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ABSTRACT

A GENERAL PSEUDOSPECTRAL FORMULATION OF A
CLASS OF STURM-LIOUVILLE SYSTEMS

Alici, Haydar
Ph. D., Department of Mathematics

Supervisor : Prof. Dr. Hasan Taseli

September 2010, 83 pages

In this thesis, a general pseudospectral formulation for a class of Stioumille eigenvalue
problems is consructed. It is shown that almost all, regular or singulam8tiouville eigen-
value problems in the Scbdinger form may be transformed into a more tractable form. This
tractable form will be called herewseighted equation of hypergeometric type with a pertur-
bation(WEHTP) since the non-weighted and unperturbed part of it is knowheasquation

of hypergeometric type (EHT). It is well known that the EHT has polynosaéltions which
form a basis for the Hilbert space of square integrable functions. despactral methods
based on this natural expansion basis are constructed to approximaigetnakies of WE-
HTP, and hence the energy eigenvalues of the@thger equation. Exemplary computations

are performed to support the convergence numerically.

Keywords: Schidinger operator, regular and singular Sturm-Liouville eigenvalue pmuhle

pseudospectral methods, equation of hypergeometric type, classicadanal polynomials.



Oz

STURM-LIOUVILLE S ISTEMLER ININ BIR SINIFI ICIN
GENEL BIR SANK [-SPEKTRAL FORM ULASYON

Alici, Haydar
Doktora, Matematik BIUmu

Tez Yoneticisi : Prof. Dr. Hasan Taseli

Eylul 2010, 83 sayfa

Bu tezde, Sturm-Liouvill&zdder problemlerinin bir sinifi icin genel bir sanki-spektral for-
mulasyon verildi. Sctiddinger formundaki neredeysétin dizgin ya da tekil Sturm - Liou-
ville 6zdéjer problemlerinin daha uygun bir formanlistirilebilecayi gosterildi. Bu formun
yalin hali hipergeometrik tip denklem (EHT) olarak biligdicin yeni form burada perturbe
edilmis airlikh hipergeometrik tip denklem (WEHTP) olarak adlandirlacaktir. Hiperge
ometrik tip denklemin, karesi integrallenebilir fonksiyonlarin olustdndHilbert uzayina
baz teskil eden polinomogumlerinin old@u biliniyor. Yeni formun, dolayisi ile orijinal
Schibdinger denklemininpzddjerlerini sayisal olarak hesaplamak icin bu polinom bazlari
esas alan sanki-spektral metodlar insa edildi. Metodun yakigsakldestekleyerornek

hesaplamalar yapildi.

Anahtar Kelimeler: Sclirdinger operdiri, tekil ve tekil olmayan Sturm-Liouvillé&zdeder

problemleri, sanki-spektralgntemler, hipergeometrik tipte denklem, klasik dik polinomlar.
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CHAPTER 1

INTRODUCTION

Mathematical models of many problems in physics and applied sciences ledtkterdial
eigenvalue problems. The most frequently encountered problem of tiesstyipe celebrated

Sturm-Liouville eigenvalue problem
Lu(x) = au(x), X € (a,b) (1.1

described by the second-order linear formally self-adjoiffedential operator

a6 | (P9 + a9 (12)
wherep > 0, p/, gandw > 0 are assumed to be real and continuous on the closed interval
[a b]. If aandb are finite, boundary conditions are imposed in the form

cosau(a) + sinap(@u’'(a) = 0

(1.3)

cospu(b) + singp(b)u’(b) = 0
wherea, 8 € [0, 7]. In this case, equation (1.1) together with the above boundary conditions
comprises the regular Sturm-Liouville system. On the other hand, the probdatteid singu-
lar, if either the intervald, b) is unbounded or the functions q andw satisfy the conditions
stated above on the open intenvallf), but at least one of these functions fails to satisfy them

at one or both end points.

A scalarq, for which (1.1) has a nontrivial solutiom(x) satisfying the boundary conditions,
is called an eigenvalue angXx) is the corresponding eigenfunction of the problem. Their

properties may be summarized in the following proposition whose proof céouhd in [20].

Proposition 1.1 For a regular Sturm-Liouville problem,



() Eigenvalues are real, simple (there is no two linearly independent &igetion having
the same eigenvalue) and constitute an increasing sequineel; < ... < Ap < ...

which tends teo.

(i) The eigenfunctionsgland y, associated with the eigenvalugg # A, are orthogonal

over the intervala, b) in the sense that

b
f Un(X)Un(X)W(X)dX = h26mn

where h is called normalization constant an%l, is the Kronocker delta. Moreover,
they form a complete orthogonal set of functions. In other words, theydororthogo-
nal basis in the Hilbert space?(a, b). Thus, any reasonable function can be expanded

into a Fourier series in terms of the sy} > .

(i) The eigenfunction y has exactly m zeros in the open inter¢alb). Moreover, the
zeros of ¢, and yy,1 are interlaced, that is, there exist exactly one zeropbetween

two consecutive zeros ofiLy.

Many of these problems can not be solved explicitly, and hence requéeksl@signed, i.e.,
accurate, cheap andfieient numerical algorithms to obtain approximate solutions. Most
commonly used numerical schemes may be classified into two main groups, nsimelyng

and matrix methods.

Basic idea behind the shooting method is to reduce the boundary valuerpr@blg to an
initial value problem and solve it over the interval o) for a sequence of trial values which
are adjusted until the boundary conditions at both ends can be satisfieltasieauisly, at
which point there is an eigenvalue [61]. The simplest such method is shdaimgne end

point to the other, sag to b. This means that one chooses initial conditions, for instance,
u@ = —sina, p(a)u’(a) = cosa (1.4)

which satisfy the boundary condition at Then the solution,(x; ) of the resulting initial
value problem is used to construct the so-cali@d-distanceor mis-matchfunction which
measures the deviation of(b; 1) from the boundary condition &t Thus, the natural choice

for the mis-match function is

D(1) = cosBua(b; A) + sinBp(b)u,(b; A) (1.5)
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whose zeros are the eigenvalues of the original problem which may Ipel toy standard

methods [61].

Another alternative is to shoot from two ends to some interior matching jgoimt(a, b).
In this case, in addition to the left-hand solutiag(x; 1), similarly, one constructs right-
hand solutioruy(x; 2) by using the boundary condition latand looks for a constant := Ag
for which ug(c; 10) = up(c; 1p). However, it is possible for some othgrvalues to have
Ua(c; 1) = up(c; 2) by rescaling the right-hand solution. But in this case, the obtained first
order derivatives of the left- and right-hand solutions do not agréeeatatching point any
more. Thus, forl to be an eigenvalue of the problem, the derivative valtieshould match
atc, as well as the function valueq49]. Therefore, the suitable mis-match function appears
to be the Wronskian afi; andu, at the matching point

Ua(C; 1) Up(C; 1)

D(1) = (1.6)
uz(c; ) ui(c; )

which is zero only when is an eigenvalue [61].

Itis pointed out in [61] that, numerically, for some choicesofomputation oD(1) may be
more complicated than the others. There are also some other disadvaritdgeshmoting
methods, for instance, oscillating character of the mis-distance functionsnitaéficult

to find the roots, and hence, the eigenvalues of the problem. More@mzrally shooting
methods are not able to determine the index of the approximated eigenvaluevétpthese

complications can be overcome by using thafer transformations [61]
u=Sirsing, pu = Sircosd (1.7)

which reduce the Sturm-Liouville eigenvalue problem to an equivalent, reanlifirst order

boundary value problems

(S aw-q)\ _. S’
2? = (E -3 )sm29— gcosm (1.8)
g = % cof 0 + AWS_ 9sinto + Sg sing cosd (1.9)

forr = r(x; 1) andéd = 9(x; 1) which are known as the amplitude andifer (or phase) angle,
respectively. Her& > 0 is a scaling function which is introduced for numerical reasons. If
S = 1, they are simply called Bfer transformations, otherwise they take on the name scaled

Prufer transformations. Eigenvalue problem can be defined by thguation and once it

3



is solved,r can be obtained by a quadrature [61]. Boundary conditions in (1.3)t¢ette

conditions
6(a) = ya, 6(b) = (1.10)
for 0, where

tany, = —tanaS(a), tanyp = —tanBS(b) (2.12)

which determine/, andyy, only up to a constant multiple af. The key point in Rifer trans-
formations is that each appropriate choice of this multiple specifies preciselgigenvalue
[61].

If the scaling functiors is independent of at the matching point and the end pointa and
b, theny, andyy, are also independent df In this case the scaledifer mis-match function
is defined as

D() = 6a(C; 1) — 6p(C; 2) (1.12)
wheref,(x; 1) anddy(X; 2) are the solutions of (1.9) satisfying
0a(a; 1) = va€[0,7), 6p(b;A) = yp € (O,7]. (1.13)
Thenitis proved in [61] that theth eigenvalue is the unique value such that
D(A) =nr, n=0,12... (1.14)
Moreover,D(1) is strictly increasing on the real line and bounded below.

For each value of the mismatch functi@{1) one needs to integrate (1.9). The numerical
reason behind the scaling functiBnis to reduce the cost of integrations and allow the code to
take as large step sizes as possible. Nevertheless, choosing anrap@saaling function is
not a trivial work. To this end, several researchers designed madHfider transformations,
for example, Bailey [4, 5] have chosen the scaling functiorSas nz/l wheren is the
eigenvalue index antis approximately the length of interval on whidkw — q is positive
and implemented it in the code SLEIGN [7]. See also SLEIGNZ2 [6] which igdas the
ideas and methods of the original SLEIGN code. Pryce [60] have nhibss a piecewise
linear function to keep some quantities in (1.9) suclsas — |q//S andS’/S small and put

it into practice in the NAG library codes DO2KDF and DO2KEF. Equation (bhe&)omes sfi

at some parts of the intervad,(©) wheredw — q < 0 [61]. Both SLEIGN and NAG codes
use explicit Runge-Kutta method to integrate (1.9) thus théiesfrom stepsize restriction

because of dftiness especially when solving for large eigenvalues [49].
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Another subclass of shooting methods for numerical solution of the Sturmville eigen-
value problems is the céicient approximation methods. Basic idea behind them is to re-
place the coféicientsp, g andw of the equation by low degree polynomials and then solve
the approximating problem. Pruess examined piecewise constant polyn@seaand it is
implemented in the code SLEDGE by Pruess and Fulton [59]. There is alsoeartmde,
called SLO2F, due to Marletta and Pryce [53, 54] which also uses Pmatbed. The method
relatively uninfluenced by the fitness however it is dicult to obtain higher order methods
[49].

Richardson extrapolation is natural if the @o@ents are sfliciently smooth but for the piece-
wise perturbation methods higher order methods can easily be constructieelse methods,
like the codficient approximation methods, déieients are replaced by piecewise polynomi-
als so that the resulting equation has closed form solution. The didyetce is that they use
perturbation theory to approximate théfdience between the solution of the approximating
and original problem [49]. However, they are designed for the numetieatment of the
regular Sturm-Liouville problems especially in the Siadinger form [43, 44, 45]. Later on
Ledoux et al. collected some higher order piecewise constant perturipagitnods in a MAT-
LAB package MATSLISE which also handles some singular cases suitte &&chodinger
equation with distorted Coulomb potential [50]. This is done by truncating theiteftlo-
main and adapting new boundary conditions. However, the processosicly a suitable
cutof value is not straightforward and generally depends on the problem ded of the
eigenvalue to be approximated. Moreover, boundary conditions dexegpbby artificial ones

which does not reflect the exact behavior of the eigenfunction.

Another important class of numerical methods for the approximationfi@rdntial equations
includes the matrix methods. Main objective of these methods is to approximaterthe c
tinuous derivative operator by its discrete analog on a certain set dspratied grid, mesh
or nodal points and then use it to solvedtdrential equations approximately. Accordingly,

equation (1.1) is reduces to a matrix eigenvalue problem

LnUn = Auy (1.15)

where the matriXy and the vectouy are the discrete representation of the operatand
approximate solutions at the grid points, respectively. Heigcalled approximation or trun-

cation order. Discrete representation maffetifrom a matrix method to another depending

5



on the used basis functions and the choice of the grid points. The three ngiasses of
matrix methods are finite fierence, finite element and spectral methods. Most of the ma-
trix methods available in the literature are belong to one of these three s@sclasto a

combination of these subclasses.

In a finite diference method each derivativelinis replaced by a suitableftierence operator.

For instance, first derivative operator may be replaced by cenffatelices

d _ f(x+h)—f(x-h)
d—Xu(x) = oh (1.16)

whereh is a small spacing between the nodal points. This means that the intarkjig
divided into a finite number of equidistant mesh points. Alternatively, (1.16) meaderived

in a different way [82]. First, one constructs the local interpolation polynomial
Pj(X) = Uj-18-1(X) + Ujao(X) + Uj+181(X) (1.17)

which is the unique polynomial of degree less than or equal to two witRj_1) = uj_1,
pi(xj) = uj and pj(xj+1) = ujs1 for fixed j. Here the cofficient functions are given by
a1(X) = (x= X)) (X = Xj41)/2h?, ap(X) = —(X = Xj1)(X — Xj;1)/h? anday(X) = (X — Xj_1)(X —
Xj)/2h2. Then diferentiation and evaluation of (1.17) at the node X leads to (1.16). Asis
seen the method approximates derivatives by low degree local polynomélsfaie they are
exact for polynomials of low degree. They usually generate bandédhtiee matrices that

are easy to implement but they are relatively low in accuracy especiallydioeheigenvalues.

The idea behind the finite element methods is similar to that of finfferénces. However,
the approximations by piecewise polynomials of low degree are performeadbintervals
which can easily be chosen to fit the geometry of the problem. Thus, theysefal for
solving problems with complex geometry. Since a few number of basis funaienssed in
each subinterval their matrix representations are sparse. Similar to fiffideedces accuracy

get worse for higher eigenvalues.
In spectral methods approximations are defined in terms of a truncates egpension

N
UNG) = ) Ukk(X) (1.18)
k=0

where the trial or basis functiong(x) are given and the expansion ¢oaentsux must be

determined. The chosen trial functions are orthogonal in the sense that

b
G d)p = f G (p0IdX = hedsa, kI =0,1...,N (1.19)

6



with respect to some positive weight functip(x), whereh is referred to as normalization

constant andy is the Kronecker’s delta. Now we introduce the residual
Ry = (L — /l)UN (120)

which should be forced to be zero in an approximate sense. This is da@wtting the scalar

product .
(Rn, ¥i)p = f Rn(X)¢i (X)p(X)dx = 0, i=01,....,N (1.21)

to zero, wher;(x) are called test functions and the weigl) is associated with the method
and trial functionspy(X) [14]. The choice of the test functions and the weight defines the
method. For example, the Galerkin type method corresponds to the casetiviéest func-
tionsy; are the same as the trial functiopisandp is the weight associated with the orthogo-
nality of the trial functions, that ip = p. The traditional Galerkin method applies when the

trial functionsgy in the expansion (1.18) satisfy the homogeneous boundary conditions.
Then, according to (1.21) the Galerkin equations are
(RN7¢i)p = (LUN _/luN7¢i)p =0, i=01,...,N, (122)

or else, replacingy by its expansion (1.18),

N N
> (Lo ot = D (B bk 1= 0,..eN. (1.23)
k=0 k=0

The scalar product® = (L¢x,i),, kK = 0,1,...,N are evaluated using the properties of
the trial functions, in particular their orthogonality, leading to a square matisize N + 1.

It is clear from (1.19) that the scalar produdt= (¢, ¢i), on the right hand side produces
diagonal matrix which becomes identity when the normalized trial funcﬁﬁem are used.
Therefore, the firsN + 1 approximate eigenvalues of (1.1) are given by those of the matrix
L = DB whereB is full and D is diagonal or even better, identity matrices. If the operator
L is self adjoint then the resulting matrB, and hencd., is symmetric. In this case, the
Galerkin approach is conventionally called Rayleigh-Ritz method. If it is nekibte to
evaluate the inner produdtéy, ¢i), in closed-form, one has to use numerical integration and

this scheme is called the Galerkin with numerical integration.

Note in the above case that the number of Galerkin equations is eXhetly. This is be-
cause the boundary conditions are satisfied by the trial functions. Wiseis thot the case,

the method may be applied by constructing a new basis from the existing orfgiisgtibe

7



boundary conditions. But the new basis may not be orthogonal, so thapbieach is not
much used and generally one prefers the so-cédlednethodlt is similar to Galerkin method
but none of the test functions need to satisfy the boundary conditiorerefbine, a supple-
mentary equations arising from boundary conditions are needed. Etaited discussion see

Gottlieb and Orszag [34] and Canuto et al. [14].

Another spectral type method is the collocation or pseudospectral methduidh the test

functions

i = o(X—X) (1.24)

are shifted Dirac delta functions centered at the so-called collocation ppm{s, b] and the

weightp = 1 is chosen to be unity. From (1.21) and (1.24) we simply get
Rn(x) =0 (1.25)
by using the fundamental property
b
f Rn(X)0(x — xi)dx = Ry(X), X € (a,b) (1.26)
a

of the Dirac delta function. Therefore, in the collocation method, the relsisleaactly zero
at certain points whereas in the Galerkin type method the residual is zero nmeue [14].

Among the spectral methods, pseudospectral methods are the easiest toantgiz7].

Most spectral methods use classical orthogonal polynomials (COPshasisaset. Shizgal
[68] introduced a relatively new spectral method called quadratureatiization method and
later on authors [18, 51] use it to solve the Sidinger equation for several potentials. The
method may be seen as the generalization of the pseudospectral methedi®baSOPs.
Main idea behind the method is to utilize a non-classical basis set to approxiraat@uition

of differential equations. To this end, by using the well-known three term e melation
they construct new polynomials which are orthogonal with respect to spewfis weight
function. In order to determine the d@ieients of the recursion numerically, they used dis-
cretized Stieltjes procedure which is proposed by Gautschi [30]. Thisepure computes
the codficients by a quadrature. However, if the domain of integration is too large/oid a
numerical overflow, suitable cufds needed for accuracy and stability. Moreover, the choice
of the weight function is very important so that the method converges raphitgh depends

on the physical nature of the problem under consideration [17].
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For a spectral method the error between the approximate and exact saleti@ase very
rapidly. This remarkable behavior is called spectral accuracy. Hawieve finite diference
scheme error decays algebraically. The reason is that, in contrast tgp@dgaomial (low
degree) basis of finite fierences, spectral methods use global (high degree) basis. That is,
to compute the derivative at a given point finitéfeiences use information related to a small
neighbourhood of the point whereas in spectral methods all collocatimspare applied

in the computation [82]. Consequently, resulting matrices are banded in fifiiszethce
schemes whereas they are full for spectral methods. Nevertheless théhsame accuracy is
desired, matrix sizes of the former are larger when compared to the latsemnatimes finite

differences can not reach the desired accuracy at all.

One of the most attractive and interesting problem of physical and prddtiegest is the one

dimensional time independent Sédimger equation
HY(X) = E¥(X) (2.27)

described by the Hamiltonian
2

H=—ib 4V, xe@h), —ws<a<bso (1.28)

whereV(x) is a guantum mechanical potential. Note that (1.28) is the special cas)f(th

p(x) = w(x) = 1 andq(x) = V(X). Itis also possible to transform (1.1) having arbitraryftiee
cient functionsp > 0, g, w> 0 into (1.27). This is done by the help of so-called Liouville’s
transformations [61] which reduce the classical Sturm-Liouville eigenyaioielems into the
Schiddinger (or Liouvillle normal) form. In general, because of its simple strectauthors
would rather approximate the Sturm-Liouville eigenvalue problems in thed8utger form.
However, in this thesis we transform almost all, regular or singular, Stuouville prob-

lems in the Schisdinger form having square integrable solutions, into a more complicated but

beneficial form

a@y’ + 7@y +v(@y=-ar@)y. ce(@b)cR (1.29)

which will be calledthe weighted equation of hypergeometric type with a perturbgidB-
HTP). Here o (£) andr(£) are polynomials of degrees at most two and one, respectively, and
Ais a parameter. The form in (1.29) is closely related to the equation of hypegric type
(EHT)

oc@y’ +7E)y =-1%, ée(@bcR (1.30)
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in whichv(¢) = 0 andr(¢) = 1. The functions/(¢) andr(¢) > 0 may, therefore, be regarded
as a perturbation and weight, respectively. Whh = 1 we might call (1.29) as an equation

of hypergeometric type with a perturbation (EHTP).

Itis known that the COPs are the solutions of EHT for specific valug$pivhich form a ba-

sis for the Hilbert spacef,(a, b) of square integrable functions [58]. Pseudospectral methods
based on Jacobi (e.g. Chebyshev and Legendre) polynoﬁﬁ’aqﬁf) of degreen of order

a > -1, B> -1 are suitable for bounded domains and can not approximate the problem de
fined over an unbounded domain directly. Either they should use domaaatiom followed

by artificial boundary conditions [32, 66] or map the unbounded domairaifitounded one

[13, 19] to handle the problem. Another alternative is the use of mappetijaalynomi-

als, see for example [37, 65, 67, 84]. Pseudospectral methods drastztmite polynomials
Hn(¢) of degreen and Laguerre polynomials;(¢) of degreen and ordery > —1 are some of

the natural choices for the problems over an unbounded domains.

The most widely used pseudospectral methods are Chebyshe\3(= —%) and Legendre

(e = B = 0) for bounded and Hermite and Laguerye< 0) for unbounded domains. How-
ever, for specific problems some other choices of the parametgrsandy may generate

more accurate results and converge faster. The first advantagevdbmeulation (1.29) is

that the WEHTP gives the possibility of deciding which polynomial class anddkeciated

parameter(s) are the most suitable as a basis set for (1.27) with a pedspatentiaV(x)

and an intervald, b).

Moreover, during the specific transformations on both independendgmehdent variables,
boundary conditions or asymptotic boundary conditions at infinity are auitcatig satisfied
so that we don’t have to impose any information related to boundary corsliisrother

methods do.

It is pointed out above that the COPs are the solutions of the EHT. Thus,ctimprise
the most natural expansion basis for the solution of the WEHTP since iteardn as the

perturbation over the EHT.

Therefore, the aim of the thesis is to construct unified pseudospemtnalifation of the WE-
HTP, and hence the Sditdinger equation, in its full generality, based on any polynomial solu-

tions of the EHT including every possible selectiowdf) andr(£). This formulation leads to

10



a unified symmetric matrix representation of the Sclimger equation defined over any sub-
set of the real line for a variety of quantum mechanical potentials. Clisedexpression for
the matrix elements are provided which only necessitates the knowledge afatimiopoints

and the known cd&cientso (), 7(£) andr(¢) of the WEHTP.

Accordingly, in Chapter 2, we review some basic properties of polynomidi$idt Chapter
3 is concerned with the construction of pseudospectfidmrdintiation matrices, general pseu-
dospectral formulation of the WEHTP and the review of some approximatguitserelated
to spectral methods. Chapter 4 contains the application of the pseudaspmctulation to
mainly the Schidinger type eigenvalue problems for numerical analysis. Finally, Ch&pter

concludes the thesis by discussing both the advantages and disadsarftégemethod.
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CHAPTER 2

POLYNOMIALS OF HYPERGEOMETRIC TYPE

In this chapter we review some basic and remarkable properties of the BHaréhnecessary
for the pseudospectral formulation of the WEHTP. Here, we presemethdts without their
proofs and refer the reader to Nikiforov and Uvarov [58] for moreuwdtihe special functions

of mathematical physics.

2.1 Some basic properties of polynomials of hypergeometrigpe

Equation (1.30) can be written in the Sturm-Liouville or self adjoint form

& |r@r@ |+ oy -o 2.1)
wherep is a function satisfying the separable Pearson equation
d
d—f[cr(f)p@)] = 7(€)p(©). (2.2)

All derivatives of the functions of the hypergeometric type are alsotfons of the hypergeo-
metric type which can easily be shown byfdrentiating (1.30) successively. This fact can be
used to show that the EHT has polynomial solutions \é8y= pn(£¢), of degreen for specific

values ofA® satisfying
A9:= 9 = -n[r' +3(n-1o”’], n=0,1.... (2.3)

These polynomial solutions are characterized by the celebrated Raslfayuaula
K, d"
p(&) dgn

wherek, andk;, are the cofficient of the leading and subleading terms, &jddenotes a

Pn(8) = ["@)pE)] = kne" + ™+ (2.4)

renormalization constant which depends on the standardization.

12



Orthogonality of the polynomials of the hypergeometric type may be summarized folth

lowing theorem.

Theorem 2.1 Let the cogicients of the EHT be such that

=0 k=01 (2.5)

o (€)p(E)E

at the boundaries of intervgh, b). Then the polynomialsyfx) of the hypergeometric type
having the real argumert, corresponding to the gerent values oft® = A9 in (2.3) are

orthogonal on(a, b) in the sense that

b
fa P Pa(E)p(E)E = h6imn (2.6)

wherep(¢) is now called the weighting functiobisn is the Kronecker delta and

1/2

b
hy = ( f pﬁ(f)p(f)df) 2.7)

is the normalization constant orSLnorm of the polynomial f{¢).

2.1.1 Zeros of polynomials of hypergeometric type

Moreover,pn(€) is orthogonal to every polynomial of lower degree [58] which can leslue

prove the following theorem.

Theorem 2.2 There exist exactly n real and distinct zefps = 1, 2, ..., n of the polynomial

pn(€) lying in the interval(a, b).

On the other hand, for each orthogonal polynomial there exist a finite sum

2,

n
k=0

1 ky 1 Pr1(§)  Prsa()

L A — (2.8)
hikner & =11 Pn(€) Pn(m)

Pk(€) p() =

Sl

which is known as Darboux-Christofel formula [58]. The following theor notifying the

location of zeros op,, may be proved with the help of Darboux-Christofel formula.

Theorem 2.3 The zeros of g¢) and p.1(£) are interlaced.
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This means that, the roots pf..1 alternate with those gpy, if they are sorted in ascending
order. In another words, there exist a zergghbetween two consecutive zerosmf, 1, and

vice-versa.

Under certain conditions any three functions of the hypergeometric typeocsmnected by a
linear relation [58]. Here we present two such relations. The first dhe isecurrence relation

for the three consecutive orthonormal polynomiglés) = h—ln pn(€) of hypergeometric type.

Theorem 2.4 [71, 3] The following relation

An¢n+l(§) + (Bﬂ - f)‘ﬁn(f) + An—llﬁn—l(f) = 09 n=1 2’ oo (29)

holds for any three consecutive orthonormal polynomials witi(¢) = O, ¥o(¢) = 1/ho,

where the cogcients

h ' ‘
+ +

N:

are given in terms of the normalization constant, leading and subleading @frpolynomials

of hypergeometric type.

Actually, these coicients can be identified completely by means of thefftments in the

EHT. Indeed, the ratiok,,1/k, andhn.1/h, are expressible as

0,0
Kni1 _ Kn+1 /12n12n+1

= 2.11
Kn Kn 2(2n+ 1)AQ ( )
and
hn+1)2 (kn+1)2 /1(r(1)) 2 1.2
) =4 e[+ 1P0(0) - (n+ Lo’ (0) + Si3e” (2.12)
[(32) =<(%) g |

where the parametey, that also appears iB,, is given by

K, n[T(O) +(n- 1)0'(0)] (2.1

v+ (n-21)o”

whose proofs can be found in [71].

Actually, the recursions in (2.11) and (2.12) can be solved to obtain exgmiesentations

for
nl 2n-1
kn = (=1)"2Kq (2ﬁ)l ]_[ 9, n=12... (2.14)
" m=n
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with kg = 1 and

_ 0)
2 = 2o (T'hoann " )2 ﬁ (45r2) pm N=12 (2.15)
n= 0 @) > T o :
/12n (zn)l m=1 /lm

whereh2 = [ ® p(¢)dé andpm = |[(m+ 1)20(0) — (M+ L)yo” (0) + 330" | for me N. While
solving for the leading cdBcientk, and normalization constahg, a special care should be
spent fom = 0 where the recursions are undetermined. Thus, one should remen®)em@

look at the limiting case when — 0.

The second recurrence is known as tlierential-djference relatiorrelating the derivative
of a polynomial of hypergeometric type with itself and that of degree one legsgiven in
[58] for unnormalized polynomials but here we state the relation for orttmalgpolynomials

of hypergeometric type.

Theorem 2.5 The relation

Cn

1 ’ _ /
Ega@waa-Bn—§—556530ww9+r@»

Un(€) + An-1¢n-1(8) (2.16)

n=12..., holds for any two consecutive orthonormal polynomials wherdé) = 0 and
©)
Yo(€) = 1/hg. The cogicient G, = T” while A, and B, are as in the previous theorem.

On the other hand, recursion (2.9) may, possibly, be used to determinertseafy,(¢) and
therefore those opn(£). Actually, running recursion (2.9) over the range- 0,1,...,N we

obtain an inhomogeneous linear algebraic system £1)t = b, or in matrix-vector form

[ Bo-¢ A o || wie | | o
Ab Bi-¢ A Z163) 0
Ar By-¢ . : = : (2.17)
An-1 || ¥n-a(é) 0
0 An-1 Bn=¢ || un() | | —Angn+(E) |

The right-hand side is & + 1 vector with only one nonzero component. Therefore, if we
requireyn;1(€) = 0 or, equivalently,pn+1(£€) = O then the system reduces to a standard
eigenvalue problermRt = £t with the eigenvalue parametérwhich provides us the roots,

i=0,1,...,Nof pn+1(€) as required [3].

Since the eigenvector associated to each eigenvallreisfunique up to a constant factor,

them™ computed eigenvectof" = (VgL v ... ,m_l,vm]T of the matrixR associated to the
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eigenvaluen, is a constant multiple of™ = [o(Em). Y1(&m). - . . ¥n-1(€m). Un(Em)] ", that is
v = at™. The value ofa can be determined by considering the first entviandyo(&m)
of the eigenvectorg™ andt™, respectively, sincéo(¢) = 1/hg is a constant polynomial and

hence, we obtaia = hovJ'.

Therefore, the valuggn(ém)} forn = 0,0,..., N of the orthonormal polynomials at the zeros

of yn+1(€) may be computed as

Yo(ém) » A —
Y1(ém) . v
|| (2.18)
YN-1(Em) Va1
YN(Em) A

in terms of the computed eigenvectdt of tridiagonal symmetric matriR.

2.2 Classical orthogonal polynomials (COPSs)

Excluding few degenerate cases every EHT can be put into threeicahfmrms in which
o(¢) = 1 - &2, ¢ and 1 by linear and scaling transformations which lead to the well-known
Jacobi, Laguerre and the Hermite polynomials, respectively. Keeping in tmatd(¢) is at
most linear, solving (2.2), up to constant multiplier, we find (@) = (1-¢&)(1+&)P, &7e™¢

and e¢, according to the descending degrees-@f) [58]. In this section, some important

and requisite properties of COPs will be outlined.

2.2.1 Jacobi polynomials

Leto (&) = 1- &2 andp, s(&) = (1 - £)%(1 + £ in the diferential equation (2.1). Then from
(2.2),7(X) = (e + B + 2)¢ + B — a and from (2.3 = n(n+ a + 8 + 1). The corresponding
polynomials are denoted and defined by the Rodriguez formula in (2.4)

PO - G a-grar ot gpla-arrare™]  @a9)

2"n!
n
whereK, = (—Z_nlnll is chosen for historical reasons. It is clear from (1.30) that Jacabnp-

mials satisfy the dferential equation
A=Y +[B-a—(a+B+2%ly +n(N+a+B+1)y=0. (2.20)
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Orthogonality condition in (2.5) is satisfied whan= -1 andb = 1 providedae > -1 and
B > —1. Thus, the Jacobi polynomials are orthogonal over the intepAll() in which the

real and distinct zeros lie. The leading fiodent of the Jacobi polynomials

- Z:n! (N+a+B+ 1)y (2.21)

Kn

may be computed from (2.14), where

I'a+m)

@m=a@+1)...a+m-1)= @

@o=1 (2.22)

is the so called Pochhammer’s symbol and can also be represented in tdfmerajamma
function. On the other hand, (2.15) leads to the normalization constant

5 2081 I'(n+a+1)(N+B+1)

= 2.23
" 2n+a+B+1 nI(n+a+p+1) (2.23)

of the Jacobi polynomials. They satisfy the three-term recurrence relatidheorem 2.4

with
- 2 n+1Mn+a+)n+B+1)n+a+B+1)
An_2n+a+,8+2\/ @n+a+B+1)2n+a+B+3) (2.24)
and
_ B%—a?
Bn = @n+a+p)@2n+a+pB+2) (2.25)

It is worth noting that

3 2 (a+1)B+1) _ p-a
Ao_a/+,3+2\/ a+B+3 andBO_a+ﬁ+2 (2.26)

which can be obtained by simplifying the expressionsin (2.24) and (2.2&)mva 0. Finally,

the codficient

Ch=n+a+p+1 (2.27)

that appears in the fierential-diference relation might easily be computed using the value

A =nn+a+p+1).

2.2.2 Laguerre polynomials

Wheno(£) = £ andp, (¢) = &€ we have, from (2.2) and (2.3)¢) = y + 1 - £andAy = n,
respectively. Corresponding polynomials defined by the Rodriguezularin (2.4)
dn

1
L@ = 5567¢ 4

(emves) (2.28)
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are known as the associated Laguerre polynomials and they are soldtithesdifferential

equation
&'+ (y+1-8y +ny=0. (2.29)

According to Theorem 2.1 they are orthogonal over the half lineoj(rovidedy > —1. The

codficient of the leading order term
nl
kn = (-1) ] (2.30)

and the normalization constant

h2 = %F(n +y+1) (2.31)

can easily be obtained from (2.14) and (2.15), respectively. For thedree polynomials, the

codlicients

Ay=-+yJn+1)N+y+1) andBy=2n+y+1 (2.32)

of the recursion in (2.9) are derived from (2.10). In this case thé&ic@nt emerging in (2.16)
is equal to unity, i.e.,

Ch=1 (2.33)

2.2.3 Hermite polynomials

If o(¢) = 1 andp(¢) = e, then from (2.2) and (2.3) we obtaitf¢) = —2¢ andA? = 2n,

respectively. Thus, the Hermite polynomials

Hn(€) = (—1)“erfzdo'§—nn (%) (2.34)
are solutions of the equation
Yy’ =2ty +2ny=0. (2.35)

In the light of Theorem 2.1, they are orthogonal over the real line with thienalization
constant

h2 = 2"nl /. (2.36)

The leading order term has the ¢@eientk, = 2" and the polinomials satisfy the three term

recursion in (2.9) with

A, = _”er L and B, =0 (2.37)
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whereas the constant

Ch=2 (2.38)

that come out in the flierential-diterence relation in (2.16). Notice that, for the Hermite case

the relation is so simple, i.64(¢) = V2nyn_1(¢). On the other hand, it takes the form
HL(é) = 2nHh-a(é), n=12,... (2.39)

for the unnormalized Hermite polynomials.
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CHAPTER 3

PSEUDOSPECTRAL METHODS

In this chapter, we construct the so-calleffefientiation matrices which can be seen as dis-
crete derivative operators. Then we develop pseudospectral latioruof the WEHTP. Fi-

nally, we review some approximation results related to pseudospectral method

3.1 Differentiation matrices

The use of pseudospectral methods as a tool for solving ordin@eyetitial equations at least
date backs to Frazer, Jones and Skan [28]. Then, in 1938, Lasbpased that the choice
of trial functions and the distribution of the nodal points are crucial to tleiracy of the
solution [48]. Later on, in 1957, Clenshaw applied the Chebyshev poliai@xpansion to
initial value problems. Then, application to boundary value problems deselop Villadsen
and Stewart in 1967 [83]. After 1970s it has been become a populap@merful way of
approximating ordinary and partialftkrential equations. One of the earliest application to

partial diferential equations published by Orszag who first used the term pgeadicd [15].

Roughly speaking, a pseudospectral method, also known as spattbahtion method, is

based on th&lth degree polynomial interpolation of a functigfs) denoted byiny(£),

N
INY(E) = Pn(©) = D ta(@n, (3.1)
n=0

where they, = y(&,) are the actual values of the functig(¥) at the specified nodes= &,
forn=0,1,...,N[29]. The set of Lagrange interpolating polynomigis(¢)} of degreeN is

defined by
(&)

= e (@ (32)

(&) =
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foreachn =0, 1, ..., N, in which

N
(&) = k[ € -&m) (3.3)
m=0

stands for a polynomial of degré¢ + 1 with the real and distinct roots at the nodes. The
Lagrange polynomials have the very well-known cardinality prop&itm) = dmnWheredmn

is Kronecker’s delta. As a result, both the interpolBg{(¢) and the functiory(¢) agree, at
least, at the nodeg(&n) = Pn(&n). Although the normalization constantis theoretically

unnecessary, it plays a remarkable role in the numerical algorithm.

It is also possible to approximate the derivatives of the funcyi@h by differentiating the
interpolantPy(&). Furthermore, the derivative values at the nogemay be determined in

terms of function valueg, = Pn(&n) by means of aifferentiation matrixdefined by

K

DY ;= [d¥] = d—k[fn(g)]l . mnk=12... N (3.4)
dé: &=&m

The approximate derivative valug& = [P(,\k,)(go), P(,\k}(fl),...,P‘,f,’(_fN)]T may therefore be

written in matrix-vector form

y¥ = D%y (3.5)

wherey = [yo, yl,...,yN]T is the vector of function values at the nodes. In particular, the

entries of the first and the second orddfetientiation matrices are defined by

27 (ém) _
oy
1| Em— &' (&) if m#n
" (3.6)
7 (En) o
' (&n) if m=n
and
3 ﬂ"(fm) ) ] .
—2d9 | if
g2 = L &m = én [ 7' (&n) ma[ [T M#N .
mn = g 7 (&n) R .
' (én) =

respectively [29, 79]. Note that the entries of the above matrices armebtfirst by diter-
entiating the Lagrange polynomialg(¢) to a desired ordek = 1, 2, ..., and then, evaluating
them at the nodal points,. In particular, diagonal entries are obtained from the derivatives

of £,(£) by a limiting process wheti — &y, since they are undetermined at the collocation

pointsé = &n.
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3.2 Gauss quadrature rule of integration

In this section we derive the Gauss quadrature rule based on the ze@snalized polyno-

1
NN

mial solutionsyn1(£) = pn+1(€) of EHT. Consider the integral

b
fa U(E)p(E)de (3.8)

wherep is associated with the orthogonality pf.1(£). It may be approximated by replacing

the functionu by its Lagrange interpolanfu in (3.1) based oin.1(€),

b b b N N
[ wened~ [ nu@peds= [ wi@p@de =Y wmon  @9)
a a a n=0 n=0

whereu, = u(é,) and the weights),, of Gaussian quadrature rule are given by

1 ® Yn11(é)
Yo En) Ja €-én

which are called the Chrisfi@l numbers. Now, letting = &, and pn+1(€) = hnvyn+1(€) In

b
wn = f (€ = p(E)de (3.10)

(2.8) we obtain

hnet KN Uns1(©wn(én)
bn kvt E-én

sinceyn.1(&n) = 0. Then, multiplication of both sides of the last equationgg(¢)p(£) and

N
> iEnn) = (3.11)
k=0

integration fromato b lead to the equation

b
Yn+1(8) by knir 1
a f‘fn p(f)df— hN+1 kN l//N(fn)

where we have used the fact tha§(¢) = 1/hg is orthogonal to allpk(é) for any k =

(3.12)

1,2,...,N. Thus, inserting the last equation into (3.10) we get

hn Knga 1 1 1
. _t 3.13
O Rt Ky T @INED) A T i@ (313)

whereAy is one of the constants of the three term recursion in (2.10). Finally, (2ib)

& =¢randn =N + 1implies that

_ 1 o (&n)
A2 Cony2 Y3 (én)

sinceyny1(&n) = 0. Notice that everything is known, excefy(£n). However, with a careful

(3.14)

Wn

look, we see that it is no more than the last entry
= —Vr’:l 3.15
lﬁN(fn) hOVS ( . )
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of the equation in (2.18). However, there exist an alternative way of atingpthe weights

wp. The limiting cas& — &, of (3.11) leads to the equation

N
D Tw(ED) = Antiy s Enun(En) (3.16)
k=0
or equivalently we have
l// (fn) 1
n) = AZConso— el 3.17
Zw@) M2y = o (3.17)

on using (2.16). Therefore, the weighis of Gauss quadrature have another representation
N 12N

_ 206y [T 2

= > k() = (hovg) ;)(vﬂ) (3.18)

k=0

where we have used (2.18). Note that the sum on the right hand side iguaee of the

Euclidean norm of the vectaf'. Hence, we have

2
wn:@,nzo,lw.,N (3.19)
IVl

. 2 . .
which reduces tay, = (hovg) when the normalized eigenvectors are used. Actually, most of
the linear algebra subroutines produce normalized eigenvectors togethehe associated

eigenvalues if the Euclidean norm is used.

Gaussian quadrature formula based on the zergg of(¢) integrates polynomials of degree
less then or equal toN2+ 1 exactly. The two others, Gauss-Radau and Gauss-Lobatto quadra-
tures, are exact for polynomials of degree less then or equalitar®l 2N — 1, respectively

[29].

On the other hand, Gauss quadrature is exact for the integral
b
[ t@tmerpterce (3.20)
a
since each Lagrange polynomialé) is of degreeN. Therefore, we have
b N
[ t@rm@p@ce = 3 tndtmeun = ondmm (3.21)
a k=0

on using the cardinality propert4(ém) = dmn Of Lagrange polynomials.
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3.3 Pseudospectral formulation of the WEHTP

In the previous chapter it is given that the each COP solutieh= pn(¢) of the EHT has
exactlyn real and distinct zeros which are interlaced [58]: sorting all the rootsderading
order, the roots opn.1(£) alternate with those gbn(£), so it obeys the definition of(¢) in

(3.3). Therefore, setting

N
7€) = k| [(€ ) = -Prea@) = vnsa(®) (3.22)
m=0 n

to be the polynomial solutiopn.1(€) of the EHT, we define, from (3.6), the first ordeffdi-

entiation matrix

2 'J’Nﬂ(fm) .
f
g 1] B Eva@ T v
mn — é T(é:) ( : )
—an) if m=n

in which the main diagonal entries have been simplified by using the faghthaf¢) satisfies
the EHT in (1.30). Similarly, after some algebra, the elements of the secoaddifferenti-

ation matrix in (3.7) take the form

3 [7(ém) 2 ¥, Em) _
) f
1| ém—én [a(fm) - gn] Vo1 En) if m#n
=3 (3.24)
O-(lgn) {% [0 (én) + 7(én)] + N [T' +2(N+ 1)0./,]} i men

with the help of (1.30) and (2.3) [3]. Higher ordefldirentiation matrices may be obtained in
a similar manner, however, first and second ordéfedintiation matrices are Sicient for a

treatment of a second ordefi#irential operator.

Now that the interpolar®y (£) in (3.1) is proposed to be an approximate solution of the EHTP,
whereN may be regarded as the approximation or truncation order. Thereferegquire that

the EHTP is satisfied at the nodal poitits

N N
Z [o(Em)EH (Em) + T(Em)Ea(Em) + V(Em)en(Em)] Yn = —Ar (ém) Z On(Em)Yn (3.25)
n=0 n=0

form=0,1,...,N. This leads to the discrete representation

By = -1y (3.26)

of the WEHTP. Here, the vectgt = [y, Y}, ...y} ]" involves the values of the eigensolution

associated with the eigenvalggeat the nodal points, and the general elﬁr% of the resulting
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matrix 8 = [Bmd is given by [3]
— 1
Bmn = P [0 (Em)dTn + T(Em) S + V(Em)Smnl , mn=0,1,...,N. (3.27)
m
By using (3.23) and (3.24) the first two terms in (3.27) can be incorpotatddfine

120—(§m) '70;\|+1(§m)

_ 1 (Em = &n)? Y1 (én)
7<mn =T

em | e

a(én)

which represents theftect of kinetic energy terms independent of a specified potential [3].

if m#n
(3.28)

[1(&0) - 207 ()] - 2N [/ + 3(N+ 1)o”] if m=n

It seems that the evaluation @tnn requires the computation of the derivatiygs, , (én) of the
classical orthogonal polynomials at the nodes. Fortunately, a nice similaitgftrmation

B = S18Sin which S = diag{so, S, . . .. Sm, . . ., Sn} With

Mt//NJrl(fm), m=0,1...,N (3.29)

r(ém)

makes it possible to get rid of such a cumbersome labor. Furthermore, thg mg8.26)

Sm

reduces to a symmetric one, sBy= 31(77 + V)S, whose entries are given by

an = 7(mn + (Vmémn (330)
where
12 o (Em)o(én) _
f
1 (Em—&n)? \ rEmr&n) if m#n
" 6 1 ) (3.31)
oen g ! 7 i
r(&n) {0'(§n) [7(&n) — 207 (&n)] - 2N [T + %(N + 1o ]} if m=n
andvV = [Vy] with
_ v(ém)
") (3.32)

Thus, the eigenvalues of (3.26), and, hence, the approximate eigesditne EHTP can be

determined by the symmetric matrix eigenvalue problem
Bu=-Au (3.33)

since the similar matrices share the same spectrum [3]. The construction r&stiigng
symmetric square matri8 of size N + 1 can be accomplished by the calculation of the

codficient functionsr(¢), 7(£), v(¢) andr(¢) in EHTP (1.29) at the nodes which are the roots
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& of the appropriate classical orthogonal polynonpgl1(£) employed in the set up of the
Lagrange interpolating polynomials. However, we have already fourtdthbarootsé, of

pn+1(€) are the eigenvalues of the symmetric tri-diagonal md®rir (2.17).

Therefore, the pseudospectral formulation of the EHTP leads to the syimmetrix eigen-
value problem whose construction requires only the knowledge of thaest functions

and the roots of the polynomial solution of the associated EHT.

On the other hand, thieth eigenvectos/ of (3.26) is given by the formula
y = Su (3.34)

in terms of thei-th eigenvectou! = [ul, ul,...,uj]" of the symmetric matrb8 = S8S
sinceS18Su = —u implies thatB[Su] = —A[Su]. Thus, them entryy, = y' (&) of theith

eigenvector/ may be written ag),, = sy, or in nodal notation

o (ém)

yl(fm)z r(€m)

l/’N+1(§m)u (ém) (3.35)

upon using (3.29). The only unknown valuey§, ,(&m) to computey®(&y). In order to
determine it, the most primitive way is to construct the normalized polynomial withoibis r
&m, differentiate it and evaluate at the nagg which is not a practical idea for computer
implementation. However, that value can be obtained in a beautiful mann#risTend, we

first use Theorem 2.5 withand¢ are replaced bil + 1 andé,, respectively, to get

ANCons2

o N (Em) (3.36)

w;\]-{-l(é‘:m) =

sinceyni1(ém) = 0. Then, from (2.18) we see thag (£m) is related with the last entry of the
computed eigenvectat”

_v’,ﬂ 3.37
of the symmetric tridiagonal matriR in (2.17). Therefore, thié" eigenvector of the WEHTP

has the relation

Y (&m) = —NC2N2
\/O'(fm) (ém) hon

with the corresponding eigenvectdrof the symmetric matri8 at a collocation poingn.

U (ém) (3.38)

Thus, in a constructive way, we proved the big part of the following pston:
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Proposition 3.1 The approximate eigenvalueg; of the WEHTP in (1.29)

a@y’ + 1@y +v(@)y= -y, ce(@b)cR

are the eigenvalues of the linear syst®&u = —Au in (3.33) where

12 o (ém)o(én) .
f
1| Em- &2\ rémrén) if m#n
1 { 7(én)
rén) Lo(én)

mn =

[7(én) = 207 ()] = 2N 7" + 3(N + D)o’ | - 6v(&n) ¢ if m=n
(3.39)

and the values ') of the corresponding normalized eigenfunctions (ﬁmsbnse that is

defined in (2.7)) at the nod&s, are given by

AvVConiz W W& = U (ém)

Vo (Emr Em) hoVg Vo (ém)

wheneveu' is the normalized (in Euclidean norm) eigenvectofof

Y (ém) = (3.40)

Proof. Note that the equation (3.40)ftérs from (3.38) by the squre root sign for the term
Cons2. Now, let us show that (3.40) contains the values of the normalized eigetidos at
the nodes. It is not dlicult to see that ip is the weight function of the EHT in (2.1) then
p = rpis that of the WEHTP in (1.29). Thus, we have

. b b
@lr. = f Y @175()de = f Y @12 )p(€) k. (3.41)

Applying the Gauss quadrature rule in (3.9) witff) = [y'(£)]?r(¢) to the last integral we

obtain X N
V@I = f Y @FPr©p@d = > Iy Eml?r Emwm (3.42)
’ a m=0

where the weigths), are defined in (3.14)-(3.15). Then, it reduces to
V@, = D [uEm? =1 (3.43)
r m=0

upon using (3.40) which is equal to unity by assumption.

3.4 Error estimates for spectral methods

In this section we summarize some results from the literature concerning thexapation

errors for spectral methods.
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For a numerical algorithm there are some important issues such as cangsistability and
convergence. When these conditions are fulfilled, the natural quesigesawhat is the
rate of convergence? The rate depends on the regularity of the ampter function which
might be a solution of a dierential equation. That is, the smoother the function, the faster
the convergence is. In the error analysis of spectral methods, smestbha function is
measured in terms of its norm in an appropriate Sobolev space since it isuitai®esfor the

analysis of diferential equations [29].

There are numerous results on the analysis of polynomial methods in Saipale®s which
starts with the paper of Canuto and Quarteroni [16] in 1982. Besideoigrepers on the

subject, we have some good reference books such as [12, 13, 28, B5].
We start with the Hermite spectral approximations. The weighted space

L2(R) = {u ] [lull 2(gy < o0} (3.44)
equipped with the inner product and norm

@i, = [ uev@etds e =( [ uz(ae-fzdf)z (3.45)

is known as the Hilbert space of square integrable functions over thémea Then, It is

possible to define the family of weighted Sobolev spaces

HM(R) = {u|u® e L2(R), 0 <k < m} (3.46)
with the norm
m 3
Ul = {Z ||u(k)||fﬁ(R)} (3.47)
k=0

whereu(® is thek-th derivative of the functiom. We begin with the error analysis of the

orthogonal projectiomly : L,%(]R) — Py, defined by

(U= TInu, Vi), = fR U- T EWEE =0, YwePy  (3.48)

since it will be used in the error analysis of pseudospectral approximayidtermite poly-

nomilas or functions. Her@y stands for the space of all polynomials degted and

N 1 2
M@ = Y uH®. = [ uOH(@e s (3.49)
n=0 R

=iz
is the truncated Fourier-Hermite expansioru@f) whereh? is the normalization constant or

the square of2 norm ofH, given by (2.36).
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Theorem 3.2 For any ue HY(R) with m> 0,
I(u = TINW) Ol 2y < CNED2IUD) ) 0<k<m (3.50)

where C is a constant independent of N.

Proof. For anyu € Lf?(]R) (3.49) holds. Moreover, from (2.39) we have

HY(@) = cakHnk(@, nxk (3.51)
with ¢k = (ﬁ ’Il'), Thus, fork < m < N, we have
o 2
K
Iu=TI)®IEe = || D wHE) Z Uach 7
n=N+1 LZ(R) n=N+1
N 2anhﬁk2 2 k—-m N 2.2 12
= Un > Ch, mhn—m <CN Z unCn,mhn—m
n=N+1 Cz hn m n=N+1
k—myy, (m)
CN ||u ||L2(R)
which completes the proof. O

Different versions, such as the ones in [29, 36], are available in the liedattirhere we
followed the lines of [67] which is a good review article on spectral methodsmbounded

domains.
Moreover, it is possible to show that

1Pz < CNY2lIpll 2y VP € Pu (352)
on expanding the polynomiglinto Fourier-Hermite series and then using (3.51).

We now examine the error of interpolation operaltqr: C(R) — Py defined by (3.1) for
which we need to bound the quanti[ﬂ)NUIILg(R). Actually, the norm|INu||L3(R) of the interpo-

latory polynomiallyu constructed by Hermite polynomias,1(£) = Hn+1(€) becomes

2
fa [Z fn(f)un] p&)

|||NU||L§(R)

ZNl( f fz(f)P(f)df)U +ZZZ( f fn(,f)fm(f)p(f)df)unum

n=0 m=0 n=0

m#£N
N
Z Uwn.
n=0
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with the help of (3.21). Therefore, an error estimate for the Hermite pspedtral method
(HPM) reduces to bounding the Chrifeel numberso,.

For the Hermite-Gauss quadrature, the weights in (3.14) becomes
1 2NN! 7

Wn = 220 202y

(N+ 1) (N+DH(EN)

on using (2.36)—(2.39). In [2], Aguirre and Rivas give a bound

n=0,1,...,N (3.53)

wn < Ewn <CNY8, n=01,..., N (3.54)

for (3.53), whereC is independent oN. This is the sharpest bound for the Hermite-Gauss

weights in the literature so far. Then, they use it to prove that
2 13 (11112 ~1y, 7112
Uy < CNM2 (Ul ) + NHIU 1 ) (3.55)
for anyu € H['f(R). Consequently, we can prove the following theorem with the help of

Theorem 3.2 and the last inequality in (3.55).
Theorem 3.3 [2] For any u € HJ(R) with m> 1, there exists a constant £ 0 such that

1, km
1 = 1N ®ll 2y < CNE 2™ 2 (3.56)

with0O <k <m.

Proof. By triangle inequality

I = I

IN

2
(11w = TN Wl 2y + 1T = INU Wl 2y
1w = TN ®IE, ) + 200 = TNl 2 I (TINu = W)l 2ge)

HIN (N = )OI g

IN

sincellyu is a polynomial of degreBl, thusInIIyu = ITIyu. Moreover, Theorem 3.2 implies

B K2 k—myp, (M) (2
I = TN ) < CNMUT R, (3.57)

Then, applying (3.52) witlp = Iy(IInyu — U), (3.55) and (3.57) witlk = 0, 1 we obtain

(I (Tu = u) 02

k 2
L[Z)(R) CN ||IN(HNU_ u)”

L2(R)

IA

IA

1 — ’
CN3™ ([ = Ul + NG = W1y

IA

1
CN§+k(N—m UM NEINET )2 )
L rk—my, (M))12
CN3 ”u ||L§(R)

IA
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Therefore, finally we have

- 1ik- .
I = IND®Ey gy < NI R, o) + 2ENSH U, )+ NS R,
L4k—myy, (M) 2
which completes the proof. O

Similar results hold also for the Laguerre and Jacobi spectral approximeatkeor the La-

guerre case, we define the non-uniformly weighted Sobolev space
H(R,) = fulu e l? (R)), 0<k<m) (3.58)

of square integrable functions on the half line with the norm

m
rey = | > U2
Iullpee.) {k;nu ||L5M(R+)]

Now, theLﬁy orthogonal projectiofil); : Lﬁy(R+) — Py, defined by

1
2

WO = ([ Feetew) . @s9)

(u—TI}u, W), = j}; (u-TIW(EW(E)E e dé =0, YV vy ePy (3.60)

where
N

e = Y hLHO, W= [ ueLi@eete (3.61)

n=0 n
satisfies the following approximation result (see, for instance, [29, 67])
Theorem 3.4 For any ue HJY(R,) and m> 0,
_1.u® (k=m)/2y,,(m)
[I(u — I u) |||_§y+k(]R+) <CN U™z @) 0= k<m (3.62)

where C is a constant independent of N.
Note here thath?2 in (3.61) is the normalization constant of Laguerre polynomials given in

(2.31).

Let I}, be the interpolation operaté; : C(I§+) — Py defined by (3.1) based on the Laguerre-

Gauss, i.e., zeros dJJ?/\,+1(§) or Laguerre-Radau, i.e., zeros.gq% Lr7\1+1(§) interpolation points

&mn SO thatmu(g-‘m) =ul&m) m=0,1,...,N. Then the following result holds.

Theorem 3.5 Assuming e C(I@Jr), ue HJ(R,)and U € H;’Fl(]&) with m> 1 we have
=l ey < ONCD2 (10Ol ey + (N2l ) (369

where C is a constant independent of N [67].
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The above theorem is proved in [39] which improves the results of [58&6

Finally, using the Jacobi weiglt, 5(¢) = (1 — £)*(1 + £€), similar to the Laguerre case we

define the non-uniformly weighted Sobolev space
Hi@M = uluel? (@0, 0<k<m (3.64)

Pa+kp+k

on the intervall .= (-1, 1) with the norm

m
v =| > IR
||u||Ha,ﬁ(H) (kzollu ||L/27(y+k,ﬁ+k(]l)]

Then theLf)a ﬁ(]l) orthogonal projectiom‘,fl"8 : Lga_ﬁ(]l) — Py defined by

1
5 1

o= ([ . @

(U= TIRU, WN)p, s = fﬂ (u- T U)(EVN(E)papde =0, ¥ vy € Py (3.66)

satisfies the following bound.

Theorem 3.6 For any ue Hg?ﬁ(]l) andO <k <m,

lI(u— n‘;,ﬂu)<k>||L5W+k(H) <CN“MU™)e (3.67)

Pa+mp+m

where C is a constant independent of N.

The proof can be found in [29, 38]. LdﬁN”ﬁ be the interpolation operator based on Jacobi-

Gauss nodes. Then the following result is established in [38].

Theorem 3.7 [38] Forany u e ngﬁ(]l) withm> 1

By apB 1-
lI(u—13"u) ||L3Mﬁ+l(ﬂ) +Nll(u- 1y U)HLE(,,,;(H) < CNEMju™)| 0 (3.68)

Pa+mpB+m

where C is a constant independent of N.

For a more general investigation of Jacobi approximation results seediomde [12, 29, 38].

When we look at the Theorems 3.2, 3.4 and 3.6 concerningﬁhqarojections we observe
that the convergence rate of Jacobi approximation is twice of those aiesgand Hermite
cases. This is related to the eigenvalasof the associated EHT in (1.30) leading to COPs.
Notice the quadratic growth of the eigenvalugs = n(n + « + 8 + 1) of Jacobi polynomials

contrary to the linear growth of those of Lagugf® = n and Hermitel® = 2n polynomials.
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The interpolation results in Theorems 3.3 and 3.5 are suboptimal in the sendeetfactors
of N6 and NInN)~Y/2 are lost when compared with the projection results in Theorems 3.2

and 3.4 (withk = 0), respectively.

It can be inferred from the above theorems on spectral (projectiahpseudospectral (in-
terpolation) approximations that for smooth function®)(e Lf) foranyk = 0,1,...) error
decays faster than any power Bf This means that the exponential rate of convergence is
achieved. On the other hand, for functions having singularities inside itsidgofa e Lﬁ for
i=0,1,...,kbutuktd) ¢ L2), the Jacobi methods converge at an optimal ratewhereas
the Laguerre and Hermite methods converge only at a raté&.oHere it should be noted
that we do not compare the methods for the same problem but for the protiiatrthey
can handle seperately. More specifically, Jacobi spectral methodsiitable for problems
over a finite domain while the other two are appropriate for infinite domainsenfieless,
with a convenient transformation, Jacobi polynomials can be mapped ontideirdomains
which allows one to compare the methods for the same problem. Approximatiparpes

of mapped Jacobi spectral approximations can be found in [65, 67].
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CHAPTER 4

APPLICATION TO THE SCHR ODINGER EQUATION

In this chapter we show that the Sodinger equation with a wide class of quantum mechan-
ical potentials can indeed be converted to the WEHTP and then the pseatitakplgorithm

suggested in the previous chapter is applied to approximate the eigenvitinepmblem.

4.1 The Schidinger equation over the real line

The EHT in (1.30) has three canonical forms which are called Hermite,dregyand Jacobi
differential equations. Accordingly, equation (1.29) witfy) = 1, ¢ and 1- £2 will be called
here the WEHTP of the first, second and the third kind, respectively.

As a first example falling into the first kind we deal with the one-dimensionatdsiinger

equation in (1.27)

[—dd—; + V(x)] W) = EP(X), Xe(—00,00), P e L¥(~o0,c) (4.1)

over the real line for a variety of quantum mechanical potentiéid [79]. We, first, scale the
independent variable

£ =cx c>0, £ € (o0, ), 4.2)

by c, which transforms the Scdinger equation (4.1) into the form

whose eigenfunction® should be in the Hilbert spach% of square integrable functions [79].

Then, proposing the solution of form

W) = e y(9), (4.4)
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we rewrite the Sclirdinger equation (4.1) as

y' =28y + [ -V (¢/o)|y = (1-c?E)y (4.5)

which is an EHTP of the first kind [79, 3]. Clearly, the HPM is suitable for tigsblem
since the unperturbed part of the last equation resembles the Herfffigeediial equation.
This leads to the diagonalization of the mat#x= K + <V in (3.33) by takings(¢) = 1,

(&) = =2, v(€) = €2 - ¢ 2V (¢/c) andr (€) = 1. Therefore, the kinetic energy matfi& takes

the simple form

% if m#n
Ko = _g (ém—én) (4.6)
£ 4N if m=n
on replacing the cdicientso, T andr. Thus, the eigenvaluest = 1 — ¢ 2E of (4.5), and
hence the energies

En=c?(1+4,), n=0,1,... 4.7)

of the original equation (4.1) can be approximated by diagonalizing the symmesdtrix

B = K + V whereV is the diagonal matrix

Vmn = v(Em)Omn = [fr% —c?V (fm/c)] Omn (4.8)

composed of values of the perturbation term or modified potential at thd poitas. It is
clear that the grid point&, are the roots of Hermite polynomikly1(£) and can be computed

as the eigenvalues of the symmetric tridiagonal matrix [79]

0 V1 0
Vi 0 V2
1 .
R= % V2 0 . (4.9)
\/N
0 VN 0

in (2.17) whereA,_; = vn/2 andB,, = 0 are given in (2.37).

Notice that, an orthonormal eigenfunctig(®) of (4.5) satisfies

1- f e = f W) (4.10)

on returning back to original dependent variable via (4.4). Now, rampachby &£/c in the last

equation, we obtain

1= I ) P (£)de = I ) P2(£/0)d(€/c) = I ) %‘I’z(f/c)dg (4.11)

(o)
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which means tha¥'(¢/c) = Vc¥(£). Thus, the values of the normalized wave function in

original variablex, = £m/c are given by¥(xm) = Vc¥(&m), that is,

12 VEN+ )WY

W) = VO (6m) = Ve 2y (6 = Tt (412
0

where we have used (3.40) f@g&m).

On the other hand, if the potential functidf(x) is symmetric, i.e.V(X) = V(-x), then
equation (4.1) becomes reflection symmetric. For a reflection symmetric syseepoténtial
may be regarded as a function)dt i.e., V(x?), and hence the spectrum can be decomposed
into two disjoint subsets containing solely the even and odd eigen-statpsctigsly. First
of all, instead of linear scaling in (4.2), the symmetry of the potential functiggests the

use of a quadratic transformation [78]
£=(X% ¢>0,  £€(0,0), (4.13)

which converts the Schidinger equation (4.1) to the form

# 1d 1 E
&g a2 EO)| ¥ = 350 (4.14)

wherec is an optimization parameter [78]. Then, suggesting a solution of the type

() =&Ped?yE),  peR (4.15)

satisfying the asymptotic boundary condition at infinity, where the fagtdras been intro-
duced to cope with thartificial singularity of (4.14) a¥ = 0. [78] Note that (4.1) is in fact
regular everywhere except the “point at infinity”, and the additionajdarity of (4.14) at
the origin has been resulted from using the quadratic transformation .(4&1®)titution of

(4.15) into (4.14) leads to the equation that the new dependent vay{@plaust satisfy
@]y . [4p+1-c2E]y (4.16)

, 1 _
&+ @+ 3-8y + 7 |E-CVE/) + =7
implying that the unwelcome singularity located at the origin can be removeaiéither O

or 1/2. Therefore, setting [78]
2p+3=y+1 (4.17)

we then express (4.16) in the neater form
& +(y+1-8y +3[e-cV(E/A)y =3 [20+ 1) - c°E]y (4.18)
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with y = 1 [78]. Now it is clear that the solutions in (4.15) with= 0 (y = —3) and

p = % (v = %) yield even and odd eigenfunctions, respectively, on returning badthketo
original variablex via (4.13). Accordingly the new set up of the problem in (4.18) allows us
to determine symmetric (even) and antisymmetric (odd) states separately, faothpecific

values ofy = -3 andy = 3 [78].

Obviously, the last equation is an EHTP of the second kind that suggestsdtuf Laguerre
pseudospectral methods (LPM) with= ¢%. Therefore, the kinetic energy term in (3.31)

reads as [78]

12V&mén ,
1 (fm—fn)z fm#n
Ko = —= (4.19)

6 1
2N+§—[(y—§n)2—1] if m=n

onreplacingr(é) = &, 7(€) = y + 1 - £ andr(¢) = 1 and the potential energy matrix in (3.32)

takes the form

Vin = v({m)mn = % [é: - C_zv(f/cz)] Omn- (4.20)

The only absent data set is the nodal po#tsvhich are the roots of Laguerre polynomials

L,V\Hl(g) of ordery = ¢%_ It can be computed as the eigenvalues of the tridiagonal symmetric

matrix R in (2.17) with df-diagonal and diagonal entrigs, = —+/(n+ 1)(n+y + 1) and

Bn=2n+vy+1,forn=0,1,...,N respectively, which are given in (2.32).
Thus, the eigenvaluesit = %1[2()/ +1)- c‘zE] of the EHTP in (4.18) and, hence, the ener-
gies
E=c[41+2(y+1)], y=%3, (4.21)
of the Schodinger equation (4.1) with symmetric potentials over the real line can bexappro

imated as the eigenvalues of the symmetric marix K + <V where the entries ok andV

are specified in (4.19)-(4.20) [78]. Notice that= —% leads to the even states
Eo = ¢ (1 + 44y) (4.22)

andy = 3 to the odd levels

Eo1 = €2 (3 + 44) (4.23)

of the Schodinger equation (4.1) [78]. Therefore, the eigenvalues of (4.1) witinsetric
potentials can also be approximated by LPM which seem to be more advagaigetine

numerical point of view. It is clear from the last two equations that two matriderderN
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is suficient in the LPM whereas a matrix of ordel2hould be diagonalized in the HPM to

get the same number of approximate eigenvalues.

On the other hand, for an orthonormal eigenfuncii@f) of (4.18) we have

:m —f:m 2P—%—§:m2—%
1 fo P(Oeretds fo P2 tetde fo Ve ide.  (4.24)

upon using (4.17). However, lettirg= (cX)? in original wave function, we obtain

[Se]

f P2(x)dx = 2 f P2(x)dx = % f P2(&)E 20 = % (4.25)
_ 0 0
where we first made use of the evenness of the integrand. Thus, wenultigly the eigen-
function'¥(¢) by +/c so thatl2-norm of the wave functio’(x) in original variablex is equal
to unity. Therefore, we may write
L(y4l

W(xm) = VE¥(m) = VER e 2y (em) = Vaga ety en).  (4.26)

Finally, using (3.40) foy(&m), we get

ey [N+ DN +y+ W 1o-1)

e m2yl (4.27)

Notice that,xm = +v&n/c. If y = —%, then the values of the wave function at negative
values are the same as those at positivalues since eigenfunctions corresponding to even
indexed eigenvalues are even functionscoSimilarly, wheny = % the values at negative
values are the negatives of those at posixivalues since eigenfunctions associated with odd

indexed eigenvalues are odd functionsof
For numerical illustrations, first, we consider an asymmetrical double wedhgial (ADWP)
V(X) = aXP(X + ap)(x — 1), a;>0, O<ay<1l Xxe (—00,c0) (4.28)
and a Morse potential (MP) of the form
V(X) = (€ - 1), O<a<2, Xxe (—0o,c0) (4.29)

as typical examples of asymmetrical potentials.

Asymmetrical Double Well Potential

The ADWP has two minima located asymmetrically about the origin [73]. It is cledithie

left hand limiting value ofay, a, = 0, does not represent a double well oscillator anymore
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where the potential has an inflection poinkat 0 whilea, = 1 corresponds to a symmetrical
two well potential. These potentials are of practical interest for the protooMement of

hydrogen-bonded systems [69, 73, 89].

For the ADWP, potential energy matrix in (4.8) becomes
2
Vmn = [fr%‘l - C_Zal(c_lé‘-‘m) (C_lfm + aZ) (C—]_é_,m _ 1)] S (4.30)

Thus the energy levelg, = c%(1 + A,) of Schdinger equation (4.1) with an ADWP are
listed in Table 4.1, where the range &f is covered by choosing, = 0.25,a, = 0.50 and
a, = 0.75.

Table 4.1: Several eigenvalues of ADWP &r= 100, as a function ody [3].

2 Copt N n B
0.25 44 69 0  —4.277 344849 182 474 166 847 348 848 02
69 1 7.080 517 391 364 158 656 090 710 350 21
72 2 19.817 761 502 618 821 399 175 325 525 2
73 3 36.209 337 296 287 706 584 558 242 608 6
5.5 204 100 4591.756 700 061 399 687 274 143 286 5
0.50 44 58 0  —6.816 052 047 536 736 982 561 430 365 98
58 1 4.675 693 930 558 290 057 997 135 848 24
59 2 15.973 204 136 317 836 561 600 922 534 7
62 3 31.505 546 630 519 551 260 800 075 872 1
5.5 200 100 4549.714 975 331 339 127 227 825 899 0
0.75 44 57 0  —9.459 479 212 224 512 858 546 562 584 43
57 1 0.010 560 072 717 619 621 379 801 416 92
59 2 10.866 977 233 476 768 562 653 506 503 7
61 3 24.888 991 175 519 381 797 134 001 071 9
55 200 100 4492.595 909 516 835 740 641 080 843 6

Table 4.2: The ffect ofc on the accurac¥g of an ADWP witha; = 100 anda, = 0.25 when
N =69 [3].

C Eo

11 -4.27

22 —4.277 344 849 182

3.3 —4.277 344 849 182 474 166 847 34

4.4 —4.277 344 849 182 474 166 847 348 848 02
55 —4.277 344 849 182 474 166 847 3

6.6 —4.277 344 84

1.7 -4.277

In all tables,n stands for the eigenvalue indeX truncation order for which the desired accu-

racy of the corresponding eigenvalue is obtained, @ddnotes a scaling or an optimization
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parameter which may be exploited to accelerate the convergence rate of ttmdmé&he
effect of c on the accuracy of the ground state eigenvdtygeof an ADWP is displayed in
Table 4.2. Note that we used quadruple precision arithmetic on a main frameltynith

machine accuracy of about 32 digits, by truncating the results to 28-3ificigm figures.

14 T T T 1 T T T

0.5

Figure 4.1: Ground state and fifth excited state eigenfunctions of the ADWPay= 100
anday = 0.5.

In all figures we illustrate the normalized eigenfunctions of the correspgmatoblem which
are obtained by using FORTRAN programming language and plotted in MAT lliA8worth
noting that, depending on the truncation dizesometimes we obtain negative of the normal-

ized eigenfunctions. Figure 4.1 illustrates the two eigenfunctions of the ADWP

A Morse-Like Potential

The analytically solvable MP in (4.29) has a finite number of discrete spguinals lying
between O< E, < 1 and a continuous spectrum for &llI> 1 [76]. The discrete eigenvalues

are expressible as

En=(+3)al2-(n+3)a], n=01.. . [:-3] (4.31)

a

where[ ] denotes the integer part of a real number. After adding potential matrix
2
Vin = (€% = 1) 6mn (4.32)

to (4.6) we diagonalize the resulting algebraic sys#eém K + V, to write down the energies
of MP in Table 4.3. The lower states are obtained to the machine accuradeycbuosiderable
slowing down of the convergence rate occurs especially for higheggtevels that are very

close to the border of the continuous spectrum, and hence, the method faiks tloegdesired
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accuracy. Notice that, whesm= 0.02 there exist 50 discrete states whereas they are only 5

whena = 0.2.

Table 4.3: First few eigenvalues of the MP wieer: 0.02 and all discrete eigenvalues when
a = 0.2. The last column includes exact eigenvalues.

a Copt N n E, En (exact)
0.02 01 84 0 0.019 900 000 000 000 000 000 000 000 000 X130~4
90 1 0.059 100 000 000 000 000 000 000 000 000  HAD*

94 2 0.097 500 000 000 000 000 000 000 000 000 P15 4

98 3 0.135 100 000 000 000 000 000 000 000 000 13304

100 4 0.171 900 000 000 000 000 000 000 000 000 171074

0.2 0.3 200 0 0.190 000 000 000 000 000 000 0000000 x 1972
1 0.510 000 000 000 000 000 000 000 000 0 X502

2 0.750 000 000 000 000 000 000 000 1 7502

3 0.910 000 000 000 004 941072

4 0.990 003 9% 1072

Symmetric Double-Well Potential

Many physical examples over the real line have symmetric potentials. In thig@a&mploy
both HPM and LPM to the problems of this kind and compare the two methods. As a fi

example of symmetric potentials we take the symmetric double-well potential (S[BVP)
V(X) = x* = 25%%, X € (—c0, ) (4.33)

having two minima located symmetrically about the origin. The interesting propéitg o
energy spectrum is that the lower eigenvalues are very closely buircpatls if the wells are
suficiently separated. To determine the gap between nearly degeneratagigsmf SDWPs
several methods have been proposed such as WKB and JWKB apptioxisn@2, 40, 63],

finite difference calculation [85], path-integral approach [31], recurgvies method [9] and
Rayleigh-Ritz variational method [80]. Moreover, there are some geparpose Sturm-
Liouville eigensolvers such as SLEIGN2, SLEDGE and MATSLISE whiehraentioned in

Chapter 1. They are capable of solving almost all examples, which will beidered here,

to a certain extent.

Diagonalizing the matrix3 constructed by using HPM (4.6 and 4.8) or LPM (4.19 and 4.20)
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Table 4.4: First few nearly degenerate states of SDWP by using HPMNwiitly = 140 and
optimization parameter = 2.05.

En

n

En

—149.219 456 142 190 888 029 163 966 538
—149.219 456 142 190 888 029 163 958 974
—-135.324 512 011 840 858 579 892 393 334
—135.324 512 011 840 858 579 887 397 260
—-121.688 950 604 621 648 258 910 138 759
—121.688 950 604 621 648 257 347 725 677
—108.328 000 567 332 309 875 230 475 701
—108.328 000 567 332 309 568 103 879 703

-85.259 459 679 082 836 735 165 917 631
905.259 459 679 082 794 260 293 757 345
1B2.504 478 354 512 192 043 606 307 701
182.504 478 354 507 810 898 147 390 913
1270.088 717 531 234 847 815 434 803 087
1370.088 717 530 886 437 987 303 260 507
1468.044 145 096 311 338 186 422 572 755
158.044 145 074 552 692 717 373 129 654

Table 4.5: First few nearly degenerate states of SDWP by using LPMNyitly = 70 and
optimization parameter = 2.05.

E2n

E2n+l

~No ok~ wNPRFE OIS

—149.219 456 142 190 888 029 163 966 538-149.219 456 142 190 888 029 163 958 974
—135.324 512 011 840 858 579 892 393 334-135.324 512 011 840 858 579 887 397 260
—-121.688 950 604 621 648 258 910 138 759-121.688 950 604 621 648 257 347 725 677
—108.328 000 567 332 309 875 230 475 701-108.328 000 567 332 309 568 103 879 703
—95.259 459 679 082 836 735 165 917 631 —95.259 459 679 082 794 260 293 757 345
—82.504 478 354 512 192 043 606 307 701 —-82.504 478 354 507 810 898 147 390 913
—70.088 717 531 234 847 815 434 803 087 —70.088 717 530 886 437 987 303 260 507
—58.044 145 096 311 338 186 422 572 755 -58.044 145074552 692 717 373 129 654

with SDWP, we list the lower energy eigenvalues in Tables 4.4 and 4.5.

Notice from the Tables 4.4 and 4.5 that, in order to calculate the first sixteemvaiges to 30-

digits accuracy HPM needs a matrix of orddpy = 140. On the other hand, two matrices
of dimensionN_py = 70 is suficient for LPM. For both methods the optimum value of the
parametec is the samegpt = 2.05). It is clear that the determination of the gaps requires
indeed a high precision algorithm and both HPM and LPM are success$elpiarating the

nearly degenerate states.

Table 4.6: Improvement of accuracy fBigg of the SDWP with respect thl, wherec = 2.6

3].

NHpm NLpm E100

180 90 625125198387

190 95 623512 519 838 760 54

200 100 62512 519 838 760 543 998

210 105 62512 519 838 760 543 998 347 7

220 110 62512 519 838 760 543 998 347 757 56
222 111 62512 519 838 760 543 998 347 757 56
224 112 62512 519 838 760 543 998 347 757 56
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In addition, both methods gives not only satisfactory results for lowemgajees but also
higher states. For instance, in Table 4.6 we illustrate the convergencé Eatg as a function
of the truncation sizéN. Observe that eigenvalug,gg stabilizes wheMNypy = 220 and
N pmw = 110, for HPM and LPM, respectively. In general, the accuracy ofréiselts in
all tables reported here has been checked similarly by inspecting the nofrgiable digits

between two consecutive truncation orders.

0.8 T T T 0.8

ool (=] ‘ =T

0.6

0.4} 0.4

0.2f

-0.6 -0.4
30 -5 0 5 10 % -5 0 5 10
0.8 ‘ ‘ : 0.8 : : :
ool | [— %] 0ol | [— % 0]
0.4 0.4
0.2 0.2
of 0
-0.2 0.2
-0.4 -0.4
-0.6f -0.6
30 -5 0 5 10 89 -5 0 5 10

Figure 4.2: Several eigenfunctions of the SDWP by using LPM.

In Figure 4.2 we demonstrate several eigenfunctions of the SDWP by LBixg However,
it is not possible to obtain these eigenfunctions by making use of HPM becdumsimeric
degeneracy in the lower eigenvalues. Thus, separation of even drsdatds not only halves

the truncation size but also leads to the correct values of the eigenfunatitime nodes.

A Poschl-Teller Type Potential

We, then consider the potential hole of modifigasBhl-Teller type ( problem 39 of [26])
V(X) = -m(m+1)secBx, m>0, xe& (—o0,) (4.34)
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which has a finite number of discrete eigenvalues
En=-(Mm-n?% n=0,1,...,[m] (4.35)

and a continuous spectrum for &l> 0 [26]. Tables 4.7 and 4.8 demonstrates the discrete

states of (4.34) fom = 10 by using HPM and LPM, respectively.

Notice from (4.35) that for integer values wfthere is always one eigenvalue lying at zero
energy. As in the other algorithms, at the border of the continuous spedbath methods

fail to give high accuracy and produce poor result correct only todigits.

Moreover, the slowing down of convergence for the eigenvalues thatlaser to zero can

also be seen from Tables 4.7 and 4.8.

Table 4.7: Discrete states of modifieddehl-Teller potential hole wittm = 10 by using HPM
whereNypy = 400 and optimization parametes 1.3.

n E, n E,

0 —99.999 999 999 999 999 999 999 99999987 5-25.000 000 000 000 000 000 000 001
1 -81.000 000 000 000 000 000 000 000 004 6-15.999 999 999 999 999 999 999 998
2 —63.999 999 999 999 999 999 999 999 97 7 —9.000 000 000 000 000 000 000 003
3 —49.000 000 000 000 000 000 000 000 1 8 —3.999 999 999 999 999 999 999 997
4 -35.999 999 999 999 999 999 999 999 6 9 —0.999 999 999 999 999 95

Table 4.8: Discrete states of modifiedgehl-Teller potential hole witm = 10 by using LPM
whereN_py = 200 and optimization parameter 1.3.

n E2n E2n+l

0 —100.000 000 000 000 000 000 000 000 002 —80.999 999 999 999 999 999 999 999 98
1 —63.999 999 999 999 999 999 999 999 98 —-48.999 999 999 999 999 999 999 999 990
2 —35.999 999 999 999 9999999999996  —-24.999 999 999 999 999 999 999 999 994
3 —15.999 999 999 999 999 999 999 998 —8.999 999 999 999 999 999 999 999 996
4 —3.999 999 999 999 999 999 999 997 —0.999 999 999 999 999 999 7

Generalized Anharmonic Oscillators

Next example is the generalized anharmonic oscillators (GAO) describiég: ipotential
VX)) =X +vomX®™, m=23,...., Vom>0, Xe (—o0,00) (4.36)

wherevyn, is called the anharmonicity or coupling constant. It is directly related to the study

of various atomic and molecular problems of quantum chemistry. Similar to the SBWP
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(4.33) several methods have consequently been applied to approximamehngalues of
GAO among which we can recall WKB methods [8], Rayleigh-Ritz variationahoe[72],
Hill's determinant [24], Wronskian [23] and finiteftierence approaches [25].

Table 4.9: Ground state energies of the quartic oscilda) = x> + v4x*, as a function of;,
[78].

Vs Eo NHpMm NLpPm Copt

104 1.000 074 986 880 200 111 122 834 155 30 15 8 1.0
1072 1.007 373 672 081 382 460 533 843 905 98 32 17 1.0
1 1.392 351 641 530 291 855 657 507 876 61 51 25 2.1
10 2.449174 072 118 386 918 268 793 906 19 53 27 3.1
10° 10.639 788 711 328 046 063 622 042 669 4 56 27 6.5
10* 22.861 608 870 272 468 891 759 867 963 5 56 28 10.0
10P 49.225 447 584 229 625 157 076 387 001 1 56 28 14.0

Typical computations for the ground state eigenvalues of the quartic atid ascillators as a

function of the coupling constants andvg are displayed in Tables 4.9 and 4.10, respectively.

Table 4.10: Ground state energies of the sextic oscilli(g) = x2 + vgx8, as a function of/g
[78].

Va Eo NHpwm NLpm Copt

104 1.000 187 228 153 680 768 286 355 665 62 30 16 1.0
1072 1.016 741 363 754 732 031 671 817 981 51 70 34 1.8
1 1.435 624 619 003 392 315 761 272 220 54 78 38 3.2
10 2.205 723 269 595 632 351 009 973 387 17 78 40 4.2
10° 6.492 350 132 329 671 550 549 557 845 34 80 42 7.0
10* 11.478 798 042 264 543 961 289 816 038 6 78 40 9.5
10P 20.375 098 656 309 660 844 567 287 513 5 81 41 12.0

In Table 4.11 we illustrate the minimum truncation sid¢aeeded to obtain the ground state
energy of sextic oscillator to 30-digits accuracy. Note that the choicetoham valuecypt

for optimization parameter is important. However, we don’t need to determine the value of
Copt t0O sensitively. For instance, wheg = 10°, any number between Bl< Copt < 14.5 can

be chosen as ay: Since it does notféect the truncation size considerably.

Notice that to obtain the ground state eigenvalue of quartic oscillatorwyith 10~* to 30-
digits accuracy, both the HPM and LPM require only a matrix of order 158amespectively
and the optimization parameter has rfieet on the solution, i.eGopt = 1. This is because
whenv, is very small potential behaves like the harmonic oscillator. Howevey, @®ws that

is, the system is in the pure anharmonic regime, the contribution of the paranbeteomes
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Table 4.11: The fect of parametec on the truncation siz&l to calculate the ground state
eigenvalue of the sextic oscillator, ggvaries, within quadruple precision arithmetic.

V6=:|.0_4 Ve=1 V(5=:|.0'5

Copt NHpMm NLpm Copt NHpMm NLpPm Copt NHpm NLpm

0.6 100 50 2.0 120 60 8.5 124 62
0.7 70 35 2.4 94 47 9.0 114 57
0.8 52 26 2.8 81 41 9.8 102 51
0.9 38 19 3.2 78 38 11.5 84 42
1.0 30 15 3.6 80 40 12.2 82 41
1.1 34 17 3.8 96 48 12.9 78 39
1.3 44 22 4.2 102 51 13.6 79 40
1.5 66 33 4.6 120 60 14.5 80 40

significant. For example, when = 10°, Copt becomes 14 for which the desired accuracy is

reached with matrix sizeypy = 56 andNpy = 28 for HPM and LPM, respectively.

0.8 - - :

0.6

0.4

0.2

-0.4

-0.6

-0.8 ' ' '

Figure 4.3: The eigenfunctio¥fz(x) of quartic anharmonic oscillator witty, = 0.01 and
c = 2.1. Solid line is obtained by spline approximation.

Figure 4.3 shows the approximate values of the second excited state eigfenflof quar-
tic anharmonic oscillator witlv, = 0.01 at the zeros oH3zx(X) and Llé/z(x). That is, the

numerical values off>(x) obtained by using HPM and LPM, respectively. Notice that,
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in LPM we reflect the solution with respect to y-axis to get the full picture esig(x)

is even inx. The nodal setx; = &/c andx = +&/c for the HPM and LPM, respec-
tively, coincide on the positive half line. This is not surprising becaus@einterrelations
Hon(©) = (-1)"22'ILY%(£2) and Honea (&) = (-1)"221n1£LY/?(£2) between the Hermite
and Laguerre polynomials. Therefore, we see that for symmetric potemniishe real line,

use of the LPM in place of the HPM halves the truncation size

Gaussian Potential

Finally, in this section, we take into account the nonpolynomial Gaussiant@ten
VX) = -6, §>0, Xe (~0,o0) (4.37)

having a finite number of discrete eigenvalues located on the negativexisdabgether with

a continuous spectrum over the entire positive real axis for small vafube parametes.

Table 4.12: Even discrete states of the Gaussian pot&f(tal= —e% asg varies.

0 c NLpm NHpPM n Eon
0.001 Q2 200 400 0 -0.968 752 703 034 398 668 606 599 656 91
—0.846 820 196 725 804 118 603 225 951 44
—0.731 125549 125 734 739 132 375 767 29
—0.621 888 650 443 182 657 155 148 987 66
—0.519 364 950 583 428 249 615 031 790 9
—0.423 856 070 842 708 088 081 323 949 4
—0.335 725 389 869 448 866 857 878 683 2
—0.255 422 042 129 619 875 883 845 365 7
—-0.183 520 193 247 718 643 542 217 565 1
—-0.120 788 829 915 192 793 998 362 147 4

10 —0.068 331 350 243 752 810432 2

11 -0.027 922 921 267 91

12 -0.003 20
0.1 03 200 400 0 -0.721530628 487 107 638 685 036 884 81

1 -0.007 927

O~NO OIS WN P

©

There exist a threshold valdeg,, of the parametef, for which the discrete negative spectral
points can no longer survive and melt fully into the continuous spectruneliBasl Ersecen
[80] calculated the discrete states by using an appropriately scaled Hé&¥aliter basis in

the Rayleigh-Ritz variational picture.

a7



Table 4.13: Odd discrete states of the Gaussian potaf(ial= — -0 a5 varies.

0 c Nepv Nupwm n Eonsa

0.001 Q2 200 400 0 -0.907019292592812082 715416 167 023
1 —0.788 180 130 992 659 421 804 061 549 09
2 —-0.675 684 854 719 018 240 848 779 291 58
3 —0.569 770 033 727 450 439 655 309 062 31
4 -0.470 712 623 024 420 087 564 042 654 02
5 —-0.378 842 756 108 543 457 710 150 610 05
6 —0.294 562 957 171 686 723 792 487 677 29
7

8

9

0

1

—-0.218 378 575 398 707 288 207 832 339 73
—0.150 949 512 145 370 006 773 365 439 35
—0.093 187 162 389 194 505 371 0045
1 —0.046 464 865 007 120 74
1 -0.013 208 4499
0.1 03 200 400 0 -0.254 340163 216611811747 716 919

Tables 4.12 and 4.12 exhibit the fact that, as in the other methods [6, 50a 88}iceable
slowing down of convergence is encountered for the discrete statebglst zero, as

approaches its threshold valég, beyond which the discrete states can no longer survive.

Hence, the HPM and LPM stand for alternative numerical procedurésegbroblem. Ev-
idently, we deduce from the numerical tables thitppy = 2N pm. Therefore, the most
efficient pseudospectral discretization of the ®dmger equation over—o, ) having a

symmetric potential is not the HPM, and it is suggested by the LPM.

4.2 The Schidinger equation over the half line

In this section we deal with the radial Sédinger equation itM dimensions

d? M—1E+£(£+M—2)

dr? roodr r2

+ V()| R(r) = ER(r), r € (0,), (4.38)

which is naturally defined over the half line so tiR{r) € L2(0, »). Here,M = 1,2, ... and
¢ = 0,1,... are space dimension and angular quantum number, respectively,(8nd an
arbitrary continuous potential function. Notice that, the equation in (4.1¢wdonsidered
over the half line, is the particular case of (4.38) with= 1 and¢ = 0 or £ = 1. Moreover,
whenevel(X) in (4.1) is even, the eigenvalues of (4.38) in the one dimensional cade-of

are the even and odd states of the system (4£¥iD and¢ = 1, respectively [74].
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First introducing the scaled quadratic variable [3]
E=(cr)? c¢>0, &e(0,0) (4.39)

we get the operational equivalences [3]

1d 229 and i

d
rar - = A 2P (4.40)

d§2 dg
for the first and second derivatives, respectively, so that thetiegud.38) reads as [3]

 Md +M- 2)

_____ S 4 -1
R N T V(c VE)|RE) = 4C2R(f) (4.41)
Then, proposing a solution of the type
R(E) = £1%e4/2y(¢) (4.42)

satisfying the asymptotic boundary condition at infinity and the regularity itiondat the

origin, we end up with an EHTP of the second kind=( ¢ + %M -1)
&' +(L+3M-&)y + 16— c2V(VE/Q)|y=3(M+20-c?E)y (4.43)
wherey(£) should be regular [3]. Alternatively, starting with the linear scaled végiab
E=cr, ¢>0, £¢€(0,00) (4.44)

we rewrite the equation (4.38) as

? M-1d €(€+M—2) V(§/c)

T R R(E) = ZR@). (4.45)
Then, continuing with a solution of the type
R(E) = £'ey(@) (4.46)

we obtain a WEHTP of the second kind € 20 + M — 2)

& +@+M-1-8y - [320+M-1)+c2V(E/Q]y=-(cE+5)éy.  (4.47)

For the radial Sclidinger equation we have obtained twéfeiient EHTPs. The advantages
and disadvantages of these formulations will be clear in the numerical exantbsvever,
according to transformations, we expect that the former will produce gesults for prob-
lems whose exact eigenfuntions decay at infinity lik&ewhereas the latter is assumed to

produce good results for those behave lik¥ ewhereb is a positive constant.
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The EHTPs in (4.43) and (4.47) recommend the use of LPM with the paranstesy =

{+ %M —landy = 20+ M - 2, respectively. Hence, the kinetic energy matrix in (3.31) takes

the form
12vémén ,
1 (fm_fn)z fm#n
Kimn = 5 (4.48)

2N+§i[(y—gn)2—1] if m=n

when the equation (4.43) is used, i@(¢) = ¢, 7(§) =y +1-¢ = £+ sM — g andr(¢) = 1.

In this case the potential energy matrix becomes

Vém)
r(ém)

For the weighted EHTP in (4.47) we have

Vmn = Vmomn = Omn = % [é:m - C_ZV( \/f_m/c)] Omn. (4.49)

12 .
1| En-ay fmen
Wmn = —= (450)

6
fin{zN + é[(y—fn)z - 1]} if m=n

on replacing the cdicientso (&) = r(¢) = éandr(é) =y +1-¢ =20+ M -1-£. Onthe

other hand, potential energy matrix reads as

v(ém)

V(ém) 1
r(ém)

(an = (mesmn = 2§
m

Omn = —

(y+1)+ C‘ZV(§m/c)} S (4.51)

The energiek,, of the original problem (4.38) can easily be obtained from both the eigen-
values—A5HTP = 2 (M + 20 - c2Ey) and —AWEHTP = — (c2E, + §) of (4.43) and (4.47),
respectively. That is,
1
En=EYY = (M+20+415"TP) ¢ = (A;VEHTP— 21)cz. (4.52)
It can be seen from (4.43) and (4.47) that the spectrum of (4.38) rermaiariant for a fixed

value of the sum 2+ M. Thus the eigenvaluelérﬂ'\g) in M dimension with the radial and

angular quantum numbensand/, respectively, are degenerate in such a way that

(2 - =@

En,l = En,O

E@ _ @ _ g®

. n,2 n,1 n,0 (4.53)
@ _ @ _6) _ _ (20-2) _ =(20) _ =(2t+2)

En,f = En,f—l = En,€—2 = = En,2 = En,l = En,O
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for even values of space dimensithhereEfg is single in the system. Similarly,

®) — (5)
E®) = E
E(3) = E(5) = E(7)
n,2 n1 n,0 (4.54)

@B M
Enf_E 1=En€2

(20-1) _ =(20+1) _ —(2¢+3)
= En’2 = En,l = En’O

if M is odd [74]. As it was explained aboﬁﬂ (M =3, ¢ =0) corresponds to the odd states
Eon1 0f (4.1) M =1, ¢ = 1). Note also that2+ M = 3 for each case. The degeneracy in
the spectrum suggests that we may consider only two- and three-dimdrtsisas, without

any loss of generality.
On the other hand, for an orthonormal eigenfuncii@f) of (4.43) we have
- [ voeetu- [ ot et [ Redte @)

However, lettingt = (cr)? in original wave function, we obtain

f R2(r)rM-1dr =

0 2cM

" o2 1
= 4.56
[ Rt - 5 (4.56)
which means thaR(rm) = V2cMR(&n) so that theLf,-norm of the eigenfunctiomR(r) in
original variabler is equal to one. Thus, we have
R(rm) = V2CMR(ém) = V2cMer%eém/2y(gr) (4.57)

or equivalently we obtain

. 2cM(N+ D)(N +y + 1)V &t o
R(rm) = —\/ oy + 1) mem Enl2ypy (4.58)

upon using (3.40) wherg = ¢ + %M — 1. Similar analysis shows that for (4.47) the values of

the wave function aty, is given by

i ~ cM(N + 1)(N +y + 1)WY o
R(rm>——\/ o D) meél l2un, (4.59)

wherey =20+ M - 2.

For the radial Sclirdinger equation, potential functidf(r) can be classified into two groups;
the ones regular at the origin and the others that decay not faster thahthe origin. The

first group, for example, includes isotropic polynomial and Gaussianggpentials. On the
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other hand, the latter includes mostly Coulomb-like potentials such as Yukapenential
cosine screened Coulomb potential and Herttscreening potential. Now, we will test the two
methods of this section for several potentials of these two classes. Intoai®id confusion,
we call the methods as LPM and wLPM (LPM of weighted EHTP) based on FiEPE in
(4.43) and (4.47), respectively.

Isotropic Quartic Oscillator

The first example is the M-dimensional isotropic quartic oscillator
V) =r2+var®, w>0 (4.60)

which is regular at = 0. Taseli and Zafer [81] expanded the wave function into a Fourier-
Bessel series to solve the radial Swinger equation with isotropic polynomial potentials
and Taseli [74] proposed an alternative series solution to the isotropidic oscillator in
M-dimensions. It seems that the unweighted EHTP in (4.43) is more suitabluéotic
oscillator since itis even in Remember that we have used quadratic transformation (4.39) on
the independent variabteto obtain (4.43). In Table 4.14 we present eigenvalues of isotropic

quartic oscillator in 3-dimensions for some pairs .

Table 4.14: The energy eigenvaldé@ of the potentialV/(r) = r? + va4r, as a function o¥;.

Vg Cc NLpm n I Eﬁfg
104 1 8 0 0 3.000 374 896 936 121 098 337 846 829 9
1 40 25 1 105.410 343 852 439 559 553 621 014591 0
1 66 50 5 214.674 964 990 804 822 025 570 511 216 2
1 124 100 10 429.514 482 011 916 008 399 592 238 938
1 3 30 0 10 54.184 984 610 454 439 924 123 480 1756
3 65 25 5 483.022 207 413 394 709 428 608 270 729 1
2.5 100 50 1 1062.889 853 853 655 671 834 975 735 691
2 160 100 0 2604.432 485 714 639 307 459 405 681 55
10° 9 30 0 0 81.903 316 953 284 467 567 471 308 555
9 80 25 1 9253.923 499 415 499 714 821 586 373 98
12 100 50 5 23756.533 983 690 976 108 458 514 955 3
13 162 100 10 59302.060 313 455 515 491 294 154 604 9

It is also possible to use the weighted EHTP (4.47) for this potential. Howexeobserve
the slowing down of convergence when compared to unweighted formulgtidB). For

instance, whew,; = 1074, ground state energ&g’g is obtained to the same accuracy with
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N = 50 andc = 15 when the weighted formulation is used. The reason for that the unweighted

formulation imitates the true behaviour of the exact eigenfunctions goodyanou

Gaussian Type Potential

Then, as a second example of the same type, we consider the Gaussipotgrgal [3]
V(r)=—-e, §>0, re(0 ) (4.61)

having a finite number of negative discrete eigenvalues together with a wousirspectrum

over the entire positive real axis for small values of the parandeter

Table 4.15: Discrete states of the Gaussian potevi{igl = —e7" in three-dimension when
| = 0 ass varies.

0 c NwLPM n (3())

0.001 1 100 0 —0.907 019 292 592 812 082 715 416 167 023
1 —0.788 180 130 992 659 421 804 061 549 09
2 —0.675 684 854 719 018 240 848 779 291 58
3 —0.569 770 033 727 450 439 655 309 062 31
4 —-0.470 712 623 024 420 087 564 042 654 02

5 —0.378 842 756 108 543 457 710 150 610 05
6 —0.294 562 957 171 686 723 792 487 677 29
7 —-0.218 378 575 398 707 288 207 832 339 73
8 —0.150 949 512 145 370 006 773 365439 4
9 —0.093 187 162 389 194 505 371 004 475 9
10
11
0

—0.046 464 865 007 120 743 034 242 682 3
—0.013 208 449 937 779 071 969 887 946 2
—0.254 340 163 216 611 811 747 716 919

0.1 3 55

The vibrational levelg = 0 of the Gaussian potential in three dimensin= 3 displayed

in Table 4.15 a$ varies. Notice that the wLPM is used to approximate the eigenvalues of
the problem. Nevertheless, it is also possible to use LPM instead. In thisveasdtained

the same results as Table 4.13 with a sliglitedlences in the last digits of some eigenvalues,
with the same truncation sizés and optimization parameter This is not surprizing since

Er(fg = Eoni1 WhereEpn, 1 is the odd states of (4.1). On the other hand, wLPM yields better
results for higher states which are just below zero with a smaller truncatiersi, py =

100. Itis reported thatl pp = 200 for the LPM of the present and the previous sections. The
reason behind this flerence is that the exact eigenfunction of the Gaussian potential behaves

like &= Y-E" which is reflected by wLPM (see (4.44) and (4.46)). However, LPMyssts a
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solution decaying at infinity like &r*/2 (see (4.39) and (4.42)). This somehow explains why

the optimization parameter9c < 1 in LPM for the Gaussian potential (see Table 4.13).

Airy Equation

The third example of regular potentials at the origin is

V(r)=r, re(0,) (4.62)

which is known as Airy equation in one dimensitdh = 1 and¢ = 0 or £ = 1. Several
eigenvalues are reported in Table 4.16 by using wLPM for illustration. Orotther hand,
LPM does not produce any satisfactory results. This is because thal&dion in (4.41) uses
even transformation on the independent variable whereas the potentiab®) {s odd. To
obtain the first eleven eigenvalues to approximately 30-digits acci@ay = 66 is enough
together with optimization parameter= 6. Eigenvalues are given implicitly by AHg) = 0

where Ai(x) is the Airy function [26]. Properties of Airy functions can be found in28].

Table 4.16: Several eigenvalues of the Airy equation. The last columrdiegline negatives
of first ten zeros of Airy function AK).

c NuwLPM
6 66

En = E}; Reference [1]
2.338 107 410 459 767 038 489 197 252 4 2.338 107 41
4.087 949 444 130 970 616 636 988 701 4 4.087 949 44
5.520 559 828 095 551 059 129 855 512 9 5.520 559 83
6.786 708 090 071 758 998 780 246 384 5 6.786 708 09
7.944 133 587 120 853 123 138 280 555 8 7.944 133 59
9.022 650 853 340 980 380 158 190839 9 9.022 650 85
10.040 174 341 558 085 930 594 556 737 3 10.040 174 34
11.008 524 303 733 262 893 235 439 649 6 11.008 524 30
11.936 015563 236 262 517 006 364 902 9 11.936 015 56
12.828 776 752 865 757 200 406 729 407 2 12.828 776 75
6 66 10 13.691 489 035 210 717 928 295 696 779 4
6 70 20 21.224 829 943 642 095 368 459 920 359 3
8
9

O© O ~NOUA~, WNE oS

110 30 27.588 387 809 882 444 811 950 364 414 1
135 40 33.284 884 681 901 401 879619 739896 0
10 155 50 38.528 808 305 094 248 822 629 896 744 7
15 280 100 60.858 931 764 608 923 795 521 455 753 8
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Woods-Saxon Potential

Then, we take into account the Woods-Saxon potential defined by

V(r) = - (4.63)

50 |, 5t
1+t 3(1+1)

wheret = eg(”), r € (0,). The problem has been considered by several authors, for
instance, Zakrzewski [88] used a power series method, Lo and $fiAdapplied quadra-
ture discretization method, Shao and Wang [64] considered Obrake-step method to

approximate the eigenvalues of the problem.

1)

Bound state€®, which is equal to thosEﬁll of corresponding one-dimensional problem

n0’
with ¢ = 1, are presented in Table 4.17. In this case, there exist 14 discrete st&des
the start of continuous spectrum over the entire positive real axis. Theation size of
NwLpm = 200 is enough to obtain the bound states of Woods-Saxon potential wheitba
the same truncation order b pyy = 200 and an appropriately chosen parameter2, LPM

produces results correct only to 7-10 digits.

Table 4.17: Bound stat@ffg of Woods-Saxon potential in 3-dimensions whees 0 with
NwiLpm = 200 andc = 30.

=€

~49.457 788 728 082 579 670 330 458 705
_48.148 430 420 006 361 035 971 245 463
-46.290 753 954 466 087 580 582 890 228
-43.968 318 431 814 233 002 577 289 234
-41.232 607 772 180 218 479 078 577 843
-38.122 785 096 727 919 755 861 765 839
-34.672 313 205 699 650 691 489 091 456
-30.912 247 487 908 848 263 645 899 252
-26.873 448 916 059 872 462 417 069 632
-22.588 602 257 693 219 572 212 411 689
10 -18.094 688 282 124 421 158 056 170 233
11 -13.436 869 040 250 076 995 975 578 733
12 -8.676 081 670 736 545 808 091 349 527
13 -3.908 232 481 206 230 174 049 698 348

O©CoO~NOOOUIDd,WNPEFE OIS

Figure 4.4 show®(r) of woods-Saxon potential & = 120 points for diferent values of the
optimization parametes. At this truncation order, the optimugwalue iscopt = 45. Notice
that, copt Collects the grid points to the region where the eigenfunction is nonzero.eX ¢t

points are wasted in the region where the wavefunction is too close to zechi(raapsilon),
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nor they are insflicient to recover the shape of the eigenfunction. In this way, it reduees th
numberN of collocation points used to get the desired accuracy. Here,$015 andc = 45,
the energyk; is correct to 20 and 27 digits respectively, but no convergence sachien

¢ = 100 for the same truncation orderMf= 120.

0.8

+R1(r),c: 15 +R1 (), c=45
0.6} : ~ 1 0.6f 1
0.4 1 0.4
0.2 0.2
of of
-0.2 -0.2
-0.4 -0.4
-0.6 -0.6
-0.8 -0.8
0 5 10 15 20 25 30 35 5 10 15 20 25 30 35
0.8 T T -
+R1(r), ¢ =100

10 15 20 25 30 35

Figure 4.4: The eigenfunctioR(r) of woods-Saxon potential computed by usibg= 120
collocation points with severalvalues.

Exponential Cosine Partially Screened Coulomb Potential

The first example of Coulomb-like potentials is the exponential cosine partialgesed

Coulomb potential (ECPSC)
1
V(r) = =2ZVed(r, A, 1) - 2Zas[F — Vedr, 4, ,u)], Z>0, Zys>0 (4.64)

where

1
Vedr, A, 1) = Fe‘” cosur) (4.65)

with the two screening parametetsandu [46]. In particular, wherZ,s = O the potential

reduces to the exponential cosine screened Coulomb potential (EC&@her,u = 0 at the
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same time, it is known as the Yukawa potential. On the other h&dpds Z corresponds to
the pure attractive Coulomb potential which has countably many discrete gitsgay

™M) —472

EY = , n=01,... 4.66
ne@n+ 20+ M —1)2 (4.66)

together with the continuous spectrum over the entire positive real axisedver, in this

caseZ = Zys = % leads to the hydrogen atom problem.

These potentials have been subject of several studies. Here we rensamizeof them; Lai
[47] determined several states of ECSC within the framework of the hiym@f®ace scheme.
Taseli [75] used modified Laguerre basis for the ECSC and Yukawenpals. Ixaru, De
Meyer and Vanden Berghe [46] developed accurate, robust dacapproach for ECPSC.

Ikhdair and Sever [42] applied a new perturbative formalism for the &CS

Several eigenvalues of the ECPSC potential in three-dimensions amecpo Table 4.18
for the parameter values = 50, Z;s = 1 andad = u = 0.025 when? = 0,10. The results
are satisfactory, but higher levels become expensive to obtain. On #ehatihd, the LPM of
this section does not lead any accurate results for Coulomb-like potentiats censidered
here. The reason for this is that the transformations do not reflectt@bi®to imitate the

true behaviour of the exact eigenfunctions.

Table 4.18: Several states of the ECPSC potential in three-dimensionsavhél, Z,s = 1
andA = u = 0.025 as varies.

¢ E®

c NuLpm n 07

90 20 0 0 —2497.550 000 612 117 3026119994770

60 20 1 —622.550 008 558 171 072 433 651 132 85

30 20 2 —275.327 819 864 885 534 764 663 309 750
8 30 10 —18.218 254 864 529 448 891 256 063 943 9
5 40 20 —3.301 293 923 744 987 946 825 007 566 6
3 62 30 —0.477 979 395 108 803 362 523 577 038 9
5 325 50 —0.001 531 833 374 319 363 664 975 806 4
8 25 0 10 —-18.214 451 240 408 459 529 166 833 611 8
8 25 1 —14.916 599 484 348 635 959 872 635 251 2
8 25 2 -12.351 299 229508 114 531 034 516 078 1
5 40 10 —3.289 943 284 017 899 997 236 108 480 7
4 80 20 —0.460 117 420 637 774 647 219 316 169 8
g 200 30 —0.003 368 086 423 513 184 468 068 809 9
3 355 50 —0.000 699 631 092 664 645 508

Table 4.19 illustrates the discrete states of the ECSC as a function of the paramden
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Table 4.19: Bound energy eigenvalues of the ECSC potential in three-siimnsrwher? = 1
andA = 0.05, asu varies. The case, = 0 corresponds to the Yukawa potential.

M c NyLpm n t Eﬁfg

0 0.6 65 0 0 —-0.903 632857049011 087 7124341515
1 —-0.163 542 391 590 506 248 346 978 827 5
2 —0.038 705 109 629 504 684 590 795 993 6
3 —0.006 183 319 800 322 642 969 317 900 6

0.08 250 4 —0.000 003 138 989 336 707 735 885
0.4 56 0 1 —-0.161 480 774 075 569 219 424 205 487 2
1 —-0.037 115503 766 811 993 209 787 987 8
2 —0.005196 117 705 143 707 930 522 382 5
0.4 51 0 2 —-0.033831 141139631685 7722295165
1 —0.003 161 743 253 742 009 905 767 896 1
0.05 1 55 0 0 —0.900 234 932 841 375 336 090 552 641 8
1 —0.152 899 192 500 495 488 768 133 761 7
2 —-0.023 151128414 121 591 695 111 322 3
55 0 1 —-0.152 118 024 883 462 094 709 873 149 7
1 —0.021 858 659 645 112 322 497 129 462 4
55 0 2 —-0.019 109 758 645 475 738 881 842 814 0

A = 0.05. Due to the nonexistence of the contributions coming from the continpeasram,

the method can not obtain the further states as other methods do.

Table 4.20: Several states of the pure attractive Coulomb potential indhmessions when
Z = Zas= 1 ast varies.

C NyLpm n l Er(13(2

2 2 0 0 —1.000 000 000 000 000 000 000 000 000 O
0.08 40 25 —0.001 479 289 940 828 402 366 863 905 3
0.04 80 50 —0.000 384 467 512 495 194 156 093 810 1
0.02 130 100 —0.000 098 029 604 940 692 089 010 881 3
0.3 15 0 5 =0.027 777 77T 77T 77T 777777 777 777 8
0.06 50 25 —0.001 040 582 726 326 742 976 066 597 3
0.04 80 50 —0.000 318 877 551 020 408 163 265 306 1
0.02 130 100 —0.000 088 999 644 001 423 994 304 022 8

In Table 4.20 we illustrate several eigenvalues of the pure attractive @bypotential when
Z = Zys = 1 for the two valueg = 0 andf = 5 of ¢. For this potential the choice ofbecomes

more important. Small changesdrinas big &ects on the accuracy.
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Partially Screening Hulthén Potential

The last potential that we consider in this section is the partially screeningénypitential

V(r) = =2ZVWu(r, A1) - ZZaS[% - Vu(r, /l)}, Z>0, Zas>0 (4.67)
where
/le—/ll’
Vu(r,2) = PR (4.68)

in which 1 is the screening parameter. The potential behaves as a pure Coulomiiapaiidn
charge<Z andZ,s at small and large distancesrespectively [46]. It reduces to the Hudth
screening potential [41] whefy,s = 0 which is exactly solvable wheMl = ¢ = 1 in (4.38).

In this case, bound states are given by

2
@ _ B _ Z (n+1)n B
En,l_En’O_—(n_i_l— 5 , n=01,...k (4.69)

wherek = [ vV2Z/1] - 1 [26].

The partially screening Hulén potential is considered by Ixaru, De Meyer and Vanden
Berghe [46]. Hult@én potential is studied by many authors. For instance Roy [62] applied
the generalized pseudospectral approach to approximate the bousdStabdins [70] used
the generalized variational method to compute the eigenvalues f06, Bayrak and Boz-
tosun [11] used asymptotic iteration method for &mstate and @Gnill and co-workers [33]
considered the potential in the Hamiltonian hierarchy picture to approximatégevalues

when¢ # 0.

The wLPM works exactly as in the case of ECPSC potential for the partiatiseamng
Hulthén potential. We numerically analyzed the method with the Hultscreening potential
for Z = 50,Z;s = 1 andA = 0.025 and obtained the similar results for the truncation size
and optimization parameter as in Table 4.19. Again the high energy level400) become

expensive to compute within the 30-digits accuracy.

Table 4.21 illustrates the bound states of the Hartecreening potential in three-dimensions
whenZ = 50 anda = 0.025, for the values of = 0,10. The exact eigenvalues in (4.69)
for ¢ = 0 provide the possibility of comparison with the results of the wLPM which are in

excellent agreement. However, The LPM of this section is unsuccesftiiit potential, too.
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Table 4.21: Bound states of the Huétinscreening potential in three-dimensions when50
andA = 0.025, ag varies.

c NyLpm n { EIgSg

60 60 0 0 —2498.750 156 250 000 000 000 000 000 019 8
1 —623.750 625 000 000 000 000 000 000 000 7
2 —276.529 184 027 777 777 777 777 777 7795
3 —-155.002 500 000 000 000 000 000 000 001 6
0.5 350 59 —0.006 944 444 444 AA4 A44 A44 444 444 4
60 —-0.003 268 652 579 951 625 907 014 243 5
61 —0.000 989 203 954 214 360 041 623 309 1

62 —-0.000 037 832 262 534 6
8 30 0 10 —-19.424 335 304 526 595 443 026 049 233 6
1 -16.127 883 961 903 674 884 056 154 659 1
2 —-13.563 579 616 949 111 137 705 699 537 1
3 —11.530 002 448 250 049 695 932 487 845 2
1 250 47 —-0.015 675 609 084 845 879 723 414 562 8
48 —0.009 260 969 711 122 159 378 014 469 3
49 —0.004 448 783 837 632 467 073 719 998 2
50 —0.001 188 166 258 891 096 462 375 433 4

In this section, we developed twoffdirent pseudospectral approximations LPM and wLPM
of the radial Schidinger equation. The numerical results show that he former works better
mainly for isotropic polynomial oscilators whereas the latter is much more suitabieh-

polynomial and Coulomb-like potentials.

4.3 The Schidinger equation over a finite interval

In this section, we examine several regular and singular problems oveteaifiterval. The

first one is the angular part
TO0;m) = EO@;m), 60 (-3r.37), ©O@F;m) e L?(-1r, 3n) (4.70)
of the internal amplitude function described by the trigopnometric Hamiltonian

1 d d mP .
T =W (cos@d—g) i V(sif6), m=0,1,.. (4.71)

wherem stands for the magnetic quantum number. This problem results in &dcber
equation of a two-particle system by separation of variables under thenpen that the
potential energy of the system is to be the sum of a central potential dagemaly onr

and an angular potential which is a polynomial in even powers of f]. Singularities
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of (4.70) as well as the unboundedness of the trigonometric poten%l:a&%n implies
that the eigenfunctio® must vanish at the boundaries. Clearly, such an eigenfunction will
be in the spacez(—%n, %n) of the square integrable functions which suggests the use of the
Dirichlet conditions@(i%n; m) = 0 at the boundaries. Furthermore, the reflection symmetry
of the system under the replacement bfy —6, implies that the spectrum can be decomposed
into two subsets containing solely the even and the odd states such thatrémpoading
eigenfunctions are even and odd functiong,afespectively. For even states, introduction of
the mapping

£=cosd, ¢e(-11) (4.72)

which is not one-to-one, leads to the operational equivalences

d d & o o2 d
tang—- = -2(1- f)d_g and 37 = Al-¢ )@ - 4§d—§ (4.73)
which transforms (4.70) into the form
d? d e
[(1 O+ (-3 G - g TV (- f))} Oc(éi M) = ~4EO(E M) (4.74)

subject to the conditio®¢(—1; m) = O for all m, where®¢(¢; m) stands for an even eigenfunc-
tion in the original variabl® when¢ is replaced by cos2 Next, to avoid the use of the term

proportional to (1+ £)~1, we suggest an eigenfunction of the type

O M) = (1+8)™?y(@) (4.75)

satisfying the above boundary condition as long as the new dependéttlegy remains

bounded a¥ = -1, to arrive at the EHTP of the third kind
(1-&y +[m+3—(m+3)¢]y - 3V (3(1-9)y = 3mm+ 1) - Ely (4.76)

with @ = —% andg = m. Itis not dificult to see that the last equation yields even states of
(4.70) on returning back to the original varialleia (4.75) and (4.72). On the other hand,

odd state eigenfunctions can be expressed in the form
®o(0; m) = sindd(9; M) 4.77)

where @ is necessarily an even function @f After straightforward manipulations, we see
that @ satisfies the boundary value problem
2

—— *+ (tand -2 cote)dE _m + 2+ V(sir? )| (6; m) = EQ(;m), & (+37) = 0.

o " cog 4
(4.78)
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The evenness ap implies the application of the same transformations (4.72) and (4.75), that
is, & = cos D andd(&; m) = (1 + £)™2y(£) which have been used for even states. Thus, we

again reach at the EHTP of the third kind

A-&)y +[m-3 - (m+3)¢]y - 3V(3(A-9)y=F[(m+1)(m+2)-Ely (4.79)
but this time witha = % andg = mwhich gives rise to odd states of (4.70).

Itis clear from (4.76) and (4.79) that the Jacobi pseudospectral chéllRd) is suitable for
the example. Hence, the diagonalization of the final ma#rin (3.30) witho(¢) = 1 — &2,

7€) = [m+ 3 - (m+ 3)£], (i.e.,a = -3 andg = m) andr(¢) = 1 leads to the even states

whereas a slightly dierentr(¢) = [m- 3 - (m+ 3)£], (i.e.,a = 3 ands = m) with the same

o andr produces the odd states
Eoni1 = (M+ )M+ 2) + 44, (4.81)

of the problem in whicht,, are the eigenvalues of the transformed equation in (4.79). For this
problem it can be seen from (4.76) and (4.79) that the potential energixina3.32) reads
as

v(ém) . _%—,V (%(1 - fm)) Smne (4.82)

(an = (Vm(smn = ®5mn =

Itis clear that an orthonormal eigenfunctig(®) of (4.76) satisfies

1 1 1 1
1= f Y@L - &) 2(1+H)Mde = f @2(& mM)(L - &)2de (4.83)
-1 -1

in which the last equality is obtained on using (4.75). On the other hand, tightfenction
for (4.70) isp(0) = cosd which can be seen by writing it in the Sturm-Liouville form. Thus,
for an eigenfunction of (4.70) we write

f : ©2(6; M) coshdy = 2 f : ©3(6; m) coshdg = 1 f ' Q2 m(1-&)2de (4.84)

-z 0 V2 Ja

where, in the last equality, we have used (4.72). Therefore, compherigst two equations
we see that the values of normalized even eigenfunctions in original i@hake values at
0 = 0; as

(6} M) = 2/*Oc(&;: M) (4.85)
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in terms of the normalized eigenfunctionsénwhich are the roots of the Jacobi polynomial

P(_%s

N+1m)(§). Therefore, we have

OL(65; m) = 241 + &)™ (£)) (4.86)

wherey(¢;) is described in (3.40). Notice that; = arccos§)) € (0, 37). The values of
an eigenfunction at negative valuesgadire the same as those at positivealues since even

indexed eigenfunctions are even function®.of
For odd state eigenfunctions from (4.79) we get
1 1
1= [ You-giarene- [ oema-old (4.87)

Writing (4.78) in the self adjoint form, we see that the weight functiop(#§ = sir? 6 cosg

and we write

f : D2(9; mM)p(F)do = 2 f : O2(0; M)p(0)dh = —— f ' D& m)(1-£)2de. (4.88)
- ’ 0 ’ 2v2J1

NS

Here, first we have made use of the evenness of the integrand andfbignhe transforma-

tion in (4.72). Thus, we may write
@(0;; m) = 2¥40(&); m) (4.89)
so thatd(¢; m) is normalized in_?-norm, which implies
Op(6; M) = 2Y4(L - ) Pa(g;m) = 2L - )AL+ )M (E)  (4.90)

since@q(0; M) = sindd@(P; m) and d(&; m) = (1 + &)™2y(¢). It is clear that the values of
eigenfunction at negative values @fre the negatives of those at positive valueg since

odd indexed eigenfunctions are odd functiong.of

Notice that when the potenti®l is a function of sirf instead of sif@ the system (4.70) is no
more symmetric. Thus, it is not possible to seperate the even and odd statds.dase, the
transformationg = sing and®(£; m) = (1 - £2)™?y(¢) takes the equation into an EHTP of
the third kind

(1-&Yy" - 2(m+ 1)y - V(Ey = ~[mm+1) + Ely (4.91)
with @ = 8 = m. Therefore, the energy eigenvalugsof (4.70) with potential function of the

form V(sin@) has the connection formula
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with those of (4.91). Further, the values of the normalized eigenfunctiofs -a arcsing;

satisfies
O(0;; M) = O; m) = (1-£H™?y(&) (4.93)

since

’-Zr 1 1
[ erimcosio - [ eimue- [ POu-re-1 (@99
_ -1 -1

z
2

Spheroidal Wave Equation

We now consider the angular spheroidal wave equation

_d
dt

where the angular momentumis integer and the paramet@iis real, which results from the

d
_2_
(1 t)dt

L C 4 %}@(t) —EO®), O()cl?(-11)  (4.95)

Helmholtz equation by separation of variables in the prolate spheroidalicates. It arises
in different areas of physics such as atomic and molecular physics, light scaiteoptics

and the nuclear shell model [10].

Actually, the spheroidal wave equation is no more than system (4.70) witloteatl func-

tion V(sir? §) = C2sir? 9, whenever the inverse substitution
0 = arcsirt, € (-3, 3n) (4.96)

is applied to the spheroidal wave equation in (4.95). Thus, the EHTPespamding to
the even and odd states of (4.95) are (4.76) and (4.79)W|t,l]i(1—§)/2) = C%(1-¢)/2,
respectively, which suggest the use of the Jacobi pseudospecthaldadaving the parameter

sets{a, B} = {~1, m} and{3, m}.

At the numerical side of the present example we compute the eigenéiy(es C?) = m(m+

1) + 42, andEzn,1(M, C?) = (Mm+ 1)(M+ 2) + 44, of the spheroidal wave equation for several
values ofm andC?. Table 4.22 demonstrates the convergence rates of several states with
m = 0 andC? = 10. Extremely fast convergence rate of the method for an arbitrary state

numbem is quite impressive [3].

Notice thatm # 0 leads to an extra term proportional t&(1— t%) which is singular at the end
pointst = +1. We also test the method with nonzen@and do not encounter anyficulties.

Still we have the same convergence rate as thai 6f0. The results are listed in Table 4.23.
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Table 4.22: Convergence rate of eigenvali®eg(0, 10) of spheroidal wave equation as
varies [3].

N Eo(0,10) N Eioo0, 10)

5 230504010 51 10108

6 2305040 107 940 52 1010800 433

7 2305040 107 940 431 6 53 101080 433 246 48

8 2305040 107 940 431 635 6 54 101080 433 246 482 907 99

9 2305040 107 940 431 635 679 732 55 100 433 246 482 907 993 562 45

10 23050401079404316356797321029 56 10006 433 246 482 907 993 562 450
11 2305040107 9404316356797321029 57 100086 433 246 482 907 993 562 450

N E200(0, 10) N E400(0, 10)

101 4020500 201 16040®0

102 4020500 108 8 202 16040800 027 2

103 40205000 108 835 777 203 1604@®0 027 2758708

104 40203000 108 835 777 578 646 2 204 16040 027 275870838 131 19

105 40203000108 835 777578 646209290 205 160000 027 275 870 838 131 198 65
106 40203000 108 835 777 578 646 209290 206 160808 027 275 870 838 131 198 65

Seperation of even and odd states halves the truncatioNsizereover, because of the fast

convergence rate higher states are not expensive to compute.
On the other hand, the values of the normalized eigenfuncégn} are given by
Gia,o(tj) = ®ie,o(91'; m) (4.97)

where@‘e’o(ej; m) are the values of the normalized even and odd eigenfunction value3 0§ (4
describedin (4.86) and (4.90), respectively. This is true since thetlmwformation in (4.96)
does not change the valuelof norm, i.e.,
1 3
”@”Lz(_l’l) = fl @2(t)dt = fﬂ @(9, m) COS@dH = ”@”ngw(_g’%) =1 (498)
- 2
Here, notice that; = &; are the roots of Jacobi polynomiaﬁ;ﬁ) where{a, 8} = {—%, m} and

{%, mj} for even and odd states respectively.

A Singular Trigonometric Potential

The number of singular examples over a finite interval can be furtherasete For instance,

the equation

& pu+1) SN :
—@ + m + V(COS@) @(9, /.l) = E@(H, /.1), M > 0, 0e (—71', 7T) (499)

whose square integrable exact soluti@{s; u) have been examined by Marmorino [55] and

Taseli [77] when the regular pavi{coso) of the total potential is zero. Both the singularities
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Figure 4.5: ground state eigenfunction of spheroidal wave equation mhi#d andC? varies
(left) andC? = 10 andm varies (right).

Table 4.23: EigenvaluE;o1(m, C?) of spheroidal wave equation white andC? vary.

Nypm m C? E101(m C?)

55 1 1 10506.499 967 276 991 055 248 535 475 4

56 10 10510.999 940 378 439 800 892 978 058 2

59 100 10556.026 164 644 165 409 866 045 980 98
55 10 1 12432.495 990 327 209 846 178 706 135 98
56 10 12436.960 118 690 265 202 384 215515 24
58 100 12481.622 725 202 337 649 507 963 187 86
54 100 1 40602.376 854 026 563 733 225 382 621 98
55 10 40605.768 528 171 499 786 758 027 566 70
57 100 40639.684 067 938 101 256 176 692 086 07

and reflection symmetric structure of the system suggest the use of simitzdpre to that

of (4.70). Thus, the mapping

& = cosd, £e(-1,1) (4.100)
transforms (4.99) to the form
d? d (u+1)
2 H . _ .
(1-¢ )_ng - §¥ "1 V()| Oc(&; M) = —~E@g(¢; m) (4.101)

subject to®¢(—1; m) = 0 for all u, where®¢(¢; m) denotes the even wavefunctiondnThen

proposing an eigenfunction of the type

Oe(¢;m) = (L + &)W 2y(¢) (4.102)
we eliminate the term proportional tg(1L + £) and obtain the equation
(L= +[u+1-(u+2¢ly -VEy=1y, A=[j@u+17?-E] (4.103)
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which is an EHTP of the third kind wite = —3 andp = u + 3. On the other hand, we

transform the dependent variable
Oo(6; 1) = SINOD(B; ) (4.104)

for the treatment of the odd eigenfunctiad®g(0; 1) , whered(0; u) is an even function of.

It is not difficult to see thatb(g; 1) satisfies the dierential equation

d? d  p+1) SN :
—@ + -2 COtHd_Q + m +1+ V(COSH) (p(G, m) = E@D(g, m) (4105)

Note from (4.104) thatd should remain bounded at the end poifits 7. Now we may
apply the similar transformatiors= cosd and®(&; m) = (1+ &)*/2y(¢) as in the case of even
states to the last equation sin@ds an even function of. After a little algebra we obtain the

following EHTP

Q=&)Y +[u—(u+3Kly -V(Ey=2ay. 1=|3@u+2?-E] (4.106)
of the third kind withe = 3, 8= + 3.

Clearly the JPM with{. ) = {~3.u + 3} and{3. 4« + 3} is suitable for the approximation of
the evenEan(u) = (i + 1)? + A and oddEzn,1 () = z(u + 2)? + A, eigenvalues of (4.99),
respectively. Some even eigenvalues of (4.99) are presented in Talagy varies. The

method works well as in the previous example, that is convergence isnidstigher states

are easy to obtain.

Table 4.24: Several even states of (4.99) as a functign of

Njpm M n Eon(u)

60 1 50 2601.506 544 844 102 970 540 696 378
108 100 10201.501 669 363 103 674 040 898 605
158 150 22801.500 746 911 100 904 849 561 472
208 200 40401.500 421 542 164 630 013 676 820

59 10 50 3080.834 369 480 225 070 383 654 415
108 100 11130.773 358 739547 778 888 712 073
158 150 24180.760 753 055 598 522 425 650 152
208 200 42230.756 157 197 094 103 036 476 394

58 100 50 10103.093 627 746 026 304 033 361 397
108 100 22651.772 216 169 967 820 190 466 299
158 150 40201.321 434 408 931 753 789 841 423
208 200 62751.114 741 143 703 969 271 611 335
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On the other hand, the normalized eigenfunctions are given by
O(fm) = 27 M2(1 - £m) 2 D (L + £m) T Y(ém) (4.107)

wherea = -3 1 leads to the eve®¢(0) anda = 1 5 to the odd state®,(0). The last formula can

be obtained by a similar analysis to that of the previous problem.

Mathieu and Coffey-Evans Equations

Another example is the Sabdinger equation with a periodic potential

d2
|- t V(cos 2)|0() = EOQ). (e (- 3m 3n) (4.108)
subject to the condition® (ig) = 0 [3]. Rescaling the independent variable by putting
6 = 2/, we obtain an equivalent equation
d2 1 1

[-— 7t IV(cost)|0(0) = EO@), ©(+1) =0 (4.109)
which is the limiting case of (4.70) when— 0* with V(cos#) andE scaled by}l. Therefore,
the EHTPs of the third kind corresponding to even and odd states are wWriitan(4.103)
and (4.106),

L-&)Y +(1-2£)y - VEY=-4y,  Exn=1+44, (4.110)
and

(1- &)y’ -3¢y - 3V(Ey Y, Eoni1 = 4(1+ An) (4.111)
respectively, wheréw, 8} = {3, 3} and{3, 3} [3]. In this case the normalized eigenfunctions

have the expression
O(¢m) = 220(0m) = 27(1 = &m) (L + &m) (i) (4.112)
where®(6,) is given by (4.107).
Well known particular cases of (4.108) are the Mathieu anfieyeEvans equations, if
V(cos2Z) = -2qcosZ (4.113)

and

V(cos Z) = v?sin? 2/ — 2vcos Z, (4.114)
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Table 4.25: Several eigenvalues of Mathiefietential equation witlg = 1 [3].

n N E,

0 9 —-0.110 248 816 992 095 169 906 547 85
100 55 10201. 000 049 019 607 990 453 093 342 0
200 105 40401. 000 012 376 237 626 132 297 845 2
300 154 90601. 000 005 518 763 797 119 609 337
400 204 160801. 000 003 109 452 736 355 989 67
500 254 251001. 000 001 992 031 872519 841 33

1000 504 1002001. 000 000 499 001 996 008 139 4

respectively, wherg andv denote real parameters [3]. The parametirthe Cdfey-Evans
equation controls the depth of the well potential under consideration. idgreases, nearly

degenerate triple states may occur.

From (4.110) and (4.111), several eigenvalues of the @&lihger equation in (4.108) with
Mathieu and Cfiey-Evans potentials are reported in Tables 4.25 and 4.26, respecinily,
for the parameter values gf= 1 andyv = 50 in order not to overfill the content of the section
with tabular material anymore. In fact, the convergence properties oflgloeitam in the
Mathieu case are typically the same for @tlthough a slight slowing down of convergence

is observed ag increases [3].

Table 4.26: Triple eigenvalues of @ey-Evans equation with = 50,N = 72 [3].

En n En

0.000 000 000 000 000 000 0000000 9 947.047 491 585 860 179490@58 2
197.968 726 516 507 291 4501891045 10 1122.762 920 067 $EI1B045 550 3
391.808 191 489 053841 0502344346 11 1122.762 920 071 @8H2891 942 2
391.808 191 489053841 8322412499 12 1122.762 920 074 B11681115 209 4
391.808 191 489 053 842 614 2480658 13 1293.423 567 331 70Z1MBO58 872 2
581.377 109 231 579 654 864 7158988 14  1458.746 557 025 363165371 063 0
766.516 827 285532616 5798177941 15 1458.746 558 472 B8110534 887 1
766.516 827 285 535 5054314302373 16 1458.746 559 918 809883248 167 6
766.516 827 285538 394 2830426813 17 1618.391 008 042 4334885 816 0

O~NO O WNEO|S

A truncation order ofN = 72 sufices to get the reported accuracy in Table 4.26 for the
low lying states of the Cifey-Evans equation. It is shown that, as for the symmetric double
well oscillator over the real line, the method is capable of determining the getpsedn

the nearly degenerate triple states of théf€gEvans equation successfully. Clustering of
the eigenvalues does not seem to cause affiguliies in computations which is a serious

troublesome for many other methods especially when high accuracy iseedbd, 59, 61].
Figure 4.6 illustrates the eight eigenfunction offfeg-Evans equation when = 50. The
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Figure 4.6: Eight eigenfunction of @ey-Evans equation when= 50.

well-known theory of Sturm-Liouville equations tells that it must have eighbzén the
interval x/2,7/2). All the eigth roots are become clearer when we rescalg-tnds as

shown on the right in figure 4.6.

A Weighted Example: Collatz Equation

Our final example is the Sturm-Liouville equation
-u" =w(X)Eu, u(xm)=0 (4.115)

in which p(x) = 1, g(x) = 0. When the coicientw(x) = 3 + cosx we have a regular system
[21]. On the other hand, with a small changewnw(x) = 1 + cosx it is possible to make
(4.115) into a singular one since the strictly positive temx) becomes zero at both ends

X = +x of the interval.

Notice that (4.115) is reflection symmetric so that the even and odd stateg capérated.

To this end, first letting = cosx, ¢ € (-1,1) we transform (4.115) into the form
(1-)U" - &d = -w(E)Au, y(-1) = 0. (4.116)

Then transforming the dependent variable frpito u by settingu(¢) = (1 + £)Y2y(¢) we get
a WEHTP of the third kind

L-&)Y +(1L-2£)y - ty=-WE, Ezn=-1n (4.117)

which is now free of boundary conditions whar@) is a bounded function. It is clear from

the transformations that the last equation leads to the even states of (4Qrd%he other
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hand, the WEHTP for odd states

(L-&)y -3y —y=-WEAY, Ez1=—4n (4.118)

maybe obtained by first letting(x) = sin(x/2)v(X) and then using the same transformations

as for the even states i.¢.= cosx andv(¢) = (1 + £)Y2y(¢) sincev is an even function irx.

Table 4.27: Several eigenvalues of (4.115) wh&ér) = 3 + cosx.

n N E,
0 7 0.071 250472 415 618 892 696 004 740 92
1 8 0. 330 308 392 380 975 379 846 094 175 87
2 11 0. 757 841 875998 001 890 142 105 823 14
3 12 1.352 122 184 297 188 245 943 947 217 42
100 80 862. 345 846 467 178 750 914 982 497
200 180 3415. 311 685 171 409 374 506 960 299
300 250 7658. 983 377 523 340 639 510 297 020

Last two equations suggest the use of weighted JPM (wJPM) with the peramsues
{e,B} = {-3, 3} and{3, 3} to approximate the even and odd eigenvalues of (4.115), respec-
tively. Hence, having found the zeros of the Jacobi polynomials with tbeifspd parameter
sets{a, 8} by means of (A7), we diagonalize (3.30) withr(¢) = (1 - &2), 7(¢) = 1 - 2¢,

r(¢) = w(¢) andv(¢) = —1/4 to obtain the even states. On the other haiig), = —3¢ and

v(¢) = —1 with the samer andr leads to the odd states. The results are tabulated in Tables

4.27 and 4.28 for two dlierent choices of the functiam(x): one for

Table 4.28: Several eigenvalues of (4.115) wingr) = 1 + cosx.

n N En
0 7 0.164 502 863 913 457 323 306 759 241 01
1 10 0.929 105 845 742 146 673 250 363 316 7
2 12 2.313 475 399 952 284 033 850 395 403 8
3 13 4.315 804 581 299 675 265 350 877 278 4
100 110 3130.641 475 953 241 379 041 372 622
200 200 12429.653 986 476 452 664 627 738 315
300 290 27897.171 475 839 285 438 047 623 167

Compared to previous examples in this section, slowing down of convexgerabserved
especially for the singular one whergx) = 1 + cosx. However, it is still possible to reach

the machine accuracy by increasing the truncationNize

Figure 4.7 illustrates the first two normalized eigenfunctiogx) and ui(x) of (4.115) for
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Figure 4.7: First two eigenfunctions of the Collatz equation in (4.115).

two different cofficient functionsn(x). In this case, we have the connection
_ _1 _ _1 l((Hl) 1
U(Xm) = 272U(m) = 272(1 = ém) 27 2(1 + Em)2Y(ém) (4.119)

between the eigenfunctiorf¢) of the WEHTPs in (4.117) and (4.118) and the eigenfunction
u(x) of the Collatz equation in (4.115). Notice that= —% anda = % lead to the even and

odd state eigenfunctions, respectively.

In this chapter, we have seen that a numerous Sturm-Liouville ané@olger equations can
be converted into a WEHTP, and hence, the eigenvalues of the origotdepr are approxi-
mated by means of our general pseudospectral formulation. In the megpter, we conclude

the thesis by discussing the advantages and disadvantages of thesprégrazulation.
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CHAPTER 5

CONCLUSION

In this thesis, we present a unified pseudospectral framework basbd oassical orthogonal
polynomials for computing the eigenvalues of a wide class of physical prhlehich can be
transformed into a WEHTP. A symmetric matrix representation of tiferéintial eigenvalue
problem is formulated, where the matrix elements are determined using simpléegadte
analytical expressions. In this setting the collocation points are also computeetically to

an arbitrary precision as the eigenvalues of a tridiagonal symmetric matrix.

Computer programs are written in FORTRAN programming language. We usetiuple-
precision arithmetic on a main frame computer with machine accuracy of abalifi82 by

truncating the results to 25-31 significant figures.

We have taken advantage of the Hermite, Laguerre and the Jacoboppeattal methods for
the problems over the real line, half-line and finite intervals, respectit&ynerical results
verify the exponential rate of convergence, as expected theoreticallypectral methods.
On the other hand, we do not have an explicit error bounds for eig@wéor a specified
truncation ordeN. Hence, the accuracy of the results in all tables reported here has been

checked by inspecting the number of stable digits between two consecutieation orders

[3].

The convergence of the Hermite and Laguerre pseudospectral methpthe mecelerated by
a scaling transformation. There exists an optimum value of the scaling fafdowhich the
desired accuracy is achieved at the smallest possible matrikisizeom Table 4.2 we notice
that at a fixed truncation size &f = 69, Eg converges to 30 digits when= 4.4 whereas at
the same truncation size we get merely three or four correct digits wkehl andc = 7.7,

respectively. Indeed, an analytical treatment of an optimum value @y, is very dificult
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since it depends on several parameters such as the potential fudctipantum numben,
truncation sizeN and even the required accuracy. For instance, the connection bezandn

the quantum numben is shown clearly in Tables 4.4 and 4.7. For lower states of SDWP
Copt = 2.05 whereas it igopt = 2.6 for Ejpo. From Table 4.2, we infer that if we require,
for example, only 8 digits accuracy fép we are free to choose any real number between
2.2 < ¢ < 6.6 which indicates howve,,t depends on the required accuracy. Nevertheless, such
an 8 digits accuracy is obtainable whidn= 56, N = 28 andN = 69 forc = 2.2, ¢ = 4.4 and

c = 6.6, respectively [3].

In fact, copt is related to a large extent the asymptotic behavior of the solution of the problem
for a definite potential function in question. For example, the valueggphave been reported

to becopt = 4.4 in Table 4.1 and,; = 0.15 in Table 5 for the low lying states of an ADWP in
equation (4.28), and for a Gaussian type potential in (4.37), resplgclivis possible to find

out that the exact eigenfunctions of an ADWP and a Gaussian potertimibike e Vaix*/3

and e V-Ex at infinity, respectively. On the other hand, the trial solutions we progdesay

like e <**/2 for the ADWP and the Gaussian potential. This suggests that we must use an
optimization parameter > 1 and O0< ¢ < 1 for the ADWP and the Gaussian potential,
respectively, in order to imitate the true asymptotic behavior of the exactfaigeions. On

the other handg,,: = 1 for the lower states of the Gaussian type potential over the half line
since the alternative transformations in (4.44) and (4.46) reflects thectdrehavior of the

eigenfunctions.

Hence, we have seen that the optimum value cén be estimated by inspecting the actual
solution or, at least, its asymptotic behavior if it is known in advance. Otherivisan be
determined roughly by numerical experiments, i.e., by the trial and erronitpad In this
process, if a user takes a “bad” value @othen either the algorithm diverges or the conver-
gence is reached at the cost of employing very high truncation ordelrs fidct, a scaling
transformation maps unbounded intervals onto themselves by solely redtalilogation of
the points in the interval, whereas it is useless for the finite interval probleros & just
shrinks or stretches the whole picture. In spite of the existence of satingparameter
in the Hermite and Laguerre methods the convergence is still slower wheracednip the
Jacobi pseudospectral methods. In figure 5.1, we demonstrate hoklychie accuracy is

improved as N increases in a typical Jacobi and a Laguerre method [3].
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Figure 5.1: Number of correct digits versus matrix shtdor E;q9 of Mathieu potential in
(4.113) with g=1, and SDWP in (4.33) [3].

One of the most commonly used methods in literature is the Chebyshev psecitalspethod
(CPM), which has two main practical advantages. First the zeros of tebyShev polyno-
mials are expressible in closed form, and the seddhdlifferentiation matrixD® can be
obtained fromD™ by taking itskth power. Nevertheless, our approach enables to work auto-
matically with the best appropriate classical orthogonal polynomial in thercati®n of the
Lagrange interpolation, depending on the specific structure of the pndblguestion. For
example, our algorithm suggests the use of the Jacobi ponnﬁ’rﬁi’q%l)(f) for the even states

of the Mathieu equation.

Table 5.1: Comparison with standard CPM for the first eigenvalue of Ma#ggeation with
g=1[3].

Ncpm Eo N Eo
7 -0.10 2 -0.10
14 -0.110 2484 3 -0.110248 4
20 -0.110248 817 3 4 -0.110 248816 9
27 -0.110248 816991 9 5 —-0.110 248 816 992 08

If the standard Chebyshev methad £ 8 = —%) were used directly to the original Mathieu
equation, then the loss of accuracy is illustrated in Table 5.1. To be spéoifigmpute
the ground state of the Mathieu equation accurate approximately to 10 digittativasd
Chebyshev method requires the diagonalization of a matrix of ddefy = 27 whereas the
same accuracy is reachedMit= 5 in our algorithm. Actually, this is typical for all finite

interval problems considered in this study [3].
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Actually, in Chapter 4 we have not considered all potentials that the metmoldacalle, in-
stead we have examplified some potentials that haterdnt characteristic properties. On the
other hand, this does not mean that the method works for all potentials.vdnwiee general
pseudospectral formulation proposed in this thesis is a powerful meappodximating the
Schibdinger type eigenvalue problems for a wide range of potential funct®issseen from

the tables.

76



REFERENCES

[1] Asramowirz, M., aND StEGUN, |. A. Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tabld3over, New York, 1970.

[2] Acuirrk, J.,anp Rivas, J. Hermite pseudospectral approximations. An error estinjate.
Math. Anal. Appl304(2005), 189-197.

[3] A, H., anp Taser, H. Pseudospectral methods for an equation of hypergeometric
type with a perturbation]. Comput. Appl. Mathi234, 1140-1152.

[4] Baiwey, P. B. Sturm-Liouville eigenvalues via a phase functiShAM J. Appl. Math14
(1966), 242-249.

[5] Bamwey, P. B. Modified Piifer transformations). Comp. Phys29 (1978), 306—-310.

[6] Barey, P. B., BveritT, W., AND ZETTL, A. The SLEIGN2 Sturm-Liouville codeACM
Trans. Math. Softwarg1 (2001), 143-192.

[7] Bawwkey, P. B., Goroon, M. K., anp SuampinE, L. F. Automatic solution of the Sturm-
Liouville problem.ACM Trans. Math. Softwaré (1978), 193-207.

[8] Banerieg, K. General anharmonic oscillatorBroc. R. Soc. Lond. 864 (1978), 4767.

[9] Banerieg, K., AND BHATNAGAR, S. P. Two well oscillatorPhys. RewD18 (1978), 4767—
4769.

[10] Barakar, T. Asobaven, K. M. A. The asymptotic iteration method for the angular
spheroidal eigenvalued. Phys. A: Math. Ger88 (2005), 1299-1304.

[11] Bavrak, O. Bozrosun, |. Bound state solutions of the Huéth potential by using the
asymptotic iteration methodRhys. Scr76 (2007), 92—-96.

[12] Bernarpi, C., aNp Mapay, Y. Spectral Methods Handbook of Numerical Analysis.
Elsevier, Netherlands, 1997.

[13] Bovyp, J. P.Chebyshev and Fourier Spectral Methp@dad ed. Dover Publications Inc.,
Mineola, NY, 2001.

[14] Canuto, C., Hussaint, M. Y., QuaRrTERONI, A., AND ZaNG, T. A. Spectral Methods in Fluid
Dynamics Springer-Verlag, Berlin, 1988.

[15] Canuto, C., Hussamni, M. Y., QuarTeront, A., AND ZaNG, T. A. Spectral Methods Fun-
damentals in Single DomainSpringer, Berlin Heidelberg, 2006.

[16] Canuto, C., anp QuarTERONI, A. Approximation results for orthogonal polynomials in
Sobolev spacedMath. Comp 38 (1982), 67-86.

[17] Cuen, H. The quadrature discretization method and its applicatioRkD thesis, Dept.
of Math., The University of British Columbia, 1998.

77



[18] Cuen, H., anp SHizar, B. D. The quadrature discretization method (QDM) in the solu-
tion of the Schadinger equationJ. Math. Chem24 (1998), 321-343.

[19] Croor, A., ano WEIDEMAN, J. A. C. An adaptive algorithm for spectral computations on
un-bounded domaing. Comput. Physl02(2) (1992), 398—-406.

[20] CoppingTON, E. A., anp LEvINsOoN, N. Theory of Ordinary Dferential Equations
McGraw-Hill, New York, 1955.

[21] Couratz, L. Differential Equations: An Introduction with Application®Viley, Chich-
ester, 1986.

[22] Dasuen, R. F., HassLAcHER, B., anp NEveu, A. Nonperturbative methods and extended-
hadron models in field theory. i. semiclassical functional methodkys. RewD10
(1974), 4114-4129.

[23] DemmraLp, M. A new algebraic approach to the eigenvalue problems of liné@rdntial
operators without integrationfnt. J. Quantum Chen29 (1986), 221.

[24] Drozpov, A. N. On the improvement of convergence of Hill determinark$hys. A:
Math. Gen28(1995), 445.

[25] Fack, V., anp Vanpen Berche, G. A finite difference approach for the calculation of
perturbed oscillator energied.Phys. A: Math. Geril8 (1985), 3355.

[26] FLiGee, S. Practical Quantum MechanicsClassics in mathematics. Springer-Verlag,
Berlin Heidelberg, 1999. Reprint of the 1994 edition.

[27] FornBERG, B. A Practical Guide to Pseudospectral Method€ambridge university
press, 1996.

[28] Frazer, R. A., bnes, W. P.,anp Skan, S. W. Approximations to functions and to the
solution of diferential equationsRep. and Mem(1937), 1799.

[29] Funaro, D. Polynomial Approximation of Qferential Equations Lecture Notes in
Physics. Springer-Verlag, Berlin Heidelberg, 1992.

[30] Gaurscur, W. Orthogonal polynomials-Constructive theory and applicatiachaCom-
put. Appl. Math12 (1985), 61-76.

[31] Gmpener, E., anp Patrasciour, A. Pseudo particle contributions to the energy spectrum
of a one dimensional syster®hys. RewD16 (1977), 423—-430.

[32] Givori, D. Numerical Methods for Problems in Infinite Domairi&sevier, Amsterdam,
1992.

[33] Goni, B., Ozer, O., CangeLIK, Y., anD Kog¢ak, M. Hamiltonian hierarchy end the
Hulthén potential Phys. lett. A275(2000), 238—-243.

[34] GorrLies, D., anp Orszag, S. A. Numerical Analysis of Spectral Methods: Theory and
Applications SIAM, Philadelphia, 1977.

[35] Guo, B. Y. Spectral Methods and Their Application&/orld Scientific, River Edge, NJ,
1998.

78



[36] Guo, B. Y. Error estimation of Hermite spectral method for nonlinear partiégntial
equationsMath. Comp68(227)(1999), 1067-1078.

[37] Guo, B. Y., SiEn, J.,anp WanG, Z. Q. A rational approximation and its applications to
differential equations on the half lind. Sci. Comp15 (2000), 117-147.

[38] Guo, B. Y., anp Wang, L. L. Jacobi approximations in non-uniformly Jacobi-weighted
Sobolev spacesl. Approx. Theorni28(1) (2004), 1-41.

[39] Guo, B. Y., Wang, L. L., anp WanG, Z. Q. Generalized Laguerre interpolation and
pseudospectral method for unbounded domaBigAM J. Numer. Anal3 (6) (2006),
2567-2589.

[40] Hsug, C. S.,anp CHERN, J. L. Two step approach to one-dimensional anharmonic oscil-
lators. Phys. RewD29 (1984), 643—647.

[41] Hurreen, L. Ark. Mat. Astron. Fys. 28 (1942), 5.

[42] Ixupar, S. M., anp Sever, R. Bound energy for the exponential-cosine-screened
Coulomb potentialJ. Math. Chem41 (2007), 329-341.

[43] Ixaru, L. G. Numerical Methods for Dfierential Equations and Application®Reidel,
1984.

[44] Ixaru, L. G., De MEeYER, H., anp VaNDEN Bercuge, G. CP methods for the Sdbtinger
equation, revisitedJ. Comput. Appl. Mat88 (1997), 289-314.

[45] Ixaru, L. G., De MEYER, H., aNp VaNDEN BErGHE, G. SLCPM12 - A program for solving
regular Sturm-Liouville problemsComput. Phys. Commuh18(1999), 259-277.

[46] Ixaru, L. G., De MEevER, H., anp Vanpen Berarg, G. Highly accurate eigenvalues for
the distorted coulomb potentidPhys. Rev. B1 (2000), 3151-3159.

[47] Lai, C. S. Energies of the exponential cosine screened Coulomb potétitisd. Rev. A
26(1982), 2245-2248.

[48] Lanczos, C. Trigonometric interpolation of empirical and analytical functiohgviath.
Phys.17(1938), 123-199.

[49] Leboux, V. Study of Special Algorithms for Solving Sturm-Liouville and Schrodinger
Equations PhD thesis, Dept. of Appl. Math. and Comp. Sci., Ghent University, 2007

[50] Lepboux, V., Van DaEeLE, M., anp VaNDEN BerahE, G. MATSLISE: A matlab package for
the numerical solution of sturm-liouville and sékiinger equationsACM Trans. Math.
Software31 (2005), 532-554.

[51] Lo, J. Q. W.,anp SuizcaL, B. D. Pseudospectral methods of solution of the 8dimger
equation.J. Math. Chem44 (2008), 787-801.

[52] Mabay, Y., Pernaup-Taomas, B., aNp VANDEVEN, H. Reappraisal of Laguerre type spec-
tral methodsLa Recherche Aerospatiafe(1985), 13—-35.

[53] MarLeTTA, M., AND PRYCE, J. D. A new multipurpose software package for $climger
and Sturm-Liouville computation€€omput. Phys. Commu62 (1991), 42-52.

79



[54] MaRLETTA, M., AND PrYCE, J. D. Automatic solution of Sturm-Liouville problems using
the Pruess method. Comput. Appl. Mat39 (1992), 57-78.

[55] MarmoriNo, M. G. Exactly soluble hamiltonian with a squared cotangent potential.
Math. Chem32(2002), 303-308.

[56] Mastroianni, G., anp Occorsio, D. Lagrange interpolation at Laguerre zeros in some
weighted uniform spacegcta Math. Hungar91 (1-2) (2001), 27-52.

[57] MicuaeL, G. On a singular Sturm-Liouville problem in the theory of molecular vibra-
tions. J. Math. Chem39 (2006), 523-539.

[58] Nikirorov, A., anp Uvarov, V. Special Functions of Mathematical Physi&irkhauser,
Basel, 1988.

[59] Prugss, S., anp Furron, C. T. Mathematical software for Sturm-Liouville problems.
ACM Trans. Math. Softwarg9 (1993), 360-376.

[60] Pryce, J. D. Error control of phase function shooting methods for Sturm-Liileyrob-
lems.IMA J. Numer. Anal6 (1986), 103-123.

[61] Pryce, J. D. Numerical Solution of Sturm-Liouville Problem®@xford University Press,
1993.

[62] Roy, A. K. The generalized pseudospectral approach to the bound stakeskbulthen
and the Yukawa potential®ramana - J. Phys$5 (2005), 1-15.

[63] Sanches, A. M., anp Besarano, J. D. Quantum anharmonic symmetrical oscillators
using elliptic functionsJ.Phys. A: Math. Geril9(1986), 887—902.

[64] Suao, H., anp Wang, Z. Arbitrarily precise numerical solutions of the one-dimensional
Schidinger equationComput. Phys. Commuh80(2009), 1-7.

[65] SuEn, J.,anp Li-Lian, W. Error analysis for mapped Jacobi spectral methaHsSci.
Comput.24, 2 (2005), 183-218.

[66] Suewn, J., anp Li-Lian, W. Analysis of a spectral-Galerkin approximation to the
Helmholtz equation in exterior domainSIAM J. Numer. Ana#5 (2007), 1954-1978.

[67] Suew, J.,anp Li-Lian, W. Some recent advances on spectral methods for unbounded
domains.Commun. Comput. Phy5,(2009), 195-241.

[68] Smizaar, B. D. Eigenvalues of the Lorentz Fokker-Planck equatidnChem. Physz0
(1979), 1948-1951.

[69] Somorial, R. L., anp Hornig, D. F. Double-minimum potentials in hydrogen-bonded
solids.J. Chem. Phys36 (1962), 1980-1987.

[70] Srusemns, C. Bound states of the Hukm and the Yukawa potential®hys. Rev. A8
(1993), 220-227.

[71] Taseur, H. A unification of recursions for functions of the hypergeometric tyfmebe
submitted.

[72] Taseur, H. The influence of the boundedness of polynomial potentials on thérgpec
of the Schédinger equationJ. Comp. Physl01(1992), 252—-255.

80



[73] Taseui, H. Accurate lower and upper bounds of the energy spectrum forsgiraraetri-
cal two-well potentialsint. J. Quantum Chent0 (1996), 641—-648.

[74] Taseu, H. An alternative series solution to the isotropic quartic oscillator in n dimen-
sions.J. Math. Chem20 (1996), 235—-245.

[75] Taseur, H. Modified laguerre basis for hydrogen-like systens. J. Quantum Chem.
63(1997), 949-959.

[76] Taseur, H. Accurate numerical bounds for the spectral points of the singulamStur
Liouville problems overco < X < o0, J. Comput. Appl. Mathl15(2000), 535-546.

[77] Taseui, H. Exact analytical solutions of the hamiltonian with a squared tangenttpiten
J. Math. Chem34 (2003), 243—-251.

[78] TaseLi, H., anp Arict, H. The Laguerre pseudospectral method for the reflection sym-
metric Hamiltonians on the real lind. Math. Chem41, 407-416.

[79] Tasewr, H., ano Avict, H. The scaled Hermite-Weber basis in the spectral and pseu-
dospectral picturesl. Math. Chem38 (2005), 367-378.

[80] Taserr, H., anp Ersecen, M. B. The scaled Hermite-Weber basis still highly competitive.
J. Math. Chem34(2003), 177-188.

[81] TaseLi, H., aND ZaFER, A. Bessel basis with applications: N-dimensional isotropic poly-
nomial oscillatorsint. J. Quant. Cheng3(1997), 935-947.

[82] TrererHEN, L. N. Spectral Methods in MATLAEBSIAM, Philadelphia, 2000.

[83] ViLLapseN, J. V.,anp Stewart, W. E. Solution of boundary value problems by orthogonal
collocation.Chem. Eng. Sck2 (1967), 1483—-1501.

[84] Wang, Z. Q.,anp Guo, B. Y. A rational approximation and its applications to nonlinear
partial diferential equations on the whole lind. Math. Anal. Appl274 (1) (2002),
374-403.

[85] Wirwir, M. R. M. Finite diterence calculations of eigenvalues of various potentihls.
Phys. A: Math. Gen25(1992), 503-512.

[86] Xu, C.L.,anp Guo, B. Y. Mixed Laguerre-Legendre spectral method for incompressible
flow in an infinite strip.Adv. Comput. Mathl6 (1) (2002), 77-96.

[87] Zarer, A., anp TaserLr, H. Two-sided eigenvalue bounds for the spherically symmetric
states of the Schdinger equationJ. Comput. Appl. Mat95 (1998), 83—-100.

[88] Zakrzewski, A. J. Highly precise solutions of the one-dimensional dimger equa-
tion with an arbitrary potentialComput. Phys. Commuh75(2006), 397-403.

[89] ZnonL, M. Asymmetric anharmonic oscillators in the Hill determinant pictukeMath.
Phys.33(1992), 213-221.

81



VITAE

PERSONAL INFORMATION

Surname, Name: ALICI, Haydar

Nationality: Turkish (T.C.)

Date and Place of Birth: 28 June 1979, Hekimhan
Marital Status: Married

Phone:+90 505 242 63 08

email: haydaralici@gmail.com

EDUCATION
Degree Institution Year of Graduation
MS METU, Mathematics 2003
BS METU, Mathematics Education 2001
Double Major METU, Mathematics 2001

High School ~ Cumhuriyet High Sdskenderun 1996

WORK EXPERIENCE

Year Place Enrollment
2005-2010 METU Mathematics Research Assistant
2002-2005 Turkish Ministry of eEducation High School Mathematics Tesach

FOREIGN LANGUAGE

English

PARTICIPATED SCIENTIFIC ACTIVITIES

1. 13th International Congress on Computational and Applied Mathematilys7<1.1,
2008, University of Ghent, Ghent, BELGIUM.

82



REFEREEING FOR INTERNATIONAL JOURNALS

1. Journal of Computational and Applied Mathematics

PUBLICATIONS
3. H. Alici and H. TaselPseudospectral methods for the equation of hypergeometric type
with a perturbation J. Comput. Appl. Math234, (2010) 1140-1152.

2. H. Taseli anH. Alici, The Laguerre pseudospectral method for the reflection symmet-

ric Hamiltonians on the real lingl. Math. Chem41, (2007) 407-416.

1. H. TaseliandH. Alici, The scaled Hermite-Weber basis in the spectral and pseudospec-

tral pictures J. Math. Chem.38, (2005) 367-378.

FIELD OF STUDY

Major Field: Computational Methods for ODE’s and Eigenvalue Problemegtegd

Methods, Special Functions and Their Applications.

83



