A COMPACT CRYPTOGRAPHIC PROCESSOR FOR IPSEC APPLTTANS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ELIF BILGE KAVUN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CRYPTOGRAPHY

SEPTEMBER 2010



Approval of the thesis:

A COMPACT CRYPTOGRAPHIC PROCESSOR FOR IPSEC APPLICATIONS

submitted byEL IF BILGE KAVUN in partial fulfillment of the requirements for tiiegree of
Master of Science in Department of CryptographyMiddle East Technical University by,

Prof. Dr. Ersan Akyildiz
Director, Graduate School épplied Mathematics

Prof. Dr. Ferruh Ozbudak
Head of Departmen€ryptography

Prof. Dr. Ersan Akyildiz
SupervisorDepartment of Mathematics, METU

Dr. Tolga Yalg¢in
Co-SupervisorAffiliated Faculty, METU

Examining Committee Members:

Assoc. Prof. Dr. Clineyt Bazlamacci
Department of Electrical and Electronics EngineggriMETU

Prof. Dr. Ersan Akyildiz
Department of Mathematics, METU

Dr. Tolga Yalgin
Affiliated Faculty, METU

Assist. Prof. Dr. Ali Aydin Selcuk
Department of Computer Engineering, Bilkent Uniitgrs

Hakan Solmaz
Aselsan AS., Ankara

Date:



| hereby declare that all information in this docunment has been obtained and presented in
accordance with academic rules and ethical conduct. also declare that, as required by
these rules and conduct, | have fully cited and refenced all material and results that are

not original to this work.

Narhast name: HE BILGE KAVUN

Signature



ABSTRACT

A COMPACT CRYPTOGRAPHIC PROCESSOR FOR IPSEC APPLTTANS

Kavun, Elif Bilge
M.Sc., Department of Cryptography
Supervisor: Prof. Dr. Ersan Akyildiz
Co-Supervisor: Dr. Tolga Yalgin

September 2010, 142 pages

A compact cryptographic processor with custom irgtsl cryptographic coprocessors is
designed and implemented. The processor is maimgdfor IPSec applications, which require
intense processing power for cryptographic opemnatidn the present design, this processing
power is achieved via the custom cryptographic @ogssors. These are an AES engine, a SHA-
1 engine and a Montgomery modular multiplier, whigk connected to the main processor core
through a generic flexible interface. The processwe is fully compatible with Zylin Processor
Unit (ZPU) instruction set, allowing the use of ZRbblchain. A minimum set of required
instructions is implemented in hardware, while test of the instructions are emulated in
software. The functionality of the cryptographicopessor and its suitability for IPSec
applications are demonstrated through implememtatib sample IPSec protocols in C-code,
which is compiled into machine code and run ongifeezessor. The resultant processor, together
with the sample codes, presents a pilot platfornmttfie demonstration of hardware/software co-

design and performance evaluation of IPSec proscamod components.

Keywords: Cryptography, Processor, GCC, IPSec, Gatp
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IPSEC UYGULAMALARI iCIN KUGUK ALANLI KR IPTOGRARK ISLEMCI

Kavun, Elif Bilge
Yuksek Lisans, Kriptografi Bélumu
Tez Yoneticisi : Prof. Dr. Ersan Akyildiz
Ortak Tez Yoneticisi: Dr. Tolga Yalgin

Eylul 2010, 142 sayfa

Entegre edilmyi isleme-6zgusifreleme alt-lemcileriyle birlikte calsan, az alan kaplayan bir
islemci tasarlanngi ve gerceklenmgtir. Islemci agirlikli olarak sifreleme §lemlerinde ygun
islemci gici gerektiren IPSec uygulamalar igin amagistir. Sunulan tasarimda, bsléme
gucu ozelsifreleme alt-slemcileri yoluyla elde edilmektedir. Bunlar, argemciye genel bir
esnek arabirim aracih ile bglanmsg olan bir AES cekird@, bir SHA-1 cekirdgi ve bir
Montgomery moduler carpicisidir. Tasarlanglenci cekirdgi, Zylin Islemci Birimi (ZPU)
cevirici programlari kullanimina izin vereceg&kilde, ZPU komut seti ile tamamen uyumludur.
Gerekli olan komutlarin en kic¢ik kiimesi donaninadatak gerceklenngj geri kalan komutlarin
ise yaziimsal olarak benzeri yapitm. Sifreleme glemcisinin glevselligi ve IPSec
uygulamalari icin uyguniu, ornek IPSec protokollerinin C-kodu olarak getesknesi ile
gOsterilmitir. Bu kodlar, makine koduna ceviriligléemci tzerinde catirilmistir. Ortaya ¢ikan
islemci, ©rnek kodlarla beraber, donanim/yazilim lortasarimi ile IPSec protokol ve

bilesenlerinin performans gerlendirme gosterimi icin bir deneme platformu saktadir.

Anahtar Kelimeler: Kriptografilslemci, GCC, IPSec, Kicuk alanli



To mom and dad...

Vi



ACKNOWLEDGMENTS

| would like to thank all those people who haveplee in the preparation of this study.

| am so grateful to the Institute of Applied Mathetios, my supervisor Prof. Dr. Ersan Akyildiz
and my co-supervisor Dr. Tolga Yalcin for giving mhe M.Sc. opportunity. My special thanks
go to Dr. Yalc¢in, for guiding me with patience amd support that provided me determination
throughout this study.

| would like to thank Percello Ltd. for supportitigs work as an industrial partner.

I would also like to thank my examining committeembers Assist. Prof. Dr. Ali Aydin Selguk,

Assoc. Prof. Dr. Clneyt Bazlamacci and Hakan Solimatheir time they spared for me.
Very special thanks to all my dear friends for ttseipport and patience during my studies.
And, | would like to thank my family who has alwagsen me endless support, care and help in

all my decisions. | owe them what | am today, seolld like to dedicate this study to my dear

mom and dad.

Thank you...

Vil



TABLE OF CONTENTS

= I Y GOl iv

Oz e e e e e e e aaa v

D =] I P Vi

ACKNOWLEDGMENTS ... ettt ettt et et s e e e e e e e e s e e s e e s e e s e e rnenees vii

LI = 1 @ 1A I = A 1 PP viii

IS IO ] 7 = 1 P Xi

LIST OF FIGURES ... ettt s e e anes Xii
CHAPTER

B 1 2 1 1L ol I O 1

1.1 MOTIVE L 1

1.2 Previous WOork ... 2

G TR I Y 1<) PN 3

Y o o o - T o PN 4

1.5 Thesis OULINE......ciuiiiii 4

2. INTERNET PROTOCOL SECURITY (IPSEC) ....civiuiiiiiiiiiiiiiii e e 6

2.1 IPSEC OVEIVIEW L.viiiiiiiiiiiiiii e 6

2.2 IPSec Operation and Core ProtoCols......coiiiiiiiiiiiii e 7

2.3 IPSeC SUPPOIrt COmMPONENES ...ttt raeereaaeas 9

2.4 IPSEC MOAES....viiiiiii 9

2.4.1 TransSpOrt MO .. v e e 10

2.4.2TuNNEl MO ....iiiiiiiiiiii i 11

2.4.3 Comparison of Transport and Tunnel Modes........c.covviviiiiiiiiininnennn, 11

2.4.4 Relation of Modes with Architectures............cocoiiiiiiii, 12

2.5 IPSec Authentication Header (AH) ..o e 12

2.6 IPSec Encapsulating Security Payload (ESP) ......ccoiiiiiiiiiii e 14

3 SECURITY PROCESSOR DESIGN ....uiuiitiuitiit e et e e sas e rasesasenaserasenaenes 17

3.1 Architecture Overview and Instruction Set ..........cociiiiiiiii 18

3.2 Arithmetic LOGIiC UNit . e.eeieii e e e e e e e e e eeeae 23

3.3 INStruction DECOAEN ... .iviiiiiit i 23

viii



3.4 Memory Organization ...ociicii i e e 26

3.5 Security ConsSiderations ...iuiiiiiiiiiii i e e 28
3.6 Implementation RESUIES .....ciiiiiiiii 31
3.7 Software Development TOOIS ..ouuiiiiii i e 31
4 CRYPTOGRAPHIC COPROCESSORS .....iuiiiiiitiiiiiniaiiiinisn s s sss s e anans 34
4.1 Advanced Encryption Standard (AES) COpProCesSOr....cvvvviiiiiiiiiiiiiniiiennennens 35
4.1.1 AES AlgQorithm. ..o e 35
4.1.1.1 Description of the Cipher ....c.ciiiiiii 35

4.1.1.2 The SUbBYES SteP .iiviii i s 37

4.1.1.3 The ShiftROWS SteP ..iiiii i e 39

4.1.1.4 The MiXCOlUMNS STEP cuiiviiiiiii i e e 39

4.1.1.5 The AddRoundKey Step ...oiviiiiiiiiiiiiicii e 40

4.1.1.6 KeY EXPaNSION...c.uieiiiiiiiiiie et e e e s 41

4.1.2 Architecture OVErVIEW .....ociviiiiiiii e 42
4.1.3 Key SChedUIET ... e e 47
4.1.4 SubBytes ModUule. ..o 48
4.1.4.1 Affine Transform Module.........cccooiiiiiiiiiiii 48

4.1.4.2 GF(2®) Multiplicative Inverse Module (Inverter) .................... 51

4.1.5 MiXColumns ModUIE ........oiiiiiiiiiiii s 52
4.1.6 ShiftROWS ModUIe .......oviiiiiiii 52
4.1.7 Implementation RESUILS ......ceeiniii e e 54

4.2 Secure Hash Algorithm — 1 (SHA-1) COPIrOCESSOr . .uvuvreeinineeeeeeeaeaeenes 54
4.2.1 SHA-1 AIGOrithm ..o 54
4.2.1.1 Description of the FunNction ..........ccoooiiiiiiiiiiieeee 55

4.2.1.2 SHA FUNCLIONS ..o 57
4.2.1.2.1 Common FUNctions........cccooiiiiiiiiiiii 57

4.2.1.2.2 SHA-1 Functions .......cccoiiiiiiiiii e 58

4.2.1.3 SHA-1 Constants .......c.cooiiiiiiiiiii 58

4.2.1.4 SHA-1 Initial Hash Values .........c.cooviiiiiiiiiies 58

4.2.2 Architecture OVErVIEW ... ..coiviiiiiiiiiiii e 58
4.2.3 Message SChedUIBI ..ot e e 61
4.2.4 Round FUNCEION ... 63
4.2.5 Implementation RESUIES ....cuiiriiiiiiiiic e 63

4.3 Montgomery Modular Multiplier (MMM) COProCeSSOr ...vvvuiiieiiiiiiiiieiiennennens 64



4.3.1 MMM AIgorithm ..o 64

4.3.2 Architecture OVErVIEW ... ...ovviiiiiiiiiii e 67

4.3.3 Word-serial Adder .......coviiiiiiiiiiii 76

4.3.4 Implementation RESUIES ...ccviiriiiiiiiiic e 80

5 CRYPTOGRAPHIC PROCESSOR INTEGRATION. .. .iuiuiiiiiiiii it a e 82
o A 1 0} =T =) o (o I OO 82

5.2 Implementation RESUIES .....ciiiiiiiiii 83

5.3 Performance ReSUILS........ocviiiiiiiiiii 83

5.4 Coprocessor INterface. ...cuiiiiii i 84

6 IPSEC PROTOCOL IMPLEMENTATION EXAMPLES ......cciiiiiiiiiiiiin e 88
6.1 IP Packet Handling ....ooueiiiiii i e 88

6.2 Counter with Cipher Block Chaining—Message Authentication Code (CCM) ...89

6.2.1 Description Of CCM .....uiuieiiiiieieee e e e e e e neeaes 90

6.2.2 Software Overview of AES-CCM.......coeiiiiiiiiniiii e, 93

6.3 Hash-based Message Authentication Code (HMAC) ......cccoiiiiiiiiiiiiieiiiennns 94

6.3.1 Description of HMAC ... . e e e e e 97

6.3.2 Software Overview of HMAC-SHA-1-96 ......cccoiviiiiiiiiiiiiiee 98

6.4 RSA Encryption and Decryption for Internet Key Exchange...................... 101

6.4.1 Description Of RSA ... .. e 101

6.4.2 Software Overview of RSA ... ..o, 103

7 CONGCLUSION . .. c ettt ettt et e e e et e et e et e e s e a s e e en s e e e e e s e e e e e ren s e e e neneeneneenas 106

7.1 RESUIES Lot 106

7.2 Directions for Future Work .........coeiiiiiii 107

REFERENGCES .....ieiieiictiet et et ee e e e e e e e e e e e e e s e e e e e e e e e s en s eaaeeeennenseenaeneanaenens 109
APPENDICES

A. VERILOG CODES OF PROCESSOR AND COPROCESSORS........c.ccoeuveuvenennen. 113

B. C CODES OF APPLICATIONS. . ...ucuieiitieuaeee e e eee e e e ee e eneeees 129



LIST OF TABLES

TABLES

Table 2.1 Important IPSeC Standards........cccccueuviiiiiiiiiiiiecceccee e 8
Table 3.1 INSIUCHON SEL....ciiiiiiiii ettt e e et e e e e eaane s 20
Table 3.2 INSTIUCHION CYCIES.......coiiiiiee e e e e e e 21
Table 3.3 Address organization of RAM........ceeueeii it ee e 27
Table 3.4 Modified INSTIUCHON CYCIES.......coo i e e 30
Table 3.5 ZPU core implementation reSUIS. ........uvee i ccciiieeeeeee s 31
Table 4.1 AES core implementation reSUIS. ... e e eee s 54
Table 4.2 SHA-1 core implementation reSUIS. .....cc...oovoiiiii e 64
Table 4.3. MMM core implementation reSUItS. ... 81
Table 5.1 Cryptographic processor implementatiGuilts. . .............ooceieiieiiiiiiieee e 83
Table 5.2 Throughput PErfOrMAaNCES. .. .........iiiiiiicetetieiiiee e emeeee e 84

Xi



FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 4.1
Figure 4.2

LIST OF FIGURES

Overview of IPSec protocols and CONGOMEL. .............uurrrieererriereeeeeeeeeesereeeeeeeeeens 8
IPSec transport Mode OPEratioN.......c.ccceeeeeee i e e e e 10
IPSec tunnel MOdE OPEIAtION. .. cuue e eeeeseeiireie b eeee s easasantreeeeeeeeeeeeeees 11
IPv4 datagram format With IPSEC AHue.vvvvviiiiiiiiiiiiieeeceeeee e, 13
IPSEC AH TOIMMAL......eiiiieiit et e e 14
IPv4 datagram format with IPSEC ESPu............oooiiiiiiiiiiieeeee e 15
IPSEC ESP fOrMAL... ...ttt 16
Basic architecture of ZPU for AND MISHEION. ............uveveeiiiiiiiieee e 19
Timing diagram of AND iNStrUCHION..........cccciiiiiiiie e 23
Block diagram Of ZPU COIE.........uuuiiiiiiiiiiiee e ceeee e 24
Arithmetic [0giC UNit MOAUIE......cceuviiiiiiiii e 25
V[T g g o YA o] (o F=T a1 2= 11T ] o USRS 26
AES State ilUSLrAtioN. ... et 36

In the SubBytes step, each byte irsthie is replaced with its entry in a fixed 8-bit

lookup table S, as bij = S(@I]).....ccceeeeeimmmmmn e 38
Figure 4.3 In the ShiftRows step, bytes in eash of the state are shifted cyclically to the left.

The number of places each byte is shifted differeach row..............ccoovviieeeens 39
Figure 4.4 In the MixColumns step, each stateroolis multiplied with fixed polynomial

o 7 TSP UPUURP 40
Figure 4.5 In the AddRoundKey step, each bythefstate is combined with a byte of the

round subkey, using the XOR oOperation........cccccceeeieeeiiieiiniiiiiiiiiieeeeeeeee e eeeas 40
Figure 4.6 AES encryption algorithm data floW.... ... 44
Figure 4.7 Timing diagram of AES DIOCK.....cuerieiiiiiiiiiiiie e 45
Figure 4.8 AES coprocessor blOCK iagram. .o .oooee i ee s e s 45
Figure 4.9 AES coprocessor combinational dath.pat..................cccccciiiiiiiiie s ceeeeereeeeeeee 46
Figure 4.10 AES WIapPEl FEQISTEIS.....cccei i e e e eeee e e e e ettt e e e e e e e e e e e e esseer et rreeaaaaaaaaaaeeeas a7
FIgure 4.11 KeY SCREAUIET ............uuuiiitmmm s ettt e et e e et e e e e e sseesesbe e eeeeeeaaeeaeeaeeesenas 49
Figure 4.12 SubBytes and SubByte MOAUIES.......ccceciiicciiiiiiiiceeee et 50
Figure 4.13 Affine transformation MOAUIE. ....cccco..eiiiiiiiiiiie e 51

Xii



Figure 4.14 GF iNVErter MOUUIE. .........uuuiiceeeeeeitiitiee e e e e e e e e e e e s s emmrree e e e e e e e s as s nnnnnees 52

Figure 4.15 MixColumns and MixColumn MOAUIES......c.evvviiiiiiiiiiiie e 53
Figure 4.16 ShiftROWS MOUUIE...........ooe i 53
Figure 4.17 SHA-1 coprocessor core block diagramle.........ccovveeeeeeieiiiiiiiiiiccceeeene e 62
Figure 4.18 SHA-1 register and wrapper detailS.............cccccuiiiiiiiiiiiieer e 62
Figure 4.19 Timing diagram of SHA-1 hardware bloCK.............cccccceeiii e, 63
Figure 4.20 Message scheduler SCheMALIC...ccoeeeeeeviviiiiiiiiiiiiiiceeeceee e 63
Figure 4.21 Round function BIOCK diagram.. ... eeeeriiiiiiiiiiiee e 64
Figure 4.22 MMM DBIOCK IaQram..........ccceiiieeeeciiiiiiiiiieie e e e e e s smmmmr e e e e e e e e e e e e e e 75
Figure 4.23 Timing diagram of MMM hardware DIOCK............ccccuvviiiiiiiie e, 75
Figure 4.24 Adition iN PRASE O.......cooeiiiiiiiii e e e 77
Figure 4.25 Subtraction iN Phase L..........ceeeeeeiiiiciiiiiiiiiiis e e s eeeeesre e e e e e e e e e aaaeaeas 78
Figure 4.26 AddItion iN PRASE 2.......cooo i 79
Figure 4.27 Adder bloCK diagram............o oo 80
Figure 5.1 ZPU block diagram with integrated @mBISSOIS...........cceeeeeeiiiiiieicieeeee s o e 82
Figure 5.2 Simulation results for the executibthe assembler code..................ccvviiieeen. 87
Figure 6.1 AES-CCM block diagram...........coeeeeiiiiiiiei e ee e e 95
Figure 6.2 Flowchart Of AES-CCM..........uuummeemeeeieieeeeiiieis e e e eeees s s sneeeseenneneees 96
Figure 6.3 Flowchart of HMAC-SHA-1-96.......ccceeiiiiiiiiiiii it eeseer e 100
Figure 6.4 FIOWChart Of RSA.......cooviiii ettt rrnr e e e e e e e e e 105

Xiii



CHAPTER 1

INTRODUCTION

Today, computing technology is everywhere in ouedi It is hard to think of a world without
computers, mobile phones, personal digital assst@PDAS) and portable navigation devices.
Due to this rise in the utilization of computingh@ology, the need of authentication and privacy
has also increased. Governmemidlitary and corporations collect a great deal offidential
information about employees, customers, their aigs; and store this information on computers
and transmit across various types of communicati@tworks to other computers. The
organizations and individual users need a way &pkihis information confidential and even
secure electronically. This is where cryptograpbgnes into the picture. It is the tool to secure
information.

Originating from the Greek words of kryptos (serwtd grapho (writing) [1], cryptography is
the practice and study of hiding information [2fof an engineer’'s point of view, it can be
defined as the science of converting data intoransicled code by means of a secure cipher, so
that it can be stored or sent over a public orgtevmedia and decipher back to its original form
whenever needed.

Cryptography has been in existence for around 3@#rs [3]. Human beings have always
needed to hide information for several reasonsesthe beginning of time. The earliest known
“Ceasar” substitution ciphers [4,5] have evolvetbitoday's modern cryptography and have
become a critical tool in real-world applicationBhe growth tendency and popularity of
cryptography have led to novel scientific reseamsid engineering development. Several
algorithms for countless applications have beenldmpnted on both software and hardware

platforms, and published in the scientific literat(6,7,8].

1.1 Motive

Hardware implementations of cryptographic algorghman be performed via different
approaches. One way is to implement an algorithmapplication-specific custom hardware.

Many works have been made on such hardware implatnams [9,10]. This approach generally



results in an optimal hardware in terms of perforoga However, it has its drawbacks, especially
considering the fact that most of today’'s complégoathms are implemented on application
specific integrated circuits (ASICs) [11], whicheacostly in terms of design cycle and
manufacturing effort. Manufacturing costs can besoderably reduced with the use of field
programmable gate arrays (FPGAS) [12], but the begjgn cycles and the associated costs stay
the same.

Another method is to use a microprocessor and waftwvare code (generally, assembly code to
get better results) implementing the target albariton it. This approach, while presenting a
shorter turnaround, is far from being compact. &ample, it takes several lines of code and
even more clock cycles to complete a single fifigll multiplication via software, while it can

be executed in a single cycle using custom hardyil&je There have been tremendous works to
implement specific cryptographic processors to cvere this remedy [14, 15]. Such processors
mostly offer cryptographic support through spetiatructions aimed to speed up basic functions
or even implement complete cryptographic operatsch as “AESENC” instruction present in

the new AES enhanced Intel processors [16]. Howgesformance of this class of processors is

limited to specific applications they are targefied

The idea presented in this thesis combines thendalyes of these two approaches. Benefits of
software run on microprocessor and custom hardeegeleration are unified in a hybrid fashion
in order to provide a compact and fast solutioncofnpact microprocessor which implements
Zylin Processor Unit (ZPU) [17] instruction setlaitecture (ISA) [18] is designed with a flexible
plug-in interface through which several coprocess@mpable of implementing various standard
cryptographic algorithms are connected. The resultenicroprocessor can implement
cryptographic algorithms such as RSA [19], AES (&deed Encryption Standard) [20] and
SHA-1 (Secure Hash Algorithm) [21] via these detidacoprocessors, which interact with it
through a memory I/O operation based plug-in iaisef Another advantage of this idea is that
the plug-in interface is reconfigurable which alfwaddition of other coprocessors as well as
removal of existing unused ones very easily. Tlieg to 25% reduction in the data processing
capability (throughput) with respect to a hardwandy solution, which is quite acceptable given

the flexibility and reconfigurability advantagestbé architecture.

1.2 Previous Work

Many works have been made on this subject usirgereihe custom hardware or software on
microprocessor approach [22,23,24,25,26,27]. Fallgtom implementations given in [22,23]
present fast and compact designs, but unfortunatetye with very long design cycle times and
limited or even no reconfigurability at all. On tbéher side, the cryptographic processors make

use of different instruction set architectures, anast of them specialize on a single algorithm or



application [24,25]. Therefore, neither approachhis best choice to obtain the right balance

between a compact, fast and yet flexible design.

In [26] and [27], advantages of custom hardwaresaitivare on a single platform are combined
by different approaches. Both methods demonstraftain advantages over the previous
hardware-only and software-only solutions. Howeteey too fail to provide a generalized and

flexible solution as targeted by our design.

1.3 Target

In theory, a complex instruction set (CISC) [28hd# a good way to implement a processor. A
complex instruction set is a computestruction set architecture in which each insinrcican
execute several low-level operations such as afime memory, an arithmetioperation and a
memory store, all in a single instruction. This ¢endone by implementing the whole set of the
CISC architecture and it also has the advantagarofing different platforms on the processor.
However, in practice, implementing the whole complestruction set architecture is costly and
not suitable for mobile applications such as moplienes, PDAs, etc. [29]. It is also possible to
design a compact, fast and low-power microprocesbach is suitable for mobile devices, using
a reduced instruction set (RISC) [30] architectunech more efficiently. However, even
“reduced instruction set” means an average of 16i2wide instructions, resulting in a large
program memory requirement for embedded applicati@n the other hand it is possible to
combine the advantages of both approaches in hghaitk based ISA [31]. Such a solution is
even a better choice with a minimal instruction wéich is sufficient to run the flow control
based tasks. In addition, a stack based architectaes not require any additional registers,

reducing both the overall gate count and the pragreemory requirements.

Today’'s information technology (IT) applications ndend high security, and make the
cryptographic support an essential component foddWices. The major goal of this study is to
develop a compact, fast and low-power cryptograptieczoprocessor especially targeting mobile
applications, which demand security in a constihirend low-cost environment. The
cryptographic support can be provided by meansrgftographic instructions, which is not
always desirable due to the practical impossibitifyimplementing a complete ISA that can
implement several algorithms with a degree of perémce close to custom hardware. A
reconfigurable approach is better for mobile neadst allows implementation and integration of
various cryptographic coprocessors for dynamicablyying system requirements. A flexible
plug-in support built into the microprocessor gites opportunity to choose and add any desired
coprocessor. This implies that a microprocessdn wiflexible plug-in interface be implemented
together with a minimal set of cryptographic comssor in order to get a compact, fast, low-

power and yet reconfigurable secure mobile microgssor.



1.4 Approach

In order to achieve the main goal of this study, Wweestigate a coprocessor based
microprocessor design which connects custom crggt®lerators (coprocessors) to the main
processor via a memory I/O based plug-in interfd¢e main processor has a stack-based ISA
based on the ZPU instruction set architecture (1$Xjoosing ZPU instruction set architecture
also provides a wide tool support [17] for bothtsafe and hardware development and
verification. The processor can only implement aimal set of instructions, which are sufficient
for the event flow control of all the supportedmiggraphic coprocessors. The software code for
the processor can be manually written in nativerasder or can be generated from C/C++ code
via GNU C compiler (GCC) [32].

In the present version of the design, three diffeoeyptographic coprocessors are defined. The
three coprocessors implement the Montgomery modnitdtiplication (MMM) [33-36] for RSA
public-key cryptography algorithm, AES (AdvancedcBption Standard) and SHA-1 (Secure
Hash Algorithm) algorithms. In its current formgtmicroprocessor is capable of implementing

the Internet Protocol security (IPSec) protocotes{87].

The functionality of the microprocessor and its romessors is tested using carefully selected
applications for each of the coprocessors: basi@ R&orithm implementation using the
Montgomery modular multiplication (MMM) coprocessdrash-based message authentication
code (HMAC) [38] using the SHA coprocessor and C@Mde [39] authenticated encryption
using the AES coprocessor. The selected algoritmasmplemented as software, making called

to the respective coprocessors.

1.5 Thesis Outline

After the brief introduction in this chapter, tHeSec protocol suite is summarized in Chapter 2.

ZPU architecture and instruction set are preseintéthapter 3. This chapter continues with the
implementation details of the custom ZPU compatipl®cessor, including the security

considerations and software development tools.

In Chapter 4, AES (Advanced Encryption StandartjASSecure Hash Algorithm) and RSA
algorithms are summarized. Implementation of copssors for each these algorithms are also

presented in detail in this chapter.

Integration of coprocessors to the main procesaond the plug-in interface is explained in
Chapter 5.



Chapter 6 presents IPSec protocol suite examplptemented on the designed cryptographic
processor. The hardware/software partitioning ef dlgorithms, which is briefly introduced in

the interface discussion, is also explained inc¢hapter in detail by means of actual examples.

Finally, Chapter 7 summarizes the conclusions amuard directions for the continuation of the

research presented in this thesis, followed byRbferences.



CHAPTER 2

INTERNET PROTOCOL SECURITY (IPSec)

The Internet Protocol (IP) is the protocol thatised for data communication over the Internet. It
is also referred to as the Transmission Controtdead/Internet Protocol (TCP/IP) [40]. IP
delivers distinguished protocol packets, which aseally referred to as datagrams, from the
source host to the destination host based ondheliresses, by means of addressing methods and
structures for datagram encapsulation. The firssiga of addressing structure is referred to as
Internet Protocol Version 4 (IPv4) [41], which i8llsthe dominant protocol of the Internet.
However, its successor, Internet Protocol VersidiP§6) is nowadays being deployed actively
worldwide [42].

The main disadvantage of IP is its lack of a gdrmugpose mechanism for ensuring the
authenticity and privacy of data. IP datagramsusreally routed between devices over unknown
networks; hence, any information in the datagraers €asily be intercepted and even changed.
As a result of the inherent security weaknesseB?adind the increased utilization of Internet

services for critical applications, IP Security$Et) protocols were developed [37].

At first, IPSec was developed for IPv6, but theinas been engineered to cover the security
needs of both IPv4 and IPv6 networks. Its operatidooth versions differs only in the datagram
formats used for authentication header (AH) andapsglating security payload (ESP). In our

work, we focus only on IPv4.

2.1 IPSec Overview

The problem of the IP version 4 is the expectedhagtion of its address limits, which is due to
the increase in the utilization of Internet bey@myone’s expectations. When the first version of
IP was developed, the internet was relatively peivd@oday it is truly public, which is causing
more and more security problems. Several methods haen developed over years to cover
security needs. The most effective solution waalltow security at the IP level so that all higher-
layer protocols in TCP/IP could use it. The resultdechnology, which brings secure
communications to the IP, is called IP Security5ge) [43].



IPSec is a set of services and protocols that geod complete security solution for an IP
network. These services and protocols combine twighe various types of protection. Since
IPSec works at the IP layer, it can provide pradecfor any higher-layer TCP/IP application or
protocol without the need for additional securitgthods, which is a major strength. Among the

protection services offered by the IPSec are:

< Encryption of user data for privacy,

< Authentication of the integrity of a message toueasthat it is not changed over
networks,

< Protection against certain types of security atack

« Ability for devices to negotiate the security algoms and keys required to meet their
security needs,

« Different security modes to meet different netwodeds.

2.2 IPSec Operation and Core Protocols

When two devices want to communicate securely, Setyup a secure path that may traverse
across many insecure intermediate systems. To rperfiois engagement, these devices must

satisfy certain rules:

¢ They must agree on a set of security protocolsse 3o that each one sends data in a
format the other can understand.

¢ They must decide on a specific encryption algoritbrase in encoding data.

e They must exchange keys that are used to decoded#te that has been
cryptographically encoded.

« After background work is completed, each devicetruge the protocols, methods, and

keys previously agreed upon to encode data andisaabss the network.

In the realization of its operation, IPSec uses yrdifferent components and core protocols as
shown in Figure 2.1. Because of this multi-techeigund multi-protocol characteristic of IPSec,
its main architecture and behavior of all the covenponents and protocols are not defined in a
single Internet standard. Instead, a collectiorcarftinuously evolving Request for Comments
(RFCs) [44] defines the architecture, services gpekific protocols which are used in IPSec.

Most important of these standards are listed ineraud.



IPSec Core Protocols

IPSec Authentication Header
(AH)

Encapsulating Security Payload
(ESP)

IPSec Support Components

Encryption/Hashing Algorithms

Security Policies/
Security Associations

Internet Key Exchange (IKE)/
Key Management

IP Security Protocol Suite (IPSec)

Figure 2.1 Overview of IPSec protocols and comptsien

Table 2.1 Important IPSec standards.

ch

to

RFC Number | Name Description
The main IPSec document, describing
4301 Security Architecture for the | the architecture and general operation
Internet Protocol the technology, and showing how the
different components fit together.
Defines the IPSec Authentication Header
o (AH) protocol, which is used for
4302 IP Authentication Header ) ) ) o
ensuring data integrity and origin
verification.
Cryptographic Algorithm ) ] o
] ] Describes encryption and authenticatign
4835 Implementation Requirements )
algorithms for use by ESP and AH.
for ESP and AH
) ) Describes the IPSec ESP protocol, wh
IP Encapsulating Security ) )
4303 provides data encryption for
Payload (ESP) ) o
confidentiality.
Describes the IKE protocol that's used
4306 The Internet Key Exchange | negotiate security associations and

(IKE)

exchange keys between devices for

secure communications.




Two main pieces of IPSec, which actually managerinition encoding to ensure security, are

the authentication header (AH) and the encapsglaggcurity payload (ESP) [43]. They are

known as the core protocols of IPSec.

2.3

IPSec Authentication Header (Akdyovides authentication services for IPSec. tivad

the recipient of a message to verify that the sapgooriginator of a message was
actually the real one that sent it. It also alldtvs recipient to verify that intermediate
devices over the network haven't changed any ofddia in the datagram. AH also
provides protection against replay attacks, wherenessage is captured by an
unauthorized user and resent.

Encapsulating Security Payload (ESBpvides privacy protection for the data. AH
ensures the integrity of the data in datagramnbutts privacy. When the information in

a datagram is private, it can be further protectsidg ESP, which encrypts the payload

of the IP datagram.

IPSec Support Components

AH and ESP can not operate on their own. To fungi@perly, these protocols need the support

of several other protocols and services as care®e i Figure 2.1. The most important of these

services are:

2.4

Encryption/Hashing AlgorithmsAH and ESP do not specify an exact mechanism used
for encryption, which makes them flexible to worktlwa variety of algorithms. Two
common algorithms used with IPSec are the Secuwh Hdgorithm 1 (SHA-1) for
message hashing and the Advanced Encryption S&(8ES) for message encryption.
Security Policies, Security Associations and Managyg MethodsiPSec is flexible in

the decision of implementing the security whichcis the devices to keep a record of
the security relationships between themselves. duisbe done using security policies

and security associations of IPSec by providing sMayexchange security association

information.
Key Exchange Framework and Mechanisifwo devices which are exchanging
encrypted information need to be able to share k&mydecoding the encryption. Thus,

they need a way to exchange security associatifmmiation. A protocol called the

Internet Key Exchange (IKE) provides these cap@slin IPSec.

IPSec Modes

Three basic implementation architectures can be wseprovide IPSec facilities to TCP/IP

networks [43]. These are:



* Integrated architecture,
¢ Bump in the stack (BITS) architecture,

e Bump in the wire (BITW) architecture.

The choice of implementation depends on the hogtedend user or router) and impacts the
specific way IPSec functions. There are two specifodes of operation that are related to these

architectures: transport mode and tunnel mode [43].

IPSec modes are closely related to the functiotheftwo core protocols, AH and ESP. Both
protocols provide protection by adding a headertainimg security information to a datagram.
The choice of mode determines which parts of théafgram are protected and how the headers
are arranged to perform this operation. Modes des¢row AH or ESP work and are used as a

basis for defining other constructs, such as sgcassociations (SASs).

2.4.1 Transport Mode

In transport mode, the protocol protects the maesgagsed down to IP from the transport layer.
The message is processed by AH and/or ESP angginepsiate header(s) are added in front of
the transport (UDP or TCP) header. The IP headdreis added in front of that by IP (Figure
2.2).

Upper Layer }.\ll\sg
=

Upper Upper | Upper Layer A Upper
PP Layer | (Application) PP
Layers Hdrs Dot . |Layers

Upper Layer
(Application)
Data

Upper Layer
(Application)
Data

Upper Layer
(Application)

Figure 2.2 IPSec transport mode operation.
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2.4.2 Tunnel Mode

In tunnel mode, IPSec is used to protect a conlgletecapsulated IP datagram after the IP
header has already been applied to it. The |PSaaeng appear in front of the original IP header
and then a new IP header is added in front of @82t header. This means, the entire original IP

datagram is secured and then encapsulated witbthenlP datagram (Figure 2.3).

Upper Layer Msg
LL)
Upper | Upper Layer
Upper Layer | (Application) | Upper
Layers Hdrs Data i |Layers
L) y

Upper Layer
(Application)
Data

Upper Layer
(Application)

Encapsulating IP/IPsec Datagram

LU
Upper | Upper Layer

NewlP| AH | Esp (olcotion] B

IPsec Header | Header|Header ey

Upper | Upper Layer
(Application)

New IP[ AH
Header |Header

Figure 2.3 IPSec tunnel mode operation.

2.4.3 Comparison of Transport and Tunnel Modes

Tunnel mode protects the original IP datagram db ageits headers while transport mode does

not take it as a whole. Hence, the order of thel&esafor two modes can be written as:

= Transport Mode : IP header, IPsec headers (AH and/or ESP), IP ady{mcluding
transport header)

=  Tunnel Mode :New IP header, IPsec headers (AH and/or ESP)IFolikader, IP
payload

11



Using the three variables of mode (tunnel or tran3plP version (IPv4 or IPv6) and protocol

(AH or ESP), eight basic IP packet combinations lxanefined.

2.4.4 Relation of Modes with Architectures

Transport mode requires IPSec to be integratediitbecause AH/ESP must be applied as the
original IP packaging is performed on the transpayer message. This mode corresponds to the
integrated architecture and is often the choicdarfgplementations requiring end-to-end security

with hosts that run IPSec directly.

Tunnel mode represents an encapsulation of IP witie combination of IP plus IPSec. So, it
corresponds with the bump in the stack (BITS) anchfp in the wire (BITW) implementations,
where IPSec is applied after IP has processed higher messages and has already added its
header. This mode is a common choice for virtualgpe network (VPN) implementations,
which are based on the tunneling of IP datagramsugih an unsecured network such as the

internet.

2.5 IPSec Authentication Header (AH)

Authentication header is one of the two core sécupirotocols in IPSec. AH provides
authentication of either all or part of the conseot a datagram through the addition of a header
that is calculated based on the values in the datad43]. The parts of the datagram that are

used for the calculation and the placement of gelhr, depend on the mode and IP version.

The operation of AH is simple, which is similarttee algorithms used to calculate checksums or
perform cyclic redundancy checks (CRC) for errotedgon: The sender uses a standard
algorithm to compute a checksum or CRC code basedhe contents of a message. The
computed result is transmitted along with the o@didata to the destination. There, the
computation is repeated and the message is dist#rémy discrepancy is found between the

results.

The idea is same for AH, except that instead oin®le known algorithm, a special hashing
algorithm is used together with a specific key knamly to the source and the destination. Only
the source and destination know how to performctiraputation via a security association. On
the source device, AH performs the computation urtd the result which is called the integrity
check value (ICV) into a special header with offedds for transmission. The destination device
does the same calculation using the shared keydetedmines if any of the fields in the original

datagram were modified.

12



The presence of the AH header verifies the integritthe message, but it doesn’t perform any
encryption. Hence, ESP is used for providing prjvaé the data. The calculation of AH is
similar for both IPv4 and IPv6, except for the exaechanism used for placing the header into

the datagram and for linking the headers together.

In an IPv4 datagram, the Protocol field indicathe identity of the higher-layer protocol
(typically TCP or UDP) which is carried in the dgtam. This field points to the next header
which is at the front of the IP payload. AH takbistvalue and puts it into its Next Header field,
and then places the protocol value for AH itself { dotted decimal) into the IP Protocol field.
This makes the IP header point to the AH, whicimtpeints to whatever the IP datagram pointed
to before.

In transport mode, the AH header is added aftenthim IP header of the original datagram. In
tunnel mode, it is added after the new IP headar ehcapsulates the original datagram that's

being tunneled. This is illustrated in Figure 2.4.

IPv4 Header

Original IPv4 Datagram Format

IPv4 Header
S——

————
Avuthenticated Fields

IPv4 AH Datagram Format - IPsec Transport Mode

|

I Next Header
| 4

I

New IPv4
Header

Original IPv4 Datagram
(Encapsulated)

——
Authenticated Fields

IPv4 AH Datagram Format - IPsec Tunnel Mode

Figure 2.4 IPv4 datagram format with IPSec AH.

The format of AH is shown in Figure 2.5.
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0 Ji, 8 1|2 16 2IO 2|4 2|8 32

Next Header Payload Length Reserved

Security Parameter Index (SPI)

Sequence Number

L Authentication Data L

(Integrity Check Value)

Figure 2.5 IPSec AH format.

The size of the Authentication Data field is valabo support different datagram lengths and
hashing algorithms. Its total length must be a ipleltof 32 bits. Also, the entire header must be
a multiple of either 32 bits (for IPv4) or 64 b{fsr IPv6), so additional padding may be added to
the Authentication Data field if necessary.

2.6 IPSec Encapsulating Security Payload (ESP)

As mentioned before, data need not only be pralemfinst possible changes over the network,
but also against possible examination of its cdstdror this reason, ESP protocol is used. The
main job of ESP is to provide the privacy for IRadgams by encrypting them. An encryption
algorithm combines the data in the datagram wikewto transform it into an encrypted form.
This is then repackaged using a special format teantbmitted to the destination where it is
decrypted using the same algorithm. ESP also stpjgerown authentication scheme like AH, or
it can be used with AH.

ESP has several fields which are same as thoseirugdd, but they are packaged in a different

way. Instead of a single header, ESP fields arngelivinto three components:

« ESP Header: Contains two fields, SPI and Sequence Number,camies before the
encrypted data. Its placement depends on if ESiBed in transport mode or tunnel
mode.

« ESP Trailer: Placed after the encrypted data. It contains pagitiat is used to align the
encrypted data through a Padding and Pad Lendth fiealso contains the Next Header
field for ESP.

14



« ESP Authentication Data: Contains an ICV which is computed in a similar man
with AH protocol. This field is used when ESP’s iopal authentication feature is

employed.

There are three basic steps performed by ESP:latitou of the header, the trailer and the

authentication field.

* Header Calculation: As in AH format, the ESP Header field is placeaafhe normal
IPv4 header. In transport mode, it appears afeetRtheader of the original datagram. In
tunnel mode, it appears after the IP header of nbes IP datagram which is

encapsulating the original one. This is shown guFe 2.6.

IPv4 Header

Original IPv4 Datagram Format

IPv4 Header

-~
Encrypted Fields

——
Avuthenticated Fields

IPv4 ESP Datagram Format - IPsec Transport Mode

IPv4 Header

New IPv4 Original IPv4 Datagram
Header (Encapsulated and Encrypted)

N—

———
Encrypted Fields

——
Authenticated Fields
IPv4 ESP Datagram Format - IPsec Tunnel Mode

Figure 2.6 IPv4 datagram format with IPSec ESP.
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e Trailer Calculation: The ESP Trailer field is appended to the data th#it be
encrypted, and then the payload (TCP/UDP messagedaapsulated IP datagram) and
the ESP trailer are both encrypted. However, the BE&ader is not encrypted.

< Authentication Field Calculation: If the optional ESP authentication feature is being
used, it is computed over the entire ESP datageaweft the Authentication Data field).

This includes the ESP header, payload, and trailer.

The format of the ESP sections and fields is ifatsd in Figure 2.7.

0 4 8 ]I2 ]Ié 2|O 2|4 2|8 32

Security Parameter Index (SPI)

Sequence Number

.
c .
S :
® :
£ : ESP Payload Data =
0 m
= 8 5
& 2
T
i3
H Q.
Padding =
E ' ' Pad Length Next Header

= ESP Authentication Data =

Figure 2.7 IPSec ESP format.

The Padding field is used when encryption algoritieuires, and/or to make sure that the ESP
Trailer field ends on a 32-bit boundary, which medine size of the ESP Header field plus the
Payload field, plus the ESP Trailer field must bmualtiple of 32 bits. The ESP Authentication

Data field must also be a multiple of 32 bits.
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CHAPTER 3

SECURITY PROCESSOR DESIGN

In this thesis, the main target is the design anglémentation of a compact processor core
integrated with cryptographic coprocessors. Thegssor has to provide maximum support for
the implementation of IPSec algorithms and be bldgtéfor embedded applications in terms of
area and power consumption. It also has to have &@@ort, thereby providing C programming
capability for the ease of use. In literature, ¢hexist many different architectures and freeware
processor designs. However, it is difficult to fiad instruction set architecture (ISA) which is
both compact, code-efficient and has GCC suppone @rchitecture that satisfies all target

features is the Zylin Processing Unit (ZPU) [17].

ZPU is a small, portable microprocessor core witB@GGtoolchain. It is an open source
architecture, which allows deployments to implemamy version of ZPU without running into
license problems. The most important strength ef ZIPU is that it is an extremely simple
design, and therefore it is very easy to implenfemin scratch to suit specialized needs and
optimizations [17]. Therefore, it is chosen asttget architecture for the processor core design

of this thesis work.

However, the original ZPU code is not directly usétstead, a new design is created from
scratch which is one-to-one instruction set andeemmmpatible with the ZPU. The main
difference in the design comes from the use of miEmoThe original ZPU core requires dual-
port memories, with both read and write suppotthim same cycle on both ports. This is a very
demanding requirement. Most FPGA architectures AStC technologies do not offer such
memories. They either have dual-port memories witly read or write capability in the same
cycle, or two-port memories with only-read capapittn one port and only-write on the other

port.

On the other hand, the extremely simple instructen architecture of the ZPU can be easily
implemented using only single-port memories. It ns@gm that such an implementation may
result in longer execution times. However, as Wwél seen later in this chapter, this is not the

case. Furthermore, the strength of the target ogypphic processor comes mainly from the
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extremely fast execution of cryptographic algorithrwia the integrated cryptographic

coprocessors.

In the first section of this chapter, the ZPU iostion architecture and instruction set is
presented. It is followed by sections presenting ditails of the arithmetic logic unit and the
instruction decoder, respectively. Then, the memamyanization is given. Finally, security

considerations and implementation details are sumeth

3.1 Architecture Overview and Instruction Set

ZPU is a stack-based processor. That means that# zero operand (unlike MIPS instruction
set architecture [45], which has three operandsg. dlements which are at the top of the stack
are used as operands. Using this approach, insmaatan fit in 8 bits, which results in a very

compact processor architecture.

The stack-based operation principle can be bestiega by means of a simple instruction. Let's
consider the AND instruction, which is defined ag(n[sp+1] = mem[sp+1] + mem[sp]; sp = sp
+ 1), in ZPU architecture. Basically; when an ANBstruction comes, ZPU takes the topmost
two values of the stack (pops) and ANDs them. Theadds the result of the operation to the top
of the stack (pushes). As the stack is physicalyMRbased, data is never taken out from the
stack. Instead; the first data, which is pointedh®y stack pointer (let sp=10. mem[10]), is taken
and stored temporarily. Then, stack pointer isén@nted by 1 and next data (mem[11]) is read.
The AND operation is performed on the stored datd the present value of the memory
addressed by the stack pointer. After the AND ajmmathe result is stored onto the top of the
stack, which is pointed by the last value of tleektpointer (mem[11]). The input values are lost,
and can not be used for next operations. Howeveés, possible to store those using different
instructions and temporary registers, if necessatythe end of the operation, the program
counter is incremented by 1 and the next instractiofetched. Then, the new instruction is

decoded and necessary steps are performed acctodimg principles of stack operation.

The basic architecture that realizes the data ftowAND operation is shown in Figure 3.1.

The block diagram in Figure 3.1 only implementsibad U instructions (like AND). It has to
be modified to support other instructions (such bmanch and stack memory load/store
instructions). ZPU architecture is also flexibleénms of instructions. Different implementations
of ZPU may support different numbers of instrucsioithe minimum required set (for proper
execution of GCC compiled code) is composed of NOR,LOADSP, STORESP, ADDSP,
EMULATE, PUSHSP, POPPC, ADD, OR, AND, LOAD, NOT, [P, STORE and POPSP

instructions.
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Figure 3.1 Basic architecture of ZPU for AND instiian.
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Further instructions can be emulated in softwaiaguthis minimum set. Naturally, they affect

the efficiency of program execution. An emulatedtinction requires execution of several
hardware-coded instructions. Better efficiency dsnreached by code profiling in order to

determine the most commonly used instructions,thed implementing them as hardware-coded
instructions, while keeping the emulated instruttount at minimum.

In this thesis, only the minimum required set ddtinctions is implemented in hardware. These
instructions can be categorized in groups accordindheir functions. Dual operand ALU
operations ADD, OR, AND can be categorized in ormupg, as ADD and OR work similarly to
AND operation. Single operand ALU operations NOT™ &LIP can be categorized in another
group as they have the same working principle. Hewethe other instructions have their own
structure, which makes them unsuitable to categofiable 3.1 shows a list of instructions and
their functions.

Table 3.1 Instruction set.

MNEMONIC | OPCODE | HEX OPERATION

if(~idim)

{sp=sp-1; mem[sp]={{25{inst[6]}},inst[6:0]};
IM X 1 XXXXXXX - idim=1}

else

{mem[sp]={mem[sp][24:0], inst[6:0]}; idim=1}
sp=sp-1; mem[sp]=pc+1;

EMULATE X | 001_xxxxx - pc=mem[@VECT_EMU+ inst[4:0]];

fetch (used only by microcode)
STORESP X 010 XXXXX - mem[sp+ inst[4:0]*4] = menjjsgp=sp+1
LOADSP X 011 XXXXX - mem[sp-1] = mem [sp+ inst[44]} sp=sp-1
ADDSP X 0001 xxxx| (1x)| mem[sp] = mem[sp]+mem[spstjB:0]*4]
PUSHSP 0000 0010 (02 mem[sp-1] =sp;sp=sp—-1
POPPC 0000 0100 (04 pc=mem][sp];sp=sp + 1
ADD 0000 _0101] (05)| mem[sp+1] = mem[sp+1] + mem[sp]=sp + 1
AND 0000 _0110| (06)| mem[sp+1] = mem[sp+1l] & mem[g@g,=sp +1
OR 0000 0111 (07)] mem[sp+1] = mem[sp+1] | mem|spk sp + 1
LOAD 0000 _1000| (08)| mem[sp] = mem[ mem[sp] ]
NOT 0000 1001 (09)| mem[sp] =~mem][sp]
FLIP 0000 1010, (0a)] mem[sp] = flip(mem][sp])
NOP 0000 1011 (Ob)|] no operation
STORE 0000 _110¢ (0c) mem[mem][sp]] = mem[sp+1]; §p=* 2
POPSP 0000_1101 (Od sp = mem[sp]

In the table, sp is the stack pointer, pc is they@am counter and mem[adr] is the RAM content
addressed by adr. Note that, each instruction lieamediate data flag (idim), except IM. Also,

each instruction updates program counter as poscepe POPPC function.
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The ZPU instructions can be completed in threeesycl

= Fetch cycle:To both decode the instruction and fetch the éiprand from stack,
= FetchNext cycle:To store the first operand in the temporary regiand fetch the
second operand from stack,

= Execute: To execute the target operation and store thét tessck into the stack.

Some instructions can be completed in a singleegymlit the number of cycles is fixed to 3
cycles in order to simplify the overall design. Jtdauses unnecessary cycles, however the
resultant architecture is still more efficient tiia¢ original ZPU architecture, which may use up
to 4 cycles per instruction. Furthermore, therensy a single memory access (either read or
write) per cycle, allowing the use of single-poARs. The only penalty is separate program and
data memories. However, this in practice, does aftd#ct the overall resource utilization,
especially in FPGAs. Another caused by single-p@AM use is the hardness (if not
impossibility) of implementing pipelines. Howevéhjs is not a primary target for the current

design.

Table 3.2 outlines the sequential and combinatiopakations performed in each cycle in order
to realize each instruction.

Table 3.2 Instruction cycles.

Fetch FetchNext Execute
(001) (010) (100)
we=1
pc_<_—pic4.-1 wa = sp
If idim = 0: L
—sp<=sp—1 If|d|m—0.__ .
M e =0 - _WC.i = inst[6:0] X
If idim = 1. If idim = 1.
T e=1 wd = (rd<<7) Il
ra = sp inst[6:0]
idim<=1
c<=pc+1 we =1
EMULATE e =1 wd = pc . X
— . pc <=r
ra = inst[4:0]<<5 idim <=0
sp<=sp+1
pc<=pc+1 we=1
STORESP re=1 wa = sp + (4* inst[4:0]) X
ra=sp wd =rd
idim <=0
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Fetch FetchNext Execute
(001) (010) (100)
pc<=pc+1 we=1
LoADSP | SP<Tsp-1 wa = sp X
re=1 wd = rd
ra=sp + (4*inst[4:0]) | idim <=0
pc<=pc+1 ?:gi: rd we =1
ADDSP re f ! ra = sp + (4* inst[3:0]) wa f sP
ra=sp idim <= 0 wd =rd + tmp
we=1
pc <=pc+1 wa = sp
PUSHSP sp <=sp-1 d = X
tmp <='s wa= tmp
P P idim <=0
pc<=pc+1
sp<=sp+1 pc <=rd
POPPC re=1 idim <=0 X
ra=sp
pc<=pc+1 tmp <=rd _
- — we =1
ADD, AND, OR | SP<=sp+1 re=1 wa = sp
re=1 fa=sp wd = rd OP tmp
ra=sp idim <=0
pc<=pc+1 re=1 we =1
LOAD re=1 ra=rd (= mem[sp]) wa = sp
ra =sp idim<=0 wd =rd
we=1
pc<=pc+1 wa = sp
NOT, FLIP :g = i wd = OP (rd) X
~sP idim <= 0
NOP pc<=pc+1 idim<=0 X
_ tmp <=rd (= mem[sp] )
ECZZECH sp <=sp+1 we =1
STORE p_— P re=1 wa = tmp
re=1 _ -
ra=sp fa=sp wd = rd
idim<=0
pc<=pc+1 -
_ sp <=rd
POPSP re = 1 dim <= 0 X
ra=sp

This representation simply gives the timing diagsarfithe instructions. Figure 3.2 is an example
timing diagram, which shows the AND instruction kEped before (also valid for ADD and OR

instructions).

The hardware block of the overall ZPU core with ialitructions can be easily constructed
according to Table 3.2 and timing diagrams, as shimwFigure 3.3. The block diagram of the
ZPU core consists of program memory, instructiosoder, program counter, stack pointer,

RAM, immediate flag register “idim” and a temporaggister. It is almost the same block as the
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ALU operation block diagram in Figure 3.1, with #&tihal circuitry for the realization of all

target instructions.

Fetch FetchNext Execute
pc XXXX pc pc+1 pc+1 pc+1
sp XXXX sp sp+1 sp+1 sp+1
tmp XXXX XXXXXXXX XXXXXXXX rd rd
idim XXXX XXXXXXXX XXXXXXXX 0 0

Figure 3.2 Timing diagram of AND instruction.

3.2 Arithmetic Logic Unit

As the name implies, arithmetic logic unit (ALU) BPU core performs the arithmetic and logic
operations whenever needed. ALU unit is able tdoper add, and, or, not, flip (reversing bits)
and left shift operations. The operation select atu sel comes from instruction decoder which
identifies the instruction, and it selects the appiate operation according to the instruction. Add
unit is used for ADD and ADDSP instructions, and tither units are used for the corresponding
instructions (same as their names), except shifs.uRirst shift unit performs the instruction-
specific 7-bit left shift operation of the IM ingtition. The other one performs the instruction-
specific 5-bit left shift operation of the EMULATHhstruction. Figure 3.4 illustrates the

arithmetic logic unit.

3.3 Instruction Decoder

Instruction decoder decodes the 8-bit instructioming from the program memory according to
the program counter and generates the control Isigna individual processor blocks (ALU,

RAM, stack pointer, program counter, etc.). Evestriuction is executed in 3 clock cycles; thus,
instruction decoder also guarantees that the rmegram memory value is not taken until the last

cycle using the active signal and the busy siginain coprocessors).
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Figure 3.3 Block diagram of ZPU core.
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Figure 3.4 Arithmetic logic unit module.

The program counter is incremented by 1 at firstecyor all instructions, and except for emulate
and poppc: Poppc takes the value of the read datarhemory as the program counter value. In
addition, stack pointer “increment-by-1" and "decemt-by-1" enables are defined for

corresponding cycles and instructions as showralel'3.2. Read and write enables of the RAM
are also defined according to this table and tleeht® RAM.

The most significant bit of the 8-bit instructios the "immediate" instruction (IM) select, if
instruction[7] is 1, then immediate value will lakén. Otherwise, the most significant three bits
will be controlled first. If instruction[7:5] is '@L", "010" or "011"; then the instructions will be
identified as "EMULATE", "STORESP" and "LOADSP",smectively. If they are all zero, then
the next bit is controlled. In case that the foumbst significant bit is 1, the ADDSP operation is
performed. In this instruction, an ALU operatiorable is also sent to carry out the addition. In
other cases, instructions are identified accordingheir least significant nibble, and the ALU
enable is produced for ADD, AND, OR, NOT and FLNte that, the ALU operation enable is
also produced for the IM instruction, in case th&t immediate value exceeds 7 bits and the left

shift operation is required.
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3.4 Memory Organization

The memory organization of ZPU, which covers therasses of the coprocessors and the
microprocessor, is quite simple. The least sigaiftcl6-bits of the 32-bit address space are used.
Of these 16 bits, the most significant 4-bits (hlselect the coprocessor and the remaining 3
nibbles address the specific location within themuoey space of the selected coprocessor.
Microprocessor is assumed to be the coprocessbindrefore, addresses 0000-OFFF are used to

address the microprocessor specific memory or mesior

In this implementation, AES, SHA-1 and MMM coprosess are numbered as 1, 2 and 3,
respectively, which corresponds to address spa@@@-1FFF, 2000-2FFF and 3000-3FFF. The
illustration of this memory organization is shownkigure 3.5. This figure describes the real
memory organization inside the RAM given in Fig8r8.
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Table 3.3 shows the address organization of eacM.RWere, each input space has 256
addresses. For example, the AES core input is asieldeas 0x1A--, which mean$=2256 bytes

are available for an AES input (256x8 =2048-bitspite the fact that the AES input is actually
128 bits (128/8=16 addresses) and using the addréssn 0x1A00 to Ox1AOF. In general case,

this scheme provides convenience for addressingiamglifies the decoder/encoder logic.

Table 3.3 Address organization of RAM.

Address | Address Name Description
0x00-- | ZPU rsv Reserved places for ZPU

0x01-- | ZPU_tmp Temporary registers for processing
0x020- | CCM_M CCM integrity check value size
0x021- | CCM _Im CCM message length

0x022- | CCM la CCM additional authentication datadth
0x023- | CCM NNCs Salt of CCM nonce

0x024- | CCM _NNCiv Initialization vector of CCM noac
0x025- | CCM _AAD CCM additional authentication data
0x026- | CCM _Kd CCM input key

0x027- | CCM _conf CCM configuration register for keypde
0x030- | HMAC Im HMAC message length

0x031- | HMAC _Kd HMAC input key

0x040- | RSA _e RSA public key

0x041- | RSA d RSA private key

0x045- | RSA N RSA modulus

0x049- | RSA K RSA constant

0x04D- | RSA len RSA message length

0x04E- | RSA conf RSA configuration register for lbingth
0x04F- | RSA ED RSA encryption/decryption select segi
0x05-- | MSG Message

OxOE-- | CCM _U Authentication output of CCM
0OxOF00 | ZPU RDY ZPU core ready register

OXOFFF | ZPU_CSR ZPU core command-status register
0x10-- | AES in Input to AES core

0x11-- | AES out Output of AES core

0x12-- | AES_key Key input to AES core

0x13-- | AES_mod Mode input to AES core

Ox1F-- | AES CSR AES core command-status register
0x20-- | SHA in Input to SHA-1 core

0x21-- | SHA out Output of SHA-1 core

0x22-- | SHA cIr Clear signal to SHA-1 core

0x2F-- | SHA CSR SHA-1 core command-status register
0x30-- | MMM_Ain Input A to MMM core

0x31-- | MMM_Bin Input B to MMM core

0x32-- | MMM_Cin Input C to MMM core

0x33-- | MMM_Yout Output of MMM core

0x34-- | MMM_mod Mode input to MMM core

0x3F-- | MMM_CSR MMM core command-status register
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As can be seen from the table, the most significérttle is used to select the coprocessor and
the following nibble is used to select a specifi@ location inside that coprocessor. Remaining 2
bytes are used to address the words of the selé@edhis way, each 1/O can be 256-bytes =
2048-bits long, which is also consistent with th@ximmum operand size of 2048-bits required for
the MMM as the multiplicand, multiplier, modulusdathe output is the multiplier result. With
this addressing scheme, each coprocessor has #®@&ddress space, which is sufficient even

for the most memory consuming RSA algorithm.

3.5 Security Considerations

In cryptographic hardware implementations, secuefkage is a serious problem. Cryptanalysts

have been developing many techniques to have sfatattacks on these devices.

Side-channel cryptanalysis [46] is a kind of appleeyptanalysis, which uses the advantage of
unintended physical leakage caused by a hardwgrkeiinentation of a mathematically secure
algorithm. Such a leakage can be sufficient toaextsecret key material from cryptographic
implementations. Another kind of implementation drhsattacks are fault analysis scenarios

which aim to cause forced physical leakage.

Normally, mathematical cryptanalysis assumes tiaictyptographic device only allows the use
of input and output data of the cryptographic atban for cryptanalysis. However, other attacks
are possible if the attacker has access to theceleVihese are called implementation attacks
which target the cryptographic device. These atatdn be active attacks which range from
changing the environmental conditions to the plajlsmpening of the cryptographic device
(probing and fault attacks), or passive attackstiobserve the inherent physical leakage of the
cryptographic device (side-channel attacks). Thioriation leakage may be the power
consumption of the device, electromagnetic radimattoming information on the cryptographic

service or obtained error messages.

In fault attacks, the changes towards extreme enmiental conditions put the device under
physical stress which may lead to a leakage. Fampie, malfunction can be caused by short-
time pulses in the supply voltage or by freezingvdahe environmental temperature. Also,
direct connections are made to an internal busténead out the cryptographic keys within the

cryptographic device.

In side-channel attacks, the inherent physicaldgakof the cryptographic device is used as an
additional information channel for cryptanalysishid physical leakage (for example power
dissipation, timing information, etc.) can be captuexternally and used to expose the secret key

of the cryptographic algorithm by using standagdistical tools.
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Generally, all cryptographic algorithms are assumted be vulnerable to side channel
cryptanalysis if there are not special precautionthe implementation [47]. The developer of a
secure product has to defend the product agaihpbssible attack paths. The efforts on these
attacks are relatively low; however, the develophugreffective countermeasures is not a trivial

task.

For side-channel attacks, countermeasures are teagyplement for timing analysis. It is

generally sufficient to make sure that the executime is data-independent. Power analysis
attacks, which look at multiple specific intermediaalues of the implementation, are harder to
defeat. The countermeasure approaches can be hardased and/or software-based, algorithm-

specific countermeasures.

Hardware countermeasures include special logiestylat minimize the data-dependent leakage.
Also, noise generation and random process intesruphich provide an internal timing de-

synchronization, are used. Software countermeasumes$o avoid the occurrence of predictable
intermediate results. Generally, internal randotiorais used to mask the data representation

used.

Countermeasures for fault analysis are relativalgyedo side-channel attacks. It is required that
the cryptographic device must check that the reshithined is correct. In the simplest way, this
can be done by computing the same operation twdcie ia appropriate for critical instruction
paths, but an additional protection should be iacelto detect modifications of security
variables. Other countermeasures make use of medantrol variables that are checked
regularly. These countermeasures prevent fromesifagllts even if they are precisely controlled,

but it does not prevent from precisely controllegidor multiple fault injections.

It should be noted that there are not any suffice@untermeasures in case the attacker has an
ideal fault control using short-timed multiple fauhjections. However, a combination of

hardware and software countermeasures defeatgeariamber of existing attacks.

In the present implementation, resilience agamstentions attacks is not the primary concern.
Instead, a compact design is sought. However, itsti# possible to implement basic

countermeasures at the expense of extra power s,

The first countermeasure is regarding the procdssalf. The instruction cycles shown in Table
3.2 can be modified so that no registers aredddtin any cycle of any instruction. Every register
can be assigned a dummy operation in a fashionttieabverall operation flow is not affected.

This scheme is illustrated in Table 3.4 in a femgke instructions with additional operations.
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Table 3.4 Modified instruction cycles.

Fetch FetchNext Execute
(001) (010) (100)
we =1
pc<=pc+1 —
SR sp <=tmp
If idim = O: ) tmp <= rand
sp<=sp-1 L re=1
re=1 Itidim = O: ra =rand
tmp <= rand wa=sp sp <=tmp
IM ] wd = inst[6:0] _
If idim = 1: If idim = 1- tmp <=ran
L’i f i wa =tmp
o > and wd = (rd<<7) ||
p == inst[6:0]
MP<=SP | igim <=1
_ sp <=tmp +1
F(:f_l pc+1 tmp <= rand
_ we =1
STORESP | ra= P wa=tmp + (4* inst[4:0]) X
sp <=rand _
wd =rd
fmp <= sp idim <= 0
_ sp <=tmp
pc<=pc+1 —
sp <=rand ;[,U;pfi rand
LOADSP re=1 wa _ s X
ra = sp+(4* inst[4:0]) wd _ r(;)
tmp<=sp-1 idim <=0

Bold characters in Table 3.4 represent modificatind additions against power analysis attacks.
With the additions to the IM instruction, it acts a totally random instruction from a power
analysis point of view. On the other hand STORE®HE BOADSP instructions are now
indifferentiable. The same registers are modifiethe same cycles in both instructions.
However, the introduction of a random variable/fimt has to be noted. For the summarized
scheme to work properly, a perfectly random nundmrerated is required. Although hard on
FPGA architectures, it is possible on ASICs witimial effort. Most ASIC technologies offer
true random number generators that make use ofomandoise of on-chip oscillators or

amplifiers.

The second countermeasure scheme is continuouskatoy the coprocessors with random
data. This can easily be achieved after simple fiations on the control circuitry. However,
the true random number generator is again requitretiould be made impossible for an outside

observer to detect when the coprocessors are thrredl or random data.
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The approximate area increase in the instructiodification scheme is below 10 percent for the
processor core, while there is area increase écdiprocessors in either case. However, running
the coprocessor cores continuously increases tamlbypower consumption considerably. This

may be undesired for most embedded applications.

3.6 Implementation Results

ZPU core is implemented on the smallest Virtex-gicke Table 3.5 summarizes the results of
the ZPU core without coprocessors. The slice ciauB71 at a frequency of 101.6 MHz with a
program memory of 8 kilobytes. If synthesized watiprogram memory of 2 kilobytes, the slice
count is 105 at a frequency of 432 MHz. Our resatts compared to the original small core

implementation of ZPU with 8 kilobytes of progranemory [17].

Table 3.5 ZPU core implementation results.

B ) Freq Area Number of
Xilinx Virtex-5 (xc5vIx30-3) )
(MHz) (slices) RAM Blocks
With 8k program memory 101.6 371 5
With 2k program memory 432 105 0
ZPU small implementation [17] 202.8 170 8

3.7 Software Development Tools

ZPU processor has GCC toolchain support, includimgGCC compiler, debugger and profiler,
allowing the development of software in C. The cderp debugger and profile are custom

versions of the GCC tools re-compiled for ZPU asstture.

In the present work, the GCC tools are used torgémenachine code that can be loaded directly
into the processor’'s program memory. However, @lg possible to perform code profiling in
order to determine the more and less frequently usstructions and modify the processor
implementation by adding or removing hardware bagestructions. In the present
implementation only 16 instructions are hardwargech the rest is all emulated instructions. The
compiler is also capable of generating machine dodeéhe emulated instructions and placing
them into the program memory contents correctlye Triicrocodes for the emulated instructions
are stored in a startup code file, which is padsetie compiler as an option. It is sufficient to
edit this startup file in order to include or exaducertain instructions from the list of emulated

instructions. This way, the program file generaiétioccupy less space for the emulation codes.
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The ZPU toolchain produces highly compact code.[B&low is a simple C code that creates
two volatile arrays at fixed physical memory addessand copies the contents or one array to the
other word-by-word. This is in fact one of the ma@stmmon operations performed in the

implementation of IPSec protocol suites:

int main(void) {
volatile int *a,*b;

inti;
a = (volatile int*)0x1000; /* a array at 0x1000 * /
b = (volatile int*)0x2000; /* b array at 0x2000 * /
for (i=0;i<100;i=i+4)

b[i] = a[i] ; /* Transfers contents of ato b */

}

When compiled with the GCC compiler with optimizatioptions Zpu-elf-gcc -O3 -S

small.c ), this C code vyield the following assembler code:

file "small.c"
text
.globl main
type main, @function
main:
im -2 /I ZPU initialization
pushspadd
popsp
im0
storesp 12
.L5:
loadsp 8
im 2
ashiftleft
im 8192 /I b array address
addsp 4
im 4096 /[ a array address
addsp 8
loadsp 0 /I Loop starts here
load // Load a[i]
loadsp 8
store /I Store bi]
im4
addsp 24 I/l Increment their addres ses
storesp 24
storesp 8
storesp 12
storesp 4
im 99 /I Max value of i
loadsp 12 /l Load i
lessthanorequal // Check if i<=99
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impcrel .L5 /I'If yes return to loop
negbranch // Return to start
loadsp 0 /[ upon program completio n
im0

Store

im4

pushspadd

popsp

poppc

.Size  main, .-main

.dent "GCC: (GNU) 3.4.2"

As seen in the above code, most instructions aeady hardware coded instructions. The whole
program is composed of only 25 instructions, whidnresponds to 25 bytes of machine code
plus the required emulation code (in this casemilated instructions are used, resulting in
4x32=128 bytes of emulation code).
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CHAPTER 4

CRYPTOGRAPHIC COPROCESSORS

This chapter outlines the algorithm and implemeéotadietails of the cryptographic coprocessors.
The three coprocessors implement the AES encrypt®iA-1 hashing and Montgomery
modular multiplication. Of these, AES encryptionrdaBHA-1 hashing are must algorithms for
IPSec, while Montgomery modular multiplication (MMNk the computational component of

the RSA algorithm used in Internet Key ExchangeE{lidrotocol of IPSec protocol suite.

The flexible coprocessor interface explained beferpiires the coprocessors to behave as RAMs
from the ZPU based main processor’s point of vielherefore AES and SHA-1 coprocessors are
embedded into wrappers, which imitate single-pdkivVRbehavior. This is not necessary for the

MMM coprocessor, as it actually uses RAMs for opdrand result storage.

The rest of this chapter is organized as follows:

In the first section, AES algorithm details aregemeted. This is followed by the introduction of a
generic state machine model, which is then usedxfain the implementation of the AES

coprocessor.

In the next section, the same is done for the SHARE algorithm explanation is followed by
coprocessor implementation details, which are aga@sented by means of the generic state

machine model.

The last section is devoted to the RSA algorithnd déime MMM coprocessor. Both RSA
encryption and decryption are summarized togethién specific details of how the MMM
coprocessor is used in the realization of themalRin the implementation details of the
coprocessor block are outlined.
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4.1 Advanced Encryption Standard (AES) Coprocessor

4.1.1 AES Algorithm

In cryptography, the Advanced Encryption Standak&S) [20] is a block cipher which is

adopted as an encryption standard by the US gowerariihe cipher was developed by two
Belgian cryptographers, Vincent Rijmen and Joanndae and submitted to the AES selection
process under the name "Rijndael". It was annoutgedlational Institute of Standards and

Technology (NIST) as U.S. FIPS PUB 197 on Noven#tfer2001 after a 5-year standardization
process [48] and it became effective as a stantiéagd 26, 2002. AES has been analyzed
extensively and is now used widely worldwide as wWwas case with its predecessor, the Data
Encryption Standard (DES) [49]. As of 2006, it isecof the most popular algorithms used in

symmetric key cryptography. It is available by a®in many different encryption packages.

Unlike its predecessor DES, AES is a substitutiervutation network [50], not a Feistel
network [51]. AES is fast in both software and heak, is relatively easy to implement, and
requires little memory. AES is currently being dsmd on a large scale in hardware and

software applications.

4.1.1.1 Description of the Cipher

AES algorithm has a fixed block size of 128 bitsl ankey size of 128, 192, or 256 bits. Most
AES calculations are done in a special finite fiéde to the fixed block size of 128 bits, AES
operates on a 4x4 array of bytes, termed as “stated 128-bit input to the cipher (0 to 127) is
first grouped in 16-bytes (0 to 15), which are tipen into 4x4 matrix (renamed as states 0,0 to
3,3). These states go through repetitions of psiegssteps that are applied to construct the
rounds of keyed transformations between the infaib{text and the final output of cipher-text.
The number of round$yr, depends on the key size, which are 10, 12 arfdrikey sizes of 128,
192, and 256, respectively. Upon completion ofa@linds, the resultant state matrix is renamed
as output bytes (0 to 15), which form the 128-hitpoit vector. This scheme is illustrated in
Figure 4.1.

The round function is parameterized using a keydale. This key schedule consists of a one-
dimensional array of four-byte words derived usagrocess known as the key expansion,
described in Section 4.1.1.6.
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Figure 4.1 AES state illustration.
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In the execution of the cipher algorithm, indivitltraansformations — SubBytes(), ShiftRows(),
MixColumns(), and AddRoundKey() — process the stayges. These transformations are

described in the following subsections.

The algorithm of the cipher can be expressed &aAsl

Cipher(byte in[16], byte out[16], word w[4*(Nr+1)])
begin
byte state[4,4]
state = in
AddRoundKey(state, w[0,3])
for round = 1 step 1 to Nr-1
SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w[4*round,4*(round+1)-1] )
end for
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[4*Nr,4*(Nr+1)-1])

out = state

end

In the pseudo code, the arnafy] contains the key schedule.

4.1.1.2 The SubBytes Step

In the SubBytes step, each byte in the array is updated using-bit 8ubstitution box, the
Rijndael S-box. This operation provides the noedirity in the cipher. The S-box used is derived

from the following transformation which is also kmo as the affine transformation:
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where[a7a635a433 a3 60] and [aqqqqq o] Q] are the input and output bytes, respectively,

and [d7d6d5 d,d,d, diq)] is the multiplicative inverse of the input byteshould be noted that

all the arithmetic operations are performed ove(Z)fwith an irreducible polynomial, p(x):

p(X) =¥+ X+ X+ x+1. (4.2)

The multiplicative inverse over Galois field &GF (2)) is known to have good non-linearity

properties, which provides the nonlinearity propet the operation. To avoid attacks based on

simple algebraic properties, the S-box is constditty combining the inverse function with an

invertible affine transformation. The S-box is atdwsen to avoid any fixed points and also any

opposite fixed points. The illustration of SubBytgseration is given in Figure 4.2.

ao,0

ao,1

do2

aoz3

aio as a2 a3 b1 by b2 b1 3
SubBytes
axo a1 a2 a3 b2, b2 1 b2 b2
asp asq a>\ ass b3 b3 4 bs2 b33
S

Figure 4.2 In th&SubBytes step, each byte in the state is replaced witbritsy in a fixed 8-bit

lookup table S, asjl>= S(g).
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4.1.1.3 The ShiftRows Step

The ShiftRows step operates on the rows of the state, it c\blisaifts the bytes in each row
by a certain offset. The first row is left unchadgBach byte of the second row is shifted one to
the left. Similarly, the third and fourth rows eakifted by offsets of two and three, respectively.
The illustration of ShiftRows operation is givenRigure 4.3.

No

Change ao,0 ao,1 ao2 ao3 do,0 ao,1 ao2 aoz3

Shift 1

<« | ao air a2 aiis ) a1 a2 aiis aio
A\_, *\.‘ *\i ShlftRows;

Shift 2

—| ayo azq a2 azs a2 a3 azo azq
N A

Shift 3

<« azo as as2 ass ass aso as1 asz
N L

Figure 4.3 In th&hiftRows  step, bytes in each row of the state are shifgetically to the

left. The number of places each byte is shiftetediffor each row.

4.1.1.4 The MixColumns Step

In the MixColumns step, the four bytes of each column of the statéecambined using an
invertible linear transformation. Th®ixColumns function takes four bytes as input and
outputs four bytes, where each input byte affedtsfaur output bytes. Together with

ShiftRows , MixColumns operation provides diffusion in the cipher. Eadiumn is treated
as a polynomial over GF{Rand is then multiplied modula’ + 1 with a fixed polynomial

c(x) = 3X+ X+ x+ 2as shown in Equation 4.3.

h.] [02 03 01 0] [a,
b,|_{01 02 03 01 |a,
b,| |01 01 02 03 |a, (4.3)
b.| |03 01 01 02 |a,

It should be noted that the elements of the transdtion matrix are bytes represented as

hexadecimal numbers. The illustration of MixColunop&ration is given in Figure 4.4.
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Cij X & -/

Figure 4.4 In théVlixColumns step, each state column is multiplied with fixedypomial c(x).

4.1.1.5 The AddRoundKey Step

In the AddRoundKey step, the subkey is combined with the state. Boheound, a subkey is

derived from the main key using AES key schedulé each subkey has the same size as the

state. The subkey is added by combining each btteecstate with the corresponding byte of the

subkey using bitwise XOR (which is the equivaleh&ddition over finite fields). The illustration

of AddRoundKey operation is given in Figure 4.5.

a0 g a2 a3 boo bo 1 P Do
aio ai, a2 ais b1 b1 4 bi2 bis
AddRoundKey
azo az az2 az3 b2, by 1 b; 2 ba3
Pl

aso as as2 ass b3 }/ bs2 bs3
Koo Ko .1 ko2 ko3

K10 K11 ki 2 kis

k2,0 k2.1 k22 /d

k3o ks 1 ka2 ks

Figure 4.5 In théddRoundKey step, each byte of the state is combined withta bfjthe

round subkey, using the XOR operation.
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4.1.1.6 Key Expansion

The AES algorithm takes the cipher k&y,and performs a key expansion routine to generate
key schedule, namely the arra§] which is given in the cipher algorithm. The keyparsion
generates a total of 4¥{+1) 32-bit words. The algorithm requires an inigat of 4 words, and
each of theNr rounds requires 4 words of key data. The resulkieg schedule consists of a
linear array of 4-byte words, denotefi] . The expansion of the input key into the key sciteed

proceeds according to the given pseudo code:

KeyExpansion(byte key[4*NK], word w[4*(Nr+1)], NK)
begin

word temp

i=0

while (i < NK)
w[i] = word(key[4*i], key[4*i+1], key[4*i+2 1, key[4*i+3])
i=i+l

end while

i =Nk

while (i < 4*(Nr+1)]
temp = wli-1]
if (i mod Nk = 0)
temp = SubWord(RotWord(temp)) xor Rcon[ i/NK]
else if (Nk > 6 and i mod Nk = 4)
temp = SubWord(temp)
end if
wl[i] = w[i-NK] xor temp
i=i+1
end while

End

In the pseudo codélkis the key length which is 4, 6 and 8 words fguihkey lengths 128, 192
and 256 bits, respectively. SubWord is a functioat takes a four-byte input word and applies
the AES S-box to each of the four bytes to procarceutput word. The function RotWord takes
a word po, a1, @, ag] as input, performs a cyclic permutation, and metuthe word &y, ay, as,

ao]. The round constant word array, Rconl[i], contalesvalues given by[*, {00}, {00}, {00}],

with X being powers of (xis denoted as {02}) in the field GF{2(note that starts at 1).
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4.1.2 Architecture Overview

We start the development of the architecture ferAlES coprocessor by clearly identifying the
processing steps and data flow through all rousdshawn in Figure 4.6. It is apparent from the
figure that theNr rounds in the definition of the algorithm maps\ie-1 round in the actual data
flow, where the initial AddRoundKey step of the @lihm corresponds to round-0. Rounds 1 to
Nr-1 are identical in terms of processing steps: $té3 ShiftRows, MixColumns and

AddRoundKey. In the last round (rouht), MixColumns step is skipped.

The rounds can be directly mapped to a state machihich first loads the input message and
key into its registers as the initial state, arehtprocesses the registered data via a combinhtiona
path, and updates the register data (state) artieof each round. Output of the combinational
path of the last round is loaded into the statéstegas the state machine output, which in this

case is the AES encryption output.

For our state machines, we use a generic modetevdata processed in three phases:

« Initialization phase is initiated by a “start” pulse, which puts thatst machine into the
active state. In the case of AES, this phase qooress to round-0, where the input data (the
message) is loaded into the state registers andcdh#binational path instantaneously
generates the output of this round, which in facthie result of the initial AddRoundKey
step.

e lteration phase is where rounds 1 tbir are executed. The combinational output of each
previous round is loaded into the state registansl, processed through the combinational
path as the input of the next round. This phasestdk cycles to complete.

* Finalization phase is the state machine output generation and remigtephase.
Combinational result from rounidr is loaded into the state registers for the lasetiPart or
all the state register outputs becomes the stathimaoutput. Combinational path output is
not used. Instead, a single “ready” pulse outpugeserated to mark the completion of

operation. The state machine quits the active,shatk stays idle until the next “start” pulse.

The model summarized above is applied to the mesdatp path and the key expansion data
paths in parallel, resulting in a single unitedtestsnachine. Round key output of the key

expansion portion is taken directly from key stagister outputs, in order to avoid additional

combinational delay caused at the message side.rd@$dting state machine operation is

illustrated in the pseudo code below, where sedplemperations are denoted via* symbol,

and combinational operations using simple equalssig
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1. Initialization (start comes)

act <1 :active status

cnt -0 :State counter

Sreg ~ Mmsg_inp :message register

Kreg ~ key_inp :key register

Rcon ~ 0x01 :Rcon (most-significant byte) register

key = KeyRound[Kreg, Rcon]

rc = Rcon

state = Sreg O key
2. lteration (cnt=1 to Nr)

cnt —cnt+1

Sreg ~ state

Kreg ~ key

Rcon ~rc

key = KeyRound[Kreg, Rcon]

rc = Rconx?2

state = MixColumns{ShiftRows[SubBytes(Sreg)]} O key
3. Finalization (cnt=Nr+1)

act <0

cnt «~ Nr+1

Sreg ~ state

output = Sreg

< : Sequential
= : Combinational

As seen in the pseudo code, the state registetis (hessage, key and the Rcon register used in
key expansion) are loaded with the input data (agess&nd key) when “start” comes. This is in
fact round-0 of the algorithm, as well as cyclefOttee state machine. In addition, the active
status flag (act) is activated, and the state @wuritnt) is cleared. Outputs from the
combinational path are generated instantaneoudiyeasound-1 inputs for both the message and
key state registers. In the following cycles (1IN, the state counter counts from 1Mo, the
active flag stays active. Combinational outputeath round are loaded to the state registers at
the next round. Rounl¥ (cnt=Nr) is the last cycle of operation (corresponds #rthund in the
algorithm, where MixColumns is skipped). Followitigs round is the finalization phase, where
the state machine leaves the active state (acts}ree combinational output from rounl-is
loaded into the state register for the last tinsethe state machine (AES encryption) output. The
key state and Rcon register values do not mattew kegister and counter contents change is

shown in the timing diagram in Figure 4.7.
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Figure 4.6 AES encryption algorithm data flow.
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Figure 4.7 Timing diagram of AES block.

The presented pseudo-code together with the tirdiagram above is mapped to the block

diagram in Figure 4.8.

rc_next
key_next
L state_next
. Sreg » out
input | > |
key_inp Kreg »| Comb. Logic [—
Rcon —I Yy Yy 7y
T round_last| round0] active
start » Control — ready

Figure 4.8 AES coprocessor block diagram.

Combinational logic required for key schedulinggigite complex and explained in detail in

Section 4.1.3. Message processing data path is assdpofSubBytesShiftRows MixColumns
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andAddRoundKegteps multiplexed depending on the round beingge®ed as shown in Figure
4.9.

round0

0x02 —pP»lo
y

» rc_next
rc_present 1/

round0

>

key_present KeyRound 0

P key_next

1

state _present—r)| SubBytes |—)| ShiftRows |-J-)| MixColumns

round_last
ve round0

active

Figure 4.9 AES coprocessor combinational data path.

Another important issue about the AES coprocesstird wrapper around it, which is not shown
on the block diagram. In the design, a fully palalnplementation is favored in order to achieve
the highest possible throughput. This requiresstate and key registers to be 128 and 256-bits
wide, respectively. However, AES coprocessor idusg the crypto processor with a 32-bits
wide data bus. This means that data has to beewtitt and read from the AES coprocessor in

32-bit chunks. Therefore, a wrapper is implememtedind the AES coprocessor.

128-bit state register is implemented as four 32dmisters, mapped to specific addresses in the
crypto coprocessor address space. When the adufresg of the registers is selected, only the
write enable for that specific register is enabledreading the result from the AES, a 4-to-1

multiplexer is used in order to select the speg#d of the result.

The same logic also applies to the key registecegixfor a double buffer implemented at the
input in order to preserve the original key, whistaltered during the key scheduling process. In

addition, no key register read addresses are ingglead as it is deemed practically useless.

There are also two other registers required fordperation of the AES: mode register and
command/status register (CSR). The mode registeRibit write-only register used to store the
chosen AES mode: 00 for AES-128, 01 for AES 198, Hhfor AES-256.

CSR is used to generate the “start” pulse. It Zei@-bit register. In other words, it is only an

address in the crypto processor address space. 8viyenrite attempt is done to that address, the
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AES “busy” register state goes high. From thisstyi a single “start” pulse is generated, which
starts the AES operation. The “busy” register styisigh until it is cleared by the AES “ready”

pulse. During this time, the crypto processor hadtsegular program execution and waits for
AES to complete its operation. When the busy registate goes low, the crypto processor
continues with the next instruction, which is prolyareading from the AES output addresses.

This scheme together with other wrapper registeshiown in Figure 4.10.

/
/ > ] o =
state_next Sreg AlAITAIA
active Z state_present A 3_2+ 32 32 32
input \ ‘ﬂ?s;<i
start \
N\
/
/
keeg Kreg T3 3] 3 3f 32f 3] 3f 3
A key_present A |A|A|A|A|A|A|A|A|
AN
AN
/
/
Reon Rcon 32
A rc_present A
AN
start \

Figure 4.10 AES wrapper registers.

4.1.3 Key Scheduler

Key expansion module is implemented as a directpingpof the key expansion pseudo-code.
Depending on the key size, which is an input pataméhe module can generate key schedule
for any key length of 128, 192 or 256-bit.

The key scheduler state machine pseudo-code wah gig part of the AES engine. The
important point is how the registers are used. #sw in Figure 4.11, the key input register is
loaded in 32-bit words by the crypto processor. iMine start pulse comes, all the 256-bits in the
key input register are transferred to the key staggster. When the active flag is high, the next
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states for the registers are generated accordinbetgound being processed, and loaded into

them at the beginning of the next state.

Although both the input and state registers for &y 256-bits wide, they are partially used in
case of AES-128 and AES-192 (only the leftmost 2892 bits).

There is also the 8-bit Rcon register, which isiatized to B, = 0xX01 with every “start” pulse,

and then doubled at every step using multiplicativer GF(3): B,, =2x B . It is padded with

24-bit zeros before used in the actual key scheguli

The RotWordandSubWordmodules are cut-down versions of BleiftRowsandSubBytesn the
data processing patRotWordsimply rotates the bytes in a 4-byte word by lefhereas the
SubWordappliedSubBytds-box) function on all 4-bytes of a word in péhl

4.1.4 SubBytes Module

SubBytes module is a composed of 16 parallel SubBwyidules, each processing one byte of the
input word. Therefore only the I/O interface of iagle SubByte module is explained. The

SubBytes and SubByte modules’ schematics are givEigure 4.12.

The easiest method to implement a SubByte modul® isse a ROM based lookup table.
However, in the current design, the SubByte modkiienplemented at the gate level via direct
mapping of the arithmetic formula. For the targethihology, gate level implementation is
estimated to occupy less area. On the other haigdslower than a direct ROM implementation.

But still, the total delay estimate is within tleget limits.

The critical block for the SubByte module is the(@F multiplicative inverse block (inverter in
short), which is explained in detail in [20]. Thifirme transform and inverter blocks are explained

in the following subsections.

4.1.4.1 Affine Transform Module

The module operate on byte, transforming the inpyte to the output byte via a matrix
multiplication, where bit-level addition and muligation correspond to logic level XOR and

AND operations, respectively. The illustration bétblock is shown in Figure 4.13.
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Figure 4.11 Key scheduler.
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Figure 4.12 SubBytes and SubByte modules.
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Figure 4.13 Affine transformation module.

4.1.4.2 GF(2®) Multiplicative Inverse Module (Inverter)

Inverter module is implemented as a composite tevgb2]. In the composite inverter, GB(2s
processed as two separate finite fields: GFédd GF(4). In hardware, this is implemented by
separating the byte into upper and lower nibblégre each nibble represents a polynomial over
GF(Z). The two nibbles form a“?degree polynomial over the GE4This mode of operation
reduces all the finite field operations to 4-bitde simplifying the hardware implementation of

arithmetic modules enormously.

In Figure 4.14, all the arithmetic modules are misfi over GF(9, represented with the
irreducible polynomial p(y) = Y + y+1. The overall inversion takes place over GF(4

represented with the irreducible polynomigw) = W + w+9. However, passing from GF{2

to the composite field is not just byte-separatibmlso requires the input to be multiplied with
an isomorphic transform matrix, which requires theerse transform prior to the output.

Formation of the isomorphic transform matrix is kkped in detail in [52].
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Figure 4.14 GF inverter module.

4.1.5 MixColumns Module

The module I/O and schematics are shown in Figui®.4it should be noted that all the

multipliers and adders in the figure work over G¥(2

4.1.6 ShiftRows Module

The ShiftRows module is a look-up table of theestagtes. The look-up table formed from the

shifted version of the bytes. Figure 4.16 showsshi#tRows module.
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4.1.7 Implementation Results

AES core is implemented on the smallest XILINX ¥kt5 device. The slice count is 1352 at a
frequency of 67.3 MHz. Total cycle count for thegessing of a 128-bit data block is 15 cycles,
resulting in a throughput of 615.3 Mbps. The cqreesling throughput/area number is 0.46
Mbps/slice. These results are compared against A8 implementations in Table 4.1.

Table 4.1 AES core implementation results.

Block Number
) Freq |Clock ) Area T/put | T/put/area
Device size ] of RAM ]
(MHz) |cycles| (slices) (Mbps) | (Mbps/slice)
(bits) Blocks
xc5vIx30-3 67.3 14 128 1352 0 615.38 0.46
Virtex-E [27] 94.7 60 128 696 4 202 0.29
xcv1000 [53] 27.6 10 128 5673 0 353 0.06

4.2 Secure Hash Algorithm - 1 (SHA-1) Coprocessor

4.2.1 SHA-1 Algorithm

The SHA hash functions are a set of cryptograplishhfunctions designed by the National
Security Agency (NSA) and published by the Natiomaititute of Standards and Technology
(NIST) as a U.S. Federal Information Processingn&ied (FIPS) [21]. SHA stands for Secure
Hash Algorithm. The five algorithms are denoted SHASHA-224, SHA-256, SHA-384, and
SHA-512. The latter four variants are sometimetectively referred to as SHA-2. SHA-1 is the
most used function of the existing SHA hash funwdiand it is employed in several widely-used
security applications and protocols. In 2005, sigcdlaws were identified in SHA-1, namely
that a mathematical weakness might exist, indigathrat a stronger hash function would be
desirable [54]. Although no successful attacks hgatebeen reported on the SHA-2 variants,
they are algorithmically similar to SHA-1, so themave been efforts to develop improved
alternative hash functions. As a result of thisieav hash standard, SHA-3, is currently under
development for an ongoing NIST hash function caitipe which is scheduled to end with the

selection of a winning function in 2012.
SHA-1 produces a message digest that is 160 hiig (and the numbers in the other four

algorithms’ names denote the bit length of the slighey produce). The following steps are

utilized in the operation of SHA-1 algorithm:
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e Preprocessing:
- Padding the message,
- Parsing the padded message into fixed-size blocks,
- Setting the initial hash value.
« Hash computation (for each fixed-size message hlock
- Preparation of the message schedule,
- Initialization of working variables,
- lterative calculation of internal hash values,
- Computing the block hash value using the finalrim and the previous block hash

values.

Setting the resultant message digest to the fieakkhash value.

4.2.1.1 Description of the Function

SHA-1 may be used to hash a messafyhaving a maximum length of21 bits. The algorithm
uses a message schedule of eighty 32-bit words,wiorking variables of 32 bits each, and a

hash value of five 32-bit words. The final resdl&#A-1 is a 160-bit message digest.

The words of the message schedule are laWglgd/,..., W,. The five working variables are
labeledA, B, C, D, andE. The words of the hash value are labéled, H",... . H? , which will

hold the initial hash valué] , replaced by each successive intermediate haske Yafter each

message block is processeH)"” , and ending with the final hash valuél ™ . SHA-1 also uses

a single temporary word, T.

« Preprocessing:
- The m-bit message\, is first padded in order to ensure that the pdddessage
length is a multiple of 512-bits. The padding is@uoplished by appending the bit

“1” to the end of the message, followed by k zeits, vhere k is the smallest, non-

negative solution to the equation+1+ k= 448mod 512.
- The padded message is then parsed into Nx512-dik&l M@ M@ .. .M ™),

The first 32-bits of message blotls denotedv”, the next 32-bit#1"”, and so on

)
15 *

up toM
- The initial hash value is set BS” =H” ||H/” ||[H{” [H” |H [, where each

4

H”is a 32-bit hexadecimal word.
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« Hash computation: Each message blaek,i =1,... ,N , is processed in order to use

the following steps:

- Prepare the message schedWg,

t

M 0<t<15
- (4.4)

|ROTE(W, O W, 0 W, 0 W,) 16< €79

- Initialize five working variablesA, B, C, D, andE, with the (i —1)th hash value:

A=H{™
B=H™Y
C=H;™ (4.5)
D=H{™
E=H{™
- Fort=0,...,79:
T=ROTE(A+ f(BC D+ B K+ W
E=D
D=C
C=ROTE(B (4.6)
B=A
A=T

- Compute thd™ intermediate hash value:

HP = A+H{™
HP =B+H™
HO =C+H{™ (4.7)
H{’=D+H{™
H =E+H{™

« After all the N 512-bit blocks are processed, tB8-bit resultant message digest is:

HEYIIHLY [IHSY HEY JHE. (4.8)
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4.2.1.2 SHA Functions

Here, the functions used by SHA-1 algorithm areimdef. In addition to algorithm-specific

functions, the common functions of all SHA funcsaare also defined.

4.2.1.2.1 Common Functions

The following functions are used by all SHA algonits, either independently or within an

algorithm-specific function:

« Logical operators:
- [I: Bitwise logical AND,
- [: Bitwise logical OR,
- [: Bitwise logical exclusive-OR,

- -~ Bitwise logical inversion.

« Addition modula2”: The operationx+ Yy is defined as follows. The wond andy

represent integers X and Y, where 0<X<2' andd<sY<?2".

ComputeZ = (X +Y)mod 2'. ThenO< Z < 2". Convert the integeZ to a word,z,

and definez= x+ vy.

+ Right shift operationSHR'( ¥, wherex is a w-bit word andn is an integer with

0< n<w, is defined by:

SHR (3= x> . (4.9)

+ Rotate right (circular right shift) operatidROTR'( , wherex is a w-bit word anah is

an integer withO < n< w, is defined by:

ROTR( y=( x> n0( x w N (4.10)

+ Rotate left (circular left shift) operatioROTL ( ¥, wherex is a w-bit word andh is an

integer withO < n < w, is defined by:

ROTLE(X =(xx pO( x> w h. (4.11)
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4.2.1.2.2 SHA-1 Functions

SHA-1 uses a sequence of logical functioiys.f,,..., f,. Each functiorf,, whered<t < 79,
operates on three 32-bit words,y, andz, and produces a 32-bit word as output. The functio

f.(X, Y, 2) is defined as follows:

Ch(x y, 2= yu (=X ¥ 0< €19
HXyQ:PwWMM3=%JIJZ 20< & 39
e Maj(x,y,2=(x0 YO (xJ 30( ¥ ¥  40< & 59 (4.12)
Parity(x, y, 2= X0 Yy z 60< K 79

4.2.1.3 SHA-1 Constants

SHA-1 uses a sequence of eighty constant 32-bitsyKr,,K,,...,K,, which are given in

hexadecimal as:

5a827999 0<t<19
_ |6ed9ebal 20<t< 38
' |sf 1bbcdc  40<t< 59 (4.13)
ca62cldé 60<t<79

4.2.1.4 SHA-1 Initial Hash Values

For SHA-1, the initial hash valueHd ¥, shall consist of the following five 32-bit wordis
hexadecimal as:

H{® =67452301
H® =ef cdab89
Héo) =98badcf e (4.14)
H{» =10325476
H{® =c3d2elf0

4.2.2 Architecture Overview

The coprocessor handles the SHA-1 hashing. Pregsioge is implemented by the
microprocessor software. Upon completion of prepssing, microprocessor passes data to the

SHA-1 coprocessor in 512-bit blocks. Each 512-lwitk corresponds to a 16-word message, and
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is written into the SHA-1 input registers. SHA-1pcocessor starts hashing via the “start” pulse
which goes high when the microprocessor writes tigovirtual SHA-1 command/status register.
Once the hashing is completed, the microprocesmorither pass a new 512-bit input block or
read the 160-bit hash output from the SHA-1 outpgtsters. Prior to the processing of the first

input block, SHA-1 coprocessor internal states tiavge cleared via the clear signal.

The pseudo-code for the SHA-1 hashing is givenvizelo

SHAZ1 (word in[16], word hash[5], word W[80],
word K[80], word A,B,C,D,E,T)

if clear = 1 then
hash[0] = hash_init[0]
hash[1] = hash_init[1]
hash[2] = hash_init[2]
hash[3] = hash_init[3]
hash[4] = hash_init[4]
else
begin
A = hash[0]
B = hash[1]
C = hash[2]
D = hash[3]
E = hash[4]
fort=0step 1to 79
if round < 16 then
WIt] = in[t]
else
WIt] = rotl_1( WI[t-3] » W[t-8] »
WIt-14] » W[t-16] )

>
o
=

i
rotl_5(A) + f_t(B,C,D) + E + K[t] + WI[t]
D
C
rotl_30(B)

mOom-®

>

A=T
end for
hash[0] = A
hash[1] =B
hash[2] =C
hash[3] =D
hash[4] = E

end

end if

The SHA-1 coprocessor is basically a complex staéehine, which implements the SHA-1
algorithm explained in detail in the preceding fdh®ns. During a single hashing operation, the

SHA-1 functional loop has to be iteration for aatodf 80 times. This directly maps to a state
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machine which combines the input with its intersialte, and then runs the internal state through

its combinational path for 80 cycles before aceceptiew input.

As in the case of AES, new input is registered ilith “start” pulse, which also activates the
SHA-1 state machine. A total of 80-words of messdigest are generated from the 16-word
input. At each cycle of the state machine run, rttessage digest word corresponding to that
cycle is combined with the present state in thatecshrough a combination of functions in order
to generate the next state. At the end of all 8flesy words of the internal state are added
individually with the words of the stored hash autpThe hash output is also another state
variable, but updated only once at the end of @ltyles. Its initial value is a 160-bit constant,

which is loaded with the “clear” pulse.

The first 16 words of the message digest are thetimessage words, which are shifted into a
shift register of width 32-bits, and depth 16. Aftiee first 16 values, the shift register is opedat
as a feedback shift register, which generateseits input word from a combination of its internal

words. This is done for another 64 cycles untiB8llwords of the message digest.

The message digest generation is run in paralligl thie state machine’s hashing cycles. This
way, hardware parallelism is fully exploited and eyales are lost. The generic state machine
using the “initialization, iteration, finalizationphases model explained before is also applied

here, resulting in the data flow given below:

1. Initialization (start comes)

act ~ 1 :active status

cnt ~ 0 :state counter

w ~ input

S < hash

w_out = w[0:31]

w_inp = ROTL 1 (w[0:31]" w[64:95]" W[256:287]" W[416:447])
w_next = w[32:511] || w_inp

A _next = ROTL °(A) + f(cnt)(B,C,D) + E + K(cnt) + w_out

B next = A

C next = ROTL 0(B)

D _next = C

E next = D

s_next = A_next || B_next || C_next || D_next || E_next

2. lteration (cnt=1 to 79)

cnt —cnt+1

Sreg ~ state

Kreg ~ key

Rcon ~ rc

key = KeyRound[Kreg, Rcon]

rc = Rconx2

state = MixColumns{ShiftRows[SubBytes(Sreg)] } O key
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cnt ~ cnt+l

w ~ w_next

S ~ S_hext

w_out ~ w[0:31]

w_inp = ROTL 1 (w[0:31]" w[64:95]" W[256:287]" W[416:447])
w_next = w[32:511] || w_inp

A _next = ROTL °(A) + f(cnt)(B,C,D) + E + K(cnt) + w_out

B next = A

C_next = ROTL 0(B)

D _next = C

E next = D

h _next = hash +s

3. Finalization (cnt=80)

act ~0
cnt ~ 80
hash « h_next

output = hash

~ : Sequential
= : Combinational
|| : Concatenation

The active signal and counter are parts of therobmtodule, which generates all control signals
that organize the data traffic between the stagéesters and combinational blocks. Figure 4.17

shows the block diagram for the SHA-1 coproceseoe.c

This core is then put into the SHA-1 wrapper, whipbvides the RAM-like behavior of the
SHA-1 coprocessor. From the microprocessor's pahtview, SHA-1 input, output and
configuration registers are just addresses indidentemory map: The input and configuration
registers are write-only addresses, while the dutpgisters are read-only. There is no access to

the internal state registers for the microprocesBois scheme is shown in Figure 4.18.

The timing diagram of the SHA-1 block can be seeRigure 4.19.

4.2.3 Message Scheduler

Message schedule schematic for SHA-1 is showngargi4.20. It should be noted that the most

significant 32-bit word of the 512-bit message klige M, while the least significant word is

M, andO<t<79.
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Figure 4.20 Message scheduler schematic.

4.2.4 Round Function

Round function schematic for SHA-1 is shown in Fegd.21. It should be noted that the most
significant 32-bit word of the 160-bit hash valgs@iwnhile the least significant word &

4.2.5 Implementation Results

SHA-1 core is implemented on the smallest XILINXt&k-5 device. The slice count is 342 at a
frequency of 127.7 MHz. Total cycle count for theogessing of a 512-bit data block is 80
cycles, resulting in a throughput of 817.3. Theregponding throughput/area number is 2.39
Mbps/slice. Table 4.2 summarizes the results tagethith the figures from a reference

implementation.
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Table 4.2 SHA-1 core implementation results.

Device Freq Clock | Block Area T/put T/put / area
(MHz) | cycles|size (bits)| (slices) | (Mbps) | (Mbps/slices)
xc5vIx30-3 127.7 80 512 342 817.3 2.39
xcv-1000-6 [55] 72.2 80 512 1475 462 0.31

4.3 Montgomery Modular Multiplier (MMM) Coprocessor

4.3.1 MMM Algorithm

RSA algorithm [19] is one of the simplest publiofkeryptosystems in terms of mathematical
complexity. It is based on the modular exponemratf the input message. The exponent used in
the encryption process is the public key, wherbasekponent used in the decryption process is

the private key.

RSA encryption and decryption operations are ddfes

c=m‘modn (4.15)
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and

m=c modn

respectively, where

m: N-bit message (plaintext) , an integer between Onahd

c. N-bit ciphertext, an integer between 0 anil

(4.16)

n: RSA modulus, al-bit positive integer that is a product of 2 distindd primes

RSA public key, &-bit positive integerk << N)

N-bit private key

Modular exponentiation operation, which RSA is lbhsm, is in turn based on modular

multiplication. Assuming that alk, z, w are N-bit binary numbers ang is an E-bit binary

number, i.e.
X=XaXN-2-- %o
Y=Yea¥e-—2-- Yo
I= Qa1 d2- &
W= Wya W2+ Vo,

and
w=x’modz,

it can be calculated using the algorithm below:

My=x%x R =1
fori=0 toE-1
RxMmodz if y=1
R =

R else y(= |
M;,; =M, xM,; modz
end for
w=FRe

Now, a modular multiplication operator MM( ) can defined, where
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MM(a b ¢ = ax mod ¢, (4.23)
and the given algorithm can be rewritten by sulnstity this operator:
Mo=X Ry=1

fori=0 toE-1
MM(R, M, 2 if y=1
Ru =

R else (4.24)
M, = MM(M,,M,,Zz)
end for
W= Re

As seen, modular exponentiation can easily be imptded as a series of modular
multiplications, provided that there exists an Idesdular multiplication operator MM( ).
However, in practice, it is costly to implement &teal modular multiplication module in
hardware. Instead, what is known as Montgomery ipligiation algorithm [33-36] is preferred

for hardware implementation. This algorithm is defl as:

$ =0

for i=0 toN-1
G =(S+abhmod2
a=(S+ qe ab/2

end for

f S 20 (4.25)
d=§-¢

else
d=§

end if

where
d=MMM(a h 9 = ax x2 N mod « (4.26)

Montgomery modular multiplication algorithm is vesymple in nature, and suitable for digital
implementation. It only requires 1-bit multiplicati, which maps to logical AND operation, and
N-bit addition, for which plenty of optimization pmbilities exist. However, it has two

drawbacks in its simplest form:
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« It takesN +1 cycles to complete using tvisbit adders. Adder optimization is possible
via time-sharing a single adder for each additiothiw the for-loop. In this case, the
whole algorithm takesKe+1 cycles to complete. In this implementation, tthiawback
could be ignored as the compactness of the coneiie important than the cycle count.

«  Montgomery modular multiplication introduces anrexdand undesired'2factor into the
multiplication result. This extra factor has toth&en care of, by modifying the original
modular exponentiation algorithm, which leads toe ttMontgomery modular

exponentiation.

Montgomery modular exponentiation algorithm is defl as:

k =2°N modz
Mo =MMM(x k 2
R, =MMM(, k 2
fori=0 toE-1
R, = MMM(R, M;, 2 if y=1 (4.27)
1R else
M, = MMM(M;, M,, 2)
end for
w=MMM(R.1, 2

where

w= x’ modz. (4.28)

It should be noticed that this algorithm requires-galculation ok = 22" modn as an additional
task. However, since the modulus seldom changesglRSA operation, this calculation is done

once in a while anll is supplied to the algorithm as a constant.

4.3.2 Architecture Overview

As explained in the algorithm section, Montgomergdular multiplication operations requires
addition of N-bit numbers, where N can be as big2848-bits. Performing such large
multiplications in a single cycle is neither fedsjbnor practical. It is logical to split the input
data into smaller portions and perform the addit@mn these portions in each cycle while
propagating the carry output result from each #uttito the next cycle as the carry input. This
way, addition time increases from a single cycledweeral cycles, while the hardware complexity

diminishes enormously.

67



The data width of these portions is an importamapeeter, which determines both the execution
time of the algorithm and the hardware complexitihe core. It has to be chosen very carefully.
Luckily, the 32-bit bus width of the processor s a perfect choice. The data portion width
can also be selected as 32-bits. This way, adgert words can be directly read from separate
RAMs in parallel in each cycle, addition is perf@unon these words, the addition result word is
written to the result RAM, and the 1-bit carry auttjis propagated to the next cycle as the carry

input.

In terms of the algorithm’s pseudo code given befeach addition is now replaced with a for-

loop iterated over all words of the inputs. For tlase of 512-bits, a single addition takes a total
of 512/32=16 cycles, while for the worst case ofibtis a single addition takes a total of

2048/32=64 cycles.

However, in the actual algorithm, the main statdate is not performed by just the addition of
two very long numbers. Instead, three long numbegesadded (one of them being the present
value of the state), the result is divided by 2f{stl right by 1-bit), and sent to the state reggist
as the next state.

The partial addition scheme can still be appliedtdad of a 32-bit adder with two inputs, a 32-
bit adder with three inputs is used. The right tskgf is implementing by taking the least
significant 1-bit of the current addition resultdaconcatenating it with the most significant 31-
bits of the previous addition result. The result8&tbit word corresponds to the addition-
followed-by-division result word of the previous abg. Therefore, the final result will be

completed with 1 cycle of pipeline delay.

The whole scheme and application of it to the MMIgoathm can be best explained by means
of a scaled-down example, whose pseudo-code is1diedow. In this example, the total data
width is assumed to be 16-bits (instead of theadd&@?2 to 2048 bits), while the width of each
data word is only 4-bits (instead of the actuab88). This means that each 16-bit addition will

be completed in 4 cycles.

It should also be noted that instead of the iteraihase in AES or SHA-1, there is the phase-0,
which is divided into multiple loops and cycles.cedoop corresponds to the multiplication of
the multiplicand input with a bit of the multipliénput, resulting in a total of 16 loops for this
specific example. Each cycle corresponds to agdatidition cycle, which corresponds to a total

of 4 cycles per loop for this example.
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Furthermore, instead of the finalization phase ESfr SHA-1, there are the phase-1 and phase-
2, where the subtraction of the modulus from thegestand re-addition onto the state are
implemented, respectively. If the subtraction reefiphase-1 is positive, there is no need for re-
addition. The state machine execution is termingBath of these phases are implemented in 4-

cycles because of partial addition structure.

Initialization:
Sext = 0; S =S0]|/S1|S2]||S3 =0 ;
Phase 0:
Loop O:
Atmp ~ A3
g = S3(0) " (Atmp(0)&B3(0))
Cycle O:
t[6:0] = S3 + (q?N3:0) + (a0?B3:0)
tmp < 1[3:1]
cout < 1[5:4]
Cycle 1:
t[6:0] = S2 + (gq?N2:0) + (a0?B2:0) + cout
tmp < 1[3:1]
cout « 1[5:4]
S3 < {t[0],tmp}
Cycle 2:
t[6:0] = S1 + (gq?N1:0) + (a0?B1:0) + cout
tmp < 1[3:1]
cout < 1[5:4]
S2 ~ {t[0],tmp}
Cycle 3:
t[6:0]=S0 + (g?NO0:0) + (a0?B0:0) + cout + {sext,0000}
tmp < 1[3:1]
S1 < {t[0],tmp}
t[0] ~ t[4]
sext < 1[6:5]
Loop 1:
Atmp ~ Atmp >>1
g = S3(0) " (Atmp(0)&B3(0))
Cycle O:
SO ~ {t[0],tmp}
[6:0] = S3 + (q?N3:0) + (a0?B3:0)
tmp < 1[3:1]
cout « 1[5:4]
Cycle 1:
t[6:0] = S2 + (q?N2:0) + (a0?B2:0) + cout
tmp < 1[3:1]
cout < t[5:4]
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S3 < {t[0],tmp}

Cycle 2:
t[6:0] = S1 + (q?N1:0) + (a0?B1:0) +
tmp < 1[3:1]
cout « 1[5:4]
S2 ~ {t[0],tmp}
Cycle 3:
t[6:0]=S0 + (g?N0:0) + (a0?B0:0) + cout
tmp < 1[3:1]
S1 < {t[0],tmp}
t[0] ~ t[4]
sext < 1[6:5]
Loop 2:
Atmp ~ Atmp >>1
g = S3(0) " (Atmp(0)&B3(0))
Cycle O:
SO ~ {t[0],tmp}
t[6:0] = S3 + (q?N3:0) + (a0?B3:0)
tmp < 1[3:1]
cout < 1[5:4]
Cycle 1:
s3
Cycle 2:
)
Cycle 3:
s1
Loop 3:
Atmp ~ Atmp >>1
g = S3(0) " (Atmp(0)&B3(0))
Cycle O:
SO
Cycle 1:
s3
Cycle 2:
)

cout

+ {sext,0000}
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Cycle 3:

S1
Loop 4:
Atmp

Cycle 0O:

SO

Cycle 1:

s3

Cycle 2:

S2

Cycle 3:

S1
Loop 5:
Atmp

Cycle 0O:

SO

Cycle 1:

s3

Cycle 2:

S2

Cycle 3:

S1
Loop 6:
Atmp

Loop 7:
Atmp

< A2
= S3(0) ~ ( Atmp(0)&B3(0) )

~ Atmp>>1
= S3(0) * ( Atmp(0)&B3(0) )

~ Atmp>>1

~ Atmp >>1
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Loop 8:

Atmp <Al
Loop 9:
Atmp ~ Atmp>>1
Loop 10:
Atmp ~ Atmp >>1
Loop 11:
Atmp ~ Atmp>>1
Loop 12:
Atmp ~ Al
Loop 13:
Atmp ~ Atmp >>1
Loop 14:
Atmp ~ Atmp >>1
Loop 15:
Atmp ~ Atmp >>1
g = S3(0) " ( Atmp(0)&B3(0))
Cycle O:
SO < {t[0],tmp}
t[6:0] = S3 + (q?N3:0) + (a0?B3:0)
tmp < 1[3:1]
cout < 1[5:4]
Cycle 1:
t[6:0] = S2 + (q?N2:0) + (a0?B2:0) + cout
tmp < 1[3:1]
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cout < 1[5:4]

S3 ~ {t[0],tmp}
Cycle 2:
t[6:0] = S1 + (g?N1:0) + (a0?B1:0) +
tmp < 1[3:1]
cout « 1[5:4]
S2 < {t[0],tmp}
Cycle 3:
t[6:0]=S0 + (g?NO0:0) + (a0?B0:0) + cout
tmp < 1[3:1]
S1 ~ {t[0],tmp}
t[0] ~ t[4]
sext ~ 1[6:5]
Phase 1:
Cycle 0:
SO ~ {tmp, t[0]}
f[6:0] = S3 + ~N3 + cout
tmp < 1[3:1]
cout < 1[5:4]
Cycle 1:
t[6:0] = S2 + ~N2 + cout
tmp < 1[3:1]
cout < t[5:4]
S3 ~ {tmp, t[0]}
Cycle 2:
t[6:0] = S1 + ~N1 + cout
tmp < 1[3:1]
cout < t[5:4]
S2 ~ {tmp, t[0]}
Cycle 3:
t[6:0] = SO + ~NO + {11,0000} + {sext,000
tmp < 1[3:1]
S1 ~ {tmp, t[0]}
t[0] ~ t[4]
sext ~ 1[6:5]
shit = t[5]
term = ~sbit
Phase 2:
Cycle 0:
S0 ~ {tmp, t[0]}
[6:0] = S3 + N3 + cout
tmp < 1[3:1]
cout « 1[5:4]
if (term) stop
else

cout

+ {sext,0000}

0} + cout
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Cycle 1:
t[6:0] = S2 + N2 + cout
tmp < 1[3:1]
cout < t[5:4]
S3 ~ {tmp, t[0]}
Cycle 2:
f[6:0] = S1 + N1 + cout
tmp < 1[3:1]
cout « 1[5:4]
S2 ~ {tmp, t[0]}
Cycle 3:
t[6:0] = SO + NO + cout
tmp < 1[3:1]
S1 ~ {tmp, t[0]}
t[0] < 1[4]
sext ~ 1[6:5]
Cycle X
SO ~ {tmp, t[0]}
< : Sequential
= : Combinational

The hardware block diagram of MMM is given in Figut.22. As seen from the figure, all RAM
outputs, state extension bits and carry in bitssarg to adder (except ram it is stored inAtmp
register first, in order to shift the data whended® via the control signals, and least significant
bit of the result and the part storedtimp is then sent to combiner (where the combination is
done according to the phase). The combined resulien stored int&_ramand the operation
continues so on. The output is then read fromSheam It should be noted that, for 32-bit
memory address, the addition result bits which saoged intmp, carry_in ands_extwill be
different (i.e. 4-bit memory’s t[3:1] will be t[31} in 32-bit memory address approach).

The timing diagram of the MMM block can be seerfigure 4.23. The phase, loop, cycle and

early termination signals given in the dataflow t@neasily seen in this waveform. There exists

one clock delay between the waveform and the aataflecause of the pipeline.
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Control

| S_ram Combiner
A
A
N t[0]
A_ram » Atmp_reg > )
Adder » tmp_reg — s_ext
7 t[3:1]
Y
> 1[6:5]
v R .
Y carry_in
B_ram |
N_ram

Figure 4.22 MMM block diagram.

If shit=1 (with addition after subtraction)

active

If shit=0 (no addition after subtraction)

active |

Figure 4.23 Timing diagram of MMM hardware block.
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4.3.3 Word-serial Adder

The word-serial adder performs addition operatiotoading to the control signals, which select

the active inputs depending on the phase, loopcgcid.

Phase 0 is the phase where the modular multipiicas performed. All inputs of the addition
(Sour Nous Bouw Carry_in, and s_ext in the last cycle) are setbor the operation. i\ and B
are added in case that there exist non-zero q@bdsy respectively. OtherwiseyNand B, are

masked.

The addition can again be explained for the 4-litevwords: At first, the least significant 4 bits
of the 16-bit &, Nowt and B, are added and the carry output is stored in they da register.
Then, the next 4 bits of these terms are takemaddition, together with the stored carry_in bits.
This addition continues for 4 cycles, and thenhia last cycle, s_ext bits are also taken into
account. The overall result is formed by combinting 4-bit result of every cycle. This operation

is shown in detail in Figure 4.24.

Phase 1 is the comparison part of the multiplicaigainst the modulus (subtraction of N from
multiplication result). S Nouw, carry_in, and s_ext (in the last cycle) termssalected for the
operation. To perform subtraction, the 2’s completd N, is taken. This is implemented by
adding the inverse of modulus to the multiplicatresult together with an initial carry_in value
of 1,i.e. Qext= Sut+ ~ Nowe + 1.

Firstly, the least significant 4 bits of the 16-Bif,; and N, are added and the carry output is
stored in the carry_in register. Then, the nexitd &f these terms are taken for addition, with
stored carry_in bits. This addition continues fayéles, and then in the last cycle, s_ext bits are
also taken into account. The overall result is fednby the 4-bit result of every cycle. The

operation (for 4-bit register case) can be sedtigare 4.25, in detail.

Phase 2 is performed if re-addition of,Ns required (in case the result of phase 1 is thega

Sous Nouw Carry_in, and s_ext (in the last cycle) termssalected for the operation.

At first, the least significant 4 bits of the 16-&,,; and N are added and the carry output is
stored in the carry_in register. Then, the nexitd &f these terms are taken for addition, with
stored carry_in bits. This addition continues faryéles, and then in the last cycle, s_ext bits are
also taken into the addition. The overall resuloisned by the 4-bit result of every cycle. The

operation (for 4-bit register case) can be sedtigare 4.26, in detail.
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PHASE 0 Addition

comes from Sey
S17 S16[S15 S14 S13 S12 S11 S10 S9 Sg S7 Se¢ S5 S4|S3 S2 S1 So

qx( Nis Nig Ni3 Ny2 Ngq Ny Ng Ng N7 Ng N5 Ng (N3 N2 Ny Ng|)

a0 x( bis b1 b1z b1z byg big bg bg b7 bg bs bs|bs by by bg|)

\/
S3 S2 S1 So

gx(n; nz ny ng)
a0 x(bs b, by by)

will be tt
(divisior

operat

Cin2 Cin1

S7 S¢ S5 Sy =tmp
gx(n7; ng ns ng)
a0 x(b; bg bs by)

+

S11 S10 S9 Sg =1mp S; —» Y3

gqx (N4 Ny Ng Ng)
a0 x (by1 b1o by bg)

+

S15 S14 S13 S12 =tmp Sy —P» Y,
g X (N15 N1g N3 Nq2)
a0 x (b5 byg byz by2)

w' 15 C14 Cq m

l

Cin2 Cin1

Cin2 Cin1

Cin2 Cin1

S$11S10 S Sg

last carry_in 4— C17 C1e

‘ $17S16 ‘ ‘511510 So Ss‘

next 100p’s Sext So » Vo

Figure 4.24 Addition in phase 0.
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PHASE 1 Addition

comes from Sey
S17 S16(S15 S14 S13 S12 S11 S10 S9 Sg S7 S¢ S5 S4|S3 S2 S1 So

~( Nis N N3 N2 Nig Ngg Ng Ng N7 Ng Ns Ny N3 N2 Ny No |)

* |
S3 S2 S1 So
~ (n3 n, m no)
+
Cinz_Cint €3 €2 C
Cin2 Cim
=tmp |=to
S7 S¢ S5 Sa
~ (n7 Ng Ns n4)
+
Tonz G 67 o G3[Ca] € G2 GilCo]
Cin2 Cint
=tmp =QO
S11 S10 S9 Ss So——p» Y
~ (N1 Nye Ny Ng)
+
o Gr1 o0 G| Cs] € co GalCi)
S7 S¢ S5 S4
Cin2 Cint
=t
S15 S1a S13 S12 S—p» Y-
~ (M5 N1g N43 Nq2)
+
s o cnlon] 6 cw &[c]
$11810 S9 Sg
Cin2 Cin1
+
=t
oul
‘ S17S16 ‘ ‘311310 Sy Ss‘
next phase’s Sex io > Yo

Figure 4.25 Subtraction in phase 1.
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PHASE 2 Addition

comes from Seyt
° 315 S14 S13 S12 S11 S10 S9 S3 S7 S¢ S5 S4|S3 S2 S1 S
Ni5s N4 N3 N2 N4 Ngg Ng Ng N7 Ng N5 Ng4 N3 N2 Ny Ng
* |
S3 S2 S1 So
N3 N2 Ny No
+
o onr s &1 Gl o]
Cin2 Cin1
=tmp
S7 S¢ S5 Sa
N7 Ng Ns Ny
+
Com w67 co c3[ca] € o2 cifco]
Cin2 Cin1
='[mp = tO
S11 S10 S9 Sg Ss — P Ys
N1 N Ny Ng
+
“Cnz Garn ©0 65| ca] € s G3lca)
S7 Sg S5 Sa
Cin2 Cint
to
S15 S14 S13 S12 S, —Pp Y,
N5 Nqg N3 Ng2
‘ S$17S16 ‘ ‘311310 Sg Ss‘
Sex\

So —P» Yo

Figure 4.26 Addition in phase 2.
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In Figure 4.27, the overall adder block is showhe Thultiplexers select the inputs according to
phase, loop and cycle information coming from tbatwl logic. The selected signals are then

summed up by the 4-input adder.

Sout 4
0

phase0
loop0

0 4
Z.
7
1
g

phase0

Y.

7
7 te..0
0| |
{11,0000}— "
6
h 1
c:/)cI:i(Ieast D >
Bout 1 phase0
0 —0
2
a0
0 —o carry_in
{Sex,0000} —1

phase1 6
cycle_last

{Sext,0000} D phase0
0 cycle_last

phase0
loop0
cycle_last

*

Figure 4.27 Adder block diagram.

4.3.4 Implementation Results

MMM core is implemented on the smallest XILINX Sizer device and smallest Virtex-5 device.
With the Spartan family, the slice count is 224adrequency of 73.3 MHz. For the Virtex-5
family, the slice count is 101 at a frequency 05.BIMHz.
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For a fair comparison with existing designs, theotighput is calculated for 1024-bit RSA
calculation using the MMM module. Including an esied worst case 10 percent of software
overhead, the total cycle count for the processing 1024-bit data block is about 55.5 million
cycles. This results in a throughput of 1.4 Kbps tfte Spartan device and 2.1 Kbps for the
Virtex-5 device. The corresponding throughput/anesnbers are 0.006 and 0.02 Kbps/slice,

respectively.

Table 4.3 compares these results with referencagriedt should be noted that the slice counts
for the other reference designs include the exdrdrol logic around the modular multiplier cores

required for the RSA operation.

Table 4.3. RSA core implementation results.

Clock Block Number

] Freq ] Area T/put | T/put/ area
Device cycles size ) of RAM )

(MHz) o ) (slices) (Kbps) | (Kbps/slice)

(million) | (bits) Blocks
xc3s50-5 73.3 55.5 1024 224 4 1.4 0.006
xc5vIx30-3 115.3 55.5 1024 101 3 2.1 0.02

Spartan 3A-5
102 51 1024 302 3 2 0.007
[56]

Virtex 6-3 [56] 278 51.5 1024 145 1 5.4 0.04
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CHAPTER 5

CRYPTOGRAPHIC PROCESSOR INTEGRATION

This chapter summarizes the integration of the meadmtroller with the cryptographic
coprocessors. The area figures of the resultanptagyaphic processor for different
configurations are presented together with figdresn similar works in the literature. It is then
followed by the throughput performance figures bé tpresent work and other embedded
implementations. Finally, the coprocessor integfecexplained in detailed by means of an AES
program example and corresponding simulation result

5.1 Integration

The cryptographic coprocessors are enclosed insrdppers, which make them behave like
regular RAMs, and combined together with the dafdviRof the main controller to form the
memory block. I/O ports of each coprocessor argemnin the memory address map of the main

controller, and can be accessed by the softward ®AD/STORE instructions. The finalized
design is shown in Figure 5.1.

o Program
1 Counter

M | Temporary | —
" Register

)
A
()

Program inst Instruction
Memory Decoder |we

Stack o

MMM
Pointer _‘ 1 a

idim -

f im_flag

IM[6:0]

Figure 5.1 ZPU block diagram with integrated copssors.
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5.2 Implementation Results

Table 5.1 summarizes the implementation resultshfercryptographic processor with integrated
coprocessors for both 2KB and 8KB program memonyoop. The slice count is 1982 and the
maximum achievable frequency is 63.4 MHz on thellesiaVirtex-5 device. These results are
compared with two reference designs. However,aukhbe noted that we have not been able to
find any other processor, which integrates allehf&ES, SHA-1 and MMM coprocessors. The
closest implementation is the processor presemed57] with built-in AES and SHA-1
functionality. In addition, we also take the implemation results of a RSA-specific processor

presented in [58].

Table 5.1 Cryptographic processor implementaticults.

Number of
) ) Freq )
Device / Implementation Area (slices) RAM
(MH2z)
Blocks
Xilinx Virtex-5 (xc5vIx30-3)
. 63.4 1982 4
With coprocessors (8K program memory)
Xilinx Virtex-5 (xc5vIx30-3)
. 63.4 1982 0
With coprocessors (2K program memory)
Xilinx Virtex (xcv1000e)
24.2 7247 20
(AES and SHA-1 crypto processor) [57]
Xilinx (xcv1000-6)
30 936 -
(RSA crypto processor) [58]

5.3 Performance Results

In Table 5.2, the estimated performance figurethefcryptographic processor for AES, SHA-1

and MMM operations are presented. In the estimatiba standalone performance of each
coprocessor is multiplied by a factor in order aket the software overhead into account. It is
hard to come up with a definite factor for the ARSI SHA-1 operations, since the software
overhead depends on the specific IPSec protocobhigiplemented as well as the actual IPSec
packet size. However, the simulation results frampgle implementations reveal a factor of 0.2
and 0.25 for the AES and SHA-1 operations. In theecof RSA, software overhead is almost
negligible as even the modular multiplication opieraitself takes thousand of cycles. Even the

factor of 0.9 applied in the calculations is tomservative.
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The performance of the cryptographic processomimpared against software-only embedded
implementations presented in [59-61] in order tmdestrate the hybrid approach applied in this
study.

Table 5.2. Throughput performances.

Implementation Throughput
ZPU’s AES coprocessor, performance @ 63.4 MHz
] o 115.9 Mbps
Virtex-5 xc5vix30-3 (divided by 5, for software avead)
ZPU’s SHA-1 coprocessor, performance @ 63.4 MHz
] o 101.4 Mbps
Virtex-5 xc5vix30-3 (divided by 4, for software avead)
ZPU’'s MMM coprocessor, performance @ 63.4 MHz
0.92 Kbps

Virtex-5 xc5vIx30-3 (divided by 1.25, for softwaoeerhead)
AES performance on ARM9 processor @ 200 MHz [59] 83@bps
SHA-1 performance on ARM9 processor @ 200 MHz [59] 4 Mbps
RSA performance on StrongARM processor @ 200 MHf [60 0.53 Kbps
AES performance on ARM processor @ 200 MHz [61] 43ps

5.4 Coprocessor Interface

The implemented coprocessor plug-in interface mpk& in its nature. In each RAM-like
coprocessor, one of the 16-bit memory addressesa@ttiress 0x-F--) act as the virtual command-

status register (CSR) to provide an interface beitvtbe main processor and the coprocessors.

First, the input memories of the chosen coproceaserfilled by the microprocessor. Then a
write is issued to the corresponding CSR, instngcthe coprocessor to start its operation. This
raises the coprocessor active flag. The rising edglee active flag is converted to a “start” pulse
for the coprocessor, while the active flag itselfsaas a system-wide busy signal which halts the
ZPU core. Once the coprocessor is done, it gerseadteeady” pulse which pulls down the active
signal. The system-wide busy is also pulled doWowéng the processor to continue its program
execution with the next instruction in line. ThiSR scheme is explained below by means of a
simple AES example.

We start with the C program segment given belovthis program segment, first, 4 words (128
bits) of data from the message address space predcimto the AES input registers. Then the
AES CSR register is written. The data written it address is unimportant as it is a virtual
register. The write operation into this registegders the AES start pulse, and the AES

coprocessor starts its operation. During its opmmathe AES busy signal is active and the main
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program execution is halted. This is not shownhi@ € code. As soon the AES completes its
operation, the ready pulse is generated, whichtoadées the busy signal. Program execution
continues with the copying of the AES results frita AES output registers onto the original

input message.

0023

0024 AES in[0] = MSEO];
0025 AES in[1] = MG 1];
0026 AES in[2] = MG 2];
0027 AES in[3] = MG 3];
0028

0029 *AES CSR = 1;

0030

0031 MSE 0] = AES out[0];
0032 MSE 1] = AES out[1];
0033 MSE 2] = AES out[2];
0034 MSE 3] = AES out[3];
0035

The corresponding assembler code segment is shelew.blt should be noted how a simple
assignment as in line 0025 in the C code is refdldge6 lines of code (0216 to 0221) in the
assembler code. Furthermore, due to the 7-bit maxinmmediate value limit of the ZPU

architecture, larger numbers can be entered with ¢ensecutive IM instructions as seen
throughout the assembler code. This results not ionthe loss of program memory space but

execution time as well.

0208

0209 im10 [/ im10 followed by im0

0210 imOoO /1 is equivalent to im 1280 = i m 0x0500
0211 | cadsp O

0212 | oad

0213 im 32 /1 im32 followed by imQO

0214 imOoO /1 is equivalent to im4096 = i m 0x1000

0215 store /1 men{ 0x1000] = meni Ox0500] -> AES in[0] = Ms({ 0];
0216 im10 /1 im10 followed by im4

0217 im4 /1 is equivalent to im 1284 = i m 0x0504

0218 | oad

0219 im 32 /1 im32 followed by im4

0220 im4 /1 is equivalent to im4100 = i m 0x1004

0221 store /1 men{ 0x1004] = men{ 0x0504] -> AES in[1] = M5(d 1];
0222 im10 [/ im10 followed by imS8

0223 im38 /1 is equivalent to im 1288 = i m 0x0508

0224 | oad

0225 im 32 /1 im32 followed by im8

0226 im8 /1 is equivalent to im4104 = i m 0x1008

0227 store /1 menf 0x1008] = meni 0x0508] -> AES in[2] = M5( 2];

0228 im10 /1 im10 followed by im 12
0229 im12 /1 is equivalent to im 1292 = i m 0x050C
0230 | oad
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0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262

im 32
im8
store
storesp
imi1l
nop
im62
imO
store
im34
imoO
| oad
| cadsp 4
store
im34
ima4
| oad
im10
im4
store
im 34
im8
| oad
im10
im38
store
im 34
im12
| oad
im10
im1l2
store

11
11
11

11
11
11
11
11

11
11
11

11

11
11
11

11
11
11
11
11

11
11
/1

im32 followed by im 12
is equivalent to im 4108
meni 0x100C]

im62 followed by imO
is equivalent to im 7936
meni Ox1F00] =
im34 followed by imO
is equivalent to im 4352

meni 0x0500] =nmenf 0x1100]
im34 followed by im4
is equivalent to im4356

im10 followed by im4
is equivalent to im 1284
men{ 0x0504] =nmen{ 0x1104]
im34 followed by im8
is equivalent to im4360

im10 followed by im8
is equivalent to im 1288
men{ 0x0508] =nenf 0x1108]
im34 followed by im 12
is equivalent to im 4364

im10 followed by im12
is equivalent to im 1292
men{ 0x050C] =nen{ 0x110C]

= men{ 0x050C]

1 -> *AES_

= im 0x100C

-> AES in[3] = Msd 3];

m 0x1F00
CSR = 1;

/'l ZPU halts

imO0x1100

\Y

-> M8 0] = AES out[O0];

imO0x1104

i m 0x0504
Msd 1] = AES out[1];

\Y

imO0x1108

i m 0x0508
M5H 2] = AES out[2];

\%

= im 0x110C

= i m 0x050C
-> M5F 3] = AES out[3];

Finally, simulation results for the execution oéthssembler code from lines 0235 to 0242 is
shown in Figure 5.2. This particular segment isseimofor various reasons. First of all, it is the

code segment, where the AES coprocessor is instadtiAs a result, the program execution

halts until the completion of the AES operation.

Furthermore, this code segment uses the most colyrased instructions, namely IM, LOAD
and STORE, in the realization of IPSec protocolsh@nresultant processor. The entry of a large

immediate number into the stack via two consecuttiMenstructions and the behavior of the

IDIM flag are also demonstrated in the simulaticewveforms of the chosen segment.
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Figure 5.2 Simulation results for the executionh&f assembler code.
87



CHAPTER 6

IPSEC PROTOCOL IMPLEMENTATION EXAMPLES

In this chapter, three software examples are givemder to present the operation and use of the
cryptographic processor in the implementation ofdf protocols and components. Each
example demonstrates the use of one of the comwicsesThe first example uses the AES
coprocessor in order to implement the Counter w@ipher Block Chaining-Message
Authentication (CCM) mode, which is an optional ¢oned encryption and authentication
scheme of the IPSec protocol suite. It is followsdthe Hash based Message Authentication
Code (HMAC), which utilizes the SHA-1 coprocessbine last example uses the Montgomery
modular multiplier coprocessor in order to implemére RSA encryption/decryption algorithm,

which is an important component of the Internet lghange (IKE) protocol of IPSec.

All three codes are written as functions, which barcalled via a “main” function running on the
cryptographic processor. It is the duty of the nfaimction to manipulate the IP packet and call
the appropriate functions. The structure of thennfianction and how it communicates with the
external world is explained in the next sectionjolhis followed by individual sections for each

software example.

6.1 IP Packet Handling

In our work, the IP packet is assumed to be recdeimeclassified form, which means that the
input data is sent to the corresponding RAM adaé®$s ZPU. Then, we process the payload
according to this information. A simple flow of shalgorithm and working principle of ZPU can

be shown as follows:

void main () ;
label : *2ZPU_CSR=0 ; /* ZPU comm and status register is set to 0

initially. */
while (*2PU_CSR = 0)
/* Exterior controller writes data into RA M by pulling
ext_sel to 1. It also sets ZPU_CSR to 1, signaling

that data is ready. */
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. => |P packet handling part is done.

. => |P data processing is done (CCM, HMAC, RSA, etc J).

*2PU RDY =1; /*ZPUr eady register is set to 1 when
process is finished, for signaling to
the exterior controller that ZPU is
done. */
[* Exterior controller reads. */
goto label

First, ZPU exits from the reset condition and wéitsthe ZPU_CSR to be set to 1 in an initial
while loop. Then, the external controller sets egt to 1, which enables the sending of the
message and CSR data to the corresponding plagShihand writes them in. While doing this,
ZPU is halted until the process is finished. Whgh el is set to 0, ZPU continues to its while
loop. Meantime, it will detect that ZPU_CSR is setl and break the loop to perform its
operations. It will decide the appropriate operataxcording to the written configuration and
message data. Then, it will set ZPU_RDY to 1 euene its work is finished. Actually, that
ZPU_RDY address is not a physical RAM space, jiiss a 1-bit status register which is set to 1
when ZPU writes and set to 0 when ext_sel is atetilia

After all these, ZPU will read the data whenevenédieds. By the way, ZPU returns to the
beginning, which is named as “label” in the pseadde. Then, it will wait for 1 to be written in
ZPU_CSR.

6.2 Counter with Cipher Block Chaining—Message Authentication
Code (CCM)

Counter with Cipher Block Chaining-Message Autheatibon Code (CCM) [39] is used to
provide assurance of the privacy and the authénti¢idata by combining the techniques of the
Counter (CTR) mode [62] and the Cipher Block ChagAMessage Authentication Code (CBC-
MAC) algorithm [63]. CCM is based on an approvednsyetric key block cipher algorithm
whose block size is 128 bits, such as the Advalgentyption Standard (AES) algorithm which
is explained in the previous chapter.

CCM can be considered as a mode of operation dfltuk cipher algorithm. A single key to the
block cipher must be established beforehand amioagarties to the data. So, CCM should be
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implemented within a well-designed key managemgnttire. The security properties of CCM

depend on the secrecy of this key.

CCM is intended for use in a packet environment.oAlthe data should be available in storage
before CCM is applied. CCM is not designed to suppartial processing or stream processing.

Three inputs to CCM are:

« data that will be both authenticated and encrypieith is called the payload,
¢ associated data that will be authenticated buenotypted,

e aunique value called nonce, which is assigneddgayload and the associated data.

CCM consists of two related processes: generatienyption and decryption-verification. Only
the forward cipher function of the block cipher @ithm is used within these primitives. In
generation-encryption, cipher block chaining isleggpto the payload, the associated data, and
the nonce to generate a message authentication(k®@). Then, counter mode encryption is
applied to the MAC and the payload, to transforemihinto an unreadable form which is called
the cipher text. Therefore, it can be seen that Gfélkeration-encryption expands the size of the
payload by the size of the MAC. In decryption-vieation, counter mode decryption is applied
to the supposed cipher text to recover the MAC #mredcorresponding payload. Then, cipher
block chaining is applied to the payload, whiclthie received data, and the received nonce to
verify the correctness of the MAC. A successfulifieation provides assurance that the payload

and the associated data originated from a sourteascess to the key.

A MAC provides stronger assurance of authentidignta checksum or an error detecting code.
The verification of a checksum or an error detectode is designed to detect only accidental
modifications of the data, while the verificatiof @ MAC is designed to detect intentional,

unauthorized modifications of the data, as welhesddental modifications.

6.2.1 Description of CCM

As mentioned before, two CCM processes are callemkmtion-encryption and decryption-
verification. The order of the steps of these twacpsses is a little bit flexible. For example, the
generation of the counter blocks may occur at ang before they are used. In fact, the counter

blocks may be generated in advance to be consi@esraguts to the processes.

The below algorithm explains the generation-endoyptprocess. The input data to the
generation-encryption process is a valid noncealid yayload string and a valid associated data
string, which are formatted according to the fotingtfunction. The CBC-MAC mechanism is

applied to the formatted data to generate a MAysehength is a prerequisite. Counter mode
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encryption, which requires a sufficiently long seqoe of counter blocks as input, is applied to
the payload string and separately to the MAC. Tdwlting data which is called the ciphertext

(denotedC) is the output of the generation-encryption preces

Prerequi sites:

block cipher algorithm,

key K,

counter generation function,
formatting function,

MAC length Tl en,

| nput s:

valid nonce N (salt + initialization vector (1V)),

valid payload P of length Pl en bits ( = Mblocks —  each block is
128 bits long),
valid associated data A of length Al en bits ( = D blocks — each

block is 128 bits long),

Qut put s:
ciphertext C.

St eps:
1. Apply the formatting function to ( M A, P) to produce D+M

blocks B,B,,...,B,,, . IV is added at the beginning of the block

as B, =1V.
2.Set X, =E/(B).
3.For i =1to DtMdo X ,=E(XU0OB).

4.Set T =MSBren(Xy,,.,)-

5. Apply the counter generation function to generate the counter
blocks ~ Ctro, Ctrs, ...,Ctru , where M =[ Plen/128].

6.For j=0to Mdo S= E(Ctr).

7.Set S=S]| S|..|| ®.

8. Return C =(POMSBren(9)) || (T MSBren(S3)).

The input to the decryption-verification processiah is described in the below pseudo-code, is

a supposed ciphertext, an associated data strohgh@nnonce that is believed to be used in the
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generation of the supposed ciphertext. Counter nmtzyption is applied to the supposed
ciphertext to produce the corresponding MAC andlqaad; If the nonce, the associated data
string and the payload are valid, then these sremg formatted into blocks according to the
formatting function and the CBC-MAC mechanism isplagd to verify the MAC. If the

verification succeeds, then the decryption-verif@a process returns the payload as output.

Otherwise, only the error message INVALID is retdn

When the error message INVALID is returned, thelpay P and the MACT should not be
displayed. Moreover, the implementation should emstnat an unauthorized party cannot
distinguish if the error message results from Step from Step 10, for example from the timing

of the error message.

Prerequi sites:

block cipher algorithm,

key K,

counter generation function,
formatting function,

valid MAC length Tl en,

I nput s:
nonce N (salt + initialization vector (IV)),

associated data A of length Al en bits ( = Dblocks —  each block is
128 bits long),
supposed ciphertext C of length Clen bhits ( = R blocks — each

block is 128 bits long),

Cut put :
either the payload P of length Pl en bits (= Mblocks —  each block
is 128 bits long) or INVALID

St eps:
1.1If Cl en < Tl en, then return INVALID.

2. Apply the counter generation function to generat e the counter

blocks  Ctro, Ctry, ...,Ctru, where M =[ (Clen— Tler)/128].
3.For j=0to Mdo S= E/(Ctr).
4.5et  S=S| S|..IlS.
5.Set P =MSBcen- 1ef(C) 0 MSBcien me(S).
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6. Set T= MSBTIen(C) O MSBTIen(SO).
7.1f N, Aor P isnotvalid, then return INVALID. Else, apply the

formatting function to ( N, A P) to produce the blocks
B,B,,.... B, -

8.set X, =E/(B).

9.For i=1to DtMdo X, =E(XU0OB).

10. If T £ MSBrien( X ), then return INVALID. Else, return P.

D+M +1

6.2.2 Software Overview of AES-CCM

AES-CCM is performed on 16-byte (128-bit) blockwiever, since the processor data bus is
32-bits wide, AES input is not directly sent to ttare in 128-bit format. At first, necessary data
(such as flags, nonce, payload, AAD) is read franreasponding RAM addresses and then the
128-bit input to the AES core is formed and stoiedour 32-bit temporary variables in the
software. These temporary variables are mappe@4oit3vide RAM locations (words) in the
actual hardware. 4-word AES input read from theprary memory locations is sent to the four
AES input registers to be processed. The AES impgtsters are also mapped to specific
locations in the processor’'s address space. OrcAHS inputs are transferred, a write is issues
to the virtual AES command/status register sigiglive AES to start its encryption. This sets the
physical “busy” signal in the processor and hatts program execution, until the AES
coprocessor completes its run and clears the “bsigyial by issuing the “encrypted block ready”
signal. The encrypted block is then read from f@x32=128-bit) AES output addresses. AES is
performed for blocks of cipher block chaining amdigter mode parts. In the end, the cipher text

is formed from the encrypted counter blocks and MAMAC length is given as inputHen).

For IPSec purposes, certain inputs are fixed insthadard, such as the length of AAD and the
length of nonce. For example, AAD length is staéed8 or 12 bytes in the standard [64].
Therefore, simplifications can be done on the saféacode to cover only these IPSec properties.

The algorithm is rewritten according to this, alofws:

B, ={ flags nonce Iin

X, = E(B)

B, ={la(2 byte3, AAD zero§ to fll6 bytgf
X, =E (X +B)
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for I =2to N,

B ={ payloaq, zerosto fit6 bytes if necessgy

X, =E (X UB).

A_, ={ flags nonce cnt}
S, = E(A)
C.=BUS,

end for

T= MSBTIen(XN+1)
A, ={ flags nonce cn}

S = E(A)
U=TOS
C=Co||Ct]...]IGi-2 |V

In Figure 6.1, the block diagram of this operaiam be seen in detalil.

The flowchart of the operation is given in Figurg.6

The decryption-verification is the reverse procekshe above operation, as mentioned before.
Therefore, the block diagram and the flowchart wi# similar to encryption with small

modifications for decryption.

6.3 Hash-based Message Authentication Code (HMAC)

In communications, providing a way to check thesgmity of information transmitted over or

stored in an unknown medium is a major necessitgchnisms that provide such integrity
checks based on a secret key are called messdgmntcation codes (MACSs), as mentioned in
previous section. A MAC that uses an approved ogatphic hash function in conjunction with

a secret key is called hash-based message autitemticode (HMAC) [65,59].

The main goals behind the HMAC construction [6&: ar
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Figure 6.2 Flowchart of AES-CCM.
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* to use available hash functions without modificasio

» to preserve the original performance of the hasltfan,

¢ touse and handle keys in a simple way,

» to have a good cryptographic analysis of the streafthe authentication mechanism on
the underlying hash function,

« to allow easy replaceability of the underlying héishction, in case that faster or more

secure hash functions are available in the future.

Any iterative cryptographic hash function, suchS&tA-1, SHA-224 ... etc., may be used in the
calculation of an HMAC. So, the resulting MAC aliglom is termed as HMAC-SHA-1, HMAC-

SHA-224 ... etc., accordingly. The size of the outptitHMAC is the same as that of the
underlying hash function (160, 256 or 512 bits ase of SHA-1, SHA-256 and SHA-512,

respectively), although it can be truncated if daki

6.3.1 Description of HMAC

In the definition of HMAC, the cryptographic hasimttion is denoted byl and the secret key is
denoted byK. The byte-length of blocks on whidH operates iteratively, is denoted By
(B=64 for SHA-1, SHA-224, SHA-256 and =128 for SHA-384, SHA-512). The byte-
length of hash function outputs is denotedLbft=20, 28, 32, 48 and 64 for SHA-1, SHA-224,
SHA-256, SHA-384 and SHA-512, respectively). Théhantication keyK can be of any length
up toB, the block length of the hash function.

Two fixed and different stringgpad and opad are defined as follows (the’ ‘and ‘0’ are

mnemonics for inner and outer):

ipad = the byteDx36 repeated times,
opad= the byteDx5C repeated times.

To compute a MAC over the dateext using the HMAC function, the following operatioa

performed:

MAC(tex):= HMAQ K text = H( KO opal|| H( K3 ipaj|| teyy (6-1)

Step by step process of the HMAC algorithm is ergld as follows:
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St eps:

1. If the length of K =B: set Ko=K . Go to step 4.
2. If the length of K >B:hash K to obtain an L byte string, then
append ( B-L) zeros to create a B-byte string Ko (i.e.,

Ko=H (K) || 00...00). Go to step 4.

3. If the length of K < B: append zeros to the end of K to create
a B-byte string Ko (i.e., if K is 20 bytes in length and B=64,
then K will be appended with 44 zero bytes 0x00).

4. XOR Ky with i pad to produce a B-byte string: Ko ipad.

5. Append the stream of data ' t ext' to the string resulting from

step 4: (KoOipad) || text).
6. Apply  H to the stream generated in step 5: H ((KoOipad) || text).
7.XOR K, with opad: Kol[Jopad.
8. Append the result from step 6 to step 7:
(KoOopad) || H((Ko O ipad) || tex).
9. Apply  H to the result from step 8:
H((KoUO opad) || H((KoO ipad) || texd).
10.Select the leftmost t bytes of the result of step 9 as the MAC.

6.3.2 Software Overview of HMAC-SHA-1-96

HMAC-SHA-1-96 is performed on 64-byte (512-bit) bks. However, a SHA-1 input is not
directly sent to the core in 512-bit format. Atsfirnecessary data (such as key and payload) is
read from corresponding RAM addresses and theB1Bebit input to the SHA-1 core is formed
and stored in sixteen 32-bit temporary variables. iA the case of AES, once the SHA-1
coprocessor inputs are ready, a write is issuagbewirtual SHA-1 command/status register and
the coprocessor starts its operations halting tlaén mrocessor’'s program execution via the
“busy” signal. After SHA-1 completes processing Hi2-bit input block, it releases the busy and
the processor continues program execution. At gtep, the “hashed data” can either be read

from the SHA-1 output registers, or hashing candginued with new inputs.

For IPSec, certain inputs are fixed in the standaod example, the length of payload is fixed to
multiples of 512 bits and the key length is fixed20 bytes (160 bits — 5 RAM locations) [67].
Therefore, simplifications can be done on the safsacode to cover only these IPSec properties.

The algorithm is rewritten according to this, alfofes:
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BJ0:4] = (K Oipad); B[5:15]= ipad bytes
B: = tex{0:15]

B2 = tex{16 : 31]

[

[

[

Bnv = texfl6x( N—-1) : (16x(N- 1))+ 15]

clear =1,
h[0:4]=IV;
SHA in= B;

start=1,

for(i=1to N)
h[0: 4]= SHA_ out
SHA _in= B;
start = 1,

end for

c=SHA out

AJf0:4]=(K O opad); A[5:15]= opad byte
A[0:4]=c A[5:15]= SHA padding

clear =1,
h[0:4]=IV;
SHA in= A;

start=1,
h[0: 4] = SHA_out
SHA in= A;

start=1,

Y = SHA ouf0: 2]

In the algorithm pseudo-code given above, the ftlsignal is given in addition to the “start” in
order to identify the first 512-bit block input ¢fie hashing operation. The purpose of this

identification is to select initialization vectos &[0:4]. Unlike the “start” signal, it does not
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activate the busy and halt program execution. Tawechart of the operation is given in Figure
6.3.

20 byte key, data,
\"

Form Bi blocks

clear =1
Yes h[0:4] = IV

No

A 4

—> h[0:4] = SHA_out start hashing = 1

Hashed block
ready? No

Yes

Y

Form AQ and A1 blocks
using SHA_out and

SHA_padding
clear =1
Yes h[0:4] = IV
No
Y
—> h[0:4] = SHA_out start hashing = 1

Hashed block
ready? No

Y = SHA_out [0:2]

Figure 6.3 Flowchart of HMAC-SHA-1-96.

100



6.4 RSA Encryption and Decryption for Internet Key Exchange

The public key algorithm RSA (which stands for RRimest, Adi Shamir and Leonard Adleman,
who first publicly described it at MIT, in 1977) tke first algorithm known to be suitable for
both asymmetric encryption/decryption and signatyigneeration/verification purposes, and it was
one of the first great advances in public key argpaphy. RSA, which became patent free and
released to the public domain in 2000, is the madely used public key algorithm in electronic
commerce protocols and believed to be secure giuéitiently long keys and the use of up-to-

date implementations.

RSA involves a public key and a private key. Theljgukey can be known to everyone and it is
used for encrypting messages. Messages encrypthdtive public key can only be decrypted

using the private key.

RSA gets its security from integer factorizatioolgem. Difficulty of factoring large numbers is
the basis of security of RSA (512, 1024 or 2048 lnihg, generally).

RSA is much slower than symmetric cryptosystemsrhctice, one typically encrypts a secret
message with a symmetric algorithm, encrypts tlemfaratively short) symmetric key with
RSA and transmits both the RSA-encrypted symmedtelg and the symmetrically-encrypted
message to the recipient. This procedure raisei@uhd security issues. For instance, it is of
ultimate importance to use a strong random numéeeigitor for the symmetric key. Otherwise,

an eavesdropper could bypass RSA by guessing thesiric key.

RSA algorithm is one of the simplest public-key ginsystems in terms of mathematical
complexity, which makes it relatively easy to ursdand. However, the same can not be said for

the hardware implementation.

6.4.1 Description of RSA

As mentioned in the previous chapter, RSA encrypéind decryption operations are defined as:

c=mtmodn (6.2)

and

m= ¢ modn (6.3)

(m: N-bit messages: N-bit ciphertextn: N-bit RSA modulus - a product of 2 distinct odd pesn
e E-bit RSA public key £ << N -, d: N-bit private key).
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RSA is based on modular exponentiation operatiohichv is in turn based on modular
multiplication. Assume thatX = Xy 1 Xy_2--- % Y= Yeu1Ye2--- Yoo Z= Zy1%4-2--- %

and W= Wy_;Wy_,... Wy. Then,w= x mod z can be calculated using the algorithm below:

My=x R =1
fori=0 toE-1
RxMmodz if y=1
Ra=

R else (= | (6.4)
M;,; =M; xM,; modz
end for
w=Re

Modular exponentiation can easily be implementednifideal modular multiplication operator
exists. As explained before, it is costly to impéeTthan ideal modular multiplication module in
hardware and Montgomery multiplication algorithm3[36] is preferred for hardware

implementation, instead.

The undesired 2 factor (mentioned in Chapter 4, Section 3) thatniomery modular
multiplication introduces has to be taken care of Mmodifying the original modular
exponentiation algorithm, which leads to the Momigoy modular exponentiation. Then, the

Montgomery modular exponentiation algorithm is edited as:

k =2°N modz
M, =MMM(x k 2
R, =MMM(, k 2
fori=0 toE-1
R, = MMM(R, M, 2 if y=1 (6.5)
1R else
M, = MMM(M;, M,, 2)
end for
w=MMM(R.1, 2

where

w= X’ mod z. (6.6)
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6.4.2 Software Overview of RSA

RSA encryption algorithm has different modes, sash RSA-512, RSA-1024, RSA-2048,
depending on the length of the inputs. Therefof@ARs performed on 64, 128 or 256 byte (512,
1024 or 2048 bits) blocks. However, an RSA inputas directly sent to the MMM coprocessor
in 512, 1024 or 2048 bits format. At first, neceggdata (such as message, keys, modulus and K
constant) is read from corresponding RAM addreséssmemory locations are 32-bit wide,
MMM inputs are sent to corresponding 16(x32=512-3P(x32=1024-bit) or 64(x32=2048-bit)
input addresses to be processed. The rest is sitmiBMES and SHA-1 coprocessor operation. A
write into the virtual MMM command/status registatiarts its operation, activates the busy
signal, and halts the processor program executditen MMM output is ready, busy signal is
released and processor program continues its rumabgferring the multiplication result from

the MMM output registers to target addresses inidanemory.

RSA algorithm can directly be implemented in sofevdRecall the algorithm in original format:

c=mmodn

K =2°N modn
My =MMM(m K n
R, = MMM(, K, n)

fori=0 toE-1 (6.7)
_|MMM(R, M, n) if e=1
Rﬂ_{R else
M;,; = MMM(M;, M;, n)
end for

c=MMM(R.1, 0

Then, the algorithm can be rewritten for softwanglementation as follows:

/1 m=MMM(m K n) //

/1

mem( MMM _A) « mem( m)
mem( MMM _B) « mem( K) ;
mem( MMM _C) « men( 1)
start=1;

mem( m) —« men{ MMM _Y) ;
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Il v =MMM (LK ,n) //
11
mem( MMM _A) « mem( ) ;
mem( MMM _B) « mem( K) ;
start=1;
mem( 1) « men{ MMM _Y) ;
fori=0to E-1
mem( MMM _B) « mem( m)
if e(i)
Il v =MMM (r,m,n) //
11
mem( MMM _A) « mem( 1) ;
start=1;
mem( 1) « men{ MMM _Y) ;
end if
Il m=MMM(mmrn) //
/1
mem( MMM _A) « mem( m) ;
start= 1,
mem( m) « men{ MMM _Y) ;

end for

Il v =MMM (r,1n) //

11

mem( MMM _A) « mem( 1) ;
mem( MMM _B) « men( 3 ;
start=1;

mem( 1) « men{ MMM _Y) ;

c— mem( 1);

The flowchart of RSA encryption is given in Figugd.
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Set RSA_mode
(512, 1024 or 2048

A

Set MMM_B = m
MMM_C =n

Set MMM_A=r
MMM_B = 1
MMM_C = n

cnt =16, 32, 64
according to mode]

Set MMM_A
MMM_B
MMM_C

m
K
n

Set MMM_B = m
MMM_C =n

Figure 6.4 Flowchart of RSA.
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CHAPTER 7

CONCLUSION

In this thesis, a compact cryptographic processoimiplemented. The processor is mainly
targeted for IPSec applications, and is composeda oZPU instruction set compatible
microcontroller core, and crytographic coprocessmmsnected to this core via a simple and

generic plug-in interface.

There are three coprocessors capable of implengetitthAES encryption and SHA-1 hashing in
full compliant with the standards, as well as Mamgry modular multiplication up to 2048-bits.
These coprocessors are accessed by the main temtarie like regular RAMs, which forms the
basis idea for the flexible interface. The integfé& generic in the sense that it allows any module
to be connected to the main core regardless ointng/output definition or the function of the

module with the addition of a simple wrapper arotmeimodule.

The cryptographic processor is intended as a prbobncept for the flexible interface and a
development platform for a commercial IPSec produttwill be possible to evaluate
performance of the complete IPSec protocol suitth@@processor on either simulation or FPGA

development boards.

In order to verify this claim and demonstrate thgability of the processor design, a set of IPSec
components and protocols (RSA, AES-CCM and HMAC-SHAare written in C, compiled to

generate ZPU machine code, and run on the procassonulation level.

This chapter proceeds with a summary of overalultesof this research, followed by the

suggestions directions for future work.

7.1 Results

To the best of our knowledge, this is the firstatographic processor that combines AES, SHA-1
and MMM cores in a single design, and provideseailile interface that allows integration of

even more modules of any kind. The closest soluti@enhave come across is the latest Intel
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processor family which has custom AES instructidt@wever, they are not only too expensive

for embedded applications, but also lack SHA-1 fastimodular multiplication capabilities.

The resultant processor occupies only 1982 sliogscan fit into the smallest Xilinx Virtex-5
device. The maximum clock frequency achievable lia tlevice is 63.41 MHz. The limiting
factor for the speed is the AES data path. It issfiile to further improve the speed by simply
implementing AES substitution boxes with ROM or RAdsed lookup tables instead of the
finite field arithmetic circuitry in the present gign. On the other hand, this type of

implementation offers a technology independentgiesi

The cryptographic processor shows superior throughgerformance compared to regular
embedded processors (such as MIPS or IA-32 basgdtemntures), thanks to the maximum
possible performance achieved by the fully par@lleE and SHA-1 cores. Even the performance
of the word-serial modular multiplier core can mnsidered to be higher than most designs in

terms of through per slice.

There is, of course, considerable throughput Iafis mspect to custom hardware solutions. The
average AES performance of the processor is al@gtercent of that of the AES coprocessor
when run in standalone mode. This is a direct tedfusoftware overhead, which adds several
extra cycles during memory transfers. However @&rnisacceptable cost considering the flexibility

and reconfigurability of the system.

7.2 Directions for Future Work

Two separate directions are envisioned for theréutdi the present design. The first is to improve
the microcontroller core, which can be achievedp$iniby implementing more instructions in
hardware instead of emulation. Such an effort wolhsiderably decrease the program memory
size thereby also decreasing the total system arehjncrease the throughput by minimizing
time in the execution of complex instruction. THéeet on the area and overall speed of the
system will be marginal since the main bottleneftksboth the area and speed performance
come from the coprocessors. Processor performamace be further improved with the
introduction of a pipeline into the system, whicaAncdrop the cycle count per instruction
significantly. However it will result in addition@lomplexity, such as use of dual-port memories,
additional registers for temporary storage, andruction pre-fetch logic. Such a solution may

not actually be worth the effort.
The next improvement will be in the speed-up of mentransfers. This can be achieved via a

simple direct memory access engine embedded imt@itbcessor as an additional accelerator.

With this approach, instead of transferring datardalwy-word within a for loop, it will be
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possible to transfer blocks of data with a singlgtriction. For example, in the current design,
the worst case AES encryption (AES-256) takes Xdesyto complete. However, writing the 4
words of data to the AES input registers and readive result back from the takes up to 48

cycles. This is more than 3 times the actual psioggime.

In a direct memory access engine solution, théditernative would be to build such engine into
each coprocessor separately. It will then be dafiicto provide the start pointers for the input
data and the result to this engine together witktaait signal (write into the virtual CSR as

before). The engine will read the 4 words of datafmemory in 4 cycles, in parallel write them

to AES input registers, and increment the stamtgoiby 1 at every read, start the AES engine,
upon completion of encryption read the results fitbin AES output registers and transfer them
to the memory again in 4 cycles. The total numii@yoles can be as low as 12, which is only 25

per cent of the current number.

It can be further improved by implementing a nedbddA engine, which writes the outputs of
the previous run to and reads the inputs of the nexfrom the memory while the current AES
run is still in progress. This will require douleffering, but effectively eliminate the memory

transfer overhead, at least for the coprocessa: run

In a second approach, there can be a single DMAnenihpat serves all coprocessors. This
solution will not be as effective as individual DMéngines. However, it will be much more

compact and configurable.

The best approach is to determine the system egaints with respect to the master application,
and implement the solutions that will address threggirements. The first step for this approach
is to tabulate the improvement and cost of eadhtisol, which in fact is the main future work to
be done.

As a further step, the design and implementatiotopfocessors for elliptic curve operations and
other widely used crypto algorithms (such as Camé¢l8], TDES [49,69] and the upcoming
new hash standard [70]) can be considered. Theybeaplug into the present architecture to

come up with a universal cryptographic processor.
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APPENDIX A

VERILOG CODES OF PROCESSOR AND COPROCESSORS

‘timescale 1ns/1ns
T T

1

/I ZPU Processor Top Block

1

module zpu_top

(ck, rn, ext_sel, ext_adr, ext_wen, ext_ren, e
.ext_out) ;

input ck ; Il Rising edge clock
input rn ; Il Active low reset
input ext_sel ;

input [15:0] ext_adr ;

input ext wen ;

input ext_ren

input [31:0] ext_inp , ; // Data input from CP

output ext_rdy ;// Ready outputto CP
output [31:0] ext out ;// Data outputto CPU
wire [31:0] out ; I/l RAM output

wire busy ;

wire [15:0] adr ;

wire wen ;

wire ren ;

wire [31:0] inp
wire [2:0] alu_op_sel;
wire [7:0] inst ;

wire im_flag ;
wire emu_flag
wire ssp_flag
wire Isp_flag ;
wire asp_flag ;

wire [6:0] im_data ;
wire [4:0] emu_data ;
wire [4:0] ssp_data ;
wire [4:0] Isp_data ;
wire [3:0] asp_data ;

wire oth_flag ;
wire psh_flag
wire ppc_flag
wire add_flag ;
wire and_flag ;
wire or_flag ;
wire Id_flag
wire not_flag ;
wire flp_flag ;
wire nop_flag ;

xt_inp , ext_rdy
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wire str_flag

wire pop_flag
wire pmem_re ;
wire pc_load ;
wire pc_inc ;
wire sp_load
wire sp_inc
wire sp_dec ;
wire tmp_Id_sp ;
wire tmp_Id rd ;
wire idim_upd
wire [2:0] cyc_in
wire act in ;

wire [15:0] sp_in
wire [15:0] pc_in
wire [31:0] tmp_in

wire idim_in
wire rdy_in
wire busy ext = busy || ext_sel;

reg [31:0] alu_out
reg [2:0] cyc

reg act ;
reg  [15:0] sp ;
reg  [15:0] pc ;
reg [31:0] tmp

reg idim

reg rdy ;

Zpu_pmem u_zpu_pmem (
.pmem_re ( pmem_re ),

pc (pc ),
inst (inst ),
ck (ck )

)

assign im_flag = inst[7] ; // immediate instructi
assign im_data = inst[6:0] ; // immediate data
assign emu_flag = (inst[7:5]==3'b001 ) ; // emulate
assign ssp_flag = (inst[7:5]==3'b010 ) ; // storesp
assign Isp_flag = (inst[7:5]==3'b011) ; // loadsp
assign asp_flag = (inst[7:4]==4'b0001) ; // addsp i
assign emu_data = inst[4:0] ; // emulate data
assign ssp_data = inst[4:0] ; // storesp data

assign Isp_data = inst[4:0] ; // loadsp data

assign asp_data = inst[3:0] ; // addsp data

assign oth_flag = (inst[7:4]==4'b0000) ; // other i
assign psh_flag = (oth_flag&&(inst[3:0]==4'b0010))
assign ppc_flag = (oth_flag&&(inst[3:0]==4'b0100))
assign add_flag = (oth_flag&&(inst[3:0]==4'b0101))
assign and_flag = (oth_flag&&(inst[3:0]==4'b0110))
assign or_flag = (oth_flag&&(inst[3:0]==4'b0111))
assign Id_flag = (oth_flag&&(inst[3:0]==4'b1000))
assign not_flag = (oth_flag&&(inst[3:0]==4'b1001))
assign flp_flag = (oth_flag&&(inst[3:0]==4'b1010))
assign nop_flag = (oth_flag&&(inst[3:0]==4'b1011))
assign str_flag = (oth_flag&&(inst[3:0]==4'b1100))
assign pop_flag = (oth_flag&&(inst[3:0]==4'b1101))

assign act_in = (cyc == 3'b000) ? 1'b1 : act ;

on flag

instruction flag
instruction flag
instruction flag
nstruction flag

nstructions flag
; Il pushsp flag
; Il poppc flag

; Il add flag

; Il and flag

; 1l or flag

; /l'load flag

; I not flag

; I flip flag

; /' nop flag

; Il store flag

; Il popsp flag
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always @ ( posedge ck or negedge rn)
if (Im)act<=#10

else act<=#1 act_in ;
assign cyc_in = (cyc == 3'b000) ? 3'b001 (
(act && 'busy_ext) ? {cyc[1:0],cyc[ 2]} : cyo) ;

always @ ( posedge ck or negedge m)
if (Irn)cyc<=#10 ;

else cyc <=#1lcyc in ;

assign pmem_re = (cyc==3'b000) || ( act && (~busy_e xt) && cyc[?] ) ;
assign pc_inc = cyc[0] ;

assign pc_load = cyc[1] && (ppc_flag || emu_flag) ;

assign pc_in = (act && busy_ext) ? (pc_load ? out: (pc_inc ?
pc+lipc)) : pc;

always @ ( posedge ck or negedge rn)
if (Im)pc<=#10
else pc<=#lpc_ in ;

assign sp_inc=cyc[0] ?
(ppc_flag||add_flag|land_flag||or_flag||str_flag):(

cyc[1] ? (ssp_flag||str_flag)
:1'b0);
assign sp_dec=cyc[0] ?
(Isp_flag||psh_flag|lemu_flag||(im_flag&&(idim==0)) ):

1'b0;

assign sp_load = cyc[1] && pop_flag ;

assign sp_in = (act && 'busy_ext) ? (

sp_load ? out : (
sp_inc ?sp+l:(
sp_dec ?sp-1:sp))) 1sp;

always @ ( posedge ck or negedge rn)
if (!'rn)sp<=#12039
else sp<=#lsp_in ;

assign tmp_Ild_sp = cyc[0] && psh_flag ;

assign tmp_Id_rd = cyc[1] &&
(asp_flag||add_flag||land_flag||or_flag||str_flag);

assign tmp_in=(act && 'busy_ext) ? (tmp_Id_rd ? out A(tmp_Id_sp ?
sp:tmp)):tmp ;
always @ ( posedge ck or negedge rn)
if (Im)tmp<=#10 ;
else tmp <= #1tmp_in ;
assign idim_upd = (im_flag && cyc[1] ) ;

assign idim_in=(act && 'busy_ext) ? (idim_upd ? 1:( cyc[1] ?
0:idim)):idim ;
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always @ ( posedge ck or negedge rn)
if (!rn)idim<=#10 ;
else idim <= #1 idim_in ;

Zpu_ram_top u_zpu_ram_top (
.ck  (ck ),
o (m ),
.wen (wen ),
ren  (ren ),
adr (adr ),
np  (inp ),
.ext_sel (ext_sel ),
.ext_wen (ext_wen ),
.ext_ren (ext_ren ),
.ext_adr (ext_adr ),
.ext_inp (ext_inp ),
.busy (busy ),
.out (out ),
.ext_out (ext_out )

)
assign wen=cyc[1] ?

(emu_flag||not_flag||flp_flag||psh_flag||ssp_flag||
)i(
cycl[2] ?
(asp_flag||add_flag|land_flag||or_flag||ld_
1'b0) ;
assign ren=cyc[0] ?
(emu_flag||str_flag||pop_flag||not_flag||flp_flag||
and_flag||or_flag||ld_flag||ppc_flag||asp_flag||ssp
(im_flag&&(idim==1))) : (
cyc[1] ?
(asp_flag||add_flag||land_flag||or_flag||ld_flag||st

wire asp = !( (cyc[2]&&str_flag) || (cyc[1]&&ld_fla
(cyc[1]&&ssp_flag) ||

(cyc[1]&&asp_flag) || (cyc[O]&&lsp_fl
(cyc[0]&&emu_flag) ) ;

assign adr = ( ( cyc[2] && str_flag ) ? tmp[15:0]
((cyc[l] && 1d_flag ) ? out[15:0]
((cyc[l] && ssp_flag ) ? (sp+ssp_dat
((cyc[l] && asp_flag) ? (sp+asp_dat
((cyc[0] && Isp_flag ) ? (sp+Isp_dat
((cyc[0] && emu_flag ) ? alu_out[15:
( asp ?sp

assign inp = ( (cyc[2] && (asp_flag || add_flag ||
or_flag)) || (cyc[1] && (not_flag || flp_flag ||
((idim==1)&&im_flag))) || (cyc[0] && emu_flag) )
? alu_out : (

( cyc[1] && ((idim==1)&&im_flag) )

?im_data : (
( cyc[1] && psh_flag )
?2tmp i (
( cyc[l] && emu_flag)
?pc  :out)));

assign alu_op_sel =im_flag ?3d5:
(asp_flag || add_flag) ? 3'dO :

Isp_flag|lim_flag

flag||str_flag) :

add_flag||
_flag||lsp_flag]|

r_flag):1'b0) ;
9) Il
ag)ll

:0) |
:0) |
a):0) |
a):0) |
a):0) |
0]:0) |
:0) ;

and_flag ||
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and_flag ?3dl:(

or_flag ?3d2:(
not_flag ?3d3:(
flp_flag ?3'd4:(
emu_flag ?23d6:3d7))))))

always @ (*)
case (alu_op_sel)
:alu_out = out + tmp ;

1 :alu_out = out & tmp ;

2 :alu_out = out | tmp

3 :alu_out = ~out

4 ;alu_out ={
out[0],out[1],0ut[2],out[3],0ut[4],0ut[5],0ut[6],0u t[7],0ut[8],0out[9
],0ut[10],0ut[11],0ut[12],0ut[13],0ut[14],0ut[15],0 ut[16],out[17],0u
t[18],0ut[19],0ut[20],0ut[21],0ut[22],0ut[23],0ut[2 4],0ut[25],0ut[26

];out[27],0ut[28],0ut[29],0ut[30],0ut[31] } ;
5 ;alu_out = {out[24:0], im_data };
6 ;alu_out ={22'd0, emu_data, 5'd0 };
default: alu_out=0 ;
endcase

assign rdy_in = ext_sel ? 0 : ((wen && (adr == 16'h OFFF)) ? 1: rdy)

always @ ( posedge ck or negedge rn)
if (Irn) rdy <=0
else rdy <= rdy_in;

assign ext_rdy = rdy ;

endmodule

‘timescale 1 ns/1ns
M|
1

/I ZPU RAM top block

1l
module zpu_ram_top
(ck,rn,adr,wen,ren,inp, ext_sel , ext_adr,
ext_wen , ext_ren, ext_inp, busy, out, ext_out );
input ck ; Il Rising edge clock
input rn ; Il Active low reset
input [15:0] adr
input wen
input ren

input [31:0] inp ;// Data input
input [15:0] ext_adr ;

input ext_sel ;
input ext_wen ;
input ext_ren ;

input [31:0] ext_inp ;// Data input from CPU

output busy ;// Busy signal to ZPU
output [31:0] out ;// Data output
output [31:0] ext out ;// Data output to CPU
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reg [3:0] sel

reg [31:0] outi ;
wire [31:0] int0 ;
wire [31:0] intl ;
wire [31:0] int2 ;
wire [31:0] int3 ;
wire [8:0] zadr ;

wire zwen

wire zren

wire [31:0] zinp

wire absy , sbsy, mbsy ;

assign zwen = ext_sel ? ext_wen : wen ;

assign zren = ext_sel ? ext_ren : ren;

assign zadr = ext_sel ? ext_adr[10:2] : adr[10:2] ;
assign zinp = ext_sel ? ext_inp : inp ;

Zpu_ram u_zpu_ram (
.ck (ck ),
.wen (zwen),
.ren (zren),
.adr (zadr),
inp (zinp),
.out (int0)
)

aes_128 u_aes_ram (
.ck (ck ),
am (),
.wen (wen ),
.ren (ren ),
.adr (adr ),
dinp (inp ),
.out (intl),
.busy (absy)
)

shal u_sha ram (
.ck (ck ),
amo(m ),
.wen (wen ),
.ren (ren ),
.adr (adr ),
dinp (inp ),
.out (int2),
.busy ('sbsy)

)

mmm_top u_mmm_ram (
.ck (ck ),
am o (m ),
.wen (wen ),
.ren (ren ),
.adr (adr ),
np (inp ),
.out (int3),
.busy ( mbsy)
)

always @ ( posedge ck or negedgern)
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if  (Irn ) sel <=0 ;
else sel <= adr[15:12] ;

always @ (*)
case (sel)
0 ;outi =int0 ;
1 zouti =intl ;
2 Jouti =int2 ;
3 Jouti = int3 ;
default : outi=0 ;
endcase

assign busy =absy | shsy | mbsy ;
assign out = outi;

assign ext_out = int0 ;

endmodule

T T

/I Top level module for AES

1

module aes_128 (adr,wen,ren,inp,ck,rn

input [15:0] adr ;

input wen ;

input ren ;

input [31:0] inp ;// Data input
input ck ; /I Rising edge clock
input rn ; // Active low reset
output busy ;

output [31:0] out ;// Data output

wire [2:0] kwadr = adr[2:0]

wire kwen = wen && (adr[15:8] ==
wire [1:.0] dwadr = adr[1:0]

wire dwen = wen && (adr[15:8] ==
wire [1:0] dradr = adr[1:0]

wire dren = ren && (adr[15:8] ==
wire mwen = wen && (adr[15:8] ==
wire cwen = wen && (adr[15:8] ==
wire ready

wire startp

wire round0

wire roundl ;

wire roundfn ;

wire round147 ;

wire round369 ;

wire round_odd ;

wire rcon_upd ;

wire active ;

wire [0:127] keyr

wire [0:127] sreg

wire [0:255] kreg ;// Sreg and Kreg outpu
wire [0:7] rcon ;// Rcon register outpu

, busy , out) ;

8h12) :
8h10) ;
8h1l) :

8'hl3);
8'hiF);
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wire [0:127] sint

wire [0:7] rint ;// Internal Rcon value

reg start ;

reg [1:.0] mode ;// Key mode
/l (mode=(00)-128/mode
/I mode=(10)-256)

reg [0:127] outi ;

reg [0:31] pinp ;

reg [0:31] outf ;

always @ ( posedge ck or negedge rn)
if (!'rn) mode <=#1 0 ;
else if (mwen) mode <=#1 inp[1:0];

always @ ( posedge ck or negedge rn)
if (!rn ) start <=#1 0;

else if (ready ) start <=#1 0;

elseif (cwen ) start <=#1 1;

pulse_gen u_start (
.pulse_in (start ),
.pulse_out (startp),
.pulse_type (1'b0 ),
.ck (ck ),

.m (m )

)

aes_control u_control (
.Start (startp ),

.ck (ck ),

.m (rn ),

.mode (mode ),
.round0 (round0 ),
.roundl (roundl ),
.roundfn (roundfn ),
.round147 (round147 ),
.round369 (round369 ),
.round_odd ( round_odd ),
.rcon_upd (rcon_upd ),
.active (active ),
sready (ready )

)

aes_sreg u_sreg (
wadr (dwadr ),
.wen (dwen ),
.active (active ),
np (inp ),
.State (sint ),
.ck (ck ),
amo(m ),
.out (sreg )

)

key unit u_kunit (
wadr  (kwadr ),
.wen (kwen ),

.ck (ck ),
.m (rn ),
inp - (inp ),
.rc (rcon ),

.mode (mode ),

=(01)-192/
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.Start (startp ),
.active (active ),
.round0 (round0 ),
.roundl (roundl ),
.round147 (round147 ),
.round369 (round369 ),
.round_odd ( round_odd ),
.krout (keyr ),

.out (kreg )

)

aes_rcon u_rcon (
.Start (startp ),
.rcon_upd (rcon_upd),
.rc (rint ),
.ck (ck ),
.m (rn ),
.out (rcon )

)

aes_comb u_comb (
.sreg  (sreg ),
.kreg (kreg ),
.rcon  (rcon ),
keyr  (keyr ),
.round0 (round0 ),
.roundfn (roundfn ),
.active (active ),
.State  (sint ),
.rc (rint )

)

always @ ( posedge ck or negedge rn)
if (Irn ) outi<=#1 0 ;
else outi <=#1 sint;

always @ (*)
case (dradr[1:0])
0 : pinp = outi[0 :31];
1 : pinp = outi[32 : 63] ;
2 . pinp = outi[64 : 95] ;
default : pinp = outi[96 :127] ;
endcase

always @ ( posedge ck or negedge rn)
if (!rn ) outf <=#1 0 ;

else if (dren ) outf <=#1 pinp;
assign busy = active ;

assign out = outf ;

endmodule

T T

/I Top level module for SHA-1

I

module shal (adr,wen,ren,inp,ck,rm,b usy, out);
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input [15:0] adr ;

input wen ;

input ren ;

input [31:0] inp ;// Data input
input ck ; /I Rising edge clock
input rn ; // Active low reset
output busy ;

output [31:0] out ; // Hash output

wire [3:0] dwadr = adr[3:0]

wire dwen = wen && (adr[15:8] ==
wire [3:0] dradr = adr[3:0]

wire dren = ren && (adr[15:8] ==
wire mwen = wen && (adr[15:8] ==
wire cwen = wen && (adr[15:8] ==
wire clearp, startp ;

wire cnt79, active, ready ;

wire [0:1] sel ;// Selector

wire [0:511] wout ;// Wreg output
wire [0:511] wnxt ;// Wreg next value
wire [0:159] aout ;// Areg output
wire [0:159] anxt ;// Areg next value
wire [0:159] hout ;// Hreg output
wire [0:159] hnxt ;// Hreg next value
wire [0:31] outf ;

reg start, clear ;

always @ ( posedge ck or negedge rn)
if (!r) clear <= 0;

else if (ready ) clear <= 0;

elseif (mwen ) clear <= 1;

always @ ( posedge ck or negedgern)
if (!r) start <= 0;
elseif (ready) start <= 0;
elseif (cwen ) start <= 1;
pulse_gen u_start (

.pulse_in (start ),
.pulse_out (startp),
.pulse_type (1'b0 ),

.ck (ck ),

.m (m )

)

pulse_gen u_clear (

.pulse_in (clear ),

.pulse_out (clearp),
.pulse_type (1'b0 ),
.ck (ck ),

.m (rn )

)

shal_control u_control (
.Start (startp) ,

.ck (ck ),
m(m ),

.cnt79 (cnt79 ),

820 ) :
gh21) ;
gh22) :
8'h2F) ;
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sel  (sel ),
.active (active),
.ready (ready )

);

shal wreg u_wreg (
.wadr (dwadr ),
.wen (dwen ),
.active (active ),
inp - (inp ),

.nxt (wnxt ),

.ck (ck ),
amo(m ),

.out (wout )

)

shal_areg u_areg (
.Start (startp),
.active ( active ),
.np (hout ),
.nxt  (anxt ),
.ck (ck ),
amo(m ),
.out (aout )

)

shal_hreg u_hreg (
.Clear (clearp),
Jdoad (cnt79 ),
.radr (dradr ),
.ren (dren ),
inp (160'h67452301efcdab8998badcfe10325476c3d
.nxt (hnxt ),

.ck (ck ),

am (),

.out (hout ),
.outf (outf )

)

shal comb u_comb (
.ap (aout[0:31] ),
.bp (aout[32:63] ),
.cp (aout[64:95] ),
.dp (aout[96:127] ),
.ep (aout[128:159]) ,
.wp (wout ),
.hp (hout ),
.sel( sel ),
.an (anxt[0:31] ),
.bn (anxt[32:63] ),
.cn (anxt[64:95] ),
.dn (anxt[96:127] ),
.en (anxt[128:159]) ,
.wn (wnxt ),
.hn ( hnxt )

);

assign busy = active ;

assign out = outf ;

endmodule

2e1f0) ,

123




‘timescale 1 ns/1ns
M

1

/I Top level module for MMM

1

module mmm_top (adr, wen, ren,inp,ck, rm,
/I Inputs

1

input [15:0] adr ;

input wen ;

input ren ;

input [31:0] inp ;// Data input
input ck ; /I Rising edge clock
input rn ; // Active low reset
/I Outputs

1

output busy ;

output [31:0] out ;

/I Internal wires and registers

1l

wire [5:0] a_wadr = adr[5:0]

wire a_wenb = wen && (adr[15:8]=

wire [5:0] b_wadr = adr[5:0]

wire b wenb = wen && (adr[15:8]=

wire [5:0] n_wadr = adr[5:0]

wire n_wenb = wen && (adr[15:8]=

wire [5:0] dradr = adr[5:0]

wire drenb = ren && (adr[15:8] =

wire mwenb = wen && (adr[15:8]=
/IRSA-512(00)/1024(01)/

wire cwenb = wen && (adr[15:8] =

wire ready ;

wire [5:0] cycle

wire [10:0] loop

wire [1:0] phase ;

wire a renb ;

wire b renb ;

wire s renb ;

wire n_renb ;

wire s_wenb ;

wire shit

wire [5:0] a_radr ;

wire [5:0] b radr ;

wire [5:0] s_radr ;

wire [5:0] n_radr ;

wire [5:0] s_wadr ;

wire [31:0] s inp ;

wire plcO0x

wire plclx

wire plcOxx ;

wire plcOx3 ;

wire plcl3 ;

wire plc003

wire plcOmO

wire plcOx0 ;

wire plc23 ;

wire plc20 ;

wire plcl10

busy, out) ;

=8h30)
=8h3l);
= 8h32);
= 8h33) ;
= 8h34)

2048(10) enable
=8h3F);
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wire plc2x

wire plc000
wire plclxd ;
wire plclxdd ;
wire plcOxxd ;
wire plcOxxdd ;
wire plcOx3d ;
wire plcOx3dd ;
wire plc13d ;
wire ple2xd
wire [34:0] t ;
wire q ;
wire ao ;
wire [1:0] s ext
wire [1:0] cinp
wire arsel

wire [31:0] arin
wire [31:0] aofull ;
wire qc ;
wire grin
wire crsel
wire [1:0] crin
wire [1:0] srin
wire tosel ;
wire torin ;
wire t0_out
wire tmpsel
wire [30:0] tmprin
wire [30:0] tmp ;
wire [31:0] a out ;
wire [31:0] b out ;
wire [31:0] n_out ;
wire [31:0] s out ;
wire [5:0] sasel ;
wire sesel ;
wire S ;
wire active

reg [1:0] rsa_mode ;
reg start ;
reg [31:0] arout
reg grout

reg [1:0] crout

reg [1:0] srout
reg tOrout ;
reg [30:0] tmprout ;

always @ ( posedge ck or negedge rn)
if (Irn) rsa_mode <= 0 ;
else if (mwenb ) rsa _mode <= inp[1:0];

always @ ( posedge ck or negedge rn)
if (!rn) start <= 0;

elseif (ready) start <= 0;

elseif (cwenb) start <= 1;

/I Calculations

I

wire [31:0]t0 = ( plcOOx ?

s_out );

wire [31:0]t1l = (plcOxx ?2(9@ ?n_out: 0
(plclx ? (~n_out) :n_out));
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wire [33:0]t2 = (plcOxx ? (a0 ?b_out:0
(plc13 ?{2'b11,32'd0}: 0 ));

wire [33:0]t3 = (plcOx3 ? (plcO03?0 :{s_ e
(plc1l3 ?{s_ext,32'd0}:0 ));

wire [1:0] t4 =cinp;

assign t = t0 + t1 + t2 + t3 + t4;

I
assign arsel = plcOmO ;

assign arin = arsel ? a_out : (plcOx3 ? (arout >> 1
always @ ( posedge ck or negedge rn)

if (Irn) arout <=#10 ;

else arout <=#larin ;
assign aofull = arsel ? a_out : arout ;

assign ao = aofull[0] ;

1

assign gc = (plc0O00 ? 0 : s_out[0]) (a0 & b_out[0

assign grin = plcOx0 ? qc : qrout ;

always @ ( posedge ck or negedge rn)
if (Irm) qrout <=#10 ;
else grout <=#1qrin ;

assign q = plcOx0 ? qc : grout ;

I
assign crsel = I(plcOx3 || plc13 || plc23) ;

assign crin = crsel ? t[33:32] : crout ;
always @ ( posedge ck or negedgern)
if (Irn) crout <=#10 ;
else crout <=#lcrin ;

assign cinp = plc000 ? 2'd0 : (plc10 ? 2'b01 : ((p!
0 : crout)) ;

I
assign srin = plcOx3 ? t[34:33] : srout ;

always @ ( posedge ck or negedge rn)
if (Irn) srout <=#10 ;
else srout <=#1srin ;

assign S_ext = srout ;

I
assign shit = t[33] ;

1
assign tOsel = plc0x3 || plc1x || plc2x ;

assign tOrin = tOsel ? (plcOxx ? t[32] : t[O]) : tO

always @ ( posedge ck or negedgern)

)
xt,32'd0}) :

) : arout) ;

B

c0xO || plc20) ?

rout ;
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if ('rn) tOrout <=#10
else tOrout <= #1 tOrin

assign t0_out = (plcOx3d || plc1xd || plc2xd) ? tOr out : t[0] ;

1
assign tmpsel = plcOxx || plc1x || plc2x ;

assign tmprin = tmpsel ? t[31:1] : tmprout ;

always @ ( posedge ck or negedge rn)
if (Irn) tmprout <=#10
else tmprout <=#1 tmprin ;

assign tmp = tmprout ;

I
assign s_inp= plcOxxd ? {t0_out,tmp} : {tmp,t0_out} ;

/l Modules

I

mmm__control u_control (
.ck (ck ),
.m (rn ),
.rsa_mode (rsa_mode ),
.Start  (start ),
.sbit  (shit ),
.a_radr (a_radr
.b_radr (b_radr
.S_radr (s_radr
.n_radr (n_radr
.S Wadr ('s_wadr )
.arenb (a_renb ),
.b_renb (b _renb ),
.S renb (s_renb ),
.n_renb (n_renb ),
.S_wenb (s _wenb ),
ready (ready ),
.plcixd (plcixd ),
.plcixdd (plcixdd ),
.plcOxxd ( plcOxxd ),
.plcOxxdd ( plcOxxdd ) ,
.plcOx3d ( plcOx3d ),
.plc0x3dd ( plcOx3dd ) ,
.plc13d (plcli3d ),
.ple2xd ( ple2xd ),
.plc000 ( plcO00 ),
.plc00x ( plcOOx ),
plcix (plcix ),
plcOxx ( plcOxx ),
.plcOx3 ( plcOx3 ),
.plc13 (plcl3 ),
.plc003 ( plcO03 ),
.plcOmO ( plcOmO ),
.plcOx0 ( plcOx0 ),
.plc23 (plc23 ),
.plc20 (plc20 ),
.plc10 (plcl0 ),

)
)

’
’

~—

.ple2x  ( ple2x
.active (active

127




a_tpram u_aram (
ck (ck ),
.wen (a wenb),
.wadr (a_wadr),
.wdat (a_inp ),
.ren (a_renb),
radr (a_radr),
.rdat (a_out )

)

b_tpram u_bram (
ck (ck ),
.wen (b_wenb),
wadr (b_wadr),
.wdat (b_inp ),
.ren (b_renb),
radr (b_radr),
.rdat (b_out )

)

s_tpram u_sram (
ck (ck ),
.wen (s_wenb),
.wadr (s_wadr),
.wdat (s_inp ),
.ren (sesel ),
.radr ( sasel ),
.rdat (s_out )

)

n_tpram u_nram (
ck (ck ),
.wen (n_wenb),
wadr (n_wadr),
.wdat (n_inp ),
.ren (n_renb),
radr (n_radr),
.rdat (n_out )

)
assign busy = active ;

assign out =s_out;

endmodule

assign s =active?0:1;

assign sasel = s ? dradr : s_radr ;
assign sesel=s ? drenb:s renb;
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APPENDIX B

C CODES OF APPLICATIONS

/*

*

* jpsec.h

* Header file for addresses of IPSec applications
*

*/

volatile int *ZPU_rsv ; ZPU_rsv = (volatile in

/* Reserved places for ZPU */

volatile int *ZPU_tmp ; ZPU_tmp = (volatile in

[* Temporary registers for processing */

volatile int*CCM_M ; CCM_M = (volatile in

[* CCM ICV length */

volatile int *CCM_Im ; CCM_Im = (volatile in

/* CCM message length */

volatile int *CCM_la ; CCM_la = (volatile in

[* CCM AAD length */

volatile int *CCM_NNCs ; CCM_NNCs = (volatile in
[*salt --- CCM nonce */

volatile int *CCM_NNCiv ; CCM_NNCiv = (volatile in
*IvV -~ CCM nonce */

volatile int *CCM_AAD ; CCM_AAD = (volatile in
[* CCM AAD */

volatile int *CCM_Kd ; CCM_Kd = (volatile in

/* CCM key input */

volatile int *CCM_conf ; CCM_conf = (volatile in

[* CCM configuration register - Key mode (mode=(00)
192/mode=(10)-256) */

volatile int *HMAC _Im ; HMAC_Im = (volatile in

/* HMAC message length */

volatile int *HMAC_Kd ; HMAC_Kd = (volatile in
/* HMAC key input */

volatile int *‘RSA_e ; RSA_ e = (volatile in

/* RSA e public key */

volatile int *RSA_d ; RSA_ d = (volatile in

/* RSA d private key */

volatile int * RSA N ; RSA N = (volatile in

/* RSA N modulus */

volatile int *\RSA_K ; RSA_K = (volatile in

/* RSA K constant */

volatile int *RSA _len ; RSA_len = (volatile in

[* RSA total message length as 32-bit address */
volatile int *RSA_conf ; RSA_conf = (volatile in

/* RSA configuration register - RSA mode (mode=(00)
1024/mode=(10)-2048) */

t*)0x0000 ;
t*)0x0100 ;
t*)0x0200 ;
t*)0x0210 ;
t*)0x0220 ;
t*)0x0230 ;
t*)0x0240 ;
t*)0x0250 ;
t*)0x0260 ;

t*)0x0270 ;
-128/mode=(01)-

t*)0x0300 ;
t*)0x0310 ;
t*)0x0400 ;
t*)0x0410 ;
t*)0x0450 ;
t*)0x0490 ;
t*)0x04D0 ;

t*)OX04EQ ;
-512/mode=(01)-

volatile int *\RSA_ED ; RSA ED = (volatile in t*)Ox04FO0 ;
[* RSA encryption/decryption select */
volatile int *MSG ; MSG = (volatile in t*)0x0500 ;

129




[* message */

volatile int*CCM_U ; CCM_U = (volatile in
[* CCM output's U */

volatile int *ZPU_RDY ; ZPU_RDY = (volatile in
[* ZPU ready register */

volatile int *ZPU_CSR ; ZPU_CSR = (volatile in
[* ZPU command/status register */

volatile int *AES in ; AES in = (volatile in

[* AES input */

volatile int *AES _out ; AES out = (volatile in

/* AES output */

volatile int *AES key ; AES_key = (volatile in

I* AES key */

volatile int *AES_mod ; AES_mod = (volatile in
/* AES mode */

volatile int *AES_CSR ; AES_CSR = (volatile in
[* AES command/status register */

volatile int *SHA_in ; SHA_in = (volatile in

/* SHA input */

volatile int *SHA_out ; SHA out = (volatile in

[* SHA output */

volatile int *SHA _cIr ; SHA_cIr = (volatile in

I* SHA clear */

volatile int *SHA_CSR ; SHA_CSR = (volatile in
/* SHA command/status register */

volatile int *MMM_Ain ; MMM_Ain = (volatile in
/* MMM A_input */

volatile int *MMM_Bin ; MMM_Bin = (volatile in
/* MMM B_input */

volatile int *MMM_Cin ; MMM_Cin = (volatile in
/* MMM C_input */

volatile int *MMM_Yout ; MMM_Yout = (volatile in
/* MMM Y_output */

volatile int *MMM_mod ; MMM_mod = (volatile in
/* MMM mode */

volatile int *MMM_CSR ; MMM_CSR = (volatile in
/* MMM command/status register */

t*)OX0EQOQ ;
t*)Ox0FQ00 ;

t)OXOFFF ;

t*)0x1000 ;
t*)0x1100 ;
t*)0x1200 ;
t*)0x1300 ;

t)0x1F00 ;

t*)0x2000 ;
t*)0x2100 ;
t*)0x2200 ;

t)0x2F00 ;

t*)0x3000 ;
t*)0x3100 ;
t*)0x3200 ;
t*)0x3300 ;
t*)0x3400 ;

t*)Ox3F00 ;

/*

*

* aes_ccm_ipsec_esp.c
* C code for AES-CCM

*

*

#include <stdio.h>
#include <stdlib.h>

void aes_ccm_ipsec_esp() {

#include <ipsec.h>
unsignedi,j ;
unsigned cnt
unsigned rpt ;
unsigned wpt ;
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unsigned tmp
unsigned mt1[4] ;
unsigned mt2[4] ;

/* AES mode assignment */
*AES _mod = *CCM_conf ;

/* AES key assignment */

AES_key[0] = CCM_Kd[0] ;
AES_key[1] = CCM_Kd[1] ;
AES_key[2] = CCM_Kd[2] ;
AES_key[3] = CCM_Kd[3];

if (*CCM_conf>0) {
AES_key[4] = CCM_Kd[4] ;
AES_key[5] = CCM_Kd[5] ;

}

if (*CCM_conf>1) {
AES_key[6] = CCM_Kd[6] :
AES_key[7] = CCM_Kd[7] ;

}
/* End of AES key assignment */

/* AES data assignment and encryption */

/* B0 */

AES_in[0] = (0<<31) | (1<<30) | ((*CCM_M-2)/2)
(3<<24) | (*CCM_NNCs<<8)>>8) ;

AES_in[1] = CCM_NNCiv[0] ;

AES_in[2] = CCM_NNCiv[1] ;

AES _in[3] =*CCM_Im;

[* Setstart =1 */

*AES_CSR=1;

* Stalls ZPU - AES core active */

/* When process finished, program jumps to the

/*B1*

if (*CCM_la==8){
tmp = (CCM_AADI[0] >> 16) & OXFFFF ;
mt1[0] = (*CCM_la << 16) |tmp ;
tmp =(CCM_AAD[1]>> 16) & OxFFFF
mtl1[1] = (CCM_AADI[0] << 16) | tmp ;
tmp = (CCM_AADJ[1] << 16) & OXFFFF0000 ;
mtl[2] = tmp ;
mt1[3] =0 ;

}

else if (*CCM _la==12){
tmp = (CCM_AADI[0] >> 16) & OXFFFF ;
mt1l[0] = (*CCM_la <<16) |tmp ;
tmp =(CCM_AAD[1]>> 16) & OxFFFF
mtl[1] = (CCM_AADI0] << 16) | tmp ;
tmp = (CCM_AADI[2] >> 16) & OXFFFF ;
mtl[2] = (CCM_AADI[1] << 16) | tmp ;
tmp = (CCM_AADI[2] << 16) & OXFFFF0000 ;
mt1[3] = tmp ;

}

AES in[0] = mt1[0] » AES_out[0];
AES in[1] = mt1[1] * AES_out[1];
AES_in[2] = mt1[2] ~ AES_out[2];

<< 27) |

next line */
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*/

*

AES_in[3] = mt1[3] ~ AES_out[3];

/* Set start =1 */

*AES_CSR=1;

* Stalls ZPU - AES core active */

/* When process finished, program jumps to the

**

wpt=0 ;

cnt=1 ;

for (i=0; i<(*CCM_Im>>2); i++) {

/¥ B2 ... B(K+P) */
mtl{wpt] = MSGJ[i] ;
wpt++ ;

if (wpt ==4){
mt2[0] = mt1[0] » AES_out[0];
mt2[1] = mtl[1] » AES_out[1];
mt2[2] = mtl[2] » AES_out[2];
mt2[3] = mt1[3] * AES_out[3];
}

Al ... A(R) */

AES_in[0] = (0<<31) | (0<<30) | (0<<29) | (
(0<<27) | (3<<24) | (*CCM_NNCs

AES_in[1] = CCM_NNCiv|[0] ;

AES_in[2] = CCM_NNCiv[1] ;

AES in[3] = cnt ;

[* Set start = 1 */

*AES CSR=1;

[* Stalls ZPU - AES core active */

/* When process finished, program jumps to

MSG[0+(4*(cnt-1))] = mt2[0] * AES_out[0] ;
MSG[1+(4*(cnt-1))] = mt2[1] * AES_out[1] ;
MSG[2+(4*(cnt-1))] = mt2[2] * AES_out[2] ;
MSG[3+(4*(cnt-1))] = mt2[3] * AES_out[3] ;

AES_in[0] = mt2[0] ;
AES in[1] = mt2[1] ;
AES _in[2] = mt2[2] ;
AES _in[3] = mt2[3] ;

[* Set start = 1 */

*AES CSR=1;

[* Stalls ZPU - AES core active */

/* When process finished, program jumps to

wpt=0;
cnt++

}
if ((*CCM_Im<<28)>>30)!=0) {
/¥ B2 ... B(K+P) */

for (i=0; i<(4-((*CCM_Im<<28)>>30)); i++) {
mtlwpt] = 0 ; wpt++ ;

next line */

0<<28) |
<<8)>>8) ;

the next line

the next line
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*/

*/

}

mt2[0] = mt1[0] » AES_out[0] ;
mt2[1] = mt1[1] * AES_out[1] ;
mt2[2] = mt1[2] * AES_out[2] ;
mt2[3] = mt1[3] * AES_out[3] ;

Al ... A(R) */

AES_in[0] = (0<<31) | (0<<30) | (0<<29) | (
(0<<27) | (3<<24) | (*CCM_NNCs

AES_in[1] = CCM_NNCiv|[0] ;

AES_in[2] = CCM_NNCiv[1] ;

AES in[3] = cnt ;

[* Set start =1 */

*AES CSR=1;

[* Stalls ZPU - AES core active */

/* When process finished, program jumps to

MSG[0+(4*(cnt-1))] = mt2[0] * AES_out[0] ;
MSG[1+(4*(cnt-1))] = mt2[1] * AES_out[1] ;
MSG[2+(4*(cnt-1))] = mt2[2] * AES_out[2] ;
MSG[3+(4*(cnt-1))] = mt2[3] * AES_out[3] ;

AES_in[0] = mt2[0] ;
AES_in[1] = mt2[1] ;
AES _in[2] = mt2[2] ;
AES _in[3] = mt2[3] ;

[* Set start = 1 */

*AES CSR=1;

[* Stalls ZPU - AES core active */

/* When process finished, program jumps to

}

1* AO */

mt2[0] = AES_out[0] ;
mt2[1] = AES_out[1];
mt2[2] = AES_out[2] ;
mt2[3] = AES_out[3] ;

AES in[0] = (0<<31) | (0<<30) | (0<<29) | (0<<2
(3<<24) | (*CCM_NNCs<<8)>>8) ;

AES _in[1] = CCM_NNCiv[0] ;

AES _in[2] = CCM_NNCiv[1] ;

AES _in[3]=0 ;

/* Set start =1 */

*AES CSR=1;

/* Stalls ZPU - AES core active */

/* When process finished, program jumps to the

if (“\CCM_M<12) {
CCM_U[0] = mt2[0] ~ AES_out[0] ;
CCM_U[1] = mt2[1] ~ AES_out[1] ;

}
else if *CCM_M<16) {

CCM_UJ2] = mt2[2] » AES_out[2] ;
}

0<<28) |
<<8)>>8) ;

the next line

the next line

8) | (0<<27) |

next line */
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else
CCM_UJ[3] = mt2[3] * AES_out[3];
/* End of AES data assignment and encryption */

int main(void) {

#include <ipsec.h>
unsigned i ;

*CCM_M =16;/*CCM ICV length  */
*CCM_Im = 36 ; /* CCM message length */
*CCM_la=12;/* CCM AAD length  */

*CCM_NNCs =0x00111213; /* salt --- CCM non
CCM_NNCIiv[0] = 0x21222324 ; [* IV --- CCM non
CCM_NNCiv[1] = 0x31323334 ; /* IV --- CCM non

CCM_AADI0] = 0xBOB1B2B3 ; /* CCM AAD */
CCM_AAD[1] = 0xB4B5B6B7 ; /* CCM AAD */
CCM_AAD|2] = 0XBS8B9BABB ; /* CCM AAD */

for (i=0; i<8; i++) {
CCM_Kd[i] =i ; /* CCM key input */
}

*CCM_conf = 0 ; /* CCM configuration register -
(mode=(00)-128/mode=(01)-192/mode=(10)-256) */

MSGJ[0] = 0xCOC1C2C3; /* message */
MSGJ[1] = 0xC4C5C6C7 ; /* message */
MSGJ[2] = 0xC8C9DO0D1 ; /* message */
MSGJ3] = 0xD2D3D4D5 ; /* message */
MSG[4] = 0xD6D7D8D9 ; /* message */
MSGI5] = OXEOE1E2E3 ; /* message */
MSG[6] = OXE4ES5EGE7 ; /* message */
MSGJ[7] = OXFOF1F2F3 ; /* message */
MSGJ[8] = OXxF4F5F6F7 ; /* message */
MSG[9] =0x11223344 ; [* message */
MSG[10] = 0x55667788 ; /* message */
MSG[11] = 0x99AABBCC ; /* message */
MSG[12] = OXDDEEFFOQO ; /* message */
MSG[13] = 0x12345678 ; /* message */
MSG[14] = 0xX90ABCDEF ; /* message */
MSGJ[15] = OXAABBCCDD ; /* message */

CCM_U[0]=0; /* CCM output's U */
CCM_U[1]=0;
CCM_U[2]=0;
CCM_U[3]=0;

AES in[0]=0; /* AES input */
AES_in[1]=0;
AES_in[2]=0;
AES in[3]=0;

ce */
ce */
ce*/

Key mode
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AES_key[0] =0; /* AES key */
AES key[1]=0;
AES key[2] =0;
AES key[3]=0;
AES_key[4]=0;
AES_key[5]=0;
AES key[6]=0;
AES key[7]=0;

*AES mod =0 ; /* AES mode */

aes_ccm_ipsec_esp() ;

/*

*

* sha_hmac_ipsec_esp.c

* C code for HMAC-SHA-1-96

*

*

#include <stdio.h>
#include <stdlib.h>

void sha_hmac_ipsec_esp(void) {

#include <ipsec.h>
unsigned i ;
unsigned done =0 ;
unsigned cnt =0 ;
unsigned mt[5] ;

/**** BO ****/
for (i=0; i<5; i++) {
SHA_in[i] = HMAC_Kd][i] ~ 0x36363636 ;

}
for (i=5; i<16; i++) {
SHA_in[i] = 0x36363636 ;
}

[* Set clear =1 */
*SHA clr=1;
[* For first input block */

[* Set start =1 */

*SHA_CSR=1;

* Stalls ZPU - SHA core active */

/* When process finished, program jumps to the nex
/**** BO ****/

[reek BL .. B(N) ¥/
if (HMAC_Im[0]'=0)[|(HMAC_Im[1]'=0)) {

while (done==0) {

for (i=0; i<16; i++) {

t line */
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SHA_in[i] = MSGJ[i+(cnt*16)] ;

if (HMAC_Im[0]!=0)&&(HMAC_Im[1]!=0)) {
if (HMAC_Im[1]==0) {
HMAC _Im[0]--;
HMAC_Im[1] = OXFFFFFFCO ;

else {
HMAC _Im[1] = HMAC_Im[1]-64 ;
}
cnt++ ;
}
else {
HMAC_Im[1] = HMAC_Im[1]-64 ;
if (HMAC_Im[1]==0) {
done=1;
}
cnt++ ;
}
/* Set start =1 */
*SHA CSR=1;

[* Stalls ZPU - SHA core active */
/* When process finished, program jumps to the
next line */

3**** B1 ... B(N) ***/

for (i=0; i<5; i++) {
mt[i] = SHA_out[i] ;

/**** AO ****/
for (i=0; i<5; i++) {
SHA_in[i] = HMAC_Kd[i] » 0x5C5C5C5C ;

}
for (i=5; i<16; i++) {
SHA_in[i] = 0xX5C5C5C5C ;
}

[* Set clear =1 */
*SHA_ clr=1;
[* For first input block */

[* Set start =1 */

*SHA CSR=1;

[* Stalls ZPU - SHA core active */

/* When process finished, program jumps to the nex tline */
/**** AO ****/

/**** Al ****/
for (i=0; i<5; i++) {
SHA_in[i] = mt[i] ;

}
SHA _in[5] = 0x80000000 ;
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for (i=6; i<15; i++) {
SHA in[i]=0;

}
SHA_in[15] = 0x000002A0 ;

[* Set start = 1 */

*SHA CSR=1;

[* Stalls ZPU - SHA core active */

/* When process finished, program jumps to the nex
/**** Al ****/

int main(void) {

#include <ipsec.h>
unsigned i ;

HMAC_Im[0] = 0x00000000 ; /* HMAC message leng
HMAC _Im[1] = 0x00000040 ; /* HMAC message leng

HMAC_Kd[0] = 0x12345678 ; /* HMAC key input */
HMAC_Kd[1] = 0X90ABCDEF ; /* HMAC key input */
HMAC_Kd[2] = 0x11223344 ; /* HMAC key input */
HMAC_Kd[3] = 0x55667788 ; /* HMAC key input */
HMAC_Kd[4] = 0x9900AABB ; /* HMAC key input */

MSGJ[0] = 0xC0OC1C2C3; [* message */
MSGJ[1] = 0xC4C5C6C7; [* message */
MSGJ[2] = 0xC8C9D0OD1; /* message */
MSGJ3] = 0xD2D3D4D5; /* message */
MSG[4] = 0xD6D7D8D9 ; /* message */
MSGI[5] = OXEOE1E2E3; /* message */
MSG[6] = OXE4ESEGE7 ; /* message */
MSGJ[7] = OXFOF1F2F3; /* message */
MSGJ[8] = OXxF4F5F6F7 ; /* message */
MSG[9] =0x11223344 ; [* message */
MSG[10] = 0x55667788 ; /[* message */
MSG[11] = 0x99AABBCC ; /* message */
MSG[12] = OXDDEEFF00 ; /* message */
MSG[13] = 0x12345678 ; /* message */
MSG[14] = 0xX90ABCDEF ;  /* message */
MSG[15] = OXAABBCCDD ; /* message */

for (i=0; i<16; i++) {
SHA in[i]=0; /* SHA input */

for (i=0; i<5; i++) {
SHA out[i]=0; /* SHA output */
}

sha_hmac_ipsec_esp() ;

th */
th */

tline */
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/*

*
*mmm_rsa_ipsec_esp.c
* C code for RSA

*

*

#include <stdio.h>
#include <stdlib.h>

void mmm_rsa_ipsec_esp(void) {

#include <ipsec.h>
unsignedi ,j ;
unsigned len , sel
unsigned cntl , cnt2 ;
unsigned e , e_bit;
unsigned m[64] ;
unsigned r[64] ;

/* RSA mode select */

if (*RSA_conf==0)/{
sel =16 ;
len = (*RSA_len>>4) ;

}

else if (*RSA_conf==1){
sel =32;
len = (*RSA_len>>5) ;

else {

sel=64;

len = (*RSA_len>>6) ;
}

/* MMM mode assignment */
*MMM_mod = *RSA_conf;
/* End of AES mode assignment */

for (i=0; i<len; i++) {

for (j=0; j<sel; j++) {
m[j] = MSG[(sel*i)+] ;

[*** MME calculation ***/

*m = MMM(m,k,n) */

/* Set MMM's input C */

for (j=0; j<sel; j++) {
MMM_Cinl[j] = RSA_N[j ;

}

[* Set MMM's input A */

for (j=0; j<sel; j++) {
MMM_Ain[j] = m[j] ;

}

[* Set MMM's input B */

for (j=0; j<sel; j++) {
MMM_Bin[j] = RSA_K][j] ;

}
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*

*

1**/

[* Set start = 1 */

*MMM_CSR =1

* Stalls ZPU - MMM core active */

[* When process finished, program jumps to

1**/

/* Set m to MMM's output Y */
for (j=0; j<sel; j++) {
m[j] = MMM_Yoult[j] ;

I*r = MMM(1,k,n) */

[* Set MMM's input A */

for (j=0; j<(sel-1); j++) {
MMM_AIn[j] =0;

}
MMM_Ain[sel-1]=1;

[**]
/* Set start =1 */
*MMM_CSR=1;

* Stalls ZPU - MMM core active */
[* When process finished, program jumps to

1**/

[* Setr to MMM's output Y */
for (j=0; j<sel; j++) {
rfj] = MMM_Yout[j] ;
}
[** For loop of MME **/
if *RSA_ED!=0) {
cntl=1;

else {
cntl = sel ;

}
while (cntl = 0) {
cnt2 = 32;

if (*RSA_ED!=0) {
e =*RSA e;

else {
e = RSA _d[cntl-1];
}
while (cnt2!=0) {
e_bit = (e<<31) ;
e=(e>>1);

cnt2-- ;

[* RSA operations of the for loop *
[* Set MMM's input B */

the next line

the next line
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for (j=0; j<sel; j++) {
MMM_Bin[j] = m[j] ;
}

1+
if (e_bit!=0) {

/*r = MMM(r,m,n) */

/* Set MMM's input A */

for (j=0; j<sel; j++) {
MMM_Ain[j] = r[j] ;

}

[**/

/* Set start = 1 */

*MMM_CSR=1;

/* Stalls ZPU - MMM core active

/* When process finished, progr
next line */

[**/

/* Set r to MMM's output Y */
for (j=0; j<sel; j++) {

rlj] = MMM_Yout[j] ;
}

}

*m = MMM(m,m,n) */
[* Set MMM's input A */
for (j=0; j<sel; j++) {

MMM_Ain[j] = m[j] ;
}

[**/

[* Set start = 1 */

*MMM_CSR =1

[* Stalls ZPU - MMM core active */

[* When process finished, program j
next line */

[**/

[* Set m to MMM's output Y */
for (j=0; j<sel; j++) {
m[j] = MMM _Yout[j] ;

/* End of RSA operations of the for
}

cntl--;

}
/** End of for loop of MME **/

[*r = MMM(r,1,n) */

[* Set MMM's input A */

for (j=0; j<sel; j++) {
MMM_Ain[j]1 =[] ;

}
[* Set MMM's input B */
for (j=0; j<(sel-1); j++) {

*/
am jumps to the

umps to the

loop */
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MMM_Bin[j]=0;
MMM_Bin[sel-1]=1;

¥/

[* Set start = 1 */

*MMM_CSR =1

[* Stalls ZPU - MMM core active */

/* When process finished, program jumps to
*

[**/

[* Set r to MMM's output Y */

for (j=0; j<sel; j++) {

rli] = MMM_Yout[j] ;
}

/*** End of MME calculation ***/

for (j=0; j<sel; j++) {
MSG[(sel*)+j] = r[j] ;

}

int main(void) {
#include <ipsec.h>

unsigned i ;

for (i=0; i<64; i++) {
RSA _d[i]=i; /*rsad private key */
}

*RSA e = 0x00010001 ; /*rsa e public key */

for (i=0; i<64; i++) {

RSA_N[i]=i; /*rsa N modulus */
}
for (i=0; i<64; i++) {

RSA _K[i]=1i; /*rsaK constant */
}

*RSA len=16; /*rsa total message lengt
address*/

*RSA conf=0; /*rsa configuration regis

*RSA ED =1; [*rsaencryption or decry
register*/

MSGJ[0] = 0xCOC1C2C3; /* message */
MSGJ[1] = 0xC4C5C6C7 ; /* message */
MSGJ[2] = 0xC8C9DO0D1 ; /* message */
MSGJ[3] = 0xD2D3D4D5 ; /* message */

the next line

h as 32-bit

ter */

ption select
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MSG[4] = 0xD6D7D8D9 ; /* message */
MSGI5] = OXEOE1E2E3 ; /* message */
MSG[6] = OXE4ES5EGE7 ; /* message */
MSGJ[7] = OXFOF1F2F3 ; /* message */
MSGI[8] = OXxF4F5F6F7 ; /* message */
MSG[9] =0x11223344 ; [* message */
MSG[10] = 0x55667788 ; /* message */
MSGJ[11] = 0x99AABBCC ; /* message */
MSG[12] = OXDDEEFFOQO ; /* message */
MSG[13] = 0x12345678 ; /* message */
MSG[14] = 0xX90ABCDEF ; /* message */
MSGJ[15] = OXAABBCCDD ; /* message */

*MMM_mod =0 ; /* MMM mode */

for (i=0; i<64; i++) {
MMM_AIin[ij=0; /MMM A input */
MMM_Bin[i]=0; /* MMM B input */
MMM_Cin[i]=0; /* MMM C input */
MMM_Yout[i]=0; /MMM Y output */
}

mmm_rsa_ipsec_esp() ;
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