

A BUSINESS RULE APPROACH TO REQUIREMENTS TRACEABILITY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MURAT NARMANLI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2010

Approval of the thesis:

A BUSINESS RULE APPROACH TO REQUIREMENTS TRACEABILITY

submitted by MURAT NARMANLI in partial fulfillment of the requirements for the degree
of Master of Science in Computer Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen _____________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı _____________________
Head of Department, Computer Engineering

Assoc. Prof. Ali Hikmet Doğru _____________________
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Ahmet Coşar _____________________
Computer Engineering Dept., METU

Assoc. Prof. Ali Hikmet Doğru _____________________
Computer Engineering Dept., METU

Dr. Cevat Şener _____________________
Computer Engineering Dept., METU

Dr. Kıvanç Dinçer _____________________
TÜBİTAK – UEKAE

Dr. Ahmet Tümay _____________________
TÜBİTAK – UEKAE

Date: _____________________

iii

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required by
these rules and conduct, I have fully cited and referenced all material and results that are
not original to this work.

Name, Last name : MURAT NARMANLI

 Signature :

iv

ABSTRACT

A BUSINESS RULE APPROACH TO REQUIREMENTS TRACEABILITY

Narmanlı, Murat

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Ali Doğru

September 2010, 67 pages

In this thesis, a requirements traceability model is proposed in order to make efficient and

effective change request impact analysis. The proposed model is a requirements –

requirements traceability model. There are several researches regarding software

requirements traceability problem. The main problem of these researches is that the

proposed solutions can not be applied to software industry with affordable changes.

However, current literature begins to see that describing all the software requirements in a

huge black box is not so much applicable to today’s more dynamic and bigger software

projects, especially regarding change management. The proposed traceability model tries

to be a solution to these problems. Change requests and business rules are two important

and popular terms for today’s software industry. The traceability model consists of three

types of software requirements: data definitions, business rules and use cases. The

traceability model proposes bidirectional traces between these types. Data definitions,

business rules and use cases are related to each other and they all should be seen as parts

of a software system which should work together to make the software system work

properly. Empirical investigation is made on a real industrial software project. These types

were configured in order to match to the project specific needs in a reconfigurable way.

Experimental results show that the traceability model has an acceptable degree of

correctness.

v

Keywords: Requirements Traceability, Change Management, Change Requests, Business

Rules, Impact Analysis

vi

ÖZ

GEREKSİNİM İZLENEBİLİRLİĞİNE İŞ KURALI YAKLAŞIMI

Narmanlı, Murat

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ali Doğru

Eylül 2010, 67 sayfa

Bu tezde, verimli ve etkili bir şekilde değişiklik isteği etki analizi yapabilmek için bir

gereksinim izlenebilirlik modeli sunulmuştur. Sunulan model bir gereksinim – gereksinim

izlenebilirlik modelidir. Yazılım gereksinimleri izlenebilirlik problemi hakkında bir çok

araştırma bulunmaktadır. Bu araştırmaların ortak problemi, sunulan çözümlerin yazılım

endüstrisine karşılanabilir değişikliklerle uygulanamamasıdır. Fakat, güncel literatür bütün

yazılım gereksinimlerinin büyük, siyah bir kutu içerisinde tanımlanmasının bugünün daha

dinamik ve büyük çaplı yazılım projelerine, özellikle değişiklik yönetimi yönünden uygun

olmadığını görmeye başlamıştır. Sunulan izlenebilirlik modeli bu problemlere bir çözüm

getirmeye çalışmaktadır. Değişiklik istekleri ve iş kuralları bugünün yazılım endüstrisi için

önemli kavramlardır. İzlenebilirlik modeli üç çeşit yazılım gereksinimden oluşmaktadır: Veri

tanımları, iş kuralları ve kullanım durumları. İzlenebilirlik modeli bu türler arasında çift yönlü

izlenebilirlikler önermektedir. Veri tanımları, iş kuralları ve kullanım durumları birbirleriyle

ilişkilidir ve bir yazılım sisteminin düzgün şekilde işleyebilmesi için birlikte çalışması gereken

yazılım sistemi parçaları olarak görülmelidirler. Deneysel araştırma gerçek bir endüstriyel

yazılım projesi üzerinde yapılmıştır. Bu türler projeye özel ihtiyaçlar için tekrar

düzenlenebilir şekilde ayarlanmıştır. Deneysel sonuçlar izlenebilirlik modelinin kabul

edilebilir bir oranda doğruluk seviyesine sahip olduğunu göstermektedir.

vii

Anahtar Kelimeler: Gereksinim İzlenebilirliği, Değişiklik Yönetimi, Değişiklik İstekleri, İş

Kuralları, Etki Analizi

viii

To my family

ix

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and profound respect to my supervisor Assoc.

Prof. Ali Hikmet Doğru for his expert guidance and suggestions, positive approach

throughout my master study and his efforts and patience during supervision of the thesis.

I would like to especially thank the jury members, Assoc. Prof. Ahmet Coşar, Dr. Cevat

Şener, Dr. Kıvanç Dinçer and Dr. Ahmet Tümay for their contributions to my thesis.

I wish to thank TÜBİTAK UEKAE / G222, especially to the members of İKİS project for their

support and ideas which helped me to complete my thesis.

I am grateful to my family who loved and supported me throughout my life. They made me

who I am.

Finally, I want to specially thank Gülseren Gülay for her endless love, understanding and

sensibility.

x

TABLE OF CONTENTS

ABSTRACT ..ii

ÖZ ... vi

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS ... x

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

CHAPTERS

1 INTRODUCTION ... 1

1.1 MOTIVATION ... 2

1.2 THESIS ORGANIZATION ... 5

2 BACKGROUND INFORMATION AND RELATED WORK .. 6

2.1 INFORMATIVE PART .. 6

2.1.1 Customer Requirements .. 6

2.1.2 Software Requirements Specification ... 7

2.1.3 Business Rule ... 7

2.1.4 Use Case ... 8

2.1.5 Requirements Traceability ... 8

2.1.6 CMMI ... 9

2.2 LITERATURE SEARCH ... 11

2.2.1 Relating Evolving Business Rules To Software Design 17

2.2.2 Improving Software Quality Through Requirements Traceability Models 18

3 WORK ... 19

3.1 STRUCTURE OF THE REQUIREMENTS ... 19

3.1.1 Use Cases ... 21

xi

3.1.2 Data Definitions ... 22

3.1.3 Business Rules .. 25

3.1.4 Validations ... 28

3.2 TRACEABILITY MODEL ... 28

3.3 CONSEQUENCES OF THE STRUCTURE AND THE TRACEABILITY MODEL 29

3.3.1 Requirements Driven Design And Implementation 29

3.3.2 Requirements Driven Architecture .. 31

3.3.3 Traceability Between Requirements And Code ... 31

3.3.4 Effective Tests .. 32

3.4 COMPARISON OF SIMILAR TRACEABILITY MODELS .. 32

4 EXPERIMENTAL RESULTS AND EVALUATIONS ... 33

4.1 BACKGROUND ... 33

4.2 DATASET TEMPLATE ... 35

4.3 ASSUMPTIONS .. 37

4.4 EXPECTATIONS .. 37

4.5 RESULTS AND EVALUATION .. 37

4.6 OTHER NOTES ... 43

5 CONCLUSIONS AND FUTURE WORK... 44

REFERENCES ... 47

APPENDICES

A DATASET... 51

B USE CASE TEMPLATE .. 65

C PROJECT INFORMATION .. 67

xii

LIST OF TABLES

TABLES

Table 1. Processes of CMMI ... 9

Table 2. CRUD Use Case Template ... 21

Table 3. Traces of CRUD Use Case ... 22

Table 4. Data Definition Fields ... 23

Table 5. Business Rule Fields .. 27

Table 6. Comparison of Similar Approaches .. 32

Table 7. Dataset Template ... 35

Table 8. Database and Test Data Impacts .. 38

Table 9. Impacts on Implementation and Test Artifacts .. 41

Table 10. Re-compilation of Impacts on Implementation and Test Artifacts 42

Table 11. New Impacts on Implementation and Test Artifacts ... 43

Table 12. Dataset ... 51

xiii

LIST OF FIGURES

FIGURES

Figure 1. Pre-RS and Post-RS .. 12

Figure 2. Backward and Forward Traceability .. 13

Figure 3. Vertical and Horizontal Traceability ... 13

Figure 4. Data Definition Fields .. 23

Figure 5. Business Rule Fields .. 27

Figure 6. Proposed Traceability Model .. 29

Figure 7. Relationship Between Requirements and Design ... 30

Figure 8. Requirements Management Tool ... 35

Figure 9. Change Request Distribution .. 38

Figure 10. Data Relevant Change Request Distribution ... 40

1

CHAPTER 1

 INTRODUCTION

Change request and business rule are two important and popular terms for today’s software

industry. Change request is a method for indicating a request for changing a part of the

whole software formally. Business rule is defined as “A policy your software must satisfy.

Business rules are what a functional requirement “knows,” the controls and guidelines that

are fulfilled by the functional requirement. An operating principle or policy of your

organization.” [36].

Change requests are important communication links between stakeholders of a software

project. Change requests can come from all the stakeholders including developers and end-

users. Each change request has an impact on the current configuration of the software that

should be analyzed and handled carefully. In order to make impact analysis in a well-

defined and clear way, traceability must exist between every item of software related to

each other.

There are several commercial requirement management tools at the market supporting

requirements traceability; researches about effective traceability methods as well. The

main problem of these researches is that they can not be applied to industry with

affordable changes. Vendors do not show enough attention to traceability models of

different projects and theoretic traceability methods.

Customers and software development team can not speak the same language. Developers

like to talk in technical terms while customers like to talk in daily language. A customer can

not be expected to tell the development team everything that is enough to build software

requirements specification (SRS).

Business rules are a bridge between customers and the software which developers build for

them. Business is expressed by business rules [21]. The main information that customers,

2

especially end-users of a system can give is business rules of the process. Business rules are

human-readable, easily-maintainable, effectively-traceable concepts.

Customer is the core of today’s competitive software industry; hence development team

has to understand customers and re-tell what customer said in a well-defined and

comprehensible way. Under these circumstances, business rules have a very important and

dynamic role as they can be used in all the phases of a software project like requirements

development and management, technical solution, implementation, verification and

validation. They are very important interfaces for change requests. That is why change

requests and business rules should be handled together.

1.1 MOTIVATION

There are many researches about tools being used for requirements traceability; therefore

making a review of current tool support for requirements traceability should not be aimed

at. Traceability models and methods should be concentrated on in order to build the

software that customers want in an effective way and make verification-validation phases

easier by expressing software requirements in a well-defined and comprehensible way.

Neither expecting commercial firms to build what development teams exactly want, nor

using the capabilities of existing tools without any methodology is the right way.

Establishing and maintaining a usable requirements traceability model should be aimed at;

because Spanoudakis and Zisman [1] states that

However, despite its importance and the work resulted from numerous years of research,
empirical studies of traceability needs and practices in industrial organizations have
indicated that traceability support is not always satisfactory. As a result, traceability is
rarely established in existing industrial settings.

A traceability model should be simple [29] as traceability is a tool, not an aim. Hence, not a

complex solution, but a simple and an applicable one was looked for. Industry always

demands simple and quickly applicable solutions which it can apply with their existing

personnel and tools. They do not want to spend extra money for trainings of new tools.

Industry’s first aim is to satisfy customers’ needs with a good quality degree of software

which has a fast and cheap solution; because they are always in a hurry to catch-up with

the deadlines while customers usually expect them to read their minds and build what they

exactly want.

3

Requirements traceability provides estimation support for software projects to see how big

the system is, what is needed to build it regarding human effort and technology. But

traceability is not enough; effective measurement and analysis repository is also essential.

If the model and understanding of traceability management are not standardized,

moreover not integrated to internal processes; creating and maintaining traceability links

becomes a waste of time.

Software projects have vertical links [25] in the design, but usually not in the software

requirements. Structure of the software requirements should be usable and helpful to

create the software design. In order to take advantage of the software requirements and

build a system matching to what customer wanted, there should be links in the software

requirements as in the design. This requires a traceability model in the software

requirements.

Update of the software requirements is very important for the reason that the main

condition for the acceptance of the software by the customer is conformance to the

software requirements specification. Conversely, update of the software design is not as

critical as requirements; therefore software design descriptions are generally updated from

release to release of the software. Implementation tells about the design a lot and the

design can be formed by using reverse engineering of the code by several tools, as well.

Moreover, developers have a well understanding and memory about the design but this is

not valid for the requirements. First of all, impact analysis should be done when a change

request come. To achieve this analysis, traceability model is needed in the software

requirements.

Customer requirements must be caught near to their sources in an atomic way. This makes

understanding and asking questions about them easy. Most of the customer requirements

are in shape of business rules when coming out from the source. Hence, the best way of

collecting customer requirements is to express them in business rules and trace them as

soon as possible. This is also a good starting point for creating software requirements. At

this point, defining a requirements traceability model before collecting requirements

becomes an important factor to have meaningful and traceable software requirements.

Ambler [36] states that

Part of managing complexity is being able to respond quickly when your environment
changes. Business needs change and you need to be able to react quickly to those

4

changes. … By implementing complicated concepts and business rules in objects, you can
build complex systems much more quickly.

Business rules are identified in the normal course of requirements gathering and
analysis. While you are use case and domain modeling, you will often identify business
rules.

Development teams do not care about business rules at the beginning of the software

project in general. Hence, at the end of a software project, a problem can be found even at

acceptance tests. While collaborating with the customer at the beginning of the

requirement analysis; if enough effort does not exist or business rules are not seen valuable

enough for formally indicating; in later phases, business rules come as change requests and

rework in spite of customer requirements.

There are a few business rules communities [38], [42] and their numbers are increasing as

the industry understands their value. They concentrate on the business rules and

emphasize how business rules make ease of their life.

One of the approaches for software requirements is use-case approach. It is widely

accepted and used by the industry. Use-case steps aims interaction between the end-user

and the system. A

Use-cases and business rules are different in nature. Use-cases have several advantages,

but it is not possible to express all the business by using pure use-case approach. Most of

the sentences that customers say are business rules, not steps in a use case. Business rules

look at the system from viewpoint of business, the core of the system. Therefore, it is

crucial to give enough attention to collect business rules in a formal way. It is a common

mistake to put business rules as notes into use-cases

 use case describes "who" can do "what" with the system in question

[39].

[21]. By this way software design and

implementation becomes complex and highly coupled. That is why business-rule engine

approach gains attention and many of them are evolving [43], [44], [45].

Data definitions should be mentioned as software requirements. They are at the core, they

are metadata. They should be traced and synchronized with other software requirements

by a requirement tool, not as excel files, etc. Use-cases, business rules and data definitions

are related to each other and they all should be seen as parts of a system that should work

together to make the system work properly. Business rules are open to change and this

5

makes change requests and business rules good friends. Therefore, it is a good idea to build

a traceability model with these software requirement types and make it business rule

based.

1.2 THESIS ORGANIZATION

The organization of the thesis work is as follows: In Chapter 2, definition of related

concepts, the history of the requirements traceability problem and the related literature

survey is presented. In Chapter 3, the background and the proposed requirement

traceability model itself is described in detail. In Chapter 4, related experimental study

made method of the study, evaluations and some other comments are given. Chapter 5

concludes with the main results of the thesis work, reasons about the results, in addition

some possible enhancements and future works.

6

CHAPTER 2

 BACKGROUND INFORMATION AND RELATED WORK

2.1 INFORMATIVE PART

This part gives information about widely accepted general terms and best practices;

moreover have a look at change management and requirements traceability concepts from

CMMI [37] point of view through “Requirements Engineering”, “Requirements

Management” and “Configuration Management” processes.

2.1.1 Customer Requirements

Customer requirements are defined as “Statements of fact and assumptions that define

the expectations of the system in terms of mission objectives, environment, constraints,

and measures of effectiveness and suitability (MOE/MOS).” [39].

CMMI defines customer requirements as “The result of eliciting, consolidating, and

resolving conflicts among the needs, expectations, constraints, and interfaces of the

product’s relevant stakeholders in a way that is acceptable to the customer.” [37].

 The customers are those that perform the eight primary functions of systems engineering,

with special emphasis on the operator as the key customer. Operational requirements will

define the basic need and, at a minimum, answer the questions posed in the following

listing [39]:

 Operational distribution or deployment: Where will the system be used?

 Mission profile or scenario: How will the system accomplish its mission objective?

 Performance and related parameters: What are the critical system parameters to
accomplish the mission?

 Utilization environments: How are the various system components to be used?

 Effectiveness requirements: How effective or efficient must the system be in
performing its mission?

7

 Operational life cycle: How long will the system be in use by the user?

 Environment: What environments will the system be expected to operate in an
effective manner?

2.1.2 Software Requirements Specification

CMMI defines software requirements as “A refinement of the customer requirements into

the developers’ language, making implicit requirements into explicit derived requirements.”

[37].

Software requirements specification (SRS) is a complete set of the behavior of the

software including functional and non-functional (supplementary) requirements. Functional

requirements are the specifications that describe functions, operations, constraints and

give definitions of the software through use-cases, business rules, data definitions and

other possible types specified according to the whole set of software requirements. Non-

functional requirements are defined as “requirements which impose constraints on the

design or implementation (such as performance requirements, quality standards, or design

constraints)”.

IEEE 830-1998 [40] proposes a standard approach for software requirements specification

which describes possible structures, desirable contents, and qualities.

2.1.3 Business Rule

Business rule is defined as “A

[39]

 statement that defines or constrains some aspect of the

business. It is intended to assert business structure or to control or influence the behavior

of the business.” .

These rules are then used to help the organization to achieve goals better, communicate

among principals and agents, communicate between the organization and interested third

parties, demonstrate fulfillment of legal obligations, operate more efficiently, automate

operations, perform analysis on current practices, etc. [39].

Ambler defines business rule as “A policy your software must satisfy. Business rules are

what a functional requirement “knows,” the controls and guidelines that are fulfilled by the

functional requirement. An operating principle or policy of your organization.” [36].

8

Gottesdiener told that “Business rules provide the knowledge behind any and every

business structure or process. They are therefore at the core of functional requirements.”

[21].

2.1.4 Use Case

Use case is defined as “A use case in software engineering and systems engineering is a

description of a system’s behavior as it responds to a request that originates from outside

of that system.” [39].

Ambler states that “A use case is a sequence of actions that provide a measurable value to

an actor. Another way to look at it is that a use case describes a way in which a real-world

actor interacts with the system.” [36].

2.1.5 Requirements Traceability

There are fourteen different types of traceability relations. Requirements traceability can

be thought as traceability relations between requirements and any other kind of artifacts.

These are [1]:

 Stakeholders – Requirements

 Stakeholders – Design

 Stakeholders – Code

 Stakeholders – Others (e.g. goal documentation, test cases, rationale and purpose
documentation, etc)

 Requirements – Requirements [12], [13], [14], [16], [19], [20], [23], [24], [26], [28],
[30], [31], [32], [35]

 Requirements – Design

 Requirements – Code

 Requirements – Other

 Design –Design

 Design – Code

 Design – Other

 Code – Code

 Code – Other

 Other – Other

9

Gotel and Finkelstein states that “Requirements traceability refers to the ability to describe

and follow the life of a requirement, in both forwards and backwards.” [7].

Pinheiro and Goguen states that “Requirements traceability refers to the ability to define,

capture and follow the traces left by requirements on other elements of the software

development environment and the trace left by those elements on requirements.” [28].

CMMI defines requirements traceability as “A discernable association between

requirements and related requirements, implementations, and verifications.” and

bidirectional traceability as “An association among two or more logical entities that is

discernable in either direction (i.e., to and from entity).” [37].

2.1.6 CMMI

There are mainly three processes of CMMI regarding requirements, traceability and impact

analysis concepts. The following table [37] gives a brief description about these processes.

Moreover, some specific practices of these processes are emphasized to make the

connection between the terms used and CMMI clearer.

Table 1 (continued)

 Process
Name

Purpose of the
Process

Specific
Practice Description Artifact

Re
qu

ire
m

en
ts

 D
ev

el
op

m
en

t (
RD

)

Produce and analyze
customer, product,
and product
component
requirements

1.2

The various inputs from the
stakeholders must be
consolidated, missing
information must be
obtained, and conflicts must
be resolved in documenting
the recognized set of
customer requirements. The
customer requirements may
include needs, expectations,
and constraints with regard
to verification and
validation.

Customer
requirements

2.1

The customer requirements
may be expressed in the
customer’s terms and may
be nontechnical
descriptions. The product
requirements are the

Software
requirements

Table 1. Processes of CMMI

10

Table 1 (continued)

 Process
Name

Purpose of the
Process

Specific
Practice Description Artifact

expression of these
requirements in technical
terms that can be used for
design decisions.

Re
qu

ire
m

en
ts

 M
an

ag
em

en
t (

RM
)

Manage the
requirements of the
project’s products
and product
components and to
identify
inconsistencies
between those
requirements and the
project’s plans and
work products

1.3

As needs change and as
work proceeds, additional
requirements are derived
and changed may have to
be made to the existing
requirements. It is essential
to manage these additions
and changes efficiently and
effectively. To effectively
analyze the impact of the
changes, it is necessary that
the source of each
requirement is known and
the rationale for any change
is documented.

1.4

The intent of this specific
practice is to maintain the
bidirectional traceability of
requirements for each level
of product decomposition.
When the requirements are
managed well, traceability
can be established from the
source requirement to its
lower level requirement and
from the lower level
requirements back to their
source. Such bidirectional
traceability helps determine
that all source requirements
have been completely
addressed and that all lower
level requirements can be
traced to a valid source.

11

Table 1 (continued)

 Process
Name

Purpose of the
Process

Specific
Practice Description Artifact

Co
nf

ig
ur

at
io

n
M

an
ag

em
en

t (
CM

)
Establish and
maintain the integrity
of work products
using configuration
identification,
configuration control,
configuration status
accounting, and
configuration audits

2.1

Change requests address
not only new or changed
requirements, but also
failures and defects in the
work products.
Change requests are
analyzed to determine the
impact that the change will
have on the work product,
related work products,
budget, and schedule.

2.2 LITERATURE SEARCH

Ramesh and Edwards indicated necessary people, software artifacts and entities for

developing a requirements traceability model in 1993 [10]. In this work, requirements were

behaved as entities that can impact on each other. Hence, one of the first reasons for

forming requirements traceability models appeared.

Gotel and Finkelstein made several important descriptions and an overview of

requirements traceability problem in 1994 [7]. This work reports that, majority of the

requirements traceability problems were due to inadequate pre-requirements specification

traceability. They put requirements traceability into two groups as shown in Figure 1 taken

from [29]:

 Pre-RS traceability refers to those aspects of a requirement's life prior to its
inclusion in the requirement s specification.

 Post-RS traceability refers to those aspects of a requirement's life that result from
inclusion in the requirements specification.

12

Figure 1. Pre-RS and Post-RS

Pre and post requirements specification distinction is not optimized for the reason that at

software design, implementation and deployment time; developers find out software

requirements on their own understanding of the problem. End-users can not address all

possible needs. Hence, pre-requirements specification traceability must be sensitive to

contextual needs. These are reasons why change requests and more reactive types of

software requirements to change requests, business rules, have been evolved. As there are

several requirements changes in today’s software projects, this distinction creates several

lifecycles for each requirement. Today, pre and post requirements specification can be re-

expressed as lazy and eager generation of software requirements for the reasons told

above.

 Eager generation is creation of software requirements before using them. These
requirements may be changed during design and other phases.

 Lazy generation is creation of software requirements during use of other software
requirements. These requirements are generated due to change requests or
different prototypes.

Wieringa divided traceability into two groups in 1995 [34] as shown in Figure 2 taken from

[29]:

 Forward traceability is the ability to trace a requirement to components of a design
or implementation.

 Backward traceability is the ability to trace a requirement to its source, i.e. to a
person, institution, law, argument, etc.

13

Figure 2. Backward and Forward Traceability

Lindval and Sandahl described traceability in two groups, again in 1996 [25] as shown in

Figure 2 taken from [25]:

 Vertical traceability is tracing dependent items within a model.

 Horizontal traceability is tracing correspondent items between different models.

Figure 3. Vertical and Horizontal Traceability

Backward and forward traceability are similar to horizontal traceability. Most of the

research on requirements traceability was concentrated on horizontal traceability as its

granularity level is upper than vertical traceability.

After specifying the general descriptions and problems in the domain, research began to

concentrate on creating requirements traceability models in 1995. Ramesh, Dwiggins and

Edwards made a basic and semantic approach to requirements traceability models [5].

Proposed model described uses “derived-from” link for requirements. Two ends of this

14

relation can be described as customer requirements and software requirements in today’s

terms.

Research concerning details about requirements traceability problems and defining

extensions is called extended requirements traceability. Haumer defines extended

traceability as “The relationship between recorded real world observations and parts of

conceptual models.” [11].

Gotel and Finkelstein extended the requirements traceability problem [6]. They stated that,

literature focused on known requirements traceability problems and seeking more

powerful traceability tools without trying to discover the problems at the core. They

proposed setting up a shared, consistent and coherent requirements traceability scheme

for each project, then commitment to the scheme from all the stakeholders, coupled with

the need for some overall co-ordination.

Towards 2000’s, researchers realized that requirements management and traceability

concepts should be thought and evaluated together with the industry by empirical

investigations. In 1998, Ramesh made a survey about the understanding of traceability by

the people in the software industry [4]. He realized that the maturity of the organizations is

parallel to the deployment degrees of traceability. He said that “Managers of one

organization that moved from Level 1 to Level 3 of the SEI CMM strongly believe their

comprehensive traceability practice (“well beyond the narrow interpretation of CMM

requirements”) was an important factor in achieving this goal.” Moreover, he called mature

managers as “high-end user managers” and stated that

High-end user managers, in contrast, are committed to traceability as a mechanism for
improving and maintaining the quality of the systems development process and see
strategic benefits of incorporating traceability, even when it is not required by the
project sponsors.

Researchers also realized the importance of business rules towards 2000’s. Business rules

groups and web sites began to be formed. Gottesdiener told that, since business rules are

behind functional requirements, without explicit guidance, software developers may not

see business rules and make assumptions about conditions, policies and constraints. This

can cause in unexpected business results. There should be standard taxonomy or categories

for business rules [21].

15

In 2005, there was the same problem. Lindquist said that, analysts reported that reason for

the failure of 71 percent of failed software projects was poor requirements management

[9]. Lindquist also gave an example of real project which was about to fail. That project

produced the application at one-quarter the cost and with fewer than 10 percent of the

expected defects compared with outside development estimates by granular traceability.

Approach was:

take a piece of code and quickly trace it back through the development process, back to
requirements and then—rather than stopping there—map it all the way back to every
affected business process to better gauge the application’s impact on the business and to
find hidden stakeholders.

Reference traceability models are important as they address general problems and propose

widely accepted solutions. They can be used as a basis for the construction of particular

models. They save time and effort [29].

A general requirements reference model was proposed by Gunter et al. in 2000 [22].

Ramesh and Jarke proposed a requirements specific reference traceability model which has

three basic elements in 2001 [32]:

 Stakeholder: People who have an interest on requirements.

 Source: The origins of a requirement and the artifacts.

 Object: Object being traced.

Mohan and Ramesh formed a knowledge management system [26] in 2002 based on the

reference traceability model described in [32].

Business Rules Group declared a Business Rules Manifesto in 2003 describing some major

aspects of business rules and related processes [41].

Cleland-Huang, Chang and Christensen proposed a new method of traceability called

“Event-Based Traceability” based upon event-notification in 2003. This method is applicable

in globally distributed development environments. Traceable artifacts are linked through an

event service [8]. Notification method is used in current requirements management and

traceability tools. This method is very helpful to developers responsible from different kinds

of requirements artifacts as they can learn the changed artifacts without any guidance from

the developers who is the source of the change. However, software requirements should

be effectively separated in different kinds to get advantage of such a scheme.

16

Pinheiro divides traceability into two groups [29]:

 Inter-requirements traceability refers to the relationships between requirements.
Inter-requirements traceability is important for requirements change and
evaluation. It is used, for example, when extracting all requirements derived from a
specific requirement or its chain for refinement.

 Extra-requirements traceability refers to the relationships between requirements
and other artifacts.

Inter-requirements traceability is similar to vertical traceability. Its granularity level is lower

than extra-requirements traceability. Today research concerning this kind of traceability is

gaining attention.

Pinheiro states that a software traceability model should not be complex to be efficiently

used, as forming traces are at least as important as traces themselves. There are three

aspects that should be covered by a traceability model [29]:

 Definition: The definition is related to the specification of the traces and traceable
objects.

 Production: The production is related to the capture of traces, usually by means of
an explicit registration of the objects and their relationships.

 Extraction: The extraction is related to the actual process of tracing, i.e., the
retrieval of registered traces.

Spanoudakis and Zisman tells that research into software traceability has been concerned
with four areas [1]:
 The study and definition of different types of traceability relations.

 The provision of support for their generation.

 The development of architectures, tools and environments for the representation
and maintenance of traceability relations.

 Empirical investigations of organizational practices regarding the establishment and
deployment of traceability relations during the software development life cycle [4],
[7], [15], [17], [25], [32], [33].

Traceability relations can be used for different purposes [1]:

 Change impact analysis (establish the impact that potential changes in some part of
the system may have in other parts) and management (make decisions about
whether or not such changes should be introduced, and with what priority) [18].

 System verification, validation, testing and standards compliance analysis.

17

 The reuse of software artifacts.

 Software artifacts understanding.

Filho proposed a new traceability technique that defines dependency links observed in the

relationships among business rules in 2010 [27]. He described “business-specific concerns”,

related to stakeholders interested in checking if other business rules are impacted by the

change; “software-specific concerns”, those related in stakeholders interested in the

impacted software artifacts. He aims to discover right requirements impacted from change

of business rules.

2.2.1 Relating Evolving Business Rules To Software Design

Wan-Kadir and Loucopoulos proposed an approach that considers business rules as a part

of a software system in 2003 [2]. They developed the “Business Rule Model” to specify

business rules and “Link Model” to relate business rules to software design elements. They

aimed to improve requirements traceability in software design called “linking conceptual

specifications of business rules to software designs” with minimizing the cost of changes of

business rules.

Their approach is called “Manchester Business Rules Management (MBRM)”. The MBRM

approach covers four software development stages which are centered on a business rules

paradigm. These stages are; elicitation, representation, mapping and implementation. Work

focuses on the mapping stage. They use “business rule model” to indicate business rules in

a formal way. They use “link model” to map business rules to software design and

implementation. They use abstractions in the implementation to separate business rules

from other parts of the software and to decrease the impacts of business rule changes.

This approach is similar to a business rules engine structure primarily focusing on the

business rule part of the software. This work tells they separated business rules; hence

changes to business rules can be easily made in the design and implementation.

Entry point to software changes should be not only business rules, but also other software

requirements as well. A traceability or relation model should cover all the software

requirement types and form the relations more clearly.

18

2.2.2 Improving Software Quality Through Requirements Traceability
Models

Salem aimed to develop an efficient and dynamic requirements traceability model to be

used in small and large-scale projects in 2006 [3]. This model is composed of a “Traceability

Engine Component (TEC)”, a “Traceability Viewer Component (TVC)” and a “Quality

Assurance Interface (QAI)”. Their target is to enable requirement coverage by code through

the proposed requirements traceability model.

TEC reads requirements from requirements database and builds a traceability matrix by

analyzing the code. TVC views the information gathered by TEC as acting like a client. QAI

addresses validation and verification of requirements. They use a requirements and

traceability repository to determine the covered requirements by the code. Firstly

developer matches the requirements and the associated code through TVC, then QAI

reviews and looks for any matching errors between the requirements and the code and

uses some flags to indicate the traceability conditions of the requirements.

This mechanism is a double-check mechanism to ensure right traceability between the

requirements and the code. It mainly aims to cover all the requirements by the code.

This model requires commitment and support from a group called as Quality Assurance

Group. QAI interface should be very smart to associate the requirements and the code by

reviewing the code, automatically.

19

CHAPTER 3

 WORK

3.1 STRUCTURE OF THE REQUIREMENTS

There was a need to build a general understanding of the software requirements at the

beginning of the project. As this need primarily focuses on functional requirements, three

types were decided to be used; use cases, business rules and data definitions. For these

types of software requirements, specific definitions were made with the development

team. Because, these definitions may and should be different among projects according to

the contexts, restrictions and targets. Hence, every project should think about and create

their own templates and roadmap to form the types and the definitions of the software

requirements that is going to be used in the project as described in Appendix C. Then,

templates and naming conventions were formed in order to provide right usage of these

requirement types and definitions; moreover lead the development team.

Every software requirement belongs to every development team member of the project to

provide developer independency. This issue is also important for CMMI processes [37].

Software requirements can be modified or deleted by the development team. However,

owner approach is used. Software requirements have an owner who is the author of that

requirement. When there is a need to modify that requirement, responsible of the task or

change request is that person. This prevents the potential chaos of software requirements

changes. But responsible person may change according to the workload of the people and

priorities of other change requests and tasks.

A metadata repository was decided to be used in order to keep the data definitions.

Requirements management tool is used as the metadata repository. Every developer can

reach the latest version of the data definitions easily. Metadata can be always updated

according to changing requirements in this common repository. It is not usable and

maintainable to keep the metadata as files. Because, there may be several different

20

versions of the metadata if a common repository is not used and this can easily cause

software verification and validation problems.

Several business rules which the customer did not mention can be caught by thinking on

data definitions. Data definitions are valuable sources to understand the general structure

of the software. For instance, if a data definition is automatically assigned by the software,

several business rules can arise in minds regarding how that data definition is managed by

the software. This also shows that there is an impact of data definition changes on business

rules.

Business rules can be implemented in different layers of the software like database, data

access object (DAO), service or client. It is important to make a clear distinction between

business rules; hence it can be possible to give right decisions about what is going to be

affected due to a change request. Every business rule should give information about how it

lives in the software. These attributes are satisfied through different aspects of the business

rule approach used in the project.

Use case approach is a widely accepted approach for collecting and describing functional

requirements. This project also takes advantage of use case approach by modifying and

doing some extensions. As business requirements form a basis for user requirements and

business rules drive user requirements; there is an impact of business rule changes on use

cases.

Requirement management tools do not provide semantic linking in a detailed manner. They

are limited to some reference link types that are acceptable for every software project.

Therefore every project should create and manage its own understanding for links. This

project has two meanings for links between software requirements, traceability in other

words:

 Impact traceability: A software requirement change can affect another software

requirement. For instance, a data definition change can affect another data

definition, business rule or a use case. Its direction is shown by arrows in the

proposed traceability model. This type of traceability is emphasized in this work.

 Association traceability: A software requirement change can not affect another

software requirement, but it can break the trace between each other. For instance,

a business rule change can break the trace between a data definition and itself, but

21

it can not change that data definition. Its direction is opposite of impact

traceability. Association traceability is impact traceability when it is looked from the

other side. It is a reverse logical look to the entry point of the traceability.

3.1.1 Use Cases

Software requirements were use case based in the projects before the related one; but

pure use case approach did not satisfy all of the needs from the viewpoint of the

developers. There are two different types of use cases in this project:

 Detailed use case: The template given in p.62 of [36] is used for this type of use

case as shown in Appendix B. This type of use case is used when there is valuable

information about the flow of events to accomplish some goal.

 Create, retrieve, update and delete (CRUD) use case: Use cases for CRUD

operations are almost the same with detailed use cases if flows are ignored. It was

decided that there is no need to use detailed use cases for CRUD operations in

order to prevent possible maintenance tasks in the future for these similar

operations. CRUD use case template used is shown in Table 2 and Table 3.

Table 2. CRUD Use Case Template

Use Case Name Update Project Information

Use Case Description User updates project information.

Actors YKK

Pre-conditions
 IKIS-MEET-BR001
 IKIS-MEET-BR002

22

Traces of this CRUD use case are:

Table 3. Traces of CRUD Use Case

Trace From

IKIS-PRJI-DD001
IKIS-PRJI-DD002
IKIS-PRJI-DD003
IKIS-PRJI-DD004

IKIS-MEET-BR001
IKIS-MEET-BR002

IKIS-PRJI-BR004
IKIS-PRJI-BR006
IKIS-PRJI-BR002
IKIS-PRJI-BR004

Trace To

Pre-conditions exist in “Trace From” as they are business rules. Moreover, there is not

“Trace To” information of use cases according to the proposed traceability model.

3.1.2 Data Definitions

Their naming convention is: IKIS-<module_abbreviation>-DD<nnn>.

Data definitions are a special kind of software requirements that can be defined as form

items in web-based projects. They can be GUI elements or not. They can be thought as a

specified kind of business rules as they hold information, rules, attributes and constraints.

An example data definition with corresponding fields is shown below in Figure 4 with

details in Table 4. Fields with red labels are mandatory fields, while others are optional

fields.

23

Figure 4. Data Definition Fields

Table 4 (continued)

Field Name Mandatory
/ Optional Description Values

Name Mandatory
The name with convention:
IKIS-<module_abbreviation>-
DD<nnn>.

Author Mandatory The developer who created the
data requirement.

Data Field
Name Mandatory Name of the data definition in the

context of the software.

Table 4. Data Definition Fields

24

Table 4 (continued)

Field Name Mandatory
/ Optional Description Values

Type Mandatory Type of the data definition.

[Boolean, Date,
Enumeration, String,
Number, Time,
Reference]

Necessity Mandatory

Specifies whether this data
definition is mandatory for the
user.
Rule Based data definitions
become mandatory according to
some business rules; hence they
must have at least one business
rule in their “Trace To”.
Approval Mandatory data
definitions become mandatory
when the user wants to approve
the form.

[Mandatory, Approval
Mandatory, Optional,
Rule Based, N/A]

Unique Mandatory
Specifies whether this data
definition must be unique in the
software.

[No, Yes]

Covered Mandatory
Specifies whether this data
definition is covered by
qualification test procedures.

[No, Yes]

Length Optional

Maximum length of a data
definition that can be entered by
the user for the ones of String
type.
Length can be used to hold
precision and scale information of
the data definition of Number
type. For instance “2,3” tells that 2
digits can be entered before point
and 3 digits can be entered after
the point.

Min Optional

Minimum value of a data
definition that can be entered by
the user for the ones of Number
type.

25

Table 4 (continued)

Field Name Mandatory
/ Optional Description Values

Max Optional

Maximum value of a data
definition that can be entered by
the user for the ones of Number
type.

Cardinality Optional

This field is meaningful in the
context of the entity data
definition belongs to.
This field refers to other entities in
general and used like foreign keys
in databases.

[One, Many]

Priority Optional Priority of the requirement
specified by the customer. [Low, Medium, High]

Reviewed Optional Specifies whether the requirement
is reviewed or not.

[Reviewed, Not
Reviewed]

Direct Cover
Status Optional Specified the last qualification test

status of the requirement.

[Failed, N/A, No Run,
Not Completed, Not
Covered, Passed]

Target
Release Optional

Specifies the release that the
requirement is going to be
implemented.

[PROTOTİP-1,
PROTOTİP-2,
PROTOTİP-3, SON
YAZILIM]

3.1.3 Business Rules

Their naming convention is: IKIS-<module_abbreviation>-BR<nnn>.

Ambler proposes using “BR#” convention for identifying business rules uniquely. He tells

that this unique identifier enables us to refer easily to business rules in other development

artifacts, such as use cases [36].

Ambler tells that [36]

A rule of thumb is, if something defines a calculation or operating principle of your
organization, then it is likely a good candidate to be documented as a business rule. You

26

want to separate business rules out of your other requirements artifacts because they
may be referred to within those artifacts several times.

Business rules are rules and constraints managed by the software which are specified by

some data definitions impacting each other. Example business rules include the ones which

do not have a direct relation with the user; trigger each other, perform some operations in

the background like filtering, make items active or passive, add or remove some menu

items, etc.

Business rules are not directly shown to the user like data definitions and they do not have

a flow of events like use cases. For these reasons, there should be some references of

business rules in the software which users can easily refer for the ones with user messages.

These references are the names of the business rules shown in the messages with the

convention: “BR<module_abbreviation><nnn>”. Each business rule also has a user message

in addition to this technical message or number that gives detailed information about the

business rule.

An example business rule with corresponding fields is shown below in Figure 5 with details

in Table 5 not shown in Table 4. Fields with red labels are mandatory fields, while others are

optional fields.

27

Figure 5. Business Rule Fields

Table 5. Business Rule Fields

Field Name Mandatory
/ Optional Description Values

SRS
Requirement
Type

Mandatory Software requirement type Functionality

Verification
Method Mandatory The verification type for the

acceptance tests.

[Analiz, İnceleme
(Inspection), İşlevsel
Gösterim
(Demonstration), Test]

BR Exec. In
Client Optional

Specifies whether this business
rule will run on the client side or
service side.

[N/A, No, Yes]

28

3.1.4 Validations

They are special kinds of business rules which have direct relation with the user through

user messages. They validate user input, check user errors or warnings regarding

authorization, constraints, etc.

The advised user message format is a sentence in passive form entered in the description

field of the requirement in the form: “Reason of error/warning + Result/Action taken”. If

the user message does not give enough information to developers, all details should be

clearly defined in the description field regarding developers.

Validations has two types: Errors and Warnings

 ERRORS:

Their naming convention is: IKIS-<module_abbreviation>-ER<nnn>.

Errors should be used in order to prevent the user doing some kind of false

operations. There are generic errors regarding the properties of data definitions like

length, min, max, unique and necessity.

 WARNINGS:

Their naming convention is: IKIS-<module_abbreviation>-WR<nnn>.

Warnings should be used to inform the user about an action or a situation which

are not required to prevent from.

3.2 TRACEABILITY MODEL

Proposed requirements traceability model is shown in Figure 6. This traceability model can

be thought as a “inter-requirements traceability” model [29]. According to this traceability

model, there must be traces between a use case and the other types of requirements

related to that use case like data definitions and business rules. Hence, there are data

definitions and business rules in the “Trace From” of a use case and vice versa. Moreover,

there must be traces between a business rule and the related data definitions to that

business rule. Hence, there are data definitions in the “Trace From” of a business rule and

vice versa.

29

Software requirements traceability provides two benefits called as impact analysis:

 Which software requirements change due to change requests?

 How users and software are affected due to change requests, hence user point of
view to change requests.

3.3 CONSEQUENCES OF THE STRUCTURE AND THE TRACEABILITY
MODEL

This part is about a few advantages of the proposed requirements traceability model

throughout the related project. These items are not aimed to be evaluated formally as this

thesis does not primarily focus on these items. However, requirements driven design and

implementation item is evaluated in terms of workload efficiency gained in the evaluation

part.

3.3.1 Requirements Driven Design And Implementation

Development team already had a software design prototype by having a requirements

traceability model in software requirements. It is a good idea to form the design according

to relations between different software requirements. If the dependencies between

software requirements and the dependencies in the software design do not match, then

high cohesion and low coupling [47] may suffer. Requirements traceability gives clues about

the appropriate design. Therefore, if the development has a good software requirement

model, they already have a good design. They should conform to each other; non-

UC (Use Case)

(Detailed, CRUD)

BR (Business Rule)

(BR, ER, WR)

DD (Data Definition)

Figure 6. Proposed Traceability Model

30

conformance and tight vertical traces means bad design or indicates re-analysis of the

requirements as shown in Figure 7.

Horizontal trace Horizontal trace

Vertical trace

Vertical trace

Requirement Group
A

Requirement Group
B

Design Module
A

Design Module
B

Figure 7. Relationship Between Requirements and Design

Software requirements are related to implementation in the following way:

 Data Definition  entities, database, test data

 Business Rule  business-rule engine, test data, qualification test procedures

 Use Case  service, graphical user interface (GUI), test data, qualification test
procedures

It was tried to minimize the effect and the workload of change requests on implementation

and tests when constructing the software design. All of the software requirements changes

should not directly affect implementation at the same degree as software requirements.

For instance, when a business rule code changes, the behavior of software should implicitly

changes and this implicit behavior change is followed trough software requirements

traceability. Therefore, impact analysis of change requests is made using software

requirements before changing implementation.

If a change request comes to a business rule, the business rule should be the center of

implementation change. It was thought that, not service side, but business-rule engine

should know where and when it must work to provide independency. Hence, at business

rule change requests, although traced use cases are impacted in software requirements,

31

only business rule code changes. We have a business-rule engine approach such that it can

be even turned off without affecting anything in terms of code change. We thought such an

approach by our software traceability model.

For the reason that many of change requests come to business rules and use case change is

very costly; business rules should be isolated in the software requirements, design and

implementation. This approach saved a significant amount of workload by affecting only

the business-rule engine code; not the service code, graphical user interface code and the

qualification test procedures.

3.3.2 Requirements Driven Architecture

Distribution of business rules and traces between software requirements give clues and

make ease of make-buy-reuse analysis, architecture selection and high-level design. There

may be more types; but three of them are listed below. These three types can live together:

 Business Rules - User: If there are several business rules interacting with the user,

this is an indication for a rich-client application.

 Business Rules – Data Definitions: If there are several traces between business

rules and data definitions, transaction-management and database design become

important for properly working software.

 Business Rules - Software: If there are several business rules that the software is

responsible of, then business rule engine may play an important role for the

software. Hence, it is a good idea to look for effective ways of handling business

rules.

3.3.3 Traceability Between Requirements And Code

One big challenge developers live is that when a change request comes, after doing

necessary changes in the software requirements and design, it is hard to find the classes or

code segments to be changed. Current requirement management tools do not give enough

support to have such kind of information, indeed. It is much easier to make the necessary

changes in the implementation by using the same names for business rules in the

requirements and the implementation. Hence, business rules satisfy automatic traceability

between software requirements and code by meaningful names.

32

3.3.4 Effective Tests

Every business rule is ready to become a test procedure. They are easily convertible to

tests. Business rules play important role for the software. They should be carefully thought

and tested. Writing test procedures and covering all the requirements through tests are

very hard. Hence business rules are effective and easy way of writing tests and covering all

of the requirements.

3.4 COMPARISON OF SIMILAR TRACEABILITY MODELS

A comparison was made in order to make a critic of the proposed traceability model. There

are four different works including this work. The other works are; Relating Evolving

Business Rules to Software Design [2], Improving Software Quality Through Requirements

Traceability Models [3] and Change Impact Analysis From Business Rules [27]. The results

are shown in Table 6.

 R-D: Requirements - Design

 R-I: Requirements - Implementation

 R-R: Requirements – Requirements

Table 6. Comparison of Similar Approaches

Work Type

Formalized

Business

Rules

Business

Rules

Isolation and

Change

Independence

Requirements

Driven Design

Requirements

– Code

Traceability

Auto

Trace

Creation

Wan-Kadir

and

Loucopoulos

R–D Yes N/A Yes Partial No

Salem R-I No N/A No Yes Yes

Filho R-R N/A Yes No No No

This Work R-R Yes Yes Yes Partial No

33

CHAPTER 4

 EXPERIMENTAL RESULTS AND EVALUATIONS

4.1 BACKGROUND

The proposed requirements traceability model was not relied on and evaluations of change

requests were made on all types of software requirements of the regarding module in

order to have a correct understanding on the advantages and disadvantages of the model.

Change requests in the configuration management tool and defects in the requirements

management tool were primarily used to form the dataset. A snapshot of the requirements

management tool is shown in Figure 8. The items used in the evaluation and descriptions of

these items are listed below:

Change requests have attributes like;

 Synopsis: Short description of the change request.

 Description: Brief description, reasons and ideas about the change request.

 Configuration item: The source of the change request like software requirements

specification (SRS), software design description (SDD) or Application Software, etc.

The configuration item is the entrance point of the change request’s impacts to the

whole software. For thesis purposes only change requests of which configuration

item is “SRS” was used to form the dataset.

 Links: The items that changed while implementing the solution for the change

request. These items can be database change scripts, modified code, modified test

data, modified test code, modified working reports, other relevant change requests,

topics and other kinds of documentation.

34

In order to hold the relevance between change requests and requirements, defects are

used in the requirement management tool with related change request numbers. Defects

have attributes like;

 Requirement changing defect?: A defect can affect a requirement or a qualification

test procedure. If it affects a change request, then it is a requirement changing

defect, otherwise it is a qualification test procedure defect.

 Summary: Short description of the defect. This information is the number of the

relevant change request written with the convention “Change Request

<change_request_number>”.

 Description: Brief description, reasons and ideas about the defect. This information

is empty for a requirement changing defect.

 Severity: The importance degree of the defect. If the defect is a requirement

changing defect, this information is the same as the severity of the related change

request.

 Linked entities: The items changed due to the defect. This information is

bidirectional traceability between the changing item, requirement or test

procedure, and the defect.

35

Figure 8. Requirements Management Tool

4.2 DATASET TEMPLATE

This is the dataset, shown in Table 7, used for the evaluation of the requirement traceability

model and its results. Descriptions of the items are listed below:

Table 7. Dataset Template

Type of software
requirement

What is impacted in the
software requirements?

What is impacted in the
implementation?

DD, BR, UC
DD BR UC Database Class Test

data Test class

True /
False # True /

False #

Aim: Change request
distribution statistics

Aim: The correctness of
requirements
traceability model

Aim: The costs of implementation
changes for each kind of change
requests by finding average costs for
each type and how much workload
efficiency is gained.

36

 Type of software requirement: Only change requests are used of which

configuration item is “SRS” as the dataset was used to evaluate the requirement

traceability model. The type of software requirements can be “data definition

(DD)”, “business rule (BR)”, “use case (UC)” or any combination according to the

requirement traceability model. This information is gained from synopsis and

description attributes of the change request together. This information was used to

determine change request distribution statistics.

 What is impacted in the software requirements?: The type of software

requirements can be “data definition (DD)”, “business rule (BR)”, “use case (UC)” or

any combination according to the requirement traceability model. This information

is gained from requirements management tool by linked entities of the

corresponding defect of the change request. Numbers of impacted software

requirements are determined regarding the type of the requirement. This

information is used to determine the correctness of the requirements traceability

model.

When there is a combination of different types, there appears a problem that it can

not be strictly determined which software requirement type has affected which

items. Assume that types of software requirements are “BR, UC” together and this

change request has impacted on two business rule and one use case. This total

effect is behaved as true conformance to the requirements traceability model.

However, there is a possibility that, business rule impacted one business rule; use

case impacted one use case and one business rule. This time, the first

determination turns out to be false. This is a disadvantage of the evaluation.

 What is impacted in the implementation?: This information is gained from the links

of the change request. Only database change scripts, modified codes, modified

integration test data and modified test codes are taken into account. Database

changes and test data changes are behaved as “true” or “false”. Modified codes

and integration test codes are counted as Java [46] classes. This information is used

to find out the costs of change requests.

37

Preparation and maintenance of qualification test procedures are important and

effort-resuming activities of a software project. But impacts of change requests on

qualification test procedures were not taken into evaluation part as there is no data

about the impacts of change requests on qualification test procedures.

Qualification test procedures are maintained and corrected when there is a change

on the related requirements. This is a deficiency of the evaluation.

4.3 ASSUMPTIONS

It is assumed that each database change and test-data change; each class change and test-

class change require the same amount of effort in pairs while calculating the total workload

efficiency of the proposed requirements traceability model.

4.4 EXPECTATIONS

It is expected that;

 (1) The number of change requests with software requirement type of BR is more

than change requests with types of DD and UC.

 (2) Change requests with software requirement type of DD impacted database and

test-data more than change requests with types of BR and UC.

 (3) The proposed traceability model is a correct way of making change request

impact analysis by a major amount of efficiency of change request workload.

4.5 RESULTS AND EVALUATION

The dataset is given in Appendix A. Number of change requests according to the types of

software requirements are:

 # Change requests: 403

 # Change requests of type DD: 97

 # Change requests of type BR: 230

 # Change requests of type UC: 35

 # Change requests of type DD, BR: 21

 # Change requests of type DD, UC: 3

 # Change requests of type BR, UC: 11

 # Change requests of type DD, BR, UC: 6

38

The amount of change requests of only one type (%) = 362 / 403 * 100 = 89,82 %. Hence

the results of the evaluation have a reliability of 89.82 %.

Figure 9 shows the graphical distribution of change requests for the types of DD, BR and UC.

97

21 6

35

11

3

230

DD

BR

UC

Change Request Distribution

Figure 9. Change Request Distribution

Table 8 shows the impacts of change requests on the database and the test data according

to the types of software requirements. Figure 10 shows the graphical distribution for the

types of DD, BR and UC.

Table 8 (continued)

Type of change request
Database

impacts

Test-data

impacts
Total impacts

DD 23 3 26

BR 2 8 10

DD
(127)
28%

BR (268)
60%

UC (55)
12%

Change Request Distribution

Table 8. Database and Test Data Impacts

39

Table 8 (continued)

Type of change request
Database

impacts

Test-data

impacts
Total impacts

UC 0 1 1

DD, BR 3 1 4

DD, UC 0 0 0

BR, UC 0 1 1

DD, BR, UC 4 1 5

Changes of data definitions have a

major impact on the database as

there is a close relationship between

the database and the data

definitions. DD (30)
70%

BR (9)
21%

UC (4)
9%

Database impact

Figure 10. Data Relevant Change Request Distribution

40

Changes of business rule have a

major impact on the test data as

there is a close relationship between

the tests and the business rules. This

shows that business rules are of

important elements of software

testing.

Use cases have a minimal impact on

the database and the test data. Data

definitions and business rules mainly

impact different kinds of data

relevant artifacts. Hence, it is a good

idea to separate these three types of

software requirements.

Figure 10 (continued)

The proposed requirements traceability model tells that;

 Change requests of type DD may affect requirements of type DD, BR and UC.

 Change requests of type BR may affect requirements of type BR and UC.

 Change requests of type UC may affect requirements of type UC.

DD (5)
26%

BR (11)
58%

UC (3)
16%

Test data impact

DD (35)
57%

BR (20)
32%

UC (7)
11%

Total impact

41

Distribution of change requests according to conformance to the requirements traceability

model are:

 # Change requests conforming to the proposed traceability model: 387

 # Change requests not conforming to the proposed traceability model: 16

Correctness of the tracebility model (%) =
Change requests conforming to the traceability model

Total change requests ∗ 100

If the above formula is applied;

Correctness of the requirements traceability model (%) = (387 / 403) * 100 = 96,02 %

It was told that forming a software design according to the proposed traceability model

facilitates making necessary changes in the implementation. Because, different types of

change request affects only the same type of related code segment or module. Hence a

significant amount of change request workload efficiency is gained. The related project uses

a business-rule engine approach that is fully non-related to service implementation that

gives necessary functions to the system defined in use-case steps. This business-rule engine

structure has been built with the idea of most of change requests will be type of BR;

therefore service implementation was affected less.

The workload efficiency gained with this approach can be calculated by looking at the

“What is affected in the implementation?” part of the dataset. Table 9 shows the impacts of

the change requests on the software implementation and test artifacts according to the

types of software requirements. Table 10 shows the re-compiled version of Table 9

according to the types of DD, BR and UC.

Table 9 (continued)

Type of

change

request

Change

requests

Total

database

impacts

Total class

impacts

Total test

class impacts

Total class,

test class

impacts

DD 97 26 301 10 311

BR 230 10 505 36 541

Table 9. Impacts on Implementation and Test Artifacts

42

Table 9 (continued)

Type of

change

request

Change

requests

Total

database

impacts

Total class

impacts

Total test

class impacts

Total class,

test class

impacts

UC 35 1 139 3 142

 DD, BR 21 4 62 3 65

DD, UC 3 0 22 0 22

 BR, UC 11 1 90 2 92

 DD, BR, UC 6 5 105 11 116

Table 10. Re-compilation of Impacts on Implementation and Test Artifacts

Type of

Change

Request

Change

Requests

Total

Database

Effects

Total Class,

Test Class

Effects

Average

Database

Effect

Average Class

Effect

DD 127 35 514 0,275 4,047

BR 268 20 814 0,074 3,037

UC 55 7 372 0,127 6,763

TOTAL: 62 1.700

By assuming that, every business rule change request would cost a use case change request

in addition to the cost of itself, if we did not use the proposed traceability model; we can

calculate the new average impact of a business rule by the following formula.

 Average database impact of a change request of type BR = 0,074 + 0,127 = 0,201

 Average class impact of a change request of type BR = 3,037 + 6,763 = 9,800

43

Table 11 was formed according to the new calculated average values.

Table 11. New Impacts on Implementation and Test Artifacts

Type of

Change

Request

Change

Requests

Total

Database

Effects

Total Class,

Test Class

Effects

Average

Database

Effect

Average Class

Effect

DD 127 35 514 0,275 4,047

BR 268 53,868 2.626,4 0,201 9,800

UC 55 7 372 0,127 6,763

TOTAL: 95,868 3.512,4

Despite of the fact that the new #Total Database Effects was calculated; it can not claimed

that such a workload efficiency was gained as the database design was not formed

regarding the proposed requirements traceability model.

We can calculate the change request workload efficiency as follows;

Change request workload efficiency gained (%) = (3.512,4 – 1.700) / 3.512,4 * 100= 51,6 %.

4.6 OTHER NOTES

The evaluation parts uses the change requests of which configuration item is “SRS” and

expects that only this kind of change requests have impact on the software requirements.

However, 50 out of 403 change requests are not of this kind. The developers who entered

these change requests probably did not expect any impact on the requirements.

It can be said that, some requirements changes do not come directly from customers or

developers; they come from implementation changes. This shows that not only

requirements changes can impact implementation, but also implementation changes can

impact requirements by an amount of 12,4 % at the related project. Hence, bidirectional

traceability between requirements and implementation becomes more important.

44

CHAPTER 5

 CONCLUSIONS AND FUTURE WORK

In this thesis work, a software requirements traceability model approach was presented.

The proposed model primarily tries to lead the software development teams make efficient

and correct impact analysis on the change requests coming to software requirements from

both customers and the development team. Moreover, the proposed model makes the

development team save a significant amount of change request workload by the underlying

software requirements structure which separates and isolates different types of software

requirements focusing on the business rules.

Experimental results show that, most of the change requests came to the business rules

with an amount of 60% as expected. Moreover, data definitions were the software

requirements which drove major amount of changes with an amount of 57% on data

relevant artifacts like the database and test data. These results show that, the proposed

software requirements structure has an important role on identifying and isolating different

kinds of software changes caused from change requests.

Analysis of the change request which came to software requirements and other software

relevant change requests showed that, the proposed traceability model gives correct

results with an amount of 96,02%. There can be several reasons for the traceability model

not to reach an amount of 100%. Although the structure and the traceability model work

well theoretically and practically; this model is used by the development team to form the

software requirements and form the necessary traces between those. It is hard to make all

the members of the development team to think exactly in the same way. In addition,

forming software requirements requires intensive brainstorming and analysis. Hence, there

is a possibility that the requirements were not identified correctly by each and every

member of the development team. In other words, a property of a data definition that

should be identified as a business rule might not be identified, or a step in a use case that

45

should become a business rule might not be specified or vice versa. There is a little amount

of possibility that the requirements traces were not formed correctly. One more reason for

this result can be the extension of change requests by the development team without

specifying this fact in the change requests descriptions or evaluations. Therefore, the

change requests might impact on more requirements or artifacts than they seem.

The proposed requirements traceability model was used to form the software design in

order to make separation of modules consistently and isolate the infrastructure items in the

software design that was thought to be points, on which the changes and impacts would

focus. This requirements driven software design and usage of business rule engine provided

change request workload efficiency with an amount of 51,6%.

Preparation of the qualification test procedures are important and time-consuming

activities. But, impacts of change request on test procedures could not be taken into

account for the reason that there is not direct impact traces from change request to test

procedures. The qualification test procedures are prepared according to the steps in use

cases, mainly. But test procedures also examines business rules in an effective manner. At

this point, one question arises in minds: “Do business rule or use case changes have more

impact on the test procedures?”. It seems that use cases should have. However, evaluation

results show that, business rules are the major software requirements which impact test

data used in integration tests with an amount of 58%. By trying to answer this question,

methodologies about the relevance between the software and the tests can be formed and

used for effective planning of software test workload.

Applying a similar traceability model to the database design and artifacts may give good

results like providing and maintaining the integrity of the database. Database design have

items like columns, primary keys, foreign keys, indexes, sequences, tables, views,

procedures, etc. All these items have close relationships with each other. Unfortunately,

current database design tools do not have functionalities to notify the database designer

about such concepts. By the time, database may lose its integrity or conventions specified

before. Database relevant concepts should be analyzed and structures can be formed to

detect inconsistencies in the database design while modifying the database. By this way,

database design can take advantage of functions which requirement management tools

have like traceability, notification, etc.

46

As mentioned before, customer is the core aspect of the software. The main source of all

the software requirements is customer requirements. Hence, customer should also be an

entity in the requirement traceability model. Traceability should go ahead to “who said

what” while collecting customer requirements and analyzing them. An owner approach

should be used for customer requirements. When a change request comes to a software

requirement, that software requirement should be traced to the relevant customer

requirement and the owner of that requirement. If the source of the change request and

the owner does not match, extra effort should be spent to solve possible future customer

dissatisfaction caused from changes without source customer approval.

In this thesis work, we presented a simple approach that can easily be applied to industrial

software projects with possible current configuration and requirement management tools.

Metadata repositories, business rules and requirement traceability are research areas

which gain more attention, especially by the software industry as it benefits from these

areas. Models like CMMI [37] are also driving forces for the organizations in order to apply

configurable solutions for these concepts. The model proposed in this thesis work is a

harmony of these concepts and models. As future works, some processes like detection of

traces, proposition of new software requirements and change request – defects integration

can be automated to decrease the workload and increase the effectiveness. In addition, the

balance between customer satisfaction and these new developments should never be lost.

47

REFERENCES

[1] George Spanoudakis and Andrea Zisman, "Software Traceability: A Roadmap,"
Handbook of Software Engineering and Knowledge Engineering, vol. 3, no. Recent
Advancements, 2005.

[2] W. M. N. Wan-Kadir and Pericles Loucopoulos, "Relating evolving business rules to
software design," Journal of Systems Architecture, vol. 50, no. 7, pp. 367-382, July
2004.

[3] Ahmed M. Salem, "Improving Software Quality Through Requirements Traceability
Models," in IEEE International Conference on Computer Systems and Applications,
2006, pp. 1159-1162.

[4] Balasubramaniam Ramesh, "Factors Influencing Requirements Traceability Practice,"
Communications of the ACM, vol. 41, no. 12, pp. 37-44, December 1998.

[5] B. Ramesh, D. Dwiggins, G. DeVries, and M. Edwards, "Towards Requirements
Traceability Models," in Proceedings of the 1995 International Symposium and
Workshop on Systems Engineering of Computer Based Systems, Tucson, AZ, USA, 1995,
pp. 229-232.

[6] Orlena Gotel and Anthony Finkelstein, "Extended Requirements Traceability: A
Framework for Changing Requirements," in CAISE Workshop on Requirements
Engineering in a Changing World, Heraklion, Crete, Greece, 20-24 May 1996.

[7] Orlena C. Z. Gotel and Anthony C. W. Finkelstein, "An Analysis of the Requirements
Traceability Problem," in Proceedings of 1st International Conference on Requirements
Engineering, 1994, pp. 94-101.

[8] Jane Cleland-Huang and Carl K. Chang, "Event-Based Traceability for Managing
Evolutionary Change," IEEE Transactions On Software Engineering, vol. 29, no. 9, pp.
796-810, September 2003.

[9] Christopher Lindquist. (2005, November) Fixing the Software Requirements Mess.
[Online]. http://www.cio.com/article/print/14295

[10] Balasubramaniam Ramesh and Michael Edwards, "Issues in the Development of a
Requirements Traceability Model," in Proceedings of IEEE International Symposium on
Requirements Engineering, San Diego, CA , USA , 1993, pp. 256-259.

[11] P. Haumer, K. Pohl, K. Weidenhaupt, and M. Jarke, "Improving Reviews by Entended
Traceability," in Proceedings of 32nd Hawaii International Conference on System
Sciences Volume 3, Maui, Hawaii, 1999.

[12] A. Egyed, "A Scenario-Driven Approach to Trace Dependency Analysis," IEEE
Transactions on Software Engineering, vol. 9, no. 2, pp. 116-132, February 2003.

http://www.cio.com/article/print/14295�

48

[13] G. Spanoudakis, A. Zisman, E. Perez-Minana, and P. Krause, "Rule-Based Generation of
Requirements Traceability Relations," Journal of Systems and Software, vol. 72, no. 2,
pp. 105-127, 2004.

[14] I. Alexander, "SemiAutomatic Tracing of Requirement Versions to Use Cases -
Experience and Challanges," in Proceedings of the 2nd International Workshop on
Traceability in Emerging Forms of Software Engineering (TEFSE), Canada, October
2003.

[15] P. Arkley, P. Mason, and S. Riddle, "Positon Paper: Enabling Traceability," in
Proceedings of the 1st International Workshop on Traceability in Emerging Forms of
Software Engineering, pp. 61-65.

[16] J. Bayer and T. Widen, "Introducing Traceability to Product Lines," in Proceedings of
the Software Product Family Engineering (PFE): 4th International Workshop, Bilbao,
Spain, 2002.

[17] A. Bianchi, A.R. Fasolino, and G. Vissagio, "An Exploratory Case Study of the
Maintenance Effectiveness of Traceability Models," in Proceeding of the 8th
International Workshop on Program Comprehension (IWPC '00), Limerick, Ireland,
June, 2000, pp. 149-159.

[18] J. Cleland-Huang, Carl K. Chang, G. Sethi, K. Javvaji, H. Hu, J. Xia, "Automating
Speculative Queries through Event-Based Requirements Traceability," in Proceedings
of the IEEE Joint International Requirements Engineering Conference, Essen, Germany,
2002.

[19] P. Constantopoulos, M. Jarke, Y. Mylopoulos, and Y. Vassiliou, "The Software
Information Base: A Server for Reuse," VLDB Journal, vol. 4, no. 1, pp. 1-43, 1995.

[20] O. Gotel and A. Finkelstein, "Contribution Structures," in Proceedings of the 2nd
International Symposium on Requirements Engineering (RE '95), 1995, pp. 100-107.

[21] Ellen Gottesdiener, "Capturing Business Rules," Software Development Magazine:
Management Forum, vol. 7, no. 12, December 1999.

[22] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave, "A Reference Model for
Requirements and Specification," IEEE Software, vol. 17, no. 3, pp. 37-43, May/June
2000.

[23] A. Von Knethen, B. Paech, F. Kiedaisch, and F. Houdek, "Systematic Requirements
Recycling through Abstraction and Traceability," in Proceedings of the IEEE
International Requirements Engineering Conference, Germany, September, 2002.

[24] P. Letelier, "A Framework for Requirements Traceability in UML-based Projects," in
Proceedings of the 1st International Workshop on Traceability for Emerging Forms of
Software Engineering (TEFSE '02), Edinburgh, UK, September 2002.

[25] M. Lindval and K. Sandahl, "Practical Implications of Traceability," Software Practice
and Experience, vol. 26, no. 10, pp. 1161-1180, 1996.

49

[26] K. Mohan and B. Ramesh, "Managing Variability with Traceability in Product and
Service Families," in Proceedings of the 35th Hawaii International Conference on
System Sciences, Island of Hawaii, January 7-10, 2002.

[27] Antonio Oliveria Filho, "Change Impact Analysis From Business Rules," in Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 2,
Cape Town, South Africa, 2010, pp. 353-354.

[28] F. Pinheiro and J. Goguen, "An Object-Oriented Tool for Tracing Requirements," IEEE
Software, vol. 13, no. 2, pp. 52-64, March 1996.

[29] Francisco A. C. Pinheiro, "Requirements Traceability," in Perspectives on software
requirements, Jorge Horacio Doorn, Ed.: Springer, 2003, ch. 5, pp. 91-113.

[30] K. Pohl, "PRO-ART: Enabling Requirements Pre-Traceability," in Proceedings of the 2nd
IEEE International Conference on Requirements Engineering (ICRE 1996), 15-18 April
1996.

[31] B. Ramesh and V. Dhar, "Supporting Systems Development Using Knowledge Captured
During Requirements Engineering," IEEE Transactions in Software Engineering, vol. 18,
no. 6, pp. 498-510, June 1992.

[32] B. Ramesh and M. Jarke, "Towards Reference Models for Requirements Traceability,"
IEEE Transactions in Software Engineering, vol. 27, no. 1, pp. 58-93, 2001.

[33] M. Strens and R. Sugden, "Change Analysis: A Step towards Meeting the Challenge of
Changing Requirements," in Proceedings of the IEEE Symposium and Workshop on
Engineering of Computer-Based Systems, Fredrichshafen, Germany, March 1996, pp.
278-283.

[34] R.J. Wieringa, "An Introduction to Requirements Traceability," Faculty of Mathematics
and Computer Science, University of Vrije, Amsterdam, September 1995.

[35] J. Dick, "Rich Traceability," in Proceedings of the 1st International Workshop on
Traceability for Emerging Forms of Software Engineering (TEFSE '02), Edinburgh, UK,
September 2002.

[36] Scott W. Ambler, The Object Primer. Cambridge, UK: Cambridge University Press, SIGS
Books, 2001.

[37] CMMI for Development, Version 1.2.: CarnegieMellon Software Engineering Institute,
August 2006.

[38] (2010, Aug.) the Business Rules Group. [Online]. http://www.businessrulesgroup.org.
[Accessed Aug 15, 2010].

[39] (2010, Aug.) Wikipedia. [Online]. http://www.wikipedia.org. [Accessed Aug 15, 2010].

[40] (2010, Aug.) IEEE Standards Description: 830-1998. [Online].
http://standards.ieee.org/reading/ieee/std_public/description/se/830-
1998_desc.html. [Accessed Aug 15, 2010].

http://www.businessrulesgroup.org/�
http://www.wikipedia.org/�
http://standards.ieee.org/reading/ieee/std_public/description/se/830-1998_desc.html�
http://standards.ieee.org/reading/ieee/std_public/description/se/830-1998_desc.html�

50

[41] (2003, November) Business Rules Manifesto. [Online].
http://www.businessrulesgroup.org/brmanifesto/BRManifesto.pdf. [Accessed Aug 15,
2010].

[42] (2010, Aug.) Business Rules Community. [Online]. http://www.brcommunity.com.
[Accessed Aug 15, 2010].

[43] (2010, Aug.) Business Rules Oracle. [Online].
http://www.oracle.com/appserver/rules.html. [Accessed Aug 15, 2010].

[44] (2010, Aug.) Drools - JBoss Community. [Online]. http://jboss.org/drools. [Accessed
Aug 15, 2010].

[45] (2010, Aug.) The BrBeans Framework. [Online].
http://publib.boulder.ibm.com/infocenter/wasinfo/v4r0/index.jsp?topic=/com.ibm.w
ebsphere.v4.doc/wasee_content/brb/concepts/cbrbfrmo.htm. [Accessed Aug 15,
2010].

[46] (2010, Aug.) Java Technology. [Online]. http://www.sun.com/java/. [Accessed Aug 15,
2010].

[47] Stevens W.P., Myers G.J. and Constantine, M., “Structured Design,” IBM Sytems
Journal, vol. 13, no. 2 pp. 115-139, 1974.

http://www.businessrulesgroup.org/brmanifesto/BRManifesto.pdf�
http://www.brcommunity.com/�
http://www.oracle.com/appserver/rules.html�
http://jboss.org/drools�
http://publib.boulder.ibm.com/infocenter/wasinfo/v4r0/index.jsp?topic=/com.ibm.websphere.v4.doc/wasee_content/brb/concepts/cbrbfrmo.htm�
http://publib.boulder.ibm.com/infocenter/wasinfo/v4r0/index.jsp?topic=/com.ibm.websphere.v4.doc/wasee_content/brb/concepts/cbrbfrmo.htm�
http://www.sun.com/java/�

51

APPENDIX A

 DATASET

The change requests of which “CR Number” is shown with red color are the ones not

conforming to the proposed requirements traceability model. The change requests of which

“Type of software requirement” is shown with blue color are the ones of which

configuration item is not software requirements specification (SRS).

Table 12 (continued)

No CR
Number

Type of software
requirement

What is impacted
in the software
requirements?

What is impacted in the
implementation?

DD, BR, UC
DD BR UC Databa

se Class Test
data

Test
class

True /
False # True /

False #

1 130 UC 2 43 20

2 131 DD 1 3 2

3 132 DD, BR 1 0 1

4 133 BR 0 0 0

5 134 BR 2 0 0

6 135 DD 1 0 0

7 136 DD 15 1 5

8 137 DD 1 0 0

9 138 BR 0 1 0

10 139 DD 3 0 0

11 140 BR 0 1 0

12 141 DD 132 2 0 TRUE

13 142 DD 7 0 0

Table12. Dataset

52

Table 12 (continued)

14 143 DD 2 4 5

15 144 DD 1 3 2

16 145 BR 0 0 1

17 147 DD 24 14 9

18 148 DD 11 29 14

19 149 DD, BR 22 5 40

20 150 DD 6 3 2

21 151 DD, BR 6 3 0

22 153 DD 0 0 0 TRUE

23 154 BR 1 0 0

24 155 DD 1 0 0

25 156 BR 0 0 1

26 157 BR 0 1 0

27 158 BR 0 1 0

28 159 BR, UC 0 4 2

29 160 BR 0 1 0

30 161 BR 1 0 0

31 162 BR 0 2 0

32 163 BR 1 1 3

33 165 DD 4 8 2 TRUE

34 166 UC 0 8 0

35 168 UC 0 0 1

36 170 UC 0 0 1

37 171 UC 0 0 2

38 172 UC 0 0 1

39 173 UC 0 0 4

40 175 DD 1 0 0

41 176 DD 6 2 4

42 177 DD, BR, UC 4 12 4

43 179 BR 0 9 7

44 180 BR 0 1 0

45 181 DD, BR 9 20 14

53

Table 12 (continued)

46 182 UC 0 0 2

47 183 DD 54 20 24

48 184 DD 17 0 0 TRUE

49 185 DD 140 0 0

50 187 BR 0 0 60

51 188 BR, UC 3 6 2

52 190 UC 0 0 1

53 192 DD 3 3 3

54 193 DD 2 0 3

55 194 DD, UC 2 0 1

56 195 DD 1 0 0

57 198 DD 9 0 0

58 199 DD 2 1 0 TRUE

59 200 DD, BR 19 0 4 TRUE

60 201 BR 0 2 1

61 203 BR 0 1 1

62 204 BR 0 5 1

63 205 BR 0 3 1

64 206 BR 0 1 0

65 207 BR 0 1 1

66 208 DD 2 0 0 TRUE

67 209 DD 1 0 0

68 210 DD 0 1 1

69 211 DD 2 0 0

70 212 DD 1 2 2 TRUE

71 213 BR 0 1 1

72 214 BR 0 2 1

73 216 DD, BR 1 7 0

74 217 BR 0 4 2

75 218 DD, BR 0 0 2

76 219 BR 0 2 1

77 220 BR 0 1 1

54

Table 12 (continued)

78 221 BR 0 4 1

79 222 DD, BR, UC 4 6 5 TRUE

80 223 DD 1 0 0

81 224 DD 16 0 2 TRUE

82 225 BR 0 2 1

83 227 BR 0 2 1

84 228 DD 1 0 0

85 229 BR 0 3 1

86 230 DD, UC 1 1 2

87 231 DD 0 0 10

88 232 BR 0 0 0

89 233 BR 0 2 1

90 234 BR 0 2 1

91 236 BR 0 1 1

92 237 BR 0 4 2

93 238 BR 0 5 2

94 239 DD, BR 6 1 0

95 240 DD, BR 1 1 0

96 241 BR 0 1 0

97 242 BR 0 1 1

98 244 BR 0 4 0

99 245 BR 0 2 0

100 246 BR 0 2 0

101 247 UC 0 0 4

102 248 BR 0 2 0

103 249 BR 0 5 0

104 250 BR 0 2 0

105 253 BR 0 4 2

106 254 BR 0 1 0

107 256 BR 0 4 0

108 257 BR 0 3 0

109 259 BR 0 1 0

55

Table 12 (continued)

110 260 DD 2 0 0 TRUE

111 261 BR 0 4 2

112 263 BR 0 1 1

113 264 BR 0 2 1

114 266 BR 0 2 2

115 267 BR 0 3 0

116 270 BR 0 4 2

117 271 BR 0 1 0

118 273 BR 0 2 4

119 274 BR 0 10 4

120 275 DD, BR 1 2 2 TRUE

121 276 BR 0 1 0

122 277 BR 0 1 9

123 280 BR 0 4 1

124 281 BR 0 1 2

125 282 BR 0 1 1

126 283 BR 0 1 1

127 285 DD, BR, UC 0 4 0

128 287 BR 0 4 1

129 289 BR 0 3 2

130 290 BR 0 1 0

131 291 BR 0 1 1

132 292 BR 0 28 0

133 293 BR 0 3 2

134 294 BR 0 6 2

135 295 BR 0 6 0

136 296 UC 0 5 0

137 302 BR 0 3 2

138 303 BR 0 0 1

139 304 DD 10 0 3 TRUE

140 306 UC 0 1 1

141 309 BR 0 1 0

56

Table 12 (continued)

142 311 BR 0 3 2

143 313 BR 0 1 1

144 316 BR 0 1 1

145 319 BR 0 4 1

146 320 BR 0 5 2

147 321 DD 2 2 0 TRUE

148 322 BR 0 3 3

149 326 DD 1 3 3

150 327 BR 0 4 1

151 329 BR 0 2 2

152 330 DD 7 6 0 TRUE

153 333 BR 0 1 0

154 334 UC 0 2 2

155 335 BR 0 2 3

156 336 BR 0 1 3

157 337 BR 0 2 1

158 339 BR 0 2 0

159 341 DD, BR, UC 0 7 14 TRUE

160 344 DD 2 0 0

161 348 BR 0 1 2

162 350 UC 0 0 5

163 354 DD 2 1 1

164 360 BR 0 3 4

165 362 BR 0 1 0

166 363 BR 0 0 1

167 370 BR 0 1 2

168 373 BR 0 4 3 8

169 376 UC 0 1 0

170 377 BR 0 2 0 2

171 378 BR 0 0 0

172 380 BR 0 1 0 1

173 381 DD 1 0 0

57

Table 12 (continued)

174 385 DD 1 0 0

175 386 BR, UC 0 1 0

176 391 DD 1 0 0

177 394 BR 0 3 0 1

178 396 DD 1 2 0 5

179 399 DD 1 0 0

180 400 BR 0 2 0

181 404 BR 0 2 0

182 406 UC 0 0 2

183 408 DD, BR 1 0 0

184 410 DD 0 0 1

185 417 DD 1 0 0

186 418 DD 1 0 0

187 419 DD 1 0 0

188 420 DD 1 0 0

189 428 DD 1 0 0 TRUE 3 TRUE 1

190 429 BR 0 2 2 4

191 431 BR 0 1 1 3

192 434 UC 0 0 1 3

193 437 BR, UC 0 0 1 2

194 440 DD 1 3 2

195 442 UC 0 0 1

196 443 BR 0 2 0 1 TRUE 1

197 444 BR 0 3 0

198 445 BR 0 4 1 3

199 446 BR 0 1 0 1

200 448 DD, BR 1 2 2

201 449 UC 0 0 1

202 450 UC 0 0 0

203 455 BR 0 1 0

204 456 BR 0 0 0

205 457 DD, BR 2 3 4 4

58

Table 12 (continued)

206 462 BR 0 4 0

207 465 BR 0 6 4 7

208 472 BR 0 2 0 26 3

209 474 DD 4 0 0 TRUE 18 TRUE

210 476 BR 0 2 0

211 478 DD 3 0 0

212 479 BR 0 0 0

213 483 BR 0 1 1

214 487 BR 0 5 6 4

215 490 BR 0 1 0

216 491 BR 0 1 0

217 496 BR 0 1 0 1

218 497 BR 2 1 1 2

219 502 BR 0 0 1

220 507 DD 1 0 0

221 508 DD 1 0 0

222 515 BR 0 0 1

223 518 BR 0 1 0

224 519 BR 0 6 0 2

225 520 BR 0 1 0

226 521 BR 0 1 0

227 522 BR 0 0 0

228 527 BR 0 1 1 3

229 533 DD 0 0 0 6

230 538 BR 0 1 0

231 539 DD 2 0 0

232 540 BR 0 4 4 2

233 541 BR 0 1 0

234 543 BR 0 1 0 2

235 545 BR 0 1 0 3

236 547 BR 0 1 0 1

237 548 BR 0 1 0 1

59

Table 12 (continued)

238 551 DD 0 0 0 TRUE 3 1

239 552 UC 0 1 0

240 553 BR 0 1 0 1

241 555 DD 0 0 0 TRUE 3

242 557 BR 0 1 0

243 558 BR 0 1 3 2

244 559 BR 0 4 0

245 560 BR 0 2 0 2

246 563 BR 0 2 1 3

247 564 DD 19 0 0

248 568 BR 0 1 0

249 570 DD 1 4 6 10

250 573 DD 8 0 0 11

251 575 BR 0 1 1 12 1

252 576 BR 0 2 0 4

253 577 BR 0 1 1 3

254 584 BR, UC 0 2 2

255 586 DD 1 0 0

256 587 BR 0 1 0 2

257 588 BR 1 1 0 TRUE 3

258 590 BR 0 2 0 3

259 592 BR 0 6 0 1

260 593 DD 3 0 0 2

261 596 DD, BR 1 2 2 8

262 597 BR 0 2 0 2

263 598 BR 0 0 0

264 602 BR 0 1 0 3 1

265 603 BR 0 2 0 2

266 604 BR 0 1 2 2

267 605 DD 1 0 0

268 606 BR 0 1 1 4 TRUE

269 609 BR 0 1 1 3

60

Table 12 (continued)

270 610 DD, BR 2 2 4 TRUE 22 TRUE 2

271 612 BR, UC 0 2 19 15

272 613 BR 0 1 0 1

273 614 BR 0 0 0 2

274 625 DD, BR 1 4 2 14 1

275 643 BR 0 3 3 4

276 694 BR 0 3 1 4

277 699 BR 0 2 7 5

278 737 UC 0 1 2 1

279 754 BR 0 3 2 1

280 783 BR 0 1 0 1

281 788 BR 0 5 0 5 TRUE

282 795 BR 0 1 1 1

283 797 DD, BR, UC 10 3 4 TRUE 61 TRUE 7

284 802 BR 0 1 0 3

285 819 BR 0 1 0 1

286 821 UC 0 0 1

287 823 BR 0 2 1 8 2

288 826 UC 0 0 1

289 829 BR 0 1 0

290 838 BR 0 1 2 2

291 844 UC 0 1 2 2

292 850 BR 0 2 2

293 853 BR 0 4 0 2 1

294 865 DD, BR 4 0 0

295 878 DD 12 0 0 1

296 879 DD 43 2 2 TRUE 57

297 884 BR 0 1 0 2

298 885 DD 1 0 0

299 893 BR 0 2 0 2

300 902 DD 9 0 0

301 908 DD 10 1 1

61

Table 12 (continued)

302 909 UC 0 0 0

303 911 DD 8 0 0

304 913 DD 9 0 0

305 914 DD 1 0 0 1

306 922 BR 0 1 0 1

307 933 DD, UC 1 0 1 22

308 937 DD 2 0 0 TRUE 1

309 947 BR 0 2 0 3

310 961 BR 0 1 3 1

311 974 BR 0 1 0

312 987 DD 2 0 0

313 1002 BR, UC 0 2 1 9

314 1008 BR, UC 0 1 1 3

315 1009 DD 1 0 0 1

316 1011 BR 0 3 0

317 1039 DD 8 0 1

318 1044 BR 0 1 1 1

319 1059 BR 0 2 0 2

320 1066 BR 0 20 0 32

321 1080 BR 0 1 0

322 1081 BR 0 2 2

323 1084 BR 0 1 1

324 1086 BR 0 1 0 3

325 1099 BR 0 3 2 17 TRUE 4

326 1103 BR 0 1 1 12

327 1109 BR 0 1 1 1 1

328 1113 DD, BR 2 4 0 5

329 1114 DD 3 0 0 TRUE 32

330 1115 BR, UC 0 0 2 12

331 1116 BR 0 14 0 14

332 1120 UC 0 0 11 12

333 1126 BR 0 1 0 2

62

Table 12 (continued)

334 1135 BR, UC 0 1 1 12

335 1139 DD, BR 1 1 0 5

336 1140 DD 3 0 0 4

337 1142 UC 0 0 1 7

338 1146 DD 2 3 0 3

339 1147 BR 0 2 0 4 TRUE 4

340 1155 BR 0 3 0 6

341 1163 DD 29 0 0 17

342 1182 BR 0 1 0 1

343 1196 BR 0 2 1 4

344 1213 BR 0 1 1 33

345 1214 BR 0 3 3 5

346 1215 UC 0 8 0 11

347 1216 DD 0 0 2

348 1218 BR 0 1 0

349 1227 BR 0 1 1 1

350 1228 DD 2 0 0 4

351 1232 UC 0 2 0 1

352 1240 BR 0 2 0 4

353 1251 UC 0 0 2 30

354 1253 UC 0 0 0 45

355 1261 BR 0 2 0 2 TRUE 1

356 1276 BR 0 1 0 1

357 1277 UC 0 1 2 27 TRUE 3

358 1296 BR 0 1 0 2

359 1311 BR 0 21 0 29 1

360 1316 BR 0 1 0 4

361 1317 BR, UC 0 1 0 37 TRUE 2

362 1322 BR 0 1 0 2

363 1324 BR 0 3 1 4 2

364 1326 BR 0 3 1

365 1327 BR 0 2 0 TRUE 19

63

Table 12 (continued)

366 1336 DD 2 1 0 3

367 1347 UC 0 0 1

368 1357 BR 0 0 0 8 1

369 1364 DD, BR 1 0 1

370 1365 BR 0 7 1 18 3

371 1367 DD 5 0 0 9

372 1373 UC 0 0 1

373 1378 BR 0 1 0 1

374 1382 BR 0 1 0 1

375 1388 DD 2 0 0 5

376 1398 BR 0 1 1 7

377 1403 DD 76 0 0 TRUE 19

378 1432 DD 2 2 1 TRUE 20 TRUE 2

379 1444 BR 0 0 0 2 TRUE 1

380 1471 BR 0 4 1 6 1

381 1473 BR 0 1 0 1

382 1474 DD 9 0 0

383 1482 BR 0 4 0 4

384 1500 BR 0 1 0 26 4

385 1501 BR 0 1 0

386 1503 DD 1 0 0 3

387 1510 BR 0 3 3 19 TRUE 3

388 1520 BR 0 1 0 1

389 1526 BR 0 2 0

390 1555 DD 3 0 5 34 6

391 1574 BR 0 9 0 12

392 1582 DD 10 12 0

393 1591 BR 0 1 0

394 1602 BR 0 0 2 2

395 1621 BR 0 1 0

396 1642 DD, BR, UC 2 8 4 TRUE 44 4

397 1644 DD, BR 7 1 0 4

64

Table 12 (continued)

398 1702 DD 8 0 0 TRUE

399 1703 BR 0 6 0 11

400 1716 BR 0 1 0

401 1717 DD 2 0 0 17

402 1718 BR 0 1 0 3

403 1719 DD 6 0 0 TRUE 9

65

APPENDIX B

 USE CASE TEMPLATE

The following use case template was taken from Ambler [36].

Name: Enroll in Seminar

Description: Enroll an existing student in a seminar for which she is eligible.

Preconditions: The Student is registered at the University.

Postconditions: The student will be enrolled in the course she wants if she is eligible and
room is available

Basic Course of Action:

1. A student wants to enroll in a seminar.
2. The student submits her name and student number to the registrar.
3. The registrar verifies the student is eligible to enroll in seminars at the university

according to the business rule “BR129 Determine Eligibility to Enroll.”
4. The student indicates, from the list of available seminars, the seminar in which she

wants to enroll.
5. The registrar validates the student is eligible to enroll in the seminar according to

the business rule “BR130 Determine Student Eligibility to Enroll in a Seminar.”
6. The registrar validates the seminar fits into the existing schedule of the student,

according to the business rule “BR143 Validate Student Seminar Schedule.”
7. The registrar calculates the fees for the seminar, based on the fee published in the

course catalog, applicable student fees, and applicable taxes. Apply business rules
“BR180 Calculate Student Fees” and “BR45 Calculate Taxes for Seminar.”

8. The registrar informs the student of the fees.
9. The registrar verifies the student still wants to enroll in the seminar.
10. The student indicates she wants to enroll in the seminar.
11. The registrar enrolls the student in the seminar.
12. The registrar adds the appropriate fees to the student’s bill according to the

business rule “BR100 Bill Student for Seminar.”
13. The registrar provides the student with a confirmation that she is enrolled.
14. The use case ends.

Alternate Course A: The Student is Not Eligible to Enroll in Seminars.
A.3. The registrar determines the student is not eligible to enroll in seminars.

66

A.4. The registrar informs the student she is not eligible to enroll.
A.5. The use case ends.

Alternate Course B: The Student Does Not Have the Prerequisites.
B.5. The registrar determines the student is not eligible to enroll in the seminar she
chose.
B.6. The registrar informs the student she does not have the prerequisites.
B.7. The registrar informs the student of the prerequisites she needs.
B.8. The use case continues at Step 4 in the Basic Course of Action.

Alternate Course C: The Student Decides Not to Enroll in an Available Seminar.
C.4. The Student views the list of seminars and does not see one in which she wants to
enroll.
C.5. The use case ends.

67

APPENDIX C

 PROJECT INFORMATION

The related software project used for the case study is İKİS (İl Koordinasyon ve İzleme

Sistemi). İKİS is a two year, web based software project. The aim of İKİS is coordination and

monitoring of investments and projects made by the government units; in addition taking

information about city inventories.

İKİS is developed by G222. G222 is a medium-sized, CMMI Level 3 software development

unit. It is one of the development units of UEKAE (Ulusal Elektronik ve Kriptoloji Araştırma

Enstitüsü, National Research Institute of Electronics and Cryptology). UEKAE is an institute

of TÜBİTAK (Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, The Scientific and

Technological Research Council of Turkey). The customer is DPT (Devlet Planlama Teşkilatı,

State Planning Organization).

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	MOTIVATION
	THESIS ORGANIZATION

	BACKGROUND INFORMATION AND RELATED WORK
	INFORMATIVE PART
	Customer Requirements
	Software Requirements Specification
	Business Rule
	Use Case
	Requirements Traceability
	CMMI

	LITERATURE SEARCH
	Relating Evolving Business Rules To Software Design
	Improving Software Quality Through Requirements Traceability Models

	WORK
	STRUCTURE OF THE REQUIREMENTS
	Use Cases
	Data Definitions
	Business Rules
	Validations

	TRACEABILITY MODEL
	CONSEQUENCES OF THE STRUCTURE AND THE TRACEABILITY MODEL
	Requirements Driven Design And Implementation
	Requirements Driven Architecture
	Traceability Between Requirements And Code
	Effective Tests

	COMPARISON OF SIMILAR TRACEABILITY MODELS

	EXPERIMENTAL RESULTS AND EVALUATIONS
	BACKGROUND
	DATASET TEMPLATE
	ASSUMPTIONS
	EXPECTATIONS
	RESULTS AND EVALUATION
	OTHER NOTES

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	DATASET
	USE CASE TEMPLATE
	PROJECT INFORMATION

