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ABSTRACT

COMPARISON OF DOMAIN-INDEPENDENT AND DOMAIN-SPECIFIC LOATION
PREDICTORS WITH CAMPUS-WIDE WI-FI MOBILITY DATA

Karakog, Micahit
M.Sc., Department of Computer Engineering
Supervisor : Assoc. Prof. Dr. Ahmet Cosar

Co-Supervisor : Dr. Murat Ali Bayir
September 2010, 57 pages

In mobile computing systems, predicting the next location of a mobile wirelesshaser
gained interest over the past decade. Location prediction may have aamige of appli-
cation areas such as network load balancing, advertising and web igdigielping. In the lit-
erature, there exist many location predictors which are divided into two rfesgses: domain-
independent and domain-specific. Song et al. compare the predictiormegof the domain-
independent predictors from four major families, namely, Markov-basmdpression-based,
PPM and SPM predictors on Dartmouth’s campus-wide Wi-Fi mobility data. Asidtréhe
low-order Markov predictors are found as the best predictor. Irthemavork, Bayir et al.
propose a domain-specific location predictor (LPMP) as the applicatiofrafreework used

for discovering mobile cell phone user profiles.

In this thesis, we evaluate LPMP and the best Markov predictor with Dartrisctempus-
wide Wi-Fi mobility data in terms of accuracy. We also propose a simple methochwhic
improves the accuracy of LPMP slightly in the location prediction part of LPOUR results
show that the accuracy of the best Markov predictor is better than thaPP in total.

However, interestingly, LPMP yields more accurate results than the bagkbMaredictor
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does for the users with the low prediction accuracy.

Keywords: Location Prediction, Domain-Independent Location Predicidomain-Specific

Location Predictors, WLAN, Wi-Fi



0z

KAMPUS-CAPLI KABLOSUZ AG(WI-FI) HAREKET VERISI UZERINDE ALANDAN
BAGIMSIZ VE ALANA OZGU YER KESTIRICILERININ KARSILASTIRILMAS

Karakog, Micahit
Y uksek Lisans, Bilgisayar Mhendislgi
Tez Yoneticisi : Dog. Dr. Ahmet Cosar
Ortak Tez Yoneticisi : Dr. Murat Ali Bayir

Eylul 2010, 57 sayfa

Gezgin bilgi isleme sistemlerinde, hareketli bir kullanicinin sonraki yerinstikeni gecen

on yilda ilgi topladi. Yer kestirimi @ yuk dengeleme, reklamcilik v@iin belgesionceden
getirme gibi genis ¢apta uygulama alanlarinda yer bulabilir. Liiedst cok sayida yer alan
kestiriciler iki ana sinifa ayrilirlar: alandan @pansiz ve alan&zgi. Song ve ark. Markov-
tabanli, sikistirma-tabanli, kiSeslestirmeyle kestirim (PPM) v@neklenmigrintl eslestirmesi
(SPM) olarak adlandirilanddt ana aileye mensup alandanjbasiz kestiricilerin kestirim
dogruluklarini Dartmouth’un kamijs-capl Wi-Fi hareket verisizerinde kiyaslar. Neticesinde,
dugik dereceli Markov kestiricileri en iyi kestirici olarak bulunur. @eir bir calismada ise
Bayir ve ark. hareketli cep telefonu kullanici profillerini ortaya ¢ikaerigan kullanilan bir

cerceve yapinin uygulamasi olarak aléagi bir yer kestirici (LPMP)Yonermektedirler.

Bu tezde, Dartmouth’'un kanfis-capli Wi-Fi hareket verisini kullanarak LPMP ve en iyi
Markov kestiricisini dgruluk acisindan dgerlendiriyoruz. Ek olarak, LPMP’nin dpulugunu
kismen iyilestiren basit birgntemi LPMP’nin yer kestirimi kismind@neriyoruz. Sonuglarimiz,
en iyi Markov kestiricisinin dgrulujunun toplamda LPMP’ninkinden daha iyi ofgiunu
gosteriyor. Fakat, ilginc bir sekildeidiik kestirim d@ruluguna sahip kullanicilarda LPMP
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Markov kestiricisinden daha dou sonuclaiiretmektedir.

Anahtar Kelimeler: Yer Kestirimi, Alandan Bamsiz Yer Kestiricileri, Alanabzg'.] Yer Ke-

stiricileri, Kablosuz A), Wi-Fi
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CHAPTER 1

INTRODUCTION

Wireless networks allow a more flexible communication model than traditional werakt-
works since the user is not limited to a fixed physical location [31]. As altreswbile
wireless communication has showed a significant increase in popularityhevpast decade.
Wireless communication devices are becoming increasingly ubiquitous anditieen of

devices people are willing to carry around is increasing rapidly [25].

The wireless devices are generating many huge mobility data all over the waddh sec-
ond. Inevitably, those data have attracted the attention of the reseavatidiag on the
data mining field. Then, many works have focused on how mobility path informatia be

extracted from the mobility data.

Mobility path information can be used to predict the future location(s) of a Ués is called
location prediction The results of location prediction may be input to a wide-range of appli-
cation areas such as network load balancing [21], advertising [20jvabdbage prefetching
[35]. With a location predictor, the applications from théelient areas can provide services
or information based on the user’s next location. For example, a studind wmart-phone
takes a photo of his classmates after a class and wishes to print it. The papphgation

in his phone may suggest the printers near his current and next pcefticegion. While the

student walks across the campus, his photo has already printed by tttedgienter [30].

Obviously, accuracy which means predicting the user’s next locatioaattyris an important
issue in measuring the benefit of a location predictor. In literature, therseseral location
predictors which have been proposed to obtain better accuracy. @hahg[10] divide the

location predictors into two broad classes: domain-independent and dspwific. The



domain-independent location predictors rely on just the past location mowertiecation
history) of a user to predict hiser next location. They infer some statistical results using
different methods such as Markov analysis and text-compression algoritis, wWith the
help of those results, the user’s next location is predicted. In contrastdimain-specific
location predictors do not rely on just the location history. The history is partitidased on
the semantics of the location prediction domain. For example, if the user stayecstion

a significant amount of time, that location may be a delimiter for the location histdrg.
location coordinates and the geometry of user motion can be used as welltasdlcontext

in the example [30, 10].

Song et al. [30] compare the prediction accuracy of the several locptexdfictors from
four major families of domain-independent predictors on Dartmouth’s caiwles Wi-Fi

mobility data [18]. The four major families are [30]:

e Markov Family: The order-k (or "O(k)") Markov predictor assumes that the user’s
next location can be predicted from the curremtexthat is the most recektsymbols

in the location history.

e LZ Family: These are the predictors based on incremental parsing algorithm by Ziv

and Lempel [36] often used for text compression.

e Prediction by Partial Matching (PPM): A data compression scheme, often used in
text compression [11], blends a set offdient order context models, which are built as

O(k) Markov models, from O to k.

e Sampled Pattern Matching (SPM): Unlike O(k) Markov predictors using a fixed
value of the context lengtk, SPM predictors determine the context length by a fixed

fraction of the longest context that has been previously seen.

Darmouth’s campus-wide Wi-Fi mobility data [18] contains two-year recbtdeuser move-
ments with 6,202 users and 12,218,093 moves. The number of movefiéoedi users has
a wide-range with a median of 494 and a maximum of 188,479. Using this datg, €0
al. [30] reached that the simple low-order Markov predictors workedelkor better than
the more complex compression-based predictors. As a result, they ide@{¢darkov

fallbackpredictor as the best for Dartmouth’s data.
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Bayir et al. [3] designed and implemented a framework Ntodility Profiler , for discover-
ing the mobility profiles of the mobile cell phone users starting from cell basedacation
data. We will call that type of data as ttimed-locationhistory. Basically, the Mobility Pro-
filer partitions the timed-location history intoobility patts and generatasobility patterrs
from mobility paths taking the topology into consideration. Finally, it finds the pagtevith
the maximum lengtisupportedby a required number of the mobility paths. Those patterns
are called asnaximal frequent patternsHowever, for the location prediction, we are not
interested in finding the maximal frequent patterns as we will see. Theref@ removed
this and similar unnecessary parts from our implementation of Mobility Profiteaddition,
we implemented a simple method we propose in the location prediction phase gGenthg
we call our implementation dsocation Predictor Via Mobility Profiler Framework (LPMP)
Since LPMP benefits the time-context -while partitioning the location history- ditiad to

the location history, we classify it as a domain-specific predictor.

As a part of this thesis, we implemented LPMP and modified the implementation ofiy rea
to-use Markov predictor slightly. We compared LPMP and the best Markedictor in terms
of the prediction accuracy. Due to the exponential nature of LPMP, wedaample Dar-
mouth Wi-Fi mobility data. We made our experiments on this sampled data. We exptime
all parameters of LPMP in all ways. We examined how trainifigas the accuracy perfor-
mance of the two predictors. We also applied a clustering method on data arcbthpared
the predictors again. After the experiments, we found that the accufdhg best Markov
predictor is better than that of LPMP in total. However, interestingly, LPMRIgienore
accurate results than the best Markov predictor does for the users witbwhprediction

accuracy.

The main contributions of this thesis are listed as follows:

e A domain-independent predictor (Markov) and a domain-specific locaiedictor
(LPMP) are compared on an empirical data in terms of the accuracy forshdrhe.

We could not find such a work in the literature.

e \We show that the best Markov predictor outperforms a domain-spea#ttqbor in to-

tal. However, interestingly, LPMP yields better results for the users with tmuracy.

e We analyze all parameters of LPMP and how thffget the accuracy.
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e In the location predicton part, we propoa#-w(AW) approach which improves the
accuracy of LPMP. In addition, in bottallback-w(FW)and AW approaches, we use

theempty patterrconcept which also improves the accuracy of LPMP.

e We show the relation between the accuracy and the trace length for LPM&s la

relationship similar to the one in Markov predictors.

e \We observe that LPMP is more successful for Wi-Fi users than for GSdvs.

The thesis is organized as follows. In Chapter 2, we make the definitionsrd ssnd metrics
used in the thesis and present the domain-independent predictors \ahibbdn evaluated on
the data which we use before. In this chapter, lastly, we explain which dein@dgpendent
predictor is the best with the reasons. In Chapter 3, we present thelrelatie for this thesis.

The works related with the location prediction will be in our focus.

In Chapter 4, we explain LPMP with the algorithms for its each phase. Fuortrer we

propose a simple method in the location prediction phase of LPMP.

In Chapter 5, we evaluate LPMP and compare it with the best domain-indepiepredictor
in terms of accuracy. We examine all of the parameters of LPMP in many wagsldition,
we study the ffects of training and clustering on accuracy. Also we analyzeftieeteof the
time based probability with eierent time-slices. Finally, in Chapter 6, we conclude the thesis

and discuss about some possible future works.



CHAPTER 2

BACKGROUND

In this chapter, we summarize how O(2) Markov fallback predictor waadaas the best
domain-independent predictor. To do that, we define what we mean kyolocslVe explain
how empirical data set we used in our evaluation was collected and also kadothain-
independent predictors from four major families work. We give the defimstif the metrics
used in comparing the domain-independent predictors. In the last settt@mryaluation
which has been done during the process of determining the best domejemdent predictor
is summarized. Before moving on to the sections, we should point out thattgi$es is an
extensive summary of the work of Song et al [30]. We adopt the notatidrterminology

from that work.

2.1 Location

In the context of the thesis, lacation is an access point(AP) where the user's device is
registered. All possible locations are listed in a finite alph@betny location is represented
as a symboa drawn from that alphabet. The sequence of locations a user visited id aalle
hislocation historywhich is a string of symbols. If the history hagocations,L, = ajaz...an
for1 <i < nwherea € A. The data we used is a sequence of locatluenge with g # a;,1.

Those location changes are also callethases.
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2.2 Data Collection

Dartmouth’s campus-wide Wi-Fi mobility data [18] is a processamyement dataThe raw

data containedyslogmessages which the access points transmitted when the client cards
associated, re-associated, or disassociated. Each syslog messijeedojust the unique
MAC address of the client card. As a result, only MAC addresses warpe/tk and saved.
There might be some cases that a single card might be used by the multiplesdavtbe
multiple people. Song et al. [30] ignore this fact intentionally and the teserrefers to a
wireless card, and vice versa, in the comparison of the domain-indeqtgir@eictors. In our

work, we will also make our evaluation based on this assumption.

Dartmouth’s raw data was recorded from April 2001 through Marct820®e works [17, 15]
explain the details of this process. Darmouth’s movement data extractedteoraw data
contains a series of locations with time information for each user’s trace likelle 2.1. As
seen in table, it also introduces a special loca@d#- to represent the user’'s departure from

the network somehow.

Table 2.1: A sample user trace

Time (in Unix timestamp) Location(AP)
1008253217 AcadBldg12AP2
1008253716 AcadBldg25AP4
1022867758 AcadBldg20AP1
1022868237 OFF

Statistically, the median length, which is the number of the location in the sequdrtbe, o
traces is 494 and its maximum is 188,479. In order to analyze data in terms oftjtle, lthe
traces were also grouped sisortwith 100 or fewer movesnediumwith 101-1,000 moves

andlong with over 1,000 moves.

2.3 Domain-Independent Predictors

There are two types of the location predictors: domain-independent @mdid-specific.
While partitioning the location history, whereas the domain-independenicpresirely on

just it , the domain-specific ones use domain information such as time, coeslsnad ge-

6



ometry of the location [30, 10]. During the rest of this section, the four miajmilies of
the domain-independent predictors, namely, Oidbtarkov, LZ-Based, PPM and SPM are
explained. Those predictors are atsdine predictors”which examine history so far, extract
the current context, and predict the next location”. After each locatierptdictor updates it
internal tables and predicts the next location with the help of this new stateQa@jJdomain-
specific predictor we will mention in Chapter 4 is an online predictor, too. Iretladuation

of the predictor, we will also care and keep this property.

2.3.1 Markov Family

The predictors of the ordée{or "O(k)”) Markov family predict the next location with the
help of the currentontextwhich is the sequence of tikemost recent symbols in the location
history L if possible. Using the current contegtof lengthk, the probability for the next

location to bea is calculated with the equation below:

Pu(a) = I\II\I((CC?’LL))

(2.1)

In Equation 2.1N(S/, s) denotes the number of times the substhgccurs in the string. If
c has never occurred before the current context, the equation exealo&é = 0O for alla, and
O(k) Markov predictor cannot predict any location. Otherwise, it predias$dabation with the
highest probability; that is, the location that most frequently followed the history. Note
thatO(0) Markov predictor returns the location most frequently sednsince the context is

empty andk = 0.

Example: We useO(2) Markov predictor and the history is = abcdabdababcab The
current context (last 2 locations of the histogt) has seen 5 times(including itself) in the
history. The probabilites would be'3, 2/5, 1/5 for a, ¢, d, respectively. Therefore, it predicts
the locationc with the highest probability.

2.3.2 LZ Family

Song et al. [30] state that LZ-based predictors, which are often usadxt compression,

seem promising since most good text compressors are good predic3pnfB LZ-based
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predictors are like th©(k) Markov predictor except th&tcan grow to infinity [6].

LZ parsing algorithm partitions the input strirggnto distinct substringsg, S, . .., Sn such
thatsy = y (empty string) and, for alf > 0, substrings; without its last character is equal
to somes, 0 <i < jandss:...Sn = S For examples = gbdcbgcedbdbdes parsed as
v,0,b,d,c,bg cebd bde LZ treewhose each node represents one subtsinig built as in

Figure 2.1.

Y

0:1 b:4 d:1 c:2 f:1
N ‘
gl d2 el
|
el

s = ghdcbgce fdbdbde
S =v,0,b,d,c,bg ce bd, bde

Figure 2.1: Example LZ parsing tree

Y

S

g:2 b:4 d:3 c:2 e:2
gl d2 exn el
|
el
s = gbdcbgcedbdbde
S =7.0.b,d,c,bg e cebd, de bde

Figure 2.2: Example LZP parsing tree

Song et al. [30] explain the parsing mechanism for LZ tree like that: "If @mjd of the
current node (initially, the root) matches the first symbolspfemove that symbol frons
and step down to that child, incrementing its counter; continue from that eadeining the
next symbol froms. If the symbol did not match any child of the current node, then remove
that symbol froms and add a new child to the current node, labeled with that symbol and

counter= 1; resume parsing at the root with the now shorter stsing

Song et al. [30] state that while several predictors based on the Lihgalkgorithm have
been proposed in the past [1, 19, 13], they evaluate three of thadietprs.
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e Basic LZ Predictors: The probability for the next location to leeis calculated with

the equation below:

NLZ(S’nae L)

AE = N sn )

(2.2)

In Equation 2.2N(s/, s) denotes the number of times the substishgccurs as a prefix
among the substrings, ..., sy of L. If there is no such substring starting wish,
except itself, LZ cannot make any prediction. Otherwise, it predicts tragitota with

the highest probability.

In an online implementation of LZ predictors, after parsing the current latétimugh
the LZ tree, the algorithm stops at a node in the tree. If exists, it predictsc¢hgdao
in the child with the highest counter, which means the highest frequen@sbbpcur-

rence.

e LZP (LZ + Prefix): Since not every substring in forms a nodes, the cross bound-
aries ofs are missed. In such cases, although enough information exists to make a
prediction, an LZ predictor cannot make any prediction. To overcome thislgm,
Bhattacharya and Das [6] proposed the following modification. "Whervalaaf is
created fors, all the proper sfiixes ofs are also inserted in the tree. If a node repre-
senting a sffix does not exist, it is created, and the occurrence counter for exediy p
of every siifix is incremented” [30]. Figure 2.2 shows the constructed LZP tree for
s = gbdcbgce fdbdbde

e LeZi (LZ + Prefix + PPM): In this version, the seb, of the proper sfiixes is con-
structed for a leaf stringy and the LZP tree is updated. Then, for each sudhxsu
all the paths originating from the subtree rooted at th&sare found. Finally, the
PPM algorithm (see Subsection 2.3.3) is applied to those paths and finds therates
able location(s) based on each path’s weight (number of occurjeasieg the their

predicted probabilities.

2.3.3 PPM

Like LZ-based predictors, Prediction by Partial Matching (PPM) is alsal der text com-

pression [11]Order—k (or O(k)) PPM uses all contexts (identicaltcontextterm in Markov
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predictors) whose length is between 0 and k. It builds a fixed-ordekdtanodel for each
context. Those models are combined usingabkeapeprobabilities, which are the probabil-
ities of encountering previously unseen symbols. Song et al. [30Me&skod C[5] in their

implementation. According to this method, the escape probabilitk-fymbol context is

Ex= — (2.3)

whereNg is the number of escape events which is equal to the numbeffefeatit symbols
that have been seen in the context so farldnslthe total events which is equal to the number

of all symbols that have been seen in the context so far.

Then, for alla € A, theO(k) PPM probability is

k
P(n1 = AL) = Pu(@) + ) Pi-1(a)Ex (2.4)
i=1

wherePy is the probability computed using tlak) Markov model (see Equation 2.1).

2.3.4 SPM

Sampled Pattern Matching (SPM) algorithm is a predictor proposed by eiaejal. [16].
SPM is similar toO(k) Markov. However, this time, the context lendklis not fixed. Instead,

it is determined by a fixed fractiom of the longest context that has been previously seen.

SPM finds the longest §iix of L that has occurred previously. ThisBuis called as maximal
sufix (d). Only the fractional sfiix (c) with the lengthfe - |d|] of the maximal stfix is used

for prediction purpose. The next predicted charaatisr

argmaxeaN(ca, L) (2.5)

whereN(s, L) is the number of times the strirgpccurred in the histori.

Example: The history isL = abcdabdababcabAs a result, the maximal ix is ab. If we
takealfa = 0.5, the fractional sfiix become®. Sincea, c, d follows b once, twice and once

respectively. Therefore, SPM predicts the location

10



2.4 Metrics

Before the definitions of the metrics, we should explain how Song et al bj&@lk ties when

two or more locations have the same probability. They implemented three tiethethkds:

e First added: The first location added to the data structure is predicted; that is, first one

seen in the history.

e Most recently added: The location that was most recently added to the data structure

is predicted.

e Most recent: The location that was most recently seen is predicted.

Since the results showed that most of the users had less than about ab#redictions and
the dfects of the the choice of a tie-breaking method on the results were negligiig e5al.
[30] preferred to uséirst addedmethod in their experiments. In Chapter 5, we will mention

how we break the ties for LPMP, too.

2.4.1 Accuracy Metric

The predictors may return three possible values for the next location:

e correct location
e incorrect location

e no prediction

In our evaluation, we counto predictioncase as an incorrect prediction as Song et al. [30]

do. Accuracyis calculated with the equation:

accuracy= % (2.6)
a

whereN; is the number of the correct predictions aNgis the number of all moves. For

O(1) Markov predictor, an example of the accuracy calculation is depictédhte 2.2. We
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will use the righmost bold value in the table@serall accuracy While saying that a user has

some percentage accuracy, we will mean the overall accuracy.

Table 2.2: Example accuracy calculation @({1) Markov predictor

History a b a b c a b
Prediction| NP | NP | NP | b a |[NP| b
Accuracy | 0/1|0/2|0/3|1/4|1/5]|1/6| 2/7

2.4.2 Median Running Accuracy Metric

Song et al. [30] define thmedian running accuracy (MRASs "at each step for each trace
that has length at leastwe compute the average accuracy at each step by dividing the number
of correct predictions so far by There are generally several traces that have length at least
i; for each step, we find the median accuracy among all such traces and call it the median
running accuracy”. This metric shows the relation between accuracyracel length. For
O(1) Markov predictor, an example of the median running accuracy céloulis depicted in

Table 2.3.

Table 2.3: Example median running accuracy calculatio©ofd) Markov predictor

Trace 1
History b d b
Prediction| NP | NP | NP | d
Accuracy | 0/1 ] 0/2 | 0/3| 1/4
Trace 2
History c e c d c
Prediction| NP | NP | NP | NP | NP
Accuracy | 0/1 ] 0/2 | 0/3 | 0/4 | 0/5
Trace 3
History f g f g f
Prediction| NP | NP | NP | ¢
Accuracy | 0/1 | 0/2 | 0/3 | 1/4| 2/5| 3/6
Trace 4
History a b a b C a b
Prediction| NP | NP | NP | b a |NP| b
Accuracy | 0/1| 0/2|0/3| 1/4| 1/5| 1/6 | 2/7
Step 1 2 3 4 5 6 7
MRA 0 0 0O |1/4|1/5| 2/6| 2/7

o

«

«
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2.5 The Best Domain-Independent Predictor

Song et al. [30] compared the accuracy@f) Markov with that ofO(1), O(2), O(3) and
O(4) Markov predictors. They found that the high-or@¥B) andO(4) predictors were worse
thanO(2). Since the context length increases, the number of samples decréhsecauses
no predictioncases to increase. They reached this inference by wsinditional accuracy
that ignores the unpredicted moves. In that metric, the accuracy equals muthber of
correct predictions divided by the number of predictions (not movesjingJthat metric,
O(4) outpredicted the other Markov predictors. Due to this inference, disey f allback
mechanism which is simply based on the recursive use of the res@i(kof 1) predictor
(with k = 0 as the base of recursion) whé(k) fallback predictor encounters an unknown
context. The fallback property improved the accuracy of the predictorhe experiments,

0O(2) Markov fallback predictor performed the best.

Assigning weights according to tlmecencyof occurrence in the past was also experimented.
The most recent seen transition is weighted by 1 whereas the othersightasldoy 0. As a
result, the originaD(2) frequency-weighted Markov predictor with the fallback had the best

outcome.

Due to the thought that people also move in temporally regular patt@ms;aided Markov
predictor was developed. For that predictor, time of day was quantizedeiminute and
one-hour buckets. The predictor’s state was a pair: (location, time).etAmwthis predictor

could not outperform originaD(2) Markov fallback location predictor, too.

O(2) Markov predictor was also compared with the versions of LZ mention&libsection
2.3.2, PPM and SPM predictors. OnB(2) PPM and SPM witlw = 0.5 had an accuracy
negligibly better thai®©(2) Markov fallback predictor. Therefore, Song et al. [30] determined
O(2) Markov with fallback as the best overall domain-independent piadicat was simple

to implement, had relatively small table size, and had the best overall agcurac
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CHAPTER 3

RELATED WORK

A novel location predictor based Markov family of predictors has be@pgsed by Sun
and Blough [32]. Although this predictor uses a future location list obtafn@u differ-

ent available sources such as Microsoft Outlook, Lotus Notes andI&@adendar, it is a
domain-independent location predictor since it does not partition the lodaigtory using
any semantic interpretation. They used the same data [18] we used in theiiinesipts and
they reached that their location predictor can improve the prediction agcbsa3% and
95% over the history Markov predictors and the improvement mainly depentseaiser’s

mobility behavior and how much future knowledge is available.

In [35], a data mining approach similar to LPMP has been comparedwdatiility Prediction
based on Transition Matrix28] and Ignorant Prediction[6]. Unlike LPMP, that approach

calculates the support of a pattern by a path as follows:

eS| the elements of are contained by the pathin the same order

Supportl, A) =
0, otherwise
(3.2)

In Equation 3.1totDistis the optimal(lowest) value for the total of the mismatches between
Aandl. LetA=<123,4,54>andl =< 2,4 >. According to LPMP, the patterhis not
supported by the path sinceA does not contain the elementslofonsecutively. Therefore,
the support of | by A becomes 0. However, the approach in [35] yielosral support for

the patterr.
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Table 3.1: An alignment example

All 2 3 4 5 4
|- 2 - 4 - -
|- 2 - - - 4

As seen in Table 3.1, there are two possible alignmentk fotDist equals to 1 and 3 for the
first and second alignment, respectively. Since the approach seletitsttadgnment which

is the optimal oneA supportd with 1/(1 + 1) = 0.5.

In [35], the support parameter was also evaluated in the experimentse Aggport threshold

increased, the accuracy decreased. This result is also valid for LPMP

Chan et al. [8] compared five basic prediction algorithms based on individability pat-

terns:

e Location Criterion: Using the user’s present location and the departure history of
that location, it predicts the user’'s next move. The most frequently visiteditocis

predicted as the user’s next location.

e Direction Criterion: In addition to the Location Criterion, the user’s direction infor-
mation is used. Only the locations in the user’s direction are taken into acioouhée
departure history. The location with the highest departure rate is predisting user’s

next location.

e Segment Criterion: It extends the Direction Criterion further. All previous movements
are partitioned into a number of segments and then stored. A segment stiaetsdsn
with a stationary cell in which the user stays for #&®iently long time. The algorithm
tries to match the segment currently under construction with the stored segrfents
the present segment is matched with the initial portion of a stored segment, ahierioc

immediately after that initial portion is predicted as the user’s next location.

e Bayes’ Rule: It also extends the Direction Criterion so that all departure histories along
the future direction of travel are considered. For a location which is tyes havay from

the present location, the Bayes’ Rule [34] formula can be expressed as

15



P(A_1AB(Cr) = nP(Ai—lAi Bx) x P(CmlAi_1A By) (3.2)

D" P(A-1AB)) x P(CrlA-1ABj)
j=1

whereA_1 and A are the previous and present locatioBg,is the X' possible next
move,Cy, is the most likely step for visit two hops away ands the total number of
possible next moves. After the calculations, the location with the highesapild is

predicted as the user’s next location.

e Time Criterion: It emphasizes the temporal mobility patterns and imposes the time of

cell crossing into the Direction Criterion.

The algorithms above are criticized by [9] since they rely solely on the histbiydivid-
ual movement patterns and do not reflect the recent changes in thbalsafior. Doss et
al. [9] classify the prediction schemes which has been proposed toocoverihat drawback
broadly into two classes: the schemes employing individual user mobility informatio the
schemes employing group mobility patterns. They review many prediction sshgmk as
the Mobility Motion Prediction Algorithm [23], the Regular Path Recognition Methit],
the Shadow Cluster Scheme [22], the Hierarchical Position Predictiom&cf#!] and the
Neural-Network Based Prediction Algorithm [27] fronfigirent approaches.

Gonzalez et al. [14] studied the real-time trajectory of 100,000 anonyregltone users
(selected randomly from more than 6 million users) whose position is trackedsfg-month
period. According to Gonzalez et al., human trajectories show a highale§temporal and
spatial regularity, defined as the probability of finding the user in his mo#editocation
during a certain hour [29], in contrast with what Levy flight and randwatk models [7]
propose. They ranked each location depending on the number of timeswwassrecorded in
its vicinity. For instance, a location whose rabk(s 3 refers the third-most-visited location
for the selected user. Using those ranks, they obsdpgey~ 1/L whereP(L) is probability
of finding a user at a location with a given rabk Moreover, this outcome was independent
of the number of locations visited by user. Therefore, this means thatgpspgnd most of
their time in a few locations. Moving from that point, they reached a conclusigioating
that despite the diversity of their travel history, humans follow simple rapibde patterns

regardless of time and distance.
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In another work, Song et al. [29] focused on the limits of predictability, Wwhefers to the
probability of foreseeing a user’s future whereabouts in the next based on his previous
trajectory, in human mobility. They studied three months of the mobility patterns befptog
50,000 anonymous cell phone users selected randomly from 10 million 0$eg measured
the entropy of each user’s trajectory and found that despite the signiflBerences in their
travel patterns, most people had a 93% predictability regardless of howkitameters they
travel. In addition, they explored that the regularity (same as [14]) aedigtability were not
affected significantly by demographic factors such as age, gender antgroups.

17



CHAPTER 4

LOCATION PREDICTOR VIA MOBILITY PROFILER
FRAMEWORK

In this chapter, we will explain how we converted Dartmouth’s data [18] inéofehmat of
Location Predictor Via Mobility Profiler Framework (LPMP). In addition, wdlwexplain
how LPMP works [4] and how we implemented it. We note that the work of Bayat.€4]

is the main source of this chapter.

4.1 Preliminaries

4.1.1 Data Conversion

We showed how each user’s trace were recorded in Table 2.1. Irtforma the table is
enough to be used by LPMP but its format is not suitable for LPMP. Weeartew data into

the format as in Table 4.1.

Table 4.1: A sample user trace in the format of LPMP

Start Time | End Time Cell
1008253217 1008253716| AcadBldgl12AP2
1008253716 1022867758 AcadBldg25AP4
1022867758 1022868237 AcadBldg25AP4
1022868237 1022868237 OFF

The conversion was done as follows. We renanigde Location columns asStart Time
andCell respectively. We added a new column narisd Time We filled the value of that

column withStart Timevalue of the next record. For the last record, we just$tairt Time
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value asEnd Timevalue. In fact, this value does not make any sense for the last recar sin
the last cell is always an end-location as we will see in Subsection 4.2.1aNéach record

as thecell span record

4.1.2 Overview of Location Prediction Process

The location prediction process starts with fhegh construction phaseln this phase, the
paths representing a user’s travel from one end-location to anotheoastructed. After this
phase, Bayir et al. [4] apply alszll clusteringagainst theging-pong gect[21] which we

will mention in the clustering experiments (see Section 5.5. Although we will netalulata
in our experiments except the clustering ones, after the path construbtge pve will also

useclusterterm in place otell term (AP location).

The second phase is the topology construction. In fact, this phase thasynéfects on the
accuracy of LPMP. It is used just to make tb&ttern discoverphase morefécient. In the
pattern discovery phase, the frequent mobility patterns are discovEned, in thelocation

predictionphase, those patterns are used to predict the user’s next location.

4.2 Location Predictor

In this section, we go into the details of the four phases of LPMP.

4.2.1 Path Construction

Before we mention how the phase works, we list the definitions [4] reqfarettie phase:

Definition(Cell Duration Time): Cell duration time is the dierence between end and start
time for each cell span recoid that shows how many seconds the user connected to the

specified AP and calculated with:

Lk

dur

=LY Llétart (4.1)

end

whereL ., LK, L& are the cell duration time, the connection end time and the connection
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start time fork™ cell span record, respectively.

Definition(Cell Transition Time): Cell transition time is the dierence between the end time

and the start time of two consecutive cell span records and calculated with:

Lk — Lk+l _ Lk

tra start end

(4.2)

Lk

K & Lar are thek™ cell duration time, the connection end time kdt cell span

k
whereLdur,

record and the connection start time flr{ 1) cell span record, respectively.

Definition(Observed End-Location): A cell span record whose duration tim§ur is greater

than the predefined threshaigl,raiion is called as an observed end-location record:

Lléur > dduration (4.3)

Definition(Hidden End-Location): A location which is between two consecutive cell span
recordk™ and k + 1) and the user stayed longer than a predefined upper bfungkion in

is called as an hidden end-location:

th<ra > Otransition (4.4)

In our evaluation of LPMP, we do not use this type of end-location sincekeial location
OFF (see Section 2.2) is introduced in our data and thus, the transition time is atemys

However, for the sake of the completeness, we mention and use it in thigchap

Definition(Mobility Path): An ordered sequence of the cells that a user visited during her
travel from one end-location to another is called as a mobility Gath[C1,C>,Cs3,...,Cyl.

A mobility path must satisfy the following two rules:

e End Location Rule: YCy € C, LK > Squration= k = 1or k = |C|

dur

o Transition Time Rule: ¥Cy, Ci1 € C = LKL - LK < Siransition
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1: 04ur < Duration time threshold

2: 8ya < Transition time threshold

3: L « Cell Span Record s¢Eorted by time; Cell Span Record structurstaft, end cell)}
4: tempPath— 0 {Cell Span Record sgt

5. fset < 0 {Output; final Path sét

6: for all Cell span record,; in L do

7:  durj < end — star;

9: if tempPathz 0 then

10: if start — GetEndTim@empPaths) < dyra then
11: tempPath— tempPathu [L;]

12: else

13: fset — fsetU tempPath

14: tempPathe [L;]

15: end if

16: else

17: tempPath— [L;]

18: end if

19: else

20: if tempPath# 0 then

21: if start — GetEndTimé&empPathst) < 6ira then
22: tempPath— tempPathu [L;]

23 end if

24: fset — fsetU tempPath

25: end if

26: tempPath— [L;]
27 endif

28: end for

29: if tempPathz 0 then
30: S« SutempPath

31: end if

Algorithm 4.1: Mobility Path Construction

21




In order to show how Algorithm 4.1 works, we run the algorithm on data ineTél2 [4] with
6duration = 7 andétransition = 5 In the table:rstart, Tend, Tdur anthra are start tlme, end tlme,

duration time and transition time, respectively.

The algoritm creates an initial path containing only the first g&i{l][ Then, sinceTqy, >

dduration fOor move= 4, the algoritm terminates the current paih [C», C3, Cs].

Since the end-locatiorCg] is an observed end-location, it becomes the initial cell of the new
path. This time, sinc&a > dyansition fOr move= 7, the algorithm terminates the current path
[Cs, C3,C1] not appending the current celC}]. The inequalityTya > Siransition States that
the user enters a hidden location after €ll Thus,C, cannot be appended to the previous
path and a new patiC}] is initalized. After all records are exhausted, the algorithm stops and

returns the mobility paths in Table 4.3.

Table 4.2: An example cell span data set

move| Tstart | Tend | Tdur | Ttra | CEll
1 0 4 4 -1 | Cy
2 6 9 3 2 Co
3 9 13 4 0 Cs
4 15 23 8 2 Cs
5 23 27 4 0 Cs
6 27 30 3 0 Cs
7 41 45 4 11 | C
8 49 50 1 4 Cs
9 56 58 2 6 C,
10 58 61 3 0 Cs
11 62 66 4 1 Cy

Table 4.3: Reconstructed path set

Pathld Path
1 [C1,Co,C3,C5]
2 [Cs,C3,Cq]
3 [C2,Cq]
4 [C1,C3,C4]

22



4.2.2 Topology Construction

This phase does noffact the accuracy of LPMP but may expedite the pattern discovery phase
with the exponential time complexity by eliminating majority of candidate path segsence
One scan through the mobility paths is enough to construct the topology. gbapimg this
scan, an edge between the cell cluster pajrandCy, 1 is created if both of them exist in any

path in consecutive positions. Algorithm 4.2 contains a pseudocode arpléiis phase.

1. S « Path Setin terms of clustens
2: Link « 0 {Output; topology matrix
3: for all PathS;in S do

4:  for all ClusterCy andCy,1 in S do

5: Link[Ck][Cky1] « true;
6: end for
7: end for

Algorithm 4.2: Topology Construction

4.2.3 Pattern Discovery

In this phase, a modified version of AprioriAll [2] algorithm, which is calledSesjuential
Apriori algorithm, is used to discover the frequent mobility patterns from thkilitppaths.
According to this algorithm, if one’s items of the two sequences are foundeitiselother in
a consecutive order, there exists support relation between the twerssxgu For example,
the sequence 1,2, 3 > does not suppor 1,3 > since 3 does not follow 1 consecutively in
< 1,2,3 >. There is a 2 in the middle. Howevet, 1, 3,2 > supports< 1,3 >. Therefore,
a pathS supports a patterR if and only if P is a substring of. All the paths supporting a

pattern are called as isipport set

Since our focus is on the location prediction, we do not need to determiné whattern is
maximal. Therefore, we removed the parts related with maximal patterns in thettaigo

written by Bayir et al. [4]. The final state of the algorithm is depicted in Algonith 3.

The algorithm works as follows:
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1: dsup < Minimum support frequency

2: S « Paths of clusters

3: Link « Topology matrix

4: C « Cluster set

5. P « 0 {Output; Set of the frequent patteins
6: L1 « 0 {Set of the frequent length-1 pattefns
7: fori =1to|C|do

8: if Suppor{[Ci],S) > dsupthen

9: L1 « L1 U[Ci]

10:  endif

11: end for

12: ke 1

13: loop

14: if Ly = 0 then

15: Break the loop

16: else

17: L1 <0

18: for all Patternlj in Ly do

19: for all ClusterC;jin Ly do

20: if Link[LastCluste(l;),C;] = truethen
21: T « |j « Cj {AppendC; to I;}
22: if Suppor(T,S) > dsypthen
23: Lks1 « Lier U[T]

24: P« PUIT]

25: end if

26: end if

27: end for

28: end for

29:  endif

30 kek+1

31: end loop

Algorithm 4.3: Sequential Apriori
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¢ In the beginning, the clusters with fiigient support form a set of the frequent (sup-

ported) length-1 patterns.

o If the last cluster of a lengthk-pattern is incident to the cell cluster of the length-1
pattern, length-1 cell cluster is appended to leriggiattern and thus, lengttg 1)

candidate pattern is generated.

o Ifthe support of the lengthké+1) pattern is equal to or greater than the required support,

it becomes a supported (frequent) pattern.

e At some value k, if no new supported pattern is generated, the iteration halts.

The functionSupportl : PatternS) determines whether the pattelrrhas sificient sup-
port from all the mobility path$ generated in the path construction phase. The support is

calculated as:

|Si|¥I is substring of §

= (4.5)

Supportl) =

Being dsupport = 0.25, an example execution of Algorithm 4.3 is presented in Table 4.4. In
the table, the patterns in bold are the frequent patterns for each iteratierotiier ones are
eliminated due to their ingficient support. After 4th iteration, since no new frequent patterns

can be generated, the iteration halts.

Table 4.4: Patterns generated at each iteration

Step Pattern: Support
1 < C1>:0.75< Cy >:0.50,< C3 >:1.00,< C4 >: 0.25,< C5 >: 0.50
< C,Cy >:0.25 < C1,C3 >: 0.25 < Cy,C3 >: 0.50, < C3,Cq >: 0.25,
< C3,C4 >: 0.25,< C3,C5 >: 0.25,< C5,C3 >: 0.25
< C]_, Cz, C3 >: 0.25,< Cl, C3, C4 >: 0.25,< C2, C3, C5 >: 0.25,
< C5, C3, Cq1 >:0.25 < Cq, C3, C1>:0.0,<Cq, C3, C5 >: 0.0,
3 < C2, C3, C1 >: 0.0, < C2, C3, C4 >: 0.0, < C3, C]_, C2 >: 0.0,
<C3,C1,C3>:0.0,<C3,C5,C3>:0.0,<C5,C3,Cr >: 0.0,
< C5, C3, C4 >: 0.0
< C]_, C2, C3, C5 >: 0.25,< Cl, Cz, C3, C]_ >: 0.0, < Cl, Cz, Cg, C4 >: 0.0,
< Cy, C3, C5, C3 >: 0.0, < C5, C3, C1,Cr >:00, < C5, C3, Cy, C3 >: 0.0
5 < Cq,Cy, C3, C5, C3 >:0.0
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4.2.4 Location Prediction

After the frequent mobility patterns are generated, the confidence ofgheléaments in each
frequent pattern is used for the prediction purpose. The confiddrackoation is calculated

as [3]:

SupportP e X)

Conf(Rx) = S uppor{P)

(4.6)
whereP is a frequent pattern which equals to the mobility history windeandP e x (here

the e is the concatenation operator) is another frequent pattern with l@migthl. The pre-
diction algorithm works as follows. If the pattern which equals to the mobility hystors
found, the frequent patterns with lengt¥) + 1 whose prefixes with lengtiv| match withw.

The last elementsv] + 1-th element) of matched patterns are collected in a candidate set in-
cluding their confidence values. The elements are sorted by the cordidalnes. The topa
elements are put into the prediction set (wheris the size of the prediction set). During the
location prediction, if the user’s next location equals to one oftlh@cations in the prediction

set, LPMP is counted as successful. Otherwise, it is counted as ussfudcélgorithm 4.4

shows a pseudocode for the location prediction.

Bayir et al. [4] look for the longest pattern matching wittio predict the user’s next location

in their work. However, they also put an upper limit fof. Indeed, this approach is the same

as the fallback mechanism in the Markov predictors mentioned in Section 2.&x&mple,
startinglw| = 5, if LPMP cannot find the patterns with length-5 and length-6 whose prefix
with lengthjw| match withw, it does the same fdmw| = 4 and so on. This is exactly the
same what the Markov fallback mechanism does. There is only difeeatice between them,
that is, no context (length-0 context) case. In order to remove tiereince, we propose the
emptypattern term. We suppose that all the mobility paths support the empty pattern. As
a result, the support of the empty pattern always is Iwjl= 1 and LPMP cannot make a
prediction, then the location in the most supported length-1 pattern is preditbe user’'s

next location. Hence, we call the whole proces$adiback-w (FW)approach.

Since FW approach may miss some locations with high confidence in the shaitegnp due
to the priority of the longer patterns in the prediction process, it sometimes mag t&MP

to make incorrect predictions. In order to cope with such situations, wegopsoanother
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approach which we call aall-w (AW). In this approach, we use all the patterns from the
shortest length to the longest minus 1 length. For example, let the length ofidhest
patterns and the longest patterns be 2 and 5. LPMP tries to match eadmtrpgtiern which
has a length from 2 to 46-1) withw of the suitable length. In addition, to make a prediction,
LPMP finds the patterns, which has a length from 3 to 5, whose prefiees.alf those
conditions are satisfied, ignoring the pattern length, the location with the higfideace is
predicted as the user’s next location. If LPMP cannot make a predic$ioig the patterns,

like in FW approach, LPMP uses the empty pattern to predict the user'sawaion.

1. P « Set of the frequent patterns

2. W « Current mobility history

3: m « Size of prediction set

4: F « 0 {Output; Final prediction sgt

5. CandidateS et 0 {Candidate prediction set
6: if we Pthen

7:  for all PatternP; in P do

8: if P; starts withw then

9: if |Pi| =|w|+ 1then

10: CandidateS et- CandidateS et P;[|w] + 1]
11: end if

12: end if

13:  end for

14.  SorfCandidateS @t{Sort with respect to confidence valiies

15:  F « CandidateS ¢1 ... m] {Select topm elements

16: end if

Algorithm 4.4: Location Prediction

In our evaluation, we compare FW and AW approaches and also takeettiietjpn set size
as 1. Furthermore, we evaluate how thee slice based probabilitgffects the accuracy of
LPMP in Section 5.4. Time slice based probability is calculated as the numbetarides of
the pattern observed in the specific time slices over all instances. While ¢aigulse score
of each location to be used in the prediction process, it is multiplied with the emciédvalue

of the possible locations.
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CHAPTER 5

EVALUATION

In this chapter, we will evaluate the accuracy of LPMP comparing to theNbedtov predic-

tor. We will try to achieve better results than those of the best Markov goedicterms of
accuracy. In the first section, we will describe the test environment achwie made the
evaluation. In the second section, we will examine how the end location thdsstiguration
anddansition), the frequency support thresholits(ppor) and the mobility history windowwy()
parametersféect the accuracy of LPMP. Next, we will use the half of data to train the two
predictors. After training, we will reevaluate the accuracy of the predictdhen, we will
examine the time-slice based probability. Lastly, we will apply a simple clusteringoahésh
data and determine whether the accuracy of LPMP relative to that of thlbdsov predictor

improves or not. In the last section, we will make an overall evaluation ofethalts.

5.1 Test Environment

In the beginning, we decided to use the whole of data [18] stated in Chaptavw&ver, our
LPMP experiments took long hours -even days- to generate the results theeexponential
nature of Algorithm 4.3. We made some enhancements in its implementation but gl cou
not obtain the endurable running times. For the user X, Figure 5.1 illustratethie running
time for the accuracy calculation by LPMP exhibits a quadratic growth. Thecli76 x
107°n? fits the running time results whends the number of the steps. On the other hand, the
running time for the accuracy calculation by Markov predictor grows ligdiée in Figure

5.2. This time, the curve.B1 x 10 2n fits the results.
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Figure 5.1: Running time for the accuracy calculation by LPMP Withtation = 10min,
Ssupport= 0.001 and AW method (Curve function4.76 x 10-°n?)

To cope with the quadratic growth of the accuracy calculation by LPMP, adett sample
the real data. To do that, we removedIlalig traces which cause LPMP experiments to take
long. Next, we sortedhortand mediumtraces in descending order in terms of the number
of the moves. Then, we selected every 10th tracemedfliumtraces and every 25th trace of
shorttraces. The number of the traces being 6,202 before the sampling haaskstto 289.
Therefore, we have sampled the real data at about 5% in terms of the noftle traces. In
addition, the number of the moves has decreased from 12,218,093 to 30Tdl8etermine
how successful our sampling has done, we compare the accuracyentkethan running

accuracy of the real and sampled data in Figure 5.3-5.6.

Figure 5.3 depicts how successfully the accuracy of O(2) Markov felipredictor for the
sampled data overlaps with the one for the real data. To measure the quétiéyaserlap of
the accuracy graphs, we calculate medrafid standard deviatiom] of the accuracy graphs.
We should note that those values in this section do not belong to the acaataeg. They

belong to the discrete values forming the accuracy graphs. In Figure® dtainusampled=
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Figure 5.2: Running time for the accuracy calculation by Markov predi€on(e function
=5.71x 107?n)
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Figure 5.3: O(2) Markov fallback predictors for sampled and real data

30



0.4232 antrsampled= 0.3241 for the sampled data apga = 0.4224 andrrea = 0.3224 for

the real data. The error rates f&dampied@ndo sampiedare 02% and 06% respectively.

—a— (O(2) Markov fallback (Real)
---&--- O2) Markov (Real)
O(1) Markov (Real)

DB [

OB bR

O b .-.. ..........................................

Fraction of users

02 F P

0 0.2 0.4 0.6 0.8 1
Accuracy

Figure 5.4: Markov predictors for real data

The accuracies of threeftkrent Markov predictors relative to each other for the real and the
sampled data are illustrated in Figure 5.4 and 5.5. In additi@mdo- values of the Markov
predictors are shown in Table 5.1 and 5.2. As seen in the tables, theaasmare very low
and negligible. This means that the accuracy values for the sampled da&adiid¢h for the
real data well and the sampled data can be used in our experiments to ma&fiaisons

between LPMP and the best domain-independent predio(@) Markov fallback).

Table 5.1: mean() values of Markov predictors for sampled and real data

Markov Predictor| usampled| Mreal Error Ratg%)
0o(1) 0.4695 | 0.4752 12
0(2) 0.4922 | 0.4882 0.8
0(2) fallback 0.4232 | 0.4224 0.2

Although the accuracy evaluation of the real and the sampled data shdvestrsampling
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Figure 5.5: Markov predictors for sampled data

Table 5.2: standard deviatian( values of Markov predictors for sampled and real data

Markov Predictor| osampled| 0rear | Error Ratg%)
0o(1) 0.3332 | 0.3283 15
0(2) 0.3122 | 0.3029 31
0(2) fallback 0.3241 | 0.3224 05

32



is suficiently successful, we have also evaluated MRA@?) Markov fallback predictor for

the real and the sampled data to ensure the success in our sampling.

— 0{2) Markov fallback {Sampled)
------- O(2) Markov fallback (Real)

=] o)
(=] (=)

=]
e

Median running accuracy

0.2

0 50 100 150 200 250 300 350 400 450 500
Steps

Figure 5.6: Median running accuracy of O(2) Markov fallback predgfor sampled and
real data

In Figure 5.6, MRA for only 500 steps is depicted simoedianloses its statistical benefit
after 500 steps due to the decrease in the number of the traces with abieaseps. Hence,
for 500 steps, we obtaifsampled = 0.6428 andosampied = 0.0667 for the sampled data
andurea = 0.6589 andorea = 0.0749 for the real data. The error rates fegmpleqand

Tsampled@re 24% and 1% respectively. Since we removéahg traces completely during
the samplingmedianworks in favor of the shorter traces. That is why the error ratesgf,pied

is relatively high. Therefore, we determine that the error rates for MiRAstll acceptable to

run our experiments on the sampled data.

5.2 Parameter Experiments

As seen in Algorithm 4.1, the mobility path construction requite®quration and Stransition

as input. As mentioned in Section 2.2, the special locadéit is introduced in Dartmouth
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Wi-Fi mobility data [18] to represent the user’s departure from the nétwBecause of that
reason, there are not any time gaps between the consecutive locatiottserimvords, in our
data, the transition time between the consecutive locations is always zesefdite, we do
not analyz&ansition @nd we assume thétansiiion IS Zero. To be more clear, we should say

thatdiransition Will not have any €ects on our experiments.

In order to start our experiments, we need to determipgiion threshold. To do that, we
define an experimental duration set which contains 37 5-minute time valuesOfrainute
to 180 minutes. Because of the layout constraint, just the time values from @emianG60
minutes are shown in Figure 5.7. Like in illustrating the accuracy performafree@redictor,
we use cumulative mass function to analyagation. FOr example, using Figure 5.7, we can

say that 40% of the total moves have the duration equal to or less than 15 sninute

D b

1 T SR P

1 SRR TPy

DB b

DR b T

o b T

Fraction of moves

10 B S T P

[ b

1 I o LR P

0 5 10 15 20 25 30 35 40 45 50 55 6O
Duration {min)

Figure 5.7: Duration threshold analysis

The key point of selectingquration iS to differentiate the static (end) locations from the non-
static (intermediate) locations. In order to do that, we look for the first dtecpease between
two different time values while going througtaxes in—x direction. Until 35th minute, the

decrease in the cumulative mass function stays around 1-2%. On the atiigrthere exists
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4% difference between 35th minute and 30th minute. In other words, 35th minutekisebe

point of the graph. Therefore, we decided to ac@phtion @S 35 minutes.

The two predictors which we compare amaline predictors. In fact, the analysis 6furation
violates this online approach. However, we could also find that value byatrcherror. In
order to start our experiments, we needed an initial value. Consequestlg accelerate the
process of finding a reasonaldlg,ration Value, we made that analysis. In this point of view,
the online approach is not violated. Besides, later in this section, we will aédoate how

reasonable oufgyration Choice is.

The next parameter we have to determinésigportin Algorithm 4.3. We do not make any
analysis to find an initial value for this parameter unbkgation. We start withsypport = 0.05.
According to that value, for example, if a user has 100 mobility paths ifndridocation
history, only the patterns which exist at least 5 mobility paths are taken ingd=ration in
the location prediction process. The other patterns are eliminated befaratiig 4.4. Later
in this section, we will also try the fierent values fobsypport to improve the accuracy of

LPMP.

As mentioned in Subsection 4.2.4, we have the twitedént approaches fow|: fallback-
w(FW) andall-w(AW). In our first experiments, we will use FW approach. Then, it will be

compared with AW approach. We selést = 2 for our first experiment.

Before we interpret our first experiment, we need to decide how we vedllothe ties. If the
two or more patterns with the same length have the same confidence, we neeatleottbw
we will choose one of them. At this point, we propose two alternatives: sihgdhe first

generated or the last generated pattern. Here is what we analyze irsbaxfieriment.

As seen in Figure 5.8, the first generated pattern alternative is slightly bedtethif other
one. We can see the statistical proof of that in Table 5.3. Therefores ging > tast, We

will use the first generated alternative for the next experiments. In theefigve also show
how the usage of themptypattern improves the accuracy of LPMP. Obviously, LPMP which

does not use the empty pattern to predict the next location returns theregurkt

Before passing to the next experiment, we should clarify why we do moheslianaccuracy

like Song et al. [30] while comparing the predictors. We canmséelianwhile saying that
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Figure 5.8: First vs. Last generated pattern analysis WhigFgion = 35min, dsupport= 0.05,
FW=2

Table 5.3: mean() accuracy values for Figure 5.8

Predictor u

O(2) Markov fallback 0.5797
LPMP (first generated) 0.5315
LPMP (last generated) 0.5302
LPMP (without empty pattern) 0.4732
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the predictor has at leag®o accuracy for the half of the users. This is an indicator of the
prediction performance of a predictor. However, usenetdiantool sometimes may take us
to incorrect inferences. For instance, as we see in Figure 5.8, thietpredhich prefers
the first generated patterns has a slightly better graph. We can catchflibiertie by using
meantool over the accuracies. In contrast, if we use median, we miss that iscaeide
mediars of the predictor which prefers the last generated patterns is greatethtiteof the
other one. Therefore, we usgeantool to compare the prediction accuracy of the predictors

in our experiments.

Because)(2) Markov fallback is the best predictor among the Markov predictoesstarted
our experiments witiFW = 2 for LPMP. However, we have to check how acceptable our

choice is. The results of our next experiment are depicted in Figure 5.9.

---x--- 0(2) Markov fallback
—a— LPMP (FW=1)

- LPMP (FW=2) .

0g | ePMPEW=3) | o
---8--- LPMP (FW=4)
------ LPMP (FW=5)

06 |

Fraction of users

1 T PP B

[]2 R

0 0.2 0.4 0.6 0.8 1
Accuracy

Figure 5.9: FW value analysis whe¥gration = 35min, dsypport= 0.05

As seen in Figure 5.9, the predictors witlfdrentFW values excepEW = 1 almost overlap
each other. We can see this fact numerically in Table 5.4. Indeed, thiis fjpected since
the number of'no prediction” cases increases after some lengtltafitext As the length

of the context (or pattern) increases, the number of the samples whialsedeto make a
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prediction decreases. As a result, for example, if LPMP cannot makedécpon using the
patterns whose length is 5, it tries the patterns whose length is 4 and thisgaesively until
LPMP makes a prediction. Therefore, fimllback mechanism, after some length of context,
the predictors overlap each other. In Figure 5.10, we can see the shmadug of Markov
fallback predictors. As of the contexts whose length is 2, both LPMP anttdvdallback
predictors start to converge. However, as seen in Table 5.9, LPMP WithdHs the best
LPMP predictor because of its highest mean. Therefore, we will useR.RMh FW=4 in

the next experiment.

Table 5.4: meamn() accuracy values for Figure 5.9

LPMP Predictor u
FW=1 0.5245
FwW=2 0.5315
FW=3 0.5315
FW=4 0.5316
FW=5 0.5313
1
---x--- O{1) Markov fallback
—a— 0f2) Markov fallback

---a--- 0{3) Markov fallback
08 s O{d) Markov fallback |~ #*a
---8--- 0(5) Markav fallback 1

06 t+ % e
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0 0.2 04 0.6 0.8 1
Accuracy

Figure 5.10: Markov fallback predictors

In FW approach, we may miss the correct predictions with high confideslces but short
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pattern-length. To overcome this issue, in Subsection 4.2.4, we proposgppiach. How-
ever, in AW approach, similar to the comparison of the first and the lastateipattern, also
there is an issue which requires that we have to choose an alternativeo platterns with
the ditferent lengths have the same confidence, we have to decide which oneeisuitor
able. Consequently, in our next experiment, we analyze those issugguhe 5.11, whereas
LPMPs have similar graphs, LPMP with AW-long pattern seems negligibly bether tthe
other two LPMPs. In order to determine which one is more accurate, wegutean values
of the predictors into Table 5.5. According to the table, since LPMP with AWegLpattern
has the highest mean value, we count LPMP with AW-Long pattern as th&BEE> so far.
In the next experiments, we will use AW approach and not mention the i$sbe lmng pat-
tern anymore. Thus, wherever we use AW approach, we also mearetbéthe long pattern

as default.

---%--- 0(2) Markov fallback
—e— LPMP (FWW=4)
---%--- LPMP (AW-Short pattern)

0.8 || 4. LPMP (AW-Long pattern)
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Figure 5.11: FW vs. AW analysis whedgyration = 35Min, dsupport= 0.05

In our next experiment, we will test theftitrent values fobsypport If the tested data is
regular in terms of the mobility patterns and contains very rare (noisy) losatahigher

dsupport Which eliminates the noisy patterns may return higher accuracy. Howeleghar
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Table 5.5: meanq) accuracy values for Figure 5.11

LPMP Predictor u

FW=4 0.5316
AW-Short pattern| 0.5320
AW-Long pattern| 0.5326

dsupport May also mean eliminating the beneficial patterns for the correct predictians. F
example, let four patternd€d, bc, abce abc be with the supports.8, 0.5, 0.07 and O1.

We suppose that the 3 recent locations @pe and naturally the 2 recent locations dre

In this condition, when the predictor calculates the confidenakasfde, it gets 06 and 07
respectively and predicts for the next location. Howevehcd has a higher support than
that ofabce If we used a higheésypport Such as @, the predictors would returd as the
next location. To sum up, depending the attributes of data, there may badeadfaln our
experiment, we finish decreasiagupport at 0001 since our sampled data contains at most
1000 moves for any user. Decreasiigpportafter Q001 does not make any sense. In Figure
5.12, obviously LPMP withds,pport = 0.001 is the best among LPMPs. We can see this fact
statistically in Table 5.12. In addition, the execution times of the predictors aré listhe
table since the support thresholffiegcts the execution time significantly and sometimes we

may sacrifice the accuracy for a better execution time.

Table 5.6: mean() accuracy values for Figure 5.12

LPMP Predictor |  pu Execution time (min
5suppon= 0.1 0.5179 8.03
dsupport= 0.05 | 0.5326 30.49
Osupport= 0.01 0.5598 50.80
dsupport= 0.001 | 0.5666 93.76

Now, we come to the analysis of the parametgkation that makes LPMP a domain-specific
predictor. In the beginning of this section, we analyzed it briefly. Thaiyess tries to
differentiate the end locations from the intermediate locations. The detertaingd, value
may work well with the aim of the Mobility Profiler. However, we need to test thbethis

value isgoodalso for the location prediction.

Similar to dsupport @analysis, there are two sides &fyration analysis. Whiledqyration ap-

proaches to zero, LPMP starts to lose the dependency on the domain ecaliids a domain-
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Figure 5.12:5support@nalysis wheréguration = 35min and the prediction approach is AW

independent predictor. The behaviour of LPMP Wif{)ration < O proves this fact. It shows a
prediction performance very close to O(1) Markov fallback predictbis s due to fact that
LPMP with §quration < 0 andO(1) Markov fallback predictor partition the location history
similarly. LPMP partitions the location histoly = abbaas the mobility pathab, bb, ba
Then, it generates the pattelad, ab, bb, baand predicts the fifth location using the patterns
abanda. The same is valid foD(1) Markov fallback predictor. It sees the current context as
a and looks for the location that most frequently followed the current contiexther words,

it searches a pattern likeex where x is the most frequent location followad That is why
the statisticsi( pmp = 0.5559,0 pmp = 0.2458 andumarkov = 0.5585,0"markov = 0.2487)

of those predictors are very close to each other. On the other hand dahil@n approaches
to infinity, the number of the paths decreases and the path lengths incbres# this fact,
the pattern supports converge to each other. At infinity, all frequentrpatteve the same
support that is 1. Therefore, according to our last settings, LPMByal\predicts the loca-

tion with the first-generated longest pattern. For most of the time, this meansctireeict

prediction. In conclusion, due to this tradé;ave look for an equilibrium point fofguration.
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Figure 5.13quration analysis up to 10min whepport = 0.001 and the prediction approach
is AW

In Figure 5.13 and 5.14, for theftkrentdqyraion Values, the prediction performance of LPMPs
is depicted. Since the graphs are almost overlapping each other, wa catice which one
is better easily. Table 5.7 helps us to determine the best LPMP. According tabllee until
dduration = 10min, the accuracy increases and aftemlfy the accuracy decreases. Thus,

LPMP with quration = 10minis the best LPMP so far.

Table 5.7: meand) accuracy values for Figure 5.13 and 5.14

LPMP Predictor u

(Sduration <0 0.5559
Oduration = 3 0.5651
Oduration = D 0.5670
Oduration = 7 0.5678

Oduration = 10 0.5683
Oduration = 20 0.5682
Oduration = 35 0.5666
Oduration = 60 0.5654
Oduration = 90 0.5644
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Figure 5.14:0quration analysis starting from 10min whesgypport = 0.001 and the prediction
approach is AW

In this section, we improved the accuracy of LPMP analyzing the paranwateRMP. As
illustrated in Figure 5.15, untdccuracy= 0.4, LPMP shows better performance. After that
point, the best Markov predictor shows better performance. In total, @udkadw predictor
with 4 = 0.5797 is better than LPMP with = 0.5683. In the next sections, we will use the

parameter values we obtained in this section.

5.3 Training Experiment

In training experiment, we use the half of the user location histories to trairedie. BMP and
Markov predictors. For example, a user X has such a location histefryabbacdabdabca
whose length is 12. The predictors usg 422 6 locations to train themselves. Then, the
accuracy calculation starts. In fact, training exists in all of the experiméfgse, we mean
the diline attribute of this training. In Figure 5.16, as expected, the predictioonpeaihces
of the two predictors are better comparing with the results of online trainingriempnts. In

order to explore which predictor is the best learner, we put the statiséits¥into Table 5.8.
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Figure 5.15: Comparison of LPMBdyration=10min, dsupport = 0.001 and AW method) and
O(2) Markov fallback predictor

Since the error rate after training is higher, we count the Markov predistthe best learner.

Table 5.8: mean() accuracy values for Figure 5.15 and 5.16

HUmarkov | HLPmp | Error Rate(%)
Before training| 0.5797 | 0.5683 2

After training | 0.6019 | 0.5877 24

5.4 Time-Slice Based Probability Experiments

As mentioned in Subsection 4.2.4, the prediction can be done also using thditiese-¥/e
applied the time-slice based probability over the confidence values. Unlikeeshiés of
Bayir et al. [4] in Figure 5.17, the time-slice based probability never imprawed_PMP
predictor as seen in Figure 5.18 and Table 5.9. As the length of the time-stiambeshorter,

the accuracy decreased. We dropped some graphs from the figuré&edimeaother graphs
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Figure 5.16: Comparison of LPMBdyration=10min, dsupport = 0.001 and AW method) and
O(2) Markov fallback predictor after training
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Figure 5.17: Location prediction for us®r(adopted from [4])
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more noticeable. The values for the dropped graphs can also be seen in the table.
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Figure 5.18: Comparison of LPMBjration = 10min, dsupport= 0.001 and AW method) with
the diferent time-slices and O(2) Markov fallback predictor

Table 5.9: mean() accuracy values for Figure 5.18

LPMP Predictor u

TS=24h 0.5683
TS=12h 0.5618
TS=8h 0.5564
TS=6h 0.5543
TS=4h 0.5501
TS=3h 0.5458
TS=2h 0.5407
TS=1h 0.5361
TS=0.5h 0.5276
TS=0.25h 0.5236

Song et al. [30] proposed a predictor nanigde-aidedMarkov predictor similar to our
time-slice based probability approach. They quantized time of day in one-nandtene-
hour buckets. That predictor behaved similarly. As the bucket sizeedsed, the accuracy

decreased. They give two reasons causing the low accuracy of timeé-siarkov predictor.
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Those reasons are also valid for LPMPs applying time-slice based pliigbia0]:

e The location information in Darmouth Wi-Fi mobility data [18] is not real human move
ments and instead, it contains the wireless devices’ assocations with @oietss
Although human movements usually follow patterns according to time, the wireless

devices may change their associated APs when they find a stronger signal.

e As the bucket size decreases, the number of samples required to magdictiqn

decreases. This causes incorrect predictions.

5.5 Clustering Experiments

Although the owner of a wireless device is not mobile, the device may beiatsbevith
different APs in a short period of time. These transitions are defined as th@qiy d€fect
[21]. The ping-pong fect may decrease the prediction performance of the predictors and

some clustering on the mobility data may be beneficial to the accuracy of thietpred

Since Bayir et al. [4] observe that clustering improves prediction paidoce(30%) (see
Figure 5.17, we decide to cluster our data and then compare the two predivenr the
clustered data. Instead of clustering method mentioned in the work of Bagir ¢4], we
apply a simpler method [26] to cluster the data. In this method, we divide time intdaarce
length time-segments and determine the AP which is seen more than the othee AtPsaanh
time-segment. That AP is called as theminantAP for the corresponding time-segment. To

cluster data, the APs in each time-segment are replaced by the dominant AP.

Table 5.10: meapf accuracy values for Figure 5.15 and 5.20

Hmarkov | HLpvp | Error Rate(%)
Before clustering 0.5797 | 0.5683 2

After clustering | 0.5618 | 0.5493 2.2

In order to determine the length of the time-segments, again we make a duraigaisin
However, this time, we look for the first sharp increase between tferdnt time values

while going throughx axes in+x direction. In Figure 5.19, obviouslynin is the value we
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Figure 5.19: Ping-pongfiect analysis
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Figure 5.20: Comparison of LPMBdyration = 10min, dsupport= 0.001 and AW method) and
O(2) Markov fallback predictor on the clustered data
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look for. This means that there may be some ping-pong transitions if thetagsrag an AP
less than fin. According to this result, we cluster the mobility data and we run our LPMP
on the clustered data. Figure 5.20 depicts the accuracy graphs of thetpre As seen in
Table 5.10, after clustering, the accuracy decreases for the pradittus is due to fact that
the number of the user moves decreases because of the clustering.nisiber of the user
moves decreases, the accuracy of both LPMP and Markov predictmrades. Figure 5.21
shows this fact. That’s why the accuracy of the predictors decre@sesveal this fact more
clearly, we also run our experiments on timediumtraces with more than 100 moves for
both unclustered and clustered data. Figure 5.22 and 5.23 show the geaattiracy graphs
for the unclustered and the clustered medium traces respectively. Whkrokvat the mean
values in Table 5.11, we notice that the mean values before and after ttexiclgigre very
close. Probably, as the number of the users with a medium trace incréesekistered data
would give the better results. Another fact we should remark is that threase in the error
rate after clustering. This decrease may depend on two reasons. Eidygtering decreased
the total moves from 101,195 to 73,351. The decrease in the number of thetotes may
cause the decrease in the error rate. Second, LPMP may be more sdpditie ping-pong
effect than the Markov predictor. Since the clustering made data more regelP khowed

the better performance.

Table 5.11: meap{ accuracy values for Figure 5.22 and 5.23

Hmarkov | HLpvp | Error Rate(%)
Before clustering 0.6345 | 0.6216 2
After clustering | 0.6344 | 0.6218 2

5.6 Overall Evaluation

First of all, we defined the test environment. We explained that we had tdes&agmouth’s
campus-wide Wi-Fi mobility data due to the exponential nature of 4.3. We validaie

sampled data against the real data.

In Section 5.2, in order to start the experiments, we assigned the initial vtalties param-

eters. After the duration analysis, we decidggation = 35min. We specified that there was

49



— LPMP
------- O(2) Markov fallback

o] o]
ey ] oo
T

o]
I

Median running accuracy

0.2

0 50 100 150 200 250 300 350 400 450 500
Steps

Figure 5.21: Relation between accuracy and trace ledgtkkfon = 10min, dsupport= 0.001,
AW approach)

no transition time between two consecutive locations due to the special lo€HEBn As a
result, the value afransition Was insignificant andiransition had no &ects on our experiments.
Then, we assignedansitiion @S 005. For the predictions, we decided to use FW approach with

|w| = 2 in the first experiment.

In the first experiment, we determined how we would break the ties if two or petterns
with the same length had the same confidence. We reached that the preldazising the
first generated patterns yielded better result than that of the predictosiciy the last gener-
ated ones. Furthermore, we showed the positiiece of the empty pattern on the accuracy
of LPMP. In addition, we explained why we measured the accuracy npeaftce of the pre-

dictors withmeantool. We indicated thamnedianmight take us to the false inferences.

We tested FW approach withftkrentiw|. We found that the predictors converged afi¢r= 1
and the predictor withw| = 4 produced the best result. Therefore, we updated LPMP with

this new value. In addition, we showed the similar behaviour for the Markedigtors.
FW and AW approaches were compared. In AW approach, we needdecide how we
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Figure 5.22: Comparison of LPMBdyration = 10min, dsupport = 0.001 and AW method) and
O(2) Markov fallback predictor on the unclustered medium data

would break the ties if two or more patterns with thé&elient lengths had the same confi-
dence. After the experiment, LPMP using AW-Long pattern approachiveasest. Thus, we

determined to use this approach for the next experiments.

We examinedsypportWith the diferent values. We explained the trad&io the selection of
dsupport Value. The experiment gave the best resultsstgpport = 0.001. Consequently, we

updatedisypportparameter of LPMP.

We analyzebguration With the diferent values less and greater than our initial value which
was 3%nin. We also mentioned the tradé-@ssue similar tdsupport case in the selection of
Oduration LPMP with 8quration = 10min yielded the best results. Hence, we updai@ghtion
parameter of LPMP.

In Section 5.2, we broke the ties choosing the first generated pattertisefeame length
patterns with the same confidence and the long patterns for fiieeedit length patterns with
the same confidence. Based on these tie-breakers, we found that WBNed best with

dduration = 10min, dsupport = 0.001 and AW approach. However, this was not enough to
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Figure 5.23: Comparison of LPMBdyration = 10min, dsupport = 0.001 and AW method) and
O(2) Markov fallback predictor on the clustered medium data

outperform the Markov predictor.

In Section 5.3, we trained the predictors with the half of data before theacuoalcula-
tion. Naturally, both predictors showed better performance. HoweR¥R. still did not

outperform the Markov predictor.

In Section 5.4, LPMP used the time-slice based probability while making the pogdic

However, it showed worse performance. We gave two reasons for tha

In Section 5.5, we clustered our data and run the predictors on that eldstata. For all
traces, the predictors yielded worse results. However, this was duedechease in the trace
lengths after clustering. After we showed the relation between the agcaracthe trace
length, we run the predictors on just medium traces. The predictors ggddetter results.

However, LPMP still did not outperform the Markov predictor.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we compared two predictors in terms of the accuracy. Onermwf i$0(2)
Markov fallback predictor which is a domain-independent predictor aedother one is
LPMP which is a domain-specific predictor. In order to make this compange®mployed

a ready-to-use implementation of Markov predictor with some minor modificatlareddi-
tion, we implemented LPMP from scratch. To implement it, we removed unneyggssds
of Mobility Profiler Framework [4] and added tleen ptypattern concept and AW approach in

the location prediction part.

Due to the quadratic growth of the accuracy calculation by LPMP, we sartimathta at 5%
percentage to be able to complete our experiments. After sampling, we disdakat a first
generated pattern might return better result when a tie occurred due t@atterms with the

same length and the same confidence.

We analyzed FW and AW approaches. We found that FW approach gidl@ebest result
if [w| = 4. However, AW approach outperformed LPMPs witffetient FW values. Further-
more, we discovered that the long patterns with the same confidence, Wgocsoane short

patterns have, returned better result in AW approach when a tie odcurre

We revealed thadsypport anddquration had a trade-d issue. Our experiments confirmed that
that issue was valid fofqyration- From (min to some time(1tin), the accuracy of LPMP
increased. After that time, the accuracy started to decrease. In ¢pmteasould not see a
trade-df issue fordsypportin our experiments. As the value &f,pportdecreased, the accuracy

of LPMP increased.
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We tested alsofiline training, time-slice base probability and clustering. As expected, train-
ing and clustering improved the accuracy of LPMP. However, unlike in thikwf Bayir et
al. [4], time-slice based probability worsened the accuracy. The pl@bedsons for that was

presented.

To conclude, although we examined LPMP in many ways and improved itsaaggium total,
LPMP could not outperforme®(2) Markov fallback predictor which is the best domain-

independent predictor.

6.2 Future Work

In this thesis, we improved the accuracy of LPMP by changing only orepeter and keep
the others fixed. However, there may be some balance among the pararhRetezgample,
we testeddguration = 35Min and dquration = 10min while dsypport = 0.001 and found that
dduration = 10min had higher accuracy. However, for som@pport Values,dguration = 35min

may Yield better result unexpectedly. Therefore, the relations among thmegers need to

be studied.

We could not analyzéyansition Since the data does not contain the transition time between
the locationsdiransition Can be analyzed by removi@F F location from the data or counting
OFF location as transition without modifying the data. Thé&elient behavior t®©FF and

non-OFF locations may bring better accuracy to LPMP.

The prediction set size was taken as 1 in the thesis. For both Markov faredicd LPMP,
the diferent reasonable prediction set sizes can be tested. LPMP may predsectndary

locations more accurately so that LPMP may yield better result than Marlealigbor.

We applied a simple clustering method on the data. The other clustering methodsemay

applied on the data to see how the accuracy will fiecéed.

Although we cannot see such an indication, LPMP may return better resldhgytraces. In
order to run LPMP on long traces, th&ieiency of LPMP should be improved. Therefore, as

a future work, it may be focused on developing a mdfeient version of LPMP.
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