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ABSTRACT

OPTIMIZATION ALGORITHMS FOR RESOURCE ALLOCATION PROBLEM
OF AIR TASKING ORDER PREPARATION

Bayrak, Ahmet Engin

M.Sc., Department of Computer Engineering

Supervisor : Prof. Dr. Faruk Polat

August 2010, 55 pages

In recent years, evolving technology has provided a wide range of resources for Mil-

itary forces. However, that wideness also caused resource management difficulties in

combat missions. Air Tasking Order (ATO) is prepared for various missions of air

combats in order to reach objectives by an optimized resource management. Consid-

ering combinatorial military aspects with dynamic objectives and various constraints;

computer support became inevitable for optimizing the resource management in air

force operations. In this thesis, we study different optimization approaches for re-

source allocation problem of ATO preparation and analyze their performance. We

proposed a genetic algorithm formulation with customized encoding, crossover and

fitness calculation mechanisms by using the domain knowledge. A linear program-

ming formulation of the problem is developed by integer decision variables and it is

used for effectivity and efficiency analysis of genetic algorithm formulations.

Keywords: Combinatorial Optimization, Air Tasking Order, Genetic Algorithms, Re-

source Allocation
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ÖZ

HAVA HAREKAT PLANI KAYNAK PAYLAŞTIRMA PROBLEMİ İCİN
OPTİMİZASYON ALGORİTMALARI

Bayrak, Ahmet Engin

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Faruk Polat

Ağustos 2010, 55 sayfa

Son yıllarda, gelişen teknoloji askeri kuvvetlere geniş bir kaynak çeşitliliği sağlamak-

tadır. Bununla birlikte, bu çeşitlilik savaş görevleri açısından kaynak yönetim zor-

luklarına da sebep olmaktadır. Hava Harekat Görevleri, hava harekatlarının farklı

görev türleri için kaynakları en iyi şekilde kullanarak hedeflere ulaşabilmesi için

hazırlanmaktadır. Kombinasyonel askeri hedefleri, değişken savaş durumlarını ve

kısıtlamalar bir arada düşünüldüğünde; hava operasyonlarında kaynak yönetimi opti-

mizasyonu için bilgisayar desteği kaçınılmaz olmaktadır. Bu tezde, hava harekat planı

kaynak paylaştırma problemi için farklı optimizasyon yaklaşımları üzerinde çalıştık

ve başarılarını analiz ettik. Alan bilgileri kullanarak özelleştirdiğimiz çaprazlama,

değerlendirme ve kodlama yöntemleri ile genetik algoritma formulasyonları önerdik.

Tamsayı karar değişkenleri ile geliştirdiğimiz doğrusal programlama formulasyonu

ile genetik algoritma formulasyonları için etkililik ve etkinlik analizleri yaptık.

Anahtar Kelimeler: Kombinasyonel Optimizasyon, Hava Harekat Planı, Genetik Al-

goritmalar, Kaynak Paylaştırma
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CHAPTER 1

INTRODUCTION

In recent years, evolving technology has provided a wide range of resources for Mil-

itary forces. However, that wideness also caused resource management and planning

problems in combat missions. Resource management problem for a combat mission

is composed of various sub-problems encountered throughout the combat missions’

planning. One of the main problems of combat planning is resource allocation prob-

lem, which defines the operations against enemy targets and aims to optimize the

resource allocation efficiency and effectivity. Researches on this problem emerged

with scientific approach usage in the organization management. While dealing strate-

gic and tactical problems of military operations in World War II, need for academic

study and scientific support raised and Operations Research (OR) activity officially

began with created military OR teams [1]. Resource allocation problem is studied

within OR domain, which is a common interest of computer scientists and industrial

engineers.

Air Tasking Order (ATO) is a plan, prepared for various missions of air combats

in order to reach objectives by an optimized resource allocation. Considering both

dynamic conditions of a warfare and command and control facilities, an optimal re-

source allocation should be provided with a fast decision. Long time required for

ATO production makes scientific support inevitable for the air force military opera-

tions. Computer assistance has been used as a decision support system for 30 years

by U.S. Army [2].

Resource allocation optimization problem of military operations has combinatorial

aspects with dynamic objectives and various constraints like resource limitations, cost

1



and transportation [3]. Therefore, resource allocation formulation of ATO prepara-

tion can be studied in Combinatorial Optimization problem set, which deals with

NP - Hard optimization problems [4]. Previous resource allocation studies, mostly

formulate the problem as an integer linear programming problem [5, 6]. These stud-

ies investigate solutions through varying methods like greedy, branch-and-bound and

knapsack approaches. Some researchers concentrated on genetic algorithm formula-

tion of the problem [7].

Military forces cannot use the methods with exponential execution time complexities,

because time ambiguity is not acceptable for time critical ATO preparation. On the

other hand, optimizing the gain value for an air combat is crucial for combat envi-

ronment. Requirement for an algorithm that meets these necessities constitute the

motivation of this study.

In this study, we study genetic algorithm formulations for resource allocation prob-

lem in ATO production. Problem specific crossover, fitness calculation and selection

approaches are proposed for genetic algorithm solution of resource allocation prob-

lem through this thesis. These approaches mainly concentrate on dividing the genetic

problem into smaller genetic problem pieces using domain knowledge. Customized

genetic algorithm approaches are implemented and examined through experiments.

Linear programming formulation is implemented for the problem with integer deci-

sion variables. Standard greedy and exhaustive search algorithms are implemented.

Linear programming, greedy and exhaustive search algorithms’ solutions are used for

evaluating implemented genetic algorithm customizations.

We extend the framework in [8] to be able to use different solution approaches on

the same input problem set. Enhanced framework eliminates the different problem

formulations and execution environment. Moreover, that framework has important

capabilities from input generation to solution analysis. Varying resource, target and

operations can be created based on provided air force capability configuration by

the help of random input generator. Generated combat cases can be rendered and

persisted for future analysis and solution executions. Adapters for different solution

approach formulations allow the usage of same combat case input for solution genera-

tion. In case of a need for new solution formulation, a small adapter can be developed

2



for an easy integration as a result of plug-in strategy used by the framework.

Feasibility and success ratios of each implementation are analyzed and their differ-

ences are compared with each other in order to assess their efficiency and effectivity.

Input sets with different characteristics are used for those comparisons.

The remainder of the thesis is organized as follows:

Chapter 2 - Background and Related Work gives an overview of Air Tasking Order

preparation and resource allocation problem in ATO preparation. Then related studies

in literature are described and their approaches are identified in details. Pros and cons

of these approaches are discussed. Main algorithms and formulations used in resource

allocation studies are described briefly.

Chapter 3 - Our Work presents our research details. The overview of the framework

is presented, the input representation scheme is explained, the algorithm implemen-

tations and customizations are described in detail.

Chapter 4 - Evaluation of the Results provides a summary of solutions created by

implemented algorithms for various input sets and presents experimental results.

Chapter 5 - Conclusion and Future includes the concluding remarks and states the

future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter aims to present an overview of Air Tasking Order preparation and re-

source allocation problem in ATO preparation. It also includes the current studies in

literature and their approaches in detail. Main algorithms and formulations used for

resource allocation problem are described briefly.

2.1 Resource Allocation Problem in Air Tasking Order Preparation

In warfare, military forces should be flexible to accommodate to dynamic environ-

ment conditions for being successful. This flexibility requires the ability of planning

and managing the combat dynamically with effective and fast decisions.

An air tasking order (ATO) involves both a process of assigning mili-
tary aircraft, long-range missiles, and relevant air defense and informa-
tion operations resources to missions contributing to an overall air cam-
paign plan, as well as the actual sets of orders to be followed by aircraft
and units of aircraft. [9]

Air Tasking Order (ATO) is used to define management and planning issues of an air

attack. Steps followed during ATO production are shown in Figure 2.1.

Diverse resource types of air forces are used in resource planning of ATO. Our study

also involves varying attack resources distributed on bases for problem formulation.

This variance is achieved by the computer support during input generation. Resources

in our subject of interest are listed below:
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Figure 2.1: Air Tasking Order Production Life Cycle

5



• Base: Military area where all type of resources like munitions, aircrafts, tanks,

choppers and staff are located is called base in the literature. Each force (air,

naval and ground) has its specific bases and some joint bases.

• Fleet: Combatant unit is called fleet in air force bases. Aircrafts and their pilots

uniform a fleet unit which is used for target assignment as a group.

• Aircraft: Military forces have different types of vehicles used for air combats.

They differentiate according to ranges, load capacities and gun capacities.

• Pilot: Air combats can be one of two types: air-to-air and air-to-ground com-

bats. Each combat type requires specifically trained pilots who are main staff

for a combatant fleet. Pilot capability is one of the key points of combat success

as it directly affects the attack potential.

• Munitions: Munitions like rockets and missiles are carried by aircrafts in an

air combat. As the mass of munitions define their destruction potential, load

capacity of an aircraft is directly related with the attack performance.

Each air combat has a procedure from collecting the intelligence information to tar-

get destruction. Firstly, enemy resources are examined by related units of air force

to collect target information for miscellaneous goals of the military and government.

Secondly attack assets; which will be used for enemy target destruction, are prepared

by summing up aircrafts, munitions and resources. Each asset resembles a military

operation for an air force fleet. In real world’s military environment, generally pos-

sessed resources are not enough for completing these operations. So, defined oper-

ations are analyzed and evaluated according to their relationships with each other.

Resource allocation in ATO preparation is finalized with selecting the operations to

optimize the combat performance.

ATO resource allocation planning is also performed during a combat according to the

realized operations’ performance. Considering the both mathematical complexity of

resource allocation and time shortness in warfare condition, need for computational

decision support system can be seen easily. Computational decision support for re-

source allocation optimization is one of the active subjects in operations research and

computer science domains, which is widely studied [10, 11].
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In this thesis work, we elaborated mostly on the allocation problem of scarce re-

sources to varying operations defined according to enemy targets. This problem is

also named as ”Weapon Target Assignment” or ”Military Asset Allocation”. In the

literature, this resource allocation problem is solved by grouping military attack re-

sources into asset packages and assigning these packages to enemy targets by opti-

mizing the gain from the attack resource potential [8]. Structures of air force targets

like airports, buildings, etc. also supports the attack resource grouping strategy as

single resource potential are not sufficient for destroying a single target. So, we also

analyzed the input problem set in similar way and created operations against enemy

targets by grouping resources in the air force.

2.2 Required Features of Resource Allocation Solutions

Proposed solutions for resource allocation problem of ATO preparation should have

some features as the real world military environment forces some constraints during

an air combat. Requested features are following:

• Integer solutions: In real world military environment, we cannot assign half

aircraft to a target, so every aircraft should be grouped and assigned as a whole.

This constraint affects the usage of algorithms with real number solutions as

they cannot be used singly but can be a part of a hybrid solution. In addition,

operation necessities should be fully meet as partly completed operations do

not have any value for an air combat.

• Efficiency: Solution algorithms are expected to run in acceptable time and

space. An algorithm with high resource complexity causes inefficient solutions

for the bigger sized inputs.

• Effectivity: Solution performance of algorithms is very crucial for the problem

as they are used in mission critical plans. Gain loss according to best solution

is evaluated for an algorithm together with their time acquisitions.

• Problem formulation: Each algorithm should have a solution space that max-

imizes the coverage of all available resource allocation possibilities. Solutions

are expected to meet real world military constraints.
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2.3 Related Work

Rosenberger et al. [5] formulated the problem as a linear integer programming prob-

lem. They investigated two different solution methods for the optimization of military

resource allocation problem:

• Greedy Approach: This approach is based on sequential application of auc-

tion algorithm. In each step a resource is allocated to a target from the graph.

Greediness improves the time performance in this solution.

• A branch-and-bound framework that enumerates feasible tours of assets / re-

sources - a process that can become computationally intensive with increasing

number of sources and targets but will find an optimal solution. An optimal

solution is tried to be found by enumerating their feasibilities. Branching in

this solution methodology works for small sized inputs. If a greedy selection is

performed in between branching steps, several suboptimal solutions would be

pruned.

Collaborative planning, multiple target assignments for a platform is additional works

done in this topic by the researchers. Assigning multiple sources to targets in branch

and bound approach seems to make algorithm stronger against greedy approach [5].

Toet and Waard [12] studied the algorithms used for combinatorial optimization prob-

lems in military domain. This research is a part of The EUCLID (European Coop-

eration for the Long term In Defence) CALMA (Combinatorial Algorithms for Mil-

itary Applications) RTP (Research and Technology Project). Their study explains

the Weapon Target assignment problem and different approaches used for solution

optimization. Optimization performances of those approaches are analyzed based on:

• Space and time required,

• Ease of implementation and flexibility,

• Quality, computing time relation,

• Stability.
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CALMA algorithms are analyzed and their solutions are evaluated according to sur-

viving value maximization and threat minimization approaches [12]. These algo-

rithms aim to optimize resource allocation for a defence force against an air attack.

So their objective is maximizing the asset survival and minimizing the attacking en-

emy threats for a better defence performance.

Ahuja et al. [13] studied Weapon Target Allocation problem as optimization of threat

minimization by assigning defense resources against enemy attack threats. Their

study is a combination of most commonly used optimization algorithms for WTA

problem. A branch and bound algorithm is applied to the problem using the branch-

ing lower bounds which are calculated using:

• Linear programming,

• Mixed integer programming (MIP),

• Minimum cost network flow,

• Greedy approach based on combinatorial arguments.

Ahuja et al. proposed a very large-scale neighborhood (VLSN) search algorithm and

a construction heuristic that uses the minimum cost flow. VLSN algorithm solves

the problem like a partition problem and gives highly impressive results. Problem is

divided into partitions and neighborhood search is performed on these partitions. In

addition, the MIP lower bounding scheme gives the tightest lower bounds but also

takes the maximum computational time [13].

Griggs et al. [14] studied on resource allocation problem of air mission planning

and described their research called Joint Stochastic Warfare Analysis Research (JS-

TOCHWAR). They propose a mixed integer programming with asset grouping strat-

egy which also uses Suppression of Enemy Air Defenses (SEAD) aircrafts against

enemy targets.

Aberdeen et al. [10] formulated the planning problem of military operations as a

problem of Markov Decision Process (MDP) by considering timing and relationships

of military operations. Real-time heuristics that is generated automatically is used in

evaluation. MDP formulation is as following:
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• State Space: States defined by operations, resources, time, etc. about the mili-

tary operation.

• Actions: Military operations that are enabled for the given state.

• Successor State: A new state after the performed operation.

• Costs: Resources used, targets destroyed, etc. for the state transition.

Aberdeen et al. proposed a Labeled Real Time Dynamic Programming (LRTDP)

which can be defined as a combination of greedy approach with labeling of converged

states [10].

Lee et al. [7, 15] studied genetic algorithm solutions of weapon target assignment

problem. In [7], Lee et al. proposed to include domain specific knowledge for the

crossover operator and local search mechanism in the genetic algorithm implementa-

tion. According to this approach following operations are performed:

• Local search with domain knowledge is performed before and after the mu-

tation of each recombination step of genetic algorithm. They investigated the

decrease in time requirement after elimination of weak genomes of the popula-

tion.

• Fitness value is optimized by the help of Simulated Annealing methodology.

This research [7] mostly emphasizes use of domain specific knowledge in local search

and cross-over phases. It is shown that, modification or usage in hybrid solutions can

over-perform relative to basic algorithm [7].

In [15], eugenics aided genetic algorithm approach is studied. Genetic algorithm and

simulated annealing methods were realized individually and together. Greedy eugen-

ics contribution based on domain knowledge performed better for the problem [15].

McDonnell et al. [16, 17] studied different approaches for genetic algorithm solution

of Strike Force Asset Allocation Problem. In [16], a genetic algorithm solution is

proposed for resource allocation in strike forces domain. Each genome represents

an assignment of a platform to a target in representation. They used CHC selection
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methodology described in [18]. In CHC, population is doubled after mutation and

crossover operations then best individuals are selected for decreasing the population

size to normal.

In [17], McDonnell et al. proposed case based reasoning injection to genetic al-

gorithm for strike force allocation problem in dynamic warfare scenarios. In this

proposal following operations are performed in given order:

1. A case database for each recombination in population should be created from

warfare scenarios.

2. Some genomes similar to current best solution genome should be added to the

population in order to replace previous weak genomes. Those injected new

genomes are selected from a case database by the help of a Case Based reason-

ing component. Matching the relevant case in the database is performed using

its hamming distance to a best solution genome in the population.

This novel approach performs better than standard implementation [17].

2.4 Resource Allocation Methodologies

Main algorithms and formulations used for resource allocation problem are described

briefly in this part.

2.4.1 Exhaustive Search

Exhaustive search is the methodology that finds a solution for a problem by search-

ing best solution with full coverage on the solution space. Although it has very high

time complexity, best solution is guaranteed for this algorithm. In real world military

environment, its time consumption is unacceptable so we used this methodology for

finding the optimum solution. In resource allocation problem, this algorithm’s for-

mulation has O(2N) complexity. N is equal to T X F where T is the target count, F

is the fleet count. However, one assignment for each target constraint decreases this

11



complexity to O(HF). Some bounding strategies can be used for decreasing the time

consumption of exhaustive search. These strategies are:

• Branch and Bound: After creating a single full solution, remaining candidates

can be evaluated according to forecasting with their current result quality. A

candidate solution is not processed anymore if its forecasted potential is lower

than current best solution.

• Greedy Bound: Unaffordable operations are removed from solution space and

every new candidate is processed greedily with better result quality expectation.

• Knapsack Bound: It is used for evaluating remaining candidates. In a Knap-

sack Problem, there are entities with given size and values and it is expected

to select some (one or more) of subsets from these entities for maximizing the

sum of entity values without exceeding the total size capacity [19].

2.4.2 Greedy Algorithm

Greedy algorithm is a customization of exhaustive search based on greedy selection of

best solution. This methodology does not change selected best result and constructs

a single solution at the end of execution. Time complexity of greedy algorithm is

O(NlogN). Greedy algorithm can also use different evaluation bounds for resource

allocation problem like ones given for exhaustive search.

2.4.3 Integer Linear Programming

Linear programming is used for optimization problems and it is applied on specific

problems with a particular formulation described in [20]. Best solutions like maxi-

mum gain or minimum cost is found through a mathematical model by the help of

domain constraints encoded as linear equations.

Linear programming methodology is widely used in operations research. Elements

of linear programming are given below:
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• Linear Objective Function: Value to be optimized is called objective function.

This function should be represented as a linear equation, such as:

– Maximize: c1x1 + c2x2

• Constraints: Linear inequalities of the problem domain that bounds the solu-

tion space are called constraints. An optimum solution that meets these con-

straints’ requirements is searched by objective function. Each constraint should

be represented as a linear equation, such as:

– a1,1x1 + a1,2x2 ≤ b1

– a2,1x1 + a2,2x2 ≤ b2

– a3,1x1 + a3,2x2 ≤ b3

• Decision Variables: Both objective function and constraints are based on de-

cision variables xi whose optimal values are searched with simplex methods in

linear programming.

Simplex Method: Basic algorithm generally used for linear programming is the sim-

plex method [21, 22]. It was proven to solve linear formulated problems of acceptable

size in a reasonable time.

The simplex method works by finding a feasible solution, and then mov-
ing from that point to any vertex of the feasible set that improves the cost
function. Eventually a corner is reached from which any movement does
not improve the cost function. This is the optimal solution. [21]

The problem is usually formulated in matrix form, and represented as:

• Maximize: cT x

• Subject to: Ax ≤ b, x ≥ 0

where x represents the vector of variables (to be determined), c and b are vectors

of (known) coefficients and A is a (known) matrix of coefficients [23]. In this for-

mulation, a vector x is a feasible solution of the linear programming problem if it

satisfies the given constraints. Problems defined in this formulation have three differ-

ent types [21]:
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• Infeasible: None of the vectors in solution space can satisfy the given con-

straints.

• Unbounded: Given constraints are not enough for bounding objective func-

tion parameters in the solution space. So, a better solution with an improved

objective function value can exist.

• Optimal: Problem formulated in linear programming has an optimum value for

the objective function and there exists vector(s) that can create such optimum

value with satisfying the given constraints.

Integer linear programming is a customized version of linear programming where all

decision variables of objective function are integers. As resource allocation problem

requires integer results, only integer linear programming can be used for finding the

solution.

2.4.4 Genetic Algorithm

Genetic algorithm is one of the powerful and widely used evolutionary computation

methodologies for optimization and search problems [24, 25]. Genetic algorithm

does not create a problem specific result. However, it proposes a general formulation

for every problem by searching solution space with defined relevance calculation.

Used randomness and statistics cause different solution for different executions of the

algorithm so more than one trial can be made for gathering best result. Main terms

used in this formulation are as followings:

• Genome: Each individual solution is defined as genome so each solution should

be able to be represented as genome in a genetic algorithm. Genome encoding

has a critical importance for algorithm performance. Encoding can be binary

or numerical in any dimension (1D, 2D, etc.).

• Population: Genomes in solution space constitutes a population. Genetic al-

gorithm aims to maximize the individual solution performance in a defined

population by the information from each other and from the outside. This per-

formance improvement is realized by genetic operations step by step.
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Figure 2.2: Single Point Crossover

• Crossover: In each step, genetic information of population genomes are shared

by genetic crossover operations over selected random individuals. Offspring

genomes are created from existing genomes by that way. Procedure for single

point crossover operation is shown in Figure 2.2:

• Mutation: Closed population has the risk of being caught by local maximum

value after some individual genome’s quality improvements because total in-

formation shared has the limitation for a closed population. In order to escape

from these local maximums, some outside information can be added to popula-

tion. Mutation is one of the outer information addition strategies, where some

parts of randomly selected genomes mutated.

• Fitness Value: Relevance calculation used for each genome’s evaluation is

called fitness function. Return value of this function is called fitness value

which is used as a primary property in the selection step.

A random search is performed in this algorithm where crossover and mutation opera-

tors help the searcher in heading towards the population’s subset which optimizes the

objective value. This help should be in such a way that satisfies the equilibrium be-

tween exploration and exploitation of the population space. Therefore, such operators

and population encoding should be examined carefully when formulating the genetic

algorithm solution for the specific problem [24]. Steps of a typical genetic algorithm

is given in Figure 2.3 where P(t) represents the solution population for generation t

and C(t) represents the created offsprings for the tth generation:
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Figure 2.3: Genetic Algorithm Procedure

Main problems that should be solved for genetic algorithm adaptation of a problem

are encoding and selection operators.

2.4.4.1 Encoding

A solution instance is represented as genomes in genetic algorithms and this repre-

sentation is realized by the help of selected encoding methodology. Problem require-

ments and solutions spaces vary in operations research domain. Some of the real

world problems can be defined with binary encoding but some problems’ complexity

does not allow binary encoding usage. Encoding classifications according to used

symbols are:

• Binary Encoding: It is generally used because of simple encoding which pro-

vides easiness in selection of operators [26].

• Real Number Encoding: Used for optimization problems as real number us-

age is identical to the problem’s real world representation [27].

• Literal Permutation Encoding: Used for problems that search for a best com-

bination or permutation of the parameters.

• Data Structure Encoding: Used for complex problems that cannot be repre-

sented with other encodings. A data structure related with problem domain is
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used.

Encodings are also classified according to genome dimensions as:

• One Dimensional Encoding: Used for problems that does not lose informa-

tion. It has a low selection operator complexity.

• Multi Dimensional Encoding: Used for the complex real world problems

that loses information in one dimensional encoding [28]. A matrix is used as

genome so selection operator complexity increases.

Adaptation can be made with a suitable encoding methodology defined above. Any

encoding methodology chosen for a problem formulation should have following prop-

erties to be effective [24]:

1. Complete: Any solution should be able to be represented in the solution popu-

lation with encoding.

2. Legal: Encoding permutation of a solution should yield another solution in

population.

3. One-to-One Mapping: Encoded genomes should not be redundant with real

solutions. One representation exists for one solution instance.

4. Heritable (Lamarckian): Genomes should not have context dependent prop-

erties. Genome properties should pass from parent to offspring [29].

5. Causal: This property defines the effect of genome mutation on the real world

solution representation. It is preferred to have small changes in real world

representation when a genome representation has a small change [30].

2.4.4.2 Selection Operators

In genetic algorithm, solution space which is called population is searched for a

genome with best objective function values. There are two approaches in the search-

ing methodology:
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• Random Search: Population is explored entirely and local maxima can be

escaped.

• Local Search: Solution space is searched with optimum genome exploitation

and local maxima cannot be escaped.

For a good solution, search in population should satisfy the equilibrium between ex-

ploring whole solution space with random search and accumulated information ex-

ploitation with local search [24]. Crossover operator defines the offspring generation

in genetic operation. Mutation operator determines the random changes over popu-

lation. Crossover and mutation operators play a critical role in satisfying that search

equilibrium. In the literature following methodologies used for adding exploitation

power to the random search:

• Building Blocks: This genetic approach is developed by Holland [26] and im-

proved by Goldberg [31]. It emphasizes on the attribute heritage from parent

genomes to offspring genomes by recombining genome parts called genes with

crossover operator. Quantity of feature heritage determines the offspring at-

tribute quality calculated as fitness value. These fitness values are generally

calculated by fitness functions which are using both feature values alone and

together as patterns. Building blocks approach is applicable for the genome

representations in which effect of a gene singly on fitness value is more than

effect of gene patterns on fitness value. So, genes with dependency to other

genes in fitness value calculation are not suitable for this recombination of fea-

tures approach.

• Convergence Controlled Variation: This approach is developed by Eshelman

and his friends [32]. Genetic search is directed according to solution conver-

gence of the population. Exploitation is realized by extending a population in

the way of a preferred convergence distribution such that solution space varia-

tion becomes more focused on convergence to objective.

Exploitation strategy is determined according to problem formulation and its genome

encoding. One other step of genetic algorithm is the selection of genomes. Fitness
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value calculation becomes critical in this step as the future generations of the popu-

lation is dependent on the selected genome. Generally fitness values are defined with

considering both the problem objective and the genetic formulation used. Selection

mechanism is another property that uses and affects the fitness function. Some of the

commonly used selection mechanisms in the literature are followings:

• Roulette wheel selection: It is a random selection for gene recombination. In

this mechanism, a genome is randomly selected for crossover from a pool filled

according to a probability based on genome’s fitness value. Percentage of a

genome’s fitness value defines the possibility of that genome in the pool.

• Tournament selection: Tournaments are prepared between genome instances

and the winner is selected.

• Steady State selection: In this mechanism, survival of the current populations’

some parts is achieved.

• Elitism based selection: Best solution of the current population survives by

copying to new population.

Effects of the selection mechanism choice can be observed from the minimum gener-

ation count required for that implementation.
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CHAPTER 3

OUR WORK

This section presents details of our research about resource allocation problem in

ATO preparation. First, problem formulation and scenario assumptions are defined.

Then, input generation and input sets are explained. Finally, architecture of used

framework, algorithm implementations and customizations are described in detail.

3.1 Problem and Solution Formulation

In this study resource allocation problem is solved as selecting a subset from the

defined operation list in order to maximize the gain from targets with the possessed air

attack resource potential. Gain is calculated as sum of all destroyed targets’ gaining.

An air combat’s goal is to destroy enemy targets whose classification, location and

gain value information are defined in intelligence information acquired. An operation

with calculated risk and gain value is defined against a single target in our study.

Selecting an operation list subset with more than one operation dealing with the same

threat does not improve the total gain of the solution as one target can be destroyed

once in real world. The input format is shown in Figure 3.1.

In the initial operation list, each operation is generated according to resource require-

ments of a target. This requirement is defined in terms of attack resource capabilities

and operations represent these requirements in terms of aircraft counts from a fleet.

There can be more than one operation in a selected operation list subject with the same

resource fleet. However, number of aircrafts in all operations in a selected subset can-

not be more than available aircrafts in the related fleet. Considering the combinatorial
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Figure 3.1: Problem Input Format

21



Figure 3.2: Problem Instance with Solutions

constraints and the allocation specifications, some real world parameters are not used

for decreasing complexity by scenario assumptions described in Section 3.3.

In this thesis, solutions found by different algorithms and approaches are expected to

optimize the gain of the selected subset from the given operation list. Each operation

is performed by aircrafts of single fleet and against single target. Solutions with

requiring more than fleet’s aircraft capacity is not considered as well as solutions

against the same targets.

An instance of the resource allocation problem with solutions are shown in Figure 3.2.

If that problem is solved greedily, solution will be a subset consisting of operations

with an arrow on the left side of the table. However, an optimized solution is available

if a subset is created from operations which have an arrow on right side of table.

3.2 NP-Completeness of Problem

After defining the problem formulation, problem properties are analyzed in order to

be able to select appropriate solution methodologies accordingly. Main property ana-

lyzed for algorithm implementation is problem’s complexity with the help of compu-

tational complexity theory [33].
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In complexity theorem, a problem is examined with varying sizes to decide on the

problem behaviour. This behavior is evaluated by applying the algorithms to problem

instances and analyzing the algorithm execution time. An algorithm is called polyno-

mial time algorithm if maximum value of this execution time can be defined within

terms of a polynomial function. Using algorithm’s execution time formulation, each

problem is classified as an element of one of the following sets:

• P Class: Elements of this set has a polynomial time algorithm implementation

that can find a solution in polynomial time, working on a deterministic machine.

• NP Class: Elements of this set has a polynomial time algorithm implementa-

tion that can only find a solution in polynomial time with a non-deterministic

machine. A machine with unlimited parallelism is called non-deterministic.

Well known combinatorial optimization problem travelling salesman is an NP

problem as all solution possibilities of the problem can only be examined with

a non-deterministic machine in polynomial time [34].

Relation between P and NP Set can be defined as P ⊆ NP. However, it is not proved

whether P is equal to NP or P is a subset of NP. Hardest problems in NP set form

a NP - complete set. This problem set is defined for some NP problems using the

convertibility property such that a NP problem can be transformed to any other with

a conversion algorithm working in polynomial time. This property shows us that any

NP - complete problem is at least as hard as all other NP problems. Therefore, if there

exists an algorithm with polynomial time (P) for a NP - complete problem, there is

a similar algorithm for all NP problems. We can say that NP - complete problems

cannot be solved in polynomial time (P) until NP and P sets’ equality is proved.

The optimization problem in our research can be proved to be an element of NP -

complete problem set according to complexity theorem:

• We define the problem formulation as decision problem for examining whether

gain of a solution is greater than or equal to a value X:

∀t ∈ T

 ∑
o∈O′,d(o)=t

1

 ≤ 1,∀ f ∈ F

 ∑
o∈O′,s(o)= f

k(o)

 ≤ c( f ),
∑
o∈O′

g(o) ≥ X (3.1)
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– O is the set of all operations

– O’ is the compared problem solution, O′ ⊂ O

– F is the set of all fleets

– T is the set of all targets

– s(o) is the fleet source used for the operation o, s(o) ∈ F

– c(f) is the number of existing aircrafts in fleet f, c( f ) ∈ Z+

– d(o) is the destination target for the operation o, d(o) ∈ T

– k(o) is the total number of aircrafts used for the operation o, k(o) ∈ Z+

– g(o) is the gain of the operation o, g(o) ∈ R+

• First requirement of NP - completeness, being a NP problem is valid for

defined problem. Because, calculating gain value of a solution instance and

checking the solution validity can be performed in polynomial time.

• Then we find a NP - complete problem that can be reduced to our problem in

polynomial time to prove the convertibility requirement of NP - completeness

defined above. Well known NP - complete problem, 0-1 knapsack decision

problem [35] is examined:∑
v∈V′

w(v) ≤W,
∑
v∈V′

p(v) ≥ X (3.2)

– X is the objective value

– V is a finite set of objects

– W is the total weight that can be carried with the knapsack

– w(v) is the weight of the object v, w(v)) ∈ Z+

– p(v) it the gain of the object v, p(v) ∈ Z+

• Reduction of 0-1 knapsack problem to our resource allocation problem can be

achieved fully by following formulation:

– Single fleet assumption by F = f and representing all aircrafts in fleet by

c(f) as W of knapsack

– Each target is represented as an object, T = V
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– Single operation for each target assumption (same identification by d(o)

= o) so representing each operation as an object, O = V

– Every operation is performed with the single fleet, s(o) = f

– Number of aircrafts used for an operation is represented as weight of an

object, k(x) = w(v)

– Gain of an operation is represented as gain of an object, g(o) = p(v)

– Total gain of solutions are equal and represented with X

As our problem verifies the requirements of NP - completeness, we can say that re-

source allocation problem is an element of NP - Complete problem set.

3.3 Scenario Assumptions and Restrictions

Different algorithms used in this thesis have different problem forms. In our study,

some assumptions are made and some restrictions are determined in order to be able

to use the same input scenario for all implemented algorithms. These assumptions

and restrictions simplify the algorithm formulation and execution. They are listed

below:

1. Each pilot in a fleet has the same capability and each fleet has single type air-

crafts. Single type aircraft restriction in a fleet can be adapted to real world

military environment by creating sub fleets according to pilot capability or air-

craft type differences.

2. Fleet capabilities are defined for each operation type according to all aircrafts

and pilots in the fleet.

3. One operation should be able to destroy the target. Target, that requires two

operations, is not acceptable for our study. However, such requirement in an

air combat can be adapted to the framework by propagating targets with virtual

target addition.

4. Time and dependency relationships of operations are ignored in resource al-

location problem by the framework. In case of a scenario requirement with

25



such relationships, layered problem architecture can be used after dividing the

problem into sub problems.

5. Only resources in a fleet are used for the algorithms. However, other resources

in bases can be adapted to our formulation by virtual fleet addition for such

resources.

Our assumptions do not change the problem structure. Simplified representation still

covers most of the real world air combat scenarios.

3.4 Input Generation and Input Sets

Using the same input for various algorithms is one of the key points of our study as

it gives us a chance of better evaluation and comparison. Moreover, our framework

lets us future usage of the same input for another execution. The input is randomly

generated and maintained by the tool. Properties of the generated input set play a

critical role for the algorithm execution according to the following main parameters:

• Fleet and Target Count: Each algorithm has its own complexity and these

values are the variables used in complexity calculations. Increase in these pa-

rameters directly effects efficiency and some algorithms like exhaustive search.

• Operation List: Operation list is automatically generated according to require-

ments of the randomly generated targets and potential capabilities of the fleets.

It is important for some problems such as genetic algorithms as genome length

is directly proportional with the operation list size.

• Required and Provided Capacity Rate: Success possibility of each generated

input is represented by this capacity rate. For example, if the required aircraft

count is 60 for enemy targets and air force has 30 aircrafts for that combat then

probably half of the targets would be destroyed.

Playing with parameters given above, input scenarios with different characteristics

are generated. This diversity is needed because of exhaustive search algorithm’s com-

plexity and demand for larger inputs. Moreover, linear programming has also high
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complexity for the studied problem as integer decision variables required. Other al-

gorithms and their customizations also needed to be evaluated with various inputs.

Input sets created for this study depend on size and capacity rate differences;

• Small sized input set applicable for exhaustive search and linear programming,

• Input set with high capacity rate and

• Input set with low capacity rate.

3.5 Framework Architecture

In this thesis, the framework used is a plug-in based algorithm execution tool for

resource allocation problem. Scenarios are created by Random Input Generator tool

with parameters described before. An air combat scenario passes through following

path until the comparison step:

1. Input Encoding: Every algorithm added to framework as a plug-in should

have an encoding unit that takes the well defined common input representation

and encodes in the way algorithm requires.

2. Algorithm Configuration: Each algorithm has its own parameters and specific

configuration. Framework gives a graphical user interface for such configura-

tions to the user. Customizations are directly used in execution.

3. Algorithm Execution: Framework runs added algorithms (plug-ins) on the

same input scenario. This execution details are not known by framework so

each plug-in determines the execution steps.

4. Result Collection: Each algorithm is expected to return its result by a well

defined interface to a table for analysis.

Any new algorithm can be added if it implements 4 steps of execution path.
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3.6 Algorithm Implementations and Customizations

This part defines the algorithms and customization made for them for this thesis work.

3.6.1 Exhaustive Search

All instances in solution space are evaluated in exhaustive search algorithm. Studied

problem is represented as examining all operations for each target and finding the

optimum in the solution space. In this thesis, none of the bounding approaches is

used for decreasing the execution time for this algorithm, because we implemented

exhaustive search to create reference optimum solution values for small sized input

scenarios. Following is the general structure of exhaustive search algorithm imple-

mentation for resource allocation problem:

1. Input:

• A set of operations O; representing all operations for the problem in-

stance.

• A set of targets T; representing all targets for the problem instance.

• A set of fleets F; representing all fleets for the problem instance.

2. Output:

• A set of operations S representing operations that will be performed from

the O set for optimization, S ⊂ O

3. ExhaustiveSearch (O, T, F) function that examines all subsets of O and returns

with the maximum gain.

3.6.2 Greedy Search

Solution space is explored greedily in this algorithm. Operations are sorted according

to goal in a list and each operation from the list is examined and added to solution

subset one by one. Any operation requiring more than existing fleet resource is passed
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and no change is tried on previously generated solution subset for such situations

(greediness).

Greedy search algorithm formulation of resource allocation problem is a two step

process:

• Sort: Solution sorting step is executed first according to goal of the algorithm.

In our problem operations are sorted according to gain values as our aim is to

maximize the gain value. This takes O(NlogN) where N represents the number

of elements in searched solution space of operations.

• Examine: Solution examining step is executed last. Each solution instance is

analyzed according to resources and targets. Therefore, this step has a com-

plexity of O(N) where N represents the number of elements in the solution

space.

Dominant complexity forces greedy search algorithm to O(NlogN) complexity.

3.6.3 Integer Programming

Integer programming algorithm is implemented based on the well known free lp solve

library for resource allocation problem 1. We can define lp solve as a library which

performs a set of linear programming routines and provides an Application Program-

ming Interface (API) that can be called from customized codes for custom problems.

Simplex method is supplied by this library which is integrated with a developed plug-

in of the framework. Formulation of the problem is given below:

• Encoding: Problem encoding is achieved by creating a vector from the binary

decision variables. This vector has a size equal to all operations defined. A

sample vector ~x is defined as in the following equation:

~x = x1x2x3.....xK (3.3)

– K is the total number of operations in the defined operations set
1 http://lpsolve.sourceforge.net/5.5/
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– xN is a binary (integer) decision variable with lower bound of 0 and upper

bound of 1

– Each decision variable xN in the vector is matched with N th operation in

the defined operations set

– If value of a decision variable is 0, related operation is not performed

– If value of a decision variable is 1, related operation is performed.

• Objective function: The resource allocation problem aims to optimize the gain

for an air combat by selecting a subset from the defined operations set. So,

integer programming formulation’s objective function is the maximization of

the total gain calculation as given in the following equation:

max
∑
o∈O

coxo (3.4)

where O is the set of all operations, co is the gain from the operation o and xo

is the value representing the operation o in the decision variables vector ~x.

• Constraints: Any solution of the resource allocation problem should have

some defined features to be valid. Those features can be formulated by the

constraints term in the linear programming. Following items define constraints

implemented in our study:

1. Resource Bounding: Each solution should guarantee not to use more

than existing resource of the fleets. For each fleet, sum of performed

operations’ requirement for that fleet cannot exceed the resource count.

To control the resource requirements, a vector ~rr is created for each fleet:

~rr = rr1rr2rr3.....rrK (3.5)

– K is the total number of operations in the defined operations set

– rrN is an integer value that represents the resource requirement of the

N th operation in the defined operations set.

In order to add resource bounding constraint for a fleet fi, created vector

~rr is used in the following constraint equation:∑
o∈O

rroxo ≤ rc( fi) (3.6)
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– O is the set of all operations

– rro is the resource requirement representation of the operation o from

the ith fleet in ~rr

– xo is the value representing the operation o in the decision variables

vector ~x and

– rc( fi) represents the total resource capacity of the ith fleet

Vectors created for all fleets are used in composing coefficient matrix A:

A =



~rr1

~rr2

.

.

~rrK


(3.7)

where K is the total number of fleets and ~rrN is the created resource re-

quirement vector for N th fleet.

Matrix A is used in well known A~x ≤ ~b constraint equation of linear

programming, where ~b vector is filled with the resource capacity rc( fi)

values.

2. Single Destruction: Each solution for resource allocation problem should

guarantee not to perform more than one operation for the same target. In

order to add this single destruction constraint, a vector of binary values is

created for each target.

~dt = dt1dt2dt3.....dtK (3.8)

– K is the total number of operations in the defined operations set

– dtN is a binary value that represents the relevance of the N th operation

with the related target.

– If dtN is 0, N th operation does not destroy the related target.

– If dtN is 1, N th operation destroys the related target.
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Vectors created for all targets are used in composing coefficient matrix A:

A =



~dt1

~dt2

.

.

~dtK


(3.9)

where K is the total number of fleets and ~dtN is the created resource re-

quirement vector for N th fleet.

Matrix A is used in well known A~x ≤ ~b constraint equation of linear

programming, where ~b vector is filled with binary value 1 for each target

as single destruction is requested at most.

Simplex method of the integrated library uses the constraints given above and aims

to find the x vector representing the operation realizations which maximizes the total

gain of resource allocation.

3.6.4 Genetic Algorithms

In genetic algorithm implementations of optimization problems, the proposed general

formulation is adapted by deciding on the representation and calculation terms of the

algorithm according to the real world problem. During our study, we implemented

different approaches for specific terms of genetic algorithm like encoding, crossover,

etc. Resource allocation problems are adapted according to these implementations

and solution qualities are analyzed for each approach for terms. Two different strate-

gies are used in this approach:

• Simple Exploring Strategy: Genetic algorithm is used without much cus-

tomization. Main genetic algorithm properties are kept to constitute a reference

solution for the genetic algorithm customizations.

• Divisive Greedy Strategy: In order to optimize the solution, operations are di-

vided into sub solutions (sub-genomes) according to the required fleet resource
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of operations. Search and selection are performed more greedily than simple

exploring strategy by increasing the exploitation rate.

Besides the used strategies, resource allocation problem is represented as a genetic

algorithm problem by specifying elements of the genetic algorithm given below:

3.6.4.1 Encoding

Binary encoding is used for representing genomes. Each genome is a one dimen-

sional, fixed length bit sequence. Each bit represents the execution of corresponding

operation. Length of each genome is equal to the number of operations in the prob-

lem. Binary encoding, fixed length and one dimensionality provide easiness and low

complexity for the genetic operations. However, each genome contains useless bits

for the operations which are not executed.

Each genome can be represented as:

G = Eo1Eo2Eo3..............EoK (3.10)

where:

• K is the total number of operations in the problem,

• EoN represents the execution status of N th operation,

• Operations with corresponding bit with value 1 are executed and 0 are not exe-

cuted.

An example genome is g = ’01011001000’ and g represents a solution of resource

allocation of resource allocation problem by defining a set of executed operations

which is a subset of all operations. This encoding is complete as all solutions in

solution space can be represented by a genome. Bit ordering in each genome is im-

plemented with two different approaches:

1. Simple Maximum Gain Encoding: All operations (bits) in solution space are

ordered according to the gain value of corresponding operation. Dependency of
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each operation to another is discarded and heritage is expected from crossover

operation according to Building Blocks Hypothesis [26, 31].

2. Fleet Based Maximum Gain Encoding: Bits are ordered according to corre-

sponding operation’s required fleet identifier. By that way, all operations re-

quiring the same fleet are grouped together through encoding. Bits in the same

group are ordered according to gain values. Each genome becomes a composi-

tion of sub-genomes, each representing an operation group as:

G = S G f 1S G f 2S G f 3..............S G f K (3.11)

where:

• K is the total number of fleets in the problem,

• S G f N represents the sub-genome created for N th fleet,

• Each sub-genome is filled with binary values that represent execution sta-

tus of corresponding operation,

• A sub-genome for fleet X is formulated as:

S G fX = Eox1Eox2Eox3..............EoxK (3.12)

where EoxN represents the execution status of N th operation of the sub-

genome created for Xth fleet.

3.6.4.2 Crossover

Crossover is the key point of the solution space search. Three approaches are imple-

mented for the crossover term of genetic algorithm:

1. Single Point Crossover: A random point from genome is selected in this im-

plementation. Offsprings are generated from parent genomes’ fraction accord-

ing to that randomly selected point. Random search is performed with the ex-

ploration effect of random crossover point choice in this approach. Attribute

heritage is expected from parent genomes’ recombining. Figure 3.3 explains

single point crossover.
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Figure 3.3: Single Point Crossover

Figure 3.4: Boundary Points Crossover

2. Boundary Points Crossover: This crossover is applied to the genomes with

fleet based encoding. Points are not randomly selected in this implementation.

Selected crossover points are the boundary points between two sub-genomes.

Crossover point count is one less than fleet count because count of sub-genomes

is equal to the fleet count. Figure 3.4 exemplifies the boundary points used for

the crossover. Additional local search behaviour is added to the random search

of genetic algorithm by grouping bits. Convergence randomness is decreased

by not selecting random crossover points. Attribute heritage in this implemen-

tation contains both feature propagation and feature pattern propagation to off-

spring. In this heritage, sub-genome (bit pattern) with higher gain is propagated
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to children to use the convergence controlled variation hypothesis. In order to

avoid local maxima solutions and achieve equilibrium between random search

and local search, randomness is added for the selection point. With fifty per-

centage probability, sub-genome selection is performed as in the single point

crossover implementation.

3. Layered Hybrid Crossover: This is an experimental approach with two lay-

ered crossover action. This crossover is applied to the genomes with fleet based

encoding.

(a) First step is similar to the single point crossover with randomly selected

single point recombining. However, this first step crossover is applied to

each sub genome separately. Propagated two offsprings are the combina-

tion of created offsprings of sub-genomes. These offsprings are used as a

parent in second step.

(b) Second step is similar to the boundary points crossover. Only difference is

that there are four parent genomes: two real parents and two parent from

offsprings of the first step. The same crossover action of boundary point

crossover approach is applied. However, best two parents are selected

from four parents (two real, two virtual) before applying the crossover.

Layered hybrid crossover methodology aims to use best features of other two

crossover methodologies by applying them in different layers. This approach is

shown in Figure 3.5.

3.6.4.3 Mutation

Single bit mutation is used in all implementations of the genetic algorithm. Mutation

rate is parametric.

3.6.4.4 Fitness Value

Two fitness functions are analyzed with genetic algorithm implementations:
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Figure 3.5: Layered Hybrid Crossover
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1. The first one is the maximum gain objective function that sums the performed

operation gain values. Simple fitness calculation is performed for genome G as

in equation 3.13.

simpleFitness(G) =
∑
o∈G

gain(o).isExecuted(o) (3.13)

Where gain(o) is the gain of related operation and isExecuted(o) is the execu-

tion status of the related operation.

2. The second is a customized version of objective function that looks for the sub-

genomes’ fitness by the gain percentage for a specific fleet. Main idea in this

function is to support genomes with high performing sub-genomes rather than

a total good performance. Fitness value of a genome G, which is represented

as G = S G f 1S G f 2S G f 3..............S G f K , is calculated as in equation 3.14.

totalFitness(G) =
∑

S G∈G

subFit(S G) (3.14)

where SG is the sub-genome created for fleet f and subFit(SG) is calculated as

in equation 3.15.

subFit(S G) =
simpleFit(S G)
allGain(S G)

∗
aircra f t(S G)
cra f tCount( f )

(3.15)

Using the utility functions in following equations:

simpleFit(S G) =
∑
o∈S G

gain(o).isExecuted(o) (3.16)

allGain(S G) =
∑
o∈S G

gain(o), (3.17)

aircra f t(S G) =
∑
o∈S G

f leetRequired(o) (3.18)

where craftCount(f) is the total number of aircrafts in the fleet f and fleetRe-

quired(o) is the number of aircrafts used for operation o.
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CHAPTER 4

EVALUATION OF THE RESULTS

This chapter provides a summary of solutions created by implemented algorithms

and presents experimental results. Evaluations are performed according to objective

function values for the input set. Configuration parameters used for implementations

are determined according to similar studies in literature and experiments made. These

parameters can be listed as:

• Exhaustive Search:

– No bounding

– Maximum gain based sorting

• Genetic Algorithms:

– Crossover probability = 0,85

– Generations = 100

– Mutation probability = 0,1

– Population count = 1

– Population size = 400

– Replacement ratio = 0,4

• Greedy Algorithm:

– Maximum gain based sorting

• Integer Linear Programming

– Integer valued parameters
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Figure 4.1: Results of Input Set 1

– Verbose level = 3

– epsel = 1.0e-11

– epsd = 1.0e-8

– epspivot = 1.0e-5

– epsb = 1.0e-9

– epsint = 1.0e-3

Results are presented separately for each type of input set in the following sections.

4.1 Results of Small Sized Input Set

The time complexity of exhaustive search and integer linear programming avoids us

to examine all input scenarios. So some specific scenarios with small sized data with

high capacity rate are produced in order to be able to compare algorithms’ effectivity.

Exhaustive search will be a reference for calculating the gain loss of an implementa-

tion. Figure 4.1 shows the generic result values of this input set.

Most important difference is the required time change according to input size. These

values depend on the time complexities of the algorithms. Figure 4.2 shows elapsed

time values for first three input scenarios of this input set.

Vertical values are the elapsed time of each algorithm for corresponding operation

size. Other three inputs are not used in the Figure as the time difference improves

so fast to view the complexity variance. Analysis for each implementation is listed

below:
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Figure 4.2: Elapsed Time Change for Algorithms

Figure 4.3: Elapsed Time for Exhaustive Search Algorithm

4.1.1 Exhaustive Search Implementation

This algorithm is used for getting reference gain values for input scenarios so none of

the bounding approaches are analyzed. Results are optimum for this implementation

as all operation subsets are examined. However, elapsed time values shown in Figure

4.3 is very high for the studied problem. Therefore, this implementation is not useful

for real world military environment’s resource allocation problem.
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Figure 4.4: Elapsed Time for GA Simple Algorithm

Figure 4.5: Gain Values for GA Simple Algorithm

4.1.2 Simple Genetic Algorithm Implementation

A simple genetic algorithm (GA Simple) with single random point crossover is

used for collecting results. Figure 4.4 shows the efficiency analysis of this algorithm

for the related input set by comparing elapsed times with corresponding scenario’s

operation size.

Simple genetic algorithm’s elapsed time graph depicts that; this implementation can

find solutions for huge sized input scenarios within a reasonable time. Figure 4.5

shows the effectivity analysis of this algorithm by comparing values with reference

values (exhaustive search results) for different sized inputs.

Figure 4.5 depicts that; solutions of simple genetic algorithm implementation is equal

to the reference values for most of the scenarios and difference is less than two per-

centage for the radical scenarios with very low capacity rates.
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Figure 4.6: Elapsed Time for GA Grouped Algorithm

4.1.3 Genetic Algorithm Implementation with Fleet Grouping (GA Grouped)

This implementation is very similar to the simple genetic algorithm with a small dif-

ference on crossover methodology. In this algorithm boundary points crossover

approach is applied to genomes which are grouped by required fleet. Solutions’ gain

values are equal to the simple genetic algorithm implementation, so effectivity of this

implementation is shown to be same with that algorithm. In terms of elapsed time,

there is a difference with simple genetic algorithm implementation, Figure 4.6 shows

the efficiency analysis of this implementation.

Figure 4.6 depicts that; this implementation can find solutions for huge sized input

scenarios within a reasonable time. This time is slightly larger than simple genetic

algorithm implementation’s elapsed time.

4.1.4 Greedy Algorithm Implementation

Scenarios in the first input set are also used for examining the greedy algorithm in

terms of efficiency and effectivity. Figure 4.7 shows the efficiency analysis of this

implementation.

As this algorithm tries operations of input scenario greedily, elapsed time values are

very small according to other algorithm. Figure depicts that a solution can be found

in a reasonable time for studied problems. Figure 4.8 shows the effectivity analysis of

this algorithm by comparing values with reference values (exhaustive search results)
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Figure 4.7: Elapsed Time for Greedy Algorithm

Figure 4.8: Gain Values for Greedy Algorithm

for different sized inputs.

As can be seen from the Figure 4.8; solutions of greedy algorithm implementation are

generally worse than reference solutions (exhaustive search results). This difference

is 10 percentages maximally for the examined input scenarios.

4.1.5 Integer Linear Programming Implementation

Scenarios in the first input set are also used for examining the integer linear program-

ming implementation in terms of efficiency and effectivity. However, last scenario

with 75 operations cannot be solved within 10000 seconds with this algorithm. Exper-

iment with larger input size not given in the results table also supports the insolvability

in short time period. Figure 4.9 shows the efficiency analysis of this implementation.
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Figure 4.9: Elapsed Time for Integer Linear Programming Algorithm

Figure 4.9 depicts that; integer linear programming’s elapsed time values are increas-

ing exponentially against the linear increase in input size. Moreover, scenarios with

64 and 75 operations are not added to Figure, as these elapsed time values are huge

or cannot be examined. This algorithm’s effectivity is great according to applied sce-

narios as all of the gain values found by integer linear programmer are equal to the

exhaustive search results.

4.2 Results for Input Set With High Capacity Rate

This input set contains air combat scenarios with different operation sizes. All sce-

narios have a capacity rate greater than one which means that all targets are able to be

destroyed according to given solutions of selected algorithm implementations. Be-

cause of the high resource capacity, these input scenarios can be classified as easy

optimization problems. Therefore, a preferable solver should guarantee the most ef-

fective solution.

Results of this input set mainly analyze the time complexity of genetic algorithm

variations and greedy algorithm implementation. In addition, they are compared with

each other according to effectivity. Figure 4.10 shows the results for the input set.

Results show us that solutions of genetic algorithm variations do not differ for each

problem instance. However, greedy algorithm solutions are not as effective as genetic
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Figure 4.10: Results of Input Set 2

Figure 4.11: Elapsed Time Values of Algorithms

algorithms’ solution in terms of gain value. Genetic algorithm variations’ gain val-

ues are equal to the available maximum gain values of the input scenarios. Greedy

algorithm can reach to the best solution for some scenarios, but there is always a risk

of reaching local maxima for that implementation. That risk decreases the validity of

greedy approach’s fast solutions.

Elapsed time for each algorithm differs as their time complexities are not equal. Ca-

pability value seems to be unimportant for the elapsed time if it is greater than one.

Figure 4.11 shows the elapsed time value changes of algorithms according to input

size changes.

Elapsed time graph depicts that all problems with high capacity rate can be solved by

genetic algorithm variations and greedy algorithm. Despite the effectivity problem,
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Figure 4.12: Results of Input Set 3

greedy algorithm has the best efficiency, simple genetic algorithm has the average

and genetic algorithm has the worst efficiency. However, these differences in elapsed

time values are extremely small when compared to the exhaustive search and linear

programming implementations.

4.3 Results for Input Set With Low Capacity Rate

This input set contains scenarios with low capacity rate (smaller than one) which

means that there is not enough resource for destroying all targets. Finding solution

for scenarios with these characteristics becomes harder as the gain values may vary

much according to the selected solution. Greedy algorithm and genetic algorithm

variations are examined with this input set in order to analyze the effectivity differ-

ences. Greedy algorithm has still effectivity risks as in the input set with high capacity

rate. In addition, exhaustive search and integer linear programming implementations

are shown to have unacceptable execution times for problems with medium or large

input size. Therefore, different sized scenarios with low capacity rate are run only

with greedy algorithm and genetic algorithm customizations which are listed in Table

4.1.

Figure 4.12 shows the results of these algorithms for the eight different sized scenarios

in the input set.

These results are examined in terms of effectivity for this input set. Greedy algorithm

results are much worse than genetic algorithms. Moreover, custom genetic algorithm

implementations are very efficient as it takes less than 4 seconds in the worst case
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Table 4.1: Examined Genetic Algorithm Customizations

Genetic Algorithm Properties

Simple Implementation
(GA Simple)

Simple Maximum Gain Encoding

Single Point Random Crossover

Simple Objective Based Fitness Function

Layered Crossover
Implementation
(GA Layered Normal)

Fleet Based Maximum Gain Encoding

Layered Hybrid Crossover

Simple Objective Based Fitness Function

Layered Crossover
Implementation with Custom
Fitness (GA Layered C)

Fleet Based Maximum Gain Encoding

Layered Hybrid Crossover

Percentage Based Custom Fitness Function

Boundary Crossover
Implementation
(GA Boundary Normal)

Fleet Based Maximum Gain Encoding

Boundary Points Crossover

Simple Objective Based Fitness Function

Boundary Crossover
Implementation with Custom
Fitness (GA Boundary C)

Fleet Based Maximum Gain Encoding

Boundary Points Crossover

Percentage Based Custom Fitness Function

of this experiment. In order to examine effectivity rates, we calculated the result

performance as a percentage value by comparing each gain value with the best gain

value of the same scenario. Figure 4.13 shows the result performance percentages of

all implementations according to the best gain value achieved.

From the analyzed solution performances, following conclusions can be drawn for

algorithm implementations:

• Customization with name GA Layered Normal is the most effective imple-

mentation for the given input scenarios with low capacity rate.

• Simple genetic algorithm implementation (GA Simple) performs worse than

all other genetic algorithm customizations.

• Greedy algorithm implementation (Greedy) performs worse than all other al-

gorithms.
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Figure 4.13: Result Performance of Genetic Algorithm Customizations

• Boundary points crossover based implementations’ performance is less or equal

to the performance of layered hybrid crossover implementations.

• Percentage based custom fitness function decreases the effectivity performance

for the layered hybrid crossover implementation.

• Percentage based custom fitness function’s effect on boundary points crossover

cannot be analyzed according to gain values. Because GA Boundary C per-

forms better than GA Boundary Normal for some scenarios and worse for

some others.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

In this thesis, we analyzed the resource allocation problem of military air forces dur-

ing ATO production. Then, we formulated problem as a combinatorial optimization

problem and represented the problem in a way that all candidate algorithms can be

realized.

Genetic, integer programming, greedy and exhaustive search algorithms are devel-

oped for this problem. In addition, specific features and customizations are made to

those implementations. A plug-in based framework is used as it supports new al-

gorithm addition for the comparison. Each implementation is examined in terms of

effectivity and efficiency in order to optimize the basic requirements of resource allo-

cation problem instance. Three different input sets are created for different algorithm

evaluations. Each air combat scenario is solved by selected ones from all imple-

mented algorithms. Finally, solutions are collected from results and their comparable

values, such as gain and elapsed time, are displayed.

In terms of effectivity, exhaustive search and integer linear programming solver are

the implementations that give the optimized gain value for the air combat scenario.

However, time complexities of these algorithms are huge and required time for medium

sized scenario is unacceptable for a mission critical job on a combat. Therefore, those

algorithms are not applicable for real world military environment despite their high

effectivity.
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According to experiments made for this research, greedy algorithm requires the least

elapsed time for execution because of the lowest complexity. On the other hand,

this efficient algorithm does not bother on the solution effectivity as much as other

implementations. Gain values of this algorithm’s solutions are generally worse than

all other implemented algorithms. Greedy algorithm would not be applicable to real

world military environment because being efficient is not enough if the air force lose

gain from the air attack.

Linear programming solver is one of the added algorithm implementations for re-

source allocation problem. As ATO preparation can be only made by integer values,

integer linear programming implementation is used for the comparison. High per-

formance of linear programming in combinatorial optimization problems come with

optimized gain values which are equal to the reference value created by exhaustive

search. However, efficiency problem is encountered with increasing number of inte-

ger valued variables. Time elapsed for this algorithm’s execution can exceed 1 day

for medium sized air combat scenarios. So this implementation cannot be used in real

world military environment.

After combining all experiment values, we can say that genetic algorithm is prac-

tically best solution provider for studied problem. Solutions are created nearly as

quickly as greedy algorithm (smaller than 5 seconds for all input scenarios) and gain

values of those solutions are not much worse than reference values created by ex-

haustive search. Gain value difference does not exceed 1 percentage for all input

scenarios. During our work, we implemented different approaches of genetic algo-

rithm terms like encoding, crossover and fitness.

Experiments with different genetic algorithm implementations let us conclude that;

dividing genomes into independent sub-genomes according to a common feature or a

common interest will improve the objective function value. Encoding and crossover

approaches should also be selected accordingly. Sub-genomes are determined by

the required fleet identifier so each sub-genome related with a unique fleet is not

dependent on another sub-genome. However, bits in a sub-genome are strongly de-

pendent on another. Selection and crossover mechanism of a better genetic algorithm

implementation should be based on such sub-genomes. In our problem, algorithm
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implementation with layered hybrid crossover performs best. Because, that crossover

approaches both use sub-genome based attribute heritage and selection mechanisms.

We can conclude that; genetic algorithm implementations are well suited for com-

binatorial optimization problems with high efficiency and effectivity. Moreover, di-

viding a genetic problem into sub-problems with problem specific knowledge may

improve the effectivity of solutions.

5.2 Future Work

Current study is based on binary encoding of genetic algorithm but there are opti-

mization problem implementations with real number encoding and they are proven

to work more effectively. Useless spaces required for binary encoding will be also

removed and space complexity will also decrease for such implementation.

Crossover from varying number of points is not examined throughout this work. If

that point count and positions are selected by a guiding dynamic fitness function,

attribute heritage to off-springs will improve. This dynamic fitness function will pro-

vide a convergence controlled variation as it will support population areas with higher

convergence.

Throughout this thesis, steady state selection, which is proven to improve effectivity

by previous study [8] is applied to the populations. I believe that performance will

improve if problem specific features are used throughout the selection process.
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