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ABSTRACT

COMPUTATION OF VISCOUS FLOWS OVER FLAPPING AIRFOILS AND PARALLEL

OPTIMIZATION OF FLAPPING PARAMETERS

Kaya, Mustafa

M.S., Department of Aerospace Engineering

Supervisor: Assoc. Prof. Dr. İsmail H. Tuncer

July 2003, 95 pages

Airfoils flapping in pitch and plunge are studied, and the flapping motion parameters are op-

timized to maximize thrust generation and the efficiency of the thrust generation. Unsteady

viscous flowfields over flapping airfoils are computed on overset grids using a Navier-Stokes

solver. Computations are performed in parallel using Parallel Virtual Machine library routines

in a computer cluster. A single flapping airfoil and dual airfoils flapping in a biplane con-

figuration are considered. A gradient based optimization algorithm is employed. The thrust

production and the efficiency of the thrust production are optimized with respect to flapping

parameters; the plunging and pitching amplitudes, the flapping frequency, and the phase shift

between the pitch and plunge motions. It is observed that thrust generation of flapping airfoils

strongly depends on the phase shift and high thrust values may be obtained at the expense

of reduced efficiency. For a high efficiency in thrust generation, the effective angle of attack

of the airfoil is reduced and large scale vortex formations at the leading edge are prevented.

At a fixed reduced flapping frequency of 1, a single flapping airfoil in pitch and plunge motion

iii



produces the maximum average thrust coefficient of 1.41 at the plunge amplitude of 1.60, the

pitch amplitude of 23.5o, and the phase shift of 103.4o whereas the maximum efficiency of 67.5%

is obtained at the plunge amplitude of 0.83, the pitch amplitude of 35.5o and the phase shift of

86.5o.

Keywords: Flapping Airfoils, Overset Grids, Parallel Processing, Optimization, Reynolds-

Averaged Navier-Stokes Equations
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ÖZ

ÇIRPAN KANAT KESİTLERİ ÜZERİNDEKİ VİSKOS AKIŞLARIN HESAPLANMASI VE

ÇIRPMA PARAMETRELERİNİN PARALEL OLARAK ENİYİLEŞTİRİLMESİ

Kaya, Mustafa

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Assoc. Prof. Dr. İsmail H. Tuncer

Temmuz 2003, 95 sayfa

Bu çalışmada, yunuslama ve dalma şeklinde çırpma hareketi yapan kanat kesitleri incelenmiş

ve çırpma hareketi parametreleri maksimum itki üretimi ve itki üretiminin verimi için eni-

yileştirilmiştir. Çırpan kanat kesitleri üzerindeki zamana bağlı viskos akış alanları bir Navier-

Stokes çözücü kullanılarak üstüste binen ağ sistemi ile hesaplanmıştır. Hesaplamalar Parallel

Virtual Machine kitaplık yordamları kullanılarak bir bilgisayar öbeğinde paralel olarak gerçekleş-

tirilmiştir. Tek olarak ve üst üste iki tane yerleştirilmiş çırpan kanat kesitleri incelenmiştir.

Gradyant tabanlı eniyileştirme algoritması kullanılmıştır. İtki üretimi ve itki üretiminin verimi

çırpma hareketi parametlerine (yunuslama ve dalma hareketlerinin genliği, çırpma frekansı ve

yunuslama ile dalma hareketi arasındaki faz farkı) göre eniyileştirilmiştir. Çırpan kanat kesit-

leri ile itki üretiminin faz farkına oldukça bağlı olduğu ve yüksek itki değerlerinin, düşük verim

durumunda elde edilebileceği gözlenmiştir. Yüksek verime, kanat kesitinin etkin hücum açısı

azaltıldığında ve hücum kenarında büyük girdap oluşumları engellendiğinde ulaşılmıştır. Değeri

1 olan indirgenmiş çırpma frekansında yunuslama ve dalma hareketi yapan tek bir çırpan kanat
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kesiti, 1.60 dalma genliği, 23.5o yunuslama genliği ve 103.4o faz farkı değerlerinde, 1.41’lik bir

maksimum ortalama itki katsayısı vermiştir. Değeri %67.5 olan maksimum verime ise, 0.83

dalma genliği, 35.5o yunuslama genliği ve 86.5o faz farkı değerlerinde ulaşılmıştır.

Anahtar Kelimeler: Çırpan Kanat Kesitleri, Üst Üste Binen Ağ Sistemi, Paralel İşlemler, Eniy-

ileştirme, Reynolds-Ortalamalı Navier-Stokes Denklemleri
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PREFACE

One has been researching the most convenient way, or in academic words, the optimum

method of flying in the sky since the first day when men started to think that the birds were

not, any more, to be considered as the only living beings able to fly. In spite of the fact that

what is done, is nothing but a challenge to the birds, in all the steps and stops of the flying

studies, men only imitated the birds. For this reason, I am really thinking if I should add

an ”unfortunately” in the beginning of my next sentence. This study takes also birds as an

example and suggests that, in micro air vehicles, the flapping-wings should be responsible of

the thrust.

I think I should finish chattering since each letter here delays a second more your meeting

with an interesting aerodynamic story, the heros of which are the CFD tools of the present

days.

You can report all errors and comments to the following e-mail address:

Mustafa Kaya
mkaya@ae.metu.edu.tr

All comments are welcome.

M.K.

METU, Ankara

July 2003
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Bird flight has been admired along the history of humans. Folkloric stories about men flying like

a bird have been narrated for many centuries. The phrase flying like a bird is a fascinating source

of imagination for human beings but, from the scientific point of view, the main conclusion to be

extracted from this phrase is the fact that the bird flight is realized by flapping wings. Flapping

wings are utilized by nearly a million species of insects and 10000 vertebrate species[1]. However,

this common utilization of flapping wing in the nature is a concept still waiting to be explored

by detailed scientific investigations.

Current research indicates that, based on the high flying performance of birds, insects and

many sea creatures, flapping wing propulsion would be more efficient than the conventional

propellers if applied to very small scale vehicles, so-called micro-air vehicles (MAVs) [2]. The

propulsive efficiency of the flying species with flapping wings are around 65− 75% [2] whereas

the propeller efficiency of a propeller-powered MAV with a fixed wing is about 50% [3, 4]. MAVs

with wing spans of less than 15 cm, and flight speed of 30 to 60 km/hr are of current interest

for military and civilian applications. A typical MAV might carry visual, acoustic, chemical

or biological sensors that can be miniaturized so that the entire payload weighs less than 30

grams. These small vehicles considered to fly at very low speeds have a chord Reynolds number
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Figure 1.1: A typical MAV mission [5]

Figure 1.2: Flapping wings (Jones et al. [6])

ranging from 1000 to about 50000. Since the primary mission for MAVs is the surveillance, they

are desired to have good maneuverability and sustained flight at low flight speeds. Currently,

there is a wide spread research work on finding the most energy efficient airfoil adaptation

and wing motion technologies capable of providing the required aerodynamic performance for

a MAV flight.

For a long time, complexity of the study and also funding problems have kept the researchers

away from investigating flapping motion. There has been neither sufficient effort for the de-

velopment of numerical flow solvers suitable for the flight regimes at low Reynolds numbers

nor enough experimental data to validate the numerical methods. The recent interest in the

development of MAVs triggered the start of studies in flapping wing aerodynamics. Recent
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experimental and computational studies carried out for development of MAVs, investigated

the propulsive characteristics of single and dual flapping airfoils, and shed some light on the

relationship among the produced thrust, the efficiency of the thrust production, the amplitude

and the frequency of the oscillations, phase shift between the pitch and plunge motions, and

the flow Reynolds number. Other important parameters are the camber of the airfoil and the

chord change during the flapping motion, which are not considered in this thesis.

The primary objective of this work is to develop a parallel optimization algorithm to max-

imize the thrust generation and the efficiency of the thrust generation of flapping airfoils, and

to asses the computational results by comparing them with recent experimental and numerical

studies. To this end, an unsteady parallel Navier-Stokes solver on overset grids and a gradient

based optimization algorithm will be employed.

1.2 Experimental Studies on Flapping Airfoils

Historically, design of a propulsion system for air vehicles by using flapping wings was an

attractive topic up until the first decade of the last century[1, 7, 8]. In their studies published

early in the 20th century, Knoller[9] and Betz[10] are known to be the first to explain the

bird’s ability to generate a thrust force. They independently observed that a flapping wing

generates an effective angle of attack, resulting in a normal-force vector with both lift and

thrust components. This is called as Knoller-Betz effect. Katzmayr[11] performed some wind

tunnel measurements and made the verification of the Knoller-Betz effect. The first explanation

of the drag and thrust production of flapping wings is made by von Kármán and Burgers[12],

according to the wake vortices as illustrated in Figure 1.3 and Figure 1.4 from Reference [20].

In the case of the drag production, it is observed that there is a row of vortices of clockwise

rotation above the symmetry plane, and a row of vortices of counterclockwise rotation below

the symmetry plane as shown in Figure 1.3. Note that the flow is from left to right. A velocity

(momentum) deficit is induced on the centerline by the vortices, and this is the indication

of drag. The vortex street shown in Figure 1.4 is obtained by oscillating the airfoil with a

higher plunge amplitude as indicated in the reference. Here, the upper row of vortices rotates
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Figure 1.3: Drag indicative vortex street [20]

Figure 1.4: Thrust indicative vortex street [20]

counterclockwise, and the lower row rotates clockwise. For this case, the vortices induce a

velocity (momentum) surplus on the centerline. This means that the thrust is produced[19].

Applying Theodorsen’s (inviscid, incompressible, oscillatory, flat-plate) theory[13], Garrick[14]

obtained results for sinusoidally plunging and/or pitching airfoils with a range of flapping fre-

quency. The first experimental verification of Garrick predictions is provided by Silverstein and

Joyner[15].

Recognizing the fact that some of the flapping energy is lost in the form of vorticity shed in

the wake, Schmidt[16] proposed that a stationary wing be placed in the oscillatory wake of a

flapping wing to take back some of the vortical energy lost by the flapping airfoil. Schmidth, as

a result of his studies about flapping foils in 1940’s and 50’s, developed the wave propeller and
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Figure 1.5: MAV with flapping wings [25]

demonstrated it on a catamaran boat. In 1982 DeLaurier and Harris[17] obtained experimental

measurements of flapping wing propulsion.

More recently, conducted by Lai and Platzer[18] and Jones et al.[21], water tunnel flow

visualization experiments on flapping airfoils have provided a considerable amount of informa-

tion on the wake characteristics of thrust producing flapping airfoils. Anderson et al., in their

experiments[22], also observed that the phase angle between pitch and plunge oscillations plays

a significant role in maximizing the propulsive efficiency. The experimental studies by Jones et

al.[6] and Platzer and Jones[23] exposed that two airfoils arranged in a biplane configuration

and oscillating in counter-phase show significant benefits of thrust and propulsive efficiency

compared to a single flapping airfoil (Figure 1.2). Jones et al.[24], in their recent numerical

and experimental studies, observed the high influence of oscillation frequency and wing aspect

ratio on the thrust produced by flapping wings in biplane configuration. Finally, Jones and

Platzer[25] developed and flight tested a radio-controlled micro air vehicle propelled by two

flapping wings (Figure 1.5).

1.3 Computational Studies on Flapping Airfoils

A precise analysis of flapping wings is not available due to its complexity. However, there have

been a number of researchers who provided some progress on the analysis of the simplified

problem. The common approach is to model the flapping motion as a sinusoidal oscillation in

2-D and the oscillation of airfoils is defined as a combination of pitch and plunge motions. A

wide review of both aeronautical and biological literature about flapping motion is presented

in Reference [1] with an inclusion of discussion on the kinematics of flapping wings.
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Birnbaum, student of Prandtl, obtained an incompressible flow solution for flapping airfoils[26].

The first notable numerical predictions of the thrust force produced from flapping motion are

given by Garrick[14]. In his report published in 1936, he presented results of the problem of

airfoils flapping with a range of frequency in sinusoidally defined plunge and/or pitch.

Philips et al.[27] present an unsteady inviscid aerodynamic theory of rigid flapping wings

in a forward flight. More recently, Vest and Katz[28] adapted the classical panel method to

the flapping flight. Jones and Platzer[19] give also a numerical procedure to obtain the flow

solutions of a single flapping airfoil by using an unsteady, two-dimensional panel code coupled

with a boundary layer algorithm. The basis of a numerical method for unsteady aerodynamic

computation around thin lifting and/or propulsive systems with arbitrary variable geometries,

involving the velocity field is presented by Leroy and Devinant[29]. In their publication[30],

Sunada and Ellington propose a new method for estimating the aerodynamic forces generated

by flapping wings. In this method, the forces are explained by the added mass of vortex wake

sheets.

Isogai et al.[31] carried out the Navier-Stokes computations for a single flapping airfoil.

They calculated the thrust and the efficiency of the thrust generation for various combinations

of the frequency and the phase shift, and gave a detailed analysis of the effects of the dynamic

stall phenomena on the behaviors of the thrust and the efficiency of the thrust production.

The numerical study of Isogai et al.[32] about aerodynamic performance of a dragonfly clarifies

the fundamental mechanism of the hovering flight of a dragonfly. Another flow simulation of

an insect is presented by Togashi et al.[33] in which, by solving the Navier-Stokes equations,

they give the numerical simulation of the flow over a hornet in a forward flight. Szmelter and

Żbikowski[34] propose a model for the aerodynamics of the flapping insect wing to provide

insight for the design of flapping wing propulsion system for micro-air vehicles. In their model,

flapping motion of an insect is considered to be a special combination of three motions: plunging,

pitching and sweeping, which, with the assumption of periodicity, are represented by Fourier

series.
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Figure 1.6: Parametric study of thrust [38]

Tuncer et al.[35, 36, 37, 38, 39] have performed the Navier-Stokes computations to explore

the effect of flow separation on the thrust and the propulsive efficiency of a single flapping airfoil

in combined pitch and plunge oscillations. In Reference [35, 37], the parametric studies of the

thrust generation of a single flapping airfoil and a flapping/stationary airfoil combination are

given and it is observed that flapping airfoils produce thrust, and the generated thrust and the

propulsive efficiency are significantly increased in the case of flapping/stationary airfoil com-

bination in tandem. In Reference [36], the Navier-Stokes solutions of the flows over flapping

airfoils are computed by using moving overset grids, and the thrust generation due to flapping

motion is observed. Tuncer et al.[38] present the computation of the dynamic stall boundaries of

an airfoil flapping in either pure plunge or in combined motion of pitch and plunge. Figure 1.6

shows the average thrust coefficient values plotted versus the plunge amplitude with four differ-

ent flapping frequencies. In their study, they showed that the dynamic stall is encountered as

soon as the effective angle of attack of the flapping airfoil exceeds a specific value. Investigation

of the thrust generation of a single airfoil making pure plunge motion and pitch/plunge motion

combination is presented in Reference [39] and it is concluded that, under certain conditions,

high thrust values with reasonably high propulsive efficiency may be obtained in combined

pitch and plunge oscillations. As a continuation of these studies, the present thesis work aims

at maximizing the thrust production of flapping airfoils by employing optimization algorithms.
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1.4 Definition of the Research Problem

The recent numerical and experimental studies carried out parametrically point out the fact

that the thrust production may be optimized in a given range of flow and motion parameters

as shown in Figure 1.6 from Tuncer et al.[38]. The figure shows how the thrust of a single

flapping airfoil changes with the plunge amplitude and the flapping frequency (denoted by the

non-dimensional parameter k = 2πfc
U∞

). As seen from the figure, for each flapping frequency, the

Navier-Stokes (N-S) computations predict a different plunge amplitude which maximizes the

thrust. The variation of the plunge amplitude which maximizes the thrust for a given frequency

implies the importance of the optimization of the flapping motion parameters for maximizing

the thrust generation. The variables of the optimization may be the amplitudes of plunge and

pitch motions, the flapping frequency and the phase angle between plunging and pitching. The

average distance between two airfoils in a biplane configuration plays also an important role in

increasing the thrust and the efficiency of the thrust production within the constrains.

The objective of the present study is to compute the unsteady, viscous flowfields over a single

flapping airfoil and flapping airfoils in a biplane configuration to optimize the generated thrust

and the efficiency of the thrust generation. The unsteady flowfields are computed in parallel

using a Navier-Stokes solver on overset grids. For the optimization processes, a gradient based

algorithm, steepest ascent method is employed. The gradient of the objective function needed

by the optimization algorithm is also evaluated in parallel. The computed flowfields are then

analyzed in terms of unsteady variation of aerodynamic loads, distributions of flow variables

and unsteady particle traces.

1.4.1 Parallel Processing

Parallel processing can simply be described as a method of using more than one computer for

the solution of a single problem. Parallelism is generally preferred if the problem consists of

large systems of equations to be solved in large domains as in CFD applications. CFD tools,

especially, unsteady flow solvers require computers with fast processors to perform a large

number of calculations within reasonable time and also quite high memory to process great
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Figure 1.7: Domain decomposition for parallel processing

amount of data. However, there is a limit for a computer to meet the above needs, which is

generally unsatisfactory. It is possible to overcome this computer limitation by making use of

parallel processing so that the computation time to solve a problem is significantly reduced by

having several operations, each being a part of the original computation, performed at the same

time.

With the recent decrease in the cost of a computer and its accessories, it has become feasible

to deploy a cluster of computers as a parallel computing environment. Therefore, parallelism

has become a useful approach for attaining very high computational speeds in the last twenty

years.

There are mainly two types of parallel computing environments, which are the shared-

memory and distributed-memory systems. In the shared-memory system, more than one pro-

cessor share the same memory and may perform computational tasks on the parts of the data

structure stored in the common memory by either the compiler directives or with the help of

new constructs in the programming language. The individual tasks are then executed simul-

taneously. Task decomposition is possible if there is no data dependency between the tasks

to be decomposed from the original computation. The shared-memory approach is generally

employed with multi-processor architectures.
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The distributed-memory parallel system has a different topology than the shared-memory

system. In the distributed-memory system, each processor has its own private memory and may

perform computations on its own data which is a subset of the main task, and communicates

with other processors for sharing common data. A networked computer cluster is the most

common environment to construct a distributed-memory system. In this thesis, a distributed-

memory parallel algorithm based on domain decomposition is implemented in a master-worker

paradigm. First, the domain of computation and the given problem to be solved on this domain

are decomposed into subdomains and subproblems. Then, the solution on each subdomain is

assigned to a processor as shown in Figure 1.7. Finally, the results are combined to give

a complete solution to the original problem. All the parallel computations in this thesis are

performed in a cluster of dual-processor computers running on Linux operating system. Detailed

information about the parallel algorithms is given in Chapter 4.
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CHAPTER 2

NUMERICAL METHOD

2.1 Introduction

In this chapter, the numerical methods employed to compute the unsteady viscous flowfields

around flapping airfoils are described. The unsteady flowfields are computed solving the

Reynolds averaged Navier-Stokes equations on overset grids. The computations on each sub-

grid are performed in parallel. PVM message passing library routines are used in the parallel

solution algorithm. The computed unsteady flowfields are analyzed in terms of instantaneous

distributions of flow variables, the variation of aerodynamic loads in time and unsteady particle

traces.

2.2 Navier-Stokes Solver

The finite difference formulation of the Reynolds averaged Navier-Stokes equations are solved

on a computational domain discretized with an overset grid system. The overset grid system

consists of C-type airfoil and Cartesian background grids, as shown in Figure 2.1.

The strong conservation-law form of the 2-D, thin-layer, Reynolds averaged Navier-Stokes

equations is solved on each subgrid. The governing equations in a curvilinear coordinate system

(ξ, ζ), are given as follows:

∂tQ̂+ ∂ξF̂+ ∂ζĜ = Re−1∂ζŜ (2.1)
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Figure 2.1: Overset grid system

where Q̂ is the vector of conservative variables, 1
J (ρ, ρu, ρw, e), F̂ and Ĝ are the convective flux

vectors, and Ŝ is the thin layer approximation of the viscous fluxes in the ζ direction normal

to the airfoil surface. The convected fluxes are evaluated using the third order Osher’s[40, 41]

upwind biased flux difference splitting scheme.
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where,

m1 = ζx
2 + ζz

2 m2 = ζxuζ + ζzwζ

m3 = u2+w2

2
+ (γ − 1)−1Pr−1 ∂a2

∂ζ m4 = ζxu+ ζzw

(2.4)
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and U and W are the contravariant velocity components given by;

U = uξx + wξz + ξt W = uζx + wζz + ζt (2.5)

x and z are the spatial coordinates in Cartesian system and J is the metric Jacobian given as;

J−1 = xξzζ − xζzξ (2.6)

The pressure is related to density and total energy through the equation of state for an ideal

gas:

p = (γ − 1)[e− ρ(u2 + w2)/2] (2.7)

In the equations 2.2 to 2.7, all lengths are non-dimensionalized by the airfoil chord length c.

ρ is the density non-dimensionalized by the freestream density ρ∞; u and w are the Cartesian

velocity components in the physical domain, which are non-dimensionalized by the freestream

speed of sound a∞; e is the total energy per unit volume non-dimensionalized by ρ∞a
2
∞. Re is

the Reynolds number, Pr is the Prandtl number and γ is the specific heat ratio.

Turbulent flows may be computed employing the Baldwin-Lomax[42] or Spalart-Allmaras[43]

turbulence models with the assumption of fully turbulent flow.

2.2.1 Evaluation of Thrust and Propulsive Efficiency

For a harmonically flapping airfoil, thrust (negative drag) production shows a periodic behavior

as shown in Figure 2.2. Thrust of a flapping airfoil is therefore defined in terms of an average

value over a flapping period. Along the unsteady flow computations, the periodic behavior of

the solution is established as the average thrust over a flapping period converges to a constant

value within a given accuracy. Definitions of the average thrust coefficient and the propulsive

efficiency are given as follows:

Ct = −
1

t2 − t1

∫ t2

t1

Cd dt (2.8)

η =
Ct U∞

Ẇ
(2.9)

where Ẇ is the input power required to maintain the flapping motion and defined as:

Ẇ =
1

t2 − t1

∫ t2

t1

(Cl Vplunge + Cm ωpitch) dt (2.10)
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Figure 2.2: Drag history along flapping periods

t1 and t2 are the start and end points of the last flapping period, respectively. Cd and Cl are

the drag and lift coefficients, respectively. Cm is the pitching moment coefficient about the

pitching center. Note that, in this thesis work, viscous forces are neglected in the calculation

of Cl, Cd and Cm. Vplunge is the plunge velocity of the airfoil and ωpitch is the angular velocity

of the airfoil due to the pitching motion.

2.2.2 Turbulence Models

Turbulent flow computations are performed using the Baldwin-Lomax and Spalart-Allmaras

models. First one is an algebraic turbulence model and the second one is a one-equation

turbulence model. The formulations of both models and the closure coefficients used in this

thesis are given in the following sections.

2.2.2.1 Baldwin-Lomax Model

The Baldwin-Lomax model[42] is based on the local flow properties and does not require the

calculation of some boundary layer properties like the boundary layer thickness or the velocity

thickness. However, since the model requires the directional normal to the body, the turbulence

computations are only performed on the airfoil grid(s), that is, the flow in the background grid is

assumed to be laminar when using the Baldwin-Lomax model. The eddy-viscosity formulations

for the inner and outer viscous layers, used in this thesis, are as follows:
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Inner Layer:

νTi = l2mix|ω| (2.11)

lmix = κy



1− e
−

y

A
+
o

(

√

ρ
|ω|
µ

)

y=0



 (2.12)

lmix is the length scale of turbulence and y is the distance normal to the solid body.

Outer Layer

νTo = αCcpFwakeFKleb(y ; ymax/Ckleb) (2.13)

Fwake = min[ymaxFmax ; CwkymaxU
2
dif/Fmax] (2.14)

Fmax =
1

κ

[

max
y

(lmix|ω|)

]

(2.15)

FKleb =

[

1 + 5.5

(

CKleb
y

ymax

)6
]−1

(2.16)

where ymax is the value of y at which lmix|ω| is maximum.

Closure Coefficients

κ = 0.40 α = 0.0168 A+
o = 26

Ccp = 1.6 CKleb = 0.3 Cwk = 0.25

(2.17)

The function FKleb is Klebanoff’s intermittency function and |ω| is the magnitude of the

vorticity vector.

|ω| =

∣

∣

∣

∣

∂w

∂x
−
∂u

∂z

∣

∣

∣

∣

(2.18)

and Udif is defined as

Udif =
(

√

u2 + w2

)

max
−
(

√

u2 + w2

)

y=ymax
(2.19)

The turbulent eddy viscosity values switches from the inner formulation to the outer for-

mulation along the boundary layer at the location where νTi > νTo .

2.2.2.2 Spalart-Allmaras Model

The Spalart-Allmaras model[43] is compatible with any type of grid structure and 2-D or 3-D

Navier-Stokes solvers. Although the model allows the transition point localization, in this thesis

work, all the computed flowfields are assumed to be fully turbulent when the Spalart-Allmaras
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model is used. Eqn. 2.21 is solved by an implicit algorithm based on a second order finite

difference method. The hole points in the background grid are excluded from the solution (See

Section 2.5.1.2). In this thesis work, the following formulations of the model are used:

Kinematic Eddy Viscosity

νT = ν̃fv1 (2.20)

Eddy Viscosity Equation

∂ν̃

∂t
+ Uj

∂ν̃

∂xj
= cb1S̃ν̃ − cω1fωfv3

(

ν̃

d

)2

+
1

σ

∂

∂xk

[

(ν + ν̃)
∂ν̃

∂xk

]

+
cb2
σ

∂ν̃

∂xk

∂ν̃

∂xk
(2.21)

d in the equation is the distance from the field point to the closest body surface point.

Closure Coefficients and Auxiliary Relations

cb1 = 0.1355 cb2 = 0.622 cv1 = 7.1 σ = 2/3 (2.22)

cω1 = cb1
κ2 + 1+cb2

σ cω2 = 0.3 cω3 = 2 cω4 = κ2 1+cb2
σcb1

κ = 0.41 (2.23)

fv1 = χ3

χ3+c3v1
fv4 = χ

1+χ fv1
fv3 = fv4+cω4

1+cω4

(2.24)

fω =
[

g−6+c−6
ω3

1+c−6
ω3

]−1/6

g = r + cω2(r
6 − r) r = ν̃fv4

S̃κ2d2
S̃ =

∣

∣

∂w
∂x −

∂u
∂z

∣

∣ (2.25)

2.3 Numerical Algorithm

The discretized equations are solved by an approximately factored, implicit algorithm[44]. The

scheme is given as,

[

I + hξ

(

∇b
ξÃ

+
i,k +4

f
ξ Ã

−
i,k

)]p

×
[

I + hζ

(

∇b
ζB̃

+
i,k +4

f
ζ B̃

−
i,k −Re−1δζM̃i,k

)]p

×
(

Q̂p+1
i,k − Q̂p

i,k

)

= −
(

Q̂p
i,k − Q̂n

i,k

)

− hξ

(

F̂ p
i+1/2,k − F̂ p

i−1/2,k

)

−hζ

(

Ĝp
i,k+1/2 − Ĝp

i,k−1/2

)

+Re−1hζ

(

Ŝpi,k+1/2 − Ŝpi,k−1/2

)

(2.26)

In this equation, hξ = 4f t/4fξ and hζ = 4f t/4fζ, where t is the computational time;

Ã± = ∂F̂ /∂Q̂, B̃± = ∂Ĝ/∂Q̂ and M̃ = ∂Ŝ/∂Q̂ are the flux Jacobian matrices and 4f , ∇b

and δ are the forward, backward and central difference operators, respectively. The superscript

n denotes the time step and p refers to Newtonian subiterations within each time step. F̂

and Ĝ are the numerical inviscid fluxes, which are evaluated using Osher’s third-order-accurate
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upwinding scheme[40, 41]. The inviscid flux Jacobian matrices, Ã and B̃ on the left hand side

are evaluated by Steger-Warming[45] flux-vector splitting. The viscous fluxes Ŝ are computed

by second-order-accurate central differences.

The hole(s) in the background grid formed by the airfoil grid(s) are excluded from the

computations by an i-blanking algorithm in each time step of the solution. Again in each time

step, the conservative flow variables are interpolated at the intergrid boundaries formed by the

overset grids. The details of the intergrid boundary point localization and the interpolation of

the flow variables are given in Section 2.5.1.1, and the details of the exclusion of the hole grid

points are given in Section 2.5.1.2.

2.4 Overset Grids

The computational domain is discretized with overset grids. C-type grid around the airfoil(s)

is overset onto a Cartesian background grid (Figure 2.1). The flapping motion of the airfoil is

imposed by moving the airfoil and the computational grid around it over the background grid.

The flapping motion of a single airfoil in plunge, h, and pitch, α, is defined by:

h = −h0 cos(ωt)

α = −α0 cos(ωt+ φ)

(2.27)

In Eqn. 2.27, h0 and α0 are the amplitudes of the plunge and pitch motions, respectively. ω

is the circular frequency of the flapping motion and φ is the phase shift between plunging and

pitching. Figure 2.3 illustrates the combined pitch and plunge motion of a single airfoil with

the phase shifts, φ = 0o and φ = 90o. For the case of two airfoils in a biplane configuration,

the flapping motion is given in counter-phase.

Complex geometries and irregular boundaries are currently being discretized by using the

block-structured grid techniques[47, 48], in which one patches a number of structured grid

blocks together with enforced continuity across the interfaces. All the inherent advantages of

structured grids are carried by the block-structured grids, but, since all the grid blocks are to be

regenerated at each time step of solution, they are not much convenient for the unsteady flow

problems consisting of moving boundaries. The unstructured grids[49, 50] are also currently be-
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Figure 2.3: Flapping motion of a single airfoil

ing proposed to treat irregular boundaries. However, like in the case of block-structured grids,

when solving an unsteady flow problem with moving boundaries, the whole computational do-

main needs to be regenerated at each time step of solution. Moreover, algebraic turbulence

models require directional normal to the solid surface, which leads to new problems in unstruc-

tured grid topologies[50].

An alternative to handle the problems with complex geometries with moving boundaries

is to use overset grids. In overset grid models, individual grid blocks are overset on top of

each other and free to move with respect to each other. For this set of grid, localization of

intergrid boundary points and interpolation of flow variables at these points are needed to be

performed and, in this thesis, this is achieved through a directional search algorithm. The

directional search algorithm used[36, 46] in this study interpolates the flow variables as a part

of the localization of intergrid boundary points. In fact, the method employed is similar to the

well-known Chimera/Pegsus[51] approach. However, the difference between the two approaches

is the way how the overlapping boundaries are localized and the flow variables are interpolated.

In Pegsus, several stages are needed to localize the boundary points and interpolate the

flow variables. The first step is to test all the grid points on the base grid if they are a certain

distance away from a temporary origin on the overlapping grid. Then, all the grid points

within the specified distance are again checked to determine if they are inside or outside of the
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overlapping grid region. In the next stage, the closest points falling outside of the overlapping

boundary are marked as the boundary points on the base grid. The last step is to localize the

interpolation cells on the base grid, into which a boundary point of the overlapping grid falls,

and then to store the corresponding bilinear interpolation data in an external file to be used by

the flow solver. The Pegsus code has to be integrated into the flow solver for unsteady flows

and also to be executed at every time step.

In the present method, the localization of the boundary points and the interpolation of

the flow variables are integrated into a directional search algorithm placed in the main solver.

Since the boundary points are localized sequentially and no external data is stored, and the

interpolation of the flow variables is an integral part of the localization process, this approach

to set intergrid boundary conditions is quite efficient and robust.

2.5 Boundary Conditions

The boundary conditions applied in the Navier-Stokes solver consist of numerical and phys-

ical boundary conditions. The numerical boundary conditions are applied at the intergrid

boundaries and the physical boundary conditions are applied at the farfield inflow and outflow

boundaries, and on the airfoil surface.

2.5.1 Numerical Boundary Conditions

The intergrid boundaries consist of the outer boundaries of the airfoil grid and the hole bound-

aries of the background grid. The conservative flow variables (and the turbulence variable if

required) are interpolated from the neighbouring donor subgrid at each time step by the local-

ization of the boundary points (Section 2.5.1.1). There is another intergrid boundary if it is

the case of biplane configuration. For the parallel solution of this configuration, the Cartesian

background grid is decomposed into two overlapping parts. The overlapping buffer is a single

fringe from the symmetry line of the airfoils. Therefore, during the parallel computation, a

data interchange between the lower and upper parts of the background grid is performed at

each step of solution.
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Figure 2.4: Localization of a point and sequential localization points

2.5.1.1 Localization of Boundary Points

The intergrid boundary points on the overset subgrids are localized on the donor grids with a

directional search algorithm[36]. A schematic chart of the algorithm is shown in Figure 2.4 and

the boundary points to be localized can be seen in Figure 2.5.

In Figure 2.4, + sign defines the point P to be localized on the Cartesian grid in terms of

three closest points forming a triangle around the point P . The search process starts from an

arbitrary point Gi,j and then it is checked whether Gi,j , Gi±1,j and Gi,j±1 constitute a triangle

or not. The correct sign ± is chosen according to the search direction. The search direction

is based on the geometry gradients on the donor grid. The test whether the point P falls into

the triangle is based on the representation of a convex surface defined by three points. Since

any point in a convex triangular surface may uniquely be represented by three real numbers

provided that they are all positive. The solution of the linear equations 2.29 through 2.30 in

terms of α, β and γ determines if point P falls inside the triangle.

xp = αxi,j + βxi±1,j + γxi,j±1 (2.28)

yp = αyi,j + βyi±1,j + γyi,j±1 (2.29)

1 = α+ β + γ (2.30)

Here, xp, yp are the coordinates of the point to be localized, P . The condition for the point

P to lie in the triangle stencil, is that α, β and γ are all less than or equal to one and they are all

positive. If this condition is not satisfied, then the search location Gi,j is advanced diagonally

as shown by the arrows and the circles in the Figure 2.4.

20



+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+
+
+
+++++++++++++++++++++++++

++++++++++
++++++

++++
++++++

+
+

+
+
+
+
+

+
+

+
+ ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + +

+
+
+
+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(a) Localization of the airfoil grid boundary points on the background
grid

++++++++++++++++++++++++++++++++++++++++++++
+++

++
++
+++

++++++++++++++++++++++++++++++++++++++++ + + + + +++++++++++++++++++++++++
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Figure 2.5: Boundary points to be localized

The search direction is determined by using the quadrant walking algorithm[36] which is

considered to be the most robust one. In the quadrant walking algorithm, the search direction

is based on the local quadrant where the boundary points falls. As shown in Figure 2.4 Gi,j

advances along the diagonal of the quadrant P falls into. The quadrant into which point P

falls is determined by the dot products of the vector P −Gi,j with vectors Gi±1,j −Gi,j and

Gi,j±1 −Gi,j .
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Finally, the triangular stencil into which point P falls is localized as depicted by the circles

at its vertices. Then, the coefficients α, β and γ are determined, which give the geometric

interpolation weights at point P . Therefore, having the interpolation coefficients ready, now

the flow variables (and turbulence variable) at point P can be interpolated from the donor grid

with the following equation:

Qp = αQi,j + βQi±1,j + γQi,j±1 (2.31)

The sequential localization of several points is also shown in Figure 2.4. As seen, for the

next consecutive point, the search process starts from the same Gi,j grid point which localizes

the previous point.

2.5.1.2 Hole Cutting

The localization of the boundary points (Figure 2.5) is not only performed to interpolate the

values of the flow variables along the airfoil grid boundary but also to set the values of the flow

variables along the boundary of the hole in the background grid, which is cut by the airfoil grid

(Figure 2.6). Once the outer boundary points of the airfoil grid are localized in the background

grid as explained in Section 2.5.1.1, three consecutive tasks are executed. First, the values of the

conservative flow variables on the boundary points of the airfoil grid are interpolated from the

background grid. Second task is to localize the boundary points of the hole in the background

grid. This is done by marching along the direction normal to the localized airfoil grid boundary

with some step size from the airfoil grid boundary localized in the background grid . Marching

step size is set to be double fringe, that is, two-size of local cell in the background grid. This

causes an overlapping buffer between the localized airfoil grid boundary and the boundary of

the hole generated in the background grid. The overlapping buffer is required and important

since it reduces the number of the points which are both interpolated (in the receiver grid) and

also element of a localizing triangle stencil (in the donor grid). Then, after this last localization

process, the flow variables on the boundary points of the hole are interpolated from the airfoil

grid. Figure 2.5(a) shows the localization of the points in the background grid along the

boundary of the airfoil grid and Figure 2.5(b) shows the localization of the points in the airfoil
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(a) Hole in the background grid (b) Airfoil grid

(c) Overset grids

Figure 2.6: Background and airfoil grids with hole in the background grid

grid along the boundary of the hole generated in the background grid. Note that, due to the

overlapping buffer, the boundary of the hole does not coincide with the airfoil grid boundary.

Finally, the determination of all the background grid points falling in the hole is required.

This is achieved by a very simple algorithm. Since the boundary of the hole is known, one

horizontal and one vertical, totally two marching processes are performed inside of the region

determined by the hole boundary. During these two marching processes, all the points in the

track are marked. Therefore, a hole is generated in the background grid (Figure 2.6). This

hole is excluded from the flow computation in each time step of computation. This exclusion

23



Figure 2.7: Cartesian overset grids used for Gaussian pulses

called as i-blanking is a method in which the corresponding coefficient matrices are replaced by

an identity matrix and the right hand side vector is set to zero. Essentially, the idea behind of

this approach is not to carry a computation for the flow variables on the hole points during the

time integration in each step.

2.5.1.3 Accuracy of the Intergrid Boundary Continuity

The accuracy of the overset grid computations in parallel is established by Tuncer[36]. Also

in this study, it is further demonstrated by employing the method for a single flapping airfoil

case, and comparing the solution to that of the computation obtained with a single grid on a

serial computer. It should be noted that, based on the grid sensitivity study in Reference [38],

Tuncer et al. showed that the results computed using the Navier-Stokes solver employed in this

thesis work are not sensitive to the grid size.

First, an investigation of density and pressure Gaussian pulse perturbations on an uni-

form flow is performed to show the accuracy of the variable continuity through the intergrid

boundaries. Figure 2.8 shows the convection of a Gaussian pulse density perturbation and the

convection and the diffusion of a Gaussian pulse pressure perturbation is shown in Figure 2.9.

The initial Gaussian pulse of density given to the uniform flow at M = 0.25 in Figure 2.8 is

ρ = ρ∞(1+ 2−(x2+y2)/4c2

1000
) and the initial Gaussian pulse of pressure given to the uniform flow at

M = 0.25 in Figure 2.9 is p = p∞(1+ 2−(x2+y2)/4c2

1000
). c is the non-dimensionalizing parameter of

the spatial variables. t in the figures is the non-dimensionalized time. The overset grid system
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Figure 2.10: Instantaneous flowfield

used in this investigation consists of two Cartesian grids which are of 101 × 101 and 26 × 26

size (Figure 2.7). The single grid is the background grid of the overset grid system.

The accuracy of the interpolation of the flow variables at the intergrid boundaries can be

seen from Fig. 2.8 and Fig. 2.9. Each pulse is convected without almost any loss, being a

good proof not only for the interpolation accuracy at the intergrid boundaries but also for the

numerical accuracy of the solver. An excellent agreement is observed between the single grid

and overset grid solutions, which is a good sign for the reliability of the computations on overset

grid system.

Computed by using both overset and single grid systems, instantaneous flowfield of an

unsteady flow over a single flapping NACA0014 airfoil in plunge motion is shown in Figure 2.10.

The flowfield is computed laminar at M = 0.1, Re = 1 · 104, k = 2 and h0 = 0.4. In the overset

grid system, the airfoil and the background grids are of 141×31 and 135×157 size, respectively.
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Figure 2.11: Unsteady drag coefficient of a single flapping airfoil

The outer boundary of the airfoil grid is placed about 0.25 chord length distance away from

the airfoil surface. The single grid is obtained by further extending the airfoil grid used in the

overset grid solution outward, and is of 181 × 81 size. The time history of the unsteady drag

coefficient predicted by the present method is compared to the single grid solution in Figure

2.11. As seen from Figure 2.10 and 2.11, the solution on the overset grid system is as accurate

as the solution on the single grid. In Figure 2.10, the Mach number isolines in the case of the

overset grid system continue smoothly from one grid to another as in the single grid system

case, indicating that the intergrid boundary conditions provide an accurate solution.

2.5.2 Physical Boundary Conditions

Since the formulation of the Navier-Stokes solver is based on an inertial frame of reference, for

the flapping motion of the airfoils, the airfoil grids are traversed over the stationary background

grid. Therefore, on the airfoil surface, the instantaneous flow velocity is set equal to the local

surface velocity prescribed by the oscillatory motion (Eqn. 2.27), and so that the no-slip

boundary condition is applied. Besides, on the airfoil surface, the density and the pressure

gradients are set to zero.

At the farfield inflow and outflow boundaries, the flow variables may be evaluated using
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Figure 2.12: Instantaneous Mach number

either zeroth-order Riemann invariant extrapolation or more expensive nonreflecting boundary

conditions. Comparison of these two boundary conditions apparently showed that the Riemann

extrapolation method is adequate when the farfield boundaries are sufficiently far away from

the airfoil.

2.5.2.1 Nonreflecting Boundary Conditions

The objective in formulating nonreflecting boundary conditions is to prevent nonphysical re-

flections at the inflow and outflow boundaries.

The formulation of the nonreflecting boundary conditions for the flow solver used in this

thesis work is adapted from the analysis in Reference [52]. The given analysis is based on

the wave-like solutions for the unsteady, linearized, two-dimensional Euler equations governing

a uniform flow under small perturbations. Non-trivial solutions show that, caused by the

perturbations, one upstream running wave and three downstream running waves are generated.

Thus, to establish the correct nonreflecting boundary conditions at the inflow and outflow

boundaries, these waves are forced to march only in their travelling direction. That is, at

the inflow boundary, while the upstream running wave is allowed to leave the domain, the

downstream running waves are prevented from crossing the inflow boundary. Similarly, at the
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outflow boundary, only the downstream running waves are let to leave the domain.

As a result of his analysis[52], Giles proposes the following quasi-one dimensional inflow and

outflow boundary conditions:

• Fourth-order, two-dimensional, unsteady, inflow boundary conditions
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• Second-order, two-dimensional, unsteady, outflow boundary conditions
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where,

c1 = p′ − a2ρ′ ρ′ = ρ− ρe

c2 = ρav′ u′ = u− ue

c3 = p′ + ρau′ v′ = v − ve

c4 = p′ − ρau′ p′ = p− pe

(2.34)

and ρ, u, v, p, a are the flow variables at the boundary to be solved while ρe, ue, ve, pe are the

extrapolated flow variables at the boundary. Physically, c1, c2, c3 and c4 are the amplitudes of

the four characteristic waves.

Computed by using different farfield boundary conditions, instantaneous flowfield solutions

of a single flapping airfoil making plunge motion are shown in Figure 2.12. Flapping parameters

are shown in the figure. As seen from the figure, in the case of Riemann boundary conditions

solution, Mach number isolines flatten out on the outflow boundary. This is due to the zeroth

order extrapolation characteristic of the Riemann invariant boundary conditions. However,

the overall flowfield agrees well with the solution computed by using nonreflecting boundary

conditions.
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Figure 2.14: Density contours when the pulse is passing the boundary

Figure 2.13 shows the initial density contours due to a gaussian pulse of density ρ = ρ∞(1+

2−(x2+y2)/25c2

1000
) given to a uniform flow at M = 0.25 and Figure 2.14 shows density contours

at the time when the pulse is passing the outer grid boundary. c is the non-dimensionalizing

parameter of the spatial variables. The grid used in this numerical experiment is a 101 × 101

size Cartesian grid, which is the background grid of the overset grid system shown in Figure 2.7.

Center of the initial Gaussian pulse is located 10c distance away from the outer grid boundary.

During the unsteady computation, the pulse is convected with the freestream velocity without
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Figure 2.15: Particle traces

any loss and passes the outer boundary causing no nonphysical reflections. In both methods,

the values of the conservative variables on the boundary are computed with excellent accuracy.

After some time, the pulse leaves the domain yielding a uniform flow as it was before.

2.6 Particle Traces

Particle traces are obtained by a simple and efficient integration of the particle pathlines within

the flow solver as the unsteady flowfield is computed. In this method, the particles may be

released anywhere in the flowfield at certain intervals. The particles are then localized in the

computational grid and convected with the local velocity at every particle integration time step

defined by the user. The particles may be localized across the intergrid boundaries. The search

algorithm used to localize the particles is the same search algorithm described in Section 2.5.1.1.

Figure 2.15 shows the instantaneous particle traces of a flapping airfoil in combined pitch

and plunge motion with the flapping parameters shown in the figure. In Figure 2.15(a), the

particles originated near the leading edge from a normal line on the airfoil grid are shown.

Figure 2.15(b) gives the particle traces in the case of shedding the particles from a vertical line

placed one tenth chord length distance away from the leading edge.
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CHAPTER 3

OPTIMIZATION

3.1 Introduction

The recent experimental and numerical studies investigating the flapping motion of single or

dual airfoils in tandem show that the thrust generation and the propulsive efficiency of flapping

airfoils are closely connected to the flapping motion and the flow parameters. The major

parameters are the unsteady flapping frequency, the amplitude of the pitch and plunge motions,

the phase shift between them, and the air speed. It is apparent that to maximize the thrust

and/or propulsive efficiency of a flapping airfoil, an optimization of all the above parameters is

needed. The optimization tool employed in this work is the steepest ascent method, which is

a gradient based algorithm. This chapter presents how the steepest ascent method is applied

for an optimization process to maximize the thrust and/or the propulsive efficiency of flapping

airfoils.

The objective function to be maximized may be a linear combination of thrust and propulsive

efficiency. The thrust (negative drag) of a harmonically flapping airfoil has a periodic behavior

(Figure 3.1). Thrust production of a flapping airfoil is therefore defined as an average value over

a period of the flapping motion. Similarly, the propulsive efficiency is also defined in the average

sense. The definitions of the average thrust coefficient and the propulsive efficiency are given in

Eqn. 2.9. Required by the gradient based optimization algorithm employed, the gradient of the
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Figure 3.1: Drag history along flapping periods (Figure 2.2 is repeated)

objective function (linear combination of thrust and propulsive efficiency) is evaluated once a

periodic flow behavior is established. In the optimization studies, the optimization variables are

taken to be the variables defining the flapping motion, that is, pitching and plunging amplitudes,

the flapping frequency and the phase shift between the pitch and plunge motions.

3.2 Steepest Ascent Method

The maximization of an objective function can be iteratively performed by the steepest ascent

method. The method is based on marching, by a succession of steps, along the local gradient

direction of the objective function. The idea is originated from the fact that the gradient of a

function gives the direction along which the function has the maximum rate of change. The

following formulations for a maximization process with steepest ascent method are extracted

from the derivations in Reference [53].

3.2.1 Maximization Process

In the optimization space, for the vector of optimization variables, ~V having four components

(h0, k, α0, φ), the maximization process seeks to find an ascent direction ~D and a positive step

size ε in which to change ~V such that

O(~V + ε ~D) ≥ O(~V ) (3.1)
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This process is repeated until the objective function O reaches to its maximum value. Note

that the step size, ε is analogous to the relaxation parameter used in the iterative matrix

inversion method.

3.2.2 Steepest Ascent Direction

An ascent direction ~D of the optimization variables can be determined as follows. The second

order Taylor series expansion of the objective function O about ~V is written as

O(~V + ε ~D) = O(~V ) + ε ~D · ~∇O(~V ) + o(ε2) (3.2)

~∇O is the gradient of O and given by

~∇O =
∂O

∂h0

ĥ0 +
∂O

∂α0

α̂0 +
∂O

∂k
k̂ +

∂O

∂φ
φ̂ (3.3)

where the vector variables with ˆ denotes the positive unit direction along the corresponding

variable coordinate. Eqn. (3.2) clearly shows that if

~D =
~∇O

| ~∇O |
(3.4)

then Eqn. (3.1) is satisfied. The ascent direction ~D given in Eqn. 3.4 is the steepest ascent

direction along which the objective function is locally increasing at the fastest rate[54]. Note

that the equality in Eqn. (3.1) occurs when ~∇O = 0, at the maximum value of the objective

function. To obtain the ascent direction ~D, the gradient of O must be evaluated. In this

thesis, evaluation of ~∇O (Eqn. 3.3) is done by using the first order forward finite difference

formulation. A point to be noted is that Eqn. (3.4) is not the unique solution for Eqn. (3.1).

3.2.3 Step Size

Once the steepest ascent direction has been determined, now, the step size ε is to be evaluated.

A simple choice is to take ε = constant. Another approach, as done in this thesis, is to do a

line search with respect to ε along the steepest ascent direction. In other words, to find ε such

that | ~∇O(~V + ε ~D) |2 is a minimum. That is,

∂ | ~∇O(~V + ε ~D) |2

∂ε
= 0 (3.5)

34



Reference [53] gives the following approximate solution of Eqn. 3.5 for the step size, ε,

ε = −
~∇O · (~∇~∇O) ~D

(~∇~∇O) ~D · (~∇~∇O) ~D
(3.6)

where (~∇~∇O) is a symmetric matrix and is often referred to as the Hessian. The computation

of the Hessian is expensive and the cost is proportional to the number of the optimization

variables. Assuming that, in the next optimization step, a point in the neighborhood of the

maximum will be reached, the following approximation may be made not to pay high prices for

the Hessian:

~∇O · (~∇~∇O) ~D ≈ −| ~∇O | · | (~∇~∇O) ~D | (3.7)

A minus sign appears in the above approximation due to the Hessian being a negative

definite matrix and, the vectors ~∇O and ~D being aligned in the same direction. Substituting

this approximation into Eqn. (3.6), the step size is found as,

ε =
| ~∇O |

| (~∇~∇O) ~D |
(3.8)

Finally | (~∇~∇O) ~D | is suggested to be evaluated with the finite differences as follows:

| (~∇~∇O) ~D |k = λ
| ~∇Ok − ~∇Ok−1 |

εk−1
(3.9)

where k denotes the optimization step and λ is the relaxation parameter between two successive

optimization steps, k−1 and k. An expression for λ is given as,

λ =
| ~∇Ok − ~∇Ok−1 |

| ~∇Ok−1 |
(3.10)

However, considering again that, in the next optimization step, a point in the neighborhood

of the maximum will be reached, that is, | ~∇Ok | ≈ 0, then λ may be approximated to be equal

to the unity according to Eqn. 3.10. Therefore, Eqn. 3.9 turns out to be:

| (~∇~∇O) ~D |k =
| ~∇Ok − ~∇Ok−1 |

εk−1
(3.11)

3.3 Multi-Objective Optimization

For the multi-objective optimization problems, an effective approach is to employ the Weighted-

Sum method. In this method, the multi-objective optimization problem is reduced to a single-

objective optimization problem by defining a multi-objective function as a linear combination of
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objective functions. In this study, the multi-objective function is defined as a linear combination

of the normalized thrust and propulsive efficiency values:

O(~V ) = (1− β) · T + β · E (3.12)

where T and E are the scaled normalized form of the average thrust coefficient and the propulsive

efficiency, respectively. β is the weight of the normalized propulsive efficiency in the linear

combination and provided by the user. Note that β = 0 sets the objective function to a

normalized thrust. Normalization of the average thrust coefficient and the propulsive efficiency

is performed at each optimization step as shown below:

T =
Ct
CtN

(3.13)
E =

η

ηN

where,

CtN = Ct + |∆Ct|

(3.14)
ηN = η + |∆η|

The normalizing parameters, CtN and ηN reduce Ct and η values approximately into the

same order of magnitude. The values of CtN and ηN are not fixed and updated in each opti-

mization step. ∆Ct and ∆η are the total changes in the values of Ct and η, respectively, in

each optimization step due to the perturbation of optimization variables.

Once the average thrust coefficient and propulsive efficiency values are normalized in each

optimization step with the definition given by Eqn. (3.14), then the objective function O(~V ) is

evaluated to apply the process explained in Section 3.2 to find the flapping motion conditions,

~V maximizing O(~V ) with the given weight β.
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CHAPTER 4

PARALLEL PROCESSING

4.1 Introduction

Parallel processing is the method of dividing a large computing task into smaller independent

tasks and executing them simultaneously in parallel, rather than sequentially in serial. Having

a physical processing speed limit, serial computers of today and the future may not be sufficient

to meet the requirements of the present CFD applications where the solution of large system

of partial differential equations is needed for numerical simulations. Parallel computers may

be employed to overcome this limitation of a single computer so that the computation time is

significantly reduced by performing several operations simultaneously.

Parallel processing is currently realized by the shared-memory and distributed-memory sys-

tems. In the shared-memory systems, the processors share the same common memory and the

compiler or the programming language decomposes the computation into smaller tasks and ex-

ecute them in parallel using the available processors in a multi-processor architecture, provided

that there is no data dependence between the tasks. If there is a data dependence, tasks run

in the same order as in the sequential execution. In the distributed-memory systems (Figure

4.1), each processor has its own memory and solves a sub-problem with its own private data

decomposed from the full problem, and also communicates with other processors for required

data sharing. The computer programming in distributed-memory and shared-memory systems
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PROBLEM

Sub−Problem 1
in processor 1

Sub−Problem 2
in processor 2

Sub−Problem n
in processor n…

Sub−Result 1 Sub−Result 2 Sub−Result n

RESULT

Figure 4.1: Parallel solution of a problem with distributed-memory approach

is provided by the following means of extension[55]:

• Library Routines: In addition to the standard libraries available to the sequential lan-

guage, a set of new library functions is added to support the parallelism and the com-

munication between the processors. Examples of such libraries include PVM and MPI mes-

sage passing libraries, which provide the user to employ distributed-memory systems in

computer clusters, and the POSIX Pthreads multi-threading library for shared-memory

systems in multi-processor architectures.

• New Constructs: The programming language is extended with some new constructs to

support the parallelism. An example is the aggregated array operations in Fortran 90.

This approach supports the shared-memory systems.

• Compiler Directives: The programming language stays the same, but formatted com-

ments, called compiler directives are added. This approach of parallelization is employed

mostly for the shared-memory systems.

The library approach is currently the most widely used one, since it is easy to implement.

Here, all the parallelism and the interaction functionalities are realized by a set of library

routines to integrate into a sequential computer code written with either the Fortran or C

programming languages. As a consequence, there is no need for a new compiler. However,
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without the compiler’s support, the user is deprived of the compile-time analysis, the error

checking and the optimization.

In this study, PVM message passing library routines for the Fortran language are used in

parallel programming. Although the MPI message passing library has been developed recently

and considered to be the standard parallel programming tool, PVM is still the most popular

software platform for parallel processing[56]. Apart from PVM and MPI, the message passing

environments include also the P4, Express and Linda software packages.

The author believes that PVM has the advantage of being employed in the heterogenous

computer systems, and has grown to be quite stable. In this work, PVM version 3.4.4 is used.

PVM is also tolerant to a larger number of nodes (processors), since even though one (or more)

task fails running, other tasks will continue while MPI exits the program when an MPI error is

encountered.

It will be beneficial to the parallel processing community if PVM and MPI eventually merge

into a single, standard library[55].

4.2 Parallel Programming

The parallel programming algorithms developed in this study are based on the distributed-

memory concept in the form of domain decomposition. The computational domain is first

decomposed into subdomains. Then, the computation in each subdomain is assigned to a

processor in the computer cluster and the interprocess communication is realized by the PVM

library routines.

There are some important issues related to parallel processing in a distributed-memory

system, such as domain decomposition, load balancing and the performance criteria, speed-up,

which influences the efficiency of the parallel computations.

4.2.1 Domain Decomposition

Partitioning of data and the computational tasks among multiple processors is denoted as

domain decomposition. In the present work, the computational domain, which is discretized by
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overset grids, is decomposed into its subgrids first, and the solution on each subgrid is assigned

to a processor (Figure 4.2). Note that overset grids lend themselves to a natural domain

decomposition. When computing the flowfield around dual airfoils in a biplane configuration,

the background grid is also partitioned into two subgrids in the crossflow direction (Figure 4.2).

4.2.2 Load Balancing

Maintaining uniform computational activity on each processor is known as load balancing. It is

desirable that each processor work on the same amount of data to minimize the waiting time of

a processor for the data coming from another processor. A simple approach is to determine how

to decompose the domain, that is, how to partition the data, before assigning subproblems to

the processors. This is called static load balancing. However, this technique may not provide a

complete load balancing if the given problem consists of some factors/constraints. For example,

the nature of the governing equations may change during the computation or the number of the

governing equations may have different values in each processor. Moreover, the characteristics of

the computational subdomains, such as discretization, may be altered during the computation

due to adaptations. A remedy is to provide dynamic load balancing on each processor during

computation, which is usually difficult to be implemented.

4.2.3 Speed-Up

Another important issue is the efficiency of the parallel computations. The true measure of the

performance is simply the wall clock time needed for the completion of the computations. A

criteria called speed-up shows how fast the parallel code is, compared to its serial counterpart

(Eqn. 4.1). A good algorithm is one for which this ratio is larger.

Speed−Up =
CPU time for 1 serial processor

CPU time for n processors in parallel
(4.1)

4.3 PVM, the Parallel Programming Library

In this thesis, PVM is used as the parallel programming tool. It is a software developed by the

Heterogeneous Network Project (Oak Ridge National Laboratory, the University of Tennessee
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and Emory University) initiated in 1989 to generate heterogeneous network-based parallel com-

puters. It currently supports the Fortran, C, C++, and Java languages. The most common

operating system where PVM is executed is Unix. It has also been implemented on non-Unix

platforms such as Windows NT and Windows 9X.

A user can construct a computer cluster, a set of connected computers with a single processor

or multi processors. The user can then assign a computation task to each processor by using

PVM. The communication between the processors for sharing data is called as the interprocess

communication. PVM provides all the required library routines to support the interprocess

communication and some other functions.

4.4 Computing Environment

The computer cluster available for the parallel processing studies consists of 10 computers with

dual Pentium-III processors of 700 MHz speed and 512 MB memory. The communication

between the processors is provided by a 100 MB ethernet local network with a 100 Mbps

switch. The computers run under the Linux operating system.

4.5 Structure of the Parallel Codes

The computational tool used in this thesis includes a Navier-Stokes flow solver and an opti-

mization software. The computations with both of the codes are performed in parallel and their

algorithms are based on the parallelization technique in a distributed-memory system. Both

parallel algorithms are very similar to each other in the way of task sharing. The details of the

structure of the codes are given in the following sections.

4.5.1 Parallel Algorithm for the Flow Solver

A coarse parallel algorithm based on domain decomposition is implemented in a master-worker

paradigm. As mentioned in Section 4.2.1, the computational domain which is discretized by

overset grids as shown in Figure 4.3, is partitioned into subdomains first, and the solution on

each grid block is assigned to a different processor. The assignment is done by the master
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Figure 4.2: Domain decomposition

program. Giving the assignment to a processor, master sends also to this processor an initial

solution as well as the necessary information for the computation. Each processor, which

executes the worker program, computes the flow on either a background or an airfoil grid block,

and communicates with other workers for data sharing. Combining the results coming from

workers is finally performed by master.

As an example for grid partitioning, the overset grid system for a single airfoil is shown

in Figure 4.3 and 4.4. As seen from the figures, the region where the airfoil grid is to be

located on the background grid is blanked out. This hole region is not involved in the flow

computation on the background grid. Necessary information for the hole localization and the

intergrid boundary conditions for the Cartesian background grid, are supplied by the airfoil grid

block, and in the same way, necessary intergrid boundary conditions for the airfoil grid which

is a C-type structured grid, are supplied by the background grid block, through send-receive

operations of PVM. This data interchange between the grid blocks are performed in each time

step of computation. In the biplane configuration, since the background grid is also partitioned

to improve the static load balancing, there is one more intergrid boundary, which is between
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Figure 4.3: Overset grids

Figure 4.4: Background and airfoil grids (Figure 2.6 is repeated)

two overlapped Cartesian subgrids partitioned from the original background grid (Figure 4.2).

Therefore, another data interchange between workers solving the flow in the upper and lower

part of the background grid is provided.

Figure 4.5 shows a brief algorithm of the parallel code used in the flow solver. First, the

main code (master) assigns tasks to processors corresponding to the number of airfoils. For

example, for a single flapping airfoil computation, then two processors are needed; one for

computing the flow on the background grid and one for computing on the airfoil grid. Again,

for the case of flapping airfoils in biplane configuration, a total of four workers are spawned in

four processors. After the task assignment is done, workers start to compute the flow on the
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Figure 4.5: Flow chart of the parallel code for the flow solver

grid block assigned to them. Necessary data interchange for the intergrid boundary conditions

is carried out between workers in each time step of computation. If it is time to stop or to

output, each worker sends its sub-result to master which combines all the sub-results.

4.5.2 Parallel Algorithm for the Optimization Processes

The parallel algorithm used for the optimization processes is similar to the master-worker

paradigm employed in the flow solver. The optimization tool used is constructed of a gradient

based optimization algorithm. Consequently, in each step of optimization, the gradient of the

objective function is required to be calculated. The evaluation of the gradient, the definition of

which is given in Eqn. 3.3, is done using the first order forward finite difference formulation.

In the algorithm, first, the master program spawns the worker programs to be executed

in parallel for computing the flow with perturbed optimization variables. The number of the

processors are set according to the number of the optimization variables. As an example,

for an optimization process of a single flapping airfoil with a single optimization variable, four

processors (two groups of two processors) are spawned by master. The first group computes the
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unperturbed flow and the second one computes the perturbed flow in terms of the optimization

variable. If it is the case of an optimization process of three variables, and again for a single

flapping airfoil, then, eight processors (four groups of two processors) are charged. In the

biplane configuration in which there are four subdomains decomposed from the overset grids,

the number of the processors is doubled. Then, at the end of an unsteady flow computation

in parallel as explained in the previous section, each worker group sends its objective function

value to master. Finally, master calculates the gradient of the objective function using the

first order forward finite difference formulation, and then determines the new flapping motion

parameters for the next optimization step. This procedure continues until the gradient of the

objective function vanishes within a given accuracy.

45



CHAPTER 5

RESULTS AND DISCUSSION

5.1 Introduction

Unsteady laminar and turbulent flows over flapping airfoils are computed in parallel by using

a Navier-Stokes solver on overset grid systems. Validation and preliminary solutions are first

obtained for a single flapping airfoil. Two airfoils in a biplane configuration flapping in counter-

phase are next considered. Finally, optimization studies of flapping motion parameters are

performed. The flows are mostly computed laminar at Re = 10000. In the turbulent flow

computations, the Baldwin-Lomax and Spalart-Allamaras turbulence models are used.

Unsteady flow solutions are computed as airfoils undergo the periodic flapping motion in

plunge and, in pitch and plunge together. The unsteady computations are carried out until a

periodic flow solution is obtained. The computed flowfields are analyzed in terms of aerody-

namic loads, instantaneous distributions of pressure and flow variables, and unsteady particle

traces.

The parallel computation of flowfields is carried out by decomposing the overset grid system

into subdomains, each of which is assigned to a processor. Parallel processing is performed in

a cluster of computers with dual Pentium-III processors of 700 MHz speed, 512 MB memory

and Linux operating system. The computers are connected to a 100 Mbps switched ethernet

network. PVM library routines are used for the interprocess communication.
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Figure 5.1: Comparison of thrust coefficient with Reference [38]

5.2 Validation Studies

In order to assess the numerical accuracy of the computed flowfields of the present method,

that is, the parallel computation with the overset grid system, the flow solutions are compared

with the serial single grid solutions performed earlier by Tuncer et al., [38, 39].

Reference [38] gives the computed thrust coefficients for a NACA0012 airfoil undergoing a

pure plunge oscillation at various amplitudes and reduced frequencies. The computations are

carried out at a freestream Mach Number of M = 0.3 and Reynolds Number of Re = 1 · 106.

The flow is assumed to be fully turbulent and the Baldwin-Lomax model is used. A comparison

with these solutions is shown in Figure 5.1 for the reduced frequency, k = 2πfc
U∞

= 0.5. f is the

flapping frequency. As seen, the present results agree well with the Reference values.

Table 5.1 shows the thrust coefficients and the efficiencies computed for a NACA0012 airfoil

undergoing combined plunge and pitch oscillation with different reduced frequencies and phase

angles. The left matrix is from Reference [39]. The pitch oscillation is about the mid-chord.

Flowfields are computed at M = 0.3 and Re = 1 · 105. The flow is again assumed to be fully

turbulent and solved with the Baldwin-Lomax turbulence model. Although it is observed that

the difference between the solutions may differ as much as 10% in cases with low thrust values,

the thrust coefficients and the efficiencies given in Table 5.1 are in good agreement.
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Table 5.1: Comparison of thrust coefficient and efficiency with Reference [39]

h0 = 1, α0 = 10o

k φ Ct η
0.3 90 0.072 0.86
0.3 30 0.116 0.70
1.0 90 0.446 0.25
1.0 30 0.211 0.11

Tuncer et al.[39]

h0 = 1, α0 = 10o

k φ Ct η
0.3 90 0.068 0.81
0.3 30 0.108 0.70
1.0 90 0.437 0.23
1.0 30 0.184 0.10

Present

Figure 5.2: Comparison of drag coefficient history with Reference [39]

Figure 5.2 shows the drag coefficient history of a plunging NACA0012 airfoil at a high reduced

frequency, k = 7.85 with a plunge amplitude of h0 = 0.075. The solution of this flow is given

in Reference [39]. The unsteady flow is computed at M = 0.3 and Re = 2 · 104. The eddy-

viscosity field is computed by using the Baldwin-Lomax turbulence model. As observed from

the comparison in Figure 5.2, agreement between the two solutions indicates again the accuracy

of the present parallel overset grid solutions.

5.3 Preliminary Studies

Preliminary studies are carried out to asses the effect of the compressibility and the turbulence

models for a single flapping airfoil in pure plunge. For the compressibility analysis, the flow

computations are performed at the freestream Mach numbers of M = 0.1 and M = 0.3. In the
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Figure 5.3: Drag coefficient history for M = 0.1 and M = 0.3

turbulent flow cases, the solutions with the Baldwin-Lomax and Spalart-Allmaras models are

compared. Throughout these preliminary investigations, the Reynolds number and the reduced

frequency of the flapping motion is set to be Re = 1 · 106 and k = 0.5, respectively.

5.3.1 Effect of Mach Number

The effect of the freestream Mach number on the thrust generation is investigated to explore

how the thrust generation and the unsteady flowfield change under the influence of the fluid

compressibility. The flowfields around the harmonically plunging NACA0012 airfoil are computed

at Mach numbers, M = 0.1 and M = 0.3. The flow is assumed to be fully turbulent and the

Baldwin-Lomax model is used.

The drag coefficient histories for the range of h0 = 0.6, 0.7, 0.75, 0.8 and 1.0 are given in

Figure 5.3. As seen from the figure, at the plunge amplitudes, h0 = 0.6, 0.7, the drag coefficient

histories do not differ significantly. However, in the M = 0.3 case, starting from h0 = 0.75, it

is observed that the local Mach number exceeds one in a small packet around the leading edge

of the airfoil. At high plunge amplitudes, especially at h0 = 1.0, the drag coefficient histories
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M=0.1 h=-1.0↑ h0=1.0 k=0.5 M=0.3 h=-1.0↑ h0=1.0 k=0.5

M=0.1 h=0.0↑ h0=1.0 k=0.5 M=0.3 h=0.0↑ h0=1.0 k=0.5

M=0.1 h=1.0↓ h0=1.0 k=0.5

(a) Mach number, M = 0.1

M=0.3 h=1.0↓ h0=1.0 k=0.5

(b) Mach number, M = 0.3

Figure 5.4: Particle traces for h0 = 1.0

show significant variation. It is also observed that the steady periodic solution is not established

in the h0 = 1.0 case.

The instantaneous particle traces at three plunge positions for the h0 = 1.0 case are given

for both M = 0.1 and M = 0.3 in Figure 5.4. As seen, in the M = 0.1 case, the flow is attached

at the leading edge, while in the M = 0.3 case, a flow separation at the leading edge and large

vortex formations are present. Figure 5.5 compares the instantaneous pressure distributions
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Figure 5.5: Instantaneous pressure distribution for h0 = 1.0
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Figure 5.6: Thrust and efficiency for M = 0.1 and M = 0.3

along the airfoil chord at the instant of minimum and maximum drag values for the h0 = 1.0

case. As seen from Figure 5.5(a), the leading edge suction is about 75% greater in the M = 0.1

case than that of the M = 0.3 case. It is apparent that the flow separation at the leading

edge is shock induced. Once the flow separates, the leading edge vortex forms and is convected

downstream. The suction induced by the travelling vortex is observed in Figure 5.5(b).

The thrust and propulsive efficiency predictions for the whole plunge amplitude range are

shown in Figure 5.6. The potential flow solution in Figure 5.6(a) is from Reference [38]. In the
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figure, it is seen that, at low plunge amplitudes (h0 ≤ 0.7), the Navier-Stokes predictions for the

M = 0.1 and M = 0.3 cases, and the incompressible potential flow solutions are in agreement.

Beyond h0 = 0.7, the thrust value decreases for the M = 0.3 case, while it still increases for

the M = 0.1 case. Similarly, the propulsive efficiency also drops significantly as the plunge

amplitude increases beyond 0.7 due to the leading edge vortex formation and subsequent loss

of the suction pressure at the leading edge of the airfoil (Figure 5.6(b)).

It may be concluded that the thrust generation is more effective and more efficient at low

Mach numbers. As the Mach number increases, the suction field at the leading edge collapses

and the flow separates forming leading edge vortices, which in turn reduces the thrust.

5.3.2 Effect of Turbulence Models

In order to asses the influence of the turbulence on the flapping airfoil aerodynamics, numerical

studies are carried out by using the Baldwin-Lomax (BL) and Spalart-Allmaras (SA) turbulence

models. The BL model is an algebraic model and the SA is a one-equation model. A detailed

comparison of turbulence models for the unsteady flows is available in Reference [57].

The unsteady flows over a single flapping NACA0012 airfoil in plunge are computed atM = 0.1

and Re = 1 ·106. The reduced frequency is k = 0.5, and the non-dimensional plunge amplitudes

are chosen to be h0 = 0.6, 0.7, 0.75, 0.8 and 1.0.

Figure 5.7 shows the time history of the drag coefficients for the range of plunge amplitudes.

As seen, the drag coefficient histories given by both models are in good agreement except for

the h0 = 1.0 case. Figure 5.8 compares the particle traces obtained for the h0 = 1.0 case. In

the SA solution, the leading edge vortex formations followed by a flow separation are observed,

while in the BL solution, the flow at the leading edge stays attached. This difference is mainly

due to the BL model delaying the flow separation. The instantaneous pressure distributions at

the instant of minimum and maximum drag values for the h0 = 1.0 case is shown in Figure

5.9. At the instant of maximum thrust, the leading edge suction is slightly greater in the SA

solution than that of the BL solution. It may be concluded that the SA model predicts slightly

smaller eddy-viscosity, which leads to an earlier flow separation than that of the BL model.
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Figure 5.8: Particle traces for h0 = 1.0

53



Chord, x/c

P
re

ss
ur

e
C

oe
ff

ic
ie

nt
,C

p

0 0.5 1

-25

-20

-15

-10

-5

0

5

BL
SA

Cp at minimum Cd (maximum thrust) h0=1.0 k=0.5

(a) Minimum drag instant

Chord, x/c

P
re

ss
ur

e
C

oe
ff

ic
ie

nt
,C

p

0 0.5 1

-25

-20

-15

-10

-5

0

5

BL
SA

Cp at maximum Cd (minimum thrust) h0=1.0 k=0.5

(b) Maximum drag instant

Figure 5.9: Instantaneous pressure distribution for h0 = 1.0

Plunge Amplitude, h0

A
ve

ra
ge

T
hr

us
tC

oe
ff

ic
ie

nt
,C

t

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5
BL
SA
Inviscid & Incompressible Potential Flow

(a) Average thrust coefficient

Plunge Amplitude, h0

P
ro

pu
ls

iv
e

E
ff

ic
ie

nc
y,

η

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1
BL
SA

(b) Propulsive efficiency

Figure 5.10: Thrust and efficiency for BL and SA

Figure 5.10(a) shows the average thrust coefficients computed by the BL and SA models,

and by the potential flow solution (panel code). The potential flow solution in the figure is from

Reference [38]. The propulsive efficiency values are compared in Figure 5.10(b). Except for the

plunge amplitude, h0 = 1.0, the BL and SA models give the same predictions of the thrust and

efficiency values. At h0 = 1.0, the flow separation in the flowfield computed by the SA model

is responsible for the reduction in the thrust and the propulsive efficiency.

It is concluded that, for low plunge amplitudes, unsteady flow solutions computed using the
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Figure 5.11: Overset grid system for a biplane configuration

BL and SA turbulence models are similar. As the plunge amplitude increases, the flowfields

computed by both methods apparently give slightly different eddy-viscosity predictions in the

flowfield, which affects the unsteady aerodynamic characteristics significantly.

5.4 Biplane Configuration

Based on the experimental studies[6], the thrust generation of flapping airfoils is enhanced

in biplane configuration as the airfoils undergo an opposed flapping motion. In the earlier

studies with flapping airfoils[35, 39], the flapping motion may be implemented either by locally

deforming the grid around moving airfoils or employing overset grids. The grid deformation

may impose restrictions on the flapping amplitude, or introduce inaccuracies due to the reduced

grid quality. Overset grids is therefore an alternative to impose the flapping motion, and is

employed in this study. This section presents the unsteady flow computations for a biplane

configuration as the airfoils undergo pure plunge, and combined pitch and plunge oscillations

in counter-phase.

5.4.1 Pure Plunge Motion

In the following unsteady flow solutions for a biplane configuration of NACA0014 airfoils, the

mean distance between the airfoils is set to y0 = 1.4 and the plunge amplitude, to h0 = 0.4 as in
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the experimental studies performed by Jones et al.[6]. The overset grid system shown in Figure

5.11 is used. The airfoil and background grids are of 141× 31 and 135× 262 size, respectively.

Although the flowfield is symmetric about the middle plane in the crossflow direction, the full

domain is discretized to avoid the application of the numerical symmetry condition, and to

asses the accuracy of the computations. In the parallel computations, the background grid is

partitioned into two at the symmetry plane. The computational domain is then decomposed

into a total of four subgrids. This procedure is explained in more detail in Chapter 4.

The flow is computed at M = 0.1 and Re = 1 · 104 assuming laminar flow. The steady

flowfield is first computed to provide the starting solution for the unsteady flow (Figure 5.12). It

is noted that the boundary layers grow considerably thick at this low Reynolds number laminar

flow. The unsteady flow solutions for a range of reduced frequency values are computed for

about 5 periods of the flapping motion, in which periodic flow conditions are established. A

typical parallel computation, which is distributed over 4 processors, takes about 20 CPU hours.

Figure 5.13 shows the computed flowfield at the mean plunge position for k = 2. The

particle traces, which originate from the leading edge of the airfoils, are shown in Figure 5.14

at three plunge positions. The figures reveal the presence of the large leading and trailing edge

vortices forming and convecting downstream, similar to the single airfoil case. However, the
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Figure 5.13: Instantaneous unsteady flowfield

flow in the wake shows a considerably different profile due to the interaction of the airfoil

wakes. It is also noted that the computed flowfield is symmetric about the mid-plane. The

instantaneous plunge positions and directions given in the figures are with respect to the upper

airfoil. The lower airfoil plunges in the opposite direction.

The time variation of the drag coefficient and its comparison to that of the single airfoil

(Figure 5.15) show that the unsteady thrust production is enhanced in the biplane configuration.
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Figure 5.14: Particle traces

The instantaneous thrust value in biplane configuration is considerably larger than that of the

single airfoil case as the airfoils plunge toward each other at h ≈ 0 ↓ for the upper airfoil

(h ≈ 0 ↑ for the lower airfoil). The additional thrust is attributed to the larger suction at

the leading edge of the airfoils due to the ground effect as shown in the pressure distribution

(Figure 5.16). Note that the variation of drag coefficients for the upper and lower airfoils in

the biplane configuration do overlap, showing perfect symmetry in the solution.
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In Figure 5.17, the average thrust coefficients obtained for a range of reduced frequency val-

ues, k = 0.5− 3, are also compared to that of the single flapping airfoil, the experimental data

and the panel code[6]. To facilitate a direct comparison with the experimental data, average

thrust coefficient, here, is defined as Ct = −(Cd − Cd,steady). As shown the thrust enhance-

ment due to biplane configuration over the single flapping airfoil becomes more pronounced at

frequencies higher than k = 2, where the enhancement is about 20%. At k = 0.5, the thrust

coefficient in the biplane configuration is even slightly less that of single flapping airfoil. The

present numerical predictions also compare well with the experimental data, especially at high
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Figure 5.18: Propulsive efficiency

reduced frequencies. However, the experimental data show a higher thrust at low frequencies. As

expected the panel code solution, which assumes a fully attached flow over airfoils, overpredicts

the average thrust considerably.

The computed propulsive efficiencies of the biplane configuration are compared to those of

the single airfoil in Figure 5.18. In contrast to the thrust enhancement seen in Figure 5.17,

it is observed that the propulsive efficiency is lower in the biplane configuration. It appears

that slightly more power is required to impose the flapping motion (against the lift) in biplane

configuration due to the ground effect.
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The effect of turbulence on the thrust generation is next investigated. Reynolds number and

Mach number are again, Re = 1 · 104 and M = 0.1, respectively. The turbulence model used

is the Spalart-Allmaras model. In Figure 5.19, the particle traces in the case of turbulent flow

are compared to the particle traces in laminar flow. Average thrust coefficients and propulsive

efficiencies are given in Figure 5.20 and compared to those of laminar flow predictions and

experiment[6]. Since the turbulence in the flow delays the flow separation, a slight increase in

the thrust value is observed. As expected, the turbulent flow solutions predict higher efficiency

for all frequencies.
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Figure 5.21: Overset grid system for combined pitch and plunge motion

5.4.2 Combined Pitch and Plunge Motion

In the combined pitch and plunge motion of the airfoils in biplane configuration, the distance

between the moving airfoils has to be considered more carefully because of the in-phase pitch

motion with the plunge motion. Due to the constraint on the distance between the symmetry

line of the airfoils and the outer boundary of the airfoil grids, an airfoil grid of smaller size

than the one presented in Section 5.4.1 is used in this study. Figure 5.21 shows the airfoil

and background grids, which are of 117 × 27 and 135 × 276 size, respectively. The unsteady,

laminar and turbulent flowfields are computed at M = 0.1, Re = 1 · 104 for y0 = 1.4, h0 = 0.4,

k = 0.5, 1.0, α0 = 5o, 10o and a range of phase angles between φ = 0o − 180o.

Figures 5.22 and 5.23 give the flowfields for k = 0.5, φ = 120o, and α0 = 5o and α0 = 10o,

respectively, at the plunge position, h = 0. The flowfields computed for k = 1.0 with all the

other flapping parameters remaining the same are shown in Figures 5.24 and 5.25. Figure 5.26

gives the time history of the drag coefficient for k = 0.5 and k = 1.0. In Figure 5.27, the

computed average thrust coefficients are compared to those of the pure plunge motion (i.e.,

α0 = 0o) studied in Section 5.4.1 for k = 0.5 and k = 1. The average thrust coefficient is again

defined as Ct = −(Cd − Cd,steady) for a direct comparison of the results in Section 5.4.1.
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Figure 5.26: Drag history of biplane configuration at combined pitch and plunge motion
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Figure 5.27: Thrust of biplane configuration at combined pitch and plunge motion

The results clearly show that the combined pitch and plunge oscillations of airfoils in the

biplane configuration enhances the thrust significantly. The enhancement of the average thrust

is more than 100% near φ = 120o when the frequency is, k = 0.5 and about 50% at φ = 90o

when the frequency is k = 1. These preliminary results show that the thrust produced by

flapping airfoils may further be enhanced for certain phase angles between the plunge and pitch

motions. It is also noted that for some phase angles flapping airfoils do not produce thrust at

all.
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Figure 5.29: Thrust coefficient for combined pitch and plunge motion (Laminar and Turbulent)

Finally, turbulent flow computations are carried out at α0 = 50, k = 0.5, Re = 1 · 104 and

M = 0.1. Figure 5.28 shows the instantaneous flowfields at the plunge position h = 0 computed

with the laminar and turbulent flow assumptions. The thrust comparison is given in Figure

5.29. Significant enhancement of the thrust generation along the phase angle range is observed.
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Figure 5.30: Overset grids used in optimization

5.5 Optimization Studies

The numerical optimization algorithm described in Chapter 3 is implemented for the flapping

motion parameters to maximize the thrust and/or the propulsive efficiency of flapping airfoils.

The optimization algorithm is based on the steepest ascent direction of the objective function,

which is either the thrust or the linear combination (See Section 3.3) of the thrust and the

propulsive efficiency.

The computational and experimental findings show that the thrust generation and the

propulsive efficiency of flapping airfoils are closely connected to the flapping motion and the

flow parameters, such as the unsteady flapping velocity, the frequency and the amplitude of the

pitch and plunge motions, the phase shift between them, and the air speed. It is apparent that

to maximize the thrust and/or the propulsive efficiency of a flapping airfoil, an optimization of

all the above variables is needed. In this study, the optimization variables are taken to be the

plunge and pitch amplitudes, the flapping frequency and the phase shift between the pitch and

plunge motions. Figure 5.30 shows the overset grid systems used in the optimization studies

with the single airfoil and the dual airfoils in a biplane configuration.

The components of the gradient vector of the objective function are evaluated in parallel

after an unsteady flowfield computation for each optimization variable. A typical parallel

computation for an optimization process takes about 20 − 30 hours of wall clock. It should
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Table 5.2: Thrust optimization cases and variables

Case Re M k h0 α0 φ
1 1 · 104 0.1 1.0 0.4 5.0o V
2 1 · 106 Tur. 0.3 0.5 V 0.0 0.0
3 1 · 104 0.1 1.0 V 0.0 0.0
4 1 · 104 0.1 V V 0.0 0.0
5 2 · 104 0.2 V V 0.0 0.0
6 3 · 104 0.3 V V 0.0 0.0
7 1 · 104 0.1 1.0 V V V
8 2 · 104 0.2 1.0 V V V
9 3 · 104 0.3 1.0 V V V
10 1 · 104 Tur. 0.1 1.0 V V V

be noted that the total duration of an optimization process does not depend on the number

of optimization variables since the components of the gradient vector for each optimization

variable are calculated in parallel.

5.6 Maximization of Thrust Generation

Optimization studies are performed to maximize the thrust generation of a single flapping

NACA0012 airfoil and dual flapping NACA0014 airfoils in a biplane configuration. Table 5.2

summarizes the optimization cases studied. V denotes the optimization variable used in the

case study. All the cases except Case 1 are the single airfoil cases. In Cases 2 and 10, flows

are assumed to be turbulent and, Baldwin-Lomax and Spalart-Allmaras turbulence models are

employed respectively.

Figure 5.31(a) (Case 1) compares the result of an optimization study for a biplane configura-

tion with a parametric study done earlier (Section 5.4.2). In this case, the optimization variable

is the phase angle between the plunge and pitch motions. As shown, the optimization algorithm

works well. The phase angle which maximizes the thrust is reached along the optimization steps.

In Case 2, the plunge amplitude, h0 is the only optimization variable. Optimization steps are

given in Figure 5.31(b), and compared with the parametric study presented in Figure 1.6. The

plunge amplitude, h0 = 0.72, that maximizes the thrust is similarly approached rapidly.
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Figure 5.32: Thrust optimization with a single parameter

In the following optimization cases, low Reynolds number, laminar flows are considered to

match the Reynolds number of the experimental studies performed by Jones et al.[6]. In Case

3, another single variable optimization, for h0, is considered. As seen from Figure 5.32, the

optimization process starts from h0 = 0.5 and rapidly converges to h0 = 0.95 where the thrust

is maximized.

In Case 4, a two-variable optimization is performed for h0 and k at M = 0.1. Two sets of

starting conditions for the optimization variables are employed for the optimization process:

In the first case, h0,start = 0.5 and kstart = 0.5, and in the second case, h0,start = 0.2 and

kstart = 2.5. The optimization steps are shown in Figure 5.33(a). Two optimization processes
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Figure 5.34: Instantaneous pressure distributions at maximum thrust, Case 4

two different initial conditions are shown to converge about the same k and h0 values. At this

low Mach number flow, very high values of thrust are computed as the k and h0 values are

increased along the optimization steps. The variation of the unsteady drag (negative thrust)

coefficient along a few optimization steps is shown in Figure 5.33(b). As the plunge amplitude

and frequency values are incremented along the optimization steps, the unsteady computations

are carried out for a few periods of the flapping motion until a periodic behavior is obtained.

The instantaneous surface pressure distributions and Mach number contours at the minimum

drag (maximum thrust) positions along the optimization steps are given in Figures 5.34 and
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5.35, respectively. As observed, the maximum thrust, which is mostly due to the high suction

induced at the leading edge, is produced as a strong vortex forms at the leading edge of the

airfoil.

The optimization run in Case 4 is next repeated for M = 0.2 and M = 0.3 as shown in

Figure 5.36. A similar trend is observed. However, as expected, the maximum average thrust

values computed are significantly smaller than those of the M = 0.1 case, and they are reached

at relatively low k and h0 values (Figure 5.37), which is in agreement with the results given

earlier in Section 5.3.1. The pressure distributions at the instants of maximum thrust for Cases

4− 6 are compared in Figure 5.38. It is again noted that compressibility plays a significant role

in thrust production. It appears that at the low Mach number flow case, M = 0.1, high flow

velocities at the leading edge, due to the high flapping frequency and the plunge amplitude, can

be sustained without a massive flow separation, producing large suction pressures. Whereas, at

higher Mach numbers, the rapid flow separation at the leading edge appears to be responsible

for the significantly reduced suction, and the low average thrust values obtained at the relatively

smaller flapping frequency and amplitudes.
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It has long been recognized[22] that when a flapping airfoil undergoes a combined plunge and

pitching motion with a proper phase angle between them, the propulsive efficiency is improved.

In optimization Cases 7 − 9, a combined plunge and pitching motion is considered at a fixed

frequency of k = 1.0, and the plunge and pitch amplitudes and the phase angle are taken as

optimization variables. Optimization results are given in Figure 5.39 for the same set of Mach

numbers. As observed, in all the cases, the average thrust is augmented for the optimized

values of the pitch and plunge amplitudes and the phase angle. The augmentation is quite

significant at M = 0.2 and M = 0.3. The maximum thrust coefficients at this fixed frequency

of k = 1 is about twice the maximum values obtained in Cases 5 and 6, where airfoils flap only

in plunge. In addition, it should be noted that as the Mach number decreases, the pitch and
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Table 5.3: Optimization results

Case k h0 α0 (deg) φ (deg) Ct
1 − − − 81.9 0.12
2 − 0.72 − − 0.18
3 − 0.95 − − 0.12
4a 3.07 0.86 − − 1.03
4b 2.93 0.97 − − 1.09
5 1.55 0.69 − − 0.20
6 1.27 0.57 − − 0.11
7 − 1.60 23.6 103.4 1.41
8 − 1.15 18.5 71.0 0.61
9 − 0.81 5.9 46.5 0.20
10 − 2.11 37.0 102.3 2.44

plunge amplitudes and the phase angle are decreased for the maximum thrust. The optimum

combined pitch and plunge motions of the airfoil for Cases 7 and 9 are shown in Figure 5.40.

The optimum motion reduces the effective angle of attack for a more streamlined flow. In Figure

5.41, the maximum average thrust values computed in Cases 7 − 9 are compared against that

of the airfoil flapping in pure plunge at the same k and h0 values. The comparison again shows

the significant augmentation of thrust production under the influence of the pitching motion.

In Case 10, the same optimization variables as in Case 7 are employed, but the flow is as-

sumed to be fully turbulent. The optimization steps are given in Figure 5.42. It is apparent that

as the flow separation is delayed due to the turbulence, higher pitching and plunge amplitudes,

and higher thrust values are obtained.

All the results of the optimization cases are given in Table 5.3. It is concluded that thrust

generation of a flapping airfoil strongly depend on the flapping frequency and the phase angle
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Table 5.4: Optimization cases and starting conditions

Case β Re M h0 α0 (deg) φ (deg)
1 0.0 1 · 104 0.1 V : 0.5 0 0
2 0.25 1 · 104 0.1 V : 0.5 0 0
3 0.5 1 · 104 0.1 V : 0.5 0 0
4 0.75 1 · 104 0.1 V : 0.5 0 0
5 1.0 1 · 104 0.1 V : 0.5 0 0
6 0.0 1 · 104 0.1 V : 0.5 V : 5 V : 30
7 0.5 1 · 104 0.1 V : 0.5 V : 5 V : 30
8 1.0 1 · 104 0.1 V : 0.5 V : 5 V : 30
9 0.0 1 · 104 0.1 V : 0.5 V : 25 V : 60
10 0.0 1 · 104 0.1 V : 1.0 V : 5 V : 60
11 0.0 1 · 104 0.1 V : 1.0 V : 25 V : 90
12 1.0 1 · 104 0.1 V : 0.5 V : 25 V : 60
13 1.0 1 · 104 0.1 V : 1.0 V : 5 V : 60
14 1.0 1 · 104 0.1 V : 1.0 V : 25 V : 90
15 0.0 2 · 104 0.2 V : 0.5 V : 5 V : 30
16 0.0 1 · 104 0.2 V : 0.5 V : 5 V : 30
17 0.0 1 · 104 Tur. 0.1 V : 0.5 V : 5 V : 30

between the plunge and pitch motions. For a fixed flapping frequency, the maximum thrust is

produced at a proper phase angle which prevents massive flow separation at the leading edge.

The phase angle is about 100o for M = 0.1, giving a maximum thrust of 1.41 at h0 = 1.60 and

α0 = 23.6o.

5.7 Maximization of a Linear Combination of Thrust and Propulsive

Efficiency

In the previous section, the objective function was taken to be the average thrust. In this

section, a linear combination of the propulsive efficiency and thrust production for a flapping

airfoil is taken to be the objective function. The objective function in terms of average thrust

and propulsive efficiency is now defined as:

O(Ct, η) = (1− β)
Ct
CtN

+ β
η

ηN
(5.1)

where β is the weight of the propulsive efficiency in the linear combination. Note that β = 0

sets the objective function to a normalized thrust coefficient. CtN and ηN vary along the

optimization steps. The definitions of CtN and ηN are given in Section 3.3.
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Figure 5.43: Optimization for thrust and efficiency, Cases 1− 5

The optimization studies are performed for a single NACA0012 airfoil flapping in pure plunge

motion and combined plunging and pitching. The reduced frequency of the oscillatory motion

is fixed at k = 1. The optimization variables are the pitch and plunge amplitudes and the

phase shift between the pitch and plunge motions. Table 5.4 summarizes the optimization

cases studied. V denotes the optimization variable used in the case study. The number next

to V is the starting condition for the corresponding optimization variable. All the flows are

assumed to be laminar, and computed at Re = 1 · 104 and M = 0.1 except for Cases 15 − 17.

In Cases 15 and 16, the flow is assumed to be laminar with the freestream Mach number of

M = 0.2 and the Reynolds numbers of Re = 2 · 104 and Re = 1 · 104, respectively. In the last

case, the flow is computed turbulent and the Spalart-Allamaras turbulence model is used.

In Cases 1 − 5, the only optimization variable is the plunge amplitude, h0, and β is incre-

mented from 0.0 to 1.0. The results for the set of β values are given in Figure 5.43. When β = 0,

the maximum thrust of Ct = 0.12 and the minimum efficiency value of η = 6% are obtained for

h0 = 0.95. As β is increased, the maximum efficiency is obtained for lower plunge amplitudes

at the expense of reduced thrust figures. For β = 1, η = 23%, Ct = 0.03 at h0 = 0.28.

In Case 6, where β = 0, the average thrust coefficient is maximized with respect to three

optimization variables, h0, α0 and φ. The instantaneous variation of the unsteady drag (negative

thrust) coefficient along a few optimization steps is shown in Figure 5.44. As the optimization

variables are incremented along the optimization steps, unsteady computations are carried out

for a few periods of the flapping motion until a periodic behavior is obtained. The variation of
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Figure 5.45: Maximization of thrust coefficient (β = 0), Case 6
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Figure 5.46: Maximization of propulsive efficiency and thrust coefficient (β = 0.5), Case 7
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Figure 5.47: Maximization of propulsive efficiency (β = 1), Case 8
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Figure 5.48: Particle traces at the instant of maximum thrust along optimization steps for
Cases 6− 8

the average thrust coefficient and the propulsive efficiency with respect to the optimization

variables are given in Figure 5.45. As shown, as the optimization variables are incremented

along the gradient of the objective function, the average thrust coefficient increases gradually,

and a maximum value of 1.41 is reached at h0 = 1.60, α0 = 23.5o and φ = 103.4o. The

corresponding propulsive efficiency is 28.3%. When compared to Case 1, it is observed that the

combined pitch and plunge motion for maximum thrust augments the thrust by about 10 folds,

and the propulsive efficiency by about 5 folds.
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β=0.0 h= -1.60↑ h0=1.60 α0=23.6o φ= 103.4o β=0.0 h= 0.0↑ h0=1.60 α0=23.6o φ= 103.4o

β=0.0 h= 1.60↑ h0=1.60 α0=23.6o φ= 103.4o β=0.0 h= 0.0↓ h0=1.60 α0=23.6o φ= 103.4o

Figure 5.49: Instantaneous particle traces along a period of optimized flapping motion, Case 6

Optimization Cases 7 and 8 are shown in Figure 5.46 and 5.47, respectively. In Case 7, where

β = 0.5, the average thrust and the propulsive efficiency have equal weights in the objective

function. As a result, the efficiency is improved at the expense of average thrust. It is observed

that the higher efficiency is achieved at a lower plunge amplitude, h0 = 1.36, and a higher

pitch amplitude, α0 = 29.6o. The phase shift slightly drops to 97.8o. In Case 8, the propulsive

efficiency is maximized at low pitch and plunge amplitudes with the corresponding low thrust

coefficient. It is apparent that the propulsive efficiency and thrust production are inversely

proportional.

The unsteady flowfields along the optimization steps are investigated with unsteady particle

traces for Cases 6−8. The particles are emitted at a given frequency along a straight line in the

vicinity of the leading edge of the airfoil, and traced in time. In Figure 5.48, the instantaneous

particle traces at the instant of maximum thrust (minimum drag) in a flapping period are given

along the optimization steps. It is observed that in Case 6, the leading edge vortex formation

is promoted along the optimization steps. The maximum instantaneous thrust occurs at about
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β=0.5 h= -1.36↑ h0=1.36 α0=29.6o φ= 97.7o β=0.5 h= 0.0↑ h0=1.36 α0=29.6o φ= 97.7o

β=0.5 h= 1.36↑ h0=1.36 α0=29.6o φ= 97.7o β=0.5 h= 0.0↓ h0=1.36 α0=29.6o φ= 97.7o

Figure 5.50: Instantaneous particle traces along a period of optimized flapping motion, Case 7

β=1.0 h= -0.45↑ h0=0.45 α0=15.4o φ=82.4o β=1.0 h= 0.0↑ h0=0.45 α0=15.4o φ=82.4o

β=1.0 h= 0.45↑ h0=0.45 α0=15.4o φ=82.4o β=1.0 h= 0.0↓ h0=0.45 α0=15.4o φ=82.4o

Figure 5.51: Instantaneous particle traces along a period of optimized flapping motion, Case 8
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Figure 5.52: Instantaneous pressure distribution at maximum thrust positions, Cases 6 and 8

the mean amplitude location as a stronger leading edge vortex develops. A similar leading

edge vortex formation along the optimization steps is observed in Case 7. However, the vortex

development is not as strong as in Case 6. Whereas, in Case 8, the leading edge vortex formation

is prevented along the optimization steps, which incidently maximizes the propulsive efficiency.

The unsteady flow becomes more streamlined with the motion of the airfoil. Figure 5.49 shows

the optimized flowfield for maximum thrust in Case 6. The flowfield is observed to be highly

vortical with strong leading edge vortices during the upstroke and the downstroke. The flowfield

is periodic, and anti-symmetric along the upstroke and the downstroke. The optimized flowfields

in Cases 7 and 8 are shown in Figures 5.50 and 5.51, respectively. As seen, as β increases, the

flow becomes more streamlined.

In Figure 5.52, the instantaneous pressure distributions over the airfoil chord at the instant

of maximum thrust along optimization steps are given. As seen from the figure, when β = 0,

the suction region near the leading edge of the airfoil gets larger along the optimization steps.

Whereas, as expected, when β = 1, the suction region gets smaller along the optimization steps.

Next, the optimization space is searched for other possible local maxima of the objective

function for Cases 6 and 8. It is implemented by initiating the optimization process from

various initial conditions, as given in Table 5.4. All the results of the optimization cases are
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Table 5.5: Optimization results

Case h0 α0 (deg) φ (deg) Ct η(%)
1 0.93 0.0 0.0 0.12 6.1
2 0.92 0.0 0.0 0.12 6.3
3 0.45 0.0 0.0 0.07 16.5
4 0.32 0.0 0.0 0.04 21.9
5 0.28 0.0 0.0 0.03 22.7
6 1.60 23.5 103.4 1.41 28.3
7 1.36 29.6 97.8 1.08 44.1
8 0.45 15.4 82.4 0.08 58.5
9 1.73 23.8 100.7 1.44 25.4
10 1.52 26.9 87.2 1.27 33.4
11 1.55 28.6 94.9 1.45 35.9
12 0.57 21.0 86.7 0.13 63.8
13 0.60 22.8 86.1 0.13 64.8
14 0.83 35.5 86.5 0.18 67.5
15 1.15 18.5 71.0 0.61 28.0
16 1.54 20.0 94.9 0.95 23.2
17 2.12 36.6 102.9 2.64 34.2

given in Table 5.5. The initial conditions and the optimized states at the end of the optimization

processes are shown in Figure 5.53 and 5.54 for β = 0 and β = 1, respectively. Figure 5.53

reveals that all the optimization cases for β = 0 converge about the same value of the objective

function, which is the thrust coefficient, and of the optimization variables. It suggests that

the global maximum of the objective function may have been found. On the other hand, the

optimization processes for β = 1, provides different optimum states for h0 and α0. But the φ

values are about the same in all the cases. It appears that a high flapping efficiency may be

achieved for a range of h0 and α0 values, provided that α0 increases as h0 does.

The optimum flapping motion for Cases 6− 8 and 14 is shown in Figure 5.55. It is clearly

observed that the plunge amplitude plays a significant role in thrust generation. Higher pitch

amplitudes improve the propulsive efficiency. In addition, the phase shift between the plunge

and pitch motions, which is about 90 deg. for all the cases, reduces the effective angle of attack

at the mid-plunge location, where the plunge velocity is maximum.

The effective angles of attack the airfoil sees along a flapping period are given in Figure 5.56

for Cases 6, 7 and 14. 0 deg. in the flapping period corresponds to the h = −h0 position of the

airfoil. In agreement with the previous observations, for higher thrust production, as in Cases

6 and 7, a flapping airfoil stays at large effective angles of attack longer during the flapping
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Figure 5.53: Maximization of the average thrust coefficient, Ct (β = 0) with various starting
conditions, Cases 6, 9− 11

Plunge Amplitude, h0

P
ro

pu
ls

iv
e

E
ff

ic
ie

nc
y,

η

0 0.5 1 1.5 2
0

0.25

0.5

0.75

1
Case 8
Case 12
Case 13
Case 14

β=1

Pitch Amplitude, α0 (deg)

P
ro

pu
ls

iv
e

E
ff

ic
ie

nc
y,

η

0 10 20 30 40
0

0.25

0.5

0.75

1
Case 8
Case 12
Case 13
Case 14

β=1

Phase Shift, φ (deg)

P
ro

pu
ls

iv
e

E
ff

ic
ie

nc
y,

η

0 30 60 90 120
0

0.25

0.5

0.75

1
Case 8
Case 12
Case 13
Case 14

β=1

Figure 5.54: Maximization of the propulsive efficiency, η (β = 1) with various starting condi-
tions, Cases 8, 12− 14

h = 0

α = 23o α = -23o

(a) Case 6

h = 0

α = 29o α = -29o

(b) Case 7

h = 0

α = 15o α = -15o

(c) Case 8

h = 0

α = 35o α = -35o

(d) Case 14

Figure 5.55: Optimized flapping motions
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Figure 5.56: Effective angle of attack

period. For an efficient flapping (Case 14) , the effective angle of attack at the mid-plunge

location (θ = 90, 270 deg.) is set about 0 deg. Whereas, in Cases 6 and 7, the maximum

effective angle of attack occurs around mid-plunge locations.

Cases 15 and 16 are the optimization runs carried out at the freestream Mach number of

M = 0.2. Reynolds number is Re = 2 · 104 in Case 15, and is Re = 1 · 104 in Case 16. The

optimization steps for both Cases are shown in Figures 5.58 and 5.59. In order to make an easy

comparison with the results of Cases 15 and 16, Figure 5.45 of Case 6 is repeated on the same

page as Figure 5.57. As seen from Figure 5.58, in Case 15, the maximum average thrust value

is significantly smaller than M = 0.1 case (Case 6), and it is reached at lower h0, α0 and φ

values. However, the propulsive efficiency values in both cases are almost the same. In Case 16,

where the Mach number is still M = 0.2 but the Reynolds number is decreased to Re = 1 · 104,

an augmentation of thrust at the expense of propulsive efficiency is observed. When compared

to Case 15, the maximum thrust is reached at higher h0, α0 and φ values, which are very close

to those of Case 6. The solution with the turbulent assumption is given in Figure 5.60. About

a 90% thrust enhancement and about a 20% increase in propulsive efficiency is observed when

compared to Case 6. This is attributed to the delay of the flow separation due to the turbulence.

In this optimization study, the optimization of the thrust and the propulsive efficiency

together is achieved with a weighted and normalized objective function. The thrust generation

of a flapping airfoil is maximized at large plunge amplitudes with large leading edge vortices
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Figure 5.57: Maximization of thrust coefficient (M = 0.1, Re = 1 · 104), Case 6
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Figure 5.58: Maximization of thrust coefficient (M = 0.2, Re = 2 · 104), Case 15
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Figure 5.59: Maximization of thrust coefficient (M = 0.2, Re = 1 · 104), Case 16
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Figure 5.60: Maximization of thrust coefficient (M = 0.1, Re = 1 · 104, Turbulent), Case 17

forming and shedding into the wake. The airfoil stays at a large effective angle of attack

during most of the flapping period. The propulsive efficiency of the flapping airfoils may be

increased by reducing the plunge amplitude and the effective angle of attack, and consequently

by preventing the formation of the leading edge vortices.
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Figure 5.62: Parallel efficiency

5.8 Parallel Efficiency

The aim of parallel processing is to reduce the computational time spent. However, another

important point is that one should also benefit from the computer capabilities as efficiently as

possible. That is, in parallel programming, both speed-up and efficiency should be taken into

consideration. The definition of the speed-up is given in Eqn. 4.1. The parallel efficiency is

defined as the ratio of the speed-up to the number of processors used.

As an example to show the speed-up and the efficiency in parallel processing, a comparison

between the ideal and real cases is given in Figure 5.61 and 5.62 for a laminar unsteady flow

computation around airfoils in biplane configuration. In this example, the airfoil and back-
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ground grids are of 141×31 and 135×262 size, respectively. A zoomed part of this overset grid

system is shown in Figure 5.11. As explained in detail in Chapter 4, there are four subgrids

in which the flow computations are to be performed separately, which are two 141 × 31-size

C-type airfoil grids and two 135× 132-size Cartesian grids decomposed from the original back-

ground grid. During the computation procedure, these four subgrids are distributed over two

dual-processor computers.

Run durations shown in the figures are normalized by the computation time needed when

using a single processor. Since the computers employed have dual processors, when two pro-

cessors are used, the speed-up and the efficiency values coincide with the ideal ones. However,

when four processors are used, parallel efficiency degrades due to the unbalanced load distri-

bution on the airfoil and the partitioned background grids. Another reason for the decrease in

the efficiency is the time lost due to the communication between the processors.
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CHAPTER 6

CONCLUDING REMARKS

Unsteady viscous flowfields over flapping airfoils are computed on overset grids using a Navier-

Stokes solver and the flapping motion parameters are optimized to maximize the thrust and

the propulsive efficiency of flapping airfoils. Computations are performed in parallel using

PVM library routines in a computer cluster. For the optimization processes, a gradient based

algorithm, steepest ascent method implemented again in a parallel algorithm is employed.

A single flapping airfoil and dual airfoils flapping in a biplane configuration are considered.

The flapping motion is imposed as a combination of pitch and plunge motions. The overall

conclusions are made by analyzing computed flowfields in terms of variation of aerodynamic

loads in time and instantaneous distributions of the flow variables. The vortical flowfields

and the wake profiles formed by the leading and trailing edge vortices and their downstream

convection are visualized with unsteady particle traces.

First, the effects of compressibility and the turbulence on the thrust generation of a single

flapping airfoil are investigated. Then, parametric studies for dual flapping airfoils in a biplane

configuration are performed. Finally, optimization studies of flapping motion parameters are

carried out.

In the preliminary studies, it is noted that the compressibility plays a significant role in

thrust generation. It appears that at the low Mach number flow cases, high flow velocities

at the leading edge, due to the high flapping frequency and the plunge amplitude, can be
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sustained without a massive flow separation, producing very large suction pressures. Whereas,

at higher Mach numbers, the rapid flow separation being shock induced near the leading edge

appears to be responsible for the significantly reduced suction, and the low thrust obtained

at the relatively smaller flapping frequency and amplitudes. It is concluded that the thrust

generation is enhanced in a turbulent flow due to the delayed flow separation when compared

to a laminar flow where an earlier flow separation is present.

The parametric studies of biplane configuration indicate that the thrust production is signif-

icantly enhanced in comparison to a single flapping airfoil as observed in the recent experiments.

The computed predictions compare well with the available experimental data.

The gradient based numerical optimization algorithm in parallel is successfully applied to

maximize the thrust generation and the efficiency of the thrust generation of flapping airfoils.

The optimization of the thrust generation and the propulsive efficiency together is achieved

with a weighted and normalized objective function. Optimization variables are the flapping

motion parameters; the plunging and pitching amplitudes, the flapping frequency, and the phase

shift between the pitch and plunge motions. The parallel implementation of the optimization

algorithm is quite robust and the optimum solutions agree well with the parametric studies.

Thrust generation of a flapping airfoil is found to be strongly dependent on the phase angle

between the plunge and pitch motions. The maximum thrust is produced at large plunge

amplitudes with large leading edge vortices forming and shedding into the wake. The airfoil

stays at a large effective angle of attack during most of the flapping period. Propulsive efficiency

of the flapping airfoils may be increased by reducing the plunge amplitude and the effective

angle of attack, and consequently by preventing the formation of leading edge vortices to keep

the unsteady flow streamlined.

In the near future, the flapping motion and the airfoil profile with a limited number of

parameters will be included among the optimization variables.

Further research is also in progress to implement the present optimization method to the

thrust generation of flapping airfoils in a biplane configuration. In this case, the optimization

problem will have a constraint due to the restrictions on the pitch and plunge amplitudes of
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the airfoils. In addition, a new overset grid topology, which will decrease the limitations in the

biplane configuration, needs to be developed.

For a faster convergence in the optimization process, the optimization algorithm and the

parallel efficiency of the computations may further be improved.
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