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ABSTRACT 

 

AXISYMMETRIC FINITE CYLINDER WITH RIGID ENDS AND 

A CIRCUMFERENTIAL EDGE CRACK 

 

 

Durucan, AyĢe RuĢen 

M.S., Department of Engineering Sciences 

Supervisor: Prof. Dr. M. RuĢen Geçit 

 

August 2010, 158 pages 

 

An axisymmetric finite cylinder with rigid ends and a circumferential edge crack is 

considered in this study. The finite cylinder is under the action of uniformly 

distributed loads of intensity    at two rigid ends. Material of the finite cylinder is 

assumed to be linearly elastic and isotropic. This finite cylinder problem is solved by 

considering an infinite cylinder containing an internal ring-shaped crack located at 

    plane and two penny-shaped rigid inclusions located at      planes. 

General expressions of the infinite cylinder problem are obtained by solving Navier 

equations with Fourier and Hankel transforms. This infinite cylinder problem is then 

converted to the target problem by letting the radius of the rigid inclusions approach 

the radius of the cylinder and letting the outer edge of the crack approach the surface 

of the cylinder. Consequently, these rigid inclusions form the rigid ends and internal 

crack form the circumferential edge crack resulting in the problem of a finite cylinder 

with rigid ends having an edge crack. The problem is reduced to a set of three 

singular integral equations. These singular integral equations are converted to a 

system of linear algebraic equations with the aid of Gauss-Lobatto and Gauss-Jacobi 

integration formulas and are solved numerically.  

 

Keywords: Edge crack. Finite cylinder. Stress intensity factor. Rigid inclusion. 
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ÖZ 

 

ÇEVRESEL KENAR ÇATLAĞI ĠÇEREN  

UÇLARI RĠJĠT EKSENEL SĠMETRĠK SONLU SĠLĠNDĠR 

 

 

Durucan, AyĢe RuĢen 

Yüksek Lisans, Mühendislik Bilimleri Bölümü 

Tez Yöneticisi: Prof. Dr. M. RuĢen Geçit 

 

Ağustos 2010, 158 sayfa 

 

Bu çalıĢmada dairesel kenar çatlağı içeren, uçları rijit eksenel simetrik sonlu silindir 

problemi incelenmektedir. Ġncelenen sonlu silindir iki rijit ucundan    Ģiddetindeki 

düzgün yayılı çekme yüküne maruz kalmaktadır. Malzemenin izotrop ve doğrusal 

elastik olduğu kabul edilmektedir. Bu sonlu silindir problemi,      düzlemlerinde 

disk Ģeklinde iki rijit enklüzyon ve     düzleminde halka Ģeklinde bir iç çatlak 

içeren sonsuz silindir kullanılarak çözülmektedir. Sonsuz silindir probleminin genel 

ifadeleri, Navier denklemlerinin, Fourier ve Hankel dönüĢümlerinin kullanılarak 

çözülmesiyle elde edilmektedir. Bu sonsuz silindir problemi rijit enklüzyonların 

yarıçaplarının silindir yarıçapına ulaĢmasıyla oluĢan rijit uçlar ve halka Ģeklindeki iç 

çatlağın dıĢ kenarının silindir yüzeyine ulaĢmasıyla oluĢan kenar çatlağı içeren sonlu 

silindir problemine dönüĢtürülmektedir. Problem, üç tekil integral denklemine 

indirgenmekte, daha sonra Gauss-Lobatto ve Gauss-Jacobi integrasyon formülleri 

kullanılarak lineer cebrik denklemlere dönüĢtürülüp ve sayısal olarak çözülmektedir.  

 

Anahtar kelimeler: Kenar çatlağı. Sonlu silindir. Gerilme Ģiddeti katsayısı. Rijit 

enklüzyon. 
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CHAPTER 1 

INTRODUCTION 

Various engineering branches use machine elements which have numerous 

discontinuities. These discontinuities may occur in the form of voids, notches, cracks 

or inclusions. They are major factors affecting the load carrying capacities and 

influencing the stress distributions in the bodies. They must be carefully examined, 

because of the stated reasons. Stress distributions become infinity in the vicinity of 

the inclusions and cracks as well as the corners of the elements. In these regions, 

stress distributions can be calculated in terms of the stress intensity factors.  

 

Stress intensity factors are related to the loading conditions and geometric properties 

of the bodies. Loading conditions which affect the stress intensity factors may be 

treated in three modes: (i) Mode I, loading normal to the crack plane, (ii) Mode II, in 

plane shear loading and (iii) Mode III, out of plane shear loading. Geometry and the 

locations of the corresponding cracks, inclusions, notches and holes as well as 

geometry of the body are some of the geometric properties affecting the related stress 

intensity factors. 

 

Machine elements with large probability of containing singularities are very 

important in fracture mechanics. Finite cylinders are among these elements. Stresses 

in the vicinity of the crack and inclusion tips alternate with singularity, regardless of 

the configuration of the cracked element. In general, these sorts of problems may be 

studied by numerical and analytical methods based on the solution of corresponding 

partial differential equations. The assumption of linear elastic material allows to the 

superposition of the stress and displacements. This superposition principle provides 
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the solution for complex finite cylinder arrangements analytically by using the 

combination of simple cases. 

 

In the light of the above discussions, several solutions for finite cylinder problems 

containing edge cracks and penny-shaped inclusions can be found in the literature. 

However, problem of the finite cylinder containing an edge crack has not been 

solved by the method used in this research study. 

 

1.1 Literature Review 

 

Erdöl and Erdoğan (1978) considered the problem of a long thick walled hollow 

cylinder containing ring shaped internal or edge crack which is subjected to uniform 

axial load and steady-state thermal stress. The problem was reduced to an integral 

equation having a simple Cauchy kernel for the internal crack and a generalized 

Cauchy kernel for the edge crack. Solutions were obtained for the stated loading 

conditions in terms of stress intensity factors. 

 

Chang (1985) obtained the general solution of the stress intensity factor of a finite 

cylinder containing a concentric penny-shaped crack under torsion. The general 

solution has been obtained by using Hankel transform and Fourier series. It has been 

proved that the solutions of a penny-shaped crack in an infinite long cylinder and in a 

circular plate of infinite radius may be derived from the general solution presented in 

this work.  

 

Zhang (1988) considered the problem of concentric penny-shaped crack in a finite 

orthotropic cylinder under torsion. The general solution in terms of stress intensity 

factors were obtained by using the Hankel transform and Fourier series. Results of 

the study for mixed boundary value problem have been represented with the aid of a 

Fredholm integral equation of the second kind. Also it was concluded that the 

solutions of a concentric penny-shaped crack in an infinite long orthotropic cylinder 

and circular plate of infinite radius may be derived from the general solution 

obtained in this study. 
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Liang and Zang (1992) considered the problem of a concentric penny-shaped crack 

of Mode III in a finite cylinder. Solution of the problem was obtained by using the 

Hankel transform and the Fourier series. Results were obtained in terms of stress 

intensity factors. Furthermore, it was proven that the concentric penny-shaped cracks 

in an infinite cylinder and infinite circular plate are special cases of the problem of a 

concentric penny-shaped crack in a finite cylinder. 

 

Meshii and Watanabe (2001) studied the development of a practical method to 

calculate the Mode I stress intensity factor for an inner surface circumferential crack 

in a finite length cylinder. Thin shell theory formed the bases underlying the 

developed method in this study.  The proposed method has been valid for relatively 

short cracks and for a wide range of mean radius to wall thickness ratio. 

 

Wu and Dzenis (2002) obtained a closed-form solution for the problem of a Mode III 

edge crack between two bonded elastic strips. The stress intensity factors for the 

edge crack have been calculated. It was observed that, for the limiting particular 

cases, the obtained results coincide with the results available in the literature.  

 

Lee (2002) considered the problem of stress distribution in a circular cylinder with a 

circumferential edge crack subjected to uniform shearing stresses. The crack was 

located on a plane perpendicular to the axis of cylinder and the lateral surface of the 

cylinder is free of stress. The problem was reduced to the solution of a couple of 

singular integral equations by using a suitable stress function. These singular integral 

equations were solved numerically and the stress intensity factors were obtained. 

 

Lee (2002) considered the singular stress problem of a peripheral edge crack in a 

long circular cylinder under torsion. Considered problem is solved by using Fourier 

integral transform and reduced to the solution of two integral equations. The solution 

of these two integral equations was obtained numerically by using the method given 

in Erdoğan et al. (1973). Finally, the stress intensity factors and crack opening 

displacements are presented graphically. In addition to that, Lee (2002 & 2003) 

considered the same problem for torsional and tensile loadings, respectively. 
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Kadıoğlu (2005) obtained an analytical solution for the linear elastic, axisymmetric 

problem of edge cracks in an infinite hollow cylinder. The cylinder has been 

subjected to uniform crack surface pressure. Considered problem has been reduced to 

a singular integral equation with the unknown crack surface displacement derivative. 

An asymptotic analysis was performed in order to derive the generalized Cauchy 

kernel related to edge cracks. The resulting singular integral equation has been 

solved numerically and the related stress intensity factors are presented for different 

values of material and geometric properties. 

 

Guo et al. (2005) studied the orthotropic strip with an edge crack. Varying material 

properties have been assumed for the strip. The solution for the problem has been 

obtained by using the Laplace and Fourier integral transforms. These integral 

transforms have been used to reduce the problem to a singular integral equation. 

Finally, numerical results of the stress intensity factors have been presented. 

 

Toygar and Geçit (2006) considered the problem of an axisymmetric infinite 

cylinder of linearly elastic and isotropic material containing a ring shaped crack and 

two ring-shaped rigid inclusions. The problem has been reduced to three singular 

integral equations. Then, these equations are converted to a system of linear 

algebraic equations and solved numerically. Solutions have been presented in terms 

of stress intensity factors. 

 

Freese and Baratta (2006) obtained solutions for some linear elastic single edge-

crack configurations in terms of stress intensity factors. Solutions for various loading 

conditions have been extracted from the solution of uniformly loaded single edge 

cracked finite strip configurations. Results for the asymptotic behavior and a 

common expression for the full range of crack length to strip width ratio has been 

presented. 

 

Kaman and Geçit (2006) considered the problem of a cracked semi-infinite cylinder 

and a finite cylinder of linearly elastic and isotropic material. Solution for the 

complex problem has been obtained by the superposition of simpler problems. Then, 

the problem has been reduced to a system of singular integral equations. Next, 



5 

 

Gauss–Lobatto and Gauss–Jacobi integration formulas have been used to convert 

these integral equations to a system of linear algebraic equations. Finally, this system 

of linear algebraic equations has been solved numerically. 

 

Yan (2007) considered the problem of a rectangular tensile plate containing an edge 

crack. A boundary element method proposed by the author has been used to present 

the stress intensity factors for the considered problem. Furthermore, stress intensity 

factors of a crack emanating from an edge half-circular hole were calculated. Results 

obtained in terms of stress intensity factors for two cases have been discussed and it 

was found that the boundary element method used for the solution was accurate for 

obtaining the stress intensity factors of crack problems in finite plates. 

 

Kaman and Geçit (2008) considered the problem of an axisymmetric finite cylinder 

of linearly elastic and isotropic material containing a penny-shaped transverse crack. 

Solution of the complex problem was obtained by the superposition of simpler 

problems. Moreover, the problem has been reduced to a system of singular integral 

equations. Then, Gauss–Lobatto and Gauss–Jacobi integration formulas have been 

used to convert these integral equations to a system of linear algebraic equations. The 

system of linear algebraic equations has been solved numerically and the results were 

presented in terms of stress intensity factors at the edges of the rigid support and the 

crack. 

 

1.2 A Brief Introduction and the Solution Method of the Problem 

 

An axisymmetric finite cylinder with rigid ends containing an edge crack subjected 

to a tensile axial load of uniform intensity    at both ends is considered in this 

research study. Material of the cylinder is assumed to be linearly elastic and 

isotropic. Lateral surface of the cylinder, considered in this research study, is free of 

stresses.  

 

Formulation of the finite cylinder problem is obtained by a procedure starting with 

considering an infinite cylinder, containing a ring-shaped crack located at     

plane and two rigid penny-shaped inclusions located at      planes, subjected to 
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tensile axial loads of uniform intensity    at infinity, and then letting the radius of the 

inclusions approach the radius of the cylinder. 

 

Solution for the infinite cylinder loaded at infinity having a ring-shaped crack and 

two penny-shaped rigid inclusions is obtained by superposition of the following two 

problems: (I) An infinite cylinder loaded at infinity with no crack or inclusion, (II) an 

infinite cylinder with a ring-shaped crack and two penny-shaped rigid inclusions with 

no load at infinity.  

 

General expressions for the solution of the problem must contain sufficient number 

of unknowns in order to satisfy all of the necessary boundary conditions. For this 

purpose, the perturbation problem (II) is separated into three main subproblems in 

terms of three infinite media; (II-i) an infinite medium containing a ring-shaped 

crack located at      plane, (II-ii) an infinite medium containing two penny-shaped 

rigid inclusions located at      planes and (II-iii) an infinite medium with no 

crack or inclusion. Solution of these subproblems are obtained by applying Hankel 

transforms to the first and the second media, in r-direction, as well as  applying 

Fourier transform to the third medium, in z-direction, on Navier equations. 

 

With the combined general expressions for the stresses and the displacements, the 

boundary conditions at the lateral surface of the infinite cylinder and the boundary 

conditions on the crack and inclusion surfaces are satisfied. As a result, three singular 

integral equations are obtained. 

 

The infinite cylinder problem is then converted to the target problem, by letting the 

radius of the rigid inclusions approach the radius of the cylinder and letting the outer 

edge of the ring-shaped crack approach the lateral surface of the cylinder. As a result, 

these rigid inclusions form the rigid ends of the cylinder and a finite cylinder with 

rigid ends containing an edge crack is obtained.  

 

Finally, these singular integral equations are converted to linear algebraic equations 

by using Gauss-Lobatto and Gauss-Jacobi integration formulas. Then, these linear 

algebraic equations are solved numerically to obtain the stress intensity factors at the 
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edges of the internal crack, at the root of the edge crack in infinite and finite 

cylinders and at the edge of the rigid inclusions in infinite cylinder as well as at the 

corners of the finite cylinder.  
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CHAPTER II 

INFINITE CYLINDER PROBLEM 

2.1 General Equations 

 

An axisymmetric infinite cylinder of radius   with a transverse ring-shaped crack of 

width       located at      plane and two penny shaped inclusions of radius 

  located at        planes is considered. This cylinder is under the action of 

uniformly distributed tensile loads of intensity     at infinity (Fig. 2.1). Material of 

the cylinder is assumed to be linearly elastic and isotropic.  

 

Stress-displacement relations (2.1a-c) and Navier equations (2.2a,b), Geçit (1986), 

used for this type of problems, can be listed as follows,  

 

   
 

   
      

  

  
       

 

 
 

  

  
    

 

   
 

   
      

  

  
       

  

  
 

 

 
    

 

      
  

  
 

  

  
                                                                                                             

 

where   and    are normal and shearing stresses,   is the shear modulus. 
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Figure 2.1 Geometry and loading of the infinite cylinder. 

 

      
   

   
 

 

 

  

  
 

 

  
       

   

   
 

   

    
       

                               

  
   

    
 

 

 

  

  
        

   

   
 

 

 

  

  
       

   

   
                                

 

where   and   are displacements in r- and z-directions in cylindrical coordinate 

system,        and   is the Poisson’s ratio. 

 

2.2 Formulation of the Problem 

 

The complex problem of an axisymmetric infinite cylinder, containing a transverse 

ring shaped crack and two rigid inclusions, under  axial loading at infinity  is solved 

by the superposition of the following two simpler problems: (i) problem of an infinite 

cylinder, without crack or inclusion, under axial tensile loading of uniform intensity 
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   at infinity and (ii) problem of an infinite cylinder with a crack and two inclusions 

subjected to the negative of the stresses at the location of the crack and 

displacements at the location of the inclusions calculated from the solution of 

problem (i) (Fig. 2.2). 

 

 

 

Figure 2.2 Superposition scheme for the solution of the infinite cylinder problem. 

 

2.2.1 Uniform Solution 

 

The problem of an infinite axisymmetric cylinder of radius A loaded at infinity with 

an axial tension of uniform intensity     is considered. For this type of problems, it 

may be expected that    and    is independent of    and   , respectively. 

 

                                                                                                     

 

                                                                                                                                       

 

(ii) Perturbation Problem (i) Uniform Solution 
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In case of uniform axial loading, Eqs. (2.2a, b) are uncoupled and turn into  

 

   

   
 

 

 

  

  
 

 

  
    

 

   

   
                                                                                                                                    

 

Eqs. (2.4a, b) are solved with the following conditions 

 

        

 

        

 

           

 

            

 

                                                                                                                                

 

The solution can be easily obtained in the following form  
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2.2.2 Perturbation Problem 

 

The displacement expressions and the stress components for perturbation problem of 

an axisymmetric infinite cylinder, containing a transverse ring shaped crack and two 

rigid inclusions, with no loads at infinity can be obtained by adding the general 

expressions of  (II-i) an infinite cylinder containing a  transverse ring-shaped crack of 

width        located at the symmetry plane of    , (II-ii) an infinite cylinder 

having two penny-shaped rigid inclusions of radius c located at       planes and 

(II-iii) an infinite cylinder without crack or inclusion under the action of arbitrary 

axisymmetric loading (Fig. 2.3). This procedure is implemented to have sufficient 

number of unknowns in order to satisfy all of the boundary conditions that are 

required. 

 

 

Figure 2.3 Addition of solutions for the perturbation problem. 
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Solution for the infinite medium       ∞  gives general expressions for the 

infinite cylinder          by imposing appropriate boundary conditions at   

   .  

 

Symmetry about      plane allows to consider the problem only in the upper half 

plane     . 

 

2.2.2.1 Infinite Medium Having a Ring Shaped Crack 

 

In this case, a ring-shaped transverse crack of width        is located at the 

symmetry plane of     in an infinite medium. Considering an infinite medium with 

Region i-1      ∞     ∞  and Region i-2      ∞      ∞ , 

using integral transforms,     Hankel transform, Sneddon (1972), of  Eq. (2.2b) and 

   transform of Eq.(2.2a), in r-direction (Fig. 2.4) and combining the resulting 

equations, gives, 

 

 

 

Figure 2.4 Infinite medium having a ring-shaped crack. 
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where   is the Hankel transform variable,        is    Hankel transform of        

and        is    Hankel transform of         in r-direction 

 

                       
∞

 

  

 

                                                                                                      
∞

 

         

 

where    and    are the Bessel functions of the first kind of order zero and one, 

respectively. 

 

Solution of Eq. (2.7) for the Region i-1      ∞     ∞  (Fig. 2.4) gives 

 

                                                                                                     

 

where   ,   ,     and    are arbitrary unknown constants. Back substitution to the 

transformed ordinary differential equations gives 

 

                 
 

 
                

 

 
                                            

 

The unknown constants    and    must be zero in order to have finite displacements 

in the upper semi-infinite domain   ∞ . Consequently, 

 

                        

 

                 
 

 
                                                                                         

 

Displacement components can be obtained by taking the inverse transforms of           

Eqs. (2.11a, b)  

 



15 

 

                                 
∞

 

 

 

                  
 

 
                  

∞

 

                                                   

 

 Substituting Eqs. (2.12a,b) in Eqs.(2.1a-c), the following expressions can be 

obtained for the stress components in the Region i-1      ∞     ∞  
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A similar procedure is implemented for Region i-2      ∞      ∞  to 

obtain the displacement and stress expressions, 
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Displacement components can be obtained by taking the inverse transforms of Eqs. 

(2.14a, b)  
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∞

 

 

 

Substituting Eqs. (15a,b) in Eqs. (2.1a-c), the following expressions can be obtained 

for the stress components in the Region i-2      ∞      ∞  
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General expressions given in Eqs. (2.12a,b) and (2.13a-c) for Region i-1                   

     ∞     ∞  and Eqs. (2.15a,b) and (2.16a-c) for Region i-2                         

     ∞      ∞   must satisfy the following conditions: 
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It should be noted that, Eqs. (2.17a, b) are stress type continuity conditions while 

Eqs. (2.17c, d) are displacement type. Eq. (2.17d) may be replaced with Eq.(2.18) in 

order to have the same type of continuity conditions, 
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where     , is the new unknown function such that        when                               

           ∞ . The constant unknowns   ,   ,    and    can be expressed 

in terms of      as; 

 

   
   

   

    

 
  

 

    
 

   
      

 

   
   

   

    

 
  

 

   
 

   
                                                                                                                   

 

using the boundary conditions given in Eqs.(2.17a-c) and Eqs.(2.18) , where 

 

                                                                                                                     
 

 

 

 

Subsequently, the displacement and the stress expressions for Region i-1                                  

           ∞ , shown in Fig. (2.4) turns into; 
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2.2.2.2 The Infinite Medium Having two Inclusions 

 

In this case, two penny-shaped rigid inclusions of radius   are located at the                

     planes in an infinite medium. Considering an infinite medium with       

Region ii-1      ∞        , Region ii-2      ∞     ∞  and 

Region ii-3      ∞       ∞ , using integral transforms,    Hankel 

transforms of Eq.(2.2b) and    transform of Eq.(2.2a) in r-direction (Fig. 2.5), 

solution of Eq.(2.7) for the Region ii-1      ∞         is obtained as 

 

                                                                                                     

 

where   ,   ,    and     are arbitrary unknown constants. Back substitution to the 

transformed ordinary differential equations gives 

 

              
 

 
                

 

 
                                                

 

Displacement components in the Region ii-1       ∞         can be 

obtained by taking the inverse transforms of Eqs.(2.22) and (2.23) 
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Substituting Eqs. (2.24a,b) in Eqs.(2.1a-c), expressions for the stress components can 

be obtained in the Region ii-1      ∞         as 
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Expressions for the Region ii-2      ∞     ∞  are obtained similarly in the 

form, 
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Figure 2.5 Infinite medium having two penny-shaped rigid inclusions. 
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where       is jump in the shearing stress       and       is jump in the normal 

stress       through the rigid inclusion. The unknown constants can be calculated 

from Eqs.(2.28) and (2.29): 

 

   
 

        
                                   

                    

 

   
 

      
                               

 

   
 

        
                              

 

     
 

       
                                                                                     

 

where 

 

                      
 

 

 

 

                      
 

 

                                                                                             

 

The displacements and the stresses for Region ii-1       ∞         are 

written as; 
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The displacements and the stresses for Region ii-2       ∞     ∞  are 

written as; 
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2.2.2.3 Infinite Medium under the Action of Arbitrary Axisymmetric Loading 

 

The infinite medium problem without cracks or inclusions is considered in this 

section. Solution of this problem may be obtained by taking the Fourier cosine 

transform, Sneddon(1951), of the first Navier equation, Eq.(2.2a), and the Fourier 
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cosine transform of the second Navier equation, Eq.(2.2b), in the z-direction and 

combining the resulting equation. Finally, the following equation can be obtained; 

 

  
    

   
   

    

   
          

    

   
           

   

  
             

                                                                                                                     

 

where    is the Fourier cosine transform of       . 
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     and   is the Fourier transform variable. Notinging that Eq. (2.34) may be 

written in the form, McLachlan(1934),  

 

                                                                                                                                

                        

where          and    are second order linear ordinary differential operators with 

variable coefficients in x: 

 

     
  

   
   

 

  
       

 

     
  

   
  

 

  
       

 

     
  

   
   

 

  
        

 

    
  

   
 

 

  
   

 

 
                                                                                                       

 

solution of Eq. (2.34) may be obtained from the second order ordinary differential 

equations 
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      ,     =0,                                                                                              (2.38) 

 

in the form of 

 

         
 

 
          

 

 
                                                  

 

where              and     are  arbitrary constants and           and    are the 

modified Bessel functions of the first and second kinds of order zero and one, 

respectively. Due to symmetry about z-axis,     and     must be zero (Fig. 2.6). 

 

Similarly, 

 

        
 

 
                                                                              

 

is obtained where         is the Fourier sine transform of       , 

 

                                                                                                               
∞

 

 

 

By taking the inverse transforms of Eqs.(2.39) and Eqs.(2.40), the displacement 

components are obtained as 
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Figure 2.6 Infinite axisymmetric medium with no crack or inclusion. 

 

By substituting Eq.(2.42) in Eq.(2.1), expressions for the stress components can be 

obtained as 
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General expressions for the infinite medium with two penny shaped inclusions, a ring 

shaped crack, subjected to arbitrary axisymmetric loads, can be obtained by adding 

the individual expressions: 

 

                                           

 

                                           

 

              
        

             
          

  

 

              
        

             
          

  

 

               
         

              
           

                                               

 

These expressions can be used as the expressions of the perturbation problem, for an 

infinite cylinder with a surface free of stress, providing that they satisfy the 

homogeneous boundary conditions given below: 
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Eqs.(2.45) with (2.12), (2.13), (2.24),(2.25), (2.26), (2.27)   and (2.44) give 
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Solution of Eqs. (2.46) give 

 

   

 
                                                           

        
        

                
     

  

 

    
                              

        
        

                
     

                                           

 

By using the integral formulas in given Appendix A, it may be shown that 
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The general displacement expressions and stress components for the perturbation  

problem of an infinite cylinder with a crack, two inclusions and a stress-free surface 

turn into: 
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integrals of Bessel functions are given in terms of the complete elliptic integrals   

and   in  Appendix B. 

 

2.2.3 Superposition 

 

The displacement and the stress expressions for the infinite cylinder containing a ring 

shaped crack located at     plane, two penny shaped inclusions located at       

planes and subjected to axial tension of uniform intensity    at       are obtained 

by the superposition of the uniform solution and the general expressions for the 

perturbation problem: 
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CHAPTER III 

INTEGRAL EQUATIONS 

3.1. Derivation of Integral Equations 

 

The unknown functions     ,       and       are used in stress and displacement 

expressions given in Eqs.(2.49) or (2.51). The unknown function      is the crack 

surface displacement derivative in z-direction while       and       are the jumps in 

the shearing and normal stresses through the rigid inclusion, respectively. Since the 

surface of the crack located at      plane is free of stress and the rigid inclusions 

located at      planes are perfectly bonded to the cylinder, the stress and the 

displacement expressions, Eqs.(2.51), must satisfy the following conditions 

 

                                                                                                                          

                 

on the crack and 

 

                                                                             

 

                                                                                                              

 

on the rigid inclusion. Displacement type boundary conditions, Eqs.(3.1b,c), are 

satisfied if the following equations 
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are satisfied. Eqs.(3.1a) and (3.2a,b) are all stress type conditions. Substituting 

Eqs.(2.49d) in Eqs.(3.1a) and Eq.(2.49a,b) in Eq.(3.2a,b) gives the following singular 

integral equations 
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where 

 

        
 

     
 

     

  
  

 

 
  

 

 
  

 

 
           

  
 

 
                                             

                                             

 

        
 

     
 

 

 
  

 

 
                                         

  

  
  

 

 
  

     

  
  

 

 
         

                                               

 

  and   are the complete elliptic integrals of the first and the second kinds. It should 

be noted that       and       are odd,        is even, integrals from   to   in 

Eqs.(3.3) may be converted to integrals from    to   and Eqs.(3.3) may be rewritten 

in the form 
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The kernels                    in Eqs.(3.3) are in the form of improper integrals  
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The integrands                and                     containing the 

complete elliptic integrals   and   are given in Appendix C and Appendix D, 

respectively.  

 

The single-valuedness condition, Eq.(3.9a), for the crack and the equilibrium 

equations, Eqs.(3.9b,c) for the rigid inclusions  

 

  
 

 

                                                                                                                          

 

   

 

  

                                                                                                               

 

have to be satisfied in the solution of three singular integral equations, given in 

Eqs.(3.5). 

 

In the singular integral equations, given in Eqs.(3.5), the simple Cauchy kernel, 

Muskhelisvili(1953),         becomes unbounded when    . Additionally, the 

kernels                    may contain unbounded parts. Consequently, the 

improper integrals resulting in                   have to be considered closely 

and such expressions in                     causing probable singular 

expressions in                   have to be examined separately. Unbounded 

terms may rise because of the behavior of                     when    ∞.  

 

When                     are examined as   ∞,  

 

   ∞           
  ∞

                                                                                        



41 

 

   ,     and     are the only integrands containing unbounded terms given in 

Eq.(3.10) and these unbounded terms can be written in the form 
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By the integration of                    , the probable singular parts of the 

kernels                   ,  
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Bounded parts of kernels                   are then calculated from  
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in which the subscript b denotes the bounded parts and 

 

                                                                                                       

 

it is noteworthy that                   are singular if      . 

 

3.2 Characteristic Equations 

 

The crack surface displacement derivative      and the stress jumps       and 

       through the rigid inclusions may have singularities at the ends       and 

    , respectively. Their singular behavior may be determined by examining the 

singular integral equations Eqs(3.5) around these end points using the complex 

function technique given in Muskhelishvili(1953). The singular behavior of     , 

      and       can be determined by writing  
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where   and   are unknown constants and      ,   
     and   

     are Hölder-

continuous functions in the respective intervals       and       . 

 

Eqs.(3.5), together with Eqs.(3.16) may be written in the form 
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where all other and bounded terms are collected in              . 

Muskhelishvili’s (1953) technique is applied for evaluating the integrals containing 

singular terms near the end points: 
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where               and                 are bounded functions except at the 

points       ,        and      . 

 

The characteristic equation for   is obtained by substituting Eq.(3.18a) in Eq.(3.17a), 

then multiplying the resulting equation for the limiting case     by       , or 

for the limiting case     by        for an internal crack        : 

 

                                                                                                                             

 

The well known result for an embedded crack tip in a homogeneous medium is 1/2 

for  , Cook and Erdoğan(1972), Gupta (1973), Delale and Erdoğan (1982), Nied and 

Erdoğan (1983), Geçit (1987), Turgut and Geçit(1988).  

 

The characteristic equation for    Eq.(3.21) is obtained by substituting Eq.(3.18b,c) 

in Eq.(3.17b,c), then multiplying the resulting equation for the limiting case     by 

       for an internal rigid inclusion      ,  

 

                                                                                                                   (3.21) 

 

Similarly, the acceptable value for     is equal to 1/2, Gupta(1974), Artem and Geçit 

(2002), Yetmez and Geçit(2005), Kaman and Geçit(2007). 
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When the concentric ring-shaped crack, located at the symmetry plane of     , 

spread out to the outer surface of the cylinder and it becomes an edge crack.      . 

The characteristic equation for  , Eq.(3.22), is obtained by substituting Eq.(3.19a) in 

Eq.(3.17a). Subsequently the resulting equation is multiplied by        for the 

limiting case    :  

 

                                                                                                           

 

From the Eq.(2.23), it is clear that the value for   is zero which is also obtained in 

the previous works, Williams (1952), Geçit (1984), Geçit and Turgut (1988). This 

shows that the stresses at the apex of a 90˚ wedge with free sides are bounded. 

  

In case of the penny-shaped inclusions spread out to the outer surface of the cylinder,  

the portion of the infinite cylinder between      planes becomes a finite cylinder 

of length    with rigid ends.  The characteristic equation for     at the edge of rigid 

inclusions (when    ), is obtained by substituting Eq.(3.19b-i) in Eq.(3.17b,c). 

Subsequently, the resulting equation is multiplied by        for the limiting case 

   :  

 

                                                                                                  

 

Eq.(3.23) is in agreement with the results of previous works, Williams(1952), 

Gupta(1975), Geçit and Turgut (1988), which are obtained for the stress singularity 

at the apex of a 90
0
 wedge with one side fixed and the other side free. 
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CHAPTER IV 

SOLUTION OF INTEGRAL EQUATIONS 

Solution of singular integral equations, Eqs.(3.5), subjected to the conditions given in 

Eqs.(3.9) is given in this chapter. The solution procedure is separated into two main 

parts (i) finite cylinder and (ii) infinite cylinder problems. Additionally, the solution 

procedure for each main part is also separated to subsections. 

 

The singular integral equations are expressed in terms of non-dimensional variables 

  and   on the internal crack and   and   on the inclusions as a first step in the 

solution procedures:  

 

  
   

 
  

   

 
                                         

 

  
   

 
  

   

 
                                                                          

 

                                                                        

 

                                                                                                         

 

Consequently, inserting Eqs.(4.1) and (4.2) into the system of singular integral 

equations, Eqs.(3.5) and Eqs.(3.9), results in 
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Next, the singularities of the unknown functions along the lines of Eqs. (3.16), are 

imposed 
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where        ,        and       are Hölder-continuous functions in       , Eqs. (4.3) 

and  (4.4) are  rewritten in the form 
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4.1 Infinite Cylinder Problem 

 

In this section, the solution procedure for the infinite cylinder problem is presented. 

 

4.1.1 Infinite Cylinder Having an Internal Crack and two Inclusions 

 

The general solution of the problem is obtained by considering an infinite cylinder of 

radius   containing a ring-shaped internal crack located at     plane and two 

concentric penny-shaped rigid inclusions of radius c located at     . The infinite 

cylinder is subjected to axial tensile loads of uniform intensity    on both ends at 

infinity   (Fig. 2.1).   and   are the powers of singularity determined from Eqs. 

(3.20) and (3.21): 

 

       

 

                                                                                                                                        

 

Gauss-Lobatto integration formula, Krenk (1978), Artem and Geçit (2002), may be 

used to calculate the integrals appearing in Eq.(4.5) and Eq.(4.6),. Then, Eqs. (4.6) 

and (4.7) become 
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where the roots       and       are given by 
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              , are the weighting constants of the Lobatto polynomials 

 

      
 

      
       

 

     
                                                             

 

Equations (4.10) and (4.11) form a system of       linear algebraic equations. 

The roots and weighting constants of the Lobatto polynomials are symmetric. In 

addition to that, the unknown functions       ,        are odd and        is even. 

Consequently, the               system of algebraic equations, Eqs. (4.10), may 

be reduced to the following           system 
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in which 

 

  
   

  
   

 

  
   

  
                                                                                                                              

 

The system in Eqs.(4.14), contains      equations for    unknowns,           

      ,        ,                       . Consequently, to complete the number of 

equations to   , the equilibrium equation, Eq.(4.11c), and the single-valuedness 

condition, Eqs.(4.11a) are added to the system:  

 

           

 

   

  

 

               

   

   

                                                                                                              

 

For this case, if   is chosen to be an even integer, the coefficients for       that 

correspond to     in Eqs. (4.14b) must be particularly considered. In order to make 

this, the kernels                      must be calculated separately for    . Let 
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where     ∞ 
      and      

                are given in Appendix E and F, 

respectively. 

 

Then, noting that 

 

          
 

 
                                                                                                                    

 

Eqs.(4.14b) for         may be replaced by 

 

                                  

 

   

                         
 

   
              

   

   

 

                                    

   

   

 
           

      
                                                                                      

 

Laguerre integration formula is used to numerically calculate the improper integrals 

for kernels,                    , Abramowitz and Stegun (1965). 

  

4.1.2 Infinite Cylinder Having two Inclusions 

 

In this section, an infinite axisymmetric cylinder of radius A containing two penny-

shaped rigid inclusions of radius   located at       planes is considered. The 

infinite cylinder is subjected to axial tensile loads of uniform intensity    at infinity    

(Fig 4.1). In this case there is no crack on the cylinder. Therefore, the unknown  
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function      defined on the crack must be eliminated. Consequently, the integral 

equations Eqs. (4.14a), related to the conditions arise from crack, Eqs. (3.1a), will be 

unnecessary. The remaining integral equations, Eqs. (4.14b,c), will reduce to 

 

                                                

   

   

                                     

   

   

 
          

      
                                            

 

                                    

   

   

                                                 

   

   

                                                                                         

 

 that must be complemented by the 

 

                       
 

   
              

   

   

                                    
          

      

   

   

             

 

the kernels at     cannot be calculated easily, for this reason the     th equation 

in the system is written separately. 

 

In this case, there are       equations while the number of unknowns is  . 

Consequently, to complete the number of equations to  , the equilibrium equation is 

added to the system 
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Figure 4.1 Geometry of an infinite cylinder with two penny-shaped inclusions 

 

4.1.3 Infinite Cylinder Having an Internal Crack 

 

An infinite circular cylinder of radius A containing a ring-shaped internal crack of 

width       located at     plane is considered, in this section. This cylinder is 

subjected to axial tensile loads of uniform intensity    at infinity (Fig 4.2).  In this 

case, there is no inclusion on the cylinder. Therefore, the unknown functions 

      and        defined on the inclusions must be eliminated. 

 

Consequently, the integral equations, Eqs. (4.14b,c), and the associated boundary 

conditions on the  rigid inclusions, Eqs. (3.1b,c),  become unnecessary. For this case, 

the remaining integral equation, Eq. (4.14a), will reduce to 
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Figure 4.2 Geometry of an infinite cylinder with a ring-shaped crack. 

 

Obviously, there are       equations while the number of unknowns is  . 

Therefore, to complete the number of equations to  , the single-valuedness 

condition, Eqs.(4.25), is added to the system 

 

           

 

   

                                                                                                                      

 

4.1.4 Infinite Cylinder with an Edge Crack 

 

The infinite cylinder, shown in Fig. 4.3, of radius   containing an edge crack of 

width       located at     plane is considered in this section. Both ends of this  
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cracked infinite cylinder are subjected to axial tensile loads of uniform intensity   . 

The unknown functions       and        defined on the rigid inclusions must be 

removed. In this case, Eq. (3.16a) must be replaced by 

 

     
     

            
                                                                             

 

where   and   are to be calculated from the characteristic equations, Eq. (3.20) and       

Eq. (3.22). 

 

 

 

Figure 4.3 Geometry of an infinite cylinder with an edge crack. 

 

Eqs. (4.1) defining non-dimensional variables  ,   on the edge crack must be 

replaced by 
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The integral equations, Eq. (4.14b,c), and the condition on the rigid inclusions, Eq. 

(3.1b,c), must be removed. For this case,   is chosen as an odd integer and Eqs. 

(4.14a) reduces to 

 

                                        

       

   

                       

       

 

where 

 

     

         
 

  

  
                                                                                             

 

4.2 Finite Cylinder Problem 

 

When the rigid inclusions at          spread out and their radii c approaches A, the 

radius of the cylinder, the portion of the infinite cylinder between          and 

        becomes a finite cylinder with rigid ends. 

 

4.2.1 Finite Cylinder without Crack 

  

The finite cylinder, shown in Fig. 4.4, without crack is subjected to uniformly 

distributed tensile load of intensity p0 at          . In this case, Eq. (3.16b,c) must 

be replaced by 
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where   has to be obtained from the characteristic equation, Eq. (3.23). Also, Eqs. 

(3.2a,b) defining non-dimensional variables   and   on the rigid inclusion must be 

replaced by 

 

                                                   

 

                                                                                                     

                   

Gauss-Jacobi integration formula is used to calculate the integrals containing        

and        in Eqs.(4.6) and (4.7), Erdoğan et al. (1973), Gupta (1974), Geçit (1986), 

Yetmez and Geçit (2005). Consequently, Eqs. (4.14) are replaced by 

 

 

 
                                                

   

   

 
 

 
                                    

   

   

 
          

      
                                          

 

 

 
                                    

   

   

 
 

 
                                                

   

   

                                                                                         

 

where 
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and    ,   ,                     are Lobatto weights and integration points, given by 

Eqs. (4.12) and (4.13). On the other hand,   ,    and                      , are the 

weights and the roots of the Jacobi polynomials: 

 

  
       

                                 

 

    
         

                               

 

    
        

      

           

         

              

  
       

         
       

     
                 

          

 

Note that calculation of kernels of Eqs. (4.32b) for        that correspond to           

     must be particularly considered. Then, this equation is expressed separately in 

the form 

 

 

 
                       

 

   
              

   

   

 
 

 
                                   

          

      

   

   

        

 

For this case, there are       equations while the number of unknowns is  . 

Therefore, in order to increase the number of equations to  , the equilibrium 

equation is added to the system. 
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Figure 4.4 Geometry of a finite cylinder  

 

4.2.2 Finite Cylinder Having a Crack 

 

The finite cylinder, shown in Fig. 4.5, containing a transverse ring-shaped crack of 

width        located at         plane is subjected to uniformly distributed tensile 

load intensity p0 at          .  

 

 

 

Figure 4.5 Finite cylinder having a ring-shaped crack 

 

In this case, Eqs. (4.14) are replaced by 

 

 

z 

r 

A 

L 

L 

p0 

p0 

 

L 

L 

z 

r 

A 

a b 

p0 

p0 



66 

 

                                

 

   

 
 

 
                                    

   

   

 
 

 
                                    

   

   

                                                   

 

                                 

 

   

 
 

 
                                                

   

   

 
 

 
                                    

   

   

 
           

      
                              

 

                                  
 

 
                                    

   

   

 

   

 
 

 
                                                

   

   

                                                                                    

 

Note here that calculation of kernels of Eqs. (4.37b) for        that corresponds to   

       must be considered with special attention, which may be written separately 

in the form 
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For this case, there are          equations while the number of unknowns is   . 

Accordingly, to complete the number of equations to   , the single-valuedness 

condition and equilibrium equation are added to the system: 

 

           

 

   

  

 

 

 
              

   

   

                                                                                                          

 

4.2.3 Finite Cylinder Having an Edge Crack 

 

In this case, the finite cylinder, shown in Fig. 4.5, containing a transverse edge crack 

of width        located at       plane subjected to an axial tensile load of 

uniform intensity    at          is considered. Eqs. (4.14) are replaced by    
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which are subjected to the condition 
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Figure 4.6 Finite cylinder having an edge crack 

 

The equation corresponding to                 in Eqs.(4.14) is again  written 

separately as 
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CHAPTER V 

STRESS INTENSITY FACTORS 

Stress intensity factors form a very important basis in fracture mechanics. Stresses 

become infinity in the vicinity of tips or edges of cracks and inclusions. These 

infinite stresses are expressed in terms of stress intensity factors. 

 

Stress intensity factors for cracks and inclusions are considered separately in the 

following subsections. 

 

5.1 Stress Intensity Factors at the Edges of the Internal Crack 

 

The stress intensity factors, used to express the stresses around the edges of an 

internal crack, are given in this section. Mode-I stress intensity factors,    ,    , at 

the edges of the crack are defined as 

 

       
   

                 

 

       
   

                                                                                                           

 

and         may be expressed from Eq.(2.49d) in the form 

 

        
  

      
 

    

   

 

 

                                                                                 

 

where the bounded part,           is such that: 
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     is expressed as: 

 

     
     

           
 

 
 
 

 
               

        
                

              

        
                

                                    

 

and the integral of the function in Eq. (5.2) is calculated by the method given in 

Muskhelishvili (1953): 

 

 

 
 

    

   

 

 

   
     

      

     

    

 

    
 

  
  
 

   
 
 

     

    

 

    
                         

 

where,       is bounded for      . 

 

When Eq. (5.5) is rearranged, the following expression is obtained: 

 

 

 
 

    

   

 

 

   
     

    

 

    
 

     

    

 

    
                                                  

 

If Eq. (5.6) is substituted in Eq. (5.2),          becomes: 

 

        
  

     
 
     

    

 

    
 

     

    

 

    
                                          

 

The stress intensity factors,    ,    , are related to       and       by substituting 

Eq. (5.7) in Eqs. (5.1): 
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Furthermore, normalized stress intensity factors may be defined and calculated as: 

 

     
   

          
 

      

   
  

 

     
   

          
  

     

   
                                                                                       

 

5.2 Stress Intensity Factor for an Edge Crack 

 

The stress intensity factor, used to state the stresses at the vicinity of an edge crack, 

is given in this sub-section. Mode-I stress intensity factor,    , for the inner edge of 

the crack may be written as 

 

       
   

                                                                                                            

 

and         may be stated from Eq.(2.49d) in the form 

 

        
  

      
 

    

   

 

 

                                                                               

 

where       is expressed as: 

 

     
     

            
 

 
 
 

 
            

      
                

            

      
               

                                     

 

and the integral of the function in Eq. (5.11) is obtained by the technique given in 

Muskhelishvili (1953): 
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where,       is bounded for      . 

 

The stress intensity factor,     may be related to the        by substituting Eq. 

(5.11) in Eqs. (5.10): 

 

    
    

     
                                                                                                                   

 

Furthermore, normalized stress intensity factors can be defined as: 

 

     
   

         
 

     

   
                                                                                               

 

5.3 Stress Intensity Factors at the Edges of the Rigid Internal Inclusions 

 

The stress intensity factors, used to express the stresses at the edges of a rigid 

inclusion, are given in this section. The normal (Mode I) and shear stress (Mode II) 

components of the stress intensity factors,     and     at the edges of a rigid 

inclusion  for the case            , may be obtained as 

 

       
   

                

 

       
   

                                                                                                          

 

From Eqs.(2.49c,d), the expressions for normal and shearing stresses may be written 
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where subscripts   and   refer to the singular and the bounded parts of stresses, 

respectively. 

 

Eqs. (G.1)−(G.3), given in Appendix G, may be used to express the singular parts in 

the form 

 

         
   

       
      

 

   

 

  

   
 

 
       

 

           
   

       
      

 

   

 

  

   
 

 
                                                    

 

      and      ) are expressed as: 

 

      
  

    

      
 

 
 
 

 
   

             

        
          

  
             

        
            

                                      

 

      
  

    

      
 

 
 
 

 
   

             

        
          

  
             

        
            

                                                

 

The stress intensity factors,    ,      may be related to   
     and   

     by 

substituting Eq. (5.18) in Eqs. (5.16.): 
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Stress intensity factors     and     may be normalized as follows: 

 

     
   

    
                                                                                                                      

 

5.4 Stress Intensity Factors at the Corners of the Finite Cylinder 

 

Stress intensity factors, used to express the stresses at the corners of a finite cylinder, 

are given in this section. For the finite cylinder      , the normal (Mode I) and 

shear stress (Mode II) components of stress intensity factors,     and     are defined 

as: 

 

       
   

                 

 

       
   

                                                                                                        

 

One may write 

 

                           

 

                                                                                                                  

 

where again subscripts   and   refer to the singular and the bounded parts of stresses, 

respectively. 

 

The singular parts in are the form 
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Eq. (5.24) can be converted into the form given in Eqs. (3.20): 

 

         
 

      
       

  
          

           
 

  
         

           
 

                         
   

    

          

 

      

                         
  

     

          

 

      
 

 
 

 

  
    

            
  

 

          
 

      
       

  
          

           
 

  
         

           
 

                        
  

    

          

 

      

                        
  

     

          

 

      
 

 
 

 

  
    

            
                                                                              

 

Stress intensity factors,     and     can be calculated by substituting Eq. (5.25) 

in Eq. (5.22): 
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Stress intensity factors     and     may be normalized as follows: 

 

     
   

    
                                                                                                                     

 

Normalized stress intensity factors at the corner of the finite cylinder,      and      , 

become then 

 

     
  

 
 

 

   

      

       
                                    

 
      

  
   

 

     
  

 
 

 

   

      

       
                                    

 
      

  
                                                                                                       

 

 

 

 

 

 

 

 

 

 

 

 

 



78 

 

CHAPTER VI 

RESULTS AND CONCLUSIONS 

6.1 Numerical Results 

 

The unknown functions             ,       and                are 

converted into                 for internal crack,          for edge 

crack,       ,                . Consequently, functions      ,        and        

are calculated numerically  at discrete collocation points to determine the stress 

intensity factors at the edges of the internal and edge cracks as well as the stress 

intensity factors at the edges of the inclusions for infinite cylinder and at the corners 

of the finite cylinder. 

 

Comparative numerical results for the cylinder problems are given in the following 

sections, in the form of normalized stress intensity factors vs. varying geometrical 

properties,                          and material property, Poisson’s 

ratio,  , of the cylinders, where   and   are the inner and the outer radii for the crack, 

  is the radius of the inclusion,   is the distance from the crack to the inclusions. In 

numerical analyses, the constants  , radius of the cylinder,  , modulus of rigidity and 

  , intensity of the uniformly distributed load applied to the cylinder, are used for 

normalization purposes. 

 

6.1.1 Infinite Cylinder Problem 

 

In this section, the infinite cylinder problem, defined in Chapter 4, is considered for 

the cases of infinite cylinder having two inclusions and an internal crack or only two 
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inclusions or only an internal crack or an edge crack. Results for the infinite cylinder 

problem are given in Figs. (6.1) to (6.20). 

 

6.1.1.1 Infinite Cylinder Having a Crack and two Inclusions 

 

Infinite cylinder having a crack and two inclusions is considered in this sub-section. 

Figures (6.1) to (6.10) present the variation of stress intensity factors vs. varying 

geometric and material properties.  

 

Figures (6.1) and (6.2) show the variation of the Mode I normalized stress intensity 

factors,      and      , respectively, with         when        and      . 

Results are given for two values of     ratio of the infinite cylinder. From the 

figures, it can be observed that,       and       are almost insensitive to     and they 

increase as         increases. Note that        means that the center line of 

the ring shaped crack is at      .  

 

Figure (6.3) presents the results for       vs.     ratio for various values of   when 

              . From the figure, it can be observed that,   is nearly 

ineffective for small values of    . Changes in the value of    become more 

effective for relatively large values of inclusion radius. 

 

Figure (6.4), gives the results for      vs.     ratio for various values of   when 

              . From the figure, it can be observed that,     and   have 

limited  effect for small values of     as in the case of     . Furthermore, beyond a 

large value of       ratio, magnitude of      starts varying considerably with   and 

   .  

 

Figures (6.5) and (6.6) show the variation of      vs.         for varying values of 

    and  , respectively, when       . From Fig. (6.5), non-uniform behavior may 

be observed for small values of    , in contrary to that a uniform behavior may be 

observed for large values of      This shows that the effect of internal crack width 

becomes more pronounced when inclusions get closer to the internal crack. From        
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Fig. (6.6), similar curves may be observed for various values of    Furthermore, it 

may be observed that increase in   gives larger values for       This figure also 

indicates that      decreases when crack width approaches A  

Figure (6.7) shows the variation of      vs.      for various values of   when            

              . From the figure, it can be observed that, all curves show 

similar trend with a change only in the magnitude. Furthermore, it is clear that for 

relatively larger values of     , increasing values of   increases magnitude of     . In 

contrary to that a reverse behavior may be observed for smaller values of       This 

indicates that      reaches a peak point and beyond that point it decreases for 

increasing values of inclusion radius.  

 

Figures (6.8) and (6.9) show the variation of      vs.         for various values of 

    and  , respectively, when       . From Fig. (6.8) it can be observed that, 

magnitude of      heavily depends on         for small values of      When     

gets larger, curves tend to be uniform. This shows that, when the distance between 

the crack and inclusions increase, magnitude of      becomes just slightly dependent 

to crack width. From Fig. (6.9), it can be observed that, all curves follow similar 

trend until crack width reaches a certain value         . Beyond that point, the 

effect of   becomes more pronounced  on the variation of     .   

 

Figure (6.10) shows the magnitude of      vs.      for various values of   when 

              . It can be observed that, all curves follow similar trends. 

Additionally, it is clear that larger values of   result in larger magnitudes for     . 

This shows that, magnitude of      heavily depends on Poisson’s ratio. Also it can be 

told that, radius of inclusion has considerable effect on the magnitude of      . 

 

6.1.1.2 Infinite Cylinder Having two Inclusions 

 

An infinite cylinder having two inclusions is considered in this section. Figs. (6.11) 

to (6.16) show the variation of stress intensity factors vs. various geometric and 

material properties. 
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Figure (6.11) shows the  variation of normalized Mode I stress intensity factor at the 

edge of the inclusions,       vs.     ratio for various values of     when      . 

From the figure, it can be observed that     ratio has only a very slight effect on       

for large values of a     ratio. Furthermore, for various values of    , all curves 

show similar trend except for          when     ratio is small. This shows that 

beyond a distance,    , the distance between the inclusions is not effective on the 

variation of     . 

 

Figures (6.12) and (6.13) show the variation of      vs.    for various values of     

and     , respectively. Figure (6.12) shows that the variation of      follows a 

parabolic path with increasing   for large values of    , in contrary to that      

increases with increasing values of   for small value of    . From Fig. (6.13), it 

may be observed that for increasing values of  , the variation of       shows a 

parabolic tendency. When     ratio gets larger      gets smaller.  

 

Figure (6.14) shows the  variation of normalized Mode II stress intensity factor at the 

edge of the inclusions,       vs.     ratio for various values of     when      . 

From the figure, it can be observed that     ratio has a very slight effect on      for 

large values of    . For varying values of    , all curves show similar trend with 

only a difference in magnitude of     . This behavior indicates that the distance 

between the inclusions is not very effective on       when     is greater than   . 

 

Figures (6.15) and (6.16) show the variation of       vs.    for various values of     

and    , respectively, when       . Figure (6.15) shows that the variation of      

follows an almost linear path with increasing  . Furthermore, it is observed that     

ratio has very small effect on the variation of     . From Fig. (6.16), it may be 

observed that for increasing values of  , the variation of       shows a similar trend 

for all curves. When the edge of the inclusion approaches surface of the cylinder,      

gets smaller.  

 

Figure (6.17) gives comparison of numerical results for      as a function of     

ratio with similar results given by Kaman and Geçit (2006). From the figure, it may 
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be observed that results obtained from present study are in very good agreement with 

Kaman and Geçit (2006). 

 

6.1.1.3 Infinite Cylinder Having an Internal Crack 

 

In this section, an infinite cylinder having an internal crack is considered. Figures 

(6.18) and (6.19) show the variation of stress intensity factors at the edges of the 

crack vs.   for various values of internal crack width ratio        . From Figs. 

(6.18) and (6.19), it may be observed that, the Mode I stress intensity factors      and 

     show uniform trends with a very slight effect of  . These factors have smaller 

magnitudes for smaller values of crack width ratio. When internal crack width gets 

larger, the magnitudes of       and       increase. Furthermore, Poisson’s ratio is not 

effective on the variation of      and     . 

 

The results obtained from the present study are compared in Table (6.1) with those of 

the Nied and Erdoğan (1983). From Table (6.1), it is clear that, numerical results for 

Mode I stress intensity factors      and       are very close to those given in Nied and 

Erdoğan (1983).  

 

6.1.1.4 Infinite Cylinder Having an Edge Crack 

 

An infinite cylinder having an edge crack is considered in this section. Figures (6.20) 

and (6.21) show the variation of normalized Mode I stress intensity factor      at the 

root of the edge crack vs. crack width ratio,          and  , respectively. 

 

Figure (6.20) gives comparison of numerical results for      as a function of 

        ratio with similar results given by Nied and Erdoğan (1983). From the 

figure, it may be observed that results obtained from present study are in very good 

agreement with Nied and Erdoğan (1983).  

 

Furthermore, from Fig. (6.21), it is observed that   has very slight effect on the 

variation of      and the magnitude of       increases with increasing crack width 

ratio         without a change in the trend of the curves. 
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Numerical results for Mode I stress intensity factor      at the root of the edge crack 

in an infinite cylinder are compared in Table (6.2) with those given in the paper by  

Nied and Erdoğan (1983). Table (6.2) shows that, numerical results for Mode I stress 

intensity factor      are almost identical with those given in Nied and Erdoğan 

(1983). 

 

6.1.2 Finite Cylinder Problem 

 

A finite cylinder, defined in Chapter 4, is considered in this section. The results are 

obtained for finite cylinder having no crack, having an internal crack and having an 

edge crack. Results for the finite cylinder are given in Figs. (6.22) to (6.45). 

 

6.1.2.1 Finite Cylinder without Crack  

 

A finite cylinder having no crack is considered in this section. Figures (6.22) and 

(6.23) present the variation of normalized Mode I and Mode II stress intensity factors 

           at the corner of the cylinder vs.      for various values of     

 

Figures (6.22) and (6.23) show similar curves for      and      . From both of these 

figures it can be observed that,      ratio is ineffective when it is larger than unity. 

In contrary to that,   is very effective on the magnitudes of these factors. Figure 

(6.22) shows that increase in   decreases the magnitude of Mode I stress intensity 

factor,     , however, in Fig. (6.23), increase in   increases the magnitude of Mode II 

stress intensity factor,     . These indicate that Poisson’s ratio is very effective on the 

variation of      and     .  

 

Figure (6.24) gives comparison of numerical results for      as a function of    with 

similar results given by Kaman and Geçit (2006) as well as Gupta (1974). From the 

figure, it may be observed that results obtained from present study are in very good 

agreement with Kaman and Geçit (2006). It seems that the results of Gupta (1974) 

differ from those of the present study and Kaman and Geçit (2006) a little bit. 
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6.1.2.2 Finite Cylinder Having an Internal Crack 

 

Finite cylinder having an internal ring-shaped crack is considered in this section. 

Figs. (6.25) to (6.34) present the variation of normalized Mode I stress intensity 

factors,                  and Mode II stress intensity factor     vs.      for various 

values of   and geometric properties. 

 

Figures (6.25) and (6.26) show the curves of             vs.         for various 

values of     when      . From these figures, it can be observed that, all curves 

follow similar trends. When the outer edge of the crack gets close to the surface of 

the cylinder,      and      increase extensively. 

 

Figures (6.27) and (6.28) show the variation of             vs.     for various values 

of   when         . From these figures, it can be observed that, effect of   is 

more pronounced for smaller values of    . When     gets larger, the effect of   

starts to vanish. This shows that the magnitudes of      and      are independent of 

Poisson’s ratio when the length of the finite cylinder is large. 

 

Figure (6.29) shows the variation of      vs.         for various values of     

when        It can be observed from this figure that, for       ,         

ratio has a limited effect. However, for smaller values of     , the slope of the 

curves heavily depend on     ratio. This indicates that crack width is very effective 

on the variation of      for shorter cylinders. 

 

Figure (6.30) shows the variation of      vs.         for various values of   when 

   . This figure shows that the effect of   is more pronounced for smaller values 

of internal crack width with respect to larger crack widths.  When crack width gets 

larger, the curves get closer. 

 

Figure (6.31) shows the variation of       vs.      for various values of   when  

        . As shown in this figure,      is larger for smaller  . Starting with a 
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small length, increase in     increases      and then further increase in     

decreases it. 

 

Figures (6.32) and (6.33) present the variation of       vs.         for various 

values of     and  ,  respectively. As shown in Figure (6.32) for       , 

        ratio has a very slight effect on     . However, for smaller values of    , 

     changes considerably with        . From Fig. (6.33), it is observed that 

        ratio has a very small effect on the variation of      . Furthermore, the 

magnitude of      increases with increasing values of   with a slight change on the 

trend of the curves. This indicates that Poisson’s ratio is very effective on the 

variation of     . 

 

Figure (6.34) shows the variation of       vs.      for various values of   when          

        . As shown in the figure, all of the curves follow the same trend. When 

rigid ends inclusions get away from the internal crack, all of the curves tend to be 

straight. This indicates that the distance between central crack and the rigid ends of 

the finite cylinder becomes nearly ineffective when      ratio is larger than unity. 

 

6.1.2.3 Finite Cylinder Having an Edge Crack 

 

In this section, a finite cylinder with an edge crack is considered. Figures (6.35) to 

(6.45) show the variation of normalized stress intensity factors            and      vs. 

geometric properties         and    . 

 

Figure (6.35) shows that when   gets smaller, magnitude of the      gets larger for 

relatively small values of      When,     increases, all curves tends to coincide. 

This indicates that, the effect of   becomes negligible when the length of the cylinder 

increases. 

 

It can be observed from Figs. (6.36) and (6.37) that      does not depend on     or 

  , much. Furthermore, it can be told that, all curves follow similar trends with 

increasing positive slope. This indicates that, magnitude of      increases extensively 
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when edge crack width gets larger. Fig. (6.38) supports the observations from Figs. 

(6.36) and (6.37). 

 

Figure (6.39) shows the variation of      vs.     for various values of edge crack 

width ratio,         when      . Figure shows that when edge crack width gets 

larger, magnitude of      also gets larger. Furthermore, it is also observed that, this 

behavior is slightly dependent on the length of the finite cylinder. 

 

Figure (6.40) presents the variation of      vs.      for various values of   when              

        . It is observed from this figure that, for small values of     , when the 

rigid ends are closer to the edge crack,  the smaller values of   result in smaller 

magnitudes for     , in contrary to that, for larger values of     , when the ends are 

farther from the edge crack, smaller values of   result in larger magnitudes of     . 

This shows that, variation of      is heavily dependent on the length of the finite 

cylinder and Poisson’s ratio. 

 

Figures (6.41) and (6.42) show the variation of      and       respectively, 

vs.          for two values of      when      . It is observed from these 

figures that, the curves follow totally different trends. This shows that the magnitude 

of      is heavily dependent on     ratio, also it is observed that the edge crack 

width ratio          is considerably effective on the magnitude of      when 

     .   

 

Figures (6.43) and (6.44) show the variation      and     , respectively, 

vs.         for various values of    when    . It may be observed from these 

figures that, all curves follow the same trend. Additionally, increasing values of   

decrease the magnitude of       and increase the magnitude of     . Furthermore,      

and      decrease slightly, in general, with increasing crack width.  

 

Figure (6.45) shows the variation of      vs.      for various values of   when                 

        . Figure shows that, large values of  , result in large magnitudes of 

    . Additionally, it may be observed from the figure that, all curves nearly follow 
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the same trend. Furthermore, it is clear that, beyond a certain value of    ,     , 

curves become nearly straight and horizantal. This indicates that, for larger values 

of     ratio, magnitude of       becomes nearly constant for each value of Poisson’s 

ratio. 

 

6.2 Conclusions 

 

A finite cylinder with a free lateral surface is considered in this research study. The 

cylinder with rigid ends contains an edge crack and subjected to a tensile axial load 

of uniform intensity    at both ends. The material of the cylinder is assumed to be 

linearly elastic and isotropic. 

 

The solution for the finite cylinder problem is obtained by a procedure starting with 

obtaining a solution to an infinite cylinder containing a ring shaped crack and two 

rigid penny-shaped inclusions, subjected to tensile axial loads of uniform intensity    

at infinity. This infinite cylinder problem is then converted to the target problem, 

finite cylinder with an edge crack, considered in this research study. For this purpose, 

the internal ring shaped crack in the infinite cylinder is converted to an edge crack by 

letting  the outer edge of the crack approach the lateral surface of the cylinder. 

Afterwards, the two rigid penny-shaped inclusions in the infinite cylinder are 

enlarged until reaching the lateral surface of cylinder. As a result, these rigid 

inclusions form the rigid ends of the cylinder and a finite cylinder having an edge 

crack is obtained.  

 

The following conclusions may be deduced from the results of this research study; 

 

1. Effect of Poisson’s ratio is minor on the magnitude of the normalized Mode I 

stress intensity factor at the root of the edge crack,       when the length of the 

finite cylinder is considerable.  

2. Magnitude of the normalized Mode I stress intensity factor at the root of the 

edge crack,       increases considerably when edge crack width gets larger. 
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3. The length of the finite cylinder, for values larger than    , has only a 

slight effect on the variation of normalized Mode I stress intensity factor at 

the root of the edge crack,       

4. Variation of normalized Mode I stress intensity factor at the corner of the 

finite cylinder,        is heavily dependent on the length of the finite cylinder 

as well as on the Poisson’s ratio.  

5. For relatively long cylinders, magnitude of the normalized Mode II stress 

intensity factor at the corner of the finite cylinder      becomes nearly 

constant. 

6. When Poisson’s ratio increases, a decrease in the magnitude of normalized    

Mode I stress intensity factor at the corner of the finite cylinder,       and an 

increase in the magnitude of normalized Mode II stress intensity factor at the 

corner of the finite cylinder,      are observed. 

 

6.3 Suggestions for Further Studies 

 

This research study may be extended to further points by changing the material and 

geometrical properties as well as loading conditions of the considered problem. The 

following loading and geometric conditions as well as material properties may be 

considered in further studies; 

 

1. The finite cylinder with edge crack may be solved subjected to torsional and 

shear loading as well as bending moment. 

2.  The finite cylinder with multiple edge or internal cracks may be solved under 

the action of any one of above mentioned loading to study the interaction 

between cracks. 

3. The finite cylinder problem with inclined cracks may be solved under any 

loading condition. 
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Table 6.1 Comparative results of the present study with that of Nied & Erdoğan 

(1983) for internal crack when       and      . 

 

Crack width =         Present study Nied & Erdoğan (1983) 

                            

0.505 0.595 1.029 0.988 1.028 0.985 

 

 

 

Table 6.2 Comparative results of the present study with that of Nied & Erdoğan 

(1983) for edge crack when      . 

 

Crack width Present study Nied & Erdoğan (1983) 

                  

0.01 1.125 1.121 
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Figure 6.1 Normalized Mode I stress intensity factor       when          ,       and       . 
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Figure 6.2 Normalized Mode I stress intensity factor      when       ,       and      . 
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Figure 6.3 Normalized Mode I stress intensity factor      when             and      . 
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Figure 6.4 Normalized Mode I stress intensity factor      when            and      . 
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Figure 6.5 Normalized Mode I stress intensity factor      when       ,       and       . 
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Figure 6.6 Normalized Mode I stress intensity factor      when          and      . 
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Figure 6.7 Normalized Mode I stress intensity factor      when            and      . 
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Figure 6.8 Normalized Mode II stress intensity factor      when       ,       and      .  
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Figure 6.9 Normalized Mode II stress intensity factor      when           and      . 
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Figure 6.10 Normalized Mode II stress intensity factor      when            and      . 
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Figure 6.11 Normalized Mode I stress intensity factor      at the inclusion edge when      . 
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Figure 6.12 Normalized Mode I stress intensity factor      at the inclusion edge when       . 
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Figure 6.13 Normalized Mode I stress intensity factor      at the inclusion edge when     . 
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Figure 6.14 Normalized Mode II stress intensity factor      at the inclusion edge when        
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Figure 6.15 Normalized Mode II stress intensity factor      at the inclusion edge when        . 
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Figure 6.16 Normalized Mode II stress intensity factor      at the inclusion edge when        
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Figure 6.17 Normalized Mode II stress intensity factor      when       and     . 
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Figure 6.18 Normalized Mode I stress intensity factor      at the crack edge when         
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Figure 6.19 Normalized Mode I stress intensity factor      at the crack edge when         
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Figure 6.20 Normalized Mode I stress intensity factor      for the edge crack. 
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Figure 6.21 Normalized Mode I stress intensity factor      for the edge crack. 
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Figure 6.22 Normalized Mode I stress intensity factor      when at the corner of the finite cylinder . 
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Figure 6.23 Normalized Mode II stress intensity factor      when at the corner of the finite cylinder . 
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Figure 6.24 Normalized Mode II stress intensity factor      at the corner of the finite cylinder when      . 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.1 0.2 0.3 0.4 0.5

ν

Kaman   and 
Geçit (2006)

Gupta(1974)

Present study

 

z 
r 

A 

L 

L 

p0 

p0 



 

 

 

 

1
1
4
 

 
 

Figure 6.25 Normalized Mode I stress intensity factor      at the inner edge of the crack when        and      . 
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Figure 6.26 Normalized Mode I stress intensity factor      at the outer edge of the crack when       and         
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Figure 6.27 Normalized Mode I stress intensity factor      at the crack edge when          and        
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Figure 6.28 Normalized Mode I stress intensity factor      at the outer edge of the crack when when           and         
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Figure 6.29 Normalized Mode I stress intensity factor      at the corner of the finite cylinder when       and        
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Figure 6.30 Normalized Mode I stress intensity factor      at the corner of the finite cylinder when      and        

 

 

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.2 0.4 0.6 0.8 1.0

( b - a ) / A

ν = 0.1

0.2

0.3

0.4

0.5

 

L 

L 

z 
r 

A 
a b 

p0 

p0 



 

 

 

 

1
2
0
 

 
 

Figure 6.31 Normalized Mode I stress intensity factor      at the corner of the finite cylinder when           and        
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Figure 6.32 Normalized Mode II stress intensity factor      at the corner of the finite cylinder when       and        
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Figure 6.33 Normalized Mode II stress intensity factor      at the corner of the finite cylinder when     and         
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Figure 6.34 Normalized Mode II stress intensity factor      at the corner of the finite cylinder when          and         
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Figure 6.35 Normalized Mode I stress intensity factor       for the edge crack when         . 
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Figure 6.36 Normalized Mode I stress intensity factor      for the edge crack when      . 
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Figure 6.37 Normalized Mode I stress intensity factor      for the edge crack when       .  
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Figure 6.38 Normalized Mode I stress intensity factor      for the edge crack when      
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Figure 6.39 Normalized Mode I stress intensity factor      for the edge crack when      . 
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Figure 6.40 Normalized Mode I stress intensity factor      at the corner of the finite cylinder when           
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Figure 6.41 Normalized Mode I stress intensity factor      at the corner of the finite cylinder when      . 
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Figure 6.42 Normalized Mode II stress intensity factor      at the corner of the finite cylinder when      . 
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Figure 6.43 Normalized Mode I stress intensity factor      at the corner of the finite cylinder when      
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Figure 6.44 Normalized Mode II stress intensity factor      at the corner of the finite cylinder when    . 
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Figure 6.45 Normalized Mode II stress intensity factor      at the corner of the finite cylinder when         . 
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APPENDIX A 

DEFINITE INTEGRAL FORMULAS USED IN EQS. (2.48)  

Integral formulas, Gradshteyn and Ryzhik (1994), used in deriving the expressions in 

Eqs. (2.48a,b) are  
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where    and    are Bessel functions of the first kind of order zero and one,    and    are 

modified Bessel functions of the first of order zero and one and     and    are  modified 

Bessel functions of the second kind of order zero and one, respectively. 
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APPENDIX B 

DEFINITE INTEGRAL FORMULAS USED IN EQS. (2.50) 

Integrals of products of Bessel functions of the first kind, exponential functions and 

power functions used in deriving the expressions in Eqs. (2.49), Gradshteyn and Ryzhik 

(1994): 
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where K and E are the complete elliptic integrals of the first and the second kinds and 
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APPENDIX C 

EXPRESSIONS APPEARING IN EQS. (3.3) 

The expressions for                appearing in Eqs.(3.3) are as follows  
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APPENDIX D 

KERNELS OF  EQS. (3.10) 

The expressions for the integrands                     appearing in Eqs.(3.10) are 

as follows  
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where            are given in Eqs.(2.50). 
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APPENDIX E 

DEFINITIONS APPEARING IN EQS. (4.18) 

The expressions for                                           appearing in 

Eqs.(4.18) are as follows  
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APPENDIX F 

DEFINITIONS APPEARING IN EQS. (4.18) 

The expressions for the integrands                       appearing in Eq.(4.18) 

are in the form 
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APPENDIX G 

LIMITS OF CERTAIN INTEGRALS 

Limits of certain integralsa are calculated from Erdogan (1968): f (t) is taken to be 

continuous and satisfying Hölder condition in the related interval, consequently 
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APPENDIX H 

DEFINITIONS APPEARING IN EQS. (5.24) 

The expressions for            and            appearing in Eqs.(5.24) are in the form 

 

           
 

  
                         

                                             

               

                                                                    

 

           
 

  
                               

                             

                          

                                                                                      

 

where            are given in Eqs.(2.50). 

 

The expressions for                                         are as follows  
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The singular parts of kernels,                        
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 are calculated to be 

 

 

          
 

   
         

  

   
           

 

  
 

 

 
        

 

      

 
 

      
 

         
  

   
           

 

  
 

 

 
        

 

      

 
 

      
                                                                                                      

 

 

          
 

   
          

  

   
           

 

  
 

 

 
       

 

      

 
 

      
 

          
  

   
           

 

  
 

 

 
       

 

      

 
 

      
                                                                                                      

 

 

 

 

 

 


