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ABSTRACT 

 

SIMULATION OF BIPED LOCOMOTION OF HUMANOID 

ROBOTS IN 3D SPACE 

 

Akalın, Gökcan 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Kemal Özgören 

 

September 2010, 281 pages 

 

The main goal of this thesis is to simulate the response of a humanoid robot using 

a specified control algorithm which can achieve a sustainable biped locomotion 

with 4 basic locomotion phases. Basic parts for the body of the humanoid robot 

model are shaped according to the specified basic physical parameters and 

assumed kinematic model. 

The kinematic model, which does not change according to locomotion phases and 

consists of 27 segments including 14 virtual segments, provides a humanoid robot 

model with 26 degrees of freedom (DOF). Corresponding kinematic relations for 

the robot model are obtained by recursive formulations. Derivation of dynamic 

equations is carried out by the Newton-Euler formulation. A trajectory definition 

algorithm which defines positions, orientations, translational and angular velocities 

for the hip and its mass center, toe part of the foot and its toe point is created. A 



v 

 

control strategy based on predictive optimum command acceleration calculations 

and computed torque control method is implemented.  

The simulation is executed in Simulink and the visualization of the simulation is 

established in a virtual environment by Virtual Reality Toolbox of MATLAB. The 

simulation results and the user defined reference input are displayed 

simultaneously in the virtual environment. 

In this study, a simulation environment for the biped locomotion of humanoid 

robots is created. By the help of this thesis, the user can test various control 

strategies by modifying the modular structure of the simulation and acquire 

necessary information for the preliminary design study of a humanoid robot 

construction. 

Keywords: Bipedal Locomotion, Humanoid Robots, Simulation, Computed 

Torque Control  
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ÖZ 

 

ĐNSANSI ROBOTLARIN 3 BOYUTLU UZAYDA 2 AYAKLI 

HAREKET ĐNĐN BENZETĐMĐ 

 

Akalın, Gökcan 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Kemal Özgören 

 

Eylül 2010, 281 sayfa 

 

 

Bu tezin ana amacı, 4 temel hareket evresini kapsayan sürdürülebilir bir 2 ayaklı 

yürüyüşü gerçekleştirebilmesi amacıyla belirlenmiş olan bir kontrol algoritması 

kullanılarak, bir insansı robotun tepkisinin simüle edilmesidir. Đnsansı robot 

modelini oluşturan temel vücut parçaları, belirlenmiş olan temel fiziksel 

parametreler ve varsayılmış olan kinematik modeller doğrultusunda 

şekillendirilmiştir. 

Çeşitli hareket evrelerinde değişmeyen ve 14 ü sanal olmak üzere toplam 27 

parçadan oluşan kinematik model, 26 serbestlik derecesi olan bir insansı robot 

modelini oluşturmaktadır. Robot modeli için sözkonusu olan kinematik ilişkiler 

yenilemeli formülasyonlar ile elde edilmiştir. Dinamik denklemlerin türetilmesi 

Newton-Euler formulasyonı ile gerçekleştirilmi ştir. Kalça ve kalça kütle merkezi, 
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ayak ucu ve ayak ucu noktası için konumları,açısal konumları, doğrusal ve açısal 

hızlarını tanımlayan bir yörünge tanımlama algoritması oluşturulmuştur. Öngörülü 

en iyi komut ivmesi hesaplanması ve hesaplanan tork kontrol yöntemi tabanlı bir 

kontrol stratejisi uygulanmıştır. Simülasyon MATLAB Simulink’te yürütülmekte 

ve simülasyonun görüntülenmesi MATLAB Simulink Virtual Reality Toolbox ile 

sanal bir ortam içinde gerçekleştirilmektedir. Simülasyon sonuçları ve kullanıcı 

tarafından tanımlanmış olan referans girdisi sanal ortamda aynı anda 

gösterilmektedir. 

Bu çalışmada insansı robotların iki ayaklı hareketi için bir simülasyon ortamı 

kurulmuştur. Bu tezin yardımıyla kullanıcı, simülasyonun modüler yapısını 

değiştirerek çeşitli kontrol stratejilerini test edebilir ve insansı bir robotun 

yapılmasının öntasarım çalışması için gerekli olan bilgiyi elde edebilir. 

Anahtar Kelimeler: Đki Ayaklı Yürüyüş, Đnsansı Robotlar, Simulasyon, Hesaplanan 

Tork Kontrol Yöntemi 
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CHAPTER 1 

INTRODUCTION 

1.1.Motivation 

“Robot” is a term introduced to lives of many people by the propagation of 

industrialization throughout the world. Although there does not exist a consensus 

about the exact definition of the term “robot”, there are various definitions made 

by The International Organization for Standardization, The Robotics Institute of 

America and many other robot societies. A machine which has the ability to 

accomplish complex tasks by sensing change in the working environment or 

following programmed instructions and reacting accordingly can be called as a 

robot. 

 

Figure 1.1 Unimate While Transporting Products [50] 

Robots can be said to be the product of industrialization since they are mainly 

developed to carry out tasks which endanger human life, increase the production 
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rates of repetitive tasks and achieve a production quality that can only be reached 

by a staff with a long years of experience and intensive trainings. The first known 

robot ever built is “Unimate” by General Motors Company. The purpose of 

Unimate was to pick and carry hot die-castings from machines and to perform 

welding on automobile bodies [1]. 

Since the introduction of robot technology to the industry, the field of robotics 

leaped into the daily lives of humanity and became a constituent and a modifying 

factor to the human society. According to Xie, it is past time to consider robots as 

“merely mechanisms attached to controls” and suggests that robots have already 

become capable enough to carry out many critical works nowadays and are going 

to become much and much significant component in human societies like tutoring 

children, working as tour guides and private drivers, doing the shopping [2]. 

Nowadays robots have a very wide range of use, beyond the prediction of common 

people. In the space exploration program of Mars, lander or rover robots like 

Viking 1, Viking 2, Mars Pathfinder, etc. are sent to make several experiments and 

measurements instead of humans due to unpredictable, risky nature of the 

exploration procedure and many other reasons. Robots are used in situations 

endangering human lives like bomb diffuser robots, rescue-exploration and 

medical operations where physical and sensor aspects of humans become an 

obstacle or a limitation. There are immense amount of robot applications bringing 

a lot of benefits which makes the robot technology an integral part of the 

technological aspects of present day’s human society. 

 

Figure 1.2 Viking 1 Lander Model [51] 
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With recent developments in robotics and increasingly wide applications of robots, 

new opportunities arise for daily lives of people where humanoid robot concept is 

one of these. Humanoid robots are expected to have overall resemblance to human 

body, autonomous operation, imitation of mental and physical capabilities of 

humans.  

Almost everything artificially designed in Earth is compatible with humans. 

Humanoid robots with similar bodies and physical abilities will be able to use and 

benefit from all devices, which is a very efficient way to integrate capabilities of 

humanoid robots into the current human society with the least possible changes. 

Employment of humanoid robots into repetitive, arduous and dangerous jobs 

instead of humans will provide better life conditions and more spare time for 

humans to pursue their own interests. Furthermore, humanoid robots can carry out 

missions where shortcomings of biological structures prohibit human participation 

such as space exploration and colonization on planets.  Moreover, interaction of 

humanoid robots with humans will be easier due to humans’ tendency to set up 

interactions with physical forms fundamentally similar to humans.  

With all expected benefits of robots being humanoid; a motivation exists to 

develop necessary methods, strategies and perform scientific researches to build an 

information base in order to deal with complications originated from the 

complexity of constructing humanoid robots with advanced abilities similar to 

humans. Biped locomotion of humanoid robots is one of those advanced abilities. 

Other than mental and sensor capabilities of humans, biped locomotion is possibly 

the most important ability to be imitated for the movement of humanoid robots. 

Biped locomotion’s most significant advantage over other kind of locomotion 

techniques is mobility. However, the level of mobility that can be achieved with 

biped locomotion is directly related with the ability to control this complex 

procedure. As Sano and Forusho admit; although biped locomotion is periodic 

with overall stability, it mainly employs unstable motions which result to control 

difficulties from the viewpoint of stability [3].  
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In order to minimize the fieldwork, trial-error procedure and cost during the 

construction of a biped robot; simulation studies are widely used. In other words, 

simulation studies are essential for the preliminary design process of biped robots. 

Observing possible outcomes for different design parameters and related design 

improvements, testing the efficiency and the performance of different control 

strategies, understanding the system behavior or gaining an engineering instinct for 

the corresponding complex dynamic system are some of potential benefits of 

simulation studies for the locomotion of biped robots. 

1.2. Phases of Gait Cycle 

Since “biological solutions” are key points for understanding and inspiration to the 

problem of designing humanoid robots capable of achieving biped locomotion, 

inspection of the gait cycle becomes essential [4] . 

The gait cycle begins with the initial contact of the foot and contact of the same 

foot to the ground again ends the gait cycle. The gait cycle is categorized in 2 main 

phases with a total of 8 subphases as shown in figure 1.3. 

 

Figure 1.3 Gait Cycle [52] 
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Stance phases constitute phases between heel-strike and toe-off for the specified 

foot. Initial contact, loading response, mid-stance, terminal stance and preswing 

phases are grouped as stance phases in which most of the gait cycle 

(approximately 60 percent) takes place.  

In initial contact phase, the knee extends and the heel of the right foot contacts the 

ground while ankle is considered to be approximately in neutral position. At the 

same time, the left leg is at the end of its terminal stance phase. 

In loading response phase, the first double support condition of the gait cycle 

begins and ends with the contralateral toe leaving the ground. In this phase, 

absorption of impact forces due to the foot striking to the ground and weight 

transfer of the body from limb to limb occurs. In the mean time, preswing phase of 

the left leg ends. 

Midstance phase begins when contralateral toe is off the ground and ends when the 

center of gravity of the body is over the contact area of supporting foot, which is 

right foot for figure 1.3. Toward the end of midstance phase, the knee and the 

ankle of the right leg return to their neutral positions.  Meanwhile, the left leg 

moves forward in its midswing phase. 

As the midstance phase ends, the terminal stance phase begins. During this phase, 

the heel of the supporting foot rises and loses its contact with the ground. The 

terminal stance phase ends when the left foot contacts the ground. During the 

terminal stance phase, the left leg proceeds in the terminal swing phase. 

In the beginning of preswing phase, the initial contact of left foot with the ground 

occurs. This phase is the second double support condition during the gait cycle. 

The body weight is transferred from right leg to left leg.  During the preswing 

phase, the knee flexes and the ankle plantarflexes significantly. Also, the toes of 

right foot begin to dorsiflex to deviate from the neutral position. The phase ends as 

the toe of right foot leaves the ground. 
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After the preswing phase, swing phases begin. Initial swing, midswing and 

terminal swing phases are grouped as swing phases. The swing phases account for 

approximately 40 percent of the gait cycle. 

Initial swing phase begins when the toe of right foot is off the ground and 

continues until the right foot goes past the support foot in the forward direction. 

The right leg moves forward by increased hip and knee flexions. Meanwhile, the 

left foot is in its midstance phase. 

After the initial swing phase, the midswing phase continues until the tibia of right 

foot becomes vertical. In this phase, the advancement of the right leg is achieved 

by additional hip flexion and the ankle begins to return its neutral position. During 

this phase, the left leg is at the end of its midstance phase.  

The terminal swing phase is the last phase of the gait cycle. The terminal swing 

phase begins when the tibia is vertical and ends with the initial contact of right 

foot. The movement of the right leg is achieved by total knee extension and the 

ankle returns to its neutral position. 

1.3. Review of Literature on Simulation Studies 

Different simulation studies throughout the world for the biped locomotion will be 

examined under this heading. Motivation of simulation studies for biped 

locomotion differs significantly depending on the application area like 

biomechanics studies, testing the performance of control strategy proposed, 

validating the efficiency or the applicability of trajectory generation methods and 

etc. 

In a simulation study for the development of walking controllers, movements of 

some joints are restricted according physiological limitations of human body and 

foot is modeled as an ellipsoid providing a single point of contact with the floor as 

demonstrated in Figure 1.4. Also, spring damper systems regarding the penetration 

of foot into the floor and nonlinear spring damper systems modeling the total 

resistance to joint movement due to contact and deformation of tissues are used. 

Actuation in muscular structure is applied. Head, arms, upper and middle trunk are 
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reduced to a single body. Hence, it is a direct dynamic simulation with no prior 

information about walking kinematics [5].  

 

 

Figure 1.4 Snapshots of Bipedal Gait Simulation [5] 

A simulation model for a normal human walking with a 9 segment 3D model 

which has 20 degrees of freedom is developed by Gilchrist and Winter. The 

purpose of this study is to build a realistic model for human gait capable enough to 

achieve predicted gait characteristics by using the system description, initial 

conditions and driving torques determined according to an inverse dynamic 

analysis of a normal walking trial. In this study, the foot is modeled in 2 segments 

with nonlinear springs and dampers, the midline of foot base is considered for 

modeling ground contact. Similarly, spring and damper elements are applied to 

knee and ankle to avoid nonphysiological motions. For the rest of joints, dampers 

are used to provide a smooth and realistic motion. However, the model succeeded 

to reflect the original measured kinematics in acceptable boundaries only for a 

slightly more than one step [6]. 
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Figure 1.5 Foot Model by Gilchrist and Winter 

 

Figure 1.6 Superimposed Simulation Results of a Stable Walking [7] 

In a different simulation study, a direct dynamics approach is employed to the 

analysis of human gait. The simulation model is prepared and executed in 

MSC.ADAMS environment. The presented model has 21 degrees of freedom with 

16 segments where head and arm properties are distributed into trunk. In a similar 

fashion to some studies, ground reaction forces are based on spring and damper 

systems. Moreover, displacements of human body segments are measured to be 

used for the pattern of relative joint motions.  Hence, actuator torques are found 

from torque equation formulations ensuring the realization of measured patterns. 

Because of considerably significant errors resulting from measurement 
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inaccuracies and post processing operations, resulting trunk motion for the gait 

pattern is to be controlled to prevent instability [7]. 

 

Figure 1.7 Walking on Uneven Terrain in Yobotics [8] 

Another simulation study to investigate the performance of an anthropomorphic 

biped robot controller based on a dynamical walking algorithm is carried out on 

Yobotics Simulation Construction Set. A nonlinear model based on ground contact 

point and ground height is used for the generation of ground reaction forces. In this 

study, the gait cycle is divided into 6 phases such that a forward falling phase is 

devised as an additional phase to single support phases [8]. 

 

Figure 1.8 Side and Front View of The Skeleton Model [14] 



10 

 

For the dynamic optimization problem of consumed metabolic energy per unit 

distance traveled, a simulation study with a 10 segment, 23 degrees of freedom 

biped model is performed. Actuation of the biped model is achieved by a total of 

54 modeled muscles. Head, arms and torso are lumped into a single rigid body. 

Also, each foot is modeled in 2 segments and foot ground interaction is modeled 

by spring and damper components scattered to corners of the hindfoot and distal 

end of the toe part. The solution of optimization problem is produced after a 

computation effort equivalent to approximately 10000 hours [14]. 

To present the effectiveness of proposed locomotion controller, a simulation model 

for a planar 5 link biped robot is built. The dynamic equations of the biped robot 

are obtained by SD/FAST software. A linear spring damper system is used to 

model ground reaction forces [17]. 

A simulation model for the inspection of planar humanoid gait is built by Özyurt. 

The kinematic configuration allows 5 DOF for each leg, where the simulation 

model has 10 DOF in total. Head, arms and torso are lumped into a single body. 

Also, there exists 2 types of foot model where flat foot is lumped into a single 

body and swinging foot consists of 2 segments. The interaction between foot and 

ground is modeled by kinematic constraints [68]. 

Modeling of the biped locomotion has a significant importance on determining the 

practical balance between computational efficiency and complexity of 

mathematical models defining physical phenomenon involved in the simulation. 

Because of this reason, there exist various approaches or assumptions involved in 

the simulation depending on the application area, computer resources and 

feasibility.  

Although the division of biped locomotion into various phases and the extent of 

assumptions for defined phases vary, biped locomotion can be categorized in 2 

basic phases. All phases including the contact of a single and both foot with 

ground can be grouped into respectively single support and double support phases. 

However, physical details of humanoid biped locomotion like heel contact, foot 

rolling on heel and toe are implemented or not into the simulation by considering 
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area of usage, control strategy, hardware capabilities, task space requirements and 

planned walking speeds. Regarding physical details involved and their role or 

significance in humanoid biped locomotion, simulation studies focusing on 

specific phases are performed [9, 10, 11, 12, 15]. For instance, the performance of 

the control strategy on level ground for slide mode control during double support 

phases by considering double impact occurring at the heel strike is investigated in 

a simulation study presented by Mu and Wu [9]. Similarly, energy efficiency of 

the phenomenon that is heel rising of the stance foot and following the rotation of 

stance foot about toes for fast walking is investigated by consecutive simulation 

studies [12]. 

The foot and its contact with ground is an additional modeling problem. Especially 

for simulation studies analyzing the human walking by building realistic models as 

much as possible, a significant care is given to modeling of the foot; since 

simulation studies for biomechanics involve inverse dynamics problem for finding 

resulting actuation torques of muscles, simulation models to understand muscle 

actuation patterns [14], finding metabolically efficient gaits [13,14], forward 

dynamics simulations to assist orthotic-prostethic designs and rehabilitation 

consultations [16].Various approaches are adapted for modeling ground contact 

and kinematic structure of the foot like models depending on spring and dampers, 

special contact modeling formulations, fixed contact models and segmented foots 

models.  

Various comprehensive software packages like MATLAB, MSC.Adams, 

DynaFlexPro, SD/FAST are utilized for their mathematical libraries, mathematical 

modeling and simulation tools. 

1.4. Review of Literature on Control Strategies  

Developing control strategies for biped locomotion of humanoid robots to 

maintain a sustainable and rhythmic locomotion robust to unpredictable and 

unmodeled internal and external system dynamics, ensuring energy efficiency and 

computational feasibility, sufficiently generalized to handle all kinds of occasions 

and purposes, realistic enough to utilize current level of engineering 
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instrumentations, keeping construction costs in reasonable boundaries is a 

challenging and popular engineering problem investigated by many researchers 

throughout the world. 

Since a humanoid robot during the biped locomotion is not fixed to the ground; 

variety of possible biped locomotion motions are restricted according to ground 

conditions, the design of supporting foot, actuator and controller capabilities, 

assumed stability criterion. Because of this reason, the generation of proper 

reference trajectories for task space or joint space variables is considered to be the 

first essential step for controlling biped locomotion. In other words, unrealistic or 

inconvenient reference trajectories can possibly lead to toppling over, sliding and 

collisions. 

Studies about generating reference trajectories can be divided into 2 categories 

according to the type of use. Online reference trajectory generation methods are 

expected to respond to changing conditions in the working environment by 

ensuring the stability criterion imposed and compensating side effects sourced 

from tracking errors of the controller or disturbances against endangered postural 

stability.  

In a study on walking planning for biped robots, a gait trajectory is generated by 

an artificial vector field based on an electric field according to predictive 

simulations performed online for 400 milliseconds ahead. The stability criterion is 

based on ZMP (Zero Moment Point) and the stability is ensured according to 

present and predicted states, then the improvement of gait parameters are done by 

updating the artificial vector field [18]. 

In a study presented by Wieber and Chevallereau, the problem of adapting 

reference trajectories to maintain stability under small disturbances is investigated. 

The viability condition, a condition for a system to realize a movement without 

getting inside a set of positions considered as fallen, for states is defined. With the 

adaptation of parameters used in the trajectory definition, the magnitude of the 

external disturbance force that can be compensated without falling is increased 

[19]. 
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Figure 1.9 Perturbation of a biped system into unviable and viable conditions 

[19] 

Most of trajectory generation methods for controlling biped motion can be 

considered as offline methods. These methods involve careful consideration of 

various stability criteria and margin selections, actuator and joint limitations, 

energy efficiency, ground conditions, division of biped locomotion into phases and 

modeling of biped locomotion phases, locomotion specifications or requirements, 

presence of adequate mathematical tools. 

As an example, a method which is able to produce hip trajectory by iterative 

computation for planning walking patterns for biped robots is presented.  Ground 

conditions, ZMP based stability, the correlation between actuator specifications 

and walking is considered for the generation of reference trajectories in this work. 

The determination of correlation between actuator requirements and the trajectory 

enables the selection of trajectories with small actuator torques and joint velocities 

[20]. 

A trajectory generation method is developed to build a reference trajectory 

database for biped locomotion in a practical time. The suggested method optimizes 

necessary control torques based on an energy based cost function, ensures the 

postural stability by evaluating ZMP and friction conditions of the support foot 

and additionally keeps joint angles and control torques in given boundaries. The 
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generated trajectories are intended to be linked together to support the adaptation 

of step lengths to changing conditions [21]. 

 

Figure 1.10 Generated paths for CoM and head for varying step lengths [21] 

In a different study, gait generation is investigated as an optimization problem with 

multiple objectives. The optimization problem is based on ZMP displacement, 

required actuator torques, joint angle and actuator boundaries, stability and state 

feasibility.  Trajectory selection among various trajectories satisfying optimization 

criteria are carried out according to the least ZMP displacement and actuator 

torque requirement conditions. To handle the complex optimization problem, EDA 

(Estimation of Distribution Algorithms) using spline-based probability function 

with Q learning based updating rule is applied [22]. 

The stability approach is a distinguishing element for a reference trajectory 

generation method. The static stability (or balance) criterion which requires the 

projection of center of mass of the system on the ground to stay in the convex hull 

shaped from support area or areas is practiced in various studies [26, 32]. Since the 

static stability criterion is a very conservative approach, attainable walking speeds 

with this approach is greatly limited. Because of this deficiency, generating 

humanlike gaits by using static stability criterion is a slight possibility. Therefore, 

dynamic stability criteria are widely used in order to evaluate the feasibility of 
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generated trajectories. Zero Moment Point criterion and related stability margin are 

frequently used to prevent the rotation of support foot under unpredictable 

disturbance forces [18, 20, 21, 22]. Although there exists a misconception about 

the definition of ZMP and its difference from CoP (Center of Pressure); ZMP, CoP 

and FZMP (Fictitious ZMP) or FRI (Foot Rotation Indicator) concepts are 

investigated in various explanatory studies [23, 24, 25]. Moreover, ZMP based 

methods mainly depend on the accuracy of the dynamic model. The deficiency of 

most ZMP based trajectory definition methods is sourced from the fundamental 

requirement that either rolling of the support foot is not tolerated or ZMP criteria 

to the foot rotation is not applicable due to the movement of contact boundary 

which restricts the level of resemblance to humanlike gaits and walking speeds. 

Furthermore, generating high accelerations for massive hips in order to keep ZMP 

in a reasonable boundary during phase transitions may result to energy inefficient 

gaits. Another approach to generate dynamically stable reference trajectories is to 

model the biped robot as an inverted pendulum [28, 29, 30, 33]. The advantage of 

this approach is enabling to generate reference trajectories using limited 

information of the robot dynamics. On the other hand, the tracking of this kind of 

reference trajectory relies on robust feedback control due to approximated robot 

dynamics. Additionally, the inverted pendulum approach is not suitable for tasks 

requiring precise foot placement; to cope with this limitation a method involving 

the combination of ZMP and inverted pendulum approach is devised [31]. 

Since a great majority of humanoid robots have 6 degrees of freedom for foot with 

respect to the hip, joint trajectories of lower bodies for given reference trajectories 

of the foot and the hip in task space can be derived uniquely. Therefore, a common 

and simple method to control a biped robot is to design a control system to track 

these derived joint trajectories [39]. 

In some studies, central pattern generators (CPGs) which are thought to be the 

fundamental structure responsible for all rhythmic motions of animals are utilized 

[17, 34, 35, 36]. In this method, different rhythmic motions are generated by 

tuning parameters of the neural oscillator network constituting the central pattern 

generator. However, tuning of parameters for a realizable biped locomotion and 

different environmental conditions is a computational burden which complicates 
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the implementation for real time applications. Various methods are applied in 

order to tune CPG parameters like Genetic Algorithms (GAs) [36], Reinforcement 

Learning (RL) [34], Policy Gradient Methods [35]. Ability to produce stable 

periodic gait patterns, modify the locomotion characteristics like locomotion speed 

or direction by adjusting various parameters are some advantages of CPGs. 

However, designing CPG controllers and adjusting CPG parameters to adapt 

changing conditions while ensuring a stable robot system is difficult to implement 

for autonomous biped robots.  

 

Figure 1.11 Posture Control Principle of Honda Robot P2 [37] 

As a practical example, the biped locomotion control for Honda Humanoid Robot 

P2 can be given. The control algorithms implemented on Honda P2 are grouped in 

3 segments as Ground Reaction Force Control, Model ZMP Control and Foot 

Landing Position Control. Ground Reaction Force Control tries to control the 

location of the point on ground where all measured reaction forces induce zero 

moment (called C-ATGRF in this study) by adjusting support foot’s rotation in 

single support phases and lowering or lifting front or rear foot in double support 

phases to generate a recovering moment preventing tipping over. Model ZMP 

Control changes the position of desired ZMP to a much suitable position by 

inducing strong acceleration on the upper body to change the direction of total 
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inertial forces, thus generating a recovering moment. Foot Landing Position 

Control compensates the long term effect of modified upper body position sourced 

from increased accelerations of Model ZMP Control by adjusting stride length or 

moving foot landing position to a much ideal location for bringing back the 

humanoid robot to its desired walking pattern [37]. 

A control strategy adaptive to various terrains is introduced, which produces 

actuator commands equivalent to alpha excitation signals in an organic muscle. A 

set of intermediate states are supplied to the controller instead of reference 

trajectories where the arrival time information of given intermediate states is not 

provided. The speed of the system is indirectly adjusted by the velocity given 

states. Hence, adapting to a different motion is performed by changing 

intermediate states being supplied to the controller. The system is actuated by 16 

muscular actuators including the related muscular actuation model. The transition 

from the present state to the next state is achieved by making the next state an 

equilibrium point while present state is continuously attached [38]. 

In a different study, offline generated optimal trajectories are controlled by local 

PD joint controllers. Moreover, required modifications in task space trajectories 

are calculated in order to decrease the difference between desired and real stability 

condition. Then, necessary deviations in joint space trajectories are determined by 

an online compensation algorithm depending on the modified task space and a 

predefined hip trajectory deviation pattern is applied by a heuristic compensation 

algorithm [39]. 

In order to investigate different control strategies employed in the biped 

locomotion, a comprehensive theoretical study is carried out. In this study, 

different control strategies which are grouped as high level and low level 

controllers for various scenarios are tested. Advantages and insufficiencies of 

various control strategies are stated, their comparisons are done [69]. 
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Figure 1.12 Different Walking Principles with Foot Toe and Sole [11] 

In order to avoid the speed limitation imposed by full foot contact assumption, a 

control strategy utilizing computed torque control method which considers the 

point contact of support foot during locomotion phases is introduced. The 

proposed method is able to track the desired circular path given for CoM and the 

heel of swing leg, while the support foot is rotating on toe point and the system is 

underactuated [11]. 

In a different study, computed torque control method with an optimization 

algorithm to supply command accelerations based on a quadratic cost function 

including predicted errors is used [68]. 

There exist several studies concentrating on specific locomotion phases [9, 10, 40, 

41]. For instance Liu, Li and Xu investigated the control problem of biped 

locomotion for the double support phase considering external disturbances and 

parametric uncertainties. Fuzzy neural network controller with quadratic 

stabilization and H∞ approach to ensure the robustness is implemented. Fuzzy 

neural network controller consists of nonlinear dynamic system learning, H∞ 
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control for close loop stability and variable structure control components to deal 

with uncertainties [10]. 

1.5. Review of Literature on Humanoid Robots 

By the realization of prospective future of humanoid robots in human society, 

studies on building mechanical systems able to move like humans are intensified. 

It is possible to say that finding satisfactory solutions to the engineering problem 

of designing systems capable of performing human movement is considered to be 

the first and critical step in building humanoid robots. Throughout the world, 

experimental biped robots are built to test the efficiency or feasibility of biped 

locomotion control methods. 

 

Figure 1.13 Honda biped robots up to the present [53] 

Honda Motor Company invested in research and development studies for building 

a humanoid robot more than 20 years. Up to the present time, a total of 11 biped 

robots are constructed. After building 7 experimental robots on biped locomotion, 

production of robots which can interact with the environment and relatively more 

humanoid has started. By continuous development efforts, the maximum 

movement speed of Honda biped robots reached to 6 km/h from 0.25 km/h. 

Moreover, significant amount of both size and weight reduction in humanoid 

robots is achieved as such from 175 to 54 kg weight and from 195 to 130 cms 
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height. The most advanced humanoid robot Honda presented is called as ASIMO 

which is the acronym of Advanced Step in Innovative Mobility. The goal of 

operating ASIMO for a great variety of applications leads to 34 degrees of 

freedom. Several abilities of ASIMO can be listed as creating walking patterns in 

real time, changing foot placement and turning angle at will, moving smoothly 

without transitional pauses, walking while each arm carrying 2kg weights. 

Placements of joints, joint movement ranges, center of gravity of bodies are 

determined regarding measurements on humans. Joint angle sensors at each joint, 

6-axis force sensor at each foot, a speed sensor and a gyroscope are employed. 

[42] 

 

Figure 1.14 HRP-4C and HRP-2 [54] 

In the context of Humanoid Robots Project, several humanoid robots (HRP series) 

are produced. The most advanced humanoid robot of these HRP series is HRP-4C 

at the present.  HRP-4C is implemented with walking algorithms experimented on 

HRP-2 and benefits from the patented technology of Honda Motor Company. Its 

significant features are being purposefully designed to have human appearance and 

mimics, weight lightness, utilizing measured human walking patterns. [43] 
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Figure 1.15 Humanoid REEM-B [55] 

A different humanoid robot named as REEM-B designed by Pal Technology 

Robotics is able to maintain maximum walking speed of 1.5 km/h, carry up to12 

kg weights while walking, walk upstairs or downstairs, follow a predefined 

trajectory. [44] 

 

Figure 1.16 H7 climbing up stairs [56] 

H7 with 30 degrees of freedom and 57 kgs weight is designed by University of 

Tokyo to be used as an experimental humanoid robot for biped locomotion, 
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autonomous operation and human interaction research areas. The operating system 

of control computer in H7 is Linux based which enables to implement various 

qualified development tools and libraries. [45] 

 

 

Figure 1.17 Humanoid robot HUBO2 [57] 

The Korea Advanced Institute of Science and Technology developed several biped 

robots for researching biped locomotion and implementing various methods . The 

last designed and more advanced HUBO2 can move at maximum speed of 3 km/h 

and weighs 45 kgs. [46, 47]  
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Figure 1.18 WABIAN-2 knee-stretch walking [58] 

A different humanoid robot development study is being carried out by Waseda 

University. WABIAN-2R which is the last robot in series has 7 degrees of freedom 

for each leg different than popular humanoid robots, in order to provide more 

independence on knee extension and flexibility to produce smoother gaits. 

Furthermore, the significance of pelvis motion for the human gait is taken into 

consideration; therefore a waist mechanism with 2 degrees of freedom is 

introduced. By avoiding the common bent-knee gait with the introduction of 

specified developments, more energy efficient walking is achieved. [48, 49]  

1.6. Scope of Thesis 

The main objective of this study is to create a simulation environment for the 

investigation of biped locomotion of humanoid robots in 3D space with the control 

strategy proposed. 

Basic physical properties and kinematic configuration of the humanoid robot is 

introduced in chapter 2. The procedure to determine the physical parameters is 
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explained. Also the definition of joint space variables, body coordinate systems, 

basic physical dimensions, actuator torques and conventions used throughout the 

thesis are presented. 

In chapter 3, variables defining the characteristics of reference motion for the 

humanoid robot are introduced. In addition to this, the calculation of reference 

trajectories is explained. 

In chapter 4, derivation of kinematic equations and dynamic equations are shown. 

The assumptions used for the mathematical model of locomotion phases are 

specified. Also the direct dynamic solution and additional operations for the 

transition from single to double support phases are explained. 

Chapter 5 includes the explanation of the control strategy used for the simulation 

of biped locomotion. The calculation procedure of optimum command 

accelerations and the application of computed torque control method for all 

locomotion phases are expressed. 

In chapter 6, the construction of a simulation environment by the commercial 

mathematical tool MATLAB and MATLAB.Simulink is explained. After 

describing the basic logic behind the simulation, simulation results for different 

sample reference inputs are demonstrated. 

In chapter 7, the thesis is discussed and evaluated. Insufficiencies of the simulation 

model and suggestions for the future work are indicated. 
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CHAPTER 2 

PHYSICAL MODELLING 

The physical model, which all simulations of the thesis study are based on, is 

explained in this chapter. Since the mechanical design of a biped robot is not in the 

scope of this thesis, basic parameters defining physical properties are identified by 

considering popular humanoid robots, geometrical and weight proportions of 

human body. Basic properties of the physical model used in the thesis can be listed 

as: 

• All joints of the physical model are revolute and accompanied with 

actuators. Namely, all joints present on the model are controlled actively by 

torque actuators. 

• Possible physical properties of actuators are not distributed to or included 

in adjacent bodies  

• All joints are assumed to be able to perform full rotation. In other words, 

any mechanical systems to impose limitations on joint positions are not 

existent. 

• All joints are assumed to be frictionless and not to have any damper 

elements. 

• The trunk is divided into 2 segments as uppertrunk and lowertrunk bodies. 

Forearm and arm is lumped into a single arm body. 

• The model consists of 13 bodies in total where there are 4 bodies for each 

leg, 2 bodies for the chest, one body for each arm and one body for the 

head. 

•  A revolute joint for the toe part of the foot, a spherical joint for the ankle, a 

revolute joint for the knee, a spherical joint between the thigh and 

lowertrunk body, a spherical joint between lowertrunk and uppertrunk 
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body, a universal joint for the shoulder and a spherical joint for the neck 

are used, which leads to a total of 26 degrees of freedom system as shown 

in Figure 2.1.  

 

Figure 2.1: Overall Kinematic Structure of the Robot 

Bodies are numbered in an orderly fashion such that numbering of bodies starts 

from the ground. Odd numbers for bodies of the right leg and even numbers for 

bodies of the left leg are used, in order to avoid any confusion. After this point, 

bodies are referred with their body numbers in the thesis. Excluded body numbers 

in Table 2.1 and Table 2.2 are virtual bodies which are massless, dimensionless 

and used for modeling kinematic relations between bodies having universal or 

spherical joints.  
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Table 2.1: Body Numbering for Lower Bodies 

 Right Leg Left Leg 
Foot-Toe Body 1 2 
Foot-Main Body 3 4 

Shank 9 10 
Thigh 11 12 

Table 2.2: Body Numbering for Upper Bodies 

 Body Number 
Lowertrunk (Hip) 17 

Uppertrunk 20 
Left Arm 24 
Right Arm 23 

Head 27 

Total body mass and the height is chosen as 55 kg and 1.6 m by considering 

popular and most advanced humanoid robots in the world [42, 43, 44, 45, 46, 47, 

48, 49]. After the selection of these basic parameters, body masses and several 

basic body dimensions are determined by utilizing body weight and measurement 

proportions obtained in a medical study [59]. 

Mass ratio of uppertrunk body (Body 20) to lowertrunk body (Body 17) is taken to 

be 1 for simplicity. Mass proportions of the thigh (Body 11, Body 12) and the 

shank (Body 9, Body 10) with respect to the total lowerlimb mass are assumed to 

be the same as their length proportions to the total lowerlimb length with an 

additional assumption of 15 percent bias for the thigh.  

Table 2.3: Basic Length Proportions 

 Ratio to Body Height Length (mm) 
Upperlimb ( l23z , l24z ) 0.4426 708 

Lowerlimb 0.5001 800 
Trunk 0.3670 587 

Head ( l27 ) 0.1500 240 (201 is used) 
Lowertrunk 0.3670×0.50 294 
Uppertrunk 0.3670×0.50 294 

 Ratio to Lowerlimb Length (mm) 
Thigh ( l11, l12 ) 0.5147 412 
Shank ( l9, l10 ) 0.4023 322 
Foot Length 0.2830 226 
Foot Height 0.0970 78 
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Table 2.4: Basic Mass Proportions 

 Ratio to Total Mass Mass 
(kg) 

Body 23 ,Body 24 (Upperlimb or 
Arm) 

0.0482 2.651 

Lowerlimb (Leg) 0.1426 7.843 
Body 27 (Head) 0.0856 4.708 

Trunk 0.5336 29.348 
Body 11, Body 12 (Thigh) (0.5147+0.15)×0.1426(=0.0948) 5.213 
Body 9, Body 10 (Shank) (0.4023-0.15)×0.1426(=0.0360) 1.979 

Body 1, Body 2 
(Foot-Toe) 

(1-0.5147-
0.4023)×0.1426×0.20(=0.0024) 

0.130 

Body 3, Body 4 
(Foot-Main) 

(1-0.5147-
0.4023)×0.1426×0.80(=0.0096) 

0.521 

 

After the determination of basic parameters, solid modeling of bodies is done to 

find realistic enough inertia tensor matrices as shown in table 2.5. Then, CoM of 

bodies and inertia tensor matrices with respect to the body reference frames at 

CoMs are found by a commercial CAD (computer aided drawing) program 

CATIA V5.R16. Bodies of upperlimb, lowerlimb and head are assumed to be in 

shape of truncated cones or cylinders. An isometric view of modeled bodies is 

shown in Figure 2.2.  
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Figure 2.2: Isometric View of Modeled Bodies 
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Table 2.5: Inertia Tensor Components of Bodies 

 Inertia Tensor Components ( Jxx, Jyy, Jzz, Jxy, Jxz, Jyz) (kg.m2) 

 
 

Body 1, Body 2 

0.00007 
0.00007 
0.00012 
0.00000 
0.00000 
0.00000 

 
 

Body 3, Body 4 

0.00048 
0.00100 
0.00100 
0.00000 
0.00012 
0.00000 

 
 

Body 9, Body 10 

0.01800 
0.01800 
0.00300 
0.00000 
0.00000 
0.00000 

 
 

Body 11, Body 12 

0.07900 
0.07900 
0.01200 
0.00000 
0.00000 
0.00000 

 
 

Body 17, Body 20 

0.35300 
0.13500 
0.27700 
0.00000 
0.00000 
0.00000 

 
 

Body 23, Body 24 

0.11200 
0.11200 
0.00300 
0.00000 
0.00000 
0.00000 

 
 

Body 27 

0.02300 
0.02300 
0.01500 
0.00000 
0.00000 
0.00000 

 

All body coordinate systems are orthogonal right handed coordinate systems and 

located on the proximal end of bodies. The initial robot posture where all joints are 
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at zero positions is shown in Figure 2.3. Body coordinates are arranged in such a 

way that all body coordinates have the same orientation at the initial posture with 

respect to inertial frame fixed to the ground. Hence, Denavit- Hartenberg 

convention for describing kinematic relations is not employed [60]. The position 

of the inertial frame (or Frame 0) and its orientation are shown in Figure 2.3. 

Özgören’s notation for describing vectors, matrices and exponential rotation 

matrices is applied throughout the thesis [67]. Therefore, conventions used for 

describing basic physical features are explained as shown below: 

-*: Point of origin of the body coordinate system or the reference frame for Body 

K 

.�*: Mass center vector of Body K with initial point as -* and terminal point as 

CoM of Body K 

/�*,0: Distance vector between body coordinate systems of Body K and Body Z with 

initial point as -* and terminal point as -0 

(��)(*): ith basis vector of reference frame K 
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Fig. 2.3: Body Coordinate Systems for the Initial Posture  



33 

 

Variables indicating joint space positions are explained in Table 2.6. 

Table 2.6: Explanation of Joint Space Variables 

θ3:  
 
 
 
 
 
 
 
 
 
 
 
 
 

Rotation 
of 

Reference 
Frame 

3  
 
 
 
 
 
 
 
 
 
 
 
 
 

with 
respect to 
Reference 

Frame 

1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

about 

(��1(�) 
θ4: 4 2 (��1(1) 
θ5: 5 3 (��1(2) 
θ6: 6 4 (��1(3) 
θ7: 7 5 (��2(4) 
θ8: 8 6 (��2(5) 
θ9: 9 7 (���(6) 
θ10: 10 8 (���(7) 
θ11: 11 9 (��1(8) 
θ12: 12 10 (��1(�9) 
θ13: 13 11 (��1(��) 
θ14: 14 12 (��1(�1) 
θ15: 15 13 (���(�2) 
θ16: 16 14 (���(�3) 
θ17,r: 17 15 (��2(�4) 
θ17,l: 17 16 (��2(�5) 
θ18: 18 17 (��1(�6) 
θ19: 19 18 (��2(�7) 
θ20: 20 19 (���(�8) 
θ21: 21 20 (���(19) 
θ22: 22 20 (���(19) 
θ23: 23 21 (��1(1�) 
θ24: 24 22 (��1(11) 
θ25: 25 20 (��2(19) 
θ26: 26 25 (��1(14) 
θ27: 27 26 (���(15) 

 

As an example, the definition and the positive sign convention of joint space 

variable θ3 are shown in Figure 2.4. The positive sign conventions for other joint 

space variables are similar to the shown example. 
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Figure 2.4: The Definition of Joint Space Variable θ3 

The definition of scalar parameters for describing basic physical features of bodies 

are shown in  

• Figure 2.5 for Body 1, Body 3 , Body 5 and Body 7 

• Figure 2.6 for Body 2, Body 4 , Body 6 and Body 8 

• Figure 2.7 for Body 9, Body 10, Body 11, Body 12, Body 13, Body 14, 

Body 15 and Body 16 

• Figure 2.8 for Body 17, Body 18 and Body 19 

• Figure 2.9 for Body 20, Body 21, Body 22, Body 25 and Body 26 

• Figure 2.10 for Body 27 

• Figure 2.11 for Body 23 

• Figure 2.12 for Body 24 



35 

 

 

Figure 2.5: Dimensions of Body 1, Body 3, Body 5 and Body 7 

 

Figure 2.6: Dimensions of Body 2, Body 4, Body 6 and Body 8 
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Figure 2.7: Dimensions of Body 9, Body 10, Body 11, Body 12, Body 13, Body 

14, Body 15 and Body 16 
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Figure 2.8: Dimensions of Body 17, Body 18 and Body 19 
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Figure 2.9 Dimensions of Body 20, Body 21, Body 22, Body 25 and Body 26 

 

Figure 2.10: Dimensions of Body 27 
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Figure 2.11: Dimensions of Body 23 

 

Figure 2.12: Dimensions of Body 24 
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According to given parameters, basic dimensions of bodies can be expressed as 

shown below: 

.�� = .�(���(�)  
/��,;<� = /�(���(�)  
.�1 = .1(���(1)  
/�1,;<1 = /1(���(1)  
.�2 = .2=(���(2) − .20(��2(2)  
/�2,� = /2=(���(2) − /20(��2(2)  
.�3 = .3=(���(3) − .30(��2(3)  
/�3,1 = /3=(���(3) − /30(��2(3)  
.�8 = −.8(��2(8)  
/�8,2 = −/8(��2(8) − /6(��2(6) − /4(��2(4)  
.��9 = −.�9(��2(�9)  
/��9,3 = −/�9(��2(�9) − /7(��2(7) − /5(��2(5)  
.��� = −.��(��2(��)  
/���,8 = −/��(��2(��)  
.��1 = −.�1(��2(�1)  
/��1,�9 = −/�1(��2(�1)  
.��6 = −.�6(��2(�6)  
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/��6,�� = −/�60(��2(�6) − /�6?(��1(�6) − /�4(��2(�4) − /�2(��2(�2)  
/��6,�1 = −/�60(��2(�6) + /�6?(��1(�6) − /�5(��2(�5) − /�3(��2(�3)  
.�19 = −.19(��2(19)  
/�19,�6 = −/190(��2(19) − /�8(��2(�8) − /�7(��2(�7)  
/�19,1� = −/19?(��1(19) − /1�(��1(1�)  
/�19,11 = +/19?(��1(19) + /11(��1(11)  
.�12 = .12(��2(12)  
/�12,1� = +/120(��2(12)+/12?(��1(12)  
.�13 = .13(��2(13)  
/�13,11 = +/130(��2(13)−/13?(��1(13)  
.�16 = −.16(��2(16)  
/�16,19 = −/16(��2(16) − /15(��2(15) − /14(��2(14)  
The location of toe points “PtpR” and “PtpL” relatively on Body 1 and Body 2 is 

defined by /��,;<� and  /�1,;<1. 

Since Body 5, Body 6, Body 7, Body 8, Body 13, Body 14, Body 15, Body 16, 

Body 18, Body 19, Body 21, Body 22, Body 25 and Body 26 are virtual; /4, /5, /6, /7, /�2, /�3, /�4, /�5, /�7, /�8, /1�, /11, /14 and /15 are taken as zero. Therefore,  

• -2, -4 and -6 

• -3, -5 and -7 

• -��, -�2 and -�4 

• -�1, -�3 and -�5 

• -�6, -�7 and -�8 
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• -19, -14 and -15 

are coincident points. 

Actuator torques for a specific joint are applied in terms of the body reference 

frame which has the highest index number of adjacent non-virtual bodies. 

Numbering of actuator torques is shown in Figure 2.13. A detailed explanation of 

actuator torques is to be done in mathematical modeling chapter. 

 

Fig 2.13: Actuator Torques 
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CHAPTER 3 

REFERENCE TRAJECTORY GENERATION 

The importance of generating feasible reference trajectories for task space or joint 

space variables is explained in chapter 1. However, devising a reference trajectory 

generation algorithm to supply convenient reference trajectories by considering 

various factors for controlling a biped robot is a major subject which must be 

examined in depth as a separate study and is not in the scope of the thesis. On the 

other hand, generating reference trajectories rapidly according to given parameters 

defining the locomotion is strongly required. Therefore, it is possible to choose a 

reference trajectory which can be controlled, does not require impossible actuator 

torques and does not result to nonphysical situations like colliding or intersecting 

bodies by doing several trials based on locomotion parameters. Consequently, a 

simple reference trajectory generation algorithm is created to define trajectories for 

toe points PtpR and PtpL, Body 1 and Body 2, CoM of Body 17 and Body 17. For 

translational definitions, trajectories are constructed in 2 components; in other 

words, components in the plane formed by (���(9), (��1(9) and in (��2(9) direction are 

defined separately. 

3.1. Locomotion Definition 

Locomotion parameters to be supplied into the reference trajectory generation 

algorithm are shown and explained under this heading. 

3.1.1. Phip 

In the thesis, the biped locomotion is modeled by 4 basic phases which are 

LFFSSP, RFFSSP, LFFDSP and RFFDSP. According to these basic phases, a 

biped locomotion is a continuous cyclic transition between single support and 

double support phases as shown in Figure 3.1. 
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Figure 3.1: Transition of Phases for a Biped Locomotion 

General form of Phip can be described as: 

AB)< =
CDD
DEA���
A�1�⋮A� �GHH

HI
 where A�* is the matrix representation of position vector A��* resolved 

in the inertial frame for Pk (Point K). 

Desired positions of CoM of Body 17 are expressed by points P1, P2,…, Pn. These 

points indicate the desired position of CoM of Body 17 for the beginning or ending 

of a SSP and DSP pair as shown in Figure 3.2. 

 

Figure 3.2: The Definition of Desired CoM of Body 17 
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3.1.2. Vhip 

General form of Vhip can be described as: 

JB)< =
CD
DD
DD
E J�J�,1J1⋮J ��J ��, J GH

HH
HH
I
 where Vk and Vk,k+1 are the magnitude of desired velocities (both 

differentiated and resolved in the inertial frame) of CoM of Body 17 at points Pk 

and Pk,k+1 shown in Figure 3.2. 

3.1.3. R 

General form of R can be described as: 

K = L K�K1⋮K ��
M where Rk is the radius of curvature of the projected CoM path of Body 

17 to the plane formed by (���(9) and (��1(9) between points Pk and Pk+1 as shown in 

Figure 3.3. 

 

Figure 3.3: Labeling of Radius of Curvatures   
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3.1.4. tSSP and PTR 

General form of tSSP can be described as: 

NOOP = L NOOP,�NOOP,1⋮NOOP, ��
M where tSSP,k is the duration time of SSP that occurs during the 

motion of CoM of Body 17 between points Pk and Pk,k+1 

General form of PTR can be describes as: 

AQK = L AQK�AQK1⋮AQK ��
M where PTRk is the ratio of the duration time of SSP to the 

duration time of DSP that occurs during the motion of CoM of Body 17 between 

points Pk and Pk+1. 

3.1.5. SW 

General form of SW can be described as: 

RS = L RS�RS1⋮RS ��
M where SWk is the step width for the swing leg in SSP during the 

motion of CoM of Body 17 between points Pk and Pk,k+1. 

3.1.6. SH and kSH 

General form of SH can be described as: 

RT = L RT�RT1⋮RT ��
M where SHk is the specified step height of the swing leg in SSP for 

the specified time during the motion of CoM of Body 17 between points Pk and 

Pk,k+1. 
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General form of kSH can be described as:  

+OU = CDD
E +OU,�+OU,1⋮+OU, ��GHH

I
 where kSH,k is the ratio of specified step height time to the 

duration time of SSP (tSSP,k) during the motion of CoM of Body 17 between points 

Pk and Pk,k+1. 

3.1.7. kAdj 

General form of kAdj can be described as: 

+VWX = CDD
E +VWX,�+VWX,1⋮+VWX, ��GHH

I
 where kAdj,k is the desired adjustment time ratio during the 

motion of CoM of Body 17 between points Pk and Pk,k+1. 

3.1.8. ∆θPLN and ∆θADJ 

General form of ∆θPLN and ∆θADJ can be described as: 

ΔθZ[\ = L ΔθZ[\_�ΔθZ[\_1⋮ΔθZ[\_^��
M, Δθ_`a = CDD

E Δθ_`a_�Δθ_`a_1⋮Δθ_`a_^��GHH
I
 where ∆θPLN_k for SSP and ∆θADJ_k 

for DSP are desired angular differences during the motion of CoM of Body 17 

between points Pk and Pk+1. 

3.1.9. Tdir 

General form of Tdir can be described as: 

QW)� = L QW)�,�QW)�,1⋮QW)�, ��
M where Tdir,k is turning direction indicator for the motion of CoM 

of Body 17 between points Pk and Pk+1. 
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Tdir,k can take +1 or -1 values only. +1 and -1 values mean turning leftward and 

rightward direction as shown in Figure 3.4 

 

Figure 3.4: Turning Direction Convention 

3.2. Trajectory Definition 

The path of CoM position of Body 17 lying in the plane formed by (���(9) and (��1(9) is 

made of arcs. Cartesian coordinate systems are placed to the arc centers to be used 

during trajectory definitions. According to Phip, R and Tdir definitions, the location 

of arc centers is calculated. 

For given CoM positions of Body 17 as A* and A*b�, the problem of finding arc 

centers is illustrated in Figure 3.5.  

 

Figure 3.5: The Definition of Finding Arc Centers Problem  
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3.2.1. Finding Arc Centers 

For A�* = cA* =A* ?A* 0 d, A�*b� = cA*b� =A*b� ?A*b� 0 d, Ok,k+1 x and Ok,k+1 y are (���(9) and (��1(9)components 

of point Ok,k+1; the solution to the problem of finding the center of an arc with 

radius Rk passing through Pk and Pk+1 can be obtained from equations shown 

below: 

eA* = − -*,*b� =f1 + eA* ? − -*,*b� ?f1 = eA*b� = − -*,*b� =f1 
+eA*b� ? − -*,*b� ?f1

  (3.1) 

eA* = − -*,*b� =f1 + eA* ? − -*,*b� ?f1 = K*1  (3.2) 

Since there exist 2 sets of solution to equation (3.1) and (3.2) such as e-*,*b� =�, -*,*b� ?�f and e-*,*b� =1, -*,*b� ?1f, an algorithm is devised to choose 

the correct center of arc for a given Tdir,k value. 

Using atan2 function, described as g = hNhi2(sin g , cos g) for −n ≤ g ≤ n [61]: 

g� = hNhi2e-*,*b� ?� − A* ?, -*,*b� =� − A* =f  

g1 = hNhi2e-*,*b� ?1 − A* ?, -*,*b� =1 − A* =f  

g = hNhi2eA*b� ? − A* ?, A*b� = − A* =f  

Pseudo code of the algorithm is shown below. 

Version 1: 

IF p�q1 ≤ g� − g ≤ q1r { 

s = g� − g } 

ELSE { 

IF pg� − g < − q1r { 
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s = g� − g + 2n } 

ELSE { 

s = g� − g − 2n } 

} 

IF eQW)�,* = +1f { 

IF (s > 0) { 

Arc Center � e-*,*b� =�, -*,*b� ?�f } 

ELSE { 

Arc Center � e-*,*b� =1, -*,*b� ?1f } 

} 

ELSE { 

IF (s < 0) { 

Arc Center � e-*,*b� =�, -*,*b� ?�f } 

ELSE { 

Arc Center � e-*,*b� =1, -*,*b� ?1f }  

} 

Version 2: 

IF p�q1 ≤ g1 − g ≤ q1r { 

w = g1 − g } 

ELSE { 



51 

 

IF pg1 − g < − q1r { 

w = g1 − g + 2n  } 

ELSE { 

w = g1 − g − 2n } 

} 

IF eQW)�,* = +1f { 

IF (w > 0) { 

Arc Center � e-*,*b� =1, -*,*b� ?1f } 

ELSE { 

Arc Center � e-*,*b� =�, -*,*b� ?�f } 

} 

ELSE { 

IF (w < 0) { 

Arc Center � e-*,*b� =1, -*,*b� ?1f } 

ELSE { 

Arc Center � e-*,*b� =�, -*,*b� ?�f }  

} 

3.2.2. Definition of Local Coordinate Systems 

Since local coordinate system definitions and parameter conventions change 

according to the turning direction, this heading will be examined in 2 subsections. 
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3.2.2.1. For Turning Leftward Direction 

Local coordinate system CSk_k+1 is positioned at the arc center for the path 

between Pk and Pk+1 with an orientation with respect the inertial frame as shown in 

Figure 3.6.  

 

Figure 3.6: Local Coordinate System CSk_k+1 for Turning Leftward 

Direction 

The definition of several parameters shown in Figure 3.6 is explained below. 

gP*,x*_*b� = hNhi2e-*,*b� ? − A* ?, -*,*b� = − A* =f  

gyO*_*b� = gP*,x*_*b� − q1  
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$%(&,') is the component transformation matrix from frame b to frame a. Using the 

exponential representation of rotation matrices by Rodrigues Formula [62], the 

transformation matrix from local coordinate system CSk_k+1 to the inertial frame 

can be expressed as: 

$%(9,yO*_*b�) = e{�|}~��_���    
$%(yO*_*b�,9) = e{�|e�}~��_���f, since $%(9,yO*_*b�). $%(yO*_*b�,9) = �%  
Then, the position vector of point Pk+1 in local coordinate system CSk_k+1 can be 

defined as: 

A�*b�(yO*_*b�) =eA*b� = − -*,*b� =f$%(yO*_*b�,9)(�� + eA*b� ? − -*,*b� ?f$%(yO*_*b�,9)(�1  

A�*b�(yO*_*b�) = �=(�� + �?(�1 for 

�= = �eA*b� = − -*,*b� =f. cosegyO*_*b�f + eA*b� ? − -*,*b� ?f. sinegyO*_*b�f�  
�? = �eA*b� ? − -*,*b� ?f. cosegyO*_*b�f − eA*b� = − -*,*b� =f. sinegyO*_*b�f�  
As a result, gB;�;& *_*b� = hNhi2e�=, −�?f 
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3.2.2.2. For Turning Rightward Direction 

Local coordinate system CSk_k+1 is positioned at the arc center for the path 

between Pk and Pk+1 with an orientation with respect the inertial frame as shown in 

Figure 3.7.  

 

Figure 3.7: Local Coordinate System CSk_k+1 for Turning Rightward 

Direction 

The definition of several parameters shown in Figure 3.7 is explained below. 

gP*,x*_*b� = hNhi2e-*,*b� ? − A* ?, -*,*b� = − A* =f  

gyO*_*b� = gP*,x*_*b� + q1  

The transformation matrix from local coordinate system CSk_k+1 to the inertial 

frame can be expressed as: 

$%(9,yO*_*b�) = e{�|}~��_���  , then $%(yO*_*b�,9) = e{�|e�}~��_���f  
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The position vector of point Pk+1 in local coordinate system CSk_k+1 can be 

defined as: 

A�*b�(yO*_*b�) =eA*b� = − -*,*b� =f$%(yO*_*b�,9)(�� + eA*b� ? − -*,*b� ?f$%(yO*_*b�,9)(�1  

�= = �eA*b� = − -*,*b� =f. cosegyO*_*b�f + eA*b� ? − -*,*b� ?f. sinegyO*_*b�f� 
 (3.3) 

�? = �eA*b� ? − -*,*b� ?f. cosegyO*_*b�f − eA*b� = − -*,*b� =f. sinegyO*_*b�f� 
 (3.4) 

For equations (3.3) and (3.4), A�*b�(yO*_*b�) = �=(�� + �?(�1  

As a result, gB;�;& *_*b� = hNhi2e�=, �?f 

3.2.3. Trajectory Definition during SSP and DSP Pairs 

Since Pk and Pk+1 points indicate the desired position of CoM of Body 17 

respectively for the beginning and ending of a SSP and DSP pair, Pk,k+1 is the point 

where SSP ends and DSP begins.  

The definition of several parameters for a LFFSSP and RFFDSP pair is shown in 

Figure 3.8 for turning left and Figure 3.9 for turning right. PtpR shown in Figure 3.8 

and 3.9 is the position of toe point on Body 1 at the end of LFFSSP. 
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Figure 3.8: θh,SSP_k, ∆θPLN_k and ∆θADJ_k for Turning Left During a LFFSSP 

and RFFDSP pair 

 

Figure 3.9: θh,SSP_k, ∆θPLN_k and ∆θADJ_k for Turning Right During a LFFSSP 

and RFFDSP pair 
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Similarly, the definition of several parameters for a RFFSSP and LFFDSP pair is 

shown in Figure 3.10 for turning left and Figure 3.11 for turning right. PtpL shown 

in Figure 3.10 and 3.11 is the position of toe point on Body 2 at the end of 

RFFSSP. 

 

Figure 3.10: θh,SSP_k, ∆θPLN_k and ∆θADJ_k for Turning Left During a RFFSSP 

and LFFDSP pair 

 

Figure 3.11: θh,SSP_k, ∆θPLN_k and ∆θADJ_k for Turning Right During a RFFSSP 

and LFFDSP pair 
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Then, θh,SSP_k between points Pk and Pk+1 can be calculated as: gB,OOP_* = gB;�;& *_*b� − e∆gP��_* + ∆gV��_*f 

tDSP,k ,the duration time of DSP between points Pk,k+1 and Pk+1, is calculated as N�OP,* = ;���,�P��� . 

3.2.3.1. The Definition of θh(t) 

All times are local phase times, not global times; which means that “t” is assumed 

to be zero at the beginning of each phase. Also θh(t) definitions are independent of 

specified turning directions. 

gB,*(N) = .2*N2 + .1*N1 + .�*N + .9* between points Pk and Pk,k+1 for 0 ≤ N ≤NOOP,* with conditions to be satisfied such as: 

• gB,*(0) = 0 

• gB,*eNOOP,*f = gB,OOP_* 

• 
W}�,�W; |;�9 = ���� 

• 
W}�,�W; |;�;���,� = ��,�����  

Then, the problem of finding proper polynomial coefficients can be described as: 

L 0 0 0 1NOOP,*2 NOOP,*1 NOOP,* 10 0 1 03. NOOP,*1 2. NOOP,* 1 0M CDD
DE.2*.1*.�*.9*GHH

HI =
CDD
DDD
E 0gB,OOP_*J*K*J*,*b�K* GHH

HHH
I
 

Similarly, gB,*(N) = �2*N2 + �1*N1 + ��*N + �9* between points Pk,k+1 and Pk+1 

for 0 ≤ N ≤ N�OP,* with conditions to be satisfied such as: 

• gB,*(0) = gB,OOP_* 

• gB,*eN�OP,*f = gB;�;& *_*b� 

• 
W}�,�W; |;�9 = ��,�����  



59 

 

• 
W}�,�W; |;�;���,� = ������ l 

L 0 0 0 1N�OP,*2 N�OP,*1 N�OP,* 10 0 1 03. N�OP,*1 2. N�OP,* 1 0M
CDD
DE�2*�1*��*�9*GHH

HI =
CDD
DDD
E gB,OOP_*gB;�;& *_*b�J*,*b�K*J*b�K* GHH

HHH
I
 

Since the velocity component of CoM of Body 17 in (��2(9) is always assumed to be 

zero (which will be shown in the trajectory definition for (��2(9) direction), 
W}�,�W;  can 

be expressed directly as 
����);?V�� �&W)��. 

3.2.3.2. Trajectory Definitions for CoM of Body 17 and Body 17 

Definitions for translational and angular features of the trajectory will be explained 

in separate headings. 

3.2.3.2.1. Translational Position and Velocity Definitions for CoM of Body 17 

A�����_�,�6, and J�����_�,�6, the reference position and velocity vector of CoM of Body 

17 differentiated with respect to and resolved in the inertial frame, in matrix forms 

between points Pk and Pk+1 can be described as: 

A����_�,�6* = A���_�,�6=*(�� + A���_�,�6?*(�1 + A���_�,�60*(�2 (3.5) 

J����_�,�6* = J���_�,�6=*(�� + J���_�,�6?*(�1 + J���_�,�60*(�2 (3.6) 

Although Pk z and Pk+1 z are given by the input, A���_�,�60* in equation (3.5) is 

taken to be constant and the same during all phases. Therefore, 

A���_�,�60* = A* 0 = A*b� 0 and J���_�,�60* = 0 

According to the definition of θh,k(t) and local coordinate systems; A���_�,�6=*, A���_�,�6?*, J���_�,�6=* and J���_�,�6?* is calculated. 
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3.2.3.2.1.1. For Turning Left 

A����_�,�6* =
-*,*b� =(�� + -*,*b� ?(�1 + A���_�,�60*(�2 + K* . sin pθ�,�(t)r $%(9,yO*_*b�)(�� −
K*. cos pθ�,�(t)r $%(9,yO*_*b�)(�1 (3.7) 

From equation (3.7), equation (3.8) and equation (3.9) can be derived such as: 

A���_�,�6=* = -*,*b� = + K*. sineθ�,�(t) + gyO*_*b�f  (3.8) 

A���_�,�6?* = -*,*b� ? − K*. coseθ�,�(t) + gyO*_*b�f  (3.9) 

Using equation (3.8) and (3.9): 

J���_�,�6=* = K*. θ� �,�(t). coseθ�,�(t) + gyO*_*b�f  (3.10) 

J���_�,�6?* = K* . θ� �,�(t). sineθ�,�(t) + gyO*_*b�f  (3.11) 

3.2.3.2.1.2. For Turning Right 

A����_�,�6* =
-*,*b� =(�� + -*,*b� ?(�1 + A���_�,�60*(�2 + K* . sin pθ�,�(t)r $%(9,yO*_*b�)(�� +
K*. cos pθ�,�(t)r $%(9,yO*_*b�)(�1 (3.12) 

From equation (3.12), equation (3.13) and equation (3.14) can be derived such as: 

A���_�,�6=* = -*,*b� = + K*. sineθ�,�(t) − gyO*_*b�f  (3.13) 

A���_�,�6?* = -*,*b� ? + K*. coseθ�,�(t) − gyO*_*b�f  (3.14) 

Using equation (3.13) and (3.14): 

J���_�,�6=* = K*. θ� �,�(t). coseθ�,�(t) − gyO*_*b�f  (3.15) 

J���_�,�6?* = −K*. θ� �,�(t). sineθ�,�(t) − gyO*_*b�f  (3.16) 
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3.2.3.2.2. Angular Position and Angular Velocity Definitions for Body 17 

Angular position of Body 17 is given in terms of component transformation 

matrices and defined such that Body 17 is always parallel to the plane formed by (���(9) and (��1(9). 
Angular velocity of Body 17, differentiated with respect to and resolved in the 

inertial frame, is to be found by the definition: 

 ���6_��� = Wy%���( ,�¡)
W; . $%���(9,�6)�

 (3.17) 

Using equation (3.17), ���6_��� = L(�2����6_���(�1(������6_���(�2(�1����6_���(��
M (3.18) 

3.2.3.2.2.1. For SSPs 

The angular position definition between Pk and Pk,k+1 using gB,*(N) definition for 

turning left: 

$%���(9,�6) = $%(9,yO*_*b�). $%(yO*_*b�,�6)  
= e{�|}~��_��� . e{�|}�,�(;) = e{�|p}~��_���b}�,�(;)r 

Similarly for turning right: 

= e{�|}~��_��� . e{�|p�}�,�(;)r = e{�|p}~��_����}�,�(;)r 
3.2.3.2.2.1. For DSPs 

3.2.3.2.2.1.1. For Turning Left 

The angular position definition between Pk,k+1 and Pk+1 for turning left is described 

below. At the beginning of DSP or for t=0: 

$%���(9,�6) = $%(9,yO*_*b�). e{�|}�,���_� = e{�|e}~��_���b}�,���_�f  
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At the end of DSP or for t= N�OP,*: 

$%���(9,�6) = $%(9,yO*b�_*b1) = e{�|}~����_��¢  

In a more general form, $%���(9,�6) = e{�|}�_£�,�(;) 
For gB_��,* (N) = ¤2*N2 + ¤1*N1 + ¤�*N + ¤9* with conditions to be satisfied such 

as: 

• gB_��,*(0) = gyO*_*b� + gB,OOP_* 

• gB_��,*eN�OP,*f = gyO*b�_*b1 

• 
W}�_£�,�(;)W; |;�9 = ��,�����  

• If the turning direction for the next phase is leftwards 
W}�_£�,�(;)W; |;�;���,� =

�������� 
• If the turning direction for the next phase is rightwards 

W}�_£�,�(;)W; |;�;���,� =
− �������� 

Then, the problem of finding proper polynomial coefficients can be described as: 

L 0 0 0 1N�OP,*2 N�OP,*1 N�OP,* 10 0 1 03. N�OP,*1 2. N�OP,* 1 0M CDD
DE¤2*¤1*¤�*¤9*GHH

HI =
CDD
DDE
gyO*_*b� + gB,OOP_*gyO*b�_*b1��,�������������  ¥¦ − �������� GHH

HHI  

3.2.3.2.2.1.1. For Turning Right 

Similarly at the beginning of DSP or for t=0: 

$%���(9,�6) = $%(9,yO*_*b�). e{�|e�}�,���_�f = e{�|e}~��_����}�,���_�f  
At the end of DSP or for t= N�OP,*: 

$%���(9,�6) = $%(9,yO*b�_*b1) = e{�|}~����_��¢  
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In a more general form, $%���(9,�6) = e{�|}�_£�,�(;) 
For gB_��,* (N) = ¤2*N2 + ¤1*N1 + ¤�*N + ¤9* with conditions to be satisfied such 

as: 

• gB_��,*(0) = gyO*_*b� − gB,OOP_* 

• gB_��,*eN�OP,*f = gyO*b�_*b1 

• 
W}�_£�,�(;)W; |;�9 = − ��,�����  

• If the turning direction for the next phase is leftwards 
W}�_£�,�(;)W; |;�;���,� =

�������� 
• If the turning direction for the next phase is rightwards 

W}�_£�,�(;)W; |;�;���,� =
− �������� 

Then, the problem of finding proper polynomial coefficients can be described as: 

L 0 0 0 1N�OP,*2 N�OP,*1 N�OP,* 10 0 1 03. N�OP,*1 2. N�OP,* 1 0M CDD
DE¤2*¤1*¤�*¤9*GHH

HI =
CDD
DDE
gyO*_*b� − gB,OOP_*gyO*b�_*b1− ��,�������������  ¥¦ − �������� GHH

HHI  

3.2.3.3. Trajectory Definitions for Toe Points, Body 1 and Body 2 

3.2.3.3.1. Translational Position and Velocity Definitions for Toe Points on 

Body 1 and Body 2 

A;<�,)* and A;<�,)*, A;<�,�* and A;<�,�* are points showing the initial and final 

positions of toe points PtpR and PtpL on Body 1 and Body 2 at the beginning and 

end of LFFSSP and RFFSSP during the motion of CoM of Body 17 between 

points Pk and Pk,k+1  

g���;,* for LFFSSP and g���;,* for RFFSSP are calculated by using the definitions 

shown in Figure 3.12, Figure 3.13, Figure 3.14,Figure 3.15. 
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Figure 3.12: The definition of θθθθri,k  and θθθθRrot,kRrot,kRrot,kRrot,k during LFFSSP for Turning Left 

 

Fig 3.13: The definition of θθθθli,kli,kli,kli,k and θθθθLrot,kLrot,kLrot,kLrot,k during RFFSSP for Turning Left 
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Fig 3.14: The definition of θθθθri,kri,kri,kri,k and θθθθRrot,kRrot,kRrot,kRrot,k during LFFSSP for Turning Right  

  

Fig 3.15: The definition of θθθθli,kli,kli,kli,k and θθθθLrot,kLrot,kLrot,kLrot,k during RFFSSP for Turning Right 
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Then, g���;,* = gB,OOP_* + ΔθZ[\_� − g�),* and similarly g���;,* = gB,OOP_* +ΔθZ[\§ − g),* 

g�),* is calculated as shown below: 

Since the projection of A;<�,)* onto the plane formed by (���(9) and (��1(9) is 

considered, its component in (��2(9) direction is disregarded. Then: 

A�;<�,)*(9) = A;<�=,)*(�� + A;<�?,)*(�1 (3.19) 

For equation (3.19): 

A�;<�,)*(yO*_*b�) =eA;<�=,)* − -*,*b� =f$%(yO*_*b�,9)(�� + eA;<�?,)* − -*,*b� ?f$%(yO*_*b�,9)(�1  

��= =�eA;<�=,)* − -*,*b� =f. cosegyO*_*b�f + eA;<�?,)* − -*,*b� ?f. sinegyO*_*b�f� 
 (3.20) 

��? =�eA;<�?,)* − -*,*b� ?f. cosegyO*_*b�f − eA;<�=,)* − -*,*b� =f. sinegyO*_*b�f� 
 (3.21) 

Using equation (3.20) and (3.21): 

A�;<�,)*(yO*_*b�) = ��=(�� + ��?(�1  (3.22) 

Then, g�),* can be obtained by equation (3.23) for turning left and equation (3.24) 

for turning right. 

g�),* = hNhi2e��=, −��?f (3.23) 

g�),* = hNhi2e��=, ��?f (3.24) 

The same procedure is employed for calculating g),*. 
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��= =�eA;<�=,)* − -*,*b� =f. cosegyO*_*b�f + eA;<�?,)* − -*,*b� ?f. sinegyO*_*b�f� 
 (3.25) 

��? =�eA;<�?,)* − -*,*b� ?f. cosegyO*_*b�f − eA;<�=,)* − -*,*b� =f. sinegyO*_*b�f� 
 (3.26) 

By equation (3.25) and (3.26): 

A�;<�,)*(yO*_*b�) = ��=(�� + ��?(�1  (3.27) 

Then, g),* can be obtained by equation (3.28) for turning left and equation (3.29) 

for turning right. 

g),* = hNhi2e��=, −��?f (3.28) 

g),* = hNhi2e��=, ��?f (3.29) 

For g��;,* (N) = 2̈*N2 + 1̈*N1 + �̈*N + 9̈* with conditions to be satisfied such 

as: 

• g��;,* (0) = 0 

• g��;,* eNOOP,*f = g���;,* for LFFSSP, g��;,* eNOOP,*f = g���;,* for RFFSSP 

• 
W}�£©,� (;)W; |;�9 = 0 

• 
W}�£©,� (;)W; |;�;���,� = 0 

Then, the problem of finding proper polynomial coefficients can be described as: 

L 0 0 0 1NOOP,*2 NOOP,*1 NOOP,* 10 0 1 03. NOOP,*1 2. NOOP,* 1 0M
CDD
DE 2̈*

1̈*
�̈*
9̈*GHH

HI = L 0g���;,* ¥¦ g���;,*00 M  
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A function named as Kª� ,*(N) is defined to ensure the adjustment of step width to 

the desired value during the motion of CoM of Body 17 between points Pk and 

Pk,k+1 as shown in Figure 3.16. 

 

Figure 3.16: Rgen,k(t) function 

Kª� ,*(N) = «K�,*(N), N ≤ N0,*K�,*, NOOP,* ≥ N > N0,*   , N0,* = NOOP,*k_®¯,� 

For RFFSSP, K�,* = °e-*,*b� = − A;<�=,)*f1 + e-*,*b� ? − A;<�?,)*f1
 (3.30) 
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For LFFSSP, K�,* = °e-*,*b� = − A;<�=,)*f1 + e-*,*b� ? − A;<�?,)*f1
 (3.31) 

During RFFSSP for turning left and LFFSSP for turning right: 

K�,* = K* − O±�1   (3.32) 

During RFFSSP for turning right and LFFSSP for turning left: 

K�,* = K* + O±�1  (3.33) 

Then a function K�,*(N) = ²2*N2 + ²1*N1 + ²�*N + ²9* is defined with conditions 

shown below: 

• K�,*(0) = K�,*, where K�,* is defined by equation (3.30) or (3.31) 

• K�,*eN0,*f = K�,*, where K�,* is defined by equation (3.32) or (3.33) 

• 
W�³,�(;)W; |;�9 = 0 

• 
W�³,�(;)W; |;�;´,� = 0 

Then, the problem of finding proper polynomial coefficients can be described as: 

L 0 0 0 1N0,*2 N0,*1 N0,* 10 0 1 03. N0,*1 2. N0,* 1 0M CDD
DE²2*²1*²�*²9*GHH

HI = LK�,*K�,*00 M  

A polynomial function is introduced to express the position of toe point in (��2(9) 
direction. 

A0,*(N) = ℎ3*N3 + ℎ2*N2 + ℎ1*N1 + ℎ�*N + ℎ9* with conditions to satisfy: 

• A0,*(0) = 0.015 m (Height of the toe point with respect to the plane of (���(9) 
and (��1(9) while the toe part of the foot for the corresponding toe point is 

flatly fixed to the ground) 

• A0,*eNOOP,*f = 0.015 m 
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• A0,*e+OU,*. NOOP,*f = RT* 

• 
WP´,�(;)W; |;�9 = 0 

• 
WP´,�(;)W; |;�;���,� = 0 

Then, the problem of finding proper polynomial coefficients becomes: 

CDD
DDE

0 0 0 0 1NOOP,*3 NOOP,*2 NOOP,*1 NOOP,* 1e+OU,*. NOOP,*f3 e+OU,*. NOOP,*f2 e+OU,*. NOOP,*f1 e+OU,*. NOOP,*f 10 0 0 1 04. NOOP,*2 3. NOOP,*1 2. NOOP,* 1 0GHH
HHI

CD
DDD
Eℎ3*ℎ2*ℎ1*ℎ�*ℎ9*GH

HHH
I

=

CDD
DE0.0150.015RT*00 GHH

HI
  

Having all this information, the reference position and velocity vectors of toe 

points differentiated with respect to and resolved in the inertial frame, can be 

expressed in matrix forms during the motion of CoM of Body 17 between points 

Pk and Pk,k+1 as shown below. 

For turning left: 

A�;<���� *(N)(yO*�b�) = Kª� ,* . ¸¹ieg�),* + g��;,* f  (�� −Kª� ,* . .¥¸eg�),* + g��;,* f (�1 + A0,*(�2 

A�;<�_���*(N)(9) = �Kª� ,* . sineg�),* + g��;,* + gyO*_*b�f + -*,*b� =�(�� +�−Kª� ,* . coseg�),* + g��;,* + gyO*_*b�f + -*,*b� ?�(�1 + A0,*(�2  (3.34) 
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J�;<���� *(N)(9) = �K�ª� ,* . sineg�),* + g��;,* + gyO*�b�f +Kª� ,* . eg��),* + g���;,* + g�yO*�b�f. coseg�),* + g��;,* + gyO*�b�f�(�� +�−K�ª� ,* . coseg�),* + g��;,* + gyO*_*b�f +Kª� ,* . eg��),* + g���;,* + g�yO*_*b�f. sineg�),* + g��;,* + gyO*_*b�f�(�1 + A�0,*(�2 

 (3.35) 

A�;<���� *(N)(yO*�b�) = Kª� ,* . sineg),* + g��;,* f (�� −Kª� ,* . coseg),* + g��;,* f (�1 + A0,*(�2  

A�;<�_���*(N)(9) = �Kª� ,* . sineg),* + g��;,* + gyO*_*b�f + -*,*b� =�(�� +�−Kª� ,* . coseg),* + g��;,* + gyO*_*b�f + -*,*b� ?�(�1 + A0,*(�2  (3.36) 

J�;<���� *(N)(9) = �K�ª� ,* . sineg),* + g��;,* + gyO*�b�f +Kª� ,* . eg�),* + g���;,* + g�yO*_*b�f. coseg),* + g��;,* + gyO*_*b�f�(�� +�−K�ª� ,* . coseg),* + g��;,* + gyO*_*b�f +Kª� ,* . eg�),* + g���;,* + g�yO*_*b�f. sineg),* + g��;,* + gyO*_*b�f�(�1 + A�0,*(�2 

 (3.37) 

For turning right: 

A�;<���� *(N)(yO*�b�) = Kª� ,* . sineg�),* + g��;,* f (�� +Kª� ,* . coseg�),* + g��;,* f (�1 + A0,*(�2  

A�;<�_���*(N)(9) = �Kª� ,* . sineg�),* + g��;,* − gyO*_*b�f + -*,*b� =�(�� +�Kª� ,* . coseg�),* + g��;,* − gyO*_*b�f + -*,*b� ?�(�1 + A0,*(�2  (3.38) 
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J�;<���� *(N)(9) = �K�ª� ,* . sineg�),* + g��;,* − gyO*_*b�f +Kª� ,* . eg��),* + g���;,* − g�yO*_*b�f. coseg�),* + g��;,* − gyO*_*b�f�(�� +�K�ª� ,* . coseg�),* + g��;,* − gyO*_*b�f −Kª� ,* . eg��),* + g���;,* − g�yO*_*b�f. sineg�),* + g��;,* − gyO*_*b�f�(�1 + A�0,*(�2 

 (3.39) 

A�;<���� *(N)(yO*�b�) = Kª� ,* . sineg),* + g��;,* f (�� +Kª� ,* . coseg),* + g��;,* f (�1 + A0,*(�2  

A�;<�_���*(N)(9) = �Kª� ,* . sineg),* + g��;,* − gyO*_*b�f + -*,*b� =�(�� +�Kª� ,* . coseg),* + g��;,* − gyO*_*b�f + -*,*b� ?�(�1 + A0,*(�2  (3.40) 

J�;<���� *(N)(9) = �K�ª� ,* . sineg),* + g��;,* − gyO*_*b�f +Kª� ,* . eg�),* + g���;,* − g�yO*_*b�f. coseg),* + g��;,* − gyO*_*b�f�(�� +�K�ª� ,* . coseg),* + g��;,* − gyO*_*b�f −Kª� ,* . eg�),* + g���;,* − g�yO*_*b�f. sineg),* + g��;,* − gyO*_*b�f�(�1 + A�0,*(�2 

 (3.41) 

3.2.3.3.2. Angular Position and Angular Velocity Definitions for Body 1 and 

Body 2 

Angular positions of Body 1 and Body 2 are given in terms of component 

transformation matrices and defined such that Body 1 and Body 2 are always 

parallel to the plane formed by (���(9) and (��1(9). 
Angular velocities of Body 1 and Body 2, differentiated with respect to and 

resolved in the inertial frame, is to be found by definitions: 

���_��� = Wy%���( ,�)
W; . $%���(9,�)�

 (3.42) 
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��1_��� = Wy%���( ,¢)
W; . $%���(9,1)�

 (3.43) 

Using equation (3.42) and (3.43), equation (3.44) and (3.45) can be found such 

that: 

���_��� = L(�2����_���(�1(������_���(�2(�1����_���(��
M  (3.44) 

��1_��� = L(�2���1_���(�1(�����1_���(�2(�1���1_���(��
M  (3.45) 

During the motion of CoM of Body 17 between points Pk and Pk,k+1, the initial 

orientation (for N = 0) of Body 1 or Body 2 is defined as: 

If QW)�,*�� = +1 ,  
$%���(9,�)¥¦ $%���(9,1) = e{�|º}~��»�_�bp}�,����»�b∆}�¼½_�»�r¾ = e{�|}¿£�À,�  (3.46) 

If QW)�,*�� = −1 , 
$%���(9,�)¥¦ $%���(9,1) = e{�|º}~��»�_��p}�,����»�b∆}�¼½_�»�r¾ = e{�|}¿£�À,�  (3.47) 

The final orientation (N = NOOP,*) of Body 1 or Body 2 is defined as: 

For QW)�,* = +1, 

$%���(9,�)¥¦ $%���(9,1) = e{�|º}~��_���bp}�,����b∆}�¼½_�r¾ = e{�|}¿£��,�  (3.48) 

For QW)�,* = −1, 

$%���(9,�)¥¦ $%���(9,1) = e{�|º}~��_����p}�,����b∆}�¼½_�r¾ = e{�|}¿£��,�  (3.49) 

Then, $%���(9,�)¥¦ $%���(9,1)
 can be defined by function gÁ��,*(N) as e{�|}¿£�,�. 
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gÁ��),* and gÁ���,* values are added or subtracted with 2π if necessary, in order to 

reduce gÁ��),* and gÁ���,* values to –π and +π interval. Additionally after the 

reduction, egÁ���,* − gÁ��),*f is reduced to –π and +π interval if necessary by 

subtraction or addition of 2π to gÁ��),*. 

For gÁ��,*(N) = Â2*N2 + Â1*N1 + Â�*N + Â9* with conditions to be satisfied: 

• gÁ��,*(0) = gÁ��),*, where gÁ��),* is defined by (3.46) or (3.47) 

• gÁ��,*eNOOP,*f = gÁ���,*, where gÁ���,* is defined by (3.48) or (3.49) 

• 
W}¿£�,�(;)W; |;�9 = 0 

• 
W}¿£�,�(;)W; |;�;���,� = 0s 

Then, the problem of finding proper coefficients can be described as: 

L 0 0 0 1NOOP,*2 NOOP,*1 NOOP,* 10 0 1 03. NOOP,*1 2. NOOP,* 1 0M LÂ2Â1Â�Â9
M = LgÁ��),*gÁ���,*00 M 
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CHAPTER 4 

MATHEMATICAL MODELING 

In this chapter, mathematical model behind the simulation is introduced. 

Mathematical modeling is achieved in three steps. Kinematic equations are derived 

in order to find kinematic characteristics of bodies. Derivation of dynamic 

equations is achieved by Newton-Euler equations in a general form for all phases. 

During the direct dynamic solution procedure, generalized dynamic equations are 

arranged into the form which enables the calculation of joint space accelerations 

by implementing assumptions related with biped locomotion and its phases. 

4.1. The Derivation of Kinematic Equations 

In order to keep equations as general as possible, simplifications in kinematic 

equations resulting from kinematic assumptions regarding the locomotion phase 

are avoided. Hence, the application of these assumptions is done during the 

dynamic solution process. However, kinematic information for at least one body 

with respect to the inertial frame is supplied to initialize the recursive calculations. 

Kinematic assumptions depending on the locomotion phase are explained below. 

Several bodies are assumed to be rigidly fixed to the ground as if welded to the 

ground: 

• Body 1 and Body 3 for RFFSSP 

• Body 2 and Body 4 for LFFSSP 

• Body 1, Body 3 and Body 2 for RFFDSP 

• Body 2, Body 4 and Body 1 for LFFDSP 

Assumptions for Body 1 and Body 2 are implemented by supplying proper 

kinematic values to kinematic equations; but kinematic constraint equations 
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embedded in the direct dynamic solution procedure and some joint variables being 

taken as zero during the transition procedure from single to double support phases 

are used to ensure this assumption on Body 3 and Body 4. All values supplied to 

kinematic equations remain constant within its relevant phase. 

Kinematic equations are shown according to the order of recursive calculations. In 

double support phases, calculations begin from both Body 1 and Body 2 until 

kinematic characteristics of Body 17 are found from left (beginning from Body 2) 

and right (beginning from Body 1). Compatibility of kinematic characteristics of 

Body 17 from left and right in double support phases is provided by constraint 

equations during direct dynamic solution procedure and several operations done 

during phase transitions from single to double support phases. Jacobian matrices 

and their approximate time derivatives are calculated by kinematic equations 

related with them, mostly to be used in the following chapter. Several expressions 

of joint space variables used in the thesis are shown below: 

�� =

CD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DE θ2θ3θ4θ5θ6θ7θ8θ�9θ��θ�1θ�2θ�3θ�4θ�5θ�6,Ãθ�6,Äθ�7θ�8θ19θ1�θ11θ12θ13θ14θ15θ16 GH

HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HI

 (4.1) 
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���_U = Åθ2 θ4 θ6 θ8 θ�� θ�2 θ�4 θ�6,ÃÆ�   (4.2) 

���_U = Åθ3 θ5 θ7 θ�9 θ�1 θ�3 θ�5 θ�6,ÄÆ� (4.3) 

������ = Åθ2 θ3 θ4 θ5 θ6 θ7 θ8 θ�9 θ�� θ�1 θ�2 θ�3 θ�4 θ�5 θ�6,Ã θ�6,ÄÆ�
 (4.4) 

���<<�� = Åθ�7 θ�8 θ19 θ1� θ11 θ12 θ13 θ14 θ15 θ16Æ� (4.5) 

4.1.1. Transformation Matrices 

In order to express position, velocity and acceleration features in different frames; 

transformation matrices are frequently used. Since the exponential representation 

of transformation matrices are frequently used in the thesis, some frequently used 

basic properties related with them are shown below: 

e¤ Ç}f�� = e¤ Ç}f� = ¤(� Ç)} = ¤ Ç(�}) = ¤� Ç}  

¤ Ç}À¤ Ç}È = ¤ Ç}È¤ Ç}À = ¤ Çe}Àb}Èf  
¤ Ç}i� = i�, i��¤ Ç} = i�� 

We�É�ÊfW} = iÇ¤ Ç} = ¤ Ç}iÇ  

e¤ Ç}+�fË = ¤ Ç}+Ì¤� Ç}  

¤��À}(�X = (�X cos g + e(Ç)(�Xf sin g, (�X�¤��À} = (�X� cos g + e(ÇX(�)f� sin g, 

where (�) and (�X are basis vectors in matrix form. Also, the tilde symbol is used as 

a skew symmetric matrix operator such that: 

+Ì = Í 0 −+2 +1+2 0 −+�−+1 +� 0 Î for +� = Í+�+1+2Î 



78 

 

Using joint space variable definitions in Table 2.6 and the sign convention 

explained in Figure 2.4, transformation matrices for adjacent frames can be 

expressed as shown below: 

$%(�,2) = ¤��¢}|  

$%(1,3) = ¤��¢}Ï  

$%(2,4) = ¤��¢}Ð  

$%(3,5) = ¤��¢}Ñ  

$%(4,6) = ¤��|}¡  

$%(5,7) = ¤��|}Ò  

$%(6,8) = ¤���}Ó  

$%(7,�9) = ¤���}�   

$%(8,��) = ¤��¢}��  

$%(�9,�1) = ¤��¢}�¢  

$%(��,�2) = ¤��¢}�|  

$%(�1,�3) = ¤��¢}�Ï  

$%(�2,�4) = ¤���}�Ð  

$%(�3,�5) = ¤���}�Ñ  

$%(�4,�6) = ¤��|}�¡,�  

$%(�5,�6) = ¤��|}�¡,Ô  
$%(�6,�7) = ¤��¢}�Ò  

$%(�7,�8) = ¤��|}�Ó  
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$%(�8,19) = ¤���}¢   

$%(19,1�) = ¤���}¢�  

$%(19,11) = ¤���}¢¢  

$%(1�,12) = ¤��¢}¢|  

$%(11,13) = ¤��¢}¢Ï  

$%(19,14) = ¤��|}¢Ð  

$%(14,15) = ¤��¢}¢Ñ  

$%(15,16) = ¤���}¢¡  

Calculation of transformation matrices for lowerbody frames depends on the 

locomotion phase. However, calculation of transformation matrices for upperbody 

frames are the same for all phases, noting that $%(9,�6_��) in RFFDSP and $%(9,�6_��) 
in LFFDSP are used as $%(9,�6). 
$%(9,�7) = $%(9,�6)$%(�6,�7)  
$%(9,�8) = $%(9,�7)$%(�7,�8)  
$%(9,19) = $%(9,�8)$%(�8,19)  
$%(9,1�) = $%(9,19)$%(19,1�)  
$%(9,12) = $%(9,1�)$%(1�,12)  
$%(9,11) = $%(9,19)$%(19,11)  
$%(9,13) = $%(9,11)$%(11,13)  
$%(9,14) = $%(9,19)$%(19,14)  
$%(9,15) = $%(9,14)$%(14,15)  
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$%(9,16) = $%(9,15)$%(15,16)  
4.1.1.1. For RFFSSP 

Considering that Body 1 is assumed to be rigidly fixed to the ground and contents 

of $%(9,�) at the end of previous locomotion phase are supplied to RFFSSP, 

calculation of transformation matrices begins from body coordinate system of 

Body 1. The procedure is shown below: 

$%(9,2) = $%(9,�)$%(�,2), 
$%(9,4) = $%(9,2)$%(2,4)  
$%(9,6) = $%(9,4)$%(4,6)  
$%(9,8) = $%(9,6)$%(6,8)  
$%(9,��) = $%(9,8)$%(8,��)  
$%(9,�2) = $%(9,��)$%(��,�2)  
$%(9,�4) = $%(9,�2)$%(�2,�4)  
$%(9,�6) = $%(9,�4)$%(�4,�6)  
$%(9,�5) = $%(9,�6)$%(�5,�6)�

  

$%(9,�3) = $%(9,�5)$%(�3,�5)�
  

$%(9,�1) = $%(9,�3)$%(�1,�3)�
  

$%(9,�9) = $%(9,�1)$%(�9,�1)�
  

$%(9,7) = $%(9,�9)$%(7,�9)�
  

$%(9,5) = $%(9,7)$%(5,7)�
  

$%(9,3) = $%(9,5)$%(3,5)�
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$%(9,1) = $%(9,3)$%(1,3)�
  

4.1.1.2. For LFFSSP 

Similarly, Calculation of transformation matrices begins from body coordinate 

system of Body 2, where $%(9,1) is supplied to LFFSSP. The procedure is shown 

below: 

$%(9,3) = $%(9,1)$%(1,3), 
$%(9,5) = $%(9,3)$%(3,5)  
$%(9,7) = $%(9,5)$%(5,7)  
$%(9,�9) = $%(9,7)$%(7,�9)  
$%(9,�1) = $%(9,�9)$%(�9,�1)  
$%(9,�3) = $%(9,�1)$%(�1,�3)  
$%(9,�5) = $%(9,�3)$%(�3,�5)  
$%(9,�6) = $%(9,�5)$%(�5,�6)  
$%(9,�4) = $%(9,�6)$%(�4,�6)�

  

$%(9,�2) = $%(9,�4)$%(�2,�4)�
  

$%(9,��) = $%(9,�2)$%(��,�2)�
  

$%(9,8) = $%(9,��)$%(8,��)�
  

$%(9,6) = $%(9,8)$%(6,8)�
  

$%(9,4) = $%(9,6)$%(4,6)�
  

$%(9,2) = $%(9,4)$%(2,4)�
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$%(9,�) = $%(9,2)$%(�,2)�
  

4.1.1.3. For RFFDSP and LFFDSP 

Calculation of transformation matrices, where $%(9,�) and $%(9,1) are supplied, is 

shown below: 

$%(9,2) = $%(9,�)$%(�,2), 
$%(9,4) = $%(9,2)$%(2,4)  
$%(9,6) = $%(9,4)$%(4,6)  
$%(9,8) = $%(9,6)$%(6,8)  
$%(9,��) = $%(9,8)$%(8,��)  
$%(9,�2) = $%(9,��)$%(��,�2)  
$%(9,�4) = $%(9,�2)$%(�2,�4)  
$%(9,�6_��) = $%(9,�4)$%(�4,�6)  
$%(9,3) = $%(9,1)$%(1,3), 
$%(9,5) = $%(9,3)$%(3,5)  
$%(9,7) = $%(9,5)$%(5,7)  
$%(9,�9) = $%(9,7)$%(7,�9)  
$%(9,�1) = $%(9,�9)$%(�9,�1)  
$%(9,�3) = $%(9,�1)$%(�1,�3)  
$%(9,�5) = $%(9,�3)$%(�3,�5)  
$%(9,�6_��) = $%(9,�5)$%(�5,�6)  
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4.1.2. Position Relations 

A��,* is a vector describing the position of mass center of Body K in matrix form of A���,*, resolved in the inertial frame (Frame 0). A�;<� and A�;<� are matrix forms of A��;<� and A��;<�, resolved in the inertial frame. Expression of position relations 

differs according to the locomotion phase for lowerbodies. On the other hand, 

expression of position relations for upperbodies is common for all phases, noting 

that $%(9,�6_��), A��,�6_�� in RFFDSP and $%(9,�6_��), A��,�6_�� in LFFDSP are used as $%(9,�6) and A��,�6 in these expressions. 

A���,19 = A���,�6 − .��6 − /�19,�6 + .�19  

A���,19 = A���,�6 + .�6(��2(�6) + (/190 − .19)(��2(19)  
A��,19 = A��,�6 + .�6$%(9,�6)(�2 + (/190 − .19)$%(9,19)(�2  

Applying the similar procedure for other position relations: 

A��,12 = A��,19 + .19$%(9,19)(�2 − /19?$%(9,19)(�1 + $%(9,12)�(.12 − /120)(�2 − /12?(�1�  
A��,13 = A��,19 + .19$%(9,19)(�2 + /19?$%(9,19)(�1 + $%(9,13)�(.13 − /130)(�2 + /13?(�1�  
A��,16 = A��,19 + .19$%(9,19)(�2 + (/16 − .16)$%(9,16)(�2  

4.1.2.1. For RFFSSP 

Calculation of position relations for RFFSSP is shown below, where A�;<� and $%(9,�) are supplied.  

A��,� = A�;<� + (.� − /�)$%(9,�)(��  

A��,2 = A��,� − .�$%(9,�)(�� + $%(9,2)Å(.2= − /2=)(�� + (/20 − .20)(�2Æ  
A��,8 = A��,2 − $%(9,2)(.2=(�� − .20(�2) + $%(9,8)(/8 − .8)(�2  

A��,�� = A��,8 + .8$%(9,8)(�2 + $%(9,��)(/�� − .��)(�2  
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A��,�6 = A��,�� + .��$%(9,��)(�2 + $%(9,�6)�(/�60 − .�6)(�2 + /�6?(�1�  
A��,�1 = A��,�6 + $%(9,�6)�(.�6 − /�60)(�2 + /�6?(�1� − .�1$%(9,�1)(�2  

A��,�9 = A��,�1 + (.�1 − /�1)$%(9,�1)(�2 − .�9$%(9,�9)(�2  

A��,3 = A��,�9 + $%(9,�9)(.�9 − /�9)(�2 + $%(9,3)(.3=(�� − .30(�2)  

A��,1 = A��,3 + $%(9,3)Å(/3= − .3=)(�� + (.30 − /30)(�2Æ + .1$%(9,1)(��  

A�;<� = A��,3 + $%(9,3)Å(/3= − .3=)(�� + (.30 − /30)(�2Æ + /1$%(9,1)(��  

4.1.2.2. For LFFSSP 

Calculation of position relations for LFFSSP is shown below, where A�;<� and $%(9,1) are supplied.  

A��,1 = A�;<� + (.1 − /1)$%(9,1)(��  

A��,3 = A��,1 − .1$%(9,1)(�� + $%(9,3)Å(.3= − /3=)(�� + (/30 − .30)(�2Æ  
A��,�9 = A��,3 − $%(9,3)(.3=(�� − .30(�2) + $%(9,�9)(/�9 − .�9)(�2  

A��,�1 = A��,�9 + .�9$%(9,�9)(�2 + $%(9,�1)(/�1 − .�1)(�2  

A��,�6 = A��,�1 + .�1$%(9,�1)(�2 + $%(9,�6)�(/�60 − .�6)(�2 − /�6?(�1�  
A��,�� = A��,�6 + $%(9,�6)�(.�6 − /�60)(�2 − /�6?(�1� − .��$%(9,��)(�2  

A��,8 = A��,�� + $%(9,��)(.�� − /��)(�2 − .8$%(9,8)(�2  

A��,2 = A��,8 + $%(9,8)(.8 − /8)(�2 + $%(9,2)(.2=(�� − .20(�2)  

A��,� = A��,2 + $%(9,2)Å(/2= − .2=)(�� + (.20 − /20)(�2Æ + .�$%(9,�)(��  

A�;<� = A��,2 + $%(9,2)Å(/2= − .2=)(�� + (.20 − /20)(�2Æ + /�$%(9,�)(��  
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4.1.2.3. For RFFDSP and LFFDSP 

Calculation of position relations for RFFDSP and LFFDSP is shown below; also A�;<�, A�;<�, $%(9,�) and $%(9,1) are supplied. 

A��,� = A�;<� + (.� − /�)$%(9,�)(��  

A��,2 = A��,� − .�$%(9,�)(�� + $%(9,2)Å(.2= − /2=)(�� + (/20 − .20)(�2Æ  
A��,8 = A��,2 − $%(9,2)(.2=(�� − .20(�2) + $%(9,8)(/8 − .8)(�2  

A��,�� = A��,8 + .8$%(9,8)(�2 + $%(9,��)(/�� − .��)(�2  

A��,�6_�� = A��,�� + .��$%(9,��)(�2 + $%(9,�6_��)�(/�60 − .�6)(�2 + /�6?(�1�  
A��,1 = A�;<� + (.1 − /1)$%(9,1)(��  

A��,3 = A��,1 − .1$%(9,1)(�� + $%(9,3)Å(.3= − /3=)(�� + (/30 − .30)(�2Æ  
A��,�9 = A��,3 − $%(9,3)(.3=(�� − .30(�2) + $%(9,�9)(/�9 − .�9)(�2  

A��,�1 = A��,�9 + .�9$%(9,�9)(�2 + $%(9,�1)(/�1 − .�1)(�2  

A��,�6_�� = A��,�1 + .�1$%(9,�1)(�2 + $%(9,�6_��)�(/�60 − .�6)(�2 − /�6?(�1�  
4.1.3. Angular Velocity Relations 

��* is a vector describing the angular velocity of frame K with respect to the 

inertial frame in matrix form of ����*, resolved in the inertial frame. Expression of 

angular velocity relations differs according to the locomotion phase for 

lowerbodies. On the other hand, expression of angular velocity relations for 

upperbodies is common for all phases, noting that $%(9,�6_��), ���6_�� in RFFDSP 

and $%(9,�6_��), ���6_�� in LFFDSP are used as $%(9,�6) and ���6 in expressions shown 

below. 

�����7 = �����6 + g��7(��1(�6)
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���7 = ���6 + g��7$%(9,�6)(�1  

Applying the similar procedure for other angular velocity relations: 

���8 = ���7 + g��8$%(9,�7)(�2  

 ��19 = ���8 + g�19$%(9,�8)(�� 

 ��1� = ��19 + g�1�$%(9,19)(�� 

��11 = ��19 + g�11$%(9,19)(��  

��12 = ��1� + g�12$%(9,1�)(�1  

��13 = ��11 + g�13$%(9,11)(�1  

��14 = ��19 + g�14$%(9,19)(�2  

��15 = ��14 + g�15$%(9,14)(�1  

��16 = ��15 + g�16$%(9,15)(��  

4.1.3.1. For RFFSSP 

Calculation of angular velocities for RFFSSP is shown below, where ���, $%(9,�) are 

supplied to RFFSSP. ��� is supplied as 0�2×� in the simulation since Body 1 is 

assumed to be rigidly fixed to the ground during RFFSSP. 

��2 = ��� + g�2$%(9,�)(�1  

��4 = ��2 + g�4$%(9,2)(�1  

��6 = ��4 + g�6$%(9,4)(�2  

��8 = ��6 + g�8$%(9,6)(��  

���� = ��8 + g���$%(9,8)(�1  

���2 = ���� + g��2$%(9,��)(�1  
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���4 = ���2 + g��4$%(9,�2)(��  

���6 = ���4 + g��6,�$%(9,�4)(�2  

���5 = ���6 − g��6,$%(9,�6)(�2  

���3 = ���5 − g��5$%(9,�5)(��  

���1 = ���3 − g��3$%(9,�3)(�1  

���9 = ���1 − g��1$%(9,�1)(�1  

��7 = ���9 − g��9$%(9,�9)(��  

��5 = ��7 − g�7$%(9,7)(�2  

��3 = ��5 − g�5$%(9,5)(�1  

��1 = ��3 − g�3$%(9,3)(�1  

4.1.3.2. For LFFSSP 

Calculation of angular velocities for LFFSSP is shown below, where ��1, $%(9,1) are 

supplied to LFFSSP. ��1 is supplied as 0�2×�  in the simulation since Body 2 is 

assumed to be rigidly fixed to the ground during LFFSSP. 

��3 = ��1 + g�3$%(9,1)(�1  

��5 = ��3 + g�5$%(9,3)(�1  

��7 = ��5 + g�7$%(9,5)(�2  

���9 = ��7 + g��9$%(9,7)(��  

���1 = ���9 + g��1$%(9,�9)(�1  

���3 = ���1 + g��3$%(9,�1)(�1  

���5 = ���3 + g��5$%(9,�3)(��  
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���6 = ���5 + g��6,$%(9,�5)(�2  

���4 = ���6 − g��6,�$%(9,�6)(�2  

���2 = ���4 − g��4$%(9,�4)(��  

���� = ���2 − g��2$%(9,�2)(�1  

��8 = ���� − g���$%(9,��)(�1  

��6 = ��8 − g�8$%(9,8)(��  

��4 = ��6 − g�6$%(9,6)(�2  

��2 = ��4 − g�4$%(9,4)(�1  

��� = ��2 − g�2$%(9,2)(�1  

4.1.3.2. For RFFDSP and LFFDSP 

The procedure of calculating angular velocities for RFFDSP and LFFDSP is 

shown below; where ���, ��1, $%(9,�), $%(9,1) are supplied. ��� and ��1 are supplied as 0�2×� in the simulation since Body 1 and Body 2 are assumed to be rigidly fixed to 

the ground during RFFDSP and LFFDSP. 

��2 = ��� + g�2$%(9,�)(�1  

��4 = ��2 + g�4$%(9,2)(�1  

��6 = ��4 + g�6$%(9,4)(�2  

��8 = ��6 + g�8$%(9,6)(��  

���� = ��8 + g���$%(9,8)(�1  

���2 = ���� + g��2$%(9,��)(�1  

���4 = ���2 + g��4$%(9,�2)(��  
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���6_�� = ���4 + g��6,�$%(9,�4)(�2  

��3 = ��1 + g�3$%(9,1)(�1  

��5 = ��3 + g�5$%(9,3)(�1  

��7 = ��5 + g�7$%(9,5)(�2  

���9 = ��7 + g��9$%(9,7)(��  

���1 = ���9 + g��1$%(9,�9)(�1  

���3 = ���1 + g��3$%(9,�1)(�1  

���5 = ���3 + g��5$%(9,�3)(��  

���6_�� = ���5 + g��6,$%(9,�5)(�2  

4.1.4. Translational Velocity Relations 

J��,* is a vector describing the translational velocity of the mass center of Body K 

in matrix form of J���,*, differentiated with respect to and resolved in the inertial 

frame. Expression of translational velocity relations differs according to the 

locomotion phase for lowerbodies. On the other hand, expression of translational 

velocity relations for upperbodies is common for all phases, noting that $%(9,�6_��), ���6_�� in RFFDSP and $%(9,�6_��), ���6_�� in LFFDSP are used as $%(9,�6) and ���6 

in expressions shown below. 

J���,19 = J���,�6 + .�6�����6 × (��2(�6) + (/190 − .19)����19 × (��2(19)
  

J��,19 = J��,�6 + .�6���6$%(9,�6)(�2 + (/190 − .19)��19$%(9,19)(�2  

Applying the similar procedure for other translational velocity relations: 

J��,12 = J��,19 + .19��19$%(9,19)(�2 − /19?��19$%(9,19)(�1 + (.12 − /120)��12$%(9,12)(�2 −/12?��12$%(9,12)(�1  
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J��,13 = J��,19 + .19��19$%(9,19)(�2 + /19?��19$%(9,19)(�1 + (.13 − /130)��13$%(9,13)(�2 +/13?��13$%(9,13)(�1  

J��,16 = J��,19 + .19��19$%(9,19)(�2 + (/16 − .16)��16$%(9,16)(�2  

4.1.4.1. For RFFSSP 

The procedure of calculating translational velocities for RFFSSP is shown below; 

where ���, J�;<�, $%(9,�) are supplied. ��� and J�;<� are supplied as 0�2×� in the 

simulation since Body 1 is assumed to be rigidly fixed to the ground during 

RFFSSP. 

J��,� = J�;<� + (.� − /�)���$%(9,�)(��  

J��,2 = J��,� − .����$%(9,�)(�� + (.2= − /2=)��2$%(9,2)(�� + (/20 − .20)��2$%(9,2)(�2  

J��,8 = J��,2 − .2=��2$%(9,2)(�� + .20��2$%(9,2)(�2 + (/8 − .8)��8$%(9,8)(�2  

J��,�� = J��,8 + .8��8$%(9,8)(�2 + (/�� − .��)����$%(9,��)(�2  

J��,�6 = J��,�� + .������$%(9,��)(�2 + /�6?���6$%(9,�6)(�1 + (/�60 − .�6)���6$%(9,�6)(�2  

J��,�1 = J��,�6 + /�6?���6$%(9,�6)(�1 + (.�6 − /�60)���6$%(9,�6)(�2 − .�1���1$%(9,�1)(�2  

J��,�9 = J��,�1 + (.�1 − /�1)���1$%(9,�1)(�2 − .�9���9$%(9,�9)(�2  

J��,3 = J��,�9 + (.�9 − /�9)���9$%(9,�9)(�2 + .3=��3$%(9,3)(�� − .30��3$%(9,3)(�2  

J��,1 = J��,3 + (/3= − .3=)��3$%(9,3)(�� + (.30 − /30)��3$%(9,3)(�2 + .1��1$%(9,1)(��  

J�;<� = J��,3 + (/3= − .3=)��3$%(9,3)(�� + (.30 − /30)��3$%(9,3)(�2 + /1��1$%(9,1)(��  

4.1.4.2. For LFFSSP 

The procedure of calculating translational velocities for LFFSSP is shown below; 

where ��1, J�;<�, $%(9,1) are supplied. ��1 and J�;<� are supplied as 0�2×� in the 
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simulation since Body 2 is assumed to be rigidly fixed to the ground during 

LFFSSP. 

J��,1 = J�;<� + (.1 − /1)��1$%(9,1)(��  

J��,3 = J��,1 − .1��1$%(9,1)(�� + (.3= − /3=)��3$%(9,3)(�� + (/30 − .30)��3$%(9,3)(�2  

J��,�9 = J��,3 − .3=��3$%(9,3)(�� + .30��3$%(9,3)(�2 + (/�9 − .�9)���9$%(9,�9)(�2  

J��,�1 = J��,�9 + .�9���9$%(9,�9)(�2 + (/�1 − .�1)���1$%(9,�1)(�2  

J��,�6 = J��,�1 + .�1���1$%(9,�1)(�2 − /�6?���6$%(9,�6)(�1 + (/�60 − .�6)���6$%(9,�6)(�2  

J��,�� = J��,�6 − /�6?���6$%(9,�6)(�1 + (.�6 − /�60)���6$%(9,�6)(�2 − .������$%(9,��)(�2  

J��,8 = J��,�� + (.�� − /��)����$%(9,��)(�2 − .8��8$%(9,8)(�2  

J��,2 = J��,8 + (.8 − /8)��8$%(9,8)(�2 + .2=��2$%(9,2)(�� − .20��2$%(9,2)(�2  

J��,� = J��,2 + (/2= − .2=)��2$%(9,2)(�� + (.20 − /20)��2$%(9,2)(�2 + .����$%(9,�)(��  

J�;<� = J��,2 + (/2= − .2=)��2$%(9,2)(�� + (.20 − /20)��2$%(9,2)(�2 + /����$%(9,�)(��  

4.1.4.3. For RFFDSP and LFFDSP 

The procedure of calculating translational velocities for LFFDSP and RFFDSP is 

shown below; where ���, ��1, J�;<�, J�;<�, $%(9,�) and $%(9,1) are supplied.���, ��1, J�;<� 

and J�;<� are supplied as 0�2×� in the simulation since Body1 and Body 2 are 

assumed to be rigidly fixed to the ground during RFFDSP and LFFDSP. 

J��,� = J�;<� + (.� − /�)���$%(9,�)(��  

J��,2 = J��,� − .����$%(9,�)(�� + (.2= − /2=)��2$%(9,2)(�� + (/20 − .20)��2$%(9,2)(�2  

J��,8 = J��,2 − .2=��2$%(9,2)(�� + .20��2$%(9,2)(�2 + (/8 − .8)��8$%(9,8)(�2  

J��,�� = J��,8 + .8��8$%(9,8)(�2 + (/�� − .��)����$%(9,��)(�2  
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J��,�6_�� =J��,�� + .������$%(9,��)(�2 + /�6?���6$%(9,�6_��)(�1 + (/�60 − .�6)���6$%(9,�6_��)(�2  

J��,1 = J�;<� + (.1 − /1)��1$%(9,1)(��  

J��,3 = J��,1 − .1��1$%(9,1)(�� + (.3= − /3=)��3$%(9,3)(�� + (/30 − .30)��3$%(9,3)(�2  

J��,�9 = J��,3 − .3=��3$%(9,3)(�� + .30��3$%(9,3)(�2 + (/�9 − .�9)���9$%(9,�9)(�2  

J��,�1 = J��,�9 + .�9���9$%(9,�9)(�2 + (/�1 − .�1)���1$%(9,�1)(�2  

J��,�6_�� =J��,�1 + .�1���1$%(9,�1)(�2 − /�6?���6$%(9,�6_��)(�1 + (/�60 − .�6)���6$%(9,�6_��)(�2  

4.1.5. Angular Acceleration Relations 

Õ�* is a vector describing the angular acceleration of frame K with respect to the 

inertial frame in matrix form of Õ�*, differentiated with respect to and resolved in 

the inertial frame. Expression of angular acceleration relations differs according to 

the locomotion phase for lowerbodies. On the other hand, expression of angular 

acceleration relations for upperbodies is common for all phases, noting that $%(9,�6_��), ���6_��, Õ��6_�� in RFFDSP and $%(9,�6_��), ���6_��, Õ��6_��  in LFFDSP 

are used as $%(9,�6), ���6 and Õ��6 in expressions shown below. 

Õ��7 = Õ��6 + gÖ�7(��1(�6) + g��7�����6 × (��1(�6)
  

Õ��7 = Õ��6 + gÖ�7$%(9,�6)(�1 + g��7���6$%(9,�6)(�1  

Applying the similar procedure for other angular acceleration relations: 

Õ��8 = Õ��7 + gÖ�8$%(9,�7)(�2 + g��8���7$%(9,�7)(�2  

Õ�19 = Õ��8 + gÖ19$%(9,�8)(�� + g�19���8$%(9,�8)(��  

Õ�1� = Õ�19 + gÖ1�$%(9,19)(�� + g�1���19$%(9,19)(��  

Õ�11 = Õ�19 + gÖ11$%(9,19)(�� + g�11��19$%(9,19)(��  
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Õ�12 = Õ�1� + gÖ12$%(9,1�)(�1 + g�12��1�$%(9,1�)(�1  

Õ�13 = Õ�11 + gÖ13$%(9,11)(�1 + g�13��11$%(9,11)(�1  

Õ�14 = Õ�19 + gÖ14$%(9,19)(�2 + g�14��19$%(9,19)(�2  

Õ�15 = Õ�14 + gÖ15$%(9,14)(�1 + g�15��14$%(9,14)(�1  

Õ�16 = Õ�15 + gÖ16$%(9,15)(�� + g�16��15$%(9,15)(��  

4.1.5.1. For RFFSSP 

Calculation of angular accelerations for RFFSSP is shown below; where Õ��, ���, $%(9,�) are supplied. Õ�� and ��� are supplied as 0�2×� in the simulation since Body 1 

is assumed to be rigidly fixed to the ground during RFFSSP. 

Õ�2 = Õ�� + gÖ2$%(9,�)(�1 + g�2���$%(9,�)(�1  

Õ�4 = Õ�2 + gÖ4$%(9,2)(�1 + g�4��2$%(9,2)(�1  

Õ�6 = Õ�4 + gÖ6$%(9,4)(�2 + g�6��4$%(9,4)(�2  

Õ�8 = Õ�6 + gÖ8$%(9,6)(�� + g�8��6$%(9,6)(��  

Õ��� = Õ�8 + gÖ��$%(9,8)(�1 + g�����8$%(9,8)(�1  

Õ��2 = Õ��� + gÖ�2$%(9,��)(�1 + g��2����$%(9,��)(�1  

Õ��4 = Õ��2 + gÖ�4$%(9,�2)(�� + g��4���2$%(9,�2)(��  

Õ��6 = Õ��4 + gÖ�6,�$%(9,�4)(�2 + g��6,����4$%(9,�4)(�2  

Õ��5 = Õ��6 − gÖ�6,$%(9,�6)(�2 − g��6,���6$%(9,�6)(�2  

Õ��3 = Õ��5 − gÖ�5$%(9,�5)(�� − g��5���5$%(9,�5)(��  

Õ��1 = Õ��3 − gÖ�3$%(9,�3)(�1 − g��3���3$%(9,�3)(�1  

Õ��9 = Õ��1 − gÖ�1$%(9,�1)(�1 − g��1���1$%(9,�1)(�1  
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Õ�7 = Õ��9 − gÖ�9$%(9,�9)(�� − g��9���9$%(9,�9)(��  

Õ�5 = Õ�7 − gÖ7$%(9,7)(�2 − g�7��7$%(9,7)(�2  

Õ�3 = Õ�5 − gÖ5$%(9,5)(�1 − g�5��5$%(9,5)(�1  

Õ�1 = Õ�3 − gÖ3$%(9,3)(�1 − g�3��3$%(9,3)(�1  

4.1.5.2. For LFFSSP 

Calculation of angular accelerations for LFFSSP is shown below; where Õ�1, ��1, $%(9,1) are supplied. Õ�1 and ��1 are supplied as 0�2×� in the simulation since Body 2 

is assumed to be rigidly fixed to the ground during LFFSSP. 

Õ�3 = Õ�1 + gÖ3$%(9,1)(�1 + g�3��1$%(9,1)(�1  

Õ�5 = Õ�3 + gÖ5$%(9,3)(�1 + g�5��3$%(9,3)(�1  

Õ�7 = Õ�5 + gÖ7$%(9,5)(�2 + g�7��5$%(9,5)(�2  

Õ��9 = Õ�7 + gÖ�9$%(9,7)(�� + g��9��7$%(9,7)(��  

Õ��1 = Õ��9 + gÖ�1$%(9,�9)(�1 + g��1���9$%(9,�9)(�1  

Õ��3 = Õ��1 + gÖ�3$%(9,�1)(�1 + g��3���1$%(9,�1)(�1  

Õ��5 = Õ��3 + gÖ�5$%(9,�3)(�� + g��5���3$%(9,�3)(��  

Õ��6 = Õ��5 + gÖ�6,$%(9,�5)(�2 + g��6,���5$%(9,�5)(�2  

Õ��4 = Õ��6 − gÖ�6,�$%(9,�6)(�2 − g��6,����6$%(9,�6)(�2  

Õ��2 = Õ��4 − gÖ�4$%(9,�4)(�� − g��4���4$%(9,�4)(��  

Õ��� = Õ��2 − gÖ�2$%(9,�2)(�1 − g��2���2$%(9,�2)(�1  

Õ�8 = Õ��� − gÖ��$%(9,��)(�1 − g�������$%(9,��)(�1  

Õ�6 = Õ�8 − gÖ8$%(9,8)(�� − g�8��8$%(9,8)(��  
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Õ�4 = Õ�6 − gÖ6$%(9,6)(�2 − g�6��6$%(9,6)(�2  

Õ�2 = Õ�4 − gÖ4$%(9,4)(�1 − g�4��4$%(9,4)(�1  

Õ�� = Õ�2 − gÖ2$%(9,2)(�1 − g�2��2$%(9,2)(�1  

4.1.5.2. For RFFDSP and LFFDSP 

The procedure of calculating angular accelerations for RFFDSP and LFFDSP is 

shown below; where Õ��, Õ�1, ���, ��1, $%(9,�) and $%(9,1) are supplied. Õ��, Õ�1, ��� and ��1 are supplied as 0�2×� in the simulation since Body 1 and Body 2 are assumed to 

be rigidly fixed to the ground during RFFDSP and LFFDSP. 

Õ�2 = Õ�� + gÖ2$%(9,�)(�1 + g�2���$%(9,�)(�1  

Õ�4 = Õ�2 + gÖ4$%(9,2)(�1 + g�4��2$%(9,2)(�1  

Õ�6 = Õ�4 + gÖ6$%(9,4)(�2 + g�6��4$%(9,4)(�2  

Õ�8 = Õ�6 + gÖ8$%(9,6)(�� + g�8��6$%(9,6)(��  

Õ��� = Õ�8 + gÖ��$%(9,8)(�1 + g�����8$%(9,8)(�1  

Õ��2 = Õ��� + gÖ�2$%(9,��)(�1 + g��2����$%(9,��)(�1  

Õ��4 = Õ��2 + gÖ�4$%(9,�2)(�� + g��4���2$%(9,�2)(��  

Õ��6_�� = Õ��4 + gÖ�6,�$%(9,�4)(�2 + g��6,����4$%(9,�4)(�2  

Õ�3 = Õ�1 + gÖ3$%(9,1)(�1 + g�3��1$%(9,1)(�1  

Õ�5 = Õ�3 + gÖ5$%(9,3)(�1 + g�5��3$%(9,3)(�1  

Õ�7 = Õ�5 + gÖ7$%(9,5)(�2 + g�7��5$%(9,5)(�2  

Õ��9 = Õ�7 + gÖ�9$%(9,7)(�� + g��9��7$%(9,7)(��  

Õ��1 = Õ��9 + gÖ�1$%(9,�9)(�1 + g��1���9$%(9,�9)(�1  
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Õ��3 = Õ��1 + gÖ�3$%(9,�1)(�1 + g��3���1$%(9,�1)(�1  

Õ��5 = Õ��3 + gÖ�5$%(9,�3)(�� + g��5���3$%(9,�3)(��  

Õ��6_�� = Õ��5 + gÖ�6,$%(9,�5)(�2 + g��6,���5$%(9,�5)(�2  

4.1.6. Translational Acceleration Relations 

h��,* is a vector describing the translational acceleration of the mass center of Body 

K in matrix form of h��,*, differentiated with respect to and resolved in the inertial 

frame. Expression of translational acceleration relations differs according to the 

locomotion phase for lowerbodies. On the other hand, expression of translational 

acceleration relations for upperbodies is common for all phases, noting that $%(9,�6_��), ���6_��, h��,�6_�� in RFFDSP and $%(9,�6_��), ���6_��, h��,�6_�� in LFFDSP 

are used as $%(9,�6), ���6 and h��,�6 in expressions shown below. 

h��,19 = h��,�6 + .�6 ×Õ��6 × (��2(�6) + �����6 × p�����6 × (��2(�6)rØ 
+(/190 − .19) ×Õ�19 × (��2(19) + ����19 × p����19 × (��2(19)rØ 
h��,19 = h��,�6 + .�6�ÕÇ�6 + ���61�$%(9,�6)(�2 + (/190 − .19)�ÕÇ19 + ��191�$%(9,19)(�2  

Applying the similar procedure for other translational acceleration relations: 

h��,12 = h��,19 − /19?�ÕÇ19 + ��191�$%(9,19)(�1 + (.12 − /120)�ÕÇ12 + ��121�$%(9,12)(�2 −/12?�ÕÇ12 + ��121�$%(9,12)(�1 + .19�ÕÇ19 + ��191�$%(9,19)(�2  

h��,13 = h��,19 + /19?�ÕÇ19 + ��191�$%(9,19)(�1 + (.13 − /130)�ÕÇ13 + ��131�$%(9,13)(�2 +/13?�ÕÇ13 + ��131�$%(9,13)(�1 + .19�ÕÇ19 + ��191�$%(9,19)(�2  

h��,16 = h��,19 + .19�ÕÇ19 + ��191�$%(9,19)(�2 + (/16 − .16)�ÕÇ16 + ��161�$%(9,16)(�2  

4.1.6.1. For RFFSSP 

Calculation of translational accelerations for RFFSSP is shown below; where h�;<�,  Õ��, ��� and $%(9,�) are supplied. h�;<�,  Õ�� and ��� are supplied as 0�2×� in the 
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simulation since Body 1 is assumed to be rigidly fixed to the ground during 

RFFSSP. 

h��,� = h�;<� + (.� − /�)�ÕÇ� + ���1�$%(9,�)(��  

h��,2 = h��,� − .��ÕÇ� + ���1�$%(9,�)(�� + (.2= − /2=)�ÕÇ2 + ��21�$%(9,2)(�� +(/20 − .20)�ÕÇ2 + ��21�$%(9,2)(�2  

h��,8 = h��,2 − .2=�ÕÇ2 + ��21�$%(9,2)(�� + .20�ÕÇ2 + ��21�$%(9,2)(�2 +(/8 − .8)�ÕÇ8 + ��81�$%(9,8)(�2  

h��,�� = h��,8 + .8�ÕÇ8 + ��81�$%(9,8)(�2 + (/�� − .��)�ÕÇ�� + ����1�$%(9,��)(�2  

h��,�6 = h��,�� + .���ÕÇ�� + ����1�$%(9,��)(�2 + /�6?�ÕÇ�6 + ���61�$%(9,�6)(�1 +(/�60 − .�6)�ÕÇ�6 + ���61�$%(9,�6)(�2  

h��,�1 = h��,�6 + /�6?�ÕÇ�6 + ���61�$%(9,�6)(�1 + (.�6 − /�60)�ÕÇ�6 + ���61�$%(9,�6)(�2 −.�1�ÕÇ�1 + ���11�$%(9,�1)(�2  

h��,�9 = h��,�1 + (.�1 − /�1)�ÕÇ�1 + ���11�$%(9,�1)(�2 − .�9�ÕÇ�9 + ���91�$%(9,�9)(�2  

h��,3 = h��,�9 + (.�9 − /�9)�ÕÇ�9 + ���91�$%(9,�9)(�2 + .3=�ÕÇ3 + ��31�$%(9,3)(�� −.30�ÕÇ3 + ��31�$%(9,3)(�2  

h��,1 = h��,3 + (/3= − .3=)�ÕÇ3 + ��31�$%(9,3)(�� + (.30 − /30)�ÕÇ3 + ��31�$%(9,3)(�2 +.1�ÕÇ1 + ��11�$%(9,1)(��  

4.1.6.2. For LFFSSP 

Calculation of translational accelerations for LFFSSP is shown below; where h�;<�,  Õ�1, ��1 and $%(9,1) are supplied. h�;<�,  Õ�1 and ��1 are supplied as 0�2×� in the 

simulation since Body 2 is assumed to be rigidly fixed to the ground during 

LFFSSP. 

h��,1 = h�;<� + (.1 − /1)�ÕÇ1 + ��11�$%(9,1)(��  
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h��,3 = h��,1 − .1�ÕÇ1 + ��11�$%(9,1)(�� + (.3= − /3=)�ÕÇ3 + ��31�$%(9,3)(�� +(/30 − .30)�ÕÇ3 + ��31�$%(9,3)(�2  

h��,�9 = h��,3 − .3=�ÕÇ3 + ��31�$%(9,3)(�� + .30�ÕÇ3 + ��31�$%(9,3)(�2 +(/�9 − .�9)�ÕÇ�9 + ���91�$%(9,�9)(�2  

h��,�1 = h��,�9 + .�9�ÕÇ�9 + ���91�$%(9,�9)(�2 + (/�1 − .�1)�ÕÇ�1 + ���11�$%(9,�1)(�2  

h��,�6 = h��,�1 + .�1�ÕÇ�1 + ���11�$%(9,�1)(�2 − /�6?�ÕÇ�6 + ���61�$%(9,�6)(�1 +(/�60 − .�6)�ÕÇ�6 + ���61�$%(9,�6)(�2  

h��,�� = h��,�6 − /�6?�ÕÇ�6 + ���61�$%(9,�6)(�1 + (.�6 − /�60)�ÕÇ�6 + ���61�$%(9,�6)(�2 −.���ÕÇ�� + ����1�$%(9,��)(�2  

h��,8 = h��,�� + (.�� − /��)�ÕÇ�� + ����1�$%(9,��)(�2 − .8�ÕÇ8 + ��81�$%(9,8)(�2  

h��,2 = h��,8 + (.8 − /8)�ÕÇ8 + ��81�$%(9,8)(�2 + .2=�ÕÇ2 + ��21�$%(9,2)(�� −.20�ÕÇ2 + ��21�$%(9,2)(�2  

h��,� = h��,2 + (/2= − .2=)�ÕÇ2 + ��21�$%(9,2)(�� + (.20 − /20)�ÕÇ2 + ��21�$%(9,2)(�2 +.��ÕÇ� + ���1�$%(9,�)(��  

4.1.6.3. For RFFDSP and LFFDSP 

Calculation of translational accelerations for RFFDSP and LFFDSP is shown 

below; where h�;<�, h�;<�,  Õ��, Õ�1, ���, ��1, $%(9,�) and $%(9,1) are supplied. h�;<�, h�;<�,  Õ��, Õ�1, ��� and ��1 are supplied as 0�2×� in the simulation since Body 1 and Body 2 

are assumed to be rigidly fixed to the ground during RFFDSP and LFFDSP. 

h��,� = h�;<� + (.� − /�)�ÕÇ� + ���1�$%(9,�)(��  

h��,2 = h��,� − .��ÕÇ� + ���1�$%(9,�)(�� + (.2= − /2=)�ÕÇ2 + ��21�$%(9,2)(�� +(/20 − .20)�ÕÇ2 + ��21�$%(9,2)(�2  
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h��,8 = h��,2 − .2=�ÕÇ2 + ��21�$%(9,2)(�� + .20�ÕÇ2 + ��21�$%(9,2)(�2 +(/8 − .8)�ÕÇ8 + ��81�$%(9,8)(�2  

h��,�� = h��,8 + .8�ÕÇ8 + ��81�$%(9,8)(�2 + (/�� − .��)�ÕÇ�� + ����1�$%(9,��)(�2  

h��,�6_�� = h��,�� + .���ÕÇ�� + ����1�$%(9,��)(�2 + /�6?�ÕÇ�6 + ���61�$%(9,�6_��)(�1 +(/�60 − .�6)�ÕÇ�6 + ���61�$%(9,�6_��)(�2  

h��,1 = h�;<� + (.1 − /1)�ÕÇ1 + ��11�$%(9,1)(��  

h��,3 = h��,1 − .1�ÕÇ1 + ��11�$%(9,1)(�� + (.3= − /3=)�ÕÇ3 + ��31�$%(9,3)(�� +(/30 − .30)�ÕÇ3 + ��31�$%(9,3)(�2  

h��,�9 = h��,3 − .3=�ÕÇ3 + ��31�$%(9,3)(�� + .30�ÕÇ3 + ��31�$%(9,3)(�2 +(/�9 − .�9)�ÕÇ�9 + ���91�$%(9,�9)(�2  

h��,�1 = h��,�9 + .�9�ÕÇ�9 + ���91�$%(9,�9)(�2 + (/�1 − .�1)�ÕÇ�1 + ���11�$%(9,�1)(�2  

h��,�6_�� = h��,�1 + .�1�ÕÇ�1 + ���11�$%(9,�1)(�2 − /�6?�ÕÇ�6 + ���61�$%(9,�6_��)(�1 +(/�60 − .�6)�ÕÇ�6 + ���61�$%(9,�6_��)(�2  

4.2. Calculation of Jacobian Matrices and Their Time Derivatives 

The analytical expression of jacobian matrices are lengthy, requires careful and 

laborious work due to the complexity of system. Therefore, required jacobian 

matrices are calculated numerically during each simulation step. For this reason, 

time derivatives of jacobian matrices are calculated approximately and 

numerically. 

Some joint space variables are taken as zero which is ensured by constraint 

equations and phase changing operations. 
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4.2.1. Definition of Jacobian Matrices 

4.2.1.1 For RFFSSP 

Since θ� 2 is taken to be zero during jacobian matrix calculations, ����_U can be 

reduced to ����_U� as shown below: 

����_U� =
CDD
DDD
DDE

θ� 4θ� 6θ� 8θ� ��θ� �2θ� �4θ� �6,ÃGHH
HHH
HHI
.  (4.6) 

By using equation (4.3) and (4.6) , it can be expressed that: 

For ����_� = Ù����_U�����_U Ú, 
ÛJ��,�6���6 Ü = Ý%Þ,�6_������_U�  (4.7) 

ÛJ�;<���1 Ü = Ý%Þ,;<�����_�  (4.8) 

$ß�W)&ª(9,*) = �¹h² p$%� (9,*)r = �¹h²e��*$%(9,*)f = �¹h² º×Ý%Þ,*���� ØË $%(9,*)¾  (4.9) 

���6 = Ý%Þ,�6_�������_U�  (4.10) 

��1 = Ý%Þ,;<������_�. (4.11) 

Using equation (4.9), (4.10) and (4.11): 

$ß�W)&ª(9,�6) = Ý%Þ,yW)&ª9_�6_������_U�  (4.12) 

$ß�W)&ª(9,1) = Ý%Þ,yW)&ª9_1����_�  (4.13) 
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Ý%Þ,�6_��� and Ý%Þ,;<�� matrices can be extracted from equation (4.14) and (4.15): 

Ý%Þ,�6_�� = ÍÝ%Þ,�6_���Ý%Þ,�6_���Î  (4.14) 

Ý%Þ,;<� = ÍÝ%Þ,;<��Ý%Þ,;<��Î. (4.15) 

In summary: Ý%Þ,�6_��, Ý%Þ,;<�, Ý%Þ,yW)&ª9_�6_�� and Ý%Þ,yW)&ª9_1 are jacobian matrices 

that are needed to be calculated during RFFSSP.  

4.2.1.2 For LFFSSP 

Since θ� 3 is taken to be zero during jacobian matrix calculations, ����_U can be 

reduced to ����_U� as shown below: 

����_U� =
CDD
DDD
DDE

θ� 5θ� 7θ� �9θ� �1θ� �3θ� �5θ� �6,ÄGH
HHH
HHH
I
. (4.16) 

By using equation (4.2) and (4.16) , it can be expressed that: 

For ����_� = Ù����_U�����_U Ú, 
ÛJ��,�6���6 Ü = Ý%Þ,�6_������_U�  (4.17) 

ÛJ�;<���� Ü = Ý%Þ,;<�����_�. (4.18) 

���6 = Ý%Þ,�6_�������_U�  (4.19) 

��� = Ý%Þ,;<������_�  (4.20) 
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Using equation (4.9), (4.19) and (4.20): 

$ß�W)&ª(9,�6) = Ý%Þ,yW)&ª9_�6_������_U�  (4.21) 

$ß�W)&ª(9,�) = Ý%Þ,yW)&ª9_�����_�, where (4.22) 

Ý%Þ,�6_��� and Ý%Þ,;<�� matrices can be extracted from equation (4.23) and (4.24): 

Ý%Þ,�6_�� = ÍÝ%Þ,�6_���Ý%Þ,�6_���Î  (4.23) 

Ý%Þ,;<� = ÍÝ%Þ,;<��Ý%Þ,;<��Î. (4.24) 

In summary: Ý%Þ,�6_��, Ý%Þ,;<�, Ý%Þ,yW)&ª9_�6_�� and Ý%Þ,yW)&ª9_� are jacobian matrices 

that are needed to be calculated during RFFSSP.  

4.2.1.3 For RFFDSP 

In addition to Ý%Þ,�6_�� and Ý%Þ,yW)&ª9_�6_�� as defined in RFFSSP; Ý%Þ,�6_��_& and Ý%Þ,yW)&ª9_�6_��_& are required in RFFDSP with definitions shown in equation 

(4.25) and (4.27). 

ÙJ��,�6_�����6_�� Ú = Ý%Þ,�6_��_&����_U (4.25) 

���6_�� = Ý%Þ,�6_��_&�����_U  (4.26) 

Using equation (4.9) and (4.26): 

$ß�W)&ª(9,�6_��) = Ý%Þ,yW)&ª9_�6_��_&����_U  (4.27) 

J��,�6_��, ���6_�� and $ß�W)&ª(9,�6_��)
 are used instead of J��,�6, ���6 and $ß�W)&ª(9,�6)

 for 

the definition of Ý%Þ,�6_�� and Ý%Þ,yW)&ª9_�6_��. 
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Ý%Þ,�6_��_&� can be extracted from equation (4.28): 

 Ý%Þ,�6_��_& = ÍÝ%Þ,�6_��_&�Ý%Þ,�6_��_&�Î  (4.28) 

In summary: Ý%Þ,�6_��, Ý%Þ,yW)&ª9_�6_��, Ý%Þ,�6_��_& and Ý%Þ,yW)&ª9_�6_��_& are jacobian 

matrices that are needed to be calculated during RFFDSP. 

4.2.1.4 For LFFDSP 

In addition to Ý%Þ,�6_�� and Ý%Þ,yW)&ª9_�6_�� as defined in LFFSSP; Ý%Þ,�6_��_& and Ý%Þ,yW)&ª9_�6_��_& are required in LFFDSP with definitions shown in equation 

(4.29) and (4.31) 

ÙJ��,�6_�����6_�� Ú = Ý%Þ,�6_��_&����_U  (4.29) 

���6_�� = Ý%Þ,�6_��_&�����_U  (4.30) 

Using equation (4.9) and (4.30): 

$ß�W)&ª(9,�6_��) = Ý%Þ,yW)&ª9_�6_��_&����_U  (4.31) 

J��,�6_��, ���6_�� and $ß�W)&ª(9,�6_��)
 are used instead of J��,�6, ���6 and $ß�W)&ª(9,�6)

 for 

the definition of Ý%Þ,�6_�� and Ý%Þ,yW)&ª9_�6_��. 

Ý%Þ,�6_��_&� can be extracted from equation (4.32): 

 Ý%Þ,�6_��_& = ÍÝ%Þ,�6_��_&�Ý%Þ,�6_��_&�Î  (4.32) 

In summary: Ý%Þ,�6_��, Ý%Þ,yW)&ª9_�6_��, Ý%Þ,�6_��_& and Ý%Þ,yW)&ª9_�6_��_& are jacobian 

matrices that are needed to be calculated during LFFDSP. 
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4.2.2. Calculation Procedure of Jacobian Matrices 

Calculation procedure of jacobian matrices numerically is explained by an 

example. Exemplary calculation procedure of Ý%Þ,�6_�� and Ý%Þ,yW)&ª9_�6_�� is shown 

below: 

At any instant of the simulation, ÛJ��,�6���6 Ü can be calculated for a given ����_U� since 

all transformation matrices are known. So for ����_U� = ����_U�� =
CDD
DDD
E1000000GHH

HHH
I
, ÛJ��,�6���6 Ü can be 

calculated from kinematic equations of RFFSSP, which is also the 1st column of Ý%Þ,�6_��.  

Ý%Þ,�6_�� =�Ý ßÞ,�6_��� Ý ßÞ,�6_��1 Ý ßÞ,�6_��2 Ý ßÞ,�6_��3 Ý ßÞ,�6_��4 Ý ßÞ,�6_��5 Ý ßÞ,�6_��6�  (4.33) 

If Ý%Þ,�6_�� is described as shown in equation (4.33): 

Ý%Þ,�6_��
CDD
DDD
E1000000GHH

HHH
I

= Ý ßÞ,�6_���
. 

Using this information, other columns of Ý%Þ,�6_�� can be obtained similarly by 

calculating ÛJ��,�6���6 Ü for each ����_U� given as ����_U�1 =
CDD
DDD
E0100000GHH

HHH
I
, ����_U�2 =

CDD
DDD
E0010000GHH

HHH
I
 and vice 

versa. 
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The similar procedure is followed for the calculation of Ý%Þ,yW)&ª9_�6_�� with a slight 

difference that $ß�W)&ª(9,�6)
 is calculated for each ����_U� using the equation shown 

below: 

$ß�W)&ª(9,�6) = �¹h² º×Ý%Þ,�6_�������_U�ØË $%(9,�6)¾  

4.2.3. Calculation Procedure of Time Derivatives of Jacobian Matrices 

Using forward finite divided difference formula derived from truncated Taylor 

Expansion of Ý%Þ. The time derivative of jacobian matrix Ý%Þ is calculated as shown 

below: 

Ý%�Þ(N9) ≅ �%á(; b∆;)��%á(; )∆; . (4.34) 

Where Ý%Þ(N9) is defined as: 

ÛJ�(N9)��(N9)Ü = Ý%Þ(N9). ��� (N9). (4.35) 

��(N9 + ∆N) ≅ ��(N9) + ��� (N9). ∆N  (4.36) 

After recalculating all transformation matrices for ��(N + ∆N) by using equation 

(4.36), Ý%Þ(N + ∆N) is obtained in the same manner explained in previous heading. 

Therefore, all time derivatives of jacobian matrices are calculated by this logic. 

4.3. Derivation of Dynamic Equations 

Newton-Euler formulation is used for deriving dynamic equations which are 

written in a general manner. Therefore, these equations can be used for all phases. 

However, additional equations are inserted into the direct dynamic solution 

procedure to remove inexistent forces and moments related with the current 

locomotion phase. 
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For Body K, Newton Euler equations with respect to the mass center of Body K 

become: 

,*. h��,* = ∑ ã� (4.37) 

Ýä�,* ∙ Õ�* + ����* × Ýä�,* ∙ ����* = ∑ æ���� (4.38) 

In matrix form, equations (4.37) and (4.38) are resolved in the body coordinate 

system of Body K: 

,*$%(9,*)�h��,* = ã�(*��),*(*) − $%(*,*b�)ã�*,(*b�)(*b�) − ,*²$%(9,*)�(�2  (4.39) 

Ý%�,*(*)$%(9,*)�Õ�* + $%(9,*)���*$%(9,*)Ý%�,*(*)$%(9,*)���* =
æ�(*��),*(*) − $%(*,*b�)æ�*,(*b�)(*b�) + ¦̃�,*ã�(*��),*(*) − ¦̃1,*$%(*,*b�)ã�*,(*b�)(*b�)

 

 (4.40) 

All forces and moments are expressed with respect to the same convention by 

using Newton’s action-reaction law as shown in equation (4.41): 

ã�(*b�),*(*) = −ã�*,(*b�)(*) = −$%(*,*b�)ã�*,(*b�)(*b�)
 (4.41) 

Where, ã�*,(*b�)(*b�)
 and æ�*,(*b�)(*b�)

 are the resultant force and moment acting 

onto Body K+1 from Body K, resolved in body coordinate system of Body K+1. ¦ß�,* and ¦ß1,* are corresponding moment arms for ã�(*��),*(*)
 and ã�*,(*b�)(*b�)

. 

Also, Ý%�,*(*)
 is the inertia tensor matrix of Body K with respect to the mass center 

of Body K and resolved in body coordinate system of Body K. 

Generalized dynamic equations for the humanoid robot are shown below. 

For Body 1: 

,�$%(9,�)�h��,� = ã�9,�(�) − $%(�,2)ã��,2(2) − ,�²$%(9,�)�(�2  (4.42) 

Ý%�,�(�)$%(9,�)�Õ�� + $%(9,�)����$%(9,�)Ý%�,�(�)$%(9,�)���� = æ�9,�(�) − $%(�,2)æ��,2(2) +
.̃�$%(�,2)ã��,2(2)

  (4.43) 
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For Body 3: 

,2$%(9,2)�h��,2 = ã�9,2(2) + ã��,2(2) − $%(2,8)ã�2,8(8) − ,2²$%(9,2)�(�2  (4.44) 

Ý%�,2(2)$%(9,2)�Õ�2 + $%(9,2)���2$%(9,2)Ý%�,2(2)$%(9,2)���2 = æ�9,2(2) + æ��,2(2) −
$%(2,8)æ�2,8(8) + e/è2,� − .̃2fã��,2(2) + .̃2$%(2,8)ã�2,8(8)

  (4.45) 

For Body 9: 

,8$%(9,8)�h��,8 = ã�2,8(8) − $%(8,��)ã�8,��(��) − ,8²$%(9,8)�(�2  (4.46) 

Ý%�,8(8)$%(9,8)�Õ�8 + $%(9,8)���8$%(9,8)Ý%�,8(8)$%(9,8)���8 = æ�2,8(8) − $%(8,��)æ�8,��(��) +
e/è8,2 − .̃8fã�2,8(8) + .̃8$%(8,��)ã�8,��(��)

  (4.47) 

For Body 11: 

,��$%(9,��)�h��,�� = ã�8,��(��) − $%(��,�6)ã���,�6(�6) − ,��²$%(9,��)�(�2  (4.48) 

Ý%�,��(��)$%(9,��)�Õ��� + $%(9,��)�����$%(9,��)Ý%�,��(��)$%(9,��)����� = æ�8,��(��) −
$%(��,�6)æ���,�6(�6) + e/è��,8 − .̃��fã�8,��(��) + .̃��$%(��,�6)ã���,�6(�6)

  (4.49) 

For Body 2: 

,1$%(9,1)�h��,1 = ã�9,1(1) − $%(1,3)ã�1,3(3) − ,1²$%(9,1)�(�2  (4.50) 

Ý%�,1(1)$%(9,1)�Õ�1 + $%(9,1)���1$%(9,1)Ý%�,1(1)$%(9,1)���1 = æ�9,1(1) − $%(1,3)æ�1,3(3) +
.̃1$%(1,3)ã�1,3(3)

  (4.51) 

For Body 4: 

,3$%(9,3)�h��,3 = ã�9,3(3) + ã�1,3(3) − $%(3,�9)ã�3,�9(�9) − ,3²$%(9,3)�(�2  (4.52) 

Ý%�,3(3)$%(9,3)�Õ�3 + $%(9,3)���3$%(9,3)Ý%�,3(3)$%(9,3)���3 = æ�9,3(3) + æ�1,3(3) −
$%(3,�9)æ�3,�9(�9) + e/è3,1 − .̃3fã�1,3(3) + .̃3$%(3,�9)ã�3,�9(�9)

  (4.53) 
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For Body 10: 

,�9$%(9,�9)�h��,�9 = ã�3,�9(�9) − $%(�9,�1)ã��9,�1(�1) − ,�9²$%(9,�9)�(�2  (4.54) 

Ý%�,�9(�9)$%(9,�9)�Õ��9 + $%(9,�9)����9$%(9,�9)Ý%�,�9(�9)$%(9,�9)����9 = æ�3,�9(�9) −
$%(�9,�1)æ��9,�1(�1) + e/è�9,3 − .̃�9fã�3,�9(�9) + .̃�9$%(�9,�1)ã��9,�1(�1)

  (4.55) 

For Body 12: 

,�1$%(9,�1)�h��,�1 = ã��9,�1(�1) − $%(�1,�6)ã��1,�6(�6) − ,�1²$%(9,�1)�(�2  (4.56) 

Ý%�,�1(�1)$%(9,�1)�Õ��1 + $%(9,�1)����1$%(9,�1)Ý%�,�1(�1)$%(9,�1)����1 = æ��9,�1(�1) −
$%(�1,�6)æ��1,�6(�6) + e/è�1,�9 − .̃�1fã��9,�1(�1) + .̃�1$%(�1,�6)ã��1,�6(�6)

  (4.57) 

For Body 17: 

,�6$%(9,�6)�h��,�6 = ã���,�6(�6) + ã��1,�6(�6) − $%(�6,19)ã��6,19(19) − ,�6²$%(9,�6)�(�2 

 (4.58) 

Ý%�,�6(�6)$%(9,�6)�Õ��6 + $%(9,�6)����6$%(9,�6)Ý%�,�6(�6)$%(9,�6)����6 = æ���,�6(�6) +
æ��1,�6(�6) − $%(�6,19)æ��6,19(19) + e/è�6,�� − .̃�6fã���,�6(�6) +
e/è�6,�1 − .̃�6fã��1,�6(�6) + .̃�6$%(�6,19)ã��6,19(19)

  (4.59) 

For Body 20: 

,19$%(9,19)�h��,19 = ã��6,19(19) − $%(19,12)ã�19,12(12) − $%(19,13)ã�19,13(13) −
$%(19,16)ã�19,16(16) − ,19²$%(9,19)�(�2  (4.60) 

Ý%�,19(19)$%(9,19)�Õ�19 + $%(9,19)���19$%(9,19)Ý%�,19(19)$%(9,19)���19 = 
æ��6,19(19) − $%(19,12)æ�19,12(12) − $%(19,13)æ�19,13(13) − $%(19,16)æ�19,16(16) +
e/è19,�6 − .̃19fã��6,19(19) − e/è19,1� − .̃19f$%(19,12)ã�19,12(12)

 

−e/è19,11 − .̃19f$%(19,13)ã�19,13(13) + .̃19$%(19,16)ã�19,16(16)
  (4.61) 
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For Body 23: 

,12$%(9,12)�h��,12 = ã�19,12(12) − ,12²$%(9,12)�(�2  (4.62) 

Ý%�,12(12)$%(9,12)�Õ�12 + $%(9,12)���12$%(9,12)Ý%�,12(12)$%(9,12)���12 = æ�19,12(12) +
e/è12,1� − .̃12fã�19,12(12)

  (4.63) 

For Body 24: 

,13$%(9,13)�h��,13 = ã�19,13(13) − ,13²$%(9,13)�(�2  (4.64) 

Ý%�,13(13)$%(9,13)�Õ�13 + $%(9,13)���13$%(9,13)Ý%�,13(13)$%(9,13)���13 = æ�19,13(13) +
e/è13,11 − .̃13fã�19,13(13)

  (4.65) 

For Body 27: 

,16$%(9,16)�h��,16 = ã�19,16(16) − ,16²$%(9,16)�(�2  (4.66) 

Ý%�,16(16)$%(9,16)�Õ�16 + $%(9,16)���16$%(9,16)Ý%�,16(16)$%(9,16)���16 = æ�19,16(16) +
e/è16,19 − .̃16fã�19,16(16)

  (4.67) 

4.4. Direct Dynamic Solution 

A generalized vector of forces and moments is defined including reaction forces, 

reaction moments and actuator torques present in dynamic equations by equation 

(4.68). 
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ã� =

CD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
E ã�9,�(�)

ã��,2(2)
æ�9,�(�)
æ��,2(2)
ã�9,2(2)
ã�2,8(8)
æ�9,2(2)
æ�2,8(8)

ã�8,��(��)
æ�8,��(��)
ã���,�6(�6)
æ���,�6(�6)
ã��1,�6(�6)
ã��6,19(19)
æ��1,�6(�6)
æ��6,19(19)
ã��9,�1(�1)
æ��9,�1(�1)
ã�3,�9(�9)
æ�3,�9(�9)

ã�9,3(3)
ã�1,3(3)
æ�9,3(3)
æ�1,3(3)
ã�9,1(1)
æ�9,1(1)

ã�19,12(12)
ã�19,13(13)
ã�19,16(16)
æ�19,12(12)
æ�19,13(13)
æ�19,16(16)GH

HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
I

 (4.68) 

For ã�*,(*b�)(*b�) = Lã*,(*b�)=(*b�)ã*,(*b�)?(*b�)ã*,(*b�)0(*b�)M and æ�*,(*b�)(*b�) = Læ*,(*b�)=(*b�)æ*,(*b�)?(*b�)æ*,(*b�)0(*b�)M, 

actuating torques can be defined by using a matrix named as é# for extraction as 

shown in equation (4.69). 
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Q� =

CD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
E Q�Q2Q4Q6Q8Q��Q�2Q�4Q1Q3Q5Q7Q�9Q�1Q�3Q�5Q�6Q�7Q�8Q19Q1�Q11Q12Q13Q14Q15GH

HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
I

=

CD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
E æ�,2?(2)æ2,8=(8)æ2,8?(8)æ2,80(8)æ8,��?(8)æ��,�6=(�6)æ��,�6?(�6)æ��,�60(�6)æ1,3?(3)æ3,�9=(�9)æ3,�9?(�9)æ3,�90(�9)æ�9,�1?(�1)æ�1,�6=(�6)æ�1,�6?(�6)æ�1,�60(�6)æ�6,19=(19)æ�6,19?(19)æ�6,190(19)æ19,12=(12)æ19,12?(12)æ19,13=(13)æ19,13?(13)æ19,16=(16)æ19,16?(16)æ19,160(16)GH

HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
I

= é#ã�  (4.69) 

Dynamic equations for Body K can be arranged into the form as shown below: 

êß*(��, ��� , ��Ö ) = �ë*(��)ã� 

Then, dynamic equations describing the humanoid robot which are from equation 

(4.42) to (4.67) can be expressed by equation (4.72), with components described 

by equation (4.70) and (4.71). 



112 

 

êß =

CD
DD
DD
DD
DD
DD
DD
E êß�êß2êß8êß��êß1êß3êß�9êß�1êß�6êß19êß12êß13êß16GH

HH
HH
HH
HH
HH
HH
I

, �ë =

CD
DD
DDD
DD
DDD
DDD
E �ë��ë2�ë8�ë���ë1�ë3�ë�9�ë�1�ë�6�ë19�ë12�ë13�ë16GH

HH
HHH
HH
HHH
HHH
I

  (4.70), (4.71) 

êß(��, ��� , ��Ö ) = �ë(��)ã� (4.72) 

Further arrangement is required to perform direct dynamic solution as such: 

êß(��, ��� , ��Ö ) = æë(��)��Ö + w�(��, ��� ) = �ë(��)ã� 

Although all dynamic and kinematic equations are obtained, it is a time consuming 

and complicated process to obtain analytical expressions of æë  and w�. Furthermore, 

it is unlikely to document and implement their analytical expressions in open form 

due to the complexity of system. So, numerical values of æë  and w� are calculated at 

each solution step. 

During the simulation, �� and ���  are known at any instant.  

By implementing the vector ��Ö = ��Ö9 = Í0⋮0Î which contains zero values only, the 

numerical value of w� can be found since êß can be calculated for a known set of ��, ���  and ��Ö . 
êß9 = æë(��)��Ö9 + w�(��, ��� ) = w�(��, ��� ) 

It can be showed that æë(��) = Åæ�� æ�1 … æ�15Æ  
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For a vector ��Ö* which contains 1 for the kth row and zero for remaining rows, êß 
can be calculated where w�(��, ��� ) is already calculated as êß9: 

êß* = æë(��)��Ö* + w�(��, ��� ) = æ�* + êß9  

Then, æ�* = êß* − êß9 

æë(��) matrix can be constructed at any instant by applying the procedure shown 

above for all k values from 1 to 26; since the dimension of ��Ö  is 26 as specified 

before. 

All unknowns to be solved during the direct dynamic solution procedure are ��Ö  and ã�. 

Then, Q¥Nh/ í(,î¤¦ ¥¨ ïi+i¥�i¸ = 26 ���Ö � + 32 × 3Åã�Æ = 122 

Newton-Euler equations for 13 bodies : 

æë(��)��Ö − �ë(��)ã� = −w�(��, ��� ) (13 × 2 × 3 = 78 equations) (4.73) 

Equations for assigning actuator torques :  

é#ã� = Q� (26 equations) (4.74) 

Remaining equations depend on the locomotion phase.  

4.4.1. For RFFSSP 

Since it is assumed that Body 2 and Body 4 do not interact with the ground during 

RFFSSP, several ground reaction forces and moments are expected to be zero 

given as shown: 

ã�9,1(1) = æ�9,1(1) = ã�9,3(3) = æ�9,3(3) = Í000Î  
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This condition can be described as: 

é#óô�,�ÁÁOOPã� =
CDD
DDE

ã�9,3(3)
æ�9,3(3)
ã�9,1(1)
æ�9,1(1)GHH

HHI = Í0⋮0Î (4×3=12 equations) (4.75) 

é#óô�,�ÁÁOOP is a matrix for the extraction of related ground reaction forces and 

moments.  

During RFFSSP, Body 1 and Body 3 are assumed to be rigidly fixed to the ground. 

This assumption is ensured for Body 1 by supplying proper $%(9,�), A�;<�, ���, J�;<�,  Õ��, h�;<� to kinematic equations of RFFSSP. For Body 3, kinematic constraints are 

implemented in order to satisfy the assumption: 

h��,2 = Õ�2 = Í000Î  
h��,2 can be expressed as h��,2 = s%2(��)��Ö + w�2(�,� ��� ). 

Similarly, Õ�2 can be expressed as Õ�2 = s%õ2(��)��Ö + w�õ2(�,� ��� ) 

Then, kinematic conditions can be described as: 

s%2��Ö = −w�2 and s%õ2��Ö = −w�õ2 

However, rank of matrix Ù s%2s%õ2Ú is always found as 1 due to the kinematic structure 

for system of linear equations Ù s%2s%õ2Ú ��Ö = Û −w�2−w�õ2Ü. If unnecessary equations are 

eliminated, kinematic conditions are reduced to θÖ 2 = 0 which can be described as: 

é�öWWó,�ÁÁOOP��Ö = 0 (1 equation). (4.76) 

é�öWWó,�ÁÁOOP is a row vector for the extraction of θÖ 2 from ��Ö . 
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According to the assumption of Body 1 and Body 3 being rigidly fixed to the 

ground, reaction forces and moments between these bodies such as ã��,2(2)
, æ�,2=(2), æ�,20(2) can not be determined unless additional equations for modeling 

the interaction between Body 1 and Body 3 (like assuming bodies are deformable 

so that equations related with solid mechanic principles are involved) are 

introduced. Therefore, it is assumed that, 

ã��,2(2) = 0�2×� and æ�,2=(2) = æ�,20(2) = 0  

without examining this modeling problem. Then, this assumption can be described 

as: 

é#ó�,�ÁÁOOPã� = L ã��,2(2)
æ�,2=(2)æ�,20(2)M = Í0⋮0Î (5 equations) (4.77) 

é#ó�,�ÁÁOOP is a matrix for the extraction of ã��,2(2)
, æ�,2=(2) and æ�,20(2). 

Then, Q¥Nh/ í(,î¤¦ ¥¨ ÷�(hN¹¥i¸ = 78 + 26 + 12 + 1 + 5 = 122 

The final form of system equations of RFFSSP for direct dynamic solution 

procedure is as shown below by using equation (4.73), (4.74), (4.75), (4.76) and 

(4.77): 

CDD
DDD
E æë67×15 −�ë67×850#15×15 é#15×850#�1×15 é#óô�,�ÁÁOOP�1×850#4×15 é#ó�,�ÁÁOOP4×85é�öWWó,�ÁÁOOP�×15 0#�×85 GHH

HHH
I

�11×�11
Ù��Ö15×�ã�85×�Ú�11×� =

CDD
DDE
−w�67×�Q�15×�0��1×�0�4×�0 GHH

HHI
�11×�

 

 (4.78) 

0# and 0� are matrices and vectors with zero components only. Also, matrices and 

vectors are given with their dimensions for clarity. 
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4.4.2. For LFFSSP 

A procedure similar to RFFSSP is followed. 

Since it is assumed that Body 1 and Body 3 do not interact with the ground during 

LFFSSP, several ground reaction forces and moments are expected to be zero 

given as shown: 

ã�9,�(�) = æ�9,�(�) = ã�9,2(2) = æ�9,2(2) = Í000Î  
This condition can be described as: 

é#óô�,�ÁÁOOPã� =
CDD
DDE

ã�9,2(2)
æ�9,2(2)
ã�9,�(�)
æ�9,�(�)GHH

HHI = Í0⋮0Î (4×3=12 equations) (4.79) 

é#óô�,�ÁÁOOP is a matrix for the extraction of related ground reaction forces and 

moments. 

During LFFSSP, Body 2 and Body 4 are assumed to be rigidly fixed to the ground. 

This assumption is ensured for Body 2 by supplying proper $%(9,1), A�;<�, ��1, J�;<�,  Õ�1, h�;<� to kinematic equations of LFFSSP. For Body 4, kinematic constraints are 

implemented in order to satisfy the assumption: 

h��,3 = Õ�3 = Í000Î  
h��,3 can be expressed as h��,3 = s%3(��)��Ö + w�3(�,� ��� ). 

Similarly, Õ�3 can be expressed as Õ�3 = s%õ3(��)��Ö + w�õ3(�,� ��� ) 

Then, kinematic conditions can be described as: 

s%3��Ö = −w�3 and s%õ3��Ö = −w�õ3 
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However, rank of matrix Ù s%3s%õ3Ú is always found as 1 due to the kinematic structure 

for system of linear equations Ù s%3s%õ3Ú ��Ö = Û −w�3−w�õ3Ü. If unnecessary equations are 

eliminated, kinematic conditions are reduced to θÖ 3 = 0 which can be described as: 

é�öWWó,�ÁÁOOP��Ö = 0 (1 equation). (4.80) 

é�öWWó,�ÁÁOOP is a row vector for the extraction of θÖ 3 from ��Ö . 
According to the assumption of Body 2 and Body 4 being rigidly fixed to the 

ground, reaction forces and moments between these bodies such as ã�1,3(3)
, æ1,3=(3), æ1,30(3) can not be determined unless additional equations for modeling 

the interaction between Body 2 and Body 4 are introduced. Therefore, it is 

assumed that ã�1,3(3) = 0�2×� and æ1,3=(3) = æ1,30(3) = 0 without examining this 

modeling problem. Then, this assumption can be described as: 

é#ó�,�ÁÁOOPã� = L ã�1,3(3)
æ1,3=(3)æ1,30(3)M = Í0⋮0Î (5 equations) (4.81) 

é#ó�,�ÁÁOOP is a matrix for the extraction of ã�1,3(3)
, æ1,3=(3) and æ1,30(3). Then, Q¥Nh/ í(,î¤¦ ¥¨ ÷�(hN¹¥i¸ = 78 + 26 + 12 + 1 + 5 = 122 

Likewise, the final form of system equations of LFFSSP for direct dynamic 

solution procedure is such that by using equation (4.73), (4.74), (4.79), (4.80) and 

(4.81): 

CDD
DDD
E æë67×15 −�ë67×850#15×15 é#15×850#�1×15 é#óô�,�ÁÁOOP�1×850#4×15 é#ó�,�ÁÁOOP4×85é�öWWó,�ÁÁOOP�×15 0#�×85 GHH

HHH
I

�11×�11
Ù��Ö15×�ã�85×�Ú�11×� =

CDD
DDE
−w�67×�Q�15×�0��1×�0�4×�0 GHH

HHI
�11×�

 

 (4.82) 
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4.4.3. For RFFDSP 

Since it is assumed that Body 4 does not interact with the ground during RFFDSP, 

several ground reaction forces and moments are expected to be zero given as 

shown: 

ã�9,3(3) = æ�9,3(3) = Í000Î  
This condition can be described as: 

é#óô�,�ÁÁ�OPã� = Í ã�9,3(3)
æ�9,3(3)Î = Í0⋮0Î (2×3=6 equations) (4.83) 

é#óô�,�ÁÁ�OP is a matrix for the extraction of related ground reaction forces and 

moments. 

During RFFDSP Body 1, Body 2 and Body 3 are assumed to be rigidly fixed to the 

ground. This assumption is ensured for Body 1 and Body 2 by supplying proper $%(9,�), $%(9,1), A�;<�, A�;<�, ���, ��1, J�;<�, J�;<�,  Õ��, Õ�1, h�;<�, h�;<� to kinematic 

equations of RFFDSP. For Body 3, kinematic constraints are implemented in order 

to satisfy the assumption: 

h��,2 = Õ�2 = Í000Î  
h��,2 can be expressed as h��,2 = s%2(��)��Ö + w�2(�,� ��� ). 

Similarly, Õ�2 can be expressed as Õ�2 = s%õ2(��)��Ö + w�õ2(�,� ��� ) 

Then, kinematic conditions can be described as: 

s%2��Ö = −w�2 and s%õ2��Ö = −w�õ2 
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However, rank of matrix Ù s%2s%õ2Ú is always found as 1 due to the kinematic structure 

for system of linear equations Ù s%2s%õ2Ú ��Ö = Û −w�2−w�õ2Ü. If unnecessary equations are 

eliminated, kinematic conditions are reduced to θÖ 2 = 0 which can be described as: 

é�öWWó,�ÁÁ�OP��Ö = 0 (1 equation). (4.84) 

é�öWWó,�ÁÁ�OP is a row vector for the extraction of θÖ 2 from ��Ö . 
Additional kinematic constraints are introduced in order to ensure the 

compatibility necessary for the closed kinematic chain formed during RFFDSP. 

(3×2=6 equations) 

h��,�6_�� = h��,�6_�� and Õ��6_�� = Õ��6_��, where  

h��,�6_�� = s%�6�(��)��Ö + w��6�(�,� ��� ) and h��,�6_�� = s%�6�(��)��Ö + w��6�(�,� ��� ), 

Õ��6_�� = s%õ�6�(��)��Ö + w�õ�6�(�,� ��� ) and Õ��6_�� = s%õ�6�(��)��Ö + w�õ�6�(�,� ��� ). 

Following that, kinematic constraints can be expressed as: 

es%�6� − s%�6�f��Ö = w��6� − w��6�  (4.85) 

es%õ�6� − s%õ�6�f��Ö = w�õ�6� − w�õ�6�  (4.86) 

s%�6�, s%�6�, s%õ�6�, s%õ�6�, w��6�, w��6�, w�õ�6� and w�õ�6� are found numerically 

despite the possibility of expressing them analytically, by taking into account that 

analytical derivation becomes unpractical due to the complexity of equations. 

Calculation of these matrices and vectors is explained by an example: 

At any instant, � �  and ���  are known. By using � � , ���  and applying ��Ö  as ��Ö = ��Ö9 = Í0⋮0Î 
which contains zero values only, w��6� can be calculated; since h��,�6_�� is obtained 

from kinematic equations of RFFDSP for known � � , ���  and given ��Ö9: 
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h��,�6_��9 = s%�6���Ö9 + w��6� = w��6�  

For s%�6� = Åsß�6�,� … sß�6�,15Æ and a vector ��Ö* which contains 1 for the kth row 

and zero for remaining rows, h��,�6_��* = s%�6���Ö* + w��6� = sß�6�,* + h��,�6_��9. 

Then, s%�6� matrix can be constructed at any instant by applying sß�6�,* =h��,�6_��* − h��,�6_��9 for all k values from 1 to 26; since h��,�6_��* is calculated for 

known � � , ���  and given ��Ö* from kinematic equations of RFFDSP. Thus, s%�6�, w��6� 

and similarly others can be calculated numerically by this procedure. 

According to the assumption of Body 1, Body 2 and Body 3 being rigidly fixed to 

the ground, reaction forces and moments between Body 1 and Body 3 such as ã��,2(2)
, æ�,2=(2), æ�,20(2) can not be determined unless additional equations for 

modeling the interaction between Body 1 and Body 3 are introduced. Therefore, it 

is assumed that ã��,2(2) = 0�2×� and æ�,2=(2) = æ�,20(2) = 0 without examining this 

modeling problem. Then, this assumption can be described as: 

é#ó�,�ÁÁ�OPã� = L ã��,2(2)
æ�,2=(2)æ�,20(2)M = Í0⋮0Î (5 equations) (4.87) 

é#ó�,�ÁÁ�OP is a matrix for the extraction of ã��,2(2)
, æ�,2=(2) and æ�,20(2). Then, Q¥Nh/ í(,î¤¦ ¥¨ ÷�(hN¹¥i¸ = 78 + 26 + 6 + 1 + 6 + 5 = 122 

The final form of system equations of RFFDSP for direct dynamic solution 

procedure is as shown in equation (4.88) by using equation (4.73), (4.74), (4.83), 

(4.84), (4.85),(4.86) and (4.87). 



121 

 

CDD
DDD
DDD
E æë67×15 −�ë67×850#15×15 é#15×850#5×15 é#óô�,�ÁÁ�OP5×850#4×15 é#ó�,�ÁÁ�OP4×85é�öWWó,�ÁÁ�OP�×15 0#�×85es%�6� − s%�6�f2×15 0#2×85es%õ�6� − s%õ�6�f2×15 0#2×85 GHH

HHH
HHH
I

�11×�11

Ù��Ö15×�ã�85×�Ú�11×� =

CDD
DDD
DE −w�67×�Q�15×�0�5×�0�4×�0(w��6� − w��6�)2×�(w�õ�6� − w�õ�6�)2×�GHH

HHH
HI

�11×�

  (4.88) 

4.4.4. For LFFDSP 

A procedure similar to RFFDSP is followed. 

Since it is assumed that Body 3 does not interact with the ground during LFFDSP, 

several ground reaction forces and moments are expected to be zero given as 

shown: 

ã�9,2(2) = æ�9,2(2) = Í000Î  
This condition can be described as: 

é#óô�,�ÁÁ�OPã� = Í ã�9,2(2)
æ�9,2(2)Î = Í0⋮0Î (2×3=6 equations) (4.89) 

é#óô�,�ÁÁ�OP is a matrix for the extraction of related ground reaction forces and 

moments. 

During LFFDSP Body 1, Body 2 and Body 4 are assumed to be rigidly fixed to the 

ground. This assumption is ensured for Body 1 and Body 2 by supplying proper $%(9,�), $%(9,1), A�;<�, A�;<�, ���, ��1, J�;<�, J�;<�,  Õ��, Õ�1, h�;<�, h�;<� to kinematic 
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equations of LFFDSP. For Body 4, kinematic constraints are implemented in order 

to satisfy the assumption: 

h��,3 = Õ�3 = Í000Î  
h��,3 can be expressed as h��,3 = s%3(��)��Ö + w�3(�,� ��� ). 

Similarly, Õ�3 can be expressed as Õ�3 = s%õ3(��)��Ö + w�õ3(�,� ��� ) 

Then, kinematic conditions can be described as: 

s%3��Ö = −w�3 and s%õ3��Ö = −w�õ3 

However, rank of matrix Ù s%3s%õ3Ú is always found as 1 due to the kinematic structure 

for system of linear equations Ù s%3s%õ3Ú ��Ö = Û −w�3−w�õ3Ü. If unnecessary equations are 

eliminated, kinematic conditions are reduced to θÖ 3 = 0 which can be described as: 

é�öWWó,�ÁÁ�OP��Ö = 0 (1 equation). (4.90) 

é�öWWó,�ÁÁ�OP is a row vector for the extraction of θÖ 3 from ��Ö . 
Additional kinematic constraints are introduced in order to ensure the 

compatibility necessary for the closed kinematic chain formed during LFFDSP. 

(3×2=6 equations) 

h��,�6_�� = h��,�6_�� and Õ��6_�� = Õ��6_��, where  

h��,�6_�� = s%�6�(��)��Ö + w��6�(�,� ��� ) and h��,�6_�� = s%�6�(��)��Ö + w��6�(�,� ��� ), 

Õ��6_�� = s%õ�6�(��)��Ö + w�õ�6�(�,� ��� ) and Õ��6_�� = s%õ�6�(��)��Ö + w�õ�6�(�,� ��� ). 

Following that, kinematic constraints can be expressed as: 

es%�6� − s%�6�f��Ö = w��6� − w��6�  (4.91) 
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es%õ�6� − s%õ�6�f��Ö = w�õ�6� − w�õ�6�  (4.92) 

For LFFDSP, s%�6�, s%�6�, s%õ�6�, s%õ�6�, w��6�, w��6�, w�õ�6� and w�õ�6� are found 

numerically too for the same reasons and by the same procedure mentioned before. 

According to the assumption of Body 1, Body 2 and Body 4 being rigidly fixed to 

the ground, reaction forces and moments between Body 2 and Body 4 such as ã�1,3(3)
, æ1,3=(3), æ1,30(3) can not be determined unless additional equations for 

modeling the interaction between Body 2 and Body 4 are introduced. Therefore, it 

is assumed that ã�1,3(3) = 0�2×� and æ1,3=(3) = æ1,30(3) = 0 without examining this 

modeling problem. Then, this assumption can be described as: 

é#ó�,�ÁÁ�OPã� = L ã�1,3(3)
æ1,3=(3)æ1,30(3)M = Í0⋮0Î (5 equations) (4.93) 

é#ó�,�ÁÁ�OP is a matrix for the extraction of ã�1,3(3)
, æ1,3=(3) and æ1,30(3). 

Then, Q¥Nh/ í(,î¤¦ ¥¨ ÷�(hN¹¥i¸ = 78 + 26 + 6 + 1 + 6 + 5 = 122 

Similar to RFFDSP, the final form of system equations of LFFDSP for direct 

dynamic solution procedure is shown in equation (4.94) by using equation (4.73), 

(4.74), (4.89), (4.90), (4.91),(4.92) and (4.93). 
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CDD
DDD
DDD
E æë67×15 −�ë67×850#15×15 é#15×850#5×15 é#óô�,�ÁÁ�OP5×850#4×15 é#ó�,�ÁÁ�OP4×85é�öWWó,�ÁÁ�OP�×15 0#�×85es%�6� − s%�6�f2×15 0#2×85es%õ�6� − s%õ�6�f2×15 0#2×85 GHH

HHH
HHH
I

�11×�11

Ù��Ö15×�ã�85×�Ú�11×� =

CDD
DDD
DE −w�67×�Q�15×�0�5×�0�4×�0(w��6� − w��6�)2×�(w�õ�6� − w�õ�6�)2×�GHH

HHH
HI

�11×�

  (4.94) 

4.5. Transition from Single Support to Double Support Phases 

Reference trajectories are given in such a way that the velocity of contacting body 

relative to the ground is planned to become zero at the instant of contact. However, 

there always exists a tracking error caused by the control effort. As a consequence, 

desired collision free contact of foot with the ground is never accomplished. This 

situation occurs at the instant of phase transitions from single to double support 

phases. Since bodies and the ground are assumed to be rigid, the impact happens in 

an infinitely small amount of time interval. In other words, joint space velocities 

are changed instantly to satisfy the contact conditions which enforce zero angular 

and translational velocity relative to the ground for the contacting body after the 

impact. It is assumed that joint space velocities of only lowerbodies are affected by 

the impact. Modification of joint space velocities are carried out manually by an 

optimization based algorithm, where weighting coefficients determine the 

sensitivity of variation in joint space velocities to the impact. 
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4.5.1. From RFFSSP to LFFDSP 

For ����_� = Ù����_U�����_U Ú, defined by using equation (4.3) and (4.6): 

����_�� W and ����_�) ) are ����_� at the end of RFFSSP and the beginning of LFFDSP. 

In the same manner, J�;<�� W, J�;<�) ), ��1� W, ��1) ) are J�;<� and ��1 at the end of 

RFFSSP and the beginning of LFFDSP. 

It is impossible to provide a perfect landing condition for the left foot at the end of 

RFFSSP. For this reason: 

ÙJ�;<�� W��1� W Ú ≠ Í0⋮0Î 
At the instant when LFFDSP begins, the following conditions must be satisfied: 

Ý%Þ,;<� ����_�) ) = ÙJ�;<�) )��1) ) Ú = Í0⋮0Î, θ� 3 = 0 (4.95) 

After dropping θ� 3 and the related column from ����_�) ) and Ý%Þ,;<�, the equation 

(4.95) becomes: 

Ý%Þ,;<�� ����_�) )� = ÙJ�;<�) )��1) ) Ú = Í0⋮0Î (4.96) 

Then, a cost function is employed to minimize the total variation in joint space 

velocities sourced from instant changes. The cost function is taken into the 

consideration while ����_�� W is manipulated to be ����_�) ) with the condition shown 

by equation (4.96) to be satisfied. Therefore an optimization problem arises such 

that: 

Minimize $ = �1 ∆����_���Së&WX,�ÁÁOOP_�ÁÁ�OP∆����_��, subject to Ý%Þ,;<�� ����_�) )� =
ÙJ�;<�) )��1) ) Ú; where ÙJ�;<�) )��1) ) Ú is supplied as ÙJ�;<�) )��1) ) Ú = Í0⋮0Î. 
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∆����_�� = ����_�� W� − ����_�) )�, where ����_�� W� is the reduced form after dropping 

θ� 3 from ����_�� W. 

Së&WX,�ÁÁOOP_�ÁÁ�OP is a diagonal matrix including weighting coefficients such as 

Së&WX,�ÁÁOOP_�ÁÁ�OP = ÍS� … 0⋮ ⋱ ⋮0 … S�3Î. 
By applying the method of Lagrange Multipliers [63]: 

����¼) )�= ����¼� W� + Së&WX,�ÁÁOOP¼¿¿��� ��Ý%Þ,;<��� pÝ%Þ,;<��Së&WX,�ÁÁOOP¼¿¿��� ��Ý%Þ,;<���r�� 
. úÙJ�;<�) )��1) ) Ú − Ý%Þ,;<������_�� W�û  (4.97) 

At the beginning of LFFDSP, joint space variables in ����_� are switched with ����_�) ) (where θ� 3 in ����_�) ) is taken as zero). 

4.5.2. From LFFSSP to RFFDSP 

A similar procedure is carried out. 

For ����_� = Ù����_U�����_U Ú, defined by using equation (4.2) and (4.16): 

����_�� W and ����_�) ) are ����_� at the end of LFFSSP and the beginning of RFFDSP. 

In the same manner J�;<�� W, J�;<�) ), ���� W, ���) ) are J�;<� and ��� at the end of 

LFFSSP and the beginning of RFFDSP. 

It is impossible to provide a perfect landing condition for the left foot at the end of 

RFFSSP. For this reason: 

ÙJ�;<�� W���� W Ú ≠ Í0⋮0Î 
At the instant when RFFDSP begins, the following conditions must be satisfied: 
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Ý%Þ,;<� ����_�) ) = ÙJ�;<�) )���) ) Ú = Í0⋮0Î, θ� 2 = 0 (4.98) 

After dropping θ� 2 and the related column from ����_�) ) and Ý%Þ,;<�, the equation 

(4.98) becomes: 

Ý%Þ,;<�� ����_�) )� = ÙJ�;<�) )���) ) Ú = Í0⋮0Î (4.99) 

Then, a cost function is employed to minimize the total variation in joint space 

velocities sourced from instant changes. The cost function is taken into the 

consideration while ����_�� W is manipulated to be ����_�) ) with the condition shown 

by equation (4.99) to be satisfied. Therefore an optimization problem arises such 

that: 

Minimize $ = �1 ∆����_���Së&WX,�ÁÁOOP_�ÁÁ�OP∆����_��, subject to Ý%Þ,;<�� ����_�) )� =
ÙJ�;<�) )���) ) Ú; where ÙJ�;<�) )���) ) Ú is supplied as ÙJ�;<�) )���) ) Ú = Í0⋮0Î. 
∆����_�� = ����_�� W� − ����_�) )�, where ����_�� W� is the reduced form after dropping 

θ� 2 from ����_�� W. 

Së&WX,�ÁÁOOP_�ÁÁ�OP is a diagonal matrix including weighting coefficients. 

By applying the method of Lagrange Multipliers: 

����ü) )�= ����ü� W� + Së&WX,�ÁÁOOPü¿¿��� ��Ý%Þ,;<��� pÝ%Þ,;<��Së&WX,�ÁÁOOPü¿¿��� ��Ý%Þ,;<���r�� 
úÙJ�;<�) )���) ) Ú − Ý%Þ,;<������_�� W�û  (4.100) 

At the beginning of RFFDSP, joint space variables in ����_� are switched with ����_�) ) (where θ� 2 in ����_�) ) is taken as zero). 
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CHAPTER 5 

CONTROL STRATEGY 

Tracking of reference trajectories which define characteristics of a biped 

locomotion is achieved by a 2 step control strategy which are computed torque 

control and optimum command accelerations calculation. 

5.1. Calculation of Optimum Command Accelerations 

As explained in chapter 3, reference trajectories are supplied for Body 1, Body 2, 

Body 17, toe points and the mass center of Body 17. In order to apply computed 

torque control method for finding actuator torques, desired joint space 

accelerations which will be called as command accelerations ��Ö� in the thesis must 

be supplied. Due to the redundant kinematic structure of the biped robot, it is not 

able to find unique joint space accelerations which satisfy reference trajectories 

given for bodies and points specified in chapter 3. In order to cope with this 

problem, simple optimization algorithms based on quadratic cost functions, which 

are formed according to the requirements of locomotion phases, are created [68].  

Future tracking errors are estimated in the light of present values of joint space 

variables; for instance ∆A�����ÁÁOOP_�,�6_�, ∆ý�����ÁÁOOP_�6_� and þ-K�������ÁÁOOP_�6_� in 

RFFSSP. These estimated tracking errors form the basis of cost functions. Along 

with these estimated tracking errors, joint space accelerations are added to cost 

functions; so that joint space accelerations with greater values are penalized such 

as by the expression 
�1 ��Ö�_U�(N)� . Së�ÁÁOOP_ö�_U�WW . ��Ö�_U�(N) in RFFSP, since 

higher joint space accelerations result higher values of actuator torques which is an 

unfavorable situation for instrumentation and power consumption aspects. As 

mentioned in previous chapters, full rotation of all joints is available. Regarding 

this, full rotation of specific joints is occasionally observed during the simulation; 
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because it is calculated to be feasible according to the control method within the 

prediction time range. However, the control of biped robot becomes more difficult 

and the tracking performance reduces in the long run; because online adjustment 

of weighting coefficients to compensate significantly changing conditions of this 

nonlinear system, for instance the full rotation of some joints, is not available in 

the thesis. Considering this, deviation of some specific joint space variables from 

their initial positions is penalized by an additional component in cost functions in 

order to avoid excessive rotation in several joints such as �1 þ������ÁÁOOP_�_U�_�� . Së�ÁÁOOP_ö�_U� . þ������ÁÁOOP_�_U�_� for RFFSSP. Joint space 

variables g2 and g�2, g3 and g�3 being different from zero is penalized during single 

support phases by a cost function such as 
�1 ∆g3. SP,}Ï . ∆g3 and 

�1 ∆g�3. S�,}Ï . ∆g�3 

for RFFSSP; because Body 1 and Body 3 at the end of LFFSSP, Body 2 and Body 

4 at the end of RFFSP are expected to have the same orientation, where reference 

orientations are supplied for Body 1 and Body 2. 

Optimum command accelerations ��Ö� are calculated in two separate headings. 

Calculation procedure of optimum command accelerations of joint space variables 

regarding upper bodies ��Ö�<<��� is the same for all phases. On the other hand, the 

procedure for optimum command accelerations of joint space variables regarding 

lower bodies ��Ö����� depends on the locomotion phase.  

5.1.1. Calculation of Optimum Command Accelerations for Lower Bodies 

5.1.1.1. For RFFSSP 

Calculation of optimum command accelerations during RFFSSP is accomplished 

in 2 steps. In the first step, optimum command accelerations for joint space 

variables from Body 3 to Body 17 are calculated according to given reference 

inputs for Body 17 and its mass center. In the second step, optimum command 

accelerations for joint space variables from Body 17 to Body 2 are calculated 

according to determined command accelerations in the first step and given 

reference inputs for Body 2 and its toe point. So the calculation of optimum 

command accelerations for RFFSSP can be divided into 2 parts. 
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Optimum command accelerations for dropped joint space variables are taken as 

zero due to locomotion phase assumptions. Since Body 3 is assumed to be rigidly 

fixed to the ground, command acceleration θÖ 2� is taken as zero.  

5.1.1.1.1. For Body 17 and the mass center of Body 17 

5.1.1.1.1.1. Definition of Variables 

Variables that are used in the cost function are expressed. 

N is the present phase time which is elapsed time from the beginning of current 

phase and ∆N�_�ÁÁOOP is the prediction time range used in the first step of optimum 

command acceleration calculations in RFFSSP. 

∆A�����ÁÁOOP_�,�6_� = A��,�6�eN + ∆N�_�ÁÁOOPf − A��,�6&eN + ∆N�_�ÁÁOOPf  

A��,�6�eN + ∆N�_�ÁÁOOPf is the reference value of A��,�6 at phase time N + ∆N�_�ÁÁOOP. A��,�6&eN + ∆N�_�ÁÁOOPf is the predicted actual value of A��,�6 at phase time N +∆N�_�ÁÁOOP. 

Using the truncated Taylor Expansion of A��,�6&eN + ∆N�_�ÁÁOOPf and the definition 

of ���_U� by equation (4.6): 

A��,�6&eN + ∆N�_�ÁÁOOPf
≅ A��,�6&(N) + J��,�6&(N). ∆N�_�ÁÁOOP + h��,�6&(N). ∆N�_�ÁÁOOP12= A��,�6&(N) + Ý%Þ,�6_���(N). ����_U�(N). ∆N�_�ÁÁOOP
+ Ý%�Þ,�6_���(N). ����_U�(N). ∆N�_�ÁÁOOP12
+ Ý%Þ,�6_���(N). ��Ö�_U�(N). ∆N�_�ÁÁOOP12  
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Then, ∆A�����ÁÁOOP_�,�6_� =A��,�6�eN + ∆N�_�ÁÁOOPf − A��,�6&(N) − Ý%Þ,�6_���(N). ����_U�(N). ∆N�_�ÁÁOOP −
Ý%�Þ,�6_���(N). ����_U�(N). ∆;�_ü¿¿���¢1 − Ý%Þ,�6_���(N). ��Ö�_U�(N). ∆;�_ü¿¿���¢1  (5.1) 

The same convention and procedure are used for other definitions. 

∆ý�����ÁÁOOP_�6_� = ýß�6�eN + ∆N�_�ÁÁOOPf − ýß�6&eN + ∆N�_�ÁÁOOPf, for 

ýß�6eN + ∆N�_�ÁÁOOPf = ÙJ��,�6eN + ∆N�_�ÁÁOOPf���6eN + ∆N�_�ÁÁOOPf Ú  
Then, 

∆ý�����ÁÁOOP_�6_� =
ýß�6�eN + ∆N�_�ÁÁOOPf − Ý%Þ,�6_��(N). ����_U�(N) − Ý%�Þ,�6_��(N). ����_U�(N). ∆N�_�ÁÁOOP −Ý%Þ,�6_��(N). ��Ö�_U�(N). ∆N�_�ÁÁOOP (5.2) 

For þ-K�������ÁÁOOP_�6_� = $ßW)&ª�(9,�6)eN + ∆N�_�ÁÁOOPf − $ßW)&ª&(9,�6)eN + ∆N�_�ÁÁOOPf, 

it can be expressed that: 

þ-K�������ÁÁOOP_�6_� =
$ßW)&ª�(9,�6)eN + ∆N�_�ÁÁOOPf − $ßW)&ª&(9,�6)(N) −
Ý%Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆N�_�ÁÁOOP − Ý%�Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆;�_ü¿¿���¢1 −
Ý%Þ,yW)&ª9_�6_��(N). ��Ö�_U�(N). ∆;�_ü¿¿���¢1  (5.3) 

þ������ÁÁOOP_�_U�_� = ���_U�&eN + ∆N�_�ÁÁOOPf − ���_U�9, where ���_U�9 is the vector of 

basic joint space positions for ���_U�. Joint space position deviations, which are 

penalized in the cost function, are calculated with respect to ���_U�9. Initial values 

of ���_U� are used as ���_U�9. So, ���_U�9 is taken as a vector with zero components 

only in the simulation. 
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Then, 

þ������ÁÁOOP_�_U�_� = ���_U�(N) + ����_U�(N). ∆N�_�ÁÁOOP + ��Ö�_U�(N). ∆;�_ü¿¿���¢1 −���_U�9  (5.4) 

The cost function for the first step of optimum command accelerations calculation 

in RFFSSP is defined as shown below: 

$�ÁÁOOP,� =�1 ∆A�����ÁÁOOP_�,�6_�� . Së�ÁÁOOP_P,�6. ∆A�����ÁÁOOP_�,�6_� +
�1 þ-K�������ÁÁOOP_�6_�� . Së�ÁÁOOP_x�,�6. þ-K�������ÁÁOOP_�6_� +
�1 ∆ý�����ÁÁOOP_�6_�� . Së�ÁÁOOP_�,�6. ∆ý�����ÁÁOOP_�6_� +
�1 þ������ÁÁOOP_�_U�_�� . Së�ÁÁOOP_ö�_U� . þ������ÁÁOOP_�_U�_� +
�1 ��Ö�_U�(N)� . Së�ÁÁOOP_ö�_U�WW. ��Ö�_U�(N) (5.5) 

5.1.1.1.1.2. Calculation Procedure 

For optimum cost value 
�yü¿¿���,��ö�Ö ü_�� = 0, (5.6) 

optimum command accelerations can be calculated. The equation (5.6) can be 

converted into the form ��Ö�_U��ê%�ÁÁOOP,� = �ß�ÁÁOOP,� by using row vector 

convention for the differentiation of a dimensionless variable by a vector �ß = ×���1Ø 
as shown below: 

• 
�?�=ß = × �?�=� �?�=¢Ø 

• 
�e=ß�V#=ßf�=ß = 2�ß�s%, where s% is a symmetric matrix 

• 
�V#=ß�=ß = s%  
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Therefore, 

�yü¿¿���,��ö�Ö ü�� = ∆A�����ÁÁOOP_�,�6_�� . Së�ÁÁOOP_P,�6. ×−Ý%Þ,�6_���(N). ∆;�_ü¿¿���¢1 Ø +
þ-K�������ÁÁOOP_�6_�� . Së�ÁÁOOP_x�,�6. ×−Ý%Þ,yW)&ª9_�6_��(N). ∆;�_ü¿¿���¢1 Ø +
∆ý�����ÁÁOOP_�6_�� . Së�ÁÁOOP_�,�6. �−Ý%Þ,�6_��(N). ��Ö�_U�(N). ∆N�_�ÁÁOOP� +
þ������ÁÁOOP_�_U�_�� . Së�ÁÁOOP_ö�_U� . ∆;�_ü¿¿���¢1 + ��Ö�_U�(N)� . Së�ÁÁOOP_ö�_U�WW (5.7) 

After inserting derived expressions of ∆A�����ÁÁOOP_�,�6_�, þ-K�������ÁÁOOP_�6_�, ∆ý�����ÁÁOOP_�6_� and þ������ÁÁOOP_�_U�_� which are equation (5.1), (5.2), (5.3) and (5.4) 

into equation (5.7), the equation can be expressed as: 

��Ö�_U��ê%�ÁÁOOP,� = �ß�ÁÁOOP,� (5.8) 

Then, components of equation (5.8) can be expressed as: 

�ß�ÁÁOOP,� = 
cA��,�6�eN + ∆N�ü¿¿���f − A��,�6&(N) − Ý%Þ,�6_���(N). ����_U�(N). ∆N�_�ÁÁOOP

−Ý%�Þ,�6_���(N). ����_U�(N). ∆N�_�ÁÁOOP12 d� 
. Së�ÁÁOOP_P,�6. Ý%Þ,�6_���(N). ∆N�_�ÁÁOOP12
+ Íýß�6�eN + ∆N�ü¿¿��� f − Ý%Þ,�6_��(N). ����_U�(N)−Ý%�Þ,�6_��(N). ����_U�(N). ∆N�_�ÁÁOOP Î� . Së�ÁÁOOP_�,�6. Ý%Þ,�6_��(N). ∆N�_�ÁÁOOP

+ L $ßW)&ª�(9,�6)eN + ∆N�_�ÁÁOOPf − $ßW)&ª&(9,�6)(N)
−Ý%Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆N�_�ÁÁOOP − Ý%�Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆N�_�ÁÁOOP12 M

�
 

. Së�ÁÁOOP_x�,�6. Ý%Þ,yW)&ª9_�6_��(N). ∆;�_ü¿¿���¢1 −
����_U�(N) − ���_U�9�� . Së�ÁÁOOP_ö�_U� . ∆;�_ü¿¿���¢1 −
����_U�(N)� . Së�ÁÁOOP_ö�_U� . ∆;�_ü¿¿���|1  (5.9) 
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ê%�ÁÁOOP,� =
Së�ÁÁOOP_ö�_U�WW + Së�ÁÁOOP_ö�_U� . ∆;�_ü¿¿���Ï3 +
Ý%Þ,�6_���(N)� . Së�ÁÁOOP_P,�6. Ý%Þ,�6_���(N). ∆;�_ü¿¿���Ï3 +
Ý%Þ,yW)&ª9_�6_��(N)� . Së�ÁÁOOP_x�,�6. Ý%Þ,yW)&ª9_�6_��(N). ∆;�_ü¿¿���Ï3 +
Ý%Þ,�6_��(N)� . Së�ÁÁOOP_�,�6. Ý%Þ,�6_��(N). ∆N�_�ÁÁOOP1 (5.10) 

Së�ÁÁOOP_P,�6, Së�ÁÁOOP_x�,�6, Së�ÁÁOOP_�,�6, Së�ÁÁOOP_ö�_U� and Së�ÁÁOOP_ö�_U�WW 

are diagonal matrices with weighting coefficients. 

With derived expression, optimum command accelerations for joint space 

variables from Body 3 to Body 17 during RFFSSP can be calculated by equation 

(5.11): 

��Ö�_U��(N) = ×�ß�ÁÁOOP,�. ê%�ÁÁOOP,���Ø�
 (5.11) 

5.1.1.1.2. For Body 2 and the toe point of Body 2 

5.1.1.1.2.1. Definition of Variables 

The same conventions and derivation procedures of the first step are implemented. 

However, several jacobian matrices are segmented using the definition of ���_� in 

chapter 4 as shown below: 

ÛJ�;<���1 Ü = ÍÝ%Þ,;<�_�_U�� Ý%Þ,;<�_�_U�Ý%Þ,;<�_�_U�� Ý%Þ,;<�_�_U�Î Ù����_U�����_U Ú 
$ß�W)&ª(9,1) = �Ý%Þ,yW)&ª9_1_�_U� Ý%Þ,yW)&ª9_1_�_U� Ù����_U�����_U Ú 

N is the present phase time and ∆N1_�ÁÁOOP is the prediction time range used in the 

second step of optimum command accelerations calculation in RFFSSP. 

∆A�����ÁÁOOP_;<�_� = A�;<��eN + ∆N1_�ÁÁOOPf − A�;<�&eN + ∆N1_�ÁÁOOPf  
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Using the truncated Taylor Expansion of A�;<�&eN + ∆N1_�ÁÁOOPf and segmented 

jacobian matrices mentioned above, ∆A�����ÁÁOOP_;<�_� can be expressed as shown 

below where optimum command accelerations (��Ö�_U��) that are calculated in the 

first step and unknown joint space accelerations (��Ö�_U) are expressed in separate 

terms.  

∆A�����ÁÁOOP_;<�_� =
cA�;<��eN + ∆N1_�ÁÁOOPf − A�;<�&(N) − Ý%Þ,;<��(N). ����_�(N). ∆N1_�ÁÁOOP−Ý%�Þ,;<��(N). ����_�(N). ∆;¢_ü¿¿���¢1 d −
×Ý%Þ,;<�_�_U��(N). ��Ö�_U��(N) + Ý%Þ,;<�_�_U�(N). ��Ö�_U(N)Ø ∆;¢_ü¿¿���¢1   (5.12) 

The similar procedure is applied for other definitions. 

∆ý�����ÁÁOOP_1_� = ýß1�eN + ∆N1_�ÁÁOOPf − ýß1&eN + ∆N1_�ÁÁOOPf, for 

ýß1eN + ∆N1_�ÁÁOOPf = ÙJ�;<�eN + ∆N1_�ÁÁOOPf��1eN + ∆N1_�ÁÁOOPf Ú  
Then, 

∆ý�����ÁÁOOP_1_� =
×ýß1�eN + ∆N1_�ÁÁOOPf − Ý%Þ,;<�(N). ����_�(N) − Ý%�Þ,;<�(N). ����_�(N). ∆N1_�ÁÁOOPØ −
�Ý%Þ,;<�_�_U�(N). ��Ö�_U��(N) + Ý%Þ,;<�_�_U(N). ��Ö�_U(N)�∆N1_�ÁÁOOP  (5.13) 

For þ-K�������ÁÁOOP_1_� = $ßW)&ª�(9,1)eN + ∆N1_�ÁÁOOPf − $ßW)&ª&(9,1)eN + ∆N1_�ÁÁOOPf, þ-K�������ÁÁOOP_1_� =
c$ßW)&ª�(9,1)eN + ∆N1_�ÁÁOOPf − $ßW)&ª&(9,1)(N) − Ý%Þ,yW)&ª9_1(N). ����_�(N). ∆N1_�ÁÁOOP−Ý%�Þ,yW)&ª9_1(N). ����_�(N). ∆;¢_ü¿¿���¢1

d 
−�Ý%Þ,yW)&ª9_1_�_U�(N). ��Ö�_U��(N) + Ý%Þ,yW)&ª9_1_�_U(N). ��Ö�_U(N)� ∆;¢_ü¿¿���¢1   (5.14) 
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þ������ÁÁOOP_�_U_� = ���_U&eN + ∆N1_�ÁÁOOPf − ���_U9, where ���_U9 is the vector of 

basic joint space positions for ���_U. Initial values of ���_U are used as ���_U9. So, ���_U9 is taken as a vector with zero components only in the simulation. 

Then, 

þ������ÁÁOOP_�_U_� = ���_U(N) + ����_U(N). ∆N1_�ÁÁOOP + ��Ö�_U(N). ∆;¢_ü¿¿���¢1 − ���_U9  

  (5.15) 

g3 and g�3 being different from zero is penalized by using expressions shown 

below in the cost function. 

∆g3 = g3(N) = ∅�}Ï . ���_U(N) + ∅�}Ï . ����_U(N). ∆N2_�ÁÁOOP + ∅�}Ï . ��Ö�_U(N). ∆;|_ü¿¿���¢1   

  (5.16) 

∆g�3 = g�3(N) = ∅�}Ï . ����_U(N) + ∅�}Ï . ��Ö�_U(N). ∆N2_�ÁÁOOP  (5.17) 

The cost function for the second step of optimum command accelerations 

calculation in RFFSSP is defined as shown below: 

$�ÁÁOOP,1 =�1 ∆A�����ÁÁOOP_;<�_�� . Së�ÁÁOOP_P,;<� . ∆A�����ÁÁOOP_;<�_� +
�1 þ-K�������ÁÁOOP_1_�� . Së�ÁÁOOP_x�,1. þ-K�������ÁÁOOP_1_� +
�1 ∆ý�����ÁÁOOP_1_�� . Së�ÁÁOOP_�,1. ∆ý�����ÁÁOOP_1_� +
�1 þ������ÁÁOOP_�_U_�� . Së�ÁÁOOP_ö�_U. þ������ÁÁOOP_�_U_� + �1 ∆g3. SP,}Ï . ∆g3 +
�1 ∆g�3. S�,}Ï . ∆g�3 + �1 ��Ö�_U(N)� . Së�ÁÁOOP_ö�_UWW . ��Ö�_U(N) (5.18) 
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5.1.1.1.2.2. Calculation Procedure 

For optimum cost value, 
�yü¿¿���,¢�ö�Ö ¼_� = 0, (5.19) 

optimum command accelerations can be calculated. The equation (5.19) can be 

converted into the form: 

��Ö�_U�ê%�ÁÁOOP,1 = �ß�ÁÁOOP,1 (5.20) 

Components of the equation (5.20) are as shown below: 

�ß�ÁÁOOP,1 = cA�;<��eN + ∆N1_�ÁÁOOPf − A�;<�&(N) − Ý%Þ,;<��(N). ����_�(N). ∆N1_�ÁÁOOP
−Ý%�Þ,;<��(N). ����_�(N). ∆N1_�ÁÁOOP12 d� 

. Së�ÁÁOOP_P,;<� . Ý%Þ,;<�_�_U�(N). ∆N1_�ÁÁOOP12
− ��Ö�_U��(N)� . Ý%Þ,;<�_�_U��(N)� . Së�ÁÁOOP_P,;<� . Ý%Þ,;<�_�_U�(N). ∆N1_�ÁÁOOP34
+ Íýß1�eN + ∆N1_�ÁÁOOPf − Ý%Þ,;<�(N). ����_�(N)−Ý%�Þ,;<�(N). ����_�(N). ∆N1_�ÁÁOOP Î� . Së�ÁÁOOP_�,1. Ý%Þ,;<�_�_U(N). ∆N1_�ÁÁOOP
− ��Ö�_U��(N)� . Ý%Þ,;<�_�_U�(N)� . Së�ÁÁOOP_�,1. Ý%Þ,;<�_�_U(N). ∆N1_�ÁÁOOP1

+ L $ßW)&ª�(9,1)eN + ∆N1_�ÁÁOOPf − $ßW)&ª&(9,1)(N)
−Ý%Þ,yW)&ª9_1(N). ����_�(N). ∆N1_�ÁÁOOP − Ý%�Þ,yW)&ª9_1(N). ����_�(N). ∆N1_�ÁÁOOP12 M

�
 

. Së�ÁÁOOP_x�,1. Ý%Þ,yW)&ª9_1_�_U(N). ∆;¢_ü¿¿���¢1 −
��Ö�_U��(N)� . Ý%Þ,yW)&ª9_1_�_U�(N)� . Së�ÁÁOOP_x�,1. Ý%Þ,yW)&ª9_1_�_U(N). ∆;¢_ü¿¿���Ï3 −
����_U(N) − ���_U9�� . Së�ÁÁOOP_ö�_U. ∆;¢_ü¿¿���¢1 −
����_U(N)� . Së�ÁÁOOP_ö�_U. ∆;¢_ü¿¿���|1 − ���_U(N)� .∅�}Ï � . SP,}Ï .∅�}Ï . ∆;|_ü¿¿���¢1 −
����_U(N)� .∅�}Ï � . SP,}Ï .∅�}Ï . ∆;|_ü¿¿���|1 − ����_U(N)� .∅�}Ï � . S�,}Ï .∅�}Ï . ∆N2_�ÁÁOOP 

  (5.21) 
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ê%�ÁÁOOP,1 =
Së�ÁÁOOP_ö�_UWW + Së�ÁÁOOP_ö�_U. ∆;¢_ü¿¿���Ï3 +
Ý%Þ,;<�_�_U�(N)� . Së�ÁÁOOP_P,;<� . Ý%Þ,;<�_�_U�(N). ∆;¢_ü¿¿���Ï3 +
Ý%Þ,yW)&ª9_1_�_U(N)� . Së�ÁÁOOP_x�,1. Ý%Þ,yW)&ª9_1_�_U(N). ∆;¢_ü¿¿���Ï3 +
Ý%Þ,;<�_�_U(N)� . Së�ÁÁOOP_�,1. Ý%Þ,;<�_�_U(N). ∆N1_�ÁÁOOP1 +
∅�}Ï � . SP,}Ï .∅�}Ï . ∆;|_ü¿¿���Ï3 + ∅�}Ï � . S�,}Ï .∅�}Ï . ∆N2_�ÁÁOOP1 (5.22) 

Së�ÁÁOOP_P,;<�, Së�ÁÁOOP_x�,1, Së�ÁÁOOP_�,1, Së�ÁÁOOP_ö�_U, SP,}Ï, S�,}Ï and Së�ÁÁOOP_ö�_UWW are weighting coefficients or diagonal matrices with weighting 

coefficients. 

With derived expression, optimum command accelerations from Body 17 to Body 

2 for RFFSSP can be calculated by equation (5.23): 

��Ö�_U�(N) = ×�ß�ÁÁOOP,1. ê%�ÁÁOOP,1��Ø�
 (5.23) 

5.1.1.2. For LFFSSP 

Similar to RFFSSP, calculation of optimum command accelerations during 

LFFSSP is accomplished in 2 steps. In the first step, optimum command 

accelerations for joint space variables from Body 4 to Body 17 are calculated 

according to given reference inputs for Body 17 and its mass center. In the second 

step, optimum command accelerations for joint space variables from Body 17 to 

Body 1 are calculated according to determined joint space accelerations in the first 

step and given reference inputs for Body 1 and its toe point. Command 

acceleration θÖ 3� is taken as zero by considering the assumption that Body 4 is 

rigidly fixed to the ground. Since the calculation procedure and the convention is 

the same as RFFSSP’s, only the final form of equations are included.  
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5.1.1.2.1. For Body 17 and the mass center of Body 17 

5.1.1.2.1.1. Definition of Variables 

N is the present phase time and ∆N�_�ÁÁOOP is the prediction time range used in the 

first step of optimum command acceleration calculations in LFFSSP. 

∆A�����ÁÁOOP_�,�6_� = A��,�6�eN + ∆N�_�ÁÁOOPf − A��,�6&eN + ∆N�_�ÁÁOOPf  

Using the truncated Taylor Expansion of A��,�6&eN + ∆N�_�ÁÁOOPf and the definition 

of ���_U� by equation (4.16): 

∆A�����ÁÁOOP_�,�6_� =A��,�6�eN + ∆N�_�ÁÁOOPf − A��,�6&(N) − Ý%Þ,�6_���(N). ����_U�(N). ∆N�_�ÁÁOOP −
Ý%�Þ,�6_���(N). ����_U�(N). ∆;�_¼¿¿���¢1 − Ý%Þ,�6_���(N). ��Ö�_U�(N). ∆;�_¼¿¿���¢1  (5.24) 

The same convention and procedure are used for other definitions. 

∆ý�����ÁÁOOP_�6_� = ýß�6�eN + ∆N�_�ÁÁOOPf − ýß�6&eN + ∆N�_�ÁÁOOPf, for 

ýß�6eN + ∆N�_�ÁÁOOPf = ÙJ��,�6eN + ∆N�_�ÁÁOOPf���6eN + ∆N�_�ÁÁOOPf Ú  
Then, 

∆ý�����ÁÁOOP_�6_� =
ýß�6�eN + ∆N�_�ÁÁOOPf − Ý%Þ,�6_��(N). ����_U�(N) − Ý%�Þ,�6_��(N). ����_U�(N). ∆N�_�ÁÁOOP −Ý%Þ,�6_��(N). ��Ö�_U�(N). ∆N�_�ÁÁOOP (5.25) 

For þ-K�������ÁÁOOP_�6_� = $ßW)&ª�(9,�6)eN + ∆N�_�ÁÁOOPf − $ßW)&ª&(9,�6)eN + ∆N�_�ÁÁOOPf, 
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þ-K�������ÁÁOOP_�6_� =
$ßW)&ª�(9,�6)eN + ∆N�_�ÁÁOOPf − $ßW)&ª&(9,�6)(N) −
Ý%Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆N�_�ÁÁOOP − Ý%�Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆;�_¼¿¿���¢1 −
Ý%Þ,yW)&ª9_�6_��(N). ��Ö�_U�(N). ∆;�_¼¿¿���¢1  (5.26) 

þ������ÁÁOOP_�_U�_� = ���_U�&eN + ∆N�_�ÁÁOOPf − ���_U�9, where ���_U�9 is taken as a 

vector with zero components only. 

Then, 

þ������ÁÁOOP_�_U�_� = ���_U�(N) + ����_U�(N). ∆N�_�ÁÁOOP + ��Ö�_U�(N). ∆;�_¼¿¿���¢1 − ���_U�9 

  (5.27) 

The cost function for the first step of optimum command accelerations calculation 

in LFFSSP is defined as shown below: 

$�ÁÁOOP,� =�1 ∆A�����ÁÁOOP_�,�6_�� . Së�ÁÁOOP_P,�6. ∆A�����ÁÁOOP_�,�6_� +
�1 þ-K�������ÁÁOOP_�6_�� . Së�ÁÁOOP_x�,�6. þ-K�������ÁÁOOP_�6_� +
�1 ∆ý�����ÁÁOOP_�6_�� . Së�ÁÁOOP_�,�6. ∆ý�����ÁÁOOP_�6_� +
�1 þ������ÁÁOOP_�_U�_�� . Së�ÁÁOOP_ö�_U� . þ������ÁÁOOP_�_U�_� +
�1 ��Ö�_U�(N)� . Së�ÁÁOOP_ö�_U�WW . ��Ö�_U�(N) (5.28) 

5.1.1.2.1.2. Calculation Procedure 

For optimum cost value 
�y¼¿¿���,��ö�Ö ¼_�� = 0, (5.29) 

optimum command accelerations can be calculated. The equation (5.29) can be 

converted into the form ��Ö�_U��ê%�ÁÁOOP,� = �ß�ÁÁOOP,�. 

 



141 

 

Therefore, 

�y¼¿¿���,��ö�Ö ¼_�� = ∆A�����ÁÁOOP_�,�6_�� . Së�ÁÁOOP_P,�6. ×−Ý%Þ,�6_���(N). ∆;�_¼¿¿���¢1 Ø +
þ-K�������ÁÁOOP_�6_�� . Së�ÁÁOOP_x�,�6. ×−Ý%Þ,yW)&ª9_�6_��(N). ∆;�_¼¿¿���¢1 Ø +
∆ý�����ÁÁOOP_�6_�� . Së�ÁÁOOP_�,�6. �−Ý%Þ,�6_��(N). ��Ö�_U�(N). ∆N�_�ÁÁOOP� +
þ������ÁÁOOP_�_U�_�� . Së�ÁÁOOP_ö�_U� . ∆;�_¼¿¿���¢1 + ��Ö�_U�(N)� . Së�ÁÁOOP_ö�_U�WW (5.30) 

After inserting derived expressions of ∆A�����ÁÁOOP_�,�6_�, þ-K�������ÁÁOOP_�6_�, ∆ý�����ÁÁOOP_�6_� and þ������ÁÁOOP_�_U�_� which are equation (5.24), (5.25), (5.26) and 

(5.27) into equation (5.31), the equation can be expressed as: 

��Ö�_U��ê%�ÁÁOOP,� = �ß�ÁÁOOP,�.  (5.31) 

Components of the equation (5.31) are determined such as: 

�ß�ÁÁOOP,�
= cA��,�6�eN + ∆N�_�ÁÁOOPf − A��,�6&(N) − Ý%Þ,�6_���(N). ����_U�(N). ∆N�_�ÁÁOOP

−Ý%�Þ,�6_���(N). ����_U�(N). ∆N�_�ÁÁOOP12 d� 
. Së�ÁÁOOP_P,�6. Ý%Þ,�6_���(N). ∆N�_�ÁÁOOP12
+ Íýß�6�eN + ∆N�_�ÁÁOOPf − Ý%Þ,�6_��(N). ����_U�(N)−Ý%�Þ,�6_��(N). ����_U�(N). ∆N�_�ÁÁOOP Î� . Së�ÁÁOOP_�,�6. Ý%Þ,�6_��(N). ∆N�_�ÁÁOOP

+ L $ßW)&ª�(9,�6)eN + ∆N�_�ÁÁOOPf − $ßW)&ª&(9,�6)(N)
−Ý%Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆N�_�ÁÁOOP − Ý%�Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆N�_�ÁÁOOP12 M

�
 

. Së�ÁÁOOP_x�,�6. Ý%Þ,yW)&ª9_�6_��(N). ∆;�_¼¿¿���¢1 −
����_U�(N) − ���_U�9�� . Së�ÁÁOOP_ö�_U� . ∆;�_¼¿¿���¢1 −
����_U�(N)� . Së�ÁÁOOP_ö�_U� . ∆;�_¼¿¿���|1  (5.32) 
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ê%�ÁÁOOP,� =
Së�ÁÁOOP_ö�_U�WW + Së�ÁÁOOP_ö�_U� . ∆;�_¼¿¿���Ï3 +
Ý%Þ,�6_���(N)� . Së�ÁÁOOP_P,�6. Ý%Þ,�6_���(N). ∆;�_¼¿¿���Ï3 +
Ý%Þ,yW)&ª9_�6_��(N)� . Së�ÁÁOOP_x�,�6. Ý%Þ,yW)&ª9_�6_��(N). ∆;�_¼¿¿���Ï3 +
Ý%Þ,�6_��(N)� . Së�ÁÁOOP_�,�6. Ý%Þ,�6_��(N). ∆N�_�ÁÁOOP1 (5.33) 

Së�ÁÁOOP_P,�6, Së�ÁÁOOP_x�,�6, Së�ÁÁOOP_�,�6, Së�ÁÁOOP_ö�_U� and Së�ÁÁOOP_ö�_U�WW are 

diagonal matrices with weighting coefficients. 

With derived expression, optimum command accelerations from Body 4 to Body 

17 for LFFSSP can be calculated by equation (5.34): 

��Ö�_U��(N) = ×�ß�ÁÁOOP,�. ê%�ÁÁOOP,���Ø�
 (5.34) 

5.1.1.2.2. For Body 1 and the toe point of Body 1 

5.1.1.2.2.1. Definition of Variables 

The same conventions and derivation procedures of the first step are implemented. 

However, several jacobian matrices are segmented using the definition of ���_� in 

chapter 4 as shown below: 

ÛJ�;<���� Ü = ÍÝ%Þ,;<�_�_U�� Ý%Þ,;<�_�_U�Ý%Þ,;<�_�_U�� Ý%Þ,;<�_�_U�Î Ù����_U�����_U Ú 
$ß�W)&ª(9,�) = �Ý%Þ,yW)&ª9_�_�_U� Ý%Þ,yW)&ª9_�_�_U� Ù����_U�����_U Ú 

N is the present phase time and ∆N1_�ÁÁOOP is the prediction time range used in the 

second step of optimum command acceleration calculation in LFFSSP. 

∆A�����ÁÁOOP_;<�_� = A�;<��eN + ∆N1_�ÁÁOOPf − A�;<�&eN + ∆N1_�ÁÁOOPf  
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Using the truncated Taylor Expansion of A�;<�&eN + ∆N1_�ÁÁOOPf and segmented 

jacobian matrices mentioned above, ∆A�����ÁÁOOP_;<�_� can be expressed as shown 

below where optimum command accelerations (��Ö�_U��) that are calculated in the 

first step and unknown joint space accelerations (��Ö�_U) are expressed in separate 

terms.  

∆A�����ÁÁOOP_;<�_� =
cA�;<��eN + ∆N1_�ÁÁOOPf − A�;<�&(N) − Ý%Þ,;<��(N). ����_�(N). ∆N1_�ÁÁOOP−Ý%�Þ,;<��(N). ����_�(N). ∆;¢_¼¿¿���¢1 d −
×Ý%Þ,;<�_�_U��(N). ��Ö�_U��(N) + Ý%Þ,;<�_�_U�(N). ��Ö�_U(N)Ø ∆;¢_¼¿¿���¢1   (5.35) 

Applying the similar procedure for other definitions: 

∆ý�����ÁÁOOP_�_� = ýß��eN + ∆N1_�ÁÁOOPf − ýß�&eN + ∆N1_�ÁÁOOPf, for  

ýß�eN + ∆N1_�ÁÁOOPf = ÙJ�;<�eN + ∆N1_�ÁÁOOPf���eN + ∆N1_�ÁÁOOPf Ú  
∆ý�����ÁÁOOP_�_� =
×ýß��eN + ∆N1_�ÁÁOOPf − Ý%Þ,;<�(N). ����_�(N) − Ý%�Þ,;<�(N). ����_�(N). ∆N1_�ÁÁOOPØ −
�Ý%Þ,;<�_�_U�(N). ��Ö�_U��(N) + Ý%Þ,;<�_�_U(N). ��Ö�_U(N)�∆N1_�ÁÁOOP  (5.36) 

For þ-K�������ÁÁOOP_�_� = $ßW)&ª�(9,�)eN + ∆N1_�ÁÁOOPf − $ßW)&ª&(9,�)eN + ∆N1_�ÁÁOOPf,  

þ-K�������ÁÁOOP_�_� =
c $ßW)&ª�(9,�)eN + ∆N1_�ÁÁOOPf − $ßW)&ª&(9,�)(N)−Ý%Þ,yW)&ª9_�(N). ����_�(N). ∆N1_�ÁÁOOP − Ý%�Þ,yW)&ª9_�(N). ����_�(N). ∆;¢_¼¿¿���¢1

d −
�Ý%Þ,yW)&ª9_�_�_U�(N). ��Ö�_U��(N) + Ý%Þ,yW)&ª9_�_�_U(N). ��Ö�_U(N)� ∆;¢_¼¿¿���¢1   (5.37) 

þ������ÁÁOOP_�_U_� = ���_U&eN + ∆N1_�ÁÁOOPf − ���_U9, where ���_U9 is taken as a vector 

with zero components only. 
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þ������ÁÁOOP_�_U_� = ���_U(N) + ����_U(N). ∆N1_�ÁÁOOP + ��Ö�_U(N). ∆;¢_¼¿¿���¢1 − ���_U9  

  (5.38) 

g2 and g�2 being different from zero is penalized by using expressions shown 

below in the cost function. 

∆g2 = g2(N) = ∅�}| . ���_U(N) + ∅�}| . ����_U(N). ∆N2_�ÁÁOOP + ∅�}| . ��Ö�_U(N). ∆;|_¼¿¿���¢1   

  (5.39) 

∆g�2 = g�2(N) = ∅�}| . ����_U(N) + ∅�}| . ��Ö�_U(N). ∆N2_�ÁÁOOP  (5.40) 

The cost function for the second step of optimum command accelerations 

calculation in LFFSSP is defined as shown below: 

$�ÁÁOOP,1 =�1 ∆A�����ÁÁOOP_;<�_�� . Së�ÁÁOOP_P,;<� . ∆A�����ÁÁOOP_;<�_� +
�1 þ-K�������ÁÁOOP_�_�� . Së�ÁÁOOP_x�,�. þ-K�������ÁÁOOP_�_� +
�1 ∆ý�����ÁÁOOP_�_�� . Së�ÁÁOOP_�,�. ∆ý�����ÁÁOOP_�_� +
�1 þ������ÁÁOOP_�_U_�� . Së�ÁÁOOP_ö�_U. þ������ÁÁOOP_�_U_� + �1 ∆g2. SP,}| . ∆g2 +
�1 ∆g�2. S�,}| . ∆g�2 + �1 ��Ö�_U(N)� . Së�ÁÁOOP_ö�_UWW . ��Ö�_U(N) (5.41) 

5.1.1.2.2.2. Calculation Procedure 

For optimum cost value, 
�y¼¿¿���,¢�ö�Ö ü_� = 0, (5.42) 

optimum command accelerations can be calculated. The equation (5.42) can be 

converted into the form: 

��Ö�_U�ê%�ÁÁOOP,1 = �ß�ÁÁOOP,1 (5.43) 

Components of the equation (5.43) are shown by equation (5.44) and (5.45). 
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ê%�ÁÁOOP,1 =
Së�ÁÁOOP_ö�_UWW + Së�ÁÁOOP_ö�_U . ∆;¢_¼¿¿���Ï3 +
Ý%Þ,;<�_�_U�(N)� . Së�ÁÁOOP_P,;<�. Ý%Þ,;<�_�_U�(N). ∆;¢_¼¿¿���Ï3 +
Ý%Þ,yW)&ª9_�_�_U(N)� . Së�ÁÁOOP_x�,�. Ý%Þ,yW)&ª9_�_�_U(N). ∆;¢_¼¿¿���Ï3 +
Ý%Þ,;<�_�_U(N)� . Së�ÁÁOOP_�,�. Ý%Þ,;<�_�_U(N). ∆N1_�ÁÁOOP1 +
∅�}| � . SP,}| .∅�}| . ∆;|_¼¿¿���Ï3 + ∅�}| � . S�,}| .∅�}| . ∆N2_�ÁÁOOP1 (5.44) 

�ß�ÁÁOOP,1 = cA�;<��eN + ∆N1_�ÁÁOOPf − A�;<�&(N) − Ý%Þ,;<��(N). ����_�(N). ∆N1_�ÁÁOOP
−Ý%�Þ,;<��(N). ����_�(N). ∆N1_�ÁÁOOP12 d� 

. Së�ÁÁOOP_P,;<� . Ý%Þ,;<�_�_U�(N). ∆N1_�ÁÁOOP12
− ��Ö�_U��(N)� . Ý%Þ,;<�_�_U��(N)� . Së�ÁÁOOP_P,;<� . Ý%Þ,;<�_�_U�(N). ∆N1_�ÁÁOOP34
+ Íýß��eN + ∆N1_�ÁÁOOPf − Ý%Þ,;<�(N). ����_�(N)−Ý%�Þ,;<�(N). ����_�(N). ∆N1_�ÁÁOOP Î� . Së�ÁÁOOP_�,�. Ý%Þ,;<�_�_U(N). ∆N1_�ÁÁOOP
− ��Ö�_U��(N)� . Ý%Þ,;<�_�_U�(N)� . Së�ÁÁOOP_�,�. Ý%Þ,;<�_�_U(N). ∆N1_�ÁÁOOP1

+ L $ßW)&ª�(9,�)eN + ∆N1_�ÁÁOOPf − $ßW)&ª&(9,�)(N)
−Ý%Þ,yW)&ª9_�(N). ����_�(N). ∆N1_�ÁÁOOP − Ý%�Þ,yW)&ª9_�(N). ����_�(N). ∆N1_�ÁÁOOP12 M

�
 

. Së�ÁÁOOP_x�,�. Ý%Þ,yW)&ª9_�_�_U(N). ∆;¢_¼¿¿���¢1 −
��Ö�_U��(N)� . Ý%Þ,yW)&ª9_�_�_U�(N)� . Së�ÁÁOOP_x�,�. Ý%Þ,yW)&ª9_�_�_U(N). ∆;¢_¼¿¿���Ï3 −
����_U(N) − ���_U9�� . Së�ÁÁOOP_ö�_U. ∆;¢_¼¿¿���¢1 −
����_U(N)� . Së�ÁÁOOP_ö�_U . ∆;¢_¼¿¿���|1 − ���_U(N)� .∅�}| � . SP,}| .∅�}| . ∆;|_¼¿¿���¢1 −
����_U(N)� .∅�}| � . SP,}| .∅�}| . ∆;|_¼¿¿���|1 − ����_U(N)� .∅�}| � . S�,}| .∅�}| . ∆N2_�ÁÁOOP 

  (5.45) 
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Së�ÁÁOOP_P,;<�, Së�ÁÁOOP_x�,�, Së�ÁÁOOP_�,�, Së�ÁÁOOP_ö�_U, SP,}|, S�,}| and Së�ÁÁOOP_ö�_UWW are weighting coefficients or diagonal matrices with weighting 

coefficients. 

With derived expression, optimum command accelerations from Body 17 to Body 

1 for LFFSSP can be calculated by equation (5.46): 

��Ö�_U�(N) = ×�ß�ÁÁOOP,1. ê%�ÁÁOOP,1��Ø�
 (5.46) 

5.1.1.3. For RFFDSP 

Optimum command accelerations for joint space variables from Body 3 to Body 

17 and from Body 2 to Body 17 are calculated according to given reference inputs 

for Body 17 and its mass center by defining 2 separate cost functions. In order to 

calculate feasible command accelerations, these cost functions are combined and 

subjected to kinematic constraint equations. Otherwise, physically unrealizable 

command accelerations produce inappropriate actuator torques from computed 

torque control block, which enforce bodies to move incompatibly with respect to 

kinematic constraints formed by closed kinematic chain. Then, inappropriate 

actuator torques calculated by computed torque control block cause unpredictable 

joint accelerations during the direct dynamic solution which ensures specified 

kinematic conditions as a part of the solution. Consequently, unpredictable joint 

space accelerations practically lead to blind or unconscious control of the biped 

system. 

Optimum command accelerations for dropped joint space variables are taken as 

zero due to locomotion phase assumptions. Command acceleration θÖ 2� is taken as 

zero as similar to RFFSSP, since Body 3 is assumed to be rigidly fixed to the 

ground in RFFDSP too. 

5.1.1.3.1. Definition of Variables 

N is the present phase time and ∆N�ÁÁ�OP is the prediction time range used during 

the calculation of optimum command accelerations in RFFDSP. 
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∆A�����ÁÁ�OP_�,�6��_� = A��,�6�(N + ∆N�ÁÁ�OP) − A��,�6_��&(N + ∆N�ÁÁ�OP)  

Then, ∆A�����ÁÁ�OP_�,�6��_� =A��,�6�(N + ∆N�ÁÁ�OP) − A��,�6_��&(N) − Ý%Þ,�6_���(N). ����_U�(N). ∆N�ÁÁ�OP −
Ý%�Þ,�6_���(N). ����_U�(N). ∆;ü¿¿���¢1 − Ý%Þ,�6_���(N). ��Ö�_U�(N). ∆;ü¿¿���¢1  (5.47) 

Similarly: 

∆A�����ÁÁ�OP_�,�6��_� = A��,�6�(N + ∆N�ÁÁ�OP) − A��,�6_��&(N + ∆N�ÁÁ�OP) 

Then, 

∆A�����ÁÁ�OP_�,�6��_� =A��,�6�(N + ∆N�ÁÁ�OP) − A��,�6_��&(N) − Ý%Þ,�6_��_&�(N). ����_U(N). ∆N�ÁÁ�OP −
Ý%�Þ,�6_��_&�(N). ����_U(N). ∆;ü¿¿���¢1 − Ý%Þ,�6_��_&�(N). ��Ö�_U(N). ∆;ü¿¿���¢1  (5.48) 

∆ý�����ÁÁ�OP_�6��_� = ýß�6�(N + ∆N�ÁÁ�OP) − ýß�6_��&(N + ∆N�ÁÁ�OP), for  

ýß�6(N + ∆N�ÁÁ�OP) = ÛJ��,�6(N + ∆N�ÁÁ�OP)���6(N + ∆N�ÁÁ�OP) Ü 
Then, 

∆ý�����ÁÁ�OP_�6��_� =
ýß�6�(N + ∆N�ÁÁ�OP) − Ý%Þ,�6_��(N). ����_U�(N) − Ý%�Þ,�6_��(N). ����_U�(N). ∆N�ÁÁ�OP −Ý%Þ,�6_��(N). ��Ö�_U�(N). ∆N�ÁÁ�OP (5.49) 

Similarly: 

∆ý�����ÁÁ�OP_�6��_� = ýß�6�(N + ∆N�ÁÁ�OP) − ýß�6_��&(N + ∆N�ÁÁ�OP) 
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Then, 

∆ý�����ÁÁ�OP_�6��_� =
ýß�6�(N + ∆N�ÁÁ�OP) − Ý%Þ,�6_��_&(N). ����_U(N) − Ý%�Þ,�6_��_&(N). ����_U(N). ∆N�ÁÁ�OP −Ý%Þ,�6_��_&(N). ��Ö�_U(N). ∆N�ÁÁ�OP (5.50) 

Considering þ-K�������ÁÁ�OP_�6��_� = $ßW)&ª�(9,�6)(N + ∆N�ÁÁ�OP) − $ßW)&ª&(9,�6_��)(N + ∆N�ÁÁ�OP), 

it can be expressed that 

þ-K�������ÁÁ�OP_�6��_� = $ßW)&ª�(9,�6)(N + ∆N�ÁÁ�OP) − $ßW)&ª&(9,�6_��)(N) −
Ý%Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆N�ÁÁ�OP − Ý%�Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆;ü¿¿���¢1 −
Ý%Þ,yW)&ª9_�6_��(N). ��Ö�_U�(N). ∆;ü¿¿���¢1  (5.51) 

Similarly,  

þ-K�������ÁÁ�OP_�6��_� = $ßW)&ª�(9,�6)(N + ∆N�ÁÁ�OP) − $ßW)&ª&(9,�6_��)(N + ∆N�ÁÁ�OP)  
þ-K�������ÁÁ�OP_�6��_� = $ßW)&ª�(9,�6)(N + ∆N�ÁÁ�OP) − $ßW)&ª&(9,�6_��)(N) −
Ý%Þ,yW)&ª9_�6_��_&(N). ����_U(N). ∆N�ÁÁ�OP − Ý%�Þ,yW)&ª9_�6_��_&(N). ����_U(N). ∆;ü¿¿���¢1 −
Ý%Þ,yW)&ª9_�6_��_&(N). ��Ö�_U(N). ∆;ü¿¿���¢1  (5.52) 

þ������ÁÁ�OP_�_U�_� = ���_U�&(N + ∆N�ÁÁ�OP) − ���_U�9, where ���_U�9 is taken as a 

vector with zero components only. 

Then, 

þ������ÁÁ�OP_�_U�_� = ���_U�(N) + ����_U�(N). ∆N�ÁÁ�OP + ��Ö�_U�(N). ∆;ü¿¿���¢1 − ���_U�9 

  (5.53) 
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Similarly: 

þ������ÁÁ�OP_�_U_� = ���_U&(N + ∆N�ÁÁ�OP) − ���_U9, where ���_U9 is taken as a vector 

with zero components only. Then, 

þ������ÁÁ�OP_�_U_� = ���_U(N) + ����_U(N). ∆N�ÁÁ�OP + ��Ö�_U(N). ∆;ü¿¿���¢1 − ���_U9 (5.54) 

As a result, cost functions for optimum command accelerations calculation in 

RFFDSP are defined as shown below: 

$�ÁÁ�OP,& = �1 ∆A�����ÁÁ�OP_�,�6��_�� . Së�ÁÁ�OP_P,�6&. ∆A�����ÁÁ�OP_�,�6��_� +
�1 þ-K�������ÁÁ�OP_�6��_�� . Së�ÁÁ�OP_x�,�6&. þ-K�������ÁÁ�OP_�6��_� +
�1 ∆ý�����ÁÁ�OP_�6��_�� . Së�ÁÁ�OP_�,�6&. ∆ý�����ÁÁ�OP_�6��_� +
�1 þ������ÁÁ�OP_�_U�_�� . Së�ÁÁ�OP_ö�_U� . þ������ÁÁ�OP_�_U�_� +
�1 ��Ö�_U�(N)� . Së�ÁÁ�OP_ö�_U�WW . ��Ö�_U�(N) (5.55) 

$�ÁÁ�OP,' = �1 ∆A�����ÁÁ�OP_�,�6��_�� . Së�ÁÁ�OP_P,�6' . ∆A�����ÁÁ�OP_�,�6��_� +
�1 þ-K�������ÁÁ�OP_�6��_�� . Së�ÁÁ�OP_x�,�6' . þ-K�������ÁÁ�OP_�6��_� +
�1 ∆ý�����ÁÁ�OP_�6��_�� . Së�ÁÁ�OP_�,�6' . ∆ý�����ÁÁ�OP_�6��_� +
�1 þ������ÁÁ�OP_�_U_�� . Së�ÁÁ�OP_ö�_U. þ������ÁÁ�OP_�_U_� +
�1 ��Ö�_U(N)� . Së�ÁÁ�OP_ö�_UWW . ��Ö�_U(N) (5.56) 

$�ÁÁ�OP = $�ÁÁ�OP,& + $�ÁÁ�OP,' (5.57) 

Construction of kinematic constraint equations is shown below. 

For Ûh��,�6_��Õ��6_�� Ü = Ûh��,�6_��Õ��6_�� Ü, equation (4.85) and (4.86) of the direct dynamic 

solution of RFFDSP can be used such that: 

Ù s%�6�(��)s%õ�6�(��)Ú ��Ö + Ù w��6�(�,� ��� )w�õ�6�(�,� ��� )Ú = Ù s%�6�(��)s%õ�6�(��)Ú ��Ö + Ù w��6�(�,� ��� )w�õ�6�(�,� ��� )Ú 
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Which can be simplified into the form as shown below. 

Ås%��6�(��) 0#Æ Û���������<<��Ü + w���6�(�,� ��� ) = Ås%��6�(��) 0#Æ Û���������<<��Ü + w���6�(�,� ��� ) 

  (5.58) 

For ����_� = Ù����_U�����_U Ú, the final form of the equation (5.58) is found as: 

∆s	 ��6���_�ÁÁ�OP(��)��Ö�_� = ∆w������6_�ÁÁ�OP(�,� ��� )  (5.59) 

Reconfiguration of equations from equation (5.58) to (5.59) is achieved according 

to the equations (5.60) and (5.61) 

 �s%��6� − s%��6��. ��Ö���� = ∆s	 ��6���_�ÁÁ�OP. ��Ö�_�  (5.60) 

∆w������6_�ÁÁ�OP = w���6� − w���6�. (5.61) 

5.1.1.3.2. Calculation Procedure 

In consequence, finding optimum command accelerations for RFFDSP results to 

an optimization problem such that: 

Minimize $�ÁÁ�OP, subject to ∆s	 ��6���_�ÁÁ�OP(��). ��Ö�_� = ∆w������6_�ÁÁ�OP(�,� ��� ). 

Using the method of Lagrange Multipliers, optimum command accelerations for 

RFFDSP are determined.  

��Ö�_�� = ��ß�ÁÁ�OP,& + �ß�ÁÁ�OP,' + 
. ∆s	 ��6���_�ÁÁ�OP�.� ∅ë���� . ê%�ÁÁ�OP,&+∅ë�_U� . ê%�ÁÁ�OP,'�
��

 

  (5.62) 

Components of equation (5.62) are shown by equation (5.63), (5.64), (5.65), 

(5.66), (5.67), (5.68), (5.69) and (5.60). 
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 = c ∆w������6ü¿¿��� � − e�ß�ÁÁ�OP,& + �ß�ÁÁ�OP,'f. p∅ë���� . ê%�ÁÁ�OP,& + ∅ë��� . ê%�ÁÁ�OP,'r�� ∆s	 ��6���ü¿¿��� �d 
. c∆s	 ��6���_�ÁÁ�OP.� ∅ë���� . ê%�ÁÁ�OP,&+∅ë�_U� . ê%�ÁÁ�OP,'�

�� . ∆s	 ��6���_�ÁÁ�OP�d��
 (5.63) 

∅ë�_U� and ∅ë�_U are matrices for extraction, defined by equation (5.64) and (5.65): 

 ∅ë�_U� . ��Ö�_� = ��Ö�_U�  (5.64) 

∅ë�_U. ��Ö�_� = ��Ö�_U. (5.65) 

ê%�ÁÁ�OP,& =
Së�ÁÁ�OP_ö�_U�WW + Së�ÁÁ�OP_ö�_U� .∅ë�_U� . ∆;ü¿¿���Ï3 +
Ý%Þ,�6_���(N)� . Së�ÁÁ�OP_P,�6&. Ý%Þ,�6_���(N).∅ë�_U� . ∆;ü¿¿���Ï3 +
Ý%Þ,yW)&ª9_�6_��(N)� . Së�ÁÁ�OP_x�,�6&. Ý%Þ,yW)&ª9_�6_��(N).∅ë�_U� . ∆;ü¿¿���Ï3 +
Ý%Þ,�6_��(N)� . Së�ÁÁ�OP_�,�6&. Ý%Þ,�6_��(N).∅ë�_U� . ∆N�ÁÁ�OP1 (5.66) 

ê%�ÁÁ�OP,' =
Së�ÁÁ�OP_ö�_UWW + Së�ÁÁ�OP_ö�_U.∅ë�_U. ∆;ü¿¿���Ï3 +
Ý%Þ,�6_��_&Þ(N)� . Së�ÁÁ�OP_P,�6' . Ý%Þ,�6_��_&�(N).∅ë�_U . ∆;ü¿¿���Ï3 +
Ý%Þ,yW)&ª9_�6_��_&(N)� . Së�ÁÁ�OP_x�,�6' . Ý%Þ,yW)&ª9_�6_��_&(N).∅ë�_U. ∆;ü¿¿���Ï3 +
Ý%Þ,�6_��_&(N)� . Së�ÁÁ�OP_�,�6' . Ý%Þ,�6_��_&(N).∅ë�_U. ∆N�ÁÁ�OP1 (5.67) 
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�ß�ÁÁ�OP,&
= cA��,�6�(N + ∆N�ÁÁ�OP) − A��,�6_��&(N) − Ý%Þ,�6_���(N). ����_U�(N). ∆N�ÁÁ�OP

−Ý%�Þ,�6_���(N). ����_U�(N). ∆N�ÁÁ�OP12 d� 
. Së�ÁÁ�OP_P,�6&. Ý%Þ,�6_���(N).∅ë�_U� . ∆N�ÁÁ�OP12
+ Íýß�6�(N + ∆N�ÁÁ�OP) − Ý%Þ,�6_��(N). ����_U�(N)− Ý%�Þ,�6_��(N). ����_U�(N). ∆N�ÁÁ�OP Î� . Së�ÁÁ�OP_�,�6&. Ý%Þ,�6_��(N).∅ë�_U� . ∆N�ÁÁ�OP

+ L $ßW)&ª�(9,�6)(N + ∆N�ÁÁ�OP) − $ßW)&ª&(9,�6_��)(N)
−Ý%Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆N�ÁÁ�OP − Ý%�Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆N�ÁÁ�OP12 M

�
 

. Së�ÁÁ�OP_x�,�6&. Ý%Þ,yW)&ª9_�6_��(N).∅ë�_U� . ∆;ü¿¿���¢1 −
����_U�(N) − ���_U�9�� . Së�ÁÁ�OP_ö�_U� .∅ë�_U� . ∆;ü¿¿���¢1 −
����_U�(N)� . Së�ÁÁ�OP_ö�_U� .∅ë�_U� . ∆;ü¿¿���|1  (5.68) 

�ß�ÁÁ�OP,'
= cA��,�6�(N + ∆N�ÁÁ�OP) − A��,�6_��&(N) − Ý%Þ,�6_��_&�(N). ����_U(N). ∆N�ÁÁ�OP

−Ý%�Þ,�6_��_&�(N). ����_U(N). ∆N�ÁÁ�OP12 d� 
. Së�ÁÁ�OP_P,�6' . Ý%Þ,�6_��_&�(N).∅ë�_U. ∆N�ÁÁ�OP12+ ×ýß�6�(N + ∆N�ÁÁ�OP) − Ý%Þ,�6_��_&(N). ����_U(N)
− Ý%�Þ,�6_��_&(N). ����_U(N). ∆N�ÁÁ�OP�� . Së�ÁÁ�OP_�,�6' . Ý%Þ,�6_��_&(N).∅ë�_U . ∆N�ÁÁ�OP
+ L $ßW)&ª�(9,�6)(N + ∆N�ÁÁ�OP) − $ßW)&ª&(9,�6_��)(N)

−Ý%Þ,yW)&ª9_�6_��_&(N). ����_U(N). ∆N�ÁÁ�OP − Ý%�Þ,yW)&ª9_�6_��_&(N). ����_U(N). ∆N�ÁÁ�OP12 M
�
 

. Së�ÁÁ�OP_x�,�6' . Ý%Þ,yW)&ª9_�6_��_&(N).∅ë�_U. ∆;ü¿¿���¢1 −
����_U(N) − ���_U9�� . Së�ÁÁ�OP_ö�_U .∅ë�_U . ∆;ü¿¿���¢1 −
����_U(N)� . Së�ÁÁ�OP_ö�_U.∅ë�_U. ∆;ü¿¿���|1  (5.69) 
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5.1.1.4. For LFFDSP 

Optimum command accelerations for joint space variables from Body 4 to Body 

17 and from Body 1 to Body 17 are calculated according to given reference inputs 

for Body 17 and its mass center by defining 2 separate cost functions. These cost 

functions are combined and subjected to kinematic constraint equations.  

Command acceleration θÖ 3� is taken as zero as similar to LFFSSP, since Body 4 is 

assumed to be rigidly fixed to the ground in LFFDSP too. The procedure similar to 

the one shown in RFFDSP is applied in LFFDSP. 

5.1.1.4.1. Definition of Variables 

N is the present phase time and ∆N�ÁÁ�OP is the prediction time range used during 

the calculation of optimum command accelerations in LFFDSP. 

∆A�����ÁÁ�OP_�,�6��_� = A��,�6�(N + ∆N�ÁÁ�OP) − A��,�6_��&(N + ∆N�ÁÁ�OP)  

Then, ∆A�����ÁÁ�OP_�,�6��_� =A��,�6�(N + ∆N�ÁÁ�OP) − A��,�6_��&(N) − Ý%Þ,�6_���(N). ����_U�(N). ∆N�ÁÁ�OP −
Ý%�Þ,�6_���(N). ����_U�(N). ∆;¼¿¿���¢1 − Ý%Þ,�6_���(N). ��Ö�_U�(N). ∆;¼¿¿���¢1  (5.70) 

Similarly: 

∆A�����ÁÁ�OP_�,�6��_� = A��,�6�(N + ∆N�ÁÁ�OP) − A��,�6_��&(N + ∆N�ÁÁ�OP) 
Then, 

∆A�����ÁÁ�OP_�,�6��_� =A��,�6�(N + ∆N�ÁÁ�OP) − A��,�6_��&(N) − Ý%Þ,�6_��_&�(N). ����_U(N). ∆N�ÁÁ�OP −
Ý%�Þ,�6_��_&�(N). ����_U(N). ∆;¼¿¿���¢1 − Ý%Þ,�6_��_&�(N). ��Ö�_U(N). ∆;¼¿¿���¢1  (5.71) 
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Defining ∆ý�����ÁÁ�OP_�6��_� = ýß�6�(N + ∆N�ÁÁ�OP) − ýß�6_��&(N + ∆N�ÁÁ�OP), for 

ýß�6(N + ∆N�ÁÁ�OP) = ÛJ��,�6(N + ∆N�ÁÁ�OP)���6(N + ∆N�ÁÁ�OP) Ü : 
∆ý�����ÁÁ�OP_�6��_� =
ýß�6�(N + ∆N�ÁÁ�OP) − Ý%Þ,�6_��(N). ����_U�(N) − Ý%�Þ,�6_��(N). ����_U�(N). ∆N�ÁÁ�OP −Ý%Þ,�6_��(N). ��Ö�_U�(N). ∆N�ÁÁ�OP (5.72) 

Similarly: 

∆ý�����ÁÁ�OP_�6��_� = ýß�6�(N + ∆N�ÁÁ�OP) − ýß�6_��&(N + ∆N�ÁÁ�OP) 

Then, 

∆ý�����ÁÁ�OP_�6��_� =
ýß�6�(N + ∆N�ÁÁ�OP) − Ý%Þ,�6_��_&(N). ����_U(N) − Ý%�Þ,�6_��_&(N). ����_U(N). ∆N�ÁÁ�OP −Ý%Þ,�6_��_&(N). ��Ö�_U(N). ∆N�ÁÁ�OP (5.73) 

Considering þ-K�������ÁÁ�OP_�6��_� = $ßW)&ª�(9,�6)(N + ∆N�ÁÁ�OP) − $ßW)&ª&(9,�6_��)(N + ∆N�ÁÁ�OP), 

it can be expressed that: 

þ-K�������ÁÁ�OP_�6��_� = $ßW)&ª�(9,�6)(N + ∆N�ÁÁ�OP) − $ßW)&ª&(9,�6_��)(N) −
Ý%Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆N�ÁÁ�OP − Ý%�Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆;¼¿¿���¢1 −
Ý%Þ,yW)&ª9_�6_��(N). ��Ö�_U�(N). ∆;¼¿¿���¢1  (5.74) 

Similarly: 

þ-K�������ÁÁ�OP_�6��_� = $ßW)&ª�(9,�6)(N + ∆N�ÁÁ�OP) − $ßW)&ª&(9,�6_��)(N + ∆N�ÁÁ�OP)  

Then, 
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þ-K�������ÁÁ�OP_�6��_� = $ßW)&ª�(9,�6)(N + ∆N�ÁÁ�OP) − $ßW)&ª&(9,�6_��)(N) −
Ý%Þ,yW)&ª9_�6_��_&(N). ����_U(N). ∆N�ÁÁ�OP − Ý%�Þ,yW)&ª9_�6_��_&(N). ����_U(N). ∆;¼¿¿���¢1 −
Ý%Þ,yW)&ª9_�6_��_&(N). ��Ö�_U(N). ∆;¼¿¿���¢1  (5.75) 

þ������ÁÁ�OP_�_U�_� = ���_U�&(N + ∆N�ÁÁ�OP) − ���_U�9, where ���_U�9 is taken as a 

vector with zero components only. 

Then, 

þ������ÁÁ�OP_�_U�_� = ���_U�(N) + ����_U�(N). ∆N�ÁÁ�OP + ��Ö�_U�(N). ∆;¼¿¿���¢1 − ���_U�9 

  (5.76) 

Similarly: 

þ������ÁÁ�OP_�_U_� = ���_U&(N + ∆N�ÁÁ�OP) − ���_U9, where ���_U9 is taken as a vector 

with zero components only. 

Then, þ������ÁÁ�OP_�_U_� = ���_U(N) + ����_U(N). ∆N�ÁÁ�OP + ��Ö�_U(N). ∆;¼¿¿���¢1 − ���_U9
  (5.77) 

As a result, cost functions for optimum command accelerations calculation in 

LFFDSP are defined as shown below: 

$�ÁÁ�OP,& =�1 ∆A�����ÁÁ�OP_�,�6��_�� . Së�ÁÁ�OP_P,�6&. ∆A�����ÁÁ�OP_�,�6��_� +
�1 þ-K�������ÁÁ�OP_�6��_�� . Së�ÁÁ�OP_x�,�6&. þ-K�������ÁÁ�OP_�6��_� +
�1 ∆ý�����ÁÁ�OP_�6��_�� . Së�ÁÁ�OP_�,�6&. ∆ý�����ÁÁ�OP_�6��_� +
�1 þ������ÁÁ�OP_�_U�_�� . Së�ÁÁ�OP_ö�_U� . þ������ÁÁ�OP_�_U�_� +
�1 ��Ö�_U�(N)� . Së�ÁÁ�OP_ö�_U�WW . ��Ö�_U�(N) (5.78) 
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$�ÁÁ�OP,' =�1 ∆A�����ÁÁ�OP_�,�6��_�� . Së�ÁÁ�OP_P,�6' . ∆A�����ÁÁ�OP_�,�6��_� +
�1 þ-K�������ÁÁ�OP_�6��_�� . Së�ÁÁ�OP_x�,�6' . þ-K�������ÁÁ�OP_�6��_� +
�1 ∆ý�����ÁÁ�OP_�6��_�� . Së�ÁÁ�OP_�,�6'. ∆ý�����ÁÁ�OP_�6��_� +
�1 þ������ÁÁ�OP_�_U_�� . Së�ÁÁ�OP_ö�_U. þ������ÁÁ�OP_�_U_� +
�1 ��Ö�_U(N)� . Së�ÁÁ�OP_ö�_UWW . ��Ö�_U(N) (5.79) 

$�ÁÁ�OP = $�ÁÁ�OP,& + $�ÁÁ�OP,' (5.80) 

For ����_� = Ù ����_U����_U�Ú, constraint equations are expressed similar to RFFDSP as 

shown: 

∆s	 ��6���_�ÁÁ�OP(��). ��Ö�_� = ∆w������6_�ÁÁ�OP(�,� ��� ) (5.81) 

5.1.1.4.2. Calculation Procedure 

In consequence, finding optimum command accelerations for LFFDSP results to 

an optimization problem such that: 

Minimize $�ÁÁ�OP, subject to ∆s	 ��6���_�ÁÁ�OP(��). ��Ö�_� = ∆w������6_�ÁÁ�OP(�,� ��� ). 

Using the method of Lagrange Multipliers, optimum command accelerations for 

LFFDSP are determined.  

��Ö�¼� = ��ß�ÁÁ�OP,& + �ß�ÁÁ�OP,' + 
. ∆s	 ��6���¼¿¿����.� ∅ë��� � . ê%�ÁÁ�OP,&+∅ë�_U� . ê%�ÁÁ�OP,'�
��

 

  (5.82) 

Components of equation (5.82) are shown by equation (5.83), (5.84), (5.85), 

(5.86), (5.87), (5.88), (5.89) and (5.81). 
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 = CDD
DE∆w������6¼¿¿��� � − e�ß�ÁÁ�OP,& + �ß�ÁÁ�OP,'f
.� ∅ë���� . ê%�ÁÁ�OP,&+∅ë��� . ê%�ÁÁ�OP,'�

�� ∆s	 ��6���¼¿¿��� � GHH
HI 

. Û∆s	 ��6���_�ÁÁ�OP. p∅ë��� � . ê%�ÁÁ�OP,& + ∅ë�_U� . ê%�ÁÁ�OP,'r�� . ∆s	 ��6���_�ÁÁ�OP�Ü��
  (5.83) 

∅ë�_U� and ∅ë�_U are matrices for extraction, defined by equation (5.84) and (5.85): ∅ë�_U� . ��Ö�_� = ��Ö�_U�  (5.84) 

∅ë�_U. ��Ö�_� = ��Ö�_U. (5.85) 

ê%�ÁÁ�OP,& =
Së�ÁÁ�OP_ö�_U�WW + Së�ÁÁ�OP_ö�_U� .∅ë�_U� . ∆;¼¿¿���Ï3 +
Ý%Þ,�6_���(N)� . Së�ÁÁ�OP_P,�6&. Ý%Þ,�6_���(N).∅ë�_U� . ∆;¼¿¿���Ï3 +
Ý%Þ,yW)&ª9_�6_��(N)� . Së�ÁÁ�OP_x�,�6&. Ý%Þ,yW)&ª9_�6_��(N).∅ë�_U� . ∆;¼¿¿���Ï3 +
Ý%Þ,�6_��(N)� . Së�ÁÁ�OP_�,�6&. Ý%Þ,�6_��(N).∅ë�_U� . ∆N�ÁÁ�OP1 (5.86) 

ê%�ÁÁ�OP,' =
Së�ÁÁ�OP_ö�_UWW + Së�ÁÁ�OP_ö�_U .∅ë�_U. ∆;¼¿¿���Ï3 +
Ý%Þ,�6_��_&Þ(N)� . Së�ÁÁ�OP_P,�6' . Ý%Þ,�6_��_&�(N).∅ë�_U. ∆;¼¿¿���Ï3 +
Ý%Þ,yW)&ª9_�6_��_&(N)� . Së�ÁÁ�OP_x�,�6' . Ý%Þ,yW)&ª9_�6_��_&(N).∅ë�_U . ∆;¼¿¿���Ï3 +
Ý%Þ,�6_��_&(N)� . Së�ÁÁ�OP_�,�6' . Ý%Þ,�6_��_&(N).∅ë�_U. ∆N�ÁÁ�OP1 (5.87) 
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�ß�ÁÁ�OP,&
= c A��,�6�(N + ∆N�ÁÁ�OP) − A��,�6_��&(N)

−Ý%Þ,�6_���(N). ����_U�(N). ∆N�ÁÁ�OP − Ý%�Þ,�6_���(N). ����_U�(N). ∆N�ÁÁ�OP12 d� 
. Së�ÁÁ�OP_P,�6&. Ý%Þ,�6_���(N).∅ë�_U� . ∆N�ÁÁ�OP12
+ Íýß�6�(N + ∆N�ÁÁ�OP) − Ý%Þ,�6_��(N). ������(N)−Ý%�Þ,�6_��(N). ����_U�(N). ∆N�ÁÁ�OP Î� . Së�ÁÁ�OP_�,�6&. Ý%Þ,�6_��(N).∅ë�_U� . ∆N�ÁÁ�OP

+ L $ßW)&ª�(9,�6)(N + ∆N�ÁÁ�OP) − $ßW)&ª&(,�6_��)(N)
−Ý%Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆N�ÁÁ�OP − Ý%�Þ,yW)&ª9_�6_��(N). ����_U�(N). ∆N�ÁÁ�OP12 M

�
 

. Së�ÁÁ�OP_x�,�6&. Ý%Þ,yW)&ª9_�6_��(N).∅ë�_U� . ∆;¼¿¿���¢1 −
����_U�(N) − ���_U�9�� . Së�ÁÁ�OP_ö�_U� .∅ë�_U� . ∆;¼¿¿���¢1 −
����_U�(N)� . Së�ÁÁ�OP_ö�_U� .∅ë�_U� . ∆;¼¿¿���|1  (5.88) 

�ß�ÁÁ�OP,'
= c A��,�6�(N + ∆N�ÁÁ�OP) − A��,�6_��&(N)

−Ý%Þ,�6_��_&�(N). ����_U(N). ∆N�ÁÁ�OP − Ý%�Þ,�6_��_&�(N). ����_U(N). ∆N�ÁÁ�OP12 d� 
. Së�ÁÁ�OP_P,�6' . Ý%Þ,�6_��_&�(N).∅ë�_U. ∆N�ÁÁ�OP12

+ Íýß�6�(N + ∆N�ÁÁ�OP) − Ý%Þ,�6_��_&(N). ����_U(N)−Ý%�Þ,�6_��_&(N). ����_U(N). ∆N�ÁÁ�OP Î� 
. Së�ÁÁ�OP_�,�6'. Ý%Þ,�6_��_&(N).∅ë�_U. ∆N�ÁÁ�OP

+
CDD
DE$ßW)&ª�(9,�6)(N + ∆N�ÁÁ�OP) − $ßW)&ª&(,�6_��)(N)−Ý%Þ,yW)&ª9_�6_��_&(N). ����_U(N). ∆N�ÁÁ�OP−Ý%�Þ,yW)&ª9_�6_��_&(N). ����_U(N). ∆N�ÁÁ�OP12 GHH

HI
�
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. Së�ÁÁ�OP_x�,�6' . Ý%Þ,yW)&ª9_�6_��_&(N).∅ë�_U . ∆;¼¿¿���¢1 −
����_U(N) − ���_U9�� . Së�ÁÁ�OP_ö�_U.∅ë�_U. ∆;¼¿¿���¢1 −
����_U(N)� . Së�ÁÁ�OP_ö�_U.∅ë�_U . ∆;¼¿¿���|1  (5.89) 

5.1.2. For UpperBodies 

Calculation of optimum command accelerations for joint space variables from 

Body 17 to Body 27 (from θ�7 to θ16) is explained under this heading. Since there 

are no reference trajectories defined for any upperbodies, all upperbodies are 

expected to maintain their initial position and orientation with respect to its 

adjacent bodies. Then, optimum command accelerations for upperbodies are 

calculated locally to keep related joint space positions and velocities close to their 

initial values. 

For a joint variable g*, present phase time N and its prediction time range ∆N* the 

cost function is defined as 

 $}� = �1 . SP,}��g*(N + ∆N*) − g*9�1 + �1 . S�,}��g�*(N + ∆N*) − g�*9�1
  (5.90)  

where g*9 and g�*9 are initial values of g* and g�*. g*9, g�*9 are taken as zero in the 

simulation and SP,}�, S�,}� are related weighting coefficients. 

Using truncated Taylor Series Expansion of g*(N + ∆N*) and g�*(N + ∆N*), WyÊ�W}Ö � = 0 for optimum cost value as similar to calculations for lowerbodies; 

optimum command acceleration for joint space variable g* is calculated as: 

gÖ*�
= − SP,}� . �g*(N) − g*9�. ∆N*12 + SP,}� . g�*(N). ∆N*22 + S�,}� . �g�*(N) − g�*9�. ∆N*SP,}� . ∆N*34 + S�,}� . ∆N*1  
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Using this procedure, all command accelerations are calculated for upperbodies 

such that: 

��Ö�<<��� = CD
DEθÖ �7θÖ �8⋮θÖ 16GH

HI 
5.2. Calculation of Actuator Torques 

Computed torque control method is applied to calculate actuator torques [64]. 

Using kinematic equations related with the current locomotion phase, dynamic 

equations can be expressed in the form presented in direct dynamic solution 

procedure of chapter 4 as shown below: 

êß(��, ��� , ��Ö ) = �ë(��)ã� 

Using calculated command accelerations ��Ö� and known joint space variables ��, ��� : 
Ûêß(��, ��� , ��Ö�)êß� Ü = Ù�ë(��)�ë� Ú ã� (5.91) 

êß� and �ë� are constructed according to assumptions of the current locomotion 

phase. Using equation (5.91), necessary forces and moments between bodies in 

order to achieve supplied command accelerations can be calculated. Required 

actuator torques are found by extracting relevant components of moments that are 

needed to be acted upon bodies using the expression Q� = é#ã� which is explained in 

the direct dynamic solution procedure of chapter 4. 

Actuator torque Q� is always calculated to be zero during RFFSSP and RFFDSP, 

as long as æ��,2(2)
 is assumed to be zero. However æ�,2?(2), which is eventually Q�, 

can be assumed different from zero within reasonable limits in order to manually 

increase or decrease the magnitude of ground reaction forces and moments on 

Body 1 and Body 3 for various purposes. The similar interpretation can be made 

for Q1 and the assumption of æ1,3?(3) during LFFSSP and LFFDSP. 
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5.2.1. For RFFSSP 

Forces and moments that are assumed to be zero during RFFSSP are as shown 

below: 

CD
DDD
DDD
E ã��,2(2)
æ��,2(2)
ã�9,3(3)
æ�9,3(3)
ã�9,1(1)
æ�9,1(1)GH

HHH
HHH
I

= �ë�_�ÁÁOOP. ã� = êß�_�ÁÁOOP for êß�_�ÁÁOOP = 0�. 

ã�9,3(3)
, æ�9,3(3)

, ã�9,1(1)
, æ�9,1(1)

 and ã��,2(2)
, æ��,2(2)

 are taken as zero; since it is 

assumed that Body 2, Body 4 do not interact with the ground and interaction 

between Body 1, Body 3 are negated due to being rigidly fixed to the ground 

during RFFSSP.  

After determining �ë�_�ÁÁOOP and êß�_�ÁÁOOP, required actuator torques can be found 

by: 

Q� = é#. Ù �ë(��)�ë�_�ÁÁOOPÚ�� . Ùêß(��, ��� , ��Ö�)êß�_�ÁÁOOP Ú (5.92) 

5.2.2. For LFFSSP 

Forces and moments that are assumed to be zero during LFFSSP are as shown 

below: 

CD
DDD
DDD
E ã�1,3(3)
æ�1,3(3)
ã�9,2(2)
æ�9,2(2)
ã�9,�(�)
æ�9,�(�)GH

HHH
HHH
I

= �ë�_�ÁÁOOP . ã� = êß�_�ÁÁOOP for êß�_�ÁÁOOP = 0�. 
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ã�9,2(2)
, æ�9,2(2)

, ã�9,�(�)
, æ�9,�(�)

 and ã�1,3(3)
, æ�1,3(3)

 are taken as zero; since it is 

assumed that Body 1, Body 3 do not interact with the ground and interaction 

between Body 2, Body 4 are negated due to being rigidly fixed to the ground 

during LFFSSP.  

After determining �ë�_�ÁÁOOP and êß�_�ÁÁOOP, required actuator torques can be found 

by: 

Q� = é#. Ù �ë(��)�ë�_�ÁÁOOPÚ�� . Ùêß(��, ��� , ��Ö�)êß�_�ÁÁOOP Ú (5.93) 

5.2.3. For RFFDSP 

Forces and moments that are assumed to be zero during RFFDSP are as shown 

below: 

CDD
DDE

ã��,2(2)
æ��,2(2)
ã�9,3(3)
æ�9,3(3)GHH

HHI = �ë�_�ÁÁ�OP. ã� = êß�_�ÁÁ�OP for êß�_�ÁÁ�OP = 0�. 

ã�9,3(3)
, æ�9,3(3)

 and ã��,2(2)
, æ��,2(2)

 are taken as zero; since it is assumed that Body 

4 does not interact with the ground and interaction between Body 1, Body 3 are 

negated due to being rigidly fixed to the ground during RFFDSP.  

After determining �ë�_�ÁÁ�OP and êß�_�ÁÁ�OP, required actuator torques cannot be 

found due to redundancy of unknowns in the system of linear equations shown 

below: 

êß�_�ÁÁ�OP = �ë�_�ÁÁ�OPã� (5.95) 

where êß�_�ÁÁ�OP = Ùêß(��, ��� , ��Ö�)êß�_�ÁÁ�OP Ú and �ë�_�ÁÁ�OP = Ù �ë(��)�ë�_�ÁÁ�OPÚ. 
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In order to cope with the redundancy, an optimization problem based on the 

minimization of forces and moments included in ã� is introduced such that: 

Minimize $y�y_�ÁÁ�OP = �1 ã�� . Së&�;_�ÁÁ�OP. ã�, 

subject to �ë�_�ÁÁ�OP. ã� = êß�_�ÁÁ�OP, 

where Së&�;_�ÁÁ�OP is a diagonal matrix with weighting coefficients.  

Since minimization of actuator torques is significantly important, weighting 

coefficients related with actuator torques are taken considerably big relative to 

others. Using the method of Lagrange Multipliers, required actuator torques can be 

expressed as: 

Q� =
é#. Së&�;_�ÁÁ�OP��. �ë�_�ÁÁ�OP� . p�ë�_�ÁÁ�OP. Së&�;_�ÁÁ�OP��. �ë�_�ÁÁ�OP�r�� . êß�_�ÁÁ�OP
  (5.96) 

5.2.4. For LFFDSP 

Forces and moments that are assumed to be zero during LFFDSP are as shown 

below: 

CDD
DDE

ã�1,3(3)
æ�1,3(3)
ã�9,2(2)
æ�9,2(2)GHH

HHI = �ë�_�ÁÁ�OP. ã� = êß�_�ÁÁ�OP for êß�_�ÁÁ�OP = 0�. 

ã�9,2(2)
, æ�9,2(2)

 and ã�1,3(3)
, æ�1,3(3)

 are taken as zero; since it is assumed that Body 

3 does not interact with the ground and interaction between Body 2, Body 4 are 

negated due to being rigidly fixed to the ground during LFFDSP.  
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Similar to RFFDSP, required actuator torques cannot be found after determining �ë�_�ÁÁ�OP and êß�_�ÁÁ�OP due to redundancy of unknowns in the system of linear 

equations shown below: 

êß�_�ÁÁ�OP = �ë�_�ÁÁ�OP. ã� (5.97) 

where êß�_�ÁÁ�OP = Ùêß(��, ��� , ��Ö�)êß�_�ÁÁ�OP Ú and �ë�_�ÁÁ�OP = Ù �ë(��)�ë�_�ÁÁ�OPÚ. 
In order to cope with the redundancy, an optimization problem based on the 

minimization of forces and moments included in ã� is introduced such that: 

Minimize $y�y_�ÁÁ�OP = �1 ã�� . Së&�;_�ÁÁ�OP. ã�, 

subject to �ë�_�ÁÁ�OP. ã� = êß�_�ÁÁ�OP, 

where Së&�;_�ÁÁ�OP is a diagonal matrix with weighting coefficients.  

Weighting coefficients related with actuator torques are taken significantly bigger 

relative to others, considering that minimization of actuator torques is more 

important. Using the method of Lagrange Multipliers, required actuator torques 

can be expressed as: 

Q� =
é#. Së&�;_�ÁÁ�OP��. �ë�_�ÁÁ�OP� . p�ë�_�ÁÁ�OP. Së&�;_�ÁÁ�OP��. �ë�_�ÁÁ�OP�r�� . êß�_�ÁÁ�OP
  (5.98) 
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CHAPTER 6 

SIMULATION ENVIRONMENT AND RESULTS 

The computer simulation of the biped locomotion is carried out by Simulink which 

is a tool of MATLAB software for modeling, simulating and analyzing dynamic 

systems. Since Simulink is fully integrated with MATLAB; in addition to 

Simulink’s own applications, it is possible to implement MATLAB’s specialized 

functions in a Simulink model.  

There are various reasons to use Simulink for the simulation of a biped locomotion 

in 3D space. Function library of Simulink and MATLAB are rich enough to render 

the need of writing additional functions for various calculations unnecessary. Also, 

the method which Simulink models are built by enables a modular structure; so 

that arrangements or changes in the model can be achieved without affecting the 

general order of the model. Furthermore visualization of the simulation, which is 

essential to provide a general impression about and visual feedback of the modeled 

dynamic system to the user, can be done by using Virtual Reality Toolbox of 

Simulink. Also, SimMechanics Toolbox of Simulink is beneficial for simulating 

mechanical systems with rigid bodies. SimMechanics Toolbox can analyze a 

mechanical system in 4 modes which are forward dynamics, inverse dynamics, 

kinematics and trimming[65].  

In the thesis, SimMechanics Toolbox is not used to model the biped robot for 

various reasons. First of all, all SimMechanics models are adjusted to their “home 

configurations” at the beginning of simulations. In other words, setting 

SimMechanics models to their home configurations which are defined by 

parameters in Body blocks is performed at the beginning of simulation; even if 

conditional subsystems that these SimMechanics models belong to are not active. 

For this reason, it is not able model all phases of the locomotion in the same 
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simulation model by using SimMechanics; because home configuration of the 

SimMechanics model related with the current phase has to be set at the beginning 

of each phase, not at the beginning of simulation. Since it is not possible set the 

home configuration of a SimMechanics model at different than the beginning of 

simulation, each phase has to be simulated in separate Simulink models. So, the 

simulation of biped locomotion can be achieved by running a M-file which starts 

simulation models of each phases orderly, supply simulation outputs recorded to 

MATLAB workspace by previous simulation models to the current simulation 

model for home configuration of SimMechanics model at the beginning of related 

Simulink model. This kind of simulation method is hard to implement, because it 

requires the transfer of many simulation outputs between simulation models and is 

problematic to supply simulation results to the user in terms of continuous 

animation. On top of that, the mathematical model describing the biped robot is 

not supplied by SimMechanics. However, kinematic and dynamic equations of the 

biped robot have to be derived in order to implement the control strategy. After 

considering all possible problems related with using SimMechanics in the 

simulation, mathematical modeling of the biped robot is achieved by user defined 

functions in Simulink model. 

Numerical values of important variables are stored by Data Store blocks. Using 

Data Store blocks brings several advantages and disadvantages to the simulation 

model. The requirement of loading numerical values of variables to MATLAB 

workspace prior to the simulation is eliminated; so the simulation model includes 

all necessary information. Also Data Store blocks increase orderliness and 

flexibility of the simulation model, since numerical values can be read from or 

written to these blocks at any part of the simulation. However, reading and writing 

order of Data Store blocks must be checked carefully by using Data Store block 

diagnostics. For this reason, execution order of subsystems or blocks must be 

taken into the consideration. Moreover, changes in data store blocks are not 

reflected during minor time steps of fixed step continuous solvers. Therefore, few 

blocks related with conditional subsystems are taken as “fixed in minor step” by 

setting the sample time as “[0,1]”. 
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The simulation continues as long as the trajectory definition subsystem supplies 

reference inputs. Therefore, simulation stop time should be adjusted accordingly.  

Variable step continuous solvers are not used in the simulation; because of 

unidentified problems resulting from the selection of step times. The accuracy and 

the computation time of simulation depend on the solver, its step size and model 

dynamics. Computational complexity and accuracy of the simulation increase by 

solver number, such as from ode1(Euler’s Method) to ode5(Dormand-Prince 

Formula) [66]. Firstly the solver number and secondly the step size is increased 

until no visible differences in simulation results are observed. However, selection 

of the most efficient solver and step size may differ with respect to the nature of 

reference input and weighting coefficients of the control strategy too. Therefore, 

solver ode3 and step size 0.01 seconds are selected for all simulations instead of 

using trial and error based selection procedure explained previously for each 

simulation.  

For convenience, different names or expressions are used in Simulink model of the 

simulation. For this reason, there exists an equivalence table shown Appendix A. 

All numerical values are transferred in column vectors (expressed with “1D” in the 

simulation model), so several minor operations are performed for conversions 

throughout Simulink Model. 

Illustrations are limited to exemplary subsystems for simplicity. Therefore whole 

simulation model is not illustrated by figures. 

6.1. Simulation Model 

The simulation model consists of 11 major subsystems: 

• Phase Selector 

• Trajectory Definition 

• RFFSSP, LFFSSP, RFFDSP and LFFDSP 

• Results of Dynamic Solution 

• Integration 
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• Visualization 

• Definition of Physical Parameters 

• Reading and Arrangement of Several Variables 

Most of Data Store Memory blocks are located in the top-level system in order to 

ensure reading and writing accessibility from any location in the model. Overview 

of top level system of the model is shown in Figure 6.1. 
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Figure 6.1: Overview of Top Level System 
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Figure 6.2: Part A of Top Level System 
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Figure 6.3: Part B of Top Level System 
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Figure 6.4: Part C of Top Level System 
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Figure 6.5: Part D of Top Level System 
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6.1.1. Phase Selector 

At any step of the simulation, firstly phase selector subsystem runs to determine the 

current locomotion phase. According to the current phase number of biped 

locomotion, basic phase number and consequently current locomotion phase is 

detected. Then, related conditional subsystem which makes the decision if phase 

change is required or not is activated by a switch case block. Outputs of phase 

selector subsystem are supplied to trajectory definition subsystem and activate the 

conditional subsystem of the current locomotion phase which is located in the top 

level system (like RFFSSP). 

 

Figure 6.6: Phase Selector 

The procedure behind phase shifting decision subsystems are explained for single 

and double support phases separately. 
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6.1.1.1. Phase Shifting Decision for Single Support Phases 

According to supplied phase number and parameters which are used for the 

definition of reference trajectories, expected positions for the toe point of swinging 

foot (for example, the toe point on Body 1 for LFFSSP) and mass center of Body 17 

at the end of current phase are calculated in the subsystem labeled as “Expected 

Resultant Hip and Toe Point Locomotions for the Current Phase”. 2 conditions are 

specified in order to make a decision about ending the current phase. Both 

conditions have to be satisfied for phase change. 

For A�;<� = LA;<�=A;<�?A;<�0
M and A�;<� = LA;<�=A;<�?A;<�0

M, 

• pA;<�0 ¥¦ A;<�0r − 0.015 < 0.001 m 

• c pA;<�= ¥¦ A;<�=r− pA;<�,)= ¥¦ A;<�,)=rd1 + c pA;<�? ¥¦ A;<�?r− pA;<�,)? ¥¦ A;<�,)?rd1�
9.4

> 0.3 ×
�c pA;<�,�= ¥¦ A;<�,�=r− pA;<�,)= ¥¦ A;<�,)=rd1 + c pA;<�,�? ¥¦ A;<�,�?r− pA;<�,)? ¥¦ A;<�,)?rd1�

9.4
 

A�;<�,) or A�;<�,) is the toe point position at the beginning of current phase. A�;<�,� or A�;<�,� is the expected toe point position at the end of current phase. 

A;<�=, A;<�? and A;<�0 are used for RFFSSP. Similarly A;<�=, A;<�? and A;<�0 are 

used for LFFSSP. In the first condition, the toe part of foot is assumed to be in 

contact with the ground when (��2(9) component of toe point position is less than 0.015 m which is a dimension of the modeled body within a tolerance of 0.001 m. 

The second condition is imposed to avoid phase shifting at the beginning of 

locomotion phase; because the first condition is satisfied since the swinging foot is 

almost flatly in contact with the ground at the beginning of SSPs. According to the 

second condition, the toe point of swinging foot must move more than at least 0.3 

times of total expected displacement in the plane defined by (���(9) and (��1(9). 
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Figure 6.7: LFFSSP Phase Shifting Decision 
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Figure 6.8: Expected Resultant Hip and Toe Point Locations for the Current Phase 
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Figure 6.9: Changing Phase Number in LFFSSP 
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To summarize, only the position of toe point is considered for phase shifting 

decision. Moreover, the orientation of contacting bodies is ignored. When these 

phase shifting conditions are met, kinematic condition as specified in chapter 4 are 

applied for bodies assumed to be in contact, neglecting if contacting bodies are flat 

or not relative to the ground as illustrated in Figure 6.10 and Figure 6.11. Therefore, 

it is left to the user’s responsibility that the orientation of contacting bodies should 

be eventually parallel to the ground at the end of single support phases. 

 

Figure 6.10: Contacting Bodies Before Phase Change 

 

Figure 6.11: Contacting Bodies After Phase Change 
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In the subsystem where expected positions are calculated as shown in Figure 6.8, a 

numerical value bigger than expected total simulation time is supplied to ensure that 

the trajectory definition function calculates its output for the end of the current 

phase. The trajectory definition function calculates its output for the beginning of 

the current phase if the simulation time is smaller than the specified time for the 

beginning of current phase. Similarly, the trajectory definition function calculates 

its output for the end of current phase, if the simulation time exceeds specified time 

for the end of current phase. For example, assume that the specified time for the end 

of phase which is numbered as 5 is 6 seconds which can be calculated by using 

numerical values included in NOOP and AQK. At the instant where the current phase 

number is 5 and simulation time is 6.4 seconds, the trajectory definition function 

will calculate its outputs for the end of phase number 5 until the phase number is 

changed. So by supplying numerical values big enough to exceed specified end time 

for the current phase, it is ensured that the trajectory definition function will supply 

expected positions at the end of current phase. 

 

Figure 6.12: TD2 Function Output Definition for DES 
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Figure 6.13: Subsystem1 

Required outputs, which are positions, are extracted in the subsystem shown in 

Figure 6.12 and arrangement of some inputs into the column vector format is done  

in the subsystem shown in Figure 6.13 labeled as “Subsystem1”, where these 

subsystems are included in the subsystem shown in Figure 6.8. 

If the phase change is decided; in addition to increasing phase number by one, the 

related subsystem shown in Figure 6.9 is run to perform operations for the transition 

from single support to double support phases explained in Chapter 4; otherwise 

phase number is supplied back without being changed by the subsystem labeled as 

“Maintaining Current Phase Number” . Calculations are carried out by user defined 

function Adj_qdot_LFFSSP_to_RFFDSP or Adj_qdot_RFFSSP_to_LFFDSP. 
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Computed values are written into the data store block “qd_initial” to be used as the 

initial condition source for integration blocks in the integration subsystem. Also the 

simulation time at the instant of phase change is recorded in the data store block 

“Time_Rec” to assist determining elapsed time in double support phases for phase 

changing decision subsystems of double support phases. Moreover, position and 

orientation of toe point and its related body at the end of phase are stored to be 

supplied to the trajectory definition function in following phases. External reset 

values of integration blocks used in the integration subsystem are changed by the 

subsystem shown in Figure 6.14.  

 

Figure 6.14: Changing of Reset Values for the Initialization of ������� at the 

Beginning of RFFDSP 

6.1.1.2. Phase Shifting Decision for Double Support Phases 

Expected position of the mass center of Body 17 at the end of the current phase is 

calculated in the subsystem labeled as “Expected Resultant Hip and Toe Point 

Locomotions for the Current Phase” which is exactly the same subsystem used in 

single support phases. 2 conditions are specified. 
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At least one of these conditions has to be satisfied for phase change: 

• °pA�,�6= − A�,�6,�=r1 + pA�,�6? − A�,�6,�?r1 + pA�,�60 − A�,�6,�0r1 <
0.05 , 

• eN − N�OP,*f > 0.1 × N�OP,* 

The first condition implies that the double support phase ends if the distance 

between expected position of the mass center of Body 17 at the end of current phase 

and current position of the mass center of Body 17 is less than 0.05 m. Due to the 

second condition, the double support phase ends if the current phase lasts ten 

percent longer than given duration time N�OP,* for the related double support phase. 

If the phase change is decided; phase number is increased by one in the subsystem 

“Changing Phase Number”. Otherwise, the same phase number is supplied back by 

“Maintaining Current Phase Number” subsystem. The subsystem “Expected 

Resultant Hip and Toe Point Locations for the Current Phase” is the same 

subsystem used in single support phases as shown in Figure 6.8 
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Figure 6.15: RFFDSP Phase Shifting Decision 
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6.1.2. Trajectory Definition 

Once the trajectory definition subsystem is supplied with basic phase number and 

phase number, 2 sets of reference input are calculated. Reference inputs for 2 

different times are calculated due to the usage of 2 different prediction times in 

single support phases. 

 

Figure 6.16: Overall View of Trajectory Definition 
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Figure 6.17: Main Subsystem of Trajectory Definition 
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Inputs to trajectory definition functions are prepared in 2 subsystems named as 

“Trajectory Definition DES” and “Trajectory Definition DES2”. The only 

difference between “Trajectory Definition DES” and “Trajectory Definition DES2” 

is the time information to be supplied to trajectory definition functions. In single 

support phases during optimum command acceleration calculations, the prediction 

time for Body 17 and its mass center is used in “Trajectory Definition DES” 

subsystem; also the prediction time for the toe point and its related body is used in 

“Trajectory Definition DES2” subsystem. In double support phases, the same 

prediction time is used for both subsystems since only one prediction time is 

employed during optimum command accelerations calculation. Also, there exists an 

additional subsystem labeled as “Trajectory Definition for Current Time” which 

supplies reference input for the current simulation time to be used in the virtual 

environment for animating the reference input. 
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Figure 6.18: Trajectory Definition DES or DES2  
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Arrangement of some inputs into the column vector format is done in the subsystem 

shown in Figure 6.13 labeled as “Subsystem1” which is a part of the subsystem 

shown in Figure 6.18.  

Outputs of trajectory definition functions are extracted in subsystems labeled as 

“TD2 Function Output Definition for DES”, “TD2 Function Output Definition for 

DES2” and “TD2 Function Output Definition” which have the same structure other 

than output label names. 

 

Figure 6.19: TD2 Function Output Definition for DES 
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6.1.3. Models Related with Locomotion Phases (RFFSSP, LFFSSP, RFFDSP, 

LFFDSP) 

Application of mathematical models regarding locomotion phases are achieved in 

these subsystems. These subsystems are divided into 4 basic subsystems which are 

calculations related with kinematics, optimum command accelerations, computed 

torque control and direct dynamic solution. The overall view of the subsystem 

“LFFSSP” is shown in Figure 6.20, Figure 6.21 and Figure 6.22 

. 

Figure 6.20: Overall View of LFSSP 
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Figure 6.21: Part A of LFSSP 
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Figure 6.21: Part B of LFSSP 

Calculations of jacobian matrices and kinematic values which are supplied to the 

computed torque control subsystem are done in the subsystem regarding kinematics. 

Also, matrices and vectors used for the construction of kinematic constraint 

equations in optimum command accelerations calculation of double support phases 

are calculated in this subsystem too. Moreover, kinematic equations are called 

internally in various user defined matlab functions, which can not be observed on 

the Simulink model. 



  

193 

 

 

Figure 6.22: Overall View of LFSSP Kinematic Equations 

Jacobian matrices, reference inputs, related matrices and vectors for constraint 

equations in double support phases, joint space positions and velocities are supplied 

to the subsystem of optimum command accelerations calculation. Then, optimum 

command accelerations and required kinematic values which are calculated 

according to command accelerations are supplied to the computed torque control 

subsystem. Also magnitudes of computed actuator torques are limited to certain 

values by using saturation blocks. After supplying actuator torques to the direct 

dynamic solution subsystem, results are sent to the subsystem labeled as “Results of 

Dynamic Solutions”. 
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Figure 6.23: Part A of LFSSP Kinematic Equations 
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Figure 6.23: Part B of LFSSP Kinematic Equations 
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Figure 6.24: Overall View of Optimum Command Accelerations Calculation 

LFFSSP 
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Figure 6.25: Part A of Optimum Command Accelerations Calculation LFFSSP 
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Figure 6.26: Part B of Optimum Command Accelerations Calculation LFFSSP 
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Figure 6.27: Part B of Optimum Command Accelerations Calculation LFFSSP 
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Figure 6.28: Computed Torque Control LFFSSP
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Figure 6.29: Direct Dynamic Solution LFFSSP 

6.1.4. Results of Dynamic Solutions 

Joint space accelerations, reaction forces and moments are extracted from the output 

vector of direct dynamic solutions in this subsystem. Extracted joint space 

accelerations are sent to the integration subsystem. 
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Figure 6.30: Results of Dynamic Solutions 
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6.1.5. Integration 

Using continuous time integration blocks, joint space velocities and joint space 

positions are found from joint space accelerations. Readjustment of several joint 

space velocities during the transition from single to double support phases is 

achieved by changing external reset values and supplying modified initial joint 

space velocities to the integrator block. So as the external reset value of the 

integrator block changes according to specified criteria, the output of the integrator 

block is initialized to the initial condition value which is externally supplied. 

Modification of external reset and initial condition values is done in phase shifting 

decision subsystems of the phase selector.  

 

Figure 6.31: Overall View of Integration Subsystem 
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Figure 6.32: Part A of Integration Subsystem 
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Figure 6.33: Part B of Integration Subsystem 
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6.1.6. Visualization 

According to the current locomotion phase, the related subsystem runs to calculate 

task space positions, velocities and accelerations which are stored by Data Store 

Write blocks by using outputs of integration subsystem and direct dynamic 

solutions which are joint space positions, velocities and accelerations. Computed 

task space positions are used for animation in “Virtual Reality Interface” subsystem 

by using components of Virtual Reality Toolbox. 

Virtual environment is constructed by using V-Realm Builder 2.0 as shown in 

Figure 6.34 

 

Figure 6.34: V-Realm Builder 

The orientation of model coordinate system in the CATIA model with respect to the 

body is the same as the orientation of its body coordinate system with respect to the 

body shown in chapter 2 and the origin of model coordinate system is also the mass 

center, where these details are essential in order to adjust position and orientation of 

bodies easily before manipulating in the virtual environment. CATIA models of 

bodies are converted into wrl file format. Then, virtual reality model of these bodies 



  

207 

 

are added to the object library of V-Realm Builder. From the object library, virtual 

reality models of bodies are inserted to virtual reality model of the simulation. Mass 

centers of all bodies are located at the origin of coordinate system of the virtual 

reality model. As the simulation starts and necessary parameters are initialized, 

bodies are moved to their proper positions and orientations. Mass center positions 

of bodies and body orientations with respect virtual reality coordinate system are 

supplied to “VR Sink” block for animation. Since the inertial and virtual reality 

coordinate systems are different from each other, necessary transformation of 

results to virtual reality coordinate system is made. Additionally the motion of Body 

1, Body 2 and Body 17 according to given reference positions and orientations is 

attached to the animation. Therefore, tracking performance can be observed by 

comparing resultant and reference motion of bodies. 
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Figure 6.35: Overall View of Visualization Subsystem 
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Figure 6.36: LFFSSP Calculation of Task Space Variables 
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Figure 6.37: LFFSSP Body Orientations 
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Figure 6.38: Positions 

 

Figure 6.39: Translational Velocities 

 

Figure 6.40: Angular Velocities 
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Figure 6.41: Translational Accelerations 

 

Figure 6.42: Angular Accelerations 
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Figure 6.43: Virtual Reality Interface 



  

 

214 

 

 

 

Figure 6.44: Subsystem2 in Virtual Reality Interface
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Figure 6.45: Subsystem in Virtual Reality Interface 

6.1.7. Definition of Physical Parameters 

Necessary dimensions, mass and inertia tensor properties of bodies are defined in 

and supplied from this subsystem. 

 

Figure 6.46: Definition of Physical Parameters 
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Figure 6.47: Dimensions Definitions 
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Figure 6.48: Body Mass Definitions 
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Figure 6.49: Body Inertia Tensor Definitions 

6.1.8. Reading and Arrangement of Several Variables 

Some minor operations in the top level system are gathered into this subsystem. 
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Figure 6.50: Reading and Arrangement of Several Values 

6.2. Simulation Results 

Simulation results for 3 parameter sets are given. 3 different types of reference input 

are given for demonstration. For Simulation Number 1, a reference input with no 

general order is given. A reference input to track a circular path is given in 

Simulation Number 2. In Simulation Number 3, a linear path which does not require 

turning of the robot body is defined. Detailed results are given for Simulation 

Number 1. For the rest, reference input and the tracking performance are shown. 

6.2.1. Simulation Number 1 

Simulation results for parameter set 1 which is shown in Appendix B.1 are illustrated 

under this heading. 

6.2.1.1. Reference Input 

According to numerical values of parameters which define the nature of locomotion, 

the trajectory generation algorithm creates reference input information for the 

simulation model. Reference trajectories for parameter set 1 can be illustrated by 

Figure 6.51, Figure 6.52 and Figure 6.53. Green and black colored curves represent 

the reference trajectory for PtpR and PtpL. Red, blue, magenta and cyan colored curves 
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represent the reference trajectory for the mass center of Body 17 during LFFSSP, 

RFFDSP, RFFSSP and LFFDSP respectively. 

 

Figure 6.51: Isometric View of Reference Trajectories for Parameter Set 1 

 

Figure 6.52: Reference Trajectories on X-Y Plane for Parameter Set 1 
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Figure 6.53: Reference Trajectories on X-Z Plane for Parameter Set 1 

6.2.1.2. Joint Space Positions 

 

Figure 6.54: Joint Space Positions from θ3 to θ6 
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Figure 6.55: Joint Space Positions from θ7 to θ10 

 

Figure 6.56: Joint Space Positions from θ11 to θ14 
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Figure 6.57: Joint Space Positions from θ15 to θ17l 

 

Figure 6.58: Joint Space Positions from θ18 to θ20 
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Figure 6.59: Joint Space Positions from θ21 to θ24 

 

Figure 6.60: Joint Space Positions from θ25 to θ27 
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6.2.1.3. Task Space Positions 

Simulation results with their reference inputs are shown by Figure 6.61, Figure 6.62 

and Figure 6.63. All components are resolved in the inertial frame. 

 

Figure 6.61: Position of Mass Center of Body 17 with Its Reference Input 

 

Figure 6.62: Position of Toe Point on Right Foot (Body 1) with Its Reference 

Input 
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Figure 6.63: Position of Toe Point on Left Foot (Body 2) with Its Reference 

Input 

6.2.1.4. Actuator Torques 

 

Figure 6.64: Actuator Torques from T1 to T7 in the Right Leg 
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Figure 6.65: Actuator Torques T9 to T15 in the Right Leg 

 

Figure 6.66: Actuator Torques from T2 to T8 in the Left Leg 
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Figure 6.67: Actuator Torques from T10 to T16 in the Left Leg 

 

Figure 6.68: Actuator Torques from T17 to T19 
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Figure 6.69: Actuator Torques from T20 to T23 

 

Figure 6.70: Actuator Torques from T24 to T26 
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6.2.1.5. Ground Reaction Forces and Moments 

Components of ground reaction forces and moments are resolved in body coordinate 

systems by regarding the convention for forces and moments in Newton-Euler 

equations in chapter 4. 

 

Figure 6.71: Ground Reaction Forces for Body 1 and Body 3 

 

Figure 6.72: Ground Reaction Forces for Body 2 and Body 4 
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Figure 6.73: Ground Reaction Moments 

 

Figure 6.74: Ground Reaction Moments 
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Figure 6.75: Simulation Output for Simulation Number 1 in Virtual Reality 

Environment 
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6.2.2. Simulation Number 2 

Simulation results for parameter set 2 which is shown in Appendix B.2 are illustrated 

under this heading. 

6.2.2.1. Reference Input 

Reference trajectories for parameter set 2 can be illustrated by Figure 6.76, Figure 

6.77 and Figure 6.78. Green and black colored curves represent the reference 

trajectory for PtpR and PtpL. Red, blue, magenta and cyan colored curves represent the 

reference trajectory for the mass center of Body 17 during LFFSSP, RFFDSP, 

RFFSSP and LFFDSP respectively. 

 

 

Figure 6.76: Isometric View of Reference Trajectories for Parameter Set 2 
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Figure 6.77: Reference Trajectories on X-Y Plane for Parameter Set 2 

 

Figure 6.78: Reference Trajectories on X-Z Plane for Parameter Set 2 
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6.2.2.2. Task Space Positions 

Simulation results with their reference inputs are shown by Figure 6.79, Figure 6.80 

and Figure 6.81. All components are resolved in the inertial frame. 

 

Figure 6.79: Position of Mass Center of Body 17 with Its Reference Input 

 

Figure 6.80: Position of Toe Point on Right Foot (Body 1) with Its Reference 

Input 
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Figure 6.81 Position of Toe Point on Left Foot (Body 2) with Its Reference Input 
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Figure 6.82: Simulation Output for Simulation Number 2 in Virtual Reality 

Environment 
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6.2.3. Simulation Number 3 

Simulation results for parameter set 3 which is shown in Appendix B.3 are illustrated 

under this heading. 

6.2.3.1. Reference Input 

Reference trajectories for parameter set 3 can be illustrated by Figure 6.83 and 

Figure 6.84. Green and black colored curves represent the reference trajectory for 

PtpR and PtpL. Red, blue, magenta and cyan colored curves represent the reference 

trajectory for the mass center of Body 17 during LFFSSP, RFFDSP, RFFSSP and 

LFFDSP respectively. 

 

 

Figure 6.83: Isometric View of Reference Trajectories for Parameter Set 3 
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Figure 6.84: Reference Trajectories on X-Y Plane for Parameter Set 3 

6.2.3.2. Task Space Positions 

Simulation results with their reference inputs are shown by Figure 6.79, Figure 6.80 

and Figure 6.81. All components are resolved in the inertial frame. 

 

Figure 6.85: Position of Mass Center of Body 17 with Its Reference Input 
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Figure 6.86: Position of Toe Point on Right Foot (Body 1) with Its Reference 

Input 

 

Figure 6.87 Position of Toe Point on Left Foot (Body 2) with Its Reference Input 
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Figure 6.88: Simulation Output for Simulation Number 3 in Virtual Reality 

Environment 
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CHAPTER 7 

DISCUSSION AND CONCLUSION 

In this chapter, the thesis work is evaluated in a general manner. Deficiencies of the 

simulation model and the related future work are discussed. 

Firstly, a decision is made for the physical model of the humanoid robot where other 

steps of the thesis study are based. In order to avoid limitations, provide flexibility 

for a variety of locomotion tasks and imitate human gait more realistically, each leg 

includes a kinematic configuration enabling 8 DOF with respect to the hip (Body 

17). This kinematic configuration of legs, which have redundant DOF with respect to 

the hip, brings both advantages and disadvantages to the locomotion problem. 

Ground friction conditions, ground elevation and inclination, avoiding internal 

collision between bodies and exterior collision with obstacles, being exposed to 

external forces and moments and various other unexpected circumstances impose 

restrictions on possible biped locomotion patterns. That is why the realization of 

biped locomotion in 3D space requires flexibility in motions, which is an advantage 

of having legs with redundant DOF. However, the unavailability of simple 

conversion of task space variables into joint space variables results to additional 

computational burden which is not a preferable situation for online applications. In 

addition to bodies directly related with the biped locomotion which are from Body 1 

to Body 17, upper bodies are included in the physical model, too. Therefore, dynamic 

effects of upper bodies to the biped locomotion are modeled instead of a lumped 

body modeling all upper body characteristics; which is one more step closer to the 

realistic simulation. After deciding the kinematic configuration, physical parameters 

of the humanoid robot is found. 

During the derivation of mathematical models especially for dynamic equations, 

differences sourced from different locomotion phases are modeled by additional 
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equations which are included in direct dynamic solution procedures as much as 

possible to keep equations general for all locomotion phases. Using Newton-Euler 

equations enable the computation of dynamic equations numerically without going 

through analytical derivation procedure which is unpractical for a complex system 

with 26 DOF and to calculate reaction forces and moments between bodies which 

might be beneficial for the preliminary stage of mechanical design.  

Time derivatives of jacobian matrices which are employed in the calculation of 

optimum command accelerations are obtained numerically by simple 

approximations. However, application of advanced numerical methods can be 

implemented for more accurate calculations especially for movements with high 

accelerations; where significant computation errors may lead to unpractical 

command accelerations during the procedure of optimum command accelerations 

calculation. 

For a given reference input, 490 numerical values in total are supplied to the 

simulation model; where most of them are weighting coefficients used in the control 

strategy and remaining ones are for modeling and computational purposes. 

Therefore, it requires a lengthy trial and error procedure for finding appropriate 

numerical values for a given set of input supplied to the reference trajectory 

generation algorithm. Both generated reference trajectories and supplied weighting 

coefficients must be proper so that a sustainable biped locomotion is achieved for a 

given reference input. However, it is observed that a single set of weighting 

coefficients may not be able to sustain biped locomotion for an infinitely long time. 

In order to achieve that, a high level controller which can modify reference 

trajectories and weighting coefficients online to more feasible ones for adapting to 

changing conditions during the locomotion is required. In this thesis, such kind of a 

high level controller does not exist. Therefore, the control strategy eventually begins 

to show poor tracking performance or fails by using weighting coefficients that are 

constant throughout the simulation, especially for reference trajectories defining a 

motion including significantly different characteristics. 

In this study, reference trajectories are defined for toe points and their related bodies, 

Body 17 and its mass center. However, motions of upper bodies like Body 20, Body 
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23, Body 24 and Body 27 play active role during the biped locomotion too. Since the 

assessment of upper bodies’ contribution to the biped locomotion is directly related 

with an in depth reference trajectory generation study which is not in the scope of 

this thesis, reference joint space positions of related upper bodies which are from θ18 

to θ27 are defined as 0. In other words, it is desired that upper bodies maintain their 

initial positions with respect to each other throughout the simulation. At first, zeros 

as command space accelerations for joints related with these upper bodies are 

supplied to the computed torque control method in order to keep upper bodies in 

their initial positions. However, it is observed that the deviation from initial positions 

for upper bodies due to cumulative errors becomes significant enough to affect the 

control of biped locomotion. As a result, (similar but simpler to the one used for 

lower bodies) an optimization problem about predicted joint space position and 

velocity error is used to define command space accelerations for each joint space 

variable concerning upper bodies.  

Since generated reference trajectories are constructed by polynomials, selection of 

parameters which are supplied to the trajectory definition algorithm must be handled 

carefully. Unrealistic definitions like high duration times for small distances and high 

velocities can result to oscillatory solutions for the considered time interval. 

It is expected that dynamic effects and weight of bodies are compensated by ground 

reaction forces and moments which are spread on all bodies contacting the ground. 

However, spreading of these ground reaction forces and moments do not include toe 

part of the flat foot like Body 1 during RFFDSP and RFFSSP or Body 2 during 

LFFSSP and LFFDSP. In other words, ground reaction forces and moments on Body 

1 and Body 2 compensate forces and moments only related with their own weights 

regardless of other bodies. The reason for this phenomenon is due to the assumption 

that reaction forces and moments between Body 1 and Body 3 during RFFSSP and 

RFFDSP, Body 2 and Body 4 during LFFSSP and LFFDSP are zero. Calculation of 

reaction forces and moments between these bodies require an additional modeling 

effort which is not accomplished in this thesis. Moreover, it is possible to obtain 

unrealistic ground reaction forces and moments due to the assumption that contacting 

bodies are rigidly fixed to the ground. For example, a ground reaction force with 

negative (��2 component of related body coordinate system can be obtained; which 
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actually means the contacting body is to part from the ground but unable to do it due 

to the kinematic constraints imposed on the body. Similarly, it is possible to obtain a 

ground reaction moment where its resultant moment of (��� and (��1 components can 

not be achieved with (��2 component of calculated ground reaction force within the 

contact area of the related body for related body coordinate system; which actually 

means that the contacting body is to roll but unable to do it due to the kinematic 

constraints imposed on the body. Also, ground reaction forces in the plane formed by (��� and (��1 of the related body coordinate system are assumed to be supplied without 

any limitations imposed by the friction between contacting body and the ground. In 

this thesis, considerations for unrealistic ground reaction forces and moments are left 

to user’s responsibility in the thesis. As a future study, a detailed model to find forces 

and moments which simulate the interaction between ground and contacting bodies 

can be devised for a more realistic simulation. 

The most critical part of the simulation is the influence of the impact of swinging 

foot to joint space velocities during the transition from single to double support 

phases. Therefore, proper modeling of the impact is essential for a realistic 

simulation; which is a modeling problem that must be investigated in a detailed 

fashion. In this thesis, joint space velocities are modified manually based on a simple 

optimization problem where weighting coefficients determine aftereffect of the 

impact. 

Depending on the selection of actuators during the mechanical design, actuator 

dynamics can be included in the simulation as a future work. In this study, actuator 

dynamics is neglected and actuator torques are bounded between certain values by 

saturation blocks in the simulation. 

Each second is equivalent to 100 seconds in the simulation with a “Intel Core 2 Duo 

P8400 2.27 GHz” central processor unit. The simulation time is fairly high due to 

many calculation loops for numerical computations in user defined MATLAB 

functions. Also, most user defined MATLAB functions are written to work 

independently in calculation-wise. Therefore these user defined MATLAB functions 

recall other MATLAB functions as subroutines. Simulation time can be decreased by 

reducing the independency of user defined MATLAB functions and converting 
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shared calculations into common user defined functions. However, this kind of a 

simulation structure requires major editing effort for even small computational 

modifications and much effort to track operations. To summarize, computational 

burden for the simulation can be more than necessary due to the existence of 

repeated calculations in different user defined MATLAB functions; because the 

arrangement of user defined functions are task oriented instead of calculation 

oriented. 

All in all, a simulation environment is constructed for the biped locomotion in 3D 

space of humanoid robots with a proposed control strategy. In this thesis, the devised 

simulation environment covers an important portion for a comprehensive simulation 

tool for humanoid robots. Since the integration of detailed models which are not 

covered in this thesis study into the simulation environment is possible, a complete 

simulation tool for various studies related with humanoid robots can be formed. 

Also, by the help of task oriented user defined MATLAB functions different control 

strategies can be tested by necessary rearrangements for a more general simulation 

structure. 
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APPENDIX A 

EQUIVALANCE TABLE FOR DATA STORE BLOCK AND 

USER DEFINED MATLAB FUNCTION LABELS IN THE 

SIMULATION MODEL 

Table A.1: Equivalance Table 

In the Thesis In the Simulation Model 
Phip Phip 
Vhip Vhip 
R Radius 

Tdir TurningDir 
tSSP tSSP 
PTR PTR 
SW SW 
SH SH 
kAdj kAdj 
kSH kSH 
∆θPLN DeltaTethaPLN 
∆θADJ DeltaTethaADJ 
PTPR,i PRi 
PTPL,i PLi $%(9,�)) );)& FRO_i $%(9,1)) );)& FLO_i ��) );)& q_initial ���) );)& qd_initial �� q ���  qd A��;<� TPRF A��;<� TPLF J��;<� TPRFd J��;<� TPLFd h��;<� TPRFdd h��;<� TPLFdd 

g g ∆N�_�ÁÁOOP Delta_t1_LFFSSP ∆N1_�ÁÁOOP Delta_t2_LFFSSP ∆N2_�ÁÁOOP Delta_t3_LFFSSP 
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Table A.1: Equivalance Table (Continued) 

∆N�_�ÁÁOOP Delta_t1_RFFSSP ∆N1_�ÁÁOOP Delta_t2_RFFSSP ∆N2_�ÁÁOOP Delta_t3_RFFSSP ∆N�_�ÁÁ�OP Delta_t1_LFFDSP ∆N1_�ÁÁ�OP Delta_t2_LFFDSP ∆N�_�ÁÁ�OP Delta_t1_RFFDSP ∆N1_�ÁÁ�OP Delta_t2_RFFDSP Së�ÁÁOOP_P,�6 Wp_fa_LFFSSP Së�ÁÁOOP_P,�6 Wp_fa_RFFSSP Së�ÁÁ�OP_P,�6& Wp_fa_LFFDSP Së�ÁÁ�OP_P,�6& Wp_fa_RFFDSP Së�ÁÁOOP_�,�6 Wv_fa_LFFSSP Së�ÁÁOOP_�,�6 Wv_fa_RFFSSP Së�ÁÁ�OP_�,�6& Wv_fa_LFFDSP Së�ÁÁ�OP_�,�6& Wv_fa_RFFDSP Së�ÁÁOOP_ö�_U�WW Wa_a_LFFSSP Së�ÁÁOOP_ö�_U�WW Wa_a_RFFSSP Së�ÁÁ�OP_ö�_U�WW Wa_a_LFFDSP Së�ÁÁ�OP_ö�_U�WW Wa_a_RFFDSP Së�ÁÁOOP_P,;<� Wp_fb_LFFSSP Së�ÁÁOOP_P,;<� Wp_fb_RFFSSP Së�ÁÁ�OP_P,�6' Wp_fb_LFFDSP Së�ÁÁ�OP_P,�6' Wp_fb_RFFDSP Së�ÁÁOOP_�,� Wv_fb_LFFSSP Së�ÁÁOOP_�,1 Wv_fb_RFFSSP Së�ÁÁ�OP_�,�6' Wv_fb_LFFDSP Së�ÁÁ�OP_�,�6' Wv_fb_RFFDSP Së�ÁÁOOP_ö�_UWW Wa_b_LFFSSP Së�ÁÁOOP_ö�_UWW Wa_b_RFFSSP Së�ÁÁ�OP_ö�_UWW Wa_b_LFFDSP Së�ÁÁ�OP_ö�_UWW Wa_b_RFFDSP Së�ÁÁOOP_x�,�6 Wor_fa_LFFSSP Së�ÁÁOOP_x�,�6 Wor_fa_RFFSSP Së�ÁÁ�OP_x�,�6& Wor_fa_LFFDSP Së�ÁÁ�OP_x�,�6& Wor_fa_RFFDSP Së�ÁÁOOP_x�,� Wor_fb_LFFSSP Së�ÁÁOOP_x�,1 Wor_fb_RFFSSP Së�ÁÁ�OP_x�,�6' Wor_fb_LFFDSP Së�ÁÁ�OP_x�,�6' Wor_fb_RFFDSP SP,}| Wp_Tetha3_LFFSSP S�,}|  Wv_Tetha3_LFFSSP SP,}Ï Wp_Tetha4_RFFSSP S�,}Ï  Wv_Tetha4_RFFSSP 
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Table A.1: Equivalance Table (Continued) 

Së&�;_�ÁÁ�OP Wact_LFFDSP Së&�;_�ÁÁ�OP Wact_RFFDSP Së�ÁÁOOP_ö�_U� WqL_H_LFFSSP Së�ÁÁOOP_ö�_U WqH_R_LFFSSP Së�ÁÁOOP_ö�_U� WqR_H_RFFSSP Së�ÁÁOOP_ö�_U WqH_L_RFFSSP Së�ÁÁ�OP_ö�_U� WqL_H_LFFDSP Së�ÁÁ�OP_ö�_U WqR_H_LFFDSP Së�ÁÁ�OP_ö�_U� WqR_H_RFFDSP Së�ÁÁ�OP_ö�_U WqL_H_RFFDSP SP,}�Ò WpTetha18 SP,}�Ó WpTetha19 SP,}¢  WpTetha20 SP,}¢� WpTetha21 SP,}¢¢ WpTetha22 SP,}¢| WpTetha23 SP,}¢Ï WpTetha24 SP,}¢Ð WpTetha25 SP,}¢Ñ WpTetha26 SP,}¢¡ WpTetha27 S�,}�Ò  WvTetha18 S�,}�Ó  WvTetha19 S�,}¢   WvTetha20 S�,}¢�  WvTetha21 S�,}¢¢  WvTetha22 S�,}¢|  WvTetha23 S�,}¢Ï  WvTetha24 S�,}¢Ð  WvTetha25 S�,}¢Ñ  WvTetha26 S�,}¢¡  WvTetha27 ∆N�7 Delta_t18 ∆N�8 Delta_t19 ∆N19 Delta_t20 ∆N1� Delta_t21 ∆N11 Delta_t22 ∆N12 Delta_t23 ∆N13 Delta_t24 ∆N14 Delta_t25 ∆N15 Delta_t26 ∆N16 Delta_t27 Së&WX,�ÁÁOOP_�ÁÁ�OP Wadj_qdot_LFFSSP_to_RFFDSP Së&WX,�ÁÁOOP_�ÁÁ�OP Wadj_qdot_RFFSSP_to_LFFDSP 
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Table A.1: Equivalance Table (Continued) 

A��,� Pc_1 A��,1 Pc_2 A��,2 Pc_3 A��,3 Pc_4 A��,8 Pc_9 A��,�9 Pc_10 A��,�� Pc_11 A��,�1 Pc_12 A��,�6 Pc_17 A��,19 Pc_20 A��,12 Pc_23 A��,13 Pc_24 A��,16 Pc_27 J��,� Vc_1 J��,1 Vc_2 J��,2 Vc_3 J��,3 Vc_4 J��,8 Vc_9 J��,�9 Vc_10 J��,�� Vc_11 J��,�1 Vc_12 J��,�6 Vc_17 J��,19 Vc_20 J��,12 Vc_23 J��,13 Vc_24 J��,16 Vc_27 ��� w1 ��1 w2 ��2 w3 ��3 w4 ��8 w9 ���9 w10 ���� w11 ���1 w12 ���6 w17 ��19 w20 ��12 w23 ��13 w24 ��16 w27 h��,� ac_1 h��,1 ac_2 h��,2 ac_3 h��,3 ac_4 h��,8 ac_9 
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Table A.1: Equivalance Table (Continued) 

h��,�9 ac_10 h��,�� ac_11 h��,�1 ac_12 h��,�6 ac_17 h��,19 ac_20 h��,12 ac_23 h��,13 ac_24 h��,16 ac_27 Õ�� Alpha1 Õ�1 Alpha2 Õ�2 Alpha3 Õ�3 Alpha4 Õ�8 Alpha9 Õ��9 Alpha10 Õ��� Alpha11 Õ��1 Alpha12 Õ��6 Alpha17 Õ�19 Alpha20 Õ�12 Alpha23 Õ�13 Alpha24 Õ�16 Alpha27 $%(9,�) C0_1 $%(9,1) C0_2 $%(9,2) C0_3 $%(9,3) C0_4 $%(9,8) C0_9 $%(9,�9) C0_10 $%(9,��) C0_11 $%(9,�1) C0_12 $%(9,�6) C0_17 $%(9,19) C0_20 $%(9,12) C0_23 $%(9,13) C0_24 $%(9,16) C0_27 Ý%Þ,;<� JvTPRF Ý%�Þ,;<� JvTPRFdot Ý%Þ,�6_�� Jv17fL Ý%�Þ,�6_�� Jv17fLdot Ý%Þ,yW)&ª9_�6_�� JvCdiag0_17fL Ý%�Þ,yW)&ª9_�6_�� JvCdiag0_17fLdot Ý%Þ,yW)&ª9_� JvCdiag0_1 Ý%�Þ,yW)&ª9_� JvCdiag0_1dot Ý%Þ,;<� JvTPLF Ý%�Þ,;<� JvTPLFdot 
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Table A.1: Equivalance Table (Continued) 

Ý%Þ,�6_�� Jv17fR Ý%�Þ,�6_�� Jv17fRdot Ý%Þ,yW)&ª9_�6_�� JvCdiag0_17fR Ý%�Þ,yW)&ª9_�6_�� JvCdiag0_17fRdot Ý%Þ,yW)&ª9_1 JvCdiag0_2 Ý%�Þ,yW)&ª9_1 JvCdiag0_2dot Ý%Þ,�6_��_& Jv17fR_all Ý%�Þ,�6_��_& Jv17fR_alldot Ý%Þ,yW)&ª9_�6_��_& JvCdiag0_17fR_all Ý%�Þ,yW)&ª9_�6_��_& JvCdiag0_17fR_alldot Ý%Þ,�6_��_& Jv17fL_all Ý%�Þ,�6_��_& Jv17fL_alldot Ý%Þ,yW)&ª9_�6_��_& JvCdiag0_17fL_all Ý%�Þ,yW)&ª9_�6_��_& JvCdiag0_17fL_alldot ã�9,�(�)
 F0_1 ã��,2(2)
 F1_3 æ�9,�(�)
 M0_1 æ��,2(2)
 M1_3 ã��,2(2)
 F0_3 ã�2,8(8)
 F3_9 æ��,2(2)
 M0_3 æ�2,8(8)
 M3_9 ã�8,��(��)
 F9_11 æ�8,��(��)
 M9_11 ã���,�6(�6)
 F11_17 æ���,�6(�6)
 M11_17 ã��1,�6(�6)
 F12_17 ã��6,19(19)
 F17_20 æ��1,�6(�6)
 M12_17 æ�6,19(19) M17_20 ã��9,�1(�1)
 F10_12 æ��9,�1(�1)
 M10_12 ã�3,�9(�9)

 F4_10 æ�3,�9(�9)
 M4_10 ã��,3(3)

 F0_4 ã�1,3(3)
 F2_4 æ��,3(3)
 M0_4 æ�1,3(3)
 M2_4 
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Table A.1: Equivalance Table (Continued) 

ã�9,1(1)
 F0_2 æ�9,1(1)
 M0_2 ã�19,12(12)
 F20_23 ã�19,13(13)
 F20_24 ã�19,16(16)
 F20_27 æ�19,12(12)
 M20_23 æ�19,13(13)
 M20_24 æ�19,16(16)
 M20_27 
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APPENDIX B 

SIMULATION PARAMATERS 

B.1. Simulation Number 1 

Aℎ¹� =
CD
DDD
DDD
E0.0000 0.0000 0.95880.1000 0.1300 0.95880.1800 0.2500 0.95880.2800 0.3500 0.95880.4000 0.4200 0.95880.5300 0.4700 0.95880.6800 0.5200 0.95880.8400 0.5400 0.95880.9900 0.5450 0.9588GH

HHH
HHH
I
 (m) , Jℎ¹� =

CD
DD
DD
DD
DD
DD
DD
E0.000.200.250.250.250.300.300.350.350.400.400.400.400.400.400.400.40GH

HH
HH
HH
HH
HH
HH
I

 (m/s), PHASE_N=1 

Kh�¹(¸ = Å1.600 1.200 1.100 0.865 1.100 1.500 1.100 1.200Æ� (m) 

Q(¦i¹i²�¹¦ = Å+1 −1 −1 −1 −1 −1 −1 −1Æ�  

NRRA = Å0.8 0.9 0.8 0.7 0.6 0.7 0.7 0.7Æ� (s) 

AQK = Å6 6 6 6 6 6 6 6Æ�  

RS = Å0.32 0.40 0.32 0.32 0.32 0.28 0.32 0.32Æ� (m) 

RT = Å0.06 0.08 0.08 0.06 0.08 0.08 0.08 0.08Æ� (m) 

+s�Â = Å1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1Æ�  

+RT = Å0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5Æ�  
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�¤/NhQ¤NℎhA�í = ×5.q�79 �8.q�79 29.q�79 �1.q�79 13.q�79 8.q�79 �3.q�79 �1.q�79 Ø�
 (rad) 

�¤/NhQ¤Nℎhs�Ý =
×−4.q�79 − �7.q�79 − 17.q�79 − ��.q�79 − 12.q�79 − 7.q�79 − �2.q�79 − ��.q�79 Ø�

 (rad) 

AK¹ = QAKã = Å0.1600 0.1876 0.0150Æ (m), QAKã� = QAKã�� = 0�2×� (m) 

A�¹ = QA�ã = Å−0.1600 0.1876 0.0150Æ (m), QA�ã� = QA�ã�� = 0�2×� (m) 

ãK_-_¹ = Í0 −1 01 0 00 0 1Î , ã�_-_¹ = Í0 −1 01 0 00 0 1Î 
� = �) );)& = �� = ��_¹i¹N¹h/ = 0�15×� (rad), ² = 9.81 (m/s2) 

��/¥�¤¦_¹i¹N¹h/_K¤¸¤N= Å1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Æ� 

�¤/Nh_N1_�ããRRA = �¤/Nh_N1_KããRRA = 0.1 (s) 

�¤/Nh_N2_�ããRRA = �¤/Nh_N2_KããRRA = �¤/Nh_N1_�ãã�RA =�¤/Nh_N2_�ãã�RA = �¤/Nh_N1_Kãã�RA = �¤/Nh_N2_Kãã�RA = 0.05 (s) 

�¤/Nh_N3_�ããRRA = �¤/Nh_N3_KããRRA = 0.02 (s) 

S�_¨h_�ããRRA = Í100010001000Î, S�_¨h_KããRRA = Í 1000100070000Î, 
S�_¨h_�ãã�RA = Í100001000090000Î, S�_¨h_Kãã�RA = Í 100100300000Î 

S�_¨h_�ããRRA =
CDD
DDE

60060010001001001000GHH
HHI, S�_¨h_KããRRA =

CDD
DDE

5005001010010010000GHH
HHI 
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S�_¨h_�ãã�RA =
CDD
DDE
100100100100100100GHH

HHI, S�_¨h_Kãã�RA =
CDD
DDE
100100100100100100GHH

HHI 

Sh_h_�ããRRA =
CDD
DDD
E0.11.20.90.70.30.40.5GHH

HHH
I
, Sh_h_KããRRA =

CDD
DDD
E0.10.80.90.50.30.40.8GHH

HHH
I
 

Sh_h_�ãã�RA =
CDD
DDD
E0.10.30.30.50.40.40.8GHH

HHH
I
, Sh_h_Kãã�RA =

CDD
DDD
E0.10.30.30.50.40.40.8GHH

HHH
I
 

S�_¨î_�ããRRA = Í 20002000100000Î, S�_¨î_KããRRA = Í 10000100001000000Î 
S�_¨î_�ãã�RA = Í 1000100030000Î, S�_¨î_Kãã�RA = Í 10010010000Î 

S�_¨î_�ããRRA =
CDD
DDE

1000010000100000500050005000 GHH
HHI, S�_¨î_KããRRA =

CDD
DDE

4000040000200000500050005000 GHH
HHI 

S�_¨î_�ãã�RA =
CDD
DDE
100100100100100100GHH

HHI, S�_¨î_Kãã�RA =
CDD
DDE
100100100100100100GHH

HHI 
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Sh_î_�ããRRA =
CDD
DDD
DE 10.11.20.90.30.40.50.5GHH

HHH
HI
, Sh_î_KããRRA =

CDD
DDD
DE 10.10.80.90.30.40.50.9GHH

HHH
HI
 

Sh_î_�ãã�RA =
CDD
DDD
DE0.050.10.30.30.80.60.61 GHH

HHH
HI
, Sh_î_Kãã�RA =

CDD
DDD
DE0.010.10.30.30.80.60.61 GHH

HHH
HI
 

S¥¦_¨h_�ããRRA = Í100001000010000Î, S¥¦_¨h_KããRRA = Í200000200000200000Î 
S¥¦_¨h_�ãã�RA = Í100010001000Î, S¥¦_¨h_Kãã�RA = Í500050005000Î 
S¥¦_¨î_�ããRRA = Í800080008000Î, S¥¦_¨î_KããRRA = Í100000100000100000Î 
S¥¦_¨î_�ãã�RA = Í100010001000Î, S¥¦_¨î_Kãã�RA = Í300030003000Î 
S�_Q¤Nℎh3_�ããRRA = 1000000, S�_Q¤Nℎh4_KããRRA = 100000 

S�_Q¤Nℎh3_�ããRRA = 100000, S�_Q¤Nℎh4_KããRRA = 40000 

Sh.N_�ãã�RA = Sh.N_Kãã�RA =[1 1 1 1 1 1 1 1 1 1 1000 1 1 1 1 1 1 1 1 1 1 
1000 1000 1000 1 1 1 1 1000 1 1 1 1 1000 1000 1000 1 1 1 1 1 1 1000 1000 1000 
1000 1000 1000 1 1 1 1 1000 1 1 1 1 1000 1000 1000 1 1 1 1 1 1 1 1 1 1 1000 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1000 1000 1 1000 1000 1 1000 1000 1000]T 
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 S��_T_�ããRRA =
CDD
DDD
E 0.130000110000.20.40.6 GHH

HHH
I
, S�K_T_KããRRA =

CDD
DDD
E 0.130000110000.20.40.6 GHH

HHH
I
 

S��_T_�ãã�RA =
CDD
DDD
E0.20.810.30.40.51 GHH

HHH
I
, S�K_T_Kãã�RA =

CDD
DDD
E0.20.810.30.40.51 GHH

HHH
I
 

S�T_K_�ããRRA =
CDD
DDD
DE 0.050.125000110000.20.40.8 GHH

HHH
HI
, S�T_�_KããRRA =

CDD
DDD
DE 0.050.125000110000.20.40.8 GHH

HHH
HI
 

S�K_T_�ãã�RA =
CDD
DDD
DE80000.40.810.50.30.50.8 GHH

HHH
HI
, S��_T_Kãã�RA =

CDD
DDD
DE1000.40.810.50.30.50.8 GHH

HHH
HI
 

S�Q¤Nℎh18 = 300, S�Q¤Nℎh18 = 120, �¤/Nh_N18 = 0.3 (s) S�Q¤Nℎh19 = 200, S�Q¤Nℎh19 = 60, �¤/Nh_N19 = 0.3 (s) S�Q¤Nℎh20 = 200, S�Q¤Nℎh20 = 60, �¤/Nh_N20 = 0.3 (s) S�Q¤Nℎh21 = 10, S�Q¤Nℎh21 = 100, �¤/Nh_N21 = 0.3 (s) S�Q¤Nℎh22 = 10, S�Q¤Nℎh22 = 100, �¤/Nh_N22 = 0.3 (s) S�Q¤Nℎh23 = 10, S�Q¤Nℎh23 = 100, �¤/Nh_N23 = 0.3 (s) S�Q¤Nℎh24 = 10, S�Q¤Nℎh24 = 100, �¤/Nh_N24 = 0.3 (s) S�Q¤Nℎh25 = 10, S�Q¤Nℎh25 = 100, �¤/Nh_N25 = 0.3 (s) S�Q¤Nℎh26 = 10, S�Q¤Nℎh26 = 100, �¤/Nh_N26 = 0.3 (s) S�Q¤Nℎh27 = 10, S�Q¤Nℎh27 = 100, �¤/Nh_N27 = 0.3 (s) Sh�Â_��¥N_�ããRRA_N¥_Kãã�RA= Å1 1 1 3 1.8 1.8 1.8 1 1 1 3 1.8 1.8 1.8Æ� 
 Sh�Â_��¥N_�ããRRA_N¥_Kãã�RA =Å1 1 1 3 1.8 1.8 1.8 1 1 1 3 1.8 1.8 1.8Æ� RhN(¦hN¹¥i = Å−30,30Æ(í. ,), RhN(¦hN¹¥i1 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i2 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i3 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i4 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i5 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i6 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i7 = Å−150,150Æ(í. ,) 
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RhN(¦hN¹¥i8 = Å−30,30Æ(í. ,), RhN(¦hN¹¥i9 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i10 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i11 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i12 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i13 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i14 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i15 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i16 = Å−180,180Æ(í. ,), RhN(¦hN¹¥i17 = Å−180,180Æ(í. ,) RhN(¦hN¹¥i18 = Å−180,180Æ(í. ,), RhN(¦hN¹¥i19 = Å−100,100Æ(í. ,) RhN(¦hN¹¥i20 = Å−100,100Æ(í. ,), RhN(¦hN¹¥i21 = Å−100,100Æ(í. ,) RhN(¦hN¹¥i22 = Å−100,100Æ(í. ,), RhN(¦hN¹¥i23 = Å−100,100Æ(í. ,) RhN(¦hN¹¥i24 = Å−100,100Æ(í. ,), RhN(¦hN¹¥i25 = Å−100,100Æ(í. ,) 
A._1 = Í0.16000.15050.0150Î (m), J._1 = �1 = h._1 = s/�ℎh1 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._2 = Í−0.1600.15050.0150Î (m), J._2 = �2 = h._2 = s/�ℎh2 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._3 = Í0.16000.02860.0351Î (m), J._3 = �3 = h._3 = s/�ℎh3 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._4 = Í−0.16000.02860.0351 Î (m), J._4 = �4 = h._4 = s/�ℎh4 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._9 = Í0.16000.00000.2487Î (m), J._9 = �9 = h._9 = s/�ℎh9 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._10 = Í−0.16000.00000.2487 Î (m), J._10 = �10 = h._10 = s/�ℎh10 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._11 = Í0.16000.00000.6212Î (m), J._11 = �11 = h._11 = s/�ℎh1 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._12 = Í−0.16000.00000.6212 Î (m), J._12 = �12 = h._12 = s/�ℎh12 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._17 = Í0.00000.00000.9588Î (m), J._17 = �17 = h._17 = s/�ℎh17 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._20 = Í0.00000.00001.2524Î (m), J._20 = �20 = h._20 = s/�ℎh20 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 
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A._23 = Í0.29000.00001.0452Î (m), J._23 = �23 = h._23 = s/�ℎh23 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._24 = Í−0.29000.00001.0452 Î (m), J._24 = �24 = h._24 = s/�ℎh24 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._27 = Í0.00000.00001.4997Î (m), J._27 = �27 = h._27 = s/�ℎh27 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

$0_1 = $0_2 = ⋯ = $0_27 = Í0 −1 01 0 00 0 1Î  �1 = �2 = 0.0743 (m), $1 = $2 = 0.0372 (m), �3� = �4� = 0.1133 (m) �3� = �4� = 0.0630 (m), $3� = $4� = 0.2860 (m), $3� = $4� = 0.4290 (m) �9 = �10 = 0.3220 (m), $9 = $10 = 0.1513 (m), �11 = �12 = 0.4120 (m) $11 = $12 = 0.1908 (m), �17� = 0.1600 (m), �17� = 0.2936 (m) $17 = 0.1468 (m), �20� = 0.2400 (m), �20� = 0.2936 (m), $20 = 0.1468 (m) �27 = 0.2010 (m), $27 = 0.1005 (m), �23� = �24� = 0.050 (m) �23� = �24� = 0.7080 (m), $23 = $24 = 0.3540 (m) ,1 = ,2 = 0.130 (kg), ,3 = ,4 = 0.521 (kg), ,9 = ,10 = 1.979 (kg) ,11 = ,12 = 5.213 (kg), ,17 = ,20 = 14.674 (kg), ,23 = ,24 = 2.651 (kg) ,27 = 4.708 (kg) 

Ý._1 = Ý._2 = Í0.00007 0.00000 0.000000.00000 0.00007 0.000000.00000 0.00000 00012 Î (kg.m2) 

Ý._3 = Ý._4 = Í0.00048 0.00000 0.000120.00000 0.00100 0.000000.00012 0.00000 0.00100Î (kg.m2) 

Ý._9 = Ý._10 = Í0.01800 0.00000 0.000000.00000 0.01800 0.000000.00000 0.00000 0.00300Î (kg.m2) 

Ý._11 = Ý._12 = Í0.07900 0.00000 0.000000.00000 0.07900 0.000000.00000 0.00000 0.01200Î (kg.m2) 

Ý._17 = Ý._20 = Í0.35300 0.00000 0.000000.00000 0.13500 0.000000.00000 0.00000 0.27700Î (kg.m2) 

Ý._23 = Ý._24 = Í0.11200 0.00000 0.000000.00000 0.11200 0.000000.00000 0.00000 0.00300Î (kg.m2) 

Ý._27 = Í0.02300 0.00000 0.000000.00000 0.02300 0.000000.00000 0.00000 0.01500Î (kg.m2) 
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B.2. Simulation Number 2 

Aℎ¹� =

CD
DD
DD
DD
DD
DD
E 0.0000 0.0000 0.9588−0.0270 0.1300 0.9588−0.1070 0.2500 0.9588−0.2340 0.3500 0.9588−0.4000 0.4200 0.9588−0.5930 0.4700 0.9588−0.8000 0.5200 0.9588−1.0070 0.5400 0.9588−1.2000 0.5450 0.9588−1.3660 0.5660 0.9588−1.4930 0.4000 0.9588−1.5730 0.2070 0.9588−1.6000 0 0.9588GH

HH
HH
HH
HH
HH
I

 (m) , Jℎ¹� =

CD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
E0.000.150.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.200.20GH

HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
I

 (m/s), PHASE_N=1 

Kh�¹(¸ = Å0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8Æ� (m) 

Q(¦i¹i²�¹¦ =Å+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1Æ�  

NRRA = Å0.9 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7Æ� (s) 

AQK = Å6 6 6 6 6 6 6 6 6 6 6 6Æ�  

RS =Å0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32Æ� 

(m) 

RT =Å0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06Æ� 

(m) 

+s�Â = Å1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1Æ�  



  

269 

 

+RT = Å0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5Æ�  

�¤/NhQ¤NℎhA�í =
×6.4×q�79 6.4×q�79 6.4×q�79 6.4×q�79 6.4×q�79 6.4×q�79 6.4×q�79 6.4×q�79 6.4×q�79 6.4×q�79 6.4×q�79 6.4×q�79 Ø�

 

(rad) 

�¤/NhQ¤Nℎhs�Ý =
×− 5×q�79 − 5×q�79 − 5×q�79 − 5×q�79 − 5×q�79 − 5×q�79 − 5×q�79 − 5×q�79 − 5×q�79 − 5×q�79 − 5×q�79 − 5×q�79Ø�

 

(rad) 

AK¹ = QAKã = Å0.1600 0.1876 0.0150Æ (m), QAKã� = QAKã�� = 0�2×� (m) 

A�¹ = QA�ã = Å−0.1600 0.1876 0.0150Æ (m), QA�ã� = QA�ã�� = 0�2×� (m) 

ãK_-_¹ = Í0 −1 01 0 00 0 1Î , ã�_-_¹ = Í0 −1 01 0 00 0 1Î 
� = �) );)& = �� = ��_¹i¹N¹h/ = 0�15×� (rad), ² = 9.81 (m/s2) 

��/¥�¤¦_¹i¹N¹h/_K¤¸¤N= Å1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Æ� 

�¤/Nh_N1_�ããRRA = �¤/Nh_N1_KããRRA = 0.1 (s) 

�¤/Nh_N2_�ããRRA = �¤/Nh_N2_KããRRA = �¤/Nh_N1_�ãã�RA =�¤/Nh_N2_�ãã�RA = �¤/Nh_N1_Kãã�RA = �¤/Nh_N2_Kãã�RA = 0.05 (s) 

�¤/Nh_N3_�ããRRA = �¤/Nh_N3_KããRRA = 0.02 (s) 

S�_¨h_�ããRRA = Í 1000100070000Î, S�_¨h_KããRRA = Í 1000100070000Î, 
S�_¨h_�ãã�RA = Í100001000090000Î, S�_¨h_Kãã�RA = Í100001000090000Î 
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S�_¨h_�ããRRA =
CDD
DDE

60060010001001001000GHH
HHI, S�_¨h_KããRRA =

CDD
DDE

60060010001001001000GHH
HHI 

S�_¨h_�ãã�RA =
CDD
DDE
100100100100100100GHH

HHI, S�_¨h_Kãã�RA =
CDD
DDE
100100100100100100GHH

HHI 

Sh_h_�ããRRA =
CDD
DDD
E0.11.20.90.70.30.40.5GHH

HHH
I
, Sh_h_KããRRA =

CDD
DDD
E0.11.20.90.70.30.40.5GHH

HHH
I
 

Sh_h_�ãã�RA =
CDD
DDD
E0.10.30.30.50.40.40.8GHH

HHH
I
, Sh_h_Kãã�RA =

CDD
DDD
E0.10.30.30.50.40.40.8GHH

HHH
I
 

S�_¨î_�ããRRA = Í 20002000800000Î, S�_¨î_KããRRA = Í 20002000800000Î 
S�_¨î_�ãã�RA = Í 1000100030000Î, S�_¨î_Kãã�RA = Í 1000100030000Î 

S�_¨î_�ããRRA =
CDD
DDE

1000010000100000500050005000 GHH
HHI, S�_¨î_KããRRA =

CDD
DDE

1000010000100000500050005000 GHH
HHI 
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S�_¨î_�ãã�RA =
CDD
DDE
100100100100100100GHH

HHI, S�_¨î_Kãã�RA =
CDD
DDE
100100100100100100GHH

HHI 

Sh_î_�ããRRA =
CDD
DDD
DE 10.11.20.90.30.40.50.5GHH

HHH
HI
, Sh_î_KããRRA =

CDD
DDD
DE 10.11.20.90.30.40.50.5GHH

HHH
HI
 

Sh_î_�ãã�RA =
CDD
DDD
DE0.050.10.30.30.80.60.61 GHH

HHH
HI
, Sh_î_Kãã�RA =

CDD
DDD
DE0.050.10.30.30.80.60.61 GHH

HHH
HI
 

S¥¦_¨h_�ããRRA = Í100001000010000Î, S¥¦_¨h_KããRRA = Í100001000010000Î 
S¥¦_¨h_�ãã�RA = Í500050005000Î, S¥¦_¨h_Kãã�RA = Í500050005000Î 
S¥¦_¨î_�ããRRA = Í800080008000Î, S¥¦_¨î_KããRRA = Í800080008000Î 
S¥¦_¨î_�ãã�RA = Í100010001000Î, S¥¦_¨î_Kãã�RA = Í100010001000Î 
S�_Q¤Nℎh3_�ããRRA = 100000, S�_Q¤Nℎh4_KããRRA = 100000 

S�_Q¤Nℎh3_�ããRRA = 40000, S�_Q¤Nℎh4_KããRRA = 40000 
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Sh.N_�ãã�RA = Sh.N_Kãã�RA =[1 1 1 1 1 1 1 1 1 1 1000 1 1 1 1 1 1 1 1 1 1 
1000 1000 1000 1 1 1 1 1000 1 1 1 1 1000 1000 1000 1 1 1 1 1 1 1000 1000 1000 
1000 1000 1000 1 1 1 1 1000 1 1 1 1 1000 1000 1000 1 1 1 1 1 1 1 1 1 1 1000 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1000 1000 1 1000 1000 1 1000 1000 1000]T 

 S��_T_�ããRRA =
CDD
DDD
E 0.130000110000.20.40.6 GHH

HHH
I
, S�K_T_KããRRA =

CDD
DDD
E 0.130000110000.20.40.6 GHH

HHH
I
 

S��_T_�ãã�RA =
CDD
DDD
E0.20.810.30.40.51 GHH

HHH
I
, S�K_T_Kãã�RA =

CDD
DDD
E0.20.810.30.40.51 GHH

HHH
I
 

S�T_K_�ããRRA =
CDD
DDD
DE 00.125000110000.20.40.8 GHH

HHH
HI
, S�T_�_KããRRA =

CDD
DDD
DE 00.125000110000.20.40.8 GHH

HHH
HI
 

S�K_T_�ãã�RA =
CDD
DDD
DE80000.40.810.50.30.50.8 GHH

HHH
HI
, S��_T_Kãã�RA =

CDD
DDD
DE80000.40.810.50.30.50.8 GHH

HHH
HI
 

S�Q¤Nℎh18 = 300, S�Q¤Nℎh18 = 120, �¤/Nh_N18 = 0.3 (s) S�Q¤Nℎh19 = 200, S�Q¤Nℎh19 = 60, �¤/Nh_N19 = 0.3 (s) S�Q¤Nℎh20 = 200, S�Q¤Nℎh20 = 60, �¤/Nh_N20 = 0.3 (s) S�Q¤Nℎh21 = 10, S�Q¤Nℎh21 = 100, �¤/Nh_N21 = 0.3 (s) S�Q¤Nℎh22 = 10, S�Q¤Nℎh22 = 100, �¤/Nh_N22 = 0.3 (s) S�Q¤Nℎh23 = 10, S�Q¤Nℎh23 = 100, �¤/Nh_N23 = 0.3 (s) S�Q¤Nℎh24 = 10, S�Q¤Nℎh24 = 100, �¤/Nh_N24 = 0.3 (s) S�Q¤Nℎh25 = 10, S�Q¤Nℎh25 = 100, �¤/Nh_N25 = 0.3 (s) S�Q¤Nℎh26 = 10, S�Q¤Nℎh26 = 100, �¤/Nh_N26 = 0.3 (s) S�Q¤Nℎh27 = 10, S�Q¤Nℎh27 = 100, �¤/Nh_N27 = 0.3 (s) Sh�Â_��¥N_�ããRRA_N¥_Kãã�RA =Å1 1 1 3 1.8 1.8 1.8 1 1 1 3 1.8 1.8 1.8Æ�  
 Sh�Â_��¥N_�ããRRA_N¥_Kãã�RA =Å1 1 1 3 1.8 1.8 1.8 1 1 1 3 1.8 1.8 1.8Æ� 
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RhN(¦hN¹¥i = Å−30,30Æ(í. ,), RhN(¦hN¹¥i1 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i2 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i3 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i4 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i5 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i6 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i7 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i8 = Å−30,30Æ(í. ,), RhN(¦hN¹¥i9 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i10 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i11 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i12 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i13 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i14 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i15 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i16 = Å−180,180Æ(í. ,), RhN(¦hN¹¥i17 = Å−180,180Æ(í. ,) RhN(¦hN¹¥i18 = Å−180,180Æ(í. ,), RhN(¦hN¹¥i19 = Å−100,100Æ(í. ,) RhN(¦hN¹¥i20 = Å−100,100Æ(í. ,), RhN(¦hN¹¥i21 = Å−100,100Æ(í. ,) RhN(¦hN¹¥i22 = Å−100,100Æ(í. ,), RhN(¦hN¹¥i23 = Å−100,100Æ(í. ,) RhN(¦hN¹¥i24 = Å−100,100Æ(í. ,), RhN(¦hN¹¥i25 = Å−100,100Æ(í. ,) 
A._1 = Í0.16000.15050.0150Î (m), J._1 = �1 = h._1 = s/�ℎh1 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._2 = Í−0.1600.15050.0150Î (m), J._2 = �2 = h._2 = s/�ℎh2 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._3 = Í0.16000.02860.0351Î (m), J._3 = �3 = h._3 = s/�ℎh3 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._4 = Í−0.16000.02860.0351 Î (m), J._4 = �4 = h._4 = s/�ℎh4 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._9 = Í0.16000.00000.2487Î (m), J._9 = �9 = h._9 = s/�ℎh9 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._10 = Í−0.16000.00000.2487 Î (m), J._10 = �10 = h._10 = s/�ℎh10 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._11 = Í0.16000.00000.6212Î (m), J._11 = �11 = h._11 = s/�ℎh1 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._12 = Í−0.16000.00000.6212 Î (m), J._12 = �12 = h._12 = s/�ℎh12 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._17 = Í0.00000.00000.9588Î (m), J._17 = �17 = h._17 = s/�ℎh17 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 
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A._20 = Í0.00000.00001.2524Î (m), J._20 = �20 = h._20 = s/�ℎh20 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._23 = Í0.29000.00001.0452Î (m), J._23 = �23 = h._23 = s/�ℎh23 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._24 = Í−0.29000.00001.0452 Î (m), J._24 = �24 = h._24 = s/�ℎh24 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._27 = Í0.00000.00001.4997Î (m), J._27 = �27 = h._27 = s/�ℎh27 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

$0_1 = $0_2 = ⋯ = $0_27 = Í0 −1 01 0 00 0 1Î  �1 = �2 = 0.0743 (m), $1 = $2 = 0.0372 (m), �3� = �4� = 0.1133 (m) �3� = �4� = 0.0630 (m), $3� = $4� = 0.2860 (m), $3� = $4� = 0.4290 (m) �9 = �10 = 0.3220 (m), $9 = $10 = 0.1513 (m), �11 = �12 = 0.4120 (m) $11 = $12 = 0.1908 (m), �17� = 0.1600 (m), �17� = 0.2936 (m) $17 = 0.1468 (m), �20� = 0.2400 (m), �20� = 0.2936 (m), $20 = 0.1468 (m) �27 = 0.2010 (m), $27 = 0.1005 (m), �23� = �24� = 0.050 (m) �23� = �24� = 0.7080 (m), $23 = $24 = 0.3540 (m) ,1 = ,2 = 0.130 (kg), ,3 = ,4 = 0.521 (kg), ,9 = ,10 = 1.979 (kg) ,11 = ,12 = 5.213 (kg), ,17 = ,20 = 14.674 (kg), ,23 = ,24 = 2.651 (kg) ,27 = 4.708 (kg) 

Ý._1 = Ý._2 = Í0.00007 0.00000 0.000000.00000 0.00007 0.000000.00000 0.00000 00012 Î (kg.m2) 

Ý._3 = Ý._4 = Í0.00048 0.00000 0.000120.00000 0.00100 0.000000.00012 0.00000 0.00100Î (kg.m2) 

Ý._9 = Ý._10 = Í0.01800 0.00000 0.000000.00000 0.01800 0.000000.00000 0.00000 0.00300Î (kg.m2) 

Ý._11 = Ý._12 = Í0.07900 0.00000 0.000000.00000 0.07900 0.000000.00000 0.00000 0.01200Î (kg.m2) 

Ý._17 = Ý._20 = Í0.35300 0.00000 0.000000.00000 0.13500 0.000000.00000 0.00000 0.27700Î (kg.m2) 

Ý._23 = Ý._24 = Í0.11200 0.00000 0.000000.00000 0.11200 0.000000.00000 0.00000 0.00300Î (kg.m2) 

Ý._27 = Í0.02300 0.00000 0.000000.00000 0.02300 0.000000.00000 0.00000 0.01500Î (kg.m2) 

 
 



  

275 

 

B.3. Simulation Number 3 

Aℎ¹� =

CD
DD
DD
DD
DD
E 0.0000 0.0000 0.95880.0001 0.2500 0.95880 0.5000 0.9588−0.0001 0.7500 0.95880 1.0000 0.95880.0001 1.2500 0.95880 1.5000 0.9588−0.0001 1.7500 0.95880 2.0000 0.95880.0001 2.2500 0.95880 2.5000 0.9588GH

HH
HH
HH
HH
I
 (m) , Jℎ¹� =

CD
DD
DD
DD
DD
DD
DD
DD
DD
E0.000.250.300.300.300.300.300.300.300.300.300.300.300.300.300.300.300.300.300.300.30GH

HH
HH
HH
HH
HH
HH
HH
HH
I

 (m/s), PHASE_N=1 

Kh�¹(¸ = Å5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0Æ� (m) 

Q(¦i¹i²�¹¦ = Å+1 −1 +1 −1 +1 −1 +1 −1 +1 −1Æ�  

NRRA = Å1.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6Æ� (s) 

AQK = Å6 6 6 6 6 6 6 6 6 6Æ�  

RS = Å0.40 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32Æ� (m) 

RT = Å0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06Æ� (m) 

+s�Â = Å1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1Æ�  

+RT = Å0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5Æ�  

�¤/NhQ¤NℎhA�í = ×2×q�79 2×q�79 2×q�79 2×q�79 2×q�79 2×q�79 2×q�79 2×q�79 2×q�79 2×q�79 Ø�
 

(rad) 
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�¤/NhQ¤Nℎhs�Ý = 

×− 1.8×q�79 − 1.8×q�79 − 1.8×q�79 − 1.8×q�79 − 1.8×q�79 − 1.8×q�79 − 1.8×q�79 − 1.8×q�79 − 1.8×q�79 − 1.8×q�79 Ø�
 

(rad) 

AK¹ = QAKã = Å0.1600 0.1876 0.0150Æ (m), QAKã� = QAKã�� = 0�2×� (m) 

A�¹ = QA�ã = Å−0.1600 0.1876 0.0150Æ (m), QA�ã� = QA�ã�� = 0�2×� (m) 

ãK_-_¹ = Í0 −1 01 0 00 0 1Î , ã�_-_¹ = Í0 −1 01 0 00 0 1Î 
� = �) );)& = �� = ��_¹i¹N¹h/ = 0�15×� (rad), ² = 9.81 (m/s2) 

��/¥�¤¦_¹i¹N¹h/_K¤¸¤N= Å1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Æ� 

�¤/Nh_N1_�ããRRA = �¤/Nh_N1_KããRRA = �¤/Nh_N2_�ããRRA =�¤/Nh_N2_KããRRA = 0.1 (s) 

�¤/Nh_N1_�ãã�RA = �¤/Nh_N2_�ãã�RA = �¤/Nh_N1_Kãã�RA =�¤/Nh_N2_Kãã�RA = 0.05 (s) 

�¤/Nh_N3_�ããRRA = �¤/Nh_N3_KããRRA = 0.02 (s) 

S�_¨h_�ããRRA = Í 1000100090000Î, S�_¨h_KããRRA = Í 1000100090000Î, 
S�_¨h_�ãã�RA = Í100001000090000Î, S�_¨h_Kãã�RA = Í100001000090000Î 

S�_¨h_�ããRRA =
CDD
DDE
90090012001001001000GHH

HHI, S�_¨h_KããRRA =
CDD
DDE
90090012001001001000GHH

HHI 
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S�_¨h_�ãã�RA =
CDD
DDE
100100100100100100GHH

HHI, S�_¨h_Kãã�RA =
CDD
DDE
100100100100100100GHH

HHI 

Sh_h_�ããRRA =
CDD
DDD
E0.11.20.90.70.30.40.5GHH

HHH
I
, Sh_h_KããRRA =

CDD
DDD
E0.11.20.90.70.30.40.5GHH

HHH
I
 

Sh_h_�ãã�RA =
CDD
DDD
E0.10.30.30.50.40.40.8GHH

HHH
I
, Sh_h_Kãã�RA =

CDD
DDD
E0.10.30.30.50.40.40.8GHH

HHH
I
 

S�_¨î_�ããRRA = Í 600006000080000000Î, S�_¨î_KããRRA = Í 600006000080000000Î 
S�_¨î_�ãã�RA = Í 1000100030000Î, S�_¨î_Kãã�RA = Í 1000100030000Î 

S�_¨î_�ããRRA =
CDD
DDE
18000180008000500050005000 GHH

HHI, S�_¨î_KããRRA =
CDD
DDE
18000180008000500050005000 GHH

HHI 

S�_¨î_�ãã�RA =
CDD
DDE
100100100100100100GHH

HHI, S�_¨î_Kãã�RA =
CDD
DDE
100100100100100100GHH

HHI 
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Sh_î_�ããRRA =
CDD
DDD
DE 10.11.20.90.30.40.50.5GHH

HHH
HI
, Sh_î_KããRRA =

CDD
DDD
DE 10.11.20.90.30.40.50.5GHH

HHH
HI
 

Sh_î_�ãã�RA =
CDD
DDD
DE0.050.10.30.30.80.60.61 GHH

HHH
HI
, Sh_î_Kãã�RA =

CDD
DDD
DE0.050.10.30.30.80.60.61 GHH

HHH
HI
 

S¥¦_¨h_�ããRRA = Í200020002000Î, S¥¦_¨h_KããRRA = Í200020002000Î 
S¥¦_¨h_�ãã�RA = Í500050005000Î, S¥¦_¨h_Kãã�RA = Í500050005000Î 
S¥¦_¨î_�ããRRA = Í800080008000Î, S¥¦_¨î_KããRRA = Í800080008000Î 
S¥¦_¨î_�ãã�RA = Í100010001000Î, S¥¦_¨î_Kãã�RA = Í100010001000Î 
S�_Q¤Nℎh3_�ããRRA = 100000, S�_Q¤Nℎh4_KããRRA = 100000 

S�_Q¤Nℎh3_�ããRRA = 40000, S�_Q¤Nℎh4_KããRRA = 40000 

Sh.N_�ãã�RA = Sh.N_Kãã�RA =[1 1 1 1 1 1 1 1 1 1 1000 1 1 1 1 1 1 1 1 1 1 
1000 1000 1000 1 1 1 1 1000 1 1 1 1 1000 1000 1000 1 1 1 1 1 1 1000 1000 1000 
1000 1000 1000 1 1 1 1 1000 1 1 1 1 1000 1000 1000 1 1 1 1 1 1 1 1 1 1 1000 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1000 1000 1 1000 1000 1 1000 1000 1000]T 



  

279 

 

 S��_T_�ããRRA =
CDD
DDD
E 0.130000110000.20.40.6 GHH

HHH
I
, S�K_T_KããRRA =

CDD
DDD
E 0.130000110000.20.40.6 GHH

HHH
I
 

S��_T_�ãã�RA =
CDD
DDD
E0.20.810.30.40.51 GHH

HHH
I
, S�K_T_Kãã�RA =

CDD
DDD
E0.20.810.30.40.51 GHH

HHH
I
 

S�T_K_�ããRRA =
CDD
DDD
DE 00.125000110000.20.40.8 GHH

HHH
HI
, S�T_�_KããRRA =

CDD
DDD
DE 00.125000110000.20.40.8 GHH

HHH
HI
 

S�K_T_�ãã�RA =
CDD
DDD
DE80000.40.810.50.30.50.8 GHH

HHH
HI
, S��_T_Kãã�RA =

CDD
DDD
DE80000.40.810.50.30.50.8 GHH

HHH
HI
 

S�Q¤Nℎh18 = 300, S�Q¤Nℎh18 = 120, �¤/Nh_N18 = 0.3 (s) S�Q¤Nℎh19 = 200, S�Q¤Nℎh19 = 60, �¤/Nh_N19 = 0.3 (s) S�Q¤Nℎh20 = 200, S�Q¤Nℎh20 = 60, �¤/Nh_N20 = 0.3 (s) S�Q¤Nℎh21 = 10, S�Q¤Nℎh21 = 100, �¤/Nh_N21 = 0.3 (s) S�Q¤Nℎh22 = 10, S�Q¤Nℎh22 = 100, �¤/Nh_N22 = 0.3 (s) S�Q¤Nℎh23 = 10, S�Q¤Nℎh23 = 100, �¤/Nh_N23 = 0.3 (s) S�Q¤Nℎh24 = 10, S�Q¤Nℎh24 = 100, �¤/Nh_N24 = 0.3 (s) S�Q¤Nℎh25 = 10, S�Q¤Nℎh25 = 100, �¤/Nh_N25 = 0.3 (s) S�Q¤Nℎh26 = 10, S�Q¤Nℎh26 = 100, �¤/Nh_N26 = 0.3 (s) S�Q¤Nℎh27 = 10, S�Q¤Nℎh27 = 100, �¤/Nh_N27 = 0.3 (s) Sh�Â_��¥N_�ããRRA_N¥_Kãã�RA= Å1 1 1 3 1.8 1.8 1.8 1 1 1 3 1.8 1.8 1.8Æ� 
 Sh�Â_��¥N_�ããRRA_N¥_Kãã�RA =Å1 1 1 3 1.8 1.8 1.8 1 1 1 3 1.8 1.8 1.8Æ� RhN(¦hN¹¥i = Å−30,30Æ(í. ,), RhN(¦hN¹¥i1 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i2 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i3 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i4 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i5 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i6 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i7 = Å−150,150Æ(í. ,) 
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RhN(¦hN¹¥i8 = Å−30,30Æ(í. ,), RhN(¦hN¹¥i9 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i10 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i11 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i12 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i13 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i14 = Å−150,150Æ(í. ,), RhN(¦hN¹¥i15 = Å−150,150Æ(í. ,) RhN(¦hN¹¥i16 = Å−180,180Æ(í. ,), RhN(¦hN¹¥i17 = Å−180,180Æ(í. ,) RhN(¦hN¹¥i18 = Å−180,180Æ(í. ,), RhN(¦hN¹¥i19 = Å−100,100Æ(í. ,) RhN(¦hN¹¥i20 = Å−100,100Æ(í. ,), RhN(¦hN¹¥i21 = Å−100,100Æ(í. ,) RhN(¦hN¹¥i22 = Å−100,100Æ(í. ,), RhN(¦hN¹¥i23 = Å−100,100Æ(í. ,) RhN(¦hN¹¥i24 = Å−100,100Æ(í. ,), RhN(¦hN¹¥i25 = Å−100,100Æ(í. ,) 
A._1 = Í0.16000.15050.0150Î (m), J._1 = �1 = h._1 = s/�ℎh1 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._2 = Í−0.1600.15050.0150Î (m), J._2 = �2 = h._2 = s/�ℎh2 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._3 = Í0.16000.02860.0351Î (m), J._3 = �3 = h._3 = s/�ℎh3 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._4 = Í−0.16000.02860.0351 Î (m), J._4 = �4 = h._4 = s/�ℎh4 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._9 = Í0.16000.00000.2487Î (m), J._9 = �9 = h._9 = s/�ℎh9 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._10 = Í−0.16000.00000.2487 Î (m), J._10 = �10 = h._10 = s/�ℎh10 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._11 = Í0.16000.00000.6212Î (m), J._11 = �11 = h._11 = s/�ℎh1 = 0�2×� (m/s, rad/s, m/s2, 

rad/s2) 

A._12 = Í−0.16000.00000.6212 Î (m), J._12 = �12 = h._12 = s/�ℎh12 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._17 = Í0.00000.00000.9588Î (m), J._17 = �17 = h._17 = s/�ℎh17 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._20 = Í0.00000.00001.2524Î (m), J._20 = �20 = h._20 = s/�ℎh20 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 
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A._23 = Í0.29000.00001.0452Î (m), J._23 = �23 = h._23 = s/�ℎh23 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._24 = Í−0.29000.00001.0452 Î (m), J._24 = �24 = h._24 = s/�ℎh24 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

A._27 = Í0.00000.00001.4997Î (m), J._27 = �27 = h._27 = s/�ℎh27 = 0�2×� (m/s, rad/s, 

m/s2, rad/s2) 

$0_1 = $0_2 = ⋯ = $0_27 = Í0 −1 01 0 00 0 1Î  �1 = �2 = 0.0743 (m), $1 = $2 = 0.0372 (m), �3� = �4� = 0.1133 (m) �3� = �4� = 0.0630 (m), $3� = $4� = 0.2860 (m), $3� = $4� = 0.4290 (m) �9 = �10 = 0.3220 (m), $9 = $10 = 0.1513 (m), �11 = �12 = 0.4120 (m) $11 = $12 = 0.1908 (m), �17� = 0.1600 (m), �17� = 0.2936 (m) $17 = 0.1468 (m), �20� = 0.2400 (m), �20� = 0.2936 (m), $20 = 0.1468 (m) �27 = 0.2010 (m), $27 = 0.1005 (m), �23� = �24� = 0.050 (m) �23� = �24� = 0.7080 (m), $23 = $24 = 0.3540 (m) ,1 = ,2 = 0.130 (kg), ,3 = ,4 = 0.521 (kg), ,9 = ,10 = 1.979 (kg) ,11 = ,12 = 5.213 (kg), ,17 = ,20 = 14.674 (kg), ,23 = ,24 = 2.651 (kg) ,27 = 4.708 (kg) 

Ý._1 = Ý._2 = Í0.00007 0.00000 0.000000.00000 0.00007 0.000000.00000 0.00000 00012 Î (kg.m2) 

Ý._3 = Ý._4 = Í0.00048 0.00000 0.000120.00000 0.00100 0.000000.00012 0.00000 0.00100Î (kg.m2) 

Ý._9 = Ý._10 = Í0.01800 0.00000 0.000000.00000 0.01800 0.000000.00000 0.00000 0.00300Î (kg.m2) 

Ý._11 = Ý._12 = Í0.07900 0.00000 0.000000.00000 0.07900 0.000000.00000 0.00000 0.01200Î (kg.m2) 

Ý._17 = Ý._20 = Í0.35300 0.00000 0.000000.00000 0.13500 0.000000.00000 0.00000 0.27700Î (kg.m2) 

Ý._23 = Ý._24 = Í0.11200 0.00000 0.000000.00000 0.11200 0.000000.00000 0.00000 0.00300Î (kg.m2) 

Ý._27 = Í0.02300 0.00000 0.000000.00000 0.02300 0.000000.00000 0.00000 0.01500Î (kg.m2) 

 
 


