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ABSTRACT

ACHIEVABLE CODING RATES FOR AWGN AND BLOCK FADING CHANNELS IN
THE FINITE BLOCKLENGTH REGIME

Vural, Mehmet

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Ali Özgür Yılmaz

September 2010, 65 pages

In practice, a communication system works with finite blocklength codes because of the de-

lay constraints and the information-theoretic bounds which are proposed for finite blocklength

systems can be exploited to determine the performance of a designed system. In this thesis,

achievable rates for given average error probabilities are considered for finite blocklength

systems. Although classical bounds can be used to upper bound the error probability, these

bounds require the optimization of auxiliary variables. In this work, a bound which is called

the dependence testing (DT) bound that is free of any auxiliary variables is exploited. The

DT bound is evaluated by introducing a normal approximation to the information density.

Simulations carried out both for the Gaussian and discrete input alphabets show the proposed

approximation enables very good prediction of the achievable rates. The proposed approxi-

mation is also used to calculate the average error probability for block fading channels. Sim-

ulations performed for Rayleigh block fading channels demonstrate that the total blocklength

of the system in addition to the number of fading blocks should be accounted for especially

when the number of fading blocks is large. A power allocation problem in block fading chan-

nels when the channel state information is available to the transmitting side is investigated in

the final part of this work. The DT bound is optimized for a given channel state vector by allo-
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cating different power levels to each fading block by exploiting short-term power allocation.

A simple power allocation algorithm is proposed which comes out with very similar results

compared with the analytically computed values.

Keywords: Finite blocklength, Block fading channels, DT bound, information density, power

allocation
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ÖZ

SONLU BLOK UZUNLUĞU DURUMUNDA AWGN VE BLOK SÖNÜMLEMELİ
KANALLAR İÇİN ERİŞİLEBİLİR KODLAMA HIZLARI

Vural, Mehmet

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ali Özgür Yılmaz

Eylül 2010, 65 sayfa

Gerçek hayattaki bir iletişim sistemi gecikme limitleri yüzünden sonlu uzunluktaki kodlarla

çalışmak durumundadır ve sonlu blok uzunluklu sistemler için önerilen bilgi teorisindeki

sınırlar, tasarlanan sistemin performansını belirlemede kullanılabilir. Bu tezde, sonlu blok

uzunluklu sistemlerde verilen bir ortalama hata olasılığı için erişilebilir kodlama hızlarına

odaklanılmıştır. Hata olasılığını üstten sınırlamak için klasik yöntemler kullanılabilirse de bu

yöntemler yardımcı değişkenlerin optimizasyonunu gerektirir. Bu çalışmada bu tür yardımcı

değişkenlere bağlı olmayan bağlılık testi (BT) sınırından faydalanılmaktadır. BT sınırı, bilgi

yoğunluğuna Gauss yaklaştırması kullanılarak hesaplanmaktadır. Gauss ve sonlu girdi alfa-

beleriyle yapılan benzetimler önerilen yaklaştırma ile erişilebilir kodlama hızının tahmininin

çok iyi olduğunu göstermiştir. Ayrıca önerilen yaklaştırma blok sönümlemeli kanalların or-

talama hata olasılığını hesaplamak için de kullanılmaktadır. Rayleigh blok sönümlemeli

kanallar için yapılan benzetimler sönümlenen blokların sayısına ek olarak sistemin toplam

blok uzunluğunun da özellikle sönümlenen blok sayısı uzadıkça dikkate alınması gerektiğini

göstermektedir. Bu çalışmanın son kısmında gönderen tarafta kanal durum bilgisi bulunduğun-

da güç tahsisi problemi ele alınmıştır. Kısa süreli güç tahsis yöntemi kullanılarak verilen bir

kanal durum vektörü için her sönümlenen bloğa farklı güç seviyeleri dağıtılarak BT sınırı
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optimize edilmektedir. Her bloğa dağıtılacak güç seviyesini bulan basit bir güç tahsis algo-

ritması önerilmiş ve bu algoritmanın verdiği sonuçların analitik olarak elde edilen değerlerle

uyuştuğu gözlenmiştir.

Anahtar Kelimeler: Sonlu blok uzunluğu, Blok sönümlemeli kanallar, BT sınırı, bilgi yoğunluğu,

güç paylaştırma
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CHAPTER 1

Introduction

In wireless communications there has been great interest to examine the performance of finite

blocklength systems after Shannon’s work on channel capacity in [1]. The channel capac-

ity that is defined and calculated in [1] is achieved only when the length of the codeword

is increased into infinity. When the codeword length is a finite number, some other perfor-

mance criteria arise in wireless communication problems. One of those criteria is to find a

lower bound on the size of the codebook for a given blocklength and error probability. This

type of bounds are defined as achievability bounds since the existence of at least one code is

guaranteed such that the given error probability is satisfied for the given length of codewords.

Achievability bounds tell us what the blocklength must be to approach the channel capacity

while a desired coding rate is satisfied. Equally, for a given blocklength, one can determine

how much the coding rate is away from the channel capacity. Since it is a lower bound,

an achievability bound becomes tighter if it promises a larger size of the codebook. In this

work, we investigate the gap between the channel capacity and some achievability bounds to

compare their strengths.

In the early years of the information theory studies, three main achievability bounds are pro-

posed. In 1954, Feinstein proposed a lower bound on the maximal probability of error in [2].

In 1957, Shannon’s achievability bound for average probability of error is published in [3]

which was a slightly strengthened version of Feinstein’s bound but it was different from Fein-

stein’s bound in the sense that ‘maximal’ is replaced with ‘average’ probability of error. The

last of the main bounds for finite blocklength systems is given by Gallager in [4] which leads

us to the well-known Gallager’s error exponent.

Although these bounds give one a hint to calculate how far a system’s operation is away from
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the channel capacity when a finite blocklength is considered for a certain error probability,

optimization of auxiliary constants is required in order to obtain tight bounds. Recently, new

bounds on the channel coding rate were introduced in [6] for channels with additive noise.

These bounds turned out to be tighter than the classical bounds and they require no selection

of auxiliary constants. However, closed form solutions cannot be obtained when one attempts

to calculate these bounds.

In wireless channels, it is not only the additive noise that disrupts the transmitted signal but

also the random variation of the channel coefficients introduced by constructive or destructive

addition of signal components over the communication medium randomly [9]. This phe-

nomenon is called fading. The block fading channel model introduced in [7] is a useful

model to analyze many of today’s communication systems. There have been many studies to

inspect the performance of communication systems over block fading channels and the main

performance indicator has been chosen as the outage probability [8]. However, when calcu-

lating the outage probability the length of the codeword is usually assumed to be infinite and

it is assumed there is a finite number of fading blocks over the codeword. We believe that it

could also be useful to inspect the effect of blocklength and the number of fading blocks over

the achievability bounds for block fading channels. In [18], the blocklength and the number

of fading blocks is considered by computing Gallager’s error exponent [4] for block fading

channels, however due to the complexity of the optimization of the auxiliary variable some

simplifications are proposed to calculate the error probability bound.

In this thesis, we will deal with one of the bounds given in [6] which is called the dependence

testing (DT) bound. We propose a computation method to the DT bound by applying a nor-

mal approximation to information density. First, we consider the case for the additive white

Gaussian noise (AWGN) channel. By using similar arguments for the AWGN channel, we

also calculate the DT bound for block fading channels. Our approximation in computing the

DT bound generates very close results in relation with Monte Carlo simulations. Approxima-

tions similar to the one proposed in this thesis are performed to obtain Feinstein’s bound [2]

in [19] for AWGN channels, and a normal approximation to the number of errors in a binary

symmetric channel to calculate Wolfowitz’s bound [20] is proposed in [21].

When the channel state information is available to the transmitting side in fading channels, it

is possible that the transmitter adapts the transmitted power according to the channel state in
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time, frequency or space. By applying a power allocation scheme to a communication system,

it is possible to enhance the performance. We also optimize and compute the DT bound when

channel state information at the transmitter (CSIT) is available and utilized.

1.1 Outline of the Thesis

In Chapter 2, we present our system model used throughout the thesis. We define the ergodic

channel capacity for infinite blocklength systems and the delay-constrained capacity when

a finite blocklength system is considered. We introduce the outage probability for block

fading channels and investigate how it arises in a communication problem by using error

probability expressions. We also present the major existing bounds for finite blocklength

systems proposed by Feinstein, Shannon, and Gallager.

In Chapter 3, the DT bound is investigated for finite blocklength channels. Since information

density arises as a random variable when calculating the DT bound, we investigate if it can be

modeled as a Gaussian random variable by using the central limit theorem [27]. We provide

closed form expressions for the DT bound by using the normal approximation for real and

complex AWGN channels with Gaussian input alphabet. We show that the proposed approx-

imation characterizes the DT bound tightly for blocklengths as small as 100. We also exploit

the Gaussian approximation to calculate the DT bound for block fading channels and present

closed form expressions for a given channel coefficient vector. Thus we obtain a method to

estimate the performance of a communication system by taking into account the length of

the codeword block. We also use the normal approximation to calculate the DT bound for

constrained input alphabets.

In Chapter 4, we extend the approach given in Chapter 3 to the case where CSIT is available.

We present the existing power allocation schemes in the literature for fading channels. Then

we present how the DT bound is optimized when CSIT is available. Since the expressions for

the allocated power for a given fading coefficient vector become very complex, we present

an algorithm which is called the maximum marginal allocation algorithm given in [32] to

compute the power to be allocated to each fading block in the runtime of a communication

system. By using this algorithm we analyze the effect of number of fading blocks and the

blocklength on the DT bound for equal power and adaptive power schemes.

3



Chapter 5 points out the key points in this thesis and outlines the future work.
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CHAPTER 2

Background Information

2.1 Introduction

In this chapter, we will present the channel model that is used in our work. In addition, we

will recall general results about the Shannon capacity of a channel and the outage probability

concept for finite blocklength channels. Since Shannon established the convergence of the

coding rate to the channel capacity as the blocklength is increased to infinity, many researchers

studied the penalty that forms with finite blocklengths. The major error probability bounds

for finite blocklength channels will be stated and their proofs will be outlined in this chapter.

These bounds can be extremely useful in finding the highest rate that can be achieved when

operating with a given blocklength and error probability. Outline of this chapter is as follows:

In Section 2.2, the block fading channel model presented by Ozarow in [7] is given and

in Section 2.3 the result of the channel coding theorem and the outage capacity for finite

blocklength channels are presented. The bounds for the finite blocklength are introduced in

Section 2.4.

2.2 Finite Blocklength Channels

The block fading channel introduced in [7] which models slowly varying fading proves use-

ful and simplifies the design and analysis of many of the today’s communication systems.

Slow frequency hopping schemes encountered in GSM and EDGE systems as well as OFDM

systems are well-modeled using the block-fading channel. In [7], a transmitted codeword is

divided into K blocks of duration T and each individual block is sent through a faded nar-

rowband multipath channel in a TDMA system. The channel is assumed to stay constant over
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one block but may change from one block to another. By the use of this model, it is proven

that for the same outage probability, higher rates can be achieved by increasing the number of

blocks. It is also emphasized in [7] that the same model can be applied to CDMA and FDMA

systems.

Figure 2.1: Block fading channel model

The block fading channel model is defined as follows: Consider the transmission scheme over

a narrowband AWGN fading channel with F blocks of L channel uses each. For every block

f = 1, . . . , F, the fading coefficient of the channel is given as h f . This model is shown in

Figure 2.1. Thus the channel model can be written in the vector form as

yf = hf xf + nf , (2.1)

where yf is the received signal, xf is the transmitted codeword in block f , h f is the channel

coefficient for block f and nf is the noise vector with independent, identically distributed

Gaussian entries with zero mean and unit variance N(0, 1). Vectors yf , xf and nf are of length

L.

In our work, the block fading channel coefficients are considered as realizations of a ran-

dom variable whose magnitude is Rayleigh distributed which is a commonly used model in
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multipath channels. The pdf and cdf of Rayleigh distribution [9] is given as

f (x, σ) =
x
σ2 exp(−

x2

2σ2 ) (2.2)

and

F(x, σ) = 1 − exp(−
x2

2σ2 ) (2.3)

respectively for an average power value of σ2.

2.3 The Channel Capacity and Outage Probability

In this section, we recall the fundamental results about the channel capacity which is the

largest rate at which information can be reliably transferred from one point to another. The

channel coding theorem for stationary memoryless channels is proved by Shannon in [1] and

can be expressed as

C = max
pX(·)

I(X; Y), (2.4)

where pX(·) is the probability distribution of the input X to the channel and Y is the channel

output. The mutual information I(X; Y) between the input and output of the channel [10] is

defined as

I(X; Y) =
∑
x,y

p(x, y)log
p(x, y)

p(x)p(y)
. (2.5)

Shannon’s channel coding theorem proved that any coding rate below the channel capacity

is achievable with asymptotically small error probability. Conversely, any coding rate larger

than the channel capacity must have an error probability bounded away from zero.

In [10], it is proven that the capacity is achieved by Gaussian distributed input alphabets for

AWGN channels and the channel capacity is calculated as

C =
1
2

log
(
1 +

P
N

)
, (2.6)

where P is the variance of the input alphabet and N is the variance of the additive noise. The

variance is regarded as power in this context.

In the fading case the ergodic channel capacity is given in [9] as

C = Eh

[
1
2

log(1 + |h|2
P
N

)
]

(2.7)
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and it is the calculated by taking the expected value of the AWGN channel capacity with

respect to the channel fading statistics.

The channel capacity is achieved when the blocklength of the coding scheme grows to infin-

ity. For that reason, the capacity in (2.7) is referred to as the ‘delay-unconstrained’ [11] or

the ergodic channel capacity. In order to achieve the capacity for the fading case, the received

codeword should be affected by all realizations of the channel states. For the finite blocklength

case where the channel relies on particular realizations over a finite number of independent

fading coefficients, the channel is non-ergodic and defined as information unstable [12]. This

‘delay-constrained’ case corresponds to real-time transmission over slowly fading channels

and it is more relevant in wireless system applications. In this type of channels, the Shannon

(ergodic) capacity for Rayleigh fading statistics is calculated as zero [13]. In fact, there may

be a non-zero probability that no matter how small the value of the actual transmitted rate

is, the channel is not able to support any nonzero data rate for some channel states, which is

called the ‘outage event’.

Data transmission is carried out by a codebook having M codewords so that the rate of trans-

mission is R = (logM)/FL bits/channel use. The distribution of the input source is given as

pX . For a given channel state H = h, the average codeword error probability which corre-

sponds to the frame error rate can be bounded as in [8]

Perror|H=h ≤ 2−FL(E0(ρ,pX,H=h)−ρR), (2.8)

where

E0(ρ, pX,H = h) = −
1

FL
log

∫
· · ·

∫ (∫
· · ·

∫
pX(x)pY|X,H(y|x,h)1/(1+ρ)dx

)1+ρ

dy (2.9)

and ρ is in [0,1]. If (2.9) is maximized over ρ, the average error probability can be rewritten

as

Perror|H=h ≤


1, IF < R

2−FLEr(R,pX,H=h), IF ≥ R
(2.10)

where

Er(R, pX,H = h) = max
0≤ρ≤1

E0(ρ, pX,H = h) − ρR (2.11)

and IF is the instantenous mutual information for the given channel state which can be ex-

pressed as

IF =
1

FL

F∑
f =1

∫ ∫
pY,X|H f (yf ; xf |h f ) · log

pY|X,H(yf |xf , h f )
pY|H(yf |h f )

dyfdxf . (2.12)
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By using (2.10), we can express the average error probability over the fading statistics as

Perror = EHPerror|H=h ≤ Pout(R, pX) +

∫
h:IF≥R

2−FLEr(R,pX,H=h)dFh(h), (2.13)

where the outage probability is defined as

Pout(R, pX) = Prob(IF < R). (2.14)

With increasing L to infinity, the second term in (2.13) converges to zero. On the contrary, the

first term is an irreducible one which is independent of L. Thus arbitrarily small error prob-

abilities are not achievable in general for finite block length channels. In order to distinguish

the capacity of an F-block channel from the channel capacity in the delay-unlimited case, the

former one is defined as the delay-limited capacity in [17]. The delay-limited capacity for a

block fading AWGN channel can be expressed as

Cdelay = lim
ε→0

sup(R : Pout(R, pX) ≤ ε). (2.15)

In most of the studies dealing with the finite block fading channel, the outage probability is

taken as the main parameter to be minimized and the second term in (2.13) is considered

as zero which means that L is taken to be infinite. Outage probability is considered as the

appropriate performance limit indicator [7], [14].

2.4 On the bounds for the finite blocklength channel

This section will be dedicated to the major existing bounds for the finite blocklength chan-

nels. We will discuss the Feinstein’s achievability bound for a given maximal probability of

error [2], Shannon’s average probability of error bound [3] and also Gallager’s random coding

bound [4] which leads us to the random coding error exponent. These bounds calculate an

average or maximal coding error probability for a given blocklength and coding rate. Equiv-

alently they give us a lower bound on the size of a code that can be guaranteed to exist with a

given blocklength and error probability.

We first define the fundamental problem in communications as shown in Figure 2.2. Let us

consider an input alphabet A, an output alphabet B and a probability function PY|X : A → B

which can be called the ‘channel’. A subset of the space AN is called a codebook {c1, · · · , cM}

of length M with the coding rate

R =
logM

N
, (2.16)
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Figure 2.2: Channel model for a communication problem

where N is the blocklength of the codeword and M is the number of messages that can be sent

with this codebook. The encoder is a function from the message set into the codebook X(W)

and the decoder is a transformation PŴ |Y : BN → {1, · · · ,M}. If Ŵ = W, then the decoding

operation works correctly and the message is transmitted without error. If the input messages

to the encoder are of equal probability, then the average probability of error of the decoder

can be expressed as

1 −
1
M

M∑
m=1

PŴ |X(m|cm), (2.17)

where PŴ |X(m|cm) is the probability of correct decoding of the mth message. If the decoder

together with the codebook satisfies an average probability of error less than ε, then the pair is

called an (M, ε) code with average probability of error. If the decoder satisfies a probability of

correct reception PŴ |X(m|cm) ≥ 1 − ε for ∀m ∈ 1, · · · ,m, then this codebook and the decoder

are called an (M, ε) code with maximal probability of error. If the codeword length is N, then

this code is further called an (N,M, ε) code. The fundamental rate limit in this communication

scenario can be expressed as

M∗(N, ε) = max (M : ∃(N,M, ε) − code) . (2.18)

Feinstein’s lemma for the lower bound of maximal probability of error is expressed as follows.

Theorem 2.4.1 (Feinstein’s theorem [2]) Given M and any a > 0, for any input distribu-

tion pX, there exists an (N,M, ε) code with maximal probability of error for the transition

probability PY|X such that

ε ≤ Me−a + Pr {i(x; y) ≤ a} , (2.19)

where the information density is defined as

i(x, y) = log
pY|X(y|x)

pY(y)
. (2.20)

10



The proof is provided in Appendix A.

If we choose a = logM + Nγ with γ > 0, the Feinstein’s bound can be rewritten as

ε ≤ e−γN + Pr
{

1
N

i(x; y) ≤
1
N

logM + γ

}
, (2.21)

Note that the decoder is constructed such that the probability of error is satisfied for every

codeword in the codebook so that the error bound that is proved to hold is the maximal prob-

ability of error. Thus, Feinstein’s theorem implies that for any input distribution p(x), there

exists a code with rate R, for any γ > 0 and N > 0

ε ≤ e−γN + Pr
{

1
N

i(x; y) ≤ R + γ

}
, (2.22)

in the maximal probability of error sense.

The following theorem establishes Shannon’s achievability bound [3] for the average proba-

bility of error.

Theorem 2.4.2 (Shannon’s theorem [3]) Given M and any β > 0, for any input distribution

pX, there exists an (N,M, ε) code with average probability of error for the transition proba-

bility pY|X such that

ε ≤
M − 1
β

+ Pr {i(x; y) ≤ logβ} , (2.23)

where the information density is defined in (2.20).

The proof is outlined in Appendix B.

When we replace β = ea in order to compare the bounds of Feinstein and Shannon, we can

conclude that Theorem 2.4.1 is a slightly weakened version of Theorem 2.4.2 where M − 1 is

replaced by M. However, Theorem 2.4.2 is a weakened version of Theorem 2.4.1 in the sense

that maximal is replaced with the average probability of error.

Before giving Gallager’s probability of error bound, we present the following lemma from

[22].

Lemma 2.4.3 Let P(A1), · · · , P(Am) be the probabilities of a set of events A1, · · · , Am and

P(
⋃
m

Am) (2.24)
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be the probability of their union. For any ρ, 0 < ρ ≤ 1, we have

P(
⋃
m

Am) ≤

 M∑
m=1

P(Am)


ρ

. (2.25)

Proof. We can write that

P(
⋃
m

Am) ≤


M∑

m=1

P(Am)

1.

(2.26)

The first bound is the simple union bound on the probabilities and the second one is because

of the probability cannot be greater than one. If the former bound in (2.26) is satisfied then

we further increase
∑

P(Am) by raising it to the power by ρ and (2.25) follows. If the latter

bound in (2.26) is satisfied, then [
∑

P(Am)]ρ ≥ 1 and again (2.25) follows. �

Theorem 2.4.4 (Gallager’s theorem [4]) Given M and any 0 ≤ ρ ≤ 1, for any input distri-

bution pX, there exists an (N,M, ε) code with average probability of error for the transition

probability pY|X such that

ε ≤ (M − 1)ρ
∑

y

∑
x

p(x)p(y|x)1/(1+ρ)

(1+ρ)

. (2.27)

The proof of the theorem is given in Appendix C.

Theorem 2.4.4 leads us to the Gallager’s error exponent for discrete memoryless channels

[22]. For discrete memoryless channels

p(y|x) =

N∏
i=1

p(yi|xi) (2.28)

and also if the codewords are independently generated, i.e.,

p(x) =

N∏
i=1

p(xi). (2.29)

Substituting (2.28) and (2.29) into (2.27), we get

ε ≤ (M − 1)ρ
∑

y

∑
x

N∏
i=1

p(xi)p(yi|xi)1/(1+ρ)


(1+ρ)

. (2.30)

If we restate the bracketed term in (2.30) as

ε ≤ (M − 1)ρ
∑

y

 N∏
i=1

∑
x

p(xi)p(yi|xi)1/(1+ρ)


(1+ρ)

, (2.31)

12



by using the arithmetic rule for interchanging products of sums. Finally, by interchanging the

power and multiplication operation in the bracketed term and applying the same rule to the

outer summation we get

ε ≤ (M − 1)ρ
N∏

i=1

∑
yi

∑
xi

p(xi)p(yi|xi)1/(1+ρ)

(1+ρ)

. (2.32)

If we upper bound (M − 1) by 2NR, (2.32) can be expressed as

ε ≤ 2
−N

−log


∑

yi

[
∑

xi

p(xi)p(yi|xi)1/(1+ρ)](1+ρ)

−ρR


. (2.33)

Since (2.33) is the average for the ensemble of codewords, there must exist at least one code-

book that satisfies the upper bound. If we define

E0(ρ, p) = −log

∑yi

∑
xi

p(xi)p(yi|xi)1/(1+ρ)

(1+ρ) , (2.34)

we obtain

ε ≤ 2−N[E0(ρ,p)−ρR]. (2.35)

Since p and ρ are arbitrary in (2.34) and (2.35), we obtain the tightest bound by choosing p

and ρ to maximize E0(ρ, p) − ρR which leads to the random coding exponent defined as

Er(R) = max
ρ

max
p

[
E0(ρ, p) − ρR

]
. (2.36)

All theorems stated above requires a selection of auxiliary constants. We need to optimize

those constants to obtain tight bounds which may result in complex operations. In Chapter

3, we will deal with some other bounds on the achievable rate with a certain average error

probability that do not need auxiliary constants.
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CHAPTER 3

Dependence Testing Bound and a Gaussian approximation

3.1 Introduction

The dependence testing (DT) bounds proposed in [5], [6] provides an average error proba-

bility bound for a given blocklength and coding rate. The DT bound is calculated by using

Feinstein’s decoder in which information density is exploited in the decoding operation. One

of the advantages of the DT bound compared to the bounds introduced in Section 2.4 is that it

does not require any optimization of auxiliary variables. In addition to the DT bound, another

achievability bound which is called the random coding union (RCU) bound is introduced

in [6]. The RCU bound is stronger than the DT bound, however the computation complexity

of the RCU bound is much higher. Also, the authors in [6] propose κ − β bound for input

constrained case where the input symbols of the codewords are chosen from a subset of the

input alphabet such that a given constraint is satisfied and optimization of auxiliary variables

is performed. In this work, we do not consider the limitations on the elements of the code-

word and in order to focus on bounds with no auxiliary variables, we use the dependence

testing (DT) bound for AWGN channels. We also inspect channel coding rates with certain

error probability performance for discrete input alphabets and fading channels. When one

attempts to calculate the DT bound for these type of channels, closed form solutions cannot

be obtained due to the distribution of the information density. Thus, we introduce a normal

approximation to the information density to calculate the DT bound.

As discussed in [23], Strassen proposed a maximal rate expression for a given blocklength

and average error probability by using a normal approximation in the error probability ex-

pressions. However, we use a normal approximation only to the information density which

14



arises as the random variable in the error expressions for the DT bound. Thus, instead of using

an approximation in order to calculate the error probability bound as in [23], the DT bound

can be calculated by our proposed method.

We also calculate the DT bound for block fading channels introduced in Section 2.2. We

show for block fading channels that, in addition to the number of fading blocks, the block-

length also plays an important role in the error probability. As mentioned in Section 2.3, in

outage capacity evaluations for the block fading channels, it is assumed that the blocklength

is increased to infinity and the term that does not converge to zero in this limiting case is cal-

culated. Thus only the number of fading blocks are accounted for. In our work, the effect of

the total blocklength is also considered and the error probability results are given as a function

of the blocklength for fading channels.

3.2 Overview of the DT bound

In this section, we present a summary of the DT bounding technique proposed in [5]. We will

introduce a normal approximation to calculate that bound and draw our results based on this

approximation.

Theorem 3.2.1 (Dependence Testing Bound [5]) For any distribution pX on the input alpha-

bet A, there exists a code with M codewords and average probability of error not exceeding

ε ≤ E
[
exp(−

∣∣∣∣∣i(x, y) − log
M − 1

2

∣∣∣∣∣+)
]

(3.1)

where

|a|+ =


a, a ≥ 0

0, a < 0
. (3.2)

Proof. Consider the following identity for arbitrary z ≥ 0 and γ > 0:

exp
{
−|log

z
γ
|+
}

= 1{z≤γ} +
γ

z
1{z>γ}, (3.3)

where

1{s} =


1, s is true

0, s is false
. (3.4)
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If we let z =
p(x,y)

p(x)p(y) , then (3.3) can be expressed as

exp
{
−|i(x, y) − logγ|+

}
= 1{i(x,y)≤logγ} +

γp(x)p(y)
p(x, y)

1{ p(x,y)
p(x)p(y)>γ

}. (3.5)

When the average of the right-hand side of (3.5) is taken with respect to p(x, y), one obtains

Pr {i(x, y) ≤ logγ} + γ
∑

x

∑
y

p(x)p(y)1{i(x,y)>logγ}. (3.6)

If we write p(y) as p(y) and define the joint probability pXYY (x, y, y) = pX(x)pY |X(y|x)pY (y)

which means y has the same distribution as y but independent of x, we can express (3.6) as

Pr {i(x, y) ≤ logγ} + γ
∑

x

∑
y

p(x)p(y|x)p(y)
p(y|x)

1{i(x,y)>logγ}, (3.7)

which is equal to

Pr {i(x, y) ≤ logγ} + γ
∑

x

∑
y

p(x, y)1{i(x,y)>logγ}. (3.8)

Thus we can write the average of both sides of (3.5) with respect to p(x, y) as

E
[
exp

{
−[i(x, y) − logγ]+}] = Pr {i(x, y) ≤ logγ} + γPr

{
i
(
x, y > logγ

)}
. (3.9)

Replacing γ = log M−1
2 , we need to prove that

ε ≤ Pr
{

i(x, y) ≤ log
M − 1

2

}
+

M − 1
2

Pr
{

i(x, y) > log
M − 1

2
)
}
. (3.10)

Let {Zx}x∈A : B 7→ {0, 1} be the function whose input space is the output alphabet B defined as

Zx(y) = 1{i(x,y)>log M−1
2 }
. (3.11)

For a given codebook c1, · · · , cM, the decoding rule is given as follows: The receiver runs

M likelihood ratio binary hypothesis tests between PY|cj(y) and PY and computes the values

Zcj(y) by evaluating i(cj, y) = log
PY|cj (y)
PY(y) for the received channel output y and decides that cj

is sent by the transmitter where j is the lowest index for which Zcj = 1, or the decoder returns

an error if there is no such index for 1, · · · ,M. We can write the error probability given that

the jth codeword is sent as

ε(cj) = Pr

{Zcj(y) = 0
}⋃

i< j

{
Zci(y) = 1

}
|x = cj

 . (3.12)

If we use the union bound for the probability expressions,

Pr

{Zcj(y) = 0
}⋃

i< j

{
Zci(y) = 1

}
|x = cj

 ≤ Pr
[
i(cj, y) ≤ log M−1

2 |x = cj
]

+

∑
i< j

Pr
[
i(ci, y) > log

M − 1
2
|x = cj

]
. (3.13)
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We use the random coding argument and average (3.13) over codebooks that are generated as

independent random variables with distribution p(x) and rewrite the bound as

Pr
[
i(x, y) ≤ log

M − 1
2

]
+ ( j − 1)Pr

[
i(x, y) > log

M − 1
2

]
. (3.14)

Note that y has the same distribution as y but independent of the transmitted codeword x. We

calculated the average probability of error for the jth codeword. Assuming the probability of

transmitting any codeword c1, · · · , cM is 1/M, the average error probability becomes

1
M

M∑
j=1

Pr
[
i(x, y) ≤ log

M − 1
2

]
+

1
M

M∑
j=1

( j − 1)Pr
[
i(x, y) > log

M − 1
2

]
(3.15)

by averaging over all the codewords since

ε =
1
M

M∑
j=1

ε(cj). (3.16)

(3.15) leads to the following expression for the average over all the codewords

ε = Pr
[
i(x, y) ≤ log

M − 1
2

]
+

(M − 1)
2

Pr
[
i(x, y) > log

M − 1
2

]
. (3.17)

Thus, we obtained the expression given in (3.10). Since (3.17) is the average for the ran-

dom codewords, there must exist at least one codebook that satisfies the upper bound which

completes the proof. �

Note that the bound given in Theorem 3.2.1 does not require any selection of auxiliary con-

stants unlike the bounds given in Section 2.4. In Figure 3.1, the DT bound is compared with

Shannon’s bound given in 2.4.2 and Gallager’s bound stated in Theorem 2.4.4 for the average

error probability 10−3 and the average SNR (signal to noise ratio) is taken to be 0 dB. In this

work, average SNR is defined as the ratio of the average signal power (Es) to the average

noise power (N0). Feinstein’s bound gives almost the same results with Shannon’s but sat-

isfying maximal error probability constraint. Since these bounds provide lower bounds for

rates, we observe that the DT bound is tighter than the other two bounds. While computing

the Gallager’s and Shannon’s bound the auxiliary constants are optimized by Monte Carlo

simulations.

In Section 3.3, we will demonstrate how to calculate the DT bound by using a normal approx-

imation.
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Figure 3.1: Rate vs. Blocklength for Gallager, Shannon and DT bounds

3.3 A Normal Approximation to the DT bound

In order to calculate the average probability of error for a given coding rate by the use of the

DT bound presented in Section 3.2, we use the total probability theorem and extract the right

handside of (3.1) as

1 · Pr
(
i(x, y) ≤ log

M − 1
2

)
+ (3.18)

E
[
exp

{
−

(
i(x, y) − log

M − 1
2

)}
|i(x, y) > log

M − 1
2

]
Pr

(
i(x, y) > log

M − 1
2

)
.

Thus we need the following to calculate the DT bound:

(1) Pr
(
i(x, y) ≤ log M−1

2

)
,

(2) E
[
exp

{
−

(
i(x, y) − log M−1

2

)}
|i(x, y) > log M−1

2

]
.

In this section, we obtain a normal approximation of the information density in the real and

complex additive white Gaussian channel cases. The approximation is stated for the real case

as follows:
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Theorem 3.3.1 (Gaussian approximation-the real case) If the information density of the real

AWGN channel is approximated as a Gaussian random variable, then its mean is

µ =
N
2

log2(1 + P) (3.19)

and its variance is given as

σ2 =

(
log2e

2

)2 [
4N

P
1 + P

]
(3.20)

where N is the blocklength, P is the variance of the input x and the noise variance is normal-

ized to 1.

Proof. We will calculate the mean and variance of the information density i(x, y) for the real

AWGN channel represented in the vector form as

y = x + n, (3.21)

where x is real Gaussian input to the channel, n is the real Gaussian noise with elements of

zero mean and unit variance, and y is the channel output. The variance of zero mean xi’s is P

for all i which implies that yi’s are Gaussian random variables with zero mean and variance

1 + P for all i. The numerator of information density in (2.20) is the pdf of a jointly Gaussian

random vector

y|x ∼ N(x, IN) (3.22)

and the denominator is also the pdf of a jointly Gaussian random vector

y ∼ N(0, IN(1 + P)). (3.23)

In the expressions above, IN is the identity matrix of dimension N, N(mz,Σ) is the pdf of a

real normal random vector z of length N with mean vector mz and covariance matrix Σ and

given as

N(mz,Σ) =
1

(2π)
N
2 det(Σ)

1
2

exp
(
−(z −mz)TΣ−1(z −mz)

2

)
, (3.24)

where T is the transpose operation. Then (3.22) becomes

p(y|x) =
1

(2π)
N
2

exp
(
−

1
2

(y − x)T (y − x)
)

(3.25)
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and (3.23) becomes

p(y) =
1

(2π)
N
2 (P + 1)

N
2

exp
(
−

1
2(P + 1)

yT y
)
. (3.26)

By inserting (3.25) and (3.26) to the information density expression,

i(x, y) =
log2(e)

2

[
yT y

P + 1
− (y − x)T (y − x)

]
+ log2

(
(P + 1)N/2

)
, (3.27)

which is equal to

N
2

log2(P + 1) +
log2(e)

2

N∑
i=1

yi
2

P + 1
− ni

2. (3.28)

We apply normal approximation to the summation term in (3.28) for large N. The mean can

be calculated as follows:

E

 N∑
i=1

yi
2

P + 1
− ni

2

 = N

E
[
y2

i

]
P + 1

− E
[
n2

i

] , (3.29)

for any i. Since both yi and ni are zero mean,

E
[
n2

i

]
= 1, (3.30)

E
[
y2

i

]
= (1 + P). (3.31)

Thus the mean of the summation term becomes

N
(

P + 1
P + 1

− 1
)

= 0. (3.32)

In order to calculate the variance

E


 N∑

i=1

y2
i

P + 1
− n2

i


2 = NE


 y2

i

P + 1
− n2

i


2 , (3.33)

for any i since yi and ni are independent for i , j. (3.33) is then equal to

N
E

 y4
i

(P + 1)2

 − 2
P + 1

E
[
y2

i n2
i

]
+ E

[
n4

i

] . (3.34)

The expected values of the different random variables in (3.34) are given as:

E
[
y4

i

]
= 3(P + 1)2, (3.35)

E
[
y2

i n2
i

]
= P + 3, (3.36)
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and

E
[
|ni|

4
]

= 3. (3.37)

In (3.35) and (3.37), we used the 4th order moment expression for a real Gaussian random

variable [26]. To show the equality given in (3.36), we rewrite y2
i n2

i as

E
[
y2

i n2
i

]
= E

[
(xi + ni)2n2

i

]
, (3.38)

which is equal to

E
[
x2

i n2
i

]
+ E

[
n4

i

]
+ E

[
2xin3

i

]
. (3.39)

Again by using the 4th order moment for ni and the independence of xi and ni, we obtain the

expression given in (3.36). By using (3.35),(3.36) and (3.37), (3.34) becomes

6N − 2N
P + 3
P + 1

=
4NP
P + 1

. (3.40)

Thus, we obtain the expressions given in (3.19) and (3.20) which completes the proof. �

In Figure 3.2, we show the histogram of the information density, where the x-axis is the

equally spaced bins between the minimum and maximum values of the information density

and the y-axis represents the number of values that fall into each bin, and the normal density

by using the mean and variance values given in (3.19) and (3.20) for N = 300 and SNR =

0 dB. We conclude that the information density is well-approximated by a normal random

variable.

We use Theorem 3.3.1 to calculate the DT bound.

Define α = i(x,y) - log M−1
2 . Then, the mean and variance of α can be written as

µα =
N
2

log2(1 + P) − log
M − 1

2
(3.41)

and

σ2
α =

(
log2e

2

)2 [
4N

P
1 + P

]
(3.42)

by using Theorem 3.3.1. In order to find the average probability of error given in (3.1), we

need to calculate Pr(α ≤ 0) and E
[
exp(−α)|α > 0

]
. Then, we can express the DT bound as

Pr {α ≤ 0} + Pr {α > 0} E
[
exp(−α)|α > 0

]
. (3.43)
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Figure 3.2: Normal approximation to the information density (real case)

The former one can be calculated as follows: If we define

η1 = −
µα
σα

(3.44)

then this probability can be rewritten as

Pr(α ≤ η1σα + µα), (3.45)

so that the probability in (3.45) can be expressed as

Pr
(
α − µα
σα

< η1

)
= er f c

(
−
η1
√

2

)
/2 (3.46)

in terms of the complementary error function

er f c(x) =
2
√
π

∫ ∞

x
exp(−t2) dt. (3.47)

Using definitions directly, the other term is written as

E
[
exp(−α)|α > 0

]
=

∫ ∞

0
exp(−α)pα(α|α > 0) dα. (3.48)

If K = 1
Pr(α>0) is defined and since α is considered to be a Gaussian random variable (3.48)

can be rewritten as

K
∫ ∞

0
exp(−α)

1√
2πσ2

α

exp
(
−

(α − µα)2

2σ2
α

)
dα (3.49)
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= K
∫ ∞

0

1√
2πσ2

α

exp
(
−

(
(α − µα)2

2σ2
α

+ α

))
dα. (3.50)

Completing the squares of the exponential term, one obtains the following:

= Kexp
(
σ2
α

2
− µα

) ∫ ∞

0

1√
2πσ2

α

exp
(
−

(α − (µ − σ2))2

2σ2
α

)
dα, (3.51)

which is equal to

=
K
2

exp
(
σ2
α

2
− µα

)
er f c

(
η2
√

2

)
, (3.52)

where

η2 = −
µα − σ

2
α

σα
. (3.53)

Thus, the average probability of error is bounded as

ε ≤

[
er f c

(
−
η1
√

2

)
/2

]
+

[
1 −

(
er f c(−

η1
√

2
)/2

)]
Kexp

(
σ2
α

2
− µα

) [
er f c

(
η2
√

2
/2

)]
(3.54)

for the AWGN channel.

By using the definition of K, we can simplify (3.54) as

ε ≤

(
er f c(−

η1
√

2
)/2

)
+ exp

(
σ2
α

2
− µα

) (
er f c(

η2
√

2
/2)

)
. (3.55)

We can calculate the DT bound easily by using (3.55). The calculation for the complex

AWGN case is similar and is stated in Theorem 3.3.2.

Theorem 3.3.2 (Gaussian approximation-the complex case) If the information density of the

complex AWGN channel is approximated as a Gaussian random variable, then its mean is

µ = Nlog2(1 + P) (3.56)

and its variance is given as

σ2 = (log2e)2
[
2N

P
1 + P

]
(3.57)

where N is the blocklength and P is the variance of the input x.

Proof. We will calculate the mean and variance of the information density i(x, y) for the

complex AWGN channel given as

y = x + n, (3.58)
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where x is complex Gaussian input to the channel, n is the circularly symmetric complex

Gaussian noise with elements of zero mean and unit variance, and y is the complex channel

output. The variance of zero mean xi’s is P for all i which implies that yi’s are complex

Gaussian with zero mean and variance 1 + P for all i. The numerator of information density

in (2.20) is the pdf of a jointly Gaussian complex random vector

y|x ∼ CN(x, IN) (3.59)

and the denominator is also the pdf of a jointly Gaussian random vector

y ∼ CN(0, IN(1 + P)). (3.60)

In (3.59) and (3.60), CN(mz,Σ) is the pdf of a complex normal random vector z of length N

with mean vector mz and covariance matrix Σ and given as

p(z) =
1

(2π)Ndet(Σ)
exp

(
−(z −mz)HΣ−1(z −mz)

2

)
, (3.61)

where the superscript H is the Hermitian operation. The numerator of the information density

can be expressed as

p(y|x) =
2

(2π)N exp
(
−(y − x)H(y − x)

)
(3.62)

and (3.60) becomes

p(y) =
2

(2π)N(P + 1)N exp
(
−

1
P + 1

yHy
)
. (3.63)

Rewriting the information density expression by using (3.62) and (3.63),

i(x, y) = log2(e)
[

yHy
P + 1

− (y − x)H(y − x)
]

+ log2
(
(P + 1)N

)
, (3.64)

which is equal to

Nlog2(P + 1) + log2(e)
N∑

i=1

|yi|
2

P + 1
− |ni|

2. (3.65)

As in the real case, we apply normal approximation to the summation term in (3.65) by using

the central limit theorem [27]. The mean can be calculated as follows:

E

 N∑
i=1

|yi|
2

P + 1
− |ni|

2

 = N

E
[
|yi|

2
]

P + 1
− E

[
|ni|

2
] , (3.66)

for any i. Since both yi and ni are zero mean,

E
[
|ni|

2
]

= 1, (3.67)
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E
[
|yi|

2
]

= (1 + P). (3.68)

Thus the mean of the summation term becomes

N
(

P + 1
P + 1

− 1
)

= 0. (3.69)

In order to calculate the variance

E


 N∑

i=1

|yi|
2

P + 1
− |ni|

2


2 = NE

{ |yi|
2

P + 1
− |ni|

2
}2 , (3.70)

for any i since the yi and ni are independent for i , j. (3.70) is then equal to

N
(
E

[
|yi|

4

(P + 1)2

]
−

2
P + 1

E
[
|yi|

2|ni|
2
]

+ E
[
|n4

i |
])
. (3.71)

By using the same argument in the proof of Theorem 3.3.1, the expected values of the different

random variables arising in (3.71) can be expressed as:

E
[
|yi|

4
]

= 2(P + 1)2, (3.72)

E
[
|yi|

2|ni|
2
]

= P + 2, (3.73)

and

E
[
|ni|

4
]

= 2. (3.74)

By using (3.72),(3.73) and (3.74), (3.71) becomes

4N − 2N
P + 2
P + 1

. (3.75)

Thus, we obtain the equations given in (3.56) and (3.57) which completes the proof. �

In Figure 3.3, we demonstrate how well the normal approximation of the information density

is, for the complex AWGN channel with N = 300 and SNR = 0 dB where the axes are

the same as in Figure 3.2. We generated complex normal random variables for the channel

input and the additive noise and plotted the histogram of the information density. When the

histogram is compared with the pdf of a Gaussian random variable with mean and variance

given in Theorem 3.3.2, one conclude that the information density can be well approximated

as a Gaussian random variable for the complex case.
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Figure 3.3: Normal approximation to the information density (complex case)

In order to calculate the DT bound for the complex AWGN channel, we redefine the mean

and variance of α as

µα = Nlog2(1 + P) − log
M − 1

2
(3.76)

and

σ2
α = (log2e)2

[
2N

P
1 + P

]
(3.77)

Then, the same arguments given for the real case can be applied.

In Figure 3.4, the maximum achieved coding rate as a function of the blocklength N for the

real AWGN channel and the Gaussian input alphabet is displayed for the proposed normal

approximation scheme by using Theorem 3.3.1 and (3.55) . The average probability of error

is taken as 10−3 and the average SNR is taken to be 6 dB. The DT bound is also calculated

by 250,000 Monte Carlo simulations for the same system. Shannon capacity for the same

channel is shown in the figure. In Figure 3.5, the DT bound is calculated for the complex

AWGN channel with the same parameters. In Figures 3.6, 3.7, the DT bound is calculated for

real and complex cases respectively where SNR is 0 dB and the error probability is taken as

10−3.
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Figure 3.4: Rate vs. Blocklength for real Gaussian alphabet, SNR = 6 dB, ε = 10−3

It can be seen that as the blocklength N increases, maximum coding rate approaches the

channel capacity and our proposed normal approximation model provide results very similar

to those of the Monte Carlo simulations. These results show that the Gaussian approximation

model works well for computing the finite blocklength channel capacity.

3.4 The DT bound for Block Fading Channels

We will apply the normal approximation presented in Section 3.3 to the block fading channel

model which is introduced in Section 2.2. We can represent the block fading channel as

y = hx + n, (3.78)

where

y =


y1
...

yN

 , x =


x1
...

xN

 ,n =


n1
...

nN

 (3.79)

and h is the diagonal matrix whose diagonal entries are the complex valued h1, · · · , hN which

are not necessarily different. If the number of fading blocks is F, then there exist N/F inde-
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Figure 3.5: Rate vs. Blocklength for complex Gaussian alphabet, SNR = 6 dB, ε = 10−3

pendent realizations of the fading coefficients.

Theorem 3.4.1 (Gaussian approximation-block fading channels) If the information density

i(x, y|h) of the fading channel for a given fading coefficient matrix h is approximated as a

Gaussian random variable, then its mean is

µ =

N∑
i=1

log2
(
1 + |hi|

2P
)

(3.80)

and its variance is given as

σ2 = (log2e)2

4N − 2
N∑

i=1

2 + |hi|
2P

1 + |hi|
2P

 (3.81)

where N is the blocklength, P is the variance of the input x with complex Gaussian alphabet

and the variance of the complex normal noise n is normalized to 1.

Proof. The information density for given fading coefficients can be expressed as

i(x, y|h) = log2
p(y|x,h)
p(y|h)

. (3.82)
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Figure 3.6: Rate vs. Blocklength for real Gaussian alphabet, SNR = 0 dB, ε = 10−3

The numerator in (3.82) is the pdf of a jointly Gaussian complex random vector which can be

represented as

y|x,h ∼ CN(hx, IN) (3.83)

and the denominator in (3.82) is again the pdf of a jointly Gaussian complex random vector

with zero mean

y|h ∼ CN(0, Phabs + IN), (3.84)

where habs is the diagonal matrix whose diagonal entries are |h1|
2, · · · , |hN |

2.

(3.83) and (3.84) can be expressed as

p(y|x,h) =
2

(2π)N exp(−(y − hx)H(y − hx)) (3.85)

and

p(y|h) =
2

(2π)N
N∏

i=1

(
|hi|

2P + 1
)exp

(
−yHdiag

{
1

|h1|2P + 1
, · · · ,

1
|hN |

2P + 1

}
y
)
, (3.86)
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Figure 3.7: Rate vs. Blocklength for complex Gaussian alphabet, SNR = 0 dB, ε = 10−3

where diag {a1, · · · , aN} is an N × N diagonal matrix with diagonal entries a1, · · · , aN . By

inserting (3.85) and (3.86) into the information density equations and after several straight-

forward steps, (3.82) can be written as

i(x, y|h) =

 N∑
i=1

log2(1 + |hi|
2P)

 + log2e

 N∑
i=1

|yi|
2

1 + |hi|
2P
− |ni|

2

 . (3.87)

We apply normal approximation to the summation term on the right in (3.87) again by using

the central limit theorem.

The mean is computed as in:

E

 N∑
i=1

|yi|
2

|hi|
2P + 1

− |ni|
2

 , (3.88)

which is equal to

E

 N∑
i=1

|hixi + ni|
2

|hi|
2P + 1

− |ni|
2

 . (3.89)

We rewrite (3.89) as

N∑
i=1

(
|hixi + ni|

2P + 1
|hi|

2P + 1
− 1

)
, (3.90)
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which becomes zero after simplifications.

In order to calculate the variance, we have to calculate

E


 N∑

i=1

|hixi + ni|
2

|hi|
2P + 1

− |ni|
2


2 . (3.91)

(3.91) can be expressed as

N∑
i=1

E
[
|hixi + ni|

2

|hi|
2P + 1

− |ni|
2
]2

(3.92)

since yi and n j are independent for i , j given the fading coefficients hi’s. If we rewrite (3.92)

as

N∑
i=1

E
[

|yi|
4

(|hi|
2P + 1)2

]
+ E

[
|ni|

4
]
−

2
|hi|

2P + 1
E

[
|yi|

2|ni|
2
]

(3.93)

and using (3.72),(3.73) and (3.74), (3.93) is equal to

4N − 2
N∑

i=1

2 + |hi|
2P

1 + |hi|
2P
. (3.94)

Then, the mean and variance of the information density is derived as in (3.80) and (3.81). �

Thus for a given fading coefficient matrix, we can use Theorem 3.4.1 in order to calculate the

DT bound for block fading channels. If we consider that there are only F probably different

fading coefficients we may take the mean and variance of α = i(x, y|h) − log M−1
2 to calculate

the DT bound as

µα = N
1
F

F∑
f =1

[
log2(1 + |h f |

2P)
]
− log

M − 1
2

(3.95)

and

σ2
α = (log2e)2

4N − 2N
1
F

F∑
f =1

1 +
1

1 + |h f |
2P

 . (3.96)

We take the expected value of the error probability given in (3.55) over fading coefficients

which gives the average error probability for block fading channels. Note that the block-

length is taken into account when calculating the error probability unlike the case in outage

probability calculations given in (2.13) where the blocklength is considered to be infinite.

In Figure 3.8, the average error probability of the Rayleigh fading channel presented in Sec-

tion 2.2 for different average SNR values is demonstrated for a fixed code rate R = 0.6 with

varying number of fading blocks. In Figure 3.9, the same is displayed for complex AWGN
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channel. The blocklength N is taken to be 100, 200, 400 and the number of fading blocks F

is taken as 4,10, 20. For the fading case, 250,000 different fading coefficient vectors are gen-

erated and the mean of the resulting error bound is plotted. Since the diversity order increases

as the number of fading blocks increases, the average probability of error decreases. Also the

difference between different blocklength values increases as the number of fading blocks is

increased.

Figure 3.8: Error vs. SNR for Block Fading Channel

We see that the effect of the blocklength is still an important parameter as the number of

fading blocks is increased. The SNR gain for 20 fading blocks is almost 1 dB when N is

incremented from 100 to 400. The SNR gain (which is 1.8 dB) is greater in the AWGN

channel than the fading channels which implies that the effect of blocklength decreases in the

fading case. It can be concluded from these results that in the fading case the blocklength still

plays an important role when calculating the code rate for a given average error probability.
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Figure 3.9: Error vs. SNR for Complex AWGN Channel

3.5 The DT bound for Discrete Alphabets

In previous sections of Chapter 3, we analyzed the Dependence Testing bound for Gaussian

input alphabets. In this section, we will present the results on the channels with constrained

input alphabets. Unfortunately, we cannot calculate the mean and variance of the information

density for the constrained input case directly. Thus, we used Monte Carlo simulations to

calculate the mean and the variance [28] by calculating the information density

i(x, y) = Nlog2|S | −
N∑

i=1

log2

∑
x′i∈S

exp

−
[
|xi − x′i + ni|

2 − |ni|
2
]

N0

 (3.97)

where S is the constrained alphabet with E(|xi|
2 = 1) and N0 is the noise variance. After

calculating µα and σ2
α by using (3.97) with Monte Carlo simulations, the same arguments

introduced in Section 3.3 can be used to calculate the DT bound.

In Figure 3.10, the maximum achievable code rate for the QPSK input alphabet as a func-

tion of the blocklength is depicted with SNR = 6 dB and ε = 10−3 and in Figure 3.11, the

DT bound is calculated for the 8PSK input alphabet with the same average SNR and error

probability. In order to compare the validity of our normal approximation, the DT bound is
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also calculated with 100,000 Monte Carlo simulations. The channel capacity for the given

input alphabet [28] is also plotted. We conclude that our normal approximation to compute

the DT bound for QPSK inputs gets close to the Monte Carlo results for blocklength N > 500,

however for 8PSK input alphabet and for N > 200, the results with Gaussian approximation

and Monte Carlo simulations are almost the same. Thus, the DT bound can also be calcu-

lated easily for constrained input alphabets by making use of the normal approximation. If

we compare Figures 3.10 and 3.11 with Figure 3.5, it can be concluded that the DT bound

for constrained input channels approaches the channel capacity faster than for Gaussian input

channels. If we compare the blocklength values where the code rate attains 0.9 of the Shannon

capacity, we see that N is equal to 600 for complex Gaussian alphabet, whereas N ≈ 200 for

QPSK and 300 for 8PSK input alphabet. The convergence turns out to be faster in QPSK than

8PSK.

Figure 3.10: Rate vs. Blocklength for QPSK alphabet, SNR = 6 dB, ε = 10−3
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Figure 3.11: Rate vs. Blocklength for 8PSK alphabet, SNR = 6 dB, ε = 10−3

3.6 Conclusion

We developed a normal approximation to the Dependence Testing bound in this chapter. Al-

though there had been previous bounds for the finite blocklength channels in the literature,

those ones required the selection and optimization of auxiliary constants to provide tight

bounds for the error probability. The DT bound provides a bound which does not include

any auxiliary variables but an analytical computation cannot be obtained. With the normal

approximation approach we propose, analytical solutions can be obtained. We have proposed

a Gaussian approximation to the information density in order to calculate the DT bound both

for AWGN and block fading channels. The proposed approximation provides us results very

close to the DT bound. We also used the normal approximation and computed the DT bound

for constrained input alphabets.
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CHAPTER 4

Power Allocation with CSIT

4.1 Introduction

In fading channels, it is possible to change the instantaneous power of the transmitted signal

so that the channel capacity is increased or the error probability is decreased, if the channel

state information is available to the transmitter. In Section 2.3, we discussed the channel

capacity where channel state information is not available to the transmitter and the transmitted

power is constant over the whole transmission. Also the outage probability calculations are

performed without considering any channel state information to the transmitter. In Section 2.4

and in Chapter 3, the bounds for the finite blocklength channels are developed with no power

adaptation at the transmitter side. In this chapter, we will consider power allocation strategies

when CSIT is available to the transmitter. The channel capacity with CSIT will be introduced

and the outage probability minimization for a given code rate will be discussed. In addition,

the existing power allocation strategies in the literature to minimize the error bounds for finite

blocklength channels will be discussed. The DT bound will be calculated for the case where

power allocation is allowed for block fading channels, by using the normal approximation

proposed in Chapter 3.

4.2 Channel Capacity with CSIT

In the case that the transmitter has the CSIT, the transmitter may vary the power and the

coding rate of the transmitted codeword by taking into account the channel state [9]. The

transmitter may adapt its transmission strategy by using the channel state information. Since
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the transmission power is limited, there is usually an average power constraint∫ ∞

0
P(h)p(h)dh ≤ P (4.1)

when evaluating the channel capacity, where P(h) is the allocated power for a given fading

state h, p(h) is the pdf of the channel states and P is the average power that is transmitted. By

making use of the CSIT, Shannon capacity is calculated in [15]. In the fading case and with

the power optimally distributed over time we can modify (2.7) and define the fading channel

capacity with average power constraint as

C = max
P(h):

∫
P(h)p(h)dh≤P

∫ ∞

0
log2

(
1 +
|h|2P(h)

N

)
p(h)dh. (4.2)

The main idea behind the proof presented in [15] is a time diversity system with multiplexed

input and demultiplexed output. The range of fading states are first quantized to a finite set{
h j : 1 ≤ j ≤ K

}
. Then for each j, an encoding/decoding architecture for an AWGN channel

with SNR γ j =
P|h j |

2

N is designed. The input x j for the jth encoder has average power P(h j)

and encoding rate R j = C j, where C j is the capacity of an AWGN channel with received SNR

γ j. The fading coefficients are associated with the corresponding encoder/decoder pair and

the average rate on the channel is just the sum of rates associated with each of the h j channels

weighted by p(h j). This produces the average capacity formula expressed in (4.2) when the

number of states is increased to the infinity.

We need to find the optimal power allocation strategy in order to calculate the channel capacity

with power allocation. Let’s form the Lagrangian operator for the allocated power as

J(P(h)) =

∫ ∞

0
log2

(
1 +
|h|2P(h)

N

)
p(h)dh − λ

∫
P(h)p(h)dh. (4.3)

If we differantiate (4.3) with respect to the P(h) and using Kuhn-Tucker conditions [15], we

can express the power to be allocated as

P(h) =

[
ln2
λ
−

N
|h|2

]+

. (4.4)

Defining γ0 = λ
ln2 and γ =

|h|2
N , which is the instantaneous SNR for a given fading coefficient

h and unity allocated power, (4.4) can be expressed as

P(h) =

[
1
γ0
−

1
γ

]+

. (4.5)

The threshold γ0 in (4.5) must be found to satify the average power constraint given in (4.1)

and it can be written as ∫ ∞

γ0

[
1
γ0
−

1
γ

]
p(h)dh = P. (4.6)
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The capacity is achieved with a time-varying data rate where the rate is related to the instan-

taneous SNR value. Note that as the fading coefficient value increases the power allocated for

that channel state is incremented after a threshold value. This strategy is referred to as water-

filling. The water-filling strategy refers to the fact that the line 1/γ is the bottom of a bowl and

the water is poured to the bowl until the water level is reached to a constant level 1/γ0. As

the channel quality decreases, less power is allocated and the coding rate is decreased. When

the channel conditions are in a good state, we take advantage of it and send high data rates by

allocating more power.

Let’s investigate the benefits of the power allocation scheme in the fading case. In a fading

channel, if we do not have CSI at the transmitting side and thus do not implement any power

allocation then the capacity formula given in (2.7) applies. By using Jensen’s inequality we

can bound the ergodic channel capacity in the fading case as

Eh

[
log(1 + |h|2

P
N

)
]
≤ log

(
1 + E

[
|h|2

] P
N

)
= log

(
1 + S NR

)
, (4.7)

where E
[
|h|2

]
P
N is the average SNR which is denoted as S NR. Thus we can conclude that

the Shannon capacity of a fading channel without CSIT is less than or equal to the Shannon

capacity of an AWGN channel with the same average SNR. In Figure 4.1, the capacity when

the transmitter has the channel state information and applies the water-filling formula given in

(4.5) to the transmitted power is compared with the AWGN channel capacity and the capacity

of the fading channel without CSIT. The Rayleigh fading channel model is used in obtaining

the curves. Note that the fading channel will occasionally have high instantaneous SNR values

even in the low average SNR region. We can see that the fading channel capacity is larger

than that of the AWGN channel at low SNR values when the transmitter has the channel state

information. This is because, in the fading case, the transmitter saves its power when the

channel has a small fading gain and utilizes it at high valued channel gain states. Also we see

that the difference between the capacity with and without CSIT becomes negligible at high

SNR. This is due to the fact that there is no reason to preserve power for high SNR values

since the channel gain is high almost all the time and thus power allocation is not needed.
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Figure 4.1: Ergodic Channel Capacity in Rayleigh fading

4.3 Power Control for Outage Probability Minimization

In Section 2.3, we discussed the outage probability concept which is taken as the main param-

eter to be investigated in most of the studies regarding the finite blocklength channels. The

power allocation strategies can be applied to minimize the outage probability for the finite

blocklength case if the channel states are known by the transmitter before sending the code-

word. The power constraint can be applied in two ways [16]. One is the long-term power

contraint, which can be expressed as


Minimize (Pout(R, Ph))

Subject to E

 1
F

F∑
i=1

Ph(i)

 ≤ P
, (4.8)

where Ph(i) is the power allocated to the ith fading block with fading coefficients h of length F.

In this case, the transmitter does not need to consume all the power for every codeword block.

Only the mean of the power that is allocated should satisfy the average power constraint.

However, this may bring in peak power limitations which are studied in [29]. The second way
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is the short-term power constraint which can be stated as
Minimize (Pout(R, Ph))

Subject to 1
F

F∑
i=1

Ph(i) ≤ P,with probability 1
. (4.9)

In the short-term limitation, the transmitter should use all the available power for every code-

word block and it is only allowed to make power allocation between F fading blocks. The

solution to the short-term constraint is given in [16] as

Ph =


Pst(h), if h < U(R, Ph)

g(h), if h ∈ U(R, Ph)
. (4.10)

In (4.10), g(h) is an arbitrary function such that
F∑

f =1

g(h f ) ≤ P and Pst(h) is the solution of the

maximization problem which is expressed as
Maximize IF(h, Ph)

Subject to Ph ≤ P,with probability 1
, (4.11)

where IF(h, Ph) is the instantenous mutual information given in (2.12) and can be rewritten

for the power allocation scheme and Gaussian alphabets as

IF(h, Ph) =
1
F

F∑
f =1

log2(1 + |h f |
2Ph( f )), (4.12)

with unit variance additive noise and independent Gaussian inputs CN(0, Ph( f )). The region

U(R, Ph) is the outage region defined as

U(R, Ph) = {h : IF(h, Ph) < R} . (4.13)

(4.11) is solved in [16] by using the Lagrangian method and Kuhn-Tucker conditions and the

solution is expressed as follows.

Define the subset Q ⊂ <F
+ such that Q =

{
|h|2 ∈ <F

+ : |h1|
2 ≥ · · · ≥ |h f |

2
}

and assume that

|h|2 ∈ Q. Pst(h f ) is given as

Pst(h f ) =

[
λst(µ,h) −

1
|h f |

2

]+

, (4.14)

where

λst =
1
µ

µ−1∑
l=0

1
|hl|

2 +
F
µ

P (4.15)
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and µ is such that 1
|h f |2
≤ λst, for f < µ and 1

|h f |2
> λst, for f ≥ µ.

Since every fading gain vector
{
|h1|

2, · · · , |hF |
2
}

can be permuted such that it is in Q, the power

allocation rule that is expressed above can be used to minimize the outage probability for

short-term power allocation. When the fading coefficients are in the set defined in (4.13),i.e.,

the outage event occurred, the most sensible choice is to set g(h) = 0, which means turning

off the transmission.

The authors in [16] also presented a solution to the long term power allocation problem stated

in (4.8). The outage probability minimization problem is solved by using the dual of (4.9)
Minimize Ph

Subject to IF(h, Ph) ≥ R
. (4.16)

If we again assume that the fading gain vector
{
|h1|

2, · · · , |hF |
2
}

is in Q, the f th component of

Plt(h) which is the solution to (4.16) is given by

Plt
f (h) =

[
λlt(µ,h) −

1
|h f |

2

]+

, (4.17)

where

λlt(µ,h) =


e2FR

µ−1∏
l=0

|hl|
2



1/µ

(4.18)

and µ is such that 1
|h f |2
≤ λlt, for f < µ and 1

|h f |2
> λlt, for f ≥ µ.

If we define the set R(s) as

R(s) =

|h|2 ∈ <F
+ :

F∑
f =1

Plt
f (h) < s

 (4.19)

and

s∗ = sup
{
s : P(s) < P

}
, (4.20)

where

P(s) =

∫
Rs

∑
Plt(h)p(h)dh, (4.21)

the long term power allocation rule is defined in [16] as

Ph =


Plt(h), if h ∈ R(s∗)

0, if h < R(s∗)
. (4.22)
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The expression in (4.22) suggests to turn off the transmission if the fading coefficient vector is

below the threshold s∗ and otherwise the power is allocated according to (4.17) that requires

the minimum power to avoid an outage event as expressed in (4.16).

When the outage probabilities are plotted for short-term and long-term power constraints

it occurs that the short-term power allocation does not yield significant power gains when

compared to the constant power allocation. However, it is concluded in [16] that the power

gain obtained by applying the long-term constraint is very large for Rayleigh block fading

channel model(more than 10 dB for R = 0.5, Pout = 10−3 and F = 2). It is also stated that

even arbitrarily small error probabilities are possible at finite SNR depending on the rate and

number of fading blocks.
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4.4 On the bounds for block fading channels with CSIT

In this section, we will deal with the bounds presented in Section 2.4 especially with Gal-

lager’s error exponent, when the channel state information is available to the transmitter.

There is not much work in the literature up to our knowledge where any power allocation

strategy to minimize the error bounds for finite blocklength channels is applied and we repro-

duce the results of [30], [31]. In [30], the authors presented a suboptimum power allocation

scheme for block fading channels in order to maximize the error exponent and thus minimiz-

ing the error probability. The auxiliary constant is also changed in the maximization oper-

ation. In [31], the random coding error exponent is optimized for the time-independent flat

fading channel where the auxiliary variable ρ is not considered as a parameter to be optimized

and it is taken as a constant in the power expressions.

When we consider the block fading AWGN channels and assume that the channel state is

known to the transmitter, the error exponent expressed in (2.34) is given in [30] as

E0(ρ, h, Ph) =
1
F

F∑
f =1

−log

∫ ∞

−∞

(∫ ∞

−∞

p(x)p(y|x, h f , Ph f )
1/(1+ρ)dx

)(1+ρ)

dy


 (4.23)

for a given input distribution p(x), fading coefficients h of length F and allocated power vector

Ph dependent on the channel state. The average error probability is bounded by

ε ≤ E
[
2−N(E0(ρ,h,Ph)−ρR)

]
. (4.24)

Note that the auxiliary constant ρ interacts with both h and Ph and thus if the optimization of

ρ is done before averaging over the fading coefficients h, the bound becomes tighter. In [30],

two input distributions is considered. We will concentrate on the Gaussian distribution in

order to compare the results in [30] with our results for the DT bound which will be presented

in the coming sections. With normal input distribution the error exponent can be written as

E0(ρ,h, Ph) =
1

2F
ρ

F∑
f =1

log
1 +

|h f |
2Ph( f )

1 + ρ

 . (4.25)

When the long term power allocation is considered the power constraint can be expressed as

1
F

F∑
f =1

E
[
Ph( f )

]
= P, (4.26)

where P is the maximum available power in average. It is suggested in [30] to use a power

allocation scheme which is called the selective channel inversion in order to increase the error
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exponent expressed in (4.25). This power allocation strategy can be described by

Ph( f ) =


K
|h f |2

, if |h f |
2 is in the (F-µ) greatest gains in |h|2

0, otherwise
, (4.27)

where K is chosen such that the average power constraint given in (4.26) is satisfied. It is only

allowed to allocate power to the F − µ fading blocks and the SNR of those blocks become

equal after power allocation, since channel inversion is applied in the power allocation rule.

By using (4.27), the error exponent can be rewritten as

E0(ρ,h, Ph) =
F − µ

2F
ρlog

(
1 +

K
1 + ρ

)
. (4.28)

When the random coding exponent defined in (2.36) by using (4.28) is plotted the authors

conclude in [30] that approximately ten-fold increase of the error exponent bound may be

seen at low rates with respect to constant power allocation.

When we consider the time-independent flat fading channels as in Section 4.2, the error ex-

ponent maximization is presented in [31]. In this case the error exponent is expressed as

Er(pX|h(x|h),R) = max
0≤ρ≤1

{
E0(pX|h(x|h), ρ) − ρR

}
(4.29)

and

E0(pX|h(x|h), ρ) = −log
∫

h
p(h)

∫
y

[∫
x

p(x|h)p(y|x, h)
1

1+ρ dx
]1+ρ

dydh. (4.30)

If the input distribution is Gaussian, (4.30) is expressed in [31] as

E0(pX|h(x|h), ρ) = −logEh


(
1 +
|h|2P(h)

1 + ρ

)−ρ (4.31)

and the optimum power allocation to maximize (4.31) is given as

P(h) =

( α|h|2ρ

(1 + ρ)ρ

)− 1
1+ρ

−
1 + ρ

|h|2


+

, (4.32)

where α is chosen such that the power constraint given in (4.1) is satisfied. If we rearrange

(4.31) by using (4.32)

E0(ρ) = −log
∫ ∞

a0

p(a)
(

a2

α(1 + ρ)

)−ρ/(1+ρ)

da, (4.33)

where a = |h|, a0 =
√
α(1 + ρ) and α is such that∫ ∞

a0

p(a)

( αa2ρ

(1 + ρ)ρ

)−1/(1+ρ)

−
1 + ρ

a2

 da = P. (4.34)
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Figure 4.2: Error exponent vs. SNR with and without CSIT

If the error exponent is plotted by using (4.33) and (4.34) and assuming ρ = 1, the difference

between the power allocation scheme and constant power allocation can be seen in Figure

4.2. We can conclude that even in high SNR, there is still an advantage of using the described

power allocation scheme to increase the error exponent and thus decrease the average error

probability. In Section 4.5, we will construct a power allocation scheme to minimize the DT

bound in block fading channels.
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4.5 DT bound optimization with CSIT

In Section 3.4, we have presented a normal approximation to calculate the DT bound for

fading channels with the assumption that the channel state is not available to the transmitter

and the transmitted codewords are sent with constant power. If the transmit side has the CSI,

the power can be adjusted so that the DT bound given in Theorem 3.2.1 is minimized in the

fading case. We will apply a short-term power allocation scheme in this section and present a

simple algorithm to calculate the power to be allocated to each fading block.

We will use the Gaussian approximation developed in Chapter 3 and since we want to mini-

mize the DT bound by using short-term power allocation, we can represent the function to be

minimized by using (3.55) as

min
{(

er f c(−
η1
√

2
)/2

)
+ exp

(
σ2
α

2
− µα

) (
er f c(

η2
√

2
/2)

)}
, (4.35)

where

µα = N
1
F

F∑
f =1

log2
(
1 + |h f |

2Ph( f )
)
− log

M − 1
2

(4.36)

and

σ2
α = (log2e)2 N

4 − 2
F

F∑
f =1

1 +
1

1 + |h f |
2Ph( f )

 (4.37)

and the following were defined in Chapter 3.

η1 = −
µα
σα

(4.38)

η2 = −
µα − σ

2
α

σα
(4.39)

If we extract the complementary error functions in (4.35) in their integral form, we obtain that

min

 1
√
π

∫ ∞

µα/(σα
√

2)
exp(−t2)dt +

1
√
π

exp(
σ2
α

2
− µα)

∫ ∞

σα−
µα
σα√
2

exp(−t2)dt

 (4.40)

subject to

F∑
f =1

Ph( f ) = F · P, (4.41)
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where Ph( f ) is the allocated power to block f ∈ {1, · · · , F}.

The Lagrangian multiplier is constructed as follows

J =
1
√
π

∫ ∞

µα/(σα
√

2)
exp(−t2)dt +

1
√
π

exp
(
σ2
α

2
− µα

) ∫ ∞

σα−
µα
σα√
2

exp(−t2)dt

− λ

∑
f

(Ph( f ) − FP)

 . (4.42)

In order to minimize the DT bound, we should satisfy that

∂J
∂Ph( f )

= 0, (4.43)

for any f . Let’s extract the lower bounds of the integral operations in (4.42) and define

g1 =

√
N

 1
F

∑
f

log2
(
1 + |h f |

2Ph( f )
)
−

1
N

log2

(
M − 1

2

)
√

2log2e
√

4 − 2
F

∑
f

(1 +
1

1 + |h f |
2Ph( f )

)

(4.44)

and

g2 =

√
N

4 (log2e)2 −
2(log2e)2

F

∑
f

2 + |h f |
2Ph( f )

1 + |h f |
2Ph( f )


log2e

√
4 − 2

F
∑

(1 + 1
1+|h f |2Ph( f ) )

−

√
N

(∑ log2(1+|h f |
2Ph( f ))

F − log2( M−1
2 )

1
N

)
log2e

√
4 − 2

F
∑

(1 + 1
1+|h f |2Ph( f ) )

. (4.45)

Then we can rewrite (4.42) as

J =
1
√
π

∫ ∞

g1

exp(−t2)dt +
1
√
π

exp
(
σ2
α

2
− µα

) ∫ ∞

g2

exp(−t2)dt

− λ

∑
f

(Ph( f ) − FP)

 . (4.46)

By using the Leibniz integral rule we can express (4.43) as

∂J
∂Ph( f )

= −exp(−(g1)2) ∂g1
∂Ph( f ) +

∂

(
exp(σ

2
α

2 −µα)
)

∂Ph( f )

(
er f c( η2√

2
/2)

)
−exp

(
σ2
α

2 − µα

)
exp

(
−(g1)2

)
∂g2

∂Ph( f ) − λ. (4.47)

The partial derivatives arising in (4.47) are calculated easily. Unfortunately, we cannot obtain

an analytical solution to the problem given in (4.43) and thus Ph( f ) cannot be expressed in
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an exact form for a given fading coefficient vector h. However, we can solve the system of

(F + 1) equations the last one of which is given in (4.41) numerically in MATLAB.

In order to be able to calculate the power to be allocated in a real system where excessive

numerical calculations are not possible, we will use the algorithm described in [32] which is

defined as the maximum marginal allocation approach. The algorithm provides an easy way to

calculate the allocated power Ph( f ) which minimizes the DT bound. The algorithm is defined

as follows. We first discretize the range of the power to be allocated. Since (4.41) should hold,

we let Ph( f ) in the set {0,∆, 2∆, · · · ,D∆}where D∆ = FP. We use FP units of power by allo-

cating ∆ units of power in each step of the algorithm. We define ε(Ph(1), Ph(2), · · · , Ph(F)) as

the error probability calculated by assigning Ph( f ) units of power to block f and using (3.55).

In the first step, we set Ph( j) = ∆ if ε(0, 0, · · · , Ph( j) = ∆, · · · , 0) < ε(0, 0, · · · , Ph(k) =

∆, · · · , 0) for k , j. In the second step, recalling the fact that we allocated ∆ units of power to

the jth block, the power allocation scheme occurs such that we take the minimum element of

the set

(ε(Ph(1) = ∆, 0, · · · , Ph( j) = ∆, · · · , 0), · · · , ε(0, · · · , Ph( j) = 2∆, · · · , 0),

· · · , ε(0, · · · , Ph( j) = ∆, · · · , Ph(F) = ∆)). (4.48)

We continue in the same way until we reach the Dth step. Thus, the power allocation algorithm

takes place in D steps. In Table 4.1, we show the allocated power results for some randomly

generated fading coefficients where F = 2 and S NR = 0 dB.

Table 4.1: Comparison of the algorithmic result and the numerical solution to (4.43).

|h|2 Algorithmic Numerical
|h1|

2 |h2|
2 Ph(1) Ph(2) Ph(1) Ph(2)

1.2374 1.7332 0.82 1.18 0.838 1.162
0.944 1.4937 0.7 1.3 0.723 1.277
0.8494 2.1437 0.34 1.66 0.377 1.623
0.3431 1.5031 0 2 0 2

We have used (4.47) in order to find the theoretical result in Table 4.1 and solved the opti-

mum power allocation problem numerically in MATLAB. We have taken D = 100 in our

simulations when using the maximum marginal allocation algorithm. The results show that

the presented algorithm give us similar results with the analytic solution and it can be used in

order to calculate the optimum power to be allocated to each block.
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We have evaluated the results by generating 100,000 random fading coefficient vectors and

using the proposed algorithm to find the allocated power to each block. In Figure 4.3, the

equal power allocation and optimum power allocation results for DT bound is plotted for

F = 4 and N = 100. The input alphabet is taken as complex Gaussian for the channel coding

rate R = 0.6. The power allocation scheme provide an advantage of approximately 2 dB

power gain when the average error probability is taken as 10−3. In Figure 4.4 and in Figure

4.5, the results for N = 400 and N = 1000 are presented respectively. For the blocklength

N = 400, the power saving is approximately 1.5 dB and for N = 1000 we have about 1 dB

SNR gain when power allocation is used. In Figure 4.6, the results for F = 10 and N = 100

are presented. In this case, the power gain resulted in approximately 1.5 dB for ε = 10−3.

In Figure 4.7, the results for F = 10 and N = 400 are plotted. The power saving by power

allocation is decreased to 1 dB for this case.

We conclude that when the number of fading blocks is increased the advantage of the power

allocation is decreased. We also conclude that as the blocklength is increased for a given

number of fading blocks, the advantage gained by power allocation is decreased. As discussed

in Section 2.3, in outage probability calculations blocklength is considered to be infinite. The

results for DT bound with power allocation coincides with the results in [16], as presented

in Section 4.3, where the short term power allocation resulted in no advantage for outage

probability minimization.

The results presented in this section and in Section 4.3 do not comply with the power al-

location results for ergodic capacity given in Section 4.2 where it is concluded that power

allocation does not increase the maximum coding rate substantially. Thus, one should pay

attention to the results developed for finite blocklength channels when designing a system in

real life, since they can much differ from the infinite blocklength results.
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Figure 4.3: Comparison of DT bound for equal and adaptive power allocation, F = 4, N = 100

4.6 Conclusion

We have discussed the water-filling scheme to find the channel capacity when the blocklength

is taken as infinite. In addition, we have mentioned the proposed power allocation strategies to

minimize the outage probability or error probability for finite blocklength channels. Then, we

presented the short-term power allocation scheme in order to minimize the error probability

calculated by using the DT bound. Since, the expressions turned out to be quite complex,

we also introduced an algorithm called maximal marginal allocation in order to calculate the

power to be allocated for a given fading coefficient vector. It turned out that this algorithm

gives very similar results with the ones calculated by using the theoretical derivation. There

is 1-2 dB gain in performance with short term power allocation in the scenarios investigated.
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Figure 4.4: Comparison of DT bound for equal and adaptive power allocation, F = 4,N = 400

Figure 4.5: Comparison of DT bound for equal and adaptive power allocation, F = 4,N =

1000
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Figure 4.6: Comparison of DT bound for equal and adaptive power allocation, F = 10,N =

100
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Figure 4.7: Comparison of DT bound for equal and adaptive power allocation, F = 10,N =

400
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CHAPTER 5

Conclusions and Future Work

In this work, we have dealt with information theoretic error bounds for finite blocklength

systems with a given coding rate and proposed a method to approximately calculate the DT

bound for different input alphabets and different channel scenarios. We made use of the

normal approximation to the information density while calculating the DT bound.

In Chapter 2, we addressed our system model and investigated the well-known information

theoretic results when the coding blocklength is both infinite and finite. Ergodic channel

capacity when the blocklength is infinite and the delay-limited capacity for finite blocklength

channels are defined and how the outage probability term used for block fading channels

emerge in our system model has been shown. In addition, we discussed the major existing

achievability bounds for finite blocklength channels.

In Chapter 3, we proposed a method to calculate the DT bound. After introducing the DT

bound, it was compared with the previously existing bounds and we concluded that this bound

is tighter than the ones given in Chapter 2. In addition, no auxiliary variables are needed to

be optimized while calculating the DT bound. However, no closed-form expressions can be

obtained when one attempts to calculate it. Thus, a normal approximation is proposed to

calculate the DT bound. We have developed our approximation for Gaussian input alphabets

and both for AWGN and block fading channels. When the results of the proposed approxi-

mation is compared with the exact results, it turned out that our approximation characterizes

the bound for blocklengths as small as 100. We have investigated the effect of the blocklength

and the number of fading blocks for block fading channels. The average error probability

became smaller as the number of fading blocks is increased since the diversity order of the

system is increased. We concluded that blocklength is an important parameter for large val-
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ues of the number of fading blocks. In addition, we used the same method in our Monte

Carlo simulations for constrained alphabets. For constrained alphabets the achievable rate for

a given error probability and blocklength is closer to the corresponding constrained capacity

than those for Gaussian inputs to the channel capacity. Thus, in a real communication system,

we can approach to the information theoretic limits at even smaller blocklengths.

The proposed method is used to find the short term power allocation strategy for block fading

channels to minimize the error expression in the DT bound in Chapter 4 when CSIT is avail-

able. First, the existing power allocation strategies in the literature are investigated and the

comparisons with the equal power case are made through. Then, the expressions to calculate

the optimal power to be allocated to each block for the DT bound are presented. Since the

expressions turned out to be very complex to calculate, we also made use of an algorithm

called the maximum marginal allocation approach in order to calculate the allocated power

in a real-time system for a given fading coefficient vector. This approach gave very simi-

lar results with the numerical solution as long as the number of steps to calculate the power

is taken large enough. After presenting the simulations for different number of fading blocks

and different blocklengths, we have concluded that the power allocation results for the ergodic

channel capacity may much differ from the ones for finite blocklength systems. In addition,

the power savings for the DT bound decreases as the blocklength is increased which coincides

with the results for outage probability where the blocklength is assumed to be infinite and the

short term power allocation yielded nearly zero power gain.

In summary, one can use the proposed method to calculate the DT bound for AWGN channels

without the need of an optimization of auxiliary variables as in the major existing bounds. For

block fading channels the effect of blocklength is taken into account when an error bound is

selected as the performance indicator which acts as an advantage when compared with the

outage probability.

As a future work to our thesis, one can investigate the effect of long term power adaptation

for the optimization of DT bound. This can again lead to complex expressions to calculate

the optimal power and an algorithm should again be proposed for long term power allocation.

Since the outage probability optimization with long term power constraint provides one with

high values of power saving when compared with the short term optimization, it would be

worthwhile to compare the results for the DT bound.
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In addition, the proposed method can be used to calculate the DT bound for Multi-Input

Multi-Output (MIMO) systems. Thus, one can obtain the effect of the number of antennas for

a MIMO system with finite blocklength channels.

Future studies may also include the case where the channel is known at the receiver imper-

fectly. In our thesis, we have considered the case where the channel estimation at the trans-

mitting side is perfect. When the channel state is estimated both from the training symbols

and the information symbols, the effect of blocklength may become more important.
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APPENDIX A

Proof of Theorem 2.4.1

Define the set G = {(x, y) : i(x; y) > a}. Set

ε = Me−a + Pr {i(x; y) ≤ a} = Me−a + P(GC) (A.1)

and assume ε < 1. Thus P(GC) ≤ ε < 1 and therefore

Pr {i(x; y) > a} = P(G) > 1 − ε > 0. (A.2)

Define Gx = {y : (x, y) ∈ G} and

R = {x : P(Gx|x) > 1 − ε} . (A.3)

We choose our first codeword x1 of the codebook in the set R and for the decoder we decide

that x1 is sent if y ∈ F1 = Gx1 . If possible, for the next codeword we choose x2 ∈ R such

that P(Gx2 − F1|x2) > 1 − ε and let F2 = Gx2 − F1. We continue in the same way until all the

codewords are constructed or all the points in R are exhausted. When we are given the pairs{
xj, F j

}
for j = 1, · · · (i − 1), we should find xi ∈ R such that

P(Gxi −
⋃
j<i

F j|xi) > 1 − ε (A.4)

and let Fi = Gxi −
⋃
j<i

F j. If the points in R satifying the above conditions are finished before

we collected M points, then denote the final point’s index as n. For every i ≤ n, the following

inequality is satisfied:

P(Fc
i |xi) ≤ ε. (A.5)

Thus we found a decoding rule at the receiver that the bound in (2.19) is satisfied if and only

if we can prove that n is not strictly less than M. For the proof let us assume that n < M and

let us define F =

n⋃
i=1

Fi and express P(G) as

P(G) = P (G ∩ (A × F)) + P
(
G ∩ (A × Fc)

)
. (A.6)
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We can bound the first term in (A.6) as

P (G ∩ (A × F)) ≤ P(A × F) = P(F) =

n∑
i=1

P(Fi). (A.7)

The last equality follows from the fact that Fi’s are disjoint.

Define f(x,y) as

f (x, y) =
p(x, y)

p(x)p(y)
, (A.8)

which means that i(x; y) = log( f (x, y)). The following inequalities

P(Fi) =
∑
y∈Fi

p(y) ≤
∑

y∈Gxi

p(y) ≤
∑

y∈Gxi

f (xi, y)
ea p(y) ≤ e−a

∑
y

p(y|xi) = e−a, (A.9)

lead to

P(G ∩ (A × F)) ≤ ne−a. (A.10)

We now bound the second term in (A.6) as

P(G ∩ (A × Fc)) =
∑

x
P(G ∩ (A × Fc))|x)p(x)

=
∑

x
P(Gx ∩ Fc)|x)p(x) =

∑
x

P(Gx −

n⋃
i=1

Fi)|x)p(x) (A.11)

If we define the set

B =

x : P(Gx −

n⋃
i=1

Fi|x) > 1 − ε

 , (A.12)

it must be true that P(B) = 0, otherwise there must be one extra point xn+1 satisfying

P(Gxn+1 −

n+1⋃
i=1

Fi|xn) > 1 − ε. (A.13)

Thus we bound the second term as

P(G ∩ (A × Fc)) ≤ 1 − ε (A.14)

and we get that

P(G) ≤ ne−a + 1 − ε. (A.15)

We defined ε in (A.1) and we can write P(G) as

P(G) = 1 − ε + Me−a. (A.16)

The last two equations gives a contradiction and hence n ≤ M. This result completes the

proof.

60



APPENDIX B

Proof of Theorem 2.4.2

For a given M and β, consider the pairs (x, y) of input and output words and define the set T

that consists of those pairs for which i(x, y) > logβ. Then the probability that the (x, y) pair

will belong to the set T is 1− Pr(i(x, y) ≤ logβ). We consider the ensemble of codes obtained

as follows. The integers 1, 2, · · · ,M = 2NR are associated independently with B different

possible input words x1, x2, · · · , xB with probabilities p(x1), · · · , p(xB). Thus an ensemble

of codes are produced each of which uses M (or less) input words since each codeword is

constructed independently. If there are B different input words, there will be BM different

codes in this ensemble. The constructed codes have different probabilities. As to say, the

code in which all integers 1, · · · ,M are mapped to a single input word x1 has probability

p(x1)M. A code in which dk of the integers are mapped into xk has probability
∏

k

p(xk)dk .

In order to obtain the bound given in (2.23) we will deal with the average probability of error

for this ensemble of codes. We assume that the use of each codeword is equiprobable with

probability 1/M. The decoding rule is defined as follows. A received vector y is decoded

to the integer m with the largest probability conditional on the received y, which actually

corresponds to MAP (maximal a posteriori) decoding. After defining the decoding rule, we

are ready to calculate the average probability of error for this ensemble of codes. Consider

a particular message which is the integer ‘1’. It will be mapped to x with probability p(x).

When it is mapped to x and a word y is received, an error will occur if there are one or more

integers mapped into the set S y(x) of input words which have an a posteriori probability of

higher than or equal to that of x in the code in question. Let us define the probability of all

these input words as

Qy(x) =
∑

x′∈S y(x)

p(x′). (B.1)
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Thus (B.1) is the probability associated with all words more probable or as probable as x

conditioned on the received word y. The fraction of codes in which the second message ‘2’

is not in S y(x) is thus equal to 1 − Qy(x). The fraction of codes in which S y(x) is free of

all other integers is
(
1 − Qy(x)

)M−1
. The same argument can be applied to any other integer

2, · · · ,M. Thus the probability of error in this ensemble where the message is mapped into

input codeword x and received as y can be expressed as

p(x, y)
[
1 −

(
1 − Qy (x)

)M−1
]
. (B.2)

The average probability of error can then be written as

ε =
∑
x,y

p(x, y)
[
1 −

(
1 − Qy(x)

)M−1
]
. (B.3)

In order to bound the expression in (B.3) we break the sum into two parts. The first is a sum

over (x, y) where the pair belongs to the set T and the second over the complementary set TC .

ε =
∑
TC

p(x, y)
[
1 −

(
1 − Qy(x)

)M−1
]

+
∑

T

p(x, y)
[
1 −

(
1 − Qy(x)

)M−1
]

(B.4)

We replace
[
1 −

(
1 − Qy(x)

)M−1
]

by 1 in the first summation in (B.4) increasing the summa-

tion. The first term becomes
∑
TC

p(x, y) which is equal to Pr(i(x, y) ≤ logβ). For the second

sum we use a basic inequality which is
(
1 − Qy(x)

)M−1
≥ 1 − (M − 1)Qy(x). Then the second

sum is increased by replacing
[
1 −

(
1 − Qy(x)

)M−1
]

by (M − 1)Qy(x). Thus the bound can be

expressed as

ε ≤ Pr(i(x, y) ≤ logβ) + (M − 1)
∑

T

p(x, y)Qy(x). (B.5)

We must show that for (x, y) in T , Qy(x) ≤ 1
β . With (x, y) in T

log
p(y|x)
p(y)

> logβ, (B.6)

and

p(y|x) > p(y)β. (B.7)

If x′ is in S y(x),

p(y|x′) ≥ p(y|x) > p(y)β (B.8)

which results in

p(x′, y) > p(x′)p(y)β (B.9)
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and

p(x′|y) > p(x′)β. (B.10)

Summing each side of (B.10) over x′ ∈ S y(x) gives

1 ≥
∑

x′∈S y(x)

p(x′|y) > βQy(x). (B.11)

The left inequality in (B.11) holds since the sum of a set of disjoint probabilities cannot be

greater than one. Hence we get

Qy(x) <
1
β
. (B.12)

By using (B.12) in (B.5) we obtain

ε ≤ Pr(i(x, y) ≤ logβ) +
M − 1
β

∑
T

p(x, y) (B.13)

and

ε ≤ Pr(i(x, y) ≤ logβ) +
M − 1
β

, (B.14)

by using the fact that the sum of probabilities of disjoint sets cannot exceed one. Since the

average probability of error over the chosen ensemble of codes is satisfied there must be at

least one code that satisfies the bound which concludes the proof.
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APPENDIX C

Proof of Theorem 2.4.4

A maximum-likelihood decoder operates at the receiver so that the decoder maps the obser-

vation y into the integer m if

p(y|xm) > p(y|xm′),∀m′ , m, 1 ≤ m′ ≤ M. (C.1)

By using the random coding argument, the average probability of error can be written as

ε =
∑
xm

∑
y

p(xm)p(y|xm)p {error|m, xm, y} , (C.2)

where p {error|m, xm, y} is the probability of decoding error conditioned on the message m

entering the encoder, reception of y at the receiver and also the selection of xm as the mth

codeword.

For given m, x, y, define the incorrect decoding event Am′ for every m′ , m as the event that

the codeword m′ is selected since p(y|xm′) ≥ p(y|xm). Then we have

p {error|m, xm, y} ≤ P(
⋃

m,m′
Am′) ≤

 ∑
m,m′

P(Am′)

ρ , for any 0 < ρ ≤ 1. (C.3)

The first inequality in (C.3) is due to the fact that the decoder does not necessarily make an

error if p(y|xm) = p(y|xm′) for some m′ and the second inequality comes from Lemma 2.4.3.

If we use the definition of Am′ we have

P(Am′) =
∑

xm′ :p(y|xm′ )≥p(y|xm)

p(xm′) (C.4)

We can bound (C.4) by multiplying each term by [p(y|xm′)/p(y|x)]s, for any s > 0 and if we

further bound by summing over all x′m, we obtain

P(Am′) ≤
∑
xm′

p(xm′)
p(y|xm′)s

p(y|xm)s , s > 0. (C.5)
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The upper bound in (C.5) is satisfied for every m′ so we can rewrite (C.3) as

p {error|m, xm, y} ≤
(M − 1)

∑
x

p(x)
p(y|xm′)s

p(y|xm)s

ρ . (C.6)

If we substitute (C.6) into (C.2), we get

ε ≤ (M − 1)ρ
∑

y

∑
xm

p(xm)p(y|xm)1−sρ


∑

xk

p(xk)p(y|xk)s

ρ (C.7)

If we choose s = 1/(1 + ρ), then

ε ≤ (M − 1)ρ
∑

y

∑
xm

p(xm)p(y|xm)
1

1+ρ


∑

xk

p(xk)p(y|xk)
1

1+ρ

ρ (C.8)

Since xm is a dummy variable for the summation the bound in (2.27) is finally obtained.
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