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ABSTRACT

COMPARISON OF DOMAIN-INDEPENDENT AND DOMAIN-SPECIFIC LOCATION
PREDICTORS WITH CAMPUS-WIDE WI-FI MOBILITY DATA

Karakoç, M̈ucahit

M.Sc., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Ahmet Coşar

Co-Supervisor : Dr. Murat Ali Bayır

September 2010, 57 pages

In mobile computing systems, predicting the next location of a mobile wireless userhas

gained interest over the past decade. Location prediction may have a wide-range of appli-

cation areas such as network load balancing, advertising and web page prefetching. In the lit-

erature, there exist many location predictors which are divided into two main classes: domain-

independent and domain-specific. Song et al. compare the prediction accuracy of the domain-

independent predictors from four major families, namely, Markov-based, compression-based,

PPM and SPM predictors on Dartmouth’s campus-wide Wi-Fi mobility data. As a result, the

low-order Markov predictors are found as the best predictor. In another work, Bayir et al.

propose a domain-specific location predictor (LPMP) as the application of aframework used

for discovering mobile cell phone user profiles.

In this thesis, we evaluate LPMP and the best Markov predictor with Dartmouth’s campus-

wide Wi-Fi mobility data in terms of accuracy. We also propose a simple method which

improves the accuracy of LPMP slightly in the location prediction part of LPMP. Our results

show that the accuracy of the best Markov predictor is better than that ofLPMP in total.

However, interestingly, LPMP yields more accurate results than the best Markov predictor
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does for the users with the low prediction accuracy.

Keywords: Location Prediction, Domain-Independent Location Predictors, Domain-Specific

Location Predictors, WLAN, Wi-Fi
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ÖZ

KAMPÜS-ÇAPLI KABLOSUZ AĞ(WI-FI) HAREKET VEṘISİ ÜZEṘINDE ALANDAN
BAĞIMSIZ VE ALANA ÖZGÜ YER KESṪIRİCİLERİNİN KARŞILAŞTIRILMASI

Karakoç, M̈ucahit

Yüksek Lisans, Bilgisayar M̈uhendislĭgi

Tez Yöneticisi : Doç. Dr. Ahmet Coşar

Ortak Tez Ÿoneticisi : Dr. Murat Ali Bayır

Eylül 2010, 57 sayfa

Gezgin bilgi işleme sistemlerinde, hareketli bir kullanıcının sonraki yerinin kestirimi geçen

on yılda ilgi topladı. Yer kestirimi ăg yük dengeleme, reklamcılık vëorün belgesïonceden

getirme gibi geniş çapta uygulama alanlarında yer bulabilir. Literatürde çok sayıda yer alan

kestiriciler iki ana sınıfa ayrılırlar: alandan bağımsız ve alanäozg̈u. Song ve ark. Markov-

tabanlı, sıkıştırma-tabanlı, kısmı̂ eşleştirmeyle kestirim (PPM) vëorneklenmiş̈orüntü eşleştirmesi

(SPM) olarak adlandırılan dört ana aileye mensup alandan bağımsız kestiricilerin kestirim

doğruluklarını Dartmouth’un kamp̈us-çaplı Wi-Fi hareket verisïuzerinde kıyaslar. Neticesinde,

düş̈uk dereceli Markov kestiricileri en iyi kestirici olarak bulunur. Diğer bir çalışmada ise

Bayır ve ark. hareketli cep telefonu kullanıcı profillerini ortaya çıkarmak için kullanılan bir

çerçeve yapının uygulaması olarak alanaözg̈u bir yer kestirici (LPMP)̈onermektedirler.

Bu tezde, Dartmouth’un kampüs-çaplı Wi-Fi hareket verisini kullanarak LPMP ve en iyi

Markov kestiricisini dŏgruluk açısından dĕgerlendiriyoruz. Ek olarak, LPMP’nin doğruluğunu

kısmen iyileştiren basit bir ÿontemi LPMP’nin yer kestirimi kısmındäoneriyoruz. Sonuçlarımız,

en iyi Markov kestiricisinin dŏgruluğunun toplamda LPMP’ninkinden daha iyi olduğunu

gösteriyor. Fakat, ilginç bir şekilde düş̈uk kestirim dŏgruluğuna sahip kullanıcılarda LPMP
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Markov kestiricisinden daha doğru sonuçlar̈uretmektedir.

Anahtar Kelimeler: Yer Kestirimi, Alandan Bağımsız Yer Kestiricileri, AlanäOzg̈u Yer Ke-

stiricileri, Kablosuz Ăg, Wi-Fi
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CHAPTER 1

INTRODUCTION

Wireless networks allow a more flexible communication model than traditional wireline net-

works since the user is not limited to a fixed physical location [31]. As a result, mobile

wireless communication has showed a significant increase in popularity overthe past decade.

Wireless communication devices are becoming increasingly ubiquitous and the number of

devices people are willing to carry around is increasing rapidly [25].

The wireless devices are generating many huge mobility data all over the worldin each sec-

ond. Inevitably, those data have attracted the attention of the researchersworking on the

data mining field. Then, many works have focused on how mobility path information can be

extracted from the mobility data.

Mobility path information can be used to predict the future location(s) of a user. This is called

location prediction. The results of location prediction may be input to a wide-range of appli-

cation areas such as network load balancing [21], advertising [20] andweb page prefetching

[35]. With a location predictor, the applications from the different areas can provide services

or information based on the user’s next location. For example, a student with a smart-phone

takes a photo of his classmates after a class and wishes to print it. The printingapplication

in his phone may suggest the printers near his current and next predicted location. While the

student walks across the campus, his photo has already printed by the selected printer [30].

Obviously, accuracy which means predicting the user’s next location correctly is an important

issue in measuring the benefit of a location predictor. In literature, there are several location

predictors which have been proposed to obtain better accuracy. Chenget al. [10] divide the

location predictors into two broad classes: domain-independent and domain-specific. The
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domain-independent location predictors rely on just the past location movements (location

history) of a user to predict his/her next location. They infer some statistical results using

different methods such as Markov analysis and text-compression algorithms. Then, with the

help of those results, the user’s next location is predicted. In contrast, the domain-specific

location predictors do not rely on just the location history. The history is partitioned based on

the semantics of the location prediction domain. For example, if the user stays ata location

a significant amount of time, that location may be a delimiter for the location history.The

location coordinates and the geometry of user motion can be used as well as the time context

in the example [30, 10].

Song et al. [30] compare the prediction accuracy of the several locationpredictors from

four major families of domain-independent predictors on Dartmouth’s campus-wide Wi-Fi

mobility data [18]. The four major families are [30]:

• Markov Family: The order-k (or ”O(k)”) Markov predictor assumes that the user’s

next location can be predicted from the currentcontextthat is the most recentk symbols

in the location history.

• LZ Family: These are the predictors based on incremental parsing algorithm by Ziv

and Lempel [36] often used for text compression.

• Prediction by Partial Matching (PPM): A data compression scheme, often used in

text compression [11], blends a set of different order context models, which are built as

O(k) Markov models, from 0 to k.

• Sampled Pattern Matching (SPM): Unlike O(k) Markov predictors using a fixed

value of the context lengthk, SPM predictors determine the context length by a fixed

fraction of the longest context that has been previously seen.

Darmouth’s campus-wide Wi-Fi mobility data [18] contains two-year record of the user move-

ments with 6,202 users and 12,218,093 moves. The number of moves for different users has

a wide-range with a median of 494 and a maximum of 188,479. Using this data, Song et

al. [30] reached that the simple low-order Markov predictors worked aswell or better than

the more complex compression-based predictors. As a result, they identifiedO(2) Markov

f allbackpredictor as the best for Dartmouth’s data.
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Bayir et al. [3] designed and implemented a framework, theMobility Profiler , for discover-

ing the mobility profiles of the mobile cell phone users starting from cell based raw location

data. We will call that type of data as thetimed-locationhistory. Basically, the Mobility Pro-

filer partitions the timed-location history intomobility paths and generatesmobility patterns

from mobility paths taking the topology into consideration. Finally, it finds the patterns with

the maximum lengthsupportedby a required number of the mobility paths. Those patterns

are called asmaximal frequent patterns. However, for the location prediction, we are not

interested in finding the maximal frequent patterns as we will see. Therefore, we removed

this and similar unnecessary parts from our implementation of Mobility Profiler. In addition,

we implemented a simple method we propose in the location prediction phase. Consequently,

we call our implementation asLocation Predictor Via Mobility Profiler Framework (LPMP).

Since LPMP benefits the time-context -while partitioning the location history- in addition to

the location history, we classify it as a domain-specific predictor.

As a part of this thesis, we implemented LPMP and modified the implementation of a ready-

to-use Markov predictor slightly. We compared LPMP and the best Markovpredictor in terms

of the prediction accuracy. Due to the exponential nature of LPMP, we had to sample Dar-

mouth Wi-Fi mobility data. We made our experiments on this sampled data. We experimented

all parameters of LPMP in all ways. We examined how training affects the accuracy perfor-

mance of the two predictors. We also applied a clustering method on data and then compared

the predictors again. After the experiments, we found that the accuracy of the best Markov

predictor is better than that of LPMP in total. However, interestingly, LPMP yields more

accurate results than the best Markov predictor does for the users with the low prediction

accuracy.

The main contributions of this thesis are listed as follows:

• A domain-independent predictor (Markov) and a domain-specific locationpredictor

(LPMP) are compared on an empirical data in terms of the accuracy for the first time.

We could not find such a work in the literature.

• We show that the best Markov predictor outperforms a domain-specific predictor in to-

tal. However, interestingly, LPMP yields better results for the users with low accuracy.

• We analyze all parameters of LPMP and how they affect the accuracy.

3



• In the location predicton part, we proposeall-w(AW) approach which improves the

accuracy of LPMP. In addition, in bothfallback-w(FW)and AW approaches, we use

theempty patternconcept which also improves the accuracy of LPMP.

• We show the relation between the accuracy and the trace length for LPMP. It has a

relationship similar to the one in Markov predictors.

• We observe that LPMP is more successful for Wi-Fi users than for GSMusers.

The thesis is organized as follows. In Chapter 2, we make the definitions of terms and metrics

used in the thesis and present the domain-independent predictors which has been evaluated on

the data which we use before. In this chapter, lastly, we explain which domain-independent

predictor is the best with the reasons. In Chapter 3, we present the related work for this thesis.

The works related with the location prediction will be in our focus.

In Chapter 4, we explain LPMP with the algorithms for its each phase. Furthermore, we

propose a simple method in the location prediction phase of LPMP.

In Chapter 5, we evaluate LPMP and compare it with the best domain-independent predictor

in terms of accuracy. We examine all of the parameters of LPMP in many ways.In addition,

we study the effects of training and clustering on accuracy. Also we analyze the effect of the

time based probability with different time-slices. Finally, in Chapter 6, we conclude the thesis

and discuss about some possible future works.
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CHAPTER 2

BACKGROUND

In this chapter, we summarize how O(2) Markov fallback predictor was found as the best

domain-independent predictor. To do that, we define what we mean by location. We explain

how empirical data set we used in our evaluation was collected and also how the domain-

independent predictors from four major families work. We give the definitions of the metrics

used in comparing the domain-independent predictors. In the last section,the evaluation

which has been done during the process of determining the best domain-independent predictor

is summarized. Before moving on to the sections, we should point out that this chapter is an

extensive summary of the work of Song et al [30]. We adopt the notation and terminology

from that work.

2.1 Location

In the context of the thesis, alocation is an access point(AP) where the user’s device is

registered. All possible locations are listed in a finite alphabetA. Any location is represented

as a symbola drawn from that alphabet. The sequence of locations a user visited is called as

his location historywhich is a string of symbols. If the history hasn locations,Ln = a1a2...an

for 1 ≤ i ≤ n whereai ∈ A. The data we used is a sequence of locationchangeswith ai , ai+1.

Those location changes are also called asmoves.
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2.2 Data Collection

Dartmouth’s campus-wide Wi-Fi mobility data [18] is a processedmovement data. The raw

data containedsyslogmessages which the access points transmitted when the client cards

associated, re-associated, or disassociated. Each syslog message contained just the unique

MAC address of the client card. As a result, only MAC addresses were known and saved.

There might be some cases that a single card might be used by the multiple devices or the

multiple people. Song et al. [30] ignore this fact intentionally and the termuser refers to a

wireless card, and vice versa, in the comparison of the domain-independent predictors. In our

work, we will also make our evaluation based on this assumption.

Dartmouth’s raw data was recorded from April 2001 through March 2003. The works [17, 15]

explain the details of this process. Darmouth’s movement data extracted fromthe raw data

contains a series of locations with time information for each user’s trace like in Table 2.1. As

seen in table, it also introduces a special locationOFF to represent the user’s departure from

the network somehow.

Table 2.1: A sample user trace

Time (in Unix timestamp) Location(AP)
1008253217 AcadBldg12AP2
1008253716 AcadBldg25AP4
1022867758 AcadBldg20AP1
1022868237 OFF

Statistically, the median length, which is the number of the location in the sequence, of the

traces is 494 and its maximum is 188,479. In order to analyze data in terms of the length, the

traces were also grouped asshort with 100 or fewer moves,mediumwith 101-1,000 moves

andlongwith over 1,000 moves.

2.3 Domain-Independent Predictors

There are two types of the location predictors: domain-independent and domain-specific.

While partitioning the location history, whereas the domain-independent predictors rely on

just it , the domain-specific ones use domain information such as time, coordinates and ge-
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ometry of the location [30, 10]. During the rest of this section, the four majorfamilies of

the domain-independent predictors, namely, Order-k Markov, LZ-Based, PPM and SPM are

explained. Those predictors are alsoonline predictors, ”which examine history so far, extract

the current context, and predict the next location”. After each location, the predictor updates it

internal tables and predicts the next location with the help of this new state [30]. Our domain-

specific predictor we will mention in Chapter 4 is an online predictor, too. In theevaluation

of the predictor, we will also care and keep this property.

2.3.1 Markov Family

The predictors of the order-k (or ”O(k)”) Markov family predict the next location with the

help of the currentcontextwhich is the sequence of thek most recent symbols in the location

history L if possible. Using the current contextc of lengthk, the probability for the next

location to bea is calculated with the equation below:

Pk(a) =
N(ca, L)
N(c, L)

(2.1)

In Equation 2.1,N(s′, s) denotes the number of times the substrings′ occurs in the strings. If

c has never occurred before the current context, the equation evaluates to 0/1 = 0 for all a, and

O(k) Markov predictor cannot predict any location. Otherwise, it predicts the location with the

highest probability; that is, the location that most frequently followedc in the history. Note

thatO(0) Markov predictor returns the location most frequently seen inL since the context is

empty andk = 0.

Example: We useO(2) Markov predictor and the history isL = abcdabdababcab. The

current context (last 2 locations of the history)ab has seen 5 times(including itself) in the

history. The probabilites would be 1/5, 2/5, 1/5 for a, c, d, respectively. Therefore, it predicts

the locationc with the highest probability.

2.3.2 LZ Family

Song et al. [30] state that LZ-based predictors, which are often used for text compression,

seem promising since most good text compressors are good predictors [33] and LZ-based
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predictors are like theO(k) Markov predictor except thatk can grow to infinity [6].

LZ parsing algorithm partitions the input strings into distinct substringss0, s1, . . . , sm such

that s0 = γ (empty string) and, for allj > 0, substringsj without its last character is equal

to somesi , 0 ≤ i < j and s0s1 . . . sm = s. For example,s = gbdcbgcedbdbdeis parsed as

γ,g,b,d, c,bg, ce,bd,bde. LZ treewhose each node represents one subtringsi is built as in

Figure 2.1.

γ

g:1 b:4

g:1 d:2

e:1

d:1 c:2

e:1

f:1

s= gbdcbgce f dbdbde
si = γ,g,b,d, c,bg, ce,bd,bde

Figure 2.1: Example LZ parsing tree

γ

g:2 b:4

g:1 d:2

e:1

d:3

e:1

c:2

e:1

e:2

s= gbdcbgcedbdbde
si = γ,g,b,d, c,bg,e, ce,bd,de,bde

Figure 2.2: Example LZP parsing tree

Song et al. [30] explain the parsing mechanism for LZ tree like that: ”If anychild of the

current node (initially, the root) matches the first symbol ofs, remove that symbol froms

and step down to that child, incrementing its counter; continue from that node, examining the

next symbol froms. If the symbol did not match any child of the current node, then remove

that symbol froms and add a new child to the current node, labeled with that symbol and

counter= 1; resume parsing at the root with the now shorter strings”.

Song et al. [30] state that while several predictors based on the LZ parsing algorithm have

been proposed in the past [1, 19, 13], they evaluate three of those predictors.
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• Basic LZ Predictors: The probability for the next location to bea is calculated with

the equation below:

Pk(a) =
NLZ(sma, L)
NLZ(sm, L)

(2.2)

In Equation 2.2,N(s′, s) denotes the number of times the substrings′ occurs as a prefix

among the substringss0, . . . , sm of L. If there is no such substring starting withsm

except itself, LZ cannot make any prediction. Otherwise, it predicts the locationa with

the highest probability.

In an online implementation of LZ predictors, after parsing the current location through

the LZ tree, the algorithm stops at a node in the tree. If exists, it predicts the location

in the child with the highest counter, which means the highest frequency of past occur-

rence.

• LZP (LZ + Prefix): Since not every substring inL forms a nodesi , the cross bound-

aries ofsi are missed. In such cases, although enough information exists to make a

prediction, an LZ predictor cannot make any prediction. To overcome this problem,

Bhattacharya and Das [6] proposed the following modification. ”When a new leaf is

created forsi , all the proper suffixes ofsi are also inserted in the tree. If a node repre-

senting a suffix does not exist, it is created, and the occurrence counter for every prefix

of every suffix is incremented” [30]. Figure 2.2 shows the constructed LZP tree for

s= gbdcbgce f dbdbde.

• LeZi (LZ + Prefix + PPM): In this version, the setSm of the proper suffixes is con-

structed for a leaf stringsm and the LZP tree is updated. Then, for each such suffix,

all the paths originating from the subtree rooted at the suffix are found. Finally, the

PPM algorithm (see Subsection 2.3.3) is applied to those paths and finds the most prob-

able location(s) based on each path’s weight (number of occurrences) using the their

predicted probabilities.

2.3.3 PPM

Like LZ-based predictors, Prediction by Partial Matching (PPM) is also used for text com-

pression [11].Order− k (or O(k)) PPM uses all contexts (identical tocontextterm in Markov
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predictors) whose length is between 0 and k. It builds a fixed-order Markov model for each

context. Those models are combined using theescapeprobabilities, which are the probabil-

ities of encountering previously unseen symbols. Song et al. [30] useMethod C[5] in their

implementation. According to this method, the escape probability fork-symbol context is

Ek =
Ne

N
(2.3)

whereNe is the number of escape events which is equal to the number of different symbols

that have been seen in the context so far andN is the total events which is equal to the number

of all symbols that have been seen in the context so far.

Then, for alla ∈ A, theO(k) PPM probability is

P(xn+1 = a|L) = Pk(a) +
k
∑

i=1

Pk−1(a)Ek (2.4)

wherePk is the probability computed using theO(k) Markov model (see Equation 2.1).

2.3.4 SPM

Sampled Pattern Matching (SPM) algorithm is a predictor proposed by Jacquet et al. [16].

SPM is similar toO(k) Markov. However, this time, the context lengthk is not fixed. Instead,

it is determined by a fixed fraction (α) of the longest context that has been previously seen.

SPM finds the longest suffix of L that has occurred previously. This suffix is called as maximal

suffix (d). Only the fractional suffix (c) with the length-⌈α · |d|⌉ of the maximal suffix is used

for prediction purpose. The next predicted charactera is

argmaxa∈AN(ca, L) (2.5)

whereN(s, L) is the number of times the stringsoccurred in the historyL.

Example: The history isL = abcdabdababcab. As a result, the maximal suffix is ab. If we

takeal f a = 0.5, the fractional suffix becomesb. Sincea, c, d follows b once, twice and once

respectively. Therefore, SPM predicts the locationc.
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2.4 Metrics

Before the definitions of the metrics, we should explain how Song et al. [30]break ties when

two or more locations have the same probability. They implemented three tie-breakmethods:

• First added: The first location added to the data structure is predicted; that is, first one

seen in the history.

• Most recently added: The location that was most recently added to the data structure

is predicted.

• Most recent: The location that was most recently seen is predicted.

Since the results showed that most of the users had less than about 10% ofall predictions and

the effects of the the choice of a tie-breaking method on the results were negligible, Song et al.

[30] preferred to usefirst addedmethod in their experiments. In Chapter 5, we will mention

how we break the ties for LPMP, too.

2.4.1 Accuracy Metric

The predictors may return three possible values for the next location:

• correct location

• incorrect location

• no prediction

In our evaluation, we countno predictioncase as an incorrect prediction as Song et al. [30]

do. Accuracyis calculated with the equation:

accuracy=
Nc

Na
(2.6)

whereNc is the number of the correct predictions andNa is the number of all moves. For

O(1) Markov predictor, an example of the accuracy calculation is depicted inTable 2.2. We
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will use the righmost bold value in the table asoverall accuracy. While saying that a user has

some percentage accuracy, we will mean the overall accuracy.

Table 2.2: Example accuracy calculation forO(1) Markov predictor

History a b a b c a b
Prediction NP NP NP b a NP b
Accuracy 0/1 0/2 0/3 1/4 1/5 1/6 2/7

2.4.2 Median Running Accuracy Metric

Song et al. [30] define themedian running accuracy (MRA)as ”at each stepi, for each trace

that has length at leasti, we compute the average accuracy at each step by dividing the number

of correct predictions so far byi. There are generally several traces that have length at least

i; for each stepi, we find the median accuracy among all such traces and call it the median

running accuracy”. This metric shows the relation between accuracy andtrace length. For

O(1) Markov predictor, an example of the median running accuracy calculation is depicted in

Table 2.3.

Table 2.3: Example median running accuracy calculation forO(1) Markov predictor

Trace 1
History b d b d
Prediction NP NP NP d
Accuracy 0/1 0/2 0/3 1/4

Trace 2
History c e c d c
Prediction NP NP NP NP NP
Accuracy 0/1 0/2 0/3 0/4 0/5

Trace 3
History f g f g f g
Prediction NP NP NP g f g
Accuracy 0/1 0/2 0/3 1/4 2/5 3/6

Trace 4
History a b a b c a b
Prediction NP NP NP b a NP b
Accuracy 0/1 0/2 0/3 1/4 1/5 1/6 2/7

S tep 1 2 3 4 5 6 7
MRA 0 0 0 1/4 1/5 2/6 2/7
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2.5 The Best Domain-Independent Predictor

Song et al. [30] compared the accuracy ofO(0) Markov with that ofO(1), O(2), O(3) and

O(4) Markov predictors. They found that the high-orderO(3) andO(4) predictors were worse

thanO(2). Since the context length increases, the number of samples decreases. This causes

no predictioncases to increase. They reached this inference by usingconditional accuracy

that ignores the unpredicted moves. In that metric, the accuracy equals to the number of

correct predictions divided by the number of predictions (not moves). Using that metric,

O(4) outpredicted the other Markov predictors. Due to this inference, theyused f allback

mechanism which is simply based on the recursive use of the result ofO(k − 1) predictor

(with k = 0 as the base of recursion) whenO(k) fallback predictor encounters an unknown

context. The fallback property improved the accuracy of the predictors.In the experiments,

O(2) Markov fallback predictor performed the best.

Assigning weights according to therecencyof occurrence in the past was also experimented.

The most recent seen transition is weighted by 1 whereas the others are weighted by 0. As a

result, the originalO(2) frequency-weighted Markov predictor with the fallback had the best

outcome.

Due to the thought that people also move in temporally regular patterns,Time-aided Markov

predictor was developed. For that predictor, time of day was quantized in one-minute and

one-hour buckets. The predictor’s state was a pair: (location, time). However, this predictor

could not outperform originalO(2) Markov fallback location predictor, too.

O(2) Markov predictor was also compared with the versions of LZ mentioned inSubsection

2.3.2, PPM and SPM predictors. OnlyO(2) PPM and SPM withα = 0.5 had an accuracy

negligibly better thanO(2) Markov fallback predictor. Therefore, Song et al. [30] determined

O(2) Markov with fallback as the best overall domain-independent predictor that was simple

to implement, had relatively small table size, and had the best overall accuracy.
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CHAPTER 3

RELATED WORK

A novel location predictor based Markov family of predictors has been proposed by Sun

and Blough [32]. Although this predictor uses a future location list obtainedfrom differ-

ent available sources such as Microsoft Outlook, Lotus Notes and Google Calendar, it is a

domain-independent location predictor since it does not partition the locationhistory using

any semantic interpretation. They used the same data [18] we used in their experiments and

they reached that their location predictor can improve the prediction accuracy by 3% and

95% over the history Markov predictors and the improvement mainly depends on the user’s

mobility behavior and how much future knowledge is available.

In [35], a data mining approach similar to LPMP has been compared withMobility Prediction

based on Transition Matrix[28] and Ignorant Prediction[6]. Unlike LPMP, that approach

calculates the support of a pattern by a path as follows:

S upport(I ,A) =



























1
1+totDist, if the elements ofI are contained by the pathA in the same order

0, otherwise

(3.1)

In Equation 3.1,totDist is the optimal(lowest) value for the total of the mismatches between

A and I. LetA =< 1,2,3,4,5,4 > andI =< 2,4 >. According to LPMP, the patternI is not

supported by the pathA sinceA does not contain the elements ofI consecutively. Therefore,

the support of I by A becomes 0. However, the approach in [35] yields apartial support for

the patternI .
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Table 3.1: An alignment example

A 1 2 3 4 5 4
I - 2 - 4 - -
I - 2 - - - 4

As seen in Table 3.1, there are two possible alignments forI . totDist equals to 1 and 3 for the

first and second alignment, respectively. Since the approach selects thefirst alignment which

is the optimal one,A supportsI with 1/(1+ 1) = 0.5.

In [35], the support parameter was also evaluated in the experiments. As the support threshold

increased, the accuracy decreased. This result is also valid for LPMP.

Chan et al. [8] compared five basic prediction algorithms based on individual mobility pat-

terns:

• Location Criterion: Using the user’s present location and the departure history of

that location, it predicts the user’s next move. The most frequently visited location is

predicted as the user’s next location.

• Direction Criterion: In addition to the Location Criterion, the user’s direction infor-

mation is used. Only the locations in the user’s direction are taken into accountfor the

departure history. The location with the highest departure rate is predictedas the user’s

next location.

• Segment Criterion: It extends the Direction Criterion further. All previous movements

are partitioned into a number of segments and then stored. A segment starts and ends

with a stationary cell in which the user stays for a sufficiently long time. The algorithm

tries to match the segment currently under construction with the stored segments. If

the present segment is matched with the initial portion of a stored segment, the location

immediately after that initial portion is predicted as the user’s next location.

• Bayes’ Rule: It also extends the Direction Criterion so that all departure histories along

the future direction of travel are considered. For a location which is two hops away from

the present location, the Bayes’ Rule [34] formula can be expressed as:
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P(Ai−1Ai Bx|Cm) =
P(Ai−1Ai Bx) × P(Cm|Ai−1Ai Bx)

n
∑

j=1

P(Ai−1Ai Bj) × P(Cm|Ai−1Ai Bj)

(3.2)

whereAi−1 andAi are the previous and present locations,Bx is the xth possible next

move,Cm is the most likely step for visit two hops away andn is the total number of

possible next moves. After the calculations, the location with the highest probability is

predicted as the user’s next location.

• Time Criterion: It emphasizes the temporal mobility patterns and imposes the time of

cell crossing into the Direction Criterion.

The algorithms above are criticized by [9] since they rely solely on the historyof individ-

ual movement patterns and do not reflect the recent changes in the userbehavior. Doss et

al. [9] classify the prediction schemes which has been proposed to overcome that drawback

broadly into two classes: the schemes employing individual user mobility information and the

schemes employing group mobility patterns. They review many prediction schemes such as

the Mobility Motion Prediction Algorithm [23], the Regular Path Recognition Method [12],

the Shadow Cluster Scheme [22], the Hierarchical Position Prediction Scheme [24] and the

Neural-Network Based Prediction Algorithm [27] from different approaches.

Gonzalez et al. [14] studied the real-time trajectory of 100,000 anonymous cell-phone users

(selected randomly from more than 6 million users) whose position is tracked for a six-month

period. According to Gonzalez et al., human trajectories show a high degree of temporal and

spatial regularity, defined as the probability of finding the user in his most visited location

during a certain hour [29], in contrast with what Levy flight and randomwalk models [7]

propose. They ranked each location depending on the number of times a user was recorded in

its vicinity. For instance, a location whose rank(L) is 3 refers the third-most-visited location

for the selected user. Using those ranks, they observedP(L) ∼ 1/L whereP(L) is probability

of finding a user at a location with a given rankL. Moreover, this outcome was independent

of the number of locations visited by user. Therefore, this means that people spend most of

their time in a few locations. Moving from that point, they reached a conclusionindicating

that despite the diversity of their travel history, humans follow simple reproducible patterns

regardless of time and distance.
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In another work, Song et al. [29] focused on the limits of predictability, which refers to the

probability of foreseeing a user’s future whereabouts in the next hourbased on his previous

trajectory, in human mobility. They studied three months of the mobility patterns belonging to

50,000 anonymous cell phone users selected randomly from 10 million users. They measured

the entropy of each user’s trajectory and found that despite the significant differences in their

travel patterns, most people had a 93% predictability regardless of how many kilometers they

travel. In addition, they explored that the regularity (same as [14]) and predictability were not

affected significantly by demographic factors such as age, gender and language groups.
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CHAPTER 4

LOCATION PREDICTOR VIA MOBILITY PROFILER

FRAMEWORK

In this chapter, we will explain how we converted Dartmouth’s data [18] into the format of

Location Predictor Via Mobility Profiler Framework (LPMP). In addition, we will explain

how LPMP works [4] and how we implemented it. We note that the work of Bayir et al. [4]

is the main source of this chapter.

4.1 Preliminaries

4.1.1 Data Conversion

We showed how each user’s trace were recorded in Table 2.1. Information in the table is

enough to be used by LPMP but its format is not suitable for LPMP. We converted data into

the format as in Table 4.1.

Table 4.1: A sample user trace in the format of LPMP

Start Time End Time Cell
1008253217 1008253716 AcadBldg12AP2
1008253716 1022867758 AcadBldg25AP4
1022867758 1022868237 AcadBldg25AP4
1022868237 1022868237 OFF

The conversion was done as follows. We renamedTime, Location columns asStart Time

andCell respectively. We added a new column namedEnd Time. We filled the value of that

column withStart Timevalue of the next record. For the last record, we just putStart Time
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value asEnd Timevalue. In fact, this value does not make any sense for the last record since

the last cell is always an end-location as we will see in Subsection 4.2.1. We call each record

as thecell span record.

4.1.2 Overview of Location Prediction Process

The location prediction process starts with thepath construction phase. In this phase, the

paths representing a user’s travel from one end-location to another are constructed. After this

phase, Bayir et al. [4] apply alsocell clusteringagainst theping-pong effect [21] which we

will mention in the clustering experiments (see Section 5.5. Although we will not cluster data

in our experiments except the clustering ones, after the path construction phase we will also

useclusterterm in place ofcell term (AP location).

The second phase is the topology construction. In fact, this phase has not any effects on the

accuracy of LPMP. It is used just to make thepattern discoveryphase more efficient. In the

pattern discovery phase, the frequent mobility patterns are discovered.Then, in thelocation

predictionphase, those patterns are used to predict the user’s next location.

4.2 Location Predictor

In this section, we go into the details of the four phases of LPMP.

4.2.1 Path Construction

Before we mention how the phase works, we list the definitions [4] requiredfor the phase:

Definition(Cell Duration Time): Cell duration time is the difference between end and start

time for each cell span recordL that shows how many seconds the user connected to the

specified AP and calculated with:

Lk
dur = Lk

end− Lk
start (4.1)

whereLk
dur, Lk

end, Lk
start are the cell duration time, the connection end time and the connection
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start time forkth cell span record, respectively.

Definition(Cell Transition Time): Cell transition time is the difference between the end time

and the start time of two consecutive cell span records and calculated with:

Lk
tra = Lk+1

start − Lk
end (4.2)

whereLk
dur, Lk

end, Lk
start are thekth cell duration time, the connection end time forkth cell span

record and the connection start time for (k+ 1)th cell span record, respectively.

Definition(Observed End-Location): A cell span record whose duration timeLk
dur is greater

than the predefined thresholdδduration is called as an observed end-location record:

Lk
dur > δduration (4.3)

Definition(Hidden End-Location): A location which is between two consecutive cell span

recordkth and (k+ 1)th and the user stayed longer than a predefined upper boundδtransition in

is called as an hidden end-location:

Lk
tra > δtransition (4.4)

In our evaluation of LPMP, we do not use this type of end-location since thespecial location

OFF (see Section 2.2) is introduced in our data and thus, the transition time is alwayszero.

However, for the sake of the completeness, we mention and use it in this chapter.

Definition(Mobility Path): An ordered sequence of the cells that a user visited during her

travel from one end-location to another is called as a mobility pathC = [C1,C2,C3, . . . ,Cn].

A mobility path must satisfy the following two rules:

• End Location Rule: ∀Ck ∈ C, Lk
dur > δduration⇒ k = 1 or k = |C|

• Transition Time Rule: ∀Ck,Ck+1 ∈ C⇒ Lk+1
start − Lk

end≤ δtransition
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1: δdur ← Duration time threshold

2: δtra ← Transition time threshold

3: L← Cell Span Record set{Sorted by time; Cell Span Record structure: (start, end, cell)}

4: tempPath← ∅ {Cell Span Record set}

5: fset← ∅ {Output; final Path set}

6: for all Cell span recordLi in L do

7: duri ← endi − starti

8: if duri ≤ δdur then

9: if tempPath, ∅ then

10: if starti −GetEndTime(tempPathlast) ≤ δtra then

11: tempPath← tempPath∪ [Li ]

12: else

13: fset← fset∪ tempPath

14: tempPath← [Li ]

15: end if

16: else

17: tempPath← [Li ]

18: end if

19: else

20: if tempPath, ∅ then

21: if starti −GetEndTime(tempPathlast) ≤ δtra then

22: tempPath← tempPath∪ [Li ]

23: end if

24: fset← fset∪ tempPath

25: end if

26: tempPath← [Li ]

27: end if

28: end for

29: if tempPath, ∅ then

30: S← S ∪ tempPath

31: end if

Algorithm 4.1: Mobility Path Construction
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In order to show how Algorithm 4.1 works, we run the algorithm on data in Table 4.2 [4] with

δduration = 7 andδtransition = 5. In the table,Tstart, Tend, Tdur andTtra are start time, end time,

duration time and transition time, respectively.

The algoritm creates an initial path containing only the first cell [C1]. Then, sinceTdur >

δduration for move= 4, the algoritm terminates the current path [C1,C2,C3,C5].

Since the end-location [C5] is an observed end-location, it becomes the initial cell of the new

path. This time, sinceTtra > δtransition for move= 7, the algorithm terminates the current path

[C5,C3,C1] not appending the current cell [C2]. The inequalityTtra > δtransition states that

the user enters a hidden location after cellC1. Thus,C2 cannot be appended to the previous

path and a new path [C2] is initalized. After all records are exhausted, the algorithm stops and

returns the mobility paths in Table 4.3.

Table 4.2: An example cell span data set

move Tstart Tend Tdur Ttra cell
1 0 4 4 -1 C1

2 6 9 3 2 C2

3 9 13 4 0 C3

4 15 23 8 2 C5

5 23 27 4 0 C3

6 27 30 3 0 C1

7 41 45 4 11 C2

8 49 50 1 4 C3

9 56 58 2 6 C1

10 58 61 3 0 C3

11 62 66 4 1 C4

Table 4.3: Reconstructed path set

PathId Path
1 [C1,C2,C3,C5]
2 [C5,C3,C1]
3 [C2,C3]
4 [C1,C3,C4]
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4.2.2 Topology Construction

This phase does not affect the accuracy of LPMP but may expedite the pattern discovery phase

with the exponential time complexity by eliminating majority of candidate path sequences.

One scan through the mobility paths is enough to construct the topology graph. During this

scan, an edge between the cell cluster pairsCk andCk+1 is created if both of them exist in any

path in consecutive positions. Algorithm 4.2 contains a pseudocode explaining this phase.

1: S← Path Set{in terms of clusters}

2: Link← ∅ {Output; topology matrix}

3: for all PathSi in S do

4: for all ClusterCk andCk+1 in Si do

5: Link[Ck][Ck+1] ← true;

6: end for

7: end for

Algorithm 4.2: Topology Construction

4.2.3 Pattern Discovery

In this phase, a modified version of AprioriAll [2] algorithm, which is called asSequential

Apriori algorithm, is used to discover the frequent mobility patterns from the mobility paths.

According to this algorithm, if one’s items of the two sequences are found inside the other in

a consecutive order, there exists support relation between the two sequences. For example,

the sequence< 1,2,3 > does not support< 1,3 > since 3 does not follow 1 consecutively in

< 1,2,3 >. There is a 2 in the middle. However,< 1,3,2 > supports< 1,3 >. Therefore,

a pathS supports a patternP if and only if P is a substring ofS. All the paths supporting a

pattern are called as itssupport set.

Since our focus is on the location prediction, we do not need to determine which pattern is

maximal. Therefore, we removed the parts related with maximal patterns in the algorithm

written by Bayir et al. [4]. The final state of the algorithm is depicted in Algorithm 4.3.

The algorithm works as follows:
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1: δsup←Minimum support frequency

2: S← Paths of clusters

3: Link← Topology matrix

4: C← Cluster set

5: P← ∅ {Output; Set of the frequent patterns}

6: L1← ∅ {Set of the frequent length-1 patterns}

7: for i = 1 to |C| do

8: if S upport([Ci ],S) ≥ δsup then

9: L1← L1 ∪ [Ci ]

10: end if

11: end for

12: k← 1

13: loop

14: if Lk = ∅ then

15: Break the loop

16: else

17: Lk+1← ∅

18: for all PatternI i in Lk do

19: for all ClusterC j in L1 do

20: if Link[LastCluster(I i),C j ] = true then

21: T ← I i •C j {AppendC j to I i}

22: if S upport(T,S) ≥ δsup then

23: Lk+1← Lk+1 ∪ [T]

24: P← P∪ [T]

25: end if

26: end if

27: end for

28: end for

29: end if

30: k← k+ 1

31: end loop

Algorithm 4.3: Sequential Apriori
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• In the beginning, the clusters with sufficient support form a set of the frequent (sup-

ported) length-1 patterns.

• If the last cluster of a length-k pattern is incident to the cell cluster of the length-1

pattern, length-1 cell cluster is appended to length-k pattern and thus, length-(k + 1)

candidate pattern is generated.

• If the support of the length-(k+1) pattern is equal to or greater than the required support,

it becomes a supported (frequent) pattern.

• At some value k, if no new supported pattern is generated, the iteration halts.

The functionS upport(I : Pattern,S) determines whether the patternI has sufficient sup-

port from all the mobility pathsS generated in the path construction phase. The support is

calculated as:

S upport(I ) =
|Si |∀I is substring of Si |

|S|
(4.5)

Being δsupport = 0.25, an example execution of Algorithm 4.3 is presented in Table 4.4. In

the table, the patterns in bold are the frequent patterns for each iteration. The other ones are

eliminated due to their insufficient support. After 4th iteration, since no new frequent patterns

can be generated, the iteration halts.

Table 4.4: Patterns generated at each iteration

S tep Pattern: S upport
1 < C1 >: 0.75,< C2 >: 0.50,< C3 >: 1.00,< C4 >: 0.25,< C5 >: 0.50

2
< C1,C2 >: 0.25,< C1,C3 >: 0.25,< C2,C3 >: 0.50,< C3,C1 >: 0.25,

< C3,C4 >: 0.25,< C3,C5 >: 0.25,< C5,C3 >: 0.25

3

< C1,C2,C3 >: 0.25,< C1,C3,C4 >: 0.25,< C2,C3,C5 >: 0.25,
< C5,C3,C1 >: 0.25, < C1,C3,C1 >: 0.0, < C1,C3,C5 >: 0.0,
< C2,C3,C1 >: 0.0, < C2,C3,C4 >: 0.0, < C3,C1,C2 >: 0.0,
< C3,C1,C3 >: 0.0, < C3,C5,C3 >: 0.0, < C5,C3,C2 >: 0.0,

< C5,C3,C4 >: 0.0

4
< C1,C2,C3,C5 >: 0.25, < C1,C2,C3,C1 >: 0.0, < C1,C2,C3,C4 >: 0.0,
< C2,C3,C5,C3 >: 0.0, < C5,C3,C1,C2 >: 0.0, < C5,C3,C1,C3 >: 0.0

5 < C1,C2,C3,C5,C3 >: 0.0
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4.2.4 Location Prediction

After the frequent mobility patterns are generated, the confidence of the last elements in each

frequent pattern is used for the prediction purpose. The confidence of a location is calculated

as [3]:

Con f(P, x) =
S upport(P • x)

S upport(P)
(4.6)

whereP is a frequent pattern which equals to the mobility history windoww andP • x (here

the• is the concatenation operator) is another frequent pattern with length|w| + 1. The pre-

diction algorithm works as follows. If the pattern which equals to the mobility history w is

found, the frequent patterns with length|w| + 1 whose prefixes with length|w| match withw.

The last elements (|w| + 1-th element) of matched patterns are collected in a candidate set in-

cluding their confidence values. The elements are sorted by the confidence values. The top-m

elements are put into the prediction set (wherem is the size of the prediction set). During the

location prediction, if the user’s next location equals to one of them locations in the prediction

set, LPMP is counted as successful. Otherwise, it is counted as unsuccessful. Algorithm 4.4

shows a pseudocode for the location prediction.

Bayir et al. [4] look for the longest pattern matching withw to predict the user’s next location

in their work. However, they also put an upper limit for|w|. Indeed, this approach is the same

as the fallback mechanism in the Markov predictors mentioned in Section 2.5. For example,

starting|w| = 5, if LPMP cannot find the patterns with length-5 and length-6 whose prefixes

with length-|w| match withw, it does the same for|w| = 4 and so on. This is exactly the

same what the Markov fallback mechanism does. There is only one difference between them,

that is, no context (length-0 context) case. In order to remove this difference, we propose the

emptypattern term. We suppose that all the mobility paths support the empty pattern. As

a result, the support of the empty pattern always is 1. If|w| = 1 and LPMP cannot make a

prediction, then the location in the most supported length-1 pattern is predictedas the user’s

next location. Hence, we call the whole process asfallback-w (FW)approach.

Since FW approach may miss some locations with high confidence in the shorter patterns due

to the priority of the longer patterns in the prediction process, it sometimes may cause LPMP

to make incorrect predictions. In order to cope with such situations, we propose another
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approach which we call asall-w (AW). In this approach, we use all the patterns from the

shortest length to the longest minus 1 length. For example, let the length of the shortest

patterns and the longest patterns be 2 and 5. LPMP tries to match each frequent pattern which

has a length from 2 to 4(=5-1) withw of the suitable length. In addition, to make a prediction,

LPMP finds the patterns, which has a length from 3 to 5, whose prefixes are w. If those

conditions are satisfied, ignoring the pattern length, the location with the high confidence is

predicted as the user’s next location. If LPMP cannot make a prediction using the patterns,

like in FW approach, LPMP uses the empty pattern to predict the user’s nextlocation.

1: P← Set of the frequent patterns

2: w← Current mobility history

3: m← Size of prediction set

4: F ← ∅ {Output; Final prediction set}

5: CandidateS et← ∅ {Candidate prediction set}

6: if w ∈ P then

7: for all PatternPi in P do

8: if Pi starts withw then

9: if |Pi | = |w| + 1 then

10: CandidateS et← CandidateS et∪ Pi [|w| + 1]

11: end if

12: end if

13: end for

14: S ort(CandidateS et) {Sort with respect to confidence values}

15: F ← CandidateS et[1 . . .m] {Select topmelements}

16: end if

Algorithm 4.4: Location Prediction

In our evaluation, we compare FW and AW approaches and also take the prediction set size

as 1. Furthermore, we evaluate how thetime slice based probabilityaffects the accuracy of

LPMP in Section 5.4. Time slice based probability is calculated as the number of instances of

the pattern observed in the specific time slices over all instances. While calculating the score

of each location to be used in the prediction process, it is multiplied with the confidence value

of the possible locations.
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CHAPTER 5

EVALUATION

In this chapter, we will evaluate the accuracy of LPMP comparing to the bestMarkov predic-

tor. We will try to achieve better results than those of the best Markov predictor in terms of

accuracy. In the first section, we will describe the test environment on which we made the

evaluation. In the second section, we will examine how the end location thresholds (δduration

andδtransition), the frequency support threshold (δsupport) and the mobility history window (w)

parameters affect the accuracy of LPMP. Next, we will use the half of data to train the two

predictors. After training, we will reevaluate the accuracy of the predictors. Then, we will

examine the time-slice based probability. Lastly, we will apply a simple clustering method to

data and determine whether the accuracy of LPMP relative to that of the best Markov predictor

improves or not. In the last section, we will make an overall evaluation of the results.

5.1 Test Environment

In the beginning, we decided to use the whole of data [18] stated in Chapter 2. However, our

LPMP experiments took long hours -even days- to generate the results dueto the exponential

nature of Algorithm 4.3. We made some enhancements in its implementation but still could

not obtain the endurable running times. For the user X, Figure 5.1 illustrates how the running

time for the accuracy calculation by LPMP exhibits a quadratic growth. The curve 4.76×

10−5n2 fits the running time results wheren is the number of the steps. On the other hand, the

running time for the accuracy calculation by Markov predictor grows linearly like in Figure

5.2. This time, the curve 5.71× 10−2n fits the results.
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Figure 5.1: Running time for the accuracy calculation by LPMP withδduration = 10min,
δsupport= 0.001 and AW method (Curve function= 4.76× 10−5n2)

To cope with the quadratic growth of the accuracy calculation by LPMP, we had to sample

the real data. To do that, we removed alllong traces which cause LPMP experiments to take

long. Next, we sortedshort andmediumtraces in descending order in terms of the number

of the moves. Then, we selected every 10th trace ofmediumtraces and every 25th trace of

short traces. The number of the traces being 6,202 before the sampling has decreased to 289.

Therefore, we have sampled the real data at about 5% in terms of the number of the traces. In

addition, the number of the moves has decreased from 12,218,093 to 101,195. To determine

how successful our sampling has done, we compare the accuracy and the median running

accuracy of the real and sampled data in Figure 5.3-5.6.

Figure 5.3 depicts how successfully the accuracy of O(2) Markov fallback predictor for the

sampled data overlaps with the one for the real data. To measure the quality ofthe overlap of

the accuracy graphs, we calculate mean (µ) and standard deviation(σ) of the accuracy graphs.

We should note that those values in this section do not belong to the accuracyvalues. They

belong to the discrete values forming the accuracy graphs. In Figure 5.3,we obtainµsampled=
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Figure 5.2: Running time for the accuracy calculation by Markov predictor (Curve function
= 5.71× 10−2n)

Figure 5.3: O(2) Markov fallback predictors for sampled and real data
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0.4232 andσsampled= 0.3241 for the sampled data andµreal = 0.4224 andσreal = 0.3224 for

the real data. The error rates forµsampledandσsampledare 0.2% and 0.5% respectively.

Figure 5.4: Markov predictors for real data

The accuracies of three different Markov predictors relative to each other for the real and the

sampled data are illustrated in Figure 5.4 and 5.5. In addition,µ andσ values of the Markov

predictors are shown in Table 5.1 and 5.2. As seen in the tables, the error rates are very low

and negligible. This means that the accuracy values for the sampled data fit the ones for the

real data well and the sampled data can be used in our experiments to make the comparisons

between LPMP and the best domain-independent predictor (O(2) Markov fallback).

Table 5.1: mean(µ) values of Markov predictors for sampled and real data

Markov Predictor µsampled µreal Error Rate(%)
O(1) 0.4695 0.4752 1.2
O(2) 0.4922 0.4882 0.8
O(2) fallback 0.4232 0.4224 0.2

Although the accuracy evaluation of the real and the sampled data shows that our sampling
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Figure 5.5: Markov predictors for sampled data

Table 5.2: standard deviation(σ) values of Markov predictors for sampled and real data

Markov Predictor σsampled σreal Error Rate(%)
O(1) 0.3332 0.3283 1.5
O(2) 0.3122 0.3029 3.1
O(2) fallback 0.3241 0.3224 0.5
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is sufficiently successful, we have also evaluated MRA ofO(2) Markov fallback predictor for

the real and the sampled data to ensure the success in our sampling.

Figure 5.6: Median running accuracy of O(2) Markov fallback predictors for sampled and
real data

In Figure 5.6, MRA for only 500 steps is depicted sincemedianloses its statistical benefit

after 500 steps due to the decrease in the number of the traces with at least 500 steps. Hence,

for 500 steps, we obtainµsampled = 0.6428 andσsampled = 0.0667 for the sampled data

andµreal = 0.6589 andσreal = 0.0749 for the real data. The error rates forµsampledand

σsampledare 2.4% and 10.9% respectively. Since we removedlong traces completely during

the sampling,medianworks in favor of the shorter traces. That is why the error rate ofσsampled

is relatively high. Therefore, we determine that the error rates for MRA are still acceptable to

run our experiments on the sampled data.

5.2 Parameter Experiments

As seen in Algorithm 4.1, the mobility path construction requiresL, δduration andδtransition

as input. As mentioned in Section 2.2, the special locationOFF is introduced in Dartmouth
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Wi-Fi mobility data [18] to represent the user’s departure from the network. Because of that

reason, there are not any time gaps between the consecutive locations. Inother words, in our

data, the transition time between the consecutive locations is always zero. Therefore, we do

not analyzeδtransition and we assume thatδtransition is zero. To be more clear, we should say

thatδtransition will not have any effects on our experiments.

In order to start our experiments, we need to determineδduration threshold. To do that, we

define an experimental duration set which contains 37 5-minute time values from 0 minute

to 180 minutes. Because of the layout constraint, just the time values from 0 minute to 60

minutes are shown in Figure 5.7. Like in illustrating the accuracy performanceof a predictor,

we use cumulative mass function to analyzeδduration. For example, using Figure 5.7, we can

say that 40% of the total moves have the duration equal to or less than 15 minutes.

Figure 5.7: Duration threshold analysis

The key point of selectingδduration is to differentiate the static (end) locations from the non-

static (intermediate) locations. In order to do that, we look for the first sharpdecrease between

two different time values while going throughx axes in−x direction. Until 35th minute, the

decrease in the cumulative mass function stays around 1-2%. On the other hand, there exists
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4% difference between 35th minute and 30th minute. In other words, 35th minute is theknee

point of the graph. Therefore, we decided to acceptδduration as 35 minutes.

The two predictors which we compare areonlinepredictors. In fact, the analysis ofδduration

violates this online approach. However, we could also find that value by trial-and-error. In

order to start our experiments, we needed an initial value. Consequently,just to accelerate the

process of finding a reasonableδduration value, we made that analysis. In this point of view,

the online approach is not violated. Besides, later in this section, we will also evaluate how

reasonable ourδduration choice is.

The next parameter we have to determine isδsupport in Algorithm 4.3. We do not make any

analysis to find an initial value for this parameter unlikeδduration. We start withδsupport= 0.05.

According to that value, for example, if a user has 100 mobility paths in his/her location

history, only the patterns which exist at least 5 mobility paths are taken into consideration in

the location prediction process. The other patterns are eliminated before Algorithm 4.4. Later

in this section, we will also try the different values forδsupport to improve the accuracy of

LPMP.

As mentioned in Subsection 4.2.4, we have the two different approaches for|w|: fallback-

w(FW) andall-w(AW). In our first experiments, we will use FW approach. Then, it will be

compared with AW approach. We select|w| = 2 for our first experiment.

Before we interpret our first experiment, we need to decide how we will break the ties. If the

two or more patterns with the same length have the same confidence, we need to decide how

we will choose one of them. At this point, we propose two alternatives: choosing the first

generated or the last generated pattern. Here is what we analyze in our first experiment.

As seen in Figure 5.8, the first generated pattern alternative is slightly better than the other

one. We can see the statistical proof of that in Table 5.3. Therefore, since µ f irst > µlast, we

will use the first generated alternative for the next experiments. In the figure, we also show

how the usage of theemptypattern improves the accuracy of LPMP. Obviously, LPMP which

does not use the empty pattern to predict the next location returns the worstresult.

Before passing to the next experiment, we should clarify why we do not usemedianaccuracy

like Song et al. [30] while comparing the predictors. We can usemedianwhile saying that
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Figure 5.8: First vs. Last generated pattern analysis whereδduration = 35min, δsupport= 0.05,
FW = 2

Table 5.3: mean(µ) accuracy values for Figure 5.8

Predictor µ

O(2) Markov fallback 0.5797
LPMP (first generated) 0.5315
LPMP (last generated) 0.5302
LPMP (without empty pattern) 0.4732
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the predictor has at leastx% accuracy for the half of the users. This is an indicator of the

prediction performance of a predictor. However, use ofmediantool sometimes may take us

to incorrect inferences. For instance, as we see in Figure 5.8, the predictor which prefers

the first generated patterns has a slightly better graph. We can catch this difference by using

meantool over the accuracies. In contrast, if we use median, we miss that issue because

medians of the predictor which prefers the last generated patterns is greater than that of the

other one. Therefore, we usemeantool to compare the prediction accuracy of the predictors

in our experiments.

BecauseO(2) Markov fallback is the best predictor among the Markov predictors, we started

our experiments withFW = 2 for LPMP. However, we have to check how acceptable our

choice is. The results of our next experiment are depicted in Figure 5.9.

Figure 5.9: FW value analysis whereδduration = 35min, δsupport= 0.05

As seen in Figure 5.9, the predictors with differentFW values exceptFW = 1 almost overlap

each other. We can see this fact numerically in Table 5.4. Indeed, this factis expected since

the number of”no prediction” cases increases after some length ofcontext. As the length

of the context (or pattern) increases, the number of the samples which areused to make a
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prediction decreases. As a result, for example, if LPMP cannot make a prediction using the

patterns whose length is 5, it tries the patterns whose length is 4 and this goes recursively until

LPMP makes a prediction. Therefore, inf allbackmechanism, after some length of context,

the predictors overlap each other. In Figure 5.10, we can see the same behaviour of Markov

fallback predictors. As of the contexts whose length is 2, both LPMP and Markov fallback

predictors start to converge. However, as seen in Table 5.9, LPMP with FW=4 is the best

LPMP predictor because of its highest mean. Therefore, we will use LPMP with FW=4 in

the next experiment.

Table 5.4: mean(µ) accuracy values for Figure 5.9

LPMP Predictor µ

FW=1 0.5245
FW=2 0.5315
FW=3 0.5315
FW=4 0.5316
FW=5 0.5313

Figure 5.10: Markov fallback predictors

In FW approach, we may miss the correct predictions with high confidence values but short
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pattern-length. To overcome this issue, in Subsection 4.2.4, we propose AWapproach. How-

ever, in AW approach, similar to the comparison of the first and the last generated pattern, also

there is an issue which requires that we have to choose an alternative. Iftwo patterns with

the different lengths have the same confidence, we have to decide which one is more suit-

able. Consequently, in our next experiment, we analyze those issues. InFigure 5.11, whereas

LPMPs have similar graphs, LPMP with AW-long pattern seems negligibly better than the

other two LPMPs. In order to determine which one is more accurate, we put the mean values

of the predictors into Table 5.5. According to the table, since LPMP with AW-Long pattern

has the highest mean value, we count LPMP with AW-Long pattern as the best LPMP so far.

In the next experiments, we will use AW approach and not mention the issue of the long pat-

tern anymore. Thus, wherever we use AW approach, we also mean the use of the long pattern

as default.

Figure 5.11: FW vs. AW analysis whereδduration = 35min, δsupport= 0.05

In our next experiment, we will test the different values forδsupport. If the tested data is

regular in terms of the mobility patterns and contains very rare (noisy) locations, a higher

δsupport which eliminates the noisy patterns may return higher accuracy. However, ahigher
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Table 5.5: mean(µ) accuracy values for Figure 5.11

LPMP Predictor µ

FW=4 0.5316
AW-Short pattern 0.5320
AW-Long pattern 0.5326

δsupport may also mean eliminating the beneficial patterns for the correct predictions. For

example, let four patterns (bcd, bc, abce, abc) be with the supports 0.3, 0.5, 0.07 and 0.1.

We suppose that the 3 recent locations areabc and naturally the 2 recent locations arebc.

In this condition, when the predictor calculates the confidence ofd ande, it gets 0.6 and 0.7

respectively and predictse for the next location. However,bcd has a higher support than

that of abce. If we used a higherδsupport such as 0.1, the predictors would returnd as the

next location. To sum up, depending the attributes of data, there may be a trade-off. In our

experiment, we finish decreasingδsupport at 0.001 since our sampled data contains at most

1000 moves for any user. Decreasingδsupportafter 0.001 does not make any sense. In Figure

5.12, obviously LPMP withδsupport= 0.001 is the best among LPMPs. We can see this fact

statistically in Table 5.12. In addition, the execution times of the predictors are listed in the

table since the support threshold affects the execution time significantly and sometimes we

may sacrifice the accuracy for a better execution time.

Table 5.6: mean(µ) accuracy values for Figure 5.12

LPMP Predictor µ Execution time (min)
δsupport= 0.1 0.5179 8.03
δsupport= 0.05 0.5326 30.49
δsupport= 0.01 0.5598 50.80
δsupport= 0.001 0.5666 93.76

Now, we come to the analysis of the parameterδduration that makes LPMP a domain-specific

predictor. In the beginning of this section, we analyzed it briefly. That analysis tries to

differentiate the end locations from the intermediate locations. The determinedδduration value

may work well with the aim of the Mobility Profiler. However, we need to test whether this

value isgoodalso for the location prediction.

Similar to δsupport analysis, there are two sides ofδduration analysis. Whileδduration ap-

proaches to zero, LPMP starts to lose the dependency on the domain and it becomes a domain-
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Figure 5.12:δsupportanalysis whereδduration = 35minand the prediction approach is AW

independent predictor. The behaviour of LPMP withδduration ≤ 0 proves this fact. It shows a

prediction performance very close to O(1) Markov fallback predictor. This is due to fact that

LPMP with δduration ≤ 0 andO(1) Markov fallback predictor partition the location history

similarly. LPMP partitions the location historyL = abbaas the mobility pathsab, bb, ba.

Then, it generates the patternsa, b, ab, bb, baand predicts the fifth location using the patterns

ab anda. The same is valid forO(1) Markov fallback predictor. It sees the current context as

a and looks for the location that most frequently followed the current context. In other words,

it searches a pattern likeax where x is the most frequent location followeda. That is why

the statistics (µLPMP = 0.5559,σLPMP = 0.2458 andµMarkov = 0.5585,σMarkov = 0.2487)

of those predictors are very close to each other. On the other hand, whileδduration approaches

to infinity, the number of the paths decreases and the path lengths increase.Due to this fact,

the pattern supports converge to each other. At infinity, all frequent patterns have the same

support that is 1. Therefore, according to our last settings, LPMP always predicts the loca-

tion with the first-generated longest pattern. For most of the time, this means the incorrect

prediction. In conclusion, due to this trade-off, we look for an equilibrium point forδduration.
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Figure 5.13:δduration analysis up to 10min whereδsupport= 0.001 and the prediction approach
is AW

In Figure 5.13 and 5.14, for the differentδdurationvalues, the prediction performance of LPMPs

is depicted. Since the graphs are almost overlapping each other, we cannot notice which one

is better easily. Table 5.7 helps us to determine the best LPMP. According to thetable, until

δduration = 10min, the accuracy increases and after 10min, the accuracy decreases. Thus,

LPMP withδduration = 10min is the best LPMP so far.

Table 5.7: mean(µ) accuracy values for Figure 5.13 and 5.14

LPMP Predictor µ

δduration ≤ 0 0.5559
δduration = 3 0.5651
δduration = 5 0.5670
δduration = 7 0.5678
δduration = 10 0.5683
δduration = 20 0.5682
δduration = 35 0.5666
δduration = 60 0.5654
δduration = 90 0.5644

42



Figure 5.14:δduration analysis starting from 10min whereδsupport= 0.001 and the prediction
approach is AW

In this section, we improved the accuracy of LPMP analyzing the parametersof LPMP. As

illustrated in Figure 5.15, untilaccuracy= 0.4, LPMP shows better performance. After that

point, the best Markov predictor shows better performance. In total, the Markov predictor

with µ = 0.5797 is better than LPMP withµ = 0.5683. In the next sections, we will use the

parameter values we obtained in this section.

5.3 Training Experiment

In training experiment, we use the half of the user location histories to train the best LPMP and

Markov predictors. For example, a user X has such a location historyL = abbacdabdabca

whose length is 12. The predictors use 12/2 = 6 locations to train themselves. Then, the

accuracy calculation starts. In fact, training exists in all of the experiments.Here, we mean

the offline attribute of this training. In Figure 5.16, as expected, the prediction performances

of the two predictors are better comparing with the results of online training experiments. In

order to explore which predictor is the best learner, we put the statistical values into Table 5.8.
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Figure 5.15: Comparison of LPMP (δduration=10min,δsupport = 0.001 and AW method) and
O(2) Markov fallback predictor

Since the error rate after training is higher, we count the Markov predictor as the best learner.

Table 5.8: mean(µ) accuracy values for Figure 5.15 and 5.16

µMarkov µLPMP Error Rate(%)
Before training 0.5797 0.5683 2
After training 0.6019 0.5877 2.4

5.4 Time-Slice Based Probability Experiments

As mentioned in Subsection 4.2.4, the prediction can be done also using the time-slices. We

applied the time-slice based probability over the confidence values. Unlike theresults of

Bayir et al. [4] in Figure 5.17, the time-slice based probability never improvedour LPMP

predictor as seen in Figure 5.18 and Table 5.9. As the length of the time-slice became shorter,

the accuracy decreased. We dropped some graphs from the figure to make the other graphs
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Figure 5.16: Comparison of LPMP (δduration=10min,δsupport = 0.001 and AW method) and
O(2) Markov fallback predictor after training

Figure 5.17: Location prediction for userX (adopted from [4])
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more noticeable. Theµ values for the dropped graphs can also be seen in the table.

Figure 5.18: Comparison of LPMP (δduration = 10min, δsupport= 0.001 and AW method) with
the different time-slices and O(2) Markov fallback predictor

Table 5.9: mean(µ) accuracy values for Figure 5.18

LPMP Predictor µ

TS=24h 0.5683
TS=12h 0.5618
TS=8h 0.5564
TS=6h 0.5543
TS=4h 0.5501
TS=3h 0.5458
TS=2h 0.5407
TS=1h 0.5361
TS=0.5h 0.5276
TS=0.25h 0.5236

Song et al. [30] proposed a predictor namedtime-aidedMarkov predictor similar to our

time-slice based probability approach. They quantized time of day in one-minuteand one-

hour buckets. That predictor behaved similarly. As the bucket size decreased, the accuracy

decreased. They give two reasons causing the low accuracy of time-aided Markov predictor.

46



Those reasons are also valid for LPMPs applying time-slice based probability [30]:

• The location information in Darmouth Wi-Fi mobility data [18] is not real human move-

ments and instead, it contains the wireless devices’ assocations with accesspoints.

Although human movements usually follow patterns according to time, the wireless

devices may change their associated APs when they find a stronger signal.

• As the bucket size decreases, the number of samples required to make a prediction

decreases. This causes incorrect predictions.

5.5 Clustering Experiments

Although the owner of a wireless device is not mobile, the device may be associated with

different APs in a short period of time. These transitions are defined as the ping-pong effect

[21]. The ping-pong effect may decrease the prediction performance of the predictors and

some clustering on the mobility data may be beneficial to the accuracy of the predictors.

Since Bayir et al. [4] observe that clustering improves prediction performance(30%) (see

Figure 5.17, we decide to cluster our data and then compare the two predictors over the

clustered data. Instead of clustering method mentioned in the work of Bayir etal. [4], we

apply a simpler method [26] to cluster the data. In this method, we divide time into a certain

length time-segments and determine the AP which is seen more than the other APs are in each

time-segment. That AP is called as thedominantAP for the corresponding time-segment. To

cluster data, the APs in each time-segment are replaced by the dominant AP.

Table 5.10: mean(µ) accuracy values for Figure 5.15 and 5.20

µMarkov µLPMP Error Rate(%)
Before clustering 0.5797 0.5683 2
After clustering 0.5618 0.5493 2.2

In order to determine the length of the time-segments, again we make a duration analysis.

However, this time, we look for the first sharp increase between two different time values

while going throughx axes in+x direction. In Figure 5.19, obviously 1min is the value we
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Figure 5.19: Ping-pong effect analysis

Figure 5.20: Comparison of LPMP (δduration = 10min, δsupport= 0.001 and AW method) and
O(2) Markov fallback predictor on the clustered data

48



look for. This means that there may be some ping-pong transitions if the user stays at an AP

less than 1min. According to this result, we cluster the mobility data and we run our LPMP

on the clustered data. Figure 5.20 depicts the accuracy graphs of the predictors. As seen in

Table 5.10, after clustering, the accuracy decreases for the predictors. This is due to fact that

the number of the user moves decreases because of the clustering. As thenumber of the user

moves decreases, the accuracy of both LPMP and Markov predictor decreases. Figure 5.21

shows this fact. That’s why the accuracy of the predictors decreases.To reveal this fact more

clearly, we also run our experiments on themediumtraces with more than 100 moves for

both unclustered and clustered data. Figure 5.22 and 5.23 show the resulting accuracy graphs

for the unclustered and the clustered medium traces respectively. When we look at the mean

values in Table 5.11, we notice that the mean values before and after the clustering are very

close. Probably, as the number of the users with a medium trace increases,the clustered data

would give the better results. Another fact we should remark is that the decrease in the error

rate after clustering. This decrease may depend on two reasons. First, the clustering decreased

the total moves from 101,195 to 73,351. The decrease in the number of the total moves may

cause the decrease in the error rate. Second, LPMP may be more sensitive to the ping-pong

effect than the Markov predictor. Since the clustering made data more regular, LPMP showed

the better performance.

Table 5.11: mean(µ) accuracy values for Figure 5.22 and 5.23

µMarkov µLPMP Error Rate(%)
Before clustering 0.6345 0.6216 2
After clustering 0.6344 0.6218 2

5.6 Overall Evaluation

First of all, we defined the test environment. We explained that we had to sample Dartmouth’s

campus-wide Wi-Fi mobility data due to the exponential nature of 4.3. We validated our

sampled data against the real data.

In Section 5.2, in order to start the experiments, we assigned the initial valuesto the param-

eters. After the duration analysis, we decidedδduration = 35min. We specified that there was
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Figure 5.21: Relation between accuracy and trace length (δduration = 10min, δsupport= 0.001,
AW approach)

no transition time between two consecutive locations due to the special locationOFF. As a

result, the value ofδtransition was insignificant andδtransition had no effects on our experiments.

Then, we assignedδtransition as 0.05. For the predictions, we decided to use FW approach with

|w| = 2 in the first experiment.

In the first experiment, we determined how we would break the ties if two or morepatterns

with the same length had the same confidence. We reached that the predictor choosing the

first generated patterns yielded better result than that of the predictor choosing the last gener-

ated ones. Furthermore, we showed the positive effect of the empty pattern on the accuracy

of LPMP. In addition, we explained why we measured the accuracy performance of the pre-

dictors withmeantool. We indicated thatmedianmight take us to the false inferences.

We tested FW approach with different|w|. We found that the predictors converged after|w| = 1

and the predictor with|w| = 4 produced the best result. Therefore, we updated LPMP with

this new value. In addition, we showed the similar behaviour for the Markov predictors.

FW and AW approaches were compared. In AW approach, we needed todecide how we
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Figure 5.22: Comparison of LPMP (δduration = 10min, δsupport= 0.001 and AW method) and
O(2) Markov fallback predictor on the unclustered medium data

would break the ties if two or more patterns with the different lengths had the same confi-

dence. After the experiment, LPMP using AW-Long pattern approach wasthe best. Thus, we

determined to use this approach for the next experiments.

We examinedδsupportwith the different values. We explained the trade-off in the selection of

δsupport value. The experiment gave the best results forδsupport = 0.001. Consequently, we

updatedδsupportparameter of LPMP.

We analyzedδduration with the different values less and greater than our initial value which

was 35min. We also mentioned the trade-off issue similar toδsupport case in the selection of

δduration. LPMP with δduration = 10min yielded the best results. Hence, we updatedδduration

parameter of LPMP.

In Section 5.2, we broke the ties choosing the first generated patterns forthe same length

patterns with the same confidence and the long patterns for the different length patterns with

the same confidence. Based on these tie-breakers, we found that LPMPworked best with

δduration = 10min, δsupport = 0.001 and AW approach. However, this was not enough to
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Figure 5.23: Comparison of LPMP (δduration = 10min, δsupport= 0.001 and AW method) and
O(2) Markov fallback predictor on the clustered medium data

outperform the Markov predictor.

In Section 5.3, we trained the predictors with the half of data before the accuracy calcula-

tion. Naturally, both predictors showed better performance. However, LPMP still did not

outperform the Markov predictor.

In Section 5.4, LPMP used the time-slice based probability while making the predictions.

However, it showed worse performance. We gave two reasons for that.

In Section 5.5, we clustered our data and run the predictors on that clustered data. For all

traces, the predictors yielded worse results. However, this was due to thedecrease in the trace

lengths after clustering. After we showed the relation between the accuracy and the trace

length, we run the predictors on just medium traces. The predictors produced better results.

However, LPMP still did not outperform the Markov predictor.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we compared two predictors in terms of the accuracy. One of them isO(2)

Markov fallback predictor which is a domain-independent predictor and the other one is

LPMP which is a domain-specific predictor. In order to make this comparison,we employed

a ready-to-use implementation of Markov predictor with some minor modifications.In addi-

tion, we implemented LPMP from scratch. To implement it, we removed unnecessary parts

of Mobility Profiler Framework [4] and added theemptypattern concept and AW approach in

the location prediction part.

Due to the quadratic growth of the accuracy calculation by LPMP, we sampledthe data at 5%

percentage to be able to complete our experiments. After sampling, we discovered that a first

generated pattern might return better result when a tie occurred due to somepatterns with the

same length and the same confidence.

We analyzed FW and AW approaches. We found that FW approach yielded the best result

if |w| = 4. However, AW approach outperformed LPMPs with different FW values. Further-

more, we discovered that the long patterns with the same confidence, which also some short

patterns have, returned better result in AW approach when a tie occurred.

We revealed thatδsupport andδduration had a trade-off issue. Our experiments confirmed that

that issue was valid forδduration. From 0min to some time(10min), the accuracy of LPMP

increased. After that time, the accuracy started to decrease. In contrast, we could not see a

trade-off issue forδsupport in our experiments. As the value ofδsupportdecreased, the accuracy

of LPMP increased.
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We tested also offline training, time-slice base probability and clustering. As expected, train-

ing and clustering improved the accuracy of LPMP. However, unlike in the work of Bayir et

al. [4], time-slice based probability worsened the accuracy. The probable reasons for that was

presented.

To conclude, although we examined LPMP in many ways and improved its accuracy, in total,

LPMP could not outperformedO(2) Markov fallback predictor which is the best domain-

independent predictor.

6.2 Future Work

In this thesis, we improved the accuracy of LPMP by changing only one parameter and keep

the others fixed. However, there may be some balance among the parameters. For example,

we testedδduration = 35min and δduration = 10min while δsupport = 0.001 and found that

δduration = 10min had higher accuracy. However, for someδsupport values,δduration = 35min

may yield better result unexpectedly. Therefore, the relations among the parameters need to

be studied.

We could not analyzeδtransition since the data does not contain the transition time between

the locations.δtransition can be analyzed by removingOFF location from the data or counting

OFF location as transition without modifying the data. The different behavior toOFF and

non-OFF locations may bring better accuracy to LPMP.

The prediction set size was taken as 1 in the thesis. For both Markov predictor and LPMP,

the different reasonable prediction set sizes can be tested. LPMP may predict the secondary

locations more accurately so that LPMP may yield better result than Markov predictor.

We applied a simple clustering method on the data. The other clustering methods maybe

applied on the data to see how the accuracy will be affected.

Although we cannot see such an indication, LPMP may return better result for long traces. In

order to run LPMP on long traces, the efficiency of LPMP should be improved. Therefore, as

a future work, it may be focused on developing a more efficient version of LPMP.
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[35] Gökhan Yavas, Dimitrios Katsaros,Özg̈ur Ulusoy, and Yannis Manolopoulos. A data
mining approach for location prediction in mobile environments.Data & Knowledge
Engineering, 54(2):121 – 146, 2005.

[36] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
Information Theory, IEEE Transactions on, 24(5):530 – 536, sep 1978.

57


