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ABSTRACT 

 

 

FORECASTING THE PRICES OF NON-FERROUS METALS WITH GARCH 

MODELS 

& 

VOLATILITY SPILLOVER FROM WORLD OIL MARKET TO NON-FERROUS 

METAL MARKETS 

 

 

Bulut, Burçak 

MBA, Department of Business Administration 

Supervisor: Assoc. Prof. Dr. Uğur Soytaş    

 

August 2010, 51 pages 

 

 

In the first part of this thesis the prices of six non-ferrous metals (aluminum, copper, 

lead, nickel, tin, and zinc) are used to assess the forecasting performance of GARCH 

models. We find that the forecasting performances of GARCH, EGARCH, and 

TGARCH models are similar. However, we suggest the use of the GARCH model 

because it is more parsimonious and has a slightly better statistical performance than 

the other two.  

 

In the second part, the prices of six non-ferrous metals and the price of crude oil are 

used to examine the dynamic links between oil and metal returns by using the BEKK 

specification of the multivariate GARCH model and the Granger causality-in-

variance tests. Results of our study agree with the previous studies in that the crude 

oil market volatility leads all non-ferrous metal markets. 
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In order to move as far away from the effects of 9/11, daily data for the period 

December 12, 2003 – December 15, 2008 is used for the data analysis part of the 

thesis.  

 

 

 

 

Keywords: Non-ferrous metal prices, Crude oil prices, GARCH models, Forecasting, 

Causality-in-variance 
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ÖZ 

 

KAPSAMLI ARCH MODELLERĠ ARACILIĞIYLA DEMĠR ĠÇERMEYEN 

METAL FĠYATLARINDA FĠNANSAL TAHMĠN DEĞERLENDĠRMESĠ 

& 

DÜNYA PETROL PĠYASASINDAN DEMĠR ĠÇERMEYEN METAL 

PĠYASALARINA VOLATĠLĠTE YAYILMASI 

 

Bulut, Burçak 

Yüksek Lisans, Ġşletme Bölümü 

Tez Yöneticisi: Doç. Dr. Uğur Soytaş 

 

Ağustos 2010, 51 sayfa 

 

Ġki bölümden oluşan bu çalışmanın ilk bölümünde, altı demir içermeyen metalin 

fiyatları (alüminyum, bakır, çinko, kalay, kurşun, ve nikel) kullanılarak 3 farklı 

ARCH modelinin finansal tahminlerdeki başarı dereceleri karşılaştırılmaktadır. Bu 

çalışmadan çıkan sonuçlara göre, kapsamlı ARCH (GARCH), üstel GARCH 

(EGARCH), ve eşik GARCH (TGARCH) modellerinin finansal tahminlerdeki başarı 

dereceleri birbirine yakın seviyededir. Fakat GARCH modelinin kullanılması 

tarafımızca daha uygundur, çünkü GARCH modeli daha kolay ve basit olup, diğer 

iki modele göre kısmen daha iyi sonuçlar vermektedir. 

 

Çalışmanın ikinci bölümünde, yine aynı altı demir içermeyen metalin fiyatları ve 

ham petrol fiyatları arasındaki ilişki iki değişkenli BEKK modeli kullanılarak 

araştırılmıştır. Diğer taraftan, metal fiyatları ve petrol fiyatları arasındaki volatilite 

yayılma etkileri Cheung ve Ng (1996)’nin çalışmalarındaki varyansta nedensellik 

testleri kullanılarak incelenmiştir. Analiz sonuçları geçmişte yürütülmüş olan 
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çalışmaları onaylar nitelikte olup, ham petrol piyasalarının tüm demir içermeyen 

metal piyasalarını yönlendirdiğini göstermektedir. 

 

Veri seti resmi tatiller ve hafta sonları hariç, 12 Aralık 2003 ve 15 Aralık 2008 

arasındaki günlük veriyi kapsamaktadır 

 

 

 

Anahtar Kelimeler: Demir içermeyen metal fiyatları, ham petrol fiyatları, GARCH 

modelleri, Finansal tahminler, Varyansta Nedensellik Testleri 
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CHAPTER I 

GENERAL INTRODUCTION 

 

In econometrics, one of the most active research areas has been the volatility of time 

series for the last two decades. The area of time series econometrics that is dealing 

with volatility research has not been just limited to estimation issues, statistical 

deduction, and model selection. Mainly, portfolio allocation, option pricing, and risk 

management issues in financial economics have been resolved by volatility research. 

Economists, especially who are interested in decision making under uncertainty, 

particularly focused on volatility, as a measure of uncertainty. Today’s financial 

markets are more interrelated and integrated as a result of increased globalization as 

well as developments in technology. The information spillovers from one market to 

another are enhanced with the help of these developments. Empirical studies are 

triggered in response to these developments and information transmission 

mechanisms are studied. The pioneers of this research area focus on the prices or 

returns spillover effects between futures and its underlying cash markets and across 

markets. Aforementioned researches find that relationship between the futures and its 

underlying cash market indicates that cash prices are mostly affected by the time 

futures prices. Moreover, empirical results show significant cross-markets 

interactions in terms of pricing information transmission across markets. 

 

Many conventional methods for measuring risk are done through studies of the 

variance (volatility) of the commodity under study. A naive assumption in the theory 

of financial returns suggests that a stationary time series model with stochastic 

volatility structure is followed by the returns. This implies that returns are not 

necessarily independent over time. Engle (1982) propose the Autoregressive 

Conditional Heteroscedasticity (ARCH) process which has time varying conditional 

variance. However, according to the empirical results, in order to catch the dynamic 

of the conditional variance, high ARCH order has to be selected. The high ARCH 
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order implies that researchers have to deal with many parameters and the calculations 

are very tedious. Bollerslev (1986) proposes as a natural solution to the problem with 

the high ARCH orders which is the Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) model. This model dramatically reduces the infinite 

number of estimated parameters to just a few parameters which is mainly based on 

an infinite ARCH specification. Since then the GARCH models have been very 

popular for forecasting time varying variance of a time series. Several studies test the 

accuracy of volatility forecasts by using various error statistics and hypothesis 

testing. Out of all volatility models, the GARCH models consistently performed 

better than other volatility models in forecasting volatility. 

 

There has been a surge of interest on the commodity prices as alternative investment 

areas. This line of research mainly focuses on prices of precious metals and ferrous 

metals, but non-ferrous metals are not that widely studied. In the first part of this 

thesis we investigate the univariate models for prices of six non-ferrous metals. We 

find that the price series contain time varying variance. Then we assess the 

forecasting performance of GARCH models for aluminum, copper, lead, nickel, tin, 

and zinc future prices in LME. We employ daily data for the period December 12, 

2003 – December 15, 2008 and model the volatility process via GARCH, EGARCH, 

and TGARCH models. We find that the forecasting performances of all three models 

are similar. However, we suggest the use of the GARCH model because it is more 

parsimonious and has a slightly better statistical performance than the other two. 

 

Recently, investors, traders, policy makers and producers are mostly interested in 

metals and crude oil, partly because of the co-movement of their prices and increases 

in their economic uses. Using crude oil as a hedge against increasing risk in the metal 

markets sparked a movement towards closely monitoring crude oil prices as risk 

management tools in hedging speculative and hedging purposes. The major markets 

for metals futures contracts are the Commodity Exchange of New York (COMEX), 

Chicago Board of Trade (CBOT), and the New York Merchantile Exchange 

(NYMEX). The London Metal Exchange (LME) is the world’s largest market for 
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forward contracts in non-ferrous metals, and is also an exchange for spot transactions 

where physical delivery takes place. In order to study the relations between the 

volatilities and co-volatilities of several markets, the most frequently applied method 

is the multivariate GARCH (MGARCH) models. Are the volatilities of common 

markets directed by the volatility of one dominant market? Is there a direct 

information transmission mechanism (through its conditional variance) or indirect 

transmission mechanism (through its conditional covariance) between the volatilities 

of two assets? Does an increase in the volatility of a market caused by a change in 

another market, and how much is the extent of this interaction? Are negative and 

positive shocks leads to similar consequences? A multivariate model can be directly 

used in order to study such, and multivariate models raise the question of the 

specification of the dynamics of covariance or correlations. In recent studies the 

MGARCH models have been used to assess the impact of volatility in financial 

markets on real variables, such as exports, imports and/or growth rates, and the 

volatility of these variables. In order to study the volatility spillovers between 

financial markets in depth, the causality between markets is examined by using a 

recent causality-in-variance test following the procedure proposed by Cheung and 

Ng (1996). The causality-in-variance test assesses the conditional volatility 

dependence between two markets. However, traditional Granger causality test 

focuses on the mean changes. Causality-in-variance tests are able to identify the 

direction of causality as well as the number of leads/lags involved. 

  

In the second part, we use the prices of six non-ferrous metals (aluminum, copper, 

lead, nickel, tin and zinc) and the price of crude oil to examine the dynamic links 

between oil and metal returns. We employ daily data for the period December 12, 

2003 – December 15, 2008 and model the volatility process via the BEKK 

specification of the multivariate GARCH model. Then, cross-correlation function of 

the standardized residuals from the bivariate GARCH model of a pair of series under 

consideration form the basis of Cheung and Ng's (1996) measure of pair-wise 

causality tests. We realized that our results seem to be in line with the previous 

studies in that the crude oil market volatility leads all non-ferrous metal markets. 
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In the second chapter of our thesis, in our first part, we will model the six non-

ferrous metals’ prices using nonlinear autoregressive conditional heteroscedasticity 

models. In our second part, which is given in the third chapter, we use the six non-

ferrous metals’ prices and oil price to examine the causal relationships between each 

non-ferrous metal and oil prices by using bivariate nonlinear autoregressive 

conditional heteroscedasticity models. 
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CHAPTER II 

FORECASTING THE PRICES OF NON-FERROUS METALS WITH 

GARCH MODELS 

 

2.1. Introduction 

 

Commodity markets are viewed as an alternative investment area by global investors. 

Investors are closely watching the developments in the global commodity markets as 

well as financial markets. Therefore, trade in commodity markets is probably 

following similar dynamics as in the global financial markets. The financial asset 

prices usually have time varying variance and investors frequently need to forecast 

the volatility processes in these markets. The fact that commodity markets are also 

used for hedging and speculation reasons has increased the need for modeling the 

volatility and forecasting the prices in these markets.  

 

The commodity markets that attract the interest of global investors range from 

various agricultural products (including varieties of food and agricultural raw 

materials) and energy resources (coal, oil, natural gas etc.) to all kinds of metals 

(precious, ferrous and non-ferrous metals). There are a large number of studies on 

return spillovers and volatility forecasting of agricultural commodities, energy 

resources and metals. The profits of firms that use these commodities as inputs and 

that mine and trade these commodities are also significantly affected by the volatility 

in their prices. For example, the riskiness of a mining project can be assessed by not 

only risks involved in reserve estimation but also the future prices of the metal in 

concern. Hence, it is important to be able to forecast the commodity prices accurately 

(Dooley and Lenihan, 2005).  
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From a financial investment point of view, Chou (1988) states the importance of 

commodity volatility forecasts in valuation, portfolio formation, managing risk, and 

determining optimum options and futures trading strategies for hedging purposes. 

McMillan and Speight (2001) argue that the speculative activity has shown a shift 

from financial markets towards commodity markets, particularly to the non-ferrous 

metals market. They also point out that volatility forecasts become increasingly 

important for options pricing. It is also argued that the metal markets are good 

indicators of macroeconomic dynamics (Sari, Hammoudeh, & Ewing, 2007). 

Therefore, volatility forecasts may benefit policy makers as well as traders. Although 

ferrous and precious metals are recently receiving increasing attention from scholars, 

the literature on volatility forecasting of non-ferrous metal prices is relatively sparse. 

Non-ferrous metals are not only price sensitive to worldwide business cycles, but 

they are also sensitive to global energy markets.  

 

Economic time series, particularly financial time series, exhibit periods of high 

volatility followed by periods of low volatility, which means the constant variance 

assumption is violated. The most appropriate method to deal with this violation is the 

use of GARCH models. The non-linear models have been the most commonly used 

tools in modeling and forecasting volatility of returns in the short run, but they may 

fail to capture the long run dynamics (McMillan and Speight, 2001). The primary 

aim of this study is to compare the forecast performances of three different 

generalized autoregressive conditional heteroscedasticity (GARCH) models 

regarding non-ferrous metal market returns.  

 

The contributions of the part can be summarized as follows. First, we focus on 

returns of six non-ferrous metals that are traded in London Metal Exchange (LME). 

To the extent of our knowledge, the future returns and volatility processes of these 

six metals have not been studied together, applying the same models for comparison 

purposes. Second, we employ daily data instead of lower frequencies. In the 

literature, most studies use low frequency data (monthly and even quarterly), except 

for McMillan and Speight (2001); however, trade occurs more frequently and daily 
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data may capture the dynamics more effectively. Third, we compare the forecasting 

performances of three different GARCH models. In the literature, usually different 

prices are evaluated using a single model. Therefore, to the extent of our knowledge 

this study is the first that studies the daily three-month average future prices of 

aluminum, copper, lead, nickel, tin, and zinc using three different GARCH models. 

We find that the forecasting performances of all three models are similar. However, 

we suggest the use of the GARCH model because it is more parsimonious and has a 

slightly better statistical performance than the other two. 

 

This part is organized as follows. The next section gives a review of the literature, 

which briefly describes the previous GARCH applications and literature related to 

metal price forecasting. Section 3 presents the data and methodology used. Section 4 

provides the empirical results of the study and concluding remarks are presented in 

the last section. 

 

2.2. Literature Review 

 

We divide the relevant research into two major areas, which are mainly volatility 

modeling and metal price forecasting. In a recent study, Engle (2004) provides 

historical details related to the development of conditional heteroscedasticity models 

and their evolution into more generalized models. According to Engle (2004), the 

GARCH (1,1) model has become ―the workhorse of financial applications‖ when 

describing volatility dynamics. In the next section we briefly review some of the 

volatility models, and then we turn our attention to applications in metal price 

forecasting. 

 

2.2.1. Volatility Modeling 

 

Engle (1982) first introduces the ARCH models, and then Bollerslev (1986) and 

Taylor (1986) generalize these models to allow for conditional variance to depend on 
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its own lags. Since then there has been a number of different models and estimation 

approaches that are primarily based on the GARCH model.  

 

Nelson (1991) presents a class of ARCH models that are the "asymmetric" or 

"leverage" volatility models, in which future volatility can be affected differently by 

good news and bad news. These models do not suffer from some of the drawbacks of 

GARCH models like the negative correlation that exist between current returns and 

future returns volatility. GARCH models rule this out by assumption. Additionally, 

interpreting whether shocks to conditional variance "persist" or not is difficult in the 

GARCH models. The empirical work of French, et al. (1987) inspires a motivation 

for these models by finding the evidence that stock market returns are negatively 

correlated to the change in the volatility of stock returns.  

 

Hamao, Masulis and Ng (1990) use daily opening and closing prices of major stock 

indexes for the Tokyo, London, and New York stock markets to examine the 

existence of price change and price volatility effects from one international stock 

market to the next. In order to explore these pricing relationships an ARCH family of 

statistical models is utilized in the analysis. They find that these relationships should 

be approximated by a GARCH (1,1)-M model. Evidence of price volatility spillovers 

from New York to Tokyo, London to Tokyo, and New York to London is observed 

but no price volatility spillover effects in other directions are found.  

 

Engle and Ng (1993) make a systematic comparison of volatility models while 

focusing on the asymmetric effect of news on volatility. They propose volatility 

models and fitted these to daily Japanese stock returns from 1980 to 1988. All the 

models point out that negative shocks show more volatility than positive shocks but 

the diagnostic tests indicates that the modeled asymmetry is not sufficient. The 

asymmetric GARCH model which is proposed by Glosten et al. (1993) and the 

partially nonparametric (PNP) ARCH model give similar volatility forecasts for 

reasonable shock. However, these forecasts differ dramatically for more extreme 

shocks. 
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A modification of the classical ARCH models introduced by Engle (1982) is 

considered by Zakoian (1994). In this modified model the conditional standard 

deviation is a piecewise linear function of past values of the white noise. This 

specific form allows different reactions of the volatility to different signs of the 

lagged errors. Stationarity conditions are derived, maximum likelihood and least 

squares estimations are also considered.  

 

In the paper of Lin, Engle and Ito (1994) how returns and volatilities of stock indices 

are correlated between Tokyo and New York are investigated empirically. In order to 

determine the global factor from daytime returns, they propose and estimate a signal 

extraction model with GARCH processes. They also investigate lagged return, 

volatility spillovers and several competing hypotheses regarding lagged spillovers in 

both returns and volatility are also tested. There are no significant lagged spillovers 

in returns or in volatilities, except for a lagged return spillover from New York to 

Tokyo for the period after the October 87 Crash. Moreover, they find some evidence 

of the lagged return spillovers from New York daytime to Tokyo daytime in the 

period after the Crash. On the other hand, they also find that, in general, there is no 

volatility spillover from one market to the other several hours later. 

 

Morana (2001) uses the GARCH properties of oil price changes to forecast the oil 

price distribution over short-term horizons. The semi parametric forecasting 

methodology is based on the bootstrap approach. Morana (2001) suggests the use of 

the semi-parametric approach to construct a performance measure of the forward oil 

price using Brent oil prices. The semi-parametric methodology is suggested for the 

oil price forecasts as well. 

 

Radha and Thenmozhi (2002) develop a univariate model for forecasting the short-

term interest rates. The models under study are Random Walk, ARIMA, ARMA-

GARCH and ARMA-EGARCH. According to the results of this study, volatility 

clustering effect is dominant in interest rates time series. As a result of this GARCH 

based models are more appropriate for forecast than the other models. 
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The moment structure of the general ARMA–EGARCH model is considered by 

Karanasos and Kim (2003). They show the differences in the moment structure 

between the EGARCH model with the standard GARCH model or the APARCH 

model and use these differences for comparison. They find that the autocorrelations 

of the squared observations can be applied so that the properties of the observed data 

can be compared with the theoretical properties of the models. 

 

Bowden and Payne (2008) utilize three models, ARIMA, ARIMA-EGARCH, and 

ARIMA-EGARCH-M models to examine the day-ahead forecasting performance for 

hourly electricity prices for the five hubs of the Midwest Independent System 

Operator (MISO). The models do not differ significantly regarding their in-sample 

forecasting performances. However, with respect to the model performance in out-of 

sample forecasting, they find that the ARIMA-EGARCH-M model is superior to the 

other models.  

 

Agnolucci (2009) compares the predictive ability of GARCH-type models and 

implied volatility models. His aim is to select the best model which produces the best 

forecast of volatility for the WTI future contracts and the evaluation criteria is based 

on statistics and regression results. He also investigates whether the asymmetric 

effects have an influence on volatility of the oil futures and whether the distribution 

of the errors affects the parameters of the GARCH models. According to the results 

of predictive ability tests, GARCH-type models seem to outperform the implied 

volatility (IV) model.  

 

Allen and Morzuch (2006) provide a good summary of the past twenty five years of 

econometric forecasting and argue that ARCH has made significant contributions to 

the financial econometrics forecasting. 
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2.2.2. Forecasting Metal Prices 

 

In the light of the brief discussion of volatility models, it does not come as a surprise 

to see that most of the applied work in metal price forecasting and volatility relies on 

GARCH models. 

 

McKenzie, et. al (2001) investigate a range of commodity futures prices traded on 

the London Metals Exchange. They consider the ability of the Power GARCH 

models to capture the some features of volatility in these prices. The results of this 

study show that the LME futures data generally do not contain asymmetric effects. 

This paper suggests that the Taylor GARCH model outperforms other models 

included in the study. 

 

Dooley and Lenihan (2005) analyze the ability of two time series forecasting 

techniques to predict global future lead and zinc prices. The time series methods that 

are used in the study are ARIMA and lagged forward price models. They argue that 

price forecasting is difficult. The results from their analysis suggest that ARIMA 

modeling provide better forecasts than lagged forward price modeling. They also 

claim that the models discussed in the study are widely used for base metal 

forecasting by the metal companies. 

 

Hammoudeh and Yuan (2008) utilize three ―two factor‖ volatility models of the 

GARCH family to examine the volatility behavior of three strategic commodities: 

gold, silver and copper, in the presence of crude oil and interest rate shocks. The 

results of the standard GARCH models suggest that gold and silver have almost the 

same volatility persistence which is greater than that of copper. The results of 

CGARCH and EGARCH procedures suggest that metals can have different 

volatilities because of their own special factors and uses, but not only driven by 

crises and common macroeconomic factors. 
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Figuerola-Ferretti and Gilbert (2008) apply the bivariate FIGARCH model to 

aluminum and copper prices, which are the two most important metals, traded in the 

London Metal Exchange. This model allows parsimonious representation of long 

memory volatility processes. The results show that aluminum and copper volatilities 

can be represented as long memory processes, in which the processes are symmetric 

and a common degree of fractional integration is exhibited by both of the metals. 

 

The review of literature shows that ARCH and GARCH models are extensively used 

in price forecasting. However, there exist very few researches which apply the 

ARCH-GARCH family to futures prices of commonly traded non-ferrous metals. 

The literature shows that GARCH models are very successful at capturing the 

volatility clustering effect of financial time series and they usually outperform the 

ARIMA type models in capturing asymmetric effects and volatility clustering. Thus, 

this study focuses on forecasting of price volatilities non-ferrous metals traded in the 

London Metal Exchange using several non-linear models. 

 

2.3. Data & Methodology 

2.3.1. Data 

 

Daily time series for the mean three-month futures prices of three commonly traded 

non-ferrous metals (aluminum, copper, lead, nickel, tin, and zinc) are used for this 

study. The sample covers the period December 12, 2003 – December 15, 2008. All 

three-month futures prices are sourced from London Metal Exchange (LME) and 

these prices are given in US dollars per ton. Dooley and Lenihan (2005) argue that 

the LME prices are generated by the most transparent pricing mechanisms 

resembling a perfectly competitive market. Hence, the market determines prices in 

LME can be used for hedging purposes which makes accurate price forecasts 

necessary. The total observations for each metal are 1305. All data used is in 

logarithmic returns. We first check the stationarity of the returns, and then utilize 

three different GARCH models for forecasting purposes. The last thirty days data are 
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kept as the hold out sample and estimate the models with the remaining data set. 

Then the forecasting accuracy of the models is evaluated using the holdout sample.  

 

2.3.2. Time Series Properties of the Data 

 

The ARCH type modeling requires that the series under study be stationary. 

Therefore the first part of the analysis focused on the unit root properties of the 

return series. Several tests are available for testing the existence of unit roots, but the 

results are sometimes conflicting. In order to continue with the analysis safely, the 

stationarity of the series must be ensured. In theory, a time series is considered to be 

stationary if the series fluctuates around a constant mean which implies that the 

series have a finite variance. On the contrary, if a time series have a unit root this 

means the process is non-stationary. Namely, the series do not have a constant 

variance and no tendency to return to the predetermined path.  

 

The commonly used methods in the literature to test for the presence of unit roots are 

augmented Dickey–Fuller (ADF) test belongs to, as the name implies, Dickey and 

Fuller (1979), Phillips–Perron (PP) developed by Phillips and Perron (1988), Elliot–

Rothenberg–Stock Dickey–Fuller GLS detrended (DF–GLS) test proposed by Elliott, 

Rothenberg, and Stock (1996), a more comprehensive Kwiatkowski–Phillips–

Schmidt–Shin (KPSS) test is presented by Kwiatkowski, Phillips, Schmidt, and Shin 

(1992), Elliott, Rothenberg, and Stock (1996) developed a more recent test which is 

Elliott-Rothenberg-Stock (ERS) test and, Ng–Perron MZα (NP) test is created by Ng 

and Perron (2001). All of these procedures are applied so that the results of the study 

are more reliable. Detailed explanations of each of these procedures are not given 

here due to space limitations. However, extensive researches of Maddala and Kim 

(1998) and Ng and Perron (2001) can be used for detailed information about unit root 

tests. 

 

In general, the ADF and PP tests are criticized because they have very low power; 

these tests cannot differentiate highly persistent stationary processes from non-
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stationary processes and the power of these tests diminish as deterministic terms are 

added to the test regressions. KPSS also has the same low power problems. Efficient 

unit root tests are proposed for maximum power by Elliot, Rothenberg, and Stock 

(1996) and Ng and Perron (2001). These tests have considerably higher power than 

the ADF, PP or KPSS unit root tests. All of these tests are included in this study 

because they are still in use in literature. Null hypothesis of all unit root tests 

employed in this study states that the series under analysis has a unit root (non-

stationary) against the alternative that it is stationary. The only exception is the KPSS 

where the null hypothesis states that the series is stationary. 

 

2.3.3. ARMA (p,q) – EGARCH (1,1) 

 

The most common of the several asymmetric GARCH specifications is the 

EGARCH model, which is argued to be superior to alternative models (Radha & 

Thenmozhi, 2002). In order to carry out the analysis of metal price data, a form for 

the variance equation must be selected. The GARCH (1,1) specification for the 

variance equation is suggested in the literature for modeling volatility, so the 

EGARCH (1,1) model will be used in this study. The reason for that is the GARCH 

models do not take into account the leverage effect and hence the EGARCH model is 

used to capture whether the asymmetric effect is present. Proposed method of 

exponential GARCH or EGARCH model to capture the leverage or asymmetric 

effects by Nelson (1991) includes a coefficient, γ, which account for such 

asymmetries, as seen in the variance equation in equation (2.1):  

     
               

     
    

     
 

    
      

     
 

   
 

 
                                               (2.1) 

 

Therefore, this variance equation follows the mean equation that is assumed to 

follow an ARMA (p,q) model. In this study, we select the best ARMA specification 

(p and q) based on Akaike Information Criterion (AIC). The ARMA model in 

general form is represented in equation (2.2): 
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                                                                                (2.2) 

 

After ensuring stationarity of the series, the models are estimated by maximum 

likelihood estimation procedure and the best model with the appropriate AR and MA 

lengths are selected via the minimum Akaike information criterion (Bozdogan, 

2000). Then the inverted roots of the final model are also checked the stationarity of 

the model.  

 

Last step in selecting the best ARMA specification is done for each non-ferrous 

metal price by significance tests of coefficients of the AR and MA terms. 

Additionally, the leverage effect is tested via the coefficient, γ, added into equation 

that account for such asymmetries. 

 

2.3.4. ARMA (p,q) – GARCH (1,1) 

 

Bollerslev (1986) introduced the generalized autoregressive conditional 

heteroscedastic (GARCH) models which describes the dynamic changes in 

conditional variance are dependent upon previous own lags. Because of this reason, 

the GARCH model is a more parsimonious model than the ARCH model. The 

GARCH family is extensively surveyed by Bollerslev, Chou, and Kroner (1992). 

They believe that the GARCH model is a very effective tool for examining volatility. 

Since the variance is known at time (t-1) in this model, one-step-ahead forecasts are 

already available. Multi-step-ahead forecasts can be calculated by repeating same 

procedure infinitely. As it was mentioned earlier in this chapter, GARCH (1,1) model 

is selected for variance equation while modeling volatility. The variance equation is 

given in equation (2.3): 

  
           - 

     
 - 
                                                                 (2.3) 

 

As in the EGARCH process, the best ARMA (p,q) specification (see equation 2.2) 

must be selected for the mean equation. The best specification selection proceeds 
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exactly the same with the best ARMA specification selection in the ARMA (p,q) – 

EGARCH (1,1) part of the study, except the leverage effect.  

 

2.3.5. ARMA (p,q) – TGARCH (1,1) 

 

In order to model the asymmetric volatility in the GARCH process, Glosten, 

Jagannathan and Runkle (1993) and Zakoian (1994) independently introduced The 

Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model or Threshold GARCH 

(TGARCH) model. In this model, the relation between current volatility and lagged 

error term depends on the sign of lagged error. The difference between true value and 

estimated value is the error term. This means if the lagged error is negative, it would 

mean that bad news which increases volatility, and we can say that there is a leverage 

effect. However, if the sign of lagged error is positive, it would indicate good news. 

Therefore, the asymmetric volatility model, TGARCH, can measure the concept of 

leverage effect empirically. It was mentioned earlier in this study that the GARCH 

(1,1) specification for the variance equation is suggested in the literature for 

modeling volatility, so the TGARCH (1,1) model will be used in this part. The 

variance equation of the TGARCH (1,1) model in general form is represented in 

equation (2.4): 

  
           

        
        

     
                                                                (2.4) 

 

Where     
    if      and 0 otherwise. As in the EGARCH and GARCH 

processes, the best ARMA (p,q) specification (see equation 2.2) must be selected for 

the mean equation. The best specification selection proceeds exactly the same with 

the best ARMA specification selection in the ARMA (p,q) – EGARCH (1,1) and the 

ARMA (p,q) – GARCH (1,1) parts of the study. 
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2.3.6. Forecasting 

 

The best specification selection is followed by the evaluation of the forecasting 

results of GARCH (1,1), EGARCH (1,1) and TGARCH (1,1) models. Several 

measures are used to carry out this comparison and these measures are calculated as 

follows: 

                                             
   
                                (2.5) 

 

                            
           

 
    

                                             (2.6) 

 

                                                          
                (2.7) 

 

                                 
             

   
       

     
    

            
    

       

                    (2.8) 

 

The first two error statistics, RMSE and MAE, mainly based on the dependent 

variable scale. Forecasts of different models are compared by using these relative 

measures. The model with the lowest value of the error statistics will lead to a better 

forecasting performance. The other two statistics do not depend on a relative scale. 

MAPE equals to 0 when explaining a perfect fit. However, MAPE does not have an 

upper restriction. The Theil inequality coefficient always gives values between zero 

and one, where perfect fit indicated by zero. 

 

2.4. Empirical Results 

 

Summary of the results of the unit root tests are given in Table (2.1). ADF, DF–GLS, 

and PP critical values are sourced from MacKinnon (1991). KPSS critical values are 

from Kwiatkowski, Phillips, Schmidt, and Shin (1992) and MZα critical values are 

from Ng and Perron (2001). Elliot, Rothenberg, and Stock (1996) gives the critical 
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values of ERS. Although the results seems to maintain a conflict between the tests, in 

general the aluminum, copper, lead, nickel, tin, and zinc prices are stationary in 

levels which means that they are stationary in levels. 

 

Table 2.1 - Unit root test results
 

LEVEL ADF DF–GLS PP KPSS ERS NP (MZα) 

In
te

rc
ep

t 

LPALUM 
-37.93146a  

(0) 

-8.462779a 

(7) 

-37.93148a 

(1) 

0.730881b 

(1) 

0.117576 

(0) 

-60.7828a 

(7) 

LPCOPP 
-39.77678a 

(0) 

-3.008679a 

(11) 

-39.65863a 

(9) 

1.007609a 

(7) 

0.103740 

(0) 

-5.19327 

(11) 

LPLEAD 
-35.06245a 

(0) 

-2.019194b 

(18) 

-35.08604a 

(3) 

0.468279b 

(4) 

0.071697 

(0) 

-3.58724 

(18) 

LPNICK 
-36.83380a 

(0) 

-1.935740c 

(10) 

-36.83006a 

(8) 

0.486622b 

(8) 

0.190515 

(0) 

-4.40567 

(10) 

LPTIN 
-35.02973a 

(0) 

-4.850927a 

(9) 

-35.01093a 

(5) 

0.228858  

(4) 

0.111333 

(0) 

-18.8587a 

(9) 

LPZINC 
-37.39598a 

(0) 

-8.783922a 

(7) 

-37.39501a 

(2) 

0.965631  

(4) 

0.061405 

(0) 

-70.8203a 

(7) 

T
re

n
d

 &
 I

n
te

rc
ep

t 

LPALUM 
-38.10719a 

(0) 

-7.882113a 

(7) 

-38.10845a 

(4) 

0.211725b 

(6) 

0.233878 

(0) 

-52.1181a 

(7) 

LPCOPP 
-40.03118a 

(0) 

-5.152675a 

(11) 

-40.04963a 

(6) 

0.235424a 

(2) 

0.186908 

(0) 

-13.3098 

(11) 

LPLEAD 
-35.14776a 

(0) 

-20.96489a 

(1) 

-35.14776a 

(0) 

0.219265a 

(1) 

0.156521 

(0) 

-494.132a 

(1) 

LPNICK 
-36.90949a 

(0) 

-3.692934a 

(10) 

-36.90045a 

(7) 
0.202120 (7) 

0.227075 

(0) 

-15.1391c 

(10) 

LPTIN 
-35.05110a 

(0) 

-6.727110a 

(9) 

-35.03616a 

(6) 

0.183636b 

(5) 

0.201831 

(0) 

-36.8733a 

(9) 

LPZINC 
-37.59474a 

(0) 

-36.36479a 

(0) 

-37.60362a 

(6) 

0.214173b 

(8) 

0.159675 

(0) 

-651.455a 

(0) 

Notes to table: Numbers in parentheses are the lag lengths. 
a, b, c

 Significant at 1%, 

5%, and 10% levels, respectively. All of the null hypotheses are unit root, except 

KPSS; however, in KPSS the null is stationarity. 

 

Stationarity of the series is tested so that it is understood that they do not contain unit 

roots as can be observed from Table (2.1). According to the test results with different 

specifications the series employed do not contain unit roots. Literature suggests that 

the presence of autoregressive conditional heteroscedasticity in the residuals raises 

the possibility of the leverage effect. In order to examine the possibility of the 

leverage effect, an ARMA-EGARCH (1,1) model is estimated. The ARMA models 

of order up to (1,1) for the natural logs of six metal prices are estimated. The Akaike 

information criterion (AIC) (not reported here) choose ARMA(1,0) specification for 
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the prices for aluminum and copper, ARMA(0,1) specification for lead and nickel 

prices. For tin and zinc, ARMA (1,1) specification minimizes the Akaike 

Information Criterion. In addition, t-statistics of coefficient estimates are used to 

evaluate the performance of the selected specifications. The tests (not reported here) 

show that ARMA(1,0) specification is statistically appropriate for the prices for 

aluminum and copper, selected specification of ARMA (0,1) is suitable for lead and 

nickel. Identically, the results for t-statistics ARMA (1,1) specification are 

appropriate for tin and zinc. The mean equations are checked for ARCH effects and 

all are found to be significant. 

 

For all the metal prices, parameter estimation is conducted similarly on an EGARCH 

(1,1) for variance equation and the appropriate ARMA model for the mean equation. 

Best specifications for aluminum and copper prices is ARMA(1,0)-EGARCH(1,1), 

ARMA(0,1)-EGARCH(1,1) for lead and nickel prices and ARMA(1,1)-

EGARCH(1,1) for prices of tin and zinc. 

 

Proposed method of exponential GARCH or EGARCH model to capture the leverage 

or asymmetric effects is Nelson’s (1991) which includes a coefficient that account 

for such asymmetries. The interpretation of this coefficient in the variance equation 

of the EGARCH model shows that asymmetric effect is not present in prices of the 

six commonly traded non-ferrous metals and it is statistically insignificant (as seen in 

table 2.2) . Note that all coefficients, except the asymmetric effect coefficient and the 

constant term in the tin equation, are statistically significant. Some diagnostic 

statistics are also reported that show non existence of serial correlation but evidence 

of non-normality in the residuals of all six nonferrous metal price volatility 

equations. The diagnostic test statistics are reported below the estimation results. 

 

The best ARMA specification selection for the GARCH models proceeds exactly the 

same with the best ARMA specification selection in the ARMA (p,q) – EGARCH 

(1,1) part of the study, except the leverage effect part. Best specifications for 

aluminum, copper, lead, and nickel prices is ARMA(0,1)-GARCH(1,1), 
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ARMA(1,1)-GARCH(1,1) for the prices of tin, and ARMA(0,0)-GARCH(1,1) for 

zinc prices. Results for the GARCH model are summarized in Table (2.3). Note that 

for all six prices all coefficients, except the constant in nickel equation, are 

significant. There is no serial correlation problem according to the Q statistics, but 

the residuals are non-normal. 

 

Table 2.2 - EGARCH Results 

     
               

     
    

     
 

    
      

     
 

   
 

 
                                   (2.1) 

Equation for 

variance 

specification 

EGARCH 

(2.1) 

LPALUM LPCOPP LPLEAD LPNICK LPTIN LPZINC 

  -0.079426a 

(0.026762) 

-0.083540a 

(0.028723) 

-0.067916a 

(0.025365) 

-0.052077b 

(0.022860) 

-0.071993 

(0.065914) 

-0.081076a 

(0.027850) 

  0.976429a 

(0.008434) 

0.976574a 

(0.010879) 

0.980477a 

(0.009883) 

0.986982a 

(0.008950) 

0.854087a 

(0.054269) 

0.971787a 

(0.009974) 

  0.043081 

(0.028731) 

-0.003261 

(0.028650) 

0.002387 

(0.021854) 

-0.003855 

(0.018948) 

-0.051733 

(0.054584) 

0.003219 

(0.026896) 

  0.132326a 

(0.036731) 

0.156935a 

(0.046162) 

0.133245a 

(0.031605) 

0.103187a 

(0.034227) 

0.360663a 

(0.082024) 

0.166648a 

(0.044247) 

ARCH LM (1) 0.131432 0.618113 0.597915 0.096236 1.228127 3.61E-06 

Q (10) 6.0892 7.8296 10.629 10.924 12.392 7.7276 

Q2 (10) 2.0562 3.1503 8.0084 10.039 6.1296 5.2989 

JB 670.4308a 837.7862a 151.6183a 231.5599a 996.8076a 215.1491a 

Notes to Table: Coefficient estimates and their standard errors are given in 

parentheses. The ARCH LM test is commonly used to test for the existence of 

ARCH. The null hypothesis is that there is no ARCH up to 1 order in the residuals. 

The Q (10) and Q
2
 (10) statistics are a test statistic for the null hypothesis that there 

is no autocorrelation up to order 10.  Jarque-Bera(JB) is used for testing whether the 

series is normally distributed. a, b, c
 Significant at 1%, 5%, and 10% levels, 

respectively. 

 

The TGARCH results are summarized in Table (2.4). Exactly the same selection 

process is applied to the best ARMA specification selection for the ARMA (p,q) – 

EGARCH (1,1) part of the study. ARMA (0,1)-TGARCH (1,1) specification is 

selected for aluminum, copper, lead, nickel, and zinc. On the other hand, ARMA 

(1,1)-TGARCH (1,1) specification is selected for tin prices. The coefficient of the 

threshold dummy is significant only for the aluminum equation. Note that all other 
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coefficients are statistically meaningful. The TGARCH model also does not suffer 

from the autocorrelation problem, but non-normality is evident according to the 

Jarque-Bera test statistics. 

 

Table 2.3 - GARCH Results
 

  
            

        
                                                                                    (2.3) 

Equation for 

variance 

specification 

GARCH 

(2.3) 

LPALUM LPCOPP LPLEAD LPNICK LPTIN LPZINC 

  0.067692a 

(0.024939) 

0.127234c 

(0.070972) 

0.106122c 

(0.056818) 

0.110540 

(0.074460) 

0.363186b 

(0.143999) 

0.095307a 

(0.036169) 

  0.904395a 

(0.022494) 

0.892974a 

(0.035641) 

0.908119a 

(0.022842) 

0.933768a 

(0.022429) 

0.758120a 

(0.061834) 

0.910125a 

(0.021346) 

   0.067203a 

(0.027845) 

0.078360a 

(0.026566) 

0.076236a 

(0.017695) 

0.052189a 

(0.017181) 

0.157721a 

(0.042958) 

0.074418a 

(0.019853) 

ARCH LM 

(1) 

0.002985 1.000002 0.227270 0.147502 1.142385 0.023253 

Q (10) 5.2046 8.1292 9.7672 10.942 6.0128 7.1983 

Q2 (10) 2.2317 3.8028 5.8067 8.8265 6.8074 4.6377 

JB 933.4370a 776.3191a 104.9789a 239.6559a 1106.801a 264.2795a 

Notes to Table: Coefficient estimates and their standard errors are given in 

parentheses. The ARCH LM test is commonly used to test for the existence of 

ARCH. The null hypothesis is that there is no ARCH up to 1 order in the residuals. 

The Q (10) and Q
2
 (10) statistics are a test statistic for the null hypothesis that there 

is no autocorrelation up to order 10.  Jarque-Bera(JB) is used for testing whether the 

series is normally distributed. a, b, c
 Significant at 1%, 5%, and 10% levels, 

respectively. 

 

After the best specification selection for all three models across six metal prices, we 

continue with the evaluation of the forecasting results of the selected models. Based 

on the RMSE and MAE performance measures in Tables (2.5), (2.6) and (2.7), 

GARCH (1,1) models are slightly superior to EGARCH (1,1) and TGARCH (1,1) 

models for lead, nickel, and zinc prices. On the contrary, TGARCH (1,1) models are 

slightly superior to GARCH (1,1) and EGARCH (1,1) models for the prices of 

copper. Moreover, EGARCH (1,1) model gives the best results among all of three 

models for the prices of tin. However, one should also remember that the asymmetric 

effect coefficients in these models are both insignificant. 
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Table 2.4 - TGARCH Results 

  
           

        
        

     
                                                                (2.4) 

Equation for 

variance 

specification 

TGARCH 

(2.4) 

LPALUM LPCOPP LPLEAD LPNICK LPTIN LPZINC 

  0.038165a 

(0.013858) 

0.120301c 

(0.067481) 

0.088879c 

(0.053258) 

0.107428 

(0.073826) 

0.432439a 

(0.162062) 

0.076209b 

(0.030341) 

  0.919714a 

(0.017411) 

0.898546a 

(0.035499) 

0.915094a 

(0.021898) 

0.934275a 

(0.022255) 

0.728974a 

(0.069925) 

0.919886a 

(0.020317) 

  -0.066756c 

(0.038974) 

0.001037 

(0.039386) 

-0.013496 

(0.027498) 

-0.004446 

(0.028711) 

0.085020 

(0.087689) 

-0.022893 

(0.033575) 

  0.103946a 

(0.031908) 

0.073639c 

(0.038227) 

0.079685a 

(0.026962) 

0.054474b 

(0.027055) 

0.124323c 

(0.067000) 

0.081126b 

(0.033583) 

ARCH LM 

(1) 

0.000822 0.903491 0.336187 0.149492 0.787501 0.000829 

Q (10) 5.6734 8.2721 9.7590 11.031 6.0691 7.5620 

Q2 (10) 1.7591 3.6499 5.8695 8.6216 6.4211 4.0504 

JB 642.1407a 791.0539a 108.2352a 234.6295a 1014.128a 276.9781a 

Notes to Table: Coefficient estimates and their standard errors are given in 

parentheses. The ARCH LM test is commonly used to test for the existence of 

ARCH. The null hypothesis is that there is no ARCH up to 1 order in the residuals. 

The Q (10) and Q
2
 (10) statistics are a test statistic for the null hypothesis that there 

is no autocorrelation up to order 10.  Jarque-Bera(JB) is used for testing whether the 

series is normally distributed. a, b, c
 Significant at 1%, 5%, and 10% levels, 

respectively. 

 

Also the interpretation of MAPE results confirms the RMSE and MAE results (see 

Tables (2.5), (2.6) and (2.7),) that GARCH (1,1) model results in a slightly better fit 

than EGARCH (1,1) models for aluminum, lead, nickel, and zinc data. TGARCH 

(1,1) model gives better results than EGARCH (1,1) and GARCH (1,1) models for 

copper prices and EGARCH (1,1)  gives a slightly better fit than GARCH (1,1) and 

TGARCH (1,1) for tin prices when we look at the RMSE, MAE and MAPE results. 

However, Theil inequality coefficient gives slightly conflicting results with other 

three forecasting error statistics for all six data sets. Namely, according to Theil 

inequality coefficient estimates TGARCH (1,1) model result in a better fit than 

EGARCH (1,1) and GARCH (1,1) models for aluminum, lead, nickel, and zinc data 

sets and GARCH (1,1) model result in a better fit than EGARCH (1,1) and 

TGARCH (1,1) models for copper and tin data sets (see Tables (2.5), (2.6) and 
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(2.7)). Regardless of the model used, best forecast results are observed for tin among 

the six metals studied.  

 

Table 2.5 - EGARCH Forecast Statistics 

     
               

     
    

     
 

    
      

     
 

   
 

 
                           (2.1) 

Equation for 

variance 

specification 

EGARCH 

(2.1) 

LPALUM LPCOPP LPLEAD LPNICK LPTIN LPZINC 

RMSE 1.457008 2.068801 2.400428 2.639875 1.974897 2.251417 

MAE 1.060954 1.436628 1.752658 1.914785 1.346196 1.633354 

MAPE 0.954044 1.008427 0.93979 0.949081 0.904089 0.958337 

TIC 0.029662 0.040594 0.050179 0.00598 0.026662 0.047784 

 

Table 2.6 - GARCH Forecast Statistics 

  
            

        
                                                                           (2.3) 

Equation for 

variance 

specification 

GARCH 

(2.3) 

LPALUM LPCOPP LPLEAD LPNICK LPTIN LPZINC 

RMSE 1.456375 2.068339 2.400340 2.639791 1.991592 2.249464 

MAE 1.059823 1.436630 1.752576 1.913982 1.365957 1.631546 

MAPE 0.947852 1.005874 0.938925 0.945501 0.947722 0.94753 

TIC 0.005611 0.039218 0.048909 0.000668 0.09114 0.034492 

 

Table 2.7 - TGARCH Forecast Statistics 

  
           

        
        

     
                                                              (2.4) 

Equation for 

variance 

specification 

TGARCH 

(2.4) 

LPALUM LPCOPP LPLEAD LPNICK LPTIN LPZINC 

RMSE 1.456373 2.068321 2.400465 2.639804 1.992378 2.249785 

MAE 1.060286 1.436610 1.752690 1.914169 1.366440 1.631868 

MAPE 0.951904 1.004915 0.940132 0.946334 0.946178 0.950101 

TIC 0.023491 0.038708 0.05068 0.001911 0.089828 0.038328 
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2.5. Summary and Conclusions 

 

In this study the six non-ferrous metals’ prices are modeled using nonlinear 

autoregressive conditional heteroscedasticity models. We discover that the six prices 

are governed by the conditional heteroscedasticity effects. Therefore, appropriate 

models for these prices can be found within the GARCH family. We utilize the 

GARCH, TGARCH and EGARCH models for all six prices in this research. Then 

we compare the forecasting accuracy of the three models according to several 

statistical criteria. We find that in general all three models show similar performance 

in forecasting the prices of the six metals. However, the GARCH model performs 

slightly better than the EGARCH and TGARCH models according to several criteria 

for lead, nickel, and zinc metals. The MAE and MAPE choose the GARCH model, 

whereas the RMSE and TIC choose the TGARCH model for aluminum prices. For 

tin prices, the EGARCH model outperforms the GARCH and TGARCH models 

according to several criteria. As for the copper prices, TGARCH seems to be the 

most appropriate model. Since the GARCH model is more parsimonious and the 

asymmetric effect coefficients in TGARCH and EGARCH models are insignificant, 

we recommend the utilization of the GARCH model for forecasting the prices of all 

six metal prices. The similar performances of the three models with respect to 

statistical criteria do not necessarily imply that one of them will outperform the 

others in practice. Therefore, further research would be beneficial in understanding 

whether investors may profitably benefit from improved forecast accuracy depending 

on several trading strategies. 
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CHAPTER III 

VOLATILITY SPILLOVER FROM WORLD OIL MARKET TO NON-

FERROUS METAL MARKETS 

 

3.1. Introduction 

 

Changes in the oil price affect most sectors of most economies at various degrees. 

Recent research has shown that commodity prices of all kinds rise and fall in unison. 

Crude oil prices affect the prices of other commodities in a number of ways. Such 

co-movements are typically attributed to common macroeconomic shocks on world 

commodity markets, and complementarity or substitutability in the production or 

consumption of related commodities. For instance, some metals such as aluminum 

have to go through an energy-intensive primary processing stage.  Pindyck and 

Rotemberg (1990) find that the prices of a group of unrelated commodities had a 

tendency to move together, even after accounting for the effects of common 

macroeconomic variables. This co-movement and its explanations may be more 

relevant to strategic commodities such as oil, gold, silver and copper which have 

varying but important degrees of industrial usages and influences. This part focuses 

on the pass-through of crude oil price changes to the prices of six internationally 

traded non-ferrous metals. 

 

Policy makers are mostly concerned about the short run and the long run impacts of 

the recent rise and subsequent fall in world oil prices on the macroeconomy. On the 

other hand, main issues of the traders are that whether these impacts are permanent 

or temporary and how the non-ferrous metal returns will respond to oil shocks. Oil 

price changes are generally found to have significant effects both on the economy 

and financial markets. Several studies have examined the relationship between oil 

prices and commodity prices, but a small number of studies focus on the impact of 

oil shocks on non-ferrous markets, where academicians and practitioners alike have 
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been trying to understand the dynamic links between world oil prices and non-

ferrous metal returns. 

 

The constant variance assumption is violated in financial time series, which means 

periods of high volatility followed by periods of low volatility. The multivariate 

GARCH models are the most appropriate method to deal with this violation. 

McMillan and Speight (2001) state that the non-linear models have been the most 

commonly used tools in modeling and forecasting volatility of returns in the short 

run, but they may fail to capture the long run dynamics.  This study is related to the 

literature on the impact of oil price changes on commodity prices; however, it is 

differentiated from the rest of the literature by examining the impact of fluctuations 

of oil prices on non-ferrous metal returns as well as volatility spillovers. The stocks 

of companies operating in metal markets are more sensitive to world oil price 

changes.  

 

In finance, there exists a wide area for the application of MGARCH models. An 

illustrative list of some typical applications can be given by introducing the model of 

the changing variance structure in an exchange rate regime (Bollerslev, 1990), the 

optimal debt portfolio calculation in multiple currencies (Kroner and Claessens, 

1991), the multiperiod hedge ratios evaluation of currency futures (Lien and Luo, 

1994), the international transmission examination of stock returns and volatility 

(Karolyi, 1995) and the optimal hedge ratio estimation for stock index futures (Park 

and Switzer, 1995). However, we employ a multivariate GARCH model to 

simultaneously estimate the appropriate residuals using daily returns from December 

12, 2003 to December 15, 2008. Examination of temporal relationships through the 

creation of large models with many lags is allowed when the powerful time series 

techniques are introduced. In the literature the Granger causality tests are referred to 

interpret the results as well as impulse response and variance decomposition 

analyses, because of the problems in the interpretation of lagged variable 

coefficients. An example for the interpretation of results can be given as; if lags of a 

variable X improve the interpretation of another variable Y, then we can said that X 
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Granger causes Y. In the relevant literature of the oil price-commodity prices, 

everybody believes that fluctuations in oil price changes affect the prices of other 

commodities, but not vice versa, especially in minor commodity markets in relation 

to the vital commodity markets. This theoretical belief does not always match with 

the experimental results. Several reasons may exist ranging from the methodology 

related problems to the commodity market characteristics. Reason for the absence of 

a causal link between oil price and commodity prices is that there may be a dynamic 

link between the variables themselves as well as the variances of the variables. 

Hence, one should focus not only on mean, but also variance spillovers in order to 

fully examine the dynamic links between oil and metal returns. 

 

The chapter is organized as follows. In the next section a brief review of literature 

that is related to the study is given. Section 3 discusses the data used in the study and 

the methodology applied in the study. Section 4 presents empirical results while 

section 5 concludes the chapter. 

 

3.2. Literature Review 

 

Here we first summarize GARCH models mainly used in modeling stock market 

prices and volatilities as well as currency markets. Then we review studies that focus 

on commodity prices, especially oil and metal prices. Please note that a bulk of the 

literature has been reviewed in the first part of the thesis, therefore we do not delve 

too deep into the literature in this part to avoid overlaps. 

 

The survey paper of Bera and Higgins (1993) provide an account of some of the 

important developments in the autoregressive conditional heteroscedasticity (ARCH) 

model since it is introduced by Engle (1982) in his seminal paper. More and more 

features of the real world are accommodated by generalized ARCH models. A 

comprehensive treatment of many of the extensions of the original ARCH model is 

provided in this paper. Moreover, estimation and testing for ARCH models are 

discussed and note that these models lead to some interesting and unique problems. 
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Structural change, different kinds of nonlinearities, cointegration and finite sample 

properties of estimators and test statistics are the problems that being investigated. In 

this survey paper, they provide a brief account of these problems. The ARCH models 

offer a more adaptive framework for nonlinear dynamic characteristics problem of 

the financial time series than the classical ARMA models because of its limitations. 

Gourieroux (1997) survey the recent work in this area from the perspective of 

statistical theory, financial models, and applications and will be of interest to 

theorists and practitioners.  

 

Bollerslev, Chou and Kroner (1992) survey several research papers on the 

methodology and applications of GARCH and MGARCH models that they consider 

to be the most important and promising in the formulation of ARCH-type models. 

This overview of the extensive ARCH literature serves as a catalyst in fostering 

further research in this important area. The basic framework for a multivariate 

generalized autoregressive conditional heteroscedasticity model is provided by 

Bollerslev, Engle and Wooldridge (1988). The univariate case of the GARCH 

representation is extended in to the vectorized conditional-variance matrix. They 

estimate a MGARCH process for returns to bills, bonds, and stocks where the 

expected return is proportional to the conditional covariance of each return with that 

of a fully diversified or market portfolio. The main result of their paper is that the 

conditional covariances are quite variable over time. Moreover, the implied betas are 

also time-varying and forecastable. Engle and Kroner (1995) extend Engle's (1982) 

ARCH model and Bollerslev's (1986) GARCH model to a multivariate setting by 

presenting theoretical results on the formulation and estimation of multivariate 

generalized ARCH models within simultaneous equations systems. For the sake of 

parameterization of the multivariate process, a new formulation is proposed (BEKK) 

and compared with the existing parameterization of the multivariate ARCH process, 

the (VECH). Bauwens, Laurent and Rombouts (2006) review the multivariate 

GARCH models which are increasingly used in applied financial econometrics. 

According to them, providing a realistic but parsimonious specification of the 

variance matrix ensuring its positivity is the crucial point in MGARCH modeling. 
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There is a trade-off between flexibility and parsimony. A lot of parameters are 

needed for flexible BEKK. On the other hand, restrictive diagonal VEC and BEKK 

models are much more parsimonious. 

 

Another step forward in methodological development is allowing the conditional 

correlations to vary through time. The theoretical and empirical properties of 

Dynamic Conditional Correlation (DCC) Multivariate GARCH are developed by 

Engle and Sheppard (2001). S&P 500 Sector Indices and Dow Jones Industrial 

Average stocks are used to estimate the conditional covariance of up to 100 assets 

using and to conduct specification tests of the estimator using an industry standard 

benchmark for volatility models. However, we limit ourselves to MGARCH models 

and assume constant conditional correlations, so that our results are comparable to 

studies that employ the same methodology in different commodity markets. 

 

In their article, King and Wadhwani (1990) investigate the outcome of rational 

attempts to use imperfect information about the events in order to examine a rational 

expectations price equilibrium and model contagion between markets. A contagion 

model is constructed to explain why all stock markets fell together despite widely 

differing economic circumstances. Market prices reveal all relevant information to 

agents in models of rational expectations equilibrium with asymmetric information, 

provided that there is a relatively simple information structure. They show that 

covariances are related to volatility with high-frequency data. An implication of this 

result is that an increase in volatility could be self-reinforcing and persist for longer 

than would otherwise be the case. As volatility declines, market links become 

weaker, and price changes are less closely tied together.  

 

Bollerslev (1990) propose a simple multivariate conditional heteroscedastic time 

series model. The model has constant conditional correlations, but time varying 

conditional variances and covariances. The estimation and inference procedures are 

greatly simplified with the help of this structure. The parameterization proposed here 

with constant conditional correlations but time varying conditional covariances 
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represents a major increase in terms of computational simplicity when compared to 

Bollerslev, Engle and Wooldridge (1988)’s the linear diagonal GARCH model, 

Diebold and Nerlove (1989)’s the latent factor ARCH model, or Engle, Ng, and 

Rothschild (1990)’s the factor GARCH model. Finally, the various ARCH and 

GARCH parameterizations suggested in the literature represent nothing but a 

convenient statistical tool for summarizing the time series dependence observed in 

the data. 

 

A multivariate Generalized Autoregressive Conditional Heteroscedasticity (GARCH) 

model is used to estimate a sequence of optimal dynamic hedging portfolios, since 

the model of Kroner and Claessens (1991) permits the second moments to change 

through time. Actual model shows that the currency composition of a country's 

external debt can serve as a hedging instrument against changes in exchange rates 

and commodity prices. They apply it to Indonesia to illustrate the usefulness of the 

technique. As expected, this application shows that Indonesia's optimal debt portfolio 

consists of a much larger proportion of US dollars and a much smaller proportion of 

Japanese yen than they have in their current debt portfolio. 

 

In their article, Engle and Susmel (1993) investigate whether two international stock 

markets share the same volatility process by using the advantage of the time-varying 

structure of stock-returns variances. A recent test which is developed by Engle and 

Kozicki is used to assess the validity of a one-factor autoregressive conditional 

heteroscedasticity model. Main result of this paper is that some international stock 

markets have the same time-varying volatility. 

 

Lien and Luo (1994) use a basic bivariate GARCH model for multiperiod hedge ratio 

estimates. The optimal multiperiod hedge ratio is derived prior to the introduction of 

conditional heteroscedasticity into the joint price process. An error correction model 

describes the mean process while the GARCH specification is applied to model the 

conditional heteroscedasticity. This model is applied, in order to empirically 

determine the hedge ratios major foreign exchange markets. For each case, GARCH 
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hedge ratios perform a little better than three alternative hedge strategies (no hedge, 

constant hedge and error correction hedge).   

 

Karolyi (1995) use a bivariate generalized autoregressive conditional heteroscedastic 

(GARCH) model to examine the dynamic relationship between daily stock-market 

returns and return volatilities of the U.S. and Canadian. Two tests are conducted with 

this model. First test is how rapidly stock-return innovations originating in the U.S. 

and Canadian markets transmit to the other market and second one is how rapidly the 

volatility of these innovations transmits to the other market by simulating the 

impulse responses of the estimated bivariate GARCH model. The relationships 

between stock-price movements in the U.S. and Canadian markets are confirmed by 

the test results which show that the bivariate GARCH model is a reasonable 

representation. More precisely, tests using multivariate GARCH models indicate that 

the effects of shocks are smaller and less persistent than those measured with 

traditional vector autoregressive (VAR) models. 

 

Huang, Masulis and Stoll (1996) use a multivariate vector autoregressive (VAR) 

approach to examine the contemporaneous and lead-lag correlations between daily 

returns of oil futures contracts and stock returns which answer the general question 

of the information transmission mechanism linking oil futures with stock prices. One 

of the many possible scenarios is that the relevant information affecting each of these 

markets is informationally segmented from the other, oil futures prices and stock 

prices will be unrelated. Dynamic interactions among price changes of different 

financial instruments are easily examined by the highly flexible framework of the 

VAR representation. The conclusions from the VAR approach are oil futures returns 

are not correlated with stock market returns. In fact, the lack of correlation suggests 

that oil futures, like other futures contracts that also appear to have little correlation 

with stocks, are a good vehicle for diversifying stock portfolios (Huang, Masulis and 

Stoll, 1996). 
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A simple model of speculative trading is developed by Fleming, Kirby and Ostdiek 

(1998) to examine the nature of volatility linkages in an economy which is based on 

the relation between volatility and information flow in multiple securities markets. In 

speculative trading, traders’ current expectations and risk tolerances influence the 

trader’s positions in one or more futures contracts. Market linkages are generated in 

two ways by information under the model. First one is that the information is 

common across markets and second one is that there is an information spillover 

between markets). According to Fleming Kirby and Ostdiek (1998), ―The model 

predicts strong volatility linkages in markets where the hedging benefits are large 

and the hedging costs are small. We use a stochastic volatility representation of the 

model to estimate the volatility linkages for three futures markets where we expect 

both common information and information spillover to be important: the stock, bond, 

and money markets.‖  

 

Pan and Hsueh (1998) employ a two-step GARCH approach to examine the nature of 

transmission of stock returns and volatility between the U.S. and Japanese stock 

markets by using stock index futures prices on the S&P 500 and Nikkei 225 stock 

indexes in order to obtain more robust results. Results show that there are 

unidirectional contemporaneous return and volatility spillovers from the U.S. to 

Japan. Another interpretation of the results is that there are no significant lagged 

spillover effects in both returns and volatility from the Osaka market to the Chicago 

market, while a significant lagged volatility spillover is observed from the U.S. to 

Japan. Hafner and Herwartz (1998) use a multivariate GARCH framework to give 

empirical evidence of time-varying market price of risk for the German stock market.  

De Santis and Gerard (1998) use a parsimonious multivariate GARCH process to test 

the conditional version of an International Capital Asset Pricing Model (ICAPM). 

They find strong support for a specification of the ICAPM that includes both market 

risk and foreign exchange risk, assuming that the prices are allowed to change over 

time. Results show that if both the market and currency risk components are 

incorporated into the model, there will be no need to use the additional information 

variables to explain the cross-section and the dynamics of expected returns.  
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Sadorsky (1999) investigates the impact that oil price shocks may have on stock 

market returns by using monthly data. Results from a VAR suggest that changes in 

economic activity have little impact on oil prices but changes in oil prices impact 

economic activity and the results of impulse response functions suggest that positive 

shocks to oil prices depress real stock returns while shocks to real stock returns have 

positive impacts on interest rates and industrial production. 

 

Kearney and Patton (2000) contribute to the MGARCH modeling and exchange rate 

volatility transmission literature by presenting a series of 3-, 4- and 5-variable 

multivariate GARCH models to examine how exchange rate volatility is transmitted 

with the EMS exchange rate system. They argue that alternative specifications 

should be examined to clarify the robustness of results. 

 

Kim (2000) uses a multivariate GARCH-M model to analyze the relation of 

exchange rate volatility and output volatility. Source decomposition of observed 

volatility of output into domestic factors, foreign factors and exchange rate 

movements and also extraction of the expected volatility from the total volatility is 

easily accomplished by the multivariate GARCH-M modeling. According to the 

results, Japanese economy is insulated itself from foreign shocks with the help of the 

floating exchange rate regime. 

 

Tse and Tsui (2000) adopt the VECH representation to propose a new MGARCH 

model with time-varying correlations. However, the conditional variances and 

conditional correlations are the variables of interest. Their new model satisfies the 

positive-definite condition as found in the constant-correlation and BEKK models 

while retaining the intuition and interpretation of the univariate GARCH model. 

 

In addition to stock market and currency market applications, the GARCH models 

are also frequently used in the recent literature on commodity prices, especially the 

oil prices. The interest ranges from the link between different energy prices to oil 

spills to other commodity and financial markets.  
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There are several recent studies that analyze the dynamics of metal prices along with 

oil. For example, Sari et al. (2010), Soytas et al. (2009), and Hammoudeh et al. 

(2009) focus on the link between precious metals with various other variables, like 

oil price and the exchange rate. These studies put forth the importance of 

investigating the dynamics of metal prices. Since they do not focus on volatility 

transmissions we do not discuss them in too much detail here. 

 

Ewing, Malik and Ozfidan (2002) use daily returns data to examine the transmission 

of volatility between the oil and natural gas sectors changes over time and across 

markets. . The univariate and bivariate time-series properties of oil and natural gas 

index returns are empirically examined by robust methodology in which the changes 

in volatility in one market may spill over to the other market is allowed and non-

linearity in the variance of each series can easily be examined. Results of the study 

show that returns exhibit time-varying volatility which implies volatility in natural 

gas returns is more persistent than volatility in oil returns. 

 

Hammoudeh, Dibooglu and Aleisa (2004) employ unit root tests, cointegration tests, 

error-correction models with day effects, and univariate and multivariate 

ARCH/GARCH models with day and oil spillover effects to examine the intra- and 

interlinks for two U.S. markets of oil prices and S&P oil sector stock indices. In this 

study, the multivariate GARCH model helps to capture simultaneous volatility 

interactions. Moreover, MGARCH model shows that the transmission of volatility 

between prices, something that was not revealed by the univariate GARCH model. 

 

Bhar and Hamori (2005) use a recent econometric methodology to analyze causal 

relationship between crude oil futures return and the trading volume using daily data 

over a ten-year period. The two-step procedure developed by Cheung and Ng (1996) 

is used and they find only causality at higher order lags running from return to 

volume in the mean as well as in conditional variance. There exist several conflicts 

with earlier studies in this area. We utilize the same methodology in this study. 
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Eckner (2006) introduces a model for asset returns that incorporates joint 

heteroscedasticity as well as time varying correlations which is suitable for capturing 

the dynamics of multivariate return time series. The empirical results give an 

explanation why the volatility smile in index options tends to be more pronounced 

than in individual stocks options. 

 

Malik and Hammoudeh (2007) estimate the mean and conditional variance of daily 

returns in the oil, US and Gulf equity markets at the same time by using the BEKK 

specification of the multivariate GARCH model. The main reason behind using the 

BEKK is that it does not impose the restriction of constant correlation among 

variables over time. They examine the volatility and shock transmission among US 

equity market, global crude oil market, and equity markets of major oil rich Gulf 

countries since shocks can spillover from one country to another. The results show 

significant volatility transmission among US equity market, global crude oil market, 

and equity markets of major oil rich Gulf countries. Additionally, these results are 

important for building accurate asset pricing models and forecasting future volatility 

in equity and oil markets. 

 

Inagaki (2007) employ the residual cross-correlation approach to investigate 

volatility spillover between the British pound and the euro. They believe that the 

causality in variance approach is useful for analyzing exchange rates that often 

exhibit conditional heteroscedasticity. Since it does not involve simultaneous 

modeling which makes it is easier to implement than the multivariate method. Their 

findings suggest that the euro volatility has a one-sided impact on the British pound 

volatility and they conclude that the euro is the most influential European currency. 

 

In the review paper of Silvennoinen and Terasvirta (2008) a number of multivariate 

GARCH models and its specifications are surveyed.  Using the original VEC model 

is obviously very tedious because of too many parameters, so finding parsimonious 

alternatives is the main focus of this research. Two alternatives are generated.  First, 

some restrictions are imposed on the parameters of the VEC model to create new 
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models, such as the BEKK model and the factor models. Second, modeling 

conditional covariance through conditional variances and correlations is another idea. 

Several new models are generated, and conditional correlation model family seems 

to become quite popular.  

 

In order to extract information for risk prediction Chow and Fung (2008) use a 

MGARCH structure to offer a quantitative approach to analyzing possible 

associations of stock price changes and variations in innovative activities. Results 

show that the model can pick up the correlation between the two variables and aid in 

producing accurate Value-at-Risk estimates. The statistical evidence is confirmed by 

the model comparison exercises which suggest that the assumption of MGARCH 

(1,1) is sufficient for this type of study. 

 

3.3. Data & Methodology 

3.3.1. Data 

 

We use daily data on the mean three-month futures prices of six commonly traded 

non-ferrous metals (aluminum, copper, lead, nickel, tin, and zinc), and spot oil price 

for the period December 12, 2003 – December 15, 2008
1
. All three-month futures 

prices are sourced from London Metal Exchange (LME) and these prices are given in 

US dollars per ton. The ―Dated Brent‖ Spot Price reflects the average price of 

―Brent-Forties-Oseberg-Ekofisk‖ (BFOE) cargoes loading 10-21 days forward and 

given in US dollars per barrel. The total observations for each data set are 1305. The 

natural logarithms of all data are arranged in 5 day weeks and all holidays are 

removed.  

 

In non-ferrous metal markets, futures price is combination of spot price, interest and 

storage costs. In some sense, the futures price is above spot because by buying 

                                                           
1
 We have chosen the start date so as to move as far away from the effects of 9/11, this allowed us 

to retain more than 1300 observations. 
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forward the purchaser avoids the finance and storage cost. However, we use the spot 

oil prices instead of futures, since oil prices are very volatile. But much of this 

volatility seems to be reflected in short-term, transitory factors that may have little or 

no influence on the price in the long run. Moreover, consistent with the practice in 

the finance literature, there really is no "true" spot market for oil, in the sense of that 

there is a "true" spot market for stock or other financial assets. A "true" spot market 

requires the actual physical transfer of the goods, to the purchaser, directly at the 

time of purchase. When we refer to "futures" price for crude oil, it includes spot 

price, interest, storage costs and scarcity/prompt/convenience premium. In that case 

using spot oil price instead of futures is more convenient for our study. 

 

3.3.2. Methodology 

 

The first step in the procedure is assuring the stationarity of each price series by 

using the unit root tests. The unit root test procedures are already summarized in 

Chapter 2 of this thesis (see page 14). Then, the multivariate GARCH process is 

modeled to analyze the price spillovers from oil market to non-ferrous metal markets. 

In order to start modeling, the specification of the mean equation should be 

identified. The following mean equation is selected and estimated for each price 

series: 

                                                                                                            (3.1) 

 

where,    is a       vector of daily prices between     and  , the       vector of 

random errors    is the error term for the price on index   at time  . The       vector 

 , represents long-term drift coefficient. A variant of the multivariate GARCH model 

is used because the possibility of volatility transmission among two markets is 

analyzed in addition to volatility persistence analysis within each market. 

 

In the literature, several MGARCH parameterizations are presented, such as vector 

ARCH model (VEC, initially due to Bollerslev, Engle and Wooldridge, 1988), 

diagonal VEC model (DVEC), the BEKK model (named after Baba, Engle, Kraft 
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and Kroner), Constant Conditional Correlation Model (CCC, Bollerslev, 1990), 

Dynamic Conditional Correlation Model (DCC models of Tse and Tsui (2002) and 

Engle (2002)). In this study, the BEKK model is employed because the estimated 

covariance matrix of equations will be positive semi-definite since it depends on the 

squares and cross products of error term and volatility for each market. Namely, this 

model ensures the non-negative estimated variances, and, at the same time does not 

require estimation of a large number of parameters.  

 

The BEKK parameterization for the multivariate GARCH (1,1) model can be given 

as:       

              
                                                                                       (3.2) 

 

where,    is the       matrix of conditional variance,   is a symmetric       matrix 

with constant parameters      ,   is a diagonal       matrix of parameters        

which measures the extent of deviations from the mean (i.e.,  the ARCH term), and   

is also a       diagonal matrix of parameters       which indicates  the persistence in 

conditional volatility between market   and market   (i.e., the GARCH term). In other 

words, the effects of shocks or volatility can be captured by  . 

 

In our bivariate case, the conditional variance for each equation can be written as: 

               
   

     
                                                                                  (3.3) 

 

               
   

     
                                                                                 (3.4) 

 

and the conditional covariance can be written as: 

                    
                                                                              (3.5) 
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The above equations show the transmission pattern of shocks and volatility between 

markets and over time. In this study, six models with two variables are estimated to 

predict current period’s variance by forming a weighted average of a long term 

average (the constant), volatility condition in the previous period (the ARCH term), 

and the last period’s forecasted variance (the GARCH term). 

 

Next the Granger causality-in-variance approach based on squares of the 

standardized residuals is considered which is developed by Cheung and Ng (1996). 

The standardized residuals,     
       

   
 , used in the sample residual cross-

correlation function are obtained from MGARCH models, where    represent the 

stationary series and     is the conditional variance. The squares of the two 

standardized residuals,      
 , are obtained for the Granger causality-in-variance and 

used to derive the sample residual cross-correlation functions between them. The 

sample residual cross-correlation functions between two squared standardized 

residuals can be written as; 

     
          

         
        

    
    

                                                     (3.6) 

 

where      
    is the sample cross covariance function which can be given as 

     
      

             
 
          

            
 
          

            
            

  
       (3.7) 

 

where T is the sample size. The cross-correlation,        
   , at different lags has 

asymptotic normal distribution in large samples and under no causality hypothesis 

and regularity conditions.  
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3.4. Empirical Results 

 

First we have to investigate the time series properties of the series. Descriptive 

statistics for the corresponding return series are presented in Table (3.1). Price return 

volatility is measured by the standard deviation, which is highest in nickel, followed 

by lead, zinc, copper, tin, oil and aluminum. In terms of skewness, all of the data 

series are skewed to the left. According to Malik and Hammoudeh (2007), investors 

in positively skewed markets would be willing to accept smaller returns than 

investors in negatively skewed markets when the market is up, provided that the 

losses are not too serious when the market is down. All series exhibit excessive 

kurtosis, a fairly common occurrence in high frequency financial time series data. 

The null hypothesis of normality of The Jarque–Bera statistics are rejected for all 

return series. 

 

Summary of the results of the unit root tests are given in Table (3.2). ADF, DF–GLS, 

and PP critical values are sourced from MacKinnon (1991). KPSS critical values are 

from Kwiatkowski, Phillips, Schmidt, and Shin (1992) and MZα critical values are 

from Ng and Perron (2001). Elliot, Rothenberg, and Stock (1996) gives the critical 

values of ERS. Although the results seems to maintain a conflict between the tests, in 

general all six non-ferrous metal  prices and oil price are stationary in levels which 

means that they are stationary in levels. 

 

Table 3.1 – Descriptive statistics for log returns 

 LPALUM LPCOPP LPLEAD LPNICK LPTIN LPZINC LPOIL 
Mean       -0.003607 0.028838 0.031660 -0.018965 0.051181 0.006114 0.031026 

Median    0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.118613 

Maximum   4.826176 11.35608 11.18281 15.63461 12.62937 8.773891 8.016617 

Minimum  -8.613185 -14.96521 -10.87128 -18.16888 -12.36140 -11.74037 -9.205643 

Std. Dev.    1.484822 2.132294 2.443550 2.688935 2.038836 2.270085 1.765930 

Skewness   -0.643612 -0.557645 -0.395643 -0.190390 -0.496107 -0.524839 -0.506974 

Kurtosis    5.712426 8.104604 5.146865 6.354868 8.951577 5.354081 5.430359 

Jarque-

Bera 

 489.7714a 1483.346a 284.4438a 619.4071a 1978.046a 360.9646a 376.7872a 

Notes to table:  a, b, c
 Significant at 1%, 5%, and 10% levels, respectively. 
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Stationarity of the series is tested so that it is understood that they do not contain unit 

roots as can be observed from Table (3.2). According to the test results with different 

specifications the series employed do not contain unit roots. 

 

Table 3.2 – Unit root test results 

LEVEL ADF DF–GLS PP KPSS ERS NP (MZα) 

In
te

rc
ep

t 

LPOIL -30.24967a 

(0) 

-30.04821a 

(0) 

-30.40994a 

(9) 

0.573191b 

(11) 

0.102239 

(0) 

-631.175a 

(9) 

LPALUM -37.93146a 

(0) 

-8.462779a 

(7) 

-37.93148a 

(1) 

0.730881b 

(1) 

0.117576 

(0) 

-60.7828a 

(7) 

LPCOPP -39.77678a 

(0) 

-3.008679a 

(11) 

-39.65863a 

(9) 

1.007609a 

(7) 

0.103740 

(0) 

-5.19327 

(11) 

LPLEAD -35.06245a 

(0) 

-2.019194b 

(18) 

-35.08604a 

(3) 

0.468279b 

(4) 

0.071697 

(0) 

-3.58724 

(18) 

LPNICK -36.83380a 

(0) 

-1.935740c 

(10) 

-36.83006a 

(8) 

 0.486622b 

(8) 

 0.190515 

(0) 

-4.40567 

(10) 

LPTIN -35.02973a 

(0) 

-4.850927a 

(9) 

-35.01093a 

(5) 
0.228858 

(4) 

 0.111333 

(0) 

-18.8587a 

(9) 

LPZINC -37.39598a 

(0) 

-8.783922a 

(7) 

-37.39501a 

(2) 

 0.965631 

(4) 

0.061405 

(0) 

-70.8203a 

(7) 

T
re

n
d

 &
 I

n
te

rc
ep

t 

LPOIL -30.39388a 

(0) 

-12.80274a 

(3) 

-30.43469a 

(7) 

0.177249b 

(10) 

0.261593 

(0) 

-240.527a 

(3) 

LPALUM -38.10719a 

(0) 

-7.882113a 

(7) 

-38.10845a 

(4) 

 0.211725b 

(6) 

0.233878 

(0) 

-52.1181a 

(7) 

LPCOPP -40.03118a 

(0) 

-5.152675a 

(11) 

-40.04963a 

(6) 

0.235424a 

(2) 

0.186908 

(0) 

-13.3098 

(11) 

LPLEAD -35.14776a 

(0) 

-20.96489a 

(1) 

-35.14776a 

(0) 

0.219265a 

(1) 

0.156521 

(0) 

-494.132a 

(1) 

LPNICK -36.90949a 

(0) 

-3.692934a 

(10) 

-36.90045a 

(7) 

0.202120 

(7) 

 0.227075 

(0) 

-15.1391c 

(10) 

LPTIN -35.05110a 

(0) 

-6.727110a 

(9) 

-35.03616a 

(6) 

 0.183636b 

(5) 

 0.201831 

(0) 

-36.8733a 

(9) 

LPZINC -37.59474a 

(0) 

-36.36479a 

(0) 

-37.60362a 

(6) 

0.214173b 

(8) 

 0.159675 

(0) 

-651.455a  

(0) 

Notes to table: Numbers in parentheses are the lag lengths. 
a, b, c

 Significant at 1%, 

5%, and 10% levels, respectively. All of the null hypotheses are unit root, except 

KPSS; however, in KPSS the null is stationarity. 

 

MGARCH models are commonly used to study the relationships between the 

volatilities of multiple markets (Karolyi, 1995) and help to explain the one market 

volatility is causing the other markets volatility. MGARCH models can also explain 

whether the price volatility is transmitted to another price directly (conditional 

variance) or indirectly (conditional covariances), or a shock within a market 

increases another markets volatility. Estimated results for each variance equation of 

the BEKK parameterization for the multivariate GARCH (1,1) model are given in 
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Table (3.3).  Table (3.3) reports the results from the model using the price returns of 

oil and one metal, subscripted by the numbers 1 and 2, respectively. 

 

Table 3.3 – Results of the bivariate GARCH models 

  Independent 

 Variable 
  
    

                  

O
IL

 

A
L

U
M

       0.355684  

(9.658486) 

- 0.962877  

(178.3832) 

- 

      - 0.076758  

(12.46019) 

- 0.881465  

(92.11086) 

O
IL

 

C
O

P
P

 

      0.029700 

(9.550352) 

- 0.982916 

(190.5847) 

- 

      - 0.070944 

(15.37148) 

- 0.899451 

(126.6809) 

O
IL

 

L
E

A
D

       0.031407 

(9.594076) 

- 0.963297 

(178.2159) 

- 

      - 0.071866 

(12.08336) 

- 0.912461 

(128.6587) 

O
IL

 

N
IC

K
 

      0.029364 

(9.103366) 

- 0.965190 

(174.3155) 

- 

      - 0.053134 

(13.24763) 

- 0.925517 

(156.4269) 

O
IL

  

T
IN

 

      0.027503 

(9.963412) 

- 0.969110 

(213.9894) 

- 

      - 0.161599 

(18.79795) 

- 0.743537 

(68.34661) 

O
IL

 

Z
IN

C
 

      0.028802 

(9.502903) 

- 0.966298 

(185.7786) 

- 

      - 0.072956 

(13.71279) 

- 0.908971 

(133.8483) 

Notes to table:       denotes the conditional variance for the oil return series, and 

    is the conditional variance for the metal return series. t-values given in 

parentheses. The multivariate GARCH model uses the BEKK parameterization. 

Results of estimated mean equation and constants of each variance equation are not 

reported for the sake of brevity. 

 

 

The presence of autoregressive conditional heteroscedasticity in oil and metal price 

couples is confirmed by the significance of the estimated parameters. Our results 

show significant volatility transmission between the global oil markets and each of 

the non-ferrous metal markets. Not surprisingly, in all of the models, metal prices are 

directly positively affected by volatility from the oil market. Namely, all six non-

ferrous metal markets receive volatility from the oil market implying that financial 

market participants of non-ferrous markets can potentially forecast the future 

changes in each metal market by following developments in global oil market. 
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Next, we examine the Granger causality-in-variance tests by using the method 

developed by Cheung and Ng (1996). Cross correlation function of the standardized 

residuals from the GARCH models of a pair of series under consideration form the 

basis of Cheung and Ng's (1996) measure of pair-wise causality tests. The 

correlations measured the linear relationships between the residuals of the bivariate 

GARCH-models and as these residuals mainly reflect market volatility they are 

suitable to quantify the systemic risk. 

 

Table 3.4 - Granger causality-in-variance test statistics 

 Oil and Aluminum Oil and Copper Oil and Lead 

i lag lead lag lead lag lead 

       

0 0.039707 0.039707 6.797082a 6.797082a 0.667796 0.667796 

1 3.519466a -0.5956 14.44245a 2.804744a 3.60249a 0.563115 

2 0.216583 0.064975 2.696453a 5.613098a -1.04682 -1.22369 

3 -0.02527 -0.94213 6.280894a 6.302552a 0.765258 0.884379 

4 -0.6317 -1.12984 9.55129a 6.277284a 0.238241 0.277948 

5 0.342922 0.397068 6.526354a 3.786585a 0.974621 -1.67851c 

 

 Oil and Nickel Oil and Tin Oil and Zinc 

i lag lead lag lead lag lead 

       

0 1.689344c 1.689344c 0.758039 0.758039 0.776087 0.776087 

1 3.945412a 0.960183 1.714612c -0.18049 3.162105a 0.7436 

2 -0.66058 1.285056 0.602821 0.231021 0.458433 -0.72555 

3 0.487311 0.779697 1.519688 -0.02166 0.848282 0.346532 

4 0.046926 0.440385 -1.28145 1.530517 -1.1912 -0.15161 

5 1.288666 -0.50175 1.750709c 1.072084 -0.4476 -0.40068 

Notes to table:  Oil Granger causes the first variable in variance if the test statistic is 

significant for some lags; vice versa if the test statistic is significant for some leads. 

Superscripts a, b, and c denote significance at 1, 5, and 10% respectively. 

 

Results of the Granger causality in variance tests are presented in Table (3.4). The 

volatility in world oil markets positively Granger cause the volatility in aluminum 

returns at lag 1. There is positive bidirectional Granger causality in variance from oil 



44 
 

returns to the copper returns and vice versa at all lags. Oil volatility positively 

Granger cause lead volatility at lag 2, with a positive feedback from lead volatility to 

oil volatility at lag 5. The volatility in oil market positively Granger cause the 

volatility in the nickel market at lags 0 and 1, while the volatility in nickel market 

positively Granger cause the volatility in oil market at lag 0. There is positive 

unidirectional Granger causality in variance from oil returns to the tin returns at lags 

1 and 5. Positive Granger causality exists from oil volatility to zinc volatility at lag 1. 

The volatility spillover results help to detect the causal relationship between world 

oil prices and non-ferrous metal prices. 

 

3.5. Summary and Conclusions 

 

In this study the six non-ferrous metals’ prices and oil price are used to examine the 

causal relationships between each non-ferrous metal and oil price by using bivariate 

nonlinear autoregressive conditional heteroscedasticity models. In the first part of 

this thesis, we discover that the prices of six non-ferrous metals are governed by the 

conditional heteroscedasticity effects and according to this study oil price reflects the 

same characteristics. Since the volatility in metal markets may be related to the 

volatility in oil market, the multivariate GARCH model is used to form valid 

residuals for the Granger causality in variance tests. The Granger causality in 

variance tests is carried out by using the method developed by Cheung and Ng 

(1996). Our results seem to be in line with the previous studies in that the crude oil 

market volatility leads all non-ferrous metal markets. The result that there is 

bidirectional causality in variance between oil and copper is not unusual, since this 

metal is found to be a good indicator of macroeconomic developments.  Because of 

this feature, it has been referred to as Dr. Copper in the literature. In our study, 

copper appears to be as important as oil. However, it would be interesting to check 

whether copper prices and volatilities lead other metals as a future study. 
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