex was in its walking mode with 0.8 velocity dbeient. In order to see the per-
formance of Harris Corner detector, we have analyzed missed cateererror rate of the

detected corners, possible false alarms and false splitfiagt@n this video.

Missed corners appeared in only 28 frames among 51 frames and 14 fameg this 28 are
completely lost which means that none of 18 corners can be detected biytetgdexcept for
these 14 frames, the average missed ratedi8 i the other distorted frames. These results

are demonstrated in the figure 4.10. It shows that these video sequdisteried intensively.

Table 4.5: The average rates per corner for Vseq 4

Average Missed Corner rate || 11.7143
Average Strabismus rate 4.5556
Average Cross-eyed corner ratel2.3333

The false splitting ffect which means that single feature point response can not be achieved
was seen in 18 frames among 51 frames in this video sequence. Althougtetttb e the

robot in Vseq 4 is higher than Vseq 3, the false split corner rates are fexe. It is due to the
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Figure 4.11: The false splittingffect in each frame of the third test video recorded while
RHex was walking with 0.8 velocity cdiécient at its fast walking mode.

high missed corner rate in Vseq 4. 14 frames are already lost completelyiaseld corners
are seen 28 frames in total. These are two times higher than the missed etesdniVseq
3. This dfect is mostly seen at the inner corners of pattern and a good way to parametr
the dfect of motion blur especially when the frames are not degraded intensiVélyse
results are demonstrated in the figure 4.11. Figure 4.11 shows the nundmenefs that are

degraded by thisfect in each frame.

In this video sequence, there is no false alarm which means a fake aorrtbe plate is
not observed. This was achieved due to the carefully fixed threshhld g&the algorithm.
Besides, the texture of the image is not so complicated as to cause this kintificiakr

features. .

As the last sequence, Vseq 5 is the fourth and the fastest motion videensecghat we used
in our experiments. It was recorded while RHex was in its walking mode with 1dzite

codficient. In order to see the performance of Harris Corner detector, we dnzalyzed
missed corner rate, error rate of the detected corners, possibleltaiss and false splitting

effect on this video.

Missed corners appeared in only 46 frames among 51 frames and 3@ fmameg this 46 are

completely lost which means that none of 18 corners can be detected bighetgoExcept
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Figure 4.12: The number of missed corners in each frame of the fourthitest recorded
while RHex was walking with 1.0 velocity c@i&cient at its fastest walking mode.

Table 4.6: The average rates per corner for Vseq 5

Average Missed Corner rate || 14.4348
Average Strabismus rate 3.6250
Average Cross-eyed corner ratel4.4348

for these 30 frames, the average missed rate780D in the other distorted frame. These
results are demonstrated in the Figure 4.12. It shows that these videznseqs distorted

completely.

The false splitting ffect which means that single feature point response can not be achieved
was seen in 15 frames among 51 frames in this video sequence. Althougtett o the
robot in Vseq 5 is higher than Vseq 4 and Vseq 3, the strabismus ratesiaehere. It is
again due to the high missed corner rate in Vseq 5. 30 frames are lost cdynaletenissed
corners are seen in 46 frames in total which means that all sequence i$ lashosthe sense
of feature detection. These are two and three times higher than the missed @es in
Vseq 4 and Vseq 3 respectively. These results are demonstrated inute4i@3. Figure

4.13 shows the number of corners that are degraded byftbist & each frame.
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Figure 4.13: The false splittingtect in each frame of the fourth test video recorded while
RHex was walking with 1.0 velocity cdiécient at its fastest walking mode.

This dfect is mostly seen at the inner corners of pattern. It gives good reshils the
intensity of blur is not so high. However, it is a good way to parametrize ftieeteof motion
blur even if it is combined with missed corner rate. After threshold value célidperithm is
set in the first video, we haven't faced false alarms which means thatdheno fake corners
on irrelevant parts of the checkerboard plate during experiments. Auops cases, this
was achieved due to the carefully fixed threshold value of the algorithnomitite condition

that the texture of the image is not so complicated as to cause this kind of artdatiates.
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4.4 Experiments with Canny Edge Detector

The first video which was recorded while robot was standing without moigingged as a
reference data. The parameters of algorithm is set and tested acctwrdhig first video.
And then, the performance of canny edge detector algorithm is investigatether 4 test

video sequences respectively.

51 frames and 24 edges in each frame for all 5 video sequences weneinék account for
tests. The performance of canny edge detector were evaluated in tigo pastly as a blur

metric and secondly as it was done for Harris corner detector.

Edges were separated into two groups: the edges lying along the x-axiseandges lying
along the y-axis. The first part of the Canny algorithm contains calculatiage derivatives
which is called gradient image. As the first step of our performance di@yghe gradient
image was used with aim to observe the smoothiiigceof blur on edges along x and y axes.
Therefore, the thickness of edge locations were used as a motion blur ofdtaenes. As

the second part of our performance evaluation, we have analyzeddneidge rate, possible
false alarms and false splittingfect on frames. The first motionless video is used to calculate

reference thickness of edges and to set the algorithm parameters.

The first video is motionless so it is used as reference video. The paramé@gorithm
such aso, Ty and T, were set on this video sequence. Image derivatives were taken and
the thickness of edges were calculated. One example frame and its gerisahown in the

Figure 4.14(b) and 4.14(b)

Vseq 2 is the first and the slowest motion video sequence that we used éxganments.
It was recorded while RHex was in its walking mode with 0.1 velocityfitoent. In order
to observe the smoothingtect of blur on edges and it¢fects on the performance of Canny
Corner detector, we have analyzed thickness of edges missed edgmssible false alarms

and false splitting #ect on this video.

As the first part of our experiment, the calculated edge thicknesses mland y axes are
shown in the Figure 4.15. The green line shows the reference thickaksdated on the
motionless video sequence Vseq 1 and the red and green plots shogeatieciness of the

edges along x axis and y axis respectively. It is observed that the Ibhg & axis is more
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(b) Derivative of this frame

Figure 4.14: One example frame and its derivative
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Figure 4.15: The average of edge thickness. Average thicknesges atbng x axis is shown
in red and average thickness of edges along y axis is shown in blue. rébe ghows the
reference.

intensive than the blur along y axis for this video sequence Vseq 2.

Missed edges appeared in 2 frames among 51 frames and its averags feaeng is 3 in the
2 distorted frames. These results are demonstrated in the Figure 4.1@y# tiat blur is not

intensive in this sequence.

False edges due to noise in motion blurred frames appeared in only 6 fraroeg &1 frames

and its average rate per frame i83. These results are demonstrated in the Figure 4.17.

The false splitting ffect which means that single edge response can not be achieved was see
in only 3 frames among 51 frames in this video sequence. It is an expestdt because
robot’s velocity was really slow. Only at 5th and 51st frames, all the edémsy x axis

entirely degraded by thidtect. These results are demonstrated in the Figure 4.18.

Vseq 3 is the second motion video sequence that we used in our experithests recorded
while SensoRHex was in its walking mode with 0.4 velocity fficeent. In order to observe
the smoothing fect of blur on edges and itdfects on the performance of Canny Corner

detector, we have analyzed thickness of edges missed edge rate)eptasd alarms and
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The Number of Missed Edges in each frame
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Figure 4.16: The number of missed edges in each frame of the seconidestrecorded
while RHex was walking with 0.1 velocity céi&cient at its slowest walking mode.
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Figure 4.17: The number of False edges in each frame of the seconitiexstecorded while
SensoRHex was walking with 0.1 velocity d¢heient at its slowest walking mode.
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The strabismus affect in edge detection
16

12+ ®

10+

Number of edges has this effect
fee]
T

0L0000 .0 0000000000000000000000000000000000000000000
0 5 10 15 20 25 30 35 40 45 50 55

Frame no's

Figure 4.18: The number of edges on which false splittifigot is seen in each frame of the
second test video recorded while SensoRHex was walking with 0.1 velaatiyatent at its
slowest walking mode.

false splitting €ect on this video.

As the first part of our experiment, the calculated edge thicknesses xlang y axes are
shown in the Figure 4.19. The green line shows the reference thickaksgated on the
motionless video sequence Vseq 2 and the red and green plots shogeatieciness of the
edges along x axis and y axis respectively. It is observed that this gielgwence contains

moderate blur on both axis.

Missed edges appeared in 2 frames among 51 frames and its averager fadeng is 15 in
the 2 distorted frames. These results are demonstrated in the Figure 4206w# that there

is not so intensive blur that may cause canny to fail in this sequence.

False edges due to noise in motion blurred frames appeared in only 10 feanoeg 51
frames and its average rate per frame.& 1These results are demonstrated in the Figure
4.20. We should consider on the missed edge rate and false rate edgertolytlsed edge
rate does not increase so fast because threshold values set motantifbut it causes false

alarms.
The false splitting ffect which means that single edge response can not be achieved were
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Figure 4.19: The average of edge thickness. Red line shows averelgeess of edges along
x axis and blue line shows average thickness of edges a long y axisrdémlme shows the
reference.
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Figure 4.20: The number of missed edges in each frame of the seconddstrecorded
while RHex was walking with 0.1 velocity céiient.
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False alarms in edge detection
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Figure 4.21: The number of False edges in each frame of the seconiitzstecorded while
RHex was walking with 0.4 velocity cdiécient.

seen in only 7 frames among 51 frames in this video sequence. Its avebagkas expected
result because robot’s velocity was really low. Almost all the edges al@gsxdegraded by

this dfect only at two frames. These results are demonstrated in the Figure 4.22.

Vseq 4 is the third motion video sequence that we used in our experimentas leaorded
while SensoRHex was in its walking mode with 0.8 velocity fficeent. In order to observe
the smoothing #ect of blur on edges and itsfects on the performance of Canny Corner
detector, we have analyzed thickness of edges missed edge rate)eptasi alarms and

false splitting &ect on this video.

As the first part of our experiment, the calculated edge thicknesses xlang y axes are
shown in the Figure 4.23. The green line shows the reference thickaksdated on the
motionless video sequence Vseq 2 and the red and green plots shogeatieciness of the
edges along x axis and y axis respectively. It is observed that this gielguwence contains
intensive blur on both axis. Especially the blur between 20 and 35th frapgradkes the

edges x-axis intensively.

Missed edges appeared in 15 frames among 51 frames and its avergoer faéene is 4 in

the 15 distorted frames. Moreover there are two frames in which half okttares are lost.
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The strabismus affect in edge detection
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Figure 4.22: The number of edges on which false splittifigat is seen in each frame of the
second test video recorded while SensoRHex was walking with 0.4 velaaflyatent at its
walking mode.
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Figure 4.23: The average of edge thickness. Red shows averageethdolf edges along x
axis and blue shows average thickness of edges a long x axis. Tesip@&s the reference.
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Figure 4.24: The number of missed edges in each frame of the seconddtsstrecorded
while RHex was walking with 0.8 velocity céiicient.

These results are demonstrated in the Figure 4.24. It shows that therens\vatblur that

may cause canny fails in this sequence.

False edges due to noise in motion blurred frames appeared in 25 frameg &inbrames
which means half of the sequence and its average rate per frame is 2e fHsedts are
demonstrated in the Figure 4.25. That shows that this degradation is vami@oin video

sequence.

The false splitting fect which means that single edge response can not be achieved was see
in only 19 frames among 51 frames in this video sequence. Its averagk/isAAmost half
of the sequences degraded by this and it is more intensive at two frarhese Tesults are

demonstrated in the Figure 4.26.
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Figure 4.25: The number of False edges in each frame of the third testrédeed while
RHex was walking with 0.8 velocity cdigcient.
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Figure 4.26: The number of edges on which false splittifigat is seen in each frame of the
second test video recorded while SensoRHex was walking with 0.8 velaafiyaient at its
fast walking mode.
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Figure 4.27: The average of edge thickness for the test video whicthédsghest velocity.
Red line shows average thickness of edges a long x axis and blue line ahermge thickness
of edges a long y axis. Green line is the reference thickness if there is thenmo

Vseq 5 is the last and the fastest motion video sequence that we used ixpeudnents.
It was recorded while SesnoRHex was in its walking mode with 1.0 velocitgfic@at. In
order to observe the smoothingext of blur on edges and itsfects on the performance of
Canny Corner detector, we have analyzed thickness of edges miggedate] possible false

alarms and false splittingfect on this video.

In the first part of our experiment, the calculated edge thicknesses glangd y axes, as
shown in the Figure 4.27. The green line shows the reference thickaksdated on the
motionless video sequence Vseq 5 and the red and green plots shogeatieciness of the
edges along x axis and y axis respectively. It is observed that this gielguence contains

intensive blur on both axis. Both of the axises are distorted by motion blursintn

Missed edges appeared in 36 frames among 51 frames and its averguer fadene is ®7
in the 36 distorted frames. Moreover, there are 6 frames in which all edtgasearly lost.
These results are demonstrated in the Figure 4.28. It shows that thisisedseompletely

distorted.
False edges due to noise in motion blurred frames appeared in only 41 feanoeg 51
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Figure 4.28: The number of missed edges in each frame of the seconddtstrecorded
while RHex was walking with 1.0 velocity céiicient.

frames and its average rate per frame.B22 These results are demonstrated in the Figure
4.29. These findings show that Canny edge detector can not worknraa all under this

high amount of blur.

The false splitting fect which means that single edge response can not be achieved arere se
in only 30 frames among 51 frames in this video sequence. Its averag@s 84breover the
average of false split edges is 9 and almost half of the sequencesiéedma this although
missed edges rates are so high too. These results are demonstrated iuteel &A@ which

shows the number of edges that are degraded by fiigistén each frame.

These figures show that this sequence recorded at the highestadpeaiting mode of our

experimental robotic platform SensoRHex is completely lost in the sensgefdsadection.
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Figure 4.29: The number of False edges in each frame of the seconititsstecorded while
RHex was walking with 1.0 velocity cdigcient.

The strabismus affect in edge detection
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Figure 4.30: The number of edges on which false splittifigat is seen in each frame of the
second test video recorded while SensoRHex was walking with 1.0 velaatiyatent at its
fastest walking mode.
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The Number of Correct Matches
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Figure 4.31: The number of SIFT matches for each frame without motion blur.

4.5 Experiments with SIFT

In this section, SIFT performance analyze in the context of matching isnpeetl on the
motion blurred frames. Although there are some works [43] which considedfect of

focus blur, there is not specific work which consider tfe& of motion blur.

As we use for other feature detectors in the sections in Section 4.3 andrSéetjove use
the same real test video sequences with four test locomotion velocitiestfpesibrmance
analyze. The video sequence which is recorded without motion is useovidhslw algorithm
works with sharp frames. The number of correct matches for each fatast video without

motion is demonstrated in the Figure 4.31.

The rate of false matches for each frame due to the noise is also calcul@gedermance
measure for SIFT algorithm. Then it is normalized by dividing it with the numberaiches
in this frame. The percentage of normalized false matches’ rate is shown kigtine 4.32.

As it is expected, the percentage of miss matches is really so low on the snagsf

The first and the slowest motion video is recorded with the 0.1 velocitffic@nt of our

experimental robotic platform and in its walking mode. The number of comatthes for
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Figure 4.32: The percentage of SIFT normalized false matches for eanh Without motion
blur.

each frame of test video without motion is demonstrated in the Figure 4.33. Aanveee
from the figure 4.33, there is a significantfdrence with the values obtained with sharp
frames although the velocity is low and degradation of motion blur is only visiblernimes

individual frames.

The rate of false matches for each frame due to motion blur is also calculatedear is a
sudden and unexpected increase in the percentage of the false mathbds\f test velocity
is considered. The percentage of normalized false matches’ rate is ghtvenFigure 4.34.
Moreover the percentage of false match rate is above 50%. It is beitasigeatch contains
two intensively blurred consecutive frames as it is shown in figure 4.8604gh the velocity
of the robot is low, the reason of this intensive blur is assumed that the aaateh the exact
moment when the front leg hit the ground. Due to the flexible c-shape legse thoments

when the leg thouch the ground or leaving the ground creates extrasstwogklisturbance on

the robot’s platform.

The second motion video with 0.4 velocity ¢beient of our experimental robotic platform
is used for the same analysis. The number of correct matches continuesréask as the

velocity of the robotic platform increases. Theéfdience of correct matches rate between the
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Figure 4.33: The number of SIFT matches for each frame of the test vidteoOvl test
locomotion velocity.
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Figure 4.34: The percentage of SIFT false matches for each frame te@shedeo with 0.1
test locomotion velocity.
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Figure 4.35: The 25th match in the video sequence with 0.1 test locomotion veldbity
percentage of SIFT false matches for these frames is 56.52 which isaatedfy higher than
the average of sequence.

frames with 0.1 velocity and frames with 0.4 velocity is not as big as tfierdnce between
frames without motion and frames with 0.1 velocity but still there is a meaningfurkdse.

The results are shown in the Figure 4.36.

If the percentage of false sift matches is considered, it can be seen kigilve 4.37. The

first half of the video sequence is degraded by motion blur more than tbadgéalf. Al-

though motion blur ffects many frames, there are still well-conditioned frames in the sense

of feature detection between heavily blurred consecutive frames. iWaschance to develop
interpolatiorismoothing approaches where the feature computation for the corruated is
corrected by means of considering surrounding frames instead ofiagptyre complex

deblurring algorithms.

Vseq4 is the video sequence recorded while our experimental robotiorptei§ in the fast
walking mode. Figure 4.38 demonstrates the correct match rate and figQreefrdnstrates
the percentage of missed matches. As it is seen from the figures, thexeearéour com-
pletely missed frames in the sense of SIFT matches. Especially after thealirstf hhe

sequence, we can say that all frames are heavily corrupted by motioi bknefore, it is not

so feasible to consider interpolation methods especially for the second tiadf ®equence.

Figure 4.40 is given as an example of one type of completely missed frames sedjisnce.
In this case, both frames are heavily blurred and it is impossible to make ani.nEte
other type of completely missed frames is one frame heavily blurred and fotldrame is

relatively better but sift algorithm fails as in figure 4.41.
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Figure 4.36: The number of SIFT matches for each frame of the test viiteoOw test
locomotion velocity.
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Figure 4.37: The percentage of SIFT false matches for each frame t#shedeo with 0.4
test locomotion velocity.
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Figure 4.38. The number of SIFT matches for each frame of the test viiteoOvB test
locomotion velocity.
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Figure 4.39: The percentage of SIFT false matches for each frame tfstheideo with 0.8
test locomotion velocity.
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Figure 4.40: Example to the first type of completely missed match in this sequéihce.8
velocity. Both of the frames are heavily blurred.

Figure 4.41: Example to the second type of completely missed match in this sequigmc
0.8 velocity. Both of the frames are heavily blurred.
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Figure 4.42. The number of SIFT matches for each frame of the test viiteolvd test
locomotion velocity.

Vseqg5 which is recorded while our experimental robotic platform is walkinigsafastest
mode. Figure 4.42 and figure 4.43 show that this sequence is all heavilgdlmd SIFT can

not give relevant and robust result except of 10 frames amongbies.
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Figure 4.43: The percentage of SIFT false matches for each frame tefghedeo with 1.0
test locomotion velocity.
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Figure 4.44: Sensitivity analysis of Harris corner detector based oshbia: for the most
blurred frame of the first test video recorded while our experimentaltolplatform RHex
was walking with 0.1 velocity cdécient at its slowest walking mode.

4.6 Input Parameters Analysis of Feature Detectors

We tried to fix the parameters manually based on obtaining minimum number of éake d
tections in our experimental tests. Limited number of frames used in the tests and limite
number of parameters in selected algorithms allowed us to have done this wislirogiextra

optimization methods.

In this section, one form of sensitivity analysis of feature detectors isngfer each fea-
ture detector algorithm. The first algorithm used in our experimental testslamis corner
detector. Variance of Gaussian as smoothing function and a threshotdwetta the input pa-
rameters chosen by the user. Due to the fact that we were dealing with mhuicediframes,
we chose the variance parameter of smoothing function minimum. And then thgeshi

threshold parameter left as affiext on the performance of the algorithm.

The performance of Harris corner detector is given in a determinedhibiceinterval as
[500,160J. To be able to show this, one among the most blurred frames and one among
the most sharpest frames were chosen in each video sequence.sHgteand 4.45 show

the performance of algorithm on the first test video while threshold vaheeshanging in the

given interval.
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Figure 4.45: Sensitivity analysis of Harris corner detector based oshbiet for one of the
sharpest frame of the first test video recorded while our experimentiatic platform RHex
was walking with 0.1 velocity cdécient at its slowest walking mode.

Figures 4.46 and 4.47 show the performance of algorithm on the firstitiest while thresh-

old values are changing in the given interval.

Figure 4.48 shows the performance of algorithm on the first test video tiinéshold values
are changing in the given interval. For this sequence, the highly bluaietek are completely
lost on the sense of corner detection. Even at small threshold valuesthaig can not find

more than 2-3 correct corners among 18 corners. Therefore, oelyrmderately blurred

frame is used for this analysis.

Although the number of the missed corners are less at small threshold,waisesuses high
number of false split corners at the sharp and degraded by moderafeabhes. Therefore,

we prefer high threshold values during our experimental tests with Hammec detector.

This analysis is also done for Canny Edge Detector. Again, varianagaeadthing function is
set to be the minimum value because we are working with motion blurred franifereDt
than Harris corner detector, canny uses two threshold values whigivareas high and low.
This test is done between the intervals such as for the low threshéltl {@.1] and for the

high threshold value [Q : 1.0].
The results for the first video are given in the figures 4.49 and 4.50.

Figures 4.51 and 4.52 show how the performance of the algorithm chandke second test

video sequence.
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Figure 4.46: Sensitivity analysis of Harris corner detector based oshbia: for the most
blurred frame of the test video recorded while our experimental robotitopta RHex was
walking with 0.4 velocity cofficient at its slowest walking mode.
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Figure 4.47: Sensitivity analysis of Harris corner detector based oshthick for one of the
sharpest frame of the test video recorded while our experimental rgilatiorm RHex was
walking with 0.1 velocity cofficient at its slowest walking mode.
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Figure 4.48: Sensitivity analysis of Harris corner detector based oshtbick for one of the
blurred frame of the test video recorded while our experimental robotifopta RHex was
walking with 0.1 velocity cofficient at its slowest walking mode.
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Figure 4.49: Sensitivity analysis of Canny edge detector based on dtdtefsin the most
blurred frame of the first test video recorded while our experimentaitiolplatform RHex
was walking with 0.1 velocity cd&cient at its slowest walking mode.
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Figure 4.50: Sensitivity analysis of Canny edge detector based on ¢iulefsin one of the
sharpest frame of the first test video recorded while our experimentiatic platform RHex
was walking with 0.1 velocity cdécient at its slowest walking mode.
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Figure 4.51: Sensitivity analysis of Canny edge detector based on ¢fdtefsin the most
blurred frame of the test video recorded while our experimental robotifopta RHex was
walking with 0.4 velocity cofficient at its slowest walking mode.
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Figure 4.52: Sensitivity analysis of Canny edge detector based on ¢ialefsin one of the
sharpest frame of the test video recorded while our experimental rgilatiorm RHex was
walking with 0.1 velocity cofficient at its slowest walking mode.

For the other two videos which were recorded at higher velocities ofatnatic experimental
platform, the most blurred frames do not give us any information for thig/sisa Giving
small threshold values increases fake detection and does not show awyément to find
any correct edges. Therefore, only moderately blurred frames ie thdso sequences are
used for this test. Figure 4.53 shows the results of one of the sharp frarok & so rare in

the fastest sequence.

The figures show that finding the optimal threshold value value for owgrexgents are mostly
obvious especially if the most important criteria is to obtain small number of fe&kifes.
Low threshold values increases the detected corner even in the somalgfiiigred frames
but it cases many fake corner in other moderately blurred or less bltrastes. In fact
having no feature in the highly blurred frames and having less corratrfs but without
fakes is more valuable for our evaluation and blur estimation idea. In oet vas prefer
high threshold values with this reason. The code of Lowe is implemented withiieis g
optimum parameters for SIFT therefore we haven’'t made any extra sépsitmnalysis for

this algorithm.
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Figure 4.53: Sensitivity analysis of Canny edge detector based on ¢iaefsin one of the
sharpest frame of the test video recorded while our experimental rgilatiorm RHex was
walking with 1.0 velocity cofficient at its slowest walking mode.

4.7 Discussions on Experimental Results

Systematic experimental characterization of motion blteat on well-known and popular
feature detectors such as Harris corner detector, Canny edge detedt&IFT was per-
formed. The severity of motion blur investigated in 4 videos by changing #edsparameters
of our experimental robotic platform. To be able to classify the results, egnadation types

were proposed on frames.

The results related with Harris Corner Detector were categorized undegrowips. The re-
sults were obtained while experimental robotic platform were walking in sl@gdpsuch as
0.14 misec and 0.16 ysec and the results were obtained while experimental robotic platform

were walking in fast walking speeds such as 0.25ew and 0.40 ysec.

In the first case, the main reason of the highly degraded image featured te dibrations
and shocks. These vibrations caused by the leg locomotion of our exjpégirhexapod robot
and the shocks occurred if the legs of robot touches the ground dexpasure time of the
camera. We analyzed only two seconds of the video due the limitations of otnrshning

path and limited field of view of the camera and these kind of highly damaged frasres
observed one or two times among this 2 second video part. The most valegsldtion

type among the proposed one is the number of missed corners. After sorastarhmotion
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blur, we could not observe false split corners because we almost éotbxture of the target
plain. The number of false split corners gives us information if the framesggadied by
moderate motion blur. Thisfiect mostly appeared in the inner corners of the checkerboard
plate. In fact, it was firstly seen at inner corners and then at outeeropmoportional to the
amount of blur. The other reason of motion blur based on the speedaffisofo limited in

these video sequences because of the slow walking of our experinmmétrplatform.

In the second case, most of the frames are highly degraded by motioDbkito fact that our
experimental platform walked in high speeds, the observed movementsadiypa roll and
pitch angle is high. And when this movements combined with shocks explained,ahs
resulted in more common and more severe corner feature degradation iarttesf Missed
corners and false split corners observed almost all the frames in thesed®o sequences.
Therefore, the combination of the number of missed corners and false@migrs gave us
information about the amount of the motion blur. False alarms never obsenvie results
of Harris corner detector. This was mostly related with the texture of thettplga and the

chosen threshold value of the algorithm.

The results related with Canny edge detector were also investigated asdome$or Harris
corner detector. In addition to these, the first part of the Canny edgetdethat gave the
derivatives of the image along x and y axes used for estimation of the amiunation blur.
These estimation results were relevant with the results that were obtainethieacnumber of
missed edges and the number of false split edges. Especially, if edgeetselenin a frame
are high in both directions, then this frame had also high humber of missediedsplit

edges.

The results related with SIFT were categorized witlfedent performance measure. The
matching rate between the frames in our #alent video sequences was investigated and
the performance measure defined on this criteria. The number of conegches and the
percentage of false matches were calculated for each frame. Althougtigbighm claims
that it is robust to the motion blur, there is a sudden change between motiankkssotion
video sequences. Especially if there is intense motion blur, it completely fail@atch the

features on the target plain.
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CHAPTER 5

CONCLUSIONS

In this thesis, we performed systematic experimental characterization of nimdtioeffect
on well-known and popular feature detectors. The aim was to analyzdtdw ef motion
blur for the purposes of perception and to plan which methods would less&gy to achieve
robustness against motion blur. Our aim was to develop a technique whathust under the
legged motion and the resulting visual disturbances. Therefore, expeahperformance
evaluation of Harris corner detector, Canny edge detector and SIFE iexiktence of real

motion blur was presented here.

We first presented a survey of existing models of motion blur and appeedolmotion de-
blurring and reviewed recent literature on motion blur and deblurring irpeh&. We fo-
cused our attention on motion blur induced degradation of a number of pdeatare detec-
tors. In Chapter 3 we presented the necessary background fas idamer detector, Canny
edge detector and SIFT, and an overview of tlieas of motion blur on these feature detec-
tors. The results of the study supported that motion blur is clearly an ualiEssphenomenon
in computer vision not only because it degrades the quality of images butalses other

feature extraction procedures to degrade or fail.

The performance degradation of these feature detectors due to motiomdskicategorized
to analyze theféect of legged locomotion on feature performance for perception in Ghépte
In our tests, we used 5 real video sequences which were captured bisibn system of a
mobile legged robot platform. We have put a target pattern in the field of vigheaobot
camera and focused on the features of this pattern in our experimente dinalyses results
were classified under proposed degradation types such as missegaieddeatures, false

alarm, false split features, correct match rate and percentage of falskanaAll these find-
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ings were obtained as a first step towards the stabilization and restoratimeofsequences
captured by our experimental legged robotic platform and towards ttedageuent of motion

blur robust vision system.

The performance of feature detectors were almost always degrgaedtion blur. Moreover,
the experiments showed that there are two types of motion Hlerteon our video sequences
which depend on the velocity of robot platform. The firfiteet is seen at low velocities
such as 0.1 and 0.4. Motion blur in these video sequenftested only a small number
of consecutive frames, or even a singular frame which mer® surrounded by relatively
sharp frames in the sense of feature detection and image quality. Accdodusy these
degraded frames which appear unexpectedly in the sequence, bdphento the shocks and
stretching &ect of c-shape legs when they touch the ground. The sedbect &/as seen at
high velocities such as 0.8 and 1.0. This time motion biteced more than a small number
of frames. These video sequences contained big number of corruptedd, or almost all
frames in the sequences were corrupted. This had two reasons: tles smal stretching
effect of c-shape legs increased while their turning periods increaseith@melative motion

between the scene and the camera increased while robot platform stavied faster.

Finally, we considered the performance of selected well-known feattezbrs under mo-
tion blur efect due to legged locomotion. Our future work is planned on achieving motion
blur robust feature detectors especially for the video sequences ih Wigdirst type of mo-
tion blur efect is seen. As for the second type of motion blffeet, we are planning to
continue our studies on improving inverse filtering method based on acouoéity estimate

which can be obtained by the help of inertial measurement unit.

5.1 Future Work

The thesis work is part of our long term objective of working with visualkse data on legged
robots where serious platform motiofiext the quality of the captured video frames. Motion
Blur is one of the most important degradations that haveffatieon the performance of sub-
sequent perception algorithms. As a follow up to the present work wheteewme attempted

to carefully characterize thefects of motion blur on some important feature extraction algo-

rithms, we need to continue our investigation in a number of directions whevalhagtempt
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to compensate for motion blur.

Firstly, based on the observation that motion blur sometimes hedidgt@nly a small num-
ber of consecutive frames, or even a singular frame, we will attempt tela@nterpola-
tion/smoothing approaches where the feature computation for the corrupted i corrected

by means of considering surrounding frames.

For cases where more than a small number of frames are corruptecesrveiasre the high
quality frame images themselves are required for the robot user, we walid=grnmotion

blur correction techniques for individual frames or frame sequerssgraeyed in the survey
section of the thesis. These approaches are mostly based on inverisgfigehniques where

an accurate estimation of the motion is very important.

In fact, there may be two fundamentatfdrent approaches to blur compensation depending
on the application requirements. For the case images are only requirec feultsequent
features, the first approach may directly comperisateect the features themselves rather
than deblurring the source image. Feature interpolation just discussetybdtnthis cate-
gory. A second approach for application where the video frames aresttiees required (e.g.
operator surveillance ), deblurring or inverse filtering of frames shbealtbllowed by better

feature extraction.

Although the motion can often be estimated to some degree from the individnae fitself
or the sequence of frames, we have plans to consider the use of @allsemsor such as an
Inertial Measurement Unit (IMU) to estimate the corrupting motion. This is a@ereadily
available on most robotic platforms and is able to measure accelerations agdhget body
axes and turn rates around them. Hence, the sensor is very povegrdicicurately measuring
motion leading to the motion blur. We hope an accurate estimation of the motion willigive

a better chance of constructing successful inverse filters.

We are aware that motion blur is a non-invertible corruption when a singtesfraiconsidered.
However, there are approaches in the literature that we have outlinedapteZ? that can
consider multiple frames with certain properties in order to recover an indil/fdame with
much higher success. We hope to integrate these approaches into otic egiplication
to achieve a much more robust vision sub-system in the presence of lsggih and the

resulting visual disturbances.
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APPENDIX A

FRAMES OF THE TEST VIDEO SEQUENCES
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Figure A.1: 1025 to 1042 frames of the test video recorded while ourrempetal robotic
platform RHex was walking with 0.1 velocity cfigient.

91



I IE'-H |

Figure A.2: 1043 to 1060 frames of the test video recorded while ourremgetal robotic
platform RHex was walking with 0.1 velocity cfigient.
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Figure A.3: 1061 to 1075 frames of the test video recorded while ourremgetal robotic
platform RHex was walking with 0.4 velocity cfigient.
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Figure A.4: 1425 to 1442 frames of the test video recorded while ourriempetal robotic
platform RHex was walking with 0.4 velocity cfigient.
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Figure A.5: 1443 to 1460 frames of the test video recorded while ourriempetal robotic
platform RHex was walking with 0.4 velocity cfigient.
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Figure A.6: 1461 to 1475 frames of the test video recorded while ourrempetal robotic
platform RHex was walking with 0.4 velocity cfigient.
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Figure A.7: 725 to 742 frames of the test video recorded while our expetahsbotic
platform RHex was walking with 0.8 velocity cfigient.
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Figure A.8: 743 to 760 frames of the test video recorded while our expetahsbotic
platform RHex was walking with 0.8 velocity cfigient.
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Figure A.9: 761 to 775 frames of the test video recorded while our expetahsbotic
platform RHex was walking with 0.8 velocity cfigient.
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Figure A.10: 440 to 457 frames of the test video recorded while our erpatal robotic
platform RHex was walking with 1.0 velocity cfigient.
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Figure A.11: 458 to 475 frames of the test video recorded while our erpatal robotic
platform RHex was walking with 1.0 velocity cfigient.
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Figure A.12: 476 to 490 frames of the test video recorded while our erpatal robotic
platform RHex was walking with 1.0 velocity cfigient.
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