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ABSTRACT

AXISYMMETRIC FINITE CYLINDER WITH RIGID ENDS AND
A CIRCUMFERENTIAL EDGE CRACK

Durucan, Ayse Rusen
M.S., Department of Engineering Sciences
Supervisor: Prof. Dr. M. Rusen Gegit

August 2010, 158 pages

An axisymmetric finite cylinder with rigid ends and a circumferential edge crack is
considered in this study. The finite cylinder is under the action of uniformly
distributed loads of intensity p, at two rigid ends. Material of the finite cylinder is
assumed to be linearly elastic and isotropic. This finite cylinder problem is solved by
considering an infinite cylinder containing an internal ring-shaped crack located at
z =0 plane and two penny-shaped rigid inclusions located at z = +L planes.
General expressions of the infinite cylinder problem are obtained by solving Navier
equations with Fourier and Hankel transforms. This infinite cylinder problem is then
converted to the target problem by letting the radius of the rigid inclusions approach
the radius of the cylinder and letting the outer edge of the crack approach the surface
of the cylinder. Consequently, these rigid inclusions form the rigid ends and internal
crack form the circumferential edge crack resulting in the problem of a finite cylinder
with rigid ends having an edge crack. The problem is reduced to a set of three
singular integral equations. These singular integral equations are converted to a
system of linear algebraic equations with the aid of Gauss-Lobatto and Gauss-Jacobi

integration formulas and are solved numerically.

Keywords: Edge crack. Finite cylinder. Stress intensity factor. Rigid inclusion.
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CEVRESEL KENAR CATLAGI iCEREN
UCLARI RiJIT EKSENEL SIMETRIK SONLU SiLINDIR

Durucan, Ayse Rusen
Yiiksek Lisans, Mithendislik Bilimleri Boliimii
Tez Yoneticisi: Prof. Dr. M. Rusen Gegit

Agustos 2010, 158 sayfa

Bu caligmada dairesel kenar c¢atlagi igeren, uglar rijit eksenel simetrik sonlu silindir
problemi incelenmektedir. Incelenen sonlu silindir iki rijit ucundan p, siddetindeki
diizgiin yayili ¢ekme yiikiine maruz kalmaktadir. Malzemenin izotrop ve dogrusal
elastik oldugu kabul edilmektedir. Bu sonlu silindir problemi, z = +L diizlemlerinde
disk seklinde iki rijit enkliizyon ve z = 0 diizleminde halka seklinde bir i¢ gatlak
igeren sonsuz silindir kullanilarak ¢oziilmektedir. Sonsuz silindir probleminin genel
ifadeleri, Navier denklemlerinin, Fourier ve Hankel doniisiimlerinin kullanilarak
¢oziilmesiyle elde edilmektedir. Bu sonsuz silindir problemi rijit enkliizyonlarn
yari¢aplarinin silindir yarigapina ulasmasiyla olusan rijit uglar ve halka seklindeki i¢
catlagin dis kenarinin silindir yiizeyine ulagsmasiyla olusan kenar ¢atlagi iceren sonlu
silindir problemine dondstiiriillmektedir. Problem, {i¢ tekil integral denklemine
indirgenmekte, daha sonra Gauss-Lobatto ve Gauss-Jacobi integrasyon formiilleri

kullanilarak lineer cebrik denklemlere doniistiiriiliip ve sayisal olarak ¢oziilmektedir.

Anahtar kelimeler: Kenar ¢atlagi. Sonlu silindir. Gerilme siddeti katsayisi. Rijit

enkliizyon.
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CHAPTER 1

INTRODUCTION

Various engineering branches use machine elements which have numerous
discontinuities. These discontinuities may occur in the form of voids, notches, cracks
or inclusions. They are major factors affecting the load carrying capacities and
influencing the stress distributions in the bodies. They must be carefully examined,
because of the stated reasons. Stress distributions become infinity in the vicinity of
the inclusions and cracks as well as the corners of the elements. In these regions,

stress distributions can be calculated in terms of the stress intensity factors.

Stress intensity factors are related to the loading conditions and geometric properties
of the bodies. Loading conditions which affect the stress intensity factors may be
treated in three modes: (i) Mode 1, loading normal to the crack plane, (ii) Mode 11, in
plane shear loading and (iii) Mode 111, out of plane shear loading. Geometry and the
locations of the corresponding cracks, inclusions, notches and holes as well as
geometry of the body are some of the geometric properties affecting the related stress

intensity factors.

Machine elements with large probability of containing singularities are very
important in fracture mechanics. Finite cylinders are among these elements. Stresses
in the vicinity of the crack and inclusion tips alternate with singularity, regardless of
the configuration of the cracked element. In general, these sorts of problems may be
studied by numerical and analytical methods based on the solution of corresponding
partial differential equations. The assumption of linear elastic material allows to the

superposition of the stress and displacements. This superposition principle provides



the solution for complex finite cylinder arrangements analytically by using the

combination of simple cases.

In the light of the above discussions, several solutions for finite cylinder problems
containing edge cracks and penny-shaped inclusions can be found in the literature.
However, problem of the finite cylinder containing an edge crack has not been

solved by the method used in this research study.

1.1 Literature Review

Erd6l and Erdogan (1978) considered the problem of a long thick walled hollow
cylinder containing ring shaped internal or edge crack which is subjected to uniform
axial load and steady-state thermal stress. The problem was reduced to an integral
equation having a simple Cauchy kernel for the internal crack and a generalized
Cauchy kernel for the edge crack. Solutions were obtained for the stated loading

conditions in terms of stress intensity factors.

Chang (1985) obtained the general solution of the stress intensity factor of a finite
cylinder containing a concentric penny-shaped crack under torsion. The general
solution has been obtained by using Hankel transform and Fourier series. It has been
proved that the solutions of a penny-shaped crack in an infinite long cylinder and in a
circular plate of infinite radius may be derived from the general solution presented in

this work.

Zhang (1988) considered the problem of concentric penny-shaped crack in a finite
orthotropic cylinder under torsion. The general solution in terms of stress intensity
factors were obtained by using the Hankel transform and Fourier series. Results of
the study for mixed boundary value problem have been represented with the aid of a
Fredholm integral equation of the second kind. Also it was concluded that the
solutions of a concentric penny-shaped crack in an infinite long orthotropic cylinder
and circular plate of infinite radius may be derived from the general solution

obtained in this study.



Liang and Zang (1992) considered the problem of a concentric penny-shaped crack
of Mode Il in a finite cylinder. Solution of the problem was obtained by using the
Hankel transform and the Fourier series. Results were obtained in terms of stress
intensity factors. Furthermore, it was proven that the concentric penny-shaped cracks
in an infinite cylinder and infinite circular plate are special cases of the problem of a

concentric penny-shaped crack in a finite cylinder.

Meshii and Watanabe (2001) studied the development of a practical method to
calculate the Mode | stress intensity factor for an inner surface circumferential crack
in a finite length cylinder. Thin shell theory formed the bases underlying the
developed method in this study. The proposed method has been valid for relatively

short cracks and for a wide range of mean radius to wall thickness ratio.

Wu and Dzenis (2002) obtained a closed-form solution for the problem of a Mode 111
edge crack between two bonded elastic strips. The stress intensity factors for the
edge crack have been calculated. It was observed that, for the limiting particular

cases, the obtained results coincide with the results available in the literature.

Lee (2002) considered the problem of stress distribution in a circular cylinder with a
circumferential edge crack subjected to uniform shearing stresses. The crack was
located on a plane perpendicular to the axis of cylinder and the lateral surface of the
cylinder is free of stress. The problem was reduced to the solution of a couple of
singular integral equations by using a suitable stress function. These singular integral

equations were solved numerically and the stress intensity factors were obtained.

Lee (2002) considered the singular stress problem of a peripheral edge crack in a
long circular cylinder under torsion. Considered problem is solved by using Fourier
integral transform and reduced to the solution of two integral equations. The solution
of these two integral equations was obtained numerically by using the method given
in Erdogan et al. (1973). Finally, the stress intensity factors and crack opening
displacements are presented graphically. In addition to that, Lee (2002 & 2003)

considered the same problem for torsional and tensile loadings, respectively.



Kadioglu (2005) obtained an analytical solution for the linear elastic, axisymmetric
problem of edge cracks in an infinite hollow cylinder. The cylinder has been
subjected to uniform crack surface pressure. Considered problem has been reduced to
a singular integral equation with the unknown crack surface displacement derivative.
An asymptotic analysis was performed in order to derive the generalized Cauchy
kernel related to edge cracks. The resulting singular integral equation has been
solved numerically and the related stress intensity factors are presented for different

values of material and geometric properties.

Guo et al. (2005) studied the orthotropic strip with an edge crack. Varying material
properties have been assumed for the strip. The solution for the problem has been
obtained by using the Laplace and Fourier integral transforms. These integral
transforms have been used to reduce the problem to a singular integral equation.
Finally, numerical results of the stress intensity factors have been presented.

Toygar and Gegit (2006) considered the problem of an axisymmetric infinite
cylinder of linearly elastic and isotropic material containing a ring shaped crack and
two ring-shaped rigid inclusions. The problem has been reduced to three singular
integral equations. Then, these equations are converted to a system of linear
algebraic equations and solved numerically. Solutions have been presented in terms

of stress intensity factors.

Freese and Baratta (2006) obtained solutions for some linear elastic single edge-
crack configurations in terms of stress intensity factors. Solutions for various loading
conditions have been extracted from the solution of uniformly loaded single edge
cracked finite strip configurations. Results for the asymptotic behavior and a
common expression for the full range of crack length to strip width ratio has been

presented.

Kaman and Gegit (2006) considered the problem of a cracked semi-infinite cylinder
and a finite cylinder of linearly elastic and isotropic material. Solution for the
complex problem has been obtained by the superposition of simpler problems. Then,

the problem has been reduced to a system of singular integral equations. Next,

4



Gauss—Lobatto and Gauss—Jacobi integration formulas have been used to convert
these integral equations to a system of linear algebraic equations. Finally, this system

of linear algebraic equations has been solved numerically.

Yan (2007) considered the problem of a rectangular tensile plate containing an edge
crack. A boundary element method proposed by the author has been used to present
the stress intensity factors for the considered problem. Furthermore, stress intensity
factors of a crack emanating from an edge half-circular hole were calculated. Results
obtained in terms of stress intensity factors for two cases have been discussed and it
was found that the boundary element method used for the solution was accurate for

obtaining the stress intensity factors of crack problems in finite plates.

Kaman and Gegit (2008) considered the problem of an axisymmetric finite cylinder
of linearly elastic and isotropic material containing a penny-shaped transverse crack.
Solution of the complex problem was obtained by the superposition of simpler
problems. Moreover, the problem has been reduced to a system of singular integral
equations. Then, Gauss—Lobatto and Gauss—Jacobi integration formulas have been
used to convert these integral equations to a system of linear algebraic equations. The
system of linear algebraic equations has been solved numerically and the results were
presented in terms of stress intensity factors at the edges of the rigid support and the

crack.

1.2 A Brief Introduction and the Solution Method of the Problem

An axisymmetric finite cylinder with rigid ends containing an edge crack subjected
to a tensile axial load of uniform intensity p, at both ends is considered in this
research study. Material of the cylinder is assumed to be linearly elastic and
isotropic. Lateral surface of the cylinder, considered in this research study, is free of

stresses.

Formulation of the finite cylinder problem is obtained by a procedure starting with
considering an infinite cylinder, containing a ring-shaped crack located at z =0

plane and two rigid penny-shaped inclusions located at z = +L planes, subjected to

5



tensile axial loads of uniform intensity p, at infinity, and then letting the radius of the

inclusions approach the radius of the cylinder.

Solution for the infinite cylinder loaded at infinity having a ring-shaped crack and
two penny-shaped rigid inclusions is obtained by superposition of the following two
problems: (1) An infinite cylinder loaded at infinity with no crack or inclusion, (11) an
infinite cylinder with a ring-shaped crack and two penny-shaped rigid inclusions with

no load at infinity.

General expressions for the solution of the problem must contain sufficient number
of unknowns in order to satisfy all of the necessary boundary conditions. For this
purpose, the perturbation problem (1) is separated into three main subproblems in
terms of three infinite media; (lI-i) an infinite medium containing a ring-shaped
crack located at z = 0 plane, (1I-ii) an infinite medium containing two penny-shaped
rigid inclusions located at z = +L planes and (ll-iii) an infinite medium with no
crack or inclusion. Solution of these subproblems are obtained by applying Hankel
transforms to the first and the second media, in r-direction, as well as applying

Fourier transform to the third medium, in z-direction, on Navier equations.

With the combined general expressions for the stresses and the displacements, the
boundary conditions at the lateral surface of the infinite cylinder and the boundary
conditions on the crack and inclusion surfaces are satisfied. As a result, three singular

integral equations are obtained.

The infinite cylinder problem is then converted to the target problem, by letting the
radius of the rigid inclusions approach the radius of the cylinder and letting the outer
edge of the ring-shaped crack approach the lateral surface of the cylinder. As a result,
these rigid inclusions form the rigid ends of the cylinder and a finite cylinder with

rigid ends containing an edge crack is obtained.

Finally, these singular integral equations are converted to linear algebraic equations
by using Gauss-Lobatto and Gauss-Jacobi integration formulas. Then, these linear

algebraic equations are solved numerically to obtain the stress intensity factors at the

6



edges of the internal crack, at the root of the edge crack in infinite and finite
cylinders and at the edge of the rigid inclusions in infinite cylinder as well as at the

corners of the finite cylinder.



CHAPTER I

INFINITE CYLINDER PROBLEM

2.1 General Equations

An axisymmetric infinite cylinder of radius A with a transverse ring-shaped crack of
width (b — a) located at z = 0 plane and two penny shaped inclusions of radius
c located at z = +L planes is considered. This cylinder is under the action of
uniformly distributed tensile loads of intensity p, at infinity (Fig. 2.1). Material of

the cylinder is assumed to be linearly elastic and isotropic.

Stress-displacement relations (2.1a-c) and Navier equations (2.2a,b), Gegit (1986),

used for this type of problems, can be listed as follows,

arzﬁ[(ic+1)g—z+(3—x)<;+(;—:)],

azzﬁ[(x+1)g—:+(3—ic)<g—l:+z>],

u E)W)

Trz :#(G_Z-I_E (2.1a—-¢)

where o and 7 are normal and shearing stresses, u is the shear modulus.



T b

|

LT

Figure 2.1 Geometry and loading of the infinite cylinder.

0°u 1du u 0°u  0*w

(K+1)<—+ ———2>+(K—1)—+
T

ar2 ' ror 0z2 6raz=

0,

0°u 1du 2’w  1ow 2%w
2 +—-—]+k-1DD|=—+—-—)+&+1)=—=0.
ordz r oz r r or z

(2.2a,b)

where u and w are displacements in r- and z-directions in cylindrical coordinate

system, k = 3 — 4v and v is the Poisson’s ratio.

2.2 Formulation of the Problem

The complex problem of an axisymmetric infinite cylinder, containing a transverse

ring shaped crack and two rigid inclusions, under axial loading at infinity is solved

by the superposition of the following two simpler problems: (i) problem of an infinite

cylinder, without crack or inclusion, under axial tensile loading of uniform intensity



Do at infinity and (ii) problem of an infinite cylinder with a crack and two inclusions
subjected to the negative of the stresses at the location of the crack and
displacements at the location of the inclusions calculated from the solution of
problem (i) (Fig. 2.2).

T = HTTTHTT T eo

g
|§

]
?
I

LT LHTEEELEELP

(i) Uniform Solution (ii) Perturbation Problem Superposition

Figure 2.2 Superposition scheme for the solution of the infinite cylinder problem.
2.2.1 Uniform Solution
The problem of an infinite axisymmetric cylinder of radius A loaded at infinity with
an axial tension of uniform intensity p, is considered. For this type of problems, it
may be expected that u and w is independent of zand r, respectively.

u(r,z) = u(r),

w(r,z) = w(z). (2.3a,b)
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In case of uniform axial loading, Egs. (2.2a, b) are uncoupled and turn into

d’u 1du u

Z "4 =0,
dr2+rdr r2

d*w
dz?

= 0. (2.4a,b)
Eqgs. (2.4a, b) are solved with the following conditions

u(0) =0,

w(0) =0,

0,(4,z) =0,

Tr2(4,2) = 0,

0,(r, ) = po. (2.5a—e)

The solution can be easily obtained in the following form

(k — 3)po
uuniform(r) = _mr,

W (z) = —ﬂz,
uniform ,LL(K _ 7)

O-runiform(r’ Z) =0,

UZuniform(r’ z) = Do,

11



(r,z) = 0. (2.6a —e)

T ,
TZuniform

2.2.2 Perturbation Problem

The displacement expressions and the stress components for perturbation problem of
an axisymmetric infinite cylinder, containing a transverse ring shaped crack and two
rigid inclusions, with no loads at infinity can be obtained by adding the general
expressions of (l1-i) an infinite cylinder containing a transverse ring-shaped crack of
width (b — a) located at the symmetry plane of z = 0, (llI-ii) an infinite cylinder
having two penny-shaped rigid inclusions of radius c located at z = +L planes and
(H-ii1) an infinite cylinder without crack or inclusion under the action of arbitrary
axisymmetric loading (Fig. 2.3). This procedure is implemented to have sufficient
number of unknowns in order to satisfy all of the boundary conditions that are

required.

g
g
g

g

(o]

1
! z \Z
L =
+ = <

l—»
1
VA
]_C
: : LA :
1 1 — 1
1 1 L 1 1
: 1 1 : 1
1 1 1 1
| | | |
1 1 1 1
: : : :
(1-1) (1-ii) (1-iii) )
Hankel transform Hankel transform Fourier transform Perturbation
in r-direction in r-direction in z-direction Problem

Figure 2.3 Addition of solutions for the perturbation problem.
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Solution for the infinite medium (0 < r < o) gives general expressions for the
infinite cylinder (0 <r < A) by imposing appropriate boundary conditions at
r=A.

Symmetry about z = 0 plane allows to consider the problem only in the upper half

plane(z > 0).

2.2.2.1 Infinite Medium Having a Ring Shaped Crack

In this case, a ring-shaped transverse crack of width (b —a) is located at the
symmetry plane of z = 0 in an infinite medium. Considering an infinite medium with
Region i-1 (0 <r <®,0<z <) and Region i-2 (0<r<on,0<z< —©),
using integral transforms, H, Hankel transform, Sneddon (1972), of Eg. (2.2b) and
H, transform of Eq.(2.2a), in r-direction (Fig. 2.4) and combining the resulting

equations, gives,

Region i-1

Region i-2

Figure 2.4 Infinite medium having a ring-shaped crack.

v ,dU
F—Zp E-Fp :0, (27)
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where p is the Hankel transform variable, U(p, z) is H; Hankel transform of u(r, z)

and W (p, z) is H, Hankel transform of w(r, z) in r-direction

0

Up,2) = f u(r, 2)r); (pr)dr,

0
W(p,z) = foow(r, z)r]o(pr)dr, (2.8a,b)
0

where J, and J; are the Bessel functions of the first kind of order zero and one,

respectively.
Solution of Eq. (2.7) for the Region i-1 (0 < r < 0,0 < z < ) (Fig. 2.4) gives
Ui_1(p,z) = (c; + c32)e P + (c3 + c42)eP?, (2.9)

where ¢, ¢,, c3 and c, are arbitrary unknown constants. Back substitution to the

transformed ordinary differential equations gives
K K
W,_1(p,z) = [01 + (z + E) cz] e P? — [C3 + (z — ;) c4] ePZ, (2.10)

The unknown constants c; and c, must be zero in order to have finite displacements

in the upper semi-infinite domain(z — ). Consequently,
Ui—1(p,z) = (¢1 + c22)e™7?,
: = 3 -pz
W;,_1(p, 2) [c1 + (z + p) cz] e Pz, (2.11a,b)

Displacement components can be obtained by taking the inverse transforms of
Egs. (2.11a, b)
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ui—1(p,z) = f (c1 + c2z)e™P?p], (pr)dp,
0

wi_1(p,z) = fOOO [cl + (z + g) cz] e P“pJ,(pr)dp. (2.12a,b)

Substituting Egs. (2.12a,b) in Egs.(2.1a-c), the following expressions can be
obtained for the stress components in the Region i-1 (0 < r < 00,0 < z < )

o0

—ny P
sy =i [ =2 + e 2 Goradp

0

+u f [2p(c1 + c22)+(x — 3)cz] e7P?pJo(pr)dp,
0

0

0os(r2) = b [ [=2p(es + c22) = e+ Dezle™plo (pr)d,
0

0

Trgy,(1,2) = .Uf [=2p(cy + c32) — (k — Dczle™P?pJi (pr)dp. (2.13a—¢)
0

A similar procedure is implemented for Region i-2 (0 <r <o,0 <z < —) t0o

obtain the displacement and stress expressions,

Ui_2(p,z) = (c5 + cg2)e??,
K
W,_,(p,z) = [—c5 — (z — E> c6] eP?, (2.144a,b)

Displacement components can be obtained by taking the inverse transforms of Egs.
(2.14a, b)

ui—2(p,2) = f (cs + cez)eP*pJi(pr)dp,
0

15



wizp2) = | e (- ) ce| e#*ptuCordp. (2.15a,b)

Substituting Egs. (15a,b) in Egs. (2.1a-c), the following expressions can be obtained

for the stress components in the Region i-2 (0 < r < 0,0 < z < —©)

0

p
a2y =k [ =205 + coer 2y, (oradp

0

tu f [20(cs + cez)—( — 3)ce] eZpJo(pr)dp,
0

0

0oa12) = b [ [=2p(cs + cg7) + e+ Dgle?plopr)dp,
0

0

traa(r2) = i | [2p(es + c67) = G = Degle?ny (pr)dp. (2162 0)
0

General expressions given in Egs. (2.12a,b) and (2.13a-c) for Region i-1
(0<r<wn0<z<w») and EQgs. (2.15a,b) and (2.16a-c) for Region i-2
(0 <r <m0 <z< —wo) must satisfy the following conditions:

O-Zi—l (T, O+) = O-Zi_z (TI O_), (0 S r < OO)

TT'Zi_l (T, O+) = TT‘ZL'_Z (rl 0_)1 (0 S r < OO)

uj_1(r,0") = u;_,(r,07), (0<r<wx)

wi_1(r,0%) = w;_,(r,07). 0<r<ab<r<own) (2.17a—d)
It should be noted that, Eqs. (2.17a, b) are stress type continuity conditions while

Egs. (2.17c, d) are displacement type. Eq. (2.17d) may be replaced with Eq.(2.18) in
order to have the same type of continuity conditions,

16



% [wy(r,01)] — % [w,(r,07)] = 2m(r), (a<r<b) (2.18)

where m(r) , is the new unknown function such that m(r) =0 when
(0 <r<a, b <r < ). The constant unknowns c;, c,, cs and c¢ can be expressed

in terms of M (p) as;

c _k—1M(p)
17 k+1 p

)

2
=———M(p),
&) c+ 1 ()

_k—=1M(p)
ST+l p
Co =7 1M(p), (2.19a—4d)

using the boundary conditions given in Egs.(2.17a-c) and Eqgs.(2.18) , where

b
M(p) = j m()r)y (pr)dr. 2.20)

Subsequently, the displacement and the stress expressions for Region i-1

(0 <r <o, 0 <z<x),shownin Fig. (2.4) turns into;

0

1
u;_1(p,z) = " [k — 1 —2pz]M(p)e™P?p],(pr)dp,
0

0

wi1(p,z) = [k — 1 —2pz]M(p)e~P*p]o(pr)dp,

k+1),

2 ” 1
Ori1(12) = Fﬂ fo [(2pz =1+ 1)~ J1(pr) +2(1 = p2)plo (pr)IM(p)e ™ *dp,
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0

4p
0z, (1 2) =-—— | lpz +1]M(p)e™*pJo(pr)dp,
0

o0

4p _
Tz, (1 2) = | pzM(p)e™*pJi(pr)dp. (2.21a—e)
0

2.2.2.2 The Infinite Medium Having two Inclusions

In this case, two penny-shaped rigid inclusions of radius c are located at the
z = +L planes in an infinite medium. Considering an infinite medium with
Region ii-1 (0 <r <ow,—L <z <L), Region ii-2 (0 <r <ow,L <z<x) and
Region ii-3 (0 <r <ow,—L <z < —), using integral transforms, H, Hankel
transforms of Eq.(2.2b) and H, transform of Eq.(2.2a) in r-direction (Fig. 2.5),
solution of Eq.(2.7) for the Region ii-1 (0 < r < o, —L < z < L) is obtained as

U(p,z) = (c; + cgz)e ™% + (cq + c192)e"?, (2.22)

where ¢, cg, ¢g and c;, are arbitrary unknown constants. Back substitution to the

transformed ordinary differential equations gives
K K
W(p,z) = [07 + (z + E> Cg] e P? — [Cg + (z — ;) C1o] ef?. (2.23)

Displacement components in the Region ii-1 (0 <r <o,—L <z <L) can be

obtained by taking the inverse transforms of Eqs.(2.22) and (2.23)

o]

i1 (p2) = f [(Cs — c102)e ™7 + (o + cr02)eP?]p]1 (pr)dp,
0

wii1(p,z) = Lw{[% - (Z + g) C10

K
+ [_Cg - (Z - ;) C10

ePZ} olo(or)dp . (2.24a,b)
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Substituting Egs. (2.24a,b) in Egs.(2.1a-c), expressions for the stress components can
be obtained in the Regionii-1 (0 < r < o,—L <z <L) as

o0

o, (1, 2) = #.f [2(—cq + c192)e7P% — 2(co + ¢192)eP?] 511 (pr)

+u fw{[z,o(cfa — €102)—(c — 3)cqp] e7P7
0

+ [2p(co + c102)—(k — 3)c10] €P?}pJo(pT)dp,

0y, (1,2) = .Uf {[—2(co — €102) + (1 + D)cyple™#?
0

+ [=2(cg + €102) + (k + DcyoleP?}plo(pr)dp,

0

Tray. (1 2) = i f [=2p(co — c107) + (k — Deygle??
0

+ [2p(cq + €102) — (1 — DcyoleP?p)y (pr)dp. (2.25a—¢)

Expressions for the Region ii-2 (0 < r < oo, L < z < o) are obtained similarly in the

form,
Uji—2(p, z) = j (c; + cgz)e™P?p]i (pr)dp,
0

wi-2(p.2) = [} [er + (24 %) | e=PpJo(or)dp, (2:263,b)

00

—ps P
ra(r7) = 1t | =206 + e 2y Gor)dp

0

i j [20(¢y + caz)+(c — 3)cg] e=P%pJo (pr)dp,
0

o0

aia(r7) = b | [=2p(es + co2) = (x + Digle #*ploor)dp,
0
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0

Trzii, (r,z) = Hf [—2p(c7 + cgz) — (k — 1)cgle™P?p]1 (pr)dp. (2.27a—0¢)
0

Region ii-2

Figure 2.5 Infinite medium having two penny-shaped rigid inclusions.

General expressions given in Egs. (2.24a,b) and (2.25a-c) for Region ii-1
(0<r<ow—-L<z<L) and Egs. (2.26ab) and (2.27a-c) for Region ii-2

(0 <r<owL <z<xo) mustsatisfy the following conditions.

0y, ,(r,L7) =0, ,(r,L7), (c<r<w)
Trgy (1 L7) = Ty, (1, LY), (c<r<wm)
W1 (r, L7) = wy, (1, L), (0<7r <o)
wii_1(r, L7) = wy;_,(r, LY), (0<r<w) (2.28a —d)
T, L) =1, (r,L7) = pi(r), (0<r<o)

20



0z, ,(r LY) —0,, (r,L7) = p,(r), 0<r<ec) (2.29a,b)

where p;(r) is jump in the shearing stress 7,, and p,(r) is jump in the normal
stress g, through the rigid inclusion. The unknown constants can be calculated
from Eqgs.(2.28) and (2.29):

c; = m{[—(ﬂ +1)Py(p) + pLP;(p)]eP* + [pLP,(p)

+ (pL — )Py (p)]e™P"},

%= kD) [P1(p) cosh(pL) — P,(p) sinh(pL)],

% = it T T PLP(R) + Po(0)] — kP (o)},

0= T T D [P1(p) + P(p)]e™*t, (2.30a — d)

where

Pi(p) = ] p1(r)r]1(pr)dr,

0

Cc

Py(p) = ] Py (F)rJo(pr)dr. (231a,b)
0

The displacements and the stresses for Region ii-1 (0 <r < ow,—L <z <L) are

written as;

1 [ee]
wi—1(p, 2) = mjo {[p(z + L) — k]P,(p) + p(z + L)P,(p)}eP=+D)

+ {[—p(z — L) — k]Py(p) — p(z — LY)P,(p)}eP = D), (pr)dp,
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1
wii—1(p,z) = 2u(c + 1)

+{p(z — L)P,(p) + [p(z — L)—k]P,(p)}eP@ )], (pr)dp,

f ({p(z + L)P,(p) + [p(z + L)+k]P,(p)}e PE+D)
0

Orip-s (7 2) = 2(K1+ 1)
+[2p(z + L) + (k — 3)]P,(p)}e~P=*L)
+{[-2p(z - L) — (k + 3)]P1(p)
+[=2p(z = L) + (i = 3)]P,(p)}e”ED)pJo(pr)dp
Z(Kl-l- 1)
—2p(z + L)P,(p)}e P+l

f {[20(z + L) — (x + )P, (o)
0

4 j ({[~2p(z + L) + 2K]Py(p)
0

1
+{[2p(z = L) + 2k]P,(p) + 2p(z — L)P, (p)}ep(z‘”>;]1 (pr)dp,

1 o]
e (2) = gy | ({7200 4 ) + o= DIPLGR)
+[=2p(z+ L) = (e + D]P(p)}e P+

+{[2p(z—=L) + (x — 1]P,(p)
+[2p(z — L) — ( + 1)]P2(p)}eP@ D) pJo(pr)dp,

1 0
tr20s (10 = gy ) (20040 + (e + DIAG)

+[2p(z + L) — (k — D]P,(p)}e P+
+ {[-2p(z— L) — (x + D]P1(p)
+[—2p(z — L) + (x — DIP,(p)}e?@ D)l (pr)dp.  (2.32a—e)

The displacements and the stresses for Region ii-2 (0 <r < ow,L <z < ) are

written as;

1
2u(k + 1)

+ {[+p(z — L) — k]Py(p) — p(z — L)P,(p)}e~P@=1)], (pr)dp,

wi—o(p, 2) = f {[p(z+ L) — k]P,(p) + p(z + L)P,(p)}eP=+D)
0
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1 o0
Wia(p2) = o | (0 IP(D) + (2 + LBy (p))e e
0
+{p(z — L)P,(p) + [—p(z — L)—k]P;(p)}e =P L) (pr)dp,
i) = 55y | (020041 = (et DIRiGp)

+[2p(z + L) + (. — 3)]P,(p)}eP#*h)
+{[2p(z — L) — (k + 3)]P,(p)
+[-2p(z — L) — (k — 3)]P,(p)}e P )pJy (pr)dp

1 o0
ST ), (20 1)+ 261 )

~2p(z + L)P,(p)}e 7D
+{[-2p(z— L) + 2P, ()

+

1
+2p(z - L)P, (p)}e‘p(z‘”);h (pr)dp,

1 o0
s (2) = 5y | ({720 4D + = DIPLGR)

+[=2p(z + L) = (i + D)]P(p)}e~P*D
+{[-2p(z - L) + (k — D]P1(p)
+[2p(z — L) + (k + D]P,(p)}e P D)pJy (pr)dp,

1
2(k+1)

+[=2p(z + L) — (k = D)]P,(p)}e~PE*D
+{[=2p(z = L) + (x + D]P1(p)

j ({[~2p(z + L) + (i + DIP,(p)
0

Trzii—Z (r’ Z) =

+[2p(z — L) + (k — DIP(p)}e P& D)p) (pr)dp.  (2.33a—¢)

2.2.2.3 Infinite Medium under the Action of Arbitrary Axisymmetric Loading

The infinite medium problem without cracks or inclusions is considered in this

section. Solution of this problem may be obtained by taking the Fourier cosine

transform, Sneddon(1951), of the first Navier equation, Eq.(2.2a), and the Fourier
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cosine transform of the second Navier equation, Eq.(2.2b), in the z-direction and
combining the resulting equation. Finally, the following equation can be obtained:;

d*u d3u d*u dUu
4 Cc Cc _ 4 2 4 _ 3 _ ¢ 4 2 _
x P + 2x I3 (2x* + 3x%) 12 (2x° — 3x) Tx + (x* + 2x* = 3)U,
=0, (2.34)
where U, is the Fourier cosine transform of u(r, z).
U.(r,a) =] u(r,z) cos(a, z)dz, (2.35)
0

x = ar and a is the Fourier transform variable. Notinging that Eq. (2.34) may be
written in the form, McLachlan(1934),

A1(AU.) + A3(ALU) =0, (2.37)

where A;,A,, Az and A, are second order linear ordinary differential operators with

variable coefficients in x:

A= 2d2 3 d 243
1= X dx? xdx x ’
2
A= x?— ——x%-1
2= X dx2+xd X ,
2 d
A= 3_— 2_— 3_4
3= X d2+x Tx X X,
A= i d +1 (2.37)
4_xdxz dx x x’ '

solution of Eq. (2.34) may be obtained from the second order ordinary differential

equations
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AZUC = 0, A4UC:0, (238)

in the form of
1 1
U (r,a) = — 501111 (ar) + §C12K1 (ar) + cizarly(ar) + ciparKy(ar), (2.39)

where c¢;4,¢15,¢13 and ¢y, are arbitrary constants and I,, K,,I; and K; are the
modified Bessel functions of the first and second kinds of order zero and one,

respectively. Due to symmetry about z-axis, c¢;, and c;4 must be zero (Fig. 2.6).

Similarly,
W,(r,a) = %clllo(ar) —ci3[(k + DIy(ar) + arl,(ar)], (2.40)

is obtained where W;(r, a) is the Fourier sine transform of w(r, z),
W,(r,a) = f w(r, z) sin(a, z)dz. (2.41)
0

By taking the inverse transforms of EQs.(2.39) and Egs.(2.40), the displacement

components are obtained as

21 1
Usourier (1,2) = ;f [—§C1111 (ar) + cyzarly(ar)|cos(az) da,
0

2 (*11
Wrourier(T)2) = ;J [E c11lp(ar)
0

— c13[(k + DIy(ar) + arly (ar)]l sin(az) da. (2.42a,b)
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Region iii-1

Region iii-2

Figure 2.6 Infinite axisymmetric medium with no crack or inclusion.

By substituting Eqg.(2.42) in Eq.(2.1), expressions for the stress components can be

obtained as

2p (7 I (ar)
O-rfourier(r' Z) = ?J;) {Clll r - OZIO(CZT)

+ c13[(k — Daly(ar) + Zazrll(ar)]}cos(az) da,

2u [~
GZfourier(T' z) = ?Jo {cr1aly(ar)

—c3[(k + Saly(ar) + 2a?rl,(ar)]} cos(az) da,

2u [~
e pourier 02) = o | (evaas(an)

—cy3[(k + Daly(ar) + 2a?rly(ar)]} sin(az) da. (2.43a—0¢)
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General expressions for the infinite medium with two penny shaped inclusions, a ring
shaped crack, subjected to arbitrary axisymmetric loads, can be obtained by adding

the individual expressions:

uperturbation = Ucrack +uinclusi0ns +ufourierr

Wperturbation = Wcerack +Winclusions+Wfourier'

+o

O-Tperturbation = O-Tcrack-l_o-rinclusions

T fourier’
aZperturbation =0z crack +0o, inclusions +GZf0urier’
TTZperturbation = TTZcrack +T7"Zinclusions +T7‘Zf0urier' (2.4461 o e)

These expressions can be used as the expressions of the perturbation problem, for an
infinite cylinder with a surface free of stress, providing that they satisfy the

homogeneous boundary conditions given below:

(4,2) =0, (0<z <)

a”perturbation

(4,z) =0, (0<z<x) (2.45a,b)

TTZperturbation

Eqs.(2.45) with (2.12), (2.13), (2.24),(2.25), (2.26), (2.27) and (2.44) give

cllall(aA) - C13[(K + Dal,(ad) + 24a?1y(aA)]

sin (aL) —(K —1)(a? + p2)p? — 2(p? — a?)p?

u(e +1) J, (a? + p2)? lh(PA)Pz (p)dp
;. cos(al) a(k + 1) (a® + p*)p + 4ap

u(K +1) j l (a? + p?)? lh(pA)Pl(p)dp,
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ciraly (@A) — ci3[(k + Daly(ad) + 2Aa?1,(aA)]

K+ 1f [(az Z)lel(PA)M(P)dP
sm (aL) 2(p? — a?)p? (rc —1)p?
u(}c + 1)_[ I (a? + p?)? a? + p? J1(pA)P,(p)dp
cos(al) 4ap?
ple+1)J, |(a? + p?)?
— 1
+ (alc2+p)2apl J1(pA) P, (p)dp. (2.46a,b)

Solution of Egs. (2.46) give

C11
_ (e = Dadly(ad) + 222421 (aA)]E; + [(k + DaAl (@A) + 2a®A%1(aA)]E,
B 2a343[1,% (@A) — L2 (ad)] + (k + DAl *(ad)

aAl, (aA)E, — [I,(aA) — aAl,(aA)]E;

2a3A3[]12(aA) _ IOZ(aA)] + (k+ Dadl(ad)’ (2.47a,b)

C13 =
By using the integral formulas in given Appendix A, it may be shown that

E, = Ki_l_lfabm(t)t{élazA[AKo(aA)Il (at) — tK,(aA)ly(at)]} dt
cos(al)

2u(k+1) J,

+ 2atK, (aA)l,(at) — 2aAKy(aA)I; (at)]}dt

sin(al)
2u(x +1) Jg

— 2atK; (aA)I;(at) + 2aAK,(aA)l,(at)]}dt,

i p1(Ot{2aA[—(k + 1)K, (aA) I, (at)

sz (O t{2aA[—(k + DK, (aA)Iy(at)
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b
E, f 2m (Ot {(c + 1)K, (@A), (at) — 2atK, (@A)l (at)

Tk +1
+ 2aAKy (@A), (at) + 2a?A[AK, (aA)I; (at) — tKy(aA)ly(at)]} dt

cos(al) (€

+ e D)), p1(D)t[4a?AtKy(aA)ly(at) + 4atK, (aA)l,(at)

—4(a?4% + k + DK, (aA) ] (at) — 2(k + 3)aAK,(aA) ], (at)]dt
sin(al) (¢

+ PCES p(t)t[—4a?AtK,(aA)l; (at)

+ 4a?A%K, (aA)ly(at) — 4atK,(aA)l,(at)

- 2(kx

— 1 aAKy(aA)l,(at)]dt. (2.48a,b)

The general displacement expressions and stress components for the perturbation
problem of an infinite cylinder with a crack, two inclusions and a stress-free surface

turn into:
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1 b 0
et or(r,2) = 17 | mOt ([ e =1~ 2021 ,o1) i or)p

2 1”1
+ —f —{{2at[k + 1+ d; + d,d3]aAly(at)
)y do

—[2d; + (k + 1)(d, + dyd3)]aAlL (at)}, (ar)
—2[2a%Atly(at) — (d, + d1d3)aA11(at)]arIO(ar)} cos azda) dt

1 c 0 oo
+mﬁp1(t)t(fo {[p(z + L) — k]e=P@+D)

—[p(z — L) + k]e?@ D}, (pt) ], (pr)dp

2 (71
- —f —{{2at[k + 1 + d, + dyds]adl(at)
), do

—[2d; + (k + 1)? + 2(k + 1)(d, + dyd3)]aAlL (at)}, (ar)
+ 2[-2a?Atly(at)
+ (k+1+d, + dd3)aAl (at)]arl, (ar)} cos aL cos azda) dt

1 C ) -p(z+
+m10pz(t)t<jo {p(z + L)e=PE+L)

—p(z— L)ep(Z_L)}]o(Pt)h(Pr)dP

2

*1
_ ;jo d_o{{[Zdl — (k + 1)?]aAly(at)

—2at(k + 1+ d, + dd3)aAlL (at)}, (ar)
+ [Z(K + 1 - dz - dldg)aAlo(at)

+ 4a?Atl (at)]arl, (ar)} sin aL cos azda) dt,
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1 b o)
Weyt per (7, 2) = — f m(o)t fo [~k — 1 — 2pzle™"%J, (pt) Jo(pr)dp

2 (1
+ —f —{{2at[k + 1 — d;, — dyd3]aAly(at)
)y do

+[2d; — (k + 1)(d, + dqd3)]aAlL (at)}H,(ar)
+ 2[2a%Atly(at) — (d, + d1d3)aA11(at)]ar11(ar)} sinazda) dt

1 c »
2ulc + 1) —-p(z+L)
¥ 2u(x + 1)fO pl(t)“fo {p(z + L)e P+l

+ p(z — L)eP@ DY (pt)]o (pr)dp

2 (1
), do

+ [2d; — (k + 1)?]aAlL (at) }(ar)
+ 2[2a?Atly(at)
—(k+1+d, +d,d3)aAl(at)]arl, (ar)} cos aL sin azda) dt

1 ‘ N —p(z+
* et T ) PO (e 4 1) + e

+ [p(z — L) — k]e?@ DY (pt)]o (pr)dp

_2 [ " (-2 + (107 — 20+ D(d; + dydy)adlo(at)
)y do

—2at(k +1—d, — dyd3)aAl (at)},(ar)
+ [_Z(K + 1 - dz - d1d3)aA10(at)
— 4a?Atl, (at)]arl, (a:r)} sin aL sin azda) dt,

31



2 b 0
Or eyt .per.(r' z) = _uf m(t)t (Zf p(1—pz)e™P?];(pt) Jo(pr)dp
]1(P )

f @2pz - K + 1) e 7], (pt)

2

*1
— —f {{ 2at[2 + d, + dids]aAly(at)
)y do

+ 2(d; + d, + d,d3)aAl; (at)}aly(ar)
+ {2at(k + 1+ d, + d,d3)aAly(at)

—[2d, + (x + 1)(dy + did3)]aAl (at)} 1( r)

+ [2a?Atly(at) — (d, + d1d3)aA11(at)]Zazrll(ar)} cos azda) dt

1 c %
N mj p1(Dt <j ([-2p(z + L) + K + 3]e~P@+L)
0 0
+[2p(z = L) + k + 3]1eP@DYpl, (pt)]o (pr)dp
+ foo{[Zp(z + L) — 2x]e~PE+D)
0

p(z— L)}jl(p )

+[=2p(z - L) — 2k]e J1(pt)dp

2”1
+ —f 7 {{4at[2 +d, + dyd;]aAly(at)
0

—[4d; +4(k + 1) + 2(k + 3)(d;, + d,d3)]aAL (at)}al,(ar)
+ 2[-2a?Atly(at) + (k + 1 + dy + did3)aAl (at)]2a?rI, (ar)

+ {—4at[k + 1 + d, + d,d;]aAly(at)
+2[2d, + k2 -1

+ 20+ 1)(d, + d1d3)]aA11(at)}Il(ar

1 ¢ ®

2+ 1) f pZ(t)”f {[-2p(z + L) — k + 3]e~P+D)
0 0

+[2p(z — L) — k + 3]eP@DYpJo (pt)] s (or)dp

+ foo{Zp(Z N L)e_p(Z+L) —2p(z - L)e p(z— L)}ll(P T)
0
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2”1
)y do

+[4d; —4(k+ 1) — 2(k — 1)(d, + dq d3)]|aAly(at)}aly(ar)
+ {2[-2d; + (k + 1)?]aAly(at)

I (ar)

+ 4atlk + 1+ d, + d,ds|aAl (at)} "

+{2(k +1—d, — dyd3)aAly(at)
+ 4a?Atl (at)}2a?rl; (ar)} sin aL cos azda) dt,

3 4‘/1 b 0 oz
Oz eyt .per.(r’ z) = mja m(t)t (fo p(pz + 1) e P?],(pt)]o(pr)dp

1r°1
- —f —{{2at(—4 + d; + dyd3)aAly(at)
), do

+ [—2d, + 4(d, + did3)]aAlL (at)}al,(ar)
+ {—2a?Atl,(at)
+ (dy + dids)aAl (at)}2a?rI (ar)} cos azda) dt

1 ¢ ®
N Mf p1(6)t (f {[Zp(z + L) — (k—1)]e Pt
0 0

+[-2p(z — L) — (x — D)]e” @ D}p], (pt)]o (pr)dp

2 (71
), do

+2[2d; —4(k + 1) + (k — 3)(d, + d,d3)]aAlL (at)}al,(ar)
+ {4a?Atly(at)
—2(14+k+d, + d1d3)aA11(at)}Zazrll(ar)} cos aL cos azda) dt

1 (c -
_mf pz(t)ﬂf ([20(z + L) + (i + 1)]eP+D)
0 0

+[—2p(z — L) + (x + D]ePE D}l (pt)]o (pr)dp

= "L {f-202d; + 40 + 1) — (c + 5)(dy + dyd)]aly(at)
)y do

+ 4at(—4 + d, + d,d3)aAl (at) }al,(ar)
+{-2(1+x—d, —dyd3)aAl,(at)

— 4a?Atly (at)}2a%rl (ar)} sin aL cos azda) dt,
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TTchl .per. (1", Z)

where

au [P .
K flfa m(t)“_l; p*ze P?] (pt)];(pr)dp

171
- f —{(2at(d, + dids)adly(at) - 2d;@dl; (at)}al, (ar)
0 0

+ {—4a?Atl,(at)
+ 2a(d, + d1d3)aA11(at)}arIO(ar)} sin azda) dt
1 c o o

3D, O 120G+ 1)~ e+ ey
+[2p(z = L) + (i + 1)]eP"B}p), (pt)]; (pr)dp
+Efool{{—4at(d + dqd3)aAly(at)

7), do 2 T aid;3 0
+ 2[2d; + (k + 1)(d, + dqd3)]aAl (at)}al, (ar)
+ 2{4a?Atl,(at)

—2a(l1+k+d, +d,d3)aAl (at)}arl, (ar)} cos aL sin azda) dt

1 c ®
20+ 1)] pZ(t)“f {[20(z + L) + (x — 1]e~P@+D
0 0

+[2p(z — L) — (k — D]eP @ D}ply(pt) ], (pr)dp
2

©1
+ E]O d_o{{z[_Zdl + (k + 1)(d; + dyd3)]aAly(at)

+ 4at(d, + dids)aAl (at)}al, (ar)
+ 2{—26{(1 + K — dz - d1d3)aA10(at)

— 4a?Atl (at)}arl, (ar)} sin aL sin azda) dt, (2.49a —e)

dy = [2a343 + aA(x + D]I?(ad) — 2a3A31¢(ad),

d; =1+ K+ 2a?4?,

dz = zazAzlo(aA)Ko (O(A),

dz = I, (aA)K,(aA),
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integrals of Bessel functions are given in terms of the complete elliptic integrals K

and E in Appendix B.

2.2.3 Superposition

The displacement and the stress expressions for the infinite cylinder containing a ring
shaped crack located at z = 0 plane, two penny shaped inclusions located at z = +L
planes and subjected to axial tension of uniform intensity p, at z = +oco are obtained
by the superposition of the uniform solution and the general expressions for the

perturbation problem:

U = Ucyrper. T Uuniform

W = Weyrper. T Wuniforms

oy +o

= a"cyl.per. Tuniform’
0z = O-chl.per.-l_o-zuniform’
Trz = Trzcyl.per.+TrZuniform' (2'513 o e)
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CHAPTER 111

INTEGRAL EQUATIONS

3.1. Derivation of Integral Equations

The unknown functions m(r), p,(r) and p,(r) are used in stress and displacement
expressions given in Eqs.(2.49) or (2.51). The unknown function m(r) is the crack
surface displacement derivative in z-direction while p, (r) and p, (r) are the jumps in
the shearing and normal stresses through the rigid inclusion, respectively. Since the
surface of the crack located at z = 0 plane is free of stress and the rigid inclusions
located at z = +L planes are perfectly bonded to the cylinder, the stress and the

displacement expressions, Egs.(2.51), must satisfy the following conditions

o,(r,0) =0, (a<r<b) (3.1a)
on the crack and

u(r,L) =0, (0<r<ec)

w(r,L) = constant, (0<r<ec) (3.1b,¢)

on the rigid inclusion. Displacement type boundary conditions, Egs.(3.1b,c), are

satisfied if the following equations

10 N
;a[ru(r, )] =0, 0<r<ec)
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0
aw(r, L)=0, 0<r<c) (3.2a,b)

are satisfied. Eqs.(3.1a) and (3.2a,b) are all stress type conditions. Substituting
Egs.(2.49d) in Egs.(3.1a) and Eq.(2.49a,b) in Eq.(3.2a,b) gives the following singular
integral equations

1 (P 4 N d
Efa m(t)[4m, (r,t) + tN 11 (r, )] dt
1 (¢ 2
+ ZJ;) {pl () [Tl(r, t) + —Nia (7, t)]
2
+ p(0) [Tz(r» t) + ;N13(r' t)]} tdt
B (k+1)

= 2 Do, (a<r<b)

b 2
1 (¢ T 2K 2 N .
+Zf0 Z2109) [t 3 t) = —my () + —tNp (r, 1) | dt

1 (¢ 2
# 35| PO[1:0.0) + 2 ¥astr, 0] e

_(k=3)(k+1)
T ue=n

0<r<o

f () [T6(r, 0 + gzvgl(r, t)] tdt

a

vo | O[T, + 2N, 0| e

1 (¢ 2K 2
+ ZJO p2(t) [tTg(r, t) — ?mz (r,t) + - tN55(r, t)] tdt

=0, (0<sr<o) (3.3a—0)
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where

t2—1r? gty r [t
. t K(—)+;E<—>, t<r
ml(r,t):m ;‘ r
E(?), t>r
t t
—E(—), t<r
ro\r

m,(r,t) =

2 —r2)t? o\ t:—1r? o r
—E(5)- K(z), t>7
r

(3.4a,b)

K and E are the complete elliptic integrals of the first and the second kinds. It should

be noted that m(r) and p;(r) are odd, p,(r) is even, integrals from 0 to c in

Egs.(3.3) may be converted to integrals from —c to ¢ and Eqs.(3.3) may be rewritten

in the form

1P 2
Efa m(t) [t——r + 2M3(r,t) + tN 14(r, t)] dt

+ ﬁf; {pl(t) [tTl(r, 1t]) + % |tINy (r, t)]

2
+ PNl 1o, 1) + = Ny o, t)]}dt

o (k+1)

jb m(t) [T3 (r,t) + %Nu(r, t)] tdt

(a<r<b)

b [ pi@[me i -2 - w0
4 _CP1 41, Tt—1 1 4T,

2 1 (¢ 2
+ p- |t| Ny (1, t)] dt + Ef_cm(t) [TS(r, [t]) + ;N23(r, t)|tldt

(k=3 +1)
RN
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J:) m(t) [T6 (r,t) + %Ngl(r, t)] tdt

1 (¢ 2
b | PO e 16D + 21N, 0

+1f © 1T, 16D 25—~ 2 e,
4 _sz s\T, T i—r 7 57,
2
+ p- |t| N33 (7, t)] tdt, (—c<r<c) (35a—¢0)
where
ms(r,t) — 1
M;(r,t) = %,
my(r,t) — 1
My (r,t) = ‘LtT'
me(r,t) — 1
Mg (r,t) = %, (3.6a—0)
and
t—r t r t
T K(F)+t+rE<F) b<r
my(r,t) =2 ¢ - ,
- t>
t+r (t> 4
t? —r? t r t
e <(F)+El=(R) <
my(r,p) =4 el Al " .
E(|;|) It] > |7
t t
¢ E(—) 1] < ||
r r
ms(r,t) = (2 _ 2 . .2 . , (3.7a—0¢)
- k() +=E(])  1a>r
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The kernels N;(r,t)(i,j = 1 — 3) in Eqgs.(3.3) are in the form of improper integrals

Nij(r, t) = fooLij (T', t, a)d(l, (l,] =1- 3) (38)
0

The integrands T;(r,t)(i =1-8) and L;;(r,t,a)(i,j = 1—3) containing the
complete elliptic integrals K and E are given in Appendix C and Appendix D,

respectively.

The single-valuedness condition, Eq.(3.9a), for the crack and the equilibrium

equations, Egs.(3.9b,c) for the rigid inclusions

fbm (t)dt =0,

Cc

f p; (H)tdt =0, (i=1,2) (3.9a—Db)

have to be satisfied in the solution of three singular integral equations, given in
Egs.(3.5).

In the singular integral equations, given in Egs.(3.5), the simple Cauchy kernel,
Muskhelisvili(1953), 1/(t — r) becomes unbounded when t = r. Additionally, the
kernels N;;(r,t)(i,j =1—3) may contain unbounded parts. Consequently, the
improper integrals resulting in N;;(r, t)(i,j = 1 — 3) have to be considered closely
and such expressions in L;;(r,t,a)(i,j =1—3) causing probable singular
expressions in N;;(r,t)(i,j = 1 — 3) have to be examined separately. Unbounded

terms may rise because of the behavior of L;;(r, t,a)(i,j = 1 — 3) when a — .
When L;;(r,t,a)(i,j = 1 — 3) are examined as a — oo,

Lij(r,t,a) = ELEOLU(T’ t,a), (i,j=1-3) (3.10)
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Li1, Ly, and Lsz are the only integrands containing unbounded terms given in

Eq.(3.10) and these unbounded terms can be written in the form

—a(A-t-1)
Linrta) =——{—4(A—-71)A—-t)a? +[2(A—71) + 6(A — t)]a — 4},
Vtr
2 —a(2A-t-7)
Ly (r t,a) = s (aL)\/e;_r {—Z(A —7)(4 - t)a?
+[-k(A-71)—(k—2)(A—-1)]a —%(K - 1)2},
i 2 —a(2A-t-r)
Lz, (r £, ) = o (“L)jﬁ {—Z(A — (A - Da?
+ [K(A—T')+(K+2)(A—t)]d—%(l€+1)2}. (3.11a—c¢)

By the integration of L;;(r,t,a)(i,j = 1 — 3), the probable singular parts of the
kernels N;;(r,t)(i,j = 1—3),

o]

Nil-s(r, t) = f Liioo (T', t, a:)da, (l =1- 3) (312)
0

may calculated to be

Nygo(r,t) = ! 4(A )262+12(A )a 2 1
115 Vi " a2 " or t+r—24"°
Nty = —— 24122t ea-rn L+ Lo 3)[ !
22s\7, _2\/5 r or? Tar ZK t+r—24
P ]
t—r+ 24

02 d 1 1
" l—z(A F1)2 o= 6(A+T) =+ (% — 3>] —

1 2
1 |
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Nt ) = —— M 2a— 122 tea-rn L Lo 3)[ !
33517 NG " ar or T2\ t+r—2A
P ]
t—r+ 24
02 Jda 1 1
_ 2 9 9 ez s
+l 2(A+71) 3,2 6(A+r)ar+2(;c 3)Ht—r—2A
+ ! ] 3.13
t+r+241) (3.13a—c)

Bounded parts of kernels N;;(r, t)(i,j = 1 — 3) are then calculated from

o]

Niib (T, t) = .f [Lii (T', t, CZ) - Liioo(ri t, a)]da: (l =1- 3) (314)
0

in which the subscript b denotes the bounded parts and

N;i(r,t) = Ny (r,t) + Ny (1, t), (i=1-3) (3.15)
it is noteworthy that N;;(r,t)(i = 1 — 3) are singular if r,t - A.

3.2 Characteristic Equations

The crack surface displacement derivative m(r) and the stress jumps p,(r) and
p,(r) through the rigid inclusions may have singularities at the ends r = a, b and
r = +c, respectively. Their singular behavior may be determined by examining the
singular integral equations EQs(3.5) around these end points using the complex
function technique given in Muskhelishvili(1953). The singular behavior of m(r),

p,(r) and p,(r) can be determined by writing

( m (1) for internal crack
m(r) = J (=@ ni (0 < Re(8,0) < 1)

(r—a)f(A-r)° , for edge crack
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b 1) ()

p(r) = @ =7’ (0<Re(y) <1
=220 0<R 1) (3.16a—
po(r) = @5y (0 <Re(y)<1) (3.16a—c)

where B and y are unknown constants and m*(t), p,*(t) and p,*(t) are Holder-

continuous functions in the respective intervals (a, b) and (—c, ¢).

Egs.(3.5), together with Egs.(3.16) may be written in the form

1 (b m*(t)
_f [(t —a)(b —D)]P
= B,(r), (a < r < b), (internal crack)

2
——+ Ny (r, )| dt

or

14 m'(® 2
Efa (t—a)P(A—-1)° [t s + tNy15(7, t)] dt = B;(r), (a <r < A), (edge crack)

10° p(® 2K
) =yl t=r + 2[t|Nyps(r, t) [ dt = B,(r), (—c<r <c)
—C

1 p"(®) 2K
) (¢ =2y [_ t—7r + 2[t|N33(r, t)] dt
-c

= B5(r), (—c<r<c) (317a—¢)
where all other and bounded terms are collected in B;(r)(i=1-3) .

Muskhelishvili’s (1953) technique is applied for evaluating the integrals containing

singular terms near the end points:
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1 (b m*(t)

EL (DR
_ m*(a) cot(np) m*(b) cot(nf)
T h-a)fr-a)f (b-a)fb-r)P

+ My (r),

+ P5(7),

1 fc p.” () _ P (=0) cot(my) py"(c) cot(my)
w)_(c2—=t2)V(t—r) QoY (c+r)Y 2c)Y(c—r)r

1 p2"(t)
Ef_c DGRk

_ P2 (=c)cot(my)  p,"(c) cot(my)

N )Y (c+ 1) N (20)Y(c —r)Y + P, (1), (3.18a —¢)
L m* (6)
Efa (t—a)P(A-)(t +1r—24) dt

_ m*(4) ”

ST A-FA—rPsmme T M2
Y R O _ pi*(4)
Ef_A @ — oy +r =20 T @Ay —rrsnny Ps(r),
L p1(6) B P (A)
Ef_A @y —rr2 T T @A - s ot Pe(r),
14 pl*(t) _ pl*(A)
EJ_A VS I Iy L ¢y TT¢ Wis rperpmvisy P, (1),
L P, (t) _ p1"(4)
EJ_A (A2 — 2)Y (t + 1 + 24) dt =~ QA (A+ 1) sinmy Pg(r),
L[ P2 () pa'(4)
Ef_A @ — oy e+ =20 T @Ay —rrsnmy Py (1),
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1 f“‘ p2* (1) p2"(A)

- . .
m)_y (A2 —t2)Y(t —r + 24) A (A—r)ysinmy | 10(r)

14 p,* (1) ~ p,* (4)
Ef-A (A2 —t2)Y(t —r — 24) dt = - (2A)Y (A + )Y sinmy + Py (1),
14 p,* (1)
Ef-A (A2 —t2)Y(t + 1+ 24) dt
pz*(A) n Plz(r), (3.19a ~ i)

~ QAYA + ) sinny

where M;(r) (i = 1,2) and P;(r) (i = 3 — 12) are bounded functions except at the

points r = a,b, r = +c and r = t+A.

The characteristic equation for £ is obtained by substituting Eq.(3.18a) in Eq.(3.17a),
then multiplying the resulting equation for the limiting case r — a by (r — a)?, or

for the limiting case r — b by (b — r)# for an internal crack (a,b < A):

cot(nB) =0 (a,b < A) (3.20)
The well known result for an embedded crack tip in a homogeneous medium is 1/2
for 8, Cook and Erdogan(1972), Gupta (1973), Delale and Erdogan (1982), Nied and
Erdogan (1983), Gegit (1987), Turgut and Gegit(1988).

The characteristic equation for y, Eq.(3.21) is obtained by substituting Eq.(3.18b,c)
in Eg.(3.17b,c), then multiplying the resulting equation for the limiting case r — c by
(¢ — r)Y for an internal rigid inclusion (¢ < A),

cot(my) =0 (c<4) (3.21)

Similarly, the acceptable value for y is equal to 1/2, Gupta(1974), Artem and Gegit
(2002), Yetmez and Gegit(2005), Kaman and Gegit(2007).
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When the concentric ring-shaped crack, located at the symmetry plane of z =0,
spread out to the outer surface of the cylinder and it becomes an edge crack (b = A).
The characteristic equation for 8, Eq.(3.22), is obtained by substituting Eq.(3.19a) in
Eq.(3.17a). Subsequently the resulting equation is multiplied by (4 — r)¢ for the

limiting case r — A:

cos(m8) =20(0 —2) + 1 (b=4) (3.22)

From the Eq.(2.23), it is clear that the value for 6 is zero which is also obtained in
the previous works, Williams (1952), Gegit (1984), Gegit and Turgut (1988). This

shows that the stresses at the apex of a 90° wedge with free sides are bounded.

In case of the penny-shaped inclusions spread out to the outer surface of the cylinder,
the portion of the infinite cylinder between z = +L planes becomes a finite cylinder
of length 2L with rigid ends. The characteristic equation for y at the edge of rigid
inclusions (when ¢ = A), is obtained by substituting Eq.(3.19b-i) in Eq.(3.17b,c).
Subsequently, the resulting equation is multiplied by (A — r)Y for the limiting case

r— A
2xcos(my) = k> +1—4(y—1)2 (c=4) (3.23)
Eq.(3.23) is in agreement with the results of previous works, Williams(1952),

Gupta(1975), Gegit and Turgut (1988), which are obtained for the stress singularity
at the apex of a 90° wedge with one side fixed and the other side free.
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CHAPTER IV

SOLUTION OF INTEGRAL EQUATIONS

Solution of singular integral equations, Egs.(3.5), subjected to the conditions given in
Egs.(3.9) is given in this chapter. The solution procedure is separated into two main
parts (i) finite cylinder and (ii) infinite cylinder problems. Additionally, the solution
procedure for each main part is also separated to subsections.

The singular integral equations are expressed in terms of non-dimensional variables
@ and ¥ on the internal crack and n and € on the inclusions as a first step in the

solution procedures:

b—a b+a
t= ? + , (a<t<b-1<0<1)

r= > Y+ > (a<r<b-1<y<1) (4.1a,b)
t =cnm, (—c<t<c-1<1n<1
r = Ce. (—c<r<c-1<e<) (4.2a,b)

Consequently, inserting EQs.(4.1) and (4.2) into the system of singular integral
equations, EQs.(3.5) and Egs.(3.9), results in
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4u (Y (b—a b+a\y[ 2 2
T _1m( 7 0t )[b—aqb—t/)
b—a b+a b—a b+a
2 L 2 72 @+ 2 )
b—a b+a b—a b+a b—a
(2®+2)“(2¢+2’2
b+a\1b—a
-1

+2M3(

d¢

1 b—a b+a
—f Pl(cn)[cnﬂ( > Y+ 3 ,Icnl)
-1

b—a +b+a )] d
> Y > »cn)|cdn

1 b—a b+a
~ [ patemtent 1, (2w + 52 el
-1

+2N (b—a +b+a >]d

=2k+Dpy (1l<yp<1)

ey IN(
T[C’? 12

4u (Y (b—a b+a b—a b+a
-— m( D+ )[T3(ce, D+ )

k], "\ 2 2 2 2
+EN21(C€’b—a +b+a>](b—a®+b+a)b—ad¢
T 2 2 2 2 2
1t 2k 1 2K
- Ef_llh (en) [077714(05, lenl) — EXCEDR ?MA}(CS. cn)
2
+ e [Nza (e, an) | edn
1t 2
— | paCemient{TaCes, lenl) + 2 Naaee, | car
=4(K—3)(K+1) cl1<e<D)

(7 — Kk Po,
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1

4u (b—a¢+b+a)[T< b—a¢+b+a)
k), '\ 2 2 e\ 2

+2N ( b—a¢+b+a>](b—a¢+b+a)b—ad
7 s\e T 2 2 2 ;4o

1

1 2
== [ patem [ensCce,lenl) + = fen Iy (e, en)| ey
-1

1 2k 1 2K

1
~ | paCem leniTaCes, lenl) - 2 s = T MsCes,en

2
+ = lenINss e, an) |

=0, (-1<ex<1) (43a—0¢)

f_llm(b;a@+b;“)d¢=o,

1
f p1(cn)ndn =0,
-1

1
f p2(cn)ndn = 0. (4.4a —c)

Next, the singularities of the unknown functions along the lines of Egs. (3.16), are

imposed

7 4u (b — b
(1m(§2)ﬁ _ p_ﬂ m( > o+ ; a)) (internal crack)
- 0

p1(m)  _ pilen)
(1 —n?) Po '

p2(n)  _ pa(en)
(1 —n?) Po

(4.5a—¢)
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where m(®) , p;(n) and p, (n)are Holder-continuous functions in (—1,1), Egs. (4.3)

and (4.4) are rewritten in the form

1 L m(o)
n)]_,(1-02)Flo -y
1t p1 (1)
+Ef_1(1_772)]/
1t p2(n)
+Ef_1(1_772)]/
=—(k+1), (-1<y<1)

+ Ms(, 8) + Ny (¥, 0) | d @

[T, InD) + InIN1,(, m)] dn

Inl[T2(p, Inl) + Noz(p,m)] dn

1 m B B
Ef %[Ta(e, 0) + Nyy (e, 0)]d 0
-1

101 p, B " B )
;]_1 (1p_(:”3)y [T]T4(€, Inl) + E + M,(g,1n) + In|Nyy(e,m) | dn
101 P, B ~

+ Ej_l (1p_(23)y In|[Ts(e, Inl) + Nos(e,m)] dn

- Z(K(_7 i),(s: 2 (-1<e<1)

1 f (mﬂ 7. (5, 0) + Noy (e, 0)]d0

T 1— @2)F
1t p(n) = =
t2 | ey InToCe ) + InleaCe )] d
1Y p(n) = 1 o
2]y [ Fae, D+ o + e,
+ |n|N33 (e, n)] dp=0 (-1<e<1) (4.6a — )
and
L_m@ dp =0 (internal crack)
-1 (1 - Q)Z)B -
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! 251 (77)

1 _
P2(1)

L a- - 2)yndn=0, (4.7a — ¢)
where
i ( @)—b_aM (b—a +b+a b—a b+a)

3 l/)' - 2 3 2 lp 2 ) 2 2 )
M;(, ®) = cM;(ce, cn), (i=45)
N @)_1(b—a)2<®+b+a)1v (b—a +b+a b—a b+a>

11 1/); _2 2 b—a 11 2 lp 2 ) 2 2 )
N (e, 0) = l(b—a)2(®+b+a)N ( b—a®+b+a) (i=23)
i1\& - K 2 bh—a i1 | €&, 2 2 ) l=4q,
_ . b—a b+a .
Nyi(gm) =c N1i< 2 B ,677), (i=23)
_ 1, ..
Nij(g'n):_;C N;j(ce, cn), (i,j =2,3)
_ T, (b—a b+a .
Ti(llhrl)ZEC Ti( > Y+ > .677), (i=12)
T(e.0) = n(b—a)2<®+b+a)T< b—a®+b+a> =36

i(el )_ ZK 2 b_a i Cg, 2 2 ) (l_ ’ )
Ti(e,n) = —zn—KczTi(ce,cn). (i=45,7,.8) (48a—1i)
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4.1 Infinite Cylinder Problem

In this section, the solution procedure for the infinite cylinder problem is presented.

4.1.1 Infinite Cylinder Having an Internal Crack and two Inclusions

The general solution of the problem is obtained by considering an infinite cylinder of
radius A containing a ring-shaped internal crack located at z = 0 plane and two
concentric penny-shaped rigid inclusions of radius c located at z = +L. The infinite
cylinder is subjected to axial tensile loads of uniform intensity p,on both ends at
infinity  (Fig. 2.1). g and y are the powers of singularity determined from Egs.
(3.20) and (3.21):

B=1/2,

y=1/2. (4.93,b)

Gauss-Lobatto integration formula, Krenk (1978), Artem and Gegit (2002), may be

used to calculate the integrals appearing in Eq.(4.5) and Eq.(4.6),. Then, Egs. (4.6)
and (4.7) become

. 1 _ _
Z C;m(9;) LD' - + M5(y;, ;) + Ny (9, 9;)
i=1 R
+ Z C:py M) [T (W), Imil) + 1m:INy2 (W5,m;) ]
i=1

+ Z Cp )1l T2 (W), Imil) + 1n:INy3 (w5, m:)]
i=1
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z C;m(®,)|Ts(gj, 0;) + Noy (g, 0;)]

n
+ z Cip1(m;) [UiT4(€j; In:l) + + M, (g,m;)
i=1

1
N —§&

+ |77i|N22(£j;ni)l

+ Z Cp2m)[Im:1Ts (g5, Imil) + m:I N3 (g5, 1) ]
i=1

B 2(k—3)(k+1)

- (7—-w)r '

G=1,...n—-1)

Z CLTTl((Z)l)[Te(Sp Ql) + N31(gj’ Q)l)]

n
+ Z C:or ) [T (g, Imil) + 1m:1Ns2 (5, m:) ]

i=1

n
+Zciﬁz(7]i) [lr]ilTS(gj’lrlil) + + Ms(g,m;)
i=1

1
Ni — &

+ |ni|1V33(ej,ni)l =0, (=1,..n-1 (4.10a — ¢)

n
z Cip1(mn; = 0,
=1

n
z Cip2(ndn; =0, (411a—c¢)
i=1
where the roots @;,7; and v, &; are given by
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b = = [(i — D _ 1

i—Ui—COS_n_l ) (i=1,...,n)

C e = cos|H DT =1 1 4.12a,b
lpj—Sj—COS_m, (]— ,....,Tl—) ( a,)

C; (i =1,...,n), are the weighting constants of the Lobatto polynomials

1 1 o
Cl = Cn = m, Ci =m. (l =2,..,n— 1) (413)

Equations (4.10) and (4.11) form a system of 3n x 3n linear algebraic equations.
The roots and weighting constants of the Lobatto polynomials are symmetric. In
addition to that, the unknown functions m(@), p;(n) are odd and p,(n) is even.
Consequently, the  (3n — 3) X 3n system of algebraic equations, Eqgs. (4.10), may

be reduced to the following (2n — 2) X 2n system

Z Cm(0)[me (), 0;) + Nia (), ;)]

n/2

+2 Z Cpr [ Ta (W, m:) + Noo (. m:)]
i=1

n/2

+2 Z Co2 O[T (Wmi) + Nus (), m:)]
i=1

=—(k+1), G=1,....n—1)
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> cim@)[Ts(e,00) + Noa(5,00)]
i=1
n/2
+ 2 Z C:or ) [miTa(e5,m:) + my(g,m:) + 1iNaz(g5,m:)]
i=1
n/2
+2 Z Cp2 O [Ts(g,m:) + Nya(e5,m:)]
i=1

2(k—3)(k+ 1) )
= 7= 0% , G=1,....n/2)

n n/2
> Cm@0[To(50) + Faa(e1,00)] +2 > Cepnm[To (5m:) + N (g5,10)]
i=1 i=1

n/2

+2 Z C:ip(m)[miTe(g,m:) + mg(g,m:) + 1:Ns3 (g, m:)]
i=1

=0, G=1,....n/2-1) (414a—0¢)

where

me (), 0;)
2f K<f®i+g>+ 2f(f0; + 9) E<f¢i+g

> @; <YP;

~ fvi+g \fYj+g (f¢i+g)2—(f¢j+g)2 fyj+g
2f(f®; + 9) <ft/),- + g) ’
E ?; >Y;
(F0: + )2 — (fu; +g)° SOty '
( . . .
)z e
_J& \§/ Mm"—§ &
m7(€j’r’i) - n &: )
e )
ni® —¢& n;
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N 7
—— < g
m? = &° (%’) s

l 5 n2 g , (4.15a—¢)
L K +—F , ni > Ej
g \m/  g(m?—g?) \m
in which
_ b—a
f= 24
b+a
9="2 (4.16a,b)

The system in Egs.(4.14), contains 2n — 2 equations for 2n unknowns, m(@;) (i =
1,..,n),p1(m), p.(m) (i =1,...,n/2) . Consequently, to complete the number of
equations to 2n, the equilibrium equation, Eq.(4.11c), and the single-valuedness

condition, Egs.(4.11a) are added to the system:

zn: cim(9;) =0,
i=1

n/2
Z Cip2(mn; = 0. (4.17a,b)
i=1

For this case, if n is chosen to be an even integer, the coefficients for j = n/2 that
correspond to r = 0 in Eqs. (4.14b) must be particularly considered. In order to make

this, the kernels N;;(r, t) (i,j = 1 — 3) must be calculated separately for r = 0. Let

Lij,,(t,@) = lim L;;(0,t, @),
a—o0
Nij,, () =j Li;,,(t a)da,
0
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o0

Nij(o; t) = Nijso(t) + f [LL](O' t, (l) — Lijooo(t' a)]da, (I, = 2,] =1- 3)
0

(4.18a—1c¢)

where K;; (t,a) and N;; (t) (i =2;j =1—3) are given in Appendix E and F,

jocO

respectively.

Then, noting that

K(0) = E(0) = % , (4.19)

Eqs.(4.14b) for j = n/2 may be replaced by

> Cn@)IT:(0,8) + N1 (0,0)]

n/2
_ _ T _
+ 2 Z Cip1 (M) [niTAL(O:ni) + ﬂ + msz(O,m)]
i=1 L

n/2
+2 Z Cip2(mn:i[Ts(0,m;) + Np3(0,1,)]
3 2(k —3)(k+ 1)
- (7—-K)k

(4.20)

Laguerre integration formula is used to numerically calculate the improper integrals
for kernels, N;;(r,t) (i,j = 1 — 3), Abramowitz and Stegun (1965).

4.1.2 Infinite Cylinder Having two Inclusions

In this section, an infinite axisymmetric cylinder of radius A containing two penny-
shaped rigid inclusions of radius c located at z = +L planes is considered. The
infinite cylinder is subjected to axial tensile loads of uniform intensity p, at infinity

(Fig 4.1). In this case there is no crack on the cylinder. Therefore, the unknown

57



function m(r) defined on the crack must be eliminated. Consequently, the integral
equations Egs. (4.14a), related to the conditions arise from crack, Egs. (3.1a), will be
unnecessary. The remaining integral equations, Egs. (4.14b,c), will reduce to

n/2
z Ciﬁl(ni)[niit(gj; Ui) + m7(€j» Ui) + Uilvzz(fj. Ui)]
i=1

n/2
+ z Cip; (Ui)’h[Ts(Ej; Ui) + N23(£j; Ui)]
i=1

(k—=3)(k+1) o
= (7_K)K , (]—1,7’1/2)
n/2
C:prmni|T7 (g, m:) + Naz(g5,m)]
i=1
n/2

+ Z C:ip(m)[miTe(gi,m:) + ms(g,m:) + n:Ns3 (g, m:)]
1

=0, G=1,...n/2-1) (421a,b)

that must be complemented by the

n/2
z Cip1(m:) [niT4(0: n) + % +1:iN2,(0,m;)
i=1 t
n/2
_ _ -3 1
+ Z Cip2(MIni[Ts(0,m;) + Np3(0,m;)] = (x 7 3(;{): ), (4.22)
i=1

the kernels at r = 0 cannot be calculated easily, for this reason the n/2 th equation

in the system is written separately.

In this case, there are (n — 1) equations while the number of unknowns is n.
Consequently, to complete the number of equations to n, the equilibrium equation is

added to the system
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n/2

Z Cip2(nn; = 0. (4.23)
i=1

T

é

|

B

>

§

LT L

Figure 4.1 Geometry of an infinite cylinder with two penny-shaped inclusions

4.1.3 Infinite Cylinder Having an Internal Crack

An infinite circular cylinder of radius A containing a ring-shaped internal crack of
width (b — a) located at z = 0 plane is considered, in this section. This cylinder is
subjected to axial tensile loads of uniform intensity p, at infinity (Fig 4.2). In this
case, there is no inclusion on the cylinder. Therefore, the unknown functions

p,(r) and p,(r) defined on the inclusions must be eliminated.
Consequently, the integral equations, Eqgs. (4.14b,c), and the associated boundary

conditions on the rigid inclusions, Egs. (3.1b,c), become unnecessary. For this case,

the remaining integral equation, Eq. (4.14a), will reduce to

59



z Cﬂ?l(@i)[mﬁ(l/)j, (Z)l) + Nll(l/)j' (Z)l)] = —(K + 1) (] = 1, e 1) (4.24)

T 6,
TR

RARARARANILS

Figure 4.2 Geometry of an infinite cylinder with a ring-shaped crack.
Obviously, there are (n — 1) equations while the number of unknowns is n.

Therefore, to complete the number of equations to n, the single-valuedness

condition, Egs.(4.25), is added to the system

Z Cm(@;) = 0. (4.25)

4.1.4 Infinite Cylinder with an Edge Crack

The infinite cylinder, shown in Fig. 4.3, of radius A containing an edge crack of

width (A — a) located at z = 0 plane is considered in this section. Both ends of this
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cracked infinite cylinder are subjected to axial tensile loads of uniform intensity p,.
The unknown functions p;(r) and p,(r) defined on the rigid inclusions must be

removed. In this case, Eq. (3.16a) must be replaced by

m’ ()

) = Ao

(0 <Re(B,0)<1) (4.26)

where § and 6 are to be calculated from the characteristic equations, Eg. (3.20) and
Eq. (3.22).

T e
TR

LT e

Figure 4.3 Geometry of an infinite cylinder with an edge crack.

Egs. (4.1) defining non-dimensional variables @, i on the edge crack must be

replaced by
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t=(A—-a)d+ A4, (a<t<A-1< 0<0)
r=A—-ayY+A4, (a<r<A-1< y¥<0) (4.27a,b)

The integral equations, Eq. (4.14b,c), and the condition on the rigid inclusions, Eq.
(3.1b,c), must be removed. For this case, N is chosen as an odd integer and Egs.
(4.144a) reduces to

(N-1)/2

Z Cim(@i)[m6(l/)j, (Z)l) + Nll(l/)j' (Z)l)] = —(K + 1), (] =1,.... (N - 1)/2)

(4.28)
where
o 4
o= (4= 0+ 4) (4.29)

4.2 Finite Cylinder Problem

When the rigid inclusions at z = + L spread out and their radii ¢ approaches A, the
radius of the cylinder, the portion of the infinite cylinder between z = — L and

z = L becomes a finite cylinder with rigid ends.
4.2.1 Finite Cylinder without Crack
The finite cylinder, shown in Fig. 4.4, without crack is subjected to uniformly

distributed tensile load of intensity pp at z = % L. In this case, Eq. (3.16b,c) must
be replaced by

pi(r)

p1(r) = @Az =57 (0<Re(y)<1)
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py(r) = %, (0 < Re(y) < 1) (4.30a,b)

where y has to be obtained from the characteristic equation, Eq. (3.23). Also, Egs.

(3.2a,b) defining non-dimensional variables n and € on the rigid inclusion must be

replaced by
t =An, (FA<t<A-1<n1n<1)
r = Ae. (FA<r<A4-1< e<1) (4.31a,b)

Gauss-Jacobi integration formula is used to calculate the integrals containing p; (n)
and p,(n) in Egs.(4.6) and (4.7), Erdogan et al. (1973), Gupta (1974), Gegit (1986),
Yetmez and Gegit (2005). Consequently, Egs. (4.14) are replaced by

n/2

1 _ _

Ez Wipr () [m:Ta(g,m:) + mo(g5,m:) + 1:Ny2 (5, m;)]
i=1

n/2

1 _ _
+ ;Z Wi, MO Ts (5, m:) + Nos(e5,m:)]
i=1

(k=3 +1)
- (7-Kwk

G=1,....n/2)

n/2

1 _ _

Ez Wipr(mdni| T- (g5, m:) + Nao (g, m:)]
i=1

n/2

1 _ _
+ ;z Wip, () [miTe (&5, m:) + ms(g,m:) + 1:Na3 (g5, m:)]
i=1

=0, G=1,..n/2—-1) (432ab)

where

p1(n)  _ pi(An)
(1 —n?) Po
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p2(1) _ P2 (An)

= ) 4.33a,b
G-~ (4.33a,b)

and C;, @;,%; (i,j = 1,...,n) are Lobatto weights and integration points, given by
Egs. (4.12) and (4.13). On the other hand, W;, n; and ¢; (i,j = 1,...,n/2), are the

weights and the roots of the Jacobi polynomials:
B () =0, (i, ..,m)
P (g) =0, Gyoyn — 1)

W = 2n—y+D[In—-y+1D)*? (-2y+1)127%
i (Tl + 1)' F(n — 2)/ + 1) Pn(_V’_Y)( Tli)P(—V.—V)( 771)

n+1

) (i,...,n)

(4.34a—c¢)

Note that calculation of kernels of Egs. (4.32b) for j = n/2 that correspond to

r = 0 must be particularly considered. Then, this equation is expressed separately in

the form
n/2
1 _ _ T —
—Z Wip1(m;) [UiT4(0. n) + o T 1n:N22(0,7;)
= i
n/2
1 _ _ _ (k—3)k+1)
+ ;Z Wip(mni[Ts(0,m;) + Na3(0,m:)] = T—0r (4.35)
i=

For this case, there are (n — 1) equations while the number of unknowns is n.
Therefore, in order to increase the number of equations to n, the equilibrium

equation is added to the system.

1 n/2
;Z Wip,(mn; = 0. (4.36)
i=1
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Figure 4.4 Geometry of a finite cylinder

4.2.2 Finite Cylinder Having a Crack

The finite cylinder, shown in Fig. 4.5, containing a transverse ring-shaped crack of

width (b — a) located at z = 0 plane is subjected to uniformly distributed tensile

load intensity ppat z = + L.

HEARAARIG

e

Figure 4.5 Finite cylinder having a ring-shaped crack

In this case, Egs. (4.14) are replaced by
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z Cm(@)[me(¥;, 8:) + Nua (v, 0,)]

n/2

2 _ _
+ gz Wiprdmi T (W, mi) + Noz (w5, m:)]
i=1

n/2

2 _ _
+ gz Wi, mdni T2 (W), m:) + Nus(¥),m:)]
i=1

=—(k+1), G=1,....n—-1)

Z Clﬁl(®1)[T3(€]i Q)l) + NZl(gj’ Q)l)]

n/2

2 _ _
+ gz Wipr ) [m:Ta(g,m:) + mo (g5, m:) + n:Ny2 (5, 1)
i=1

n/2

2 _ _
+ gz WD mdni| Ts (e, m:) + Nas(g,mi)]
i=1

2k —3)(k+ 1)
- (7-K)k

G=1,....n/2)

n/2

- _ _ 2 _ _
Z C;m(®:)|Te(e;, 0;) + N3y (g5, 0;)] + ;z Wiy mdn: [Ty (g, m:) + Naz(g5,m)]

n/2
2 _ _
+ Ez Wi, ) [n:Ts(e5,m:) + mg(ei,m:) + 1ilNa3(e,m;)]
i=1

= 0. G=1,....n/2-1) (4.37a—1c¢)
Note here that calculation of kernels of Egs. (4.37b) for j = n/2 that corresponds to

r = 0 must be considered with special attention, which may be written separately

in the form
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D Gm@)IT3(0,89) + N51(0,0)]

n/2

2 B _ T _
+ gz Wip1(m:) [UiTzl»(O’ni) + o, + Uisz(O,Ui)]
i=1 L

n/2
2 _ _
+ gz Wip2(mi)n;i[Ts(0,m;) + No3(0,1;)]
i=1
2k —=3)(k+1)
B (7 -1k

(4.38)

For this case, there are (2n — 2 ) equations while the number of unknowns is 2n.
Accordingly, to complete the number of equations to n, the single-valuedness

condition and equilibrium equation are added to the system:

Zn: cm(@;) =0,
i=1

1 n/2
;Z Wip,(m)n: = 0. (4.39a,b)
i=1

4.2.3 Finite Cylinder Having an Edge Crack
In this case, the finite cylinder, shown in Fig. 4.5, containing a transverse edge crack

of width (A —a) located at z= 0 plane subjected to an axial tensile load of

uniform intensity poat z = + L is considered. Eqs. (4.14) are replaced by
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(N-1)/2

Z C;m(@:)|me(y;, 0;) + Ni1 (), 0:)]

n/2

2 T J—
+ ;Z Wipy )n: | To (W), m:) + Noo (W5, m:) ]
2 n/2
+ ;Z Wip2 dn: [T (W, 1) + Nas(w;,m;)]
=—(c+1), G=1,....(N—=1)/2)
(N-1)/2
z CiTTl(@i)[T3(sj, (Z)i) + NZI(((:J., (Z)i)]

n/2

2 _ _
+ ;Z Wiy ) [n:Ta(gi,m:) + my(g5,m:) + 1N (g, m:)]
i=1

n/2
2 _ _
+ ;Z Wi, M| Ts (5, m:) + Nos(e5,m:)]
i=1

B 2(k—-3)(k+1)
- (7—-w)r '

G=1,....n/2)

(N-1)/2

Z Cim(@i)[Te(gj; Q)L) + N31(€j' Q)l)]

n/2

2 _ _
+ ;z Wi, m)ni|T- (g, m:) + Nap(g,m:)]
i=1

n/2

2 _ _
+ ;z Wip, () [miTe (&5, m:) + ms(g,m:) + 1:Na3 (g5, m1)]
i=1
=0, G=1,....n/2-1) (4.40a—c¢)
which are subjected to the condition

1 n/2
EE Win; p2(n;) = 0. (4.41)
i=1
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Figure 4.6 Finite cylinder having an edge crack

The equation corresponding to j =n/2 (r = 0) in Eqgs.(4.14) is again written
separately as

(N-1)/2
D CaR@IT(0,60) + N3 0,6)]

i=1

+

RS

n

2
Z Wlpl (7]1) [an4(O 7]1) +5— 277 + ThNZZ(O 771)]
=1

i

+ Z WP, (mn:i[Ts(0,m;) + Np3(0,1;)]

B 2(k—-3)(k+1)
a (7 -1k

=||N

(4.42)
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CHAPTER YV

STRESS INTENSITY FACTORS

Stress intensity factors form a very important basis in fracture mechanics. Stresses
become infinity in the vicinity of tips or edges of cracks and inclusions. These

infinite stresses are expressed in terms of stress intensity factors.

Stress intensity factors for cracks and inclusions are considered separately in the

following subsections.
5.1 Stress Intensity Factors at the Edges of the Internal Crack
The stress intensity factors, used to express the stresses around the edges of an

internal crack, are given in this section. Mode-I stress intensity factors, k,,, k1, at

the edges of the crack are defined as
ki, =lim+/2(a —r71)o,(r0),
r—-a

kip = ll_r)‘rll) \2(r —b)a,(r,0), (5.1a,b)

and g, (r, 0) may be expressed from Eq.(2.49d) in the form

4y j‘bm(t)

o,(r,0) = TG+ D), - rdt + 0,,(1,0), (5.2)

where the bounded part, g, (1, 0), is such that:
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2p

0(1,0) = Tt D

b
f m(0)[2M; (r, £) + tNy (r )]dt, (5.3)

m(r) is expressed as:

Ifm*(r) (b7 around a
)= G 54
\/(r —a)(b—1) Lm ) —a) around b
(b —1r)1/2 '

and the integral of the function in Eq. (5.2) is calculated by the method given in
Muskhelishvili (1953):

1 (Pm(t) e™? m*(a) 1 ez m*(b) 1
- f dt = — - M), (5.5)
), t—r sin/2yb —avr—a sinzVb—avb—r

where, M*(r) is bounded for a < r < b.

When Eqg. (5.5) is rearranged, the following expression is obtained:

+M* (7). (5.6)

ljbm(t)dt=m*(a) 1 mb 1
T), t—r Vvb—ava—-r “b—avr—»b

If Eq. (5.6) is substituted in Eq. (5.2), a,(r,0) becomes:

4p [m*(a) 1 m*(b)

O'Z(T,O)=(K+1) \/b—a\/a—r_\/b_a\/r_b

+M*(r). (5.7)

The stress intensity factors, k,,, k1, are related to m*(a) and m*(b) by substituting
Eqg. (5.7) in Egs. (5.1):

4u m*(a)

S ey W
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4 m(b)

Ck+DJbh—a)2

kip =

(5.8a,b)

Furthermore, normalized stress intensity factors may be defined and calculated as:

E — kla — ﬁl(_l)
-z Kkt1
_ k m
kyp = w Al (5.9a,b)

poyb—-a)2  Kk+T
5.2 Stress Intensity Factor for an Edge Crack
The stress intensity factor, used to state the stresses at the vicinity of an edge crack,

is given in this sub-section. Mode-1 stress intensity factor, k,,, for the inner edge of

the crack may be written as
ki, = lim V2 (a — r)Pa,(r,0), (5.10)
r—a

and a,(r, 0) may be stated from Eq.(2.49d) in the form

A
o, (r,0) = 4u fm(t)

dt ,0), 5.11
tk+1) ), t—r (1, 0) 1D

where m(r) is expressed as:

m*(r)(A —1)°

_ m*(r) B (r —a)P , around a
™) = TP —? - \m () — a)F _— (5.12)
(A—1)? ’ u

and the integral of the function in Eq. (5.11) is obtained by the technique given in
Muskhelishvili (1953):
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dt = —
a t—T sint/2\r—a JA—-a

A mi/ * *
%f m(t) e™? m*(a) m*(A) log(r — A) +M*(r), (5.13)

where, M*(r) is bounded for a < r < A.

The stress intensity factor, k;, may be related to the m*(a) by substituting Eq.
(5.11) in Egs. (5.10):

42
™ e+ 1)

m*(a). (5.14)

Furthermore, normalized stress intensity factors can be defined as:

Kia _m()

po2(A—a) K+1

kiq = (5.15)

5.3 Stress Intensity Factors at the Edges of the Rigid Internal Inclusions
The stress intensity factors, used to express the stresses at the edges of a rigid
inclusion, are given in this section. The normal (Mode 1) and shear stress (Mode I1)

components of the stress intensity factors, k,. and k,. at the edges of a rigid

inclusion, for the case ¢ < A, may be obtained as
ki, =limy2(r —c)o,(r, L),
r—C

koo =limy/2(r — c)t,,(r, L). (5.16a,b)
r—cC

From Egs.(2.49c,d), the expressions for normal and shearing stresses may be written

JZ(rJ L) = Uzs(r: L) + Ozp (7", L):

Trz(T: L) = Trzs (T, L) + Trzp (T, L)’ (5-173; b)
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where subscripts s and b refer to the singular and the bounded parts of stresses,

respectively.

Egs. (G.1)—(G.3), given in Appendix G, may be used to express the singular parts in
the form

1
1) = gy | PO e =)

1
D) = =g | PO de =g (5182,b)

p1(r) and p,(r) are expressed as:

(pr@e+n

) (c—mz 70
p1(r) = m 4 p*(r)(c —r)~V/? _ _
T

( () (c+r)"?
) | e

VeZ—1Z | pt () (c—1)7V?
S e

p2(r) = (5.19a,b)

The stress intensity factors, k,., k.., may be related to p;*(c) and p,*(c) by
substituting Eq. (5.18) in Egs. (5.16.):

V2711 —«k
kic =— ) 1+KP1 (1 )—_pz (1)]}90\/—
V21
kye = 3 \/—P1 (1 )"‘ pz (1)] poVe. (5.20a,b)
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Stress intensity factors k;. and k,. may be normalized as follows:

_ ki
k.. =
c po\/E

(i=12) (5.21)

5.4 Stress Intensity Factors at the Corners of the Finite Cylinder
Stress intensity factors, used to express the stresses at the corners of a finite cylinder,
are given in this section. For the finite cylinder (c - A), the normal (Mode 1) and

shear stress (Mode Il) components of stress intensity factors, k,4 and k, 4 are defined

as:
kia = ll_rg \/E(A —1r)¥o,(r, L),

kza = lim V2(A = 1r)Y1,,(r,L). (5.22a,b)
One may write

0(r,L) = 0,5(r,L) + 0,(7, L),

Trz(r: L) = Trzs (T: L) + Trzp (T: L): (5-233; b)

where again subscripts s and b refer to the singular and the bounded parts of stresses,

respectively.

The singular parts in are the form

(r,L) = k1 fA O— e
Ozs\T, _27T(K+1) _Apl( )t—r

1 4 1
+ mf_A p1(£)tNsys(r, t, L)dt — SP2 (r),
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(r,L) = k-1 f H— 4t
FrasiTy2) = 2n(k + 1) _APZ()t—r

1 4 1
WO f_ ) P2(O)]tINe3s (r, £, L)dt — 5y (). (5.24a,b)

Eq. (5.24) can be converted into the form given in Egs. (3.20):

P (—A)cotmy p;*(A) cotmy

1
O'ZS(T, L) 2( + 1) {( - ) (ZA)Y(A +r)y B (ZA)V(A —r)Y
—p1'(4) 1
+Gr+5) =2y e+ D+ 4y + Dl ey
p1"(—4) 1
+[(Br +5) = 2y(k +7) + 4y (y + 1)] (2A) sinmy (A + r)V}
1 @
2(A+1)Y (A1)
~ py"(—A) cotmy  p,"(A)cotmy
Trys(1, L) = 20k + 1) {( —K) [(ZA))/(A +r)Y B QAYA-1)Y
P2’ (4) 1
+ (=1 = 2y(k = 5) — 4y (y + 1)] (2A)Y sinmty (A —r)Y
+[(e— 1) = 2y(x = 5) — 4y (y + 1)] pz*(_-A) : }
(2A)Y sinmy (A + 7)Y

p1"(4)
A+7r)Y(A—-r)Y

1
-5 (5.25a,b)

Stress intensity factors, k,4 and k, 4 can be calculated by substituting Eq. (5.25)
in Eq. (5.22):

V2( 1 p1"(A)
kia = T{K + 1 (24)Y sinmy (= mleosmy + D)+ 20+ Dy =1
p2"(A)
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V2( 1 p2"(A)
k,, = 7{’( 1A siny [(k —D(cosmy+ 1D +2(k+ 1Dy —-1)
e pl*(A)}
+ 4(y — 1)?] Ay ) (5.26a,b)
Stress intensity factors k,4 and k,, may be normalized as follows:
- kia .
kis = Do AT (i=12). (5.27)

Normalized stress intensity factors at the corner of the finite cylinder, k,, and ko4,
become then

_ W21 pQ
14 = 7{}( 1 Zf;i(ngry [(1—K)(cosmy + 1)+ 2(k+ D(y — 1) —4(y — 1)?]
p2(1)
" }
_ N2 1 pQ
24 = T{K 1 Zfsi(m)ry [(k —1)(cosmy + 1) + 2(k + 1) (y — 1) + 4(y — 1)?]
- ﬁlz(vl)}' (5.28a,b)
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CHAPTER VI

RESULTS AND CONCLUSIONS

6.1 Numerical Results

The unknown functions m(r),(a <r <b), p;(r) and p,(r), (0<r <c) are
converted into m(@;), (—1 <@ < 1) for internal crack, (—1 < @ < 0) for edge
crack, p; (m), p.(n), (—1 < n < 1). Consequently, functions m(®), p;(n) and p,(n)
are calculated numerically at discrete collocation points to determine the stress
intensity factors at the edges of the internal and edge cracks as well as the stress
intensity factors at the edges of the inclusions for infinite cylinder and at the corners
of the finite cylinder.

Comparative numerical results for the cylinder problems are given in the following
sections, in the form of normalized stress intensity factors vs. varying geometrical
properties, (b —a)/A,(A—a)/A,c/A L/A, and material property, Poisson’s
ratio, v, of the cylinders, where a and b are the inner and the outer radii for the crack,
c is the radius of the inclusion, L is the distance from the crack to the inclusions. In
numerical analyses, the constants A, radius of the cylinder, u, modulus of rigidity and
Do, intensity of the uniformly distributed load applied to the cylinder, are used for

normalization purposes.

6.1.1 Infinite Cylinder Problem

In this section, the infinite cylinder problem, defined in Chapter 4, is considered for

the cases of infinite cylinder having two inclusions and an internal crack or only two
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inclusions or only an internal crack or an edge crack. Results for the infinite cylinder
problem are given in Figs. (6.1) to (6.20).

6.1.1.1 Infinite Cylinder Having a Crack and two Inclusions

Infinite cylinder having a crack and two inclusions is considered in this sub-section.
Figures (6.1) to (6.10) present the variation of stress intensity factors vs. varying

geometric and material properties.

Figures (6.1) and (6.2) show the variation of the Mode | normalized stress intensity
factors, k,, and ky,, respectively, with (b —a)/A when ¢ = 0.54 and v = 0.3.
Results are given for two values of L/A ratio of the infinite cylinder. From the
figures, it can be observed that, k,, and k,, are almost insensitive to L/A and they
increase as (b — a)/A increases. Note that b + a = A means that the center line of

the ring shaped crack isat r = A/2.

Figure (6.3) presents the results for k,, vs. c/A ratio for various values of v when
(b—a)/A=L=0.5A. From the figure, it can be observed that, v is nearly
ineffective for small values of ¢/A. Changes in the value of v become more

effective for relatively large values of inclusion radius.

Figure (6.4), gives the results for k,;, vs. c/A ratio for various values of v when
(b—a)/A =L =0.5A. From the figure, it can be observed that, c/A and v have
limited effect for small values of c/A as in the case of k,,. Furthermore, beyond a
large value of ¢/A ratio, magnitude of k,, starts varying considerably with v and
c/A.

Figures (6.5) and (6.6) show the variation of k,. vs. (b — a)/A for varying values of
L/A and v, respectively, when ¢ = 0.5A. From Fig. (6.5), non-uniform behavior may
be observed for small values of L/A, in contrary to that a uniform behavior may be
observed for large values of L/A. This shows that the effect of internal crack width

becomes more pronounced when inclusions get closer to the internal crack. From
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Fig. (6.6), similar curves may be observed for various values of v. Furthermore, it
may be observed that increase in v gives larger values for k.. This figure also
indicates that k, . decreases when crack width approaches A.

Figure (6.7) shows the variation of k;. vs. c¢/A for various values of v when
(b—a)/A =L = 0.5A. From the figure, it can be observed that, all curves show
similar trend with a change only in the magnitude. Furthermore, it is clear that for
relatively larger values of c/A, increasing values of v increases magnitude of k.. In
contrary to that a reverse behavior may be observed for smaller values of ¢/A. This
indicates that k,. reaches a peak point and beyond that point it decreases for

increasing values of inclusion radius.

Figures (6.8) and (6.9) show the variation of k,. vs. (b — a)/A for various values of
L/A and v, respectively, when ¢ = 0.5A. From Fig. (6.8) it can be observed that,
magnitude of k,. heavily depends on (b — a)/A for small values of L/A. When L/A
gets larger, curves tend to be uniform. This shows that, when the distance between
the crack and inclusions increase, magnitude of k,. becomes just slightly dependent
to crack width. From Fig. (6.9), it can be observed that, all curves follow similar
trend until crack width reaches a certain value (~0.884). Beyond that point, the

effect of v becomes more pronounced on the variation of k..

Figure (6.10) shows the magnitude of k,. vs. c/A for various values of v when
(b—a)/A =L =0.5A. It can be observed that, all curves follow similar trends.
Additionally, it is clear that larger values of v result in larger magnitudes for k..
This shows that, magnitude of k,. heavily depends on Poisson’s ratio. Also it can be

told that, radius of inclusion has considerable effect on the magnitude of k..
6.1.1.2 Infinite Cylinder Having two Inclusions
An infinite cylinder having two inclusions is considered in this section. Figs. (6.11)

to (6.16) show the variation of stress intensity factors vs. various geometric and

material properties.
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Figure (6.11) shows the variation of normalized Mode | stress intensity factor at the
edge of the inclusions, k,., vs. L/A ratio for various values of c/A when v = 0.3.
From the figure, it can be observed that L/A ratio has only a very slight effect on k.
for large values of a L/A ratio. Furthermore, for various values of c/A, all curves
show similar trend except for c¢/A = 0.01 when L/A ratio is small. This shows that
beyond a distance, L = A, the distance between the inclusions is not effective on the

variation of k.

Figures (6.12) and (6.13) show the variation of k. vs. v for various values of L/A
and c/A, respectively. Figure (6.12) shows that the variation of k,. follows a
parabolic path with increasing v for large values of L/A, in contrary to that k,,
increases with increasing values of v for small value of L/A. From Fig. (6.13), it
may be observed that for increasing values of v, the variation of k,, shows a

parabolic tendency. When c/A ratio gets larger k. gets smaller.

Figure (6.14) shows the variation of normalized Mode |1 stress intensity factor at the
edge of the inclusions, k,,, vs. L/A ratio for various values of c/A when v = 0.3.
From the figure, it can be observed that L/A ratio has a very slight effect on k,, for
large values of L/A. For varying values of ¢/A, all curves show similar trend with
only a difference in magnitude of k,.. This behavior indicates that the distance

between the inclusions is not very effective on k,. when L/A is greater than ~1.

Figures (6.15) and (6.16) show the variation of k,, vs. v for various values of L/A
and c/A, respectively, when ¢ = 0.5A. Figure (6.15) shows that the variation of k.
follows an almost linear path with increasing v. Furthermore, it is observed that L/A
ratio has very small effect on the variation of k,.. From Fig. (6.16), it may be
observed that for increasing values of v, the variation of k,. shows a similar trend
for all curves. When the edge of the inclusion approaches surface of the cylinder, k.

gets smaller.

Figure (6.17) gives comparison of numerical results for k,, as a function of c/A

ratio with similar results given by Kaman and Gegit (2006). From the figure, it may
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be observed that results obtained from present study are in very good agreement with
Kaman and Gegit (2006).

6.1.1.3 Infinite Cylinder Having an Internal Crack

In this section, an infinite cylinder having an internal crack is considered. Figures
(6.18) and (6.19) show the variation of stress intensity factors at the edges of the
crack vs. v for various values of internal crack width ratio (b — a)/A. From Figs.
(6.18) and (6.19), it may be observed that, the Mode | stress intensity factors k,, and
k,, show uniform trends with a very slight effect of v. These factors have smaller
magnitudes for smaller values of crack width ratio. When internal crack width gets
larger, the magnitudes of k,, and k;, increase. Furthermore, Poisson’s ratio is not

effective on the variation of k,, and k.

The results obtained from the present study are compared in Table (6.1) with those of
the Nied and Erdogan (1983). From Table (6.1), it is clear that, numerical results for
Mode | stress intensity factors k,, and k,, are very close to those given in Nied and
Erdogan (1983).

6.1.1.4 Infinite Cylinder Having an Edge Crack

An infinite cylinder having an edge crack is considered in this section. Figures (6.20)
and (6.21) show the variation of normalized Mode | stress intensity factor k,, at the

root of the edge crack vs. crack width ratio, (A — a)/A, and v, respectively.

Figure (6.20) gives comparison of numerical results for k,, as a function of
(A — a)/Aratio with similar results given by Nied and Erdogan (1983). From the
figure, it may be observed that results obtained from present study are in very good

agreement with Nied and Erdogan (1983).

Furthermore, from Fig. (6.21), it is observed that v has very slight effect on the
variation of k;, and the magnitude of k,, increases with increasing crack width

ratio (A — a)/A without a change in the trend of the curves.
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Numerical results for Mode | stress intensity factor k,, at the root of the edge crack
in an infinite cylinder are compared in Table (6.2) with those given in the paper by
Nied and Erdogan (1983). Table (6.2) shows that, numerical results for Mode I stress
intensity factor k,, are almost identical with those given in Nied and Erdogan
(1983).

6.1.2 Finite Cylinder Problem

A finite cylinder, defined in Chapter 4, is considered in this section. The results are
obtained for finite cylinder having no crack, having an internal crack and having an
edge crack. Results for the finite cylinder are given in Figs. (6.22) to (6.45).

6.1.2.1 Finite Cylinder without Crack

A finite cylinder having no crack is considered in this section. Figures (6.22) and
(6.23) present the variation of normalized Mode | and Mode |1 stress intensity factors

k.4, k, 4 at the corner of the cylinder vs. L/A for various values of v.

Figures (6.22) and (6.23) show similar curves for k,, and k,,. From both of these
figures it can be observed that, L/A ratio is ineffective when it is larger than unity.
In contrary to that, v is very effective on the magnitudes of these factors. Figure
(6.22) shows that increase in v decreases the magnitude of Mode | stress intensity
factor, k, 4, however, in Fig. (6.23), increase in v increases the magnitude of Mode Il
stress intensity factor, k, 4. These indicate that Poisson’s ratio is very effective on the

variation of k4 and k, ,.

Figure (6.24) gives comparison of numerical results for k, 4 as a function of v with
similar results given by Kaman and Gegit (2006) as well as Gupta (1974). From the
figure, it may be observed that results obtained from present study are in very good
agreement with Kaman and Gegit (2006). It seems that the results of Gupta (1974)
differ from those of the present study and Kaman and Gegit (2006) a little bit.
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6.1.2.2 Finite Cylinder Having an Internal Crack

Finite cylinder having an internal ring-shaped crack is considered in this section.
Figs. (6.25) to (6.34) present the variation of normalized Mode | stress intensity
factors, kyq, ki k14 and Mode II stress intensity factor k,4vs. L/A for various

values of v and geometric properties.

Figures (6.25) and (6.26) show the curves of ky,, kyp, Vs. (b — a)/A for various
values of L/A when v = 0.3. From these figures, it can be observed that, all curves
follow similar trends. When the outer edge of the crack gets close to the surface of

the cylinder, k,, and k,, increase extensively.

Figures (6.27) and (6.28) show the variation of k,,, kq;, Vs. L/A for various values
of vwhen b —a = 0.5A4. From these figures, it can be observed that, effect of v is
more pronounced for smaller values of L/A. When L/A gets larger, the effect of v
starts to vanish. This shows that the magnitudes of k,, and k,, are independent of

Poisson’s ratio when the length of the finite cylinder is large.

Figure (6.29) shows the variation of k,, vs. (b — a)/A for various values of L/A
when v = 0.3. It can be observed from this figure that, for L/A>1,(b—a)/A
ratio has a limited effect. However, for smaller values of L/A, the slope of the
curves heavily depend on L/A ratio. This indicates that crack width is very effective

on the variation of k, , for shorter cylinders.

Figure (6.30) shows the variation of k4 vs. (b — a)/A for various values of v when
L = A. This figure shows that the effect of v is more pronounced for smaller values
of internal crack width with respect to larger crack widths. When crack width gets

larger, the curves get closer.

Figure (6.31) shows the variation of k,, vs. L/A for various values of v when

b —a = 0.54. As shown in this figure, k4 is larger for smaller v. Starting with a
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small length, increase in L/A increases k,, and then further increase in L/A

decreases it.

Figures (6.32) and (6.33) present the variation of k,, vs. (b —a)/A for various
values of L/A and v, respectively. As shown in Figure (6.32) for L/A>1,
(b — a)/A ratio has a very slight effect on k,,. However, for smaller values of L/A,
k,, changes considerably with (b —a)/A. From Fig. (6.33), it is observed that
(b — a)/A ratio has a very small effect on the variation of k,,. Furthermore, the
magnitude of k, 4 increases with increasing values of v with a slight change on the
trend of the curves. This indicates that Poisson’s ratio is very effective on the

variation of k, 4.

Figure (6.34) shows the variation of k,, vs. L/A for various values of v when
b —a = 0.5A. As shown in the figure, all of the curves follow the same trend. When
rigid ends inclusions get away from the internal crack, all of the curves tend to be
straight. This indicates that the distance between central crack and the rigid ends of

the finite cylinder becomes nearly ineffective when L/A ratio is larger than unity.

6.1.2.3 Finite Cylinder Having an Edge Crack

In this section, a finite cylinder with an edge crack is considered. Figures (6.35) to
(6.45) show the variation of normalized stress intensity factors ky,, k14 and k, 4 Vs.

geometric properties (A — a)/A and L/A.

Figure (6.35) shows that when v gets smaller, magnitude of the k,, gets larger for
relatively small values of L/A. When, L/A increases, all curves tends to coincide.
This indicates that, the effect of v becomes negligible when the length of the cylinder

increases.

It can be observed from Figs. (6.36) and (6.37) that k,, does not depend on L/A or
v, much. Furthermore, it can be told that, all curves follow similar trends with

increasing positive slope. This indicates that, magnitude of k,, increases extensively
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when edge crack width gets larger. Fig. (6.38) supports the observations from Figs.
(6.36) and (6.37).

Figure (6.39) shows the variation of k,, vs. L/A for various values of edge crack
width ratio, (A — a) /A when v = 0.3. Figure shows that when edge crack width gets
larger, magnitude of k,, also gets larger. Furthermore, it is also observed that, this

behavior is slightly dependent on the length of the finite cylinder.

Figure (6.40) presents the variation of k4 vs. L/A for various values of v when
b —a = 0.5A. It is observed from this figure that, for small values of L/A, when the
rigid ends are closer to the edge crack, the smaller values of v result in smaller
magnitudes for k, 4, in contrary to that, for larger values of L/A, when the ends are
farther from the edge crack, smaller values of v result in larger magnitudes of k, ,.
This shows that, variation of k,, is heavily dependent on the length of the finite

cylinder and Poisson’s ratio.

Figures (6.41) and (6.42) show the variation of k,, and k,4, respectively,
vs. (A —a)/A for two values of L/A when v =0.3. It is observed from these
figures that, the curves follow totally different trends. This shows that the magnitude
of k4 is heavily dependent on L/A ratio, also it is observed that the edge crack
width ratio (A —a)/A is considerably effective on the magnitude of k;, when
L/A=1.

Figures (6.43) and (6.44) show the variation k,, and k,, , respectively,
vs. (A — a)/A for various values of v when L = A. It may be observed from these
figures that, all curves follow the same trend. Additionally, increasing values of v
decrease the magnitude of k, 4 and increase the magnitude of k,,. Furthermore, k4

and k,, decrease slightly, in general, with increasing crack width.

Figure (6.45) shows the variation of k,, vs. L/A for various values of v when
b —a = 0.5A. Figure shows that, large values of v, result in large magnitudes of

k,,. Additionally, it may be observed from the figure that, all curves nearly follow
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the same trend. Furthermore, it is clear that, beyond a certain value of L/A, ~1.5,
curves become nearly straight and horizantal. This indicates that, for larger values
of L/A ratio, magnitude of k,4 becomes nearly constant for each value of Poisson’s

ratio.

6.2 Conclusions

A finite cylinder with a free lateral surface is considered in this research study. The
cylinder with rigid ends contains an edge crack and subjected to a tensile axial load
of uniform intensity p, at both ends. The material of the cylinder is assumed to be

linearly elastic and isotropic.

The solution for the finite cylinder problem is obtained by a procedure starting with
obtaining a solution to an infinite cylinder containing a ring shaped crack and two
rigid penny-shaped inclusions, subjected to tensile axial loads of uniform intensity p,
at infinity. This infinite cylinder problem is then converted to the target problem,
finite cylinder with an edge crack, considered in this research study. For this purpose,
the internal ring shaped crack in the infinite cylinder is converted to an edge crack by
letting the outer edge of the crack approach the lateral surface of the cylinder.
Afterwards, the two rigid penny-shaped inclusions in the infinite cylinder are
enlarged until reaching the lateral surface of cylinder. As a result, these rigid
inclusions form the rigid ends of the cylinder and a finite cylinder having an edge

crack is obtained.

The following conclusions may be deduced from the results of this research study;

1. Effect of Poisson’s ratio is minor on the magnitude of the normalized Mode I
stress intensity factor at the root of the edge crack, k,,, when the length of the
finite cylinder is considerable.

2. Magnitude of the normalized Mode | stress intensity factor at the root of the

edge crack, k4, increases considerably when edge crack width gets larger.
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3. The length of the finite cylinder, for values larger than L = A, has only a
slight effect on the variation of normalized Mode | stress intensity factor at
the root of the edge crack, k.

4. Variation of normalized Mode | stress intensity factor at the corner of the
finite cylinder, k4, is heavily dependent on the length of the finite cylinder
as well as on the Poisson’s ratio.

5. For relatively long cylinders, magnitude of the normalized Mode Il stress
intensity factor at the corner of the finite cylinder k,, becomes nearly
constant.

6. When Poisson’s ratio increases, a decrease in the magnitude of normalized
Mode | stress intensity factor at the corner of the finite cylinder, k4, and an
increase in the magnitude of normalized Mode 11 stress intensity factor at the

corner of the finite cylinder, k, 4 are observed.

6.3 Suggestions for Further Studies

This research study may be extended to further points by changing the material and
geometrical properties as well as loading conditions of the considered problem. The
following loading and geometric conditions as well as material properties may be
considered in further studies;

1. The finite cylinder with edge crack may be solved subjected to torsional and
shear loading as well as bending moment.

2. The finite cylinder with multiple edge or internal cracks may be solved under
the action of any one of above mentioned loading to study the interaction
between cracks.

3. The finite cylinder problem with inclined cracks may be solved under any
loading condition.
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Table 6.1 Comparative results of the present study with that of Nied & Erdogan

(1983) for internal crack when b +a = Aand v = 0.3.

Crack width=(b —a)/A Present study Nied & Erdogan (1983)
a/A b/A kiq kip kiq kip
0.505 0.595 1.029 0.988 1.028 0.985

Table 6.2 Comparative results of the present study with that of Nied & Erdogan
(1983) for edge crack when v = 0.3.

Crack width Present study Nied & Erdogan (1983)
(A - a)/A Ela Ela
0.01 1.125 1.121
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APPENDIX A

DEFINITE INTEGRAL FORMULAS USED IN EQS. (2.48)

Integral formulas, Gradshteyn and Ryzhik (1994), used in deriving the expressions in

Egs. (2.48a,b) are

* 1
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where J, and J; are Bessel functions of the first kind of order zero and one, I, and I, are
modified Bessel functions of the first of order zero and one and K, and K, are modified

Bessel functions of the second kind of order zero and one, respectively.
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APPENDIX B

DEFINITE INTEGRAL FORMULAS USED IN EQS. (2.50)

Integrals of products of Bessel functions of the first kind, exponential functions and
power functions used in deriving the expressions in Egs. (2.49), Gradshteyn and Ryzhik
(1994):
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where K and E are the complete elliptic integrals of the first and the second kinds and

q. = (t+1)2+ 22,
q = (t—7)* + 2% (B.11a,b)
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APPENDIX C

EXPRESSIONS APPEARING IN EQS. (3.3)

The expressions for T;(r, t) (i = 1 — 8) appearing in Eqs.(3.3) are as follows
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APPENDIX D

KERNELS OF EQS. (3.10)

The expressions for the integrands L;;(r,t,a)(i,j = 1 — 3) appearing in Egs.(3.10) are

as follows
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Lyz(r t,a) = dlo{{[zle1 + (k + 1)% — 2(k + 1)(d, + dyd3)]aAl,(at)
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where d; (i = 0 — 3) are given in Egs.(2.50).
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APPENDIX E

DEFINITIONS APPEARING IN EQS. (4.18)

The expressions for L;jeo(t, @) = limg_e L;j(0,t, @) (i = 2,,j = 1 — 3) appearing in

Egs.(4.18) are as follows

Ta
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K
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APPENDIX F

DEFINITIONS APPEARING IN EQS. (4.18)

The expressions for the integrands N;js(t)(i = 2,,j = 1 — 3) appearing in Eq.(4.18)

are in the form
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APPENDIX G

LIMITS OF CERTAIN INTEGRALS

Limits of certain integralsa are calculated from Erdogan (1968): f (t) is taken to be

continuous and satisfying Holder condition in the related interval, consequently
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APPENDIX H

DEFINITIONS APPEARING IN EQS. (5.24)

The expressions for Ls, (7, t, @) and L3 (7, t, @) appearing in Eqgs.(5.24) are in the form

1
Lo, (r,t,a) = d—{{4at(—4 +d, + d,d3)aAly(at)
0
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1
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0
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where d; (i = 0 — 3) are given in Egs.(2.50).

The expressions for L;je (t, @) = limye L;j(r,t,a) (i =2, j =1 — 3) are as follows
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The singular parts of kernels, Ns, o (t) = fooo Leyoo (1, t,@)da and

Ng3s(r,t) = fooo Lg3o (t, @)da are calculated to be
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