
AN APPROACH FOR GENERATING
NATURAL LANGUAGE SPECIFICATIONS

BY UTILIZING BUSINESS PROCESS MODELS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

AHMET COŞKUNÇAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
THE DEPARTMENT OF INFORMATION SYSTEMS

AUGUST 2010

Approval of the Graduate School of Informatics

 Prof. Dr. Nazife BAYKAL

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Assist. Prof. Dr. Tuğba TAŞKAYA TEMİZEL

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Onur DEMİRÖRS

 Supervisor

Examining Committee Members

Prof. Dr. Semih BİLGEN (METU, EEE)

Assoc. Prof. Dr. Onur DEMİRÖRS (METU, II)

Assist. Prof. Dr. Aysu BETİN CAN (METU, II)

Assist. Prof. Dr. Altan KOÇYİĞİT (METU, II)

Dr. Ayça TARHAN (HACETTEPE Ü., BİL)

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name and Surname : Ahmet COŞKUNÇAY

Signature :

iv

ABSTRACT

AN APPROACH FOR GENERATING
NATURAL LANGUAGE SPECIFICATIONS

BY UTILIZING BUSINESS PROCESS MODELS

COŞKUNÇAY, Ahmet

M.Sc., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Onur DEMİRÖRS

August 2010, 82 pages

Business process modeling is utilized by organizations for defining and

reengineering their business processes. On the other hand, software requirements

analysis activities are performed for determining the system boundaries, specifying

software requirements using system requirements and resolving conflicts between

requirements. From this point of view, these two activities are considered in different

disciplines. An organization requiring its business processes to be defined and

supported with information systems would benefit from performing business process

modeling and requirements analysis concurrently.

In this study, an approach enabling concurrent execution of business process

modeling and requirements analysis is developed. The approach includes two

business process modeling notations adapted to the research needs, a process

defining the steps for implementing the approach and the requirements generation

tool that generates natural language specification documents by using business

process models. Within this study, two case studies are introduced; one describing

v

the development of the approach and the other exploring if the total efficiency of

performing business process modeling and requirements analysis activites would be

increased by using the approach.

Keywords: Business Process Model, Natural Language Specification, Function

Allocation Diagram, EPC, Automated Requirements Generation.

vi

ÖZ

İŞ SÜRECİ MODELLERİNİ KULLANARAK
DOĞAL DİLDE BELİRTİM ÜRETME İÇİN

BİR YAKLAŞIM

COŞKUNÇAY, Ahmet

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Onur DEMİRÖRS

Ağustos 2010, 82 sayfa

İş süreci modelleme organizasyonlar tarafından iş süreçlerinin tanımlanması ve

yeniden yapılandırılması için kullanılmaktadır. Diğer taraftan, yazılım gereksinim

analizi aktiviteleri sistem sınırlarının belirlenmesi, sistem gereksinimlerini

kullanılarak yazılım gereksinimlerinin belirlenmesi ve gereksinimler arasındaki

ihtilafların çözümlenmesi için gerçekleştirilir. Bu bakış açısıyla, bu iki aktivitenin

farklı disiplinlerde yer aldığı sayılmaktadır. İş süreçlerinin tanımlanmasına ve bilgi

sistemleri ile desteklenmesine ihtiyaç duyan bir organizasyon iş süreçi modelleme ve

gereksinim analizinin eşzamanlı gerçekleştirilmesinden fayda sağlayabilir.

Bu çalışmada, iş süreci modelleme ve gereksinim analizinin eşzamanlı yürütülmesine

olanak sağlayan bir yaklaşım geliştirilmiştir. Yaklaşım araştırma ihtiyaçlarına

uyarlanan iki iş süreci modelleme gösterimi, yaklaşımın uygulaması için basamakları

tanımlayan süreci ve iş süreci modellerinden doğal dilde belirtim dokümanları üreten

gereksinim üretme aracını içermektedir. Bu çalışma içinde, biri yaklaşımın

geliştirilmesini betimleyen ve diğeri yaklaşımı kullanarak iş süreci modelleme ve

vii

gereksinim analizi aktivitelerinin uygulanmasındaki toplam verimliliğin arttırılıp

arttırılamayacağını inceleyen iki vaka çalışması uygulanmıştır.

Anahtar Kelimeler: İş Süreci Modeli, Doğal Dilde Belirtim, Fonksiyon Dağıtım

Diyagramı, EPC, Otomatik Gereksinim Üretme.

viii

To my family...

ix

ACKNOWLEDGMENTS

I would like to offer my sincere thanks and appreciation to my advisor Assoc. Prof.

Dr. Onur DEMİRÖRS for his guidance, support and patience during my thesis study.

I am grateful to my mother Hafize COŞKUNÇAY, my father Hasan COŞKUNÇAY,

my grandmother Mürvet COŞKUNÇAY, my aunts Aysel COŞKUNÇAY and Ayfer

KORKUTLU and my sister Merve COŞKUNÇAY for their emotional support and

encouragement during my school life, especially during my thesis study.

I am forever grateful to Duygu FINDIK, since she always made me calm and

peaceful when I was stressful. Thanks for her patience while I was preparing this

study.

I would like to offer my sincere thanks to Banu AYSOLMAZ and Barış ÖZKAN for

their invaluable contribution and support throughout my thesis study.

I am also greatful to my friends Ali YILDIZ, Burak OĞUZ, Mahir KAYA and Bilgin

AVENOĞLU for their positive touch on my study.

I would like to thank the members of Turkish State Planning Organization for their

contribution throughout the research.

x

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... vi

ACKNOWLEDGMENTS .. ix

TABLE OF CONTENTS ... x

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS AND ACRONYMS .. xvi

CHAPTER

1 INTRODUCTION .. 1

1.1 Problem Statement and Motivation ... 1

1.2 Research Approach .. 3

1.3 Organization of the Study .. 4

2 BACKGROUND and RELATED RESEARCH ... 5

2.1 Software Requirements ... 5

2.1.1 Natural Language Specifications ... 6

2.2 Business Process Modeling ... 8

2.2.1 Extended Event-driven Process Chain ... 9

2.2.2 Function Allocation Diagram ... 11

2.3 Deriving Software Requirements from Business Process Models 12

2.3.1 Approach of Cox et al. (2005).. 13

xi

2.3.2 Approach of Stolfa & Vondrak (2004) .. 15

2.3.3 Approach of Specht et al. (2005) ... 17

2.3.4 Approach of Su (2004) ... 18

3 PROCEDO: REQUIREMENTS GENERATION APPROACH 21

3.1 Utilization of Business Process Models .. 21

3.2 A Unified Process: Bridging the Gap between Business Process Modeling

and Requirements Analysis .. 27

3.3 Automated Generation of Natural Language Specifications 33

3.3.1 Natural Language Specification Sentence Structure 33

3.3.2 Software Specification Document Structure .. 37

3.3.3 Requirements Generation Tool .. 38

4 CASE STUDIES ... 44

4.1 Case Study Design ... 45

4.1.1 Case Selection Criteria ... 45

4.1.2 Background .. 46

4.2 Case Study 1 .. 47

4.2.1 Case Study Plan ... 47

4.2.2 Case Study Implementation ... 48

4.2.3 Results .. 52

4.2.4 Threats to Validity.. 53

4.3 Case Study 2 .. 53

4.3.1 Case Study Plan ... 54

4.3.2 Case Study Implementation ... 54

4.3.3 Results .. 56

xii

4.3.4 Threats to Validity.. 58

5 CONCLUSIONS ... 60

5.1 Summary ... 60

5.2 Contributions ... 63

5.3 Future Study .. 64

REFERENCES ... 66

APPENDICES ... 72

A: A sample business process model developed in the case study 72

B: Manually written requirements for a selected business process............................ 74

C: Function Allocation Diagrams for a selected process ... 76

D: Natural language specifications generated by tool support for a selected business

process .. 79

E: User manual for the requirements generation tool .. 81

xiii

LIST OF TABLES

Table 1: Comparison of the mainstream approaches in the literature 20

Table 2: eEPC model element representations in Procedo .. 22

Table 3: Object representations in FAD notation .. 25

Table 4: Connection representations between function and entity type objects in

FADs .. 27

Table 5: Transition from connection types to sentence structure 35

xiv

LIST OF FIGURES

Figure 1: An example function allocation diagram (Davis & Brabander 2007) 12

Figure 2: An example RAD (Cox et al. 2005) ... 14

Figure 3: An example Jackson context diagram derived from RAD (Cox et al. 2005)

 .. 15

Figure 4: Sequential pattern (Stolfa & Vondrak 2004) .. 15

Figure 5: Optional pattern (Stolfa & Vondrak 2004) ... 16

Figure 6: Branching pattern (Stolfa & Vondrak 2004) .. 16

Figure 7: An example eFAD (Specht et al. 2005) .. 17

Figure 8: An example eEPC model used for requirements geneation by KAOS tool

(Su 2004) .. 19

Figure 9: Process for bridging the gap between business process modeling and

requirements analysis ... 28

Figure 10: Flowchart for requirements generation tool ... 38

Figure 11: eEPC model of “Nihai Ödeme” process ... 72

Figure 12: Function Allocation Diagram for “proje toplam uygun maliyetlerinin

belirlenmesi” function in “Nihai Ödeme” process ... 76

Figure 13: Function Allocation Diagram for “yararlanıcıya yapılacak toplam ödeme

miktarının eş finansman gerçekleşme oranına göre indirilmesi” function in “Nihai

Ödeme” process ... 76

Figure 14: Function Allocation Diagram for “nihai ödemenin tespiti” function in

“Nihai Ödeme” process .. 77

Figure 15: Function Allocation Diagram for “nihai ödeme miktarının onaylanması”

function in “Nihai Ödeme” process ... 77

xv

Figure 16: Function Allocation Diagram for “kalan eksi değerin Ajans hesabına iade

edilmesi için yazı gönderilmesi” function in “Nihai Ödeme” process 78

Figure 17: Function Allocation Diagram for “nihai ödeme miktarının sözleşmede

belirtilen hesap numarasına transfer talimatı ile iletilmesi” function in “Nihai

Ödeme” process ... 78

Figure 18: Function Allocation Diagram for “yararlanıcıdan geri ödeme ve ilgili

bilgilerin tahsil edilmesi” function in “Nihai Ödeme” process 78

Figure 19: User manual for the requirements generation tool – Steps 1 and 2 81

Figure 20: User manual for the requirements generation tool – Steps 3, 4 and 5 81

Figure 21: User manual for the requirements generation tool – Steps 6, 7, 8 and 9 .. 82

xvi

LIST OF ABBREVIATIONS AND ACRONYMS

ARIS : Architecture of Integrated Information Systems

BPEL : Business Process Execution Language

BPMN : Business Process Modeling Notation

CRUDL : Create, Read, Update, Delete and List

eEPC : Extended Event-driven Process Chain

eFAD : Extended Function Allocation Diagram

EPC : Event-driven Process Chain

FAD : Function Allocation Diagram

MKII : Mark 2

RAD : Role Activity Diagram

1

CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Motivation

Business process modeling is utilized to analyze, define and improve business

processes of organizations. It has become a common tool for business process

reengineering during the last few decades. Business process modeling is most critical

in situations where the environment is complex, multi-dimensional and many people

are directly involved in using the system (Recker et al. 2009, Yourdon 2000). This is

also the situation in enterprises that need information systems to automate their

business processes. Organizations need to perform requirements analysis to develop

software systems that correspond to their needs. SWEBOK (Abran et al. 2004)

defines requirements analysis as a step within requirements engineering activities

that focuses on determining the bounds of the software and its interactions with the

environment, specifying software requirements using system requirements and

detecting and resolving conflicts between requirements.

Both business process modeling and requirements analysis are critical activities for

the success of organizations. Requirements analysis is positioned in early stages of

information systems development projects. Avoiding poor software specifications is

a crucial motivation for lowering costs, as total costs would increase exponentially in

relation to the number of errors detected in later stages of development life cycle

(Westland 2002). Business process modeling, especially for complex organizations,

2

increases efficiency in determining deficiencies in current business processes

(Tarhan et al. 2007).

For many cases, the need for business process modeling and requirements analysis

emerges concurrently or consecutively. This need has become more significant as the

focus of information technology has shifted from data-driven approaches to process-

driven approaches (van der Aalst et al. 2003). Especially, newly-founded

organizations using business process modeling to define their business processes or

existing organizations conducting business process reengineering consider

developing software to improve their process efficiency, which results in the need for

requirements analysis for those systems. In conventional approaches business

process modeling is not considered as core for requirements analysis, but as

supporting the phase where it is important for making it certain that people from

different backgrounds in both customer and supplier sides reach an agreement on

business processes (Dehnert & Rittgen 2001). Business process modeling notations

and tools lack supporting an integrated approach for software requirements activities

that would complement these considerations.

In a generic waterfall development model, requirements engineering takes about 16%

of total development effort (Yang et al. 2008). Enterprises spend high amounts of

effort in describing their procedures and interactions in terms of business process

models with the aim of describing and standardizing their processes (Roser & Bauer

2005). In a study where software acquisition is planned for systems supporting

business processes, approximately 13 person-months of business process modeling

effort is spent on system of 10.000 MKII Function Points, and 20 person-months for

25.000 MKII Function Points (Tarhan et al. 2007). In software development projects,

much of the effort spent on business process modeling is duplicated for requirements

analysis activities, while additional effort is needed for keeping models and

requirements synchronized.

In this study, it is hypothesized that unifying business process modeling and

requirements analysis activities and automatically generating requirements

specifications from business process models can create an opportunity to decrease

the total effort of business process modeling and requirements analysis, and also to

3

create a one-way synchronization from business processes to requirements artifacts

and synchronize the activities to develop them. Such a unified approach would also

bring other benefits like providing a better communication environment between

customers and developers, ensuring that process owners and software engineers are

on the same terms, allowing process knowledge to be used within the requirements

phase (Cox et al. 2005), revealing relations between process models and

requirements, exposing IS integration points within business process models and in

these ways, improving completeness and traceability of requirements (Nicolas &

Toval 2009).

1.2 Research Approach

With the aim of developing a unified approach to perform business process modeling

and software requirements analysis activities concurrently, we conducted a case

study. The case study is conducted in a governmental organization. It provided a

means to develop the approach. Within the case study, business process modeling

notation was characterized based on extended Event-driven Process Chain and

Function Allocation Diagram notations in the way that business process modeling

and software requirements analysis activities could be conducted concurrently. A

process that utilizes the developed modeling notation was structured to generate

software requirements based on business processes. Finally, a requirements

generation tool was developed to generate natural language software specifications

from the business process models. Implementation of the case study is documented

as an approach that contains modeling notation, process and tool support for unifying

business process modeling and requirements analysis activities. The documented

approach would guide the early phases of a process-driven information systems

development project. After the approach was developed via the case study, another

case study was performed where the approach was utilized to explore whether the

total effort required for requirements analysis and business process modeling

activities could be decreased or not.

4

1.3 Organization of the Study

Chapter 2 presents the background for business process modeling and software

requirements and related research for deriving software requirements from business

process models.

Chapter 3 describes utilization of business process models, the unified process

definition and automated generation of natural language specifications in Procedo

approach.

Chapter 4 introduces the two case studies conducted in a governmental organization.

Case study 1 is performed for developing Procedo and case study 2 is performed for

exploring the benefits of utilization of Procedo.

In Chapter 5, the finding and contributions of the study are discussed and directions

for future studies are suggested.

5

CHAPTER 2

BACKGROUND and RELATED RESEARCH

This chapter is composed of three sections. In the first section, background

information and definitions are given for software requirements and natural language

specifications. Second section includes background information on business process

modeling and two business process modeling languages that are used in this study

are described. Third section contains a literature review of transformation approaches

in software engineering and focuses on four mainstream studies in the literature that

demonstrate approaches for deriving software requirements from business process

models.

2.1 Software Requirements

In this study, the focus is on requirements analysis activities. IEEE std. 610.12-1990

(1990) defines requirements analysis as a process for defining system, hardware or

software requirements by studying the user needs.

Berenbach et al. (2009) differentiates requirements analysis inside requirements

engineering by stating that;

“Whereas requirements analysis deals with the elicitation and examination

of requirements, requirements engineering deals with all phases of a project

or product life cycle from innovation to obsolescence.”

Some of the most established requirements specification styles are natural language

specifications, use case models, use case specifications, formal software

6

specifications and data flow diagrams. Natural language specifications are the major

concern in this study among these and will be described in detail in this chapter.

Use case models are one of the most widely used techniques in requirements

engineering (Jacobson 2004). In use case models, there are use cases that represent

the functionalities supplied to external actors by the system and the external actors

that represent the users and external systems that use the system (Jacobson & Ng

2004).

Use case specifications describe the scenarios that consist of a path of actions. The

path of actions includes external actors, sequence of actions, constraints for actions

and definition of actions that include inputs to the system (Achour et al. 1999).

Formal software specifications are formal language expressions of properties the

system should satisfy (van Lamsweerde 2000). The Z notation, which is a formal

specification notation, contains static aspects that include states and invariant

relationships and dynamic aspects that include operations, relationships between

operations’ inputs and outputs and changes of states (Spivey 1990).

Data flow diagrams, on the other hand, defines logical data flow in a pictorial

representation and includes external entities, processes, data stores and the data flow

between them (Schach 1995).

2.1.1 Natural Language Specifications

Natural language specifications are used to define software requirements in non-

formal sentence structures. Although there are different practices of natural language

sentences; in general, they include verbs that represent actions and nouns that

represent actors, target objects and input-output parameters (Saeki et al. 1989).

Natural language specifications are probably the most practiced type of requirements

specification styles in industry. Kamsties (2005) agrees with this by stating that the

natural language is the most frequently used representation in stating requirements

and diagrams, semi-formal and formal representations are used for supporting the

natural language specifications.

7

Natural language specifications have both advantages and disadvantages when

compared with other styles. They are the most appropriate means of communication

between the customers and suppliers, however they might also be ambiguous and

software engineers might find them inadequate for describing the system

(Athanasakis 2006).

och Dag & Gervasi (2005) provides explanations for why natural language

specifications are utilized for requirements specifications;

• All stakeholders in development process share natural language as the

primary communication language.

• By means of natural language, arbitrary domains and arbitrary levels of

abstraction can be stated.

• There is not much motivation for formalizing the requirements, since not all

are expected to be implemented.

• Management and analysis of erroneous, incomplete or partially specified

requirements, which take a large part in the requirements phase, are adapted

naturally by natural language specifications.

• Although formal language is advantageous in verifying the requirements by

checking the internal consistency and completeness of requirements, they

lack in capturing the external properties of requirements such as relating the

requirements with actual user intentions.

As mentioned before, natural language specifications have some disadvantages.

Wiegers (2005) describes some of the shortcomings of natural language

specifications as;

• Natural language specifications bring ambiguity that creates risks to the

quality of the requirements.

• Natural language would result in bulky and verbose specifications.

8

• A low level of abstraction would be led by detailed natural language

statements.

2.2 Business Process Modeling

A process is a set of actions that are performed within a time interval with the aim of

achieving or progressing to some objective (Havey 2005).

Workflow Management Coalition (1999) defines business process as a set of

procedures and activities that are connected and realize a business objective or policy

goal, where functional roles and relationships defined by an organizational structure

describes the context.

Dehnert & Rittgen (2001) states that business processes are at the core of

reorganization of a company and design or redesign of the corresponding application

systems.

Business process modeling has a central role in business process management

domain. According to van der Aalst et al. (2003), business process management aims

to design, enact, control and analyze operational processes, which involve people,

organizations, applications, documents and other information, by supporting business

processes with methods, techniques and software.

Minoli (2008) defines the purpose of business process modeling as to seek

standardization in business process management where the related business processes

might include several applications, data repositories, corporate departments or even

companies.

Stolfa & Vondrak (2004) states the main purpose of business process modeling as

managing and stimulating processes.

Conceptual business process modeling languages might contain different

perspectives. According to List & Korherr (2006), there are five perspectives that are

contained in the conceptual business process modeling languages;

• “Functional perspective represents the activities that are performed.”

9

• “Organizational perspective represents the agents that perform the

activities.“

• “Behavioral perspective represents sequencing, loops, iterations,

decision making conditions, entry and exit criteria within business

processes.”

• “Informational perspective represents the informational elements that

are input to or output from business processes.”

• “Business process context perspective represents an overview of the

process containing goals and their measures, deliverables, process

owners, process types and customers.”

Some of the business process modeling languages that are most referred in research

are Event-driven Process Chain (EPC), Business Process Modeling Notation

(BPMN), Role Activity Diagram (RAD) and Petri Nets. All of these notations

represent functional and behavioral perspectives, all except Petri Nets represent

organizational perspective, BPMN and EPC represent informational perspective

while none of them represents business process context perspective (List & Korherr

2006).

In this study, the focus is on extended EPC (eEPC) models and the Function

Allocation Diagrams that are represented hierarchically under eEPC models in ARIS

methodology (Davis & Brabänder 2007). Descriptions of these two business process

modeling notations in the literature are provided in the rest of this section.

2.2.1 Extended Event-driven Process Chain

Event-driven process chain (EPC) is a business process modeling notation that

became popular in 1990s and used to define logical and temporal dependencies

between activities that are performed in business processes (Scheer & Schneider

2006, Mendling 2008). Extended EPC (eEPC) notation is based on activity flow

combining static resources of business, such as organizations, systems, rules, input

and outputs (Davis & Brabander 2007). eEPC is regarded as a business process

10

modeling notation that does not require much modeling expertise by describing the

business processes with business logic instead of formal process specification logic

(van der Aalst 1999). The model elements in lean EPC models are functions, events

and logical operators.

Functions are the activities that add value to the process and the events are the states

that result from the changes in the world the process is operated in (Davis &

Brabander 2007). According to Davis & Brabander (2007), each function should be

initiated and resulted by at least one event. The events and functions are the main

building blocks of the modeling notation that are used for designating the activity

flow in lean EPC notation.

“Events and functions have exactly one incoming and one outgoing arc except start

and end events” (Dehnert & Rittgen 2001). Therefore, logical operators are used to

define logical separations and connections in the business process flows. By using

logical connectors connecting functions and events, flow of control is defined

(van der Aalst 1999). There are three types of logical connectors in EPC modeling

notation. Davis & Brabander (2007) defines these logical connectors as;

AND (˄) rule;

• “Following a function, process flow splits into two or more parallel

paths.”

• “Preceding a function, all events must occur in order to trigger the

following function.”

OR (V) rule;

• “Following a function, one or many possible paths will be followed as a

result of the decision.”

• “Preceding a function, any one event, or combination of events, will

trigger the function.”

XOR (X) rule;

11

• “Following a function, one, but only one, of the possible paths will be

followed.”

• “Preceding a function, one, but only one, of the possible events will be

the trigger.”

Functions, events and logical connectors are common in all representations of eEPC

models. In eEPC models, the set of model elements used might differ based on

modeling purpose and business domain.

2.2.2 Function Allocation Diagram

Specht et al. (2005) states that;

“In order to avoid overloading EPCs with details about involved roles and

application software systems, details of a function and its context can be

shifted to Function Allocation Diagrams (FADs). However, FADs do not

introduce any additional modeling artifacts in comparison to EPCs.”

Davis & Brabander (2007) agrees with this statement and adds that by drilling down

into EPCs, additional information and relationships about a function would be visible

in FADs. The advantage of using FADs for this purpose is that EPCs would keep

their focus on the process flow without being overloaded with the information related

to functions.

There is not any study in the literature that establishes a standard notation for FADs.

The FAD notation is structured with personal preferences most of the time. Davis &

Brabander (2007) comments in this issue by providing some guidelines for FAD

notation and states that the FADs have the same objects that are available for EPCs,

except the logical connectors and events, since there is no process flow

representation in FADs. Davis & Brabander (2007) presents an example FAD that is

provided in Figure 1.

12

Figure 1: An example function allocation diagram (Davis & Brabander 2007)

2.3 Deriving Software Requirements from Business Process Models

Transformation between software engineering artifacts is a popular research area in

the last decade. There are some studies in the literature that introduce transformation

to or from requirements engineering artifacts.

Cabral & Sampaio (2008) presents tool support for generating formal specifications

in CSP process algebra from user and component view use case written in Controlled

Natural Language (CNL). Santander & Castro (2002) describes heuristics to derive

use case models from strategic rationale models. Meziane et al. (2008) establishes

backward verification from design to requirements by generating natural language

specifications from three fundamental types of relationships; associations,

aggregations and generalizations in UML class diagrams. Estrada et al. (2003)

presents transition from Goal Refinement Trees to Strategic Dependency models and

from Strategic Dependency models to Strategic Rationale models. In Strategic

Rationale models analysts select the tasks to be automated that will be included in

requirements specifications. In Lee & Bryant (2002), an application is developed to

enable transition from natural language specification Two-Level Grammar (TLG) to

formal specification in Vienna Development Method meta-language (VDM++).

Maiden et al. (1998) presents the CREWS-SAVRE tool that utilizes an algorithm to

13

generate user scenarios by utilizing action-link rules between actions in use cases.

Danlos et al. (2000) introduces the tool prototype named Flaubert that takes event

graphs as input and produces natural language specifications in French as output. In

Jungmayr & Stumpe (1998), extended usage models are used in generating user

documentation and tests cases with tool support.

In terms of software development life cycle, some of these studies aim to go one or

more steps forward, some generate materials to ensure backward traceability and

verification and some aim to derive supporting documentation.

The focus of our study is on deriving software requirements from business process

models. Four mainstream studies in this research area are summarized below.

2.3.1 Approach of Cox et al. (2005)

In Cox et al. (2005), an approach is introduced to derive software requirements from

business process models. Role Activity Diagram (RAD) notation is used to define

business processes and a set of steps for mapping from RADs to Jackson's problem

frames is introduced. These steps as quoted from Cox et al. (2005) are;

• “Explore the problem context.”

• “Produce (or revisit) process model (as role activity diagrams).”

• “Identify outcomes of interactions.”

• “Identify domains from outcomes.”

• “Identify potential rules that govern interactions.”

• “Identify problem frames.”

Examples of RAD and Jackson context diagram in the study are provided in Figures

2 and 3 respectively.

14

Figure 2: An example RAD (Cox et al. 2005)

Approach of Cox et al. (2005) is an illustration of a systematic methodology for

deriving requirements engineering artifacts by using business process models.

Automated generation is not supported in this study.

15

Figure 3: An example Jackson context diagram derived from RAD (Cox et al.

2005)

2.3.2 Approach of Stolfa & Vondrak (2004)

Stolfa & Vondrak (2004) describe business process models as a tool for deriving

software requirements. The study presents mapping from activity diagrams to use

case models. There types of mapping patterns are defined that are sequential,

optional and branching patterns as provided in Figures 4, 5 and 6 respectively.

Figure 4: Sequential pattern (Stolfa & Vondrak 2004)

16

Figure 5: Optional pattern (Stolfa & Vondrak 2004)

Figure 6: Branching pattern (Stolfa & Vondrak 2004)

The mapping activities consist of three phases. The first phase of the mapping is to

decide which activities in the activity diagrams will be supported by information

systems and which will be performed manually. Next phase is to determine the

activities that will be included in each use case. The use cases might be composed of

one or many activities that are represented in activity diagrams. Finally, in order to

derive the relationships in use case models from activity diagrams, the three types of

mapping patterns are utilized.

17

Automation tool for the transformation in this study is reported to be currently being

developed.

2.3.3 Approach of Specht et al. (2005)

Specht et al. (2005) presents a methodology to model business processes and

transform them to Business Process Execution Language (BPEL). For modeling

business processes EPC models and function allocation diagrams are used. Since

EPC models do not include details about flow of activities and operations behind

each function that are necessary for transformation to BPEL, function allocation

diagrams are used and characterized with flow of user interaction activities, data

entities and application systems and their operations. The function allocation

diagrams that are referred as extended function allocation diagram (eFAD) contain

all the operations with inputs and outputs on the application systems. An example

eFAD is provided in Figure 7.

Figure 7: An example eFAD (Specht et al. 2005)

The methodology does not introduce a full transformation to BPEL that EPC models

and eFADs lack some technical details that are required for BPEL. So, Specht et al.

(2005) provides a methodology for transformation from business process models to a

BPEL skeleton. An example BPEL skeleton derived in the study is provided below.

18

Although Specht et al. (2005) claims that the transformation from EPC models and

eFADs to BPEL skeleton is suitable for automatic generation, the transformation in

the study is reported to be done manually. The approach is a rare example for

utilizing function allocation diagrams in separating software requirements related

information from business process models.

2.3.4 Approach of Su (2004)

Su (2004) presents the KAOS tool that automatically generates requirements in

natural language from business process models. KAOS tool is a plug-in for the ARIS

toolset. KAOS tool utilizes business process models which are in the form of eEPC

models. The eEPC models used are the TO-BE representations of the business

processes. The TO-BE representations of the business process models in the study

are the definitions of the business processes resulted from the business process

reengineering activities. These representations define the business processes which

include functions that are supported by information systems without any exceptions.

<scope name="readOrderDataFromForm">
<variables>

<variable name="archiveReferenceMessage"
messageType="tns:ReadOrderDataRequestMessage"/>
<variable name="orderData"

element="datatypes:orderData"/>
<variable name="orderDataMessage"

messageType="tns:collectOrderDataRequestMessage"/>
</variables>
<sequence>

<assign name="assignArchiveReference">…</assign>
<invoke name="readOrderDataFromReceipt"

partnerLink="ReceiptReader"
portType="tns:ReceiptReader"

operation="readOrderData"
inputVariable="archiveReferenceMessage"

outputVariable="orderDataMessage"/>
<invoke name="collectOrderData" partnerLink="ERP-System"

operation="collectOrderData"
portType="tns:ERPSystem"

inputVariable="orderDataMessage"/>
</sequence>

</scope>

19

eEPC notation is modified by defining color codes to information carriers and

introducing a naming convention for functions. An example business process model

is provided in Figure 8.

Figure 8: An example eEPC model used for requirements geneation by KAOS

tool (Su 2004)

Natural language requirements sentences generated by KAOS tool using the eEPC

model in Figure 8 are provided below.

20

“Evrak yönetim sisteminde, Ögrenci kabul listesi ve Hoca Listesi

kullanilarak Bölüm sekreteri tarafindan, kullanici arayüzü ile Ögrenci

bilgileri'nin hazirlanmasina olanak saglamalidir.”

“Evrak yönetim sisteminde, Ögrenci resmi'nin, Bölüm sekreteri tarafindan,

kullanici arayüzü ile Kopyalanmasina olanak saglamalidir.”

“Evrak yönetim sisteminde, Ögrenci bilgileri ve Ögrenci resmi kullanilarak

Bölüm sekreteri tarafindan, kullanici arayüzü ile ögrenci dosyasi'nin

hazirlanmasina olanak saglamalidir.”

Study of Su (2004) is the only study in the literature that utilizes eEPC models in

natural language software specification generation.

These four approaches in deriving software requirements from business process

models are compared in Table 1.

Table 1: Comparison of the mainstream approaches in the literature

Initial business

process model

Generated

requirements

artifact

Generation tool Validation

Cox et al.

(2005)
RAD

Jackson

context

diagram

Not reported
E-business

system

Stolfa &

Vondrak

(2004)

Activity

diagram
Use case model

Reported to be

in process of

development

Car sale

example

Specht et

al. (2005)

eEPC and

eFAD
BPEL Not reported

Document

processing

scenario

Su (2004) eEPC

Natural

language

specifications

KAOS tool

(plug-in for

ARIS)

Military project

21

CHAPTER 3

PROCEDO: REQUIREMENTS GENERATION APPROACH

This chapter includes three sections. First section describes models utilized, specific

sets of model elements and links between them. In second section, the unified

process for performing business process modeling and software requirements

analysis is introduced. Third section presents sentence and document structures for

natural language specifications to be generated and the tool support for generating

natural language specifications automatically from business process models.

3.1 Utilization of Business Process Models

Extended EPC (eEPC) models and Function Allocation Diagrams are at the core of

Procedo.

A restricted set of eEPC model elements are used in Procedo. Among the restricted

set of model elements; the ones that are the main building blocks of lean EPC

models, namely the functions, events and logical operators are defined in Section

2.2.1.

Business rule objects that are required to be stated in business processes are

represented in eEPC models as connected to functions. The business rules are

utilized to denote rules enforced by legislations and state process specific constraints

that cannot be depicted by the activity flow.

22

Information carriers represented with different symbols that define their types define

the physically stored data in the form of inputs and outputs of the functions (Davis &

Brabander 2007).

Process interface objects are used to define connections between business process

models by providing links between two consecutive EPC models (Mendling 2008).

A process interface in a business process model indicates that the model continues

with another business process linked by the process interface.

The restricted set of eEPC model element representations in Procedo is provided in

Table 2.

Table 2: eEPC model element representations in Procedo

Object Name Object Symbol

Function

Event

AND

OR

XOR (eXclusive OR)

Business Rule

Function

Event

§§

Business rule

23

Table 2: (continued)

Position and Organizational Unit

Process Interface

Information Carrier

eEPC models would be organized in different settings. In this study, it is

recommended to use EPC column display to improve the readability of the models.

However, this is not a restriction that constraints the approach. In eEPC column

display, the models are separated into columns and at the top of each column there

exists the actors represented by position and organizational unit objects that are

Position

Organizational unit

Process interface

Document

Folder

DVD
Letter

List

Electronic document

E-mail

Log

24

responsible to perform the activities. The actors at the top of the columns are linked

to functions implicitly, ensuring the actors responsible to perform the functions are

defined (Scheer et al. 2006).

There exist hierarchical relationships between eEPC models. These relationships are

maintained by assignment relations created from function objects of superior models

to the subordinate models.

Component processes that are required by more than one eEPC model can be

referenced anywhere as a process interface. Process interfaces and sub-processes are

the key mechanisms to form the hierarchical and modular structure of processes.

Hierarchy of processes and process interfaces can be utilized to form a process map

in high level and reveal interfaces between process modules.

The other business process model type used in Procedo is the FADs. FADs are

maintained in business process models via assignments created from the function

objects in eEPC models. By this way; each function in an eEPC model might have

one FAD assignment and similarly, each FAD should be assigned to exactly one

function in eEPC models.

The purpose of utilizing FADs in Procedo is to define the roles, entities, actions,

application systems and business rules that takes part while conducting the related

activity defined by a function. The restricted set of model element representations of

FADs utilized in Procedo are provided in Table 3.

The FAD of the Procedo takes a function object in the center of the notation and each

FAD should include exactly one function object. Each function object in a FAD is an

occurrence copy of another function object in an eEPC.

In FADs, the position objects represent the roles that perform the activity on the

application systems. There might be multiple roles that are authorized to perform the

defined activity on the application system. Also the position object in FADs is not

necessary to be a copy the positions or organizational units in the hierarchically

superior eEPC model, since the activities would be performed by other roles on the

application system.

25

Table 3: Object representations in FAD notation

Object Name Object Symbol

Function

Position

Entity Type

Application System Type

Business Rule

Entity Type objects are the representation of system entities maintained in

application systems. This object can represent any entity that can exist, can be used,

changed or deleted in information system. The inputs and outputs in eEPC models

and additional entities that are required are specified as entity type in FADs.

Application System Type object represents the application system that is intended to

be developed in accordance with the IS integrated representation of defined business

process. There might be one or many application systems used when performing an

activity, so there might be multiple application systems represented in each FAD.

Business Rule object is used for specifying the business rules in business processes,

which can be translated into system specifications. Since we are constraint by the

Function

Position

Entity type

Application
system type

Business rule

26

tool capabilities, an existing object representation that is not intended to be used in

this study is used in designating the business rules. Business Rule objects are

connected to the Application System Type objects for which the rules are provided.

The connection types between function and entity objects are an important part of

FADs. The connection type designates the operation on an entity while the function

is performed on the related application system. These connections do not define

sequence. They are rather representations of behavioral unit responses. All

operations in a FAD are completed when the function is performed.

There are seven connection types between function and entity type objects. These

connection types are inspired by the CRUDL. The connection type, creates,

indicates that the entity on the target is created on the application system. Changes

connection type is used to show that the entity already exists on the application

system and it is updated during the related activity. Reads connection type indicates

that the related entity is read from the database, while views connection type means

that the entity is read from the database and then viewed by the user. Reads

connection types are used if the existence of the entity is prerequisite for the activity

to be performed or the entity is input to another entity to be created or updated.

View connection type on the other hand, shows that the entity is needed to be

displayed to the user so that the user performs the activity. Lists connection type is

used if there is an entity of type list that the user is required to list the entities and

select one. Uses connection type is used if the related entity’s use is not clear or may

include any or many of operations of type create, update, read, view and delete.

Finally, deletes connection type exhibits that the entity is required to be deleted. The

connection representation between function and entity objects is given in Table 4.

If there is a need for selective execution of operations for a set of connections, those

connections are identified with the same numbered label on them. The numbered

label property is provided by the use of connection rule attributes of the connection

types in ARIS Business Architect tool. These attributes are null in their default states.

Connection role attribute of a connection being not null means that one or many of

the connections that have connection role attributes of the same value are performed.

27

Table 4: Connection representations between function and entity type objects in

FADs

Connection Type Name Connection Representation

Creates

Changes

Reads

Views

Lists

Uses

Deletes

The eEPC models and FADs are named after the function objects that they are

assigned to. Since an occurrence copy of the function object, which the FAD is

assigned to, is included by the FAD; we might also say that each FAD is named after

the function object that it includes.

The process hierarchy is defined by using group structures that include process

representations in a folder view. Each business process model is included in a group

having the same name with the eEPC model. The master objects and FADs created in

related eEPC models are included in the same group structure. Within each group

belonging to a process model which has sub-processes, there exist the groups that

belong to these sub-processes. So, by this way the business process models are

organized in a hierarchical manner using a grouping approach.

3.2 A Unified Process: Bridging the Gap between Business Process Modeling

and Requirements Analysis

The process described in this section bounds the modeling notation presented in

Section 3.1 and natural language specification generation presented in Section 3.3. It

constitutes guidelines for real life application. Also the process would guide and

Entity type

Function

"..."

28

constitute the initial phases of many software development life cycle models in

practice.

The unified process for performing business process modeling and software

requirements analysis activities concurrently is composed of seven consecutive high

level activities or, in other words, steps. Details of these steps are described below

and a high level overview of the unified process is provided in Figure 9.

Figure 9: Process for bridging the gap between business process modeling and

requirements analysis

29

Figure 9: (continued)

30

Define context: This is the initial step of the process. It is the preparation step for the

process where the boundaries and plans of the study are established, by which the

success of the study is highly stimulated. Activities given below for this step are

crucial to be approved by all stakeholders of the study.

• Identify purpose and scope of the study:

The purpose of the study is determined in this step. Business processes to be defined

and the information systems to be developed are identified in high level. By this way,

the scope of the study would be established. Strategic plans, if there are any, are the

inputs of this step.

• Identify business process modules:

The work is divided into business process modules. The boundaries of the modules

would be inspired from the boundaries of information systems, if there would be

multiple of them to be developed or from the boundaries of the legislative documents

and process guidelines that are already established within the organization.

Coordination teams for each module are set.

• Plan execution:

Work plan is developed including work breakdown structure, schedule for tasks and

milestones, deliverables, resource allocation plan and risk and configuration

management plans. Different process modules might require different process

expertise, so different subject matter experts for each module should be considered in

resource allocation.

Analyze business processes: Process analysis is conducted in a top-down approach.

That is; high level processes are analyzed first and then lower levels are detailed as

sub-processes. In each iteration, the business processes to be analyzed are a selected

set of business processes in a process module that are designated in the work plan.

• Identify process guides and rules:

In process analysis, the starting point would be identification of the guidelines and

legislative documents that are related to the highlighted processes. Guides and rules

31

that govern the processes should be extracted from these documents and brought

together.

• Identify inconsistencies and resolve conflicts:

The guides and rules that are brought together should be analyzed with the subject

matter experts. Conflicts would rise from inconsistencies between several documents

that guide the processes or from the inconsistencies between the subject matter

expertise and these documents. Conflicts should be negotiated with the subject

matter experts and as a result, agreement on terms should be achieved for the

processes prior to the process definition phase.

Define business processes: This step basically is focused on development of eEPC

models.

• Define process flows:

First, the process flows in eEPC models are constructed. The process flow in eEPC

models includes functions, events, logical operators and process interface object

types. By having process flows defined, skeletons of eEPC models would be formed

and so, debates on remaining aspects of the business processes, namely; the process

roles, rules, inputs and outputs, would be done based on the process flow.

• Define roles, inputs, outputs and business rules in processes:

After the process flow is constructed, business process models are extended with

other aspects of processes. Roles that perform the activities, inputs and outputs of the

processes and business rules are defined within eEPC models.

Verify business process definitions: This step aims that the business process

models prior to requirements analysis are complete and correct.

• Perform walkthrough:

eEPC models are reviewed one by one and correction explanations are determined.

The walkthroughs are performed with the subject matter experts. In order to include

32

various viewpoints in the validation; subject matter experts, who have not

participated in previous activities, would take part as an external review team.

• Revise process definitions:

eEPC models are revised with respect to the walkthrough results.

Identify IS integration points: Requirements analysis with business process models

starts with choosing the functions in eEPC models that are intended to be automated

with information systems. When determining the points in the business processes

that are desired to be automated, eEPC models are visited one by one and

expectations of the subject matter experts are elicited in high level of detail. The

functions that are chosen to be supported by information systems will be assigned to

a FAD.

Specify software requirements: This step consists of revising the business process

models by constructing FADs and generating natural language specifications.

• Define software requirements information in business process models:

Software requirement information is added to business process models via FADs.

Construction of FADs is a stepwise process described as follows. The roles

authorized to execute the function on IS are determined. The entities are defined by

considering the system inputs and outputs of the function. Connection types are

determined considering the operations between the function and the application

systems. Each entity is connected to an application system that the related entity is to

be contained in. Finally, the business rules on FADs are inspired by the business

rules already placed in EPC models and business process guidelines.

• Generate natural language specifications:

After the business process models are constructed with EPC models and FADs;

natural language specifications are generated with the tool support.

Verify software requirement specifications: Requirement specifications are

reviewed and revised in this step.

33

• Review requirement specifications:

FADs and natural language specifications are reviewed and detected issues are

recorded to be revised.

• Revise requirements specifications

Revision of the requirement specifications starts with revision of FADs according to

the issues detected and recorded in review. Then, natural language specifications are

generated with tool support again from the business process models.

3.3 Automated Generation of Natural Language Specifications

3.3.1 Natural Language Specification Sentence Structure

The sentence structure for a natural language specification sentence is provided

below.

“activity sırasında, role tarafından operations on system”

In the sentence structure given above, the words written in bold represent the

dynamic parts of the sentence structure and the remaining words and characters

represent the static parts. The structures of the dynamic parts, which contain

information referred from FADS, of the sentence structure are explained below.

Activity structure is composed of the name of the function object in FAD.

Example; “Nihai ödemenin tespiti sırasında, İDB Uzmanı tarafından PFDS sistemi

üzerinde Ödeme Planı değiştirilebilmeli, Ön Ödeme Miktarı, Ara Dönem Ödeme

Miktarı, Proje Nihai Destek Miktarı okunabilmeli, Proje Nihai Ödeme Miktarı, Onay

İsteği yaratılabilmelidir.”

Role structure represents the names of the position objects in FAD. Since there

would be one or multiple position objects in FADs, role structure is characterized in

the sentence structure as follows;

34

• If there is only one position object named “P” connected to the function, then

the role structure would be; “P ”.

Example; “Nihai ödemenin tespiti sırasında, İDB Uzmanı tarafından PFDS sistemi

üzerinde Ödeme Planı değiştirilebilmeli, Ön Ödeme Miktarı, Ara Dönem Ödeme

Miktarı, Proje Nihai Destek Miktarı okunabilmeli, Proje Nihai Ödeme Miktarı, Onay

İsteği yaratılabilmelidir.”

• If there are more than one position objects named “P1”, “P2”…and “Pn”

connected to the function, then the role structure would be; “P1, P2, … ve Pn

”.

Example; “Teklif Çağrısı Konularının belirlenmesi sırasında, PPB Uzmanı ve PYB

Uzmanı tarafından PFDS sistemi üzerinde Teklif Çağrısı Konu indexi (NACE

US97) okunabilmeli, Teklif Çağrısı Konusu yaratılabilmeli, ÇPBMS sistemi

üzerinde Çalışma Programı görüntülenebilmelidir.”

Example; “Başvuru rehberi taslağının gözden geçirilmesi sırasında, PPB Uzmanı,

İDB Uzmanı ve GS tarafından PFDS sistemi üzerinde Onay Listesi

değiştirilebilmeli, Başvuru Rehberi görüntülenebilmeli, Onay isteği okunabilmeli,

Onay durumu yaratılabilmelidir.”

Operations on system structure relies on entity type and application system type

objects in FADs and the connection types between them. The connection types that

are translated into Turkish words in the form to be included in the sentence structure

are provided in Table 5.

Operations on system structure has both dynamic and static aspects that

characterizes the linguistic properties of the sentences. These dynamic aspects

originate from the type and number of objects in FADs and are described with

definitions and examples below.

• If there is one application system type named “A”, one entity type named “E”

and connection type of “C”, then operations on system structure would be;

“A sistemi üzerinde E Cdir.”.

35

Example; “Ajans mali yönetim yeterliğinin değerlendirilmesi sırasında, DPT Uzmanı

tarafından DenetYS sistemi üzerinde Denetim raporu görüntülenebilmelidir.”

Table 5: Transition from connection types to sentence structure

Connection Type Name Transition to Sentence

Creates yaratılabilmeli

Changes değiştirilebilmeli

Reads okunabilmeli

Views görüntülenebilmeli

Lists listelenebilmeli

Uses kullanılabilmeli

Deletes silinebilmeli

• If there is one application system type named “A”, more than one entity types

named “E1”, “E2”,…and “En” and for all entity types the connection type is

of “C”, then operations on system structure would be; “A sistemi üzerinde

E1, E2, …, En Cdir.”.

Example; “Ceza ve tazminatların kaldırılması sırasında, Muhasebe Uzmanı

tarafından ÇPBMS sistemi üzerinde Gelirler hesabı kaydı, Kişilerden alacaklar

hesabı kaydı, Muhasebe işlem fişi yaratılabilmelidir.”

• If there is one application system type named “A”, more than one entity type

objects named “E1”, “E2”,…and “En” and for the entity types the connection

types are of “C1”, “C2”,…and “Cn” respectively, then operations on system

structure would be; “A sistemi üzerinde E1 C1, E2 C2, …, En Cndir.”.

Example; “Yararlanıcıya yapılacak toplam ödeme miktarının eş finansman

gerçekleşme oranına göre indirilmesi sırasında, İDB Uzmanı tarafından PFDS

sistemi üzerinde Proje Nihai Destek Miktarı değiştirilebilmeli, Başvuru Rehberi

okunabilmelidir.”

36

• If the above statement is changed as two or more entities have the same

connection type on the same application system, operations on system

structure would be; “A sistemi üzerinde E11, E21, …, En1 C1, E12, E22, …,

En2 C2, …, E1n, E2n, …, Enn Cndir.”.

Example; “Nihai ödemenin tespiti sırasında, İDB Uzmanı tarafından PFDS sistemi

üzerinde Ödeme Planı değiştirilebilmeli, Ön Ödeme Miktarı, Ara Dönem

Ödeme Miktarı, Proje Nihai Destek Miktarı okunabilmeli, Proje Nihai Ödeme

Miktarı, Onay İsteği yaratılabilmelidir.”

• If there are more than one application system type objects named “A” and

“B”, each of which have entity type objects connected to it, then operations

on system structure would be; “A sistemi üzerinde E11, E21, …, En1 C1,

E12, E22, …, En2 C2, …, E1n, E2n, …, Enn Cn, B sistemi üzerinde … dir.”.

Example; “DFD çalışmalarının planlanması sırasında, PYB Uzmanı tarafından PFDS

sistemi üzerinde DFD Listesi değiştirilebilmeli, DFD, DFD Planı yaratılabilmeli,

PPS sistemi üzerinde Bölgesel Operasyonel Program görüntülenebilmeli,

ÇPBMS sistemi üzerinde Çalışma Programı görüntülenebilmeli, Yıllık Bütçe

okunabilmeli, DFD Bütçesi yaratılabilmelidir.”

• If there are selective execution of operations in FADs, then operations on

system structure includes the word “veya” as given in the examples below;

Example; “Eğitim/danışmanlık hizmetleri için satınalmanın başlatılması sırasında,

PYB Uzmanı tarafından PFDS sistemi üzerinde PTÇ Destek Faaliyetleri Planı,

veya Bilgilendirme toplantı planı, veya Teklif Çağrısı Eğitim Planı(TÇEP), veya

BD eğitim ve çalışma takvimi görüntülenebilmelidir.”

Example; “Raporun şekli uygunluk kontrolünün yapılması sırasında, İzleme Uzmanı

tarafından PFDS sistemi üzerinde Ara rapor, veya Nihai Rapor

görüntülenebilmeli, Nihai Rapor Kontrol Listesi, veya Ara Rapor Kontrol

Listesi yaratılabilmeli, Ek I-19: Nihai Rapor Kontrol Listesi, veya Ek I-18: Ara

Rapor Kontrol Listesi okunabilmeli, Proje Sözleşme Listesi listelenebilmeli, Ek

I-20: Ara ve Nihai Donem Raporu Veri Giriş Formu okunabilmelidir.”

37

Another specification sentence structure is developed for specifying software

requirements related to business rules. Sentence structure utilizes the application

system type objects in FADs and the business rules connected to them. The sentence

structure is provided below.

“Application System sistemi üzerinde; business rule.”

Example; “PFDS sistemi üzerinde; nihai ödeme miktarı, nihai destek

miktarından Ajans tarafından yapılan ödemelerin toplamı düşülerek

hesaplanabilmelidir.”

3.3.2 Software Specification Document Structure

A document structure is constructed to manage the natural language specification

sentences. To enable forward traceability between business processes models and

natural language specifications, process names and paths are added to the document

structure. Also, with the same reason, each specification sentence is tagged with a

requirement number which includes module information that indicates the

specification sentence belongs to the specified module. Additionally, specification

numbers are given to each specification sentence that increment cumulatively, which

can be seen in the document structure with indicators as s1, s2 and so on. The

resulted document structure is as follows;

n1. Süreç adresi: “process path 1”

n1.m1. Süreç adı: “process name 1”

n1.m1.k1. “Module name” s1: “Specification sentence 1”

• “business rule sentence 1”
n1.m1.k2. “Module name” s2: “Specification sentence 2”

• “business rule sentence 2”
….

n1.m1.kX. “Module name” sX: “Specification sentence X”

• “business rule sentence X”
n2. Süreç adresi: “process path 2”

n2.m1. Süreç adı: “process name 2”

n2.m1.k1. “Module name” sX+1: “Specification sentence X+1”

• “business rule sentence X+1”
….

38

An example specification that is constructed by using the document structure

described above is provided in Appendix D.

3.3.3 Requirements Generation Tool

A requirements generation tool is developed to generate natural language

specifications based on the sentence and document structures described in previous

parts. The flowchart that denotes the design of the tool is provided in Figure 10.

Figure 10: Flowchart for requirements generation tool

39

Figure 10: (continued)

40

Figure 10: (continued)

41

Figure 10: (continued)

42

Figure 10: (continued)

43

Figure 10: (continued)

The tool is a script developed on ARIS Script Editor in ARIS Business Architect

v7.1. The script language is very similar to Java Script language. The classes and

methods defined in ARIS Script Editor are used in the coding phase. The usage of

the script in the ARIS tool suit is described in Appendix E.

44

CHAPTER 4

CASE STUDIES

Our purpose in this study is to explore utilization of business process models in

requirements analysis. With this purpose, the following research questions are

identified.

Research Question 1: How can business process models be utilized for

requirements analysis?

The aim is to develop an approach to conduct requirements analysis activities

concurrently with business process modeling, so that business process knowledge

can be transferred to the software requirements.

Research Question 2: Does using business process models for requirements analysis

increase the efficiency of business process modeling and requirements analysis

activities in terms of total effort?

The aim is to track the effort required for unified requirements generation and

compare with the estimated traditional requirements analysis effort. Effort estimation

would be performed using the functional size.

In order to explore answers for the research questions, two case studies were

performed. First case study focuses to seek answers for the first research question,

whereas second case study explores answers for the second research question.

In this chapter, case study design is described. Then, the two case studies that were

carried out to develop the approach and explore the benefits that would be gained by

45

using the approach are introduced. The results of the case studies and the threats to

the validity of the case studies are discussed.

4.1 Case Study Design

Two case studies were envisaged to be performed to explore answers for the research

questions.

First research question required an approach to be developed by utilizing multiple

review mechanisms. At least a small set of business processes was required for

developing the approach. Since the approach was devised to bound two different

disciplines, in different phases of the development, reviews by subject matter experts

and software engineers were needed.

Second research question required a case study performed on a wider set of business

processes. The developed approach needed to be performed on this wider set and

effort records needed to be kept. The resulting effort would be compared with the

estimated effort for requirements analysis based on industry data.

These required us to perform two discrete case studies, each aims to answer one of

the two research questions.

Case selection criteria were formed to select the case studies where the needs for the

research environment required to look for answers to our research questions are

specified. Then, the background information of the selected organization, where the

case studies were conducted, are introduced.

4.1.1 Case Selection Criteria

There were three selection criteria identified for case study design, in order to select

the cases that are effective in exploring answers to the research questions. These

criteria are considered in case selection of both case studies 1 and 2.

First selection criterion is that the organization under study should require business

processes models that define its processes. This requirement is needed to be

supported by the organization management that management support is crucial for

46

conducting such a study. Only then, the allocation of necessary resources for

business process modeling activities would be ensured. These resources need to be

allocated throughout the case study since, without time and effort spent by the

organization itself; business process modeling would lose its focus on serving the

business needs. Management support is also invaluable for the motivation of the

allocated personnel.

Second criterion for the case to be selected is having complex business processes.

Business processes having loops, conditionals, inputs and outputs, and hierarchical

and cross-referencing relations between business processes make defining the

business processes a necessity for the selected organization. Presences of business

process guidelines that define constraints and legislative rules solely increase process

complexity. Also necessity of identifying inconsistencies between several guidelines

constitutes a motivation for business process modeling studies from the

organization’s point of view. Having to define complex business processes makes the

organization allocate resources for the studies instead of perceive the studies as a

burden. Allocating adequate resources is critical since, business process modeling

activities are considerably dependent on subject matter experts’ contribution besides

business process modeling experts’. The success of the study resides in cooperation

of subject matter experts and business process modeling experts since; only then the

business process knowledge and technical expertise come together and result in a

complete and correct set of business process models.

Third criterion is to have a case that requires software requirements to be elicited.

According to this consideration; the case study should be conducted on an

organization that is in need of integrating its business processes with information

systems. Requirements analysis in parallel to business process modeling activities

would then be a necessity for the organization to conduct successful acquisition and

integration of information systems.

4.1.2 Background

The case studies were implemented as a part of a project in a recently established

governmental organization specialized in regional development. Two other

47

governmental organizations are stakeholders of the project with the cooperation and

coordination responsibilities. The project was launched with the aim of defining the

business processes of the organization under study and specifying the software

requirements to support these business processes. The outputs of the project are

intended to be used by 26 organizations and by 962 personnel. The project was

scheduled for a one year period.

One of the main practices of the organization is to develop and conduct regional

grant programs. Besides the processes of grant programs management, a wide variety

of process sets such as managing human resources, developing strategic plans,

conducting performance management, investment supporting and conducting budget

and accounting, archive and document management are included in the scope of the

project. The common properties of these process sets are;

• Processes are complex with loops, conditionals, constraints, hierarchies and

cross-references between processes.

• Few of them are applied yet by the organization that makes the processes to

be well defined to enhance repeatability and detect defects in process flows.

• They are constrained by several guidelines that make tracing the conflicts

between these guidelines difficult to determine and solve.

4.2 Case Study 1

This case study is performed to explore answers for the first research question. The

Procedo approach described in Chapter 3 was developed in case study 1.

4.2.1 Case Study Plan

The case study plan detailing the activities to be conducted in case study 1 was

developed. The activities in the case study plan are as follows;

• Select a small set of processes.

• Develop business process models for the selected set.

48

• Tailor the business process models to derive software requirements from

these models.

• Write the functional software requirements manually for the selected process

set and review them.

• Evaluate the business process model elements and links between them for

fitness to including structural, language and data needs of software

requirements.

• Update the business process model elements and links between them for

fulfilling the need of attaining software requirements.

• Define the approach for generating requirements specification documents

from business process models.

• Write functional software requirements manually by using the business

process models and review.

• Develop tool support to generate software specifications and specification

documents by utilizing business process models.

4.2.2 Case Study Implementation

The details regarding the development of Procedo approach in case study 1 are as

follows.

Available business process modeling notations and tools were investigated to

determine the business process models to be used in the case study. The need of the

case study was a modeling approach that is suitable for performing business process

modeling activities with the participation of subject matter experts who lack

expertise in process modeling studies. As a result, extended event-driven process

chain (eEPC) was chosen as the main business process modeling notation, since

eEPC is one of the notations suitable for business process modeling with subject

matter experts who are not familiar with process modeling, describing the business

49

processes with business logic instead of formal process specification logic (van der

Aalst 1999).

A small set of business processes, involving 11 business processes, were determined

and eEPC models for these processes were formed. The granularity and organization

of the eEPC models were determined by considering the guidelines from the

literature (Mendling et al. 2010) and the experiences of the team of business process

modeling experts. There are at most fifteen functions and fifty objects in a process;

whereas the average number of function objects in a process are six. On the other

hand, the depth of the process models hierarchy is kept no more than five. Besides

the main model elements that are functions, events and logical operators; position

and organizational unit, process interface, information carriers and business rules

were determined to be utilized in eEPC models. A sample eEPC model developed in

the case study is provided in Appendix A.

After developing the business process models mainly by means of eEPC models,

next task was to distinguish the activities in the business process models that are

intended to be automated by information systems support. After the activities to be

automated were discovered, the information needed for software requirements were

to be embedded to business process models.

For discovering the aspects necessary to take part in the approach, some of the most

commonly used software specification techniques in literature were investigated.

Reviewed approaches were natural language specifications (Saeki et al. 1989), use

case models (Jacobson 2004, Jacobson & Ng 2004), use case specifications (Achour

et al. 1999), formal software specifications (van Lamsweerde 2000, Spivey 1990)

and data flow diagrams (Schach 1995).

The need was a unified implementation approach that supports business process

modeling and requirements analysis. Considering the eEPC models and the software

specification techniques above, the following points were taken into consideration to

come up with such an approach.

• Processes in eEPC models can be considered as features of the system and in

some instances as use cases.

50

• Functions in business process models can be regarded as candidates for use

cases. However, they should be detailed with actions to reach an adequate

level of detail in transformation to software specifications.

• Inputs and outputs can give ideas of the system inputs and outputs, but they

do not constitute the system input and outputs themselves. Not all would be

desired to be maintained by the system for process oriented reasons such as

legislative constraints. Besides, information systems might require additional

inputs and outputs.

• Operations carried on inputs and outputs are not depicted in eEPC models.

These operations need to be defined in a standard way to attain a complete

and nearly formal approach.

• Business rules define the legislative rules and process constraints in eEPC.

Regarding IS integration points, some of the existing business rules are not

related to software characteristics and some supplementary rules need to be

defined for software specifications.

• In eEPC models, organizational objects are used to identify responsibilities.

However in an information system, other organizational objects may be

authorized to perform the related function.

• eEPC notation does not support modeling of application systems.

These considerations above are taken as requirements and the approach is

characterized in respect to these requirements.

An approach based on deriving requirements directly from business process models

was concluded not to be able to cover all the points above and to lack in keeping

business process models lean without overloading them with software requirements

related details. In order to satisfy the need of the approach to be easily understood

and used by process owners, it was decided that the approach would be a model

based approach. Model based representations of requirements engineering products

are advantageous against textual representations, since they are culture and language

neutral and are reviewed faster and thoroughly (Berenbach et al. 2009). Also, in the

51

case study there is a project specific advantage that business process modeling efforts

are spent with the contribution of the business people. So, a model based approach

would fit these efforts by connecting strongly to the business process models and

making requirements analysis an integrated part of business process modeling

studies. FADs, which are represented hierarchically under eEPC models in ARIS

methodology (Davis & Brabander 2007), were determined to be the most appropriate

candidate for fulfilling these purposes by extending the business process modeling

approach to cover software requirements information.

Natural language was chosen to specify the software requirements, since natural

language is a requirement specification style that the subject matter experts were

familiar with. Also requirement specifications were to be delivered to a contractor

developer. So, natural language was also appropriate, since it is the most frequently

used specification style in the industry.

The next task was to determine the way to transform the software requirements

related information in the business process models to natural language requirements.

For preventing from being biased against the validity of the natural language

specifications generated from business process models, natural language software

specification sentences were written manually to explore how they would be like if

the business process models and their objects were not used. The resulting

specifications are provided in Appendix B. These sentences were reviewed by two

peer software engineers. Following this review, three improvement points were

detected and added to the business process modeling notation. These points are

explained below.

• Business rule object was added to FAD notation for specifying the business

rules in eEPC models which can be translated to system specifications.

• If there is a need for selective execution of operations for a set of

connections, those connections are identified with the same numbered label

on them.

• Naming conventions of objects in FAD notation were determined for fitness

to natural language sentences in Turkish.

52

Utilization of Function Allocation Diagrams was adapted to the needs of the case

study. FADs were characterized with function, position, entity type, application

system type and business rule model elements and connection types between them.

FADs were formed for the selected process set for which the eEPC models were

formed before. The FADs for the eEPC model in Appendix A are provided in

Appendix C.

The next step was to develop the sentence and document structures to generate

natural language specification form business process models. Sentence and document

structures were developed as introduced in Section 3.3. The requirements

specification document and the sentence structures were used in writing natural

language specifications manually. These manually written software specifications

were reviewed by two peer software engineers and the organizations involved in the

case study. Positive feedbacks were received from both parties and the sentence and

document structures were validated.

Following the validation, a requirements generation tool was developed to automate

the generation of natural language specifications. The tool generates the natural

language software specifications in predetermined sentence and document structures.

Samples of the specifications generated by the tool for the Function Allocation

Diagrams in Appendix C are provided in Appendix D. The tool takes database

objects from the ARIS tool and creates natural language specifications in an MS

Word document. Validation of the outputs of the tool was done by comparing them

with manually written natural language specifications, where the expected output

generated by the tool was required to be exactly the same with the manually written

specifications.

4.2.3 Results

A small set of business processes containing 11 business processes was utilized in

the case study. As the approach is developed, the outputs were produced by using

this process set. Multiple review mechanisms were applied throughout the

development of the approach.

53

eEPC models and FADs were used in business process models. Software

requirements related information was encapsulated in FADs, leaving the eEPC

models simplified. Restricted model element sets were determined for both eEPC

models and FADs. Model elements in FADs were referred from some of the most

commonly used requirements engineering techniques.

Sentence and document structures were formed to enable derivation of natural

language specifications from business process models. These structures were utilized

by the requirements generation tool that was developed to automatically generate

natural language specifications, which the subject matter experts are familiar with

and the contractor software developers might use.

Forming eEPC models and FADs were referred as business process modeling, while

forming the FADs and natural language specifications was referred as software

requirements analysis. The approach, which was named later on as Procedo

approach, enabled performing business process modeling and requirements analysis

concurrently.

4.2.4 Threats to Validity

There is one threat to validity of the case study 1. The threat is that the validity

regarding the development of the Procedo approach in case study 1 would have been

biased. The approach was developed with collaboration of all the stakeholders of the

case study. This threat is eliminated by adapting the approach from some of the most

commonly used requirements engineering techniques and reviews by peer software

engineers.

4.3 Case Study 2

Procedo is performed for a large set of business processes where the benefits are

observed and analyzed for seeking answers to the second research question.

54

4.3.1 Case Study Plan

Work plan for case study 2 was developed as specified below.

• Divide the work into process modules.

• Determine roles and responsibilities in the case study.

• Perform workshops for forming eEPC models with the participation of

subject matter experts and business process modeling experts.

• Review eEPC models and rework them based on review results.

• Perform requirements analysis by forming FADs and natural language

specifications.

• Review FADs and natural language specifications and rework them based on

review findings.

• Deliver the outputs of the process module under study and apply acceptance

procedures.

The tasks for the succeeding process modules would be repeated until all

deliverables are developed, delivered and accepted.

4.3.2 Case Study Implementation

Core and supporting sets of business processes of the organization were clustered

around eight process modules. The modules were composed of business processes

that cluster around the scope of the module. Although there were relationships

between the process modules, they were identified to include business processes that

have strong relationships between each other.

Six subject matter experts from the sponsor organizations and an external team of

three business process modeling experts were determined to participate in the case

study. Subject matter experts that take part in the case study were selected among

personnel of the three participating organizations. The subject matter experts are

55

profound in business processes and authorized in process improvement. A project

coordinator, who is responsible to coordinate activities and develop communication

channels between business process modeling experts and subject matter experts, was

determined among subject matter experts. Business process modeling experts, on the

other hand, are contractor firms’ software engineers who are specialized in business

process modeling studies. Team of business process modeling experts includes three

experts, one of whom is the project coordinator of the team of business process

modeling experts’ side. Contact points were established to maintain communication

between these roles. An Internet forum was also reserved to enable accessing the

outputs and information shared between the stakeholders.

Legislative documents together with subject matter expertise are primary inputs for

business process models. Prior to the start of work on process modules; samples of

inputs and outputs of the processes and documents that define business rules were

delivered to business process modeling experts. In this way, it was ensured that the

legislative documents were utilized in business process models. Prior to the start of

the workshops, a training session was reserved to train subject matter experts in

business process modeling approaches and concepts.

In workshops, the business process models were constructed with the cooperation of

subject matter experts and business process modeling experts. Therefore, the process

knowledge and technical competence came together to define a set of business

process models that are complete and correct. For evaluating the results of the case

study, records were kept for efforts spent, decisions made, issues and improvement

opportunities detected throughout the modeling activities.

Besides eEPC models, function trees were also used in the case study indicating that

there is no activity flow relation between the functions of a process. An organization

chart was maintained in business process modeling studies showing all

organizational objects in processes and the relations between them. A data dictionary

was composed that defines the roles, inputs, outputs and application systems that are

referred by the business process models.

56

Peer review was applied for process models by external business process modeling

experts. Review sessions were conducted by subject matter experts with a systematic

walkthrough method on each business process model. Review results were

documented and models were updated and approved respectively before finalizing

the products.

After the eEPC models were formed and reviewed, FADs were developed to perform

requirements analysis. FADs were formed by the team of business process modeling

experts. Then, the natural language specifications were generated from business

process models with tool support. Both FADs and natural language specifications

were reviewed by subject matter experts in workshops. Also peer reviews were

conducted by software engineers. The findings of the reviews were documented and

updates to the products were planned and applied.

As FADs and eEPC models were formed and approved, business process models for

the process module under study were finalized.

Deliverables of each process module in the case study were business process models,

software requirements specifications documents, data dictionary, workshop records

and progress reports.

The tasks have been continued to be iterated for each module. Until now,

deliverables of six process modules have been delivered and accepted. Progress

reports were prepared, the outputs of the process modules were delivered to customer

and predetermined acceptance procedures were carried out.

4.3.3 Results

Business process modeling activities for the process modules have been conducted

according to the Procedo approach defined in case study 1. In case study 2, for the

first two modules, 946 business process models, 791 of which are FADs, were

delivered.

Natural language software specifications were generated from business process

models automatically via the tool support. In the requirements specification

57

documents delivered to sponsor organization, there are 1002 natural language

specifications. The natural language specifications documents were generated with

requirements generation tool for each module in approximately 15 seconds.

The deliverables were reviewed and accepted by the sponsor organization.

Walkthroughs for business process models and reviews for software specifications

were conducted. The outputs were revised based on the review results. Both business

process models and software specification documents were also delivered to a

contractor software development organization.

The outputs of requirements engineering activities are functional and non-functional

requirements. In this study, we determined functional requirements in entity and use

case levels. Functional requirements in attribute and user scenario levels need to be

specified to complete the functional requirements. We made an experience based

assumption that this part takes at most 50% of requirements engineering activities

and specifying non-functional requirements takes 10%. This assumption concludes

that we completed at least 40% of the requirements engineering tasks that can be

referred to as requirements analysis in this study for the information systems to be

developed.

3000 person-hours of effort were spent on the whole for the first two modules. The

size for the IS that is intended to provide support for the first two modules was

calculated as 11000 Cosmic Function Points according to another study (Kaya 2010).

The mode value of productivity range for requirements phase in software

development life cycle is 0.75 person-hours per function point (Jones 1998). So, as

the estimated effort for requirements specification was 8250 person-hours and 40%

of this estimated effort corresponds to 3300 person-hours. This estimated effort of

3300 person-hours is almost equal to the realized effort of 3000 person-hours in the

case study.

Considering these values, it is concluded that with spending the sole effort of

performing requirements analysis, performing both requirements analysis and

business process modeling activities were managed to be completed. On the whole,

58

the total effort of business process modeling and requirements analysis activities was

managed to be decreased.

Besides increasing the efficiency of requirements analysis in terms of total effort,

many other benefits were observed by utilizing Procedo approach. Business process

models formed an intuitive environment to discuss, gather and analyze requirements

in a structured way. In this way, the possibility of skipping and duplicating any part

of the information systems requirements decreased. These aspects increased the

completeness and correctness properties of requirements. The activity of business

process modeling forces developers to define the system in a structured way. The

hierarchical structure of process models enables definition of modular processes and

reveals relations between those processes in different levels. By all these means, the

business processes can be explained in a more unambiguous and consistent way

compared to a natural language explanation. As a result, unambiguous and consistent

requirements documents are formed as much as the process models are. The set of

requirements were specified one time and only one time, as it was not possible to

create duplicate objects in the process models. Maintainability of requirements was

also increased; as traceability between business processes and requirements are

clearer. By means of the automated tool, updated requirements specification

document was also easily rebuilt when the requirements changed.

4.3.4 Threats to Validity

There are two threats to the validity of the case study as identified.

First threat is that, the software specifications generated from business process

models in case study 2 are not utilized in software development yet. However, they

are validated by reviews of peer software engineers and subject matter experts and

delivered to the contractor software developer which has not returned any negative

feedback. For these reasons, this threat is not expected to bring any significant

negative effect on validity.

59

The second threat is that the benefits obtained from the Procedo approach has been

validated through one case study yet. Resolution of this threat is left to further studies

where the approach will be practiced in future case studies.

60

CHAPTER 5

CONCLUSIONS

This chapter presents main findings and contributions of the study and suggests

future research directions.

5.1 Summary

In this study we have two main goals. The first goal is to explore the potential of

business process models for software requirements definition and propose a

systematic approach. The second goal was to determine if the proposed approach

would significantly decrease the amount of total effort required for process modeling

and requirements analysis. For these purposes, two case studies were performed, one

for forming the approach and the other for investigating if the foreseen benefits, in

terms of a reduction in total effort, would be achieved.

Procedo approach is formed based on conventional business process modeling

notations, and included a process description and tool support.

eEPC models and FADs are used in business process modeling notation. A restricted

set of model elements is determined to be used in eEPC models and process

hierarchy is described by the hierarchy between eEPC models. By utilizing FADs,

eEPC models are extended. Using FADs prevented eEPC models to be overloaded

with software related information. FADs are enriched with aspects such as CRUDL

61

based operations, system entities maintained in application systems, business rules

and selective execution of operations.

The unified process for performing business process modeling and requirements

analysis is defined with seven consecutive steps. These steps are detailed with

activities, inputs and outputs within them. The process is described from context

definition to business process modeling and to requirements analysis. Several review

sessions are also defined within the unified process.

Generation of natural language specification documents from business process

models are successfully achieved in Procedo. Automated derivation of software

requirements statements and formation of a complete software requirements

specification document are achieved by means of the requirements generation tool

developed. The sentence and document structures formed for natural language

specifications are utilized by the tool. The natural language specifications generated

by the requirements generation tool denote software requirements with system

functions, system entities, application systems, operations on system entities, roles

that are authorized to perform operations and rules that constrain the systems. The

generated specifications in natural language are appropriate to be used by both

subject matter experts and software developers.

Procedo approach bridges the gap between business process modeling and

requirements analysis. The approach was developed in case study 1 by utilizing a

small process set for forming business process models, engineering them, writing

requirements manually and developing the requirements generation tool. Multiple

review sessions were utilized in development phase of the approach to validate it.

The approach enabled us to transfer the business process knowledge to software

requirements and generate the software requirements documents automatically. By

using eEPC models and FADs in business process modeling and generating natural

language specifications from them, the approach made it possible to perform

business process modeling and software requirements analysis concurrently and to

provide a one-way synchronization between business process models and software

requirements. We accomplished to define the approach where the same business

process models would be utilized for a variety of purposes such as business process

62

definition, reengineering and requirements definition. Procedo approach replaces, in

part, the analysis phase of software development life cycle in a generic waterfall

development model.

Case study 2 was applied in an organization whose business processes were modeled

and software requirements specifications were delivered. 946 business process

models including 791 FADs, requirements specification document with 1002 natural

language specifications were formed spending 3000 man hours in total and for a

system of 11000 function points. These outputs were validated through walkthroughs

on business process models by the organization and reviews on requirements

specifications by the organization and peer software engineers. The requirement

specifications were also delivered to a contractor software developer.

A reduction in total effort realized for business process modeling and requirements

analysis activities was observed by calculating the efforts spent in the studies and

comparing them with the industry data considering the size of our system. It is seen

that, even if it is assumed we have covered 40% of requirements engineering

activities as a lowest estimate, the realized total effort of business process modeling

and requirements analysis correspond to the same percentage of requirements

engineering estimated of industry data. It was concluded that by utilizing the Procedo

approach, total effort for business process modeling and requirements analysis would

be significantly decreased.

Besides this, improvements in completeness, correctness, consistency,

unambiguousness, traceability and maintainability properties of software

requirements were observed. Omissions and duplications in requirements were

prevented. Structured requirement sentences generated with tool support were

unambiguous and consistent. Tool support also enabled ease of maintenance as

updates in business process models were reflected to requirements specifications.

Traceability between business processes and software requirements were made

implicit.

63

5.2 Contributions

One major contribution of the study is to show that the total effort of business

process modeling and requirements analysis was significantly decreased by

performing them concurrently. Such an efficiency improvement was achieved by

applying the Procedo approach that we have developed in this study. This indicates

that if business process modeling and requirements analysis are performed by using

Procedo as described in this study, it is possible to save from the total amount of

required effort.

Another contribution is that Procedo defines a systematic process for business

process based requirements specification supported by a requirements generation

tool. None of the studies in the related research, except Su (2004) and Specht et al.

(2005), use eEPC models as the main business process modeling notation. Also none,

except Su (2004), provides tool support for requirements generation or describe

deriving natural language specifications from business process models. In Su’s

(2004) study, however, the business process models are redesigned for requirements

generation purpose only and are formed with color codes given to information

carriers, model element naming conventions and activities where all of them are

suggested to be automated. The business process models in this study are not only

formed to be used for deriving requirements, but also to be used as business process

definitions. Also FADs are utilized in Procedo so that software related information is

separated from eEPC modes by keeping them lean, whereas Su (2004) overloads

eEPC models with such information and so decreases the readability of the models.

Compared with the natural language specifications generated in Su (2004), the

generated documents in Procedo include structured and complete natural language

specifications with system entities, business rules and standard and selective

execution of system operations. Specht et al. (2005) does not provide derivation of

natural language specifications and tool support for automatically generating

software requirements but, it is the only study detected in the literature to use FADs

for deriving software requirements. However, FADs in Procedo are enriched with

business rules, CRUDL based standard operations, selective execution of operations

64

and different model element connection rules when compared with Specht et al.

(2005).

5.3 Future Study

One direction of the future studies is envisaged as applying the proposed approach in

multiple case studies and using the results to define the approach as a formal

methodology. The case studies shall be applied in different industries and for

organizations in different sizes. In this way, it can be ensured that the methodology

covers divergent requirements in the business process modeling field. By performing

these case studies it is also envisaged to validate the improvements in quality

attributes of software requirement statements achieved via Procedo.

A limitation of Procedo is that the natural language specifications generated within

the approach do not include system attributes, action sequences, system states and

logical separations and connections. FADs would be extended with such software

requirements related aspects in order to cover a wider range of requirements

engineering activities.

By using FADs in Procedo, information of all data transformations in the system is

maintained and in this way, skeletons of data types are derived. Other research

direction may include investigating utilization of this information in other software

engineering activities. Automated size estimation for the development of information

systems is already explored by utilizing the FADs (Kaya 2010). It is possible to

investigate the opportunities within requirements engineering research area for

derivation of use case specifications and formal specifications. Deriving class

diagrams, natural language test case specifications and code skeletons from business

process models is also a future research opportunity. These infer us that the scope of

the research is possible to be expanded to software development life cycle by

attaining forward traceability from software requirements artifacts to software

design, testing and coding artifacts.

65

In Procedo, requirements change management is kept out of scope. Forming a

change management process for a situation where the software requirements change

would be a future research direction.

Process improvement is another area that has not been mentioned explicitly in this

study. However, by resolving conflicts between process guidelines and suggesting

information system support to the activities, Procedo is related to process

improvement. Still, generating quality manuals from business process models to be

used in process improvement might be a future study.

66

REFERENCES

Abran, A., Bourque, P., Dupuis, R., Moore, J.W. and Tripp, L.L. (2004). Guide to
the Software Engineering Body of Knowledge – SWEBOK. 2004th ed., A. Abran,
P. Bourque, R. Dupuis, J. W. Moore, and L. L. Tripp, Eds. Piscataway, NJ, USA:
IEEE Press.

Achour, C.B., Rolland, C., Maiden, N.A. and Souveyet, C. (1999). Guiding Use Case
Authoring: Results from an Empirical Study. In: Fourth IEEE International
Symposium on Requirements Engineering (RE’99), pp. 36-43.

Athanasakis, N. (2006). Generating Natural Language from UML Class Diagrams.
MS Thesis, Informatics Research Institute, University of Salford, Salford, UK.

Berenbach, B., Paulish, D., Kazmeier, J., and Rudorfer, A. (2009). Software &
Systems Requirements Engineering: in Practice. 1st ed. McGraw-Hill, Inc.

Cabral, G. and Sampaio, A. (2008). Formal Specification Generation from
Requirement Documents. Electron. Notes Theor. Comput. Sci. vol. 195, pp. 171-188.

Cox, K., Phalp, K.T., Bleistein, S.J., and Verner, J.M. (2005). Deriving requirements
from process models via the problem frames approach. Inf. Softw. Technol. 47, 5,
pp. 319-337.

Danlos, L., Lapalme, G., and Lux, V. (2000). Generating a Controlled Language.
In Proceedings of the First international Conference on Natural Language
Generation, vol. 14, pp. 141-147.

67

Davis, R., and Brabander, E. (2007). ARIS Design Platform: Getting Started with
BPM, 1st ed. Springer.

Dehnert, J. and Rittgen, P. (2001). Relaxed Soundness of Business Processes.
In Proceedings of the 13th international Conference on Advanced information
Systems Engineering. K. R. Dittrich, A. Geppert, and M. C. Norrie, Eds. Lecture
Notes In Computer Science, vol. 2068, Springer-Verlag, London, pp. 157-170.

Estrada, H., Martínez, A. and Pastor, A. (2003). Goal-based business modeling
oriented towards late requirements generation. Proceedings of the 22nd International
Conference on Conceptual Modelling, pp. 277-290.

Havey, M. (2005). Essential Business Process Modeling. O'Reilly Media, Inc.

IEEE std. 610.12-1990 (1990). Standard Glossary of Software Engineering
Terminology, IEEE CS Press.

Jacobson, I. (2004). Use cases – yesterday, today, and tomorrow. Software and
Systems Modeling, vol. 3, no. 3, pp. 210-220.

Jacobson, I. and Ng, P. (2004). Aspect-Oriented Software Development with Use
Cases, Addison-Wesley Professional.

Jones, T.C. (1998). Estimating Software Costs. McGraw-Hill, Inc.

Jungmayr, S. and Stumpe, J. (1998). Another Motivation for Usage Models:
Generation of User Documentation. Proceedings of CONQUEST '98.

Kamsties, E. (2005). Understanding ambiguity in requirements engineering. In A.
Aurums and C. Wohlin, editors, Engineering and Managing Software Requirements,
Springer-Verlag, pp. 245–266.

Kaya, M. (2010). E-Cosmic: A Business Process Model Based Functional Size
Estimation Approach. MS Thesis, Informatics Institute, METU, Ankara, Turkey.

68

Lee, B. and Bryant, B.R. (2002). Automated conversion from requirements
documentation to an object-oriented formal specification language. In Proceedings of
the 2002 ACM Symposium on Applied Computing, SAC '02. ACM, New York, NY,
pp. 932-936.

List, B. and Korherr, B. 2006. An evaluation of conceptual business process
modelling languages. In Proceedings of the 2006 ACM Symposium on Applied
Computing, ACM, New York, NY, pp. 1532-1539.

Maiden, N.A., Minocha, S., Manning, K., and Ryan, M. (1998). CREWS-SAVRE:
Systematic Scenario Generation and Use. In Proceedings of the 3rd international
Conference on Requirements Engineering: Putting Requirements Engineering To
Practice, pp. 148-155.

Mendling, J. (2008). Metrics for Process Models: Empirical Foundations of
Verification, Error Prediction, and Guidelines for Correctness. Springer Publishing
Company, Incorporated.

Mendling, J., Reijers, H. A., and van der Aalst, W. (2010). Seven process modeling
guidelines (7pmg). Information and Software Technology, vol. 52, no. 2, pp. 127–
136.

Meziane, F., Athanasakis, N. and Ananiadou, S. (2008). Generating Natural
Language specifications from UML class diagrams. Requir. Eng. Vol. 13, no. 1, pp.
1-18.

Minoli, D. (2008). Enterprise Architecture A to Z: frameworks, business process
modeling, SOA, infrastructure technology. Boca Raton:, CRC Press.

Nicolas, J. and Toval, A. (2009). On the Generation of Requirements Specifications
from Software Engineering Models: A Systematic Literature Review. Information
and Software Technology, vol. 51, pp. 1291-1307.

69

och Dag, J.N. and Gervasi, V. (2005). Managing Large Repositories of Natural
Language Requirements. In A. Aurums and C. Wohlin, editors, Engineering and
Managing Software Requirements, Springer-Verlag, pp. 219-244.

Recker, J., Rosemann, M., Indulska, M. and Green, P. (2009). Business Process
Modeling - A Comparative Analysis. Journal of the Association for Information
Systems, vol. 10, no. 4, pp. 333–363.

Roser, S. and Bauer, B. (2005). A Categorization of Collaborative Business Process
Modeling Techniques. In Proceedings of the Seventh IEEE international Conference
on E-Commerce Technology Workshops, pp. 43-54.

Saeki, M., Horai, H., and Enomoto, H. (1989). Software Development Process from
Natural Language Specification. 11th International Conference on Software
Engineering.

Santander, V.F. and Castro, J. (2002). Deriving Use Cases from Organizational
Modeling. In Proceedings of the 10th Anniversary IEEE Joint international
Conference on Requirements Engineering, pp. 32-42.

Schach, S. R. (1995). Classical and Object-Oriented Software Engineering. 3rd ed.,
McGraw-Hill Professional.

Scheer, A.W. and Schneider, K. (2006). Aris - architecture of integrated information
systems. In P. Bernus, K. Mertins and G. Schmidt (Ed.), Handbook on Architectures
of Information Systems, pp. 605-623.

Scheer A.W., Kruppke, H., Jost, W. and Kindermann, H. (2006). Agility by ARIS
Business Process Management: Yearbook Business Process Excellence 2006/2007.
Springer-Verlag New York, Inc.

Specht, T., Drawehn, J., Thranert, M. and Kuhne, S. (2005). Modeling cooperative
business processes and transformation to a service oriented architecture. In 7th
International IEEE Conference on E-Commerce Technology, pp. 249-256.

70

Spivey, J.M. (1990). An introduction to Z and Formal Specifications. Software
Engineering Journal, vol. 4, no. 1, pp. 40–50.

Stolfa, S. and Vondrak, I. (2004). A Description of Business Process Modeling as a
Tool for Definition of Requirements Specification. Systems Integration 12th Annual
International Conference, pp. 463-469.

Su, O. (2004). Business Process Modeling Based Computer-Aided Software
Functional Requirements Generation. MS Thesis, Informatics Institute, METU,
Ankara, Turkey.

Tarhan, A., Gencel, C. and Demirors, O. (2007). Pre-Contract Challenges: Two
Large System Acquisition Experiences. Book chapter in Enterprise Architecture and
Integration: Methods, Implementation and Technologies, IGI Global.

van der Aalst, W. (1999). Formalization and verification of event-driven process
chains. Information and Software Technology, vol. 41, no. 10, pp. 639-650.

van der Aalst, W. M., Hofstede, A. H. and Weske, M. (2003). Business process
management: a survey. In Proceedings of the 2003 international Conference on
Business Process Management. W. M. Van Der Aalst, A. T. Hofstede, and M.
Weske, Eds. Lecture Notes In Computer Science. Springer-Verlag, Berlin,
Heidelberg, pp. 1-12.

van Lamsweerde, A. (2000). Formal specification: a roadmap. In ICSE '00:
Proceedings of the Conference on The Future of Software Engineering, pp. 147-159.

Westland, J.C. (2002). The Cost of Errors in Software Development: Evidence from
Industry. The Journal of Systems and Software, 62, pp. 1-9.

Wiegers, K.E. (2005). More about Software Requirements: Thorny Issues and
Practical Advice. Microsoft Press.

71

Workflow Management Coalition (1999). Workflow Management Coalition
Terminology & Glossary (Document No. WFMC-TC-1011). Workflow Management
Coalition Specification.

Yang, Y., He, M., Li, M., Wang, Q. and Boehm, B. (2008). Phase distribution of
software development effort. In Proceedings of the Second ACM-IEEE international
Symposium on Empirical Software Engineering and Measurement, pp. 61-69.

Yourdon, E. (2000). Managing Software Requirements. Addison Wesley Publishing
Company.

72

APPENDICES

APPENDIX A: A sample business process model developed in the

case study

Figure 11: eEPC model of “Nihai Ödeme” process

73

Figure 11: (continued)

74

APPENDIX B: Manually written requirements for a selected

business process

• Nihai Ödeme

• PFDS sistemi, proje toplam uygun maliyetlerinin belirlenmesi sırasında İDB

Uzmanı tarafından Ön Ödeme Miktarı, Ara Dönem Ödeme Miktarı, Proje

Uygun Maliyetleri, Temel Proje Raporları, Sözleşme Dosyası ve Ödeme

Kontrol Listesi’nin okunmasına ve Proje Nihai Destek Miktarı’nın

yaratılmasına olanak sağlamalıdır.

• PFDS sistemi, yararlanıcıya yapılacak toplam ödeme miktarının eş finansman

gerçekleşme oranına göre indirilmesi sırasında İDB Uzmanı tarafından

Başvuru Rehberi’nin okunmasına ve Proje Nihai Destek Miktarı’nın

değiştirilmesine olanak sağlamalıdır.

• PFDS sistemi, nihai ödemenin tespiti sırasında İDB Uzmanı tarafından Proje

Nihai Destek Miktarı, Ön Ödeme Miktarı ve Ara Dönem Ödeme Miktarı’nın

okunmasına, Ödeme Planı’nın değiştirilmesine ve Proje Nihai Ödeme Miktarı

ve Onay İsteği’nin yaratılmasına olanak sağlamalıdır.

• PFDS sistemi, nihai ödeme miktarının onaylanması sırasında GS tarafından

Ödeme Planı, Proje Nihai Ödeme Miktarı ve Onay İsteği’nin okunmasına ve

Onay Durumu’nun yaratılmasına olanak sağlamalıdır.

• PFDS sistemi, nihai ödeme miktarının sözleşmede belirtilen hesap

numarasına transfer talimatı ile iletilmesi sırasında İDB Uzmanı tarafından

Proje Nihai Ödeme Miktarı’nın okunmasına olanak sağlamalıdır.

• PFDS sistemi, kalan eksi değerin Ajans hesabına iade edilmesi için yazı

gönderilmesi sırasında İDB Uzmanı tarafından Proje Nihai Ödeme

Miktarı’nın okunmasına olanak sağlamalıdır.

• PFDS sistemi, Yararlanıcıdan geri ödeme ve ilgili bilgilerin tahsil edilmesi

sırasında İDB Uzmanı tarafından Proje Nihai Ödeme Miktarı’nın okunmasına

olanak sağlamalıdır.

75

• İş kuralları:

• Nihai ödemenin tespiti sırasında: Nihai destek miktarından Ajans tarafından

yapılan ödemelerin toplamı düşülerek bulunur.

• Nihai ödeme miktarının sözleşmede belirtilen hesap numarasına transfer

talimatı ile iletilmesi sırasında: Nihai raporun onaylanmasından sonra 30 gün

içinde hesaba aktarılır.

• Yararlanıcıdan geri ödeme ve ilgili bilgilerin tahsil edilmesi sırasında:

Yararlanıcı, nihai raporun onaylanmasından sonra 30 gün içinde hesaba

aktarmalıdır.

76

APPENDIX C: Function Allocation Diagrams for a selected process

Figure 12: Function Allocation Diagram for “proje toplam uygun maliyetlerinin

belirlenmesi” function in “Nihai Ödeme” process

Figure 13: Function Allocation Diagram for “yararlanıcıya yapılacak toplam

ödeme miktarının eş finansman gerçekleşme oranına göre indirilmesi” function

in “Nihai Ödeme” process

77

Figure 14: Function Allocation Diagram for “nihai ödemenin tespiti” function

in “Nihai Ödeme” process

Figure 15: Function Allocation Diagram for “nihai ödeme miktarının

onaylanması” function in “Nihai Ödeme” process

78

Figure 16: Function Allocation Diagram for “kalan eksi değerin Ajans hesabına

iade edilmesi için yazı gönderilmesi” function in “Nihai Ödeme” process

Figure 17: Function Allocation Diagram for “nihai ödeme miktarının

sözleşmede belirtilen hesap numarasına transfer talimatı ile iletilmesi” function

in “Nihai Ödeme” process

Figure 18: Function Allocation Diagram for “yararlanıcıdan geri ödeme ve ilgili

bilgilerin tahsil edilmesi” function in “Nihai Ödeme” process

79

APPENDIX D: Natural language specifications generated by tool

support for a selected business process

...

0. Süreç Adresi: KASA\01-PFDY
0.1. Süreç Adı: PFDY

1. Süreç Adresi: KASA\01-PFDY\01-PTÇ
1.1. Süreç Adı: Proje Teklif Çağrısı

…

69. Süreç Adresi: KASA\01-PFDY\01-PTÇ\05-PTÇ Uygulama\06-Ödemelerin
Gerçekleştirilmesi\02-Ara Ödeme
69.1. Süreç Adı: Ara Ödeme

…

70. Süreç Adresi: KASA\01-PFDY\01-PTÇ\05-PTÇ Uygulama\06-Ödemelerin
Gerçekleştirilmesi\03-Nihai Ödeme
70.1. Süreç Adı: Nihai Ödeme

70.1.1. PFDY.336:

Proje toplam uygun maliyetlerinin belirlenmesi sırasında, İDB Uzmanı tarafından PFDS
sistemi üzerinde Ara Dönem Ödeme Miktarı, Proje Uygun Maliyetleri, Ön Ödeme Miktarı,
Temel Proje Raporları, Sözleşme Dosyası, Ödeme Kontrol Listesi okunabilmeli, Proje Nihai
Destek Miktarı yaratılabilmelidir.

70.1.2. PFDY.337:
Yararlanıcıya yapılacak toplam ödeme miktarının eş finansman gerçekleşme oranına göre

indirilmesi sırasında, İDB Uzmanı tarafından PFDS sistemi üzerinde Proje Nihai Destek
Miktarı değiştirilebilmeli, Başvuru Rehberi okunabilmelidir.

70.1.3. PFDY.338:
Nihai ödemenin tespiti sırasında, İDB Uzmanı tarafından PFDS sistemi üzerinde Ödeme

Planı değiştirilebilmeli, Ön Ödeme Miktarı, Ara Dönem Ödeme Miktarı, Proje Nihai Destek
Miktarı okunabilmeli, Proje Nihai Ödeme Miktarı, Onay İsteği yaratılabilmelidir.

• PFDS sistemi üzerinde; nihai ödeme miktarı, nihai destek miktarından Ajans tarafından
yapılan ödemelerin toplamı düşülerek hesaplanabilmelidir.

70.1.4. PFDY.339:
Nihai ödeme miktarının onaylanması sırasında, GS tarafından PFDS sistemi üzerinde

Ödeme Planı, Onay İsteği, Proje Nihai Ödeme Miktarı okunabilmeli, Onay Durumu
yaratılabilmelidir.

80

70.1.5. PFDY.340:
Kalan eksi değerin Ajans hesabına iade edilmesi için yazı gönderilmesi sırasında, İDB

Uzmanı tarafından PFDS sistemi üzerinde Proje Nihai Ödeme Miktarı okunabilmelidir.

70.1.6. PFDY.341:
Nihai ödeme miktarının sözleşmede belirtilen hesap numarasına transfer talimatı ile

iletilmesi sırasında, İDB Uzmanı tarafından PFDS sistemi üzerinde Proje Nihai Ödeme
Miktarı okunabilmelidir.

• PFDS sistemi üzerinde; nihai ödeme miktarının, nihai raporun onaylanmasından sonra
30 gün içinde yararlanıcının hesabına aktarılması sağlanmalıdır.

70.1.7. PFDY.342:
Yararlanıcıdan geri ödeme ve ilgili bilgilerin tahsil edilmesi sırasında, İDB Uzmanı

tarafından PFDS sistemi üzerinde Proje Nihai Ödeme Miktarı okunabilmelidir.
• PFDS sistemi üzerinde; geri ödemenin, nihai raporun onaylanmasından sonra 30 gün

içinde hesaba aktarılması kontrol edilebilmelidir.

...

71. Süreç Adresi: KASA\01-PFDY\01-PTÇ\05-PTÇ Uygulama\07-Risk
Değerlendirmesi
71.1. Süreç Adı: Risk Değerlendirmesi

…

81

APPENDIX E: User manual for the requirements generation tool

Figure 19: User manual for the requirements generation tool – Steps 1 and 2

Figure 20: User manual for the requirements generation tool – Steps 3, 4 and 5

82

Figure 21: User manual for the requirements generation tool – Steps 6, 7, 8 and

9

