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ABSTRACT

ENHANCING ACCURACY OF HYBRID RECOMMENDER SYSTEMS THROUGH
ADAPTING THE DOMAIN TRENDS

Aksel, Fatih

M.S., Department of Computer Engineering

Supervisor : Dr. Ayşenur Birtürk

August 2010, 75 pages

Traditional hybrid recommender systems typically follow a manually created fixed prediction

strategy in their decision making process. Experts usually design these static strategies as

fixed combinations of different techniques. However, people’s tastes and desires are tempo-

rary and they gradually evolve. Moreover, each domain has unique characteristics, trends and

unique user interests. Recent research has mostly focused on static hybridization schemes

which do not change at runtime. In this thesis work, we describe an adaptive hybrid rec-

ommender system, called AdaRec that modifies its attached prediction strategy at runtime

according to the performance of prediction techniques (user feedbacks). Our approach to this

problem is to use adaptive prediction strategies. Experiment results with datasets show that

our system outperforms naive hybrid recommender.

Keywords: Information filtering, Hybrid Recommender Systems, Adaptive Recommender

Systems, Machine Learning, Switching Hybridization, Decision Tree Induction
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ÖZ

ALANDAKİ DEĞİŞİMLERE UYUM SAĞLAYARAK KARMA TAVSİYE
SISTEMLERİNİN DOĞRULUĞUNUN ARTTIRILMASI

Aksel, Fatih

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Dr. Ayşenur Birtürk

Ağustos 2010, 75 sayfa

Geleneksel karma tavsiye sistemleri, karar verme süreçlerinde genel olarak elle oluşturulmuş,

sabit tahmin stratejilerini uygularlar. Alan uzmanları bu statik tahmin stratejilerini farklı

tekniklerin sabit birleşimiyle tasarlar. Ancak, insanların zevkleri ve ilgi alanları geçiçidir

ve zamanla evrilir. Üstelik, her alanın kendine özgü karakteristiği, eğilimleri ve kullanıcı

davranışları vardır. Son yıllarda yapılan araştırmalar daha çok, çalışma zamanında değişmeyen,

statik karmalaştırma yöntemleri üzerine yoğunlaşmıştır. Bu tez çalışmasında, AdaRec olarak

adlandırdığımız, kendi tahmin stratejisini çalışma zamanında tahmin tekniklerinin perfor-

mansına göre değiştirebilen, ’uyarlanabilir karma tavsiye sistemini’ anlattık. Bu probleme

yönelik geliştirdiğimiz çözüm yaklaşımımızda, uyum sağlayabilen tahmin stratejileri kul-

landık. Veri kümeleri üzerine yaptığımız deneyler önerdiğimiz sistemin, geleneksel karma

sistemlerden daha iyi çalıştığını göstermektedir.

Anahtar Kelimeler: Bilgi Filtreleme, Karma Tavsiye Sistemleri, Uyarlamalı Tavsiye Sistem-

leri, Otomatik Öğrenme, Anahtarlamalı Karma Sistemler, Karar Ağacı Oluşturma
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CHAPTER 1

INTRODUCTION

With the rapid advances of the recommendation systems technology, a number of recom-

mender engines have been developed for various application domains. Content-based and

collaborative filtering are the two main paradigms that have come to dominate the current

recommender systems. Content-based recommender system uses the descriptions about the

content of the items (such as meta-data of the item), whereas collaborative filtering system

tries to identify users whose tastes are similar and recommends items they have liked. The

popular Amazon.com1 item-to-item system [26] is one of the well-known recommender sys-

tem that uses collaborative filtering techniques. NewsWeeder [37] and InfoFinder [36] are the

pure content-based recommender systems that analyze the content of items, in their recom-

mendation process.

In the literature other noteworthy paradigms have been studied [13]. Some of these as follows;

demographic recommenders, which categorize the users based on their personal attributes and

making recommendations according to the demographic classes; knowledge-based systems,

which generates recommendations based on the knowledge about the item and the user; hybrid

recommender systems, try to exploit the advantages of different recommendation techniques

by combining them with a predefined hybridization scheme [42, 13, 2].

Previous research in this area, has shown that these techniques suffer from various potential

problems-such as, sparsity, reduced coverage, scalability, and cold-start problems [2, 13, 73].

For example; collaborative filtering techniques depend on historical ratings of across users

that have the drawback, called cold start problem- system cannot draw any inferences for

users or items about which it has not yet gathered sufficient information. The technique tends

1 http://www.amazon.com
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to offer poor results when there are not enough user ratings. Content-based techniques can

overcome the cold start problem, because new items can be recommended based on item

features about the content of the item compared with existing items. Unfortunately, content-

based approaches require additional information about the content of item, which may be hard

to extract (such as, movies, music, restaurants). Every recommendation approach has its own

strengths and weaknesses. Hybrid recommender systems have been proposed to gain better

results with fewer drawbacks.

Most of the recommender system implementations focuses on hybrid systems that use mixture

of recommendation approaches [13]. In this way the known restrictions and drawbacks of

content-based and collaborative filtering systems are minimized. Previous research on hybrid

recommender systems has mostly focused on static hybridization approaches (strategy) that

do not change their hybridization behavior at runtime. Fixed strategy may be suboptimal for

dynamic domains&user behaviors. Moreover they are unable to adapt to domain drifts. Since

people’s tastes and desires are transient and subject to change, a good recommender engine

should deal with changing consumer preferences.

In this thesis, we describe an adaptive hybrid recommender system that modifies its switch-

ing strategy according to the performance of prediction techniques. Our hybrid recommender

approach uses adaptive prediction strategies that determine which prediction techniques (al-

gorithms) should be used at the moment an actual prediction is required.

We apply an instance based learning scheme, that learns through user feedbacks in order to

solve the problem of building adaptive hybrid recommendation systems. Hybrid recommen-

dation systems combine multiple algorithms (prediction techniques) and define a switching

behavior among these techniques. The main idea of our system is to re-design the hybrid sys-

tem’s switching behavior according to the performance results of the prediction algorithms.

We calculate the performance results of the algorithms by using the user feedbacks. We in-

troduce the novel idea of analyzing the prediction performance results and using them as

run-time metrics. This method allows us to use characteristics of the input user/item when

determining how to combine the prediction techniques at run-time. The run-time metrics are

properties of the input user/item that are related to the nature of the application domain. For

example, the number of items or item’s similar user count that the input user has previously

rated may indicate how well a collaborative filtering engine will perform. Learning algorithms

2



analyze performance results of previous predictions and then re-design the combination of

prediction techniques.

The rest of the thesis is structured as follows.

Chapter 2 - Background and Related Work, gives an overview of recommender systems

in literature. It introduces the main used paradigms and techniques of recommender systems,

and identifies their approaches in detail. Later on other relevant studies in recommender

systems and machine learning area are described. It also describes current recommendation

systems, their approaches and structures.

Chapter 3 - An Adaptive Recommender System, after the introductory chapters have been

explained, we will explain the the core concepts of our proposed hybrid recommender in more

detail. The methodology and the framework that are used to develop the system is presented

and discussed. The system architecture and components are presented and described in detail.

Chapter 4 - Experiments & Evaluation, gives an overview of; experimental setup, analysis

of used datasets and evaluation metric. This chapter provides a summary of testing methods

of the proposed adaptive system and presents experimental results. Also in this chapter the

results of the experiments are discussed and the adaptive system is compared to the original

Duine Framework.

Chapter 5 - Conclusion & Future Work, discusses the concluding remarks and explains the

future work.

3



CHAPTER 2

BACKGROUND AND RELATED WORK

The previous chapter provided the background and the problem definition. In this chapter,

an overview of recommender systems and the recommendation algorithms will be presented.

The aim of this chapter is to provide the relevant literature in the recommender systems field.

It also includes the general concepts of the related machine learning literature, adaptive rec-

ommender systems and discusses some of the important recommendation systems framework

examples.

2.1 Recommender System Types and Techniques

In the ’information age’, one of the major problem is to deal with more information than we

are able to process to make sensible decisions. We are bombarded with information whether

or not we actively look for it. As the world moves into a new era of globalization an increasing

number of people are connecting to the Internet. With the excessive use of the Internet users

have to deal with a vast variety of information. A rapidly increasing rate of new informa-

tion being produced The mass of content available has negative impact over its effective use.

Recommender Systems (RSs) are designed to help individuals to deal with this information

overload problem and enable them to make evaluative decisions [2].

The basic purpose of a RS is to recommend information items (restaurants, movies, films,

news, songs, images, jokes, books, web pages, etc.) that will be of interest to a specific user.

Recommender systems have been widely used both in academia and industry so far and many

different recommendation approaches have been applied in order to make more accurate and

more efficient recommender systems. Each approach has its own advantages and limitations.
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Since RS are normally grounded to solve real world problems, the field is both exciting and

rewarding to industry and academic society alike.

Based on their recommendation techniques, the RS systems are basically classified into the

three basic categories, based on how recommendations are made [2].

• Content-Based systems, recommend an item to an user based on the description of the

item’s content and the user’s preference.

• Collaborative systems, recommend items based on the the similarities of users or

items.

• Hybrid approaches, combine collaborative and content-based methods.

RSs have been used in various different fields. These contexts range from different areas,

such as web stores, online communities, music players, personalized media streams, social

webs etc [57]. Broadly speaking it can be said that a RS can be used in every context where

a user is to choose among several different options. The system assists the user to select one

good-fitting item.

In the beginning of 1990s, Tapestry [23], is one of the first collaborative filtering-based sys-

tems, which was developed at the Research Center of Xerox. This system allowed users to

annotate e-mail messages so that others could find documents based on previous comments.

It was the first usage of combining human feedbacks with automated filtering which all of the

systems users benefit from. Similar concepts and principles were successfully applied to the

Internet discussion forums and movie filtering systems.

The initial success of RS leads the increase of e-commerce businesses that implement them.

As stated by Resnick and Varian [57], e-commerce was also the one of the first application

domains of RS. These sites were trying to offer products to their customers that might be in-

terested in. The principle behind this approach was the abundance of products that made user

choices and navigation very difficult. This generalizes information overload problem. Many

systems that provides recommendations for e-commerce applications have been introduced in

the literature [31, 57].

Recommender systems are not limited to offering what users can buy. Other applications

for RS have been identified. One of them is posed by Ansari [3] that the proposed system

5



helps users for searching the Internet. In order to provide better results, search engines can

be customized for each user. RS automate personalization on the Web by enabling individual

personalization for each user. In generally with the power of RS the customization also can

be applied to other types of websites because they help the site adapt itself to each customer.

The evolution to a semantic web was seen as a method to enhance the way users browse the

Internet [43]. Also the results of the search engines will not be limited to the keyword queries

entered. However, as stated by Middleton [43], the real semantic web applications are still

in their infancy as they dependent on the metadata that authors attach to their websites. The

transition to the semantic web is something that will take a long time considering the amount

of information that is available at the moment online and that needs to be transformed so that

ontologies can be used to classify it.

There have been many collaborative systems developed in the academic society and many

researches have been done in recommender systems with the various different fields. Recom-

mender systems have been researched in the context of statistics, machine learning, distributed

and mobile systems, social network analysis, agent-based artificial societies, human-computer

interaction, computational trust and etc [73, 13, 61, 72].

In the content-based system, items are recommended to a user based upon description of

the items and user’s interest. Collaborative filtering recommenders use social knowledge,

typically ratings of items by a community of users, to generate recommendations. Although

hybrid recommender systems has focused into combining these two paradigms, it is useful to

examine them separately to understand the fundamental concepts in their approach.

2.1.1 Content-Based Systems

Content-Based methods semantically analyse the descriptions of items. These representations

of the items in the user profile are subsequently compared to possibly recommended items. If

they matched with each other, the item is a candidate that would be recommended. Content-

based recommender systems analyse item descriptions by using a similarity measure between

the description of the item and user’s preferences [2].

In content-based recommendation methods, system selects items based on the correlation

between the content of the item (such as metadata) and the user preferences. The content-

6



based methods provides predictions P(u, i) for an user u and for an item i based on the ratings

R(u, i′) given by the same user u to different items i′ ∈ Items that share similar content with to

item i [2]. For example, in a news recommendation application, in order to recommend news

to user u, the content-based recommender system tries to understand user preferences by

analyzing commonalities among the content of the news user u has rated in the past (specific

titles, authors, news classifications etc.). Then, the filtered news that have a high degree of

similarity to whatever the customer’s preferences are would get recommended.

More formally, let Content(i) be the set of attributes characterizing item i. It is usually com-

puted by extracting a set of features (meta-data) from item i (its content) and is used to deter-

mine appropriateness of the item for recommendation purposes [1, 2].

Moreover, a knowledge base, also called user profile, for a user u should be defined. Majority

of the the content-based systems cope with recommending text-based items. It would be better

to define the user profiles in terms of weights of important keywords. Also it can be explained

such a way that, ContentBasedPro f ile(u) for user u can be defined as a vector of weights

(wu1, . . . ,wuk), where each weight wui denotes the importance of keyword ki to user u and can

also be specified using various information retrieval metrics [1].

Rating function R(u, i) that is used by most of the content-based recommendation techniques,

generally defined as;

R(u, i) = score(ContentBasedPro f ile(u),Content(i))

In the literature, one of the earliest content-based filters developed by H.P. Luhn at IBM in

the 1950’s. Luhn proposed a system that can be seen as a book recommendation system,

which uses individual user profiles to produce reading recommendations by using an exact

match system [8]. This system, which was designed for use in a library, uses the user’s

actual reading habits to update the user’s profile. From that limited computations (and mostly

manual) content-based filters are almost limited to text-based applications, since in majority

of other areas of computers are not yet have such an efficient content analyzing process.

Because of the significant and early advancements made by the information retrieval and

filtering communities and because of the importance of several text-based applications, many

current content-based systems focus on recommending items containing textual information,
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such as documents, Web sites (URLs), and Usenet news messages.

Search engines were the one of the earliest and simplest content-based systems. These sys-

tems retrieve the list of web-sites or documents with respect to the keyword queries [39].

According to Oard’ study [51], only four over 60 systems that were in operation in 1969, had

implemented automatic profile updating, other systems builded upon on the users manually

updating query terms. Therefore these systems use primitive approaches and usually they are

not suitable for individual users. They return the same list to any user who uses the same

terms in a search, and in this sense they really don’t fit customized RS definitions.

In addition to the traditional information retrieval techniques, additional research (and com-

puting power) brought new concepts. Various machine learning techniques can be applied

for content-based recommendation methods; such as; Decision Trees [8], Bayesian classifiers

[51], clustering [39], and artificial neural networks.

Content-based filtering techniques suffer from two major problems [2]. The first problem is

about the contents of the items, some items suffer from a lack of easy-extractable content. In

the literature, as mentioned at the above section, majority of the implemented content-based

systems developed upon the text-based contents and other types of contents such as musics,

movies, television programmes, hotels, have not been used very often. The second problem is

about the content-based approach, since these systems are designed to recommend items that

are similar to those already rated by the user, they are not suitable to recommend interesting

items that some how the user may miss [5]. Moreover, content based recommender systems

suffer from the cold-start problem since they require a sufficient number of items to be rated in

order to construct a user profile. Therefore, for the new user the accuracy of recommendations

are low.

2.1.2 Collaborative Systems

Collaborative Filtering (CF) systems on the other hand, recommend one certain item by cor-

relating the user’s profile with profiles of other users. Then the system recommends items

similar users liked before. Depending on whether an item can be used several times, an item

will also be recommended several times [2].

Collaborative filtering methods categorize information based on the user’s conception of the
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Figure 2.1: An abstract view of collaborative filtering process

data instead of the data itself. Therefore in the CF the data is filtered by using evaluation

instead of analysis. Moreover, collaborative filtering methods stresses the tastes of user com-

munities by calculating the recommendations by analyzing the opinions of the current user

and community.

Figure 2.1 shows an abstract view of the collaborative filtering process that all users contribute

to the taste of the community based on their preferences. Recommendations for the current

user are produced by analyzing the user’s ratings with community ratings. By using the

collaborative filtering approach, a community is formed with the combination of the similar

users.

Collaborative based recommender systems, generate the predictions for a particular user based

on the profiles of the users especially who have previously rated the same item. More pre-
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cisely, the rating R(u, i) of item i for user u is estimated based on the ratings R(u′, i) assigned

to the same item i by those users u′ who are similar to user u [1, 2].

To date, several collaborative systems have been developed in the industry, since the out-

break of the early commercial collaborative systems. Some of these systems are; Video

Recommender [29], GroupLens [56, 35], MovieLens [47] and Ringo [63], that gain popu-

larity among the researchers. These systems use collaborative filtering algorithms for their

recommendation process. Other well-kown examples of collaborative recommender systems

include MovieCritic [65] that generate online movie recommendations, the popular book rec-

ommendation system from Amazon.com [40], the PHOAKS [66] system that assits users to

find relevant information on the Web, and the Jester [24] system that recommends jokes.

In the literature Collaborative Filtering systems are divided in to two sub areas; these are

memory-based(user-based) and model-based(heuristic-based or item-based) [11]. At the

early stages of the collaborative filtering research, researchers used a memory-based approach

that makes rating predictions based on the collection of previously rated items by the users

[57]. Later on, due to some shortcomings and limitations with the memory-based approach,

researchers developed model-based content filtering systems that use the collection of ratings

to learn a model [11] instead of analyzing users past behaviors in the memory. The learned

model then used to make predictions. Although the model-based approach deals with some of

the limitations related to memory-based filtering, this approach also has its own drawbacks.

2.1.2.1 Memory-based collaborative filtering

Memory-based algorithms [57, 63, 11] use entire collection of user rating data to compute

similarity between users or items. According to the definition, the value of the unknown

rating ru,i for user u and item i is usually computed as an aggregate of the ratings of some

other (such as the N most similar ) users for the same item i.

Similarity measure, uses the users previous ratings and calculates the similarity between them.

The similarity measure between the users u and u′, sim(u, u′), determines the distance between

users u and u′ and is used as a weight to ratings ru′,i. The more similar users u and u′ are, the

more weight rating ru′,i. Various approaches have been used to compute similarity measure

sim(u, u′) between users in collaborative recommender systems. In most of these approaches,
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sim(u, u′) is based on the ratings of items that both users u and u′ have rated. The two most

popular approaches are the correlation-based and the cosine-based [58, 57, 1]. These two

equations are shown below.

sim(x, y) =

∑
s∈S xy

(rx,s − r̄x) (ry,s − r̄y)

√∑
s∈S xy

(rx,s − r̄x)2
∑
s∈S xy

(ry,s − r̄y)2

sim(x, y) = cos(~x, ~y) =
~x · ~y

|| ~x ||2 × ||~y ||2
=

∑
s∈S xy

rx,s ry,s√∑
s∈S xy

r2
x,s

√∑
s∈S xy

r2
y,s

where rx,s and ry,s are the ratings of item s assigned by users x and y respectively, S xy = {s ∈

Items|rx,s , ∅ ∧ ry,s , ∅} is the set of all items co-rated by both customers x and y, and x · y

denotes the dot-product between the vectors x and y. In the equation, ri, j = ∅ indicates that

item j has not been rated by user i.

In the literature many different memory-based collaborative filtering approaches have been

developed so far [52]. The Tapestry system explained in the Section 2.1, GroupLens [35] and

Ringo [63] projects which were developed by different research groups, were the first content

filtering algorithms to automate prediction process.

Since memory-based approaches are relatively simple, easy to implement on a conceptual

level and also these systems have no expensive model-building development difficulty, memory-

based collaborative filtering methods began to gain popularity. Although these systems are

sufficient enough to solve many real-world problems, they do have other limitations [5, 38,

46].

• Sparsity: Memory-based filtering systems are usually suitable for large datasets. Many

real-world systems have large user and item database and available data are very insuf-

ficient (even active users rarely rate the items) to identity similar users. Accordingly,

a memory-based CF system may be unable to make any item recommendation for a

particular user. As a result, the similarity between two users cannot be defined, so the

recommendation accuracy tends to be poor.
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• Learning: In these systems no information is inferred from the user profile because the

lack of explicit model. So no general insight is gained from the users profile.

• Scalability: The algorithms used by most memory-based CF systems require compu-

tations on the user-item matrix. This situation causes to computation times to grow

according to the number of users and items. Because of this, a typical memory-based

CF system with millions of users and items will suffer from serious scalability prob-

lems.

The problems of memory-based content filtering systems, issue have led to the exploration of

an alternative model-based filtering approach.

2.1.2.2 Model-based collaborative filtering

In contrast to memory-based methods, model-based collaborative filtering methods builds a

model based on the user preferences [11, 10]. By using the compiled model, some of the

limitations related to memory-based CF might be solved. This can be done by first building

a descriptive model of users, items and ratings based on the complete data set. The model of

the system should be built in an offline manner due to the models possible expensive com-

pilation process. The recommender system then consult the model for its recommendations.

Therefore, if we compare the the memory-based approach with the model-based one, it can be

inferred for the memory-based algorithms that they apply lazy learning methods, since they

do not compile a model and perform the heuristic computations at the time a recommendation

required.

Breese [11] presented a model-based recommendation techniques, which was based on a

probabilistic approach to collaborative filtering. In the system unknown ratings are calculated

as follows;

ru,i = E(ru,i) =

n∑
x=0

x × Pr(ru,i = x|ru,i′ , i′ ∈ S u)

and it is assumed that rating values are integers between 0 and n, and the probability ex-

pression is the probability that the user u will give a particular rating to the item i given the

previous ratings of items rated by the user u.
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Bayesian networks and Bayesian clustering [27] are the two main probabilistic models that

are evaluated at the early research on model-based collaborative filtering approaches. In the

Bayesian network model, each node in the network corresponds to an item in the data set.

The state of each node corresponds to the possible rating values for each item. Both the

structure of the network, which encodes the dependencies between items, and the conditional

probabilities, are learned from the data set. In the Bayesian clustering model, on the other

hand, users with similar preferences are clustered together into classes. Given the user’s class

membership, the ratings are assumed to be independent. The number of classes and the model

parameters are learned from the data set.

To date many different model-based collaborative recommendation approaches have been

developed so far. Some of these are; a statistical model for collaborative filtering [67], a

Bayesian model [14], a probabilistic relational model [22], and a linear regression [22].

Another approach in collaborative filtering research combines both model-based approaches

and memory-based [52, 71]. Some of these approaches include model-based recommenda-

tions into the final prediction, and does not require clustering of the data set [68].

Model-based filtering approaches offer many advantages over memory-based filtering [11].

• Compiled models for model-based approach are normally require less memory than for

storing the whole database.

• The model-based approach may offer added values beyond its predictive capabilities,

by highlighting certain correlations in the data.

• Once the model is builded, predictions can be generated quickly by consulting to the

model. However, it should be mentioned that the time complexity to compile the data

into a model may be an expensive process, and moreover adding one new data point

may require a full recompilation of the model.

The resulting model of model-based CF systems is usually very small, fast and essentially

as accurate as memory-based methods [11]. Model-based methods may prove practical for

environments in which user preferences and behaviors change slowly. Model-based methods,

however, are not suitable for environments in which user preference models must be updated

rapidly or frequently.
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2.1.3 Hybrid Systems

In the recent years hybrid recommendations systems are developed to stand against the weak-

ness of pure collaborative and pure content-based methods. A number of different recom-

mendation systems both in academia and in industry use a hybrid approach by combining

collaborative and content-based techniques [13]. This helps to avoid certain limitations of

content-based and collaborative filtering systems [2]. Table 2.1 presents the different types of

hybridization methodologies described by Burke [13, 12].

Table 2.1: Hybridization Techniques.

Method Explanation
Weighted Scores of various recommendation techniques are

grouped to produce a single recommendation.
Switching The recommender system switches between several

techniques, depending on the situation, to produce the
recommendation.

Mixed Several different techniques are used at the same time.
Feature Combination Features from data sources of different techniques are

combined and used as an input to one single recom-
mendation technique.

Cascade The recommender system uses one technique to gener-
ate a recommendation, and a second technique to break
any ties.

Feature Augmentation The recommender system uses one technique to gen-
erate an output, which in turn is used as an input to a
second recommendation technique.

Meta-level The recommender system uses one technique to gen-
erate a model, which in turn is used as an input to a
second recommendation technique.

There have been many hybrid approaches proposed in the literature. The Tapestry system,

which is explained in the Section 2.1, Fab Recommender [5] are the earliest examples of the

hybrid systems. However, these systems do not really use the full hybrid approaches.

The Research Assistant Agent Project (RAAP) [18] system can be considered as one of the

first true hybrid recommendation system. RAAP system is developed to support collaborative

research by classifying domain specific information retrieved from the Web, and recommend

the gathered ’nugget of knowledge’ called bookmarks to other researchers with similar re-

search interests. EntreeC, which was proposed by Burke [12], is a cascade hybrid recom-
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mender system that recommends restaurants to users using both content based filtering and

social filtering as prediction techniques.

To date a number of hybrid recommender systems have been proposed that they combine in-

dividual systems to avoid certain aforementioned limitations of these systems [13]. This helps

to avoid certain drawbacks of content-based and collaborative filtering systems. Previous re-

search on hybrid recommender system has mostly focused on static hybridization approaches

(strategy) that do not change their hybridization behavior at runtime. Fixed strategy may be

suboptimal for dynamic domains and user behaviors. Moreover they are unable to adapt to

domain drifts. Since people’s tastes and desires are transient and subject to change, a good

recommender engine should deal with changing consumer preferences.

2.2 Learning in Recommender Systems

After presenting background information about recommender systems and their approaches,

in this section we introduce the machine-learning and profiling techniques commonly em-

ployed by recommender systems. We also present and describe the different learning tech-

niques.

Many techniques have been published in the user-modeling [31] and machine-learning [70]

literature. The techniques described here are the subset commonly used by the recommender

systems community.

Data mining methods use Machine Learning (ML) techniques as their technical platform. ML

algorithm is used to extract information from the raw data in databases-information that is

expressed in a comprehensible form and can be used for a variety of purposes [70].

ML techniques have been used for generating individual user models according to the users

interaction with a system and clustering the users into communities with common tastes. The

model generation process is essential in order to have a useful and usable system that can

modify its behavior over time and for different users.

In the recommender systems, the tasks of learning user profiles is often done by using machine

learning techniques. A classifier [45] is usually applied to compile the user profile. Classifiers

are general computational models for assigning a category to a given input.
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Classification is a data mining task which labels or categorizes a set of cases in a training set

into different classes according to a classification model [70]. For this task, a training (model)

set, a set of cases whose class labels are known, is first analyzed and a classification model is

constructed by a classifier, based on the features available in the data of the training set. Such

a classification model is then used to categorize a score set (a set of cases whose class labels

are unknown) [15]. Also the changes and drifts that might occur in the application domain or

in the user behaviors can be learned by using the classifiers.

Several different ML strategies (probabilistic approaches, decision trees, Bayesian networks,

association rules and neural networks) may be used for classification problems. In following

parts we will provide a general overview of the ML techniques.

2.2.1 Decision Tree Learner

Inductive learning methods, as one type of machine learning technique, are used to infer rules

of classification by analyzing examples from a domain [34]. Knowledge obtained by learning

techniques has various representation forms, including parameters in algebraic expressions,

decision trees, formal grammar, production rules, formal logic-based expressions, graphs, and

networks [70].

The ’divide-and-conquer’ approach commonly employed by ML algorithms to the problem

of learning from instance sets. The problem of constructing a decision tree with this process

naturally leads to a tree representation also called decision tree. A recursive process is used

for this process. First, select an attribute to place at the root node and make one branch for

each possible value. This process splits up the provided dataset into subsets, one for every

value of the attribute [70]. The process can be repeated recursively for each branch, using

only those instances that actually reach the branch. If at any time all instances at a node have

the same classification, stop developing that part of the tree.

An abstract representation of a decision tree is shown in Figure 2.2. Every decision tree

begins with what is termed a root node, considered to be the ”parent” of every other node.

Each node in the tree evaluates an attribute in the data and determines which path it should

follow. Typically, the decision test is based on comparing a value against some constant.

Classification using a decision tree is performed by routing from the root node until arriving

16



Figure 2.2: An example of a decision tree

at a leaf node.

Decision tree induction involves the recursive partitioning of a set of training data, which is

split into increasingly homogeneous subsets on the basis of tests applied to one or more of the

feature values. In the Decision Tree Induction Process, inductive learning is used in learning

from the training set. Classification make it possible to build a decision tree (or classification

rules) that classifies each instance. Each instance in the training set is used for classification,

building a decision tree.

A well-known example of decision tree learner algorithm is Quinlan’s[55] ID3 algorithm

which is used to construct decision trees from structured data. The ID3 algorithm uses infor-

mation theoretic precepts to create efficient decision trees. Given a structured data set, a list

of attributes describing each data element, and a set of categories to partition the data into,

the ID3 algorithm determines which attribute most accurately categorizes the data. A node is

established and labeled by this attribute. The edges coming from this node are labeled with

the possible values of the partitioning attribute. The dataset is then divided into subsets by

the values of this attribute. If a subset is completely categorized, then the edge terminates in

a leaf labeled by the categorization. Otherwise the subset is subdivided further by creating a

new node and repeating this process recursively.
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Figure 2.3: Covering algorithm: First covers the instances of a problem and then builds the
decision tree for the same problem

2.2.2 Rule Construction

In Section 2.2.1 decision tree algorithms based on divide-and-conquer approach to the clas-

sification problem is described. Decision tree induction algorithms work from the top down,

seeking at each stage an attribute to split on that best separates the classes; then recursively

processing the subproblems that result from the split. This method generates a decision tree

that can be converted into a set of classification rules [70].

An alternative approach is to take each class in turn and seek a way of covering all instances

in it, at the same time excluding instances not in the class. This is called a covering approach

[70] because at each stage a rule is identified that ’covers’ some of the instances. This covering

approach leads to a set of rules rather than to a decision tree.

In Figure 2.3 the covering method is visualized in two dimensional space of instances. Rule

covering algorithm splits the space vertically and horizontally and tries to cover all instances
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of a’s and b’s correctly.

2.2.3 Naive Bayes

Naive Bayes is the most used probabilistic algorithm and belongs to the general class of

Bayesian classifiers. These approaches generate a probabilistic model based on previously

observed data. It is usually used in content-based systems where the items are represented by

textual documents.

For example in a document classification process the Naive Bayes model work as follows; it

estimates the posteriori probability, P(c|d), of document d belonging to class c. This estima-

tion is based on the a priori probability,P(c), the probability of observing a document in class

c, P(d|c), the probability of observing the document d given c and, P(d), the probability of

observing the instance d. Using these probabilities, the Bayes theorem is applied to calculate

P(c|d) as follows [17]:

P(c|d) =
P(c) P(d|c)

P(d)

Although Naive Bayes performances are not as good as some other statistical learning meth-

ods such as nearest-neighbor classifiers or support vector machines, it has been shown that it

can perform surprisingly well in the classification tasks where the computed probability is not

important [19]. Another advantage of the Naive Bayes approach is that it is very efficient and

easy to implement compared to other machine learning methods.

2.2.4 Nearest Neighbor

Nearest neighbor methods are also common techniques to solve classification tasks, by defin-

ing the n most similar (just labeled) items to a given unlabeled item I. In succession, Item I is

associated with the classes of the most similar items [25]. Depending on the kind of data a va-

riety of similarity functions can be applied. While Euclidean distance metrics are often used

in the case of structured data, the vector space model (based on cosine similarity of vectors,

see Section 2.1.2.1) is often used in the context of more complex descriptions, e.g., feature

vectors based on texts.

19



The nearest neighbor algorithm simply stores all of its training data in memory. In order to

classify a new, unlabeled item, the algorithm compares it to all stored items using a similarity

function and determines the ’nearest neighbor’ or the k nearest neighbors. The class label or

numeric score for a previously unseen item can then be derived from the class labels of the

nearest neighbors.

Nearest neighbor algorithms are quite effective, the most important drawback is their ineffi-

ciency at classification time, since they do not have a true training phase and thus defer all the

computation to classification time [70].

2.2.5 Other Machine Learning Techniques

Some of the ML techniques, not employed in the previous section, include neural networks,

inductive logic learning and reinforcement learning. These techniques can be found not only

in commercial but also academic recommendation systems and other related technologies

[42]. Neural networks learn patterns within the term vectors via a network of nodes and

connections. Reinforcement learning adjusts weights based on the successful actions and is

used to learn patterns of behavior.

2.3 Adaptive Recommender System Examples

The recommender systems researchers have recently focused on the use of ML algorithms for

user modeling purposes. Many successful recommender systems have been developed and

used by people in many websites.

In this section, we present and explain the recommender system examples that use machine

learning techniques and adaptation methods. Instead of examining well-known examples of

commercial recommender systems (such as; Amazon.com[40], del.icio.us[16], Last.fm[53] ),

we will describe novel and the similar ones to our system.
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Figure 2.4: The abstract view of the Duine Framework prediction engine component.

2.3.1 Duine Framework

The Duine Framework [61] is a domain independent hybrid recommendation system that

was presented at the PhD thesis completed by Mark van Setten. It has been developed by

Telematica Instituut/Novay [20].

The Duine Framework [61, 50] is a software framework developed by Java. The framework

allows developers to create prediction engines for their own applications. Predictions are gen-

erated by prediction engines, which are the components of the framework. These predictions

can be used for personalization. Figure 2.4 presents the abstract view of components.

The framework creates a generic model for prediction techniques, that calculates a predicted

interest value for a piece of information for a given user, based on knowledge stored in the

user profile.

The prediction techniques use user profiles and information items as input for their calcula-

tion. Therefore, the Duine recommender stores data provided by users in user profiles. The

data are extracted from the ratings that are given to items and interests of user are tried to be

discovered. The Duine Recommender’s prediction techniques also have adaptation capabili-

ties that they have learned from explicit user feedbacks.

Duine allows developers to customize and extend the prediction engine by choosing among

a set of prediction strategies or creating their own. The prediction strategies can be defined
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with a set of rules to select prediction techniques and their weights in the prediction.Prediction

strategies are a way of easily combining prediction techniques dynamically and intelligently

in an attempt to provide better and more reliable prediction results. Prediction strategies are

the core part of the framework which are used for hybridization.

Figure 2.5 shows the visual representation of the default prediction strategy of the framework.

The main idea behind a prediction strategy is to select the prediction techniques based on

the most up-to-date information. Duine uses hard decision rules (if . . . then . . . else . . . ) to

decide what prediction techniques to use and combine. The framework allows the prediction

strategies to be nested in a hierarchy when necessary.

Table 2.2: Duine Framework Prediction Techniques

Prediction Technique Description
User Average Returns the average rating of the user for all content

items the user has rated in the past.
TopN Deviation Returns a prediction based on how all other users have

rated this content item in the past.
Social Filtering Bases its prediction on how other users that have sim-

ilar interests with the current users rated the content
item.

Already Known When the user has already rated the item, that rate is
returned, otherwise no prediction is returned.

Genre Least Mean Square (LMS) Bases its prediction on the categories or genres of piece
of information and learns how interested the user is in
information of certain categories or genres.

Case-Based Reasoning Bases its predictions on similar items that the user has
already rated in the past.

Information Filtering Bases its prediction on a large piece of text describing
an item and the known and learned interests of the user
by comparing the text with the interests of the user.

The Duine Framework has six built in recommendation techniques (including both social

filtering and content-based techniques) that can be used to create prediction strategies. These

techniques are listed in Table 2.2 [60]. Moreover, developers can add new algorithms to these

existing ones.

As seen in the Figure 2.5, the strategy contains some attributes, called tuning parameters,

that are used for technique selection criteria. In the Figure gray nodes represent prediction
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Figure 2.5: The Duine Recommender’s default prediction strategy depicted as decision tree.

algorithms and arrows represent the attributes and threshold values. For example in the default

strategy ’social filtering’ technique is used if enough users have rated the same item. The

optimal value of this parameter (the number of enough user) differs per system or domain.

This rule-based prediction strategy in the framework uses this threshold values. The tuning

parameters, makes the framework more flexible and easier to implement in various domains.

However, they are fixed at the startup and never adapted to the changes.

Prediction explanation is one of the important topics in the transparency of recommender

systems research [64]. Transparency allows users to meaningfully revise the predictions or

suggestions in order to improve recommendations. Duine was designed with explanations

in mind each recommendation that is created using the framework can have an explanation

object attached to it, which describes how exactly that prediction was produced. This feature

enables to explain the recommendations in detail.

Duine prediction framework is open-source and freely available, which can be used to create

a hybrid recommender system, allows for the incorporation of prediction techniques that can

predict the interests of users for an item with limited knowledge about either the user or an

item.
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Figure 2.6: The Quickstep recommender system

2.3.2 Quickstep Recommender

Quickstep [42] is a hybrid recommender system, which recommends on-line research papers

to researchers. It is an experimental recommender system. User browsing behavior is un-

obtrusively monitored via a proxy server, logging each URL browsed during normal work

activity.

The recommender use a nearest-neighbor classification algorithm that classifies browsed URL’s

based on a training set of labeled example papers. The system stores each new paper in a cen-

tral database. The database of known papers grows over time, building a shared pool of

knowledge. Explicit feedback and browsed URL’s form the basis of the interest profile for

each user. Figure 2.6 shows an overview of the Quickstep system.

Quickstep bases its user interest profiles on an ontology of research paper topics. This allows

inferences from the ontology to assist profile generation.

Quickstep uses a term frequency vector in its central database that is used to represent re-
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search papers. Terms are single words within the document, so term frequency vectors are

computed by counting the number of times words appear within the paper. Each dimension

within a vector represents a term. Dimensionality reduction on vectors is achieved by remov-

ing common words found in a stop-list and stemming words using the Porter[54] stemming

algorithm. Quickstep uses vectors with 10-15,000 dimensions.

However, cold-starts and interest acquisition (for ontologies) are serious problems in Quick-

step Recommender. If initial recommendations are inaccurate, user confidence in the recom-

mender system may drop with the result that not enough usage data is gathered to overcome

the cold-start. In regards to ontologies, up-to-date interests are not generally available from

periodically updated information sources such as web pages, personal records or publication

databases.

2.3.3 BellKor System

The BellKor system [7] won the first annual progress prize of the Netflix competition [48, 49].

This system, statically combines weighted linear combination of more than hundred collab-

orative filtering engines. The system uses model based approach that first learns a statistical

model in an offline fashion, and then uses it to make predictions and generate recommenda-

tions. The weights are learned by using a linear regression on outputs of the engine.

BellKor uses ’Singular Value Decomposition’ approach that conceptualizes the Netflix data

[48] as a sparsely populated m−by−n matrix M of movies, customers, and ratings. The Netflix

dataset contains more than 100 million date-stamped movie ratings performed by anonymous

Netflix customers between Dec 31, 1999 and Dec 31, 2005 [9]. This dataset gives ratings

about m = 480, 189 users and n = 17, 770 movies (items).

Singular Value Decomposition can be formulated as[69];

M = U
∑

V∗

where U is an m by m : m × m unitary matrix,
∑

is an m − by − n diagonal matrix with non-

negative entries, and V∗ is the conjugate transpose of a n−by−n unitary matrix. By sampling

the eigenvalues of
∑

, a compressed representation of the matrix is obtained. The resulting
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compression causes movies to be grouped by common features. These feature groups allow

higher predictive accuracy.

BellKor’s ’Singular Value Decomposition’ approach is more efficient then the other Netflix

proposed systems, because[7];

• It incorporates the concepts of the Nearest Neighbor model described in Section 2.2.4.

Essentially, the BellKor algorithm performs k-NN at the local level and ’Singular Value

Decomposition’ at the global level.

• Second, the BellKor approach is iterative, allowing scalability and increased perfor-

mance.

The BellKor solution is exclusively aimed at building a system that would predict subscriber

ratings with the highest possible accuracy. Although highly accurate predictions are an im-

portant part of a recommender system, these alone cannot ensure good recommendations.

Moreover, the solution is based on a huge amount of models, combines more than hundred

engines which would not be practical as part of a commercial recommender system.

2.3.4 Daily Learner System

The Daily Learner System [10] uses a multi-strategy machine learning algorithm designed

to acquire detailed user models, based on explicit and implicit user feedbacks. ’Adaptive

Information Server’ is the core component of the system, which handles a variety of func-

tions ranging from downloading and storing news content to maintaining user profiles and

recommending stories with respect to individual users’ personal interests.

The Daily Learner System periodically accesses various news on the Internet, downloads news

stories and stores them. The system users then access these resources and give feedbacks. The

gathered feedbacks allow to maintain the user profile based on preference information. The

system personalize the news, such as re-ordering the current news, based on the personal user

models.

A hybrid user model is used for news story classification. The system uses multi-strategy

learning approach that learns two separate user-models: one represents the user’s short-term
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interests, the other represents the user’s long-term interests. This learning approach is in-

tended to adjust more rapidly to the user’s changing interests. Short term interests are mod-

eled by using the nearest neighbor algorithm (described in Section 2.2.4, on the other hand

long term interests are modeled by using naive bayesian classifier (described in Section 2.2.3).

Multi-strategy learning approach predict relevance scores for stories by incorporating the

short-term and long-term models into one unifying algorithm. The approach uses the short-

term model first, if a story cannot be classified with the short-term model, the long-term

model is used. The system selects the recommender engine with the highest confidence level.

However, this method is not generally applicable for two reasons. First, not all engines gen-

erate output confidence scores for their predictions. Second, confidence scores from different

engines are not comparable. Scores from different recommendation engines typically have

different meanings and may be difficult to normalize.

2.3.5 STREAM

STREAM (Stacking Recommendation Engines with Additional Meta-Features) [6] applies

an ensemble learning method, called stacking, to solve the problem of building hybrid rec-

ommender system. In this system runtime metrics, which represent properties of the input

users/items as additional meta-features, are used in order to combine component recommen-

dation engines at runtime based on user/item characteristics.

The STREAM recommender system classifies the recommender engines in two levels, called

level-1 and level-2 predictors. The hybrid STREAM system uses runtime metrics to learn next

level predictors by a linear regression. The runtime metrics can be both application domain

specific and component engine specific.

The main idea behind the STREAM system is to first learn multiple level-1 (base) classifiers

from the set of original training examples using different learning algorithms, then learn a

level-2 (meta) classifier using the predictions of the level-1 classifiers as input features. The

final prediction of the ensemble is the prediction of the level-2 classifier.

STREAM framework is presented in Figure 2.7. The system uses user-item pair (u, i), the

rating of the input user u on the input item i. Historical ratings of users and additional infor-

mation (such as item’s meta-data) are stored in the system’s background data. The framework
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Figure 2.7: Architecture of the STREAM Framework

consists of attached engines that are required to predict rating for given an input user-item

pair and a set of background data.

MetricEvaluator is a component for computing the runtime metrics. The engines’ predictions

< P1, P2, . . . , Pn > and the values of the runtime metrics < M1,M2, . . . ,Mm > are passed

to the level-2 predictor. Level-2 predictor generates the final prediction.

However like The BellKor solution (described in Section 2.3.3), combining many engines

level by level results performance problems at run-time. Our approach combines different

algorithms on a single hybrid engine with an adaptive strategy. In the system eight meta-

features are tested, but the results showed that most of the benefit came from using the number

of user ratings and the number of item ratings, which were also two of the most commonly

used meta-features by BellKor’s solution. Linear regression, model trees, and bagged model

trees are used as blending algorithms with bagged model trees yielding the best results. Linear

regression was the least successful of the approaches.
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CHAPTER 3

AdaRec: AN ADAPTIVE HYBRID RECOMMENDER SYSTEM

In this chapter, we present our proposed Adaptive Hybrid Recommender System, named

AdaRec, which supports a dynamic adaptation of the domain trends based on the explicit

user feedbacks. This chapter organized as follows; First, we present the motivation behind

our approach. Then the architecture of the system is explained, and the learning scheme is

described. After that, implementation details and the Duine Framework integration of our

approach is explained.

3.1 Research Background & Motivation

With the rapid development of the recommender system technology, a number of recom-

mender engines have been developed for various application domains. Content-based and

collaborative filtering are the two major recommendation techniques that have come to dom-

inate the current recommender system. Content-based recommender system (described in

Section 2.1.1) uses the descriptions about the content of the items (such as meta-data of the

item), whereas collaborative filtering system (described in Section 2.1.2) tries to identify users

whose tastes are similar and recommends items they like. For example, Netflix.com [7] rec-

ommends movies based on the user’s scoring of previously watched movies (both the user

and others); Amazon.com [26], on the other hand recommends goods to the online shopper

based on the previously viewed/purchased items and the purchases of other customers. Other

recommendation technologies include hybrid techniques, knowledge-based approaches etc

[13].

Previous research in this area, has shown that these techniques suffer from various potential
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problems-such as, sparsity, reduced coverage, scalability, and cold-start problems [2, 13, 73].

For example; collaborative filtering techniques depend on historical ratings of across users

that have the drawback, called cold start problem - an item cannot be recommended until it

has been rated by a number of existing users. The technique tends to offer poor results when

there are not enough user ratings. Content-based techniques can overcome the cold start

problem, because new items can be recommended based on item features about the content

of the item with existing items. Unfortunately, content-based approaches require additional

information about the content of item, which may be hard to extract (such as, movies, music,

restaurants). Every recommendation approach has its own strengths and weaknesses. Hybrid

recommender systems have been proposed to gain better results with fewer drawbacks.

To date a number of hybrid recommender systems have been proposed that combine individual

systems to avoid certain aforementioned limitations of these systems [13]. In order to improve

predictions, real-world recommendation systems are typically use hybrid approaches that

combine multiple prediction techniques. This helps to avoid certain drawbacks of content-

based and collaborative filtering systems.

Core part of the hybrid recommender systems is its prediction technique (algorithm) selection

strategy (described in Section 2.3.1). Recommender system’s algorithm switching procedure

is done by using its attached prediction strategy. This strategy decides which technique to

choose under what circumstances. Recommender system’s behavior is directly influenced by

the prediction strategy. The construction of accurate strategy that suits all circumstances is

a difficult process. A well-designed adaptive prediction strategy offers advantages over the

traditional static one.

Previous research efforts on hybrid recommender system has mostly focused on static hy-

bridization approaches (strategy) that do not change their hybridization behavior at runtime

[57]. However, people’s tastes and desires are temporary and the gradually evolve. Moreover,

each domain has unique characteristics, trends and unique user interests. Since user’s inter-

ests might change dynamically over time, it does not seem possible to adapt trends by using

the static approach. Therefore, in this chapter, we focus on building hybrid recommendation

systems that dynamically adapt itself to the changes in the domain and users.

We apply an instance based learning scheme, that learns through user feedbacks in order to

solve the problem of building adaptive hybrid recommendation systems. Hybrid recommen-
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dation systems combine multiple algorithms (prediction techniques) and define a switching

behavior among these techniques. The main idea of our system is to re-design the hybrid

system’s switching behavior according to the performance results of the algorithms. We also

introduce the novel idea of analyzing the prediction performance results and using them as

runtime metrics. This method allows us to use characteristics of the input user/item when

determining how to combine the prediction techniques at runtime. These runtime metrics are

properties of the input user/item that are related to the nature of the domain. For example,

the number of items or item’s similar user count that the input user has previously rated may

indicate how well a collaborative filtering engine will perform. Learning algorithms analyze

performance results of previous predictions and then re-design the combination of prediction

techniques. We combine prediction techniques with runtime metrics and up-to-date threshold

values according the performance analysis of the techniques.

3.2 Our Approach

In this section, we first introduce our learning scheme, instance-based learning. We then

describe how we apply it to solve the hybridization problem with runtime metrics. Finally we

demonstrate our AdaRec Framework.

3.2.1 Instance-Based Learning Scheme

Techniques that hold the training set in memory are called instance-based methods [70]. In-

stead of performing explicit generalization, instance-based methods compare new problem

instances with instances seen in the training set. Instance-based methods, which are kind

of lazy learning, construct hypotheses directly from the training instances themselves. The

most common instance-based method in the recommender systems literature is the k-nearest

neighbor (kNN) algorithm [41].

The learning scheme that is used in our work is supervised learning-learning from examples.

A fixed set of n attribute with their value pairs represent the instances. The attributes are

fixed in the system. A learning algorithm is attached to the framework that analysis previ-

ously stored instances. Algorithm determines the attribute-value pairs and build a model with

respect to previously recorded instances called training set.
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Previous predictions and user feedbacks (especially the explicit ones) are stored. Each pre-

diction together with its attributes are recorded. Learning module analyses the previous pre-

dictions and classifies the instance to the best performed algorithm. In other words; every

instance is classified to an algorithm that predicts more closest to the user’s feedback. The

collection of classified instances are called training set.

After classifications are completed, best performed algorithms of the instances in the training

set is identified. Learning algorithm builds a model, such as decision tree, rule sets or deci-

sion list, according to the training set. This model defines the hybrid recommender system’s

algorithm switching behavior. Nature of the domain and the characteristics of users can be

learned implicitly by an automatic learning method, using attributes as input to a supervised

learning algorithm, and producing a model as output.

3.2.2 Static Prediction Strategy

A prediction strategy as described in Section 2.3.1 defines the switching behavior of the hybrid

recommender system. Prediction strategies are the core part of the recommenders which

are used for hybridization. A prediction strategy uses attribute-value pairs called threshold

values in order to make decisions about which algorithm (case-based reasoning, collaborative

filtering, content-based etc.) to use and how to combine them. However in the naive hybrid

recommender systems the supplied threshold values are static and do not change during the

execution of recommender engine. Figure 3.1 shows a sample static prediction strategy, that

defines a sample combination of its available algorithms (prediction techniques).

Like most of the available open source hybrid recommender systems, the Duine Framework

[61], which was described in Section 2.3.1, uses a static pre-defined decision tree approach

that employs the prediction strategy of the framework. The prediction strategy visualizes what

steps are taken to arrive at a prediction technique in the hybrid recommender systems [50, 62].

Another way to represent a decision tree is using decision rules. Decision rules (described in

Section 2.2.1) generally take the form of IF . . . THEN . . . rules, i.e.

Experts often describe their knowledge about a decision process using decision trees and de-

cision rules, as they are easy to interpret by other people. In the Duine Framework prediction

algorithm selection strategy is defined by a static decision tree.
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Figure 3.1: A sample static prediction strategy, depicted as decision tree.

In Section 2.3.1, Figure 2.5 represents a sample static decision tree (default prediction strat-

egy) in the Duine framework. In this static prediction strategy (tree) nodes represent validity

indicators and each branch from a node represents a value or range of values for that validity

indicator. The leaf nodes of the decision tree represent prediction algorithms [50, 61].

Most of the currently available personalized information systems focus on the use of a single

selection technique or a fixed combination of techniques [61, 42]. However, fixed strategy

may be suboptimal for dynamic domains and user behaviors. Moreover they are unable to

adapt to domain drifts. Since people’s tastes and desires are transient and subject to change, a

good recommender engine should deal with changing consumer preferences. It does not seem

possible to adapt trends by using a static approach (static prediction strategy).

In this section we present our adaptive prediction strategy method, that learns the domain

dynamics by analyzing the previous performance results. Instead of using static methods,

dynamic methods can handle changes in domain.

3.2.3 Prediction Strategy Learning

In our approach, we describe an adaptive hybrid recommender system, called AdaRec, that

modifies its switching strategy according to the performance of prediction techniques. Our

hybrid recommender approach uses adaptive prediction strategies (described in Section 2.3.1)
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Figure 3.2: A sub-tree of a sample prediction strategy that uses domain attributes, depicted as
decision tree.

that determine which prediction techniques (algorithms) should be used at the moment an

actual prediction is required.

Initially we used manually created rule-based strategies which are static, as described in the

previous section. These static hybridization schemes have drawbacks. They require expert

knowledge and they are unable to adapt to emerging trends in the domain. We now focus on

prediction strategies that learn by themselves.

Mostly the wide range of research areas are focused on the use of static decision approach

at the switching hybridization methods. A switching hybrid is one that selects a single rec-

ommender from among its constituents based on the recommendation situation [13]. For a

different user profile or domain, a different switching technique might be chosen. The switch-

ing hybridization method assumes that some reliable criterion is available on which to base

the switching decision. The choice of this switching criterion is important for hybrid recom-

mender systems [12, 62].

A key observation of our work is that when user behaviors begin to change, the recommender

system’s prediction accuracy tends to detoriate. Old, static, pre-defined switching behavior

unable to adapt to the changes. As users interact with the domain, some trends are rising,

some are falling. And even more, the users themselves are changing over time. An adaptive
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hybrid recommender system should monitor these social trends and changes.

In our Adaptive Hybrid Recommender System (AdaRec) Framework, the switching behavior is

not static, instead the framework able to learn the trends and re-design its switching behavior

according to the captured trends. The system learns to adapt to the changing trends by re-

designing its prediction strategy. For example, in a simple way, the system can change the

early defined threshold values. Figure 3.2 presents a small subtree of an adaptive strategy

which assigns the most context sensitive values to the thresholds. These adapted threshold

values provide up-to-date knowledge about the relevancy of each algorithm for the current

prediction request. In other words, system adapts its prediction strategy either by simply

modifying the threshold values or completely re-designing the prediction strategy.

Our system, employs switching hybridization by deciding which algorithm is most suitable

to provide a recommendation. The decision is based on the most up-to-date knowledge about

the current user, other users, the information for which a prediction is requested, other in-

formation items and the system itself. In AdaRec we propose the use of Machine Learning

(ML) techniques (described in Section 2.2) to analyze and learn which user and item features

in a personalized recommender system are more adequate for correct recommendations. User

feedback and MAE (Mean Absolute Error) are the main concepts, which describe the trends

in the domain. Adaptive prediction strategy learns its domain trends over time via unobtrusive

monitoring and relevance feedback.

3.3 AdaRec Framework

In this section, we first introduce a high level general overview of our AdaRec architecture.

We then describe the implementation details of the architecture and its components. Finally

we demonstrate the integration with the Duine Framework.

3.3.1 Overview of AdaRec

The architecture of the adaptive hybrid recommender system (AdaRec) is composed of the

following modular components. Figure 3.3 illustrates these logical components and relations

among them.
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Figure 3.3: A High Level Overview of AdaRec
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• User Profile, is the representation of the user in the system. For each active user a

user model is stored in the user profile. User profile holds the knowledge (such as

preferences, feedbacks, feature weights etc.) about users in a structured way.

• Recommender Engine, which is the active part of the framework, produces recommen-

dations to a user based upon the user profile. Recommender Engine builds and exploits

profiles (models) of the users interacting with the system. Recommender Engine can

both use the current user and other users profile when making a recommendation de-

pending on recommendation algorithm’s approach. Also updates the user profile based

on the feedbacks. Recommender Shell, encapsulates the Recommender Engine’s in-

teraction with other modules. The shell serves the created prediction strategies to the

engine. Also the first initialization of the recommender engine is the responsibility of

the shell.

• Prediction Parser/Analyzer, produces the performance results of the prediction algo-

rithms based on the analysis of the collected predictions and feedbacks. This module

handles the decomposition of the prediction results and generates the training set of

sample instances with current attributes.

• Training Set, serves as background data for the current context. The set contains

nugget of knowledge, which reflects the characteristics of the current context, that is

used by the learning module.

• Learning Module, handles the new prediction strategy creation upon the previous in-

stances and performance results of the prediction techniques on each learning cycle. It

allows the building of new decision trees/decision rules based on the previous recorded

instances.

• ML Algorithm, uses the learning methods in order to extract information from the

training set. The algorithm learns the nature of the domain and re-design the prediction

strategy based on its results. The ML Algorithm is attached to the learning module.

• Prediction Strategy, consists of prediction algorithms and switching rules associated

with them. The prediction strategy defines the switching behavior of the recommender

engine. Prediction strategy is created by Learning Module according to the training set

of instances using the attached ML algorithm.
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Our proposed AdaRec System, which has adaptation capabilities, basically comprises two

entities, namely Learning Module (LM) and Recommender Engine (RE).

Recommender Engine, as mentioned above, is responsible for generating the predictions of

items based on the previous user profiles and item contents. It attempts to recommend infor-

mation items, such as movies, music, books, that are likely to be of interest to the user. The

recommender generate the predictions by using its attached prediction strategy. The imple-

mentation here uses the open source Duine Framework for the recommender engine which

will be described in Section 3.4.1.

Learning Module, as mentioned above, handles the new prediction strategy creation upon the

previous instances and performance results of the prediction techniques on each learning cy-

cle. It allows the building of new decision trees/decision rules based on the previous recorded

instances.

Learning cycle is a logical concept that represents the re-design frequency of the prediction

strategy. Each instance, based on the indicated count, and prediction algorithm’s performance

results are collected between two learning cycles. The learning module modifies the values

of decision rules, which is also called threshold values according to the gathered results of

the prediction techniques performance. The old prediction strategy is modified by using rec-

ommender engine’s machine learning algorithm (rule tuning, rule adaptation, decision tree

induction etc.). The modification of the threshold values allows recommender system to ana-

lyze and adapt the nature of the users and the domain.

3.3.2 Learning Module

The learning module first tests the accuracy of each predictor in the system. Then the predic-

tion strategy is re-designed by the learning module in order to improve proper use of predic-

tors. Adaptive prediction strategy improves the prediction accuracy by learning when to use

which predictors. The learning module adapts the hybrid recommender system to the current

characteristics of the domain.

Inductive learning is used in learning from the training set. In our experiments we tested

different (1K, 1.5K, 2K and 3K) instance sizes for training sets. The training set contains the

instances from the previous learning cycle results. Neural networks (e.g. back-propagation),
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rule learners (e.g. RIPPER), instance-based methods (e.g. nearest neighbour), decision trees

(e.g. C4.5) and probabilistic classifiers are some of the popular inductive learning techniques

[42].

Different design approaches might be used for the prediction strategy adaptation. Rule based,

case based, artificial neural networks or Bayesian are some of the learning techniques. Each

technique has its own strengths and weaknesses. In AdaRec, we introduce self adaptive pre-

diction strategy learning module which employs a strategy, based on its attached learning

technique. Learning module initializes prediction engine according to the specified machine

learning technique. This prediction strategy adapts itself to the current context by using the

previous performance results of the techniques.

User feedbacks and MAE (Mean Absolute Error) are the main concepts, which describe the

trends in the domain. Learning module adjusts the prediction strategy and re-initializes the

recommender system with modified strategy. The module both collects the predictions, which

are predicted by the recommender, and the feedbacks, which are harvested from the users. On

each prediction request, the strategy selects a prediction algorithm that is suitable for the

context. The algorithm then produces a prediction. The MAE score of the algorithm, which

is calculated by the difference between the user feedback and the prediction, together with

the application domain attributes are stored as instances by the learning module. The average

MAE results is treated as performance scores of the algorithms. A sample monitored instance

for a prediction request is shown below.

% For each instance, current attributes, used prediction algorithm and MAE score.

%attributes

item_ratings_count numeric, item_similar_user_count numeric, similar_item_count numeric

main_genre_interest numeric, sub_genre_interest numeric,

%selected prediction algorithm

technique {informationFiltering,socialFiltering,

topN,mainGenreLMS,userAverage,cbr,subGenreLMS}

%MAE

<0,1>

ML Algorithm that is attached to the learning module re-designs the prediction strategy in or-

der to maximize the prediction accuracy (or minimize the MAE scores). The learning module

is the dynamic aspect of our hybrid recommender system.
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In AdaRec System, we focused self adaptive prediction strategy that classifies according to its

attached machine learning technique. This prediction strategy adapts itself to the current con-

text by using the previous performance results of the techniques. Different machine learning

algorithms that induce decision trees or decision rule sets could be attached to our experimen-

tal design. The architecture is open and flexible enough to attach different machine learning

algorithms.

Adaptive prediction strategy learns its domain trends over time via unobtrusive monitoring

and relevance feedback. Learning cycle of the framework is started with the initial design

of the prediction strategy. The adaptive strategy is at first manually created by using expert

knowledge. Later on the recommender system is initialized with this manually created rule-

based strategy.

The induction of the prediction strategies by using the previous user feedback allows recom-

mender system to analyze the nature of the users and the domain. To sum up, the learning

module supports the recommender systems, in the following ways;

• It adapts the recommender system to the current nature of the domain and the users,

• It reduces the impact of incorrectly designed decision rules

3.4 Integration with Duine & WEKA

In order to demonstrate our proposed AdaRec Framework, we integrated the system with

the open-source Duine Framework1 [50] and WEKA2 [70]. AdaRec Framework’s core part

was developed with Java and Spring Framework3 [32] technologies using Netbeans IDE4.

MySQL5 database is used the user profile (items, ratings etc.).

In this section, we explain the implementation details of the Duine Framework and WEKA

integration. At the early stages of this study, we aimed a set of implementation goals. Some of

these are; simplicity, provide fast recommendations, extensible system architecture, enough

1 http://duineframework.org/
2 http://www.cs.waikato.ac.nz/ ml/weka
3 http://www.springsource.org/
4 http://netbeans.org/
5 http://www.mysql.com/
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Figure 3.4: A High Level General Overview of the Duine and WEKA Integration with
AdaRec System

abstraction for pluggable ML algorithms. To achieve these goals, we select the Java6 platform

supported with Spring Framework for. The AdaRec System is implemented to run in the latest

version of the Sun Microsystems JVM (Java Virtual Machine) which is the most popular and

widely used Java solution.

3.4.1 Integrating with the Duine Framework

We chose to integrate with Duine Framework rather than to develop a plug-in because, frame-

works offer many advantages over plug-ins. For example, an advantage of the recommender

frameworks is the possibility to adapt the recommendation task to specific requirements of

your experiment or your domain. This is not possible with the plug-ins, because they offer

less flexibility for further development.

We introduce an adapter to the recommender shell component that maps our system’s require-

ments with Duine and vice versa. Figure 3.4 presents the high level architectural overview of

Duine and WEKA integration with AdaRec system.

In the Duine Recommender the knowledge that designs the selection strategy is provided

6 http://java.sun.com
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manually by experts [28, 62]. However, the combination of different techniques in a dynamic,

intelligent and adaptive way can provide better prediction results. The combination of tech-

niques should not be fixed within a system and that the combination ought to be based on

knowledge about strengths and weaknesses of each technique and that the choice of tech-

niques should be made at the moment a prediction is required. With the integration, the

Duine Framework gained new adaptive features. The framework’s static prediction strategy is

continuously re-designed by AdaRec. AdaRec uses Duine Framework as the built-in Recom-

mender Engine. In the integration, AdaRec System works as previously described in Section

3.3.

The Recommender Shell component for the Duine integration has extra mapping capacities.

The shell maps produced prediction strategy to the Duine’s working format. Also the system

is integrated with the Duine Framework prediction processes. As shown in the Figure 3.5,

Duine Framework processes consists of four main phases [61].

• The prediction phase: A prediction is generated by the recommender engine.

• The usage phase: The user and/or other parts of the recommender system use the

generated predictions.

• The feedback phase: After the user has used one or more items, he can provide feed-

back to the system about his actual interest in the items.

• The learning phase: The system learns from the feedback provided by the user, which

is used to increase the accuracy of future predictions.

We quickly realized the integration with Duine Framework, through the flexible plug-in based

architecture. Figure 3.6 presents the general overview of the plug-in based architecture. The

Duine Framework is developed with Java programming language[4] and provides a very clean

division between controllers, JavaBean models, and views with Spring Framework[32].

Duine has built-in prediction techniques as described in Section 2.3.1 at Table 2.2, some of

them are supplied for movie domain. In our system, we used and tested different predic-

tion techniques. These are; topNDeviation, userAverage, socialFiltering, CBR (Case-Based

Reasoning), mainGenreLMS (Least-Mean Square), subGenreLMS, informationFiltering.
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Figure 3.5: Prediction Process of the Duine Framework.

Figure 3.6: General Overview of the Duine Framework.
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Depending on the nature of the domains (movie, music, book etc.) different attribute-value

combinations can be used for prediction strategy design. Adaptive strategy, as described

in Section 3.2.3, is designed with the combination of attributes by using rule sets or trees

(depending on the used ML technique) that contain the knowledge on decisions. In AdaRec,

since we conduct experiments on MovieLens dataset, we chose these specific attributes that

have meaningful correlations between movie domain and prediction techniques. We believe

that, by measuring the changes on these attributes, we can capture the domain drifts and

trends.

In AdaRec, since we prefer to conduct experiments on the movie domain, we chose these

specific attributes that have meaningful correlations between movie domain and prediction

techniques. Sub-genre and main-genre are domain-dependent attributes. Genre certainty is

measured by using the movies metadata information which is interpreted according to Movie-

Lens and IMDB (Internet Movie Database) datasets [30]. We believe that, by measuring the

changes on these attributes, we can capture the domain drifts and trends.

1. item ratings count, the number of ratings that the current item has.

2. item similar user count, similar users count that have already rated the current item.

3. similar item count, the number of similar items count according to similarity measures.

4. main genre interest, main genre interest certainty of the current item among the users

items.

5. sub genre interest, sub genre interest certainty of the current item among the users

items.

Decision trees/decision rules are constructed using the combination of the above five at-

tributes. As shown in Figure 3.2, at each node of the decision tree a attribute is compared

with a value, which is called the threshold value. These five attributes are used to classify the

prediction techniques.
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Figure 3.7: Class Diagram for weka.core package

3.4.2 Integrating with the WEKA

As shown in the Figure 3.4, AdaRec’s Learning Module is integrated with WEKA tool. The

WEKA-Machine Learning Framework has been developed at the University of Waikato in

New Zealand [70]. Several versions of WEKA are developed since it has started. Prototype

for the experimental study is built within WEKA-3.6.27.

A number of data mining methods and machine learning algorithms are implemented in the

WEKA software. WEKA provides different experimentation platforms for running training

and test different ML algorithms, These are a graphical user interface (GUI) and a simple

command line interface (CLI). Also WEKA provides an API (Application Programming In-

terface) with lots of descriptive API sources (documents, books, web sites etc.). This gives the

system developer the opportunity of experimenting with different learning algorithms using

using the Java API and the provided GUI tool. In addition, WEKA supports different kind of

pre-processing, association rules, feature validation and more.

Collection of related classes are grouped together in WEKA, called packages. WEKA has

7 http://sourceforge.net/projects/weka/files/weka-3-6/3.6.2/
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three main packages for core operations, classifiers and filters. Figure 3.7 shows the class

diagram of WEKA’s core package.

The data that is used for WEKA should be made into the ARFF (attribute-relation file format)

file. An ARFF file is simple text file that describes a list of instances sharing a set of attributes.

Typical ARFF file contains a header section that describes the relation and type of the data.

WEKA refers to keys being attributes, categories being classes and atoms of training being

instances. A sample ARFF file that is used in our experiments is shown below. In AdaRec

learning module is responsible to convert the instances to ARFF file format.

%A sample ARFF file

@relation sample_result_set

@attribute item_ratings_count numeric

@attribute item_similar_user_count numeric

@attribute similar_item_count numeric

@attribute main_genre_interest numeric

@attribute sub_genre_interest numeric

@attribute technique {informationFiltering,socialFiltering,

topN,mainGenreLMS,userAverage,cbr,subGenreLMS}

%Instances

@data

195,3,2,1.7,4,subGenreLMS

196,4,2,3.3,4,topN

197,7,1,0.8,4,subGenreLMS

198,9,2,0.6,7,mainGenreLMS

199,2,1,3.2,6,subGenreLMS

200,3,0,2.7,8,topN

110,1,5,0,5,topN

In our proposed Adaptive Recommender System Framework we use different instance-based

learning algorithms that are supported by WEKA [70]. These are; J48 (a C4.5 variant), BF-

Tree (Breath First Tree) and Conjunctive Rules [70].

• J48: WEKA’s implementation of the decision tree learner based on the C4.5 [55] de-

cision tree algorithm, which selects the attribute that minimizes entropy in the split.

C4.5, which is the most widely used decision tree learning approach in ML research

[33], uses gain ratio as the feature selection measure. C4.5 prunes by using the upper

bound of a confidence interval on the re-substitution error as the error estimate; since
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nodes with fewer instances have a wider confidence interval, they are removed if the

difference in error between them and their parents is not significant.

• BF-Tree: A decision tree learner that uses a best first method of determining its branches.

This method adds the best split node to the tree in each step. The best node is the node

that maximally reduces impurity among all nodes available for splitting (i.e. not labeled

as terminal nodes).

• Conjunctive Rules: A simple rule learner that learns a set of simple conjunctive rules

that can predict for numeric and nominal class labels. It uses a technique called Re-

duced Error Pruning [21] to trim an initial set of rules to the smallest and simplest

subset of rules that provide highest discrimination.
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CHAPTER 4

EVALUATION AND EXPERIMENTS

In this chapter, we present our experiments on the MovieLens dataset in order to assess the

impact of our proposed system and different machine learning algorithms. we conduct exper-

iments on the MovieLens dataset. We evaluate the accuracy of predictions (by using MAE)

of the system using different configurations of the machine learning algorithms.

This chapter is organized as follows; In the first section we examine the MovieLens dataset

and its conversion process. Next in Section 4.2 we describe the evaluation metrics of the

experiments. After that we explain our experimentation environment and carried out experi-

ments. Finally we will evaluate our proposed system and discuss the results.

4.1 Dataset

Predicting users’ movie ratings is one of the most popular benchmark tasks for recommender

systems. There are several publicly available data sets for this problem. GroupLens Research

Project1 has set up a web site called MovieLens2, which is based on the collaborative filtering

[44]. Everyone who logs on the system is asked to rate a list of movies with 1 to 5 scale,

where 1 means certainly not the movie for me and 5 means absolutely love it.

GroupLens Research Group released three datasets[47] with different properties; the Movie-

Lens 100, 000 rating dataset, the MovieLens 1 Million rating dataset, and the MovieLens

10 Million rating dataset. These datasets became the standard datasets for recommender re-

search, and have been used more than 300 research papers [59]. The dataset is also being used

1 http://www.grouplens.org/
2 http://www.movielens.umn.edu
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for educational purposes by researchers.

In our experiments we used the MovieLens 1 Million dataset3 [47] in its full extent with 6040

users and 3900 movies pertaining to 19 genres. MovieLens dataset contains explicit ratings

about movies. The dataset has sparse user-item matrix. Both MovieLens users and MovieLens

movies were declared as AdaRec users AdaRec movies. The original ratings scale < 1 .. 5 >

was linearly scaled into the AdaRec’s internal scale < 0 .. 1 >. This way transformed dataset

is further referred to as the MovieLens database.

MovieLens 1M dataset main characteristics (value, sparsity, size etc.) are presented at Table

4.1. An active user is a user who have rated more than once. And passive users are users that

have rated at least once. The last three rows contain values that are scaled to the AdaRec’s

ratings scale 0..1.

Table 4.1: An overview of the MovieLens 1M dataset basic characteristics.

Feature MovieLens 1M Dataset
Inception date February 2003
Total number of users 9,746
Number of active users 6,040
Number of passive users 3,706
Total number of ratings 1,000,209
Max. ratings from 1 user 2,314
Mean rating value 0.822
Median rating value 0.95
Standard deviation 0.3505

In our experiments; the dataset was not used in its pure form, instead we passed through some

transformations on the dataset. Firstly we imported the dataset files into structured relational

database. And then in order to handle learning cycles we divided the dataset in to temporal

partitions. These processes will be described in Section 4.3 together with the experimentation

setup.

3 http://www.grouplens.org/node/12

49



4.2 Evaluation Metrics

A wide variety of different evaluation metrics have been used for evaluating the success of the

prediction algorithms by recommender system researchers [58, 63]. We use Mean Absolute

Error (MAE) metric, which is a popular statistical accuracy metric among research commu-

nity, for our experiments. MAE is computed by the absolute difference between the predicted

rating and real user rating and then computing the average. For each ratings-prediction pair

< pi, qi >, this metric treats the absolute error between them i.e., |pi − qi| equally.

MAE =

∑N
i=1 |pi − qi|

N

Since MAE can be interpreted easily, we choice it as our primary metric in our experiments.

Recommender researchers in the related field have also suggested the use of MAE for predic-

tion evaluation metric [27].

Prediction accuracy is calculated according to MAE, which is scaled to AdaRec’s internal

scale < 0 .. 1 >. The Duine generates prediction ratings in unipolar range goes from 0 (not

interesting) to +1 (interesting) with 0.5 representing a neutral interest. This system predictions

are scaled to the < 0 .. 1 > range and referred as baseline in the experiments. MAE compares

the actual rating a user gave to an item with the predictions made by an algorithm. The lower

the mean absolute error, the better an actual predictor can be classified.

4.3 Experimental Setup

In our experiments, we evaluate the performance of our AdaRec system on the MovieLens

dataset and compare with the performance of naive (static) hybrid system called baseline. In

the experiments each prediction provided by the two different systems (AdaRec and baseline)

are examined. The prediction accuracy and the prediction error (MAE) are recorded.

MovieLens pure dataset is converted & mapped in to a relational database called MovieLens

Database for further processings. MovieLens dataset is imported into related tables (movies,

users and ratings) and the relations among them are constructed. Figure 4.1 shows the log-

ical database diagram of the converted MovieLens dataset. MovieLens database is used as
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Figure 4.1: Logical view of the MovieLens database.

information source in our experiments. By using this database we can repeat experiments as

many times as we want. With the relational database, it is possible to manipulate the data by

using the SQL (Structured Query Language). For example, we can sort the data according to

timestamp values and divide the big dataset into subsets.

The aim of the experiments is to examine how the recommendation quality is affected by

our proposed learning module which was described in Section 3.3. The present model of the

Duine Framework is non adaptive but it supports predictor level learning [61]. This original

state of the framework is referred to baseline.

As shown in the Figure 4.2, Duine recommender uses a static prediction strategy as hybridiza-

tion scheme, which does not change at runtime. We want to compare the prediction quality

obtained from the framework’s baseline (non adaptive) to the quality obtained by our proposed

experimental framework (adaptive). The approach will be considered useful if the prediction

accuracy is better than the baseline.

The validation process is handled using the following procedure:
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Figure 4.2: Duine Framework’s static prediction strategy.

• Both the adaptive and baseline systems are initialized with the Duine’s default predic-

tion strategy. However, baseline system’s prediction strategy stays static, the adaptive

system’s, on the other hand changes over time.

• The ratings provided by the dataset are fed to the system one by one, in the logical order

of the system (ordered by timestamps).

• When a rating is provided during validation, prediction strategy is invoked to provide

a prediction for the current user and the current item. The average prediction error can

be used a performance indicator of the attached prediction strategy.

• After the error has been calculated, the given rating is provided as feedback to the

recommender system. The adaptive system collects the feedback as well as the current

attributes of the system as instances.

• Whenever the collected instances reached the learning cycle’s instance count (1000

instances for example), the prediction strategy of the system will be redesigned by the

adaptive system according to the instances.

This way, when the next learning cycle is processed, the adaptive system has learned user
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Figure 4.3: The MovieLens dataset splitting process & experimental setup.

preferences from all the previously processed ratings. This process is repeated for all ratings

at both adaptive and non-adaptive (baseline) systems in the test set. At the end MAE is calcu-

lated by averaging absolute errors within the baseline and the adaptive system, as described

above.

In order to train the recommender system, the MovieLens dataset is also divided into different

temporal sets based on their distribution in time. Figure 4.3 shows the temporally split sub-

sets of the MovieLens dataset. During testing the ratings of first sets are used for recommender

engine training [30, 48].

The split of the dataset is performed by ordering the ratings table records according to their
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timestamp values. The sorted whole ratings table is divided into different logical sets based

on the learning cycle instance count. This clustered data is fed into the system as if real users

provide feedbacks for the movies. Each set is used for learning for the next step.

The previous set serves as background data for the next set. The splitting process and collect-

ing the MAE results of the predictions are plotted in Figure 4.3. After each set’s processing is

finished, AdaRec Framework redesigns itself. In our experiments we vary the instance count

of the learning cycle (1K, 1.5K, 2K and 3K). The provided set is sparse when the instance

count is small.

In the AdaRec, the decision tree induction is one of the fundamental classification method

that is intensively used in our initial experiments. The decision tree induction method C4.5

(described in Section 2.2.1) which builds a decision tree and performs classification on the

given data, is the first tested method during the initial experiments.

We conduct experiments on different instance-based learning algorithms that are supported by

WEKA. These are; J48 (a C4.5 variant), BF-Tree (Breath First Tree) and Conjunctive Rules.

These learning algorithms are described in Section 3.4.2.

• J48: WEKA’s implementation of the decision tree learner based on the C4.5 decision

tree algorithm.

• BF-Tree: A decision tree learner that uses a best first method of determining its branches.

• Conjunctive Rules: A simple rule learner that learns a set of simple conjunctive rules

that can predict for numeric and nominal class labels.

In the adaptive system, C4.5, BF-Tree and Conjunctive Rules classifier algorithms (described

in Section 4.3) are attached to the learning module and their results are recorded. We tuned

the algorithms to optimize and configured to deliver the highest quality prediction without

concerning for performance. The configurations of the learning algorithms are listed in Table

4.2. Since we used WEKA as our ML tool we also list the WEKA configuration of the

algorithms in Table 4.2. In our experiment results we referred these algorithms as J48, BF-

Tree and Conjunctive Rules.

As seen in the Table 4.2, in order to compare the performance of decision tree learners over
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Table 4.2: Configurations of the used ML algorithms.

ML Algorithm Configuration Details WEKA Configuration
J48 Decision tree learner is used with, prun-

ning strategy with no Laplace method
used and sub-tree raising operation is
considered while prunning. Minimum
number of instances at per leaf is 2.

J48 -C 0.25 -M 2

BF-Tree Decision tree learner is used with, post-
prunning strategy. Heuristic search is
used for binary splitting for nominal at-
tributes. Minimum number of instances
at per leaf is 2. Gini index, which is a
measure of statistical dispersion, is used
for splitting criteria.

BF-Tree -C 0.25 -M 2

Conjunctive Rules Conjunctive rule learner is used with no
attribute splits. Also pre-prunning is not
used. Minimum total weight of the in-
stances is 2.0.

ConjuctiveRule -N 3 -M
2.0 -P -1 -S 1

rule learner algorithm, we used very simple options for ’Conjunctive Rule’ learner algorithm.

In our experiments we also collect the produced prediction strategies on each redesign. Some

of the produced prediction strategies will be described in Section 4.4.

4.4 Experiment Results & Discussion

The purpose of this section is to compare the prediction accuracy of the implemented AdaRec

Framework and the baseline system, which were described in previous chapters. Both of the

two systems shall go through the same set of test cases with the same input conditions as

mentioned above. Experiment environment and test cases are described in Section 4.3.

As mentioned in Section 4.2, prediction accuracy is calculated according to MAE, which is

scaled to AdaRec’s internal scale < 0 .. 1 >. MAE compares the actual rating a user gave to

an item with the predictions made by a recommender. The lower the mean absolute error, the

better an actual predictor can be classified.

In experimenting with the MovieLens dataset, we considered both the proposed method,

called AdaRec- adaptive system, and the existing method, called baseline. In the experi-
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Figure 4.4: Quality of prediction (MAE) using AdaRec (attached J48 with 1000 instances) vs
Baseline & Best.

ments as described above, different number of instances, such as 1K, 2K and 3K, are used.

The purpose of different number of instances was to compare the influence of the instance

size on algorithms at the same domain.

In order to compare our system against the best possible outcome, we also plot the result of the

optimal MAE of the hybrid recommender in the current context at each run. The best MAE is

referred to best in the charts, which is calculated by looping over each prediction algorithm.

Naturally, this situation leads to linearly degraded performance (O(N)). Best, can be thought

as the globally optimal accuracy of the prediction algorithms, which choses the best possible

algorithm for each prediction. Therefore it is possible to compare the performance of the ML

algorithms over the best possible result.

4.4.1 Comparison of ML Algorithms & Baseline

In this section, we present the experiment results of our proposed system AdaRec and baseline

with the perspective of prediction accuracy. All of the results obtained during the experiments

are in a form of the MAE, which is described in Section 4.2. The lower the MAE, the more

accurately the recommendation system predicts user ratings.

Figure 4.4 presents the prediction quality (average MAE) results of our experiments, which

used 1000 instances as learning cycle count, for the adaptive system as well as the original
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Figure 4.5: Quality of prediction (MAE) using AdaRec (attached BF-Tree with 1000 in-
stances) vs Baseline & Best.

system referred to baseline. J48 algorithm is used in these experiments. In this chart, pre-

diction quality is plotted for each of the runs. On each run adaptive system re-designs its

prediction strategy according to the previous runs instances (feedbacks and results).

At first glance, we make two important observations from the Figure 4.4.

1. The prediction quality of the adaptive system performs better than the baseline. It can

also observed from the chart that, even if both systems start with the same strategy, the

adaptive system has adapt to the changing user behaviors.

2. It can be inferred from the figure that, AdaRec MAE decreases over time. This is the

natural result of the learning algorithms. This shows that the used ML algorithm has

the ability to improve with experience, to get better over time.

Figure 4.5 presents the average MAE results of AdaRec System with BF-Tree attached vs.

Baseline & Best. The AdaRec system attached with BF-Tree as it’s ML algorithm performs

as good as the baseline but not better. This situation may occur due to the inadequateness of

the chosen ML algorithm. In larger experiments or in different datasets this algorithm may

produce more accurate results. Because the nature of the domain (movie, music, book etc.)

has a major impact on the performance of the algorithms.

Figure 4.6 presents the average MAE of hundred runs for 1K instance size. In this experiment

we evaluate the impact of more runs for 1K instance size. It can be observed from the chart
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Figure 4.6: Quality of prediction (MAE) using AdaRec (attached BF-Tree with 1000 in-
stances) vs Baseline & Best.

that changes in the MAE show the similar trends for both J48 and best. A harmony is achieved

through time between the adaptive system and the best one. The curves are similar in such a

way that if one of them has a good prediction accuracy in one run, the others also have the

good accuracy for that run. Fluctuations in the chart shows similar trends.

In Figure 4.7, we draw the conclusion of the accuracy results of all used ML techniques

for 1K instance size. Observed from the Figure 4.7 that the J48 attached AdaRec system

performs better than the other systems. Also BF-Tree seems good enough to compete against

the naive hybrid system. But BF-Tree algorithm needs some domain depended configuration

adjustments. From the Figure 4.7, we also observe that the Conjunctive Rules algorithm

under performs among other ML algorithms. The rule learner algorithm seems not stable as

the decision tree learners.

Figure 4.8 presents the prediction accuracy of the AdaRec system and baseline for 2K in-

stances. Also the best possible results of the predictions are plotted in the chart. Instance size

of the learning cycle plays a very important role in our AdaRec system. As seen in Figure 4.8

the difference between the AdaRec and baseline are more sharp than the 1K instance which is

plotted in the Figure 4.4. It can be inferred from the chart that J48 algorithm performs better

with big instance sizes.

We carried out the same experiments with both 2K and 3K instance size. Figure 4.9 and

Figure 4.10 shows the accuracy results of all used ML techniques for 2K and 3K instance
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Figure 4.7: Quality of prediction (MAE) using AdaRec (attached J48, BF-Tree and Conjunc-
tive Rules with 1000 instances) vs Baseline & Best.

Figure 4.8: Quality of prediction (MAE) using AdaRec (attached J48 with 2000 instances) vs
Baseline & Best.
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Figure 4.9: Quality of prediction (MAE) using AdaRec (attached J48, BF-Tree and Conjunc-
tive Rules with 2000 instances) vs Baseline & Best.

sizes respectively. From these figures, we observe that AdaRec with well configured ML

algorithm, outperforms naive hybrid system. This observation again proves the advantage of

our proposed system.

In order to determine the impact of the instance size, we carried out experiments where we

varied the value of instance size (1K, 1.5K, 2K and 3K). For each of these training set/instance

size values we ran our experiments. Figure 4.11 presents the whole picture of the adaptive

system’s performance results. From the plot we observe that the quality of MAE increases as

we increase the instance size.

Figure 4.11 summarizes the performance results of different instance counts. We plot the

average MAE values of different instance sizes. From the plot we see that using the J48 as the

plugged learning algorithm, the MAE is substantially better than the baseline. This is due to

the reason that with the adaptive approach the recommender system adapts itself to the current

context. Another important observation from the chart that as we increase the instance size of

algorithms the quality tends to be superior (decreased MAE). In case of other algorithms it is

expected that increasing the number of instances would mean small MAE values. The same

trend is observed in the case of 2K and 3K instances.

The average MAE results of the experiments for different instance sizes are given in Table

4.3. From the results, we observe that all ML algorithms performs better with 3K instance

60



Figure 4.10: Quality of prediction (MAE) using AdaRec (attached J48, BF-Tree and Con-
junctive Rules with 3000 instances) vs Baseline & Best.

Figure 4.11: Comparison of the different instance sizes. 1K, 1.5K, 2K and 3K instances are

used for learning cycle.
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Figure 4.12: Prediction accuracy comparison of the AdaRec (attached J48, BF-Tree and Con-
junctive Rules) vs Baseline & Best for different instance sizes.

size. This observation again proves that as we increase the instance size of algorithms the

quality tends to be superior. As showed in the table J48 algorithm performs better results than

the baseline and the other algorithms. We observe that a good configured algorithm achieves

better accuracy than the static one.

Table 4.3: Average MAE of the used ML algorithms for different instance sizes.

ML Algorithm 1K 2K 3K
Best 0.254437 0.238296 0.231473
Baseline 0.423804 0.413809 0.410117
AdaRec(J48) 0.378762 0.364287 0.356275
AdaRec(BFTree) 0.433188 0.443327 0.426553
AdaRec(Conj.Rules) 0.447756 0.432602 0.424115

Figure 4.12 also presents the prediction accuracy results of the different instance sizes. In the

figure, we also plot the overall performance of ML algorithms as average.

The results also show that, when using well tuned algorithms, the adaptive system is stable

(better than the baseline) in obtaining the average prediction accuracy. This durability, which

may be called as the impact of learning. This improvement is a natural result of the adaptation.

In order to adapt recommender engine to the current trends, the learning module re-designs
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the prediction strategy. The learning ability supports the recommender system adaptation to

the changes. The more recommender system adapts to the domain & the users, it produces

better results.

4.4.2 Created Prediction Strategies

In this section, we present some of the produced prediction strategies that are created by

different ML algorithms (J48, BF-Tree and Conjunctive Rules) during the experiments. ML

algorithms, which were tested in our experiments, basically produce two type of prediction

strategies; decision trees and decision rule sets.

Learning Module in AdaRec creates prediction strategy for each learning cycle, by using the

attached ML algorithm, according to the training set of instances. The whole process of the

Learning Module was described in Section 3.3 in detail. Prediction strategy, as described in

Section 3.2.3 consists of prediction algorithms & switching rules associated with them. The

prediction strategy defines the switching behavior of the recommender engine.

Figure 4.13 shows a sub-tree of the created prediction strategy. This sample prediction strat-

egy is created by J48 ML algorithm at the 15th run of the 1K instance experiments. In our

experiments we observed that J48 ML algorithm produces bigger trees than the BF-Tree.
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Figure 4.13: A sub-tree of a prediction strategy that is created by J48 ML algorithm.
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Figure 4.14: A prediction strategy that is created by BF-Tree ML algorithm.
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Figure 4.14 shows the prediction strategy produced by the BF-Tree. This sample prediction

strategy is created by BF-Tree ML algorithm at the 7th run of the 1K instance experiments.

It can be observed from the tree that BF-Tree produced smaller prediction strategies than the

J48.

Conjunctive Rule learner, as described in Section 2.2, produce simple single rules for predic-

tion strategies. The strategy that is created by Conjunctive Rule learner ML algorithm at the

10th run of the 3K instance experiments is given below.

Single conjunctive rule learner:

--------------------------------

(main_genre_interest <= 0.283334) and (similar_item_count <= 4.5) => technique = informationFiltering

Class distributions:

Covered by the rule:

informationFiltering socialFiltering topN mainGenreLMS userAverage cbr subGenreLMS

0.374502 0.10093 0.354582 0.09429 0.037185 0 0.038513

Not covered by the rule:

informationFiltering socialFiltering topN mainGenreLMS userAverage cbr subGenreLMS

0.249399 0.105052 0.35846 0.186848 0.056937 0.001604 0.0417
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CHAPTER 5

CONCLUSION & FUTURE WORK

This concluding chapter summarizes the contributions of the thesis and proposes possible

directions for future work.

5.1 Conclusions

Traditional hybrid recommender systems typically follow a manually created fixed prediction

strategy in their decision making process. In this thesis, we introduced an adaptive hybrid

recommender system, called AdaRec, that to combines several recommender techniques (al-

gorithms) in which the combination parameters are learn and dynamically updated from the

results of previous predictions. Research study shows that traditional static hybrid recom-

mender systems suffer from changing user preferences. In order to improve the recommenda-

tion performance, we handle domain drifts in our approach.

In AdaRec architecture, which is built upon an open-source recommender system called

Duine, we aim to improve prediction accuracy through adapting the domain trends. The

Learning Module re-designs its prediction (switching) strategy according to the performance

of prediction techniques. As a result, the system becomes adaptive to the application domain,

and the performance of recommendation increases as more data are accumulated. We believe

that with this adaptive learning module, a traditional hybrid recommender should have higher

chance to allow its users to efficiently obtain an accurate and confident decision.

We have used and tested several ML algorithms in the Learning Module component. Initially,

we used simple decision tree induction methods such as Breath First Tree (BF-Tree). Later

on we used WEKA implementation of the well-known C4.5 decision tree induction algo-
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rithm, called J48. We also include a rule learner, called Conjunctive Rule Learner, in order to

compare the results.

In the experiments we used MovieLens 1M dataset. At these experiments, the proposed adap-

tive system adapts outperforms the baseline (naive hybrid system). By using well-configured

ML algorithms with MovieLens dataset, AdaRec provides significantly more accurate predic-

tions than the static hybrid recommender system.

5.2 Future work

During the research for this thesis, new ideas have arisen and new research lines have been in-

vestigated with potential interest for the continuation of this research work. There has several

future work directions we can follow, some of them are listed below.

• Different Datasets: As described in Chapter 4, initial experimental results with Movie-

Lens dataset show potential impacts of AdaRec Framework. Therefore, for the next

step, we plan to deeply test the learning module with various heterogeneous datasets.

It would be also interesting to examine the different domains other than movie, such

as music, book, etc. As the first trial publicly available datasets would be used in the

experiments. Some of these are; Jester Joke dataset1, ChceteMe dataset2, LibimSeti

dataset3. We believe that additional testing over a longer period and with real system &

real users will quietly improve the system.

• Different ML Algorithms: Learning Module is developed on pluggable architecture.

In AdaRec Framework it is possible to attach different ML algorithms through a com-

mon interface. We plan to test different learning methods, such as support vector ma-

chines, artificial neural networks etc., in our experimental framework and compare their

results with other ML techniques. Also it would be interesting to compare the different

ML algorithms on different configurations.

• More than one metric: In our experiments we used Mean Absolute Error (MAE) met-

ric for prediction accuracy. However it would be beneficial to use more than one metric

1 http://goldberg.berkeley.edu/jester-data/
2 http://chceteme.volny.cz/
3 http://www.libimseti.cz/
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in the experiments. Coverage metric may be used in conjunction with MAE. Also

in our system in order to compare the ML algorithm’s efficiency, produced prediction

strategies may be compared by using a common metric, such as tree size, leaf size, rule

count etc.

• Improving the performance: Performance is the another big issue for recommender

systems. During this thesis work, we noted that one of the key aspects in successful

practical recommender systems research is providing fast predictions. Recommender

Systems are usually used in websites such as Amazon4, Last.fm5,del.icio.us6, . Since

most of these system’s recommendations are time dependent, a reasonable performance

improvement should be made on our proposed AdaRec Framework.

• Analyzing domain trends: In AdaRec Framework we analyze the dynamics and chang-

ing trends of the domain in order to adapt the changing user preferences. It would

be interesting to analyze the changes in the domains. For example publicly available

datasets, such as MovieLens dataset, may be used to show the changes in the users

preferences.

• Contribution to open-source: As the future work, the AdaRec Framework may be

an open-source project. Also it is possible to introduce a plug-in (such as adaptation

plugin) to open-source Duine Framework in order to get more feedbacks from the com-

munity.

4 http://www.amazon.com
5 http://www.last.fm
6 http://del.icio.us
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