
1

ACTION RECOGNITION THROUGH ACTION GENERATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BARIŞ AKGÜN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2010

Approval of the thesis:

ACTION RECOGNITION THROUGH ACTION GENERATION

submitted by BARIŞ AKGÜN in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering Department, Middle East Technical Uni-
versity by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Asst. Prof. Dr. Erol Şahin
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Göktürk Üçoluk
Computer Engineering Department, METU

Asst. Prof. Dr. Erol Şahin
Computer Engineering Department, METU

Asst. Prof. Dr. Sinan Kalkan
Computer Engineering Department, METU

Asst. Prof. Dr. Onur Tolga Şehitoğlu
Computer Engineering Department, METU

Asst. Prof. Dr. Didem Gökçay
Informatics Institute Department, METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: BARIŞ AKGÜN

Signature :

iii

ABSTRACT

ACTION RECOGNITION THROUGH ACTION GENERATION

Akgün, Barış

M.S., Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Erol Şahin

August 2010, 50 pages

This thesis investigates how a robot can use action generation mechanisms to recognize the

action of an observed actor in an on-line manner i.e., before the completion of the action. To-

wards this end, Dynamic Movement Primitives (DMP), an action generation method proposed

for imitation, are modified to recognize the actions of an actor. Specifically, a human actor

performed three different reaching actions to two different objects. Three DMP’s, each cor-

responding to a different reaching action, were trained using this data. The proposed method

used an object-centered coordinate system to define the variables for the action, eliminating

the difference between the actor and the robot. During testing, the robot simulated action

trajectories by its learned DMPs and compared the resulting trajectories against the observed

one. The error between the simulated and the observed trajectories were integrated into a

recognition signal, over which recognition was done. The proposed method was applied on

the iCub humanoid robot platform using an active motion capture device for sensing. The

results showed that the system was able to recognize actions with high accuracy as they un-

fold in time. Moreover, the feasibility of the approach is demonstrated in an interactive game

between the robot and a human.

Keywords: action recognition, humanoid robot, learning from demonstration

iv

ÖZ

HAREKET YARATMA MEKANIZMALARIYLA HAREKET TANIMA

Akgün, Barış

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Erol Şahin

Ağustos 2010, 50 sayfa

Bu tezde, bir robotun kendi hareket yaratma mekanizmalarını kullanarak, gözlemlediği bir

hareketi eş zamanlı olarak (henüz hareket bitmeden), tanıması incelenmiştir. Bu bağlamda,

taklit için geliştirilen bir hareket yaratma mekanizması olan Dinamik Hareket İlkelleri (DHİ)

gözlemlenen hareketi tanımak için değiştirilmiştir. Bir insan, iki nesne üstünde üç farklı

uzanma hareketi göstermiştir. Farklı hareketlere tekabül eden üç farklı DHİ, bu veriler kul-

lanılarak eğitilmiştir. Önerilen metotta, hareket yaratma mekanizmalarının değişkenleri nesne

tabanlı bir koordinat düzleminde tanımlanmıştır. Bu sayede hareketi yapan ile gözlemleyen

arasındaki farklılıklar ortadan kaldırılmıştır. Metodun sınanması sırasında, robot öğrendiği

DHİ’ler ile kafasında hareketler yaratarak, bunları gözlemlediği hareketle kıyaslamıştır. Yara-

tılan ve gözlemlenen hareket yörüngeleri arasındaki farktan tanıma sinyalleri hesaplanarak

bunların üstünden tanıma yapılmıştır. Önerilen metot, bir hareket izleme sistemi kullanılarak,

iCub isimli insansı robotun üstünde denenmiştir. Sonuçlar, sistemin eş zamanlı çalışarak

yüksek başarıya ulaştığını ortaya koymuştur. Buna ek olarak, hareket tanıma metodunun

uygulanabilirliği, robotla insan arasında oynanan bir oyunla gösterilmiştir.

Anahtar Kelimeler: hareket tanıma, insansı robot, gözlemden öğrenme

v

To beloved mom and dad

vi

ACKNOWLEDGMENTS

I wish to express my gratitude to my advisor Erol Şahin for his invaluable support and guid-

ance and also for making me a member of KOVAN family and providing an excellent research

environment and opportunities.

I am thankful to Doruk Tunaoğlu for being the perfect research partner, a comrade in arms

and a close friend. I wouldn’t have been able to complete this thesis without his support.

I would like to thank all the KOVAN members who have been very supporting; Fatih Gökçe

for being a close friend and supporter, Hande Çelikkanat for making us smile with her cheerful

laughter and for encouraging me to start using Linux, İlkay Atıl who I couldn’t think of

anybody else to spend my break times, Nilgün Dağ for letting me have all the snacks at her

drawer, Emre Uğur for helping me adjust KOVAN when I first came. I would also like to

thank Güven İşcan and Kadir Fırat Uyanık for the discussions and the good times. I want to

salute Mustafa Parlaktuna, the new “makina” guy. I can never repay his help during the after

defence preparations of this thesis. I am also thankful to Sinan Kalkan, for his comments and

support.

I can never thank my family enough for supporting and enduring me. Mom and dad, without

your support, I wouldn’t be able to make it. Dear sister, grandparents, cousins, aunts and

uncles, thanks for bearing with me, I know I am not the best at keeping in touch.

Another special thanks goes to my dear Nazlı Dönmezer, who makes everything more mean-

ingful and shines in my heart like a bright star. I also wouldn’t forget my old friends but the

list is too long to write and I wouldn’t know where to start.

I would like to acknowledge the support of TÜBİTAK BİDEP 2228 graduate student fel-

lowship and this study was funded by TÜBİTAK (The Scientific and Technological Research

Council of Turkey) under the Project numbered 109E033 and by European Commission under

the ROSSI project(FP7-216125).

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTERS

1 INTRODUCTION . 1

1.1 What is Action and Action Generation? 2

1.2 Preliminary Definitions . 3

1.3 What is Action Recognition? . 5

1.4 What is Learning by Demonstration? 6

1.5 Organization . 6

2 LITERATURE SURVEY . 8

2.1 MOSAIC . 8

2.2 HAMMER . 10

2.3 Mental State Inference . 13

2.4 RNNBP Approach . 14

2.5 Mirror Neuron System (MNS) 1&2 15

2.6 Dynamic Movement Primitives . 17

2.7 General Approaches . 20

2.8 Discussion . 21

2.8.1 Action Models . 21

2.8.2 Variable Selection . 21

viii

2.8.3 Action Similarity Metric 22

2.8.4 Online Recognition . 22

2.8.5 Goal Setting . 23

2.8.6 Verification . 23

3 RECOGNITION APPROACH . 26

3.1 Detailed DMP Analysis . 26

3.1.1 Strong Points . 26

3.1.2 Shortcomings . 27

3.2 Modifications to DMPs . 28

3.2.1 Phase Variable . 28

3.2.2 Nonlinear Part . 29

3.2.3 Controlled Variables . 30

3.2.4 Resulting DMP Formulation 30

3.2.5 Imitation Learning . 31

3.3 Recognition . 31

4 EXPERIMENTAL EQUIPMENT . 34

4.1 The iCub Humanoid Robot . 34

4.2 Motion Capture System . 36

5 EXPERIMENTS AND RESULTS . 37

5.1 Setup . 37

5.2 Actions . 37

5.3 Recognition Experiments . 39

5.4 Interactive Game . 41

6 CONCLUSION . 45

REFERENCES . 47

ix

LIST OF TABLES

TABLES

Table 2.1 Action recognition related properties of the approaches that have been re-

viewed. 25

Table 5.1 Confusion matrix for Υ = 1.9 (Recognition rate = 90%) 42

x

LIST OF FIGURES

FIGURES

Figure 2.1 Different uses of the MOSAIC architecture. (Figures taken from [1] and

reproduced with kind permission of the corresponding author Erhan Öztop) 9

Figure 2.2 General depiction of the HAMMER architecture. Figure taken from [2]

and reproduced with kind permission of the corresponding author Yiannis Demiris. 11

Figure 2.3 Upper part: Actor mode. Lower part: Observer mode. (Figure taken from

[1] and reproduced with kind permission of the corresponding author Erhan Öztop) 14

Figure 2.4 Modes of RNNPB Network. (Figures taken from [1] and reproduced with

kind permission of the corresponding author Erhan Öztop) 16

Figure 3.1 Neural network used as the ~f (·). 29

Figure 3.2 Different frames that can be used to measure Cartesian coordinates. 30

Figure 3.3 Action generation diagram. End-effector position of the robot is calculated

from joint angles using forward dynamics (not shown). Motion capture system

tracks the object being acted on. From these, hand-object relations are calculated

and fed to the DMP. The DMP part then calculates the necessary accelerations to

realize the action. 31

Figure 3.4 Recognition architecture flow diagram. Motion capture system tracks pos-

sible objects and the end-effector from which state variables are calculated. When

recognition starts, the observed state is used as initial values to the learned behav-

iors (not shown). The learned behaviors (i.e., generation systems) then simulate

future trajectories. As the action unfolds, observed and simulated trajectories are

compared and responsibility signals are calculated. From these signals, recogni-

tion decision is made according to threshold. 33

Figure 4.1 The iCub Humanoid Robot . 35

xi

Figure 4.2 Motion Capture Equipment . 36

Figure 5.1 The experimental setup. 38

Figure 5.2 Defined and applied actions on the setup 39

Figure 5.3 The time evolution of recognition signals. X-axis is time in seconds and

Y-axis is recognition signal magnitude. 40

Figure 5.4 Recognition rate and decision time (percentage completed) vs. threshold

value Υ. Percentage completed is defined as decision time divided by action com-

pletion time. 41

Figure 5.5 Distribution of decision times (percentage completed) for Υ = 1.9 42

Figure 5.6 Demonstrations with the robot: Each row shows a different demonstration.

The first column shows the starting point of the actions. The second column shows

the point where the system recognizes the action (indicated by the eye-blink). The

third column is the point where the demonstrator finishes his action and the last

column is the point where the robot finishes his action. 44

xii

CHAPTER 1

INTRODUCTION

Robotics is on the verge of explosion. With constant developments in processors, actuators,

sensors and power sources, researchers and engineers are developing more and more compli-

cated robots and algorithms. Robots are slowly getting out of laboratories and factory floors

and making their way towards our daily lives. Many humanoids and service bots have been

developed during the past decade. However, there are still challenges ahead that need to be

addressed before robots can be fully integrated.

Action recognition is one of these challenges. Briefly, action recognition refers to understand-

ing what another agent, a human or another robot, is doing. This is important for interaction,

cooperation and even communication which are essential if robots are to enter human envi-

ronments.

Nature might have already provided an elegant way for action recognition through mirror

neurons. These neurons, discovered in the area F5 (and some other areas) of the premotor

cortex of macaque monkeys, fire both during the generation and the observation of goal-

directed actions [3, 4]. Grasping is a prominent example of these actions. Grasping related

mirror neurons of a macaque monkey are active both when the monkey grasps a piece of food

and when a human or another monkey does the same thing. In this context, goal-oriented

means that the action is directed towards an object, which is the food in the previous example.

These neurons do not respond when the observed agent tries to grasp the air where there is no

object.

There have been findings of a mirror neuron system in humans as well [5]. This system acts

similar to mirror neurons found in macaque monkeys. However, it also responds to non-goal-

oriented actions. This system is composed of different parts of the human brain. It is called a

1

system since investigation of individual neurons on human subjects is very restricted.

The dual response characteristics of mirror neurons is attributed to an action recognition hy-

pothesis; action generation and recognition shares the very same neural circuitry and that the

motor system is activated during action recognition. Refer to [6] for a review on experimental

data supporting this hypothesis, both on primates and humans.

By taking inspiration from mirror neurons, this thesis proposes an online action recognition

scheme using an action generation mechanism. Action generation mechanisms are used to

imagine what the remaining part of the observed action could be given current observations

and the action recognition includes comparing these to the observed action. Online action

recognition refers to making a decision about the observed action as early as possible, before

that action ends.

This thesis is conducted as a part of a larger architecture which entails action learning, gen-

eration and recognition, developed within the ROSSI Project [7] and the TÜBİTAK Project

numbered 109E033. This architecture will be explained in sufficient detail for understanding

the recognition scheme.

1.1 What is Action and Action Generation?

The word action has a very broad meaning in robotics literature which ranges from simple

motions (e.g. pick up) to high-level activities (e.g. assemble). This thesis assumes the former

definition which entails the motions of short-duration. Reaching a cup in the vicinity is a good

example.

Actions usually have a goal which could be set according to the environment. The cup defines

the goal of the reaching in the previous example. As a counter example, take an action defined

as reaching forward. In such an action definition, there is no explicit way to set where exactly

to reach. This thesis will deal with goal-directed actions.

Simple actions are usually associated with open-loop control where there is no sensory feed-

back. The word behavior is generally used to describe closed-loop control, i.e., that use sen-

sory feedback. However, there is no clear distinction between the two. In this thesis, actions

are assumed to be closed-loop and the terms action and behavior may be used interchangeably.

2

To summarize, this thesis assumes that an action is a short-duration closed-loop motion which

allows goal setting.

This definition is not enough to implement actions on robots; a mathematical representation

is needed. As an example, assume that there is a robotic arm with a gripper which needs to

reach and grasp a cup and the arm also has a sensor that measures the distance between the

cup and the gripper. An obvious strategy is to minimize the distance between the gripper and

the cup for reaching and closing the gripper when this distance is below a certain value. A

mathematical model is needed to map the current and the desired distance between the gripper

and the cup to the actuator commands of the arm and specify the speed of reaching.

Formally, an action is represented by a mathematical model which defines input-output rela-

tionships between its variables with parameters affecting this relationship. For robots, sensory

values, goal and time could be inputs and actuator commands could be outputs. By employ-

ing this definition on the previous example, current and desired (goal) distances correspond to

the inputs, actuator commands correspond to the outputs and speed specification is done by a

parameter.

Action generation refers to calculating the outputs of an action model given inputs and ap-

plying the resulting outputs to the robot. In online action generation, outputs are calculated

while the action is generated. In offline action generation, the outputs are calculated before

the action.

1.2 Preliminary Definitions

Some definitions are given here as preliminaries to ease upcoming descriptions. These defi-

nitions are not exhaustive and will use discrete time notation for simplicity.

An action takes a certain amount of time to be completed, during which its variables change.

The history of this change i.e., the time series of a variable is called its trajectory.

The output variable of an action is sometimes called the controlled variable. There are differ-

ent control variables that could be used. Some of these are joint variables (angles, velocities

and accelerations), image coordinates and cartesian variables. The space of the controlled

variable is called the task space.

3

All robots have actuators which control their joints. The space of joint positions is called the

joint space. Note that the task space and the joint space can coincide.

All or a subset of variables of an action in a particular point in time define its state. Assuming

an ideal world, if the complete state of an action is known at a point in time, then the rest the

of the action can be calculated ad infinitum using its mathematical model. The state of the

system is usually defined in its task space.

If an action model’s output is the state then its called a trajectory generator. Take the action

model of the previous example of the robot and the cup. If it generates a change in gripper-cup

distance, then it is called a trajectory generator. Formally the form of a trajectory generator

is;

x̂(t + 1) = Ω(x(t), g, α, ω, t), (1.1)

where Ω is the trajectory generating policy, x̂(t + 1) is the calculated next state, x(t) is the

current state, g is the goal state, α depicts constant parameters, ω depicts adaptive parameters

(e.g. parameters of a function approximator) and t is time. Bear in mind that x could also be

a vector. The adaptive parameters could be used for optimization or for action learning, an

issue addressed later on in this thesis. A separate model is needed to realize the calculated

next state i.e., convert the state into actuator commands.

If the action model calculates the actuator commands necessary to reach a desired state di-

rectly, then it is called an inverse model. If the action model in the previous example is used

to calculate the actuator commands to reach the cup e.g., joint speeds that would close the

distance, then the action model is called an inverse model. Its general form is;

u(t) = Π(g, x(t), α, ω, t), (1.2)

where Π is the inverse model and u(t) is the generated motor command. The rest of the param-

eters are as they appear in equation 1.1. In robotics, the terms inverse model and controller

are used interchangeably.

An inverse model is usually accompanied by a forward model that calculates the next state of

a system given the current state and the motor command. Its general form is;

x̂(t + 1) = Φ(x(t), u(t), α, ω, t), (1.3)

where Φ is the forward model, x̂(t + 1) is the calculated next state, u(t) is the motor command.

The rest of the parameters are as they appear in equation 1.1. In robotics, the terms forward

4

model and predictor are used interchangeably. They are used to predict the outcomes (e.g.,

state) of actions (e.g., motor commands).

1.3 What is Action Recognition?

Consider an agent, called the actor, performing an action being observed by another agent,

called the observer, who tries to understand the actor’s action. This problem is called action

recognition.

As mentioned before, the meaning of action and action recognition varies. In vision studies,

action recognition is typically considered as a pattern recognition problem with an extra time

dimension [8]. Some authors from the robotics field, approach recognition as understanding

the effect of an action, such as in [9]. These approaches are considered as passive action

recognition.

The approach presented in this thesis utilizes action generation mechanisms for recognition.

Both the actor and the observer have action generation mechanisms available to them. The

actor uses these to generate actions and the observer uses these to simulate actions. Gener-

ation and simulation are similar apart from the fact that no commands are sent to actuators

during the latter. For recognition, the observer compares its simulated action trajectories to

the observed trajectory and makes a decision accordingly. This approach can be considered

as active action recognition.

The action recognition approaches also vary according to their timing. If recognition is done

before the action is completed, it is called online action recognition, if it is done after the

action is completed, it is called offline action recognition.

There are many challenges towards action recognition. The choice of matching space is one

of them. Action generation could be in joint space but observations could be in cartesian

coordinates. In this case, observations should be mapped onto the space of generation. This is

not a trivial task, due to the differences in the actor’s and observer’s body structure. Moreover,

differences between the viewpoints of the actor and the observer, called the correspondence

problem requires the agent to map the observed space to its internal representation [10].

If the space of matching problem is solved, then one faces with the problem of finding a

5

suitable metric to evaluate the similarity of an observed action to a simulated action.

In the light of the previous discussion, some general requirements for action recognition using

action generation mechanisms can be stated as:

• The actor and the observer should have similar action generation models.

• Observations should be mapped onto a space that is appropriate for action generation

models.

• A similarity metric should be defined.

• An online methodology should be present (Not a must for action recognition but is an

aim of this thesis).

• Recognition should be generalized to different goals (Not a must for action recognition

but is an of this thesis).

1.4 What is Learning by Demonstration?

In order for the recognition approach developed in this thesis to work, the actor and the ob-

server need to have similar action generation mechanisms. If the actor is human, then the

observer robot should have the ability to generate actions similar to the ones that humans can.

Learning action models from demonstrations is a viable option to solve this problem. These

demonstrations are usually provided by the actor to ensure similar generation mechanisms.

Learning by demonstration is also called programming by demonstration.

Mathematically, learning by demonstration can be formulated as estimating the adaptive pa-

rameters (ω) of equations 1.1 and 1.2 from demonstrations (g, x(t)).

1.5 Organization

The organization of the thesis is as follows: The literature survey is presented in the next

chapter. In Chapter 3, the action recognition approach and the used metrics are detailed.

Chapter 4 explains the equipment and the experimental setup used for collecting data and

6

testing the approach. The experiments, their results and analysis are given in Chapter 5.

Chapter 6 discusses the results and addresses future research directions.

7

CHAPTER 2

LITERATURE SURVEY

There have been various modelling efforts and studies related to integrated action generation-

recognition approaches after the discovery of mirror neurons. Several conceptual and compu-

tational models have been proposed.

Conceptual models usually attribute many functions to mirror neurons such as action recogni-

tion and imitation ability, see e.g. [11, 12]. There are also theories that relate mirror neurons

to language [13], citing the similarity between mirror neurons in the macaque monkey and the

Broca’s region, the language understanding part of the human brain. The problem with con-

ceptual models is that they do not state how to implement attributed functions mathematically

and are usually unrealistic from a computational point of view, thus such conceptual models

are out of scope of this thesis.

Some computational models are developed to explain and/or mimic the mirror neuron system

and some other models to be used directly in robotics (action generation etc.). From the

robotics side, these models mostly deal with action generation, action learning and imitation,

mentioning recognition as a side study. A review regarding the computational models of

imitation learning is given in [14]. In addition, [1] presents a review about imitation methods

and their relations to mirror neurons. This literature survey will present computational models

that could be used as integrated action generation-recognition mechanisms.

2.1 MOSAIC

The Modular Selection and Identification for Control (MOSAIC) architecture [15, 16] is a de-

centralized and modular control architecture for adaptive control. The architecture consists of

8

(a) Action Generation with MOSAIC. For simplicity, feedback to the controllers are not shown.

(b) Action Recognition with MOSAIC

Figure 2.1: Different uses of the MOSAIC architecture. (Figures taken from [1] and repro-
duced with kind permission of the corresponding author Erhan Öztop)

multiple controller-predictor pairs which compete and cooperate to achieve a desired control

task. The pairs contribute to overall control according to their prediction performance.

Action generation using MOSAIC is depicted in figure 2.1(a). The desired trajectory of the

controlled variables is given to the system. Then the controllers compute motor commands

which are multiplied by corresponding responsibility signals and summed together. Motor

commands are sent both to the robot and to the predictors. The difference between the pre-

dicted and the actual motion is used to calculate responsibility signals.

The responsibility signal of a pair indicates how well the corresponding controller is suited

for the given control task. First the likelihood of a controller to generate the current state is

calculated as

li(t) =
1

√
2πσ2

e−||x(t)−x̂i(t)||/2σ2
, (2.1)

where t is time, l is the likelihood, x is the measured state (sensory feedback) and x̂i is the

ith predicted state and σ is the standard deviation of the forward model dynamics. Then the

9

responsibility signal is defined as

λi(t) =
li(t)∑n

j=1 l j(t)
, (2.2)

where λi is the responsibility signal of the ith pair and n is the total number of pairs.

The MOSAIC architecture can be used for action recognition, which is shown in figure 2.1(b).

The actor’s trajectory is fed to the system as the desired trajectory, after mapping it to a

state appropriate for MOSAIC. Motor commands are generated and provided as input to the

predictors. Then these predictions are compared with the next observations to calculate re-

sponsibility signals. The computed responsibility signals represent the observed action. The

responsibility signals of known actions are compared with the observed action’s signals for

recognition. Responsibility signals can be treated as parameters.

The pairs of the MOSAIC architecture can be acquired by learning. The predictors learn the

next state of the system given the current state and the motor command, and the controllers

learn to generate necessary motor commands to reach a desired state given current state. For

controller learning, a target motor command is needed, which is approximated by a feedback

controller. Responsibility signals are also used during learning as multipliers of the learning

rate. This way, a pair which has a better performance of generating the desired trajectory, is

trained more.

The MOSAIC architecture can also be used for imitation learning. It is important to note

here that learning of the pairs is not imitation learning, unless the desired trajectory given to

the system is the observed trajectory which is mapped to a suitable space to be used by the

architecture. However, there is no study that has implemented this yet. Another approach is

taken for imitation learning in [17]. The responsibility signals calculated during observations

are stored and then given to the system during action generation to achieve imitation.

2.2 HAMMER

Hierarchical Attentive Multiple Models for Execution and Recognition (HAMMER) is a fam-

ily of architectures, first used for imitation in [2, 18] and then extended for recognition in

[19, 20]. HAMMER architecture consist of multiple forward and inverse model pairs, as in

MOSAIC. However these models do not interact and only a single pair contributes to overall

10

Figure 2.2: General depiction of the HAMMER architecture. Figure taken from [2] and
reproduced with kind permission of the corresponding author Yiannis Demiris.

control task which is determined by its prediction performance.

General depiction of the HAMMER architecture can be seen in figure 2.2. Behavior boxes

in this figure represent the actions which are modelled as inverse models. HAMMER is

not directly used for generating actions but rather for imitation. Imitation in this context is

defined as performing the same action as the actor, not to be confused with imitation learning

mentioned before.

Imitation procedure (considered as the action generation part of this model) is done as follows:

The actor’s state information (e.g. cartesian positions or joint angles) is given to the behavior

model which calculates necessary motor commands to reach it. These commands are then

given to the forward models to predict the next state. Predicted state and the actual state is

compared to calculate confidence values. The motor commands of the action that has the

highest confidence is used for action generation.

The aforementioned imitation scheme can be directly converted to recognition; by taking the

action with the highest confidence value as the recognized action.

Authors have defined different ways to calculate confidence values in different studies. In

[19], simple actions of a mobile robot such as moving to an object, picking up an object etc.

is used as the behaviors of the HAMMER architecture which is utilized to recognize the action

11

of a human. These simple actions are accompanied by forward models. If the prediction of a

forward model is in the same direction as the observed action, corresponding confidence value

is increased, otherwise it is decreased. Note that only the direction matters and prediction and

observed values are ignored. Confidence values are calculated per action as

Ci(t) =

 Ci(t − 1) + 1 + N if prediction and observation is in the same direction

Ci(t − 1) − 1 − N if prediction and observation is in opposite directions
,

(2.3)

where Ci is the ith action’s confidence value, t depicts time and N represents the previous

number of correct (if prediction is in the same direction) or incorrect (otherwise) prediction

steps of that action.

The action which has the highest confidence value is treated as the recognized action. This is

a very qualitative measure of action similarity, but authors have shown that it can be used for

recognition. The action models of the robot and the human are quite different and looking at

the direction is the only option for recognition in this case.

In [20], reach-to-grasp action of humans is modelled by a biologically plausible minimum

variance model [21] on a simulated two-DOF planar robot arm with a gripper. Thumb and

index finger are modelled by the gripper tips. Human reach-to-grasp behavior is observed and

authors show that recognition is possible through generation of large confidence values for

congruent actions. Note that in order to recognize the action, the action generation part was

carefully modelled. In this setting, there are more than one feature to track (position of the

wrist and the finger tips of the human) and confidence value has to reflect this. A change in

confidence value due to a single feature is calculated as,

∆Ci(t) = sgn
(
xi(t) − xi(t − 1)

)
× sgn

(
x̂i(t) − x̂i(t − 1)

)
×

(
x̂i(t) − x̂i(t − 1)

)
× ωi, (2.4)

where t denotes time, i denotes the feature, xi is the observed feature, x̂i is the predicted

feature andωi is a constant that determines the relative importance of the feature in confidence

calculation. Then the confidence value is defined as,

C(t) = C(t − 1) +

n∑
i

∆Ci(t), (2.5)

where C(t) is the confidence value and n is the number of features. Action recognition is done

as the same way as described before; the action which has the highest confidence value is

treated as the recognized action.

12

2.3 Mental State Inference

Mental State Inference (MSI) [22] model is a computational model of the macaque monkey

sensory feedback and action generation system which is extended to action recognition. The

model includes predictors to compensate for sensory processing delays. MSI model has two

working modes, namely the actor mode and the observer mode.

In the actor mode, shown in upper part of figure 2.3, MSI model generates actions. Intention

module, selects the action to be performed which in turn determines the variable to be con-

trolled (denoted as X). This module also sets the goal (denoted as Xdes) of the action. The

goal is fed to the movement planning block to generate necessary change in motor variables

which are then sent to the movement execution block where the actual control is handled. The

resulting motion is observed and necessary variables are calculated and sent to the movement

planning block to close the loop. MSI model assumes that the sensory processing (observa-

tion) is slow and a forward model should be used to compensate for the resulting delay. This

forward model takes desired change in motor variables as input and outputs predicted next

state, which is then fed back to movement planning block to close the loop.

MSI model argues that the mirror neurons act as these forward models (predictors) which

compensate the sensory delay. It is necessary to deal with this delay if a fast or accurate

motion is desired.

In the observer mode, shown in the lower part of 2.3, MSI model tries to infer the intention

of the actor i.e., tries to recognize the action being performed and the goal of the action. It

exploits the forward model to recognize observed actions. In this mode, recognition starts

with an initial intention (action and goal) estimate. Motor planning block generates motor

commands, then forward model predicts next state of the control variable. This is called the

mental simulation. At the same time, related control variables are extracted from observations.

The intention estimate is updated according to the difference between predicted and measured

control variables. Loop continues on until the predictions converge to the observations.

It is important to note that the control variables are calculated with respect to the object being

acted on so that same variables could be used both during the actor mode and the observer

mode.

13

Figure 2.3: Upper part: Actor mode. Lower part: Observer mode. (Figure taken from [1] and
reproduced with kind permission of the corresponding author Erhan Öztop)

2.4 RNNBP Approach

Recurrent Neural Network with Parametric Biases (RNNPB) is a modified Jordan-Type re-

current neural network with some special neurons in its input layer [23, 24]. These neurons

constitute the parametric bias (PB) vector, which can both be input and output, according to

the context. RNNPBs are used to learn, generate and recognize actions [25].

Recurrent neural networks simulate dynamic systems and the PB vector of an RNNPB is used

as bifurcation parameters. Roughly, bifurcation means a qualitative change of behavior of a

dynamical system. In theory, by changing PB vectors, infinitely many trajectories can be

generated by an RNNPB. In this context, PB vectors represent actions.

In the learning mode, depicted in figure 2.4(a), of the RNNPB approach, the network is pre-

sented with sensory motor data of actions as both input and output so that it becomes a senso-

rimotor predictor after training. The actions have individual PB vectors but share the network

weights.

14

The PB vectors and the network weights are calculated during learning. Weights are esti-

mated using back-propagation through time (BPTT) algorithm. RNNPBs employ an iterative

scheme to generate PB vectors during learning. PB vectors are calculated to reduce prediction

error. These iterations and iterations of BPTT are done in an interleaved manner.

In the generation mode, shown in figure 2.4(b), PB vector corresponding to desired behavior

is given as input to the network. In addition to being fed back as input, motor component of

the outputs are sent to necessary actuators to generate the action, which is not shown in the

figure. In the figure, sensory component of the output is directly fed to back to network. This

could be replaced with actual sensory data for a closed-loop operation. If the outputs are not

sent to the actuators, then RNNPBs just generate sensorimotor trajectories.

In the recognition mode, depicted in figure 2.4(c), observations are used as sensory data and

motor output is connected to motor input. Difference between the predicted and observed

sensory data i.e. prediction error is used to compute PB vectors as in learning. When PB

vector converges, it is compared with the vectors acquired during learning for recognition.

Thus recognition is done in the parameter space over the PB vector.

An interesting property of this type of neural network is that the PB vectors can be both inputs

and outputs according to the mode of operation. In the learning and recognition modes PB

vectors are outputs and in generation mode they are inputs.

2.5 Mirror Neuron System (MNS) 1&2

Mirror Neuron System (MNS) models are computational models of the macaque mirror neu-

ron system [26, 27]. These models assume that the mirror neurons are not innate (i.e., present

at birth) but develop during infancy through observing self-executed actions to provide sen-

sory feedback for future actions. This property is extended for action recognition, where the

feedback is calculated for the observed action.

MNS1 implements a feed-forward neural network and MNS2 implements a Jordan-type re-

current neural network for modeling. Predefined actions are generated in a simulated envi-

ronment and some features are extracted from these. Time course of these features are taken

as inputs and action codes are taken as targets to the neural networks. Action codes represent

15

(a) Network in Learning Mode

(b) Network in Generation Mode

(c) Network in Recognition Mode

Figure 2.4: Modes of RNNPB Network. (Figures taken from [1] and reproduced with kind
permission of the corresponding author Erhan Öztop)

16

the action being performed.

The features are defined with respect to the object (e.g. distance between hand and object)

being acted upon, similar to the MSI model. This eliminates the agent concept, making inputs

to the system during acting and observing the same. This way MNS models work the same

way both during generation and observation of actions.

These models are used to describe the sensory feedback, not the action, thus they do not

provide any means of action generation and learning. However, their use of agent independent

features is a key point.

2.6 Dynamic Movement Primitives

Dynamic Movement Primitives (DMP) are trajectory generators formulated as nonlinear dy-

namic systems [28, 29]. They are inspired by mass-spring-damper (MSD) equations. DMPs

are used to learn and generate actions. Their mathematical formulation is

~̈x = K(~g − ~x) − D~̇x + K ~f (s, ~w). (2.6)

In equation 2.6, ~x represents the controlled degrees -of-freedom (DOF). The controlled DOFs

could be joint positions or cartesian coordinates. K is the spring constant and D is the damping

coefficient of the system. The goal point is specified by ~g, set as the desired value of ~x. ~f (·) is

a nonlinear function that augments the MSD system to generate different trajectories. ~w and

s, represent the parameters and the variable of the nonlinear function respectively. s is also

called the phase variable and shared among the DOFs (i.e. elements of ~x).

Equation 2.6 is used to create necessary accelerations so that the controlled DOF reaches

the goal point. For trajectory generation, these accelerations can be integrated to get the

position and velocity. For action generation, these accelerations are converted to necessary

motor commands and sent to the actuators. For example inverse kinematics can be used for

this conversion if the controlled DOFs are the cartesian coordinates of a robotic arm’s end-

effector. If the controlled DOFs are directly joint variables, then the conversion is trivial.

A DMP formulation has two parts, namely the canonical part and the nonlinear part. The

canonical part of equation 2.6 is,

~̈xc = K(~g − ~x) − D~̇x, (2.7)

17

where ~̈xc is called the canonical acceleration. Equation 2.7, is the force equation of a MSD

system with unit mass. MSD is a robust second order system with point attractor dynam-

ics, i.e., the system converges to ~g with zero velocity, even in the presence of perturbations.

Equation 2.7 also corresponds to PD-Control policy with K being the proportional gain and

D being the derivative gain.

An MSD system has a characteristic measure called the damping ratio which describes the

energy dissipation rate of the system. For DMPs, damping ratio of the MSD system is chosen

as 1 to ensure that the system reaches its goal as fast as possible without oscillating. This

damping ratio leads to D = 2
√

K.

The canonical part can only generate straight line trajectories in the controlled space. The

term ~f (·) is included in the DMP formulation to generate more complex trajectories. The

nonlinear part of the equation 2.6 is

~̈xn = K f (s, ~w), (2.8)

where ~̈xn is called the nonlinear acceleration. The nonlinear function can have many different

forms. The main reason to include such a function in the formulation is to have an imitation

learning ability. Hence, ~f (·) is mostly formulated as a function approximator.

A linear basis function model for the nonlinear function is used in [30]. Let f (·) denote an

arbitrary element of the function ~f (·). Then,

f (s, ~w) =

N∑
i=1

ψi(s) wi

N∑
i=1

ψi(s)

s, (2.9)

where Ψi(s) is the ith kernel(basis) function, ~w is the adaptive parameters of f (·), wi is the ith

element of ~w and N is the total number of basis functions. There are different forms of kernel

functions but most common one is the radial basis function formulated as,

ψi(s) = e−hi(s−ci)2
, (2.10)

where ci is the ith kernel center and hi is the ith kernel’s width. The kernel centers and the

kernel widths need to be adjusted according to the phase variable formulation. The phase

variable may decrease exponentially, thus to capture the end of the motion, the kernel centers

18

need to be closer together and they need to be narrower towards the end. If phase variable

decreases uniformly, centers should be equispaced and widths should be the same.

The phase variable s is used to bind individual DOFs together in order to synchronize their

motions. The phase variable is constrained to monotonically decrease or increase between

[0 1]. This makes the phase variable act as an indicator of the amount of completion of an

action or in other sense normalized time which is not necessarily flowing linearly. A common

formulation of s is as follows,

ṡ = −αs, (2.11)

where α is a positive constant, defining the decay rate of s. With an initial value of 1, the

phase variable decays from 1 to 0 in a monotonic manner as the action progresses. The time

evolution of the phase variable can be acquired by solving the equation 2.11 to get,

s = e−α(t−t0), (2.12)

where t0 is the initial time.

Imitation learning corresponds to estimating ~w parameter in equation 2.8 from observed tra-

jectories i.e., demonstrations. In order to accomplish this, f (·) is left alone in equation 2.6 to

get,

f (t) =
ẍ(t) − K(g − x(t)) + Dẋ(t)

K
. (2.13)

For learning, it is assumed that parameters of the canonical part are known and the motion is

observed i.e., K and D are known, x(t), ẋ(t), ẍ(t), and g are available and α in equation 2.11 is

estimated from the duration of motion. Then, f (t) is calculated using equation 2.13 and s(t) is

calculated using equation 2.12. From these, f (s) is obtained and the regularized least squares

method is used to calculate ~w.

A different weight vector, ~w, is learned per action. To generate a learned action, corresponding

weight vector is used in equation 2.6 to generate that action. The set of all learned parameter

vectors are called the action repertoire of an agent.

In [31, 32], the aforementioned imitation learning approach is extended for action recognition

using DMPs. The observed action is treated as a new action to be learned and ~w is estimated.

This is done after the whole action is observed. These parameters of the observed action are

then compared with previously learned parameters. Comparison is done with a correlation

19

metric, defined as,

C = arg max
i

(
~wT

i ~w0

|~wi||~w0|
) for i = 1 . . . n, (2.14)

where C is the recognition decision, ~wo is the learned parameter vector of the observed action,

~wi is the parameter vector of the ith action in the observer’s repertoire and n is the total number

of actions in the observer’s repertoire.

2.7 General Approaches

Two general approaches for action recognition could be derived from the studies that have

been reviewed. These are namely the parameter space approach and the trajectory space

approach.

In the parameter space approach the observed action is treated as a new action to be learned

and parameters are calculated from observations, as in the DMP and the RNNPB approaches.

These parameters are then compared with previously learned parameters. An immediate way

of comparison is the correlation metric, described by the equation 2.14. For this approach to

be applicable, there needs to be an imitation learning mechanism available. This approach has

a major limitation in the sense that the action has to be fully observed for recognition which

is not suitable for online recognition and the purpose of this thesis.

In the trajectory space approach, observer simulates trajectories using his action generation

mechanisms and compares these trajectories to the observed one. A suitable matching crite-

rion needs to be defined which is not as trivial as in the parameter space case. Recognition

approach of MSI and HAMMER models could be given as examples.

At first, it seems that any action generation mechanism could be facilitated for action recog-

nition using the trajectory space approach, provided that the actor and the observer have sim-

ilar action generation mechanisms. However, issues about the matching criterion, space of

matching and the related correspondence problem mentioned in Chapter 1 need to be care-

fully addressed. The approach of this thesis can be classified as a trajectory space approach.

20

2.8 Discussion

In this section, the aforementioned approaches are compared against the action recognition

requirements presented in section 1.3. Table 2.8.6 is used to ease and to summarize the

discussion.

2.8.1 Action Models

Action recognition using action generation requires that the actor and the observer have sim-

ilar action generation mechanisms. There are two main approaches to accomplish this. The

first one is to have an imitation learning mechanism (see discussion in section 1.4) and the

second one is to model the actor’s actions. Another option is to assume that the actor and the

observer has the same action models. Refer to the Action Models column of the table 2.8.6

for a summary. The approaches that the methods take can be stated as,

• The DMP and the RNNPB approaches provide full imitation learning as described in

the relevant parts of the literature survey.

• The MOSAIC approach can be considered to have a way for imitation learning to some

extent if controller learning is devised accordingly.

• The MSI and the HAMMER approaches do not address any imitation learning and

assume that the actor and the observer have similar actions. HAMMER approach uses

modelling in some implementations to achieve this.

The addition of new actions is also another concern in the context of developmental robotics.

Adding new actions is easy in the DMP, the MSI and the HAMMER approaches since actions

are modelled with separate controllers. Adding new actions to the RNNPB and the MOSAIC

approaches requires retraining of all the actions since these model the actions in a distributed

architecture.

2.8.2 Variable Selection

The variables in the MSI and the MNS models are calculated with respect to the object. This

allows the same variables to be used during action generation and action recognition. Space

21

of matching becomes the space of these variables.

Other approaches require the mapping of observed variables to a suitable space. The most

common example is to map the observations to a joint space which is not so easy to achieve.

The variables that are used in each approach is given in the Variables column of the table 2.8.6.

2.8.3 Action Similarity Metric

Defining action similarity is the problem of finding a suitable matching criterion i.e., a simi-

larity metric. This metric should be defined to compare two actions. To summarize the related

metrics which are described in the previous sections of this chapter are as follows;

• The RNNPB and the DMP approaches use correlation of parameters as their similarity

metric, since they employ the parameter space approach.

• Confidence values are defined as the similarity metric in the HAMMER architecture.

Definition of confidence values differ across implementations.

• The MSI approach uses the instantaneous error between its predictions and the observed

motion.

• In the MOSAIC model, the responsibility signals are used to compare the actions which

are calculated from instantaneous error.

Similarity metrics should be robust to reduce the effect of noise on decision. However, both

the MSI and MOSAIC approaches use instantaneous error to calculate their similarity metrics,

which is prone to noise. HAMMER approach doesn’t suffer from this. This discussion is only

for online recognition so it is not applicable to the other two approaches.

2.8.4 Online Recognition

Online action recognition is at the heart of this thesis. Thus it is necessary to point out what

the methods that have been surveyed offer in this sense. The nature of the recognition methods

are as follows;

22

• The DMP and the RNNPB models use parameter space approach for recognition, thus

they are limited to offline recognition.

• Both of the recognition schemes of the MSI and the HAMMER models are online.

• In the MOSAIC approach, the nature of recognition depends on the implementation.

Recall that responsibility signals calculated from the observation are compared with

previously generated responsibility signals for recognition and that the responsibility

signals have a time evolution. If a partial comparison of these signals suffices, then

recognition approach is online, if not, then it is offline.

For a summary, refer to the Action Recognition column of table 2.8.6.

2.8.5 Goal Setting

It is important to note that some methods allow for goal setting and some do not. The impor-

tance of this is that the method could explicitly be generalized to many objects (i.e., goals) if

it allows this. To summarize;

• The RNNPB approach does not provide any means for goal-setting which is a major

drawback, since there is no way to input the goal to the neural network.

• Goal setting in MOSAIC and HAMMER are not directly addressed.

• Both the MSI model and the DMP approach provide means for explicitly setting the

goal of an action.

2.8.6 Verification

In robotics, it is necessary to demonstrate that the theoretical methods work on a practical

problem. All the work that has been reviewed can theoretically be used for action recognition

but not all of them have been tested in this context. To give a brief summary;

• The recognition approaches of the RNNPB and DMP have been tested on real world

data. Refer to the relevant references for more detail.

23

• The MOSAIC model has also been tested but not for action recognition. In addition,

more experiments should be done to fully test the theoretical claims.

• The confidence values are calculated from real world data in the HAMMER approach,

but these are not explicitly used for recognition.

• The MSI model has been tested on simulated data.

• MNS models are trained and tested in a simulated environment.

From this summary, it can be seen that there has not been any real world experiments focused

solely on the online recognition of actions using action generation mechanisms. This thesis

aims to fill this gap.

24

Ta
bl

e
2.

1:
A

ct
io

n
re

co
gn

iti
on

re
la

te
d

pr
op

er
tie

s
of

th
e

ap
pr

oa
ch

es
th

at
ha

ve
be

en
re

vi
ew

ed
.

A
ct

io
n

M
od

el
s

Va
ri

ab
le

s
Si

m
ila

ri
ty

M
et

ri
c

A
ct

io
n

R
ec

og
ni

tio
n

G
oa

lS
et

tin
g

M
O

SA
IC

C
on

tr
ol

le
rL

ea
rn

in
g

Jo
in

ts
R

es
po

ns
ib

ili
ty

Si
gn

al
s

D
ep

en
ds

on
im

pl
em

en
ta

tio
n

N
ot

di
re

ct
ly

ad
dr

es
se

d

H
A

M
M

E
R

M
od

el
lin

g
or

A
ss

um
in

g
th

e
Sa

m
e

D
ep

en
ds

on
Im

pl
em

en
ta

tio
n

C
on

fid
en

ce
va

lu
es

O
nl

in
e

N
ot

di
re

ct
ly

ad
dr

es
se

d

M
SI

A
ss

um
in

g
th

e
Sa

m
e

O
bj

ec
t-

ce
nt

er
ed

In
st

an
ta

ne
ou

s
E

rr
or

O
nl

in
e

Po
ss

ib
le

R
N

N
PB

L
ea

rn
in

g
by

D
em

on
st

ra
tio

n
Se

ns
or

sp
ac

e
(J

oi
nt

s,
im

ag
e)

C
or

re
la

tio
n

O
ffl

in
e

N
ot

Po
ss

ib
le

D
M

P
L

ea
rn

in
g

by
D

em
on

st
ra

tio
n

Jo
in

to
r

C
ar

te
si

an
Sp

ac
e

C
or

re
la

tio
n

O
ffl

in
e

Po
ss

ib
le

25

CHAPTER 3

RECOGNITION APPROACH

The action recognition approach developed in this thesis uses an action generation mechanism

at its core. Instead of developing a new action generation mechanism, DMPs were chosen to

be used. The reasoning behind this choice is that DMPs either satisfy or are easily modified

to satisfy the action recognition requirements presented in section 1.3.

3.1 Detailed DMP Analysis

3.1.1 Strong Points

• DMPs have good generalization properties. They can be formulated to be invariant

under affine transformations [33], which allows them to produce trajectories for any

starting and end point.

• DMPs are robust and stable. The linear part of a DMP converges to a given goal even in

the presence of noise. The nonlinear part decays to zero as it contains a multiplication

by the phase variable (equation 2.9) which is defined to decay to zero (equation 2.12).

• Imitation learning is fast. Estimating ~w is not an iterative process if regularized least

square method is used. This method involves a matrix inversion as its most costly

operation which is fast for modern computers given practical problem sizes.

• Action generation is online i.e., equation 2.6 can be computed in real time and its output

applied to the actuators.

• Goal setting and online changing of the goal point is trivial through a single variable,

~g, in equation 2.6.

26

• DMPs are desirable from a practical point of view. They are fairly easy to understand

and implement. The linear part (MSD system) is described in many text-books. The

function approximation algorithm used in DMPs is common and there are many com-

puter libraries that implement it.

3.1.2 Shortcomings

DMPs are designed for imitation learning from a single demonstration and generalization of

learned actions to different start and end points. However they have a number of shortcomings,

mostly from an online action recognition point of view. These shortcomings are;

• The recognition scheme is not suitable for online action recognition, that is the action

needs to be fully observed to estimate ~w for comparison. The function approximation

method dictates this necessity.

• The phase of the system, s, is independent from (x, ẋ), which determines the state of the

system. This means that the nonlinear part of the system runs in an open-loop fashion

and s and (x, ẋ) are only coupled in time. If somehow the time evolution of the state is

disturbed (e.g. robot arm gets stuck to an obstacle for a duration), s will not be able to

adapt itself and it will continue to decay.

• The action has to be fully observed to estimate α of equation 2.11. This parameter is

estimated according to the duration of the action.

• The starting point of the action, t0, needs to be observed to calculate s values, either

through equation 2.11 or equation 2.12. Some DMP formulations incorporate the initial

position x0. These are the internal parameters of the system and their correct observa-

tions cannot be guaranteed.

• Imitation learning is done through a one-dimensional parameter, s, which is not suitable

for learning from multiple demonstrations. Instead of capturing interesting points of the

demonstrated trajectories, it would tend to average them out.

Another drawback of DMPs is that they are designed for learning from a single demonstration.

Even though DMPs are invariant under affine transformations, generalizations of an action

27

for different starting points may not be just the scaled and rotated versions (affine transforma-

tion) of that demonstrated action. This combined with lack of proper learning from multiple

demonstrations can be problematic in some scenarios.

In short, there are two major problems with DMPs for action recognition. First is the lack of

an online recognition scheme, second one is the phase variable formulation. The following

section is about the modifications done on the DMPs to overcome their shortcomings and the

other section addresses the online recognition issues.

3.2 Modifications to DMPs

3.2.1 Phase Variable

The phase variable formulation in 2.11 depends on only itself and the initial time (internal

parameter) and is independent of the state of the system which makes online recognition

difficult. There could be different phase variable formulations. For example (x−x0
g−x0

) in [32]

overcomes some of the aforementioned shortcomings. However, this is still insufficient, since

the system could be at the same x with different ẋ. Then, these would have the same phase

value when they should not. In addition, this formulation will not generate any motion on a

DOF where x0 = g. This is the case for example where the robot needs to pick up a glass on a

table and put it to another position on the same table. In this case, the initial (x0) and desired

(g) height of the object are the same and assuming zero initial velocity, the equation 2.6 will

produce zero acceleration.

Instead of mapping the state onto an explicit phase variable and learn ~f (·) with respect to it,

this study chose to learn the function directly with respect to the state by replacing, ~f (s, ~w)

with ~f (~z, ~w) in equation 2.6, where state vector ~z is constructed by concatenating ~x and ~̇x

vectors. Such a change of formulation makes the nonlinear part dependent on the state, al-

lowing it to run in a closed-loop manner, like the canonical part. Moreover, it removes the

dependence on internal parameters (x0 and t0), making recognition easier.

Note that the ~z vector could possibly be constructed from different variables and as long as

they can be measured online, the arguments about the system would not change.

28

Figure 3.1: Neural network used as the ~f (·).

3.2.2 Nonlinear Part

The nonlinear part should be adapted to incorporate its new input, ~z. A linear basis func-

tion model was used for f (·) with the previous phase variable formulation which was one-

dimensional. However, ~z is multi-dimensional and a linear basis function model wouldn’t

scale as before. Suppose that there are 20 basis functions in a model with a single degree of

freedom. If this is extended to an n-DOF system, then the model will have 20n number of

basis functions which is not practical. Instead a multi-layer feed-forward neural network is

used to learn ~f (·) which makes the ~w in equation 2.6 the weights of the neural network.

Levenberg-Marquardt (LM) backpropagation [34] is used to train the neural network as it

has better convergence efficiency than gradient descent methods. The implementation of LM

backpropagation algorithm in the Neural Network ToolboxTM of Matlab R© is used.

For a given set of demonstrations, multiple neural networks with different number of hidden

layer neurons are trained. These networks are then used in equation 3.1 to create trajectories

given the initial state. These trajectories are compared with the actual trajectories and the

network which creates the most similar ones is chosen as the corresponding action’s network.

Neural network simulation is implemented in C++ because of the performance concerns. This

29

(a) Global Frame (b) Object Centered Frame

Figure 3.2: Different frames that can be used to measure Cartesian coordinates.

implementation is two orders of magnitude faster than Matlab R©’s.

3.2.3 Controlled Variables

The variables, ~x in equation 3.1, are defined in cartesian space with respect to the object and

are called hand-object relations. This choice, inspired by [22, 26], permits the same variables

to be used both during observation and generation of actions, greatly reducing actor-observer

differences, allowing seamless use of generation mechanisms in recognition.

The hand-object relations are defined as the relative position and velocity of the end-effector

with respect to the object. This is achieved by placing the origin of the coordinate frame used

to define the coordinates on the object as shown in figure 3.2. This makes the goal parameter

g of equation 2.6 disappear.

Cartesian space are chosen over the joint space because it is easier to observe the end-effector

rather then individual joints during recognition.

3.2.4 Resulting DMP Formulation

Considering the previous modifications and the choice of variables, the trajectory generator

equation for a multi-dimensional system becomes,

~̈x = −K(~x) − D~̇x + K ~f (~z, ~w). (3.1)

The trajectory generation block diagram can be seen in figure 3.3.

30

Figure 3.3: Action generation diagram. End-effector position of the robot is calculated from
joint angles using forward dynamics (not shown). Motion capture system tracks the object
being acted on. From these, hand-object relations are calculated and fed to the DMP. The
DMP part then calculates the necessary accelerations to realize the action.

3.2.5 Imitation Learning

Imitation learning for an action is done by calculating the f (t) values given observed the

trajectories, (x(t), ẋ(t), ẍ(t)), through the equation 2.13 and feeding these as targets and feeding

(x(t), ẋ(t)) as inputs to the neural network.

Modifications to f (·) allow proper learning from multiple demonstrations. A single neural

network is trained for different starting and end positions. Moreover, demonstrated actions

with different starting and end positions do not have to be just the scaled and rotated versions

of each other. Considering that human action data differ for different points and are noisy,

training from multiple demonstrations is advantageous.

3.3 Recognition

The aim of this study is to achieve online action recognition using an action generation mech-

anism. Modified DMPs detailed before are the action generation mechanism that is at the core

of the system. They will be used to simulate actions (i.e., generate trajectories) which are then

compared to the observed action.

The block diagram of the recognition scheme is presented in figure 3.4. Recognition starts

when the actor starts his action which is determined by tracking the actor’s end-effector ve-

31

locity. If the velocity reaches above a certain threshold, actor is assumed to have started his

action. At the start of recognition, initial state observations are given to action generation

systems as initial conditions and future trajectories are simulated. These are then compared

with the observed trajectory by calculating the cumulative error;

erri(tc) =

tc∑
t=t0

∣∣∣∣∣∣~xo(t) − ~xi(t)
∣∣∣∣∣∣ , (3.2)

where erri is the ith behavior’s cumulative error, t0 is the observed initial time, tc is the current

time, ~xo is the observed position, ~xi is the ith behavior’s simulated position.

Then, to have a quantitative measure of similarity between actions, recognition signals are

defined as:

rsi(tc) =
e−erri(tc)∑
j e−err j(tc) . (3.3)

Recognition signals could be interpreted as the likelihood of the observed motion to be the

corresponding simulated action. These are similar to the responsibility signals in [16]. How-

ever, responsibility signal calculation is based on instantaneous error which is prone to noise,

whereas recognition signal calculation is based on cumulative error.

During the recognition phase, if the ratio of the highest recognition signal and the second

highest gets above a certain threshold (Υ), the recognition decision is made and the action

corresponding to the highest signal is chosen.

In case there are multiple objects in the environment, behaviors are simulated per object, by

calculating the hand-object relations accordingly. If there are M behaviors and L objects in

the scene, then M × L trajectories are simulated and compared with the observed one. This

allows to recognize which object is being acted upon in addition to action type.

32

Figure 3.4: Recognition architecture flow diagram. Motion capture system tracks possible ob-
jects and the end-effector from which state variables are calculated. When recognition starts,
the observed state is used as initial values to the learned behaviors (not shown). The learned
behaviors (i.e., generation systems) then simulate future trajectories. As the action unfolds,
observed and simulated trajectories are compared and responsibility signals are calculated.
From these signals, recognition decision is made according to threshold.

33

CHAPTER 4

EXPERIMENTAL EQUIPMENT

4.1 The iCub Humanoid Robot

The iCub humanoid platform, shown in figure 4.1, is developed to study embodied cognition

and developmental robotics [35] as part of the European Union Frame Program 7 Project

RobotCub [36].

iCub is designed to resemble a three and a half year old child, in appearance and in physical

and sensory capabilities. It is 104 cm tall and weighs approximately 22 kgs. It has 53 degrees-

of-freedom (dof), with 7 on each arm, 9 on each hand (highly dexterous), 6 on each leg, 6 on

its head and 3 on its torso. Its joints are actuated by brushed (head and hands) and brushless

(rest) DC motors. Hands, shoulders, waist and ankles are driven by tendons. iCub can not

stand on its own so it is fixed from its hip to a base, as seen in figure 4.1(b).

iCub can also display face expressions by moving its eyelids, controlled with a servo motor,

and by using LEDS underneath the head cover to emulate eyebrows and a mouth as seen in

figure 4.1(a).

The main processor of the robot is an Intel based dual-core PC104, situated in its head along

with other electronics that is used for communication and control. The actuators of the robot

are controlled with custom designed electronics and have separate circuits for power and

control.

The middleware that is used to communicate with the robot is Yet Another Robotics Platform

(YARP) [37, 38]. YARP is easy to use and configurable and allows distributed communica-

tion. It is aimed to support reusable software. It provides interfaces to control sensors and

34

(a) Front view of iCub with face expressions. (b) Side view of iCub. Also showing the base.

(c) Inside of iCub’s head. (d) iCub’s arm.

Figure 4.1: The iCub Humanoid Robot

35

(a) Motion Capture Sensor (b) Accessories

Figure 4.2: Motion Capture Equipment

actuators. It implements many communication protocols used in robotics.

One significant property of iCub is that its full design, mechanic, electronic and software, is

open source. For full specifications and latest developments please refer to [39].

4.2 Motion Capture System

The VisualeyezTMVZ 4000 [40] (Phoenix Technologies Incorporated USA) is used to track

the positions of the actor’s end-effector and objects. The motion capture system can be seen

in figure 4.2.

The motion capture system uses active markers (LEDS) to measure the 3D positions of the

points of interest. It is calibrated by placing 3 markers to the desired X − Y plane, after which

the system measures the positions of the markers and calculates the necessary transformations.

The resolution of the system is 0.015 mm at 1.2 m with a volume accuracy of 0.5 mm. Volume

accuracy is defined as the average accuracy achieved within a specified volume. The specified

volume in this case is a constrained spherical space with radius between 0.6-2.2 m, azimuth

angle between ±40 deg and zenith angle between ±30 deg.

36

CHAPTER 5

EXPERIMENTS AND RESULTS

5.1 Setup

In the experimental setup, the actor and the observer are seated facing each other as shown in

figure 5.1. There are two objects hanging in between them. A motion capture system is used

to track the actor’s actions and the objects. This setup is used to gather training and testing

data and to demonstrate the feasibility of using the action recognition scheme with a robot.

It can be seen from figure 5.1 that there are markers on top of the objects and wrist of the

actor. Wrist of the actor is chosen to minimize the risk of occlusion.

5.2 Actions

For the experiments, three different reaching actions towards two objects are considered, as

depicted in figure 5.2(a). The actions are defined as:

• R(X): Reaching object X from right

• D(X): Reaching object X directly

• L(X): Reaching object X from left

The objects are designated as:

• LO: Left object (wrt. the actor)

• RO: Right object (wrt. the actor)

37

Figure 5.1: The experimental setup.

Multiple objects and actions were chosen to show that the recognition approach can recognize

both the action and the object. In addition, multiple actions and objects result in a variety of

options to make a recognition decision from. Having more options decreases the chance of

making a correct decision randomly.

The actor(a human) performed 50 repetitions of each action on each object, totalling 300

repetitions which were recorded. Both object centers and the trajectory of the actor’s wrist

were tracked. Some recorded trajectory samples can be seen in figure 5.2(b). 60% of the

trajectories are used to train the neural networks of three actions and the rest are used for

testing the recognition approach.

Humans cannot start from the same position every time and follow these trajectories perfectly;

i.e., real behaviors have noise and variance, as seen in figure 5.2(b).

The beginning and end of the recordings are truncated automatically to eliminate the parts

before and after the action where there is no motion. This truncation is done according to a

velocity threshold which is determined empirically to be 0.05m/s.

The motion capture system only records positions. However, recognition phase requires ve-

locities and training phase requires both velocities and accelerations. Velocities and acceler-

38

(a) Depiction of behaviors and approximate geomet-
ric information from top view of the setup

(b) A subset of recorded human trajectories

Figure 5.2: Defined and applied actions on the setup

ations are obtained through simple finite difference approximations i.e., ẋ(t) = (x(t + ∆t) −

x(t))/∆t.

The noise in the recorded data is amplified due to differentiation. This effect is severe for

acceleration calculation. Moreover, calculated f (·) from equation 2.13 becomes highly non-

smooth which is undesirable for neural network training. To remedy, calculated velocities are

filtered with an ideal low pass filter with a bandwidth of 10Hz to allow smoother differenti-

ation. Position and acceleration are recalculated from the filtered velocity which are used to

calculate f (·) to be given to the neural network as target. However, to increase generalization,

non-filtered (i.e., noisy) positions and velocities are given to neural network as input.

The DMP formulation in equation 3.1 has K and D parameters which are determined empiri-

cally as K = 10 and D = 2
√

10 ≈ 6.32.

It is important to note again that number of neural networks trained is equal to the number of

actions. Since there are three actions, only three neural networks are trained. Inputs of the

neural networks change according to the object being acted upon.

5.3 Recognition Experiments

The emphasis of this thesis is on online recognition. This corresponds to making a correct

recognition decision before the action completes i.e., decision times should be low and the

success of the decisions should be high.

39

Figure 5.3: The time evolution of recognition signals. X-axis is time in seconds and Y-axis is
recognition signal magnitude.

In order to show that the recognition system works, 20 repetitions of each action on each

object, which result in a total of 120 recordings (40% of all recordings), are tested with the

recognition approach detailed in section 3.3. Specifically, trajectory of the recognition signals

of these recordings are calculated using the equation 3.3 and the decisions are made with

different Υ values. The success rate of decisions and the mean and variance of the decision

times are calculated. Moreover, the confusion matrix is constructed to show the mistakes that

the system makes.

The time evolution of recognition signals for nine different recordings are plotted in figure

5.3. In all plots, recognition signals start from the same initial value (1
6) and as the action

unfolds recognition signal of the corresponding action goes to one while suppressing others.

Although there may be a confusion in the beginning parts of an action (e.g. top right plot),

the system recognizes the action correctly as it unfolds.

There is a trade-off between the decision time and the success rate and both are directly

affected by the threshold value, Υ. Success rates and decision times for correct decisions are

calculated for different Υ values and are plotted in figure 5.4. Actions have varying durations

thus the decision times are not represented in time units but by the percentage of completion

of the corresponding action. The figure 5.4 shows the trade-off. As Υ increases both the

40

Figure 5.4: Recognition rate and decision time (percentage completed) vs. threshold value Υ.
Percentage completed is defined as decision time divided by action completion time.

success rate and mean decision time increase. At this point, the choice of Υ depends on the

application. For this thesis, Υ is chosen as 1.9 to obtain 90% recognition rate. On the average,

the system makes a decision when 33% of the observed action is completed with this Υ value.

Histogram of the decision times of all recordings for Υ = 1.9 are plotted in figure 5.5. This

shows the distribution of the correct and the wrong decisions in time. Note that most of the

decisions are made before the half of the action is completed.

Table 5.1 shows the confusion matrix for Υ = 1.9. Cases where the object acted upon is not

correctly decided is low: 25% of wrong decisions and 2.5% of all decisions. Since we want

to make recognition before the action is completed, there are confusions between reaching

right of the left object and reaching left of the right object (See figure 5.2(a)). Also, there is a

confusion between reaching directly and reaching from left for the left object. These should be

expected since human motion has noise and variance between repetitions and a demonstrator

may not give the initial curvature expected from the action every time (see figure 5.2(b)).

5.4 Interactive Game

Recognition system was tested with an interactive game on the aforementioned setup to

demonstrate its online capabilities. The interactive game is as follows: Actor applies one

41

Figure 5.5: Distribution of decision times (percentage completed) for Υ = 1.9

Table 5.1: Confusion matrix for Υ = 1.9 (Recognition rate = 90%)

Object LO RO
Object Behavior R D L R D L

LO
R 17 1 0 0 0 2
D 0 15 4 0 0 1
L 0 2 18 0 0 0

RO
R 0 0 0 18 1 1
D 0 0 0 0 20 0
A 0 0 0 0 0 20

42

of the actions to one of the objects. The robot raises its eyebrows and blinks when it recog-

nizes the action and reacts by turning his head to the predicted object. The robot then makes

a hand-coded counter action which is defined as bringing its hand on the opposite side of the

object. The reason for using hand-coded actions is that action generation is out of the scope

of this thesis. DMPs have already been shown to have good generation characteristics.

Snapshots from a captured video of the game can be seen in figure 5.6. This figure shows that

the action recognition method can be used for online interaction with robots.

In the interactive game, velocities are calculated in real time. Moreover, position and velocity

of the actor’s end-effector and positions of the objects are used to understand the beginning

and ending of the action as well as to determine whether the actor is ready to start his next

action.

For the generation mechanism K = 10, D = 2
√

10 ≈ 6.32 and for the recognition system

Υ = 1.9 is used.

43

Fi
gu

re
5.

6:
D

em
on

st
ra

tio
ns

w
ith

th
e

ro
bo

t:
E

ac
h

ro
w

sh
ow

s
a

di
ff

er
en

t
de

m
on

st
ra

tio
n.

T
he

fir
st

co
lu

m
n

sh
ow

s
th

e
st

ar
tin

g
po

in
t

of
th

e
ac

tio
ns

.
T

he
se

co
nd

co
lu

m
n

sh
ow

s
th

e
po

in
tw

he
re

th
e

sy
st

em
re

co
gn

iz
es

th
e

ac
tio

n
(i

nd
ic

at
ed

by
th

e
ey

e-
bl

in
k)

.T
he

th
ir

d
co

lu
m

n
is

th
e

po
in

tw
he

re
th

e
de

m
on

st
ra

to
r

fin
is

he
s

hi
s

ac
tio

n
an

d
th

e
la

st
co

lu
m

n
is

th
e

po
in

tw
he

re
th

e
ro

bo
tfi

ni
sh

es
hi

s
ac

tio
n.

44

CHAPTER 6

CONCLUSION

In this thesis, an online recognition approach is demonstrated which can recognize an ac-

tion before it is completed. The feasibility of the approach is shown with a real robot in an

interactive setting.

The approach uses an action generation mechanism at its core. The generation mechanism is

based on DMPs which are modified to overcome some of their shortcomings. They were made

entirely closed-loop. One drawback of the modifications is that the stability of the generation

mechanism is not proven mathematically.

The architecture allows for imitation learning which is necessary to ensure that the actor

and the observer have similar action generation mechanisms. If they do not have similar

mechanisms, then the system would not work.

The choice of variables, i.e., the hand-object relations, allow seamless integration of the gen-

eration system into the recognition architecture. This solves space of matching problem and

the correspondence problem to some extent.

Recognition signals are defined to have a quantitative way to measure similarity of actions.

These signals are robust against noise since cumulative error is used in their calculation.

They can be interpreted as likelihoods. Recognition signals are similar to mirror neuron

system responses, although more experiments need to be done to have a more rigorous claim.

The recognition signals are the solution to the matching criterion problem mentioned in the

introduction chapter.

One of the crucial but under-emphasized part of this thesis is that any action generation mech-

45

anism could be used as long as;

• It can take the defined hand-object relations as input.

• It guarantees that the actor and the observer have similar action generation models.

• It is not dependent on internal variables.

The performance and generalization capability of the action generation mechanism has a di-

rect impact on the recognition performance. Improving the action generation part would

increase the recognition performance. There are a few things that could be done. Using more

training data from a wider work space is a viable option. Different learning and function ap-

proximation algorithms for the learning part of DMPs could be tried. An immediate idea is to

use a recurrent neural network architecture instead of a feed-forward architecture. Although

DMPs have many appealing properties, any other online action generation mechanism could

be used. Trying different action generation mechanisms could be a future research direction.

A specialized motion capture system is used to track the objects and the actor’s end-effector.

This is not very suitable for mobile robotics both because of the limited space on a mobile

robot and cost of the system. Implementation of a vision based tracking system is more

beneficial for mobile robots.

Current definition of hand-object relations proved to be very useful for reaching actions. How-

ever, there are other possibilities that could be tried. In addition, other actions might require

other variables to be tracked. For example, grasping would also require to track individual

fingertips. Finding better hand-object relations is a possible future research direction. More-

over, discovering relations from training data would be a good approach for developmental

robotics.

46

REFERENCES

[1] E. Oztop, M. Kawato, and M. Arbib, “Mirror neurons and imitation: A computationally

guided review,” Neural Networks, vol. 19, pp. 254–271, 2006.

[2] J. Demiris and G. Hayes, “Imitation as a dual-route process featuring predictive and

learning components; a biologically-plausible computational model,” in Dautenhahn,

K. and Nehaniv, C., Imitation in animals and artifacts, MIT Press, 2002.

[3] G. Rizzolatti, L. Fadiga, V. Gallese, and L. Fogassi, “Premotor cortex and the recogni-

tion of motor actions,” Cognitive brain research, vol. 3, pp. 131–141, 1996.

[4] V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, “Action recognition in the premotor

cortex,” Brain, vol. 119, no. 2, pp. 593–609, 1996.

[5] G. Buccino, F. Binkofski, G. Fink, and L. Fadiga, “Action observation activates premo-

tor and parietal areas in a somatotopic manner: an fMRI study,” European Journal of

Neuroscience, vol. 13, pp. 400–4, 2001.

[6] G. Buccino, F. Binkofski, and L. Riggio, “The mirror neuron system and action recog-

nition,” Brain and Language, vol. 89, pp. 370–376, 2004.

[7] EU FP7 Project ROSSI, http://www.rossiproject.eu. Last Visited 22.07.2010.

[8] V. Krüger, D. Kragic, A. Ude, and C. Geib, “The meaning of action: A review on action

recognition and mapping,” Advanced Robotics, vol. 21, no. 13, pp. 1473–1501, 2007.

[9] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learning object affor-

dances: From sensory–motor coordination to imitation,” Robotics, IEEE Transactions

on [see also Robotics and Automation, IEEE Transactions on], vol. 24, no. 1, pp. 15–26,

2008.

[10] C. Nehaniv and K. Dautenhahn, “The Correspondence Problem,” in Dautenhahn, K. and

Nehaniv, C., Imitation in animals and artifacts, p. 41, The MIT Press, 2002.

47

[11] M. Iacoboni, R. Woods, M. Brass, and H. Bekkering, “Cortical mechanisms of human

imitation,” Science, vol. 286, no. 5449, pp. 2526–2528, 1999.

[12] G. Buccino, S. Vogt, A. Ritzl, G. Fink, and K. Zilles, “Neural Circuits Underlying

Imitation Learning of Hand Actions An Event-Related fMRI Study,” Neuron, vol. 42,

pp. 323–334, 2004.

[13] M. A. Arbib, “From monkey-like action recognition to human language: An evolution-

ary framework for neurolinguistics,” Behavioral and Brain Sciences, vol. 28, pp. 105–

124, April 2005. discussion pages: 125-167.

[14] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to motor learning

by imitation,” Philosophical Transactions: Biological Sciences, vol. 358, pp. 537–547,

2003.

[15] D. Wolpert and M. Kawato, “Multiple paired forward and inverse models for motor

control,” Neural Networks, vol. 11, pp. 1317–1329, 1998.

[16] M. Haruno, D. M. Wolpert, and M. M. Kawato, “Mosaic model for sensorimotor learn-

ing and control,” Neural Computation, vol. 13, no. 10, pp. 2201–2220, 2001.

[17] K. Doya, K. Katagiri, D. M. Wolpert, and M. Kawato, “Recognition and imitation of

movement patterns by a multiple predictor–controller architecture,” Technical Report

IEICE, pp. 33–40, 2000.

[18] Y. Demiris and M. Johnson, “Distributed, predictive perception of actions: a biologically

inspired robotics architecture for imitation and learning,” Connection Science, vol. 15,

pp. 231–243, December 2003.

[19] Y. Demiris and B. Khadhouri, “Hierarchical attentive multiple models for execution and

recognition of actions,” Robotics and Autonomous Systems, vol. 54, pp. 361–369, 2006.

[20] Y. Demiris and G. Simmons, “Perceiving the unusual: Temporal properties of hierarchi-

cal motor representations for action perception.,” Neural Networks, vol. 19, pp. 272–284,

2006.

[21] M. C. Harris and D. M. Wolpert, “Signal-dependent Noise Determines Motor Planning,”

Nature, vol. 394, no. August, pp. 780–784, 1998.

48

[22] E. Oztop, D. Wolpert, and M. Kawato, “Mental state inference using visual control

parameters,” Cognitive Brain Research, vol. 22, pp. 129–151, 2005.

[23] J. Tani, “Learning to generate articulated behavior through the bottom-up and the top-

down interaction processes,” Neural Networks, vol. 16, pp. 11–23, 2003.

[24] J. Tani and M. Ito, “Self-organization of behavioral primitives as multiple attractor dy-

namics: A robot experiment,” IEEE Transactions on Systems, Man, and Cybernetics -

Part A: Systems and Humans, vol. 33, pp. 481–488, 2003.

[25] J. Tani, M. Ito, and Y. Sugita, “Self-organization of distributedly represented multiple

behavior schemata in a mirror system : reviews of robot experiments using RNNPB,”

Neural Networks, vol. 17, pp. 1273–1289, 2004.

[26] E. Oztop and M. A. Arbib, “Schema design and implementation of the grasp-related

mirror neuron system,” Biological Cybernetics, vol. 87, pp. 116–140, 2002.

[27] J. Bonaiuto, E. Rosta, and M. Arbib, “Extending the mirror neuron system model, I.

Audible actions and invisible grasps.,” Biological cybernetics, vol. 96, pp. 9–38, 2007.

[28] A. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation for imitation with non-

linear dynamical systems,” Proceedings 2001 IEEE/RSJ International Conference on

Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next

Millennium (Cat. No.01CH37180), pp. 752–757, 2001.

[29] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning movement primitives,” in

International Symposium on Robotics Research, Springer, 2003.

[30] H. Hoffman, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-inspired dynamical sys-

tems for movement generation: Automatic real-time goal adaptation and obstacle avoid-

ance,” in 2009 IEEE International Conference on Robotics and Automation, pp. 2587–

2592, May. 2009.

[31] A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with nonlinear dynamical

systems in humanoid robots,” in Proceedings 2002 IEEE International Conference on

Robotics and Automation, pp. 1398–1403, IEEE, 2002.

[32] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes for learning

49

motor primitives,” in Advances in Neural Information Processing Systems (S. Becker,

S. Thrun, and K. Obermayer, eds.), vol. 15, pp. 1547–1554, MIT-Press, 2003.

[33] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-inspired dynami-

cal systems for movement generation: Automatic real-time goal adaptation and ob-

stacle avoidance,” 2009 IEEE International Conference on Robotics and Automation,

pp. 2587–2592, May 2009.

[34] M. Hagan and M. Menhaj, “Training feedforward networks with the Marquardt algo-

rithm,” IEEE transactions on Neural Networks, vol. 5, no. 6, pp. 989–993, 1994.

[35] G. Sandini, G. Metta, and D. Vernon, “The icub cognitive humanoid robot: An open-

system research platform for enactive cognition,” in 50 Years of Artificial Intelligence,

pp. 358–369, Springer Berlin / Heidelberg, 2007.

[36] EU FP7 Project RobotCub, http://www.robotcub.org. Last visited 22.07.2010.

[37] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: Yet another robot platform,” International

Journal on Advanced on Advanced Robotics Systems 3, pp. 43–48, 2006.

[38] YARP, http://eris.liralab.it/yarpdoc/what is yarp.html. Last Visited 22.07.2010.

[39] Official iCub Portal, http://www.icub.org. Last Visited 22.07.2010.

[40] VisualEyezTMSpecifications, http://www.ptiphoenix.com/VZ- models.php. Last Visited

22.07.2010.

50

