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ABSTRACT 

 

A GENETIC ALGORITHM FOR BIOBJECTIVE MULTI-SKILL PROJECT 

SCHEDULING PROBLEM WITH HIERARCHICAL LEVELS OF SKILLS 

 

 

Gürbüz, Elif 

M.S., Department of Industrial Engineering 

                                 Supervisor: Assoc. Prof. Dr. Canan Sepil 

 

September 2010, 80 pages 

 

In Multi-Skill Project Scheduling Problem (MSPSP) with hierarchical levels of 

skills, there are more than one skill type and for each skill type there are levels 

corresponding to proficiencies in that skill. The purpose of the problem is to 

minimize or maximize an objective by assigning resources with different kinds of 

skills and skill levels to the project activities according to the activity requirements 

while satisfying the other problem dependent constraints. Although single-objective 

case of the problem has been studied by a few researchers, biobjective case has not 

been studied yet. In this study, two objectives, which are the makespan and the total 

skill wasted, are taken into account and while trying to minimize the makespan, 

minimizing the total skills wasted is aimed. By the second objective, 

overqualification for the jobs is tried to be minimized in order to prevent job 

dissatisfaction. The biobjective problem is solved using a Multiobjective Genetic 

Algorithm, NSGA-II. The results of the proposed algorithm are compared with the 

GAMS results for small-sized problems and with the random search for larger 

problem sizes. 

 

Keywords: Multi-skill Project Scheduling Problem with Hierarchical Levels of 

Skills, Staff Motivation in Project Scheduling, Multiobjective Genetic Algorithms 
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ÖZ 

 

İKİ AMAÇLI HİYERARŞİK BECERİ SEVİYELERİNE SAHİP ÇOK-

BECERİLİ PROJE ÇİZELGELEME PROBLEMİ İÇİN GENETİK BİR 

ALGORİTMA 

 

 

Gürbüz, Elif 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

                               Tez Yöneticisi: Doç.Dr. Canan Sepil 

 

Eylül 2010, 80 sayfa 

 

Hiyerarşik beceri seviyelerine sahip çok-becerili proje çizelgeleme problemlerinde 

birden fazla beceri çeşidi ve her beceri çeşidi için o becerideki yeterliliğe denk gelen 

seviyeler bulunmaktadır. Problemin amacı probleme bağlı diğer kısıtlar sağlanırken, 

aktivitelerin gereksinimlerine göre farklı beceri çeşitlerine ve beceri seviyelerine 

sahip kaynakların proje aktivitelerine atanmasıyla bir amacın en az seviyede veya en 

yüksek seviyede tutulmasıdır. Her ne kadar tek amaçlı konular çok az araştırmacı 

tarafından çalışılmış olsa da, iki amaçlı konu hiç çalışılmamıştır. Bu çalışmada iki 

amaç, proje süresi ve toplam beceri israfı, göz önüne alınarak proje süresi en az 

seviyede tutulmaya çalışılırken toplam beceri israfının da en az seviyede tutulması 

hedeflenmiştir. İkinci amaçla, iş tatminsizliğini engellemek için işler için fazla 

niteliklilik en az seviyede tutulmaya çalışılmıştır. İki amaçlı problem bir Çok Amaçlı 

Genetik Algoritma, NSGA-II,  kullanılarak çözülmüştür. Önerilen algoritmanın 

sonuçları küçük boyutlardaki problemler için GAMS sonuçlarıyla, daha büyük 

boyutlu problemler için rastgele arama ile karşılaştırılmıştır.   

 

Anahtar Kelimeler: Hiyerarşik Beceri Seviyelerine Sahip Çok-Becerili Proje 

Çizelgeleme Problemleri, Proje Çizelgelemede Çalışan Motivasyonu, Çok Amaçlı 

Genetik Algoritmalar   
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A 

CHAPTER 1 

 

INTRODUCTION 

 

 

In this chapter the project scheduling problem and its different types are briefly 

mentioned. Then, an overview of the problem that is analyzed in this study is 

presented and our motivation in defining this specific problem is defined. 

 

1.1   Problem Definition 

 

Project scheduling, which involves the planning of project activities over time by 

taking some constraints into account in order to minimize or maximize some 

objective(s), is a crucial task in project management. For this reason, the project 

scheduling problem has been a popular research area over the years.  

 

In a project, if the activities cannot be performed without using certain resources, and 

moreover, if the resources are limited, the problem is called Resource-Constrained 

Project Scheduling Problem (RCPSP). In the classical RCPSP, there are resource 

availability constraints in addition to precedence relationships between activities. 

The resources are assumed to be renewable which means that they are available with 

a constant amount in every period. Each activity in the project should be performed 

without preemption. The objective of the problem is to finish the project as early as 

possible (minimize makespan) by scheduling the activities considering the 

precedence relationships and assigning the required resources to these activities. 

 

RCPSP is well studied in literature and there are many variants of the classical 

problem. Some of them can be listed as follows: 

 

 activities can be performed in different modes (Multi-Mode Resource-

Constrained Project Scheduling Problem) 
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 activities are allowed to be interrupted (preemption allowed), 

 resources are nonrenewable or doubly-constrained, 

 different objectives are defined, 

 activities have release dates and deadlines. 

 

We can refer the reader to Hartmann and Briskorn (2009) for a more detailed study 

on variants and extensions of the RCPSP. 

 

In this study, we focus on an extension of Multi-Mode Resource-Constrained Project 

Scheduling Problem (MRCPSP) which is called Multi-Skill Project Scheduling 

Problem (MSPSP) with hierarchical levels of skills. In MSPSP with hierarchical 

levels of skills, the resources are defined as the work force, involving individuals 

with different skill levels of different skill types. In order to perform an activity, 

individuals with different skill types and skill levels should come together according 

to the activity requirements. In other words, activities can be scheduled in multiple 

modes where each mode corresponds to a subset of resources that meets the activity 

requirements. However, this problem cannot be solved by using the methods 

proposed for MRCPSP since there can be too many modes for activities. 

 

MSPSP with hierarchical levels of skills is a difficult problem that is commonly 

faced in real life. For this reason, French Operational Society (ROADEF), which 

organizes a challenge on an industrial application every other year, selected this topic 

as a challenge in 2007. The problem was proposed by France Telecom. In the 

problem, each activity had a priority and the objective of the problem was to 

minimize the weighted makespan of each priority type. For the detailed description 

of the problem see the web page of the French Operational Society. 

 

As in the most of the scheduling problems, by minimizing the weighted makespan 

France Telecom aimed to achieve quick responses to customers, while implicitly 

decreasing the costs. However, it did not take the staff motivation into account.  
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The common mistake made in scheduling problems is to behave workers as 

machines and do not consider their willingness to do their assigned jobs. France 

Telecom suffered from this mistake severely as many of its staff took their own lives. 

The suicides were broadly discussed on televisions and in newspapers. According to 

France 24 International News web page, there have been 24 suicides among France 

Telecom’s staff in just over 18 months. An interesting comment made after the latest 

death by a local union leader Patrice Diochet took place in The Australian’s web 

page. He was saying that the firm had failed to draw lessons from the recent suicides, 

there was no humanity, all they talked about was numbers and workers were treated 

like sausage meat. 

 

Since workers’ job satisfaction has usually not been considered in project scheduling, 

there should be many people suffering from the same problem all over the world. 

Therefore, the motivation behind this study is not only proposing a method for 

MSPSP with hierarchical levels of skills but also offering a schedule by which the 

staff would not be unfit for the job, which in fact would hopefully increase the 

motivation of the staff. 

 

In this study a MSPSP with hierarchical levels of skills problem similar to Cordeau 

et al. (2008), which tied for second place in the ROADEF 2007, is examined. There 

are a set of tasks, which are labeled i=1,…,N and set of workers, which are labeled 

j=1,…,W. Each worker is able to do a number of skills. There are q skill domains. 

Moreover, according to the worker’s level of proficiency in a skill domain, a level 

from 0 to p is assigned to him/her. Level 0 means that the worker has no skill in that 

domain, whereas level p means that he/she has the highest proficiency. Skills of each 

worker can be shown as a matrix ( jv ) where rows indicate levels ( ) and columns 

indicate skill domains (  ). Lower part of the matrix corresponds to higher levels of 

proficiencies. As an example, when there are three skill domains and three skill 

levels, a worker with skill vector (2,0,1) can be shown as follows:  
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















000

001

101

3

2

1

level

level

level

  

 

In the first domain, worker’s skill level is 2. Since he/she can perform an activity that 

requires either level-1 or level-2, both of these rows are filled. In other words, ability 

for a higher skill level carries over to the lower skill levels. In the second domain, the 

worker has no skill. Finally, in the last domain he/she has the minimum proficiency 

(i.e. level-1).  

 

Similarly an activity’s requirements can be shown as a matrix ( is ). An example is 

given below: 

 

3

2

1

level

level

level

















100

112

122

 

 

As in the staff skill matrix, in this matrix requirement for a higher skill level carries 

over to the lower skill levels. In the first domain, two level-2 workers are needed. In 

the second domain, one level-2 worker and one level-1 worker are needed. In the last 

domain, only a level-3 worker is required for the activity. 

 

Each activity i has a processing time. This duration is constant and does not change if 

overqualified staff is assigned to the activity. Moreover, there are precedence 

relationships between activities.    

 

In order to perform an activity, a set of staff that has the skills in the required levels 

should be assigned to the activity. Although overqualified staff can be assigned to the 

activities, it is assumed that motivation of the staff decreases as he/she is assigned to 

a job which is underfit for him/her. In other words, wasted skills matrix for each 

activity is calculated by subtracting the skill requirement matrix ( is ) of the activity 



5 
 

from the sum of the assigned workers’ skill matrices (
j

jv ). Then, the total wasted 

skill in the project is tried to be minimized in order to satisfy person-job fit and 

prevent job dissatisfaction. 

 

The relation between overqualification and the job dissatisfaction has been broadly 

studied in the literature. Researches show that person-job fit and overqualification 

significantly affect job satisfaction and workers’ motivation. 

 

Perceived overqualification is defined by Johnson et al. (2002) as the extent to which 

a worker perceives that he/she (a) possesses surplus job qualifications or (b) has 

limited opportunities to acquire and use new job-related skills. It is mentioned that 

perceived overqualification is said to exist when individuals perceive that they 

possess education, experience, or skills that exceed normal job requirements. 

Johnson et al. investigated the outcomes of the overqualification in terms of job 

satisfaction, somatization (a chronic condition in which a person has physical 

symptoms that are caused by psychological problems, and no physical problem can 

be found) and organizational commitment. Data drawn from three different samples 

of employees were used and as expected, overqualification has found to have 

significant negative relationship with job dissatisfaction and positive relationship 

with somatization. 

 

The levels of perceived overqualifications of Air Force Institute of Technology 

(USA) graduates were investigated in M.Sc. Thesis of Hoskins (2003) and the affects 

of overqualification on their job satisfaction, organizational commitment, and 

turnover were analyzed. Analysis indicated that the ones who perceive they were 

overqualified, experience lower levels of job satisfaction and organizational 

commitment. 

 

Vieira (2005) investigated the relationship between overqualification and job 

dissatisfaction using the data gathered from the European Community Household 

Panel. Applicants filled a questionnaire which includes the following question: “Do 



6 
 

you feel that you have skills or qualifications to do a more demanding job than the 

one you now have?” The ones that responded positively to this question were 

considered to be overqualified. As for the job satisfaction, applicants were asked to 

describe their extent of satisfaction by a six-point scale. As a result of the statistical 

analysis, it was found that overall job satisfaction is adversely affected by perceived 

overqualification. 

 

There are many other studies about job dissatisfaction which stems from 

overqualification. That is why in this study, motivation of the workers is considered 

in terms of their qualification for the jobs they are assigned to in a project. 

To sum up, while trying to minimize the makespan of the project, the aim is to 

minimize the assignment of overqualified staff to the activities of the project 

simultaneously. These two objectives can be conflicting because while trying to 

assign the workers according to their skills, makespan will be larger than the 

assignment made without taking person-job fit into account.  

 

Blazewicz et al. (1983) showed that the RCPSP is a generalization of the classical 

job shop scheduling problem which belongs to the NP hard optimization problems. 

Since our problem can be reduced to the RCPSP, it is also NP hard. Due to the 

complexity of the problem, one of the state-of-the-art metaheuristics in the class of 

multiobjective genetic algorithms is proposed in order to approximate the pareto-

optimal set with a reasonable error. 

 

The organization of the thesis is as follows: In Chapter 2 a mathematical model for 

the problem is given and the literature review on MSPSP with hierarchical levels of 

skills, RCPSP and multiobjective genetic algorithms are summarized. In Chapter 3, 

proposed algorithm for the problem is stated and its convergence and robustness are 

analyzed. In Chapter 4, the test problems to evaluate the algorithm are described and 

the computational results are given. Finally, in Chapter 5 the study is concluded.  
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A 

CHAPTER 2 

 

LITERATURE REVIEW 

 

 

In this chapter, mathematical model for the biobjective MSPSP with hierarchical 

levels of skills is given. The literature on MSPSP with hierarchical levels of skills 

and multiobjective genetic algorithms (MOGA) are reviewed. Moreover, some 

definitions regarding multiobjective optimization are given.  

 

2.1  Mathematical Model for Biobjective MSPSP with Hierarchical Levels of 

Skills 

 

Consider a project with N activities which are labeled as i=1,…,N and W workers 

which are labeled as j=1,…,W. Each activity takes at least one day and k represents 

the days, k=1,…K. There exist precedence relations between some of the activities. 

'i
P  is the set of predecessors of activity 'i  and activity 'i  cannot be started before 

each of its predecessors 'i
Pi  is completed. The precedence relations can be 

represented by an activity on node (AoN) network which is assumed to be acyclic. In 

the network, 0i  is the dummy source node and ni  is the dummy sink node which 

represents starting and ending time of the project. 

 

Duration of an activity is denoted as id . is  is the skill requirement matrix of an 

activity that shows the number of workers with a level of  α in domain β required by 

activity i whereas jv  is the skill matrix of a worker that shows whether or not a 

worker has skill of level α in domain β. If the worker has a skill then the 

corresponding entry of the jv  matrix is 1, otherwise it is zero.  
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As for the decision variables, jikx  is a binary variable and it is equal to 1 if and only 

if worker j is assigned to activity i on day k. In order to assign the same workers 

during the execution of the activity, another binary variable jiy  is defined which is 

equal to 1 if and only if worker j is assigned to activity i. ikz  is the last binary 

variable in the model that is equal to 1 if activity i is completed on day k. ie  is the 

only continuous variable that shows the number of extra skills level of α in skill 

domain β assigned to activity i. 

 

The mathematical model for the problem is as follows: 

 

Minimize 
k

nkzk *            (1) 

Minimize 
i

ie
 

         (2) 

 

subject to 

 

1
i

jikx          KkWj  ,      (3) 

 

jijik yx              KkWjNi  ,,     (4) 

 

 
j

iji
k j

jik dyx *           Ni       (5) 

 

1
k

ikz    Ni       (6) 

 







1idk

kt
it

k
jik zx   KkWjNi  ,,     (7) 

ii
ji

j

j esyv      ,Ni  {1,...,p},  {1,...,q}       (8) 



9 
 

 
k

kii
k

ik zdkzk '' *)(*  'i
Pi       (9) 

 

jikx {0,1}       KkWjNi  ,,     (10) 

 

jiy {0,1}        WjNi  ,      (11) 

 

ikz {0,1}        KkNi  ,      (12) 

 

0ie     ,Ni  {1,...,p},  {1,...,q}       (13) 

 

In the model, there are two conflicting objectives. The first one is minimizing the 

makespan whereas the second one is minimizing the total wasted skills. Inequality 

(3) ensures that each worker is assigned to at most one activity in a day. (4) defines 

the relationship between jikx  and jiy  variables. The worker is assigned to a job on a 

day if and only if he/she is assigned to that activity during the whole duration of it 

(i.e. in terms of y variable). Equality (5) ensures the number of days that a worker 

assigned to an activity is equal to the activity’s duration. Equality (6) obliges each 

activity to be completed only once. By inequality (7), daily assignments made to the 

activities are constrained by the completion time of the activities. In other words, the 

day that a worker assigned to an activity should be within the starting and ending day 

of the activity. Equality (8) ensures the skill requirements of the activities are 

satisfied. Moreover, extra skills that are assigned to the activities (i.e. ie  values) are 

defined by this equality. (9) enforces the precedence relationships between the 

activities. Finally, constraints (10)-(13) define the domains of the decision variables. 

 

2.2  Literature Review on MSPSP with Hierarchical Levels of Skills 

 

Although multi-skill project scheduling problem is well studied in the literature, 

there are very few studies related to hierarchical levels type of it. Classical MSPSP 

with hierarchical levels of skills, which minimizes makespan with non-preemptive 
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activities, is considered by Bellenguez and Neron (2005). They propose two lower 

bounds to evaluate a heuristic method or to be used in a Branch-and-Bound 

algorithm.   

 

Hurkens (2007) and Cordeau et al. (2008) propose solutions to the France Telecom 

problem in which the activities are prioritized and the objective is to minimize the 

ending time of the last activity of each priority type. In this problem, technicians are 

grouped into teams and teams must stay together on a given day. The teams are kept 

fixed during a day because technicians are sent to intervention locations and it will 

be time consuming to come back to central point and mix the teams and also there is 

limited number of available cars. Activities have duration less than one day, so that a 

team can be assigned to more than one activity in a day. However, in our problem 

duration of an activity is an integer number and an activity takes at least one day as 

in the most of other project scheduling problems. So, there is no need to construct a 

team and workers are assigned to activities directly. Another difference is 

outsourcing of activities. In the paper, it is allowed as long as the total budget is not 

exceeded. Apart from these, the main difference of this problem from ours is that it 

has a single objective. 

 

Valls et al. (2009) propose a solution to the Skilled Workforce Project Scheduling 

Problem (SWPSP). This problem is similar to our problem since workers are 

specialized in one or more knowledge area. Moreover, they are classified as senior, 

standard and junior which corresponds to skill levels in our problem. They have also 

more than one objective that deal with the criticality levels of activities, balanced 

worker loads and efficient assignment of workers. Efficiency increases as a more 

proficient worker is assigned to the job. Since the activities require only one worker, 

this is reasonable. However, in our problem activities are more complex and can 

require more than one worker from different skill domains that have different skill 

levels. So, our aim is to assign workers close to the needed properties. We assume 

that assigning an overqualified worker to an activity decreases his/her motivation. 

Another difference between two problems is the activity durations. In their problem 

durations of the activities change depending on the worker type. Assigning a senior 
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(junior) worker makes a reduction (increase) of the standard duration of the activity 

whereas the duration of activities are constant in our problem. Finally, activities are 

preemptive depending on the worker’s timetables in their problem. 

 

None of these methods considers the motivation of the staff while scheduling the 

activities. Since regarding the motivation of staff can be as a quality related issue, we 

can also review some approaches that consider quality issues in RCPSP. 

 

Icmeli-Tukel and Rom (1997) propose a method in order to ensure quality in RCPSP. 

However, by quality they consider activities’ expected rework times and their 

objective is to minimize sum of the rework times and rework costs.  

 

Haouari and Al-Fawzan (2002) propose a bi-objective model for RCPSP which 

considers quality in project scheduling. One of the objectives is to minimize 

makespan while the other one is to maximize weighted sum of slacks of activities. 

By this way model is more robust and risk of finishing the project after deadline is 

minimized. This model also considers the quality in terms of activities not the 

workers directly. 

 

There are other studies that aim to increase the quality in the project such as 

Vanhoucke (2006), Tareghian and Taheri (2007) and Li and Womer (2008). 

However, none of them considers the quality in terms of staff motivation. 

 

The only study encountered that takes staff motivation into account in project 

scheduling is proposed by Oktay (2000). In this M.Sc. Thesis, a form is filled by 

workers and they write their motivation level for each activity. There are three levels: 

low, average and high. Then, durations of activities are calculated as fuzzy numbers 

which are a function of skill level and the motivation levels of the workers and 

difficulty level of activities. Since filling a form by each worker can take very long 

time for the projects with many activities, this may not be applicable in the real life 

problems. For that reason, in this study it is preferred to consider motivation in terms 

of extra skills and extra skill levels assigned to activities. 
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As for the solution approaches, firstly approaches proposed for the MSPSP with 

hierarchical levels of skills is investigated. Then, since there are not any other studies 

that deal with the problem stated here and MSPSP with hierarchical levels of skills is 

a generalization of the classical RCPSP for the single objective case, solution 

approaches used for the classical RCPSP are investigated. 

 

Methods to solve multi-skill project scheduling problem is analyzed by Bellenguez-

Morineau (2008) in his Ph.D. Thesis written in French. In the paper which is a 

summary of the thesis, three methods are mentioned to solve the problem: lower 

bounds, different heuristics and metaheuristics and finally a branch and bound 

procedure. Tabu search and two genetic algorithms are proposed as metaheuristics, it 

is mentioned that genetic algorithms are dominated by the tabu search. However, 

since paper is just a summary, there is no information about the details of the 

algorithms. 

 

Hurkens (2007), the winner of the ROADEF 2007 proposed an algorithm based on 

finding a lower bound by allowing preemption and by estimating the minimum 

number of workers needed for a job. Then, solution is constructed by the relaxed 

schedule. Teams that include one worker are built and these teams are assigned to the 

activities by a matching problem. As a result of the matching problem, a number of 

teams can be assigned to the activities to meet the skill requirements and outsourcing 

activities are determined.  

 

Cordeau et al. (2008) proposed an adaptive large neighborhood search (ALNS) for 

the problem stated in France Telecom. Firstly teams are constructed by a 

construction heuristic and activities are assigned to each team. Then solution is 

improved by destroying and repairing it.  The results are promising so that the team 

is tied for the second place in the competition. 

 

As stated by Blazewicz et al. (1983), Resource Constrained Project Scheduling 

Problem is a generalization of the job-shop scheduling problem and thus is a NP-hard 

problem. Therefore, although exact algorithms are proposed for the problem, these 
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methods are not applicable to large sized and highly resource constrained problems. 

Thus, several heuristic approaches are developed for the problem.  

 

Kolisch and Hartmann (1999) summarize the heuristic algorithms used for the 

RCPSP. They categorize the heuristics into three classes: priority rule based 

heuristics, metaheuristic approaches and other heuristics such as truncated branch 

and bound methods and disjunctive arc methods. The first heuristic methods applied 

to RCPSP are based on priority rules. In this type of heuristics, a serial or parallel 

schedule generation scheme and one or more priority rules (e.g. minimum latest 

finish time and most total successors) are applied to construct one or more schedules 

(i.e. single pass vs. multi pass methods). Kolisch (1996) gives detailed description of 

parallel and serial scheduling method for RCPSP and compare their performances.  

 

Metaheuristics approaches that are mentioned by Kolisch and Hartmann (1999) are 

Simulated Annealing (SA), Tabu Search (TS) and Genetic Algorithms (GA). Since 

the representation of solution is very important in metaheuristics, the paper 

summarizes five representations reported in the literature of RCPSP. These are: 

 

1. Activity List Representation: A precedence feasible representation of the 

activities is used and each activity must have a higher index than each of its 

predecessors. In the solution vector, activity indexes are written. The serial 

schedule generation scheme can be applied in order to convert the activity 

list to a feasible schedule. Although parallel generation scheme cannot be 

used directly, it can be applied with a modification. 

 

2. Random Key Representation: Each activity is assigned a number between 

0 and 1 and a solution is represented by a vector that shows the assigned 

numbers. Random keys are used as priority values. Both serial and parallel 

generation schemes can be used as a decoding procedure. Among the 

activities whose all predecessors are scheduled, the one with the highest 

priority value is scheduled by taking the resource constraints into account.   
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3. Priority Rule Representation: For each activity, a priority rule is 

determined and a solution is represented by a vector that shows the priority 

rule used for each activity. Some of the priority rules used in the literature 

are as follows:  

 

- Greatest Rank Positional Weight (GRPW) 

- Minimum Latest Finish Time (LFT) 

- Minimum Latest Start Time (LST)  

- Minimum Slack (MSLK) etc. 

 

Again, both serial and parallel generation schemes can be used as a decoding 

procedure. After selecting the activity, it is scheduled according to the 

defined priority rule.   

 

4. Shift Vector Representation: A nonnegative integer is assigned to an 

activity and each solution is represented by a vector that shows the assigned 

numbers to the activities. Start time of an activity is determined by adding 

the assigned number to the earliest start time of the activity. Since the 

resource constraints are not taken into account, schedules resulting from this 

representation can be infeasible. Violation of resource constraints is 

penalized in order to satisfy feasibility. 

 

5. Schedule Scheme Representation: In order to represent a solution four 

distinct relations are defined. These are conjunctions, disjunctions, parallelity 

relations and flexibility relations. By satisfying related relations, a schedule 

scheme is constructed. Then, a heuristic is used as a decoding procedure.  

 

In addition to these five representations, Toklu (2002) proposes a genetic algorithm 

by using a representation that shows the start times of activities. Since genetic 

operators result in infeasible solutions, constraint violations are penalized in the 

proposed approach. 
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After the metaheuristic approaches, Kolisch and Hartmann (1999) summarize other 

heuristics that are used in the RCPSP literature. Then, they compare the 

performances of available priority rule based heuristics, metaheuristics and other 

heuristics. They conclude that the best heuristics as metaheuristics which use activity 

list representations. 

 

Moreover, Hartmann (1998) investigates the performances of solution 

representations in RCPSP by using a genetic algorithm. In his paper, firstly he 

proposes a genetic algorithm that uses activity list representation. Then, he employs 

his basic genetic algorithm scheme to the random key representation and priority rule 

representation. After that, he compares the performance of these three algorithms. He 

states that the algorithm with the activity list representation outperforms other two 

algorithms. 

 

Alcaraz and Maroto (2001) propose a robust genetic algorithm for RCPSP by 

improving the activity list representation. They add a gene, which is called forward-

backward gene (f/b gene), at the end of the genotype. While applying a serial 

generation scheme, f/b gene determines whether the schedule is constructed by 

forward scheduling or backward scheduling. They compare their algorithm with the -

algorithms from the literature and conclude that their algorithm outperforms the best 

algorithms proposed.  

 

Hartmann and Kolisch (2000) investigate the performance of proposed RCPSP 

heuristics in detail and they focus on the building blocks (i.e. schedule generation 

schemes, priority rules, schedule representations, operators and search strategies) and 

the way these building blocks are applied to the heuristics. Then, they update their 

survey by adding new approaches in 2006. 

 

Hartmann and Kolisch (2006) give very detailed information about the heuristics 

proposed in RCPSP. They group the approaches into priority rule-based X-pass 

methods, classical metaheuristics, non-standard metaheuristics and other heuristics. 

In addition to the metaheuristics mentioned by Hartmann and Kolisch (2000), which 
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are SA, TS and GA, first application of ant systems to the RCPSP is stated. In the 

class of non-standard metaheuristics, local search-oriented approaches and 

population based approaches are mentioned. As for the other heuristics, an important 

trend forward-backward improvement method is given. Although there are many 

different approaches in the literature, the most popular algorithms are said to be 

genetic algorithms and tabu search. At the end of the survey, all the algorithms are 

compared by using the same test sets and the same stopping criterion. In order to 

determine the best approaches, the concept of dominance is used. Again, 

metaheuristics are found to be the best performing methods. Another result of the 

comparison is that all the nondominated heuristics use serial schedule generation 

scheme.  

 

Up to now, solution approaches applied to single objective RCPSP are mentioned. 

Although RCPSP is a multiobjective problem by its nature, methods are usually 

developed for the single objective case. For this reason, there is very scarce 

information about the multiobjective approaches.   

 

Hapke et al. (1998) propose a pareto simulated annealing approach (PSA), which is 

multiobjective version of SA, in order to solve a multiobjective multi-mode resource 

constrained project scheduling problem with renewable, non-renewable and doubly 

constrained resources. The objectives are based on time and cost criteria. After 

representative sample of approximately non-dominated schedules, they apply an 

interactive procedure over the sample. In the paper, no results are reported about the 

proposed PSA. 

 

Viana and Sousa (2000) consider multiobjective versions of both simulated 

annealing and tabu search in order to solve a RCPSP by minimizing makespan, 

weighted lateness and the violation of resource constraints. Since the authors cannot 

find the benchmarks for the multiobjective case, they modify the instances produced 

by PROGEN, which is a problem generator developed by Kolisch and Sprecher 

(1997). They conclude that, in general, multiobjective tabu search gives better 

results.  
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As mentioned, Haouari and Al-Fawzan (2002) propose a bi-objective model for 

RCPSP that minimizes makespan while maximizing weighted sum of slacks of the 

activities. They apply a multiobjective tabu search algorithm with an activity list 

representation. They also used PROGEN in order to evaluate the performance of 

several variants of their algorithm and compare the performance of single objective 

case with the existing algorithms. 

 

Abbasi et al. (2006) propose a simulated annealing algorithm for a multiobjective 

RCPSP in which the objectives are minimizing makespan and maximizing 

robustness. In the paper, an evaluation function that is a linear combination of 

makespan and sum of floating time is used. Initial and best solutions that are found 

by the proposed algorithm are reported. However, the results are not compared with 

any of the existing algorithms.  

 

We do not encounter a paper that uses the multiobjective genetic algorithm (MOGA) 

to solve the multiobjective RCPSP in the literature. However, since genetic 

algorithms are widely used in the single objective RCPSPs and give promising 

results, it is decided to use MOGA while solving our problem. 

 

2.3  Definitions for Multiobjective Optimization 

 

In classical optimization problems, there is a single objective function and the aim is 

to find a solution that optimizes the objective function value. However, most of the 

real life problems have more than one objective that should be taken into account 

simultaneously.  

 

Most of the time these objectives are conflicting so that in order to have a better 

solution in terms of one objective, one should accept a worse solution in terms of the 

other objective. Therefore, typically there are many solutions that do not outperform 

each other in all objectives. For this reason, among these solutions the best solution 

differs from one person to another, in other words it depends on the decision maker.   
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A multiobjective optimization problem can be simply stated as follows: 

 

Maximize or Minimize { )(),.....,(),( 21 xfxfxf m } 

 Subject to Xx  

 

where if  are objective functions, x  is the solution vector and X  is the feasible 

solution space. 

 

Following definitions should be given in order to further investigate multiobjective 

optimization problems (Deb, 2001): 

 

Domination: A solution 1s  is said to dominate 2s  if and only if  

1. 1s  is no worse than 2s  in all objectives 

2. 1s  is strictly better than 2s  in at least one objective 

 

Nondominated solutions: Among a set of solutions P, the nondominated set of 

solutions P’ are those that are not dominated by any member of the set P. 

 

Pareto-optimal solutions: The set of all nondominated solutions of entire feasible 

solution space is called pareto-optimal set or efficient frontier.  

 

For a biobjective min-min problem, which is solvable in the continuous domain, 

efficient frontier is demonstrated by a bold line in Figure 1. 
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Figure 1 Efficient frontier of a biobjective problem 

 

 

 

It should be mentioned that there exist pareto-optimal solutions if the objectives are 

conflicting to each other. If they are not conflicting to each other, there will be only 

one solution which is optimal for all objectives. 

 

2.4  Methods for Handling Multiobjective Optimization Problems 

 

There are three types of methods for handling multiobjective optimization problems 

depending on the timing of the decision maker’s selection. 

 

1. A priori methods: In this method, preference information from the decision 

maker is taken prior to optimization. For this reason, multiobjective 

optimization problem turns into single objective prior to optimization. 

However, it has some disadvantages like difficulty to have sufficient 

information from the decision maker and non-convexity of problems. 

Weighted sum method and lexicographic approaches are some examples to 

this method.  

 

2. Interactive methods: This method uses the preference information during 

the optimization process. During optimization process, some solutions are 

presented to decision maker and the preference information is asked. Using 

the obtained information, solution space is reduced. However, it is 

f1 

f2 
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burdensome for the decision maker to be involved in the optimization 

process. 

 

3. Posteriori methods: In this method, there is no preference information about 

the objectives. Pareto-optimal candidate solutions are found and presented to 

decision maker. Then, the decision maker chooses among the offered 

solutions. The main disadvantage in this method is the difficulty to converge 

to pareto-optimal frontier as the number of objectives increase. 

 

As Deb (2001, p.162) states, posteriori methods give an overall perspective of other 

possible optimal solutions that the underlying multiobjective optimization problem 

offers before decision maker chooses a solution. Moreover, since our problem has 

only two objectives, the main disadvantage of posteriori methods is not valid for this 

study. Therefore, posteriori method is preferred while solving the biobjective MSPSP 

with hierarchical levels of skills. 

 

2.5  Multiobjective Genetic Algorithm (MOGA) Literature 

 

Genetic algorithms (GAs) are one of the most popular algorithms used as an 

approximation tool for optimization problems. The primary reasons for their success 

are their broad applicability, ease of use and global perspective (Goldberg, 1989). 

They were first proposed by Holland in 1975. They are based on genetic processes of 

biological organisms. In the nature, the fittest individuals in the population survive 

and have children. So, they transfer their genetic properties to the next generation. 

GAs use this idea and are broadly used for difficult problems when there are no 

specialized techniques. 

 

GAs are initiated by creating an initial population of individuals. Each individual in 

the population corresponds to a solution to the problem. Initial population can be 

generated randomly or by using a heuristic method. Each individual is assigned a 

fitness score such as objective function value. Then, highly fit individuals are crossed 

together with a crossover probability to have new solutions (offspring). Offspring are 
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subject to mutation with a mutation probability. Among the parents and/or offspring, 

best individuals are selected depending on their fitness score. These individuals form 

the next generation, in other words parent population is updated. These steps are 

repeated until converging to a good solution.  

 

Some decisions should be made before starting GAs. These are solution 

representation, fitness function, population size, generation of initial population, 

parent selection for reproduction, crossover operator, crossover probability, mutation 

operator, mutation probability, selecting the individuals for the next generation and 

finally number of generations to be performed.  

 

Since the population of solutions is processed in each iteration and the result is the 

nondominated solutions in GAs, they are suitable for multiobjective optimization 

problems, in which the aim is to find all pareto-optimal solutions. There are two 

desirable features for MOGAs, which are convergence to pareto-optimal set and 

diversity. Diversity is needed in order to generate a uniformly distributed range of 

solutions. Without these two features, MOGAs cannot be able to find the entire 

pareto-optimal set. In order to satisfy these two features many different algorithms 

are proposed. Deb (2001, p.161-274) classifies these algorithms into two groups: 

Non-Elitist MOGAs and Elitist MOGAs. Before mentioning the proposed algorithms 

in these classes, it would be better to define the elitism. 

  

Elitism: In GAs, elitism is satisfied by giving the opportunity to the fittest 

individuals in the population to be directly carried over to the next generation. After 

crossing over two parents and mutating the offspring, elitism can be achieved by 

comparing each offspring with its parents. After comparison, best two solutions are 

selected. Another way of ensuring elitism is to combine parent and offspring 

populations at the end of each generation and select the fittest individuals among 

them up to the population size. By this way, when a promising solution is found, it is 

kept until a solution better than this solution is found. 
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Non-Elitist MOGAs: These algorithms do not use elite-preserving operators. Vector 

Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985), Vector Optimized Evolution 

Strategy (VOES) (Kursawe, 1990), Weight-Based Genetic Algorithm (WBGA) 

(Hajela et al., 1993), Random Weighted Genetic Algorithm (RWGA) (Murata and 

Ishibuchi, 1995), Multiple Objective Genetic Algorithm (MOGA) (Foncesa and 

Fleming, 1993) , Nondominated Sorting Genetic Algorithm (NSGA) (Srinivas and 

Deb, 1994) and Niched-Pareto Genetic Algorithm (NPGA) (Horn et al., 1994) are 

some of the algorithms that are proposed in this class. These algorithms are easy to 

understand and implement. Even though they do not include an elite-preserving 

operator, some of these algorithms have good solutions in their original studies.  

 

Elitist MOGAs: In this class, algorithms have elite-preserving operators, which 

differ from one algorithm to another. So, fittest solutions do not deteriorate in these 

algorithms. Rudolph’s Elitist Multiobjective Evolutionary Algorithm (REMEA) 

(Rudolph, 2001), Elitist Nondominated Sorting Genetic Algorithm (NSGA-II) (Deb 

et al., 2000), Distance-Based Pareto Genetic Algorithm (DPGA) (Osyczka and 

Kundu, 1995), Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele, 

1998) and Pareto-Archived Evolution Strategy (PAES) (Knowles and Corne, 2000) 

are some of the algorithms in this class. Presence of an elite-preserving operator 

makes a multiobjective genetic algorithm better converge to the pareto-optimal set. 

 

We can refer the reader to Deb (2001) for a detailed description of these heuristics 

and their advantages and disadvantages. 

 

In this study NSGA-II, one of the elitist MOGAs, is used to propose a solution to the 

biobjective MSPSP with hierarchical levels of skills. NSGA-II is proposed by Deb et 

al. (2000) as a MOGA. As Deb (2001) mentions, NSGA-II has fast convergence 

property and the spread of solutions is very good depending on its diversity metric. 

In NSGA-II, nondominated sorting is used in which the solution in the first 

nondominated front has the highest fitness score and the solutions in the same front 

have the same fitness score.  
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While forming fronts, each individual in the population is compared with every other 

individual.  For each individual, number of solutions that dominate the individual 

and solutions that is dominated by this individual are found. Individuals that are not 

dominated by any member of the population (i.e., if number of solutions that 

dominate the individual is zero) are put in the first front. Then, individuals who are 

dominated by the individuals in the first front are checked and number of solutions 

that dominate these individuals is decreased by one. The ones that remain 

nondominated are put in the second front. This process is continued until all the 

individuals are put into fronts. At the end of the process, none of the individuals in a 

front dominate each other and a front that has a smaller index dominates all the fronts 

having larger indexes. 

 

In order to maintain diversity, NSGA-II uses “crowded comparison”. Crowding 

distance of an individual in a front is found by calculating the average distance 

between neighboring individuals. Given two individuals, the one with the lower rank 

is preferred. If two individuals have the same rank, then the one with the higher 

crowding distance, in other words the one located in a less crowded region is 

preferred. This ensures diversity in NSGA-II. 

 

The steps in NSGA-II can be summarized as follows:  

 

1. Creating initial population randomly 

2. Sorting population into nondomination levels and assigning crowding 

distance 

3. Generating child population by using binary tournament selection and 

problem dependent crossover and mutation operators  

4. Combining parent and child population and sorting them based on 

nondomination 

5. Where N is the population size, selecting best N solutions from 2N solutions 

according to solutions’ ranks and crowding distances 

6. Repeating steps 2, 3, 4 and 5 until the stopping criterion is satisfied. 
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Elitism is maintained in the 4th step of the algorithm, where the parent and the child 

population are merged together. Therefore, selection is made from 2N individuals 

and the fittest individuals do not deteriorate. 
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A 

CHAPTER 3 

 

SOLUTION APPROACH 

 

 

In this chapter the proposed algorithm for biobjective MSPSP with hierarchical 

levels of skills is stated. The performance metric in order to fine tune the algorithm is 

explained and the preliminary results are presented. 

 

3.1  NSGA-II Employed 

 

3.1.1  Solution Representation 

 

As mentioned in Section 2.2, solution representation is very important in 

metaheuristics and Kolisch and Hartmann (1999) reported the best heuristics as 

metaheuristics which use activity list representations in RCPSP. For this reason, 

activity list representation is modified by adding the worker information for our 

problem. An example solution representation to a problem containing 30 non-dummy 

activities and 12 workers is given in Figure 2. First and the last activities are dummy 

activities. Activities on the top are in a precedence feasible order. 

 

 

 

1 2 4 3 7 ..... 28 32       Activity indexes on the top 

 1 2 7 3 ..... 2  
Assigned workers' indexes at the bottom of 
each activity 
 

 5 6 9 5 ..... 4  

 9 7  8 ..... 9  

  10    12  
 

 

Figure 2 An example solution representation 
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The activities are scheduled in the order that is prescribed by the sequence. In order 

to calculate the first objective function value, which is the makespan, firstly dummy 

source activity is finished at time 0. Then for activity i, the following steps are 

applied: 

 

1. Early start time (ES(i)) of activity i is found as the maximum of the finish 

times of its predecessors. 

2. Early finish time (EF(i)) of activity i is calculated by adding duration of the 

activity to its early start time. 

3. All the activities that are scheduled before activity i are checked (except its 

predecessors). If there is an intersection time between execution of any of the 

past activities and [ES(i),EF(i)] times of activity i, it is checked whether there 

is a common worker or not. If there is a common worker, then ES(i) is shifted 

to the finish time of the past activity that has a common worker. If there is no 

common worker or there is no intersection time ES(i) is set as the start time of 

i. 

 

At the end, finish time of the last activity gives us the makespan of the problem. 

 

The second objective function value, which is total skill wasted, is simply calculated 

as in equation (8) in the mathematical model. For each level in each skill domain, 

skill requirement of an activity is subtracted from total skills of the assigned workers. 

Then, total skill wasted is calculated by summing wastes for all skill domains and 

skill levels for all of the activities. 

 

3.1.2  Fitness Function 

 

Based on the objective function values, nondominated sorting is done and fitness 

scores are assigned by using rank numbers. A solution in the first rank has the 

highest fitness score. For the solutions in the same rank, crowding distance is 

calculated and a solution with a larger crowding distance value has higher fitness 

score than a solution with a less crowding distance value.  
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3.1.3  Initial Population 

 

Initial population is generated randomly in terms of both activities and workers. 

After the dummy source activity, activities are selected randomly from the decision 

set, which shows all the eligible activities (i.e. activities whose all predecessors are 

already scheduled), one by one until all the activities are selected. 

 

As for the workers, for each activity worker sets are constructed by workers who 

have a skill that the activity needs. Then, for each activity, workers are selected 

randomly from the worker set until all the skill requirements of the activity are 

covered. After assignment, all workers are checked one by one whether he/she can be 

discarded or not. This is so important that after adding a worker to cover a skill, 

another worker may become redundant. 

 

3.1.4  Selecting the Parents 

 

Parents to be crossed over are selected based on tournament selection. In other 

words, from two individuals, the one with better fitness score is selected as the first 

parent and from another two individuals, again the better individual in terms of 

fitness score is selected as the second parent. 

 

3.1.5  Generating New Members  

 

One-point and two-point crossover operators are considered to generate child 

population. They are similar to the crossover technique described by Hartmann 

(1998) for RCPSP. In our case, assigned workers exist in the solution; however, it 

does not make a big difference, since the most important point is to keep feasibility 

in terms of activity sequences. Both of the operators take precedence relations into 

account. Therefore, the resulting offspring are also precedence feasible.  

 

 For one-point crossover operator, a number integer q is chosen randomly between 2 

and the number of activities minus 2 (N-2) since the first and the last activities are 

dummy activities. Then, for the first offspring first q activities are taken from the 



 28

mother directly and the remaining activities (q+1, ….,N) are taken from the father. 

However, for the remaining activities, the activities that have already been taken 

from the mother are not considered again. By this way, relative positions in the 

parents’ activity sequences are preserved and the precedence constraints are satisfied. 

We can refer the reader to Hartmann (1998) for the theorem that shows by this 

technique, precedence assumptions are fulfilled. The second offspring is formed 

similarly such that this time first q activities are taken from the father directly and the 

remaining activities are taken from the mother. For both of the offspring, while 

taking activities from parents, assigned workers to each activity are also carried over. 

 

For the two-point crossover operator, the only difference is that this time there are 

two cutting points and two random numbers, 1q < 2q , should be chosen. For the first 

offspring, first 1q  activities are taken from the mother, the positions 1q +1,…., 2q are 

taken from the father and the remaining positions 2q +1,…,N are again taken from 

the mother. The second offspring is formed analogously, taking the first and the third 

part from the father and the second part from the mother. Again, while taking 

activities from parents, the workers assigned to each activity are also carried over. 

 

3.1.6  Mutation 

 
For our problem, mutation operator should both create activity sequences that could 

not have been produced by crossover operator and make new worker assignments 

that the parents do not have in order to let the algorithm search for the unvisited 

areas. For this purpose, several mutation operators are proposed for the algorithm 

and some of them are eliminated since they are not promising.  

 

Firstly, an operator that finds the activity with the maximum wasted skill and 

changes the workers assigned to that activity is tried. Another alternative is selecting 

an activity randomly and changing its workers. However, these operators are 

eliminated in the preliminary tests, since changing the workers of only one activity is 

not sufficient when small mutation probabilities are used. For this reason, mutation 

operator is applied to all positions and both the activity sequence and the worker 

assignments for each activity are considered. 
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Two mutation operators are proposed in terms of worker assignments. For an 

activity, first operator selects a random worker and changes it with another random 

worker from the worker set. If the skill requirements of the activities are not 

satisfied, another worker is selected randomly and added. This process is repeated 

until all the skill requirements are satisfied. At the end, it is checked whether or not 

there is(are) worker(s) that can be discarded. This operator is also eliminated in 

preliminary tests since trying to preserve some of the workers is not so advantageous 

that it is decided to change all the assigned workers of the activity. 

 

Therefore, for all activities with a mutation probability all the worker assignments 

are abolished and new workers are assigned randomly as in initializing the 

population in section 3.1.3. Again, possibility of discarding workers is checked and if 

it is possible, some of them are discarded. As for the activity sequence, with the same 

mutation probability each activity is tried to be replaced with the next activity if the 

precedence assumptions are not violated. 

 

As a result, by the help of crossover and mutation operators, every solution to the 

problem is reachable. 

 

3.1.7  Replacement 

 

As mentioned before, as in all NSGA-II, parent and children populations are merged 

and individuals up to the population size are selected by taking firstly rank number 

and then crowding distance into account. 

 

The pseudo code for the proposed NSGA-II is given in Appendix A.  

 

3.2  Performance Metric Used 

 

Before setting parameters for the proposed algorithm, first a performance metric 

should be defined in order to compare the determined parameters. As mentioned 

before, there are two desirable features for MOGAs, which are convergence to 
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pareto-optimal set and diversity. Therefore, performance metrics should be selected 

so that these two features can be measured.  

 

Deb (2001, p.306-324) classifies performance metrics used for multiobjective 

optimization problems in the literature into three groups. The first type metrics 

measure only closeness to the pareto-optimal set. Error Ratio, Set Coverage Metric, 

Generational Distance and Maximum Pareto-Optimal Front Error are metrics in this 

class. Second type metrics measure only the diversity. Spacing, Spread and Chi-

Square-Like Deviation Measure are commonly used metrics in this class. On the 

other hand, third type metrics evaluate two features in a combined sense. 

Hypervolume, Attainment Surface Based Statistical Method, Weighted Metric and 

Non-Dominated Evaluation Metric are metrics that evaluate both closeness and 

diversity. We can refer the reader to Deb (2001, p.306-324) for a detailed description 

of each performance metric. 

 

Among these metrics, a metric from the third class is selected in order to evaluate 

both goals of the multiobjective optimization at the same time. Since Hypervolume 

Ratio (HVR), which is a variant of Hypervolume (HV), is easy to understand and 

calculate, it will be used to evaluate the performance of our algorithm during our 

study.  

 

HV metric calculates the union of the volumes each nondominated point generates 

with respect to a reference point. The reference point can be found by using the worst 

objective function values. HV enclosed by a given set of nondominated points for a 

biobjective problem where both objectives are to be minimized is shown in Figure 3. 

 

 

 

 
 
 

 

 

 



 31

Reference 
Point 

 

 

 

 

 

 

 

Figure 3 HV enclosed by a given set of nondominated points 

 

 

 

As can be understood, an algorithm with a higher HV is preferred. An important 

point that should be taken into account is that if the objective function values are not 

in the same order of magnitude, this metric will favor solutions that converged in the 

objective function value which has higher order of magnitude. In order to eliminate 

this problem, HVR, which shows the relative distance between two set of 

nondominated solutions, can be used. HVR can be calculated as follows:  

 

Optimal

ionApproximat

HV

HV
HVR                              (14) 

 

In our study, since there are scaling problems between makespan and total skills 

wasted in some of the test problems, HVR will be used while both fine tuning our 

algorithm and comparing the results of our algorithm with pareto-optimal set of 

solutions.  

 

During fine tuning the algorithm since pareto-optimal set is not known, HVR is 

simply calculated by dividing H, which is represented in Figure 3, to A which is the 

total area bounded by the origin and the reference point as shown in Figure 4. 

 

 

 

 

f1 
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Figure 4 Area bounded by origin and the reference point 

 

 

 

In our study, in order to find the worst objective function value in terms of 

makespan, all of the activity durations are summed. As for the worst objective 

function value in terms of total skills wasted, all of the workers that own at least one 

skill type that an activity needs are assigned to that activity and the total skills wasted 

is calculated by this way. 

 

3.3  Parameter Setting 

 

3.3.1  Population Size 

 

Although large population sizes are desirable, the algorithm will require very long 

time in each generation when the population size is large. On the other hand, 

although population size determines the size of the pareto-optimal set in NSGA-II, 

since we will deal with the problems that contain 15, 30, 60 and 90 non-dummy 

activities in this study, there would not be so many nondominated points. So, in our 

problem, a very large population size is not needed to show all non-dominated 

points. Therefore, it is decided to use a population size of 100.   

 

3.3.2  Crossover Probability 

 

The original crossover probability of 0.8 proposed by the Deb et al. (2000) is used in 

the study. 

f1 

f2 

A 
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3.3.3  Mutation Probability 

 

Different mutation probabilities are proposed in the literature. Instead of selecting 

one of them, both 0.05 and 0.1 are used during fine tuning the algorithm.  

 

3.3.4  Generation Number Limit 

 

Different generation number limits should be used for different problem sizes since 

convergence to the pareto-optimal set becomes difficult and the probability of being 

stuck at local optima increases as the problem size increases. For this reason, after 

various experiments, generation number limit of 50 is used in the problems 

containing 15 non-dummy activities, limit of 100 for 30 non-dummy activities, limit 

of 150 for 60 non-dummy activities and 200 is used for the problems containing 90 

non-dummy activities. 

  

3.4  Tuning the Algorithm 

 

While tuning the algorithm, the problem sets containing 15 and 30 non-dummy 

activities are used. For all problems, activity on node (AoN) representation is used. 

For the problems with 30 activities, precedence relationships and activity durations 

are taken directly from a project scheduling problem library, PSPLIB (Kolisch and 

Sprecher, 1996). Since the problem sizes start from 30 activities in the PSPLIB, for 

the problems with 15 activities, precedence relationships of 30 activity problems 

from PSPLIB are updated and activity durations are taken directly for the first 15 

activities. Then, for each skill domain and level, skill requirements of the activities 

and skills that the workers have are added to the problems. While doing this, both 

complex activities, which require skills from different types and levels, and simple 

activities, which require skills from only one type, are added to each problem. 

Similarly, the workers that own complex skills and the workers with simple skills are 

both taken into account. 

 

For each problem size, two kinds of problems are generated in terms of constraint 

tightness. Constraint tightness is changed by varying three parameters, which are 
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network complexity, number of skill types and skill ratio. These parameters are 

calculated as follows: 

 

nodesofnumbertotal

arcsofnumbertotal
ComplexityNetwork       (15) 

 

While calculating network complexity, total number of nodes includes both non-

dummy and dummy activities. 

 

levelsskillofnumberdomainsskillofnumbertypesskillofNumber *  (16) 

 

typesskillofnumber

neededskillstotal

availableskillstotal

RatioSkill typeskill


       (17) 

 

While calculating the skill ratio of a problem, for each skill level in a skill domain, 

total skills available is divided by total skills needed by all activities.  

 

Parameters that are used in each test problem are given in Table 1. As can be seen, 

while Problem-1 and Problem-3 are relaxed in terms of constraint tightness, 

Problem-2 and Problem-4 are tight. 

 

 

 

Table 1 Parameters for test problems 

 
 P1 P2 P3 P4 

# of Activities 17 17 32 32 

# of Workers 6 6 12 12 

Network Complexity 1.2 1.5 1.5 2.1 

# of Skill Types 4 9 4 9 

Skill Ratio 0.5 0.3 0.5 0.3 
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3 different problems are generated for each type, so experiments are done for 12 

problems. PSPLIB file numbers for these problems are given in Appendix B. 10 

replications are performed for each problem and parameter setting. Therefore, for 2 

kinds of crossover operator and 2 kinds of mutation probability total of 480 runs are 

made. The algorithm is coded by Matlab 7.0 and all the computational analysis are 

done on an Intel Core Duo, 1.86 GHz computer with 2.90 MB memory. 

 

For each problem type, average HVR and average elapsed time in seconds are 

calculated for 30 runs (10 replications for 3 problems) and given in Table 2. CO 

stands for crossover operator and MP stands for mutation probability. As can be 

seen, for each problem type, the results do not differ much from one combination to 

another. 

 

 

 

Table 2 Full factorial design 

 

Parameter 

Combination 

Problem Category 

17 Activities, 6 Workers 32 Activities, 12 Workers 

Relaxed (P1) Tight (P2) Relaxed (P3) Tight (P4) 

CO MP 
HVR 
(Avr.) 

Time
(Sec.)

HVR 
(Avr.)

Time
(Sec.)

HVR 
(Avr.)

Time 
(Sec.) 

HVR 
(Avr.) 

Time 
(Sec.) 

One 

point 

0.05 0.6284 65.53 0.3735 71.40 0.7234 445.56 0.6553 488.74

0.1 0.6287 65.65 0.3810 71.21 0.7231 445.65 0.6561 489.42

Two 

point 

0.05 0.6283 66.28 0.3766 70.91 0.7235 446.18 0.6564 487.02

0.1 0.6287 66.46 0.3844 71.21 0.7231 447.19 0.6558 488.39

 

 

 

Two-way interactions between the factors (i.e. problem type, crossover type and 

mutation probability) are analyzed using Minitab. According to analysis of variance 

table, it is found that interactions between factors are not significant. This can be 

understood visually from the interaction plots for HVR and time, which are given in 

Figure 5 and Figure 6 respectively. 
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From Figure 5, it can be seen that HVR is the highest for P3 and lowest for P2. HVR 

for P3 is higher than P4 since P3 is relaxed and P4 is tight. Similarly, HVR for P1 is 

higher than P2. P3 and P4 are on the top since as the number of workers increases, 

HVR increases. P3 and P4 contain 12 workers whereas P1 and P2 contain 6 workers 

and having higher number of workers results in solutions that assign appropriate 

workers to the activities so solutions that have low skill waste and high HVR values.  

 

As for the interactions, from the first row it can be seen that HVR values for each 

problem type form a straight line for two types of crossover operator and for two 

types of mutation probability. First plot shows that there is no interaction between 

problem types and crossover operator. Similarly, second plot shows that there is no 

interaction between problem types and mutation probability. Moreover, when we 

look at the second row, it is obvious that there is also no interaction between 

crossover operator and mutation probability since the black and red lines are 

coinciding. However when carefully looked, when the mutation probability is 0.05, it 

can be seen that two-point crossover gives better HVR values as the red line is 

slightly above the black one on the left part of the graph.  
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Figure 5 Interaction plot for HVR 

 

 

 

As can be seen from Figure 6, as expected elapsed time is the highest for the problem 

that contains 32 activities with tight constraints. It is the lowest for two small-sized 

problems, P1 and P2. Time needed for P2 is higher than P1 in a very small amount 

since P2 is tighter than P1. Again, there is no interaction between problem types and 

crossover operator or mutation probability in terms of elapsed time. Also there is no 

interaction between crossover operator and mutation probability. For a problem type, 

time requirements are the same for all combinations of crossover operator and 

mutation probability. 
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Figure 6 Interaction plot for Time 

 

 

 

As a result, although HVR values and elapsed time do not differ much from one 

combination to another, firstly combination with one-point crossover operator and 

0.05 mutation probability is eliminated since when the mutation probability is 0.05, 

two-point crossover operator gives better HVR values. Then, the combination 

including two-point crossover operator and mutation probability of 0.1 is selected 

since when the average HVR values for 4 problems is calculated, result is slightly 

higher with this combination although this small difference cannot be seen from the 

interaction plots.  

 

3.4  Convergence of the HVR Values 

 

After selecting the appropriate parameter settings for the proposed algorithm, 

convergence of the HVR values are analyzed. An example graph for the HVR values 

versus generation number for each problem type is plotted and given in Figures 7, 8, 

9 and 10 for P1, P2, P3 and P4, respectively.  
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Figure 7 Convergence graph of HVR for P1 

 

 

 

 

 

Figure 8 Convergence graph of HVR for P2 
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Figure 9 Convergence graph of HVR for P3 

 

 

 

 

 

Figure 10 Convergence graph of HVR for P4 
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As can be seen, since NSGA-II is an elitist algorithm, HVR values are non-

decreasing. From the graphs, it is understood that generation number limit of 50 for 

the problems with 17 activities and generation number limit of 100 for the problems 

with 32 activities are enough since HVR increases at the beginning of the algorithm 

and it forms a straight line towards the generation limit. 

 

3.4  Robustness of the Proposed Algorithm   

 

Proposed heuristic for biobjective MSPSP with hierarchical levels of skills gives a 

solution based on the initial population which is generated randomly. Therefore, in 

order to measure its performance 10 replications are conducted. If the result of these 

10 replications proves that the correlation between initial condition and the result is 

weak, then the algorithm is said to be robust and it is adequate to use the results of a 

single run.  

 

In order to understand the robustness of the proposed algorithm, results of 10 

replications for the all problems are analyzed. In addition to minimum, average and 

maximum values, standard deviations of HVR and elapsed time are calculated and 

given in Table 3. As mentioned before, 3 different problems are generated for each 

problem type and these are shown by adding the problem number at the end of P1, 

P2, P3 and P4. Then, it is checked whether the standard deviations of the 

performance measures are high when compared to the average values for each 

problem.  
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Table 3 Experiment on robustness of the proposed algorithm 

 

  Min Avr Max  Stdev 1% of Avr

P1_1 
HVR 0,6319 0,6322 0,6324 0,0002 0,0063
Time (Sec.) 65,41 65,95 66,97 0,51 0,66

P1_2 
HVR 0,6629 0,6630 0,6630 0,0000 0,0066
Time (Sec.) 64,97 65,41 66,08 0,39 0,65

P1_3 
HVR 0,5904 0,5910 0,5912 0,0002 0,0059
Time (Sec.) 67,17 68,00 68,66 0,40 0,68

P2_1 
HVR 0,2901 0,3324 0,3590 0,0213 0,0033
Time (Sec.) 70,55 71,43 72,27 0,47 0,71

P2_2 
HVR 0,3829 0,4027 0,4250 0,0118 0,0040
Time (Sec.) 70,97 71,17 71,49 0,18 0,71

P2_3 
HVR 0,4084 0,4180 0,4190 0,0034 0,0042
Time (Sec.) 70,28 71,02 71,99 0,47 0,71

P3_1 
HVR 0,7545 0,7561 0,7582 0,0011 0,0076
Time (Sec.) 441,34 443,90 448,52 2,16 4,44

P3_2 
HVR 0,7241 0,7246 0,7251 0,0004 0,0072
Time (Sec.) 446,05 451,95 457,30 2,88 4,52

P3_3 
HVR 0,6883 0,6886 0,6890 0,0003 0,0069
Time (Sec.) 442,50 445,71 448,81 1,90 4,46

P4_1 
HVR 0,6437 0,6511 0,6540 0,0036 0,0065
Time (Sec.) 484,05 488,27 492,34 2,91 4,88

P4_2 
HVR 0,6267 0,6286 0,6300 0,0008 0,0063
Time (Sec.) 491,45 492,64 494,39 1,03 4,93

P4_3 
HVR 0,6745 0,6879 0,7021 0,0093 0,0069
Time (Sec.) 482,47 484,26 486,38 1,12 4,84

 

 

 

 

As can be seen from the table, standard deviation of the results are always less than 

1% of  the average results in terms of both HVR and elapsed time except from three 

cases which are written in bold. Among these three cases, the maximum deviation is 

nearly 7% of the average HVR in P2_1. This means that pareto-optimal sets found 

are very close to each other and the time needed to find them does not change so 

much from one simulation to another. For this reason, results of a single run will be 

used while testing the performance of the proposed algorithm. 
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A 

CHAPTER 4 

 

COMPUTATIONAL RESULTS 

 

 

In this chapter, in order to measure the performance of the proposed algorithm, its 

results are compared with the approximation of the pareto-optimal set for small-sized 

problems and with random search for large-sized problems. 

 

4.1 Selection of Test Problems 

 

While fine tuning the algorithm, the problem sets containing 15 and 30 non-dummy 

activities were used and for each problem size, two kinds of problems were 

generated in terms of constraint tightness. Parameters used for each type were given 

in Table 1. For these 4 problem types, 3 different problems were generated, so 

experiments were done on 12 problems. In this chapter in addition to these 12 

problems, 8 different problems are generated. Therefore, proposed algorithm is 

evaluated based on total of 20 problems. 

 

For new problems, problem sets containing 60 and 90 non-dummy activities were 

used. Again, precedence relationships and activity durations are taken directly from 

PSPLIB. Then, for each skill domain and level, skill requirements of the activities 

and skills that the workers have are added to the problems. As mentioned before, 

while constructing the activity requirements and worker skills, both complex and 

simple activities and the workers that own complex skills and simple skills are taken 

into account. 

 

For each problem size, again two kinds of problems are generated in terms of 

constraint tightness which depends on network complexity, number of skill types and 

skill ratio.  Parameters used for new test problems are given in Table 4.  
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As can be seen while P5 and P7 are relaxed in terms of constraint tightness, P6 and 

P8 are tight. For each problem type, 2 different problems are generated. Therefore, 

total of 8 problems are obtained. PSPLIB file number for each problem is given in 

Appendix B. 

 

 

 

Table 4 Parameters used for new test problems 

 
 P5 P6 P7 P8 

# of Activities 62 62 92 92 

# of Workers 24 24 36 36 

Network Complexity 1.5 2.1 1.5 2.1 

# of Skill Types 4 9 4 9 

Skill Ratio 0.5 0.3 0.5 0.3 

 

 

 

4.2 Comparison with the Approximation of the Pareto-optimal Set 

 

Since the problem stated here has not been studied before, benchmark results are not 

available in the literature. Thus, the approximation of the pareto-optimal set is found 

by using a variation of  -constraint method.  

 

 -constraint method is based on minimizing one objective function and considering 

the other objectives as constraints bound by some allowable levels i . By this way, 

the model becomes a single objective model. In our problem, the second objective 

function value, which is total skill wasted, can be written as the original objective 

function and the first objective function value, which is the makespan, can be written 

as a constraint. Since the maximum makespan of the problems can be taken as the 

sum of the activity durations, left hand side of the makespan can be decreased 

starting from the maximum value in order to find different solutions to the problem.  
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However, by this way the model can give weakly nondominated but dominated 

solutions. In other words, for the same total waste value, the model can give a 

solution with a higher makespan which satisfies the makespan constraint while there 

exists a solution with a lower makespan. In order to avoid weakly nondominated but 

dominated solutions, a variation of  -constraint method is used and makespan is 

multiplied by a small value and added to the objective function. By this way, since 

the makespan is added as an objective, the model will give the solutions with the 

highest makespan possible and this will result in nondominated solutions. 

 

Therefore, the mathematical model of the problem is updated by changing the 

objective function as in (18) and adding the constraint (19) while keeping all the 

other constraints the same. Since the resulting values of the two objectives differ at 

most in one order of magnitude for all of the test problems, using 0.001 as a 

coefficient of the makespan is sufficient to find all nondominated solutions. 

 

Minimize   
i k

nk
i zke **001.0

 
          (18)  

 

i
k

nkzk  *           (19) 

 

This model is solved for 6 problems including 17 activities by using the 

mathematical programming software GAMS. For all problems, maximum makespan 

is taken as the starting i  value and when a solution obtained, for the next solution 

resulting makespan is decreased by 1 and added as a constraint. This method is 

repeated until an infeasible solution is obtained. By this way, solutions given in 

Appendix C are obtained for P1_1, P1_2, P1_3, P2_1, P2_2 and P2_3. Among all 

solutions, nondominated ones are written in bold.  

 

As can be seen, while the relaxed problem (P1) can be solved in maximum one hour, 

tight problem (P2) needs days to find all nondominated solutions. For this reason, 

only problems including 17 activities are evaluated by this method and other 
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problems, which include more activities, are evaluated by comparing them with a 

random search. 

 

Minimum and maximum hypervolumes (HV) for the proposed algorithm found 

during fine tuning (among 10 runs) are compared to the hypervolumes found by 

GAMS. The solutions that have minimum and maximum hypervolume for each 

problem are taken and hypervolume, elapsed time, makespan, and waste values of 

the proposed NSGA-II are reported in Appendix D.   

 

The resulting values for hypervolume (HV) and hypervolume ratio (HVR) are 

summarized in Table 5.  

 

 

 

Table 5 Comparison with the approximation of the pareto-optimal set  

 

  NSGA-II GAMS 

 
Min HV Max HV HV 

Min 
HVR 

Max 
HVR 

P1_1 8,651 8,657 8,657 1.00 1.00 
P1_2 11,295 11,297 11,297 1.00 1.00 
P1_3 8,833 8,844 8,845 1.00 1.00 
P2_1 7,937 9,823 9,824 0.81 1.00 
P2_2 5,896 6,545 6,536 0.90 1.00 
P2_3 8,436 8,655 8,655 0.97 1.00 

 

 

 

As can be seen, all maximum HVR values are approximately 1. As for the minimum 

results, while the problems with loose constraints have HVR values of approximately 

1, tight problems can have less HVR values. Unsurprisingly, the maximum deviation 

occurs for P2_1 and P2_2 which are the two problems that were reported as the most 

deviated ones in Table 3 out of 12 problems. For the other test problems, except from 

P4_3, deviation was always less than 1% of the average HVR, which implies if it 

was possible to compare the results of the other problems with GAMS results, there 

would be slight difference between minimum and maximum HVR values. 
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To sum up, HVR values are close to 1 for minimum hypervolume results and always 

approximately 1 for maximum hypervolume results, which prove a very good 

approximation of the proposed algorithm. Moreover, when compared to GAMS 

results, the proposed algorithm requires very short time, which is at most 72 seconds 

for these 6 problems. 

 

In addition to giving the resulting values of nondominated solutions of both 

algorithms, pareto fronts of them are compared visually for both minimum and 

maximum HVR values in Appendix E.  

 

For the tight problems (P2), some solutions found by the proposed algorithm 

dominate the solutions found by GAMS. This is because GAMS has a relative 

optimality tolerance of 0.1 by default. This means that, the solver stops when it finds 

a feasible solution within 10% of the global optimum. For this reason, when the 

problem is tight, computational time increases and this may result in solutions that 

are not global optimum. 

 

4.3 Comparison with the Random Search 

 
Since it will take very long durations to find the solutions to the problems that 

contain 32, 62 and 92 activities by GAMS, in order to evaluate the proposed 

algorithm for these problems, the results are compared with the random search. 

Before doing that, in order to understand the performance of the random search, 

small-sized problems are also solved by random search and their results are 

compared with the GAMS results. 

 

In the random search, solutions are generated randomly as in the initial population 

step of the proposed NSGA-II. Activities are selected randomly from the eligible 

activities one by one in order to satisfy precedence relationships and workers are 

selected randomly from the worker set until all the skill requirements of the activity 

are covered. After assignment, all workers are checked one by one whether he/she 

can be discarded or not.  
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After each problem is solved by the proposed algorithm, the random search is 

performed until elapsed time is equal to the time needed to perform the proposed 

algorithm. At the end of the random search, nondominated sorting is performed and 

the solutions that are nondominated are reported. 

 

Hypervolumes found by random search are compared to the hypervolumes found by 

GAMS for the problems containing 17 activities and the ratios are given in Table 6. 

 

 

 

Table 6 Comparison of random search with GAMS 

 

 
RANDOM 
SEARCH  

GAMS
 

  HV HV HVR 
P1_1 7,911 8,657 0.91 
P1_2 10,406 11,297 0.92 
P1_3 8,107 8,845 0.92 
P2_1 5,359 9,824 0.55 
P2_2 4,343 6,536 0.66 
P2_3 8,239 8,655 0.95 

 

 

 

As can be seen, although HVR values are small for the tight problems (except from 

P2_3), they are close to 1 for the relaxed problems and since there are no benchmark 

results available in the literature, proposed algorithm is compared with random 

search for large-sized problems . 

 

For each problem, nondominated solutions found by the proposed algorithm and the 

random search are compared in Appendix F, by giving time, HVR, makespan and 

total skill wasted values. Since pareto-optimal set is not known, HVR is again 

calculated by dividing the area generated by the algorithm to the total area bounded 

by the origin and the reference point. HVR results for each problem are summarized 

in Table 7.  
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Percentage1 shows the difference between HVR values divided by the HVR value 

found by the proposed algorithm and Percentage2 shows the difference between 

HVR values divided by the HVR values found by the random search.  

 

 

 

Table 7 Comparison with the random search 

 

 
NSGA-II

HVR 
Random

HVR 
Percentage1 Percentage2 

P3_1 0.7565 0.6751 10.76% 12.06% 
P3_2 0.7249 0.6880 5.09% 5.36% 
P3_3 0.6890 0.6508 5.54% 5.87% 
P4_1 0.6531 0.4664 28.59% 40.05% 
P4_2 0.6288 0.5142 18.23% 22.29% 
P4_3 0.6799 0.4906 27.84% 38.58% 
P5_1 0.7554 0.7266 3.80% 3.96% 
P5_2 0.8023 0.7608 5.17% 5.45% 
P6_1 0.7256 0.6196 14.60% 17.10% 
P6_2 0.6966 0.5790 16.88% 20.31% 
P7_1 0.8655 0.8289 4.23% 4.42% 
P7_2 0.8064 0.7755 3.82% 3.98% 
P8_1 0.7942 0.6870 13.49% 15.59% 
P8_2 0.7561 0.6394 15.43% 18.24% 

 

 

 

As can be seen from the table, proposed algorithm is always better than the random 

search. Moreover, the difference between two algorithms becomes significant when 

the problems are tight as can be understood from the percentages written in bold. 

When the resulting makespan and waste values are analyzed from Appendix F, it can 

be understood that especially total skills wasted are very high when compared to the 

values found by NSGA-II. This shows that proposed algorithm is good at satisfying 

person-job fit which ensures prevention of overqualification. 
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CHAPTER 5 

 

CONCLUSION 

 

 

In the literature, the project scheduling problem has attracted many researchers and 

there are many different kinds of studies that are documented in this area. In this 

study, an extension of Multi-Mode Resource-Constrained Project Scheduling 

Problem which is called Multi-Skill Project Scheduling Problem (MSPSP) with 

hierarchical levels of skills is focused on.  

 

Although most of the project scheduling problems deals with the makespan, cost, 

risk or other activity based objective, in this study in addition to the makespan 

objective, a motivation based objective is taken into account since human factor is 

very important in order to complete a project successfully. Therefore, while trying to 

minimize the makespan of the project, at the same time minimizing total wasted 

skills is aimed. By this way, it is tried to minimize the assignment of overqualified 

staff to the activities and satisfy person-job fit in order to prevent job dissatisfaction, 

which affects staff motivation directly. 

 

Biobjective MSPSP with hierarchical levels of skills has not been studied in the 

literature before. In order to solve the problem, a well-known Multiobjective Genetic 

Algorithm, NSGA-II is used. Four different parameter combinations are proposed for 

the heuristic and one of them is selected after analyzing full factorial design of the 

results in terms of both hypervolume ratio and elapsed time. Test problems are 

generated for the problems including 17, 32, 62 and 92 activities. 

 

Results of the proposed algorithm are compared with the GAMS results found by 

using a variation of  -constraint method for the problems including 17 activities. 

Since it takes a very long time to find all nondominated solutions by using GAMS, 

for larger problem sizes, results of the proposed algorithm are compared with the 

random search.  
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While comparing with GAMS, HVR values are near to 1 for minimum hypervolume 

results and always approximately 1 for maximum hypervolume results, which prove 

a very good approximation of the proposed algorithm. Moreover, the proposed 

algorithm requires very short time compared to GAMS. 

 

As for the larger problem sizes, the proposed algorithm is always better than the 

random search. Its performance is much better when the problem is tighter. When the 

results of the two algorithms are analyzed, it is seen that the proposed NSGA-II is 

very good at minimizing skill waste, which directly affects staff motivation.  

 

In conclusion, proposed NSGA-II is shown to be an effective and robust heuristic for 

the biobjective MSPSP with hierarchical levels of skills. As future search directions, 

performance of the heuristic can be observed for larger problem sizes and/or for 

different problem types such as containing scarce workers at specific skill types. 

Moreover, large-sized problems can be compared with other heuristics in addition to 

the random search and the ways to decrease the computational time can be analyzed. 

As for the problem environment, it can be assumed that the activity durations change 

depending on the skill types and levels of workers. Furthermore, how motivation of 

the worker changes depending on the other workers assigned to the same activity can 

be analyzed since this can also affect the activity durations. 

 

 

………
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APPENDIX A 

 

PSEUDO CODE FOR THE PROPOSED NSGA-II 

 
 

Define 

- P(i): Parent population in ith generation (size = pop) 

- C(i): Children population in ith generation (size = pop) 

- M(i): Mixed population in ith generation (size = 2 * pop) 

 

Initialize 

- Generate P(1) by  

o Selecting activities randomly among the eligible ones 

o Assigning workers randomly among the ones that owns a skill that 

the activity needs until all the skill requirements of the activity is 

satisfied 

 After worker assignment, all workers are checked whether 

they can be discarded or not. If possible, discard the 

worker(s) 

- Evaluate P(1) 

o Calculate makespan 

 Find early start and early finish of activity(j) by 

 ES(j) = max{finish time of  predecessors of 

activity(j)} 

 EF(j) = ES(j) + duration(j) 

 For all the activities scheduled before activity(j) (except 

from its predecessors), check whether ES(j) and EF(j) are 

between past_activity(k)’s start and finish times  

 If S(k)<=ES(j)<F(k) or S(k)<EF(j)<=F(k), check 

whether there is a common worker  

o If there is a common worker, set S(j)= F(k) 
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o If there is no common worker for all the 

past_activity(k), set S(j)= ES(j) 

 If EF(j)<=S(k) or ES(j)>=F(k) or  for all the 

past_activity(k), set S(j)= ES(j) 

o Calculate total wasted skills 

- Assign rank and crowding distance  

o Assign rank 

o Assign crowding distance 

 Assign infinity to extreme solutions 

 For other solutions, crowding distance is equal to 

summation of the following equation for makespan and 

total wasted skills: 

difference of two neighboring solutions in objective i 

      difference of the extreme solutions in objective i 

- Return P(1) as P(2) 

 

For (i=2 ; i<=generation number ; i++) 

 

- Crossover 

o Randomize P(i) as POPULATION1 

o Randomize P(i) as POPULATION2 

o For (j=1; j<population_size; j=j+4) 

 Choose individual(j) and individual(j+1) from 

POPULATION1 

 Tournament select parent1 among individual(j) and 

individual(j+1) 

o If  individual(j) dominates individual(j+1), 

select individual(j) 

o If  individual(j+1) dominates individual(j), 

select individual(j+1) 

o If they are nondominated 
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 If crowding_distance(j)> 

crowding_distance(j+1), select 

individual(j) 

 If crowding_distance(j)< 

crowding_distance(j+1), select 

individual(j+1) 

 If crowding_distance(j)= 

crowding_distance(j+1), select one 

of the individuals randomly 

 Choose individual(j+2) and individual(j+3) from 

POPULATION1 

 Tournament select parent2 among individual(j+2) 

and individual(j+3) 

 Choose individual(j) and individual(j+1) from 

POPULATION2 

 Tournament select parent3 among individual(j) and 

individual(j+1) 

 Choose individual(j+2) and individual(j+3) from 

POPULATION2 

 Tournament select parent4 among individual(j+2) 

and individual(j+3) 

 Perform crossover 

 For parent1 and parent2 

o With crossover probability perform one-

point or two-point crossover 

o Otherwise keep parent1 and parent2 as 

children 

 Perform crossover 

 For parent3 and parent4 

o With crossover probability perform one-

point or two-point crossover 

o Otherwise keep parent3 and parent4 as 

children 
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o Return child population C(i) 

 

- Mutation 

o For all activities of a child perform mutation with mutation 

probability 

 If the precedence relationships allow, replace the activity 

with the activity in the next position 

 Change all the workers assigned to the activity by selecting 

workers randomly among the ones that owns a skill that 

the activity needs until all the skill requirements of the 

activity is satisfied 

 After worker assignment, all workers are checked 

whether they can be discarded or not. If possible, 

discard the worker(s) 

o Return mutated C(i) 

 

- Evaluate child population C(i) 

 

- Merge P(i) and C(i) into mixed population M(i) 

 

- Perform nondominated sorting 

o Divide M(i) into fronts until having a population of size pop and 

assign crowding distance to all fronts 

 If the last front’s size is larger than the (pop-previous 

fronts) 

 Fill population with all individuals from the 

previous fronts and take the individuals from the 

last front in nonincreasing order of crowding 

distance 

 Otherwise fill the population with all the individuals 

o Return P(i+1) 
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APPENDIX B 
 

 
FILE NUMBERS FROM PSPLIB 

 

Table 8 File numbers from PSPLIB 

 
Problem 
Number 

File 
Number 

P1_1 j302_1 
P1_2 j302_2 
P1_3 j302_3 
P2_1 j3048_1 
P2_2 j3048_2 
P2_3 j3048_3 
P3_1 j301_1 
P3_2 j301_2 
P3_3 j301_3 
P4_1 j3033_1 
P4_2 j3033_2 
P4_3 j3033_3 
P5_1 j601_1 
P5_2 j601_2 
P6_1 j6033_1 
P6_2 j6033_2 
P7_1 j901_1 
P7_2 j901_2 
P8_1 j9033_1 
P8_2 j9033_2 

 
 
 
 
 
 
 
 
 
 
 

A 
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APPENDIX C 
 

 
GAMS RESULTS FOR P1 AND P2 

 

Table 9 GAMS results for P1_1 

 

Makespan 
Constraint <= 

Makespan
Total 
Waste

Time (Hrs) 

74 73 8 00:00:36 
72 32 8 00:01:59 
31 30 9 00:00:49 
29 29 10 00:01:00 
28 28 10 00:00:17 
27 26 11 00:00:05 
25 25 12 00:00:02 

24 INFEASIBLE 00:00:01 

Total Elapsed Time 00:04:49 

Hypervolume 8.657 
 

 

 

Table 10 GAMS results for P1_2 

 

Makespan 
Constraint <= 

Makespan
Total
Waste

Time (Hrs) 

80 80 7 00:01:14 
79 67 7 00:01:22 
66 50 7 00:02:41 
49 45 7 00:02:10 
44 35 8 00:09:24 
34 28 9 00:07:12 
27 25 10 00:00:17 

24 INFEASIBLE 00:00:01 

Total Elapsed Time 0:24:20 

Hypervolume 11.297 
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Table 11 GAMS results for P1_3 

 

Makespan 
Constraint <= 

Makespan
Total 
Waste 

Time (Hrs) 

88 80 9 00:01:39 
79 50 9 00:01:45 
49 45 9 00:00:28 
44 42 9 00:00:19 
41 40 9 00:00:09 
39 39 10 00:00:05 
38 38 10 00:00:20 

37 36 10 00:00:17 

35 35 11 00:00:43 

34 34 11 00:00:24 
33 33 11 00:00:25 

32 INFEASIBLE 00:56:30 

Total Elapsed Time 1:03:04 

Hypervolume 8.845 
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Table 12 GAMS results for P2_1 

 

Makespan 
Constraint <= 

Makespan
Total
Waste

Time (Hrs) 

80 79 68 00:09:11 
78 75 69 00:06:37 
74 73 68 00:08:39 
72 71 68 00:03:50 
70 68 68 00:04:25 
67 67 68 00:03:12 
66 65 68 00:02:23 
64 63 70 00:01:32 
62 62 68 00:03:02 

61 61 69 00:13:13 

60 54 71 00:12:50 

53 53 74 00:10:24 
52 51 69 02:01:44 
50 50 73 03:56:57 
49 49 72 03:57:15 
48 48 71 02:01:55 

47 47 76 15:05:44 

46 46 76 24:22:22 

45 45 73 09:33:22 
44 44 73 33:50:32 

43 INFEASIBLE 93:17:21 

Total Elapsed Time 165:26:30 

Hypervolume 9.824 
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Table 13 GAMS results for P2_2 

 

Makespan 
Constraint <= 

Makespan
Total
Waste

Time (Hrs) 

59 59 42 00:00:22 
58 55 42 00:01:20 
54 54 42 00:04:01 
53 42 42 00:00:49 
41 41 42 00:01:31 
40 40 42 00:00:39 
39 38 42 00:00:10 
37 37 42 00:07:54 
36 36 46 00:02:34 
35 35 46 00:17:54 
34 34 45 00:16:37 
33 33 45 00:03:59 
32 32 45 00:23:44 
31 31 48 00:49:36 
30 30 48 00:14:00 
29 29 49 00:00:16 

28 INFEASIBLE 34:23:19 

Total Elapsed Time 36:48:45 

Hypervolume 6.536 
 
 
 

Table 14 GAMS results for P2_3 

 

Makespan 
Constraint <= 

Makespan
Total 
Waste 

Time (Hrs) 

81 68 33 00:00:57 
67 57 33 00:00:20 
56 54 33 00:00:28 
53 53 33 00:00:11 
52 52 33 00:00:10 
51 47 33 00:00:33 
46 43 33 00:00:31 
42 42 36 00:04:33 

41 INFEASIBLE 54:13:31 

Total Elapsed Time 54:21:14 

Hypervolume 8.655 
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APPENDIX D 
 

 
NSGA-II RESULTS FOR P1 AND P2 

 

Table 15 NSGA-II results for P1_1 

 

Min HV Max HV 

HV 8.651 HV 8.657 

Time (Sec.) 65,64 Time (Sec.) 66,08 

Makespan Waste Makespan Waste 
36 8 32 8 
32 9 30 9 

28 10 28 10 

26 11 26 11 

25 12 25 12 
 

 

 

Table 16 NSGA-II results for P1_2 

 

Min HV Max HV 

HV 11.295 HV 11.297 

Time (Sec.) 65,13 Time (Sec.) 65,20 

Makespan Waste Makespan Waste
45 7 45 7 
37 8 35 8 

28 9 28 9 

25 10 25 10 
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Table 17 NSGA-II results for P1_3 

 

Min HV Max HV 

HV 8.833 HV 8.844 

Time (Sec.) 68,05 Time (Sec.) 68,66 

Makespan Waste Makespan Waste 
49 9 40 9 
39 10 37 10 

33 11 33 11 
 
 
 

Table 18 NSGA-II results for P2_1 

 

Min HV Max HV 

HV 7.937 HV 9.823 

Time (Sec.) 71,50 Time (Sec.) 71,81 

Makespan Waste Makespan Waste 

58 68 58 68 

53 69 53 69 

51 70 52 70 

  50 71 
  47 72 

  45 73 

  44 74 
 
 
 

Table 19 NSGA-II results for P2_2 

 

Min HV Max HV 

HV 5.896 HV 6.545 

Time (Sec.) 71,49 Time (Sec.) 71,39 

Makespan Waste Makespan Waste 

37 42 37 42 

36 43 36 43 

34 45 34 44 

32 47 31 45 

  30 46 

  29 49 
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Table 20 NSGA-II results for P2_3 

 

Min HV Max HV 

HV 8.436 HV 8.655 

Time (Sec.) 71,99 Time (Sec.) 71,42 

Makespan Waste Makespan Waste 

43 33 43 33 

  42 36 
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APPENDIX E 

 

COMPARISON OF PARETO FRONTS 

 
 

0

2

4

6

8

10

12

14

22 24 26 28 30 32 34 36 38

Makespan

T
o

ta
l W

as
te

GAMS

NSGA-II

 
 

Figure 11 Comparison of P1_1 for minimum HVR values 
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Figure 12 Comparison of P1_1 for maximum HVR values 
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Figure 13 Comparison of P1_2 for minimum HVR values 
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Figure 14 Comparison of P1_2 for maximum HVR values 
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Figure 15 Comparison of P1_3 for minimum HVR values 

 
 
 
 

0

2

4

6

8

10

12

30 35 40 45 50

Makespan

T
o

ta
l W

as
te

GAMS

NSGA-II

 
 

Figure 16 Comparison of P1_3 for maximum HVR values 
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Figure 17 Comparison of P2_1 for minimum HVR values 
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Figure 18 Comparison of P2_1 for maximum HVR values 
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Figure 19 Comparison of P2_2 for minimum HVR values 
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Figure 20 Comparison of P2_2 for maximum HVR values 
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Figure 21 Comparison of P2_3 for minimum HVR values 
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Figure 22 Comparison of P2_3 for maximum HVR values 
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APPENDIX F 
 

 
COMPARISON WITH THE RANDOM SEARCH 

 
 

Table 21 Comparison for P3_1 
 

NGSA-II Random Search 

Time (Sec.) 444,84 Time (Sec.) 444,84 

HVR 0,7565 HVR 0,6751 

Makespan Waste Makespan Waste 
56 3 55 37 

41 4 52 52 
39 5 49 57 

38 10 48 61 

  47 62 

  46 67 
 
 
 
 

Table 22 Comparison for P3_2 

 

NGSA-II Random Search 

Time (Sec.) 452,84 Time (Sec.) 452,84 

HVR 0,7249 HVR 0,6880 

Makespan Waste Makespan Waste 
61 14 65 48 

53 15 61 49 
48 16 60 50 

44 17 53 52 

42 19 50 55 

  48 58 
  46 67 

  43 68 
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Table 23 Comparison for P3_3 

 

NGSA-II Random Search 

Time (Sec.) 445,31 Time (Sec.) 445,31 

HVR 0,6890 HVR 0,6508 

Makespan Waste Makespan Waste 
59 8 55 39 

43 9 54 40 

  51 61 

  48 65 

  46 69 

  45 73 
 
 
 

Table 24 Comparison for P4_1 

 

NGSA-II Random Search 

Time (Sec.) 489,25 Time (Sec.) 489,25 

HVR 0,6531 HVR 0,4664 

Makespan Waste Makespan Waste 
74 54 103 124 
71 56 100 184 

62 60 98 208 

  94 211 
 
 
 

Table 25 Comparison for P4_2 

 

NGSA-II Random Search 

Time (Sec.) 492,45 Time (Sec.) 492,45 

HVR 0,6288 HVR 0,5142 

Makespan Waste Makespan Waste 
76 69 104 137 
69 70 100 164 

66 71 83 190 

60 73 81 205 

61 72 74 210 

59 76   
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Table 26 Comparison for P4_3 

 

NGSA-II Random Search 

Time (Sec.) 483,17 Time (Sec.) 483,17 

HVR 0,6799 HVR 0,4906 

Makespan Waste Makespan Waste 
64 58 85 145 
58 60 82 194 

56 61 76 197 

53 64   

51 66   

49 73   
 
 

 

Table 27 Comparison for P5_1 

 

NGSA-II Random Search 

Time (Sec.) 3.027,20 Time (Sec.) 3.027,20 

HVR 0,7554 HVR 0,72662 

Makespan Waste Makespan Waste 
95 55 95 173 
81 56 92 175 
79 63 91 192 
78 64 90 198 

77 66 83 202 

  82 211 

  79 219 
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Table 28 Comparison for P5_2 

 

NGSA-II Random Search 

Time (Sec.) 3.034,61 Time (Sec.) 3.034,61 

HVR 0,8023 HVR 0,7608 

Makespan Waste Makespan Waste 
87 31 90 99 
85 32 88 113 
82 33 83 114 
81 34 79 115 

77 36 78 129 
71 37 76 136 

69 40 73 138 

68 42   
67 48   
66 52   

65 56   
 
 
 
 

Table 29 Comparison for P6_1 

 

NGSA-II Random Search 

Time (Sec.) 3.718,67 Time (Sec.) 3.718,67 

HVR 0,7256 HVR 0,6196 

Makespan Waste Makespan Waste 
96 94 154 230 
93 97 152 312 
92 105 144 344 
91 120 142 361 

90 121 137 362 

  136 375 
  127 376 

  120 396 
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Table 30 Comparison for P6_2 

 

NGSA-II Random Search 

Time (Sec.) 3.746,58 Time (Sec.) 3.746,58 

HVR 0,6966 HVR 0,5790 

Makespan Waste Makespan Waste 
108 137 158 329 
106 142 147 472 
105 145 143 501 
101 151 141 503 

100 157 136 505 

  133 547 
 
 
 
 

Table 31 Comparison for P7_1 

 

NGSA-II Random Search 
Time 
(Sec.) 10.064,33 Time (Sec.) 10.064,33 

HVR 0,8655 HVR 0,8289 

Makespan Waste Makespan Waste 
77 77 106 185 
75 80 78 191 

74 81 77 244 

69 83   
68 93   
67 96   
66 99   

65 103   

64 106   
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Table 32 Comparison for P7_2 

 

NGSA-II Random Search 

Time (Sec.) 10.874,06 Time (Sec.) 10.874,06 

HVR 0,806369 HVR 0,775529 

Makespan Waste Makespan Waste 
102 107 126 222 
99 108 111 233 

95 109 110 257 
94 111 107 280 
93 115 106 285 
91 121 104 287 
90 124 102 296 

89 132 98 309 

88 143   
 
 
 
 

Table 33 Comparison for P8_1 

 

NGSA-II Random Search 
Time 
(Sec.) 13.647,59 Time (Sec.) 13.647,59 

HVR 0,7942 HVR 0,6870 

Makespan Waste Makespan Waste 
116 217 151 457 

113 220 134 525 

98 223   

97 242   
96 254   
95 261   
94 267   
92 283   

91 291   

90 308   
 
 
 

 

 



 80

Table 34 Comparison for P8_2 

 

NGSA-II Random Search 

Time (Sec.) 13.979,11 Time (Sec.) 13.979,11 

HVR 0,7561 HVR 0,6394 

Makespan Waste Makespan Waste 
141 318 175 626 

137 320 174 936 
129 321 173 977 

127 328 169 1024 

122 335   
121 346   
120 352   
119 358   

116 366   
 
 

 

 

 

 

 

 

 

 


