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In this study, weight optimization of two dimensional steel frames is carried out in 

which the flexibility of beam-to-column connections and the soil-structure 

interaction are considered. In the analysis and design of steel frames, beam-to-

column connections are assumed to be either fully rigid or perfectly pinned. 

However, the real behavior of beam-to-column connections is actually between 

these extremes. Namely, even the simple connections used in practice possess some 

stiffness falling between these two cases mentioned above. Moreover, it is found 

that there exists a nonlinear relationship between the moment and beam-to-column 

rotation when a moment is applied to a flexible connection. These partially 

restrained connections influence the drift (P-∆ effect) of whole structure as well as 

the moment distribution in beams and columns. Use of a direct nonlinear inelastic 

analysis is one way to account for all these effects in frame design. To be able to 

implement such analysis, beam-to-column connections should be assumed and 
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modeled as semi-rigid connections. In the present study, beam-to-column 

connections are modeled as “end plate without column stiffeners” and “top and seat 

angle with web angles”. Soil-structure interaction is also included in the analysis. 

Frames are assumed to be resting on nonlinear soil, which is represented by a set of 

axial elements. Particle swarm optimization method is used to develop the optimum 

design algorithm. The Particle Swarm method is a numerical optimization technique 

that simulates the social behavior of birds, fishes and bugs. In nature fish school, 

birds flock and bugs swarm not only for reproduction but for other reasons such as 

finding food and escaping predators. Similar to birds seek to find food, the optimum 

design process seeks to find the optimum solution. In the particle swarm 

optimization each particle in the swarm represents a candidate solution of the 

optimum design problem. The design algorithm presented selects sections for the 

members of steel frame from the complete list of sections given in LRFD- AISC 

(Load and Resistance Factor Design, American Institute of Steel Construction). 

Besides, the design constraints are implemented from the specifications of the same 

code which covers serviceability and strength limitations. The optimum design 

algorithm developed is used to design number of rigid and semi-rigid steel frames.  

 

Keywords:  Optimum structural design, soil-structure interaction, particle swarm 

algorithm, minimum weight, semi-rigid connections, combinatorial optimization, 

steel frames. 
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Bu çalışmada, iki boyutlu çelik çerçevelerin kiriş-kolon bağlantısının esnekliğini ve 

zemin-yapı etkileşimini gözönüne alarak ağırlık optimizasyonu yapılmıştır. Çelik 

çerçevelerin analiz ve tasarımında kiriş-kolon bağlantılarının ya tam rijit ya da tam 

mafsallı olduğu kabul edilmektedir. Fakat, kiriş-kolon bağlantılarının gerçek 

davranışı bu iki durumun arasındadır. Pratikte kullanılan basit bağlantılar bile 

yukarıda belirtilen iki durumun arasında kalan bir rijitliğe sahiptirler. Öte yandan 

esnek bağlantıya moment uygulandığında, kiriş-kolon dönme açısı ile uygulanan 

moment arasında lineer olmayan bir bağlantının varlığı bulunmuştur. Bu tür kısmi 

tutulmuş bağlantılar tüm yapının yanal deplasmanını (P-∆ etkisi) ve kiriş ve 

kolonlardaki moment dağılımını etkilemektedir. Doğrudan lineer ve elastik olmayan 

analiz yöntemi kullanmak, bu etkilerin çerçeve tasarımındaki etkisini hesaba 

katmak için var olan yöntemlerden birisidir. Bu tür bir analiz yapmak için kiriş-

kolon bağlantısı yarı-rijit olarak kabul edilmeli ve ona göre modellenmelidir. Bu 

çalışmada kiriş-kolon bağlantıları “kolon berkitmeleri olmayan uç levhalı” ve “üst, 
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alt ve gövdelerinde korniyer” kullanılan türde bağlantılar olarak modellenmiştir. 

Analizde zemin-yapı etkileşimi de göz önüne alınmıştır. Çerçevelerin bir grup 

eksenel elemanlarla temsil edilen lineer olmayan bir zemine oturduğu 

varsayılmıştır. Optimum boyutlandırma algoritmasının geliştirilmesinde parçacık 

kümesi optimizasyonu metodu kullanılmıştır. Parçacık kümesi yöntemi kuşların, 

balıkların ve böceklerin sosyal davranışını simule eden bir sayısal optimizasyon 

tekniğidir. Doğada balıklar, kuşlar ve böcekler sadece üreme için değil, yemek 

bulma ve düşmanlarından kaçma gibi diğer sebeplerden dolayı da sürü halinde 

olurlar. Kuşların yemek aramasına benzer olarak, optimum boyutlandırma işlemi 

de, optimum çözümü arar. Parçacık küme optimizasyonunda kümedeki her parçacık 

optimum boyutlandırma probleminin aday çözümünü temsil eder. Sunulan 

boyutlandırma algoritması, LRFD-AISC (Yük ve Direnç Faktörü Tasarımı-

Amerikan Çelik Konstrüksiyon Enstitüsü)  de verilen w-profillerinin tümünün 

bulunduğu listeden çelik çerçevenin elemanları için w-profili seçer. Ayrıca dayanım 

ve deplasman sınırlarını kapsayan aynı şartnamede belirlenmiş kısıtlar, optimum 

boyutlandırma probleminin sınırlayıcıları olarak uygulanmıştır. Geliştirilen 

optimum boyutlandırma algoritması ile rijit ve yarı-rijit çelik çerçevelerin tasarımı 

yapılmıştır.  

  

 

Anahtar Kelimeler: Optimum boyutlandırma, parçacık sürü optimizasyonu 

yöntemi, minimum ağırlık, zemin-yapı etkileşimi, yarı-rijit bağlantı noktaları, çelik 

çerçeveler. 
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CHAPTER 1 
 
 
 

 
INTRODUCTION 

 

 
 
 
 
1.1   Modeling of steel frames 
 

 

Structural design is one of the prime tasks of a structural engineer. In the 

design process, the first step is to select the topology of the structural systems. 

In the case of steel skeletal frame, designer has to adopt steel profiles from the 

steel sections table available in practice for the beams and columns of the 

frame such that the response of the frame under the external loads is within the 

limitations imposed by steel codes. In order to determine the behavior of the 

frame, designer has to carry out structural analysis of the frame with the 

selected steel sections. This necessitates structural modeling of the frame 

under consideration. Designers make some assumptions particularly about 

beam-to-column and column-to-support connections to simplify the analysis 

problem. It is apparent that to determine the realistic behavior of a steel frame, 

one has to use a realistic modeling of these connections. Determination of the 

realistic behavior yields realistic design of the frame. Hence, it is important 

that designer models the steel frame under consideration such that its response 

to external loads is close to response of the constructed frame. 

 

In the analysis and design of steel frames, the realistic modeling of beam-to-

column connections provides an accurate response of the frame under the 

external loads. In practice, these connections are assumed to be either fully 
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rigid or perfectly pinned. In the former assumption, it is implied that there is 

no relative rotation of connection and the column takes the whole end moment 

of the beam. On the other hand, the pinned connection assumes that the 

moment of connection is always zero and there is no existing restraint for 

rotation of the connection. However, experiments have revealed that the real 

behavior of beam-to-column connections is between these extremes. Namely, 

all these practically used connections possess some stiffness falling between 

two cases mentioned above. Moreover, it is found that there exists a nonlinear 

relation of relative beam-to-column rotation when a moment is applied to a 

flexible connection [1]. These partially restrained connections influence the 

drift (P-∆ effect) of the whole structure as well as the moment distribution in 

beams and columns. Use of a direct nonlinear inelastic analysis is one way to 

account for all these effects in frame design [2]. To be able to implement such 

analysis, beam-to-column connections should be assumed and modeled as 

semi-rigid connections. 

 

 

1.2   Semi-Rigid Steel Frames 

 

 

The semi-rigid connection flexibility depends on the geometric parameters of 

the elements used in beam-to-column connection such as dimensions of end 

plates and bolt size. A typical steel frame with semi-rigid connections, which 

is modeled by attaching rotational springs, is illustrated in Figure 1.1. 
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Figure 1.1 Geometry of a steel frame with semi-rigid connections. 

 

 

1.3   Soil-Structure Interaction 

 

 

Soil, as an elastic material, behaves nonlinearly after the initial loading. This 

behavior is also time-dependent. This nonlinearity is the main factor of the 

uncertainties of static behavior of soil-foundation-superstructure system after 

construction.  

 

Due to these uncertain behaviors of soil, the realistic structural modeling of 

three dimensional buildings necessitates to consider the superstructure, its 

foundation and the soil on which it rests as a complete system. This 

requirement comes from the fact that any differential settlement within the 

foundation system of the building effects the internal force distribution in its 

members. The importance of this effect depends upon the load settlement 

characteristics of the soil and the rigidity of the superstructure. In contrast to 

this fact, in the analysis and design of a structure, supports are considered to 
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be either fixed or pinned without paying any attention to the characteristics of 

the soil on which structure rests. The usual practice to account for the soil 

under the foundation is to assume the soil as an elastic media which implies 

that the reaction forces of the foundation at every point are proportional to the 

deflection of the foundation at that point. This assumption leads to the 

representation of the underlying soil by closely spaced, independent springs. 

In some other studies, a stretched elastic membrane subjected to a constant–

tension field at the top ends of the spring was additionally introduced, in order 

to achieve mathematically simple, but more realistic representation.  

 

Furthermore, in some other works, a vertically incompressible beam was 

placed on the springs which only deformed by transverse shear. There are also 

finite element formulations in the literature.  

 

 

1.4   Optimization 

 

 

Since the earlier history, due to the limited sources in the nature, human 

beings have tried to maximize the profit, economize the energy and keep the 

outgoings, discomforts and pain at minimum. This phenomenon can be 

possible only if the best one amongst all choices, which are the ways of 

accomplishing the tasks in the course of day-to-day events, is made. 

Therefore, it is required to decide upon the optimal way. The process, 

optimization, as a mathematical application of this aim, is concerned with 

achieving the best outcome of a given operation while satisfying certain 

restrictions. 

 

As a more general definition, the term ‘optimization’ can be defined as the 

science of determining the best solution to a mathematically defined problem, 
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which is generally a model of a physical reality. Every activity in which 

numerical information is processed is in the bound of applicability of 

optimization. 

 

In order to consider attaining certain goals in an optimal manner, one should 

first define the objective. Objective functions defined in an optimization 

problem represent some quantity, such as profit or cost that is willing to be 

optimized. Afterwards, the design variables and constraints should be properly 

identified on problem formulation state. Types of design variables may also 

vary depending on the class of problems and needs. Constraints usually 

consist of either system limitations or physical and economic laws that the 

variables must satisfy. A general structural optimization problem can be 

expressed as selecting optimal values of the design variables such that the 

specified objective function is the minimum and constraints that are generally 

non-linear functions of these variables, are satisfied. Mathematical model of a 

typical optimization problem is expressed as in the following. 

 

 

Minimize    z = f (x)                                            (1.1) 

 

Subject to: 

 

hj (x) = 0 ,       j = 1,2,….,0                                    (1.2) 

gk (x) ≤  0 ,     k = p+1,….,m        (1.3)  

xi    X   ,     X = {x1, x2,…, xq}                   (1.4) 

 

 

where, f (x) is the objective function and x is design variable vector. In most of 

the optimization problems, the constraint functions are grouped as equality 

constraints hj and inequality constraints gk. In addition, some structural 


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optimization problems require the use of geometric constraints, which vary 

dependent upon the type of the problem. X represents the set of design 

variables and q is the total number of these variables. Number of constraints 

which restrict the objective function is represented by m [3]. 

 

The selection of the objective and constraint functions defined in terms of the 

quantities does condition the structural optimization design. In practice, weight 

of the structure is the most commonly used objective function due to the fact 

that it is readily quantified. Typical inequality constraints considered in most 

structural optimization problems are displacement or/and stress limitations.    

 

Geometric representation of the optimum design problem which consists of 

two design variables is shown in Figure 1.2. Upper and lower limits may be 

specified for each designated stress and displacement amplitude for each 

alternative load condition; so that a large number of constraint surfaces are 

present.  

 

 

 

 

Figure 1.2 Two-variable optimum design problem. 
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Side constraints appear as planes parallel to the coordinate directions when 

they refer to minimum or maximum values of the design variables. If a design 

point located in the space above the composite constraint surface, it is in free 

space and known as a feasible-design or exterior point. Conversely, a design 

point that represents the violation of constraints is infeasible or interior. In 

geometric terms, Figure 1.2 discloses that the optimum-design problem 

consists in finding the optimum design point of the weight and constraint 

surfaces [4]. Sometimes optimization problems appear to be unconstrained 

problems. At this time, since there are no constraints, all points are feasible and 

hence one needs to be concerned only with the value of f (x) at neighboring 

points.  

 
 

1.4.1   Optimization Models  

 

 

Representation of an optimization problem in a mathematical formulation is a 

critical step in the optimization process. Acceptability of a solution for an 

optimization problem is dependent upon the correct formulation of three basic 

ingredients, namely design variables, objective functions and constraints. 

Depending on the problem, models of optimization problems can be divided 

into two categories as continuous optimization problems and discrete 

optimization problems. 

 

1.4.1.1   Continuous-Variable Models 

 

 

This model can be stated as an optimization problem which involves variables 

for which it is possible to take an intermediate value from an interval of real 
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numbers. For instance, cross-sectional area of a beam and length of an aircraft 

wing can be assumed to be variables of two continuous optimization problems. 

Continuous optimization can detect branch mis-predictions earlier and thus 

reduce the mis-prediction penalty. 

 
 

1.4.1.2   Discrete-variable Models 

 

 

Discrete-variable models involve discrete set of variables. These variables 

describe a finite set of conditions and take values from a finite, usually small, 

set of states. In most of the practical applications of optimization, discrete 

variables occur naturally in the formulation of the problem. For instance, 

material properties must correspond to the available materials or number of 

bolts must be integer. 

 

The distinction between discrete and continuous quantities is rather vague, 

while the distinction between discrete and continuous variables is crisp. Many 

quantities can be represented as both discrete and continuous. In general, 

discrete variables are convenient approximations of real world quantities, 

sufficient for the goal of reasoning. 

 

 

1.4.2   Structural Optimization 

 

 

In the last three decades a prominent progress has been achieved in the field of 

structural analysis. With the help of computer almost all structural problems 

can be solved within the limits of human beings’ knowledge of materials. 

While these achievements are of the greatest importance in allowing the 
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behavior of a particular design to be assessed, their full benefits for the society 

will not be materialized until they are reflected in the improved design of 

structures. 

 

The purpose of inventing better design solutions which, while satisfying safety 

and performance constraints, do it at least cost, is clearly not a new one. From 

the time of earlier history engineers have investigated several alternatives and 

chosen the best one of these. Unfortunately, many factors limit severely the 

number of alternatives that can be investigated. After the implementation of 

computerization to the structural analysis process, it is natural that a 

development of more effective and rapid techniques for the search of the 

optimum structural design is required. 

 

The optimal design of structures, theoretically, aiming at designing 

economical and reliable structures and systems at various conditions and 

technological constraints, is an important branch of general science of 

optimization.  

 

Much work has been done in the field of structural optimization in recent 

years and obviously many techniques exist in the literature. Still, rapid 

changes in methods and focus are being witnessed in this relatively new field.  

However, there is lack of applications to practical design problems in spite of 

the huge amount of literature on the subject. This imbalance is redressed 

gradually. These hopeful applications result in the increase in the use of 

structural optimization methods to real-life problems.  

 

However, these real-life problems, sometimes, may be so complex that due to 

the high computational cost the designers cannot afford to analyze them 

several times. Besides, in the analysis of structures most of the designers use 

general-purpose software packages such as finite element based commercial 
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software. Generally, the source program of the algorithms cannot be accessed 

and the engineers have only scant knowledge of the details of the analysis 

programs used in these software packages.  

 

Designers have shown great interest to structural design optimization when it 

was first emerged. With the aid of this tool a systematic solution to age-old 

structural design problems, handled by utilizing trial-error methods or 

engineering intuition or both, is provided.  

 

Traditional algorithms for structural design optimization are usually driven 

with deterministic mathematical re-sizing procedures and essentially one 

design is replaced through the iteration until a convergence criterion is 

reached. These gradient-based and direct algorithms are founded upon a 

uniquely human field depicting physical and natural phenomena. Direct and 

gradient-based algorithms are powerful search and optimization tools which 

can be effectively used in structural optimization problems. Direct 

mathematical methods can be described as point-to-point search algorithms 

employing objective function and constraints to guide the search through the 

feasible design space while gradient-based methods are the algorithms which 

utilize derivatives of objective functions and/or constraint equations to guide 

the search. Convergence of both methods depends upon the selection of an 

initial solution for subsequent modification through iteration and design 

variable changes. 

 

Mathematical algorithms are generally problem-specific and the efficiency 

and ability of the algorithm in finding the optimum varies. Practical 

engineering problems often use discrete design variables such as structural 

steel cross-section sizes in building design. 
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The structural optimization problems usually need more than one objective 

function, such as, minimum weight which is related to cost, maximum 

stiffness, minimum displacement at specific structural points and minimum 

structural strain energy provided that the design satisfies all the constraints. 

These problems are called as multi-objective optimization problems. For 

instance, it is often required that a structure be stiff enough so that the 

maximum deflection is within the prescribed limit. The design constraints 

provide bonds on member stress, deflection, local buckling, system buckling, 

frequency and dynamic response.  Since mathematical programming methods 

tackle with continuous design variables, the algorithms developed has 

provided to designer cross-sectional dimensions that were neither practical nor 

standard.  

 

Consequently, from practical point of view the structural design optimization 

methods without discrete set of variables cannot be effectively used in real-life 

problems. As a result, efforts have been concentrated on the use of discrete 

variables in structural optimization algorithms. 

 
 

1.4.2.1   Structural Optimization Problems 

 

 

Discrete structural optimization problems can be expressed as finding optimum 

values for discrete member design vector x that minimizes the objective 

function f (x), which is restricted by the constraints related to the design and 

the behavior of the structure. Structural optimization algorithms are generally 

formulated to tackle optimization problems whose statements take the 

following general form [5];  

 

Find a design vector x,  xi    X   ,     X = {x1, x2,…, xq}  



 
 

 12

For weight optimization;                                                  

 

 

      (1.5) 

 

Subject to; 

 
                                                          (1.6) 

 

 

 (1.7) 

 

 
                                                                                                    (1.8) 

 

 

Where; 

 

:)(xf  the objective function (usually the weight of the structure) 

 

X        :  table of available discrete size 

q         :  total number of design variables or elements 

n         :  total number of load condition 

m        :  total number of displacement constraints 

i        :  the specific weight of the i-th element 

ii xL ,  :  the length and the cross sectional area of the i-th element respectively 

:,' a
ii   the absolute value of stress under the l-th load condition and allowable 

stress in the i-th element respectively. 
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:,' a
kk uu  the absolute value of displacement under the l-th load condition at the 

degree of freedom corresponding to the k-th displacement constraint and 

corresponding allowable value respectively. 

 

       :  the vector of lower bounds on design variables 

       :  the vector of upper bounds on designs variables 

 

The complexity of optimum design problem can vary dramatically depending 

on the number of these objective functions, number of constraints and size of 

the decision space. In addition, the mapping of decision space to objective 

space can lead to increased problem complexity [5].  

 

Structural optimization problems, depending on the geometrical feature, are 

divided to three main categories as; sizing optimization, shape optimization, 

topology optimization. 

 
 

1.4.2.1.1    Sizing Optimization Problems 

 

 

In a simple sizing optimization problem generally cross-sectional areas of each 

element are selected as design variables. Structure is optimized by obtaining 

the areas of individual elements that minimize the weight or maximize the 

stiffness. Sizing optimization is the simplest way of doing structural 

optimization. A simple sizing optimization problem for a truss structure is 

illustrated in Figure 1.3. [6]. 
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a)  Initial design     b) Optimized design 

 
Figure 1.3 A sizing structural optimization problem. 

 
 

1.4.2.1.2     Shape Optimization Problems 

 

 
In the case of shape optimization problem structural design variables represent 

the form or contour of some part of the boundary on the structural domain. 

Minimization of mass can be leaded by changing or determining boundary 

shape while satisfying all design requirements. For over three decades, the 

subject of shape optimization has been a topic of in-depth research. It has been 

implemented into several commercial finite element programs [5]. Geometric 

representation of a two-dimensional shape optimization problem is illustrated 

in Figure 1.4 [6] where     (x) denotes the shape of the beam-like structure. 

 

 

 
Figure 1.4 A shape optimization problem.  

F F
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FF

1.4.2.1.3   Topology Optimization Problems 

 

 

The topology or “landscape” of the structure must be an outcome of the 

procedure. In principle the result of a topology optimization procedure is also 

optimal with respect to shape and size, however it should be noted that 

fundamental differences in the design parameterization means that direct 

comparisons are difficult in practice [5]. 

 

Topological optimization of a simple structure can be achieved by considering 

cross-sectional areas of members to be design variables, and then allowing 

these variables to take the value zero. In other words, bars are removed from 

the truss. In this way, the connectivity of nodes becomes variable and the 

topology of the structure changes (Figure 1.5.).  

 

 

 

 

 

 

 

 
 

a) initial design                      b)   Optimized design 

  
Figure 1.5 Topology optimization of a simple truss. 
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1.4.2.2   Structural Optimization Methods 

 

 

Optimization theory and methods tackle with selecting the best alternative in 

the sense of a given objective function. These methods are perceived to be at 

the heart of computer methods for designing engineering systems. With the 

help of these methods, the designer can evaluate more alternatives, thus leading 

to a better and more cost-effective design. Structural optimization methods can 

be categorized as numerical methods and analytical methods. Numerical 

methods emphasize the algorithmic aspect, while analytical methods are 

concerned with the conceptual aspect.  

 
 

1.4.2.2.1   Analytical Methods  

 

 

In the determination of optimum solutions for layouts or geometrical form of 

simple structural elements such as beams, columns and plates, analytical 

methods usually apply mathematical theory of calculus, variation methods, etc. 

They do determine the parameter values of the theoretical model on the basis 

of known experimental results. One can easily state that these analytical 

methods are most convenient for such fundamental studies of single structural 

components. The design of structural systems is represented by a number of 

unknown functions and the purpose is to find out the form of these functions. 

Theoretical determination of the optimal design is made through the solution of 

a system of equations expressing the optimality conditions. 

 

Analytical methods have great importance on the design optimization of 

structures. Although they sometimes have insufficiency of the practical aspects 

of realistic structures, when they can be found, they provide valuable insight 
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and theoretical lower bound optimum against which more practical designs 

may be judged. Structural design optimization problems employing the 

analytical methods are known as continuous problems or distributed parameter 

optimization problems.   

 

 

1.4.2.2.2    Numerical Methods 

 

 

The solution of practical optimization problems, when the number of design 

variables is more than two or the constraint functions are complex, is 

challenging to obtain with use of closed form analytical solution methods. 

Thus, numerical method based algorithms are preferred to solve most structural 

optimization problems. These methods employ a branch in the field of 

numerical mathematics called mathematical programming. Recent 

developments of the numerical methods seem to be result of rapid growths in 

computer capacities.  

 

Numerical methods for the structural design optimization problems 

conceptually differ from analytical methods described above. In analytical 

methods one does write the optimality conditions and solve them for candidate 

local optimum designs. However, when numerical methods are used, a 

candidate design is selected as an initial estimate for the optimum point and 

improved until to further improvements are possible without violating any of 

the constraints. The process may require several cycles and number of these 

cycles is problem dependent. This iterative formula is acceptable for both 

constrained and unconstrained optimization problems.  

 

In summary, the main concept of numerical methods is to start with a 

reasonable estimate for the optimal design. Objective and constraint functions 
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are calculated at that point. Based on these evaluations, the design is moved to 

a newly generated point. The process is repeated until a stopping criterion is 

satisfied. The general algorithm of this iterative scheme can be illustrated as in 

the following, which is also demonstrated graphically in Figure 1.6; 

 

Step 1. Estimate an appropriate candidate design )0(x . Set the iteration counter 

t= 0. 

 

Step 2. Calculate a search direction )(td  in the design space. This computation 

usually requires objective function value and its constraints. 

 

Step 3. Check for convergence of the algorithm. If it has converged, terminate 

the process. Otherwise, continue. 

 

Step 4. Compute a positive step size t . 

 

Step 5. Compute the new design as; 

 

)()()1( t
t

tt dxx           (1.9) 

 

Set 1 tt  and go to Step 2. 
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Figure 1.6   Diagram for iterative steps of a numerical optimization method. 
 

 

It can be clearly seen that such an iterative process represents an organized 

search through the design space for points which represents local minima. That 

is why the procedures are sometimes called the direct methods or search 

techniques of optimization.  

 

Mathematical programming methods are basis of early numerical optimization 

algorithms. It is common for all of these optimization techniques that the 

design variables are considered to be continuous and the objective function 

values as well as constraints are expressed as functions of these variables. 

Many optimization techniques employ the gradient methods which require the 

first derivatives of objective and constraint functions with respect to the design 

variables. 

 

Among the all mathematical programming methods, linear, quadratic, 

dynamic, and geometric programming algorithms are the ones which have been 

developed to deal with specific classes of optimization problems. In spite of its 
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relatively short history, there have been a large number of optimization 

algorithms which employ the mathematical programming.  

 

Another approach for numerical optimization of structures is to derive, from 

mathematical considerations, conditions termed optimality criteria which must 

be fulfilled by an optimal solution. Although these conditions can be essential 

and sufficient for optimality, in most practical design problems, they are only 

necessary ones. The most important advantages of this method are that it can 

be easily programmed for the computer, it is independent of problem size and 

it requires relatively less number of structural analyses. 

 
 

1.4.2.2.2.1   Mathematical Programming 

 

 

Mathematical programming approach was first applied to structural 

optimization in the late 1950’s. This approach was developed to solve large 

problems which have thousands of constraints and variables. Mathematical 

programming problems can be divided into two categories as linear 

programming and non-linear programming.  

 

Non-linear programming problems, in which higher degrees of any variables 

or the reciprocal of the variables may appear, are more general than linear 

programming problems. It is developed for non-linear unconstrained 

optimization problems. Non-linear programming algorithms necessitate either 

gradient or differentiability information of both the objective function and 

constraints with respect to the design variables. 

 

The simpler one of these is the linear programming problem, in which the 

variables are of first degree. In order to be able to apply linear programming 
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techniques to structural optimization problems, one must express the 

relationship between the objective function and the constraints as linear 

functions of design variables. 

 

Linear programming problems, in which both objective function and 

constraints are linear, can be solved with gradient methods. Algorithm of this 

method starts with a feasible solution and proceeds through the direction of the 

gradient vector of the objective function until a point on the boundary of the 

feasible region is reached. At that point the direction of search is changed 

according to certain rules in an iterative manner until the value of the objective 

function is the maximum. 

 

The programming methods of calculus of variations, such as the Galerkin 

method and the Rayleigh-Ritz method are limited to extremizing an integral 

without additional constraints. These methods make use of the approximation 

of the free functions by means of finite summations of appropriate known 

functions, for which the coefficients of the individual terms are determined, 

with the help of ordinary calculus in such a way that the value of the integral in 

question becomes a maximum or a minimum. 

 

Kuhn-Tucker conditions and Lagrange equations are necessary conditions for 

optimum solutions of non-linear problems. These conditions provide very 

basic method for solving non-linear programming problems, although in 

practice very few problems can be solved by use of Lagrange equations.  
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1.4.2.2.2.2   Optimality Criteria 

 

 

The concept of optimality criteria as the basis of selection of a minimum-

volume structure emerged in the early 1960s. This approach derives from the 

extremum principles of structural mechanics, and for the most part has been 

limited to simple structural forms and loading conditions. Prager and Taylor 

have been instrumental in the development of much of this work. The 

procedures of Venkayya and Gellatly and Berke are the foremost procedures 

of employing this method. A detailed review of these procedures can be found 

in [4]. 

 

The methods of optimality criteria include two components. The first is the 

stipulation of the optimality criteria, which can be rigorous mathematical 

statements such as the Kuhn-Tucker conditions, or an intuitive one such as the 

stipulation that the strain energy density in the structure is uniform. The 

second ingredient is the algorithm used to resize the structure for the purpose 

of satisfying the optimality criterion [8].   

 

Methods of optimality criteria assume continuous design variables. In the case 

where the discrete variables are considered, a two-step optimality criteria 

procedure is used. First, optimum solution is obtained using continuous 

variables. Then, using these variables a set of discrete values is estimated. In an 

optimum solution procedure where the optimality criteria methods are used, the 

design variables represent a single cross- sectional property of a structural 

member. A number of functions of the selected design variable express all 

other cross-sectional properties of this member.  
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1.4.3   Stochastic Search Methods 

 

Optimization problems in practice depend mostly on several model parameters, 

noise factors, uncontrollable parameters, etc., which are not given fixed 

quantities at the planning stage. Typical examples from engineering and 

economics/operations research are; Material parameters (e.g. modulus of 

elasticity, yield stresses, allowable stresses, moment capacities, specific 

gravity), external loadings, friction coefficients, moments of inertia, length of 

links, manufacturing errors, tolerances, noise terms, demand parameters, 

technological coefficients in input-output functions, cost factors, etc.. Due to 

several types of stochastic uncertainties (physical uncertainty, economic 

uncertainty, statistical uncertainty, and model uncertainty) these parameters 

must be modeled by random variables having a certain probability distribution. 

In order to cope with these uncertainties, instead of relying on ordinary 

deterministic parameter optimization methods, stochastic search methods are 

applied [9].  

 

Some of the optimization algorithms developed recently employ stochastic 

optimization methods in which random numbers are generated. Stochastic 

search methods do not require the evaluation of the gradients of the objective 

and constraint functions; however, they require more function evaluations. An 

advantage of these algorithms to nonlinear algorithms is that they can be 

applied to optimization problems involving discrete variables.  
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1.4.3.1   Genetic Algorithms 

 

 

Genetic algorithms are stochastic search techniques on the basis of the 

mechanism of natural selection as well as natural genetics and rely on the 

principle of Darwin’s theory of survival of the fittest. Algorithms were first 

introduced by John Holland in the 1960s and developed by Holland, his 

students and colleagues in the 1960s and the 1970s [10].  

 

Genetic algorithm routine starts with an initial set of random solutions called 

population. This population includes some individuals called chromosomes, 

representing a solution to the problem. Each chromosome is a string of 

symbols, which is usually a binary bit string. A positive value, generally called 

fitness value, is used to reflect the degree of “goodness” of the chromosome for 

the problem which would be highly related with its objective value. 

 

The initial population is set by constructing each chromosome where all the 

variables are in a binary coded form. Each character in this code can take either 

the symbol of ‘0’ or ‘1’. After the decoding process, the fitness of each 

solution string is evaluated. Throughout a genetic evolution, the fitter 

chromosome tends to yield good quality offspring which means a better 

solution to any problem. In each cycle of genetic operation, termed as an 

evolving process, a subsequent generation is created from the chromosomes in 

the current population. This can only succeed if a group of these chromosomes, 

generally called “parents” or a collection term “mating pool” is selected via a 

specific selection routine. The genes of the parents are mixed and recombined 

for the production of offspring in the next generation. It is expected that from 

this process of evaluation (manipulation of genes), the “better” chromosome 

will create a larger number of offspring, and thus has a higher chance of 

surviving in the subsequent generation, emulating the survival-of-the-fittest 



 
 

 25

mechanism in nature [10]. The cycle of evolution is repeated until a desired 

termination criterion is reached. This criterion can also be set by the number of 

evolution cycles, or the amount of variation of individuals between different 

generations, or a pre-defined value of fitness. 

 

 

1.4.3.2   Tabu Search 

 

 

The philosophy of tabu search is to derive and exploit a collection of principles 

of intelligent problem solving. In this sense, it can be said that tabu search is 

based on selected concepts that unite the fields of artificial intelligence and 

optimization. The basic form of tabu search is founded on the ideas proposed 

by Fred Glover [11]. The method is based on the procedures designed to cross 

boundaries of feasibility or local optimality, which were usually treated as 

barriers. It is an iterative improvement procedure that starts from any initial 

solution and attempts to determine a better solution.  

 

The algorithm begins by marching to a local minimum. To avoid retracing the 

steps used, the method records recent moves in one or more tabu lists. The 

original intent of the list was not to prevent a previous move from being 

repeated, but rather to insure it was not reversed. The tabu lists are historical in 

nature and form the tabu search memory. The role of the memory can change 

as the algorithm proceeds.  

 

Algorithm is initialized with the random construction of initial design which is 

considered as the current solution. Design variables are then selected and a 

number of candidate designs are created considering the neighborhood of the 

current solution. All the candidate solutions are analyzed and objective 

function values are calculated. The one which has the lowest value is 
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determined and stored as the best candidate. It is checked if the best candidate 

is forbidden or not. If it is not forbidden then the candidate design is replaced 

by current solution, and the design is accepted and recorded in the tabu list. If 

a prohibited candidate satisfies the aspiration criterion, it replaces the current 

solution and tabu list is revised. If not the candidate design is not accepted and 

the search is carried on with the current design. Once all the design variables 

are selected, a single iteration is completed. This procedure is repeated until 

the predefined number of generations is completed. 

 

 

1.4.3.3   Evaluation Strategies 

 

 

Evolution strategies is an optimization technique developed in 1963 [12]. The 

strategy performs well in domains where it is impossible, difficult or 

expensive to define a precise mathematical description of the problem at hand. 

The method deals with vectors of real numbers for the representation of 

designs and optimization parameters. It is very similar to genetic algorithms. 

The main differences between evolutionary strategies and the genetic 

algorithms are the method of selection and whether the sensible strategy 

parameters are adjusted or not. Moreover, only the best fit individuals are 

allowed to reproduce in the evolution strategies method. Steps of the algorithm 

can be summarized as follows; 

 

Algorithm is initialized generating a number of parent individuals to construct 

the initial population. Each individual in the initial population is evaluated. 

Parent population then undergoes recombination and mutation operators to 

yield the offspring population. With recombination, a trade of design 

information between the parents is provided to generate new individuals. 

Mutation, on the other hand, is the main operator of evolution strategies. It is 
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based on a normal distribution requiring the mean ξ and the standard deviation 

σ. In order to determine the survivors out of parent and offspring populations, 

selection should be implemented. The selected individuals become the parents 

of the next generations. This procedure is repeated until the predefined 

number of generations is completed. 

 

 

1.4.3.4   Simulated Annealing 

 

 

The simulated annealing is a random-search technique which utilizes an 

analogy between the way where a metal cools and freezes into a minimum 

energy crystalline structure (the annealing process) and the search for a 

minimum in a more general system; it forms the basis of an optimum design 

method for combinatorial and other problems.   

 

The algorithm was developed in 1983 [12] to be able to solve highly nonlinear 

problems. The behavior of the algorithm is similar to solidification of metals or 

formation of crystals. The achievement of a number of solid states with 

different internal atomic or crystalline structure that correspond to different 

energy levels depends on the rate of cooling. If the cooling is too rapid, it is 

most likely that the resulting solid state would have a solid margin of stability 

because the atoms will assume relative positions in the lattice structure to reach 

an energy state which is only locally minimal.  In order to obtain a more stable, 

globally minimum energy state, the annealing process is used where the metal 

is reheated to a high temperature and cooled slowly; letting the atoms enough 

time to find positions that minimize a steady state is reached.  

 

The major advantage of the algorithm is an ability to avoid becoming trapped 

in local minima. Random search employed by simulated annealing accepts not 
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only changes that decrease the objective function value f (assuming a 

minimization problem), but also some changes that increase it. The cooling 

schedule is the main process of the algorithm. The cooling schedule of a 

simulated annealing algorithm involves four components as; starting 

temperature, final temperature, temperature reduction, iterations at each 

temperature. 

 

Algorithm starts with a certain temperature value. It must be hot enough to 

allow a move to almost any neighborhood state. If it is not hot enough then the 

ending solution may be the same (or very close) with the starting solution. 

However, if the initial temperature is too high then the search can move to any 

neighbor and thus convert the search (at least in the early stages) into a random 

search. It is usual to allow the temperature decrease until its final value reaches 

zero. In practice, however, it is not essential to let the temperature reach zero 

because as it approaches to zero the possibility of accepting a worse design is 

almost the same as the temperature being equal to zero. To make the final 

temperature equal or close to zero a temperature reduction is needed. This is 

done by using simple linear method or geometric decrement method. Another 

important factor is the number of iterations at each temperature. A constant 

number of iteration at each temperature is a common scheme.  

.  

 

1.4.3.5   Ant Colony Optimization 

 

 

The ant colony optimization is a meta-heuristic search technique which is used 

to find optimum solutions for combinatorial optimization problems, which is 

inspired by the foraging behavior of the social insects. The algorithm belongs 

to the class of model-based search algorithm. These types of algorithms are 

characterized by the probabilistic model which is used to generate solutions to 
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the optimization problem. Ant colony optimization algorithms use a given 

probabilistic model without changing the model structure during run-time. 

 

Real ants have the capability of finding the shortest path from food to their 

nests. They can also adapt to changes in the environment, for instance, finding 

a new shortest path if the old one is no longer available. They can do this with 

the help of pheromone trails, which ants use to communicate information 

among individuals regarding the walking path or the decision about where to 

go. Once an ant finds a food source, it brings some of the food to the nest. It 

releases a pheromone trail on the ground while it is walking. Other ants find 

the food source following this pheromone trails deposited on the ground. Each 

ant would rather follow a direction rich in pheromone. They find the shortest 

path between their nest and the food sources with the help of this indirect 

communication [12], which is demonstrated in Figure 1.7. 

 

 

 

Figure 1.7 Path which is designed by ants to reach the destination.  

 

 

Ant colony algorithm can be summarized as follows: A set of agents, a colony 

of ants, moves through states of the problem corresponding to partial solutions 

of the optimization problem. They apply a stochastic local decision policy to 

Source

Destination 
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move. The trails and attractiveness are two parameters of the algorithm, which 

are the basis of this policy. By moving, each ant incrementally forms a solution 

to the problem. When an ant reaches to the destination .i.e. completes a 

solution, or during the construction phase, the ant evaluates the solution and 

modifies the trail value on the components used in its solution. This pheromone 

information will direct the search of the future ants [13]. The skeleton of ant 

colony optimization algorithm includes three major phases, namely, the 

initialization phase, the solution construction phase and pheromone updating 

phase.  

 

In the initialization phase first the pheromone trail strength for all the edges is 

initialized. Then the number of artificial ants in a colony is set and each ant is 

put on a randomly chosen vertex. Afterwards, the termination criteria for the 

iteration looping are set up, which may be that the iteration number exceeds 

the predefined number of solution construction steps or that the computation 

time has exceeded a given CPU-time limit. Secondly, the solution construction 

phase starts. At the beginning of this phase, ants have already been put on 

randomly chosen vertices on the construction graph, and their paths consist of 

their initial vertices. In each construction step, all the ants arrange their 

feasible paths by moving to the next vertex based on the probabilistic decision 

according to the transition rule. After all the ants have moved once, their 

current feasible paths may be improved by applying local pheromone updating 

rule. When all the ants have completed their feasible paths, the solution 

construction phase is stopped. Then the pheromone trails are updated using 

global pheromone updating rule. 
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1.4.3.6   Harmony Search Algorithm 

 

 

Harmony search optimization is a stochastic optimization technique developed 

by Geem and Kim [14]. It is relatively simple method which imposes fewer 

mathematical requirements for the solution of optimization problems. It 

requires neither initial starting values for the decision variables nor the 

derivative information of the objective function and constraints. Therefore, it is 

easy to program harmony search method. As in the nature of stochastic 

optimization methods, harmony search algorithm starts with randomly selected 

candidate solutions to the optimization problem from a solution set. Feasible 

ones amongst all are selected and a harmony search memory in which each 

candidate solution is stored in descending order is constructed. Then the 

procedure is followed by filling the harmony memory matrix with new 

solutions depending on the parameters called the harmony memory considering 

rate and the pitch adjusting rate. 

 

The idea behind the algorithm is found in the paradigm of natural phenomena. 

Harmony search algorithm, belonging to the class of meta-heuristic algorithms 

that seek a stable state, drives its roots in the harmony of a musical 

performance. In other words, it imitates the musical improvisation process in 

which the musicians search for the best harmony. Music harmony may be 

defined as a combination of sounds considered pleasing from an aesthetic point 

of view. For example, during jazz operation, jazz improvisation tries to obtain 

musically pleasing harmony as determined by an aesthetic standard. It is 

similar to an optimization process that seeks to find an optimum solution. The 

aesthetic quality is determined by the pitch of each musical instrument just as 

the set of values assigned to each design variable define the objective function 

value. Musicians can improve the sounds for better quality through practice 
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after practice, similarly, design values for better objective function evaluation 

can be improved iteration by iteration [15].  

 

Algorithm starts with the specification of harmony search algorithm parameters 

(harmony memory size, harmony memory considering rate, pitch adjusting 

rate, number of objective function evaluations). Harmony memory is filled 

with as many randomly generated solution vectors as the size of the harmony 

memory. New harmony vector is then improvised by three rules as random 

selection, harmony memory consideration and pitch adjustment. If the new 

harmony vector is better than the worst harmony in the harmony memory, the 

new harmony and the existing worst harmony are replaced. This procedure is 

repeated until the predefined number of improvisation is reached. 

 

 

1.4.3.7   Big bang- big crunch Optimization 
 

 

The big bang-big crunch optimization method is a recent addition to meta-

heuristic optimization techniques. This new optimization method is developed 

by Erol and Eksin [16] which has a low computational time and high 

convergence speed. The basic idea behind the algorithm is the theory of the 

evolution of the universe. Algorithm is divided into two main steps: The first is 

the big bang phase and the second step is the big crunch. In the former step, 

energy dissipation produces disorder and randomness just as in optimization 

method candidate solutions are randomly generated and distributed over the 

search space. In the big crunch step, randomly distributed particles are drawn 

into an order just as the optimization method a center of mass for the 

population is calculated by a contraction procedure. That is, the contraction 

operator takes the current positions of each candidate solution in the population 

and its associated objective function value and computes a center of mass. The 
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term mass refers to the inverse of the objective function value. After the big 

crunch phase, new positions of candidate solutions are generated using the 

center of mass.  

 

These successive explosion and contraction phases are carried out repeatedly 

until maximum number of iterations has been met. The steps of the big bang-

big crunch optimization method can be summarized as follows; 

 

1) Big bang phase: Initial candidate solutions are randomly generated in 

the search space. 

 
2) Objective function value of each candidate solution is calculated. 

 
3) Center of the mass is determined. 

 
4) Using center of the mass calculated in previous step new candidate 

solutions are obtained. 

 

5) Step 2- 4 are repeated until termination criterion is satisfied. 

 

 

1.4.3.8    Particle Swarm Optimization 

 

 

Particle Swarm Optimization technique was firstly developed by Kennedy and 

Eberhart and has been used for various optimization fields [17]. It is a 

numerical optimization technique that simulates the social behavior of birds, 

fishes and bugs. In nature fish school, birds flock and bugs swarm not only for 

reproduction but for other reasons such as finding food and escaping 

predators. Similar to birds seek to find food, the optimum design process seeks 

to find the optimum solution. Each individual is called particle and whole 
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population is named as swarm. In the particle swarm optimization, each 

particle in the swarm represents a candidate solution of the optimum design 

problem.  

 

Experiments show that the particle swarm method is an efficient and robust 

technique in finding the optimum solution [18-27]. 

 

In this study, optimum design of semi-rigid steel frames including soil structure 

interaction is determined by using particle swarm algorithm. This technique is 

discussed in detail in Chapter 2. 

 

 

1.4.4   Constraint Handling Methods 

 

 

There exist several ways of incorporating the constraints into the fitness 

function available in the literature [28]. Amongst all, penalty functions have 

been the most common way of incorporating constraints into meta-heuristic 

search techniques. One recent addition to these techniques is fly- back 

mechanism. The constraint handling methods work in a search space involving 

feasible and infeasible sub-spaces as illustrated in Figure 1.8. 
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Infeasible space

feasible space

global minimum

 

Figure 1.8 Global minimum in the feasible space. 

 

 

1.4.4.1    Penalty Functions Method 

 

 

In the literature, the penalty functions approach has been employed in 

conjunction with all meta- heuristic search techniques. This approach was 

originally proposed in the 1940s [28]. The main concept of this method is 

transforming a constrained- design optimization problem into an unconstrained 

one by adding or subtracting a certain value to/from the objective function 

value based on the amount of constraint violation present in a certain solution. 

There are two kinds of penalty functions considered in classical optimization 

called exterior and interior methods. While employing the exterior methods, 

the process is initialized with an infeasible solution and let move towards the 

feasible region. In the case of latter methods, the penalty term is determined in 

such a way that its value will be small at points away from the constraint 

boundaries and will tend to be infinite as the constraint boundaries are 
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approached. Then, if starting point is feasible, the points generated 

subsequently will always lie within the feasible region. In most of the 

optimization problems, exterior penalty functions method is used due to the 

fact that this method does not require an initial feasible design. The 

formulation of exterior penalty functions method is given as follows; 
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In which, )(x is the expanded objective function to be optimized, iG  and jL  

are the constraint functions and ir  and jc  are the constants called penalty 

factors. iG  and jL  is generally defined as in the following form;  

 

Gi = max [ 0, gi (x) β ] 


)(xhL jj                               (1.11) 

 

Where; )(gi x and )(xhj are the constraints,  and   are generally 1 or 2. 

 

Ideally, the penalty should be kept as low as possible, just above the limit 

below which infeasible solutions are optimal. This is due to the fact that if the 

penalty is too high or too low, then the problem might become very difficult. If 

the penalty is too high and the optimum lies at the boundary of the feasible 

region, the process will be pushed inside the feasible region very quickly, and 

will not be able to move back towards the boundary with the infeasible region. 

A large penalty discourages the exploration of the infeasible region since the 
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very beginning of the search process. On the other hand, if the penalty is too 

low, a lot of the search time will be spent exploring the infeasible region 

because the penalty will be negligible with respect to the objective function. 

These issues are very important in optimization algorithms, because many of 

the problems in which they are used have their optimum lying on the boundary 

of the feasible region. It is known that the relationship between an infeasible 

individual and the feasible region of the search space plays a significant role in 

penalizing such an individual [28].  

 

Several researchers have studied heuristics on the design of penalty functions, 

one of which has the following guidelines [28]: 

 

1) Penalties which are functions of the distance from feasibility are better 

performers than those which are only functions of the number of violated 

constraints. 

 

2) For a problem having few constraints, and few feasible solutions, penalties 

which are solely functions of the number of violated constraints are not 

likely to produce any solutions. 

 

3) Good penalty functions can be constructed from two quantities: the 

maximum completion cost and the expected completion cost. The 

completion cost refers to the distance to feasibility. 

 

4) Penalties should be close to the expected completion cost, but should not 

frequently fall below it. The more accurate the penalty, the better will be 

the solution found. When a penalty often underestimates the completion 

cost, then the search may fail to find a solution. 
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1.4.4.2    Fly-back Mechanism 

 
 
 
This method was first proposed to handle the constraints of the optimization 

problems employing particle swarm optimization technique. The intuitive idea 

to maintain a feasible population is for a design point to fly back to its previous 

position when it is outside the feasible region. This is the so called ‘fly-back 

mechanism’. The technique starts from a feasible initial population. A closed 

set of operators is used to maintain the feasibility of the solutions. If new 

design violates the constraints then previous design is returned. Therefore, the 

subsequent solutions generated at each iteration are also feasible. Algorithms 

based on this technique are much more reliable than those based on a penalty 

approach [22]. 

 

 

1.5   Literature Survey  

 

 

The studies and the algorithms developed in recent years for the particle swarm 

algorithm, optimum design of rigid and semi-rigid steel frames and the analysis of 

soil-structure interaction can be reviewed in a historical order as follows; 

 

Particle swarm optimization technique [17-27] is originally formulated as a 

continuous optimization method, which is first introduced by Kennedy and 

Eberhart [18]. Continuous applications of this algorithm have been reported in 

He et al. [22]. Tasgetiren et al. [23] and Arumugam et al [25] have been the 

first researchers using binary numbers in particle swarm optimization to 

achieve discrete set. Liu et al. [24] used rounding off method in their research. 

A few studies in the literature, such as Li et al. [26], focused on improving the 

performance of particle swarm algorithm developed for solution of structural 
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optimization problems. Kaveh and Talatahari [27] increased the performance 

of particle swarm optimizer by hybridizing it with ant colony optimization 

algorithm.  

 

Khan [29] and Saka and Kameshki [33] used optimality criteria for the 

optimum design of steel frames. Camp et al. [31] and Saka and Kameshki [34] 

used genetic algorithms to optimize the weight of framed structures. Huang 

and Arora [32], Park and Sung [35] employed SA in the optimum design of 

steel plane frames subjected to design constraints of American Institute of Steel 

Construction-Manual of steel construction: allowable stress design (AISC-

ASD) [30]. An ant colony optimization based optimum design algorithm is 

developed for the design of steel frames by Camp et al. [36]. Degertekin [37] 

applied SA and GAs to the optimum design of geometrically non-linear steel 

space frames. Saka has presented an extensive review for the optimum design 

of steel frames in [38]. Recently, Dogan and Saka [39] carried out the particle 

swarm method based optimum design of steel frames with rigid end 

connections.  

 

Chen and Kishi tackled the modeling of semi-rigid connections of steel frames 

in [40]. Hsieh and Deierlein [41] and Xu [42] dealt with the analysis of steel 

frames with semi-rigid connections. Hadianfard and Razani [43] considered the 

effects of semi-rigid behavior of the connections in the finite element analysis 

and in the reliability analysis of steel frames. Various algorithms developed for 

the optimum design of steel frames with semi-rigid connections have been 

presented in [44-47]. Recently, Dogan and Saka [48] developed a particle 

swarm method based optimum design algorithm for partially restrained steel 

frames subjected to design constraints of American Institute of Steel 

Construction-Manual of steel construction: load and resistance factor design 

(LRFD-AISC) [49]. 
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Literature in the soil-structure interaction area is rather extensive. Finite and 

boundary element methods and spring models [50-59] are the main approaches 

used to represent the soil media. Lysmer and Kuhlemeyer [53], Godbole  et al. 

[54], Rizos [55] and Park et al. [56] are the ones dealing with the finite element 

and boundary element approaches. Vesic [58] and Allam and Subba [59] used 

this approach in their researches. Soil media can be represented using spring 

models, as presented in [57]. Dutta and Roy presented an extensive review for 

the modeling of soil-structure interaction in this study. 

 

 

1.6   Scope of Work  

 

 

This thesis is concerned with optimum design of semi-rigid steel frames 

including soil-structure interaction, in which the optimum design algorithm is 

based on the particle swarm optimization method. The organization of the 

thesis is as in the following: In the first chapter, a brief introduction is given to 

semi-rigid steel frames, soil-structure interaction, optimization, structural 

optimization, an overview on existing structural optimization methods. In 

chapter 2, the fundamentals of particle swarm algorithm and the basis of the 

algorithm what is called swarm intelligence are discussed. In the last part of 

the chapter, numerical test problems available in the literature are solved by 

using particle swarm algorithm and the results are compared with those of 

other optimization techniques. Chapter 3 contains explanation of rigidly 

connected steel sway (moment resisting) frames, design of steel frames to 

LRFD, structural optimization of steel frames including the definition and 

selections of design variables. Several steel frames are optimized using 

particle swarm optimization and optimum designs are compared with the ones 

obtained with other stochastic optimization methods. In Chapter 4, semi-rigid 
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steel frames are carried out, design of such frames to LRFD is formulated, 

particle swarm optimization based optimum design algorithm is introduced 

and a number of semi-rigid steel frame examples are optimized with optimum 

design algorithm developed. Chapter 5 is devoted to the consideration of soil-

structure interaction in the analysis and design of rigid and semi-rigid steel 

frames. In sixth and the last chapter, some brief discussions and conclusions 

are presented.   
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CHAPTER 2 
 
 

 
 

PARTICLE SWARM ALGORITHM 
 

 

 

2.1  Introduction 

 
 

The particle swarm optimization method is one of the stochastic random search 

methods that is developed by Eberhart and Kennedy in 1995 [18], inspired by 

social behavior of bird flocking or fish schooling. This behavior is concerned 

with grouping by social forces that depend on both the memory of each 

individual as well as the knowledge gained by the swarm. The phenomenon 

behind this behavior is called swarm intelligence. Besides, the particle swarm 

optimization is also related to evolutionary computation, and has some 

common features with genetic algorithm and evolutionary strategies.  

 
 

2.1.1   Swarm Intelligence 

 
 

The basic definition of intelligence can be pointed out as; a word that is usually 

used to describe the mental abilities of humans, although it can be applied to 

other organisms and even to inanimate things such as computers. Collection of 

these agents that interact with one another is called swarm. Researchers have 

discovered that behavior of swarm is different from that of individual itself. 

Swarm intelligence, which is first used as an expression by Hackwood and 
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Wang [60] in the context of cellular robotic systems, is the discipline focuses 

on the collective behaviors that result from the local interactions of the 

individuals with each other and with their environment. Examples of systems 

studied by swarm intelligence are colonies of ants and termites, schools of fish, 

flocks of birds, herds of land animals. Some of them are illustrated in Figure 

2.1.  

 

            a) 
 

 

 

 
 

 
            b) 

 

 

 

 

 
 

 

            c) 

 

 

 

 
 

     

Figure 2.1 Examples of swarm intelligence found in the nature a) Bird 

flocking, b) Fish schooling, c) Animal herding (http://www.cs4fn.org/ 

optimization/swarmintelligence.php). 
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Swarm intelligence has some basic principles. The first, the proximity 

principle, means that swarm should be able to do elementary space and time 

computations. Because space and time translate into energy expenditure, the 

swarm should have some ability to compute the utility of a given response to 

the environment in these terms. Despite the kinds of activity may vary greatly, 

depending on both the type and complexity of the organisms, some typical 

activities consist of the search and retrieval of food, the building of nests, 

defense of the swarm, collective movement, and in the case of higher 

organisms, the interaction necessary for many social functions. Second is the 

quality principle: The swarm should be capable of responding not only to time 

and space considerations but to quality factors such as the quality of foodstuffs 

or safety of location.  Third principle is the principle of diverse response which 

means that the swarm should not allot all of its resource along consumedly 

narrow lines. Resources should be distributed along many modes as insurance 

against the sudden change in any one of them. The last principle is the 

principle of stability where it is declared that the swarm should not change its 

behavior from one mode to another upon every fluctuation of the environment, 

since such changes take energy and may not produce a worthwhile return for 

the investment [61]. 

 

 

 2.1.2    Evolutionary Computation 

 

 

Mind and evolution are known as the two great stochastic systems in nature. 

These systems have provided some of the most exciting challenges in the 

history of computer science. Modeling the information-processing methods of 

minds was the task of the artificial intelligence movement. Evolutionary 

computation, subfield of artificial intelligence, uses iterative progress, such as 

growth or development in a population. This population is then chosen in a 
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guided random search using parallel processing to obtain the desired end. Such 

processes are often inspired by biological mechanisms of evolution. 

 

Evolutionary computing paradigms are closely related to the swarm methods. 

These paradigms provide tools to built intelligent systems that model 

intelligent behavior. Evolutionary computation is divided into four areas as; 

genetic algorithms, evolutionary programming, evolution strategies, genetic 

programming. Particle swarm algorithm has some common features with these 

areas. For example, particle swarm algorithm is similar to evolutionary 

programming, in which each population member is mutated to produce a 

candidate population member for the next generation. In addition, in both 

evolutionary strategies and particle swarm optimization, one parent can 

produce only one child.  Moreover, particle swarm algorithm and genetic 

algorithms are similar in that the system is initialized with a population of 

random solutions. 

 

 

2.2 Particle Swarm Algorithm 

 

 

Based on the natural phenomena emphasized above, the particle swarm 

optimization technique is developed to deal with many optimization problems 

in engineering. It is pretty simple mathematically, and has been applied to a 

wide range of problems in several different areas [17-27]. It can be thought of 

as a process whereby particles move in n-dimensional space, each particle 

being a solution and the space being the problem. Particle swarm algorithm 

defines three properties, one of which is velocity which directs movement 

throughout the problem space, and the rest of which are particle’s best and 

global best which are communicated throughout the swarm. Particle’s best 

represents the fitness of each solution so far and global best represents global 
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fitness of each solution as it passes through the problem space. Particles follow 

the neighboring optimum particles by adapting these properties in each 

iteration or generation. 

 

The steps of the particle swarm algorithm can be outlined as in the following. 

The flowchart of the basic particle swarm optimization technique is also given 

in Figure 2.3. 

 

1. Initialize swarm of particles with positions ix0  and initial velocities iv0  

randomly distributed throughout the design space. These are obtained from 

the following expressions. 

 

      x0
i = xmin+ r ( xmax - xmin )                     (2.1) 

      x0
i = [( xmin + r ( xmax - xmin )) / ∆t]                                                            

 

 where; the term r represents a random number between 0 and 1, minx  and 

maxx  represent the design variables upper and lower bounds respectively. 

  

2. Evaluate the objective function values )( i
kxf  using the design space 

positions i
kx . 

 

3. Update the optimum particle position i
kp  at the current iteration k  and the 

global optimum particle position g
kp . 

 
4. Update the position of each particle from the following expression. 

 

 tvxx i
k

i
k

i
k   11                             (2.2) 



 
 

 47

Where; i
kx 1  is the position of particle i  at iteration 1k , i

kv 1  is the 

corresponding velocity vector and t  is the time step value. 

 

5. Update the velocity vector of each particle. There are several formulas for 

this depending on the particular particle swarm optimizer under 

consideration. The one has the following form. 

 

      (2.3) 

 
 

Where; r1 and r2 are random numbers between 0 and 1, pk
i  is the best position 

found by particle i  so far, and  pk
g  is the best position in the swarm at time k. 

w  is the inertia of the particle which controls the exploration properties of the 

algorithm. c1 and c2 are the trust parameters. This expression is also shown 

schematically in Figure 2.2. 

 

Figure 2.2   Demonstration of an update in the velocity vector of a particle. 
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Figure 2.3 Flowchart of the basic particle swarm algorithm. 

 

 

 

Start 

Select number of particles = N 

Randomly initialize all the particles’  
positions ( xi ) in the range of [ Xmin , Xmax ] 

     Evaluate  fj 

İf fj is better than Pbesti then         
Pbesti = fj  

Gbest = Best of Pbesti

  Update velocity ( Vi )  of  jth particle 

xi
 = xi  + (Vi) t  

t < itmax

          Stop

   Yes 

 No 

 t = t + 1

    Optimum solution = Gbest 

     Pbesti = fj 

Xmin : Lower bound of  the set 
Xmax : Upper bound of  the set 
t : Cycle number 
itmax : Total cycle number 
Vmax : Maximum velocity 
xi :  Particle’s position 

t :  time step 
 

Randomly initialize all the particles’ 
velocities ( Vi ) in the 

range of [ -Vmax , Vmax ] 
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2.2.1 Inertia Weight 

 

 

The inertia weight can be defined as a scaling factor associated with the 

velocity during the previous time step, resulting in a new velocity update 

equation. In other words, it is employed to control the impact of the previous 

history of velocities on the current velocity thereby, influencing the trade-off 

between global and local exploration abilities of the flying points. If larger 

inertia weight is selected then global exploration is facilitated, whereas a 

smaller inertia weight tends to facilitate local exploration. Suitable selection of 

inertia weight parameter makes it possible to have a balance between global 

and local exploration abilities and therefore optimization process requires less 

iteration to find the optimum.  

 

 

2.2.2 Control Parameters 

 

 

The control parameter, sometimes called acceleration constant, is very 

important in determining the type of the path that particle travels. If selected 

value is very small then the trajectory rises and falls slowly over time. 

Specifically, 1c  indicates how much confidence the particle has in itself 

whereas 2c  indicates how much confidence the particle has in the swarm.  

 

 

2.2.3 Vmax 
 

 

The particle swarm algorithm involves the modification of the distance that 

each particle moves on each dimension per iteration. Velocity changes in a 
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stochastic manner and if the result of this change is undesirable the particle’s 

trajectory can expand into wider cycles through the problem space, eventually 

approaching infinity. A traditional method to reduce the oscillations is to 

restrict the velocity of the particle with a constant value called system 

parameter, a representation of which is illustrated as; 

 

maxmax vvthenvv ii        (2.4) 

maxmax vvthenvv ii   

 

The system parameter Vmax has an important effect of preventing explosion 

and adjusts the exploration of the particle’s search. It would be better to take 

smaller values in approaching an optimum.  

 

 

2.2.4 Neighborhood Topology 

 

 

An important feature of the particle swarm optimization algorithm is that the 

fitness information is shared with individuals in a particle’s neighborhood. The 

robustness of the algorithm comes from the interactions of particles with their 

neighbors. As one particle explores a local optimum, it becomes the best in its 

neighbors’ neighborhoods and they too attracted to the optimal region. As the 

particles move toward the new optimum, their search may uncover new regions 

which are even better, and they may end up attracting the firdt particle toward 

their best positions, and so on.  The kind of neighborhood structure used affects 

the rate at which information is disseminated throughout the population. 

 

There are two types of neighborhoods in which the particles have been studied; 

gbest and lbest. In the gbest neighborhood each particle is attracted to the best 
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solution found by any member of the swarm. This structure becomes 

equivalent to a fully connected network where each member of the swarm is 

able to compare the performances of every other member of the population, 

mimicing the very best. In the lbest network, on the other hand, each individual 

is affected by the best of its immediate neighbors. The selection of social 

structure used has been a matter of artistry with little data to help the researcher 

decide a strategy. It is determined that gbest neighborhood tends to converge 

more rapidly on optimum than lbest population, but are also more convenient 

to converge on local optimum. In Figure 2.4 three different neighborhood 

topologies are illustrated. In the star topology, every particle can communicate 

with every other particle and is attracted to the global best solution. In the ring 

(circle) topology, individuals which are distant from one another are also 

independent of one another, however neighbors are closely connected. The 

wheel topology, on the other hand, isolates individuals from one another, as all 

information has to be communicated through the focal individual. This focal 

individual compares all the individuals in the swarm and adjusts its trajectory 

through the best of them. Present study uses this type of neighborhood 

topology.   

 

 

 

       a)          b)      c) 

 

Figure 2.4 Different neighborhood topologies: a) Star topology used in gbest; 

b) Ring topology used in lbest; c) Wheel topology (Focal) 
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2.3   Particle Swarm Optimization in Continuous Design Space 

 

 

Continuous optimization can be defined as the study of the problems where it 

is demanded to optimize a continuous function in which the variables take the 

values from real numbers. In real number space, the parameters of a function 

conceived as a point in multidimensional space. From this point of view, 

change over time is represented as movement of the points or particles.  

 

Particle swarm optimization algorithm is originally developed as a continuous 

optimization method. It has been implemented to various optimization 

problems in real-number space and proved that it is simple to use, robust and it 

converges rapidly.  

 

 

2.3.1  Numerical Examples in Continuous Design Space  

 

 

The particle swarm optimization method described in the previous sections is 

used to determine the optimum solutions of number of continuous optimization 

problems. Fly-back mechanism, a powerful constraint handling technique 

described in previous chapter, is used in each example.  

 

 

2.3.1.1   Example 1  

 

 

The first problem, called Himmelblau’s function [62], is a commonly used 

benchmark function for nonlinear constrained optimization problems. This 

problem is adopted to test the performance of the particle swarm optimization 
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algorithm. Problem has five design variables and fifteen constraints. Problem 

definition and optimum design results are as in the following; 

 

Minimize; 

 

141.40792293239.378356891.03578547.5)( 151
2
3  xxxxxf   (2.5) 

 

Subject to; 

 

25)(20

110)(90

92)(0

3

2

1







xg

xg

xg

                    (2.6) 

 

and side constraints; 

 

4527,4527,4527,4533,10278 54321  xxxxx    (2.7) 

 

where; 

4331533

2
321522

5341521

0019085.00012547.00047026.0300961.9)(

0021813.00029955.00071317.051249.80)(

0022053.00006262.00056858.0334407.85)(

xxxxxxxg

xxxxxxg

xxxxxxxg







        (2.8) 

 
Himmelblau [62] first solved this problem by using the generalized reduced 

gradient (GRG) method. Then it is studied by Gen and Cheng [63] using 

genetic algorithm (GM). Runarsson and Yao [64] proposed an evolutionary 

strategies algorithm with stochastic ranking for the solution of this problem.  
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This problem is first used to test ten different parameter cases with varying set 

of particle swarm algorithm parameters (i.e. number of particles, control 

parameters, inertia weight, Vmax) shown in Table 2.1.     

 

Since the original form of the particle swarm optimization technique uses 

continuous numbers as the design variables, the optimum design algorithm is 

easily applied to Himmelblau’s function without any change in the structure of 

the procedure.  

 

 

Table 2.1  Sensitivity analysis of PSO parameters. 

 
 

Case NPT     C1  C2 w Vmax f(x) 

1 20 1 1 0.1 2 -29758.90 

2 35 1.2 1.2 0.07 2 -30170.03 

3 30 1.5 1.5 0.06 2 -30171.95 

4 30 1.6 1.6 0.07 2 -30242.82 
5 35 1.4 1.4 0.05 2 -30280.06 
6 40 1.5 1.5 0.05 2 -30508.97 
7 50 1.8 1.8 0.09 2 -30518.17 
8 30 1.9 1.9 0.08 2 -30598.60 
9 35 1.7 1.7 0.04 2 -30652.80 
10 40 2 2 0.08 2 -30665.40 

 

 

 According to the test results listed above, best performance is obtained when 

the set in the case 10, in which the number of particles, i.e. NPT, is 40, control 

parameters (C1, C2) are 2, and the inertia weight and Vmax are 0.08, 2 

respectively,  is implemented. The steps of the algorithm are repeated until 

maximum number of iterations is taken as 2000 as given in Table 2.2. 
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 The results obtained with the particle swarm optimization technique are 

compared with the ones obtained with other methods mentioned above in Table 

2.3. The PSO parameters used for this comparison are listed in Table 2.2. The 

convergence rate of the problem is shown in the design-history graph given in 

Figure 2.5. 

 

 

Table 2.2   PSO algorithm parameters used for Himmelblau’s Function 
 

 

NPT    C1  C2 w Vmax Number of iterations 

40 2 2 0.08 2 2000 

 

 

Table 2.3   Optimum solutions for Himmelblau’s function 

 

Optimum solutions obtained by different methods 

Design variables PSO 
Runarsson and 

Yao [64] 
GRG [62]   

Gen and 
Cheng [63] 

1x  78.0000 78.0000 78.6200 81.4900 

2x  33.0003 33.0000 33.4400 34.0900 

3x  29.9962 29.9953 31.0700 31.2400 

4x  44.9999 45.0000 44.1800 42.2000 

5x  36.7734 36.7758 35.2200 34.3700 

)(1 xg  92.0000 92.0000 91.7927 91.7819 
)(2 xg  98.8402 98.8405 98.8929 99.3188 
)(3 xg  20.0000 20.0000 20.1316 20.0604 
)(xf  -30665.40 -30665.54 -30373.95 -30183.58 

 



 
 

 56

Results show that the particle swarm based optimum design algorithm has 

performed well in finding the optimum solution of continuous optimization 

problems.   
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Figure 2.5 Design-history graph for Himmelblau’s function. 

 

 

2.3.1.2  Example 2    

 

 

A rectangular beam, designed as a cantilever beam, is selected as second 

example. The geometric view and the dimensions of the beam are illustrated in 

Figure 2.6. The beam is designed to carry a certain load with minimum overall 

cost of fabrication. The optimization problem has four design variables.  

 

1xh   : the thickness of the weld 

2xl   : the length of the welded joint 
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3xt   : the width of the beam 

4xb   : the thickness of the beam 

 

 

Figure 2.6  Welded beam design. 

 

The parameter set used for this problem is given in Table 2.4. 

 

 

Table 2.4   PSO algorithm parameters used for welded beam design.  
 

 

NPT C1 C2 w Vmax Number of iterations 

40 2 2 0.08 2 1000 

 

 

The mathematical model of welded beam problem given in [22] is repeated in 

the following; 
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Minimize; 

 

)0.14(04811.010471.1)( 2432
2

1 xxxxxxf                                        (2.9) 

 

Subject to; 

 

0)()( max1   xxg   : shear stress                                        (2.10) 

0)()( max2   xxg  :  bending stress in the beam                (2.11) 

0)( 413  xxxg   : side constraint                                   (2.12) 

05)0.14(04811.010471.0)( 243
2

14  xxxxxg   :  side constraint   (2.13) 

0125.0)( 15  xxg  : side constraint                                   (2.14) 

0)()( max6   xxg  : end deflection of the beam               (2.15) 

0)()(7  xPPxg c   : buckling load on the bar            (2.16) 

 
 

Where 

 

2''2'''2' )(
2

2)()(  
R

x
x                 (2.17) 

 

21

'

2 xx

P
                                                                              (2.18) 

 

)
2

(, 2'' x
LPM

J

RM
                (2.19) 
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x

L

xxGE

xPc                 (2.23) 

 

 

.25.0,000,30,600,13

1012,1030.,14,6000

maxmaxmax

66

inpsipsi

psiGpsiEinLlbP






               (2.24) 

 

 

The side constraints for the design variables are given as follows: 

 

0.21.0,101.0

101.0,0.21.0

43

21




xx

xx
                (2.25)                             

 

The same problem was also solved by Ragsdell and Philips [65] using 

geometric programming. Deb [66] used a simple Genetic Algorithm (GA) with 

traditional penalty function to solve the same problem. Ray and Liew solved 

this problem using a society and civilization algorithm [67]. 
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The optimum design obtained by the particle swarm method is given in Table 

2.5 where the minimum value of the objective function as well as the optimum 

values of design variables are shown. Particle swarm algorithm determined the 

lowest value for the objective function compare to other methods. It is apparent 

from the table that the optimum solution found by PSO is 25% smaller than the 

best of the rest. It took 1000 iterations to reach to optimum solution. The 

convergence rate of the problem is illustrated in Figure 2.7.  

 
 

 Table 2.5   Optimum solutions for welded beam design. 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.7 Design-history graph for the welded beam design. 

Optimum solutions obtained by different methods 

Des. var. PSO Ray and Liew [67] Ragsdell and  Phillips [65]   Deb [66] 

1x  0.23886 0.2444 0.2455 0.2489 

2x  2.5296 6.2379 6.1960 6.1730 

3x  9.1796 8.2885 8.2730 8.1789 

4x  0.2389 0.2445 0.2455 0.2533 
)(xf  1.90308 2.3854 2.3859 2.4331 
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2.3.1.3 Example 3    

 

 

The third example is the pressure vessel design problem which is shown in 

Figure 2.8 was first introduced by Sandgren [68]. The purpose of this 

optimization problem is to find the minimum cost of material, forming and 

welding of the pressure vessel. The design variables included in the problem 

are as follows; 

 

1xTs   : The shell thickness  

2xTh   : the thickness of the head 

3xR   :  The inner radius 

4xL   : The length of the cylindrical section of the vessel 
 
 
The optimum design problem of pressure vessel can be expressed as in the 

following; 

 

Minimize; 

3
2

14
2

1
2

32431 84.191661.37781.16224.0)( xxxxxxxxxxf              (2.26) 

 

Subject to; 

 

00193.0)( 131  xxxg                  (2.27) 

000954.0)( 232  xxxg                  (2.28) 

0
3

4
1296000)( 3

34
2

33  xxxxg                 (2.29) 

0240)( 44  xxg                   (2.30) 
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and side constraints; 

 

20010,20010

1875.60625.0,1875.60625.0

43

21




xx

xx
              (2.31) 

 

 

 
 
 
Figure 2.8 Pressure vessel design. 
 

 

 

Deb dealt with this problem in [69]. It has also been investigated by Cao and 

Wu [70]. 

 

The parameter set listed in Table 2.4 is also used for the pressure vessel design 

problem. For this problem, the maximum number of iterations is limited to 

1000, corresponding to 40000 fitness function evaluation. The minimum 

objective function value is found as f(x)=6230.71 which is obtained after 500 

runs. The results are given in Table 2.6 and the time-history graph is shown in 

Figure 2.9. 
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Table 2.6 Optimum solutions for pressure vessel design. 

 

Optimum solutions obtained by different methods 

Design variables PSO Deb [69]      Cao and Wu [70] 

1x  0.7979 0.9345 1.000 

2x  0.3944 0.5000 0.625 

3x  41.3450 48.3290 51.1958 

4x  199.9843 112.6790 90.7821 
)(xf  6230.6960 6410.3811 7108.6160 

 
 

 

 

 

 

 

 

 

 

 
 
Figure 2.9 Design-history graph for the pressure vessel design. 

 

 

2.3.1.4   Example 4  

 

 

Spring design is considered as the fourth example for the continuous particle 

swarm algorithm. The design problem as shown in Figure 2.10 has three design 

variables as; 
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1xd   : the wire diameter 

2xD   : the mean coil diameter 

3xN   : the number of active coils 

 

This problem is first suggested by Belegundu [71] and Arora [72] and aims to 

minimize the weight of a tension/compression spring. There are four 

constraints which relate to minimum deflection, shear stress, surge frequency, 

and limits on outside diameter and design variables [72]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Spring design. 
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The mathematical model of the problem can be expressed as follows; 

 

Minimize; 

 
2

123 )2()( xxxxf                   (2.32) 

 

Subjected to; 
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xx
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2
2

1
3 

xx

x
xg                  (2.35) 

 

01
5.1

)( 21
4 




xx
xg                  (2.36) 

 

And side constraints; 

 

152,3.125.0,205.0 321  xxx               (2.37) 

 

The parameter set, excluding the maximum number of iteration, listed in Table 

2.4 is also used for the pressure vessel design problem. The maximum number 

of iterations is taken as 4000 in this problem. 

 

The same spring was also designed by Arora [72], Coello [73] and Ray and 

Liew [67]. Arora [72] proposed an optimization technique called constraint 
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correction at constant cost to solve the same problem. Coello and Carlos [73] 

solved this problem with a GA with a self-adaptive penalty approach to handle 

constraints. Ray and Liew [67] investigated this problem using an EA inspired 

by a formal society and the civilization model.  

 

The optimum design obtained by the particle swarm method is given in Table 

2.7 and the design-history graph obtained for the problem is shown in Figure 

2.11. The optimum design is obtained after 3500 iterations. The minimum 

objective function value which is the weight of the spring is determined as 

f(x)=0.012666. Once again PSO has obtained the least weight compare to other 

techniques considered. 

 

 

Table 2.7 Optimum solutions for spring design. 

 

Optimum solutions obtained by different methods 

Design  
variables 

PSO 
Ray and 

 Liew [67] 
Coello [73]  Arora [72] 

1x  0.05194 0.05216 0.05148 0.05339 

2x  0.36266 0.36816 0.35166 0.39918 

3x  10.9483 10.6484 11.6322 9.18540 

)(xf  0.012666 0.012669 0.012704 0.012730 
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Figure 2.11 Design-history graph for the spring design. 

 

 

2.4     Particle Swarm Optimization in Discrete Design Space 

 

 

In contrast to continuous optimization problems in which the variables can take 

all values within the limits, variables in the discrete optimization problem can 

only take discrete values. Discrete variables can be defined as the quantitative 

variables, which can be measured in terms of numbers, with possible values of 

only specific points on a scale.  

 

The standard particle swarm algorithm, as mentioned in previous section, 

considers a swarm which contains particles in continuous design space. 

Researchers have been used this assumption in most of the applications of 

particle swarm optimization algorithm to the optimization problems in the 

literature [18-24]. However, such an assumption cannot be made in the 

optimum design problem where integer numbers are used as design variables. 
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In the literature two approaches exist to obtain integer numbers from 

continuous ones. The first was suggested by Kennedy and Eberhart [18] where 

binary numbers are used in particle swarm optimization to achieve a discrete 

set. The second method is called rounding off which is suggested by Liu et al. 

[24]. In this study the rounding off methods is employed in the algorithm. 

 

Rounding-off is a simple approach in which an optimum design is first 

obtained by assuming all the variables to be continuous. Then by use of 

heuristics, the variables are rounded off to the nearest available integer values 

to obtain a discrete solution. The procedure can be applied to a limited class of 

problems in which the discrete variables can have non-discrete values during 

the solution process. Continuous numbers are rounded off by using the 

following expression. 

 

)( i
k

i
k xINTx                                (2.38) 

 

Where i
kx  represents the value of continuous position of particle i at iteration k. 

 

To be able to use the particle swarm algorithm for discrete design variables 

some adjustments are required to be carried out. Firstly the discrete values 

among which the values of design variables ix  are to be selected in set X are 

arranged in ascending sequence. The sequence number of these values is then 

treated as design variables instead of ix  itself.  For example in a design set 

which consists of 272 values, the sequence numbers from 1 to 272 are the main 

design variables. At any stage of design cycle, once a sequence number is 

generated by the algorithm, then the real value of the design variable which 

corresponds to this sequence number is easily taken from the discrete set. The 

flowchart of the discrete particle swarm algorithm is given in Figure 2.12. 
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Figure 2.12  Particle swarm optimization in discrete design space. 
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2.4.1  Numerical Examples in Discrete Design Space 

 

 

Particle swarm algorithm is modified for the solution of optimum design 

problems in discrete design space and performance of the algorithm is tested 

with numerical examples.  

 

 

2.4.1.1    Example 1 

 

In this example, aim is to find the optimum solution of a standard test function 

taken from [74]. Problem involves two discrete variables and one constraint, 

which can be expressed as; 

 

Minimize; 

f (x) 2
221

2
1 595 xxxx                    (2.39) 

 

 

Subjected to; 

 

g (x) 01625 21  xx                              (2.40) 

 

The values of 1x  and 2x are limited to the set; 

 

X = { 0.5, 1.0, 1.5, 2.0, 2.5, 3.0,…,10.0 }               (2.41) 

 

The parameter set used for this problem is given in Table 2.8. Maximum 

number of iterations is taken as 500.  
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Table 2.8   PSO algorithm parameters used for discrete design example 1. 

 

NPT C1 C2 w Vmax Number of iterations 

20 2 2 0.08 2 500 

 

 

The optimum values of the discrete variables x1, x2 are obtained as [1.5  1.5]T. 

The minimum objective function value in the optimum solution is f(x) =2.25. 

These values are verified from the Kuhn-Tucker conditions. It takes only 8 out 

of 500 iterations for the particle swarm algorithm to reach the optimum. A 

contour plot and three-dimensional plot drawn with respect to the values 

obtained from the optimization process are given in Figures 2.13 and 2.14.   

 

 

Figure 2.13 Contour plot of the function  f (x) 2
221

2
1 595 xxxx  .   
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Figure 2.14 Three Dimensional plot of the function  f (x) 2
221

2
1 595 xxxx  . 

 
 
 
 
2.4.1.2    Example 2 
 

 

The second example is another numerical problem used many times in the 

literature to test the efficiency of the algorithms.  Function involves six discrete 

variables and two inequality constraints. The definition of the optimization 

problem can be given as in the following; 

 

Minimize; 

 

f (x) 654321 54322 xxxxxx                 (2.42) 
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Subject to;  

 

g1 (x) 051643234 654321  xxxxxx               (2.43) 

g2 (x) 400324323 654321  xxxxxx                (2.44)  

 
The values of the discrete variables are limited to the sets; 

 

xi     X = {1, 2, 3, 4, 8, 9, 11, 14, 18, 20, 21, 27},    i = 1,…,5 
 

x6     X = { 3, 4, 8, 9, 11, 14, 18, 20, 21, 27, 28, 29}                                          (2.45) 
 

 

The number of particles, i.e. the NPT, is 40, and the Vmax, c1, c2 and w are 2 

and 1, 1, 0.08 respectively. Maximum number of cycles is assumed to be 1000.  

 

The problem is solved with particle swarm algorithm and the minimum 

objective function value is determined as f(x) =373 with the design variable set 

of )29,3,27,27,27,27(* x . Shi and Fu [75] also tackled this problem in 

their study and they found the same results. 

 

 

 

 

 

 

 

 

 




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CHAPTER 3 
 
 
 
 

OPTIMUM DESIGN OF RIGIDLY CONNECTED STEEL 
SWAY FRAMES TO LRFD 

 

 

 

 

3.1    Steel Frames 

 

 

Frame is a structure which is made up of linear elements called beams and 

columns, connected to one another at their ends. Most frames are three-

dimensional, however, they may often be considered as a series of parallel two-

dimensional frames, or as two perpendicular series of two-dimensional frames. 

In the present study, the structures are assumed that they can be represented as 

the latter. The arrangement and the loading of frame members and the type of 

connections used at the ends have important role on the behavior of a frame.  

 

The beams and columns of a moment resisting frame are connected to each 

other with rigid joints. In this assumption where the end connections are 

assumed to be fully restrained, it is implied that there is no relative rotation and 

the whole design bending moment of the beam is transmitted to the column. 

Figure 3.1 shows the members of such a simple frame. 

 

Beam is a structural element that is capable of withstanding load primarily by 

resisting bending. They generally carry vertical gravitational forces but can 

also be used to carry horizontal loads. The loads carried by a beam are 
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transferred to columns, walls, or girders, which then transfer the force to 

adjacent structural compression members. 

 

Column is a vertical structural element that transmits, through compression, the 

weight of the structure above to other structural elements below. They are the 

most common vertical support elements. Columns are not normally subject to 

bending that is directly induced by loads acting transverse to their axes [76]. 

They are frequently used to support beams or arches on which the upper parts 

of walls or ceilings rest. In earthquake engineering, they may be designed to 

resist lateral forces. They can be divided into two categories in terms of their 

length. Short columns have tendency to fail by crushing, which is called 

strength failure. Long columns, on the other hand, tend to fail by buckling, 

which is an instability failure rather than a strength failure. 

 

 

 

Figure 3.1 Column, beam and beam-column members of a frame. 
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Beam-column is a structural member that is subjected to axial compression and 

transverse bending moment at the same time. A beam-column differs from a 

column only by the presence of the eccentricity of the load application, end 

moment, or transverse load. Beam-columns are found in frame-type structures 

where the columns are subjected to other than pure concentric axial loads and 

axial deformations, and where the beams are subjected to axial loads in 

addition to transverse loads and flexural deformations. 

 

 

3.2    Analysis of Frames 

 
 

Frame structures, of which the beams are continuous, are statically 

indeterminate, and their reactions, shears and moments cannot be determined 

through the application of the basic equations of statics alone. Because there 

are more unknowns than equations, and reactions, shears and moments are 

dependent on the characteristics of the structure.  

 

In current practice, computer-based programs can do all the analyses of rigid-

frame structures. Users can define the geometry of overall configurations; 

specify types of members and support conditions, and different types of 

loading conditions. The matrix displacement techniques frequently form the 

basis for the computer-based formulations. 

 

3.2.1 Matrix Stiffness Method 

 

 

During the past three decades, there have been enormous changes in the 

structural analysis techniques used in engineering practice. The reason behind 
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these changes is primarily the great developments made with high-speed digital 

computers and the matrix methods in the use of very complex structures. 

Matrix structural analysis methods are convenient mathematical representation 

of a structural system that is easily solved with computers. Most of the 

commercial computer programs for structural analysis are based on the 

stiffness method due to its ease in the implementation on computers. 

 

Analysis of structures using matrix methods does not involve new concepts of 

structural engineering; but the basic relationships of equilibrium, compatibility 

and force-displacement relations of members are expressed in the form of 

matrix equations, so that the computer can efficiently perform the numerical 

computations.  

 

 

3.2.1.1     Analytical Model 

 

 

The matrix-stiffness method, which is also known as the matrix-displacement 

method, uses the stiffness properties of the elements of a structure to form a set 

of simultaneous equations relating displacements of the structure to loads 

acting on the structure. The structure is assumed to be an assemblage of 

members, which can be defined as a part of the structure for which the member 

force-displacement relations to be used in the analysis are valid, connected at 

their ends to joints. A joint, which is also called node, is a structural part of 

infinitesimal size to which the member ends are connected. 

 

Before proceeding with the analysis, an analytical model of the structure 

should be defined. A line diagram, on which all the joints and members are 

identified by numbers, represents the structural model. An analytical model of 

a simple frame is illustrated in Figure 3.2, where the joint numbers are 
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enclosed within circles to distinguish them from the member numbers, which 

are enclosed within rectangles. 

 

 

 

Figure 3.2 Analytical model of a simple frame. 

 

 

3.2.1.1.1   Global and Local Coordinate System 

 

 

In the matrix-stiffness method, Cartesian or rectangular global coordinate 

system is used to describe the overall geometry and behavior of the structure. 

The global coordinate system (X, Y, Z) shown in Figure 3.3(a) follows the 

orthogonal right hand rule. 

 

Due to the convenience of deriving the basic force-displacement relations in 

terms of the forces and displacements in the directions along and perpendicular 

to members, a local coordinate system shown in Figure 3.3(b) is defined for 

each member of the structure.  
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a)     b) 

 

c) 

 

Figure 3.3 Global and local coordinates a) Cartesian (Rectangular) Coordinate 

System, b) Local coordinates of a beam member, c) Global and Local 

coordinates of a simple frame. 

 

The origin of the local xyz coordinate system for a member may be arbitrarily 

located at one of the ends of the member, with the x axis directed along the 

centroidal axis of the member. The positive direction of the y axis is selected 

so that the coordinate system is right-handed, with the local z axis pointing in 

the positive direction of the global Z axis [77]. The positive direction of the 
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local x axis for each frame member given in Figure 3.2 is indicated by drawing 

an arrow along each member on the line diagram. For example, the origin of 

the local coordinate system for member 1 is located at its end connected to 

joint 1, with the x1 axis directed from joint 1 to joint 2. The joint to which the 

member end with the origin of the local coordinate system is connected is 

referred to as beginning joint for the member, whereas the joint adjacent to the 

opposite end of the member is called the end joint. Once the local x axis is 

determined for a member, the corresponding y axis can be easily obtained by 

applying right-hand rule. Figure 3.3(c) shows the local and global coordinates 

of a simple frame. 

 

 

3.2.1.1.2    Relationship between Local and Global Coordinates 

 

 

Since the first step in the formation of the force and displacement vectors is to 

define the nodal points and their locations with respect to a coordinate system, 

it is an important fact to know the relationship between the local and global 

coordinate systems for an accurate analysis. The input for member loads can be 

provided in the local and global coordinate system, besides, the output for 

member end forces is printed in the local coordinate system. Thus, it is 

necessary to transform one coordinate system to the other during the analysis. 

This transformation is implemented through the use of transformation matrix 

which is constructed in terms of an angle which is defined as the alpha (α) 

angle. 

If the local x-axis of a member is parallel to the global Y-axis, as in the case of 

a column member in a frame, the alpha angle is the angle through which the 

local z-axis has been rotated about the local x-axis from a position of being 

parallel and in the same positive direction of the global Z-axis. 
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When the local x-axis is not parallel to the global Y-axis, the alpha angle is the 

angle through which the local coordinate system has been rotated about the 

local x-axis from a position of having the local z-axis parallel to the global X-Z 

plane and the local y-axis in the same positive direction as the global Y-axis. 

Following figure gives details of the positions for alpha equals 0 degrees or 90 

degrees. This figure may be helpful for a quick determination of the local axis 

system when providing member loads in the local member axis. 

 

 

 

Figure 3.4    Relationship between Global and Local axes 

 

 

3.2.1.1.3   Degrees of Freedom 

 

The degrees of a freedom of a structure can be defined as the independent joint 

displacements (translations and rotations) required to specify the deformed 
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shape of the structure when subjected to loading. The deformed shape of the 

frame given in Figure 3.2 is depicted in Figure 3.5 considering an arbitrary 

loading. Unlike the classical methods of analysis, matrix analysis method 

usually does not require to neglect the member axial deformations. In Figure 

3.5 the only degree of freedom, rotation, in joint 1 is represented by d1. Other 

rotational deformations in joint 2 and joint 3 are represented by d4 and d7 

respectively. While d2 and d5 represent the axial deformations, d3 and d6 

symbolize the vertical translations in the joints 2 and 3, respectively. Finally, 

joint 4, which is attached to the fixed support, can neither translate nor rotate; 

therefore it does not have any degrees of freedom. Thus, the entire frame has 

seven degrees of freedom. 

 

 

 

 

Figure 3.5 Degrees of freedom of a simple frame. 
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3.2.1.1.4      Relationship between Member End Forces and 
Member End Deformations 

 

 

The first step to obtain the overall stiffness matrix of a structure necessitates 

the construction of the local stiffness matrix belonging to each frame member. 

Consider a rigid frame member shown in the following figure. 

 

 

 

Figure 3.6   End deformations and end forces of a rigid frame member. 

 

 

When the frame is subjected to external loading, member r shown in Figure 3.6 

deforms and internal forces are induced at its ends. The deformed and 

undeformed positions of the member are also illustrated in this figure. As 

indicated in the figure, the member has six displacements or degrees of 

freedom. End displacements are denoted by u1 through u6 and the 

corresponding member end forces are denoted by F1 through F6. It should be 

noted that these end displacements and end forces are defined relative to the 

local coordinate system of the member. Translations and forces are considered 
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as positive when in the positive directions of the local x and y axes, and 

rotations and moments are considered as positive when counterclockwise. 

 

To determine the relationships between the member forces and end 

displacements in terms of the external loads, equilibrium equations are applied 

to the member.  

 

 

 

6165154143132121111 ukukukukukukF      (3.1) 

 

6265254243232221212 ukukukukukukF      (3.2) 

 

6365354343332321313 ukukukukukukF      (3.3) 

 

6465454443432421414 ukukukukukukF      (3.4) 

 

6565554543532521515 ukukukukukukF      (3.5) 

 

6665654643632621616 ukukukukukukF      (3.6) 

 

 

Afterwards, the stiffness matrix is constructed using the terms in these 

equations as in the following; 
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           or  {F}i = [k]{U}i             (3.7) 

 

 

 

 

 

Where; {F }i and {u}i  represent the vector of end forces and the vector of end 

deformations respectively, and [k] is member stiffness matrix in local 

coordinates. jik ’s are the elements of the stiffness matrix. These elements 

which are the forces per unit displacement are referred to as stiffness 

coefficients. First subscript of the stiffness coefficients identifies the force and 

the second one identifies the displacement.  

 

Vector of end forces for member r in local coordinates is; 

 

{F }r  = {F1  F2  F3  F4  F5  F6}
T                                                                                                      (3.8) 

      

Vector of end deformations for member r in local coordinates is; 

 

{U }r  = {u1  u2  u3  u4  u5  u6}
T                                                                                                       (3.9) 

 

Vector of joint displacements for member r in global coordinates is; 

 

{D }r  = {d1  d2  d3  d4  d5  d6}
T                                                                                                      (3.10) 

 

























































































6

5

4

3

2

1

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

6

5

4

3

2

1

u

u

u

u

u

u

kkkkkk

kkkkkk

kkkkkk

kkkkkk

kkkkkk

kkkkkk

F

F

F

F

F

F



 
 

 86

One way to evaluate the stiffness matrix [k] is to implement the elementary 

beam theory as described in the following; 

 

Consider the rigid frame member r given in Figure 3.6. Taken a small piece of 

this member, the curvature is defined as; 

 

EI

xM

dx

yd )(
2

2

                    (3.11) 

 

Figure 3.7 A small piece of a rigid frame member. 

 

 
From which, 

 

322
)( FxF

dx

yd
EIxM

y

                  (3.12) 

 
After two integration steps,  

 

21

2

3

3

2 26
cxc

x
F

x
FyEI   

Where 1c  and 2c  are integration constants. Using the boundary conditions and 

then implementing the necessary substitutions through the use of equations of 

equilibrium, one can obtain the general slope-deflection equations; 
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411 u
L

EA
u

L

EA
F                   (3.13) 

 

625332232

612612
u

L

EI
u

L

EI
u

L

EI
u

L

EI
F                (3.14) 

 

6523223

2646
u

L

EI
u

L

EI
u

L

EI
u

L

EI
F                (3.15) 

 

414 u
L

EA
u

L

EA
F                   (3.16) 

 

625332235

612612
u

L

EI
u

L

EI
u

L

EI
u

L

EI
F                (3.17) 

 

6523226

4626
u

L

EI
u

L

EI
u

L

EI
u

L

EI
F                (3.18) 

 

 

 

Collecting these equations in a matrix form; 
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             (3.19) 
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The stiffness coefficients, jik , can also be evaluated by subjecting the member, 

separately, to unit values of each of the six end displacements. The member 

end forces required to cause the individual unit displacements are then 

determined by using the principles of mechanics of materials and the slope-

deflection equations and by applying the equations of equilibrium. 

 

The i-th column of the member stiffness matrix involves the end forces 

required to cause a unit value of the displacement iu  while all other 

displacements are zero. For example, as shown in the Figure 3.8, the second 

column of [k] consists of the six end forces required to cause the 

displacement 1iu .  

 

 

 

 

Figure 3.8 Derivation of the second column of the stiffness matrix [k] for rigid 

frame member r. 

 

 

As indicated above stiffness matrix [k], it can be declared that matrices for 

linearly elastic structures are always symmetric. 
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3.2.1.1.5 Relationship between the Joint Displacements and 
Member End Deformations 

 

 

Consider an arbitrary frame member m shown in Figure 3.9. The orientation 

of the member with respect to the global XY coordinate system is defined by 

an angle α measured counterclockwise from the positive direction of the 

global X axis to the positive direction of the local x axis.  

 

 

 
Figure 3.9 Member end forces and end displacements in local coordinates. 

 

 

Comparison of Figures 3.9 and 3.10 indicates that at the end i of the member 

the local displacement u1 must be equal to the algebraic sum of the 

components of the global displacements d1 and d2 in the direction of local x 

axis. In a similar manner the local displacement u1 equals to the algebraic sum 

of the components of d1 and d2 in the direction of local y axis and so on.  
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Figure 3.10 Member end forces and end displacements in global coordinates. 

 

 

These equalities are given in the following; 

 

At joint i;                                                   At joint j; 

 

6633

545212

544211

cossincossin

sincossincos

dudu

dduddu

dduddu








 (3.20) 
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            (3.21) 

 

{U }m = [B]m{D}m                           (3.22) 
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In a similar manner, one can express the relationship between the local and 

global forces. 

 
 

3.2.1.1.6 Relationship between External Loads and Member 
Forces 

 

 

If an elastic structure is subjected to external loads then it deforms and joint 

displacements and member end displacements occur. In this case, due to the 

principal of conservation of the energy, the work done by the external loads is 

equal to the work done by the internal forces. Thus; 

 

2

1
{P}m

T{D}m = 
2

1
{F}m

T{U}m                                                                       (3.23) 

 

In which; {F}m is the vector of member forces, {U}m is the vector of member 

end deformations, {P}m is the vector of external loads and {D}m is the joint 

displacement vector in the structure. 

 

Remembering that {U }m = [B]m{D}m            

 

2

1
{P}T{D}m = 

2

1
{F}T[B]m{D}m                                                                    (3.24) 

                       

{P}T = {F}T[B]m                                                                                  (3.25) 
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  

Taking transpose of both sides 

 

{P} = [B]m
T{F}                                                                                            (3.26) 

                                                                            

To obtain the overall stiffness matrix, the equations (3.7), (3.22), and (3.26) are 

collected together. 

 

    {F}i = [k]{U}i                      (3.7) 

 

{U }m = [B]m{D}m              (3.22) 

 

 {P} = [B]m
T{F}                 (3.26) 

 

Substituting (3.22) into (3.7); 

 

{F }m =  [k] [B]m{D}m                                                                                     (3.27) 

                            

Substituting (3.27) into (3.26) 

 

{P} = [B]m
T [k] [B]m{D}m                                                                               (3.28)                             

       [K]      

       

Where; [K] = [B]m
T [k] [B]m is called overall stiffness of the structure. 
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                First end                Second end 
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Where; 
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3.3 Load and Resistance Factor Design for Rolled Beam-   
columns 

 
 
The traditional method of producing high-strength steels consists of adding 

alloying elements to the steel bath and controlling the temperatures during the 

rolling process, by doing the so-called Thermo Mechanical (TM) rolling. Most 

common rolled-sections used in practice are shown in Figure 3.11. 
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Figure 3.11   Most common rolled steel sections used in practice. (http://www 
.marginup.com/products /29878/Steel-Plate-3.html)  
 

In actual structures, most columns, in addition to axial load, must support 

lateral loads and/or transmit moments between their ends, and are thus 

subjected to combined stress due both to axial load and moment. Such 

members are termed beam-columns. Members of a rigid frame behave as 

beam-columns. 

 

Figure 3.12 shows the most common rolled steel beam-column cross section, 

the W (wide-flange) shape, with much of the material in the top and bottom 

flange, where it is most effective in resisting bending moment.  

 

The concepts of tension members and compression members are combined in 

the treatment as a beam. The compression element (a flange) that is integrally 

braced perpendicular to its plane through its attachment to the stable tension 

flange by means of the web is assumed also to be braced laterally in the 

direction to the plane of the web.   
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Figure 3.12 W (wide-flange) shape steel beam. 

 

 

Where; 

 

fb  the width of flange 

ft  the thickness of flange 

wt  the thickness of web 

d  overall depth of steel section 

 

 

To be able to compute the nominal moment strength (Mn) of a beam-column, it 

is required to determine whether the beam is compact, non-compact or slender. 

In Figure 3.13, the cross sections are classified graphically in terms of the 

relationship between slenderness ratio and nominal flexural strength. 
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Figure 3.13   Classification of cross sections for local plate buckling. 

 

 

3.3.1    Compact sections 

 

 

Compact beam sections can be defined as beam section that the compression 

plate element is not buckle due to compression force. Since it is subjected to 

compression, the compression flange of the beam is treated as compression 

plate element. The classification of compact section is depended to the width-

thickness ratio of the plate element.  

 

If  p   for both the compression flange and the web, the capacity is equal to 

pM  and shape is compact and nominal moment strength nM  for laterally 

stable compact sections according to LRFD-F1 may be stated; 

 

pn MM                                                                                                      (3.30) 
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where; 

 

pM plastic moment strength = Z yF                                                         (3.31) 

Z  plastic modulus 

yF  yield stress 

 

 

3.3.2   Non-compact sections 

 

 

If compression plate element of a beam section is buckled due to the 

compression force, this beam section is called non-compact beam section. For 

the non-compact sections, the yield stress can be reached in some, but not all, 

of its compression elements before buckling occurs. It is not capable of 

reaching a fully plastic stress distribution. Slenderness ratio  of a non-

compact section exactly equals the limit r . Because of the residual stress the 

strength is expressed as 

 

 

)( ryrn FFSMM                                                                               (3.32) 

 

Where;  

 

rM  is the residual moment that will result in the extreme fiber stress to rise 

from its residual stress rF  value when there is no applied load acting to the 

yield stress yF . The elastic section modulus S  equals the moment of inertia I  

divided by the distance from the neutral axis to the extreme fiber. 
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3.3.3     Partially Compact Sections 

 

 

If the slenderness ratio  of a section is greater than p  but not greater 

than r , this section is called partially compact section. The nominal strength 

nM  for such laterally stable non-compact sections must be linearly 

interpolated between rM  and pM , as in the following; 

 

pr

r
rppn MMMM







 )(                                                                (3.33) 

 

 

3.3.4     Slender Sections 

 

 

If the slenderness ratio of a section exceeds the limit r , this section is referred 

to as slender. Nominal moment strength of a slender section is expressed as; 

 

crxcrn FSMM                                                                                      (3.34) 

 

where ; 

 

 fb /( ft2 ) ; for I-shaped member flanges, in which bf  and ft  are the width 

and the thickness of the flange. 
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h / wt  ; for beam web, in which kdh 2  plus allowance for undersize 

inside fillet at compression flange, d  is the depth of the section and k  is the 

distance from outer face of flange to web toe of fillet. 
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Where; 

 

E  is the modulus of elasticity and yF  is the yield stress of steel. rF  is the 

compressive residual stress in flange which is given as 69 MPa  for rolled 

shapes in the code.  

 

It is apparent that nM  is computed for the flange and for the web separately by 

using corresponding   values. The smallest amongst all is taken as the 

nominal moment strength of the W  section under consideration. 
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3.3.5  Load and Resistance Factor Design for Combined 
Strength in Rolled Beam- columns 

 

 

In practice, generally, most columns must carry not only axial loads but also 

lateral loads and/or transmit moments between their ends. These members, 

called beam-columns, are therefore subjected to combined stress. The end 

moments may be caused by frame reaction and/or by the effective eccentricity 

of the longitudinal loads. For instance, consider a column in a tall building. 

This column resists live and dead loads of the structure. However, when wind 

load or lateral inertia forces due to earthquake act on the frame, column must 

also transmit the resulting bending moments. Failure mode of a beam-column 

varies depending on the behavior of axial force, whether it is tension or 

compression. 

 

 

3.3.5.1 Load and Resistance Factor Design for Beam-columns 
subject to Bending and Axial tension 

 

 

If the case is the combination of bending and axial tension, the chance of 

instability is reduced and failure usually occurs by yielding.  

 

The combined strength requirement for beam-column under bending and axial 

tension in load and resistance factor design may be stated as; 
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Where; 

 

nm  is the number of members, nl is the number of load cases, nxM  is nominal 

flexural strength, uxM  is applied moment, uP  is applied axial load, Øc  is 

resistance factor for columns if  the axial force is in compression, Øb is 

resistance factor in bending. nP  is nominal axial tension strength, which is 

calculated from the following expression; 

 

Pn=AFy                      (3.38) 

 

Where; 

 
A is cross-sectional area and Fy is specified minimum yield stress. 
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3.3.5.2   Load and Resistance Factor Design for Beam-columns 
subject to Bending and Axial compression 

 

 

If a beam-column member is subjected to axial compression and bending, the 

possibility of instability is increased. This is checked by use of interaction 

formulas which accounts for the stability of columns. In other words, the 

influence of the slenderness ratio and local buckling is included in the 

calculation of nominal axial capacity of the member. Similar to tension 

members, the strength capacity of compression members are checked with the 

use of Equation (3.38), which is mentioned in previous section. However, the 

calculation of nominal axial capacity of compression member, included in this 

equation, differs from that of tension member in that former one requires 

critical stress as expressed in the following. 

 

Pn=AFcr                      (3.39) 

 

where; 

 

ycr FF c
2

658.0           for     c < 1.5               (3.40) 

                    

 
2

877.0

c
crF


       for     c ≥ 1.5 

 

In which the slenderness ratio c  is calculated as follows; 

 

E

F

r
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                    (3.41) 
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Where; A is cross-sectional area, Fcr is critical stress, Fy is yield stress, k is 

effective length factor, l  is length of beam member, r is radius of gyration and 

E is modulus of elasticity. 

 

 It is apparent from Expression (3.39) that computation of compressive 

strength ncP  of a compression member requires its effective length.  

 

 

3.3.5.2.1    Effective Length of a Beam-column Member 

  

 

The computation of the effective length of a compression member in a frame, 

shown in Figure 3.14 can be automated by using Jackson and Moreland 

monograph [78].  

 

 

 

Figure 3.14 End connections of a rigid beam-column member. 
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The relationship for the effective length of a column in a swaying frame is 

given as: 
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where k  is the effective length factor and γi and γj are the relative stiffness 

ratio for the compression member which are given as: 
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The subscripts c and b refer to the compressed and restraining members 

respectively and the subscripts i and j refer to two ends of the compression 

member under investigation. The solution of the Nonlinear Equation (3.42) for 

k results in the effective length factor for the member under consideration. The 

Equation (3.42) has the following form for non-swaying frames. 
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3.3.6   Load and Resistance Factor Design for Shear in Rolled 
Beam-columns 

 

 

While long beams may be governed by deflection and medium length beams 

are usually controlled by flexural strength, short span beams may be governed 

by shear.  

 

Beam-columns are usually selected on the basis of their bending capacity and 

then checked for the shear capacity. 

 

The shear strength requirement in load and resistance factor design according 

to LRFD may be stated as; 

 

unb VV                                                                                                    (3.45) 

 

Where; 

b  Resistance factor for = 0.90 

nV  Nominal strength in shear 

uV  Required shear strength 

 

Nominal shear strength of a rolled compact and non-compact W  section is 

computed as follows as given in LRFD-AISC [49]. 
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Figure 3.15   Nominal shear strength of a W section.  
 

 
 

a)  When 
wt

h
 ≤ 

ywF

E
45.2    , shear yielding of the web is the mode of failure, 

and the nominal shear strength definition is expressed as; 

 

wywn AFV 6.0                                                                                            (3.46) 

 

b) When 
ywF

E
45.2 <

wt

h
≤

ywF

E
07.3 , inelastic shear buckling of the web is 

the mode of failure, and the nominal shear strength definition is; 
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c) When 
ywF

E
07.3  < 

wt

h
 ≤ 260 , elastic shear buckling of the web is the 

mode of failure, and the nominal shear strength definition is 

 

2

252.4

h

Et
AV

w

wn                                                                                        (3.48) 

 

Where; E is the modulus of elasticity and ywF  is the yield stress of web steel. 

nV  is computed from one of the Expressions (3.46)-(3.48) depending upon the 

value of  h / wt  of the W  section under consideration. 

 
 

3.3.7   Load and Resistance Factor Design for Serviceability of 
Beam-columns 

 

 
Designers formulate the serviceability criteria to prevent disruptions of the 

functional use and damage to the structure during its normal everyday use. 

Malfunctions may not cause the collapse of a structure or loss of life or injury; 

however, they can seriously impair the usefulness of the structure and lead to 

costly repairs. If this fact is neglected, the structure may become unacceptably 

flexible. 
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Types of structural behavior which may impair the serviceability can be listed 

as follows; 

 

1.   Extreme local damage such as local yielding, slip, buckling or cracking 

that may necessitate excessive maintenance or result in corrosion. 

 

2.    Enormous rotation or deflection that may affect the appearance, function    

or drainage of the structure, or may lead to damage to nonstructural 

components and their attachments. 

 

3. Excessive vibrations caused by wind or transient live loads which affect 

the comfort of occupants of the structure or the operation of mechanical 

equipment. 

 

Serviceability checks in Load and Resistance Factor Design (LRFD-AISC) [49] 

requires the consideration of the appropriate loads, the response of the 

structure, and the reaction of the occupants to the structural response. 

 

 

3.3.7.1    Deflection 

 

 

Extreme transverse deflections or lateral drift may result in permanent damage 

to building elements or undesirable changes in appearance of portions of the 

buildings, and discomfort of occupants. Following equation defines the 

displacement restrictions that may be required to include other than drift 

constraints such as deflections in beams.  

 

ndiiui ,....,1,                (3.49) 
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Where; 

 

nd is the total number of restricted displacements in the frame. i  is the 

deflection of ith member and iu  is the upper bound on the deflection of 

beams which is given as span / 300  if they carry plaster or other brittle finish. 

 

Horizontal deflection of columns is also limited due to unfactored imposed 

load and wind loads to height of column / 300 in each storey of a building with 

more than one storey.  

 

 

3.3.7.2    Drift 

 

 

Designers generally believe that inter-storey drift can be used as a measure of 

expected damage. Damage can be controlled only if the relationship between 

inter-storey drift and different levels of damage is understood accurately. A 

large story drift may lead to the occurrence of a weak story that may cause 

catastrophic building collapse in a seismic event. Thus, uniform story ductility 

over all stories for a multistory building is usually desired in seismic design. 

 

Following equation represents the inter-storey drift of a multi-storey frame. 

 

                 (3.50) 

 

Where; j  and 1j  are lateral deflections of two adjacent storey levels and 

ju  is the allowable lateral displacement. jh
 
is the storey height and ns is the 

total number of storeys in the frame. 

nsjh jujjj ,....,1,/)( 1   
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3.3.7.3     Geometric Compatibility  

 

 

In the design of structural frames, geometry and material properties of 

structural members (beams and columns) are determined considering the 

strength requirements given in design specifications available in the literature. 

However, in some situations, even though the complete design of a frame 

satisfies the strength and displacement limitations, it may not be practically 

applicable due to the geometric incompatibilities. In other words, from the 

practical point of view, geometries of columns and beams connected at one 

point, as shown in Figure 3.16, must be compatible with each other. These 

compatibility restrictions are given in the following. 

   

1.    The flange width of the beam section at each beam-column connection at 

one joint should be less than or equal to the flange width of column 

section, which is formulated as; 

 

 njjjcBjbB ,...,1              (3.51) 

 

  Where; jbB  and jcB  are the flange width of beam and column 

respectively and nj represents the total number of joints in the frame. 

 

2. The depth and the mass per meter of column section at storey joint 1s  

at each beam-column connection should be less than or equal to depth 

and mass of the column section at the lower storey joint s , which is 

expressed as in the following. 

 

ss DD 1                                    (3.52) 

ss mm 1  

nus ,...,1
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Where; 

 

1sD  , 1sm  and sD , sm  are the depth and the mass per meter of 

column section at storey s+1 and s respectively. nu  is the total number 

of these constraints.  

 

 

Figure 3.16   Geometry of beam to column connection. 
 

 

3.4   Optimum Design of Steel Frames 
 

 

Structural design may be defined as grossly abbreviated name of an operation, 

which for major projects may involve the knowledge of hundreds of experts 

from a variety of disciplines. Therefore, a code of practice may be regarded as 

a consensus of what is considered acceptable at the time it was written, 

containing a balance between accepted practice and recent research presented 
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in such a way that the information should be of immediate use to the design 

engineer. As such, rather than a manual or textbook on design, it is regarded 

more as an aid to design, which includes stress limitations, member capacities, 

design formulations and recommendations for good practice. 

 

Once it is decided to construct a particular building, a suitable structural system 

must be selected. Attention is then given to the way where loads are to be 

resisted. Then, critical loading patterns must be determined to suit the purpose 

of the building. Therefore, the design operation involves a fundamental two-

stage process. Firstly, a structural system analysis is conducted to determine 

the forces acting on the structural members and joints, secondly, the sizes of 

various structural members  and  details  of  the  structural  joints  are  chosen  

by  checking  against specification member-capacity formulae. 

 

The design of steel frames is one of the common problems of steel structures 

that practicing engineer has to deal with. The design should be carried out in 

such a way that the frame satisfies the serviceability and strength requirements 

specified by the code of practice while the economy is observed in the overall 

cost of the frame. Although there are many factors that may affect the 

construction cost, the first and most obvious one is the amount of material used 

to build the structure. Therefore, minimizing the weight of the structure is 

usually the goal of optimum design in steel structures. 

 

 

3.4.1 Mathematical Model of Optimum Design Problem of 
Unbraced Steel Frames 

 

 

Any optimization problem requires proper identification of objective function, 

design variables and constraints at problem formulation state. When the design 
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constraints, mentioned in previous sections, are implemented from LRFD-AISC 

[49] in the formulation of the design problem, the following mathematical 

programming problem is obtained.  

 

 

Minimize;  
 


ng

k

nk

i
ik LmW

1 1
                 (3.53) 

 

Subject to; 

 

                     (3.54) 

 

ndiiui ,....,1,                (3.55) 

 

unb VV                            (3.56) 
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njjjcBjbB ,...,1             (3.58) 

ss DD 1            nus ,...,1               (3.59)  

  ss mm 1                  (3.60) 
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Where; 
 

Equation (3.53) defines the weight of the frame, ng  is total numbers of groups 

in the structural system, km  is the unit weight of the steel section selected for 

group k, iL  is the length of member i that belongs to group k, nk  is total 

number of members in group k. 

 
Equation (3.54) represents the inter-storey drift of the multi-storey frame.  
 

Equation (3.55) defines the displacement restrictions. 

 

Equation (3.56) represents the shear capacity check for beam-columns. 

 

The combined strength constraints are given in Equation (3.57).  

 

Equations (3.58), (3.59), (3.60) are the geometric compatibility constraints as 

presented in previous sections. 

 

 

The main concept in the optimum design of unbraced steel frames is to select 

the appropriate steel sections for its columns and beams so that design code 

provisions are satisfied and the frame has the minimum weight. This selection 

of steel sections can be made by assuming the design variables to be 

continuous or to be discrete. 

 

As mentioned in Chapter 2, results of optimum design problems may vary 

according to the design space used in the optimum design algorithm. This 

study proposes optimum design algorithms for unbraced steel frames in both 

continuous and discrete design spaces.  

 

 



 
 

 115

3.4.2   Optimum Design of Steel Frames in Continuous Design 
Space 

 

 

Unlike discrete design algorithm developed for unbraced steel frames where 

the real numbers are converted to integer numbers which represent the line 

numbers of ready steel section tables, continuous design algorithm uses real 

numbers directly as design variables.  

 

In the continuous optimization procedure developed for unbraced steel frames, 

the cross-sectional areas of the frame members are treated as design variables. 

However, it is clear that the computation of displacement and stress 

distribution of the frame members necessitates the employment of the other 

sectional properties i.e. moment of inertia, sectional modulus and radius of 

gyration. Therefore, it becomes necessary to relate these properties to the 

cross-sectional areas. This can be achieved by applying the linear interpolation 

approximation to sectional properties of ready steel sections available in 

practice.  

 

Figure 3.17 illustrates the relationships between areas and other sectional 

properties. In Figure 3.17a, moment of inertias and corresponding cross-

sectional areas of 272 ready steel sections, included in W-section list are 

plotted. Each point on the graph is connected to the following one by linear 

lines. Through the use of these lines, one can perform linear interpolation and 

obtain the approximate value of moment of inertia for each group, i.e. selected 

continuous value of cross-sectional area. For example, consider a value in the 

bounds of the areas of first and last sections of W-section list. Let 51.523 be 

the selected value of cross-sectional area of group 1. This value is between 

49.9 and 53.1, which correspond to the areas of the sections of W410X38.8 and 

W200X41.7 respectively. Besides, the moment of inertias of these sections are 
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12700cm4 and 4090cm4 respectively. Performing a linear interpolation process 

one can easily calculate the approximate value of moment of inertia as Ix : 

8333.12 cm4. Other cross-sectional properties are determined by applying the 

same procedure. 

 

Where; A is the area; Ix is the moment of inertias about x-x axis of the 

member, rx is the radius of gyration. Sx and Zx represent the elastic and plastic 

section modulus respectively. Thickness of web of a W-section is represented 

by tw. Finally, λw  and  λf  are the slenderness ratios of web and flange of a W-

section respectively.  

 

Once the areas of members belonging to each group are selected, the values of 

above mentioned properties of the corresponding group are determined. 

Afterwards, the whole structure is analyzed and checked if the design 

constraints are satisfied. If this design is feasible, it is kept in the memory. 

Then, the area variables are changed in the next iteration to obtain a better 

design. This process is repeated until the minimum weight and the optimum 

values of corresponding areas are achieved. 

 

  

 



 
 

 117

0

500000

1000000

1500000

2000000

2500000

3000000

0 500 1000 1500 2000

A (cm
2

)

I x
 (

 c
m

4 ) 

 
                a) 

 

        b)      c) 

 

         d)         e) 

 

                                 f)        g) 
 
Figure 3.17 Graphical representations of cross-sectional properties of 272 W- 

sections. 
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3.4.3   Optimum Design of Steel Frames in Discrete Design 
Space 

 

 

The realistic design of steel frames involves the selection of steel sections for 

its columns and beams from ready steel section list available in practice. As 

such, the design variables of the optimum design problem turn out to be 

discrete. These values, the design variables in the design problem described, 

are selected as the sequence numbers of the W-sections in the available set. 

Since 272 W-sections are considered in the present study, the sequence 

number which can have a value between 1 to 272 is randomly selected for a 

design variable. For example if 65 is selected for group 2, the W-section 

which is W 310 x 342 will be used for the members which belong to group 2. 

Once the W-section is selected the cross sectional properties of the section 

becomes available from the w-section list. The stress distributions and the 

displacements of the frame members are then determined by using an 

available structural analysis method. These values are checked if they are 

inside the limits of the corresponding constraints. If this is satisfied, it is 

considered as a feasible design and the weight of the whole structure is 

calculated. Later, a new design is created by the algorithm and the same 

constraint-check procedure is applied to this new one. If this design is lighter 

than the previous one it is assumed to be current optimum design. This routine 

is repeated until a predefined number of iteration is reached and the weight 

obtained at the end of this process is considered as the optimum design.  
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3.4.4      Particle Swarm Optimization Design of Unbraced 
Steel Frames 

 

 

The optimum design procedure is based on the particle swarm optimization 

algorithm mentioned in the previous chapter and coded using FORTRAN 

programming language. Steps of this design optimization procedure can be 

summarized as follows; 

 

1. Firstly, the geometry and loadings of frame are defined. Afterwards, 

beams and columns of the frame are grouped together.  

 

2. Particle swarm design algorithm is started by generating initial values 

(positions of particles) for the design variables i.e. cross sectional areas 

of steel sections for continuous design or sequence numbers of steel 

sections in the available steel profile table for discrete design. Then, all 

the cross sectional properties such as moment of inertia, sectional 

modulus and radius of gyration belonging to each group are determined. 

 

3.  Structure is analyzed with the use of analysis subroutine which is based 

on matrix stiffness method. Member forces and displacements are 

computed. 

 

4. Fly-back mechanism is used to handle the design constraints. It is 

checked if the strength and displacement requirements given in design 

code are satisfied. If one or a number of constraints are not satisfied, this 

design is discarded and new one is generated. 

 

5. After feasible designs are obtained, particle swarm iteration process is 

initialized. Objective function values, weights of frames belonging to 
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each design, are calculated. The particle which has the minimum weight 

is accepted as current optimum design. The values of design variables 

are updated using velocity and position update equations of particle 

swarm algorithm and new designs are generated.   

 

6.  Analysis routine is repeated for these new designs and constraints are 

checked. If all the constraints are satisfied, weights of these designs are 

computed. If the lightest of them is also lighter than the current optimum 

design, it is accepted as new optimum. 

 

7. This iteration procedure is repeated until the predefined number of 

iterations is completed. The design from which the minimum weight 

obtained at the end of this iteration process is taken as the optimum 

design.  

 

 

3.4.5    Design Examples 

 

 

Seven unbraced steel frames are designed using particle swarm method based 

optimum design algorithm presented in the previous section. In each example, 

frame models are designed with both continuous and discrete optimum design 

algorithms to compare the overall weight of the structure obtained with each 

approach. The areas, which are the variables of the former approach to be 

optimized in the iteration process, are bounded with the values of first and last 

steel sections of the ready W-section list. In the second approach, on the other 

hand, the discrete set from which the design algorithm selects the sectional 

designations for frame members is considered to be the complete set of 272 

W-sections starting from W100x19.3 to W1100x499mm as given in LRFD-

AISC [49].  
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3.4.5.1    Three Storey, Two Bay Steel Frame 
 

 

The two bay, three storey frame shown in Figure 3.18 is selected as first design 

example to demonstrate the application of the particle swarm optimization 

based optimum design algorithm developed. The dimensions, member 

grouping and the external loading of the system are also shown in the figure. 

The upper bound imposed on lateral deflections of the top storey joints is 

limited to 1/300 of the frame height, which corresponds to 30.48 mm. The 

frame members are collected in two different groups. Columns are considered 

to be group 1 while beams are taken as group 2 as shown in the figure. Hence 

there are only two design variables in the design problem. A single distributed 

load of 40 kN/m is applied on each beam of the frame and lateral loading of 

20kN is applied to each storey level. The strength capacities of steel members 

are computed according to LRFD-AISC [49]. Fixed supports are used for the 

connection of the columns to the foundation. 

 

 

Figure 3.18 Three storey-two bay steel frame. 
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Table 3.1 Optimum designs for three-storey, two-bay rigid steel frame. 

 
 

 

 

 

 

 

 

 

 

 

 
The frame is designed twice considering both discrete and continuous 

algorithms. The design history of these runs is shown in Figure 3.19. The best 

designs obtained by the discrete and continuous particle swarm optimizer are 

tabulated in Table 3.1 with section designations or cross sectional areas 

attained for each member group. Continuous treatment gives lighter design, 

which is 10968.25kg. The frame weight of discrete design is 12005.99kg. This 

means that the continuous design algorithm produces 9.5% lighter frame. The 

strength ratios obtained are 1.00 and 0.98 and top storey drifts are 0.74 and 

0.80 for continuous and discrete frames respectively. This indicates that 

strength constraints dominate the designs. 

 

 

 

 

 

 

 

Group 
No.        

Member 
Type 

Continuous 
variables  
Area (cm2) 

Discrete variables 
 W- sections-  
Area (cm2) 

1 Column 63.957 W250X73 (92.8) 
2 Beam 186.995 W690X152 (194) 
    

Max. Int. St. Drift Ratio 0.28 0. 30 
Maximum Strength Ratio 1.00 0.98 
Top storey drift (cm) 0.741 0.80 
Minimum Weight. kg 
(kN) 

10968.25 
(107.556) 

12005.990 
(117.738) 
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Figure 3.19 Design history graph for three-storey, two-bay steel frame. 

 

 

3.4.5.2    Four Storey, Four Bay Steel Frame 

 

 

The four-bay, four storey steel frame shown in Figure 3.20 is considered as the 

second design example. The frame consists of thirty-six members that are 

collected in two groups as shown in the figure. Columns are considered to be 

group 1 while beams are taken as group 2. The lateral displacement of the top 

storey is limited to 4cm. The modulus of elasticity is 200kN/mm2. Fixed 

supports are used for the connection of the columns to the foundation. 

 

 



 
 

 124

 
 

Figure 3.20   Four storey- four bay steel frame. 

 

 

The optimum W-sections designation and the cross sectional areas obtained by 

the discrete and continuous particle swarm method respectively are given in 

Table 3.2. The discrete optimum design is attained after 340 iterations and the 

minimum weight of the frame is 5914.37kg while the continuous one is 

determined after 700 cycles and the minimum weight is obtained as 5399.96kg. 

This means that the continuous design algorithm produces 9.6% lighter frame. 

The convergence rate of the problem is shown in the design-history graph 

given in Figure 3.21. It is noticed that in the optimum frame obtained with 

discrete set the lateral displacement of top storey was 1.59 cm against its upper 

bound of 4cm. The highest ratio among the combined strength constraints was 

0.99 compare to 1. This clearly indicates that strength constraints dominate this 

design. Similarly, in the continuous design, the maximum strength ratio 

dominates the design with the value of 0.99. 
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Table 3.2 Optimum designs for four-storey, four-bay rigid steel frame. 
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Figure 3.21 Design history graph for four-storey, four-bay steel frame. 

 
 

 
3.4.5.3    Five Storey, Three Bay Steel Frame 

 

 
Third example is the three -bay, five storey steel frame as shown in Figure 

3.22. This frame is designed by particle swarm optimizer based continuous and 

Group 
No.        

Member 
Type 

Continuous 
variables  
Area (cm2) 

Discrete 
variables 

  W- sections-  
Area (cm2) 

    

1 Column 28.818 W150X37.1 (47.3) 
2 Beam 65.719 W410X46.1  (58.9) 
    

Max. Int. St. Drift Ratio 0.48 0. 47 
Maximum Strength Ratio 0.99 0.99 
Top storey drift (cm) 1.61 1.59 
Minimum Weight. kg 
(kN) 

5399.96 
(52.955) 

5914.37 
(58.00) 
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discrete optimization algorithms developed in this study. The frame consists of 

nineteen members that are collected in seven groups as shown in the figure. 

First four groups are assigned to columns and the rest three groups are assigned 

to beams of the frame. The allowable inter-storey drift is 10mm while the 

lateral displacement of the top storey is limited to 50mm. The modulus of 

elasticity is 200kN/mm2. Fixed supports are used for the connection of the 

columns to the foundation. 

 
 
 

 

 
Figure 3.22 Five storey- three bay frame. 
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The optimum W-sections designation and the cross sectional areas are given in 

Table 3.3. The optimum continuous design is obtained after just 450 iterations 

with the minimum weight of 1249.526kg while the minimum weight of 

discrete one is 1375.194kg attained after 870 iterations. It is clear from the 

results that both the maximum inter storey drift ratio and the maximum 

strength ratio are dominant in the designs. The maximum lateral displacement 

is recorded as 5.00cm and 4.19cm in the continuous and discrete design 

respectively. The design-history graphs are shown in Figure 3.23. It is apparent 

from the results that the continuous optimum design algorithm produces 10% 

lighter frame. 

 
 

Table 3.3 Optimum designs for five-storey, three-bay rigid steel frame. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Group 
No.        

Member 
Type 

Continuous 
variables  
Area (cm2) 

Discrete 
variables 

  W- sections-  
Area (cm2) 

    

1 Column 17.877 W310X28.3 (36.1) 
2 Column 17.645 W130X23.8 (30.1) 
3 Column 26.653 W310X23.8 (30.4) 
4 Column 19.871 W250X17.9 (22.7) 
5 Beam 26.964 W310X21 (26.9) 
6 Beam 49.672 W310X23.8 (30.4) 
7 Beam 18.733 W200X15 (19.1) 
    

Max. Int. St. Drift Ratio 0.99 1.00 
Maximum Strength Ratio 0.99 0.98 
Top storey drift (cm) 5.00 4.19 
Minimum Weight. kg 
(kN) 

1249.526 
(12.254) 

1375.194 
(13.486) 
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Figure 3.23 Design history graph for five-storey, three-bay steel frame. 

 

 

3.4.5.4    Six Storey, Two Bay Steel Frame 

 
 

The two-bay, six storey steel frame shown in Figure 3.24 is considered as the 

fourth design example. The frame consists of thirty members that are collected 

in eight groups as shown in the figure. The lateral displacement of the top 

storey is limited to 4cm. The modulus of elasticity is 200kN/mm2. A 

distributed load 50 kN/m and a single lateral load is applied to each horizontal 

member of the frame. Fixed supports are used for the connection of the 

columns to the foundation. 
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Figure 3.24 Six storey- two bay frame. 

 
 

The optimum W-sections designation and the cross sectional areas obtained by 

the discrete and continuous optimum design algorithms are given in Table 3.4. 

The discrete optimum design is attained after 630 iterations and the minimum 

weight of the frame is 7532.11kg while the continuous one is determined after 
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1450 cycles and the minimum weight is 6071.036kg. The convergence rate of 

the problem is illustrated in the design-history graph given in Figure 3.25. This 

means that continuous design algorithm produces 24% lighter frame. It is 

noticed that in the optimum frame obtained with discrete set the lateral 

displacement of top storey was 4.533 cm against its upper bound of 7.17cm. 

The highest ratio among the combined strength constraints was 0.99 compare 

to 1 which was attained in member 30. Maximum inter-storey drift ratio is 

recorded as 0.78 at joint 15. This clearly indicates that strength constraints 

dominate this design. In the continuous design, similarly, the maximum 

strength ratio which is attained as 1 is dominant. 

 

 

 
Table 3.4 Optimum designs for six-storey, two-bay rigid steel frame. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Group 
No.        

Member 
Type 

Continuous 
variables  
Area (cm2) 

Discrete 
variables 

  W- sections-  
Area (cm2) 

    

1 Column 75.932 W530X74 (95.2) 
2 Column 58.977 W310X52 (66.7) 
3 Column 22.860 W200X41.7 (53.1 
4 Column 64.590 W460X89 (114) 
5 Column 41.977 W460X89 (114) 
6 Column 64.872 W360X72 (91.1) 
7 Beam 82.981 W460X60 (75.9) 
8 Beam 65.930 W460X68 (87.3) 
    

Max. Int. St. Drift Ratio 0.97 0. 78 
Maximum Strength Ratio 1.00 0.99 
Top storey drift (cm) 5.98 4.5325 
Minimum Weight. kg 
(kN) 

6071.036 
(59.536) 

7532.11 
(73.865) 
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Figure 3.25 Design history graph for six-storey, two-bay steel frame. 

 

 

3.4.5.5   Ten Storey, One Bay Steel Frame 

 
 

Fifth example is one -bay, ten storey steel frame as shown in Figure 3.26. This 

problem is separately designed by continuous and discrete particle swarm 

algorithms. The frame involves thirty members that are collected in nine 

groups as shown in the figure. First five of these groups are assigned to the 

columns and the rest is assigned to the beams. Top storey beam is considered 

to be one group and beams in every three floor are considered to be different 

groups as shown in the figure. The allowable inter-storey drift is 12.19mm 

while the lateral displacement of the top storey is limited to 121.93mm. Beams 

of the frame are loaded by the distributed load of 80kN/m and lateral loading is 

applied at each storey level. The modulus of elasticity is 200kN/mm2. 

Maximum number of iterations is selected as 9000. Fixed supports are used for 

the connection of the columns to the foundation. 



 
 

 132

 

Figure 3.26   Ten storey-one bay steel frame. 
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The optimum W-sections designation and the cross sectional areas obtained by 

the particle swarm method are given in Table 3.5. The optimum continuous 

design is obtained only after 3200 iterations with the minimum weight of 

27480.36kg while the minimum weight of discrete one is 36697.92kg which is 

attained after 5300 iterations. This means that continuous algorithm produces 

34% lighter frame. The highest inter-storey drift ratio of discrete design is 0.38, 

while the maximum strength ratio is 1.00 which dominates this design. 

Continuous design, similarly, is dominated by the strength constraint. The 

maximum lateral displacement is recorded as 5.253cm and 3.602cm in the 

continuous and discrete design respectively. Design-history graphs of these 

designs are shown in Figure 3.27.  

 

 

Table 3.5 Optimum designs for ten-storey, one-bay rigid steel frame. 

 

 

 

 

 

 

Group 
No.        

Member 
Type 

Continuous 
variables  
Area (cm2) 

Discrete 
variables 

W- sections-  
Area (cm2) 

    

1 Column 138.892 W530X150 (192) 
2 Column 138.892 W530X150 (192) 
3 Column 177.812 W1000X222 (283) 
4 Column 223.616 W1000X314 (400) 
5 Column 282.311 W1000X494 (630) 
6 Beam 234.798 W840X176 (224) 
7 Beam 223.563 W840X176 (224) 
8 Beam 218.938 W760X185 (235) 
9 Beam 215.985 W760X173 (221) 
    

Max. Int. St. Drift Ratio 0.55 0.38 
Maximum Strength Ratio 1.00 1.00 
Top storey drift (cm) 5.253 3.602 
Minimum Weight. kg 
(kN) 

27480.360 
(269.489) 

36697.92 
(359.882) 
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Figure 3.27 Design history graph for ten-storey, one-bay steel frame. 

 

 

3.4.5.6    Ten Storey, Three Bay Steel Frame 

 

 

The three-bay, ten storey steel frame is considered as the sixth design example. 

The dimensions of the frame and the loadings are shown in the Figure 3.28. 

The frame consists of seventy members that are collected in nine groups as 

shown in the figure. The frame is subjected to gravity loading of 50kN/m on 

the beams of roof level and on the beams of each floor. The lateral load of 

30kN is considered at each storey level. The lateral displacement of the top 

storey is limited to 11.83cm and the inter-storey drift is restricted to 1.17cm. 

The modulus of elasticity is assumed to be 200kN/mm2. Fixed supports are 

used for the connection of the columns to the foundation. 
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Figure 3.28   Ten storey- three bay steel frame. 
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Table 3.6 shows the optimum W-sections designation and the cross sectional 

areas obtained by the discrete and continuous particle swarm method 

respectively.  

 

 

Table 3.6 Optimum designs for ten-storey, three-bay rigid steel frame. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
The discrete optimum design is attained after 3370 iterations and the 

minimum weight of the frame is 22879.35kg while the continuous one is 

determined after 2600 cycles and the minimum weight is 19720.07kg. The 

convergence rate of the problem is shown in the design-history graphs given 

in Figure 3.29. It is clear from the results that continuous design algorithm 

produces 16% lighter frame. It is noticed that in the optimum frame obtained 

with discrete set the lateral displacement of top storey was 7.86 cm against its 

upper bound of 11.83cm. The highest ratio among the combined strength 

constraints was 1. The maximum inter-storey drift ratio is recorded as 0.87. 

Group 
No.        

Member 
Type 

Continuous 
variables  
Area (cm2) 

Discrete 
variables 

  W- sections-  
Area (cm2) 

    

1 Column 156.546 W610X153 (196) 
2 Column 94.479 W610X113 (144) 
3 Column 83.467 W530X92 (118) 
4 Column 104.017 W460X82 (104) 
5 Column 83.990 W310X60 (75.9) 
6 Column 33.808 W410X53 (68.1) 
7 Column 83.989 W310X60 (75.9) 
8 Column 33.805 W410X53 68.1) 
9 Beam 83.744 W460X68 (87.3) 
    

Max. Int. St. Drift Ratio 0.94 0. 87 
Maximum Strength Ratio 1.00 1.00 
Top storey drift (cm) 8.76 7.86 
Minimum Weight. kg 
(kN) 

19720.07 
(193.387) 

22879.35 
(224.369) 
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This clearly indicates that strength constraints dominate this design. 

Similarly, the maximum strength ratio which is attained as 1 dominates the 

continuous design.  
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Figure 3.29   Design history graph for ten-storey, three-bay steel frame 
 
 
 

3.4.5.7   Fifteen Storey, Three Bay Steel Frame 

 
 

The three-bay, fifteen-storey frame shown in Figure 3.30 is considered as the 

last design example. The dimensions and the loadings of the frame are shown 

in the figure. The frame is subjected to gravity loading of 12.4kN/m on the 

beams of roof level and 20kN/m on the beams of each floor. The modulus of 

elasticity is 200kN/mm2. Frame consists of 105 members that are collected in 

12 groups. Inner columns and outer columns in every three story considered to 

be different groups.  
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Figure 3.30 Fifteen-storey, three-bay steel frame. 
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The beams of roof and intermediate floors are considered to be two different 

groups as shown in the figure. The allowable inter-storey drift is 1.17cm while 

the lateral displacement of the top storey is limited to 17.67cm. Fixed supports 

are used for the connection of the columns to the foundation. 

 

The optimum W-sections designation and the cross sectional areas obtained 

by the discrete and continuous algorithms are given in Table 3.7 and the 

design-history graph obtained for the problem is given in Figure 3.31. 

Discrete design is obtained after 3200 iterations and continuous solution is 

attained after 1570 cycles. The minimum weight of the discrete frame is 

29092.81kg while the weight of continuous one is 18581.21kg. This means 

that the continuous design algorithm produces 57% lighter frame. It is noticed 

that in the discrete frame maximum inter storey drift ratio was 0.64 while the 

lateral displacement of top storey was 8.59cm against its upper bound of 

17.67cm. The highest ratio among the combined strength constraints was 0.99 

compare to 1 which was attained in member 81 which is the outer column of 

seventh storey. This clearly indicates that strength constraint dominates the 

design. In the continuous frame, similarly, the lateral displacement of top 

storey is 13.24cm and the highest ratios of inter storey drift and strength 

constraints are 0.99 and 1.00, respectively. This means that both the inter 

storey drift constraint and strength constraint is dominant. 
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Table 3.7 Optimum designs for fifteen-storey, three-bay rigid steel frame. 
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Figure 3.31 Design history graph for fifteen-storey, three-bay steel frame. 

Group 
No. 

Member 
Type 

Continuous 
variables  
Area (cm2) 

Discrete 
variables 

  W- sections-  
Area (cm2) 

    

1 Column 41.679 W410X46.1 (58.9) 
2 Column 65.899 W410X46.1 (58.9) 
3 Column 36.112 W410X38.8 (49.9) 
4 Column 36.114 W410X38.8 (49.9) 
5 Column 50.655 W460X52 (66.3) 
6 Column 64.263 W460X193 (246) 
7 Column 73.879 W530X196 (250) 
8 Beam 18.945 W250X32.7 (41.7) 
9 Beam 30.454 W410X60 (75.8) 

10 Beam 30.453 W410X60 (75.8) 
11 Beam 41.966 W460X60 (75.9) 
12 Beam 75.970 W690X170 (216) 

    

Max. Int. St. Drift Ratio 0.99 0.64 
Maximum Strength Ratio 1.00 0.99 
Top storey drift (cm) 13.24 8.59 
Minimum Weight. kg 
(kN) 

18581.21 
(182.218) 

29092.81 
(285.301) 
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CHAPTER 4 
 
 
 

OPTIMUM DESIGN OF SEMI-RIGID STEEL SWAY 
FRAMES TO LRFD 

 
 
 
 
 

4.1    Semi-Rigid Connections 

 
 

The steel framework is one of the most common structural systems used in 

modern construction. In the analysis of such structural system, the modeling of 

structural elements requires some assumptions concerning the behavior of 

beam to column connections. The connections’ behavior has an important 

effect on the frame performance, because they are the basic elements and 

integrated part of a steel frame. 

 

The Load and Resistance Factor Design (LRFD) specification of the American 

Institute of Steel Construction (AISC) [49] divides the steel frame construction 

in two basic categories as in the following (Figure 4.1). 

 

1. Fully restrained (FR) type construction, full continuity and sufficient 

rigidity of beam to column connections, which can retain the initial 

angles between intersection members. 

 

2. Partially restrained (PR) type construction, which assumes that a 

connection possesses moment capacity in between complete fixity and 

the pin connection. 
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Figure 4.1 Moment- rotation behavior of connections. 
 

  

Steel frame designers use two idealized connection models in the conventional 

analysis methods. These models are called the rigid-joint model and the 

pinned-joint model. Former assumption implies that no relative rotation of the 

connection occurs and the beam transfers the whole end moment to the 

column. Contrary to this type, in the pinned-joint model, the connection 

moment is always zero and there is no restraint for rotation of the connection. 

Since the actual behavior of frame connections is between these extremes, in 

recent years, much attention has been focused towards more accurate 

modeling. As a result of these affords, advanced methods of structural analysis 

accounting for the actual behavior of beam to column joints are currently 

available. From the practical point of view, it is important to identify both the 

structural situations where the rotational behavior of joints needs to be 

accounted for and those allowing either the hinge or the fixed-end model to be 

assumed. Figure 4.2 shows the comparison between connection types. 
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Figure 4.2   Comparison of semi-rigid connections vs. pinned and fixed 

connections with respect to moment distribution. 

 

 

In general, connections that fasten beam to column using plates, angles, welds, 

and bolts are deformable and perform a non-linear behavior between fully 

fixed and perfectly pinned conditions. Therefore, it is more reasonable to 

categorize all connections under the classification of semi-rigid, whereas rigid 

and pinned conditions being special cases.  

 

One can neglect the effect of axial and shearing forces since their 

corresponding deformations are small compare to the rotational deformation of 

connections. Thus, it can be stated that the primary distortion of a steel beam 

to column connection is due to in-plane bending moment, which yields in a 

rotational deformation. When a moment M is applied to a beam-column 

connection, it rotates by an amount θr, which is the angle between beam and 

column from their original position (Figure 4.3).  
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Figure 4.3 Rotational deformation of a connection. 

 

 

There also exists a destabilization effect on frame stability due to this end 

moment since additional drift will occur as a result of the decrease in effective 

stiffness of the members which the connections are attached to. Increased 

frame drift triggers the P-Δ effect and the overall stability of the frame will be 

affected. Figure 4.4 shows an unbraced frame subject to gravity and lateral 

forces. 

 

 

Figure 4.4 P-∆ effect of unbraced frame. 
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In Figure 4.5, the moment rotation behavior of a variety of commonly used 

semi-rigid connections is illustrated. It is clear from this figure that the single 

web-angle connection is very flexible connection while the T-stub one is 

comparatively rigid. It can also be observed that a flexible connection has a 

smaller ultimate moment capacity and a larger rotation, and vice versa. The 

moment-rotation curves of all types of connections are nonlinear over entire 

range of loading. 

 

The nonlinear behavior of the semi-rigid connections is due to a number of 

factors some of which are given as follows [80]; 

 

 

1. Material discontinuity of the connection assemblage: Since a connection 

is usually an arrangement of fasteners (such as welds or bolts) and 

structural shapes (such as angles and T-stubs), there exist irregular slips 

between components during loading.   

 

2. Local yielding of parts of connection, which is the primary factor in the 

nonlinear behavior of connections. 

 

3. Stress-strain concentrations resulted in by holes, fasteners and bearing 

contacts of elements in connection assemblage. 

 

4. Local buckling of flanges and/or web of the beam and the column in the 

vicinity of a connection. 

 

5. Overall geometric changes under the effect of applied loads. 
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Figure 4.5 Connection moment-rotation curves. 

 

 

While fully restrained (FR) construction and partially restrained (PR) 

construction are defined, basic guidelines for the design of PR construction are 

not given, because, it is very difficult to evaluate the actual restraint of semi-

rigid connections used in engineering practice. Moreover, for the majority of 

designers, design and analysis of frames with PR construction still seems 

impractical when compared to relative simplicity of traditional FR 

construction [81]. There are several interrelated obstacles that prevent today’s 

designer of steel structures from embracing a semi rigid connection 

philosophy. A general listing of these concerns [82] are as follows; 
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- Utilization Classification Concerns: Traditional rules put frustrating   

constraints on the designer when semi rigid connections are   

contemplated. 

 

- Moment-Rotational Model: The problem is that this information is 

scattered worldwide, and is normally in a mathematical formulation that 

is not comforting to the practicing engineer. 

 

-   Serviceability and Stability Concerns: Semi rigid connection parts depart 

from elastic strain limits and this inelasticity gives a soft connection 

effect, which will leave a residual deflection in the connected beam. 

 

 
Besides all these obstacles, there are still advantages of semi rigid connections. 
 
 

- First, the essential inelastic behavior of the connecting parts prevents   

high stress pints in the connected members themselves, thus allowing 

more slender cross sections and the elimination of stiffeners, and 

reducing high stress concentration complications in ductility sensitive 

designs. 

 

- Second, for inertia-oriented loads such as earthquakes, preliminary 

research indicates that the energy absorption of inelastic connections 

actually keeps excessive lateral drift within reason. 

 

-  Third, the use of plastic design in steel actually represents a higher order 

of optimization in its process of developing mechanism failure modes. 

Most semi rigid frameworks reach their useful limit at a serviceability 

limit rather than a strength limit. This implies a retrofit benefit in 

flexibly connected structures after an accident. 
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-  Fourth, the extra technical nature of semi rigid analysis automatically 

draws the designer more intimately into the design process. This closer 

engagement is bound to create better designs as a result of this 

stimulation. 

 

- Fifth, on a philosophical level it is apparent that neither pinned nor rigid 

connections are actually obtained in real structures. It would seem that 

as a profession we need to continually drive ourselves closer to reality. 

Even approximate estimates of frame flexibility are closer to truth than 

the assumed ideals of nil or full restraint in the connections. 

 

 

4.2    Types of Semi-Rigid Connections 

 

 

The most common beam-to-column connections used in practice are divided 

into six categories as given in the following. 

 

 

4.2.1   Single Web-angle Connections and Single Plate 
Connections 

 

 

Single web-angle connection involves an angle either bolted or welded to both 

the column and the beam web as shown in Figure 4.6. Single plate 

connections, on the other hand, use the plate instead of angle (Figure 4.7). 

Single plate connection requires less material than single-web angle 

connection. The rigidity of single plate connection is equal or greater than that 

of single web angle connection because one side of the plate in the single plate 

connection is fully welded to the column flange. 
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Figure 4.6 Single web-angle connections. 
 

 

           

 
Figure 4.7 Single plate connections. 
 

 

4.2.2   Double Web-angle Connections 

 

 

As shown in Figure 4.8, double web-angle connections involve two angles 

either bolted or riveted to both the column and the beam web. While in the 

earliest tests, rivets are used to fasten these types of connections, today, the 

double web-angle connections with high-strength bolts are more popular. The 

connection rigidity of this type is stiffer than that of the single web-angle and 

single plate connections. 
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Figure 4.8 Double web-angle connection. 
 

 

4.2.3   Top and Seat Angle Connections 

 

 

Figure 4.9 illustrates a typical top and seat angle connection. In this type of 

connection, top angle is used to provide lateral support of the compression 

flange of the beam instead of carrying any gravity loads. On the other hand, 

seat angle transfers only vertical reaction of the beam to the column. 

Experiments show that this type of connection can also resist some end 

moment of the beam.  

 

 

Figure 4.9 Top and seat angle connection. 
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4.2.4   Top and Seat Angle Connections with Double Web Angle 
 

 

This type of connection can be expressed as a combination of top and seat 

angle connection and a double web angle connection. Geometry of this 

connection is given in Figure 4.10. Double web angle improves the connection 

restraint characteristics of top and seat angle connections.  

 

 

 

 
Figure 4.10 Top and seat angle with double web angle connection. 
 

 

4.2.5 Extended End – Plate Connections and Flush End-Plate 
Connections 

 

 

End plate is generally welded to the beam end along the flanges and web in the 

fabrication process and bolted to the column in the field. This type of 
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connection has been used extensively since the late 1960s. The extended end-

plate connections are classified into two types – either on the tension side only 

or on both the tension and the compression sides. Figure 4.11 shows an 

extended end plate on the tension side only. However, the connection given in 

Figure 4.12 consists of an end plate on both the tension and compression sides. 

 

 

 

 

 

 

 

 
Figure 4.11 Extended end – plate connections (Tension side only) 
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Figure 4.12 Extended end-plate connections (Tension and compression sides) 

 
 

A typical flush end-plate connection is shown in Figure 4.13. Since some 

extended end plate and flush end plate connections are assumed to be FR type 

construction rather than PR type connection, they have often been used as 

means of transferring beam end moment to the column. The extended end-

plate connection on the tension side only is commonly used in practice. The 

extended end-plate connection on both sides is preferred when the frame 

structure is subjected to moment reversal, as during severe earthquake loading. 

Although the flush end-plate connection is weaker than the extended end-plate 

connection, the designers prefer to use this one in roof details. The behavior of 
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the end-plate connections is depended on whether the column flange near the 

connection is stiffened or not. The stiffeners of the column flanges prevent the 

flexural deformation of column flange, thereby influencing the behavior of the 

plate and fasteners. 

 

 

 

 
Figure 4.13 Flush End-Plate Connections 

 

 

4.2.6    Header Plate Connections 

 

 

Similar to extended end plate connections, header plate connections consists of 

an end plate. However, unlike extended end plate connections, the length of 

this plate is less than the depth of the beam. It is welded to the beam and 

bolted to the column as shown in Figure 4.14. The moment- rotation 

characteristics of these connections are similar to those of double web-angle 

connections. Accordingly, a header plate connection is used mainly to transfer 

the reaction of the beam to the column. 
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Figure 4.14 Typical Header Plate Connections 

 

 

Although the above most commonly used types of semi-rigid connections are 

introduced; extended end plate connections and top and seat angle connections 

with double angles will be examined in this study. 

 

 

4.3    Modeling of Semi-Rigid Connections 
 

 

The necessary level of sophistication in the modeling of the beam-to-column 

connection behavior depends on the type of global structural analysis to be 

performed.  

 

Experimental tests give the most accurate knowledge of the connection 

behavior; however, this method is too expensive for everyday design practice 

and is usually conducted for research purposes only.  
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The most important result obtained during the experimental tests is the 

moment-rotation curve that comes from experimental evidence. These 

moment-rotation curves for all the connection types mentioned in previous 

section have been developed since 1930s and are currently available in the 

literature.  

 

There are several representative models proposed in the literature to represent 

the moment-rotation behavior [1]. Power model, linear model, exponential 

model, cubic B-spline model and polynomial model are the most popular ones. 

In this study, the semi-rigid connections are modeled by using polynomial 

model. 

 

 

4.3.1    Polynomial Model 
 

 

In practice, curve-fitting the experimental data with simple expressions is the 

most commonly used approach to describe the M-θr curve of flexible 

connection. A polynomial model where M-θr behavior is represented by an 

odd power polynomial, called Frye and Morris Model [1], is adopted in 

present study due to its easy implementation. The Frye and Morris model uses 

the method of least square to determine the constants of the polynomial and 

has the following form. (Equation 4.1) 

 

 
5

3
3

2
1

1 )()()( KMCKMCKMCr            (4.1) 
 

in which M is the moment acting on the connection, C1, C2, C3 are the curve-

fitting constants and K symbolizes the standardization constant depended on 
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connection type and geometry. The values of these constants vary for each 

connection type and are given in Table 4.1 [83].  

 

 

Table 4.1 Standardized connection constants [1]. 
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4.4   Analysis of Unbraced Steel Frames with Semi-Rigid 
Connections 

 

 

In the analysis and design of semi-rigid steel frames connections can be 

represented by discrete, inelastic rotational springs. The effect of connection 

flexibility is modeled by attaching rotational springs with stiffness moduli AK  

and BK  to the first and second ends of a member as shown in Figure 4.15. 

 

 

 

a) 

 

 

  b) 

 

Figure 4.15 Semi-rigid plane beam member with rotational springs. (a) End 

forces and end displacements (b) end rotations. 
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A beam member with semi-rigid end connections has the nonlinear stiffness 

matrix form shown in the following. 
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in which; E represents the modulus of elasticity, L, I, A are the length, moment 

of inertia and area of beam respectively. Above stiffness matrix includes the 

effect of the flexible connections. To be able to modify the stiffness matrix of 

rigid beam modification coefficients are used. These coefficients are 

calculated using following equations.  
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Stability functions are included in the stiffness matrix to consider the effect of 

axial forces on the deformed shape. To calculate the values of stability 

functions power series approximation is used. However, this method needs the 

trigonometric functions and one of which is α cot α gives singular values at 

some α values. For this reason Livesely’s approximation [84] which is the sum 

of a power series in Euler critical load factor ρ and a rotational function 

Equation (4.5) is implemented. These stability functions are given as follows; 
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)(// EIPlPP cr
22  

in which; the constants take the values as;  
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125    
 
 

 
 
Where; P is the axial force in beam member, Pcr is the Euler critical load of 

beam member. 

  
 
In addition to stiffness matrix, relative stiffness ratios γ1 and γ2, thereby 

effective length factor, introduced in previous chapter, require some 

modifications. Hence, these parameters take the following form.  
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where; uf  is a coefficient which represents the connection condition. It is 

equal to 1 for rigid connections and computed for semi-rigid connections from 

the equation given in the following. 
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in which  AK  and BK  symbolize the rotational stiffness of the semi-rigid 

connections at the first and the second ends of the beam. bI  and bL  are the 

moment of inertia and the length of the beam respectively. The smaller of AK  

and BK  is symbolized as *K  in the equation. 

 
             
 

 

 
Figure 4.16 Moment rotation behavior of semi-rigid connection 
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AK  and BK , called the rotational stiffness of the springs at each end of the 

flexible frame member, are calculated as a tangent stiffness using above given 

nonlinear standardized function (Equation 4.1). To achieve this, first flexibility 

of connection is determined as dMd r / . Then, the stiffness of the connection 

which is to be used in the modification of general stiffness matrix is obtained 

as a reciprocal of the connection flexibility calculated for a certain value of a 

moment, when connection is loaded [83]. If the state is unloading, the stiffness 

of the connection is assumed as its initial stiffness. These two states are shown 

in Figure 4.16. 

 

 

4.4.1    End-plate without Column Stiffeners Model 

 

 

The design of end-plate without column stiffeners model necessitates the 

determination of required length and thickness of end plates as well as the 

placement and size of the bolts. These parameters are determined through the 

consideration of connection design specifications given in LRFD-AISC [49]. 

 

As shown in Figure 4.17, due to bending moment and vertical force acting on 

the connection, the bolts are subjected to tensile force (T) and shear (P). 

Equations (4.10) and 4.11) are used to perform tension and shear check for the 

connection bolts.  

 
 

gtt AFP 85.0..75.0     Strength capacity of bolts under tension 

          (4.10) 

gss AFP 85.0..75.0    Strength capacity of bolts under shear 
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1
ts nP

T

mP

P
                   (4.11) 

 
 
Where; the nominal strength of a bolt in shear and nominal strength of a bolt 

in tension are defined by Fs and Ft , which are given in LRFD-AISC [49] as 33 

kN/cm2 and 62 kN/cm2, respectively. Ag, m and n are referred to as the cross-

sectional area of a bolt, number of bolts in shear and number of bolts in 

tension, respectively. 

 
 

 

 
Figure 4.17 End-plate without column stiffeners 
 
 
 
Bolts are placed according to the provisions given in LRFD-AISC [49] as 

follows;  

 
 

bdr 2                            (4.12) 

bda 3  

cmtsdb 78.17143   
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Where; a, s and r are shown in Figure. 4.17 and db is the diameter of the bolt 

selected. 

 

Once the bolts are placed, required thickness tp and the width w of end plates 

can be determined from Equations (4.13) and (4.14). The distance (dg) 

between two bolts at the top and bottom of end plate is calculated according to 

Equation (4.15). 

 

 

 
y

p Fw

bT
t




44.4
                  

          (4.13) 

  bdrb
2

1
  

 

bdsw 6                   (4.14) 

  fc bwb   

 

 bg ddd 4                   (4.15) 

 

 

Where; T and Fy represent the tensile force and the yield stress, respectively. bc 

and bf  are the flange width of column and beam, respectively. d defines the 

depth of the beam. 

 

Design steps of end plate without column stiffeners model can be stated as 

follows; 

 

1)  Resulting end forces (P and M), acting on the connection are taken   

from the analysis. 
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2)    Bolt diameter is selected from the available bolt list given in [49]. 

 

3)   Nominal shear and tension strengths of bolt are determined through the 

use of Equation (4.10) and it is checked if the strength requirement 

given in Equation (4.11) is satisfied. If not, another one is selected and 

the strength check is performed again. This procedure is repeated until 

an appropriate one is reached. 

 

4)  Required thickness, length and width of end plates are attained using   

Equation (4.13) through Equation (4.15). 

 

 

Curve-fitting and standardization constants of end plate without column 

stiffeners connection shown in Figure 4.17 are given as in the following.  

 

 

                             
                 (4.16) 
 

 

 
 

4.4.2   Top and Seat Angle with Web Cleats Model 

 
 

The design of top and seat angle with web cleats model necessitates the 

determination of required width and thickness of angle as well as the 

placement and size of the bolts.  
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Figure 4.18 Top and seat angle with web cleats connection 
 
 

 

Required seat width is calculated from the bearing length N, which is based on 

the local web yielding limit state and web crippling limit state as given in 

LRFD-AISC [49]. Local web yielding usually controls the bearing length, 

which is obtained from Equation (4.17).   

 

 

k
tF

P
N

wyw

u 5.3


                                  (4.17) 

 

Where; Pu represents the factored load reaction, ф defines the resistance factor 

(1), tw and Fyw and k are web thickness and yield stress of supported beam and 

distance from outer face of flange to web toe of fillet, respectively.  

 

Web crippling, on the other hand, is carried out through the use of following 

equation. 
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Bending moment on the critical section of the angle is calculated as in the 

following; 

 

 

ePM uu                               (4.19) 

 

2

N
clearancee f                   (4.20) 

 
8

3
 tee f                    

 

 

Where, Pu is referred to as the factored reaction to be carried. e and ef  are the 

moment arms and P is the shear force acting on the connection. 
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Figure 4.19   Bearing stress assumptions for seated connections 

 

 

Equation (4.21) is used for the determination of required thickness of top and 

seat angles. 
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                  (4.21) 

 
 

Shear capacity of outstand leg of cleats are determined from the following 

equation. 

 

ufy PtBPV  9.06.0                 (4.22) 
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In which, фb symbolizes the resistance factor (0.9) and L, Bf and Fy are 

referred to as length, width and the yield stress of top and seat angles, 

respectively. 

 

As shown in Figure 4.20, due to moment acting on the connection, the bolts 

used to connect the top angles to the columns are subjected to tensile force (T) 

and the ones used to connect the top angles to the beams are subjected to 

shear. On the other hand, the bolts used in the web side of the beams are 

subjected to shear. Equation (4.10) and Equation (4.11) are used to perform 

tension and shear check for the connection bolts.  

 

 

 

Figure 4.20 Top and seat angle with web cleats connection detail 

 

 

Bolts are placed according to the provisions given in LRFD-AISC [49] as in 

the following.  

 

cmtsd b 78.17143                  (4.23) 

 bda 3  
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Hence, the length of web cleats is determined from the following equation.  

 

 

kdLNsd bb 2)1(6                  (4.24) 

 

 
Where; s represents the distance between bolts and t symbolizes the smaller of 

angle thickness and column flange thickness. db , N and L are the diameter of 

bolts, number of bolts and length of web angles.  

 

 

Design steps of top and seat angles with web cleats model can be stated as 

follows; 

 

1) Resulting end forces (P and M), acting on the connection are taken  

from the analysis. 

 

2) Angle sections are selected from ready angle section tables given in 

LRFD-AISC [49]. 

 

3) Web yielding and web crippling are carried out using Equations (4.17) 

through (4.20). Required thickness of top and seat angles are 

determined (Equation 4.21). If the thickness of selected angle is less 

than the required one, another angle section is selected. This procedure 

is repeated until an appropriate one is reached.  

 

4) Shear capacity check of outstand leg of cleats is performed by use of 

Equation (4.22). 

 



 
 

 172

5)    Bolt diameter is selected from the available bolt list given in [49]. 

 

6)  Nominal shear and tension strengths of bolt are determined through the 

use of Equation (4.10) and it is checked if the strength requirement 

given in Equation (4.11) is satisfied. If not, another one is selected and 

the strength check is performed again. This procedure is repeated until 

an appropriate one is reached. 

 
 

 
Size parameters given in Figure 4.18 are used to calculate the standardization 

constant through the consideration of parameter tables given in [1]. For the top 

and seat angle with web cleats connection model, curve-fitting and 

standardization constants are given as in the following. (Equation 4.25) 
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and 

350.1694.0415.0128.1287.1 )2/( bdgbtctdK  
 

 

 
where db, t, b, d, tc, g are; the diameter of bolts, the thickness of angles, flange 

width of beam, depth of beam web, flange thickness of column and gauge 

distance respectively. 

 

An increase in lateral displacements occurs in the analysis of steel frames with 

semi-rigid connections. Hence, consideration of the effect of axial forces in the 
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response of semi-rigid frame becomes a necessity. The following steps give 

details about the algorithm which accounts for P-∆ effect in the analysis of 

frame. 

 

 

1. In the beginning of the procedure, axial forces in members are assumed to 

be zero. 

 

2. Overall stiffness matrix is constructed then the frame is analyzed under 

the external loads and joint displacements and member forces are 

calculated. 

 

3. Corresponding stability functions are determined using the axial forces 

obtained for the members. 

 

4. The steps from 2 are repeated until the difference between two successive 

sets of axial forces is smaller than a specific tolerance. 

 

 

The determinant of the overall stiffness matrix is calculated and loss of 

stability is checked during these iterations. If no loss of stability occurs and the 

convergence in the axial forces is obtained, the joint displacements and 

member forces determined in this nonlinear response are used in the 

computation of fitness values for this particle. During the analysis the design 

load is applied immediately and the iterations are carried out at this load. It 

should be pointed out that fixed end moments change from one iteration to 

another due to rotational springs. The modified fixed end moments are 

determined by considering the flexible end connection. 
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4.5     Particle Swarm Optimization Design of Unbraced Steel   
Frames with Semi-Rigid Connections 

 

 

In this section the optimum design procedure developed for semi-rigid steel 

frames is introduced. The algorithm is based on the particle swarm 

optimization method explained in the previous chapter. Design algorithm is 

similar to the one developed for rigid steel frames which is given in Chapter 

3. However, there are additional routines required for the design of partially 

restrained end connections. This routine is written for two types of 

connections; “Top and Seat Angle with Web Cleats (TSWC)” and “End Plate 

without Column Stiffeners”. Computer program is coded in such a way that 

user has the option of selecting the connection type through only one 

command. Steps of this optimization procedure can be summarized as 

follows; 

 

 

1. The geometry and applied loading of the frame are defined. The beam-

to-column connection type is selected. Beams and columns of the 

structure are grouped together. 

 

2. Particle swarm design algorithm is started by generating initial values 

(positions of particles) randomly for the design variables i.e. sequence 

numbers of steel section tables. Once the steel sections for the member 

groups are selected then all the other cross sectional properties such as 

moment of inertia, sectional modulus and radius of gyration belonging 

to each group becomes available. 

 

3. Frame is analyzed with the use of analysis subroutine which is based on 

matrix stiffness method. Member forces and displacements are 
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computed. Beam-to-column connections are designed and required size 

of connection elements such as angles, bolts and plates are determined.  

 

4. Fly-back mechanism is used to handle the design constraints. It is 

checked if the strength and displacement requirements given in design 

code are satisfied. If one or a number of constraints are not satisfied, this 

design is discarded and new one is generated randomly. 

 

5. After feasible designs are obtained, particle swarm iterations is 

initialized. Objective function values, weights of frames belonging to 

each design, are calculated. The particle which has the minimum weight 

is accepted as current optimum design. After, values of design variables 

are updated using velocity and position update equations of particle 

swarm algorithm and new designs are generated.   

 

6. Analysis routine is repeated for these new designs and constraints are 

checked. If all the constraints are satisfied, weights of these designs are 

computed. If the lightest among them is also lighter than the current 

optimum design, it is accepted as the new optimum. 

 

 7. This iteration procedure is repeated until the predefined number of 

iteration is completed. The design from which the minimum weight 

obtained at the end of this iteration process is taken as optimum design. 

 

 

4.6    Design Examples 

 

 

In this section, six unbraced steel frames with semi-rigid connections are 

designed. Two beam-to-column connection models namely top and seat angle 
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with web cleats and end plates without column stiffeners are selected for the 

representation of partially restrained connections. Each of these examples is 

analyzed by taking into account the nonlinear M-θ curve of the connection and 

P-∆ effect that considers the increase in the lateral displacements. In the 

design of top and seat angles with web cleats models, angles are chosen from 

the available angle list given in [49]. In addition to the restrictions for the 

feasible design of frame members, given in the previous chapter, design 

limitations of both connection types are also included in the optimum design 

algorithm. Example frames are also designed by assuming the end connections 

to be rigid with the use of discrete variables. Results are tabulated in the same 

table to compare the overall weight of the structure obtained with each 

approach. Furthermore, the convergence rate of each example is illustrated 

with design-history graphs. 

 

 

4.6.1    Three Storey, Two Bay Steel Frame 

 

 

Figure 4.21 designates the two bay-three storey steel frame, which is the first 

example of this section. The dimensions, member grouping and the external 

loading of the system are also shown in this figure. The upper bound imposed 

on lateral deflections of the top storey joints is limited to 1/300 of the frame 

height, which corresponds to 30.48 mm. The system is designed by collecting 

the frame members in two different groups. Columns are considered as group 

1 while beams are taken as group 2 as shown in figure. Hence there are only 

two design variables in the design problem. A single distributed load of 40 

kN/m and lateral loading of 20kN is applied to each horizontal member of the 

frame. Fixed supports are used for the connection of the columns to the 

foundation. 
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Figure 4.21 Three storey-two bay steel frame. 

 

 

The frame is designed by using both semi-rigid and rigid optimum design 

algorithms. The design history of these runs is shown in Figure 4.22. Best 

designs obtained by the optimum design algorithms are tabulated in Table 4.2 

with section designations attained for each member group. In this example, 

semi-rigid algorithms produce heavier designs, as indicated in Figure 4.22. 

The one with TSWC is 5%, the one with end plate without column stiffeners 

is %3 heavier than rigid frame. The strength ratios obtained are 0.97, 0.93 and 

0.98 and top storey drifts are 1.650cm, 1.100cm and 0.80cm for semi-rigid 

frame with top and seat angle with web cleats, the one with end plate without 

column stiffeners and rigid discrete frame respectively. This indicates that 

strength constraints dominate the designs.  
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Table 4.2 Optimum designs for three-storey, two-bay rigid steel frame. 
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Figure 4.22 Design history graph for three-storey, two-bay steel frame. 

 

 

Group 
No. 

Member 
Type 

Semi-rigid frame 
Rigid frame 

Wsections-
Area(cm2) 

T.S.W.C 
Connect. 
Wsections-
Area(cm2)

End plate 
Connect. 
Wsections-
Area(cm2)

1 Column W690X125 (160) W250X115 (146) W250X73 (92.8) 
2 Beam W610X140 (179) W610X140 (179) W690X152 (194)

Max. Int. St. Drift Ratio 0.75 0.42 0. 30 
Max. Strength Ratio 0.97 0.93 0.98 
Top storey drift (cm) 1.650 1.100 0.80 
Minimum Weight.kg 
(kN) 

12638.18 
(123.937) 

12358.45 
(121.194) 

12005.990 
(117.738) 
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4.6.2    Four storey, four bay steel frame 

 

 
The four-bay, four storey steel frame shown in Figure 4.23 is considered as the 

second design example. The frame consists of thirty-six members that are 

collected in two groups as shown in the figure. Columns are considered to be 

group 1 while beams are taken as group 2. The lateral displacement of the top 

storey is limited to 4cm and maximum inter-storey drift is restricted to 1cm.  

The modulus of elasticity is 200kN/mm2. A distributed load of 35 kN/m is 

applied to all beams and lateral loads are considered at each storey level as 

shown in Figure 4.23. Columns are assumed to be rigidly connected to the 

foundations.  

 

 

 

 

Figure 4.23 Four storey- four bay steel frame. 
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Table 4.3 tabulates the optimum designs of semi-rigid steel frames together 

with the results obtained with rigid connection assumption. The design 

histories of both minimum weight designs of frames are shown in Figure 4.24. 

It is apparent from the figure that the algorithm assuming the connections to be 

rigid with discrete variables produces the lightest frame. Moreover, it is 

noticed that the design with top and seat angle with web cleats is heavier than 

the one with end plate connections. This design is attained after 346 iterations 

and the minimum weight is 8123.09kg while the one with end plate without 

column stiffeners has the minimum weight of 6167.268kg obtained after 160 

iterations. This means that the design with TSWC is 37%, the one with end 

plate without column stiffeners is %4.2 heavier than rigid frame. It is noticed 

that the dominant constraint of the former type semi-rigid connection design is 

inter-storey drift with the ratio of 0.95; while the frame design with end plate 

connection is dominated by strength constraint with the ratio of 0.95.  

 

 

Table 4.3 Optimum designs for four-storey, four-bay steel frame. 

 

 

 

Group 
No. 

Member 
Type 

Semi-rigid frame 

Rigid frame 
Wsections-Area(cm2)

T.S.W.C 
Connect. 
Wsections-
Area(cm2)

End plate 
Connect. 

Wsections-Area(cm2)

1 Column W250X58 (74.2) W360X44 (57.3) W150X37.1 (47.3) 
2 Beam W250X58 (74.2) W360X44 (57.3) W410X46.1  (58.9) 

Max. Int. St. Drift Ratio 0.95 0.57 0. 47 
Max. Strength Ratio 0.91 0.95 0.99 
Top storey drift (cm) 3.277 1.96 1.59 
Minimum Weight.kg 
(kN) 

8123.09 
(79.66) 

6167.268 
(60.480) 

5914.37 
(58.00) 
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Figure 4.24 Design history graph for four-storey, four-bay steel frame. 

 

 

4.6.3    Five storey, three bay steel frame 

 
 

Third example is the three -bay, five storey steel frame as shown in Figure 

4.25. The frame shown is designed by using the algorithms developed as a 

rigid frame as well as semi-rigid frame.  
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Figure 4.25   Five storey- three bay steel frame. 

 

 

The frame consists of nineteen members that are collected in seven groups as 

shown in the figure. First four groups are assigned to columns and the rest 

three groups are assigned to beams of the frame. The allowable inter-storey 

drift is 10mm while the lateral displacement of the top storey is limited to 

50mm. The modulus of elasticity is 200kN/mm2. Fixed supports are used for 

the connection of the columns to the foundation. 

 

The optimum W-section designations of semi-rigid and rigid frames obtained 

by the particle swarm method are given in Table 4.4.  
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Table 4.4 Optimum designs for five-storey, three-bay steel frame. 

 

 

 

 

The design of semi-rigid frame with end plates is attained after 415 iterations 

and the minimum weight is 1819.996kg while the one with top and seat angle 

with web cleats has the minimum weight of 2589.68kg obtained after 1800 

iterations. Rigid frame with discrete variables, which is designed in chapter 3, 

has the weight of 1375.194kg. It is noticed that the dominant constraint of the 

former design is inter-storey drift ratio with the value of 0.99; similarly the 

design of the frame with top and seat angle with web cleats is dominated by 

inter-storey drift ratio with the value of 0.99. The strength constraints are 

computed as 0.97 and 0.94 respectively. Design history graph of this frame is 

shown in Figure 4.26. 

 

 

Group 
No.        

Member 
Type 

Semi-rigid frame 
Rigid frame 

Wsections-
Area(cm2) 

T.S.W.C 
Connect. 
Wsections-
Area(cm2)

End plate 
Connect. 
Wsections-
Area(cm2)

1 Column W530X74 (95.2) W410X67 (86) W360X32.9 (41.7) 
2 Column W360X44 (57.3) W200X22.5 (28.6) W250X22.3 (28.5) 
3 Column W360X72 (91.1) W360X32.9 (41.7) W250X32.7 (41.7) 
4 Column W200X35.9 (45.8) W310X21 (26.9) W150X29.8 (37.9) 
5 Beam W250X17.9 (22.7) W310X21 (26.9) W310X21 (26.9) 
6 Beam W250X28.4 (36.3) W360X32.9 (41.7) W360X32.9 (41.7) 
7 Beam W250X17.9 (22.7) W200X15 (19.1) W310X21 (26.9) 

Max. Int. St. Drift Ratio 0.99 0.99 1.00 
Max. Strength Ratio 0.94 0.97 0.98 
Top storey drift (cm) 3.700 4.057 4.19 
Minimum Weight.kg 
(kN) 

2589.68 
(25.396) 

1819.996 
(17.848) 

1375.194 
(13.486) 
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Figure 4.26 Design history graph for five-storey, three-bay steel frame. 
 
 
 
 

4.6.4    Six Storey, Two Bay Steel Frame 

 

 

Fourth design example is two-bay, six storey steel frame shown in Figure 4.27, 

which is also carried out in Chapter 3. Geometry and grouping of the frame is 

illustrated in this Figure.  
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Figure 4.27   Six storey- two bay steel frame. 

 

 

Frame consists of thirty members that are collected in eight groups as shown 

in the figure. Outer columns and inner columns of each two storeys are 

considered to be a different group separately.  Beams of first seven storeys are 
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taken as group 7 and those of top storey are grouped as group 8. The lateral 

displacement of the top storey is limited to 4cm. The modulus of elasticity is 

200kN/mm2. A distributed load of 50kN/m and a single lateral load is applied 

to each horizontal member of the frame. Fixed supports are used for the 

connection of the columns to the foundation. 

 

In the modeling of end connections of this frame, both end plate without 

column stiffeners and top and seat angles with web cleats are used. The 

optimum W-section designations of semi-rigid and rigid frames obtained by 

the particle swarm method are given in Table 4.5.  

 

 

Table 4.5 Optimum designs for six-storey, two-bay steel frame. 

 

 

 

Group 
No. 

Member 
Type 

Semi-rigid frame 
Rigid frame 

Wsections-
Area(cm2) 

T.S.W.C 
Connect. 
Wsections-
Area(cm2)

End plate 
Connect. 
Wsections-
Area(cm2)

1 Column W690X125 (160) W530X74 (95.2) W530X74 (95.2) 
2 Column W610X101 (130) W360X51 (64.5) W310X52 (66.7) 
3 Column W250X73 (92.8) W310X38.7 (49.4) W200X41.7 (53.1 
4 Column W1100X343 (436) W610X140 (179) W460X89 (114) 
5 Column W610X101 (130) W530X66 (83.7) W460X89 (114) 
6 Column W360X91 (116) W200X35.9 (45.8) W360X72 (91.1) 
7 Beam W310X74 (94.9) W530X66 (83.7) W460X60 (75.9) 
8 Beam W250X67 (85.5) W460X60 (75.9) W460X68 (87.3) 

Max. Int. St. Drift Ratio 1.00 1.00 0. 78 
Max. Strength Ratio 0.95 0.99 0.99 
Top storey drift (cm) 5.206 5.531 4.5325 
Minimum Weight.kg 
(kN) 

12167.20 
(119.319) 

7637.091 
(74.894) 

7532.11 
(73.865) 
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The minimum weights obtained are 12167.20kg, 7637.091kg and 7532.11kg 

for semi-rigid frame with top and seat angle with web cleats, the one with end 

plate without column stiffeners and rigid discrete frame respectively. This 

indicates that rigid frame is 1.4% and 61% lighter than the frame with end 

plate connection and TSWC, respectively. It is noticed that the dominant 

constraint of the semi-rigid design is maximum inter-storey drift ratio with the 

value of 1.00; while maximum strength ratio, which is 0.99, dominates the 

rigid frame design. Top storey drift of semi-rigid frames and rigid discrete 

frames are 5.206cm, 5.531cm and 4.533cm, respectively. Convergence rate of 

this frame is shown in Figure 4.28. 
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Figure 4.28 Design history graph for six-storey, two-bay steel frame. 
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4.6.5    Ten Storey, Three Bay Steel Frame 

 

 

The three-bay, ten storey steel frame is considered as fifth design example. 

The dimensions of the frame and the loading are shown in the Figure 4.29. 

The frame consists of seventy members that are collected in nine groups as 

shown in the figure. First eight of these groups are assigned to the columns 

and the last is assigned to the beams. The frame is subjected to gravity loading 

of 12.4kN/m on the beams of roof level and 25kN/m on the beams of each 

floor. The lateral loading is the single load varying between 15kN and 5kN 

acting on the beams of each floor. The lateral displacement of the top storey is 

limited to 11.83cm and the maximum inter-storey drift is restricted to 1.17cm. 

The modulus of elasticity is assumed to be 200kN/mm2. Maximum number of 

iterations is selected as 12000. Columns are assumed to be rigidly connected 

to the foundations. 

 

Table 4.6 reveals the optimum W-sections designation obtained by rigid and 

semi-rigid optimum design algorithms. The discrete optimum design for rigid 

frame is attained after 3370 iterations and the minimum weight of the frame is 

22879.35kg. Optimum design for semi-rigid frame with end plate without 

column stiffeners is attained after 2500 cycles with the weight of 25297.30kg. 

It is clear from the results that rigid discrete optimum design algorithm 

produces 11% lighter frame. The convergence rate of the problem is illustrated 

in the design-history graph given in Figure 4.30. 
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Figure 4.29 Ten storey- three bay steel frame. 
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Table 4.6 Optimum designs for ten-storey, three-bay steel frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is noticed that in the optimum frame with semi-rigid connections, the lateral 

displacement of top storey was 8.826cm against its upper bound of 11.83cm. 

The highest ratio among the combined strength constraints was 0.99 compare 

to 1, which was attained. Moreover, the maximum inter-storey drift ratio is 

recorded as 0.98. This clearly indicates that strength constraints dominate this 

design. On the other hand, the maximum strength ratio of rigid discrete design 

is attained as 1.00.  

 

 

Group 
No. 

Member 
Type 

Semi-rigid frame 
(End plate Connect.) 

W sections-Area(cm2) 

Rigid frame 
W sections-Area(cm2) 

    

1 Column W530X150 (192) W610X153 (196) 
2 Column W610X125 (159) W610X113 (144) 
3 Column W460X89 (114) W530X92 (118) 
4 Column W610X82 (104) W460X82 (104) 
5 Column W250X58 (74.2) W310X60 (75.9) 
6 Column W410X60 (75.8) W410X53 (68.1) 
7 Column W250X58 (74.2) W310X60 (75.9) 
8 Column W410X60 (75.8) W410X53 68.1) 
9 Beam W610X82 (104) W460X68 (87.3) 
    

Max. Int. St. Drift Ratio 0.98 0. 87 
Max. Strength Ratio 0.99 1.00 
Top storey drift (cm) 8.826 7.86 
Minimum Weight.kg 
(kN) 

25297.30 
(248.080) 

22879.35 
(224.369) 
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Figure 4.30   Design history graph for ten-storey, three-bay steel frame 
 

 

4.6.6    Fifteen Storey, Three Bay Steel Frame 
 

 

The three-bay, fifteen-storey frame shown in Figure 4.31 is considered as the 

last design example. The dimensions of the frame and the loading are shown 

in the figure. The frame is subjected to gravity loading of 12.4kN/m on the 

beams of roof level and 20kN/m on the beams of each floor.  The lateral 

loading is the wind loading. The modulus of elasticity is 200kN/mm2. Frame 

consists of 105 members that are collected in 12 groups.  
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Figure 4.31 Fifteen-storey, three-bay steel frame. 
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Inner columns and outer columns in every three storey considered to be 

different groups. The beams of roof and intermediate floors are considered to 

be two different groups as shown in the figure. The allowable inter-storey drift 

is 1.17cm while the lateral displacement of the top storey is limited to 

17.67cm. The strength capacities of steel members are computed according to 

LRFD-AISC. Fixed supports are used for the connection of the columns to the 

foundation. 

 

Optimum W-sections designation obtained by rigid and semi-rigid optimum 

design algorithms are revealed in Table 4.7. The discrete optimum design for 

rigid frame is attained after 3200 iterations and the minimum weight of the 

frame is 29092.81kg. Optimum design for semi-rigid frame with end plate 

without column stiffeners is attained after 330 cycles with the weight of 

30322.06kg. It is clear from the results that rigid discrete optimum design 

algorithm produces the lighter frame. It is noticed that in the optimum frame 

with semi-rigid connections, the lateral displacement of top storey was 

12.06cm against its upper bound of 17.67cm. The highest ratio among the 

combined strength constraints was 0.94 compare to 1. However, the maximum 

inter-storey drift ratio is recorded as 0.96. This clearly indicates that once 

again the drift constraints dominate the design. On the other hand, the 

maximum strength ratio of rigid discrete design is attained as 0.99. The 

convergence rate of the problem is illustrated in the design-history graph given 

in Figure 4.32. Results indicate that semi-rigid frame is 4.2% heavier than the 

rigid one. 
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Table 4.7 Optimum designs for fifteen-storey, three-bay steel frame. 
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Figure 4.32 Design history graph for fifteen-storey, three-bay steel frame 

Group 
No. 

Member 
Type 

Semi-rigid frame 
(End plate Connect.) 
Wsections-Area(cm2) 

Rigid frame 
Wsections-Area(cm2) 

    

1 Beam W460X60 (83.7) W410X46.1 (58.9) 
2 Beam W460X52 (66.3) W410X46.1 (58.9) 
3 Column W360X72 (74.2) W410X38.8 (49.9) 
4 Column W360X72 (74.2) W410X38.8 (49.9) 
5 Column W250X115 (85.5) W460X52 (66.3) 
6 Column W310X143 (101) W460X193 (246) 
7 Column W690X125 (289) W530X196 (250) 
8 Column W460X60 (74.2) W250X32.7 (41.7) 
9 Column W360X57.8 (74.2) W410X60 (75.8) 

10 Column W360X57.8 (114) W410X60 (75.8) 
11 Column W530X92 (216) W460X60 (75.9) 
12 Column W460X74 (224) W690X170 (216) 

    

Max. Int. St. Drift Ratio 0.96 0.64 
Max. Strength Ratio 0.94 0.99 
Top storey drift (cm) 12.06 8.59 
Minimum Weight.kg 
(kN) 

30322.06 
(297.356) 

29092.81 
(285.301) 
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CHAPTER 5 
 

 

 
OPTIMUM DESIGN OF RIGID AND SEMI-RIGID STEEL 

SWAY FRAMES INCLUDING SOIL-STRUCTURE 
INTERACTION 

 

 

 

 

5.1    Characteristics of Soils 

 

 

Soil can be considered as a geometrical material formed from the physical and 

chemical weathering of rocks. Physical weathering is the process by which 

rocks are broken down into smaller pieces by physical forces such as running 

water, wind, ocean waves. In chemical process, on the other hand, mineral 

form of the rock changes due to the action of water, oxygen and carbon 

dioxide. 

Soil usually has three phases, namely, solid, liquid and gas as shown in Figure 

5.1. Mechanical properties of soils are directly dependent on the interactions 

of these phases with each other. Interactions with applied potentials such as 

temperature difference and stress are also important factors affecting the 

properties of soil. 

The gas phase, in partially saturated soils, is generally air, although there may 

exist some organic gases in zones of high biological activity or in chemically 

contaminated soils. 
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Second part of soils, called liquid phase, commonly involves water containing 

various types and amounts of dissolved electrolytes. Due to chemical spills, 

leaking wastes, and contaminated groundwater, both soluble and immiscible 

are present in soils. 

Solid part of soils involves various amounts of organic matter, precipitated 

salts and crystalline or non-crystalline clay materials. Inspite of the fact that 

the amount of non-clay material is greater than that of organic material and 

clay, the latter have a greater effect in the behavior of soils. Solid particles of 

soil are classified by size as clay, silt, sand, gravel, cobbles, or boulders. 

 

 

 

Figure 5.1 Diagrammatic representation of soil as a three-phase system. 

 

 

Mechanical behavior of soils, that is the response of soils to loads, depends on 

the type of minerals present. Thus, load-carrying ability and compressibility of 

soils is controlled by soil mineralogy. 

Like any other engineering material, soil distorts when placed under a load. 

This distortion may be of two kinds as shearing and compression. Soils, 

generally, cannot withstand tension. However, in some situations the particles 

can be cemented together and withstand a small amount of tension but not for 

long periods. Due to these complexities in the structure of soil, its actual 
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behavior is nonlinear and this behavior must be considered in the analysis of 

structural systems. 

 

5.2   Nonlinear Behavior of Soils 

 

 

Soil, as an elastic material, behaves nonlinearly after the initial loading. This 

behavior is so complex that its mathematical simulation has always been a 

challenging task to the engineers. This behavior is also time-dependent. This 

nonlinearity is the main factor of the uncertainties of static behavior of soil-

foundation-superstructure system after construction.  

From the physical point of view, it is clear that when an external load is 

applied on the soil mass, the soil particles show a tendency to attain such a 

structural configuration that their potential energy will be a minimum and 

hence stability is achieved. Until a certain stress level is reached, strain passed 

on to the soil mass in this process is elastic. After a while, depending on the 

magnitude of applied load, it may enter the plastic range. This is followed by a 

visco-plastic deformation due to viscous inter-granular behavior, by which 

strain with passage of time is implied. 

 

Some of the factors that affect the behavior of soil are as follows; 

 

 
a) Heterogeneous distribution 

b) Anisotropy 

c) Geometric differences ( large displacements ) 

d) The nonlinear behavior between the interfaces 

e) Cracks 

f) Underground water consolidation 
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5.3   Soil-structure interaction 

 

 

Soil-structure interaction, basically, can be defined as a collection of 

phenomena in the response of structures resulted from the flexibility of soil 

under the foundation, as well as in the response of soils caused by the presence 

of structures.  

 

A complete soil-foundation-structure system is composed of a frame in 

superstructure, its foundation and the soil on which it rests as illustrated in 

Figure 5.2. Both the axial forces and the moments in the structural members 

may change with the differential settlement among various parts of the 

structure. 

 

 

 

 

Figure 5.2 Interaction between structure, foundation plate and soil 
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Rigidity of the structure and the load-settlement characteristics of soil affect 

the amount of redistribution of loads acting on the constructional members of 

the structure. Subsequently, there exist several studies in the literature 

conducted to estimate the effect of this factor, a critical review of which is 

given in [85]. 

 

It is a common belief that the response of any system including more than one 

component is always interdependent. For instance, consider a beam which is 

supported by three columns with isolated footing (Figure 5.3) [57]. Soil below 

the footing tends to settle more due to the existence of higher concentration of 

the load over the central support. On the other hand, as soon as the central 

column tends to settle more, the framing action induced by the beam will 

cause a load transfer to the end column. Therefore, interactive analysis of the 

soil–structure-foundation system is required to obtain the force quantities and 

the settlement at the finally adjusted condition. That is why the consideration 

of soil–structure interaction is so important in the accurate analysis of 

structural systems. 

 

 

 

Figure 5.3 Redistribution of loads in a frame due to soil–structure interaction 
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5.3.1    Modeling the Soil-Structure Interaction 

 

 

Successful applications of the principles of structural engineering are directly 

in connection with the ability of the engineer to simulate the structure and its 

support conditions to conduct an accurate analysis and thereby to perform a 

subsequently realistic design. It is complicated for the designers to arrive a 

realistic model in foundation analysis by the extreme difficulty of modeling 

the soil-structure interaction. 

   

Ultimately, the overall loads of the structure must be transferred to the soil 

continuum, and both the structure and soil act together to resist and support the 

loads. As mentioned previously, soil is truly a non-homogeneous and an 

anisotropic medium that behaves in a nonlinear manner, while steel and 

concrete structures can be adequately modeled and analyzed, assuming 

isotropic and linear behavior. Besides, the properties of structural building 

materials are well known so that the stiffness of the structure may be readily 

determined, given member sizing and structure geometry. 

 

On the other hand, taking into account the fact that the most important phase 

of interaction between soil and structure is the estimation of ground response 

at the site of a structure, one can say that laboratory testing of soil medium 

samples is required to determine the mechanical properties of soil.  However, 

in addition to the characteristics discussed in previous sections, soil is a soft 

material, which makes it very difficult to obtain testing samples and thus, to 

estimate actual “in-ground” behavior.  

 

The simplest soil-structure interaction models proposed in the literature are the 

ones in which the structure is supported by a rigid foundation. These models 

necessitate six degrees of freedom, three of which are translations and the rest 
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of which are rotations; however, they would be too simple for the practical 

applications.  Because they do not take into account the characteristics of soil, 

thereby the nonlinear stress-strain relationship of the same. 

 

 

5.3.1.1    Idealized Soil Behavior Models 

 

 

The factors expressed in previous section make it impossible to determine the 

time properties and constitutive relations of the soil continuum. Therefore, it is 

required to make a number of simplifying assumptions to analyze the soil-

structure interaction. In view of these assumptions, researchers have proposed 

a number of models representing the soil media in the soil-structure 

interaction. These models are based on the classical theories of elasticity and 

plasticity for the analysis of soil-foundation interaction problems. Some 

important idealized models of soil-foundation interaction are briefly presented 

in the followings. Each model is characterized by the surface deflection it 

experiences under the action of a system of forces. 

 

 

5.3.1.1.1    Elastic Models 

 

 

The simplest type of idealized soil response is to assume the behavior of 

supporting soil medium as a linear elastic continuum. Therefore, the 

deformations are assumed as linear and reversible. Applications of these 

models to soil-foundation interaction have been subject of extensive research 

and significant developments have been made in obtaining exact and 

approximate solutions. 
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5.3.1.1.1.1    Winklerian Spring Model 

 

 

Assuming that the surface displacement of the soil medium at every point is 

directly proportional to the stress applied to it at that point, Winkler’s 

approach represents the soil medium as a system of identical but mutually 

independent, closely spaced, discrete, linearly elastic springs [57]. Figure 5.4 

shows physical representation of winklerian spring models under different 

loadings. This idealization states that deformation of foundation due to applied 

load is confined to loaded regions only. 

 
 

 

Figure 5.4 Surface displacements of the Winkler approach due to (a) Non-
uniform load, (b) A concentrated load, (c) A rigid load, (d) A uniform flexible 
load. 
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According to Winkler approach, force-deformation relationship of elastic 

springs at any point is given by; 

 

kyP                                  (5.1) 

 

Where; 

 

P is the pressure, k is the coefficient of sub-grade reaction or sub-grade 

modulus, and y is the deflection. 

 

There have been a number of soil–structure interaction studies [86–90], based 

on the Winkler hypothesis for its simplicity. The main problem with the use of 

this model is the determination of the stiffness of elastic springs used to 

replace the soil below foundation. Since the Winkler model has only one 

parameter, what is called the sub-grade stiffness, to idealize the physical 

behavior of the sub-grade, care must be taken to determine it numerically to 

use in a practical problem. 

 

Therefore, several methods such as Plate load test, Consolidation test, tri-axial 

test, CBR test, proposed in the literature to estimate the modulus of sub-grade 

reaction. 

 

Plate load test are generally used to determine bearing capacity and settlement 

of shallow footings. This test is conducted by pressing a steel bearing plate 

into the surface to be measured with a hydraulic jack. Using dial micrometers 

near the plate edge, the resulting surface deflection is read and the modulus of 

sub-grade reaction is determined by the following equation 

 

                     (5.2) 
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Where; 

k represents the modulus of sub-grade reaction (spring constant), P and Δ are 

applied pressure and measured deflection respectively. 

 

Consolidation can be defined as the decrease in the volume of a soil due to the 

expulsion of water. An undisturbed sample of cohesive soil is used in the 

laboratory consolidation test to determine its compressibility characteristics. 

To obtain these, under different loadings, the change in the height of the soil 

sample, resulting from a sequence of vertical stress, is monitored. By plotting 

the graphs of the volumetric strain versus applied vertical stress at the end of 

each load increment, desired settlement parameters can be achieved. 

 

Tri-axial tests are reliable and widely used methods to determine the 

mechanical behavior of soils. In this test, first a cylindrical sample of soil is 

prepared and put into a tri-axial testing apparatus. Then, it is laterally confined 

by a membrane and radial stress is applied by pressurizing water in a chamber. 

Afterwards, axial deformations, volume changes, stress distributions and thus 

sub-grade stiffness are determined. 

 

The California bearing ratio (CBR) can be pointed out as a penetration test for 

the evaluation of mechanical strength of sub-grades. It was developed by the 

California Department of Transportation. The test is conducted by measuring 

the pressure necessary for the penetration of a soil sample with a plunger of 

standard area. After, this value is divided by the pressure required to obtain an 

equal penetration on a standard crushed rock material. Sub-grade stiffness is 

then obtained by using this value. 
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5.3.1.1.1.2    Elastic Continuum Models 

 

 

Elastic continuum model is a conceptual approach of physical representation 

of the infinite soil media (Figure 5.5). Soil mass is basically composed of 

discrete particles compacted by some inter-granular forces. Boundary 

distances and loaded areas, very large compared to the size of the individual 

soil grains, are the common features of the problems dealt in soil mechanics. 

Therefore, in effect, the body involving discrete molecules gets transformed 

into a macroscopic equivalent prone to mathematical analysis. So, it seems to 

be very reasonable to invoke to the theory of continuum mechanics for 

idealizing the soil media [91]. 

 

 

 

 

Figure 5.5 Typical surface displacement profiles of an elastic continuum 

subjected to, a) A line load P, b) A uniform load q of width a. 

 

 

The analysis of elastic continuum model is similar to the one of a semi-

infinite, homogeneous, isotropic, linear elastic solid subjected to a 
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concentrated force acting normal to the plane boundary, where the theory of 

elasticity is used. In this case, the behavior of soil medium is represented by 

some continuous functions. Hence, this application of continuum theory of 

elasticity to soil-foundation interaction presents a complex boundary value 

problem. During the analysis, it is assumed that the distribution of 

displacements and stresses in soil medium remain continuous under the action 

of external force systems.  

 

The simplicity of the input parameters such as modulus of elasticity and 

Poisson’s ratio can be pointed out as an important advantage of this approach. 

Besides, this approach provides much information on the stress and 

deformations within soil mass. However, it is observed that for soil in reality, 

the surface displacements away from the loaded region decreased more rapidly 

than what is predicted by this approach [57]. Moreover, there exists inaccuracy 

in reactions calculated at the outer borders of the foundation. These drawbacks 

conclude that this idealization is not only difficult to compute but often fails to 

represent the physical behavior of soil very closely, too. 

 

 

5.3.1.1.1.3   Two Parameter Elastic Models 

 

 

Two parameter models posses some of the characteristics features of 

continuous elastic continuum models. The term "Two Parameter" means that 

the model is defined by two independent elastic constant. Various two 

parameter models have been developed along following different lines. 

 

a) The first type is originated from the discontinuous Winkler's model and 

removes this discontinuity by providing mechanical interaction between 

the individual spring elements by use of either elastic membranes and 
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elastic beams or elastic layers capable of purely shearing deformations 

[92]. 

 

b) The models included in the class of second approach are related to the 

elastic continuum model and introduce constraints or simplifying 

assumptions with respect to the distribution of displacements and 

stresses [92]. 

 

 

5.3.1.1.1.4   Finite Element Models 

 

 

Because of the fact that the scope of numerical methods is wider than that of 

analytical methods, the use of general-purpose finite element method has 

gained a great increase to study the complex interactive behavior. The method 

is so general that it is possible to model many complex conditions with a high 

degree of accuracy, including nonlinear stress–strain behavior, non-

homogeneous material conditions, and changes in geometry and so on. 

 

The method is a special extended form of matrix analysis based on variational 

approach, in which the whole system, that is the frame, soil and foundation in 

this study, is discretized into a finite number of elements connected at different 

nodal points as shown in Figure 5.6. Displacements functions, i.e., the 

displacement within the element is unknown and therefore to be assumed in a 

sensible manner. Hence, knowing the stiffness matrix for each element, overall 

stiffness matrix may be obtained. Then, from the boundary conditions and 

global loading conditions nodal unknowns may be generated. 
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Figure 5.6 Representation of soil-structure interaction with finite element 

approach  

 

 

5.3.1.1.2    Elastic-Plastic, Perfectly Plastic Models 

 

 

Elastic-plastic or irreversible behavior of the soil medium is not considered in 

the elastic soil models. The basic difference between the purely elastic and 

elastic-plastic models is that, in the latter case, the stresses that can be induced 

in the soil medium are restricted owing to the introduction of a yield or failure 

criterion. Foundation model, presented in [92], can be pointed out as an 

example of a purely mechanical type. This model assumes that the shear layer 

used to interconnect the spring elements of the Pasternak foundation model 

[92] has the ability of sustaining finite shearing stresses. The shear stress-shear 

strain relationship for the elastic layer is of an elastic-rigid plastic type. By use 

of this particular model, the distribution of contact stresses beneath a rigid 
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foundation, which is subjected to a symmetric load, is investigated. The results 

show that the consideration of such yielding characteristics can change both 

the magnitude and distribution of contact stresses that are developed at soil-

foundation interface. 

 

 

5.3.1.2    Winklerian Modeling of Planar Steel Frame-Soil 
Interaction System 

 

 

In some cases, a structural support may not fully prevent motion, which may 

result in undesired effects in the response of structural system as a whole. The 

designers, thus, want to investigate the response of a structure resting on a soil 

mass that deforms with load. Provided that the properties of the soil are 

known, it may be possible to represent the supporting material by a set of 

springs. Winkler model, known as Winklerian springs, is the most popular 

modeling used to solve the soil-structure interaction problems. 

 

Figure 5.7 illustrates the representation of a simple beam, displacements of 

which are controlled by one rigid and one semi-rigid support. At joint 1, beam 

has two degrees of freedom of rotation and horizontal displacement, which 

means that it is restrained only along vertical direction. Thus, only one spring 

is required to represent the supporting soil under the beam.   

 

In Figure 5.7a, the original form of a beam member is shown. As stated in 

Figure 5.7b, Winkler spring may be used to represent the support. Rigidity of 

this physical element is included in the overall stiffness matrix by assuming it 

as an additional structural element as shown in Figure 5.7c. 
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Figure 5.7 A simple beam element with one rigid and one semi-rigid supports. 

 

 

In the case where the supported joints are fully restrained as shown in Figure 

5.8, soil is represented by three spring elements, horizontal, vertical and 

rotational stiffness of which are symbolized by kx , ky , kθ  respectively. In the 

matrix formulation these values are added to the main diagonal term of the 

degree of freedom in the direction of the spring. Numerical values of these 

coefficients are determined from the experimental soil tests described in 

previous sections. 

 
 
 

 
 
 
Figure 5.8   Representation of a simple planar frame-soil interaction 
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A more realistic representation of soil-structure interaction system can be 

achieved by including foundation slab in the analysis (Figure 5.9). In this 

study, the steel frame is assumed to be supported by rigid strip foundations 

made up of reinforced concrete and soil, on which these foundation slabs rest, 

is simulated by elastic springs as described previously.  

 

 

 

 

Figure 5.9   Soil-foundation-structure interaction systems 

 

 

 
To do this, a set of closely spaced independent fictitious vertical springs are 

inserted underneath the rigid footings along their lengths [93]. Stiffness of 

rotational springs is assumed to be zero and only one horizontal spring is used 

to support the system along x-direction. Each of these vertical springs, 

thereby, of the axial elements which can be used instead, has the same 

experimental stress-strain relationship as that of granular soil, which is 

obtained by carrying out standard drained tri-axial compression test conducted 
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in [94] (Figure 5.10a). Using this relationship, a load-settlement diagram can 

be produced (Figure 5.10b). Through the use of this diagram, the nonlinear 

behavior of soil is taken into account in the analysis, by performing an 

iterative nonlinear analysis method.  

 
 

  

 

 

Figure 5.10 a) Stress-strain curves for drained triaxial test on dense silica 

sand, b) Linearized load-deformation diagram for 

 

 

The method conducted, first approximates this nonlinear load-settlement 

diagram by a number of straight lines (Figure 5.10b). The intersection points 

of these lines indicate that as the load increases the slope of the linear 

segments changes implying the variations in the axial stiffness (EA) of the 
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member. In other words, the modulus of elasticity becomes a variable which 

describes soil behavior at a particular stress condition. The effect of sign 

changes from positive to negative in the slope of load-deformation diagram is 

also considered by substituting (-EA) for the axial stiffness of the member. 

These stress (σ1-σ7) and corresponding modulus of elasticity (E1-E7) values 

are tabulated in Table 5.1. Axial stiffness of horizontal member is taken from 

[95] as Sk = 0.04714 kN/cm and the dimensions of foundation slab is 

considered as 200x50x70cm.  

 

 

Table 5.1 Stress-strain and corresponding modulus of elasticity values of each 

linear segment obtained from nonlinear stress-stress curve.  

 

Linear segment number 

 1 2 3 4 5 6 7 

σ(kN/cm2) 0.05 0.07 0.082 0.088 0.09 0.089 0.079 

ε(%) 0.4 0.7 1.3 2.2 3.4 4.5 9.2 

E(kN/cm2) 12.5 6.667 2 0.667 0.167 -0.111 -0.212 

 

 

Once the axial stiffness of all the members are specified up to failure, the 

nonlinear analysis is easily carried out by allowing these changes in the 

stiffness of the members during the increase of external loads. This is 

performed as follows; 

 

1) Foundation is analyzed under the external loads and member forces and 

joint displacements are determined. 
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2) As the load is increased, the initial stiffness of the structure does not 

change until one of the axial elements reaches its critical point. This 

change is controlled by load factor which is obtained by first computing 

the lowest incremental load factor. 

 

 

∆λi = ( CFi - |Pai
m| ) / Pi

m      i =1,...,nm                                     (5.3) 
    

 
 

Where; 

 

i  is the incremental load factor, iCF  is critical force for member i, 

m
aiP  and m

iP represent the actual force and the force due to external loads 

in member i at step m. It is clear that initially actual member forces are 

equal to zero. If the minimum in the equation (5.3) is m then the next 

critical load factor is obtained as; 

 
 

mmm   1        (5.4) 

 

3) Pa and xa, representing the actual member forces and joint 

displacements, are updated in every cycle as; 

 

111 )(   mmmm
a

m
a PPP       (5.5) 

111 )(   mmmm
a

m
a xxx       (5.6) 
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Where; 

 

m  and 1m are the load factors at the current and previous steps 

respectively while P and x represent the member forces and joint 

displacements obtained by linear analysis in step number m. 

 

4) After the critical point is reached, (EA)j, which is the axial rigidity of 

member i, is required to be replaced with (EA)j+1 which is specified by 

the next portion of the load-deformation diagram. This requires the 

reanalysis of the structure with axial member i having stiffness (EA)j+1 

resulting new set of member forces and joint displacements. 

 

5) Steps 2, 3, 4 are repeated until the load factor reaches to a predetermined 

value u , or settlements become excessive. 

 

 
It is apparent from the Figure 5.10 that when the procedure moves from one 

critical point to another, stiffness coefficient EA/L of each axial element 

changes each time. As a result, at each critical point the contribution matrix of 

that element is adjusted and stiffness equations are solved to obtain the new set 

of member forces and joint displacements. 

 

In order to clarify the working steps of the algorithm the following simple soil-

structure interaction problem where a strip foundation is supported by a 

number of axial elements is considered. 
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Figure 5.11 A simple strip foundation-soil interaction problem. 

 

 

The strip foundation is assumed to be resting on dense silica sand and it is 

subjected to external loading, which is also illustrated in Figure (5.11). The 

length of the axial elements and the height of the foundation are assumed to be 

0.5m and 0.7m, respectively. Cross-sectional area of each axial element is 

assumed to be 20cm2 .The geometry of the foundation is shown in the figure in 

detail. Linearized load-deformation diagram given in Figure 5.10 is used for 

the representation of nonlinear soil. 

 

The foundation is analyzed twice, employing linear and nonlinear analysis 

procedures. The settlements obtained in both cases are shown in Figure 5.12. It 

is observed that due to the direction of external moments the maximum 

settlement occurs at point 6 in linear elastic analysis. However, when 

nonlinear analysis procedure is employed, the location of maximum settlement 

changes from point 6 to point 2. This is apparent from the fact that the axial 

element under external loading reaches to its critical load value before the 

others. The soil under this point becomes weaker, leading to greater 

settlement. It is also noticed that the difference between the settlements 

obtained with linear and nonlinear analysis is 75%.  
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Figure 5.12 Settlements of strip foundation resting on dense silica sand 

 

 

5.4 Particle Swarm Optimization Design of Rigid and Semi-
Rigid Steel Frames Including Soil-Structure Interaction 

 

 

In this section, optimum design algorithms for rigid and semi-rigid steel 

frames where the soil-structure interaction is included are introduced. The 

previous optimum design algorithm is extended the design algorithm to 

contain the nonlinear soil analysis in the frame analysis routine. The 

procedure can be summarized as follows; 

 

1. The geometry and loadings of the frame including the fictitious 

elements that represent the soil are defined. The load-deformation 

diagram of nonlinear soil is given. If the beam-to-column connections 

are semi-rigid then the connection type is selected. The beams and 

columns of the frame are grouped together.  

 

2. Particle swarm design optimization algorithm is started by generating 

initial values (positions of particles) for the design variables i.e. 
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sequence numbers of steel profiles in steel section tables for discrete 

design. Once the steel sections are specified for the member groups, all 

the cross sectional properties such as moment of inertia, sectional 

modulus and radius of gyration become available. If the end connections 

are partially restrained, connection design process is conducted, i.e. the 

connection parameters such as angles, plates, bolts etc. are selected 

depending on the connection type decided initially. 

 

3. The frame is analyzed with the steel sections adopted for its members 

using analysis subroutine which is based on matrix stiffness method. 

Nonlinear analysis of soil elements is also performed. Member end 

forces and displacements are computed. 

 

4. Design constraints are then checked by using fly-back mechanism. If the 

strength and displacement requirements given in LRFD-AISC [49] are 

satisfied then this design is accepted, otherwise, it is discarded and new 

one is generated. 

 

5. After feasible designs are obtained, particle swarm iteration process is 

initialized. Objective function values, weights of frames belonging to 

each design, are calculated. The particle which has the minimum weight 

is accepted as the current optimum design. After, values of design 

variables are updated using velocity and position update equations of 

particle swarm algorithm and new designs are generated.   

 

6. These new design candidates are all analyzed under the external loading 

and the design constraints are checked. If all the constraints are 

satisfied, weights of these new designs are computed and the lightest 

among them is taken as the new optimum design, if it is lighter than the 

current optimum. 
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7. This iteration procedure is repeated until the predefined number of 

iteration is completed. The design from which has the minimum weight 

at the last iteration process is taken as the optimum design.  

 

 

5.4.1    Design Examples 

 

 

Two unbraced steel frames are designed using the optimum design algorithm 

presented. Frames are assumed to be resting on nonlinear soil. The nonlinear 

behavior of the soil is represented by using fictitious axial elements. Distance 

between each vertical axial element is assumed to be 50 cm. Differential 

settlement of the frames is restricted to 5cm. Besides, when the analysis 

procedure is performed, beam-to-column connections are assumed as fully 

restrained or partially restrained. Latter approach is implemented in such a 

way that the end connections are designed with end plate without column 

stiffener model. Overall weights of fully supported and partially supported 

versions of each frame are compared to have an idea about how much the 

consideration of soil affects the behavior of complete structure.  In the design 

process the discrete set from which the design algorithm selects the sectional 

designations for frame members is considered to be the complete set of 272 

W-sections starting from W100x19.3 to W1100x499mm as given in LRFD-

AISC [49].  

 

 

5.4.1.1    Three Storey-Two Bay Steel Frame 

 

 

The two bay, three storey frame shown in Figure 5.13 is selected as first 

design example, to demonstrate the application of the optimum design 
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algorithm developed. The dimensions, member grouping and the external 

loading of the system are also shown in the figure. The upper bound imposed 

on lateral deflections of the top storey joints is limited to 1/300 of the frame 

height, which corresponds to 30.48 mm. The frame members are collected in 

two different groups. Columns are considered to be group 1 while beams are 

taken as group 2 as shown in the figure. Hence there are only two design 

variables in the design problem. A single distributed load of 40kN/m is applied 

on each beam of the frame and lateral load of 20kN is applied to each storey 

level. The strength capacities of steel members are computed according to 

LRFD-AISC [49]. Beam-to-column connections are designed as end plate 

without column stiffeners model. Each foundation slab has five vertical axial 

elements and one horizontal axial element to support the structure along 

horizontal direction as shown in Figure 5.13. 

 

 

 

 

Figure 5.13 Three storey-two bay steel frame 
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The frame is designed twice considering both semi-rigid and rigid beam-to-

column connections. The design history of these runs is shown in Figure 5.14. 

Best designs are tabulated in Table 5.2 with section designations attained for 

each member group. As indicated in this table, when the nonlinear behavior of 

soil is neglected, particle swarm method based optimum design algorithm 

produces a rigidly connected frame which has the minimum weight of which 

is 12005.990kg. On the other hand, the one obtained under the consideration 

of nonlinear soil has the weight of 12459.16kg. This means that the inclusion 

of soil-structure interaction in the design algorithm leads to an increase in the 

overall weight of the frame. In the former and latter design, the governing 

design constraint is the maximum strength ratio, with the same value of 0.98. 

On the other hand, partially restrained frames, designed by use of design 

algorithms where the soil-structure interaction is excluded and included, have 

the weights of 12358.45kg and 13192.05kg respectively. Dominant constraint 

of both designs is the maximum strength ratio with the values of 0.93 and 

1.00, respectively.  It is clear from the results that when the nonlinear behavior 

of soil is taken into account, the algorithm produces 4% heavier frame in the 

case of rigid connections and 7% heavier frame in the case of semi-rigid 

connections. 
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Table 5.2 Optimum designs for three-storey, two-bay steel frame. 
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Figure 5.14 Design history graph for three-storey, two-bay steel frame. 
 
 

Group 
No.          

Member 
Type 

Fixed support Soil-structure interaction 

Fully rigid 
connect. 

Wsections-
Area(cm2) 

Semi-rigid 
connect. 

(End plate) 
Wsections-
Area(cm2) 

Fully rigid 
connect. 

Wsections-
Area(cm2) 

Semi-rigid 
connect. 

(End plate) 
Wsections-
Area(cm2) 

      

1 Column W250X73 (92.8) W250X115 (146) W760X134(170) W310X454(578) 
2 Beam W690X152 (194) W610X140 (179) W760X134(170) W690X192(244) 

      

Max. Int. St. 
 Drift Ratio 

0. 30 0.42 0.93 0.60 

Max. Strength Ratio 0.98 0.93 0.98 1.00 
Top storey drift (cm) 0.80 1.100 2.329 1.521 
Minimum Weight. 

kg(kN) 
12005.990 
(117.738) 

12358.45 
(121.194) 

12459.16 
(122.182) 

13192.05 
(129.369) 
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5.4.1.2     Four Storey-Four Bay Steel Frame 
 

 

Four storey-four bay steel frame is considered as the second example. 

Loadings and dimensions of the frame are shown in Figure 5.15. The frame 

consists of thirty-six members that are collected in two groups as shown in the 

figure. Columns are taken as group 1 and beams are considered as group 2. 

The lateral displacement of the top storey is limited to 4cm and maximum 

inter-storey drift is restricted to 1cm. The modulus of elasticity is 200kN/mm2. 

A single distributed load of 35 kN/m and a single lateral load is applied to 

each horizontal member of the frame. 

 

 

 

 

Figure 5.15 Four storey-four bay steel frame 
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The optimum W-section designations of semi-rigid and rigid frames obtained 

by the particle swarm method are given in Table 5.3. The design of semi-rigid 

frame resting on nonlinear soil is attained after 760 iterations and the 

minimum weight is 7290.995kg while the one, produced under the 

consideration of supports as fully rigid, has the minimum weight of 

6167.268kg which is obtained after 160 iterations. In the case of rigid beam-

column connection resting on rigid supports, the minimum weights are 

obtained as 7219.616kg and 5914.37kg respectively. It is noticed that the 

maximum strength ratio governs the designs. Design history graphs of this 

frame are shown in Figure 5.16. It is noticed that the rigid frame produced by 

the algorithm which includes the soil-structure-interaction is 22% heavier than 

the one having fixed supports. Similarly, the same approach leads to the 

production of 18% heavier frame in the case of semi-rigid beam-to-column 

connections. 

  

 

Table 5.3 Optimum designs for four-storey, four-bay steel frame. 

 
 

 
 

Group 
No. 

Member 
Type 

Fixed support Soil-structure interaction 

Fully rigid 
connect. 

Wsections-
Area(cm2) 

Semi-rigid 
connect. 

(End plate) 
Wsections-
Area(cm2) 

Fully rigid 
connect. 

Wsections-
Area(cm2) 

Semi-rigid 
connect. 

(End plate) 
Wsections-
Area(cm2) 

1 Column W150X37.1 (47.3) W360X44 (57.3) W360X51(64.5) W410X60 (75.8) 
2 Beam W410X46.1  (58.9) W360X44 (57.3) W460X52(66.3) W410X46.1 (58.9)

      

Max. Int. St.  
Drift Ratio 

0. 47 0.57 0.58 0.50 

Max. Strength Ratio 0.99 0.95 0.92 0.95 
Top storey drift (cm) 1.59 1.96 1.92 1.699 
Minimum Weight. 

kg(kN) 
5914.37 
(58.00) 

6167.268 
(60.480) 

7219.616 
(70.80) 

7290.995 
(71.50) 



 
 

 225

5000

6000

7000

8000

9000

10000

11000

0 500 1000 1500 2000 2500 3000

Number of iterations

B
es

t 
fe

as
ib

le
 d

es
ig

n 
( 

kg
 )

Rigid connect., fixed support

Rigid connect., soil-structure interact.

Semi-rigid connect., fixed support

Semi-rigid connect., soil-structure interact.

  
Figure 5.16 Design history graph for four-storey, four-bay steel frame. 
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CHAPTER 6 
 
 
 
 

SUMMARY AND CONCLUSIONS 
 
 
 
 
 

6.1    Overview and summary of the thesis 

 

 

In this study, new approaches are developed for the optimum design of rigid 

and semi-rigid unbraced plane steel frames including soil-structure interaction. 

This study can be divided into four parts, the results obtained in each of which 

are discussed in the following. 

 

In the first part of the study particle swarm optimization (PSO) algorithm is 

introduced. It is intended in this section to investigate the performance of this 

technique in the solution of benchmark problems. First benchmark problem 

solved with this algorithm is called the Himmelblau’s function [62] which has 

five design variables and three constraints. PSO result of this problem is -

30665.40, which is the second best objective function value among the ones 

obtained with four different optimization methods. Second example is the 

welded beam design in which the PSO algorithm shows great performance. 

The minimum objective function value obtained with PSO algorithm is 25% 

lighter than the best of the rest. Similarly, in the pressure vessel design and 

spring design problems, PSO obtained the best results. During these tests, PSO 

parameters are also analyzed so that the most appropriate ones are determined. 

These observations indicate that the variations in the parameter set have great 

effect on the performance of the algorithm. It is noticed that even only change 
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of one parameter in the set can lead to a huge disorder in the convergence and 

thereby the final result of the problem. This fact comes from the stochastic 

nature of combinatorial optimization algorithms. On the other hand, it is also 

noticed that the PSO algorithm has a better convergence rate in the solution of 

benchmark problems. It does not require much computation time. Besides, the 

results obtained at the end of the iteration process do imply that the technique 

is robust and can be applied to the structural design problems. One of the 

previous studies, carried out by He et al. [22] has stated the same conclusion. 

 

In the second part of the study, the minimum weight design of seven unbraced 

steel frames is presented. Each numerical example is solved with both 

continuous and discrete design algorithms. It is observed that the assumption 

of continuous set of sections produces 9.5%, 9.6%, 10%, 24%, 34%, 16%, 

57% lighter frames. These values imply that the relative difference between 

the weights of best designs obtained with each approach is problem dependent. 

Additionally, the ascending trend in the values with increasing number of 

stories, with the exception of the ten-story-three-bay frame, demonstrate the 

advantages of continuous over discrete design with increasing number of 

stories. Therefore, approaching the design from discrete to continuous through 

the use of built-up sections for a selected number of members might prove to 

be economically advantageous in the case of high-rise building frames. 

 

The third part of the study is dedicated to the optimum design of unbraced 

steel frames with partially restrained connections. Two types of end 

connections are considered in this section. Namely, end plate without column 

stiffeners and top and seat angle with web cleats (TSWC). First six examples 

are designed with both connection types separately and only the former 

connection type is used for the rest. The results indicate that the consideration 

of connection flexibility in the design leads to an increase in the overall 

weight. Additionally, it is observed that the design algorithm finds much 



 
 

 228

heavier frames when the connections are modeled as TSWC. For example, if 

the three storey-three bay steel frame is taken into consideration, it can be 

clearly seen that the optimum frame with TSWC is 2.3% heavier than the one 

with end plates without column stiffeners. This is due to the high amount of 

dependent connection parameters in the design and the insufficient variety of 

angle sections given in the ready angle list.   

 

In the last part, the effect of soil-structure interaction is considered in the 

optimum design of steel frames. Both types of end connections are taken into 

account in the design. As expected, the inclusion of soil-structure interaction 

in the design leads to a considerable increase in the overall weight. It is 

apparent from the results that this is valid for all examples. For example, in the 

problem of four-storey, four bay steel frame, the algorithm produces 22% 

heavier rigid frame and 18% heavier semi-rigid frame, when the soil 

nonlinearity is included. It is also clear from the results that as the number of 

story increases, the effect of soil nonlinearity on the overall weight also 

increases.     

 

 

6.2   Conclusions 

 

 

In this study, the particle swarm optimizer is used to develop an optimum 

design algorithm for moment resisting steel frames. Additionally, the 

flexibility of beam-to-column connections is also taken into account in the 

structural analysis of the frame. End connection models of top and seat angle 

with web cleats and end plate without column stiffeners are used to represent 

the beam-to-column connections. Due to the fact that the connection flexibility 

affects the distribution of forces in the frame and leads to an increase in the 

drift of whole structure, P-∆ effect is required to be considered in the frame 
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analysis. Further, the soil-structure interaction is included in the design 

algorithm. Contrary to the practical implementations in which the columns are 

connected to the soil with fixed support, the frames in the present study are 

modeled as it is supported with the foundations resting on nonlinear elastic 

soil. This is achieved through the use of Winkler springs. The nonlinear 

behavior of soil is taken into account in the analysis, by performing an 

iterative nonlinear analysis method.  

 

The particle swarm optimization based design algorithm is mathematically 

quite simple but effective in finding the solutions of combinatorial 

optimization problems. The optimum design algorithm presented selects 

optimum W-sections from American steel sections table for beams and 

columns of unbraced rigid and semi-rigid steel frames such that design 

constraints described in LRFD-AISC are satisfied and the frame has the 

minimum weight. Continuous numbers generated in the algorithm are 

converted to integer ones with rounding off method and these discrete 

variables are used to obtain sequence numbers of ready steel section list. 

Constraints are handled with fly-back mechanism and feasible ones being 

candidate solutions to give the minimum frame weight are determined. 

Numerical examples show that rounding-off and fly-back mechanisms are 

effective in particle swarm optimization technique. 

 

In view of the results obtained, it can be concluded that the inclusion of joint 

flexibility and soil-structure interaction in the analysis leads to a change in the 

response of the structural members and therefore an increase in the overall 

weight of the frame. It is noticed that when the partially restrained behavior of 

connections is considered, the algorithm produces heavier frames. Besides, the 

effect of soil-structure interaction results in a further increase in the overall 

weight. Therefore, to achieve a more realistic design one should perform the 

structural analysis through the consideration of these behaviors.    
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