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ABSTRACT

A GENERAL PSEUDOSPECTRAL FORMULATION OF A
CLASS OF STURM-LIOUVILLE SYSTEMS

Alıcı, Haydar

Ph. D., Department of Mathematics

Supervisor : Prof. Dr. Hasan Taşeli

September 2010, 83 pages

In this thesis, a general pseudospectral formulation for a class of Sturm-Liouville eigenvalue

problems is consructed. It is shown that almost all, regular or singular, Sturm-Liouville eigen-

value problems in the Schrödinger form may be transformed into a more tractable form. This

tractable form will be called here aweighted equation of hypergeometric type with a pertur-

bation(WEHTP) since the non-weighted and unperturbed part of it is known asthe equation

of hypergeometric type (EHT). It is well known that the EHT has polynomialsolutions which

form a basis for the Hilbert space of square integrable functions. Pseudospectral methods

based on this natural expansion basis are constructed to approximate the eigenvalues of WE-

HTP, and hence the energy eigenvalues of the Schrödinger equation. Exemplary computations

are performed to support the convergence numerically.

Keywords: Schr̈odinger operator, regular and singular Sturm-Liouville eigenvalue problems,

pseudospectral methods, equation of hypergeometric type, classical orthogonal polynomials.
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ÖZ

STURM-LIOUVILLE S İSTEMLER İN İN BİR SINIFI İÇ İN
GENEL BİR SANK İ-SPEKTRAL FORM ÜLASYON

Alıcı, Haydar

Doktora, Matematik B̈olümü

Tez Yöneticisi : Prof. Dr. Hasan Taşeli

Eylül 2010, 83 sayfa

Bu tezde, Sturm-Liouvillëozdĕger problemlerinin bir sınıfı için genel bir sanki-spektral for-

mülasyon verildi. Schr̈odinger formundaki neredeyse bütün d̈uzg̈un ya da tekil Sturm - Liou-

ville özdĕger problemlerinin daha uygun bir forma dönüşẗurülebilecĕgi gösterildi. Bu formun

yalın hali hipergeometrik tip denklem (EHT) olarak bilindiği için yeni form burada perturbe

edilmiş ăgırlıklı hipergeometrik tip denklem (WEHTP) olarak adlandırılacaktır. Hiperge-

ometrik tip denklemin, karesi integrallenebilir fonksiyonların oluşturduğu Hilbert uzayına

baz teşkil eden polinom çözümlerinin oldŭgu biliniyor. Yeni formun, dolayısı ile orijinal

Schr̈odinger denkleminin,̈ozdĕgerlerini sayısal olarak hesaplamak için bu polinom bazları

esas alan sanki-spektral metodlar inşa edildi. Metodun yakınsaklığını destekleyen̈ornek

hesaplamalar yapıldı.

Anahtar Kelimeler: Schr̈odinger operaẗorü, tekil ve tekil olmayan Sturm-Liouvillëozdĕger

problemleri, sanki-spektral yöntemler, hipergeometrik tipte denklem, klasik dik polinomlar.
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CHAPTER 1

INTRODUCTION

Mathematical models of many problems in physics and applied sciences lead to differential

eigenvalue problems. The most frequently encountered problem of this type is the celebrated

Sturm-Liouville eigenvalue problem

Lu(x) = λu(x), x ∈ (a,b) (1.1)

described by the second-order linear formally self-adjoint differential operator

L =
1

w(x)

[
− d

dx

(
p(x)

d
dx

)
+ q(x)

]
(1.2)

wherep > 0, p′, q andw > 0 are assumed to be real and continuous on the closed interval

[a,b]. If a andb are finite, boundary conditions are imposed in the form

cosαu(a) + sinαp(a)u′(a) = 0

cosβu(b) + sinβp(b)u′(b) = 0
(1.3)

whereα, β ∈ [0, π2]. In this case, equation (1.1) together with the above boundary conditions

comprises the regular Sturm-Liouville system. On the other hand, the problem iscalled singu-

lar, if either the interval (a,b) is unbounded or the functionsp, q andw satisfy the conditions

stated above on the open interval (a,b), but at least one of these functions fails to satisfy them

at one or both end points.

A scalarλ, for which (1.1) has a nontrivial solutionu(x) satisfying the boundary conditions,

is called an eigenvalue andu(x) is the corresponding eigenfunction of the problem. Their

properties may be summarized in the following proposition whose proof can befound in [20].

Proposition 1.1 For a regular Sturm-Liouville problem,
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(i) Eigenvalues are real, simple (there is no two linearly independent eigenfunction having

the same eigenvalue) and constitute an increasing sequenceλ0 < λ1 < . . . < λn < . . .

which tends to∞.

(ii) The eigenfunctions um and un associated with the eigenvaluesλm , λn are orthogonal

over the interval(a,b) in the sense that

∫ b

a
um(x)un(x)w(x)dx = h2

nδmn

where hn is called normalization constant andδmn is the Kronocker delta. Moreover,

they form a complete orthogonal set of functions. In other words, they form an orthogo-

nal basis in the Hilbert space L2
w(a,b). Thus, any reasonable function can be expanded

into a Fourier series in terms of the set{um}∞m=0.

(iii) The eigenfunction um has exactly m zeros in the open interval(a,b). Moreover, the

zeros of um and um+1 are interlaced, that is, there exist exactly one zero of um between

two consecutive zeros of um+1.

Many of these problems can not be solved explicitly, and hence requires well designed, i.e.,

accurate, cheap and efficient numerical algorithms to obtain approximate solutions. Most

commonly used numerical schemes may be classified into two main groups, namely,shooting

and matrix methods.

Basic idea behind the shooting method is to reduce the boundary value problem (1.1) to an

initial value problem and solve it over the interval (a,b) for a sequence of trialλ values which

are adjusted until the boundary conditions at both ends can be satisfied simultaneously, at

which point there is an eigenvalue [61]. The simplest such method is shootingfrom one end

point to the other, saya to b. This means that one chooses initial conditions, for instance,

u(a) = − sinα, p(a)u′(a) = cosα (1.4)

which satisfy the boundary condition ata. Then the solutionua(x; λ) of the resulting initial

value problem is used to construct the so-calledmis-distanceor mis-matchfunction which

measures the deviation ofua(b; λ) from the boundary condition atb. Thus, the natural choice

for the mis-match function is

D(λ) = cosβua(b; λ) + sinβp(b)u′a(b; λ) (1.5)

2



whose zeros are the eigenvalues of the original problem which may be found by standard

methods [61].

Another alternative is to shoot from two ends to some interior matching pointc ∈ (a,b).

In this case, in addition to the left-hand solutionua(x; λ), similarly, one constructs right-

hand solutionub(x; λ) by using the boundary condition atb and looks for a constantλ := λ0

for which ua(c; λ0) = ub(c; λ0). However, it is possible for some otherλ values to have

ua(c; λ) = ub(c; λ) by rescaling the right-hand solution. But in this case, the obtained first

order derivatives of the left- and right-hand solutions do not agree atthe matching point any

more. Thus, forλ to be an eigenvalue of the problem, the derivative valuesu′ should match

atc, as well as the function valuesu [49]. Therefore, the suitable mis-match function appears

to be the Wronskian ofua andub at the matching pointc

D(λ) =

∣∣∣∣∣∣∣∣∣

ua(c; λ) ub(c; λ)

u′a(c; λ) u′b(c; λ)

∣∣∣∣∣∣∣∣∣
(1.6)

which is zero only whenλ is an eigenvalue [61].

It is pointed out in [61] that, numerically, for some choices ofc, computation ofD(λ) may be

more complicated than the others. There are also some other disadvantages of the shooting

methods, for instance, oscillating character of the mis-distance function makes it difficult

to find the roots, and hence, the eigenvalues of the problem. Moreover, generally shooting

methods are not able to determine the index of the approximated eigenvalue. However, these

complications can be overcome by using the Prüfer transformations [61]

u = S−
1
2 r sinθ, pu′ = S

1
2 r cosθ (1.7)

which reduce the Sturm-Liouville eigenvalue problem to an equivalent, nonlinear first order

boundary value problems

2
r ′

r
=

(
S
p
− λw− q

S

)
sin 2θ − S′

S
cos 2θ (1.8)

θ′ =
S
p

cos2 θ +
λw− q

S
sin2 θ +

S′

S
sinθ cosθ (1.9)

for r = r(x; λ) andθ = θ(x; λ) which are known as the amplitude and Prüfer (or phase) angle,

respectively. HereS > 0 is a scaling function which is introduced for numerical reasons. If

S = 1, they are simply called Prüfer transformations, otherwise they take on the name scaled

Prüfer transformations. Eigenvalue problem can be defined by theθ equation and once it

3



is solved,r can be obtained by a quadrature [61]. Boundary conditions in (1.3) leadto the

conditions

θ(a) = γa, θ(b) = γb (1.10)

for θ, where

tanγa = − tanαS(a), tanγb = − tanβS(b) (1.11)

which determineγa andγb only up to a constant multiple ofπ. The key point in Pr̈ufer trans-

formations is that each appropriate choice of this multiple specifies precisely one eigenvalue

[61].

If the scaling functionS is independent ofλ at the matching pointc and the end pointsa and

b, thenγa andγb are also independent ofλ. In this case the scaled Prüfer mis-match function

is defined as

D(λ) = θa(c; λ) − θb(c; λ) (1.12)

whereθa(x; λ) andθb(x; λ) are the solutions of (1.9) satisfying

θa(a; λ) = γa ∈ [0, π), θb(b; λ) = γb ∈ (0, π]. (1.13)

Then it is proved in [61] that thenth eigenvalue is the unique value such that

D(λn) = nπ, n = 0,1,2, . . . (1.14)

Moreover,D(λ) is strictly increasing on the real line and bounded below.

For each value of the mismatch functionD(λ) one needs to integrate (1.9). The numerical

reason behind the scaling functionS is to reduce the cost of integrations and allow the code to

take as large step sizes as possible. Nevertheless, choosing an appropriate scaling function is

not a trivial work. To this end, several researchers designed modified Pr̈ufer transformations,

for example, Bailey [4, 5] have chosen the scaling function asS = nπ/l wheren is the

eigenvalue index andl is approximately the length of interval on whichλw − q is positive

and implemented it in the code SLEIGN [7]. See also SLEIGN2 [6] which is based on the

ideas and methods of the original SLEIGN code. Pryce [60] have chosen it as a piecewise

linear function to keep some quantities in (1.9) such asS/p − |q|/S andS′/S small and put

it into practice in the NAG library codes D02KDF and D02KEF. Equation (1.9)becomes stiff

at some parts of the interval (a,b) whereλw − q ≪ 0 [61]. Both SLEIGN and NAG codes

use explicit Runge-Kutta method to integrate (1.9) thus they suffer from stepsize restriction

because of stiffness especially when solving for large eigenvalues [49].

4



Another subclass of shooting methods for numerical solution of the Sturm-Liouville eigen-

value problems is the coefficient approximation methods. Basic idea behind them is to re-

place the coefficientsp, q andw of the equation by low degree polynomials and then solve

the approximating problem. Pruess examined piecewise constant polynomial case and it is

implemented in the code SLEDGE by Pruess and Fulton [59]. There is also another code,

called SL02F, due to Marletta and Pryce [53, 54] which also uses Pruessmethod. The method

relatively uninfluenced by the stiffness however it is difficult to obtain higher order methods

[49].

Richardson extrapolation is natural if the coefficients are sufficiently smooth but for the piece-

wise perturbation methods higher order methods can easily be constructed.In these methods,

like the coefficient approximation methods, coefficients are replaced by piecewise polynomi-

als so that the resulting equation has closed form solution. The only difference is that they use

perturbation theory to approximate the difference between the solution of the approximating

and original problem [49]. However, they are designed for the numerical treatment of the

regular Sturm-Liouville problems especially in the Schrödinger form [43, 44, 45]. Later on

Ledoux et al. collected some higher order piecewise constant perturbation methods in a MAT-

LAB package MATSLISE which also handles some singular cases such asthe Schr̈odinger

equation with distorted Coulomb potential [50]. This is done by truncating the infinite do-

main and adapting new boundary conditions. However, the process of choosing a suitable

cutoff value is not straightforward and generally depends on the problem and index of the

eigenvalue to be approximated. Moreover, boundary conditions are replaced by artificial ones

which does not reflect the exact behavior of the eigenfunction.

Another important class of numerical methods for the approximation of differential equations

includes the matrix methods. Main objective of these methods is to approximate the con-

tinuous derivative operator by its discrete analog on a certain set of points called grid, mesh

or nodal points and then use it to solve differential equations approximately. Accordingly,

equation (1.1) is reduces to a matrix eigenvalue problem

LNuN = λuN (1.15)

where the matrixLN and the vectoruN are the discrete representation of the operatorL and

approximate solutions at the grid points, respectively. HereN is called approximation or trun-

cation order. Discrete representation may differ from a matrix method to another depending

5



on the used basis functions and the choice of the grid points. The three main subclasses of

matrix methods are finite difference, finite element and spectral methods. Most of the ma-

trix methods available in the literature are belong to one of these three subclasses or to a

combination of these subclasses.

In a finite difference method each derivative inL is replaced by a suitable difference operator.

For instance, first derivative operator may be replaced by central differences

d
dx

u(x) =
f (x+ h) − f (x− h)

2h
(1.16)

whereh is a small spacing between the nodal points. This means that the interval (a,b) is

divided into a finite number of equidistant mesh points. Alternatively, (1.16) may be derived

in a different way [82]. First, one constructs the local interpolation polynomial

p j(x) = u j−1a−1(x) + u ja0(x) + u j+1a1(x) (1.17)

which is the unique polynomial of degree less than or equal to two withp j(x j−1) = u j−1,

p j(x j) = u j and p j(x j+1) = u j+1 for fixed j. Here the coefficient functions are given by

a−1(x) = (x− x j)(x− x j+1)/2h2, a0(x) = −(x− x j−1)(x− x j+1)/h2 anda1(x) = (x− x j−1)(x−

x j)/2h2. Then differentiation and evaluation of (1.17) at the nodex = x j leads to (1.16). As is

seen the method approximates derivatives by low degree local polynomials, therefore they are

exact for polynomials of low degree. They usually generate banded derivative matrices that

are easy to implement but they are relatively low in accuracy especially for higher eigenvalues.

The idea behind the finite element methods is similar to that of finite differences. However,

the approximations by piecewise polynomials of low degree are performed in subintervals

which can easily be chosen to fit the geometry of the problem. Thus, they areuseful for

solving problems with complex geometry. Since a few number of basis functionsare used in

each subinterval their matrix representations are sparse. Similar to finite differences accuracy

get worse for higher eigenvalues.

In spectral methods approximations are defined in terms of a truncated series expansion

uN(x) =
N∑

k=0

ukφk(x) (1.18)

where the trial or basis functionsφk(x) are given and the expansion coefficientsuk must be

determined. The chosen trial functions are orthogonal in the sense that

(φk, φl)ρ =
∫ b

a
φk(x)φl(x)ρ(x)dx = hkδkl , k, l = 0,1, . . . ,N (1.19)
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with respect to some positive weight functionρ(x), wherehk is referred to as normalization

constant andδkl is the Kronecker’s delta. Now we introduce the residual

RN = (L − λ)uN (1.20)

which should be forced to be zero in an approximate sense. This is done bysetting the scalar

product

(RN, ψi)ρ̄ =
∫ b

a
RN(x)ψi(x)ρ̄(x)dx = 0, i = 0,1, . . . ,N (1.21)

to zero, whereψi(x) are called test functions and the weightρ(x) is associated with the method

and trial functionsφk(x) [14]. The choice of the test functions and the weight defines the

method. For example, the Galerkin type method corresponds to the case where the test func-

tionsψi are the same as the trial functionsφi andρ̄ is the weight associated with the orthogo-

nality of the trial functions, that is ¯ρ = ρ. The traditional Galerkin method applies when the

trial functionsφk in the expansion (1.18) satisfy the homogeneous boundary conditions.

Then, according to (1.21) the Galerkin equations are

(RN, φi)ρ = (LuN − λuN, φi)ρ = 0, i = 0,1, . . . ,N, (1.22)

or else, replacinguN by its expansion (1.18),

N∑

k=0

(Lφk, φi)ρuk = λ

N∑

k=0

(φk, φi)ρuk, i = 0, ...,N. (1.23)

The scalar productsB = (Lφk, φi)ρ, k = 0,1, . . . ,N are evaluated using the properties of

the trial functions, in particular their orthogonality, leading to a square matrix of sizeN + 1.

It is clear from (1.19) that the scalar productD = (φk, φi)ρ on the right hand side produces

diagonal matrix which becomes identity when the normalized trial functions1√
hk
φk are used.

Therefore, the firstN + 1 approximate eigenvalues of (1.1) are given by those of the matrix

L = D−1B whereB is full and D is diagonal or even better, identity matrices. If the operator

L is self adjoint then the resulting matrixB, and henceL, is symmetric. In this case, the

Galerkin approach is conventionally called Rayleigh-Ritz method. If it is not possible to

evaluate the inner product (Lφk, φi)ρ in closed-form, one has to use numerical integration and

this scheme is called the Galerkin with numerical integration.

Note in the above case that the number of Galerkin equations is exactlyN + 1. This is be-

cause the boundary conditions are satisfied by the trial functions. When this is not the case,

the method may be applied by constructing a new basis from the existing one satisfying the
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boundary conditions. But the new basis may not be orthogonal, so that thisapproach is not

much used and generally one prefers the so-calledtau method. It is similar to Galerkin method

but none of the test functions need to satisfy the boundary conditions. Therefore, a supple-

mentary equations arising from boundary conditions are needed. For a detailed discussion see

Gottlieb and Orszag [34] and Canuto et al. [14].

Another spectral type method is the collocation or pseudospectral method in which the test

functions

ψi = δ(x− xi) (1.24)

are shifted Dirac delta functions centered at the so-called collocation pointsxi ∈ [a,b] and the

weight ρ̄ = 1 is chosen to be unity. From (1.21) and (1.24) we simply get

RN(xi) = 0 (1.25)

by using the fundamental property

∫ b

a
RN(x)δ(x− xi)dx = RN(xi), xi ∈ (a,b) (1.26)

of the Dirac delta function. Therefore, in the collocation method, the residual is exactly zero

at certain points whereas in the Galerkin type method the residual is zero in themean [14].

Among the spectral methods, pseudospectral methods are the easiest to implement [27].

Most spectral methods use classical orthogonal polynomials (COPs) as abasis set. Shizgal

[68] introduced a relatively new spectral method called quadrature discretization method and

later on authors [18, 51] use it to solve the Schrödinger equation for several potentials. The

method may be seen as the generalization of the pseudospectral methods based on COPs.

Main idea behind the method is to utilize a non-classical basis set to approximate the solution

of differential equations. To this end, by using the well-known three term recurrence relation

they construct new polynomials which are orthogonal with respect to some specific weight

function. In order to determine the coefficients of the recursion numerically, they used dis-

cretized Stieltjes procedure which is proposed by Gautschi [30]. This procedure computes

the coefficients by a quadrature. However, if the domain of integration is too large, to avoid

numerical overflow, suitable cutoff is needed for accuracy and stability. Moreover, the choice

of the weight function is very important so that the method converges rapidlywhich depends

on the physical nature of the problem under consideration [17].
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For a spectral method the error between the approximate and exact solutiondecrease very

rapidly. This remarkable behavior is called spectral accuracy. However, in a finite difference

scheme error decays algebraically. The reason is that, in contrast to local polynomial (low

degree) basis of finite differences, spectral methods use global (high degree) basis. That is,

to compute the derivative at a given point finite differences use information related to a small

neighbourhood of the point whereas in spectral methods all collocation points are applied

in the computation [82]. Consequently, resulting matrices are banded in finite difference

schemes whereas they are full for spectral methods. Nevertheless, when the same accuracy is

desired, matrix sizes of the former are larger when compared to the latter, orsometimes finite

differences can not reach the desired accuracy at all.

One of the most attractive and interesting problem of physical and practical interest is the one

dimensional time independent Schrödinger equation

HΨ(x) = EΨ(x) (1.27)

described by the Hamiltonian

H = − d2

dx2
+ V(x), x ∈ (ā, b̄), −∞ ≤ ā < b̄ ≤ ∞ (1.28)

whereV(x) is a quantum mechanical potential. Note that (1.28) is the special case of (1.2) with

p(x) = w(x) = 1 andq(x) = V(x). It is also possible to transform (1.1) having arbitrary coeffi-

cient functionsp > 0, q, w > 0 into (1.27). This is done by the help of so-called Liouville’s

transformations [61] which reduce the classical Sturm-Liouville eigenvalueproblems into the

Schr̈odinger (or Liouvillle normal) form. In general, because of its simple structure, authors

would rather approximate the Sturm-Liouville eigenvalue problems in the Schrödinger form.

However, in this thesis we transform almost all, regular or singular, Sturm-Liouville prob-

lems in the Schr̈odinger form having square integrable solutions, into a more complicated but

beneficial form

σ(ξ)y′′ + τ(ξ)y′ + ν(ξ)y = −λr(ξ)y, ξ ∈ (a,b) ⊆ R (1.29)

which will be calledthe weighted equation of hypergeometric type with a perturbation(WE-

HTP). Here,σ(ξ) andτ(ξ) are polynomials of degrees at most two and one, respectively, and

λ is a parameter. The form in (1.29) is closely related to the equation of hypergeometric type

(EHT)

σ(ξ)y′′ + τ(ξ)y′ = −λ(0)y, ξ ∈ (a,b) ⊆ R (1.30)
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in which ν(ξ) ≡ 0 andr(ξ) ≡ 1. The functionsν(ξ) andr(ξ) > 0 may, therefore, be regarded

as a perturbation and weight, respectively. Whenr(ξ) ≡ 1 we might call (1.29) as an equation

of hypergeometric type with a perturbation (EHTP).

It is known that the COPs are the solutions of EHT for specific values ofλ(0), which form a ba-

sis for the Hilbert spaceL2
ρ(a,b) of square integrable functions [58]. Pseudospectral methods

based on Jacobi (e.g. Chebyshev and Legendre) polynomialsP(α,β)
n (ξ) of degreen of order

α > −1, β > −1 are suitable for bounded domains and can not approximate the problem de-

fined over an unbounded domain directly. Either they should use domain truncation followed

by artificial boundary conditions [32, 66] or map the unbounded domain intoa bounded one

[13, 19] to handle the problem. Another alternative is the use of mapped Jacobi polynomi-

als, see for example [37, 65, 67, 84]. Pseudospectral methods basedon Hermite polynomials

Hn(ξ) of degreen and Laguerre polynomialsLγn(ξ) of degreen and orderγ > −1 are some of

the natural choices for the problems over an unbounded domains.

The most widely used pseudospectral methods are Chebyshev (α = β = −1
2) and Legendre

(α = β = 0) for bounded and Hermite and Laguerre (γ = 0) for unbounded domains. How-

ever, for specific problems some other choices of the parametersα, β, andγ may generate

more accurate results and converge faster. The first advantage of new formulation (1.29) is

that the WEHTP gives the possibility of deciding which polynomial class and theassociated

parameter(s) are the most suitable as a basis set for (1.27) with a prescribed potentialV(x)

and an interval (a,b).

Moreover, during the specific transformations on both independent anddependent variables,

boundary conditions or asymptotic boundary conditions at infinity are automatically satisfied

so that we don’t have to impose any information related to boundary conditions as other

methods do.

It is pointed out above that the COPs are the solutions of the EHT. Thus, they comprise

the most natural expansion basis for the solution of the WEHTP since it can be seen as the

perturbation over the EHT.

Therefore, the aim of the thesis is to construct unified pseudospectral formulation of the WE-

HTP, and hence the Schrödinger equation, in its full generality, based on any polynomial solu-

tions of the EHT including every possible selection ofσ(ξ) andτ(ξ). This formulation leads to
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a unified symmetric matrix representation of the Schrödinger equation defined over any sub-

set of the real line for a variety of quantum mechanical potentials. Closed-form expression for

the matrix elements are provided which only necessitates the knowledge of collocation points

and the known coefficientsσ(ξ), τ(ξ) andr(ξ) of the WEHTP.

Accordingly, in Chapter 2, we review some basic properties of polynomials ofEHT. Chapter

3 is concerned with the construction of pseudospectral differentiation matrices, general pseu-

dospectral formulation of the WEHTP and the review of some approximation results related

to spectral methods. Chapter 4 contains the application of the pseudospectral formulation to

mainly the Schr̈odinger type eigenvalue problems for numerical analysis. Finally, Chapter5

concludes the thesis by discussing both the advantages and disadvanteges of the method.
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CHAPTER 2

POLYNOMIALS OF HYPERGEOMETRIC TYPE

In this chapter we review some basic and remarkable properties of the EHT that are necessary

for the pseudospectral formulation of the WEHTP. Here, we present theresults without their

proofs and refer the reader to Nikiforov and Uvarov [58] for more about the special functions

of mathematical physics.

2.1 Some basic properties of polynomials of hypergeometrictype

Equation (1.30) can be written in the Sturm-Liouville or self adjoint form

d
dξ

[
σ(ξ)ρ(ξ)

dy
dξ

]
+ λ(0)ρ(ξ)y = 0 (2.1)

whereρ is a function satisfying the separable Pearson equation

d
dξ

[
σ(ξ)ρ(ξ)

]
= τ(ξ)ρ(ξ). (2.2)

All derivatives of the functions of the hypergeometric type are also functions of the hypergeo-

metric type which can easily be shown by differentiating (1.30) successively. This fact can be

used to show that the EHT has polynomial solutions, sayy(ξ) = pn(ξ), of degreen for specific

values ofλ(0) satisfying

λ(0) := λ(0)
n = −n

[
τ′ + 1

2(n− 1)σ′′
]
, n = 0,1, . . . . (2.3)

These polynomial solutions are characterized by the celebrated Rodrigues formula

pn(ξ) =
Kn

ρ(ξ)
dn

dξn

[
σn(ξ)ρ(ξ)

]
= knξ

n + k′nξ
n−1 + . . . (2.4)

wherekn andk′n are the coefficient of the leading and subleading terms, andKn denotes a

renormalization constant which depends on the standardization.
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Orthogonality of the polynomials of the hypergeometric type may be summarized in the fol-

lowing theorem.

Theorem 2.1 Let the coefficients of the EHT be such that

σ(ξ)ρ(ξ)ξk
∣∣∣∣
ξ=a,b

= 0, k = 0,1, . . . (2.5)

at the boundaries of interval(a,b). Then the polynomials pn(x) of the hypergeometric type

having the real argumentξ, corresponding to the different values ofλ(0) = λ
(0)
n in (2.3) are

orthogonal on(a,b) in the sense that

∫ b

a
pm(ξ)pn(ξ)ρ(ξ)dξ = h2

nδmn (2.6)

whereρ(ξ) is now called the weighting function,δmn is the Kronecker delta and

hn =

(∫ b

a
p2

n(ξ)ρ(ξ)dξ

)1/2

(2.7)

is the normalization constant or L2
ρ norm of the polynomial pn(ξ).

2.1.1 Zeros of polynomials of hypergeometric type

Moreover,pn(ξ) is orthogonal to every polynomial of lower degree [58] which can be used to

prove the following theorem.

Theorem 2.2 There exist exactly n real and distinct zerosξi , i = 1,2, . . . ,n of the polynomial

pn(ξ) lying in the interval(a,b).

On the other hand, for each orthogonal polynomial there exist a finite sum

n∑

k=0

1

h2
k

pk(ξ)pk(η) =
1

h2
n

kn

kn+1

1
ξ − η

∣∣∣∣∣∣∣∣∣

pn+1(ξ) pn+1(η)

pn(ξ) pn(η)

∣∣∣∣∣∣∣∣∣
(2.8)

which is known as Darboux-Christofel formula [58]. The following theorem, notifying the

location of zeros ofpn, may be proved with the help of Darboux-Christofel formula.

Theorem 2.3 The zeros of pn(ξ) and pn+1(ξ) are interlaced.
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This means that, the roots ofpn+1 alternate with those ofpn, if they are sorted in ascending

order. In another words, there exist a zero ofpn between two consecutive zeros ofpn+1, and

vice-versa.

Under certain conditions any three functions of the hypergeometric type are connected by a

linear relation [58]. Here we present two such relations. The first one isthe recurrence relation

for the three consecutive orthonormal polynomialsψn(ξ) = 1
hn

pn(ξ) of hypergeometric type.

Theorem 2.4 [71, 3] The following relation

Anψn+1(ξ) + (Bn − ξ)ψn(ξ) + An−1ψn−1(ξ) = 0, n = 1,2, . . . (2.9)

holds for any three consecutive orthonormal polynomials withψ−1(ξ) = 0, ψ0(ξ) = 1/h0,

where the coefficients

An =
kn

kn+1

hn+1

hn
and Bn =

k′n
kn
−

k′n+1

kn+1
:= ηn−1 − ηn (2.10)

are given in terms of the normalization constant, leading and subleading terms of polynomials

of hypergeometric type.

Actually, these coefficients can be identified completely by means of the coefficients in the

EHT. Indeed, the ratioskn+1/kn andhn+1/hn are expressible as

kn+1

kn
= −Kn+1

Kn

λ
(0)

2nλ
(0)

2n+1

2(2n+ 1)λ(0)
n

(2.11)

and

(
hn+1

hn

)2

= 4

(
kn+1

kn

)2
λ

(0)
n

λ
(0)

2nλ
(0)

2n+2

[
(n+ 1)2σ(0)− (n+ 1)ηnσ

′(0)+ 1
2η

2
nσ
′′
]

(2.12)

where the parameterηn, that also appears inBn, is given by

k′n
kn
= ηn−1 = n

[
τ(0)+ (n− 1)σ′(0)
τ′ + (n− 1)σ′′

]
(2.13)

whose proofs can be found in [71].

Actually, the recursions in (2.11) and (2.12) can be solved to obtain explicitrepresentations

for

kn = (−1)n2Kn
n!

(2n)!

2n−1∏

m=n

λ(0)
m , n = 1,2, . . . (2.14)
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with k0 = 1 and

h2
n =

2µ0

λ
(0)

2n

(
τ′h02nKn

n!
(2n)!

)2 n−1∏

m=1

(
λ

(0)

2m+1

)2

λ
(0)
m

µm, n = 1,2, . . . (2.15)

whereh2
0 =

∫ b

a
ρ(ξ)dξ andµm =

[
(m+ 1)2σ(0)− (m+ 1)ηnσ

′(0)+ 1
2η

2
mσ
′′
]

for m ∈ N. While

solving for the leading coefficientkn and normalization constanth2
n, a special care should be

spent forn = 0 where the recursions are undetermined. Thus, one should remember (2.3) and

look at the limiting case whenn→ 0.

The second recurrence is known as thedifferential-difference relationrelating the derivative

of a polynomial of hypergeometric type with itself and that of degree one less. It is given in

[58] for unnormalized polynomials but here we state the relation for orthonormal polynomials

of hypergeometric type.

Theorem 2.5 The relation

1
C2n

σ(ξ)ψ′n(ξ) =

[
Bn − ξ −

Cn

C2nC2n+1

(
nσ′(ξ) + τ(ξ)

)]
ψn(ξ) + An−1ψn−1(ξ) (2.16)

n = 1,2, . . ., holds for any two consecutive orthonormal polynomials whereψ−1(ξ) = 0 and

ψ0(ξ) = 1/h0. The coefficient Cn =
λ

(0)
n

n
, while An and Bn are as in the previous theorem.

On the other hand, recursion (2.9) may, possibly, be used to determine the zeros ofψn(ξ) and

therefore those ofpn(ξ). Actually, running recursion (2.9) over the rangen = 0,1, . . . ,N we

obtain an inhomogeneous linear algebraic system (R − ξI)t = b, or in matrix-vector form


B0 − ξ A0 0

A0 B1 − ξ A1

A1 B2 − ξ
. . .

. . .
. . . AN−1

0 AN−1 BN − ξ





ψ0(ξ)

ψ1(ξ)
...

ψN−1(ξ)

ψN(ξ)



=



0

0
...

0

−ANψN+1(ξ)



(2.17)

The right-hand side is aN + 1 vector with only one nonzero component. Therefore, if we

requireψN+1(ξ) = 0 or, equivalently,pN+1(ξ) = 0 then the system reduces to a standard

eigenvalue problemRt = ξ t with the eigenvalue parameterξ, which provides us the rootsξi ,

i = 0,1, . . . ,N of pN+1(ξ) as required [3].

Since the eigenvector associated to each eigenvalue ofR is unique up to a constant factor,

themth computed eigenvectorvm =
[
vm

0 , v
m
1 , . . . , v

m
N−1, v

m
N

]T of the matrixR associated to the
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eigenvalueξm is a constant multiple oftm =
[
ψ0(ξm), ψ1(ξm), . . . , ψN−1(ξm), ψN(ξm)

]T , that is

vm = atm. The value ofa can be determined by considering the first entriesvm
0 andψ0(ξm)

of the eigenvectorsvm and tm, respectively, sinceψ0(ξ) = 1/h0 is a constant polynomial and

hence, we obtaina = h0vm
0 .

Therefore, the values{ψn(ξm)} for n = 0,0, . . . ,N of the orthonormal polynomials at the zeros

of ψN+1(ξ) may be computed as


ψ0(ξm)

ψ1(ξm)
...

ψN−1(ξm)

ψN(ξm)



=
1

h0vm
0



vm
0

vm
1
...

vm
N−1

vm
N



(2.18)

in terms of the computed eigenvectorvm of tridiagonal symmetric matrixR.

2.2 Classical orthogonal polynomials (COPs)

Excluding few degenerate cases every EHT can be put into three canonical forms in which

σ(ξ) = 1 − ξ2, ξ and 1 by linear and scaling transformations which lead to the well-known

Jacobi, Laguerre and the Hermite polynomials, respectively. Keeping in mindthatτ(ξ) is at

most linear, solving (2.2), up to constant multiplier, we find thatρ(ξ) = (1− ξ)α(1+ ξ)β, ξγe−ξ

and e−ξ
2
, according to the descending degrees ofσ(ξ) [58]. In this section, some important

and requisite properties of COPs will be outlined.

2.2.1 Jacobi polynomials

Letσ(ξ) = 1− ξ2 andρα,β(ξ) = (1− ξ)α(1+ ξ)β in the differential equation (2.1). Then from

(2.2),τ(x) = −(α + β + 2)ξ + β − α and from (2.3)λ(0)
n = n(n+ α + β + 1). The corresponding

polynomials are denoted and defined by the Rodriguez formula in (2.4)

P(α,β)
n (ξ) =

(−1)n

2nn!
(1− ξ)−α(1+ ξ)−β

dn

dξn

[
(1− ξ)n+α(1+ ξ)n+β

]
(2.19)

whereKn =
(−1)n

2nn!
is chosen for historical reasons. It is clear from (1.30) that Jacobi polyno-

mials satisfy the differential equation

(1− ξ2)y′′ + [β − α − (α + β + 2)ξ]y′ + n(n+ α + β + 1)y = 0. (2.20)
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Orthogonality condition in (2.5) is satisfied whena = −1 andb = 1 providedα > −1 and

β > −1. Thus, the Jacobi polynomials are orthogonal over the interval (−1,1) in which the

real and distinct zeros lie. The leading coefficient of the Jacobi polynomials

kn =
1

2nn!
(n+ α + β + 1)n (2.21)

may be computed from (2.14), where

(a)m = a(a+ 1) . . . (a+m− 1) =
Γ(a+m)
Γ(a)

, (a)0 = 1 (2.22)

is the so called Pochhammer’s symbol and can also be represented in terms ofEuler gamma

function. On the other hand, (2.15) leads to the normalization constant

h2
n =

2α+β+1

2n+ α + β + 1
Γ(n+ α + 1)Γ(n+ β + 1)

n!Γ(n+ α + β + 1)
(2.23)

of the Jacobi polynomials. They satisfy the three-term recurrence relation in Theorem 2.4

with

An =
2

2n+ α + β + 2

√
(n+ 1)(n+ α + 1)(n+ β + 1)(n+ α + β + 1)

(2n+ α + β + 1)(2n+ α + β + 3)
(2.24)

and

Bn =
β2 − α2

(2n+ α + β)(2n+ α + β + 2)
. (2.25)

It is worth noting that

A0 =
2

α + β + 2

√
(α + 1)(β + 1)
α + β + 3

and B0 =
β − α

α + β + 2
(2.26)

which can be obtained by simplifying the expressions in (2.24) and (2.25) whenn = 0. Finally,

the coefficient

Cn = n+ α + β + 1 (2.27)

that appears in the differential-difference relation might easily be computed using the value

λ
(0)
n = n(n+ α + β + 1) .

2.2.2 Laguerre polynomials

Whenσ(ξ) = ξ andργ(ξ) = ξγe−ξ we have, from (2.2) and (2.3)τ(ξ) = γ + 1− ξ andλ(0)
n = n,

respectively. Corresponding polynomials defined by the Rodriguez formula in (2.4)

Lγn(ξ) =
1
n!
ξ−γeξ

dn

dξn

(
ξn+γe−ξ

)
(2.28)
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are known as the associated Laguerre polynomials and they are solutions of the differential

equation

ξy′′ + (γ + 1− ξ)y′ + ny= 0. (2.29)

According to Theorem 2.1 they are orthogonal over the half line (0,∞) providedγ > −1. The

coefficient of the leading order term

kn = (−1)n
1
n!

(2.30)

and the normalization constant

h2
n =

1
n!
Γ(n+ γ + 1) (2.31)

can easily be obtained from (2.14) and (2.15), respectively. For the Laguerre polynomials, the

coefficients

An = −
√

(n+ 1)(n+ γ + 1) and Bn = 2n+ γ + 1 (2.32)

of the recursion in (2.9) are derived from (2.10). In this case the coefficient emerging in (2.16)

is equal to unity, i.e.,

Cn = 1. (2.33)

2.2.3 Hermite polynomials

If σ(ξ) = 1 andρ(ξ) = e−ξ
2
, then from (2.2) and (2.3) we obtainτ(ξ) = −2ξ andλ(0)

n = 2n,

respectively. Thus, the Hermite polynomials

Hn(ξ) = (−1)neξ
2 dn

dξn

(
e−ξ

2)
(2.34)

are solutions of the equation

y′′ − 2ξy′ + 2ny= 0. (2.35)

In the light of Theorem 2.1, they are orthogonal over the real line with the normalization

constant

h2
n = 2nn!

√
π. (2.36)

The leading order term has the coefficientkn = 2n and the polinomials satisfy the three term

recursion in (2.9) with

An =

√
n+ 1

2
and Bn = 0 (2.37)
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whereas the constant

Cn = 2 (2.38)

that come out in the differential-difference relation in (2.16). Notice that, for the Hermite case

the relation is so simple, i.e.,ψ′n(ξ) =
√

2nψn−1(ξ). On the other hand, it takes the form

H′n(ξ) = 2nHn−1(ξ), n = 1,2, . . . (2.39)

for the unnormalized Hermite polynomials.
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CHAPTER 3

PSEUDOSPECTRAL METHODS

In this chapter, we construct the so-called differentiation matrices which can be seen as dis-

crete derivative operators. Then we develop pseudospectral formulation of the WEHTP. Fi-

nally, we review some approximation results related to pseudospectral methods.

3.1 Differentiation matrices

The use of pseudospectral methods as a tool for solving ordinary differential equations at least

date backs to Frazer, Jones and Skan [28]. Then, in 1938, Lanczosshowed that the choice

of trial functions and the distribution of the nodal points are crucial to the accuracy of the

solution [48]. Later on, in 1957, Clenshaw applied the Chebyshev polynomial expansion to

initial value problems. Then, application to boundary value problems developed by Villadsen

and Stewart in 1967 [83]. After 1970s it has been become a popular andpowerful way of

approximating ordinary and partial differential equations. One of the earliest application to

partial differential equations published by Orszag who first used the term pseudospectral [15].

Roughly speaking, a pseudospectral method, also known as spectral collocation method, is

based on theNth degree polynomial interpolation of a functiony(ξ) denoted byINy(ξ),

INy(ξ) := PN(ξ) =
N∑

n=0

ℓn(ξ)yn, (3.1)

where theyn = y(ξn) are the actual values of the functiony(ξ) at the specified nodesξ = ξn

for n = 0,1, . . . ,N [29]. The set of Lagrange interpolating polynomials{ℓn(ξ)} of degreeN is

defined by

ℓn(ξ) =
π(ξ)

(ξ − ξn)π′(ξn)
(3.2)
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for eachn = 0,1, ...,N, in which

π(ξ) = κ
N∏

m=0

(ξ − ξm) (3.3)

stands for a polynomial of degreeN + 1 with the real and distinct roots at the nodes. The

Lagrange polynomials have the very well-known cardinality propertyℓn(ξm) = δmn whereδmn

is Kronecker’s delta. As a result, both the interpolantPN(ξ) and the functiony(ξ) agree, at

least, at the nodes,y(ξn) = PN(ξn). Although the normalization constantκ is theoretically

unnecessary, it plays a remarkable role in the numerical algorithm.

It is also possible to approximate the derivatives of the functiony(ξ) by differentiating the

interpolantPN(ξ). Furthermore, the derivative values at the nodesξn may be determined in

terms of function valuesyn = PN(ξn) by means of adifferentiation matrixdefined by

D(k) := [d(k)
mn] =

dk

dξk
[ℓn(ξ)]

∣∣∣∣∣∣
ξ=ξm

, m,n, k = 1,2, . . . ,N (3.4)

The approximate derivative valuesy(k) =
[
P(k)

N (ξ0),P(k)

N (ξ1), . . . ,P(k)

N (ξN)
]T

may therefore be

written in matrix-vector form

y(k) = D(k)y (3.5)

wherey =
[
y0, y1, . . . , yN

]T is the vector of function values at the nodes. In particular, the

entries of the first and the second order differentiation matrices are defined by

d(1)
mn =

1
2



2π′(ξm)
(ξm− ξn)π′(ξn)

if m, n

π′′(ξn)
π′(ξn)

if m= n

(3.6)

and

d(2)
mn =

1
3



3
ξm− ξn

[
π′′(ξm)
π′(ξn)

− 2d(1)
mn

]
if m, n

π′′′(ξn)
π′(ξn)

if m= n

(3.7)

respectively [29, 79]. Note that the entries of the above matrices are obtained first by differ-

entiating the Lagrange polynomialsℓn(ξ) to a desired orderk = 1,2, . . . , and then, evaluating

them at the nodal pointsξm. In particular, diagonal entries are obtained from the derivatives

of ℓn(ξ) by a limiting process whenξ → ξm since they are undetermined at the collocation

pointsξ = ξm.
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3.2 Gauss quadrature rule of integration

In this section we derive the Gauss quadrature rule based on the zeros of normalized polyno-

mial solutionsψN+1(ξ) = 1
hN+1

pN+1(ξ) of EHT. Consider the integral

∫ b

a
u(ξ)ρ(ξ)dξ (3.8)

whereρ is associated with the orthogonality ofpN+1(ξ). It may be approximated by replacing

the functionu by its Lagrange interpolantINu in (3.1) based onψN+1(ξ),

∫ b

a
u(ξ)ρ(ξ)dξ ≈

∫ b

a
INu(ξ)ρ(ξ)dξ =

∫ b

a

N∑

n=0

unℓn(ξ)ρ(ξ)dξ =
N∑

n=0

unωn (3.9)

whereun = u(ξn) and the weightsωn of Gaussian quadrature rule are given by

ωn =

∫ b

a
ℓn(ξ)ρ(ξ)dξ =

1
ψ′N+1(ξn)

∫ b

a

ψN+1(ξ)
ξ − ξn

ρ(ξ)dξ (3.10)

which are called the Christoffel numbers. Now, lettingη = ξn andpN+1(ξ) = hN+1ψN+1(ξ) in

(2.8) we obtain
N∑

k=0

ψk(ξ)ψk(ξn) =
hN+1

hN

kN

kN+1

ψN+1(ξ)ψN(ξn)
ξ − ξn

(3.11)

sinceψN+1(ξn) = 0. Then, multiplication of both sides of the last equation byp0(ξ)ρ(ξ) and

integration froma to b lead to the equation

∫ b

a

ψN+1(ξ)
ξ − ξn

ρ(ξ)dξ =
hN

hN+1

kN+1

kN

1
ψN(ξn)

(3.12)

where we have used the fact thatψ0(ξ) = 1/h0 is orthogonal to allpk(ξ) for any k =

1,2, . . . ,N. Thus, inserting the last equation into (3.10) we get

ωn =
hN

hN+1

kN+1

kN

1
ψ′N+1(ξn)ψN(ξn)

=
1

AN

1
ψ′N+1(ξn)ψN(ξn)

(3.13)

whereAN is one of the constants of the three term recursion in (2.10). Finally, (2.16)with

ξ = ξn andn = N + 1 implies that

ωn =
1

A2
NC2N+2

σ(ξn)

ψ2
N(ξn)

(3.14)

sinceψN+1(ξn) = 0. Notice that everything is known, exceptψN(ξn). However, with a careful

look, we see that it is no more than the last entry

ψN(ξn) =
vn

N

h0vn
0

(3.15)
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of the equation in (2.18). However, there exist an alternative way of computing the weights

ωn. The limiting caseξ → ξn of (3.11) leads to the equation

N∑

k=0

ψ2
k(ξn) = ANψ

′
N+1(ξn)ψN(ξn) (3.16)

or equivalently we have

N∑

k=0

ψ2
k(ξn) = A2

NC2N+2
ψ2

N(ξn)

σ(ξn)
=

1
ωn

(3.17)

on using (2.16). Therefore, the weightsωn of Gauss quadrature have another representation

1
ωn
=

N∑

k=0

ψ2
k(ξn) =

(
1

h0vn
0

)2 N∑

k=0

(vn
k)2 (3.18)

where we have used (2.18). Note that the sum on the right hand side is the square of the

Euclidean norm of the vectorvn. Hence, we have

ωn =

(
h0vn

0

)2

‖vn‖2
,n = 0,1, . . . ,N (3.19)

which reduces toωn =
(
h0vn

0

)2
when the normalized eigenvectors are used. Actually, most of

the linear algebra subroutines produce normalized eigenvectors togetherwith the associated

eigenvalues if the Euclidean norm is used.

Gaussian quadrature formula based on the zeros ofpN+1(ξ) integrates polynomials of degree

less then or equal to 2N+1 exactly. The two others, Gauss-Radau and Gauss-Lobatto quadra-

tures, are exact for polynomials of degree less then or equal to 2N and 2N − 1, respectively

[29].

On the other hand, Gauss quadrature is exact for the integral

∫ b

a
ℓn(ξ)ℓm(ξ)ρ(ξ)dξ (3.20)

since each Lagrange polynomialℓn(ξ) is of degreeN. Therefore, we have

∫ b

a
ℓn(ξ)ℓm(ξ)ρ(ξ)dξ =

N∑

k=0

ℓn(ξk)ℓm(ξk)ωk = ωnδmn (3.21)

on using the cardinality propertyℓn(ξm) = δmn of Lagrange polynomials.
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3.3 Pseudospectral formulation of the WEHTP

In the previous chapter it is given that the each COP solutiony(ξ) = pn(ξ) of the EHT has

exactlyn real and distinct zeros which are interlaced [58]: sorting all the roots in ascending

order, the roots ofpn+1(ξ) alternate with those ofpn(ξ), so it obeys the definition ofπ(ξ) in

(3.3). Therefore, setting

π(ξ) = κ
N∏

m=0

(ξ − ξm) =
1
hn

pN+1(ξ) = ψN+1(ξ) (3.22)

to be the polynomial solutionpN+1(ξ) of the EHT, we define, from (3.6), the first order differ-

entiation matrix

d(1)
mn =

1
2



2
ξm− ξn

ψ′N+1(ξm)

ψ′N+1(ξn)
if m, n

− τ(ξn)
σ(ξn)

if m= n

(3.23)

in which the main diagonal entries have been simplified by using the fact thatpN+1(ξ) satisfies

the EHT in (1.30). Similarly, after some algebra, the elements of the second order differenti-

ation matrix in (3.7) take the form

d(2)
mn =

1
3



− 3
ξm− ξn

[
τ(ξm)
σ(ξm)

+
2

ξm− ξn

]
ψ′N+1(ξm)

ψ′N+1(ξn)
if m, n

1
σ(ξn)

{
τ(ξn)
σ(ξn)

[
σ′(ξn) + τ(ξn)

]
+ N

[
τ′ + 1

2(N + 1)σ′′
]}

if m= n

(3.24)

with the help of (1.30) and (2.3) [3]. Higher order differentiation matrices may be obtained in

a similar manner, however, first and second order differentiation matrices are sufficient for a

treatment of a second order differential operator.

Now that the interpolantPN(ξ) in (3.1) is proposed to be an approximate solution of the EHTP,

whereN may be regarded as the approximation or truncation order. Therefore, we require that

the EHTP is satisfied at the nodal pointsξm

N∑

n=0

[
σ(ξm)ℓ′′n (ξm) + τ(ξm)ℓ′n(ξm) + ν(ξm)ℓn(ξm)

]
yn = −λr(ξm)

N∑

n=0

ℓn(ξm)yn (3.25)

for m= 0,1, . . . ,N. This leads to the discrete representation

B̂y = −λy (3.26)

of the WEHTP. Here, the vectoryi =
[
yi

0, y
i
1, . . . , y

i
N

]T involves the values of the eigensolution

associated with the eigenvalueλi at the nodal points, and the general entryB̂mn of the resulting
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matrix B̂ = [B̂mn] is given by [3]

B̂mn =
1

r(ξm)
[
σ(ξm)d(2)

mn+ τ(ξm)d(1)
mn+ ν(ξm)δmn

]
, m,n = 0,1, . . . ,N. (3.27)

By using (3.23) and (3.24) the first two terms in (3.27) can be incorporatedto define

K̂mn = −
1

6r(ξm)



12σ(ξm)
(ξm− ξn)2

ψ′N+1(ξm)

ψ′N+1(ξn)
if m, n

τ(ξn)
σ(ξn)

[
τ(ξn) − 2σ′(ξn)

] − 2N
[
τ′ + 1

2(N + 1)σ′′
]

if m= n

(3.28)

which represents the effect of kinetic energy terms independent of a specified potential [3].

It seems that the evaluation of̂Kmn requires the computation of the derivativesp′N+1(ξn) of the

classical orthogonal polynomials at the nodes. Fortunately, a nice similarity transformation

B = S−1
B̂S in which S = diag{s0, s1, . . . , sm, . . . , sN} with

sm =

√
σ(ξm)
r(ξm)

ψ′N+1(ξm), m= 0,1 . . . ,N (3.29)

makes it possible to get rid of such a cumbersome labor. Furthermore, the matrix in (3.26)

reduces to a symmetric one, sayB = S−1(K̂ +V)S, whose entries are given by

Bmn = Kmn+Vmδmn (3.30)

where

Kmn = −
1
6



12
(ξm− ξn)2

√
σ(ξm)σ(ξn)
r(ξm)r(ξn)

if m, n

1
r(ξn)

{
τ(ξn)
σ(ξn)

[
τ(ξn) − 2σ′(ξn)

] − 2N
[
τ′ + 1

2(N + 1)σ′′
]}

if m= n

(3.31)

andV = [Vm] with

Vm =
ν(ξm)
r(ξm)

. (3.32)

Thus, the eigenvalues of (3.26), and, hence, the approximate eigenvalues of the EHTP can be

determined by the symmetric matrix eigenvalue problem

Bu = −λu (3.33)

since the similar matrices share the same spectrum [3]. The construction of theresulting

symmetric square matrixB of size N + 1 can be accomplished by the calculation of the

coefficient functionsσ(ξ), τ(ξ), ν(ξ) andr(ξ) in EHTP (1.29) at the nodes which are the roots

25



ξm of the appropriate classical orthogonal polynomialpN+1(ξ) employed in the set up of the

Lagrange interpolating polynomials. However, we have already found that the rootsξm of

pN+1(ξ) are the eigenvalues of the symmetric tri-diagonal matrixR in (2.17).

Therefore, the pseudospectral formulation of the EHTP leads to the symmetric matrix eigen-

value problem whose construction requires only the knowledge of the coefficient functions

and the roots of the polynomial solution of the associated EHT.

On the other hand, thei-th eigenvectoryi of (3.26) is given by the formula

yi = Sui (3.34)

in terms of thei-th eigenvectorui =
[
ui

0,u
i
1, . . . ,u

i
N

]T of the symmetric matrixB = S−1
B̂S

sinceS−1
B̂Su = −λu implies thatB̂[Su] = −λ[Su]. Thus, themth entryyi

m = yi(ξm) of the ith

eigenvectoryi may be written asyi
m = smui

m, or in nodal notation

yi(ξm) =

√
σ(ξm)
r(ξm)

ψ′N+1(ξm)ui(ξm) (3.35)

upon using (3.29). The only unknown value isψ′N+1(ξm) to computey(i)(ξm). In order to

determine it, the most primitive way is to construct the normalized polynomial with the roots

ξm, differentiate it and evaluate at the nodeξm which is not a practical idea for computer

implementation. However, that value can be obtained in a beautiful manner. Tothis end, we

first use Theorem 2.5 withn andξ are replaced byN + 1 andξm, respectively, to get

ψ′N+1(ξm) =
ANC2N+2

σ(ξm)
ψN(ξm) (3.36)

sinceψN+1(ξm) = 0. Then, from (2.18) we see thatψN(ξm) is related with the last entry of the

computed eigenvectorvm

ψN(ξm) =
vm

N

h0vm
0

(3.37)

of the symmetric tridiagonal matrixR in (2.17). Therefore, theith eigenvector of the wEHTP

has the relation

yi(ξm) =
ANC2N+2√
σ(ξm)r(ξm)

vm
N

h0vm
0

ui(ξm) (3.38)

with the corresponding eigenvectorui of the symmetric matrixB at a collocation pointξm.

Thus, in a constructive way, we proved the big part of the following proposition:
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Proposition 3.1 The approximate eigenvalues−λi of the wEHTP in (1.29)

σ(ξ)y′′ + τ(ξ)y′ + ν(ξ)y = −λr(ξ)y, ξ ∈ (a,b) ⊆ R

are the eigenvalues of the linear systemBu = −λu in (3.33) where

Bmn = −
1
6



12
(ξm− ξn)2

√
σ(ξm)σ(ξn)
r(ξm)r(ξn)

if m, n

1
r(ξn)

{
τ(ξn)
σ(ξn)

[
τ(ξn) − 2σ′(ξn)

] − 2N
[
τ′ + 1

2(N + 1)σ′′
]
− 6ν(ξn)

}
if m= n

(3.39)

and the values yi(ξm) of the corresponding normalized eigenfunctions (in L2
ρ sense that is

defined in (2.7)) at the nodesξm are given by

yi(ξm) =
AN
√

C2N+2√
σ(ξm)r(ξm)

vm
N

h0vm
0

ui(ξm) =
ui(ξm)√
ωmr(ξm)

(3.40)

wheneverui is the normalized (in Euclidean norm) eigenvector ofB.

Proof. Note that the equation (3.40) differs from (3.38) by the squre root sign for the term

C2N+2. Now, let us show that (3.40) contains the values of the normalized eigenfunctions at

the nodes. It is not difficult to see that ifρ is the weight function of the EHT in (2.1) then

ρ̃ = rρ is that of the WEHTP in (1.29). Thus, we have

∥∥∥yi(ξ)
∥∥∥2

L2
ρ̃

=

∫ b

a
[yi(ξ)]2ρ̃(ξ)dξ =

∫ b

a
[yi(ξ)]2r(ξ)ρ(ξ)dξ. (3.41)

Applying the Gauss quadrature rule in (3.9) withu(ξ) = [yi(ξ)]2r(ξ) to the last integral we

obtain
∥∥∥yi(ξ)

∥∥∥2
L2
ρ̃

=

∫ b

a
[yi(ξ)]2r(ξ)ρ(ξ)dξ =

∞∑

m=0

[yi(ξm)]2r(ξm)ωm (3.42)

where the weigthsωm are defined in (3.14)-(3.15). Then, it reduces to

∥∥∥yi(ξ)
∥∥∥2

L2
ρ̃

=

∞∑

m=0

[ui(ξm)]2 = 1 (3.43)

upon using (3.40) which is equal to unity by assumption.

�

3.4 Error estimates for spectral methods

In this section we summarize some results from the literature concerning the approximation

errors for spectral methods.
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For a numerical algorithm there are some important issues such as consistency, stability and

convergence. When these conditions are fulfilled, the natural question arises: what is the

rate of convergence? The rate depends on the regularity of the approximated function which

might be a solution of a differential equation. That is, the smoother the function, the faster

the convergence is. In the error analysis of spectral methods, smoothness of a function is

measured in terms of its norm in an appropriate Sobolev space since it is more suitable for the

analysis of differential equations [29].

There are numerous results on the analysis of polynomial methods in Sobolevspaces which

starts with the paper of Canuto and Quarteroni [16] in 1982. Besides tensof papers on the

subject, we have some good reference books such as [12, 13, 14, 15, 29, 35].

We start with the Hermite spectral approximations. The weighted space

L2
ρ(R) = {u | ‖u‖L2

ρ(R) < ∞} (3.44)

equipped with the inner product and norm

(u, v)ρ =
∫

R

u(ξ)v(ξ)e−ξ
2
dξ, ‖u‖L2

ρ(R) =

(∫

R

u2(ξ)e−ξ
2
dξ

) 1
2

(3.45)

is known as the Hilbert space of square integrable functions over the real line. Then, It is

possible to define the family of weighted Sobolev spaces

Hm
ρ (R) = {u | u(k) ∈ L2

ρ(R), 0 ≤ k ≤ m} (3.46)

with the norm

‖u‖Hm
ρ (R) =


m∑

k=0

‖u(k)‖2
L2
ρ(R)



1
2

(3.47)

whereu(k) is thek-th derivative of the functionu. We begin with the error analysis of theL2
ρ

orthogonal projectionΠN : L2
ρ(R)→ PN, defined by

(u− ΠNu, vN)ρ =
∫

R

(u− ΠNu)(ξ)vN(ξ)e−ξ
2
dξ = 0, ∀ vN ∈ PN (3.48)

since it will be used in the error analysis of pseudospectral approximationby Hermite poly-

nomilas or functions. Here,PN stands for the space of all polynomials degree≤ N and

ΠNu(ξ) =
N∑

n=0

unHn(ξ), un =
1

h2
n

∫

R

u(ξ)Hn(ξ)e−ξ
2
dξ (3.49)

is the truncated Fourier-Hermite expansion ofu(ξ) whereh2
n is the normalization constant or

the square ofL2
ρ norm ofHn given by (2.36).
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Theorem 3.2 For any u∈ Hm
ρ (R) with m≥ 0,

‖(u− ΠNu)(k)‖L2
ρ(R) ≤ CN(k−m)/2‖u(m)‖L2

ρ(R), 0 ≤ k ≤ m (3.50)

where C is a constant independent of N.

Proof. For anyu ∈ L2
ρ(R) (3.49) holds. Moreover, from (2.39) we have

H(k)
n (ξ) = cn,kHn−k(ξ), n ≥ k. (3.51)

with cn,k =
2kn!

(n−k)! . Thus, fork ≤ m≤ N, we have

‖(u− ΠNu)(k)‖2
L2
ρ(R)

=

∥∥∥∥∥∥∥

∞∑

n=N+1

unH(k)
n (ξ)

∥∥∥∥∥∥∥

2

L2
ρ(R)

=

∞∑

n=N+1

u2
nc2

n,kh
2
n−k

=

∞∑

n=N+1

u2
n

c2
n,kh

2
n−k

c2
n,mh2

n−m

c2
n,mh2

n−m ≤ CNk−m
∞∑

n=N+1

u2
nc2

n,mh2
n−m

= CNk−m‖u(m)‖2
L2
ρ(R)

which completes the proof. �

Different versions, such as the ones in [29, 36], are available in the literature but here we

followed the lines of [67] which is a good review article on spectral methods inunbounded

domains.

Moreover, it is possible to show that

‖p(k)‖L2
ρ(R) ≤ CNk/2‖p‖L2

ρ(R), ∀p ∈ PN (3.52)

on expanding the polynomialp into Fourier-Hermite series and then using (3.51).

We now examine the error of interpolation operatorIN : C(R) → PN defined by (3.1) for

which we need to bound the quantity‖INu‖L2
ρ(R). Actually, the norm‖INu‖L2

ρ(R) of the interpo-

latory polynomialINu constructed by Hermite polynomialspN+1(ξ) = HN+1(ξ) becomes

‖INu‖L2
ρ(R) =

∫ b

a


N∑

n=0

ℓn(ξ)un



2

ρ(ξ)dξ

=

N∑

n=0

(∫ b

a
ℓ2

n(ξ)ρ(ξ)dξ

)
u2

n + 2
N∑

m=0
m,n

N∑

n=0

(∫ b

a
ℓn(ξ)ℓm(ξ)ρ(ξ)dξ

)
unum

=

N∑

n=0

u2
nωn.
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with the help of (3.21). Therefore, an error estimate for the Hermite pseudospectral method

(HPM) reduces to bounding the Christoffel numbersωn.

For the Hermite-Gauss quadrature, the weights in (3.14) becomes

ωn =
1

(N + 1)ψ2
N(ξn)

=
2NN!

√
π

(N + 1)H2
N(ξn)

, n = 0,1, . . . ,N (3.53)

on using (2.36)–(2.39). In [2], Aguirre and Rivas give a bound

ωn ≤ eξ
2
nωn ≤ CN−1/6, n = 0,1, . . . ,N (3.54)

for (3.53), whereC is independent ofN. This is the sharpest bound for the Hermite-Gauss

weights in the literature so far. Then, they use it to prove that

‖INu‖2
L2
ρ(R)
≤ CN1/3

(
‖u‖2

L2
ρ(R)
+ N−1‖u′‖2

L2
ρ(R)

)
(3.55)

for any u ∈ H1
ρ(R). Consequently, we can prove the following theorem with the help of

Theorem 3.2 and the last inequality in (3.55).

Theorem 3.3 [2] For any u ∈ Hm
ρ (R) with m≥ 1, there exists a constant C> 0 such that

‖(u− INu)(k)‖L2
ρ(R) ≤ CN

1
6+

k−m
2 ‖u(m)‖L2

ρ(R) (3.56)

with 0 ≤ k ≤ m.

Proof. By triangle inequality

‖(u− INu)(k)‖2
L2
ρ(R)

≤
(
‖(u− ΠNu)(k)‖L2

ρ(R) + ‖(ΠNu− INu)(k)‖L2
ρ(R)

)2

≤ ‖(u− ΠNu)(k)‖2
L2
ρ(R)
+ 2‖(u− ΠNu)(k)‖L2

ρ(R)‖(IN(ΠNu− u))(k)‖L2
ρ(R)

+‖(IN(ΠNu− u))(k)‖2
L2
ρ(R)

.

sinceΠNu is a polynomial of degreeN, thusINΠNu = ΠNu. Moreover, Theorem 3.2 implies

‖(u− ΠNu)(k)‖2
L2
ρ(R)
≤ CNk−m‖u(m)‖2

L2
ρ(R)

. (3.57)

Then, applying (3.52) withp = IN(ΠNu− u), (3.55) and (3.57) withk = 0,1 we obtain

‖(IN(ΠNu− u))(k)‖2
L2
ρ(R)

≤ CNk‖IN(ΠNu− u)‖2
L2
ρ(R)

≤ CN
1
3+k

(
‖ΠNu− u‖2

L2
ρ(R)
+ N−1‖(ΠNu− u)′‖2

L2
ρ(R)

)

≤ CN
1
3+k

(
N−m‖u(m)‖2

L2
ρ(R)
+ N−1N1−m‖u(m)‖2

L2
ρ(R)

)

≤ CN
1
3+k−m‖u(m)‖2

L2
ρ(R)
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Therefore, finally we have

‖(u− INu)(k)‖2
L2
ρ(R)

≤ CNk−m‖u(m)‖2
L2
ρ(R)
+ 2CN

1
6+k−m‖u(m)‖2

L2
ρ(R)
+CN

1
3+k−m‖u(m)‖2

L2
ρ(R)

≤ CN
1
3+k−m‖u(m)‖2

L2
ρ(R)

which completes the proof. �

Similar results hold also for the Laguerre and Jacobi spectral approximations. For the La-

guerre case, we define the non-uniformly weighted Sobolev space

Hm
γ (R+) = {u | u(k) ∈ L2

ργ+k
(R+), 0 ≤ k ≤ m} (3.58)

of square integrable functions on the half line with the norm

‖u‖Hm
γ (R+) =


m∑

k=0

‖u(k)‖2
L2
ργ+k

(R+)



1
2

, ‖u(k)‖L2
ργ+k

(R+) =

(∫

R+

u2(ξ)ξγ+ke−ξdξ

) 1
2

. (3.59)

Now, theL2
ργ

orthogonal projectionΠγN : L2
ργ

(R+)→ PN, defined by

(u− ΠγNu, vN)ργ =
∫

R+

(u− ΠγNu)(ξ)vN(ξ)ξγe−ξdξ = 0, ∀ vN ∈ PN (3.60)

where

Π
γ

Nu(ξ) =
N∑

n=0

uγnLγn(ξ), un =
1

h2
n

∫

R+

u(ξ)Lγn(ξ)ξγe−ξdξ (3.61)

satisfies the following approximation result (see, for instance, [29, 67]).

Theorem 3.4 For any u∈ Hm
γ (R+) and m≥ 0,

‖(u− ΠγNu)(k)‖L2
ργ+k

(R+) ≤ CN(k−m)/2‖u(m)‖L2
ργ+m(R+), 0 ≤ k ≤ m (3.62)

where C is a constant independent of N.

Note here that,h2
n in (3.61) is the normalization constant of Laguerre polynomials given in

(2.31).

Let IγN be the interpolation operatorIγN : C(R̄+)→ PN defined by (3.1) based on the Laguerre-

Gauss, i.e., zeros ofLγN+1(ξ) or Laguerre-Radau, i.e., zeros ofξ d
dξLγN+1(ξ) interpolation points

ξm so thatIγNu(ξm) = u(ξm) m= 0,1, . . . ,N. Then the following result holds.

Theorem 3.5 Assuming u∈ C(R̄+), u ∈ Hm
γ (R+) and u′ ∈ Hm−1

γ (R+) with m≥ 1 we have

‖u− IγNu‖L2
ργ (R+) ≤ CN(1−m)/2

(
‖u(m)‖L2

ργ+m−1
(R+) + (lnN)1/2‖u(m)‖L2

ργ+m(R+)

)
(3.63)

where C is a constant independent of N [67].
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The above theorem is proved in [39] which improves the results of [52, 56, 86].

Finally, using the Jacobi weightρα,β(ξ) = (1 − ξ)α(1 + ξ)β, similar to the Laguerre case we

define the non-uniformly weighted Sobolev space

Hm
α,β(I) = {u | u(k) ∈ L2

ρα+k,β+k
(I), 0 ≤ k ≤ m} (3.64)

on the intervalI := (−1,1) with the norm

‖u‖Hm
α,β

(I) =


m∑

k=0

‖u(k)‖2
L2
ρα+k,β+k

(I)



1
2

, ‖u(k)‖L2
ρα+k,β+k

(I) =

(∫

I

u2(ξ)ρα+k,β+k(ξ)dξ

) 1
2

. (3.65)

Then theL2
ρα,β

(I) orthogonal projectionΠα,βN : L2
ρα,β

(I)→ PN defined by

(u− ΠγNu, vN)ρα,β =
∫

I

(u− Πα,βN u)(ξ)vN(ξ)ρα,βdξ = 0, ∀ vN ∈ PN (3.66)

satisfies the following bound.

Theorem 3.6 For any u∈ Hm
α,β

(I) and0 ≤ k ≤ m,

‖(u− Πα,βN u)(k)‖L2
ρα+k,β+k

(I) ≤ CNk−m‖u(m)‖L2
ρα+m,β+m

(I) (3.67)

where C is a constant independent of N.

The proof can be found in [29, 38]. LetIα,βN be the interpolation operator based on Jacobi-

Gauss nodes. Then the following result is established in [38].

Theorem 3.7 [38] For any u ∈ Hm
α,β

(I) with m≥ 1

‖(u− Iα,βN u)′‖L2
ρα+1,β+1

(I) + N‖(u− Iα,βN u)‖L2
ρα,β

(I) ≤ CN1−m‖u(m)‖L2
ρα+m,β+m

(I) (3.68)

where C is a constant independent of N.

For a more general investigation of Jacobi approximation results see for example [12, 29, 38].

When we look at the Theorems 3.2, 3.4 and 3.6 concerning theL2
ρ - projections we observe

that the convergence rate of Jacobi approximation is twice of those of Laguerre and Hermite

cases. This is related to the eigenvaluesλ
(0)
n of the associated EHT in (1.30) leading to COPs.

Notice the quadratic growth of the eigenvaluesλ
(0)
n = n(n+ α + β + 1) of Jacobi polynomials

contrary to the linear growth of those of Laguereλ(0)
n = n and Hermiteλ(0)

n = 2n polynomials.
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The interpolation results in Theorems 3.3 and 3.5 are suboptimal in the sense that the factors

of N−1/6 and (NlnN)−1/2 are lost when compared with the projection results in Theorems 3.2

and 3.4 (withk = 0), respectively.

It can be inferred from the above theorems on spectral (projection) and pseudospectral (in-

terpolation) approximations that for smooth functions (u(k) ∈ L2
ρ for any k = 0,1, . . .) error

decays faster than any power ofN. This means that the exponential rate of convergence is

achieved. On the other hand, for functions having singularities inside its domain (u(i) ∈ L2
ρ for

i = 0,1, . . . , k but u(k+1) < L2
ρ), the Jacobi methods converge at an optimal rate ofk whereas

the Laguerre and Hermite methods converge only at a rate of1
2k. Here it should be noted

that we do not compare the methods for the same problem but for the problemsthat they

can handle seperately. More specifically, Jacobi spectral methods aresuitable for problems

over a finite domain while the other two are appropriate for infinite domains. Nevertheless,

with a convenient transformation, Jacobi polynomials can be mapped onto infinite domains

which allows one to compare the methods for the same problem. Approximation properties

of mapped Jacobi spectral approximations can be found in [65, 67].
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CHAPTER 4

APPLICATION TO THE SCHR ÖDINGER EQUATION

In this chapter we show that the Schrödinger equation with a wide class of quantum mechan-

ical potentials can indeed be converted to the WEHTP and then the pseudospectral algorithm

suggested in the previous chapter is applied to approximate the eigenvalues of the problem.

4.1 The Schr̈odinger equation over the real line

The EHT in (1.30) has three canonical forms which are called Hermite, Laguerre and Jacobi

differential equations. Accordingly, equation (1.29) withσ(ξ) = 1, ξ and 1− ξ2 will be called

here the WEHTP of the first, second and the third kind, respectively.

As a first example falling into the first kind we deal with the one-dimensional Schrödinger

equation in (1.27)
[
− d2

dx2
+ V(x)

]
Ψ(x) = EΨ(x), x ∈ (−∞,∞), Ψ ∈ L2

ρ(−∞,∞) (4.1)

over the real line for a variety of quantum mechanical potentialsV(x) [79]. We, first, scale the

independent variable

ξ = cx, c > 0, ξ ∈ (−∞,∞), (4.2)

by c, which transforms the Schrödinger equation (4.1) into the form
[
− d2

dξ2
+ c−2V

(
c−1ξ

)]
Ψ(ξ) = c−2EΨ(ξ), Ψ ∈ L2

ρ(−∞,∞) (4.3)

whose eigenfunctionsΨ should be in the Hilbert spaceL2
ρ of square integrable functions [79].

Then, proposing the solution of form

Ψ(ξ) = e−ξ
2/2y(ξ), (4.4)
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we rewrite the Schr̈odinger equation (4.1) as

y′′ − 2ξy′ +
[
ξ2 − c−2V (ξ/c)

]
y = (1− c−2E)y (4.5)

which is an EHTP of the first kind [79, 3]. Clearly, the HPM is suitable for thisproblem

since the unperturbed part of the last equation resembles the Hermite differential equation.

This leads to the diagonalization of the matrixB = K + V in (3.33) by takingσ(ξ) = 1,

τ(ξ) = −2ξ, ν(ξ) = ξ2− c−2V (ξ/c) andr(ξ) = 1. Therefore, the kinetic energy matrixK takes

the simple form

Kmn = −
2
3



3
(ξm− ξn)2

if m, n

ξ2
n + N if m= n

(4.6)

on replacing the coefficientsσ, τ andr. Thus, the eigenvalues−λ = 1 − c−2E of (4.5), and

hence the energies

En = c2(1+ λn), n = 0,1, . . . (4.7)

of the original equation (4.1) can be approximated by diagonalizing the symmetric matrix

B = K +V whereV is the diagonal matrix

Vmn = ν(ξm)δmn =
[
ξ2

m− c−2V (ξm/c)
]
δmn (4.8)

composed of values of the perturbation term or modified potential at the nodal points. It is

clear that the grid pointsξm are the roots of Hermite polynomialHN+1(ξ) and can be computed

as the eigenvalues of the symmetric tridiagonal matrix [79]

R =
1
√

2



0
√

1 0
√

1 0
√

2
√

2 0
. . .

. . .
. . .

√
N

0
√

N 0



(4.9)

in (2.17) whereAn−1 =
√

n/2 andBn = 0 are given in (2.37).

Notice that, an orthonormal eigenfunctiony(ξ) of (4.5) satisfies

1 =
∫ ∞

−∞
y2(ξ)e−ξ

2
dξ =

∫ ∞

−∞
Ψ2(ξ)dξ (4.10)

on returning back to original dependent variable via (4.4). Now, replacing ξ by ξ/c in the last

equation, we obtain

1 =
∫ ∞

−∞
Ψ2(ξ)dξ =

∫ ∞

−∞
Ψ2(ξ/c)d(ξ/c) =

∫ ∞

−∞

1
c
Ψ2(ξ/c)dξ (4.11)
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which means thatΨ(ξ/c) =
√

cΨ(ξ). Thus, the values of the normalized wave function in

original variablexm = ξm/c are given byΨ(xm) =
√

cΨ(ξm), that is,

Ψi(xm) =
√

cΨi(ξm) =
√

ce−ξ
2
m/2yi(ξm) = e−ξ

2
m/2
√

c(N + 1)

π1/4

vm
N

vm
0

ui
m (4.12)

where we have used (3.40) foryi(ξm).

On the other hand, if the potential functionV(x) is symmetric, i.e.,V(x) = V(−x), then

equation (4.1) becomes reflection symmetric. For a reflection symmetric system, the potential

may be regarded as a function ofx2, i.e.,V(x2), and hence the spectrum can be decomposed

into two disjoint subsets containing solely the even and odd eigen-states, respectively. First

of all, instead of linear scaling in (4.2), the symmetry of the potential function suggests the

use of a quadratic transformation [78]

ξ = (cx)2, c > 0, ξ ∈ (0,∞), (4.13)

which converts the Schrödinger equation (4.1) to the form

[
ξ

d2

dξ2
+

1
2

d
dξ
− 1

4c2
V(ξ/c2)

]
Ψ(ξ) = − E

4c2
Ψ(ξ) (4.14)

wherec is an optimization parameter [78]. Then, suggesting a solution of the type

Ψ(ξ) = ξp e−ξ/2y(ξ), p ∈ R (4.15)

satisfying the asymptotic boundary condition at infinity, where the factorξp has been intro-

duced to cope with theartificial singularity of (4.14) atξ = 0. [78] Note that (4.1) is in fact

regular everywhere except the “point at infinity”, and the additional singularity of (4.14) at

the origin has been resulted from using the quadratic transformation (4.13). Substitution of

(4.15) into (4.14) leads to the equation that the new dependent variabley(ξ) must satisfy

ξy′′ + (2p+ 1
2 − ξ)y′ +

1
4

[
ξ − c−2V(ξ/c2) +

2p(2p− 1)
ξ

]
y =

1
4

[
4p+ 1− c−2E

]
y (4.16)

implying that the unwelcome singularity located at the origin can be removed ifp is either 0

or 1/2. Therefore, setting [78]

2p+ 1
2 = γ + 1 (4.17)

we then express (4.16) in the neater form

ξy′′ + (γ + 1− ξ)y′ + 1
4

[
ξ − c−2V(ξ/c2)

]
y = 1

4

[
2(γ + 1)− c−2E

]
y (4.18)
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with γ = ∓1
2 [78]. Now it is clear that the solutions in (4.15) withp = 0 (γ = −1

2) and

p = 1
2 (γ = 1

2) yield even and odd eigenfunctions, respectively, on returning back tothe

original variablex via (4.13). Accordingly the new set up of the problem in (4.18) allows us

to determine symmetric (even) and antisymmetric (odd) states separately, for thetwo specific

values ofγ = −1
2 andγ = 1

2 [78].

Obviously, the last equation is an EHTP of the second kind that suggests theuse of Laguerre

pseudospectral methods (LPM) withγ = ∓1
2. Therefore, the kinetic energy term in (3.31)

reads as [78]

Kmn = −
1
6



12
√
ξmξn

(ξm− ξn)2
if m, n

2N +
1
ξn

[
(γ − ξn)2 − 1

]
if m= n

(4.19)

on replacingσ(ξ) = ξ, τ(ξ) = γ + 1− ξ andr(ξ) = 1 and the potential energy matrix in (3.32)

takes the form

Vmn = ν(ξm)δmn =
1
4

[
ξ − c−2V(ξ/c2)

]
δmn. (4.20)

The only absent data set is the nodal pointsξm which are the roots of Laguerre polynomials

LγN+1(ξ) of orderγ = ∓1
2. It can be computed as the eigenvalues of the tridiagonal symmetric

matrix R in (2.17) with off-diagonal and diagonal entriesAn = −
√

(n+ 1)(n+ γ + 1) and

Bn = 2n+ γ + 1, for n = 0,1, . . . ,N respectively, which are given in (2.32).

Thus, the eigenvalues−λ = 1
4

[
2(γ + 1)− c−2E

]
of the EHTP in (4.18) and, hence, the ener-

gies

E = c2 [
4λ + 2(γ + 1)

]
, γ = ∓1

2, (4.21)

of the Schr̈odinger equation (4.1) with symmetric potentials over the real line can be approx-

imated as the eigenvalues of the symmetric matrixB = K +V where the entries ofK andV

are specified in (4.19)-(4.20) [78]. Notice that,γ = −1
2 leads to the even states

E2k = c2 (1+ 4λk) (4.22)

andγ = 1
2 to the odd levels

E2k+1 = c2 (3+ 4λk) (4.23)

of the Schr̈odinger equation (4.1) [78]. Therefore, the eigenvalues of (4.1) with symmetric

potentials can also be approximated by LPM which seem to be more advantageous in the

numerical point of view. It is clear from the last two equations that two matrices of orderN
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is sufficient in the LPM whereas a matrix of order 2N should be diagonalized in the HPM to

get the same number of approximate eigenvalues.

On the other hand, for an orthonormal eigenfunctiony(ξ) of (4.18) we have

1 =
∫ ∞

0
y2(ξ)ξγe−ξdξ =

∫ ∞

0
y2(ξ)ξ2p− 1

2 e−ξdξ =
∫ ∞

0
Ψ2(ξ)ξ−

1
2 dξ. (4.24)

upon using (4.17). However, lettingξ = (cx)2 in original wave function, we obtain
∫ ∞

−∞
Ψ2(x)dx = 2

∫ ∞

0
Ψ2(x)dx =

1
c

∫ ∞

0
Ψ2(ξ)ξ−

1
2 dξ =

1
c

(4.25)

where we first made use of the evenness of the integrand. Thus, we mustmultiply the eigen-

functionΨ(ξ) by
√

c so thatL2-norm of the wave functionΨ(x) in original variablex is equal

to unity. Therefore, we may write

Ψ(xm) =
√

cΨ(ξm) =
√

cξp/2
m e−ξm/2y(ξm) =

√
cξ

1
2 (γ+ 1

2 )
m e−ξm/2y(ξm). (4.26)

Finally, using (3.40) fory(ξm), we get

Ψi(xm) = −
√

c(N + 1)(N + γ + 1)
Γ(γ + 1)

vm
N

vm
0

ξ
1
2 (γ− 1

2 )
m e−ξm/2ui

m (4.27)

Notice that,xm = ±
√
ξm/c. If γ = −1

2, then the values of the wave function at negativex

values are the same as those at positivex values since eigenfunctions corresponding to even

indexed eigenvalues are even functions ofx. Similarly, whenγ = 1
2 the values at negativex

values are the negatives of those at positivex values since eigenfunctions associated with odd

indexed eigenvalues are odd functions ofx.

For numerical illustrations, first, we consider an asymmetrical double well potential (ADWP)

V(x) = a1x2(x+ a2)(x− 1), a1 > 0, 0 < a2 < 1, x ∈ (−∞,∞) (4.28)

and a Morse potential (MP) of the form

V(x) = (e−ax− 1)2, 0 < a < 2, x ∈ (−∞,∞) (4.29)

as typical examples of asymmetrical potentials.

Asymmetrical Double Well Potential

The ADWP has two minima located asymmetrically about the origin [73]. It is clear that the

left hand limiting value ofa2, a2 = 0, does not represent a double well oscillator anymore
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where the potential has an inflection point atx = 0 whilea2 = 1 corresponds to a symmetrical

two well potential. These potentials are of practical interest for the protonicmovement of

hydrogen-bonded systems [69, 73, 89].

For the ADWP, potential energy matrix in (4.8) becomes

Vmn =

[
ξ2

m− c−2a1

(
c−1ξm

)2 (
c−1ξm+ a2

) (
c−1ξm− 1

)]
δmn. (4.30)

Thus the energy levelsEn = c2(1 + λn) of Schr̈odinger equation (4.1) with an ADWP are

listed in Table 4.1, where the range ofa2 is covered by choosinga2 = 0.25, a2 = 0.50 and

a2 = 0.75.

Table 4.1: Several eigenvalues of ADWP fora1 = 100, as a function ofa2 [3].

a2 copt N n En

0.25 4.4 69 0 −4.277 344 849 182 474 166 847 348 848 02
69 1 7.080 517 391 364 158 656 090 710 350 21
72 2 19.817 761 502 618 821 399 175 325 525 2
73 3 36.209 337 296 287 706 584 558 242 608 6

5.5 204 100 4591.756 700 061 399 687 274 143 286 5
0.50 4.4 58 0 −6.816 052 047 536 736 982 561 430 365 98

58 1 4.675 693 930 558 290 057 997 135 848 24
59 2 15.973 204 136 317 836 561 600 922 534 7
62 3 31.505 546 630 519 551 260 800 075 872 1

5.5 200 100 4549.714 975 331 339 127 227 825 899 0
0.75 4.4 57 0 −9.459 479 212 224 512 858 546 562 584 43

57 1 0.010 560 072 717 619 621 379 801 416 92
59 2 10.866 977 233 476 768 562 653 506 503 7
61 3 24.888 991 175 519 381 797 134 001 071 9

5.5 200 100 4492.595 909 516 835 740 641 080 843 6

Table 4.2: The effect ofc on the accuracyE0 of an ADWP witha1 = 100 anda2 = 0.25 when
N = 69 [3].

c E0

1.1 −4.27
2.2 −4.277 344 849 182
3.3 −4.277 344 849 182 474 166 847 34
4.4 −4.277 344 849 182 474 166 847 348 848 02
5.5 −4.277 344 849 182 474 166 847 3
6.6 −4.277 344 84
7.7 −4.277

In all tables,n stands for the eigenvalue index,N truncation order for which the desired accu-

racy of the corresponding eigenvalue is obtained, andc denotes a scaling or an optimization
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parameter which may be exploited to accelerate the convergence rate of the method. The

effect of c on the accuracy of the ground state eigenvalueE0 of an ADWP is displayed in

Table 4.2. Note that we used quadruple precision arithmetic on a main frame computer with

machine accuracy of about 32 digits, by truncating the results to 28-30 significant figures.
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Figure 4.1: Ground state and fifth excited state eigenfunctions of the ADWP with a1 = 100
anda2 = 0.5.

In all figures we illustrate the normalized eigenfunctions of the corresponding problem which

are obtained by using FORTRAN programming language and plotted in MATLAB. It is worth

noting that, depending on the truncation sizeN, sometimes we obtain negative of the normal-

ized eigenfunctions. Figure 4.1 illustrates the two eigenfunctions of the ADWP.

A Morse-Like Potential

The analytically solvable MP in (4.29) has a finite number of discrete spectralpoints lying

between 0< En < 1 and a continuous spectrum for allE ≥ 1 [76]. The discrete eigenvalues

are expressible as

En = (n+ 1
2)a

[
2− (n+ 1

2)a
]
, n = 0,1, . . . ,

�1
a −

1
2

�

(4.31)

where~ � denotes the integer part of a real number. After adding potential matrix

Vmn =
(
e−aξm − 1

)2
δmn (4.32)

to (4.6) we diagonalize the resulting algebraic systemB = K +V, to write down the energies

of MP in Table 4.3. The lower states are obtained to the machine accuracy, but a considerable

slowing down of the convergence rate occurs especially for higher energy levels that are very

close to the border of the continuous spectrum, and hence, the method fails to give the desired
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accuracy. Notice that, whena = 0.02 there exist 50 discrete states whereas they are only 5

whena = 0.2.

Table 4.3: First few eigenvalues of the MP whena = 0.02 and all discrete eigenvalues when
a = 0.2. The last column includes exact eigenvalues.

a copt N n En En (exact)
0.02 0.1 84 0 0.019 900 000 000 000 000 000 000 000 000 199× 10−4

90 1 0.059 100 000 000 000 000 000 000 000 000 591× 10−4

94 2 0.097 500 000 000 000 000 000 000 000 000 975× 10−4

98 3 0.135 100 000 000 000 000 000 000 000 000 1351× 10−4

100 4 0.171 900 000 000 000 000 000 000 000 000 1719× 10−4

0.2 0.3 200 0 0.190 000 000 000 000 000 000 000 000 0 19× 10−2

1 0.510 000 000 000 000 000 000 000 000 0 51× 10−2

2 0.750 000 000 000 000 000 000 000 1 75× 10−2

3 0.910 000 000 000 004 91× 10−2

4 0.990 003 99× 10−2

Symmetric Double-Well Potential

Many physical examples over the real line have symmetric potentials. In this part we employ

both HPM and LPM to the problems of this kind and compare the two methods. As a first

example of symmetric potentials we take the symmetric double-well potential (SDWP)[3]

V(x) = x4 − 25x2, x ∈ (−∞,∞) (4.33)

having two minima located symmetrically about the origin. The interesting property of its

energy spectrum is that the lower eigenvalues are very closely bunchedin pairs if the wells are

sufficiently separated. To determine the gap between nearly degenerate eigenvalues of SDWPs

several methods have been proposed such as WKB and JWKB approximations [22, 40, 63],

finite difference calculation [85], path-integral approach [31], recursive series method [9] and

Rayleigh-Ritz variational method [80]. Moreover, there are some general purpose Sturm-

Liouville eigensolvers such as SLEIGN2, SLEDGE and MATSLISE which are mentioned in

Chapter 1. They are capable of solving almost all examples, which will be considered here,

to a certain extent.

Diagonalizing the matrixB constructed by using HPM (4.6 and 4.8) or LPM (4.19 and 4.20)
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Table 4.4: First few nearly degenerate states of SDWP by using HPM withNHPM = 140 and
optimization parameterc = 2.05.

n En n En

0 −149.219 456 142 190 888 029 163 966 538 8−95.259 459 679 082 836 735 165 917 631
1 −149.219 456 142 190 888 029 163 958 974 9−95.259 459 679 082 794 260 293 757 345
2 −135.324 512 011 840 858 579 892 393 334 10−82.504 478 354 512 192 043 606 307 701
3 −135.324 512 011 840 858 579 887 397 260 11−82.504 478 354 507 810 898 147 390 913
4 −121.688 950 604 621 648 258 910 138 759 12−70.088 717 531 234 847 815 434 803 087
5 −121.688 950 604 621 648 257 347 725 677 13−70.088 717 530 886 437 987 303 260 507
6 −108.328 000 567 332 309 875 230 475 701 14−58.044 145 096 311 338 186 422 572 755
7 −108.328 000 567 332 309 568 103 879 703 15−58.044 145 074 552 692 717 373 129 654

Table 4.5: First few nearly degenerate states of SDWP by using LPM withNLPM = 70 and
optimization parameterc = 2.05.

n E2n E2n+1

0 −149.219 456 142 190 888 029 163 966 538−149.219 456 142 190 888 029 163 958 974
1 −135.324 512 011 840 858 579 892 393 334−135.324 512 011 840 858 579 887 397 260
2 −121.688 950 604 621 648 258 910 138 759−121.688 950 604 621 648 257 347 725 677
3 −108.328 000 567 332 309 875 230 475 701−108.328 000 567 332 309 568 103 879 703
4 −95.259 459 679 082 836 735 165 917 631 −95.259 459 679 082 794 260 293 757 345
5 −82.504 478 354 512 192 043 606 307 701 −82.504 478 354 507 810 898 147 390 913
6 −70.088 717 531 234 847 815 434 803 087 −70.088 717 530 886 437 987 303 260 507
7 −58.044 145 096 311 338 186 422 572 755 −58.044 145 074 552 692 717 373 129 654

with SDWP, we list the lower energy eigenvalues in Tables 4.4 and 4.5.

Notice from the Tables 4.4 and 4.5 that, in order to calculate the first sixteen eigenvalues to 30-

digits accuracy HPM needs a matrix of orderNHPM = 140. On the other hand, two matrices

of dimensionNLPM = 70 is sufficient for LPM. For both methods the optimum value of the

parameterc is the same (copt = 2.05). It is clear that the determination of the gaps requires

indeed a high precision algorithm and both HPM and LPM are successful inseperating the

nearly degenerate states.

Table 4.6: Improvement of accuracy forE100 of the SDWP with respect toN, wherec = 2.6
[3].

NHPM NLPM E100

180 90 625.512 519 838 7
190 95 625.512 519 838 760 54
200 100 625.512 519 838 760 543 998
210 105 625.512 519 838 760 543 998 347 7
220 110 625.512 519 838 760 543 998 347 757 56
222 111 625.512 519 838 760 543 998 347 757 56
224 112 625.512 519 838 760 543 998 347 757 56
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In addition, both methods gives not only satisfactory results for lower eigenvalues but also

higher states. For instance, in Table 4.6 we illustrate the convergence rate of E100 as a function

of the truncation sizeN. Observe that eigenvalueE100 stabilizes whenNHPM = 220 and

NLPM = 110, for HPM and LPM, respectively. In general, the accuracy of theresults in

all tables reported here has been checked similarly by inspecting the numberof stable digits

between two consecutive truncation orders.
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Figure 4.2: Several eigenfunctions of the SDWP by using LPM.

In Figure 4.2 we demonstrate several eigenfunctions of the SDWP by usingLPM. However,

it is not possible to obtain these eigenfunctions by making use of HPM because of numeric

degeneracy in the lower eigenvalues. Thus, separation of even and odd states not only halves

the truncation size but also leads to the correct values of the eigenfunctions at the nodes.

A Pöschl-Teller Type Potential

We, then consider the potential hole of modified Pöschl-Teller type ( problem 39 of [26])

V(x) = −m(m+ 1) sech2 x , m> 0, x ∈ (−∞,∞) (4.34)

43



which has a finite number of discrete eigenvalues

En = −(m− n)2, n = 0,1, . . . , ~m� (4.35)

and a continuous spectrum for allE > 0 [26]. Tables 4.7 and 4.8 demonstrates the discrete

states of (4.34) form= 10 by using HPM and LPM, respectively.

Notice from (4.35) that for integer values ofm there is always one eigenvalue lying at zero

energy. As in the other algorithms, at the border of the continuous spectrum, both methods

fail to give high accuracy and produce poor result correct only to twodigits.

Moreover, the slowing down of convergence for the eigenvalues that are closer to zero can

also be seen from Tables 4.7 and 4.8.

Table 4.7: Discrete states of modified Pöschl-Teller potential hole withm= 10 by using HPM
whereNHPM = 400 and optimization parameterc = 1.3.

n En n En

0 −99.999 999 999 999 999 999 999 999 999 87 5−25.000 000 000 000 000 000 000 001
1 −81.000 000 000 000 000 000 000 000 004 6−15.999 999 999 999 999 999 999 998
2 −63.999 999 999 999 999 999 999 999 97 7 −9.000 000 000 000 000 000 000 003
3 −49.000 000 000 000 000 000 000 000 1 8 −3.999 999 999 999 999 999 999 997
4 −35.999 999 999 999 999 999 999 999 6 9 −0.999 999 999 999 999 95

Table 4.8: Discrete states of modified Pöschl-Teller potential hole withm= 10 by using LPM
whereNLPM = 200 and optimization parameterc = 1.3.

n E2n E2n+1

0 −100.000 000 000 000 000 000 000 000 002 −80.999 999 999 999 999 999 999 999 98
1 −63.999 999 999 999 999 999 999 999 98 −48.999 999 999 999 999 999 999 999 990
2 −35.999 999 999 999 999 999 999 999 6 −24.999 999 999 999 999 999 999 999 994
3 −15.999 999 999 999 999 999 999 998 −8.999 999 999 999 999 999 999 999 996
4 −3.999 999 999 999 999 999 999 997 −0.999 999 999 999 999 999 7

Generalized Anharmonic Oscillators

Next example is the generalized anharmonic oscillators (GAO) described bythe potential

V(x) = x2 + v2mx2m, m= 2,3, ..., v2m > 0, x ∈ (−∞,∞) (4.36)

wherev2m is called the anharmonicity or coupling constant. It is directly related to the study

of various atomic and molecular problems of quantum chemistry. Similar to the SDWPin
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(4.33) several methods have consequently been applied to approximate theeigenvalues of

GAO among which we can recall WKB methods [8], Rayleigh-Ritz variational method [72],

Hill’s determinant [24], Wronskian [23] and finite difference approaches [25].

Table 4.9: Ground state energies of the quartic oscillatorV(x) = x2+ v4x4, as a function ofv4

[78].

v4 E0 NHPM NLPM copt

10−4 1.000 074 986 880 200 111 122 834 155 30 15 8 1.0
10−2 1.007 373 672 081 382 460 533 843 905 98 32 17 1.0
1 1.392 351 641 530 291 855 657 507 876 61 51 25 2.1
10 2.449 174 072 118 386 918 268 793 906 19 53 27 3.1
103 10.639 788 711 328 046 063 622 042 669 4 56 27 6.5
104 22.861 608 870 272 468 891 759 867 963 5 56 28 10.0
105 49.225 447 584 229 625 157 076 387 001 1 56 28 14.0

Typical computations for the ground state eigenvalues of the quartic and sextic oscillators as a

function of the coupling constantsv4 andv6 are displayed in Tables 4.9 and 4.10, respectively.

Table 4.10: Ground state energies of the sextic oscillatorV(x)= x2 + v6x6, as a function ofv6

[78].

v4 E0 NHPM NLPM copt

10−4 1.000 187 228 153 680 768 286 355 665 62 30 16 1.0
10−2 1.016 741 363 754 732 031 671 817 981 51 70 34 1.8
1 1.435 624 619 003 392 315 761 272 220 54 78 38 3.2
10 2.205 723 269 595 632 351 009 973 387 17 78 40 4.2
103 6.492 350 132 329 671 550 549 557 845 34 80 42 7.0
104 11.478 798 042 264 543 961 289 816 038 6 78 40 9.5
105 20.375 098 656 309 660 844 567 287 513 5 81 41 12.0

In Table 4.11 we illustrate the minimum truncation sizeN needed to obtain the ground state

energy of sextic oscillator to 30-digits accuracy. Note that the choice of optimum valuecopt

for optimization parameterc is important. However, we don’t need to determine the value of

copt too sensitively. For instance, whenv6 = 105, any number between 11.5 < copt < 14.5 can

be chosen as ancopt since it does not effect the truncation size considerably.

Notice that to obtain the ground state eigenvalue of quartic oscillator withv4 = 10−4 to 30-

digits accuracy, both the HPM and LPM require only a matrix of order 15 and8, respectively

and the optimization parameter has no effect on the solution, i.e.,copt = 1. This is because

whenv4 is very small potential behaves like the harmonic oscillator. However, asv4 grows that

is, the system is in the pure anharmonic regime, the contribution of the parameterc becomes
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Table 4.11: The effect of parameterc on the truncation sizeN to calculate the ground state
eigenvalue of the sextic oscillator, asv6 varies, within quadruple precision arithmetic.

v6 = 10−4 v6 = 1 v6 = 105

copt NHPM NLPM copt NHPM NLPM copt NHPM NLPM

0.6 100 50 2.0 120 60 8.5 124 62
0.7 70 35 2.4 94 47 9.0 114 57
0.8 52 26 2.8 81 41 9.8 102 51
0.9 38 19 3.2 78 38 11.5 84 42
1.0 30 15 3.6 80 40 12.2 82 41
1.1 34 17 3.8 96 48 12.9 78 39
1.3 44 22 4.2 102 51 13.6 79 40
1.5 66 33 4.6 120 60 14.5 80 40

significant. For example, whenv4 = 105, copt becomes 14 for which the desired accuracy is

reached with matrix sizesNHPM = 56 andNLPM = 28 for HPM and LPM, respectively.
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Figure 4.3: The eigenfunctionΨ2(x) of quartic anharmonic oscillator withv4 = 0.01 and
c = 2.1. Solid line is obtained by spline approximation.

Figure 4.3 shows the approximate values of the second excited state eigenfunction of quar-

tic anharmonic oscillator withv4 = 0.01 at the zeros ofH32(x) and L−1/2
16 (x). That is, the

numerical values ofΨ2(x) obtained by using HPM and LPM, respectively. Notice that,
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in LPM we reflect the solution with respect to y-axis to get the full picture since Ψ2(x)

is even inx. The nodal setsxi = ξi/c and xi =
√
ξi/c for the HPM and LPM, respec-

tively, coincide on the positive half line. This is not surprising because ofthe interrelations

H2n(ξ) = (−1)n22nn!L−1/2
n (ξ2) and H2n+1(ξ) = (−1)n22n+1n!ξL1/2

n (ξ2) between the Hermite

and Laguerre polynomials. Therefore, we see that for symmetric potentialsover the real line,

use of the LPM in place of the HPM halves the truncation sizeN.

Gaussian Potential

Finally, in this section, we take into account the nonpolynomial Gaussian potential

V(x) = −e−δx2
, δ > 0, x ∈ (−∞,∞) (4.37)

having a finite number of discrete eigenvalues located on the negative realaxis together with

a continuous spectrum over the entire positive real axis for small values of the parameterδ.

Table 4.12: Even discrete states of the Gaussian potentialV(x) = −e−δx2
asδ varies.

δ c NLPM NHPM n E2n

0.001 0.2 200 400 0 −0.968 752 703 034 398 668 606 599 656 91
1 −0.846 820 196 725 804 118 603 225 951 44
2 −0.731 125 549 125 734 739 132 375 767 29
3 −0.621 888 650 443 182 657 155 148 987 66
4 −0.519 364 950 583 428 249 615 031 790 9
5 −0.423 856 070 842 708 088 081 323 949 4
6 −0.335 725 389 869 448 866 857 878 683 2
7 −0.255 422 042 129 619 875 883 845 365 7
8 −0.183 520 193 247 718 643 542 217 565 1
9 −0.120 788 829 915 192 793 998 362 147 4

10 −0.068 331 350 243 752 810 432 2
11 −0.027 922 921 267 91
12 −0.003 20

0.1 0.3 200 400 0 −0.721 530 628 487 107 638 685 036 884 81
1 −0.007 927

There exist a threshold valueδthr, of the parameterδ, for which the discrete negative spectral

points can no longer survive and melt fully into the continuous spectrum. Tas¸eli and Erseçen

[80] calculated the discrete states by using an appropriately scaled Hermite-Weber basis in

the Rayleigh-Ritz variational picture.
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Table 4.13: Odd discrete states of the Gaussian potentialV(x) = −e−δx2
asδ varies.

δ c NLPM NHPM n E2n+1

0.001 0.2 200 400 0 −0.907 019 292 592 812 082 715 416 167 023
1 −0.788 180 130 992 659 421 804 061 549 09
2 −0.675 684 854 719 018 240 848 779 291 58
3 −0.569 770 033 727 450 439 655 309 062 31
4 −0.470 712 623 024 420 087 564 042 654 02
5 −0.378 842 756 108 543 457 710 150 610 05
6 −0.294 562 957 171 686 723 792 487 677 29
7 −0.218 378 575 398 707 288 207 832 339 73
8 −0.150 949 512 145 370 006 773 365 439 35
9 −0.093 187 162 389 194 505 371 0045

10 −0.046 464 865 007 120 74
11 −0.013 208 449 9

0.1 0.3 200 400 0 −0.254 340 163 216 611 811 747 716 919

Tables 4.12 and 4.12 exhibit the fact that, as in the other methods [6, 50, 87], a noticeable

slowing down of convergence is encountered for the discrete states justbelow zero, asδ

approaches its threshold valueδthr beyond which the discrete states can no longer survive.

Hence, the HPM and LPM stand for alternative numerical procedures ofthe problem. Ev-

idently, we deduce from the numerical tables thatNHPM = 2NLPM. Therefore, the most

efficient pseudospectral discretization of the Schrödinger equation over (−∞,∞) having a

symmetric potential is not the HPM, and it is suggested by the LPM.

4.2 The Schr̈odinger equation over the half line

In this section we deal with the radial Schrödinger equation inM dimensions

[
− d2

dr2
− M − 1

r
d
dr
+
ℓ(ℓ + M − 2)

r2
+ V(r)

]
R(r) = ER(r), r ∈ (0,∞), (4.38)

which is naturally defined over the half line so thatR(r) ∈ L2(0,∞). Here,M = 1,2, ... and

ℓ = 0,1, ... are space dimension and angular quantum number, respectively, andV(r) is an

arbitrary continuous potential function. Notice that, the equation in (4.1), when considered

over the half line, is the particular case of (4.38) withM = 1 andℓ = 0 or ℓ = 1. Moreover,

wheneverV(x) in (4.1) is even, the eigenvalues of (4.38) in the one dimensional case ofM = 1

are the even and odd states of the system (4.1) ifℓ = 0 andℓ = 1, respectively [74].
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First introducing the scaled quadratic variable [3]

ξ = (cr)2, c > 0, ξ ∈ (0,∞) (4.39)

we get the operational equivalences [3]

1
r

d
dr
≡ 2c2 d

dξ
and

d2

dr2
≡ 4c2ξ

d2

dξ2
+ 2c2 d

dξ
(4.40)

for the first and second derivatives, respectively, so that the equation (4.38) reads as [3]

[
−ξ d2

dξ2
− M

2
d
dξ
+
ℓ(ℓ + M − 2)

4ξ
+

1
4c2

V(c−1
√
ξ)

]
R(ξ) =

E

4c2
R(ξ). (4.41)

Then, proposing a solution of the type

R(ξ) = ξℓ/2e−ξ/2y(ξ) (4.42)

satisfying the asymptotic boundary condition at infinity and the regularity condition at the

origin, we end up with an EHTP of the second kind (γ = ℓ + 1
2M − 1)

ξy′′ +
(
ℓ + 1

2M − ξ
)
y′ + 1

4

[
ξ − c−2V(

√
ξ/c)

]
y = 1

4

(
M + 2ℓ − c−2E

)
y (4.43)

wherey(ξ) should be regular [3]. Alternatively, starting with the linear scaled variable

ξ = cr, c > 0, ξ ∈ (0,∞) (4.44)

we rewrite the equation (4.38) as

[
− d2

dξ2
− M − 1

ξ

d
dξ
+
ℓ(ℓ + M − 2)

ξ2
+

V(ξ/c)
c2

]
R(ξ) =

E

c2
R(ξ). (4.45)

Then, continuing with a solution of the type

R(ξ) = ξℓe−ξ/2y(ξ) (4.46)

we obtain a WEHTP of the second kind (γ = 2ℓ + M − 2)

ξy′′ + (2ℓ + M − 1− ξ) y′ −
[

1
2(2ℓ + M − 1)+ c−2ξV(ξ/c)

]
y = −

(
c−2E + 1

4

)
ξy. (4.47)

For the radial Schr̈odinger equation we have obtained two different EHTPs. The advantages

and disadvantages of these formulations will be clear in the numerical examples. However,

according to transformations, we expect that the former will produce good results for prob-

lems whose exact eigenfuntions decay at infinity like e−br2
whereas the latter is assumed to

produce good results for those behave like e−br, whereb is a positive constant.
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The EHTPs in (4.43) and (4.47) recommend the use of LPM with the parameter valuesγ =

ℓ + 1
2M − 1 andγ = 2ℓ +M − 2, respectively. Hence, the kinetic energy matrix in (3.31) takes

the form

Kmn = −
1
6



12
√
ξmξn

(ξm− ξn)2
if m, n

2N +
1
ξn

[
(γ − ξn)2 − 1

]
if m= n

(4.48)

when the equation (4.43) is used, i.e.,σ(ξ) = ξ, τ(ξ) = γ + 1− ξ = ℓ + 1
2M − ξ andr(ξ) = 1.

In this case the potential energy matrix becomes

Vmn = Vmδmn =
ν(ξm)
r(ξm)

δmn =
1
4

[
ξm− c−2V(

√
ξm/c)

]
δmn. (4.49)

For the weighted EHTP in (4.47) we have

Kmn = −
1
6



12
(ξm− ξn)2

if m, n

1
ξn

{
2N +

1
ξn

[
(γ − ξn)2 − 1

]}
if m= n

(4.50)

on replacing the coefficientsσ(ξ) = r(ξ) = ξ andτ(ξ) = γ + 1− ξ = 2ℓ + M − 1− ξ. On the

other hand, potential energy matrix reads as

Vmn = Vmδmn =
ν(ξm)
r(ξm)

δmn = −
[

1
2ξm

(γ + 1)+ c−2V(ξm/c)

]
δmn. (4.51)

The energiesEn of the original problem (4.38) can easily be obtained from both the eigen-

values−λEHT P
n = 1

4

(
M + 2ℓ − c−2En

)
and−λwEHT P

n = −
(
c−2En +

1
4

)
of (4.43) and (4.47),

respectively. That is,

En = E(M)
n,ℓ =

(
M + 2ℓ + 4λEHT P

n

)
c2 =

(
λwEHT P

n − 1
4

)
c2. (4.52)

It can be seen from (4.43) and (4.47) that the spectrum of (4.38) remains invariant for a fixed

value of the sum 2ℓ + M. Thus the eigenvaluesE(M)
n,ℓ in M dimension with the radial and

angular quantum numbersn andℓ, respectively, are degenerate in such a way that

E(2)
n,1 ≡ E(4)

n,0

E(2)
n,2 ≡ E(4)

n,1 ≡ E(6)
n,0

...

E(2)
n,ℓ ≡ E(4)

n,ℓ−1 ≡ E(6)
n,ℓ−2 ≡ . . . ≡ E(2ℓ−2)

n,2 ≡ E(2ℓ)
n,1 ≡ E(2ℓ+2)

n,0

(4.53)
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for even values of space dimensionM whereE(2)
n,0 is single in the system. Similarly,

E(3)
n,1 ≡ E(5)

n,0

E(3)
n,2 ≡ E(5)

n,1 ≡ E(7)
n,0

...

E(3)
n,ℓ ≡ E(5)

n,ℓ−1 ≡ E(7)
n,ℓ−2 ≡ . . . ≡ E(2ℓ−1)

n,2 ≡ E(2ℓ+1)
n,1 ≡ E(2ℓ+3)

n,0

(4.54)

if M is odd [74]. As it was explained aboveE(3)
n,0 (M = 3, ℓ = 0) corresponds to the odd states

E2n+1 of (4.1) (M = 1, ℓ = 1). Note also that 2ℓ + M = 3 for each case. The degeneracy in

the spectrum suggests that we may consider only two- and three-dimensional cases, without

any loss of generality.

On the other hand, for an orthonormal eigenfunctiony(ξ) of (4.43) we have

1 =
∫ ∞

0
y2(ξ)ξγe−ξdξ =

∫ ∞

0
y2(ξ)ξℓ+

M
2 −1e−ξdξ =

∫ ∞

0
R2(ξ)ξ

M
2 −1dξ. (4.55)

However, lettingξ = (cr)2 in original wave function, we obtain

∫ ∞

0
R2(r)rM−1dr =

1
2cM

∫ ∞

0
R2(ξ)ξ

M
2 −1dξ =

1
2cM

(4.56)

which means thatR(rm) =
√

2cMR(ξm) so that theL2
ρ-norm of the eigenfunctionR(r) in

original variabler is equal to one. Thus, we have

R(rm) =
√

2cMR(ξm) =
√

2cMξ
ℓ/2
m e−ξm/2y(ξm) (4.57)

or equivalently we obtain

Ri(rm) = −

√
2cM(N + 1)(N + γ + 1)

Γ(γ + 1)

vm
N

vm
0

ξ
ℓ−1
2

m e−ξm/2ui
m (4.58)

upon using (3.40) whereγ = ℓ + 1
2M − 1. Similar analysis shows that for (4.47) the values of

the wave function atrm is given by

Ri(rm) = −

√
cM(N + 1)(N + γ + 1)

Γ(γ + 1)

vm
N

vm
0

ξℓ−1
m e−ξm/2ui

m (4.59)

whereγ = 2ℓ + M − 2.

For the radial Schr̈odinger equation, potential functionV(r) can be classified into two groups;

the ones regular at the origin and the others that decay not faster than 1/r at the origin. The

first group, for example, includes isotropic polynomial and Gaussian typepotentials. On the
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other hand, the latter includes mostly Coulomb-like potentials such as Yukawa, exponential

cosine screened Coulomb potential and Hulthén screening potential. Now, we will test the two

methods of this section for several potentials of these two classes. In order to avoid confusion,

we call the methods as LPM and wLPM (LPM of weighted EHTP) based on the EHTPs in

(4.43) and (4.47), respectively.

Isotropic Quartic Oscillator

The first example is the M-dimensional isotropic quartic oscillator

V(r) = r2 + v4r4, v4 > 0 (4.60)

which is regular atr = 0. Taşeli and Zafer [81] expanded the wave function into a Fourier-

Bessel series to solve the radial Schrödinger equation with isotropic polynomial potentials

and Taşeli [74] proposed an alternative series solution to the isotropic quartic oscillator in

M-dimensions. It seems that the unweighted EHTP in (4.43) is more suitable forquartic

oscillator since it is even inr. Remember that we have used quadratic transformation (4.39) on

the independent variabler to obtain (4.43). In Table 4.14 we present eigenvalues of isotropic

quartic oscillator in 3-dimensions for some pairs of (n, l).

Table 4.14: The energy eigenvaluesE(3)
n,ℓ of the potential,V(r) = r2+ v4r4, as a function ofv4.

v4 c NLPM n l E(3)
n,ℓ

10−4 1 8 0 0 3.000 374 896 936 121 098 337 846 829 9
1 40 25 1 105.410 343 852 439 559 553 621 014 591 0
1 66 50 5 214.674 964 990 804 822 025 570 511 216 2
1 124 100 10 429.514 482 011 916 008 399 592 238 938

1 3 30 0 10 54.184 984 610 454 439 924 123 480 175 6
3 65 25 5 483.022 207 413 394 709 428 608 270 729 1
2.5 100 50 1 1062.889 853 853 655 671 834 975 735 691
2 160 100 0 2604.432 485 714 639 307 459 405 681 55

104 9 30 0 0 81.903 316 953 284 467 567 471 308 555
9 80 25 1 9253.923 499 415 499 714 821 586 373 98
12 100 50 5 23756.533 983 690 976 108 458 514 955 3
13 162 100 10 59302.060 313 455 515 491 294 154 604 9

It is also possible to use the weighted EHTP (4.47) for this potential. However, we observe

the slowing down of convergence when compared to unweighted formulation(4.43). For

instance, whenv4 = 10−4, ground state energyE(3)
0,0 is obtained to the same accuracy with
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N = 50 andc = 15 when the weighted formulation is used. The reason for that the unweighted

formulation imitates the true behaviour of the exact eigenfunctions good enough.

Gaussian Type Potential

Then, as a second example of the same type, we consider the Gaussian typepotential [3]

V(r) = −e−δr
2
, δ > 0, r ∈ (0,∞) (4.61)

having a finite number of negative discrete eigenvalues together with a continuous spectrum

over the entire positive real axis for small values of the parameterδ.

Table 4.15: Discrete states of the Gaussian potentialV(x) = −e−δr
2

in three-dimension when
l = 0 asδ varies.

δ c NwLPM n E(3)
n,0

0.001 1 100 0 −0.907 019 292 592 812 082 715 416 167 023
1 −0.788 180 130 992 659 421 804 061 549 09
2 −0.675 684 854 719 018 240 848 779 291 58
3 −0.569 770 033 727 450 439 655 309 062 31
4 −0.470 712 623 024 420 087 564 042 654 02
5 −0.378 842 756 108 543 457 710 150 610 05
6 −0.294 562 957 171 686 723 792 487 677 29
7 −0.218 378 575 398 707 288 207 832 339 73
8 −0.150 949 512 145 370 006 773 365 439 4
9 −0.093 187 162 389 194 505 371 004 475 9

10 −0.046 464 865 007 120 743 034 242 682 3
11 −0.013 208 449 937 779 071 969 887 946 2

0.1 3 55 0 −0.254 340 163 216 611 811 747 716 919

The vibrational levelsℓ = 0 of the Gaussian potential in three dimensionM = 3 displayed

in Table 4.15 asδ varies. Notice that the wLPM is used to approximate the eigenvalues of

the problem. Nevertheless, it is also possible to use LPM instead. In this case, we obtained

the same results as Table 4.13 with a slight differences in the last digits of some eigenvalues,

with the same truncation sizesN and optimization parameterc. This is not surprizing since

E(3)
n,0 = E2n+1 whereE2n+1 is the odd states of (4.1). On the other hand, wLPM yields better

results for higher states which are just below zero with a smaller truncation size of NwLPM =

100. It is reported thatNLPM = 200 for the LPM of the present and the previous sections. The

reason behind this difference is that the exact eigenfunction of the Gaussian potential behaves

like e−
√
−Er which is reflected by wLPM (see (4.44) and (4.46)). However, LPM suggests a
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solution decaying at infinity like e−c2r2/2 (see (4.39) and (4.42)). This somehow explains why

the optimization parameter 0< c < 1 in LPM for the Gaussian potential (see Table 4.13).

Airy Equation

The third example of regular potentials at the origin is

V(r) = r, r ∈ (0,∞) (4.62)

which is known as Airy equation in one dimensionM = 1 andℓ = 0 or ℓ = 1. Several

eigenvalues are reported in Table 4.16 by using wLPM for illustration. On theother hand,

LPM does not produce any satisfactory results. This is because the formulation in (4.41) uses

even transformation on the independent variable whereas the potential in (4.62) is odd. To

obtain the first eleven eigenvalues to approximately 30-digits accuracyNwLPM = 66 is enough

together with optimization parameterc = 6. Eigenvalues are given implicitly by Ai(−E) = 0

where Ai(x) is the Airy function [26]. Properties of Airy functions can be found in [1, 26].

Table 4.16: Several eigenvalues of the Airy equation. The last column includes the negatives
of first ten zeros of Airy function Ai(x).

c NwLPM n En = E(1)
n,1 Reference [1]

6 66 0 2.338 107 410 459 767 038 489 197 252 4 2.338 107 41
1 4.087 949 444 130 970 616 636 988 701 4 4.087 949 44
2 5.520 559 828 095 551 059 129 855 512 9 5.520 559 83
3 6.786 708 090 071 758 998 780 246 384 5 6.786 708 09
4 7.944 133 587 120 853 123 138 280 555 8 7.944 133 59
5 9.022 650 853 340 980 380 158 190 839 9 9.022 650 85
6 10.040 174 341 558 085 930 594 556 737 3 10.040 174 34
7 11.008 524 303 733 262 893 235 439 649 6 11.008 524 30
8 11.936 015 563 236 262 517 006 364 902 9 11.936 015 56
9 12.828 776 752 865 757 200 406 729 407 2 12.828 776 75

6 66 10 13.691 489 035 210 717 928 295 696 779 4
6 70 20 21.224 829 943 642 095 368 459 920 359 3
8 110 30 27.588 387 809 882 444 811 950 364 414 1
9 135 40 33.284 884 681 901 401 879 619 739 896 0
10 155 50 38.528 808 305 094 248 822 629 896 744 7
15 280 100 60.858 931 764 608 923 795 521 455 753 8
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Woods-Saxon Potential

Then, we take into account the Woods-Saxon potential defined by

V(r) = − 50
1+ t

[
1− 5t

3(1+ t)

]
(4.63)

wheret = e
3
5 (r−7), r ∈ (0,∞). The problem has been considered by several authors, for

instance, Zakrzewski [88] used a power series method, Lo and Shizgal [51] applied quadra-

ture discretization method, Shao and Wang [64] considered Obrechkoff one-step method to

approximate the eigenvalues of the problem.

Bound statesE(3)
n,0, which is equal to thoseE(1)

n,1 of corresponding one-dimensional problem

with ℓ = 1, are presented in Table 4.17. In this case, there exist 14 discrete statesbefore

the start of continuous spectrum over the entire positive real axis. The truncation size of

NwLPM = 200 is enough to obtain the bound states of Woods-Saxon potential whereas with

the same truncation order ofNLPM = 200 and an appropriately chosen parameterc = 2, LPM

produces results correct only to 7-10 digits.

Table 4.17: Bound statesE(3)
n,0 of Woods-Saxon potential in 3-dimensions whenℓ = 0 with

NwLPM = 200 andc = 30.

n E(3)
n,0 = E(1)

n,1
0 -49.457 788 728 082 579 670 330 458 705
1 -48.148 430 420 006 361 035 971 245 463
2 -46.290 753 954 466 087 580 582 890 228
3 -43.968 318 431 814 233 002 577 289 234
4 -41.232 607 772 180 218 479 078 577 843
5 -38.122 785 096 727 919 755 861 765 839
6 -34.672 313 205 699 650 691 489 091 456
7 -30.912 247 487 908 848 263 645 899 252
8 -26.873 448 916 059 872 462 417 069 632
9 -22.588 602 257 693 219 572 212 411 689
10 -18.094 688 282 124 421 158 056 170 233
11 -13.436 869 040 250 076 995 975 578 733
12 -8.676 081 670 736 545 808 091 349 527
13 -3.908 232 481 206 230 174 049 698 348

Figure 4.4 showsR1(r) of woods-Saxon potential atN = 120 points for different values of the

optimization parameterc. At this truncation order, the optimumc value iscopt = 45. Notice

that,copt collects the grid points to the region where the eigenfunction is nonzero. Neither the

points are wasted in the region where the wavefunction is too close to zero (machine epsilon),
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nor they are insufficient to recover the shape of the eigenfunction. In this way, it reduces the

numberN of collocation points used to get the desired accuracy. Here, forc = 15 andc = 45,

the energyE1 is correct to 20 and 27 digits respectively, but no convergence occurs when

c = 100 for the same truncation order ofN = 120.
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Figure 4.4: The eigenfunctionR1(r) of woods-Saxon potential computed by usingN = 120
collocation points with severalc values.

Exponential Cosine Partially Screened Coulomb Potential

The first example of Coulomb-like potentials is the exponential cosine partially screened

Coulomb potential (ECPSC)

V(r) = −2ZVec(r, λ, µ) − 2Zas

[
1
r
− Vec(r, λ, µ)

]
, Z > 0, Zas > 0 (4.64)

where

Vec(r, λ, µ) =
1
r

e−λr cos(µr) (4.65)

with the two screening parametersλ andµ [46]. In particular, whenZas = 0 the potential

reduces to the exponential cosine screened Coulomb potential (ECSC). If further,µ = 0 at the
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same time, it is known as the Yukawa potential. On the other hand,Zas = Z corresponds to

the pure attractive Coulomb potential which has countably many discrete statesgiven by

E(M)
n,ℓ =

−4Z2

(2n+ 2ℓ + M − 1)2
, n = 0,1, . . . (4.66)

together with the continuous spectrum over the entire positive real axis. Moreover, in this

caseZ = Zas=
1
2 leads to the hydrogen atom problem.

These potentials have been subject of several studies. Here we remember some of them; Lai

[47] determined several states of ECSC within the framework of the hypervirial Pad́e scheme.

Taşeli [75] used modified Laguerre basis for the ECSC and Yukawa potentials. Ixaru, De

Meyer and Vanden Berghe [46] developed accurate, robust and safe approach for ECPSC.

Ikhdair and Sever [42] applied a new perturbative formalism for the ECSC.

Several eigenvalues of the ECPSC potential in three-dimensions are reported in Table 4.18

for the parameter valuesZ = 50, Zas = 1 andλ = µ = 0.025 whenℓ = 0,10. The results

are satisfactory, but higher levels become expensive to obtain. On the other hand, the LPM of

this section does not lead any accurate results for Coulomb-like potentials being considered

here. The reason for this is that the transformations do not reflect or not able to imitate the

true behaviour of the exact eigenfunctions.

Table 4.18: Several states of the ECPSC potential in three-dimensions whenZ = 50,Zas = 1
andλ = µ = 0.025 asℓ varies.

c NwLPM n ℓ E(3)
n,ℓ

90 20 0 0 −2497.550 000 612 117 302 611 999 477 0
60 20 1 −622.550 008 558 171 072 433 651 132 85
30 20 2 −275.327 819 864 885 534 764 663 309 750
8 30 10 −18.218 254 864 529 448 891 256 063 943 9
5 40 20 −3.301 293 923 744 987 946 825 007 566 6
3 62 30 −0.477 979 395 108 803 362 523 577 038 9
.5 325 50 −0.001 531 833 374 319 363 664 975 806 4
8 25 0 10 −18.214 451 240 408 459 529 166 833 611 8
8 25 1 −14.916 599 484 348 635 959 872 635 251 2
8 25 2 −12.351 299 229 508 114 531 034 516 078 1
5 40 10 −3.289 943 284 017 899 997 236 108 480 7
4 80 20 −0.460 117 420 637 774 647 219 316 169 8
.7 200 30 −0.003 368 086 423 513 184 468 068 809 9
.3 355 50 −0.000 699 631 092 664 645 508

Table 4.19 illustrates the discrete states of the ECSC as a function of the parameter µ when
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Table 4.19: Bound energy eigenvalues of the ECSC potential in three-dimensions whenZ = 1
andλ = 0.05, asµ varies. The case,µ = 0 corresponds to the Yukawa potential.

µ c NwLPM n ℓ E(3)
n,ℓ

0 0.6 65 0 0 −0.903 632 857 049 011 087 712 434 151 5
1 −0.163 542 391 590 506 248 346 978 827 5
2 −0.038 705 109 629 504 684 590 795 993 6
3 −0.006 183 319 800 322 642 969 317 900 6

0.08 250 4 −0.000 003 138 989 336 707 735 885
0.4 56 0 1 −0.161 480 774 075 569 219 424 205 487 2

1 −0.037 115 503 766 811 993 209 787 987 8
2 −0.005 196 117 705 143 707 930 522 382 5

0.4 51 0 2 −0.033 831 141 139 631 685 772 229 516 5
1 −0.003 161 743 253 742 009 905 767 896 1

0.05 1 55 0 0 −0.900 234 932 841 375 336 090 552 641 8
1 −0.152 899 192 500 495 488 768 133 761 7
2 −0.023 151 128 414 121 591 695 111 322 3

55 0 1 −0.152 118 024 883 462 094 709 873 149 7
1 −0.021 858 659 645 112 322 497 129 462 4

55 0 2 −0.019 109 758 645 475 738 881 842 814 0

λ = 0.05. Due to the nonexistence of the contributions coming from the continuous spectrum,

the method can not obtain the further states as other methods do.

Table 4.20: Several states of the pure attractive Coulomb potential in three-dimensions when
Z = Zas = 1 asℓ varies.

c NwLPM n ℓ E(3)
n,ℓ

2 2 0 0 −1.000 000 000 000 000 000 000 000 000 0
0.08 40 25 −0.001 479 289 940 828 402 366 863 905 3
0.04 80 50 −0.000 384 467 512 495 194 156 093 810 1
0.02 130 100 −0.000 098 029 604 940 692 089 010 881 3
0.3 15 0 5 −0.027 777 777 777 777 777 777 777 777 8
0.06 50 25 −0.001 040 582 726 326 742 976 066 597 3
0.04 80 50 −0.000 318 877 551 020 408 163 265 306 1
0.02 130 100 −0.000 088 999 644 001 423 994 304 022 8

In Table 4.20 we illustrate several eigenvalues of the pure attractive Coulomb potential when

Z = Zas = 1 for the two valuesℓ = 0 andℓ = 5 of ℓ. For this potential the choice ofc becomes

more important. Small changes inc has big effects on the accuracy.
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Partially Screening Hulthén Potential

The last potential that we consider in this section is the partially screening Hulthén potential

V(r) = −2ZVH(r, λ) − 2Zas

[
1
r
− VH(r, λ)

]
, Z > 0, Zas > 0 (4.67)

where

VH(r, λ) =
λe−λr

1− e−λr
(4.68)

in whichλ is the screening parameter. The potential behaves as a pure Coulomb potential with

chargesZ andZas at small and large distancesr, respectively [46]. It reduces to the Hulthén

screening potential [41] whenZas = 0 which is exactly solvable whenM = ℓ = 1 in (4.38).

In this case, bound states are given by

E(1)
n,1 = E(3)

n,0 = −
(

Z
n+ 1

− (n+ 1)λ
2

)2

, n = 0,1, . . . , k (4.69)

wherek =
�
√

2Z/λ
� − 1 [26].

The partially screening Hulth́en potential is considered by Ixaru, De Meyer and Vanden

Berghe [46]. Hulth́en potential is studied by many authors. For instance Roy [62] applied

the generalized pseudospectral approach to approximate the bound states, Stubbins [70] used

the generalized variational method to compute the eigenvalues forn ≤ 6, Bayrak and Boz-

tosun [11] used asymptotic iteration method for anyℓ state and G̈onül and co-workers [33]

considered the potential in the Hamiltonian hierarchy picture to approximate the eigenvalues

whenℓ , 0.

The wLPM works exactly as in the case of ECPSC potential for the partially screening

Hulthén potential. We numerically analyzed the method with the Hulthén screening potential

for Z = 50, Zas = 1 andλ = 0.025 and obtained the similar results for the truncation size

and optimization parameter as in Table 4.19. Again the high energy levels (n > 100) become

expensive to compute within the 30-digits accuracy.

Table 4.21 illustrates the bound states of the Hulthén screening potential in three-dimensions

whenZ = 50 andλ = 0.025, for the values ofℓ = 0,10. The exact eigenvalues in (4.69)

for ℓ = 0 provide the possibility of comparison with the results of the wLPM which are in

excellent agreement. However, The LPM of this section is unsuccesful for this potential, too.

59



Table 4.21: Bound states of the Hulthén screening potential in three-dimensions whenZ = 50
andλ = 0.025, asℓ varies.

c NwLPM n ℓ E(3)
n,ℓ

60 60 0 0 −2498.750 156 250 000 000 000 000 000 019 8
1 −623.750 625 000 000 000 000 000 000 000 7
2 −276.529 184 027 777 777 777 777 777 779 5
3 −155.002 500 000 000 000 000 000 000 001 6

0.5 350 59 −0.006 944 444 444 444 444 444 444 444 4
60 −0.003 268 652 579 951 625 907 014 243 5
61 −0.000 989 203 954 214 360 041 623 309 1
62 −0.000 037 832 262 534 6

8 30 0 10 −19.424 335 304 526 595 443 026 049 233 6
1 −16.127 883 961 903 674 884 056 154 659 1
2 −13.563 579 616 949 111 137 705 699 537 1
3 −11.530 002 448 250 049 695 932 487 845 2

1 250 47 −0.015 675 609 084 845 879 723 414 562 8
48 −0.009 260 969 711 122 159 378 014 469 3
49 −0.004 448 783 837 632 467 073 719 998 2
50 −0.001 188 166 258 891 096 462 375 433 4

In this section, we developed two different pseudospectral approximations LPM and wLPM

of the radial Schr̈odinger equation. The numerical results show that he former works better

mainly for isotropic polynomial oscilators whereas the latter is much more suitable for non-

polynomial and Coulomb-like potentials.

4.3 The Schr̈odinger equation over a finite interval

In this section, we examine several regular and singular problems over a finite interval. The

first one is the angular part

TΘ(θ; m) = EΘ(θ; m), θ ∈
(
−1

2π,
1
2π

)
, Θ(θ; m) ∈ L2

(
−1

2π,
1
2π

)
(4.70)

of the internal amplitude function described by the trigonometric Hamiltonian

T = − 1
cosθ

d
dθ

(
cosθ

d
dθ

)
+

m2

cos2 θ
+ V(sin2 θ), m= 0,1, ... (4.71)

wherem stands for the magnetic quantum number. This problem results in a Schrödinger

equation of a two-particle system by separation of variables under the assumption that the

potential energy of the system is to be the sum of a central potential depending only on r

and an angular potential which is a polynomial in even powers of sinθ [57]. Singularities
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of (4.70) as well as the unboundedness of the trigonometric potential atθ = ±1
2π implies

that the eigenfunctionΘ must vanish at the boundaries. Clearly, such an eigenfunction will

be in the spaceL2(−1
2π,

1
2π) of the square integrable functions which suggests the use of the

Dirichlet conditionsΘ(±1
2π; m) = 0 at the boundaries. Furthermore, the reflection symmetry

of the system under the replacement ofθ by−θ, implies that the spectrum can be decomposed

into two subsets containing solely the even and the odd states such that the corresponding

eigenfunctions are even and odd functions ofθ, respectively. For even states, introduction of

the mapping

ξ = cos 2θ, ξ ∈ (−1,1) (4.72)

which is not one-to-one, leads to the operational equivalences

tanθ
d
dθ
≡ −2(1− ξ) d

dξ
and

d2

dθ2
≡ 4(1− ξ2)

d2

dξ2
− 4ξ

d
dξ

(4.73)

which transforms (4.70) into the form
[
(1− ξ2)

d2

dξ2
+

(
1
2 −

3
2ξ

) d
dξ
− m2

2(1+ ξ)
− 1

4V
(

1
2(1− ξ)

)]
Θe(ξ; m) = −1

4EΘe(ξ; m) (4.74)

subject to the conditionΘe(−1;m) = 0 for all m, whereΘe(ξ; m) stands for an even eigenfunc-

tion in the original variableθ whenξ is replaced by cos 2θ. Next, to avoid the use of the term

proportional to (1+ ξ)−1, we suggest an eigenfunction of the type

Θe(ξ; m) = (1+ ξ)m/2y(ξ) (4.75)

satisfying the above boundary condition as long as the new dependent variable y remains

bounded atξ = −1, to arrive at the EHTP of the third kind

(1− ξ2)y′′ +
[
m+ 1

2 −
(
m+ 3

2

)
ξ
]
y′ − 1

4V
(

1
2(1− ξ)

)
y = 1

4[m(m+ 1)− E]y (4.76)

with α = −1
2 andβ = m. It is not difficult to see that the last equation yields even states of

(4.70) on returning back to the original variableθ via (4.75) and (4.72). On the other hand,

odd state eigenfunctions can be expressed in the form

Θo(θ; m) = sinθΦ(θ; m) (4.77)

whereΦ is necessarily an even function ofθ. After straightforward manipulations, we see

thatΦ satisfies the boundary value problem
[
− d2

dθ2
+ (tanθ − 2 cotθ)

d
dθ
+

m2

cos2 θ
+ 2+ V(sin2 θ)

]
Φ(θ; m) = EΦ(θ; m), Φ

(
±1

2π
)
= 0.

(4.78)
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The evenness ofΦ implies the application of the same transformations (4.72) and (4.75), that

is, ξ = cos 2θ andΦ(ξ; m) = (1 + ξ)m/2y(ξ) which have been used for even states. Thus, we

again reach at the EHTP of the third kind

(1− ξ2)y′′ +
[
m− 1

2 −
(
m+ 5

2

)
ξ
]
y′ − 1

4V
(

1
2(1− ξ)

)
y = 1

4[(m+ 1)(m+ 2)− E]y (4.79)

but this time withα = 1
2 andβ = mwhich gives rise to odd states of (4.70).

It is clear from (4.76) and (4.79) that the Jacobi pseudospectral method (JPM) is suitable for

the example. Hence, the diagonalization of the final matrixB in (3.30) withσ(ξ) = 1 − ξ2,

τ(ξ) =
[
m+ 1

2 −
(
m+ 3

2

)
ξ
]
, ( i.e.,α = −1

2 andβ = m) andr(ξ) = 1 leads to the even states

E2n = m(m+ 1)+ 4λn, (4.80)

whereas a slightly differentτ(ξ) =
[
m− 1

2 −
(
m+ 5

2

)
ξ
]
, ( i.e.,α = 1

2 andβ = m) with the same

σ andr produces the odd states

E2n+1 = (m+ 1)(m+ 2)+ 4λn (4.81)

of the problem in whichλn are the eigenvalues of the transformed equation in (4.79). For this

problem it can be seen from (4.76) and (4.79) that the potential energy matrix in (3.32) reads

as

Vmn = Vmδmn =
ν(ξm)
r(ξm)

δmn = −
1
4

V
(

1
2(1− ξm)

)
δmn. (4.82)

It is clear that an orthonormal eigenfunctiony(ξ) of (4.76) satisfies

1 =
∫ 1

−1
y2(ξ)(1− ξ)− 1

2 (1+ ξ)mdξ =
∫ 1

−1
Θ2

e(ξ; m)(1− ξ) 1
2 dξ (4.83)

in which the last equality is obtained on using (4.75). On the other hand, the weight function

for (4.70) isρ(θ) = cosθ which can be seen by writing it in the Sturm-Liouville form. Thus,

for an eigenfunction of (4.70) we write

∫ π
2

− π2
Θ2

e(θ; m) cosθdθ = 2
∫ π

2

0
Θ2

e(θ; m) cosθdθ =
1
√

2

∫ 1

−1
Θ2

e(ξ; m)(1− ξ) 1
2 dξ (4.84)

where, in the last equality, we have used (4.72). Therefore, comparingthe last two equations

we see that the values of normalized even eigenfunctions in original variable have values at

θ = θ j as

Θe(θ j ; m) = 21/4Θe(ξ j ; m) (4.85)
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in terms of the normalized eigenfunctions inξ j which are the roots of the Jacobi polynomial

P
(− 1

2 ,m)
N+1 (ξ). Therefore, we have

Θi
e(θ j ; m) = 21/4(1+ ξ j)

m/2yi(ξ j) (4.86)

wherey(ξ j) is described in (3.40). Notice that,θ j =
1
2 arccos(ξ j) ∈ (0, 1

2π). The values of

an eigenfunction at negative values ofθ are the same as those at positiveθ values since even

indexed eigenfunctions are even functions ofθ.

For odd state eigenfunctions from (4.79) we get

1 =
∫ 1

−1
y2(ξ)(1− ξ) 1

2 (1+ ξ)mdξ =
∫ 1

−1
Φ2(ξ; m)(1− ξ) 1

2 dξ. (4.87)

Writing (4.78) in the self adjoint form, we see that the weight function isρ(θ) = sin2 θ cosθ

and we write
∫ π

2

− π2
Φ2(θ; m)ρ(θ)dθ = 2

∫ π
2

0
Φ2(θ; m)ρ(θ)dθ =

1

2
√

2

∫ 1

−1
Φ2(ξ; m)(1− ξ) 1

2 dξ. (4.88)

Here, first we have made use of the evenness of the integrand and then apply the transforma-

tion in (4.72). Thus, we may write

Φ(θ j ; m) = 23/4Φ(ξ j ; m) (4.89)

so thatΦ(θ; m) is normalized inL2-norm, which implies

Θi
o(θ j ; m) = 21/4(1− ξ j)

1/2Φ(ξ j ; m) = 21/4(1− ξ j)
1/2(1+ ξ j)

m/2yi(ξ j) (4.90)

sinceΘo(θ; m) = sinθΦ(θ; m) andΦ(ξ; m) = (1 + ξ)m/2y(ξ). It is clear that the values of

eigenfunction at negative values ofθ are the negatives of those at positive values ofθ since

odd indexed eigenfunctions are odd functions ofθ.

Notice that when the potentialV is a function of sinθ instead of sin2 θ the system (4.70) is no

more symmetric. Thus, it is not possible to seperate the even and odd states. In this case, the

transformationsξ = sinθ andΘ(ξ; m) = (1 − ξ2)m/2y(ξ) takes the equation into an EHTP of

the third kind

(1− ξ2)y′′ − 2(m+ 1)ξy′ − V(ξ)y = −[m(m+ 1)+ E]y (4.91)

with α = β = m. Therefore, the energy eigenvaluesEn of (4.70) with potential function of the

form V(sinθ) has the connection formula

En = λn −m(m+ 1) (4.92)
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with those of (4.91). Further, the values of the normalized eigenfunctions at θ j = arcsinξ j

satisfies

Θ(θ j ; m) = Θ(ξ j ; m) = (1− ξ2
j )

m/2y(ξ j) (4.93)

since
∫ π

2

− π2
Θ2(θ j ; m) cosθdθ =

∫ 1

−1
Θ2(ξ j ; m)dξ =

∫ 1

−1
y2(ξ)(1− ξ2)mdξ = 1. (4.94)

Spheroidal Wave Equation

We now consider the angular spheroidal wave equation
{
− d

dt

[
(1− t2)

d
dt

]
+C2t2 +

m2

1− t2

}
Θ(t) = EΘ(t), Θ(t) ∈ L2(−1,1) (4.95)

where the angular momentumm is integer and the parameterC is real, which results from the

Helmholtz equation by separation of variables in the prolate spheroidal coordinates. It arises

in different areas of physics such as atomic and molecular physics, light scattering in optics

and the nuclear shell model [10].

Actually, the spheroidal wave equation is no more than system (4.70) with the potential func-

tion V(sin2 θ) = C2 sin2 θ, whenever the inverse substitution

θ = arcsint, θ ∈
(
−1

2π,
1
2π

)
(4.96)

is applied to the spheroidal wave equation in (4.95). Thus, the EHTPs corresponding to

the even and odd states of (4.95) are (4.76) and (4.79) withV(
√

(1− ξ)/2) = C2(1 − ξ)/2,

respectively, which suggest the use of the Jacobi pseudospectral methods having the parameter

sets{α, β} = {−1
2,m} and{12,m}.

At the numerical side of the present example we compute the eigenvaluesE2n(m,C2) = m(m+

1)+ 4λn andE2n+1(m,C2) = (m+ 1)(m+ 2)+ 4λn of the spheroidal wave equation for several

values ofm andC2. Table 4.22 demonstrates the convergence rates of several states with

m = 0 andC2 = 10. Extremely fast convergence rate of the method for an arbitrary state

numbern is quite impressive [3].

Notice thatm, 0 leads to an extra term proportional to 1/(1− t2) which is singular at the end

pointst = ±1. We also test the method with nonzerom and do not encounter any difficulties.

Still we have the same convergence rate as that ofm= 0. The results are listed in Table 4.23.
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Table 4.22: Convergence rate of eigenvaluesE2n(0,10) of spheroidal wave equation asn
varies [3].

N E0(0,10) N E100(0,10)
5 2.305 040 10 51 10105.0
6 2.305 040 107 940 52 10105.000 433
7 2.305 040 107 940 431 6 53 10105.000 433 246 48
8 2.305 040 107 940 431 635 6 54 10105.000 433 246 482 907 99
9 2.305 040 107 940 431 635 679 732 55 10105.000 433 246 482 907 993 562 45
10 2.305 040 107 940 431 635 679 732 102 9 56 10105.000 433 246 482 907 993 562 450
11 2.305 040 107 940 431 635 679 732 102 9 57 10105.000 433 246 482 907 993 562 450

N E200(0,10) N E400(0,10)
101 40205.00 201 160405.00
102 40205.000 108 8 202 160405.000 027 2
103 40205.000 108 835 777 203 160405.000 027 275 870 8
104 40205.000 108 835 777 578 646 2 204 160405.000 027 275 870 838 131 19
105 40205.000 108 835 777 578 646 209 290 205 160405.000 027 275 870 838 131 198 65
106 40205.000 108 835 777 578 646 209 290 206 160405.000 027 275 870 838 131 198 65

Seperation of even and odd states halves the truncation sizeN, moreover, because of the fast

convergence rate higher states are not expensive to compute.

On the other hand, the values of the normalized eigenfunctionsΘ(t j) are given by

Θi
e,o(t j) = Θ

i
e,o(θ j ; m) (4.97)

whereΘi
e,o(θ j ; m) are the values of the normalized even and odd eigenfunction values of (4.70)

described in (4.86) and (4.90), respectively. This is true since the backtransformation in (4.96)

does not change the value ofL2 norm, i.e.,

‖Θ‖L2(−1,1) =

∫ 1

−1
Θ2(t)dt =

∫ π
2

− π2
Θ(θ; m) cosθdθ = ‖Θ‖L2

cosθ(−
π
2 ,

π
2 ) = 1. (4.98)

Here, notice thatt j = ξ j are the roots of Jacobi polynomialP(α,β)
N+1 where{α, β} = {−1

2,m} and

{12,m} for even and odd states respectively.

A Singular Trigonometric Potential

The number of singular examples over a finite interval can be further increased. For instance,

the equation
[
− d2

dθ2
+

µ(µ + 1)
2(1+ cosθ)

+ V(cosθ)

]
Θ(θ; µ) = EΘ(θ; µ), µ > 0, θ ∈ (−π, π) (4.99)

whose square integrable exact solutionsΘ(θ; µ) have been examined by Marmorino [55] and

Taşeli [77] when the regular partV(cosθ) of the total potential is zero. Both the singularities
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Figure 4.5: ground state eigenfunction of spheroidal wave equation whilem= 1 andC2 varies
(left) andC2 = 10 andm varies (right).

Table 4.23: EigenvalueE101(m,C2) of spheroidal wave equation whilemandC2 vary.

NJPM m C2 E101(m,C2)
55 1 1 10506.499 967 276 991 055 248 535 475 4
56 10 10510.999 940 378 439 800 892 978 058 2
59 100 10556.026 164 644 165 409 866 045 980 98
55 10 1 12432.495 990 327 209 846 178 706 135 98
56 10 12436.960 118 690 265 202 384 215 515 24
58 100 12481.622 725 202 337 649 507 963 187 86
54 100 1 40602.376 854 026 563 733 225 382 621 98
55 10 40605.768 528 171 499 786 758 027 566 70
57 100 40639.684 067 938 101 256 176 692 086 07

and reflection symmetric structure of the system suggest the use of similar procedure to that

of (4.70). Thus, the mapping

ξ = cosθ, ξ ∈ (−1,1) (4.100)

transforms (4.99) to the form

[
(1− ξ2)

d2

dξ2
− ξ d

dξ
− µ(µ + 1)

2(1+ ξ)
− V(ξ)

]
Θe(ξ; m) = −EΘe(ξ; m) (4.101)

subject toΘe(−1;m) = 0 for all µ, whereΘe(ξ; m) denotes the even wavefunction inθ. Then

proposing an eigenfunction of the type

Θe(ξ; m) = (1+ ξ)(µ+1)/2y(ξ) (4.102)

we eliminate the term proportional to 1/(1+ ξ) and obtain the equation

(1− ξ2)y′′ +
[
µ + 1− (µ + 2)ξ

]
y′ − V(ξ)y = λy, λ =

[
1
4(µ + 1)2 − E

]
(4.103)
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which is an EHTP of the third kind withα = −1
2 andβ = µ + 1

2. On the other hand, we

transform the dependent variable

Θo(θ; µ) = sinθΦ(θ; µ) (4.104)

for the treatment of the odd eigenfunctionsΘo(θ; µ) , whereΦ(θ; µ) is an even function ofθ.

It is not difficult to see thatΦ(θ; µ) satisfies the differential equation

[
− d2

dθ2
+ −2 cotθ

d
dθ
+

µ(µ + 1)
2(1+ cosθ)

+ 1+ V(cosθ)

]
Φ(θ; m) = EΦ(θ; m). (4.105)

Note from (4.104) thatΦ should remain bounded at the end pointsθ = ±π. Now we may

apply the similar transformationsξ = cosθ andΦ(ξ; m) = (1+ ξ)µ/2y(ξ) as in the case of even

states to the last equation sinceΦ is an even function ofθ. After a little algebra we obtain the

following EHTP

(1− ξ2)y′′ +
[
µ − (µ + 3)ξ

]
y′ − V(ξ)y = λy, λ =

[
1
4(µ + 2)2 − E

]
(4.106)

of the third kind withα = 1
2, β = µ + 1

2.

Clearly the JPM with{α, β} =
{
−1

2, µ +
1
2

}
and

{
1
2, µ +

1
2

}
is suitable for the approximation of

the evenE2n(µ) = 1
4(µ + 1)2 + λn and oddE2n+1(µ) = 1

4(µ + 2)2 + λn eigenvalues of (4.99),

respectively. Some even eigenvalues of (4.99) are presented in Table 4.24 asµ varies. The

method works well as in the previous example, that is convergence is fast and higher states

are easy to obtain.

Table 4.24: Several even states of (4.99) as a function ofµ.

NJPM µ n E2n(µ)
60 1 50 2601.506 544 844 102 970 540 696 378

108 100 10201.501 669 363 103 674 040 898 605
158 150 22801.500 746 911 100 904 849 561 472
208 200 40401.500 421 542 164 630 013 676 820
59 10 50 3080.834 369 480 225 070 383 654 415

108 100 11130.773 358 739 547 778 888 712 073
158 150 24180.760 753 055 598 522 425 650 152
208 200 42230.756 157 197 094 103 036 476 394
58 100 50 10103.093 627 746 026 304 033 361 397

108 100 22651.772 216 169 967 820 190 466 299
158 150 40201.321 434 408 931 753 789 841 423
208 200 62751.114 741 143 703 969 271 611 335
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On the other hand, the normalized eigenfunctions are given by

Θ(θm) = 2−1/2(1− ξm)
1
2 (α+ 1

2 )(1+ ξm)
µ+1

2 y(ξm) (4.107)

whereα = −1
2 leads to the evenΘe(θ) andα = 1

2 to the odd statesΘo(θ). The last formula can

be obtained by a similar analysis to that of the previous problem.

Mathieu and Coffey-Evans Equations

Another example is the Schrödinger equation with a periodic potential

[
− d2

dζ2
+ V(cos 2ζ)

]
Θ(ζ) = EΘ(ζ), ζ ∈ ( − 1

2π,
1
2π

)
(4.108)

subject to the conditionsΘ
(
±π2

)
= 0 [3]. Rescaling the independent variable by putting

θ = 2ζ, we obtain an equivalent equation

[
− d2

dθ2
+ 1

4V(cosθ)
]
Θ(θ) = 1

4EΘ(θ), Θ (±π) = 0 (4.109)

which is the limiting case of (4.70) whenµ→ 0+ with V(cosθ) andE scaled by1
4. Therefore,

the EHTPs of the third kind corresponding to even and odd states are writtenfrom (4.103)

and (4.106),

(1− ξ2)y′′ + (1− 2ξ)y′ − 1
4V(ξ)y = −λy, E2n = 1+ 4λn (4.110)

and

(1− ξ2)y′′ − 3ξy′ − 1
4V(ξ)y = −λy, E2n+1 = 4(1+ λn) (4.111)

respectively, where{α, β} = {−1
2,

1
2} and{12,

1
2} [3]. In this case the normalized eigenfunctions

have the expression

Θ(ζm) = 2
1
2Θ(θm) = 2

1
2 (1− ξm)

1
2 (α+ 1

2 )(1+ ξm)
1
2 y(ξm) (4.112)

whereΘ(θm) is given by (4.107).

Well known particular cases of (4.108) are the Mathieu and Coffey-Evans equations, if

V(cos 2ζ) = −2qcos 2ζ (4.113)

and

V(cos 2ζ) = ν2 sin2 2ζ − 2ν cos 2ζ, (4.114)
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Table 4.25: Several eigenvalues of Mathieu differential equation withq = 1 [3].

n N En

0 9 −0. 110 248 816 992 095 169 906 547 85
100 55 10201. 000 049 019 607 990 453 093 342 0
200 105 40401. 000 012 376 237 626 132 297 845 2
300 154 90601. 000 005 518 763 797 119 609 337
400 204 160801. 000 003 109 452 736 355 989 67
500 254 251001. 000 001 992 031 872 519 841 33

1000 504 1002001. 000 000 499 001 996 008 139 4

respectively, whereq andν denote real parameters [3]. The parameterν in the Coffey-Evans

equation controls the depth of the well potential under consideration. Asν increases, nearly

degenerate triple states may occur.

From (4.110) and (4.111), several eigenvalues of the Schrödinger equation in (4.108) with

Mathieu and Coffey-Evans potentials are reported in Tables 4.25 and 4.26, respectively,only

for the parameter values ofq = 1 andν = 50 in order not to overfill the content of the section

with tabular material anymore. In fact, the convergence properties of the algorithm in the

Mathieu case are typically the same for allq although a slight slowing down of convergence

is observed asq increases [3].

Table 4.26: Triple eigenvalues of Coffey-Evans equation withν = 50,N = 72 [3].

n En n En

0 0.000 000 000 000 000 000 000 000 0 9 947.047 491 585 860 179 592142 658 2
1 197.968 726 516 507 291 450 189 104 5 10 1122.762 920 067 901 205 616 045 550 3
2 391.808 191 489 053 841 050 234 434 6 11 1122.762 920 071 056 526 891 891 942 2
3 391.808 191 489 053 841 832 241 249 9 12 1122.762 920 074 211 848 168 115 209 4
4 391.808 191 489 053 842 614 248 065 8 13 1293.423 567 331 707 081 413 958 872 2
5 581.377 109 231 579 654 864 715 898 8 14 1458.746 557 025 357 659 317 371 063 0
6 766.516 827 285 532 616 579 817 794 1 15 1458.746 558 472 128 708 810 534 887 1
7 766.516 827 285 535 505 431 430 237 3 16 1458.746 559 918 899 832 786 248 167 6
8 766.516 827 285 538 394 283 042 681 3 17 1618.391 008 042 643 345 932 885 816 0

A truncation order ofN = 72 suffices to get the reported accuracy in Table 4.26 for the

low lying states of the Coffey-Evans equation. It is shown that, as for the symmetric double

well oscillator over the real line, the method is capable of determining the gaps between

the nearly degenerate triple states of the Coffey-Evans equation successfully. Clustering of

the eigenvalues does not seem to cause any difficulties in computations which is a serious

troublesome for many other methods especially when high accuracy is required [50, 59, 61].

Figure 4.6 illustrates the eight eigenfunction of Coffey-Evans equation whenν = 50. The
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Figure 4.6: Eight eigenfunction of Coffey-Evans equation whenν = 50.

well-known theory of Sturm-Liouville equations tells that it must have eight zeros in the

interval (−π/2, π/2). All the eigth roots are become clearer when we rescale they-axis as

shown on the right in figure 4.6.

A Weighted Example: Collatz Equation

Our final example is the Sturm-Liouville equation

−u′′ = w(x)Eu, u(±π) = 0 (4.115)

in which p(x) = 1, q(x) = 0. When the coefficientw(x) = 3+ cosx we have a regular system

[21]. On the other hand, with a small change inw, w(x) = 1 + cosx it is possible to make

(4.115) into a singular one since the strictly positive termw(x) becomes zero at both ends

x = ±π of the interval.

Notice that (4.115) is reflection symmetric so that the even and odd states can be seperated.

To this end, first lettingξ = cosx, ξ ∈ (−1,1) we transform (4.115) into the form

(1− ξ2)u′′ − ξu′ = −w(ξ)λu, y(−1) = 0. (4.116)

Then transforming the dependent variable fromy to u by settingu(ξ) = (1+ ξ)1/2y(ξ) we get

a WEHTP of the third kind

(1− ξ2)y′′ + (1− 2ξ)y′ − 1
4y = −w(ξ)λy, E2n = −λn (4.117)

which is now free of boundary conditions whereu(ξ) is a bounded function. It is clear from

the transformations that the last equation leads to the even states of (4.115).On the other
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hand, the WEHTP for odd states

(1− ξ2)y′′ − 3ξy′ − y = −w(ξ)λy, E2n+1 = −λn (4.118)

maybe obtained by first lettingu(x) = sin(x/2)v(x) and then using the same transformations

as for the even states i.e.,ξ = cosx andv(ξ) = (1+ ξ)1/2y(ξ) sincev is an even function inx.

Table 4.27: Several eigenvalues of (4.115) whenw(x) = 3+ cosx.

n N En

0 7 0. 071 250 472 415 618 892 696 004 740 92
1 8 0. 330 308 392 380 975 379 846 094 175 87
2 11 0. 757 841 875 998 001 890 142 105 823 14
3 12 1. 352 122 184 297 188 245 943 947 217 42

100 80 862. 345 846 467 178 750 914 982 497
200 180 3415. 311 685 171 409 374 506 960 299
300 250 7658. 983 377 523 340 639 510 297 020

Last two equations suggest the use of weighted JPM (wJPM) with the parameter values

{α, β} = {−1
2,

1
2} and{12,

1
2} to approximate the even and odd eigenvalues of (4.115), respec-

tively. Hence, having found the zeros of the Jacobi polynomials with the specified parameter

sets{α, β} by means of (2.17), we diagonalize (3.30) withσ(ξ) = (1 − ξ2), τ(ξ) = 1 − 2ξ,

r(ξ) = w(ξ) andν(ξ) = −1/4 to obtain the even states. On the other hand,τ(ξ) = −3ξ and

ν(ξ) = −1 with the sameσ andr leads to the odd states. The results are tabulated in Tables

4.27 and 4.28 for two different choices of the functionw(x): one for

Table 4.28: Several eigenvalues of (4.115) whenw(x) = 1+ cosx.

n N En

0 7 0.164 502 863 913 457 323 306 759 241 01
1 10 0.929 105 845 742 146 673 250 363 316 7
2 12 2.313 475 399 952 284 033 850 395 403 8
3 13 4.315 804 581 299 675 265 350 877 278 4

100 110 3130.641 475 953 241 379 041 372 622
200 200 12429.653 986 476 452 664 627 738 315
300 290 27897.171 475 839 285 438 047 623 167

Compared to previous examples in this section, slowing down of convergence is observed

especially for the singular one wherew(x) = 1 + cosx. However, it is still possible to reach

the machine accuracy by increasing the truncation sizeN.

Figure 4.7 illustrates the first two normalized eigenfunctionsu0(x) andu1(x) of (4.115) for
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Figure 4.7: First two eigenfunctions of the Collatz equation in (4.115).

two different coefficient functionsw(x). In this case, we have the connection

u(xm) = 2−
1
2 u(ξm) = 2−

1
2 (1− ξm)

1
2 (α+ 1

2 )(1+ ξm)
1
2 y(ξm) (4.119)

between the eigenfunctiony(ξ) of the WEHTPs in (4.117) and (4.118) and the eigenfunction

u(x) of the Collatz equation in (4.115). Notice that,α = −1
2 andα = 1

2 lead to the even and

odd state eigenfunctions, respectively.

In this chapter, we have seen that a numerous Sturm-Liouville and Schrödinger equations can

be converted into a WEHTP, and hence, the eigenvalues of the original problem are approxi-

mated by means of our general pseudospectral formulation. In the next chapter, we conclude

the thesis by discussing the advantages and disadvantages of the proposed formulation.
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CHAPTER 5

CONCLUSION

In this thesis, we present a unified pseudospectral framework based on the classical orthogonal

polynomials for computing the eigenvalues of a wide class of physical problems, which can be

transformed into a WEHTP. A symmetric matrix representation of the differential eigenvalue

problem is formulated, where the matrix elements are determined using simple and elegant

analytical expressions. In this setting the collocation points are also computednumerically to

an arbitrary precision as the eigenvalues of a tridiagonal symmetric matrix.

Computer programs are written in FORTRAN programming language. We used quadruple-

precision arithmetic on a main frame computer with machine accuracy of about 32digits, by

truncating the results to 25-31 significant figures.

We have taken advantage of the Hermite, Laguerre and the Jacobi pseudospectral methods for

the problems over the real line, half-line and finite intervals, respectively.Numerical results

verify the exponential rate of convergence, as expected theoretically for spectral methods.

On the other hand, we do not have an explicit error bounds for eigenvalues for a specified

truncation orderN. Hence, the accuracy of the results in all tables reported here has been

checked by inspecting the number of stable digits between two consecutive truncation orders

[3].

The convergence of the Hermite and Laguerre pseudospectral methods may be accelerated by

a scaling transformation. There exists an optimum value of the scaling factorc for which the

desired accuracy is achieved at the smallest possible matrix sizeN. From Table 4.2 we notice

that at a fixed truncation size ofN = 69, E0 converges to 30 digits whenc = 4.4 whereas at

the same truncation size we get merely three or four correct digits whenc = 1.1 andc = 7.7,

respectively. Indeed, an analytical treatment of an optimum value forc, copt, is very difficult
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since it depends on several parameters such as the potential functionV, quantum numbern,

truncation sizeN and even the required accuracy. For instance, the connection beetwenc and

the quantum numbern is shown clearly in Tables 4.4 and 4.7. For lower states of SDWP

copt = 2.05 whereas it iscopt = 2.6 for E100. From Table 4.2, we infer that if we require,

for example, only 8 digits accuracy forE0 we are free to choose any real number between

2.2 ≤ c ≤ 6.6 which indicates howcopt depends on the required accuracy. Nevertheless, such

an 8 digits accuracy is obtainable whenN = 56, N = 28 andN = 69 for c = 2.2, c = 4.4 and

c = 6.6, respectively [3].

In fact,copt is related to a large extent the asymptotic behavior of the solution of the problem

for a definite potential function in question. For example, the values ofcopt have been reported

to becopt = 4.4 in Table 4.1 andcopt = 0.15 in Table 5 for the low lying states of an ADWP in

equation (4.28), and for a Gaussian type potential in (4.37), respectively. It is possible to find

out that the exact eigenfunctions of an ADWP and a Gaussian potential behave like e−
√

a1|x|3/3

and e−
√
−Ex at infinity, respectively. On the other hand, the trial solutions we proposedecay

like e−c2x2/2 for the ADWP and the Gaussian potential. This suggests that we must use an

optimization parameterc > 1 and 0< c < 1 for the ADWP and the Gaussian potential,

respectively, in order to imitate the true asymptotic behavior of the exact eigenfunctions. On

the other hand,copt = 1 for the lower states of the Gaussian type potential over the half line

since the alternative transformations in (4.44) and (4.46) reflects the correct behavior of the

eigenfunctions.

Hence, we have seen that the optimum value ofc can be estimated by inspecting the actual

solution or, at least, its asymptotic behavior if it is known in advance. Otherwise it can be

determined roughly by numerical experiments, i.e., by the trial and error technique. In this

process, if a user takes a “bad” value forc then either the algorithm diverges or the conver-

gence is reached at the cost of employing very high truncation orders N.In fact, a scaling

transformation maps unbounded intervals onto themselves by solely rescalingthe location of

the points in the interval, whereas it is useless for the finite interval problems since it just

shrinks or stretches the whole picture. In spite of the existence of such scaling parameter

in the Hermite and Laguerre methods the convergence is still slower when compared to the

Jacobi pseudospectral methods. In figure 5.1, we demonstrate how quickly the accuracy is

improved as N increases in a typical Jacobi and a Laguerre method [3].
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Figure 5.1: Number of correct digits versus matrix sizeN for E100 of Mathieu potential in
(4.113) with q=1, and SDWP in (4.33) [3].

One of the most commonly used methods in literature is the Chebyshev pseudospectral method

(CPM), which has two main practical advantages. First the zeros of the Chebyshev polyno-

mials are expressible in closed form, and the secondkth differentiation matrixD(k) can be

obtained fromD(1) by taking itskth power. Nevertheless, our approach enables to work auto-

matically with the best appropriate classical orthogonal polynomial in the construction of the

Lagrange interpolation, depending on the specific structure of the problem in question. For

example, our algorithm suggests the use of the Jacobi polynomialP
(− 1

2 ,
1
2 )

N+1 (ξ) for the even states

of the Mathieu equation.

Table 5.1: Comparison with standard CPM for the first eigenvalue of Mathieuequation with
q = 1 [3].

NCPM E0 N E0

7 −0.10 2 −0.10
14 −0.110 248 4 3 −0.110 248 4
20 −0.110 248 817 3 4 −0.110 248 816 9
27 −0.110 248 816 991 9 5 −0.110 248 816 992 08

If the standard Chebyshev method (α = β = −1
2) were used directly to the original Mathieu

equation, then the loss of accuracy is illustrated in Table 5.1. To be specific,to compute

the ground state of the Mathieu equation accurate approximately to 10 digits the standard

Chebyshev method requires the diagonalization of a matrix of orderNCPM = 27 whereas the

same accuracy is reached atN = 5 in our algorithm. Actually, this is typical for all finite

interval problems considered in this study [3].
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Actually, in Chapter 4 we have not considered all potentials that the method can handle, in-

stead we have examplified some potentials that have different characteristic properties. On the

other hand, this does not mean that the method works for all potentials. However, the general

pseudospectral formulation proposed in this thesis is a powerful means ofapproximating the

Schr̈odinger type eigenvalue problems for a wide range of potential functions as is seen from

the tables.

76



REFERENCES

[1] Abramowitz, M., and Stegun, I. A. Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables. Dover, New York, 1970.

[2] Aguirre, J.,and Rivas, J. Hermite pseudospectral approximations. An error estimate.J.
Math. Anal. Appl.304(2005), 189–197.
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[71] Taşeli, H. A unification of recursions for functions of the hypergeometric type.to be
submitted.
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1. H. Taşeli andH. Alıcı, The scaled Hermite-Weber basis in the spectral and pseudospec-

tral pictures, J. Math. Chem.,38, (2005) 367-378.

FIELD OF STUDY

Major Field: Computational Methods for ODE’s and Eigenvalue Problems, Spectral

Methods, Special Functions and Their Applications.

83


