A BRANCH AND BOUND ALGORITHM FOR
RESOURCE LEVELING PROBLEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUSTAFA CAGDAS MUTLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CIVIL ENGINEERING

AUGUST 2010

Approval of the thesis:

A BRANCH AND BOUND ALGORITHM FOR
RESOURCE LEVELING PROBLEM

submitted by MUSTAFA GCAGDAS MUTLU in partial fulfillment of the requirements
for the degree of Master of Science in Civil Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Giiney Ozcebe
Head of Department, Civil Engineering

Assoc. Prof. Dr. Rifat Sbnmez
Supervisor, Civil Engineering Dept., METU

Examining Committee Members:

Assist. Prof. Dr. Metin Arikan
Civil Engineering Dept., METU

Assoc. Prof. Dr. Rifat Sonmez
Civil Engineering Dept., METU

Prof. Dr. M. Talat Birgdnil
Civil Engineering Dept., METU

Assoc. Prof. Dr. Murat Glnduz
Civil Engineering Dept., METU

Alphan Nurtug, M.Sc.
Project Manager - PMP, 4S Software

Date: 04.08.2010

I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and
ethical conduct. I also declare that, as required by these rules and
conduct, I have fully cited and referenced all material and results

that are not original to this work.

Name, Last Name : Mustafa Cagdas Mutlu

Signature

ABSTRACT

A BRANCH AND BOUND ALGORITHM FOR
RESOURCE LEVELING PROBLEM

Mutlu, Mustafa Cagdas
M.S., Department of Civil Engineering
Supervisor: Assoc. Prof. Dr. Rifat Sénmez

August 2010, 106 Pages

Resource Leveling Problem (RLP) aims to minimize undesired fluctuations in
resource distribution curves which cause several practical problems. Many
studies conclude that commercial project management software packages can
not effectively deal with RLP. In this study a branch and bound algorithm is
presented for solving RLP for single and multi resource, small size networks.
The algorithm adopts a depth-first strategy and stores start times of non-
critical activities in the nodes of the search tree. Optimal resource distributions
for 4 different types of resource leveling metrics can be obtained via the
developed procedure. To prune more of the search tree and thereby reduce
the computation time, several lower bound calculation methods are employed.
Experiment results from 20 problems showed that the suggested algorithm
can successfully locate optimal solutions for networks with up to 20 activities.

The algorithm presented in this study contributes to the literature in two
points. First, the new lower bound improvement method (maximum allowable
daily resources method) introduced in this study reduces computation time
required for achieving the optimal solution for the RLP. Second, optimal
solutions of several small sized problems have been obtained by the algorithm

for some traditional and recently suggested leveling metrics. Among these
metrics, Resource Idle Day (RID) has been utilized in an exact method for the
first time. All these solutions may form a basis for performance evaluation of
heuristic and metaheuristic procedures for the RLP. Limitations of the
developed branch and bound procedure are discussed and possible further
improvements are suggested.

Keywords: Resource Leveling Problem, Branch and Bound Method, Discrete
Optimization, Resource Idle Day

0z

KAYNAK DENGELEME PROBLEMININ COZULMESI AMACIYLA
BIR DAL VE SINIR ALGORITMASI GELISTIRILMESI

Mutlu, Mustafa Cagdas
Yiiksek Lisans, Insaat Miihendisligi B&limii

Tez Yoneticisi: Dog. Dr. Rifat S6nmez
Adustos 2010, 106 Sayfa

Kaynak Dengeleme Problemi (KDP), kaynak cizelgelerindeki istenmeyen
dalgalanmalarin asgari dizeye indirilmesini, bdylelikle bu dalgalanmalarin yol
acabilecegi olasl sorunlarin 6nlenmesini amaglamaktadir. Proje planlamasinda
ve yOnetiminde yaygin olarak kullanilan paket programlarin KDP'ni ¢ézmede
yetersiz kaldiklari gok sayida arastirmada belirtilmistir. Bu ¢alisma kapsaminda,
tek ve gok kaynakli, kugik o6lcekli sebekelerde KDP igin en optimal ¢dzimi
bulmayr amaclayan bir dal ve sinir algoritmasi geligtirilmistir. Gelistirilen
algoritma derinligine arama stratejisini esas almakta ve arama agacinin herbir
digimiinde belirli bir aktivite icin gegerli bir baslangig tarihi saklamaktadir. 4
ayri kaynak dengeleme 6lglitl igin en optimal ¢6ziim(bulabilen yéntem, gok
sayida alt sinir hesaplama teknigine yer vererek arama alanini sinirlandiriimaya
galismaktadir. 20 i programi Uzerinde yapilan deneyler, gelistirilen
algoritmanin 20 aktiviteli sebekelere kadar olan problemlerde en optimal
gOzlimleri bulabildigini gostermistir.

Sunulan ydntem literatiire iki dnemli noktada katki saglamaktadir. Oncelikle,
Onerilen alt sinir hesaplama teknigi (izin verilebilen en fazla ginliik kaynak

tiketimi) en optimal ¢6zimin bulunmasi igin ihtiyag duyulan hesaplama

Vi

zamaninin kisaltimasini saglamistir. Ayrica, bazi kigiik Olgekli kaynak
dengeleme problemlerinin gesitli 6lglitler icin optimal ¢dztumleri sunularak
gelecekte gelistirilecek sezgisel yontemlerin performanslarinin
degerlendiriimesi amaciyla bir &rnek problem seti olusturulmustur. Yakin
zamanda Onerilmig olan “atil kaynak gund” kaynak dengeleme Oolgltu igin
pekcok problemin en optimal ¢oéziimleri literatirde ilk defa bulunmustur.
Geligtirilen yontemin kisitlamalari tartisiimis ve ileride yapilabilecek galigmalar

ile ilgili 6nerilerde bulunulmustur.

Anahtar Kelimeler: Kaynak Dengeleme Problemi, Dal ve Sinir Algoritmasi,

Kesikli Optimizasyon, Atil Kaynak Glini

Vii

To My Mother

viii

ACKNOWLEDGMENTS

I would like to express my sincere thanks to my supervisor,
Assoc. Prof. Dr. Rifat Sénmez for the vision, encouragement, comments and
critiques he provided for this work. I am grateful not only for his patient
supports throughout this study, but also for his modesty in sharing his
valuable experiences with me. I know that the insight he provided will guide

me all through my life.

I would like to thank Prof. Dr. M. Talat Birgonil for his understanding and for
his efforts in providing the conditions I needed to complete this study. I am
also indebted to all faculty members and research assistants of the
Construction Engineering and Management Division of Middle East Technical

University. Surely, they all contributed to this work one way or another.

There is no way for me to show how much I appreciate the everlasting
support of my parents, Aysel Bulgu and Nureddin Mutlu. I owe my deepest
gratitude to my aunt Nefise Bulgu who let me benefit from her wisdom and
who has patiently shared all my difficult times in Ankara. Also, my uncle
Aykut Lenger deserves special mention for the guidance he provided with me
for all critical decisions I have ever made. He is surely at the top of my

gratitude list.

I also would like to thank my girlfriend irem Onar who has motivated me
more than anybody else could do and who shared all difficulties I
encountered. Without her, one piece of this study, as well as me, would be
lacking. Finally, I would like to express my special thanks to Alper Onen,
Umut Akin and all other friends of mine whose support I felt with me
throughout this study.

TABLE OF CONTENTS

ABSTRACT e iv
OZ vi
ACKNOWLEDGEMENTS] ix
TABLE OF CONTENTS e X
LIST OF TABLES e Xii
LIST OF FIGURES e Xiv
LIST OF ABBREVIATIONS e %
CHAPTER
1 INTRODUCTION e 1
2. LITERATURE REVIEW e 9
2.1 Heuristic, Metaheuristic and Exact Methods______ 9
2.2 Heuristic and Metaheuristic Methods for Resource Leveling
Problem 12
2.3 Exact Methods for RLP and Other Scheduling Problems_____ . 23
3. BRANCH AND BOUND METHOD 34
3.1 Objective FUNCHIONS . 34
3.1.1 Sum of Squares (SSQR) of Resource Requirements______. 34
3.1.2 Minimum Absolute Deviation (MinDev) of Resource
Requirements from Uniform Resource Level . .. 35
3.1.3 ResourceldleDays(RID) 37
3.1.4 Resource Idle Days and Maximum Resource Demand
(RID4+MRD) 38
3.2 Basics of the Branch and Bound Method . 39
3.3 Problem Definition 41
3.4 Characteristics of the Developed Branch and Bound Algorithm___45
3.4.1 Branching from Nodes to New Nodes 45
3.4.2 Determining Lower Bounds for the New Nodes 47
3.4.2.1 Discarding Critical Activities . .. 47
3.4.2.2 Unavoidable Times of Activities_______.._ 48
3.4.2.3 Allocating Unscheduled (Free) Resources._ ... 50
3.4.2.4 Maximum Allowable Daily Resources 55

3.5
3.6

3.4.3 Choosing an Intermediate Node from Which to Branch
Next and Selecting the Activity to be Scheduled

3.4.4 Recognizing Non-promising Nodes and Optimal

Solutions .

Coding the Algorithm

4. VALIDATION AND COMPUTATIONAL RESULTS

4.1
4.2
4.3

Validating the Algorithm

Computational Results

Effect of the Maximum Allowable Daily Resources

Improvement on the Performance of the Algorithm

5. CONCLUSIONS

REFERENCES
APPENDICES

A. PROBLEM INPUTS

Xi

59

60
61
64
66
66
68

83

86

90

97

LIST OF TABLES

TABLES

Table 2.1 Heuristic and Metaheuristic Methods for RLP

Table 2.2 Exact Methods for Scheduling Problems
Table 4.1 Computational Results (Schedules 1 and 2)
Table 4.2 Computational Results (Schedules 3 and 4)
Table 4.3 Computational Results (Schedules 5 and 6)
Table 4.4 Computational Results (Schedules 7 and 8)
Table 4.5 Computational Results (Schedules 9 and 10)
Table 4.6 Computational Results (Schedules 11 and 12)
Table 4.7 Computational Results (Schedules 13 and 14)
Table 4.8 Computational Results (Schedules 15 and 16)
Table 4.9 Computational Results (Schedules 17 and 18)
Table 4.10 Computational Results (Schedules 19 and 20)

Table 4.11 CPU Times Spent by Algorithms with and without Employing

Maximum Allowable Daily Resources Improvement (seconds)

Table 4.12 Significance Levels at which Means of the Computation Times

Table A.1 Inputs for Problem No.
Table A.2 Inputs for Problem No.
Table A.3 Inputs for Problem No.
Table A.4 Inputs for Problem No.
Table A.5 Inputs for Problem No.
Table A.6 Inputs for Problem No.
Table A.7 Inputs for Problem No.
Table A.8 Inputs for Problem No.
Table A.9 Inputs for Problem No.
Table A.10 Inputs for Problem No. 10
Table A.11 Inputs for Problem No. 11
Table A.12 Inputs for Problem No. 12

1

O 0 N o U1 b~ W N

Xii

21-22
31-32
71
72
73
74
75
76
77
78
79
80

Table A.13 Inputs for Problem No.
Table A.14 Inputs for Problem No.
Table A.15 Inputs for Problem No.
Table A.16 Inputs for Problem No.
Table A.17 Inputs for Problem No.
Table A.18 Inputs for Problem No.
Table A.19 Inputs for Problem No.
Table A.20 Inputs for Problem No.

13
14
15
16
17
18
19
20

Xiii

103
104
104
105
105
106
106
106

LIST OF FIGURES

FIGURES

Figure 3.1 Sample Resource Distribution
Figure 3.2 Idle Days on the Sample Resource Distribution of Figure 3.1
Figure 3.3 Sample Activitiy on Node Schedule
Figure 3.4 Resource Distribution for the Early Start Schedule of Figure 3.3
Figure 3.5 Search Tree Established by the Branch and Bound Algorithm
Figure 3.6 Optimal Resource Distribution for the Schedule of Figure 3.3
Figure 3.7 Resource Distribution of Critical Activities (a) and Unavoidable

Resources

Figure 3.8 Resource Distribution After Scheduling Activity 3 (a) and
After Scheduling Additional Resources (b)
Figure 3.9 Maximum Allowable Daily Resources (a) and Lower Bound
Calculation According to These Resource Limits (b)
Figure 3.10 Search Tree Established by Utilizing Maximum Allowable Daily
Resources Improvement in Addition to the Improvements Given in
Sections 3.4.2.1, 3.4.2.2 and 3.4.2.3

Xiv

LIST OF ABBREVIATIONS

AOA Activity on Arrow

AoN Activity on Node

CPM Critical Path Method

EF Early Finish

ES Early Start

DSS Decision Support System

GA Genetic Algorithm(s)

LF Late Finish

LS Late Start

MaxRes Maximum Allowable Daily Resource Limitation
MinDev Minimum Absolute Deviation
MRD Maximum Resource Demand

NP-Complete Non-deterministic Polynomial-time Complete

NP-Hard Non-deterministic Polynomial-time Hard

PACK Packing Method

PMBOK Project Management Body of Knowledge

PSO Particle Swarm Optimization

RAM Random Access Memory

RCPSP Resource Constrained Project Scheduling Problem

RCPSPDC Resource constrained project scheduling problem with discounted
cash flows

RID Resource Idle Day

RLP Resource Leveling Problem

RRH Release and Rehire

SA Simulated Annealing

Sq Standard Deviation

SSQR Sum of Squares

TF Total Float (Slack)

TSP Travelling Salesman Problem

XV

CHAPTER 1

INTRODUCTION

Although importance of project planning is recognized in many project based
industries, few companies depend on scheduling skills as much as
construction companies do. Operating under continuously changing
environmental conditions and being involved in complex and unique projects,
which require multidisciplinary collaboration, construction companies have to
develop realistic schedules and update them regularly. It is not only the
nature of the construction business that makes scheduling such a vital task.
Increasing competition within the industry also forces construction companies
to provide products of higher quality, in shorter durations, for lower costs and
under safer working environments. Obviously, it is not possible to achieve

these objectives simultaneously in the absence of an adequate schedule.

As characteristics of the construction business point out, preparation of a
schedule for a construction project requires simultaneous consideration of
several issues. Although scheduling might be perceived as a simple matter of
determining the sequence and timing of activities within a project, a planner
has to cope with a number of constraints and considerations. Precedence
relations, lag times, productivity rates, site availability, working calendars and
climatic conditions are some of the many issues to be considered during the
preparation of a schedule. In addition to these, resource requirements of
activities, availability of resources and shapes of the resource requirement

curves also need to be considered to ensure economical resource utilization.

One of the most common reasons why schedules deviate from reality is that,
resources are not carefully considered during planning phase. If resources are
not scheduled together with the activities by considering resource availabilities
and resource graph fluctuations, in other words if resource allocation is not
carried out properly, then there is a high probability that obtained schedule
will fail to successfully model the project in terms of duration and cost.
Obviously, such an unsuccessful schedule would pose a threat for a company
in that it may cause financial losses, problems, dissatisfied clients, bad
reputation etc. In fact, an adequate schedule, which incorporates resources
appropriately, provides competitive advantage to the company from the very

beginning until the end of the project.

One of the most commonly applied scheduling techniques is the critical path
method (CPM). In this method, durations of activities and precedence
relations between them are defined. Schedules are prepared based on these
inputs and illustrated by one of the two popular methods which are activity on
arrow (AoA) or activity on node (AoN) representations. Early start and early
finish times and late start and late finish times of tasks are determined by
forward pass and backward pass calculations respectively. After these
calculations, total floats (slacks) of activities are determined by subtracting
early start times from the late start times. Total floats give an indication of the
amount of allowable delay in starting/completing any activity without
extending overall project duration. If total float of a task is equal to zero, this
means that the activity is a critical one and has to start as soon as its
predecessors are completed. Path or paths consisting of critical activities are
called critical path/paths and the project makespan equals the total duration
required to complete any of these. Theoretically, preparation of a regular CPM
network does not necessarily require resource allocation as long as durations
of activities and precedence relations among them are defined adequately. In
fact, schedules depending on this much consideration are commonly used
within the construction industry, while resource utilization issues are usually

disregarded.

If resources required by each activity are assigned on an early start schedule,
in which all tasks are started as soon as possible, it is highly probable that
there will be very high amounts of resource requirements for some periods.
Moreover, if resource utilization graphs are considered, undesired fluctuations
may easily be observed. These are among the major reasons why some
schedules are far from representing actual projects and therefore should be
prevented as much as possible. Scheduling problems try to eliminate such
situations in order to obtain more realistic schedules and to minimize financial

losses due inefficient planning.

One of the scheduling problems commonly addressed by researchers is
Resource Constrained Project Scheduling Problem (RCPSP). In this
problem it is aimed to complete a project as soon as possible using available
amounts of resources. In a feasible solution of RCPSP resource requirements
of activities are lower than or equal to the amount of available resources at
any instant of time. In other words, solution of RCPSP ensures effective use of
available resources so that the project is completed as soon as possible

without exceeding resource limitations.

It has been indicated that early start schedules, inevitably, include undesired
fluctuations in resource utilization graphs over time. Such variations are
known to have several negative impacts from the project management point
of view. Unproductive labor and equipment utilization, increased cost of
temporary facilities, short term employment of the workforce and difficulties in
attracting skilled workforce due to lack of guarantee to provide long term job
opportunities are some of the most significant negative outcomes of these
fluctuations. Frequently rehiring and releasing employees also reduces the
motivation of individuals and makes the establishment of a company culture
difficult. Moreover, companies have to make significant investments on the
training of their staff repeatedly, since the workforce is not stable. Especially,
in construction industry which depends on know-how at individual and

company levels, such fluctuations’ costs to the companies are considerable.

Variations in resource demand curves, which might have the negative impacts
listed in the previous paragraph, are addressed by the Resource Leveling
Problem (RLP). The purpose of this problem is to eliminate fluctuations on
the resource demand over time periods throughout the project makespan. A
leveled resource distribution is aimed to be achieved by considering unlimited
amounts of resources. To do this non-critical activities on a CPM schedule are
shifted within their available float times. In a feasible solution of RLP, start
times of activities are adjusted in a manner that resource level variations are
minimized as much as possible. At this point, it might be useful to revisit some
of the major assumptions outlined by Harris (1990) for RLP, which are also

valid for this study.

e Activities are assumed to be time continuous and are not allowed to be
splitted. In other words, once an activity has started it can not be
stopped until completion.

e Resources consumed by activities are assumed to remain constant
from the beginning until the end of the activities, i.e. each activity is
assumed to have a constant rate of utilization of the resources.

e Reductions or extensions in activities’ duration by changing their
resource rates are not allowed.

e The algorithm is not allowed to extend or shorten the project duration.

As the assumptions listed above indicate, extensions in project duration are
not allowed in traditional RLP. However, there are some studies in the
literature which allow project makespan to be extended up to a certain time
limit; e.g. a fraction of initial CPM duration. There are also some studies on
RLP which allow activities to be stopped and restarted, i.e. splitted, although
traditional assumptions do not allow this. It could be said that RLP addressed
in these studies are variations of the traditional RLP. Such considerations, of
course, might be useful for projects from many industries. However, it is
believed that RLP in its traditional format is the most applicable problem for

construction industry.

Quantification of the amount of resource fluctuations is an important issue to
be considered while dealing with RLP. Several objective functions have been
devised for this purpose in the literature. Minimization of sum of squares of
resource demands per period, minimization of the absolute differences
between resource demands in consecutive periods and minimization of the
absolute deviations from a uniform or desired resource level are three of the
oldest and most commonly used objective functions. In addition to these,
metrics to minimize the moment of the resource histogram, to minimize the
idle times of the resources and to minimize the rate of releasing and rehiring
resources are also being employed by researchers. Detailed information on
traditional objective functions and on some more innovative metrics is going
to be presented in the following chapters. However, it should be realized at
this point that trying to conform resource utilization graphs to predetermined
shapes usually makes the solution of RLP even more difficult since such
resource distributions most of the times may not be possible due precedence
constraints. Moreover some metrics which are suitable for an industry may not
be applicable to another one. For example, trying to fit the resource curve to a
rectangular shape does not seem to make much sense in construction
industry, although it might be the best resource distribution for manufacturing
industry. This is because construction projects, by their nature, have slower
progress rates at the beginning and towards the end of the projects. In other
words, in construction business it is usually expected that the resource curve
of a project is bell shaped. Therefore, trying to conform it to a rectangular
shape is a useless effort. Thus, selection of the objective function should be

done by considering the nature of the project and the desired outcome.

Although definitions of scheduling problems are quite clear and their solutions
appear to be easy at first glance, commercially available software seem to be
inadequate in solving them. Especially for large networks, solutions of RCPSP
are far from being optimal (Cekmece, 2009). It might be commented that
there is a gap between the theoretical achievements of researchers and

practical applications of practitioners in the field of project scheduling

problems. The reason for this situation is that these are difficult problems
which require special algorithms to be addressed effectively. Since most
software packages lack such powerful tools, they fail to handle scheduling
problems causing inefficient schedules in terms of resource utilization.
Moreover, awareness on these algorithms and the importance assigned to
them within the industry is highly limited. It is reported that in Project
Management Body of Knowledge Book (PMBOK) only 20 lines are reserved for
resource leveling algorithms without even differentiating RCPSP and RLP
properly (Herroelen, 2005).

In order to understand why scheduling problems are difficult, one has to be
familiar with the concept of AP classes. RCPSP is a non-deterministic
polynomial-time hard (WNVP-hard) problem (Demeulemeester, 2002), whereas
RLP is accepted as a non-deterministic polynomial-time complete (NP -
complete) problem (Son and Skibniewski, 1999). In fact, the reason why
these problems require special attention is because of these classes they
belong. Problems in NP class are difficult problems, solutions of which require
parallel searches within the solution space. If a tree search procedure is
considered, problems in AP class require the number of branches, i.e. the
number of parallel searches, to increase much faster than the increasing
number of decision variables. In other words, computational efforts required
to handle such problems increase very rapidly (exponentially) with the
increasing problem size. It is this combinatorial explosion that makes the

solution of scheduling problems a complicated issue.

As indicated formerly, solution of RLP requires special attention as most other
complicated scheduling problems. If previous studies on the problem are
investigated, it might be observed that suggested solutions either depend on
heuristic/metaheuristic procedures such as genetic algorithms, simulated
annealing, tabu search, particle swarm optimization etc. or on exact
procedures such as linear integer programming, dynamic programming,

branch and bound etc. Heuristic and metaheuristic methods aim to obtain an

acceptable solution to the problem within a short duration of time whereas
exact methods aim to find the best possible solution, i.e. the optimal solution.
Naturally, computational efforts required by exact methods are more than the
heuristic based methods. Also, exact procedures are usually more difficult to
implement compared to heuristics and metaheuristics. Moreover, achieving an
optimal solution also requires more computer storage. In fact, it is these
issues which make it difficult to solve RLP to optimality even for medium sized
projects. It might be argued that solving a problem using exact methods
should be preferred if the solution can be obtained in a reasonable amount of
time and for a reasonable amount of computational effort. Otherwise,

effective metaheuristics should be employed to obtain a good solution.

At this point, an emphasis on the importance of the effectiveness of heuristics
and metaheuristics is required since poor performances of commercially
available software in solving RCPSP and RLP are usually associated to the
ineffective heuristic rules they employ. Although they provide considerable
time savings, heuristic and metaheuristic rules might be problem dependent
and their performances may show variations from one project to another. This
is perhaps the most significant drawback of these methods. Moreover,
evaluating their performance is difficult without knowing the exact solution of
the problem, since in this case it would not be possible to understand how
close the obtained solution to the optimal solution is. Detailed information on
both heuristic/metaheuristic and exact methods and their advantages and

disadvantages is going to be presented in the next chapter.

The objective of this study is to present a branch and bound algorithm which
solves RLP to optimality for small sized projects. The algorithm has been
developed using C++ programming language and proved to successfully
operate on CPM schedules. It is an exact procedure which differs from the
previous studies both in terms of the search strategy and pruning methods of
the search tree. Traditional objective functions and innovative objective

functions have been incorporated to the algorithm and experimentations have

been conducted for validation and performance analysis purposes. The study
is organized as in the following: Chapter 2 includes detailed information on
heuristic and exact methods. Also details of the literature related to studies
dealing with RLP and other scheduling problems via these methods are going
to be presented in this chapter. In Chapter 3 detailed information on the
utilized objective functions, employed lower bound calculation methods and
adopted search strategy is given. Chapter 4 includes results obtained from
computational experiments in addition to a statistical analysis to check the
significance of the suggested lower bound improvements. Finally, in

Chapter 5, conclusions and further research suggestions are presented.

CHAPTER 2

LITERATURE REVIEW

As indicated in previous chapter, exact solution for resource leveling problem
requires special attention due to the complex nature of the problem. As a
result, researchers appeal to various heuristic, metaheuristic and exact
procedures for solving RLP. In this chapter, firstly, definitions of these
methods are going to be provided. Afterwards, a detailed literature review on
applications of heuristic based methods on RLP is going to be presented.
Finally, a review on exact method applications on RLP and some other
scheduling problems is going to be given.

2.1 Heuristic, Metaheuristic and Exact Methods

Solutions of most optimization problems require effective strategies, which
depend on computer sciences significantly. Therefore, size and complexity of
problems that can be solved via these procedures increases parallel to the
developments in computer technologies. It is possible to classify these
strategies into two major groups according to the solution types they provide
at the end of the search. Methods in the first group, heuristic and
metaheuristic methods, do not guarantee an optimal solution. In the second
category, on the other hand, optimal solution of the problem is guaranteed by
exact methods.

Heuristics are named after the Greek verb “Aeuriskein’” which means “to find".
They are simple rules or sets of rules aiming to obtain a “good” solution for a

difficult problem. They do not guarantee that the optimal solution of the
problem is going to be obtained at the end of the search. Most popular types
of heuristics are construction and improvement heuristics. Construction type
heuristics try to achieve a near optimal solution by constructing it step by
step. Decisions are made during the creation of the solution to ensure that
appropriate steps are taken. Improvement heuristics, however, operate on a
feasible (not necessarily a good) solution of the problem. In this type of
heuristics, rules of thumb are employed to improve the initial solution as much
as possible. Heuristics are easy to implement algorithms which sometimes
may be applied manually without even requiring a computer. Burgess and
Killebrew Heuristic is an example to heuristics applied in project scheduling
(Burgess and Killebrew, 1962). It is an improvement type heuristic which
operates on an early start schedule in order to locate a near optimum (local

optimum) solution to RLP in a short time.

Metaheuristics are higher level strategies adapted to solve difficult problems.
They are complex computational methods which aim escaping from local
optimum by directing heuristic rules accordingly. Therefore, while heuristics
usually have a higher chance to be stuck in a local optimum, metaheuristics
are more likely to reach one of the optimum solutions of the problem under
consideration. However, neither of these methods guarantees optimality. The
strength of heuristic and metaheuristic methods lies in the reduced
computation time and effort they require. In some cases, reaching to a near
optimal solution in a short period of time might be preferred over reaching to
the optimal solution in a longer computation time. This practical advantage
and the ease of adapting general purpose metaheuristics to specific problems
are two important aspects why these methods are commonly applied in
literature. Some of the most popular metaheuristic methods may be listed as;
genetic algorithms, simulated annealing, tabu search, particle swarm

optimization etc.

10

There is no way to ensure that the optimal solution of a problem is found
unless it is solved by an exact procedure such as; linear-integer programming,
dynamic programming, implicit enumeration, branch and bound etc.. These
procedures usually require more computational effort and more computer
storage since they have to explore whole search space on the contrary to
metaheuristics which only visit promising regions. Moreover, coding exact
methods might be more difficult for most of the optimization problems.
Despite these difficulties and disadvantages, exact methods are essential in
optimization. This is because they are capable of guaranteeing optimality
which metaheuristics are never able to. In other words, their performance in

terms of solution quality is undoubted unlike metaheuristics.

It is sometimes argued that finding exact solution of an optimization problem
is neither practical nor necessary. The proponents of this view claim that the
optimization problems can not represent real life examples exactly and thus
obtained exact solutions are not applicable in reality. Although this may be
true for some problems, it can not be ignored that there are some problems
which model real life examples almost completely. For example, optimal
solution of travelling salesman problem (TSP), which aims to complete a tour
consisting of a certain number of cities in the shortest possible way, may not
be applied in reality. However, this problem is known to be analogous to DNA
sequencing and microchip manufacturing. Obviously exact solution of TSP may
be applied for these two problems. Another, and perhaps a more important,
reason why exact solution procedures are necessary is that it is not possible to
properly evaluate the solution quality of a metaheuristic unless it is
experimented on problems with known optimal solutions. In other words, to
estimate the closeness of the solution provided by a heuristic or metaheuristic
to the global optimum, researchers need to know the true optimal solution of

the problem which can only be determined via exact procedures.

In addition to the above listed benefits, exact methods are also useful in

determining the size and complexity of problems with which metaheuristic

11

methods should be dealing. In project scheduling and in many other fields
several heuristic based methods are developed and experimented on problems
which could easily be solved by exact methods. In order to prevent such
useless efforts, metaheuristics are required to address problems which can not
be tackled by exact methods due to high complexity or large problem size.

Although resource leveling is an important problem whose solution may
eliminate productivity losses and discontinuities in workflow throughout
projects, it has not been addressed in literature as widely as RCPSP. Especially
exact methods developed to solve RLP are very limited in number. Moreover
some of the exact methods solve the problem by allowing CPM makespan to
be extended, which transforms the problem to a variation of RLP. In the
following sections heuristic and metaheuristic based studies previously applied
on RLP are going to be presented in addition to the exact procedures
addressing the same problem. Due to the fact that there are few exact studies
on RLP, some of the branch and bound methods addressing RCPSP have also

been referred in order to give a brief background of this method.

2.2 Heuristic and Metaheuristic Methods for Resource

Leveling Problem

One of the earliest attempts to reduce resource level fluctuations is seen on
Burgess and Killebrew (1962). Heuristic algorithm presented in this study
operates on an early start schedule. Activities are considered according to a
priority rule and shifted to the best possible start date one by one so that the
objective function value is minimized. Being a general algorithm, Burgess and
Killebrew heuristic can be applied to a variety of objective functions such as
sum of squares or minimum deviation etc. Also, a variety of priority rules,
such as increasing activity numbers, decreasing activity numbers or total float
based priority lists, can be employed to obtain different results using the same
procedure (Burgess and Killebrew, 1962).

12

Another heuristic algorithm to solve RLP in multi-project, multi-resource
scheduling has been presented by Woodworth and Willie (1975). After this
study, Harris (1990) introduced a new heuristic rule, named as Packing
Method (PACK), to solve leveling problems in construction projects. This
method was based on minimization of moment of the resource histogram. It
has been aimed that the final distribution approaches to a rectangular shape
so that the moment of the histogram is minimized. As to the performance of
the algorithm, it has been reported that PACK is advantageous over previously
developed algorithms in that it is clear, logical and computationally efficient
(Harris, 1990).

PACK method has been referred to in a number of researches. Martinez and
Ioannou (1993) tried to improve this method by introducing Modified
Minimum Moment Method to level resources in construction projects. This
study has been followed by one of the earliest metaheuristic applications for
RLP. This was the neural network based resource leveling algorithm developed
by Savin, Alkass and Fazio (1996).

Genetic algorithms (GA), being inspired by natural evolution mechanisms, are
one of the most popular metaheuristic methods. They are being adapted to a
number of difficult problems to obtain near-optimal solutions. A typical GA
operates on a generation of solutions. It selects good, i.e. highly fit, solutions
and reproduces them by crossover and mutation operators. In this manner
fittest solutions are allowed to survive over generations finally converging to a
local or global optimum. Being a successful and easy to implement
metaheuristic method, GAs are commonly employed to address RLP and
RCPSP.

One of the earliest GA based attempts in construction project scheduling is
seen on Chan, Chua and Kannan (1996). In this study, minimization of the
deviation of required resources from available resource profiles has been

aimed. While doing this, precedence relations among activities are considered

13

and optimal ordering of project activities has been tried to be achieved
through selection pressure and recombination. It has been argued that the
model is general enough to encompass both resource leveling and limited
resource allocation problems unlike existing methods so far (Chan, Chua and
Kannan, 1996).

Neumann and Zimmermann (1999) published a study in which heuristic
procedures have been introduced both for solving the traditional RLP (without
resource limitations) and for solving a variation of RLP (with limited resource
availabilities). It has been declared that a feasible solution of the traditional
RLP could be found for the first time in polynomial time although it is an NP —
hard problem. In this study, optimization for several objective functions has
also been experimented. Minimization of maximum resource costs per
period (resource investment problem), minimization of the deviations from a
desired or uniform resource level and minimization of the variations in
resource utilization curves over time are the objective functions which have
been employed by Neumann and Zimmermann (1999). It has been proved by
a performance analysis that the developed method provides good solutions.
However, it has also been declared that for some of the problem sets,
minimum objective function values, i.e. optimum solutions, are not known
which implies a need for further research. Also the need for a more detailed
performance analysis has been emphasized (Neumann and Zimmermann,
1999).

A GA-based multicriteria construction scheduling model to reduce the waste
and shortage of resources in construction projects has been developed by Leu
and Yang (1999). The objective of the model was to solve time/cost tradeoff
problem, RCPSP and RLP simultaneously. It has been emphasized that
heuristic rules applied up to that date on RLP were easy to implement, yet
their solution qualities were questionable. A more leveled resource distribution
was tried to be achieved by minimizing the sum of absolute differences

between daily resource usage and the uniform resource usage. The

14

performance of the GA module has been demonstrated on a case study and
obtained results have been compared to the exact solutions obtained from
enumeration. Finally, Leu and Yang (1999) indicated a need for clear
guidelines on GA parameters which are known to have a significant effect on
solution quality of GAs.

Another GA based method for solving RLP has been introduced by Hegazy
(1999). In this study, random activity priorities have been employed to
introduce an improvement to resource allocation heuristics and a double-
moment approach has been defined as a modification to resource leveling
heuristics. In addition to these, a GA module to simultaneously optimize
resource allocation and resource leveling has been developed. It has been
argued that in minimum moment method it is not considered when the
resources are being scheduled as long as the moment about the time axis is
minimized. To overcome this situation, which may imply problems if the
resources are being shared among multiple projects, a double moment
approach has been suggested. One of the disadvantages of the developed
algorithm has been emphasized as the long processing time it required
(Hegazy, 1999).

Another model which combines a multiheuristic approach with simulated
annealing (SA) has been presented by Son and Skibniewski (1999). It has
been reported that SA approach enhanced performance of the multiheuristic
model by enabling the algorithm to escape from local optimum in many cases.
Local optimizer included four heuristic algorithms all of which employed
different rules to determine activity shifting sequences. Hybrid model, on the
other hand, continued the search from the best solution determined by any of
the four heuristics in local optimizer and employed a SA approach. Son and
Skibniewski (1999) tested their procedure on two example projects and
reported results obtained. These two examples which were leveled using the
sum of squares objective function have also been used in our study to validate

the branch and bound model developed.

15

Leu, Yang and Huang (2000) developed another GA based resource leveling
methodology. In this study it has been claimed that the performance of
analytical and heuristic approaches developed so far is low due their
inefficiency and inflexibility. To enable practitioners to involve in optimization
process and to choose from several resource profiles, a decision support
system (DSS) has been introduced. Developed model is declared to be
capable of effectively leveling single or multiple resources considering absolute
deviation between actual resource usage and the uniform resource usage as
the objective function. Also, the need for further research to develop
combined methods which are capable of considering time cost tradeoffs and
constrained resource allocation tasks simultaneously has been emphasized.
Extensive consideration on GA parameters such as crossover and mutation
rates has been suggested as further research topics (Leu, Yang and Huang,
2000).

As mentioned previously, one of the earliest leveling heuristics was developed
by Harris (1990). This method, which was based on minimizing the moment of
the resource histogram, has been modified by Hiyassat (2000). In this
modified method, activities to be shifted are selected by considering both their
resource requirements and their free floats. It has been argued that the
suggested approach performs nearly as effective as the traditional method
requiring relatively lower computational effort. Performances of the developed
method and the traditional method have been compared by means of several
networks (Hiyassat, 2000). After this paper, Hiyassat (2001) argued that the
modification of the minimum moment approach also performs well for projects

with multiple resources.

Another GA based resource leveling algorithm has been introduced by Oral et
al. (2003). The model presented in this study has been reported to be
applicable to projects with single resources. Three different types of scaling
methods have been utilized in the model and deviations from uniform

resource level were tried to be minimized (Oral et al., 2003).

16

Zheng, Ng and Kumaraswamy (2003) have introduced another GA based
method addressing RLP. Step by step operation of the proposed model, which
utilized minimum moment approach, has been illustrated on a case study. To
level multiple resources, adaptive weights which aim to balance search
pressure among different resource types, have been employed. By doing so,
dominance of a single resource type throughout the search has been
prevented. It has been indicated that the developed model shows promising
performance and might be applicable to large and complicated projects which
can not be addressed by mathematical models (zZheng, Ng and

Kumaraswamy, 2003).

Senouci and Eldin (2004) developed another GA based model which differed
from the previous research in that it considered precedence relations, multiple
crew strategies and total project cost minimization. In this GA model,
minimization of the combined direct and indirect costs was aimed. Moreover, a
penalty function has been included to the objective function calculations to
transform constrained RLP to an unconstrained optimization problem.
Capabilities of the developed model have been presented on a numerical
example. It has been argued that the developed model locates optimal or near
optimal solutions successfully and can be used by practitioners on large scale

projects (Senouci and Eldin, 2004).

Particle swarm optimization (PSO) is another metaheuristic approach inspired
by the fact that in nature, individuals with limited intellectual capacities
perform highly intellectual collective behaviors. A PSO based resource leveling
algorithm has been introduced by Pang, Shi and You (2008). It has been
declared that the high probability for the PSO to converge to a local optimum
in an early manner has been prevented by using a constriction factor. The
performance of the algorithm has been reported to be much better than the
algorithms such as peak clipping, valley filling and reduced variance method.
The need for further research to level multiple resource projects has also been

emphasized (Pang, Shi and You, 2008). Following this study, Guo, Li and Ye

17

(2009) developed another PSO method which could be applied to multiple
projects with multiple resources. An analytical hierarchy process has been
employed to determine the relative weights of the resources. Two examples
have been solved by both PSO and GA metaheuristics and the obtained results
have been compared. It has been reported that the performance of PSO is
better than the performance of GA (Guo, Li and Ye, 2009).

Performances of 5 different GA based metaheuristic methods on RLP were
compared by Bettemir (2009). Among these methods there were hybrid
algorithms which included simulated annealing, variable neighborhood search
etc. In this study, start times of non critical activities have been coded in
genes of the algorithm and these start times have been rearranged by the
algorithm so that a leveled resource profile was obtained according to sum of
squares objective function. 7 projects obtained from literature have been
solved to validate the methods and measure their performances. According to
the experimentation results, all algorithms were capable to solve multi
resource projects in reasonable computation times. For all of the test
problems, best known solutions have been determined by the algorithms.
Moreover, it has been reported that the algorithms could be applied to
different types of projects, in that they could deal with different types of

precedence relationships successfully (Bettemir, 2009).

El-Rayes and Jun (2009) presented two new resource leveling metrics which
are devised to measure negative effects of resource level fluctuations in
construction projects. These two metrics, “Release and Rehire (RRH)"” and
“Resource Idle Day (RID)”, were especially useful if manpower requirement
graphs are to be leveled. The objective of RRH metric was to quantify the
amount of resources which are temporarily released during low demand
periods and rehired later when there is a high demand. It has been indicated
that this metric might be useful in construction projects in which releasing and
rehiring of workforce is allowed. In other words, if the contractor is not

obliged to pay idle workers on site, than RRH metric might be useful. RID, on

18

the other hand, is applied on projects for which the opposite situation is valid.
This metric quantified total idle time of resources throughout the project.
Therefore, it was useful to minimize payments which contractor is going to
make for idle resources. El-Rayes and Jun (2009) claimed that on the contrary
to the existing metrics, new metrics were not trying to fit resource
distributions to a predetermined shape. Instead, elimination of undesired
fluctuations was aimed. It has been argued that most appropriate objective
function should be selected according to the characteristics of the projects.

El-Rayes and Jun (2009) also developed a GA based optimization module in
which RRH and RID metrics have been employed. In addition to these
innovative objective functions, traditional metrics such as; sum of square of
daily resource requirements, absolute difference between consecutive time
periods and deviation from uniform resource requirement have also been used
in optimization. This model, which addressed the traditional RLP with
unlimited resources and fixed makespan, has been tested on a single resource
network which included 14 non critical activities (EI-Rayes and Jun, 2009). RID
metric is going to be explained in detail in the following chapter since it is one
of the objective functions employed in this study. Also the numerical example
presented in El-Rayes and Jun (2009) is going to be used while validating the

branch and bound procedure developed.

One of the latest studies on RLP is to be seen on Christodoulou, Ellinas and
Kamenou (2010). It has been argued that minimum moment and PACK
methods should allow activity stretching (shortening and extending activity
durations by changing resource utilization rates), and also daily resource limits
should be incorporated in the method. “The entropy-maximization method”
proposed in this paper made use of the general theory of entropy to revisit
the minimum moment method for resource leveling. Entropy, which
symbolizes a system’s order and stability was tried to be maximized. The
problem has been defined as the determination of the amount of resources to

be diverted to a specific activity to maximize its entropy without exceeding

19

available resource levels. Developed model has been validated by two
numerical examples (Christodoulou, Ellinas and Kamenou, 2010).

A summary of the heuristic and metaheuristic based methods mentioned in
this section is to be seen in Table 2.1 in a chronological order. Remarkable
points of each study have been given in addition to the information on the
methods adopted and problems addressed.

20

"uoijoun} 9A3D3[qo se pasn s JPBW salenbs

. fsnayeIs
40 wns “gnpow (vs) bujeauue pajenwis ayy pue (Yoeoidde d1d DISMAIUGRS pue UOS 666T
pue JnsunayiniA
alsunaynw e) Jazwdo |edg) ayy Aq auop S| buiAg 21n0say
"3NPOIN VO B BIA Suop ud3q sey BujaAs) pue uoiedoje
924n0sal Jo uoezwndo aAR[qONIA "SNSUNaY BujRAy d1d SINBYEI Azeboy 6661
AJpow 03 pasn s yoeoidde juswow gnog SAISUN3Y Uoedoe pue UOoIRJOR 32IN0STY
904n0sal aAocidwi 03 paonponul 3daouod Apioud Ayaloe wopuey
"Asnosueinuwis 4Ty pue dsddoy dTd 'dSdDd
‘waigoud Jjoapely 3s00-awy BuiNos Jo Jgeded JNPaYdS o v ‘Jjoapel | 350D /o | MUNSYEPW Buex pue n31 6661
‘pajuasald sisAieue aouewiopad jeaudwe Jo SYNSayY *pPassnISp
u93q 9ABY SUOiPUNY SAI(GO JUDIDHIP [BISASS "padoiPAsp SIUENSUOD 3aInosal JIsUnaH uuelLisuz 666T
uaaq sey dsunayeaw paseq gnJ Aploud jeiwouAod vy ANOLAIM PUE LM dTY Pug UUBWNIN
*Asnosuejynuis uoied0je 324N0SaL pajwWl pue BujpAY 32.nN0Sal uonesayy uBuLey
N0 ALIRD 0] [9pOW [BISUIL) "SIUNOWE 3DINOS3I JqEleAR 30UN0S3Y AU PUE T oI EII=AETA pue enuy ‘e 966T
W0} SUORBIASP 9ZWIUIW 03 Swie Yym ydeoidde paseq yo T
"sy09loud ISINBUEID oizeq
UOIIONIISUOD Ul S3DIN0SAI [9AJ] 03 POUISW Paseq Homiau |eindN dd HSUNSUEPN pue ssey|y ‘uAes 9661
"BujaAg 921n0Sa1 UOIONIISUOD nouueo]g
u dTd JisunaH €661
| PaSn US3q Sey JISUNSH JUSWO| WNWIUIY PAJPOI pue zaupep
"padnNpojul Usaq sey swelbojsy 92Inosal 1SN Qe
40 sjuswow BuiZzwiuiw AQ S92IN0S3I [9AJ] 03 poyiBW MIvd dd H3NSH HieH 0661
Bujnpayds 221nosal 1SN M
nw “3afoid4ynw ul BudAg] 924n0sal 104 wiyploble Hsndy v dTd HSLNSH pue yHOMpoOo\ sz61
*Solaw bupAd| Jo
. M3IGIIIN
Ajauea e 0] 9qedjddy "S9AIND puURWSP 32IN0S3J UO SUORENIdN dTd sUnaH 2961
pue ssabing
33 20npau 03 aunpadodd aisunay paseq Nt Aploud v
uonedliqnd
syteway (s)wsjqoid POYyIoIW (s)rowmnv| 5 eap

SPOYISW DRSHNSYEISW - DRSHNSH

dTd 10} SPOYIS|A dNSHNSYEIBY PUB JSUNSH — T°T dlqeL

21

LVENEPERED]

nouswey pue

10} pamoje buissaudwod pue buiydszans AYAY “padnpoul d1d J1ISUNaH , 0102
uaaq sey uoeziwixe|y Adosug buisn poyis JUSWOA WnwWiUl Seul|3 ‘nojnopojsiyd
‘padojoASp u9aq Sey SdPW
MaU 3say) Buisn 414 A0S 03 3NPOIN VO v “pauyap sheq dTd VO ung pue saAey3 600¢
9PI 92IN0SAY PUR AYDY pue dsey ‘Salow BuPA9 Mau Om |
*syo9loud ,
diynw Ul $92uN0SaI JdiINW |9AY 03 poyldw paseq OSd did 0Sd 9A pue i fong 600¢
*Apn3s ased e se pajussald usaq Sey 9|Npayds AJAe suu ,
V *1010BJ UOIDOISUOD Yum OSd Buisn bujpnaa aounosay 9buis dTd ANsUnayeldly - NoA pue s ‘Bued 800¢
dSdDY pue 4Ty ymm sjesp Aisnoaueynuwis 3] ‘swgqosd Asnosueynuwis —— P PUE PROUSS .
Sd spiemo} Yyoeoidde 3sjoym e sey Yoym poylsw paseq vo v dSdDd pue d1y
*sy0oloud
. Awemsesewny
pazs abig pue wnipaw 1oy synsal buisiwold ‘waqold bupag) d1d sUNaYeID N \ €002
) pue by ‘Busyz
224nosauynw buizwido 1oy anbiuyday paseq yo ‘@n3da(qoni
‘pazwiuiW 5 9besn 921n0Sal WIoJUN WOl SUORRIASQ §p13 pue umyzog
‘padojaAsp uaaq sey npow BuiaAd| 921n0sal paseq Vo Y dTd HSUNSYEIRW ‘le1Q |exde’jelo €00e
*syoaloid 901nosal gdynw Ul
S924N0S3J [9A9 03 pasn g yoeouddy JUSWIO WNWUIA PAJPOIN dTd 2ASLNSH YessedH Tooc
‘POYIsW
Jeuoiipesy 3y} 03 paledwod synsal se poob se Aueau 1o
se poob se uieyqo 03 palinbas Hoyje uoneINdwod sS7 “PaIyS dTd 2ASLNSH Yessed 000¢
9q 0} AYAdRe By} BudYSS Ul poyId|y S,SBH WO Ul
*SOLIBUDDS [RIDASS J9PISU0D siauueld ajqeus 0} SS@ e sapnpul Bueny
UJIym wialsAs paseq yo "abesn 921nosal wilojun ayy pue abesn d1d VO pue Bue N 0002
92IN0S3lJ |eNJOR 3Y} UDSMID] SDUDIDLIP SIN0SR SY} S9ZAWIUI
uonedliqnd
sHlewdy (s)wajqo.ad pPoyIdW (s)ioyany 40 1B

(panuruoy) spoyidii D13S1IN3YeIDW - DRSIINDH

(PonupUoD) dTd 10} SPOYIS|N INSHUNSYEISW PUB JNSLNBH — T°Z dlqel

22

2.3 Exact Methods for RLP and Other Scheduling

Problems

In this section exact methods previously applied on RLP are going to be
discussed. Since there are limited number of branch and bound applications
developed for RLP, some branch and bound based studies for other

scheduling problems are also going to be mentioned.

One of the earliest branch and bound algorithms developed for project
scheduling problems is seen on Mason and Moodie (1971). In this study,
minimization of the combined cost of resource demand and delays in project
completion has been aimed to be minimized. Extensions in project duration
have been allowed and penalized according to a cost function. Also a penalty
function was applied if total resource amounts required by activities exceeded
available resource levels. The importance of lower bound calculations in
constructing a bounded decision tree has been emphasized and details of cost
bound calculations have been presented. While establishing the search tree,
activities that could be scheduled at that particular instance of time have been
considered and corresponding lower bounds have been calculated according
to possible scenarios. As branch and bound methodology implies, whether a
node is going to be discarded or retained has been decided according to the
lower bound value of that node. Also, resource constraints have been imposed
by eliminating any scenarios that require higher amounts of resources than
the available limits. 25 network problems have been solved to investigate the
performance of the algorithm and total number of nodes needed to ensure
optimality has been reported. It has been indicated that the computation time
is significantly related to factors such as number of activities and their
durations and resource requirements, in addition to the structure of the
project network. Developed algorithm has been declared to be helpful in
testing the performances of new heuristics (Mason and Moodie, 1971).

23

Patterson (1984) compared performances of three exact solution procedures
on RCPSP each of which were enumerative based and each of which tried to
eliminate non promising regions of the search space by utilizing special rules.
These three methods; bounded enumeration, branch and bound and implicit
enumeration have been tested on 110 problems in an imposed time limit of 5
minutes. Of these, only branch and bound algorithm was able to solve all
problems within the allowed time limit. According to the results reported,
implicit enumeration method required far less computer storage compared to
other two methods and bounded elimination method promised shortest
computation times for some instances. Despite these advantages of implicit
enumeration and bounded elimination, Patterson (1984) concluded that
branch and bound algorithm was likely to be the preferred method since it
allowed the search to be directed towards attractive solutions in the early

stages.

One of the earliest attempts to reduce resource level fluctuations in
construction projects using exact methods has been done by Easa (1989). In
this paper, an integer-linear optimization model to solve RLP optimally in small
to medium-sized networks has been introduced. This model guaranteed
optimal leveling by minimizing absolute deviations from a uniform resource
level. Also an improved objective function which minimized resource level
fluctuations in consecutive time periods has been suggested. Developed
optimization model has been tested on a sample network and optimal
resource histograms have been compared to the resource distribution of the
early start schedule. One drawback of the model was outlined as the need for
a high number of variables and constraints which made implementation of

integer-linear optimization difficult for most practical purposes (Easa, 1989).

Another linear integer optimization technique to minimize the sum of costs of
all resources, including time, has been presented by Karshenas and Haber
(1990). Two simple example projects’ costs have been minimized to illustrate

the performance of the model. It has been declared that the schedules

24

obtained from the model had an optimal duration and the resource use was
leveled economically. It has been indicated that a computer program is
needed to input the extensive data required to optimize the cost of a real life
example via the linear integer model (Karshenas and Haber, 1990).

Demeulemeester and Herroelen (1992) presented a branch and bound
procedure which adopted a depth-first methodology to solve RLP. Suggested
algorithm has been reported to be faster than the most rapid tools developed
so far and to be advantageous over them in that it required less computer
storage. In the introduced model, nodes have been constructed in a manner
that partial schedules, which were feasible both in terms of precedence
relations and resource limitations, were coded in them. At any time instant,
eligible activities that eligible to be scheduled have been considered and
nodes with higher lower bounds have been fathomed according to the
bounding rules. 110 test instances of Patterson (1984) have been employed to
validate the algorithm. It has been reported that the branch and bound
procedure presented in this study solved all instances successfully in an
average CPU time of 0.215 seconds per problem. Success of the method has
been attributed to the new bounding arguments and dominance rules
(Demeulemeester and Herroelen, 1992). Following this study, Shah, Farid and
Baugh (1993) introduced an integer linear optimization model which
determined minimum amount of resources required to complete a project.
Also, a non serial dynamic programming model to minimize absolute
deviations from a predefined resource level has been developed by Bandelloni,
Tucci and Rinaldi (1994).

Demeulemeester (1995) also addressed resource availability cost problem
which aims the determination of resource availability levels to minimize the
sum of availability costs. A branch and bound method, which was the first
exact method developed for this problem so far, was suggested for this
purpose. Computational experiments have been conducted on a small bridge

project in addition to the adapted problem set of Patterson (1984). Also,

25

effects of increasing resource types on the required computational efforts
have been observed. It has been reported that utilizing more resource types
causes the number of efficient points to increase, causing more considerations
during the search. Thus the standard computation time is declared to be an
increasing function of the number of resource types (Demeulemeester, 1995).

Among the exact solution procedures for scheduling problems, mathematical
model of Younis and Saad (1996) to carry out optimum resource leveling and
study of Icmeli and Erenguc (1996) to solve resource constrained project
scheduling problem with discounted cash flows (RCPSPDC) are also worth to
be mentioned. In the latter study, Icmeli and Erenguc (1996) developed a
depth first branch and bound algorithm which included a complete schedule
(whether feasible or not) in each node of the search tree. Branching was done
according to the “minimal delaying alternatives” concept of Demeulemeester
and Herroelen (1992). Developed model has been verified on an example and
experimentations have been done on a set of 90 test problems. It has been
indicated that the obtained results proved that the algorithm outperformed
other methods suggested to solve RCPSPDC so far (Icmeli and Erenguc,
1996).

Another depth-first branch and bound method has been developed by
Demeulemeester and Herroelen (1997) to solve the generalized RCPSP. This
algorithm which was an extension of the method formerly suggested by the
same researchers was able to represent any type of precedence relations such
as start to start, finish to finish etc. Partial feasible schedules have been
stored in the nodes of the search tree. Precedence based lower bound
calculations have been employed in addition to several dominance rules in
order to prune the search tree as much as possible. Extensive experimentation
has been conducted on Patterson’s problem set in order to compare the
impact of their modified search strategy and to study the impact of fluctuating
resource availabilities over time. It has been reported that 109 of 110 test

problems have been solved via the algorithm in an average CPU time of

26

8.1065 seconds. Demeulemeester and Herroelen (1997) concluded that the

computational experience gained with the modified algorithm was promising.

Examples of linear scheduling applications are to be seen in many construction
projects which require repetitive execution of tasks such as road projects, high
rise building constructions, pipeline constructions etc. Mattila and Abraham
(1998) were two of the few researchers who addressed RLP on linear
schedules. The integer linear programming model suggested by Mattila and
Abraham (1998) utilized an objective function to minimize the absolute
deviation of daily resource usage from an average resource rate. Resource
distribution of a highway project has been leveled using linear programming
software, LINDO. Resulting resource histogram has been presented in the
paper. Similar to most researchers who dealt with integer linear programming,
Mattila and Abraham (1998) also indicated that a high number of variables
were required by this method which limited the size of the problem that could

effectively be dealt.

Brucker et al. (1998) presented another branch and bound method addressing
RCPSP. This study differed from similar methods in that it included a tabu
search procedure in the root of the search tree to begin the search with a
better schedule. Moreover, a linear program based lower bound calculation
procedure has been employed on each node. Experimentations have been
carried out on networks of 30 and 60 activities and with 4 resource types. It
has been declared that 326 of 480 test problems with 60 activities have been
solved to optimality within one hour (Brucker et al., 1998). Following this
study, De Reyck and Herroelen (1998) published a paper in which they
presented another depth first branch and bound algorithm for RCPSP with
generalized precedence relations. Nodes of the search tree represented a time
feasible solution for the problem which was not necessarily resource feasible.
To overcome this resource conflict, the method of “minimal delaying
alternatives” has been employed. Details of a new lower bound calculation

procedure and three dominance rules have been presented. Extensive

27

experimentation results on three different data sets have been reported and it
has been indicated that the suggested algorithm enabled significant reductions
in the computation time. Moreover, RCPSP has been solved to optimality for
networks with up to 100 activities (De Reyck and Herroelen, 1998).

Neumann and Zimmermann (2000) published a paper in which different
heuristic and exact procedures have been proposed in order to solve RLP and
net present value problem. In this study RLP has been investigated under
three main categories which are; minimization of costs due resource level
fluctuations (resource investment problem), minimization of deviations from a
given resource level and minimization of fluctuations in consecutive time
periods. These objective functions and some variations of them have been
utilized to level resources in networks with and without resource limitations.
Similarly, net present value problem with and without resource constraints has
been addressed via exact methods. To solve resource leveling problems,
branch and bound and truncated branch and bound procedures have been

employed (Neumann and Zimmermann, 2000).

Branch and bound procedure developed by Neumann and Zimmermann
(2000) was based on an enumeration of feasible start times of activities and
each node of the tree represented a partial schedule. Consequently, each leaf,
i.e. the deepest nodes on the tree, represented a complete schedule. Children
of nodes have been obtained by scheduling one of the eligible activities to a
starting date that is feasible. If multiple activities were available to be
scheduled, than the one with the lowest total float was selected. Naturally, the
node from which children are to be produced was selected according to a
minimum lower bound criterion. In the truncated branch and bound
procedure, on the other hand, a heuristic has filtered the number of branches
to be produced from a single node. In other words, only a certain humber of
most promising branches have been allowed to grow (Neumann and

Zimmermann, 2000).

28

Neumann and Zimmermann (2000) also presented a tabu search approach for
RLP and reported extensive experimentation via the abovementioned exact
and heuristic approaches. Three problem sets which included a number of
networks with 10 to 500 activities and with 1 to 5 different types of resources
have been used in experimentation. It has been reported that resource
constraints significantly reduced size of the feasible regions of the search tree
causing the algorithms to locate optimal solutions in shorter durations. Most
problem instances consisting of up to 20 activities have been solved by the
developed branch and bound procedures in less than 100 seconds. It has
been declared that networks with 20 activities and five resources have been
solved to optimality for the first time in the literature. A need for tighter lower
bound calculations for different resource leveling metrics has been indicated

(Neumann and Zimmermann, 2000).

Another branch and bound algorithm has been introduced by Vanhoucke,
Demeulemeester and Herroelen (2001). Maximization of the net present value
has been aimed in this study. New upper bound computation methods and an
extended branching strategy to prune the search tree considerably have been
introduced. Experimentations have been conducted on the problem sets of
Patterson (1984) and Icmeli and Erenguc (1996). It has been indicated that
net present value problem has been solved to optimality for networks with up
to 30 activities and 4 resource types (Vanhoucke, Demeulemeester and
Herroelen, 2001).

In project scheduling literature, one of the most common assumptions is that
an activity can not be stopped and can not be restarted. Son and Mattila
(2004) indicated that this assumption may not always be true in construction
industry since some activities in construction projects can actually be splitted.
To carry out a more realistic optimization, a linear program binary variable
model to level resources that permits selected activities to stop and restart
has been introduced. This model included constraints on daily resource rates.

Moreover, total duration of activities, whether they are splitted or not was

29

fixed. Son and Mattila (2004) solved two example projects and reported that
the developed model was capable of representing actual construction
processes successfully.

One of the most recent exact procedures to solve RCPSP was developed by
Jiang and Shi (2005). This method, “enumerative branch and cut procedure”,
included a cut rule to eliminate true worse schedule alternatives as done in
the truncated branch and bound procedure of Neumann and
Zimmermann (2000). It has been reported that 110 test problems in
Patterson’s set could be solved via the developed algorithm in a reasonable
amount of time. Jiang and Shi (2005) indicated that computational efficiency
should not be a big concern while solving scheduling problems, since

scheduling is not repeated over and over during the lifecycle of projects.

Similar to Table 2.1, which presented heuristic and metaheuristic methods
developed to solve RLP, Table 2.2 summarizes exact methods for scheduling
problems in a chronological order. Problems addressed in these studies,

methods developed and remarks have been highlighted.

30

EGEEIEYS
Ajeroueuy s 13f0id ay3 38U OS paue S MOjy YSed au3 Jo

anjeA Juasaid 19U JO uoieZWIXe|N *AYAIIR YOS UIM Palenosse dSdOy punog pue (pueig dnbua.3 pue JaWd] 9661
SMOJ} YSed aJe a1ay) Jeyy buiwnsse dSdJy paiapisuo)
*s109loud 221nosal nwi 1oy bugeaa aainosay jewndo d1d [9POIAl |BJRRWLIR N pees pue suno A 9661
N0 paIed uoeyuswiiadxe wqold
ANSU}X] ‘padojPAsp uaaq sey wyuiobie ggg sty yidep v 150D AligeieAy 924n0say punog pue tpueig eIseaunawag 5661
[OA9 321N0S3J PaUJSP B WO} UOBIASP ‘Ui buwweibo.ud Ipjeury
:uodUNy ARSI *PaNOS swiiqold pazs wnipaw 0} |ews d1d JWeUAp |elas UON pue 12on] ‘luojapueg 661
PENNNEENVEE T Juswaanbau buiwwelboid ybneg
awn ul 09foud ay3 9391dwod 03 pasnbal Jwy 92uN0SaS WiNWIUY 92JN0SAJ JO UoeUILIIR] Jeaur] Jebajul pue pued ‘yeys €661
"S921n0SaJ gdignw (pm U9[20.IoH pue
dSdDy ul uoieinp buizwuiw oy ainpadold ggg Isa) yidep v dSdod punog pue tpueig J3)SaWnawaq 66T
‘uoijelnp y0aloud buzwiuiw
pue suoizen}on) puewap 321nosal buneuws Aq s1s0d 51500 |19poI Jabaju] Jeaur] 494=H 066T
- A 92IN0S3I JO UORZAWIUI : pue seuays.ie)y
d2wiuW 0} swiy ‘uonezwido 1afoid 03 yoeoidde Kgjoum v
*weiboid 03 sawn bug saunbal yiaAamoy
dTd 01 UONOS J0BXD SSPINOI] "PRZWIUILL D48 SABP SAINJSSUOD dTy uonezwndQ Jesurj-iebajul eseg 6861
uaM1aq suoieAsp pue welbojsy wiogun wol suojenaqg
uojjeJewnu3 papunog
d Poissd dSdod ‘punog pue youelq uosianed 86T
S dSdD¥ JO uoiINOS 9y} Uo urWIOMUd ,SPOYIDW DBXD € ‘onesewnuz 1AW
"pamojje uoijeinp wdd U sAepq "pazwiuIW dTy pue uojezwiu
3le sAgop pue SUOENION} PURWSP S2JN0S3J JO 1SOD pauIquIo) uonelng 109fo.d punog pue youelg SIpoOW pue Uosen 16t
uonedliqnd
s)Jewdy (s)w|qo4d poyIeW (s)4oyany 40 4e9A
SPOYISI Joexy

Sw|qo.d BuliNpaYdS 10y SpoyIRiN Vex3 — Z'Z dlqel

31

‘papinoid

us3q ey swajqoid 3533 OTT 404 suonjos wnwido "dSdoY dSdod punog pue youelg 1S pue bueic 500C
9N0s 0} padojaAsp wyobie nd pue ydueiq anjesewnuy
Aem S PaRaILE 3 Ued BujsAdy dTd Buiwwelbold Jeaun ene pue uos $002
13S|e3J DIOW Ppue JaYRQ Iy} swiep pue bupyds Ayaoe smojy
*SpoyIBW JIsNBYEISW pue Joexs uo ‘paJapISu0d ose ale
papinoid uS3q Sey uoieWLIoUl PYYeISQ "PadNpOoLIUl S1e Sydeouod wiqoid 350D Aygeieay SPOYIOI USR0LAH pue
Buinpayos 10afoid Jiseq awos *wayy aN0S 0} padopaap 22In0say ‘Wwaqold MSUNGH PUE 1IBXT [I9AIS ISPAWINBIRG 2002
SpoYaW 3Y3 Uo pue swqold BuiNpayods [RI9ASS UO UORWLIOJUI anjeA uasald 1N ‘dTd
pajeIsp sapinoid SjoogpueH Youeasay v :buinpayds 103[01d JOASMOH dSdDY Uo Auiely
U320.15H pue
*ainpad04d punog pue youeiq Buisn sjuiRSsuod 82IN0Sal WSGOI] SMEA JUSSAA 10N unog pue youelg TNSTOWANWS] I
Japun spafoid Jo aneA Juasaid 39U BUY JO UoRZWIXR|N 4 _ P puey \mv_w_:os:m> 00z
"SI 3511 SUY J0j PONOS US3q
9ARY S22IN0S3I G pue SAYAOR OZ 03 dn JO SHIOMIBU Ul 4Ty
'passaIppe Uaag SARY SJUIRIISUOD S2IN0SaI JNOYIM PuB Ym Em_mo_n_ punog pue youeig A 0002
. anje/ Juasald 19N ‘dTd pue uuewnap
wajqoud anjeA juasaid 39U pue 4Ty "suoipuNy SISO [RISASS
0} Bup10d0e SUOI}ENION|) PURLISP 2IN0SAJ JO UOIRZWIUI
. ‘P3yi0da EEIJIET]
S)NSaJ uoeuBWIRAXS SAISUSIXT ‘pajuasald spunoq JO SieIsp dSdDy punog pue youeig 1B A 5 866T
pUE S9INI BULUILIOG "dSdDY U0 UORNOS paseq gigd sk tidaq PUEPASH =0
N0y T Ueyj ss9| oAU L PUE 0OYDS
Ul PaNOS SAYAIR 09 Ym swiqoid 08 JO 9Z€ "PouIBL B3 Ul dSdod punog pue youelg a.m:cv_ "ayonig 8661
papnjpul U93q dARY NI JISUN3Y e pue wylohie ydieas nqey v A
‘PaNOS 34 pinod Jey3 waqoid ay3 Jo 92s ay3 Jwi 03 papodal BuwwesBaly
u23q dARY S|geHeA Jo Jaquinu 3y ‘dwexa ue se pajuasald dTd Jeou ~-1oBau weyeiqy pue epnen 866T
s afoud Aemybly v "passaippe S S9NPayds Jeaul uo 4Ty :
ouewlopad buisiwold Adwr suojejuswLisdxa uNog DU UouE U30.13H pue
NSUIXT "dSdDY UO uonjos paseq gyg sty yidag dSdoY punog pue youelg J9)592WNawag L66T
buiwwe.boid
‘Buiwwelbold Jeaur] 19633u] BA S9INPaYdS Jeaur] 10y bujeas dTd Jeaur JoBou] emen 1661
uonedi|qn
Sylewdy (s)wajqoid POy (s)soyany h E.m_ur d

(panunuo)) spoyid 39ex3

(panuijuo)) swalqoid bulnpayds 1oj SpoyRIN 10ex3 — 2'T dlqel

32

Considering the literature on exact methods for solving RLP, it can be said
that the number of studies effectively dealing with the problem is highly
limited. Especially, resource distributions of construction projects have seldom
been leveled to optimality. In attempts to solve RLP via optimization methods
as integer linear optimization, several researchers declared that these efforts
required high number of variables to be defined which in some problems even
exceeded the limitations of commercial software. Often, branch and bound
method has been pointed out as the most effective exact method in dealing
with RLP.

Another important aspect while solving RLP in construction projects is related
to the objective functions employed by researchers. Some resource leveling
metrics, such as minimum absolute deviations from uniform resource level,
are being used by many researchers in construction project scheduling. This
situation implies useless efforts since the rectangular resource distribution
graph aimed in this kind of metrics is not suitable for the construction

projects.

In the following chapter, characteristics of the branch and bound method
developed to level resources in construction projects using suitable objective
functions to the nature of the construction business are going to be

presented.

33

CHAPTER 3

BRANCH AND BOUND METHOD

3.1 Objective Functions

3.1.1 Sum of Squares (SSQR) of Resource Requirements

One of the most commonly employed resource leveling metrics in the
literature aims to minimize the sum of squares of daily resource requirements
throughout the project. It is a simple objective function calculation method
which minimizes resource consumptions in all time periods. However, resource
level fluctuations between consecutive time periods are disregarded in SSQR
metric. Mathematical formulation of this objective function could be

represented as in the following;
b n
2
f = Z Wiz Vim
i=1 m=1

where; “f” is the objective function value for SSQR metric, “*n” is the project

A\WY/4

duration, “j” is the number of different resource types, “w” is the relative
weight of the i resource type, and “ri,” is the requirement of all activities on

i resource type at the m™ day.

34

N

w

N

Resource Requirements
1

—

1 2 3 4 5 6
Days

Figure 3.1 — Sample Resource Distribution

A sample 6 days project is given in Figure 3.1 to be used in illustrating the
metrics presented in this section. If the resource distribution on this figure is
considered, then the SSQR value of the project is simply to be calculated as in

the following;

SSQR=52+32+ 22+ 4 + 22+ 32 =67

3.1.2 Minimum Absolute Deviation (MinDev) of Resource
Requirements from Uniform Resource Level

Another commonly employed objective function firstly calculates the uniform
resource level required to complete the project and then minimizes absolute
deviations from this level. To calculate this uniform resource level, total
amount of resources required to complete the project is divided to the project
duration and obtained number is rounded down to the closest integer. This
metric aims to obtain a rectangle shaped resource distribution, suitability of
which to construction projects is questionable. Still, MinDev metric has been

35

used in our study to validate the developed algorithm by comparing our
optimal solutions to the results reported in previous studies. Mathematical
representation of MinDev objective function may be defined as in the
following;

Jj n
f= Z Wiz Wi —Fim

i=l m=l
Where;

y
Z demxi X durx
wi=| =
n

And where; “f” is the objective function value for MinDev metric, “n” is the

A&/

project duration, “j” is the number of different resource types, “w;” is the

n

relative weight of the i™ resource type and “ri,” is the requirement of all

14

activities on i resource type at the m™ day. In addition to these, “u;
represents uniform resource level, “y” is the total number of activities, “dem,;”
is the total demand of activity x on resource type i and dur, is the duration of
activity x. “|...]” notation used in calculation of u; symbols the floor function

which rounds a decimal to the closest integer smaller than or equal to that

decimal.

According to this metric, objective function value of the resource distribution
in Figure 3.1 is calculated as in the following;

u=1GB+3+2+4+2+3)/6]=3
Dev=|5-3| +|3-3|+1|2-3|+14-3|+2-3]+|3-3| =5

36

3.1.3 Resource Idle Days (RID)

As mentioned in Chapter 2, EI-Rayes and Jun (2009) suggested a resource
leveling metric which is especially useful if resources can not be released and
rehired easily throughout the makespan of a project. In other words, RID
metric which minimizes idle times of resources without forcing the resource
distribution to fit a predefined shape has been established by the researchers.
Mathematical formulation of the metric defined by El-Rayes and Jun (2009)

might be modified to level multiple resources as in the following;

J n
f= lel' Zl[Min(Max(ril, Fiz,..., rim), Max(rim, rim +1,..., Fin)) — rim]
i=l m=

A%/

Where; “n” is the project duration, “j” is the number of different resource
types, “w” is the relative weight of the i resource type and “rin" is the

requirement of all activities on i resource type at the m" day.
Again, considering the resource distribution in Figure 3.1;

RID = [Min (5, 5) - 5] + [Min (5, 4) - 3] + [Min (5, 4) - 2] +
[Min (5,4)-4] + [Min(5,3)-2] + [Min(5,3)-3] =4

If Figure 3.2 is considered, these 4 units of idle resources are seen on the
hatched zones of the profile. RID metric aims to minimize these zones which
indicate unproductive resource days. As can be realized, RID metric focuses
on minimizing the undesirable fluctuations only, whereas most traditional
metrics attempt to transform resource profiles to predetermined shapes (EI-
Rayes and Jun, 2009). Hence RID can handle RLP in a more flexible way

resulting in more efficient resource distributions.

37

Resource Requirements
]

1 2 3 4 5 6
Days

Figure 3.2 — Idle Days on the Sample Resource Distribution of Figure 3.1

3.1.4 Resource Idle Days and Maximum Resource Demand
(RID+MRD)

Since RID metric does not consider the maximum resource requirement,
utilization curves obtained for this metric might tend to imply high peak
resource demands. For instance, if two minimum RID solutions of a network
contain the same number of idle days for resources and if one of them implies
a higher peak resource demand then, RID might suggest the solution with
higher peak resource level. This, for all practical purposes, does not make
sense since in almost all industries it is preferred to keep maximum resource
demands as low as possible. To overcome this shortcoming of RID metric, a
combined objective function has been suggested which simultaneously aims to
minimize the idle days of resources and the maximum resource demands of
resources throughout the projects. Mathematical formulation of this metric is
as in the following;

38

n
J > [Min(Max(m, riz,..., rim), Max(rim, rim + 1,..., rin)) — rim]x 0.5
f= _let' m=1
=

+ Max(ri, riz,..., rin) X 0.5

A\\&/4

]
types, “w;” is the relative weight of the i resource type and “ri,” is the

Where; “n” is the project duration, is the number of different resource

requirement of all activities on i resource type at the m™ day.

In this case the objective function value for the resource utilization graph in
Figure 3.1 would be as in the following;
(RID+MRD) = 0.5*RID + 0.5 * Max (5, 3, 2, 4, 2, 3)
=05*%4+05*5=45

Where; RID is calculated as explained in Section 3.1.3.

3.2 Basics of the Branch and Bound Method

According to Agin (1966), branch and bound is a powerful method capable of
solving combinatorial problems with non-linear, discontinuous or non-
mathematically defined objective functions and under several types of
constraints. In branch and bound method, a tree structure which consists of
properly connected nodes is established. Throughout the search, constraints
imposed by the problem should be taken into account. Agin (1966) divides
these into two groups, namely /mplicit and explicit constraints. In a
successfully developed branch and bound algorithm, implicit constraints are
satisfied by the manner in which the search tree is established. Explicit
constraints, however, are to be considered in each step of the search. An
example to implicit constraints might be given as the precedence relations,
whereas explicit constraints might be exemplified by resource limitations in
RCPSP (Demeulemeester and Herroelen, 2002). A feasible solution to the
problem, therefore, has to assign numerical values to the set of decision
variables (e.g. start dates of all activities in RLP and RCPSP) so that both
implicit and explicit constraints are satisfied.

39

Nodes, of which a search tree consists of, are subsets of the set of all
solutions of the combinatorial problem. Branching, on the other hand, is the
partitioning of any set of feasible solutions into separate subsets (Agin, 1966).
Branching process starts from the root node (the node in the uppermost level
of the tree) which represents the set of all solutions. In some instances during
the search there might be nodes from which no branching has occurred yet.
These nodes which are to be discovered further are called /intermediate nodes.
On the contrary to intermediate nodes which imply a partial solution, fina/
nodes represent a complete solution. In order to reach a final node (leaf), all
decisions required to establish a valid solution set have to be made. In RLP,
for example, a leaf stores start dates of all non critical activities. Obviously

final nodes are located in the lowermost level of the search tree.

Two main characteristics of branch and bound algorithms presented by Agin
(1966) are branching characteristic and bounding characteristic. According to
the definitions provided, branching characteristic ensures that an optimal
solution is going to be reached at the end of the search since all possible
combinations are going to be considered. Whereas, bounding characteristic
implies a possibility to reach the optimal solution without visiting each node by

pruning some parts of the tree.

Finally definition of lower bound should be given since this concept is in the
very heart of the branch and bound logic. Lower bound is a value of the
objective function for all solutions included in a specific node such that none
of the solutions that could be branched from that node will have a better
objective function value than that bound. As this definition implies, there is no
use to branch a node any further if its lower bound value is worse than the
objective function value of one of the explored final nodes (complete
solutions). Objective function value of the best complete solution explored so
far, i.e. upper bound, is used to decide whether a node is promising or not.
Obviously, upper bound at the end of the search provides the optimal solution

to the problem.

40

3.3 Problem Definition

It has already been mentioned in previous chapters that RLP aims the
minimization of fluctuations in resource distribution curves. In this section a
typical RLP is going to be presented so that the characteristics of the

developed branch and bound algorithm can be illustrated on an example.

In Figure 3.3 an AoN diagram, which is partly obtained from Mubarak (2004)
is presented. This small size project, which includes 4 non-critical activities, is
going to be referred throughout this chapter while explaining the developed
procedure. Daily resource requirements, which have been generated randomly
for each activity, are given on the network, in addition to the information
regarding the precedence relations and activity durations. Critical path of the
project has been identified by the forward and backward pass calculations.
Early start and early finish times, and late start and late finish times have
been determined and total floats have been calculated. Distribution of

resources according to the early start schedule is presented in Figure 3.4.

6]1[12
3 |2
717113
[14] 019 20] 0]25
6 |6 9 |0
14] 619 20] 6 [25
ofo]Jo 1]o]s 6]0]13 25] 0]25
1 =3 2> [1] 4 |4 5 10 |0

ofofo 1[5]5 6]8][13 125] 025
[14] 1 [17 18] 1|24

o

7 |1 2 8 |4

[15] 4 [18 2119] 7 (25
ES[TF[EF 6] 2]16
ID |Res 5 5
LS [our| LF 8 [11]18

ES: Early Start Date (In the morning of which the activity is started) = Arrow representing noncritical precedence relatio
LS: Late Start Date (In the evening of which the activity is finished) %Arrow representing critical precedence relation
EF: Early Finish Date (In the morning of which the activity is started)

LF: Late Finish Date (In the evening of which the activity is finished)

TF: Total Float (Slack)

Dur: Duration

Res: Daily Resource Requirement

Figure 3.3 — Sample Activity on Node Schedule

41

12 |

11 |

10 |

6 uniform resource demand

Resource Requirements

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Days

Figure 3.4 — Resource Distribution for the Early Start Schedule of Figure 3.3

Assuming that the resources of the sample schedule are to be leveled
according to MinDev objective function, it can be commented that the early
start schedule is far from optimal resource allocation in that it includes high
amount of deviations from the uniform resource level. To obtain an optimal
solution for this network, branch and bound algorithm has to ensure that all
non-critical activities are scheduled to the best starting dates so that the sum
of the deviations is minimized. In order to do this, a search tree is established

as in Figure 3.5. Throughout this search MinDev objective function is utilized.

Each node of the tree illustrated in Figure 3.5 represents a decision to
schedule a selected activity to a selected start date. As mentioned in the
previous section, branching starts from the root node (node number zero) and
all promising nodes are explored until a complete solution is obtained. Node
numbers given on each node represent the order in which nodes are
established. In addition to node numbers, id numbers of the selected activity
and decided start date of that activity are also illustrated. In addition to this
information, nodes also store lower bound values. The methods employed in

lower bound calculations are going to be explained in the following sections.

42

wylLob|y punog pue youelg ayy Aq paysijqeisy 9941 yoiess

— G'€ 24nbiy4

co1'8’s| | cor’s's| | 86'9'S co1'g’s| _ [eot’s’s| | 86'9'S ort’z's| | 901°9’S 86'8’S|__ | 86°2'S|__]869'S 8685 | | 86°L'S| | 86'9'S 901°2's| |90T1°9’s
LX4 0C 6T 9T ST T 8¢ V44 8 L 9 €1 (43 1T ST [] vt
7861’8 2861'8 06818 8/'61'8 8/'61'8 9881’8
8T €T (44 S oT [T 6
a'st| 8L EAS YA 8L'v1'L
S o1 b c
082’ 9.'9'¢ q ‘@1ep vess ‘p
B I Joquny apou

43

In the sample tree given in Figure 3.5, first complete solutions are obtained in
Nodes 6, 7 and 8 with objective function values of 98. If the nodes between
the Root Node and the 6™ Node are observed it can be realized that the non-
critical activities of the schedule in Figure 3.3, i.e. activities 3, 5, 7 and 8, are
scheduled to start at the 6™, 6™, 7" and 8™ days respectively. Once this first
complete solution is obtained, other intermediate nodes are explored further
to check whether a better feasible solution is available in the search space or
not. It has been observed that there are no other complete solutions with
objective function value less than 98. Thus, the solution presented in Node 6
is declared to be the optimal solution. Corresponding resource distribution for

this solution is given in Figure 3.6.

12|

11|

10 |

6 uniform resource demand

Resource Requirements

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Days

Figure 3.6 — Optimal Resource Distribution for the Schedule of Figure 3.3

As bounding characteristic of the branch and bound method suggests, at least
some parts of the search tree should have been pruned in Figure 3.5.
However, it can easily be observed that the algorithm had to explore all nodes
in the sample tree as in the case of an implicit enumeration procedure. The
reason for this is related to the efficiency of the lower bound calculation
methods and is going to be discussed further in the next section while

presenting the characteristics of the developed algorithm.

44

According to Agin (1966), a branch and bound algorithm might be said to
consist of rules for;
1. deciding on how to continue the search given an intermediate
node (branching rule);
2. deciding on how to calculate lower bounds on each established node;
3. deciding on the intermediate node from which to branch next;
4. recognizing when a node contains only infeasible or non-optimal
solutions;

5. recognizing optimal solutions encountered on final nodes.

These rules are going to be employed as an outline while presenting the

characteristics of the developed algorithm.

3.4 Characteristics of the Developed Branch and Bound

Algorithm
In this section, characteristics of the suggested depth-first least-lower-bound
branch and bound procedure are going to be given. Developed algorithm
enumerates feasible start times of activities and can be applied to all metrics
presented in Section 3.1. It attempts to solve the RLP in traditional sense, i.e.
without any resource constraints. Details of the procedure are explained in

detail based on the schedule presented in Figure 3.3.

3.4.1 Branching from Nodes to New Nodes

Nodes in the developed algorithm store information about already sequenced
activities and start dates of these activities. In other words, each node
contains a partial feasible schedule and a list of unscheduled activities. In
each node one activity is scheduled to one of its start dates. While doing this,
feasibility of the partial or complete solutions is maintained by allowing only
feasible start dates of activities to be established. Number of activities that
need to be sequenced to reach a complete solution after a specific node is
equal to the number of unscheduled activities stored in that node.

45

Nodes branched directly from a node are the children of it. If there is more
than one children of a parent node then these are said to be brothers of each
other. In each parent node, one activity is selected to be scheduled in the
next step. It is the total float value of this activity that is used to decide on the
number of children of that node. In Figure 3.5 for example, Node 1 is the
parent of Node 3 and Node 4 which are brothers of each other. The reason
why Node 1 has only two children is due to the fact that Activity 7, which is
selected to be sequenced in the next step, has a total float value of one. Since
all possible start dates of a selected activity have to be represented on
different nodes, two nodes for Activity 7, one setting the start time to 14™ day
and one to 15" day, have to be established. In other words, once an activity
is chosen to be scheduled, number of nodes established immediately is
“TF+1". At this point it is important to note that the TF under consideration is
the updated TF value according to the previous decisions, rather than the one

defined in the early start schedule.

As the previous paragraph implies, to select the activity to be sequenced after
a node, feasible start dates and total floats of activities have to be
recalculated each time. Such an update is essential in order to consider the
effects of previously made decisions on the tree. To be more specific, since
there is a possibility that feasible start dates of a candidate activity might have
been changed due to formerly scheduled activities, possible early and late
start dates of all activities have to be determined again and again every time a
node has been established. The necessity of this can better be understood if
Node 5 on Figure 3.5 is considered. While introducing this node, Activity 8 has
been selected to be scheduled. If the AoN diagram in Figure 3.3 is examined,
this activity, which has a one day total float, should have two feasible start
times which are 18" and 19" days. However, checking the parent node it can
immediately be realized that Activity 7 which is a predecessor of Activity 8 has
been scheduled to day 15 which means that finish date of this activity can be
no earlier than 18™ day. Thus Activity 8 is scheduled to its only possible start
date which is the 19" day.

46

3.4.2 Determining Lower Bounds for the New Nodes

Lower bound of each node is calculated by the algorithm in order to predict
the best objective function value that could be obtained at the end of the
search if that node is explored further. In other words, best scenario that
could occur after that point of the search is taken into the account. If the best
possible complete solution has an objective function value worse than or equal
to one of the known solutions so far, then that node is fathomed, i.e. not
explored any further. As emphasized earlier, lower bound calculations play an
important role in branch and bound methods since better (tighter) lower
bounds enable algorithms to prune more of the search space which results in
increased computational efficiency. In fact, the extent to which a smallest
improvement in lower bound calculations could reduce the required
computational effort might be highly significant in some cases. An example to
such an improvement and its effects on the search tree presented in
Figure 3.5 is going to be provided later in this section; however, initially some
information on the employed lower bound calculations is presented. First three
of these lower bound calculation methods have previously been suggested by
Neumann and Zimmermann (2000). The fourth one, however, is suggested

for the first time in this study.

3.4.2.1 — Discarding Ciritical Activities

Since RLP does not allow the makespan determined in early start schedule to
be extended, in our search none of the critical activities can be delayed.
Resources of these activities, however, have to be incorporated in the
resource utilization graphs in order to properly calculate the objective function
values. Therefore, fixed resources required by the critical activities are
determined and included to the resource distribution at the beginning of the
search and are taken into account during each lower bound determination.
Resource utilization graph for critical activities of the schedule presented in

Figure 3.3 is to be seen on Figure 3.7 (a).

47

Since extensions in makespan are not allowed, it is obligatory to allocate the
required resources to the critical activities from the beginning of their start
dates until the end of their finish dates. Therefore, in Figure 3.7 (a) daily
resource requirements of Activities 2, 4, 6 and 9 are directly allocated to the
dates on which these activities have to be in progress. It should be noted at
this point that the resources of Activities 1 and 10 are equal to zero and are
not considered in resource distribution graph. This is because these activities
are dummy start and dummy finish activities which do not consume time and

resources.

3.4.2.2 — Unavoidable Times of Activities

If a schedule is examined carefully, it can be observed that some non-critical
activities, whether they are started in the earliest or latest possible start time,
have to be in progress on some days. Thus, resource consumptions of these
activities on these days will be unavoidable regardless of the start date to
which they are scheduled. These time periods on which certain amount of
resource consumption is compulsory for certain activities are called
unavoidable times of these activities. An activity’s unavoidable time, if there is

any, might be formulated as in the following;

Unavoidable Time = [LS, EF] as long as LS < EF;

where; “LS” indicates late start and “EF” indicates early finish of the activity.

Since allocation of as much resources as possible enables calculation of a
tighter lower bound, resources that are consumed at unavoidable times of
activities are directly scheduled at the very beginning of the branch and bound
procedure. Considering the schedule of Figure 3.3 once again, resources
required during the unavoidable times of non-critical activities are to be

scheduled as in Figure 3.7 (b).

48

(q) s204n0say a|gepioAeun pue (B) SaIAIPY |e2R1D) JO uonRNqUlsIq 924n0say — € a4nbi4

"SOIIAID. [BJIIID-UOU JO Saul} 9|qepioA_UN ay) Ul panbal @18 S82in0sal paujiapun pue pjog (i
"SSAYAOL [eXUD S33eIPU ,, 4, (1

0|lv |V v | ¥ v]OT]O9[Z et et [Tt 6 TR T[Tt It 9 | ¥ | T [T JT [T 1T

0 0. 0/0 0:0 oc[oc] o] 9] «6

v v v v v ¥ 61[81| ¥ /[8

T st vl I ¥ ¢

919 9 |9 vI| ¥I| 9] 9] %9

S 6§ § § § 6§ § g gl 9 ¢l 11| ¢

v v vy v b b b 9 9 | 8| b

T T T T T ¢ o ¢ < ¢

T 71 1 111 [1] 1] 9] x¢

Gelve|cc|ece|te|oc|er (ST [zt |or st |vr[ct[er|ti|or|6 829 |S|v € [T | S1 S3sedlnal ar

skeq (q
ojJoJoJoJoJoJo9JoJo[o9 o [o[v [P |+ |V V|t [P |¥]|T|]T]T[T]T

0 0 0,0 00 oc[o] o] 9] «6

61| 81| +| <] 8

st| vi| 1] ¥ 2

99,9999 vI| ¥I| 9] 9| %9

gl 9 ¢l 11| ¢

R AR AR R R R of 9] ¥ 8| «

9 ¢] ¢

T 71T 1T 11 [1] 1] o] x¢

GC|bC |€C|cc|Tc|OC|6T ST [ZT|O9T[GT |vbT €T |cr |i1]OT | 6 |8 |Z |9 |S|v|€|c]| T | S1 S3fsedlnal ar

skeq (e

49

In the sample network given in Figure 3.3, it can be observed that for all non-
critical activities the condition LS < EF holds. This means that these activities
are going to be in progress in their unavoidable time periods. Considering
Activity 3, for example, unavoidable time period of this activity is the duration
between its late start and early finish times which are given as 7" and 12"
days. Therefore, daily resource requirement (2 units of resources/day) of this
activity between these days is immediately scheduled, before even making
any decisions related to its start date. Same situation holds for Activities 5, 7
and 8 too, since for all of these tasks LS < EF. However, it should be noted

that there would be no unavoidable time for any activity for which LS>EF.

3.4.2.3 — Allocating Unscheduled (Free) Resources

After allocating resources of critical activities and resources required during
activities’ unavoidable times as explained in Sections 3.4.2.1 and 3.4.2.2,
there are still unscheduled resources which depend on the decisions made on
the start dates of activities throughout the search. Thus, it is not possible to
estimate on which day an activity’s resources are to be scheduled unless the
decision on the start time of that activity is made. Considering Activity 5 in
Figure 3.7 (b) for example, it can be said that 5 units of resources are going
to be required on each day during the unavoidable time of this activity which
is [8, 16]. This resource consumption will occur in any case regardless of the
decision on this activity’s start date during the branch and bound procedure.
However, without scheduling this activity, the resource requirements on 6™,
7" 17" and 18™ days are not known. Resource requirements for this activity
on these days purely depend on the decision about when to start this activity.

Since the schedule presented in Figure 3.3 is a simple one in which non-
critical activities have only one or two days of total floats, unavoidable time
concept helps the algorithm to determine the resource distributions
significantly. However, in most schedules, total floats are relatively larger and
unavoidable times of activities either do not exist or are much shorter. Hence,
this concept might have a much less effect on lower bound calculations. In

50

this case, allocation of unscheduled resources and the strategy in allocating

them gains importance.

Although activity selection criteria is going to be mentioned in the following
section, it can be realized by intuition that scheduling activities with the
smaller amount of total floats firstly, helps the algorithm to reduce the amount
of branches to be established throughout the search. Therefore, let us assume
that the first non-critical activity to be scheduled is Activity 3 with its one day
total float value. The resource distribution of the project after assigning
resources of critical activities and after allocating resources consumed in
unavoidable times of the activities is as seen on Figure 3.7 (b). After
scheduling Activity 3 to start in the 6™ day, however, the resource utilization
graph becomes as in Figure 3.8 (a). As seen on this figure, Activity 3
consumes 2 units of resources for 7 days starting from the 6™ day at which it
has been scheduled to start. Since unavoidable resources of this activity have
already been scheduled, only a 2 units of resource allocation to 6™ day has
been done at this stage. In other words, resources already scheduled
according to the improvement explained in Section 3.4.2.2 have not been

reallocated.

As seen on the figure, 159 of the 174 units of resources required for
completion of this project have been scheduled up to this point. Still, 15 units
of resources are waiting to be allocated. Remembering that the only decision
made so far was on scheduling Activity 3 to start at the 6™ day, it is not
possible to say where to allocate the remaining resources at this instant of the
search. These resources, depending on the decisions in following steps, may
be allocated to suitable positions and may reduce the objective function
value (sum of absolute deviations from the uniform resource level in this case)
significantly. Also the opposite can happen and at the end of the search a very

high objective function value can be obtained.

51

Now that the lower bound logic necessitates calculation of the closest guess
on the best possible scenario for the future of the search after a certain point,
determining the objective function value based on Figure 3.8 (a) would yield
in a low quality lower bound since in this case unscheduled activities are not
taken into the account. In order to overcome this and improve the lower
bounds (i.e. obtain tighter lower bounds) calculated by our algorithm, all of
the remaining resources are scheduled one by one to the best days in which
they either minimize the lower bound or increase it by a minimum amount. In
order to do this, the algorithm checks the effect of scheduling one unit of
resource on the objective function value for each day one by one and
allocates this one unit to the best day possible. This process is repeated until

there are no more unscheduled resources left.

In Figure 3.8 (b) the unscheduled (free) resources so far in the search have
been allocated to the resource distribution graph. On the 2™ line of this figure,
15 units are temporarily scheduled to 1%, 2™, 3, 4% 5% and 25" days to
reduce the sum of absolute deviations from uniform resource level as much as
possible. It should be realized that the best days for these resources to be
allocated may differ according to the utilized objective function. For RID
metric, for example, days to be chosen to achieve a better lower bound would
be different.

Note that the lower bound calculated in this case is 76 units. In other words,
there will be a minimum absolute deviation of 76 units from the uniform
resource level (6 resource units in our case) if the search is continued from
this node forward. The significance of this number lies in the fact that, if there
were a known complete solution with an objective function value less than or
equal to 76, then we would not need to continue the search from this point
on. In other words, the node could have been fathomed since it would not

promise a better solution than the ones known so far.

52

(q) s901n0say |euonippy bulnpayds Jayy pue () € AlARy bulnpayds Jayy uonnglisig 921nosay — 8'€ a4nbi4

9pou }skj 33 JO punoq Jemof B3 S 9, 91l
YaIym 9/ Sl San[eA 9say} JO WNng “uoidwinsuod 82In0saJ abeIaAR WO S92IN0S3I JO UORBIASQ aur] 9 :53y abelany
*(z aur + T BUr) S92IN0SaJ pajedoje Ajeuoiyppe pue paNpayds ay3 JO WNS i€ aur Gz :uopeinq 9loid
"punoq Jamo| 8y} aAocIdwi 0} JSPIO Ul S3DIN0S3I Alep pappy g aur 0 :s3y buuewsy
*(S224n0Sal gjgepioAeun Bupnpul) € AYAIDY pue SSIIAY [EJD) JO uoidwnsuo) 82IN0say T aur p/T 1S3y pnNpayds
/LT S9Y (10 L
clelelece|lclclvy|Oo]jT]9)]9|s|eEfls|s|Ss|Ss|Ss|ojojejelEe|Cc|C ¢{oun
clv|v|v ||V |OT|9 ||l |TT|6 |[TT|IT|TIT|(TT|TT| 9|9 clele€|bv P € aun
€ 14 [4 4 € € ¢ /U
oJv v v v v or)Jo sz faja)jit]e6e JTTJITJITJTITJTIT)]9]9 T T T T T T aun
0i0]0:0:0:0 0zf 0¢] 0] 9| x6
vy vy v v v v 61| 81| ¥| | 8
T T T ST| 1 T v L
9919199 :9 4148 9] 9| x9
S §.9/9 5§ 9 SIS S 8| o9f S| 1T ¢
vy vy viviv i vivib 9] 9] V| 8| xb
/T TiCT T T ¢ AREIE G
T T T T T T T T Sl xC
SC|bec|ec|cc|TCc|oC |6l (ST |LZT |OT|ST|(bT|ET|CT |TT|(OT |6 |8 |Z |9 |S |V |E]|CT T S1| S3 |sed |ind | dI
skeq (q
GT :S9Y buuewsy
9 :s9Yy abelany 6ST :S9Y pnNpayds
GZ :uojeinqg afoid LT S3Y [el0L
ojJv | Vv v | Vv]bvJOT)Jo9 s jaaje It f6 JTITJTITJITJITJIT)J9JoJT T /T /JJT|JT
0:0;0:0:0:0 0c| 0¢f O] 9| %6
vy v v v v v 61| 81| | £ 8
T T T ST| 1 T 1A
9:{9 919 :9:9 bI| b1 9 9| x«9
S §. 99 9 9 999 8l 9 S| 11| S
vy iv 14 14 vy iv 14 14 9 9 14 8| xb
¢/ ¢i¢ ¢ T Tt 9 ¢ £ €
T T T T T T T T Sl €
SC|ve|€c|cc|TC|0OC|6T ST (LT [OT |ST (VT |ET|CT|TT|OT |6 |8 |L |9 |S |V |€E]|C T S1| S3 |s8d |4nd | AI
sAeq (e

53

Although allocation of free resources is an important improvement while
calculating the lower bounds for all objective functions in our study, it is
particularly important for RID metric. This is because application of this metric
requires the allocation of all resources to get an adequate estimate on the
overall idle times of resources. If there is a certain amount of unscheduled
resources, then it is not possible to estimate total idle days in the allocation
graph since there will be a possibility for the unscheduled resources to be
allocated to these idle durations and to reduce the lower bound calculated in
the following steps. For example RID value of the node can not be calculated
according to the resource distribution in Figure 3.8 (a). As seen on this figure,
RID value at this instant of the search is 9 units. Obviously, this value can not
be considered as a lower bound since there are 15 units of resources waiting
to be scheduled which may result in better lower bounds in the following
steps. It should be recalled that such a case can not be accepted since the
lower bound logic requires a guess on the best possible scenario regarding the
future search. Thus there should not be any possibility to obtain a partial or
complete solution after a node which is better than the lower bound
suggested in that node. This can be seen on the search tree in Figure 3.5,
which is obtained for MinDev objective function by employing the lower bound
improvement methods presented in Sections 3.4.2.1, 3.4.2.2 and 3.4.2.3. As
seen on this figure, lower bound of the node in which Activity 3 is scheduled
to start at the 6" day is 76 units as calculated in Figure 3.8 (b). It should also
be noted that in none of the nodes, calculated lower bound value is less than
the ones predicted by the parents of that node. In other words lower bound
values increase as the search tree is explored deeper. This situation also
reveals that the optimistic predictions (lower bounds) in nodes are not
realized (mostly) as the search proceeds. Therefore, lower bound values of
children nodes are lower than or, under best conditions, equal to the lower

bounds of their parents.

54

3.4.2.4 — Maximum Allowable Daily Resources

The tree presented in Figure 3.5 has been successfully established by
employing all of the three lower bound improvement methods given in the
preceding sections. As mentioned earlier, these improvements have originally
been suggested by Neumann and Zimmermann (2000). Yet, they could not
enable the algorithm to build the search tree in an effective manner. This is
because the algorithm could not fathom any intermediate nodes. The optimal
solution has been reached after enumerating all possible solutions to the
problem completely. The fact that the size and complexity of the problem
under consideration is very low, allowed this to be done. However, complete
enumeration is an exhaustive process for larger problems, which sometimes
can not even be completed successfully due computational limitations. In fact
it is these limitations which made lower bound calculations so important for

any branch and bound algorithm.

In this study, another lower bound improvement method that could be used
to increase the efficiency of free resource allocation (thereby the efficiency of
lower bound calculations) is going to be introduced. According to this
improvement, maximum allowable daily resources are determined at the
beginning of the search and free resources on each node are allocated in a
manner that daily sums do not exceed maximum allowable resource amounts.
By doing so, it is aimed to obtain better (tighter) lower bounds and enable the

algorithm to prune more of the search tree.

According to the suggested improvement, maximum amounts of resources
that might be required on each day are calculated at the beginning of the
search. In order to do this, it is assumed that activities will require resources
on each day between their early start dates and late finish dates. In other
words, all possible dates in which an activity could consume resources are
treated as if there were actual resource requirements by that activity in these
days. In this manner, maximum amounts of resources that can be consumed

by all activities are determined for all days one by one. An application of this,

55

while scheduling Activity 3 of the sample schedule, is seen on Figure 3.9 (a).
As seen on this figure, all of the days between early start date and late finish
date, i.e. [ES, LF], of activities are treated as if there were actual resource
requirements on these days. Consequently, by summing all of the assumed
resource requirements, maximum allowable daily resource amounts are
obtained. Resource requirement on any day can not exceed the maximum
requirement of that day no matter which decisions are made throughout the
search.

Significance of maximum allowable daily resources can be understood by
examining how the free resources are allocated in Figure 3.9 (b). The
operation, in fact is the same as the one presented in Figure 3.8 (b). Only
difference between the two methods is that in this one maximum daily
resource requirements calculated in Figure 3.9 (a) are not exceeded by the
algorithm. Thus, free resources could not been allocated to days on which
allowable amounts of resources have already been consumed after the
allocation of critical activities’ resources and unavoidable resource
consumptions. Considering days 1 to 5, for example, there should have been
temporary resources scheduled, in order to reduce the amount of deviations
from uniform resource demand. In fact, this was the case in Figure 3.8 (a).
However, no free resource allocations during this period could have been done
in this graph since the maximum resources that are allowed to be consumed
in these days were already been allocated. It should be noted that, except for
the 4 units of resources allocated on the 25" day, all of the temporary
resources scheduled increase the deviations from the average level. This is
because the algorithm can not allocate free resources to more preferable days
due to maximum resource limitations. Although the same decision on the
same schedules is being made in Figure 3.8 (b) and Figure 3.9 (b), lower
bound on the latter figure has been calculated as 98 units whereas the former

figure suggested a lower bound of 76 resource units.

56

(q)sywi] 924nosay asay) 03 buiploddy uoiendje) punog 1amo pue (e)ssinosay Ajleq 9|qemo|ly wnwixel -6'€ 24nbi4

'SpOou 1Sk} SU3 JO punoq Jomaq a3 S| 86 -d1

UJIUM 86 SI SaNeA 9say] JO winS "uoidwinsuod 92IN0SaJ 9bRIDAR WO} S92IN0SAI JO UOIRIAD(Q : dUr] 9 :S9Yy obeiany

‘uoidwnsuod 924n0sal Ajep s|gemoje wnuwixew Gz :uonpeinqg y09loid

SPO9IXd S92IN0SAJ DSAY] JO SUOU Jey) DI0N "SS2IN0SSI PIpPR pue PINPAYDS AY3 JO WNS i€ aur] 0 :s9Y buuewsy

‘punoq Jamo| ay3 aA0idwi 0} J9pIO Ul S92IN0S3I Alep pappy g aur /T :S9Y panpayds

*(s204n0sal ggepioAeun Bupnjpul) € AIAY pue SSIIAPY (221U JO uoindwnsuo) a2IN0say T aun /T :S9Y |01

cl|lclc)eclclclvlelefofols)e|ls|s|Ss|Ss|Ss|eE]le|S|S|S|S|S Ppou
vl v | v |V | ¥ |V |OT|[6 |6 |CT|CT|[TT]|6 [TT|TIT|TIT|IT|(TT|6 |6 |T|T T T T € aur
14 €l c €€ ¢ a/un
ojJv v v]y v Jorfo)Jsz jerjer T} 6 JTITJTITJTITJITJTI1)9 J9 T T T T T T aun

0:0 0:i0 0:iO0 S¢| 0¢] 0] 9| %6

vy v v v v | v Sse| 81| ¥ L] 8

T T T 81| v1 T v ¢

9i{9 19199 :9 6T| vT| 9| 9| «9

S/ S 9§/ 9 S9:9:9.9 9 8T| 9| G| TT| §

yiovivivivibv b €Tl 9] V| 8| xb

2.2 T T T T ¢ et of ¢ £ ¢

T 1T T T T S| 1T T| S| xC

SC|ve|€C | e |TC|0C 6T |8T |LT |OT (ST |VT |ET|CT|[TT|OT |6 |8 | L |9 |S|P | €| C| T |d1]|S3|[sed|ind|dl

sheq (q

g S0y obelany

*S9IYAOR |RID-UOU JO S} SjgeploAeun ay) 0} buogjag se2unosal paupiapun pue pjog (i Gz :uopein 39loid

"SAYAJOL [eDD SeIpUl , « , (I P/LT ‘soy|elol
vlv] v v]y v JorjorjerjerJer et JIT JIT It JITJ It JIT It JTI1) 1)T T T T

0:0 0:0 0:iO0 S¢| 0¢] 0] 9| %6

vy iviviv v v v ¢ Sse| 81| ¥ 4| 8

T T/ F T i1 8T| +1 T v ¢

9:i9 1999 :9 6T| ¥T| 9| 9| «9

s §9/9 9 9 S9/9: 9,999 i§ 8T| 9| & TIT| §

vy viv o viviv o vib €Tl 9] v| 8| xb

¢ci¢ ¢ ¢ ¢ ¢ T ¢ €Tl 9| ¢ <] €

T {1 T T T S| 1T T| S| xC

SC|ve|€C | e |TC|0C 6T |8T |LT |OT (ST |PT |ET|CT|[TT|OT |6 |8 | L |9 |S|¥P | €| C| T |d1]|S3|[sed|ind|dl

sheq (e

57

In order to see how much this last improvement changed the search
procedure, trees in Figure 3.5 and Figure 3.10 have to be compared. As seen
on Figure 3.10, thanks to the tighter lower bounds, considerable amount of
the search tree has been pruned by fathoming the 1% and the 3™ nodes.
Optimal solution in this tree has been reached by establishing only 8 nodes,

whereas in Figure 3.5, 28 nodes had to be examined.

0
1 [2
3,6,98 3,7,98
3 __________ 4
7,14,98 7,15,98
5
8,19,98
node number 6 | 7 | 8
id,start date, b 5,6,98 5,7,102 5,8,102

Figure 3.10 — Search Tree Established by Utilizing Maximum Allowable Daily
Resources Improvement in Addition to the Improvements Given

in Sections 3.4.2.1, 3.4.2.2 and 3.4.2.3

While carrying out experiments via the developed algorithm, problems have
been solved both by employing the maximum allowable daily resources
improvement and without. Obtained results are going to be compared in the
following chapter and the significance of the suggested improvement is going
to be tested.

58

3.4.3 Choosing an Intermediate Node from Which to Branch Next
and Selecting the Activity to be Scheduled

In the beginning of Section 3.4 it has been indicated that the developed
branch and bound algorithm is based on a depth-first and least-lower-bound
criteria. According to the depth first rule, one of the nodes created in the
previous stage is chosen and the search is carried out downwards on the tree
node by node. If any branch is fathomed, i.e. none of the solutions that could
be obtained by further exploring that branch is promising, then the algorithm
retreats that branch upwards until a node which has not been totally explored
is encountered (Demeulemeester and Herroelen, 2002). Thus the algorithm
firstly explores the branches downwards until they are pruned or a leaf (a
complete solution) is reached, and then finds another node to be explored.
This procedure is repeated until all branches are explored or pruned. If
Figure 3.10 is considered once again, it can be observed that the depth-first
procedure explores a solution with an objective function value of 98 at the
very beginning of the search. After finding this solution, Node 1 and Node 3
are checked to see if they are to be explored any further or not. Since lower
bounds of these nodes were equal to the best known solution’s objective
function value so far, they were fathomed and the procedure has been

terminated.

During the exploration of a search tree, if there are two or more brother
nodes that might be explored further, then the one with the least (best) lower
bound is selected. This is simply because the node with the better lower
bound promises better solutions. In case there is a tie in this selection, then
the node which schedules the next activity to the latest start date is chosen.

After determining the node to be branched, another selection to be made is
about which activity to schedule in the next step. It has already been
mentioned that the activities’ total floats and feasible start times are being

calculated on each node considering the decisions made previously. Thus an

59

intermediate node which is to be branched further stores a valid list of
candidate activities with the updated total floats. From this list, activity with
the least amount of total float is chosen to be sequenced in the next step
where ties are broken by preferring the activity with the lower id number. By
employing this selection rule, branching in the upper levels of the search tree
is limited as much as possible to improve the computational efficiency.

3.4.4 Recognizing Non-promising Nodes and Optimal Solutions

Lower bounds calculated on each node enable the algorithm to differentiate
the promising nodes from the ones that need to be fathomed. At the
beginning of all searches, first complete solution reached is stored as the
current best solution. This solution, of course, is updated every time a better
solution is encountered by the algorithm. Throughout the search all of the
established nodes’ lower bound values are compared to the current best
solution’s lower bound value to ensure that non-promising nodes are
recognized and fathomed. Similarly each time a leaf (a complete schedule) is
encountered, its lower bound is checked against the objective function value
of the best complete solution so far. Leaves are recognized when the number
of scheduled activities in a node is equal to the total humber of non critical
activities of the schedule under consideration. If a better solution than the
best solution known so far is detected at a leaf, this solution is assigned as the
current best. Current best solution at the end of the search procedure reveals
the optimal solution to the problem.

Throughout the search, feasibility of solutions needs not to be checked since
only valid start dates are considered while scheduling the activities. In other
words, the algorithm ensures feasibility by the manner through which it
constructs the solutions. Any partial or complete solutions include a set of
feasible start dates of the activities.

60

3.5 The Branch and Bound Procedure

In this section procedure followed by the introduced algorithm is going to be

explained step by step.

Step 1 — Initialization

1.1

1.2

1.3

Carry out forward and backward pass calculations. Determine
feasible start dates and total floats of activities according to the
early start schedule.

Determine the set of unscheduled activities (Initially equals to
the set of noncritical activities)

Initiate the resource utilization graph.

1.3.1 Allocate resources for critical activities.

1.3.2 Allocate resources required during unavoidable times of

non-critical activities.

Step 2 — Initial Depth-First Search

2.1

2.2

Select the activity with the least total float value from the list of
unscheduled activities. Break any tie by selecting the task with

the smallest id number.

Establish nodes by scheduling the selected activity to all its
feasible start dates (List of feasible start dates is obtained from
the early start schedule at the first level of the tree and from

the parent nodes at all other levels).

2.2.1 For each node established in the previous step, update
feasible start dates and total floats of activities
considering the decisions made so far.

2.2.2 Allocate resources of the scheduled activity. Do not
reschedule resources that are consumed in unavoidable
times of that activity since they have already been
allocated in Step 1.3.2.

61

2.3

2.4

2.5

2.2.3 Calculate lower bound value for each newly generated
node by applying “unscheduled resources improvement”
and “maximum allowable daily resources improvement”.

As long as there is at least one unscheduled activity, select the

node with the lowest (best) lower bound value. Break any tie

by selecting the node which schedules the activity to the latest

start date.

Repeat the procedure presented in steps 2.2 and 2.3 until there
are no more unscheduled activities (i.e. until first leaf nodes —
complete solutions are reached). Go to step 2.5 if all non-

critical activities are scheduled.

Determine the best complete solution (i.e. the complete
solution with the lowest objective function value) obtained.
Save the objective function value of this node as the current
best value and the corresponding solution (i.e. set of start

dates for the non-critical activities) as the current best solution.

Step 3 — Backtracking

3.1

Go one level up in the search tree and check for the nodes to
be explored (i.e. nodes that have no children yet and that have

a better lower bound value than the current best value.

3.1.1 If there is any unfathomed node without children and
with a lower bound value worse than the current best
value, then fathom this non-promising node. Delete lists
stored in this node to free the memory allocated to
these information. If there is no promising nodes in that
level go back to Step 3.1.

3.1.2 If there is any node without children and with a lower
bound value better than the current best value, then
discover this promising node further. If there are more
than one promising node with the same lower bound

62

3.2

3.1.3

3.1.4

315

value, select the node that schedules the activity to the
latest start date. For the next step; select the activity
with the least total float value stored in this node to
schedule. Break any ties by selecting activity with the
smallest id number.
Establish nodes by scheduling the selected activity in
the previous step to all its feasible start dates (List of
feasible start dates is obtained from the parent node).
3.1.3.1 For each node established in the previous step,
update feasible start dates and total floats of
activities considering the decisions made so far.
3.1.3.2 Allocate resources of the scheduled activity. Do
not reschedule resources that are consumed in
unavoidable times of that activity since they
have already been allocated in Step 1.3.2.
3.1.3.3Calculate lower bound value for each newly
generated node by applying “unscheduled
resources improvement” and “maximum
allowable daily resources improvement”.
3.1.3.4Fathom nodes that have lower bound values
equal to or more than the current best value.
As long as there is at least one unscheduled activity and
at least one promising node; select the node with the
lowest (best) lower bound value. Break any tie by
selecting the node which schedules the activity to the
latest start date. Repeat Steps 3.1.3 to 3.1.4. If a
complete solution is obtained go to Step 3.2.
In case there is no promising node among the newly

generated brother nodes go to Step 3.1.

Determine the best complete solution (i.e. the leaf node with

the lowest objective function value) obtained. Save the

objective function value of this node as the current best value

63

and the corresponding solution (i.e. set of start dates for the

non-critical activities) as the current best solution.

3.3 Go to Step 3.1 and repeat Steps 3.2 and 3.3 until all nodes in

the tree are either fathomed or further explored.

3.4 If all nodes in the tree are fathomed or explored, declare the
current best value as the optimal objective function value and
the corresponding solution as the optimal solution to the

problem. Then, terminate the program.

3.6 Coding the Algorithm

Branch and bound algorithm presented in this study has been coded in C++
computer language. Microsoft Visual Studio 2008 Professional Edition has
been used to compile codes.

For each node in the search tree, two structures have been introduced by the
algorithm. First of these structures stores information related to the position of
the node in the tree. The address of the parent node, addresses of the
brother nodes and addresses of the children nodes are stored in pointers of
this structure. Obviously, this information is required to enable the algorithm
to navigate through the list. Thus, even if a node is fathomed, this first
structure is not deleted to maintain the connections within the search tree.
The second structure, on the other hand, stores sets of partial or complete
solutions (i.e. lists of start dates for non-critical activities) and calculates lower
bounds associated with these solutions. Also, feasible start dates for the
unscheduled activities are stored and updated in the second structure. In
addition to these, it also tracks the list of unscheduled activities and
determines eligible activities that could be scheduled at any instant of search.
Since the data stored in the second structure is related only to the suggested
solution by that node, this structure is deleted as soon as that particular node

is fathomed. By doing this, the memory allocated to this structure is freed.

64

While coding the algorithm, pointers are commonly employed in order to save
time in storing and reading data, to establish branches within the search tree,
to remember the best solution encountered so far etc. Dynamic memory
allocation is employed to generate arrays of variable sizes. Also, vectors are
used to generate arrays of structures size of which are not known at the

beginning of the runtime.

As it has been explained in the previous section, the algorithm continuously
navigates through the tree to ensure optimality. While doing this, several
branches need to be retreated upwards to check whether there are any
promising nodes left undiscovered in the upper levels. Therefore, each time a
leaf node is encountered and each time all brother nodes at a specific level
are fathomed, a function that directs the search to the upper levels is called
by the algorithm. In fact, it is these recursive function calls that limit the size
of the problem that could be solved effectively by the algorithm. In order to
enable the algorithm to do more recursive function calls, stack reserve size,
which specifies the total stack allocation size in virtual memory of the

compiler, was increased to 20 MB during the experimentations.

65

CHAPTER 4

VALIDATION AND COMPUTATIONAL RESULTS

In this chapter, validation of the developed algorithm is explained and
computational experiments are presented. Also, significance of the maximum
allowable daily resource improvement suggested to calculate tighter lower
bounds is tested.

4.1 Validating the Algorithm

In order to ensure that the algorithm is capable of successfully exploring the
search space and locating the global optima, preliminary experimentations
have been conducted. Some of the few known solutions of RLP available in
literature have been used in these experiments and results obtained via our
algorithm were compared to the solutions from previous studies. In addition
to this, some other problems have been solved to optimality via linear-integer
programming and results obtained from these analyses were compared to the

ones of the suggested branch and bound procedure.

As mentioned previously, EI-Rayes and Jun (2009) reported solutions obtained
by their metaheuristic based method for the RLP. In this study, a single
resource network which included 6 critical and 14 non critical activities has
been addressed. Results obtained by the developed GA optimization module
for traditional objective functions, such as SSQR, MinDev and Minimum
Moment in addition to the new metrics suggested by the researchers, which

are Release and Rehire and RID, have been reported.

66

Same application example has been solved by our branch and bound
algorithm utilizing the SSQR, MinDev, RID and RID+MRD metrics. In all of
these experiments, feasible solutions with the same objective function values
suggested by El-Rayes and Jun (2009) have been found successfully. This, in
fact, also revealed that the results obtained by the GA module of the

researchers were the global optimal solutions.

A similar validation process has been followed while addressing example
problems presented by Son and Skibniewski (1999). These two example
networks consisted of 13 and 15 activities (including dummy start and dummy
finish activities) respectively and were solved by the suggested multiheuristic
approach to minimize SSQR value implied by the resource distribution graphs.
Branch and bound algorithm developed in our study successfully solved these
single-resource networks and obtained the same objective function values
presented in the original paper. Again, this situation indicates that the results
obtained by Son and Skibniewski (1999) were the global optimum solutions

for the problems.

The last problem from the literature used for validation purposes was the
small size network of Easa (1989). Minimum absolute deviation possible for
this single resource network which consists of 7 activities has been
determined employing integer-linear optimization and results are compared to

the solution of our branch and bound algorithm.

Within the context of our study, some networks other than the ones presented
in the preceding paragraphs have also been solved to optimality via the linear
programming software, AIMMS 3.10. This is done to compare the results of
the branch and bound algorithm to the ones obtained by the linear
programming procedure. 6 single resource networks which consisted of 13 to
20 activities have been solved by the two methods and optimum MinDev
schedules have been determined successfully both by the branch and bound

algorithm and the linear programming method. Unfortunately, this type of

67

validation could be done for MinDev metric only, since other three objective
functions could not been utilized in linear programming. Also the fact that the
time and effort required to input variables and constraints to the linear
programming software were considerably high, limited the number of
schedules solved via this method.

Throughout the validation process, 1 solution for RID metric, 1 solution for
RID+MRD metric, 3 solutions for SSQR metric and 8 solutions for MinDev
metric have been verified either by comparing our results to exact solutions or
to the best known solutions in the literature. Moreover, some search trees
established by the algorithm for small size multiple resource schedules have
been checked node by node in order to ensure that the activity selections,

total float updates and lower bound calculations are being done correctly.

Details of all abovementioned solutions are going to be presented in the next

section together with other computational experiment results.

4.2 Computational Results

The branch and bound algorithm, coding details of which are presented in
Section 3.6, has been developed in C++ programming language. All
experimentations have been carried out on a PC with 2 GB RAM and an Intel
Core 2 Duo 3.00 GHz Processing Unit. The computer was run by Windows 7

Professional (32 bit) operating system.

As in most branch and bound based studies, main performance measure of
this study is the CPU time spent by the algorithm while solving problems. This
quantity was obtained by measuring the time spent while instructions are
being executed. By definition, input and output durations are not included in
the CPU time. In addition to this measure, number of nodes established by the
algorithm in order to locate the optimal solutions are presented both for
comparison reasons and to give an indication of the size of the search tree

under consideration.

68

20 resource leveling problems have been solved for experimentation
purposes. All of the objective functions presented in Chapter 3.1, i.e. SSQR,
MinDev, RID and RID+MRD metrics, have been utilized for these problems.
Resource distribution graphs of both single resource and multiple resource (4
resource types) modes of the problems have been leveled. Two different
types of algorithms are employed to solve single resource problems. One of
these did include all of the improvements presented in Sections 3.4.2.1 to
3.4.2.4. The other one, on the other hand, did not incorporate the last lower
bound improvement suggested in this study, i.e. the maximum allowable daily
resource limitation. In this manner, results obtained by the two types of
algorithms have been compared in order to find out whether the suggested
improvement made any significant contribution to the performance or not. All
computational results obtained from the experiments are presented in
Tables 4.1 to 4.10.

Some of the problems used for experimentation and validation purposes were
available in literature in single resource modes. Networks and resource rates
of these problems have directly been used. To derive a multi resource
problem, however, remaining three types of resources are generated
randomly for each activity. Problems 1, 12, 15, 16 and 18, presented in the
following tables are problems of this type. Activity numbers of these problems

range from 12 to 22.

In addition to the RLPs, several networks which did not include any resource
considerations were also available in literature. These networks have been
transformed to leveling problems by randomly generating daily resource
requirements for each task. Problems 2, 4, 5, 6, 8, 13, 14, 17 and 19 given in
the following tables are obtained in this manner. Activity numbers of these

problems ranged from 10 to 21.

6 of the 20 problems used for experimentation purposes have been generated

while developing the branch and bound procedure. These problems originally

69

intend to test certain capabilities of the algorithm such as solving RLPs with
multiple critical paths etc. The networks and resource requirements of these
problems are generated by hand. Therefore, they may tend to be biased.
Thus, the number of such networks is kept limited. Problems 3, 7, 9, 10, 11
and 12 are obtained in this manner. These problems include 8 to 20 activities.

Due to the characteristics of the developed algorithm, networks need to start
and finish with dummy activities. Therefore dummy start and dummy finish
activities with zero duration and zero resource requirements are included to
the problems whenever necessary. While generating the resource
requirements of activities, random number generator of Microsoft Excel has
been employed. A resource leveling problem set with unbiased, small size
problems was aimed to be obtained. Information on the precedence relations

and resource requirements of activities for all problems is given in Appendix A.

In the following tables, CPU times required to solve the problems and number
of nodes established by the algorithm to ensure optimality are given for all
objective functions defined in Section 3.1. Results for all metrics are reviewed
in 3 columns. First columns belong to the problems which require 4 resource
types, whereas second and third columns represent results obtained for single
resource modes of the same networks. Results given in the second columns
differ from the ones in the third column in that all lower bound improvements
have been utilized in these experiments. Third columns, however, tabulate the

performance of the algorithm without limiting the daily resource requirements.

Optimal objective function values obtained at the end of our analyses are also
given in the provided tables. These values are calculated as explained in
Section 3.1. While calculating the optimal objective function values for multi
resource projects, weights of each resource are assumed to be equal and are
normalized to 1. In other words, “w;” values of each resource type are taken
as 0.25 since there were 4 types of resources included in the multiple

resource networks.

70

*SUOIIoUNY SAISINJAL JO S|BD SAISUSIXS 0} aNp , 1013 MOILIBAQ YoelS,, S93edpul OS x
. anjeA uoipun4
00°Z 00z 00°0 00°0 SL'TE anpolgo [eundo
9T 06ST 6t 6t L6TY (s)owiL ndd
¢r19€ece ¢19€Ce SPE9 SbE9 ST9E6E pauado sapou Jo #
S 0 0s S 0s S S 0s NSy
MO A0 (0] p (o) A MO (0] (0] (0] uonejuswLadxg
SoYXeW JIpol sowen Ipow SOWEW PO So¥xeW Jipol
ON 921N0S3aY ||V 221N0Say ON 921N0S3y ||V 221N0Say
aibuIs albuis QUIN+ATY |ON 924n0Say ||V 924n0say and a1buIS a1buIS ASQUIN |ON 204nosay |y @24nosay ¥OSS uoipun4 aAPA[qO
QUNHATY QUIN+ATY slbuis ary slbuls ary ASQUIN ASQUIN 91buIS ¥YOSS 91buIS YOSS
1¢C J3quinN AyARY
((2£1 Bd) suaneis) ¢ JaquinN JNpayds
c c: 6C ‘6¢ anjeA uoipung
0S'8 05'8 00°0 00°0 00706 00°06 00°650€ 00°6S0E AP0 leundo
seg 762 [4 4 43 [43 LT LT (s)swil ndd
TEEETT CEEETT 60L 60/ YSLPE vS/LPE 86vCC 86tCC pauado sapou Jo #
S 0 S 0 S S NSy
MO p (e} (0] p (o) A O A O (0] p[e} p (o) (6] uoneIBWLIEdXT
SoYXeW JIpoW sowen Ipow SOWEW PO SouxeW Jipol
ON 921N0S3aY ||V 221N0Say ON 921N0S3ay ||V 221N0Say
3|buis ofuig JUW+ARS [ON 5203y Iy 22an0s3y - ATY aibuIS obuIS ASQUIN |ON 204n0say ||y 904n0say ¥DSS uonouN4 aNPalqo
QUNHATY QYIN+ATY sibuISary 3buls ary ABQUI o 31BuIS WOSS IBUIS YDSS
44

(6007 ‘seAey 13) T

JaquinN AINDDY

TSGUINN INPaLPS

(2 pue T s3|Npayds) synsay |euoneindwo) — T djqeL

71

*SUOI3DUNS DAISIND3I JO S[BD DAISUSIXD 0} aNp ,0LF MOLIBAQ YOBIS,, S91edpUl OS

0s'9¢ 05'9¢ 0S°S¢ 00°0% 00°0% 0S'TH 00°8y 00°8y S¢S 00'+9ST 00'+9ST 00°0€6
8¢ 9¢ SS 9¢ S¢ LS 97 97 [T 14 4! 8
98S0¢€ 9/0€ 918T¢ 8666¢ 8666¢ S6tic e81S e81S 80€0S i4047% CEETY 508S¢

A0 A0 A0 A0 A0 A0 A0 A0 A0 0 0 A0

SOUXelN “JIPOI SoYXel “JIPOIN
SoYXe “JIPOIN SoYXel “JIPOIA
ON 224N0S3Y ||y 324n0say ON 324n0S3y ||V 224n0say
olbuIS olbuIS QYW+ATY |oN 224n0say ||y 924nosay and ASQUIlN |ON 904nosay |l @24nosay Y OSS

9|buis 9|buis
9|6ul 9|6ul 9|6ul 9|bul
QUW+ATY QYWH+aTY jpulsary - 31bUIS ary ASQUIN ASQUIN IbulS ¥OSS 81buIS YOSS

anjeA uoipun4
aA33[qO [ewndo

(s)awn L
uoneindwo)

pauado sapou jo #

INsay
uonejuswiiadxg

uouNg sAP3[qO

81
((zgbd) 1meN) v

1BqUINN AYADY

awieN gnpayds

0S¢t 0S¢t SLET 00°vT 00°vT 0S°L¢C 00°ZE 00°LE STty 00'6TPT 00°6THPT SL'SLST

9 14 8 S S 8 [4 [4 € € € 4
6+89 6¥89 LLYS 6¥89 6¥89 €699 888¢ 888¢ TTby €€0S €€0S LEEE
M0 M0 0 A0 A0 A0 A0 MO MO MO MO 0
SOUXeI JIPON SOUXeW “JPOW SOUXeI JIPOW SouXEW JIPOW

ON 904N0S9Y || 924N0SaY ON 924N0S8Yy ||V 92.N0SaYy
ajbuIs ajbuIs AYIN+ATY [ON 224nosay || 224n0say and aibuIS a1buIS
sbuis ary 91buls ary
QIWHATY QAT ASQUIIN ASQUIN

ASQUIly |ON 20dnosay ||y @2dnosay Y OSS
3|buIS YOSS 9IbuIS YOSS

anje, uondun4
dARI[qO [ewndo

(s)awnL
uoieyndwo)

pauado sapou Jo #

Insay
uoieuswiiadxg

uonauNn4 aARRlqO

0¢
€

1BqUINN AYADY

3WeN 9npayds

(¥ pue ¢ sa|npayds) synsay [euoneindwo) — 'y djqeL

72

*SUOIDUN} DAISIND3I JO S[BD SAISUSIXS 03 BNp ,JOLIT MOLBAQ YOBIS,, S31edpUl OS «

anjeA uoioung
aAB([qO [ewindo

(s)awn L
uoineindwo)

pauado sapou Jo #

ynsay
(05 oS (05 (05 (05 oS oS (05 oS oS (05 (05 uoneIBWLIRdXg
SYXeW YIPOW SN UpOW SOWEW PO SOWEW YIPOW
ON 924N0S3Y ||y 924N0SSY ON 224N0SaY ||y 924N0SDY
aibuis aibuis QUIN+ATY [ON 924n0say || 92IN0Say and a1buIS albuIS ASQUIlN |oN @04nosay |y @24nosay ¥OSS uoipung anPalqo
QUNHARY QYWD sbuisard @lbuis ary ASQUI ASQUIN aIbuIS ¥DSS lbuIS WOSS
[T J3quinN ANy
((£66d) suaaa3s) 9 SweN 9npayds
G c c 605 605 C7'1S anjeA uoidung
059 059 00S°0T 0009 0009 000°0T 000°¢¢ 000°¢c 000°9€ 000°60 000°60 0SC'1SL analqO [ewndo
(s)ownL
0 0 0 0 0 0 T 0 0 0 0 0 uoneIndwod
SoT So1 6¢¢ LLT LLT 9T¢ €8y 9€S 8€9 S6v (Y42 [4%3 pauado sopou Jo #
0 0 0 0 0 0 0 0 0 0 0 0 nsed
uoiejuswiadxg
SoYXel “JIPOW - PO souxe “JIPO souxen —
ON 924N0SY ||y 24N0SY ON 904N0SaY ||y 924N0SY
aibuIS albuls AQUW+ATY |ON 321n0say ||V 824N0S3Y and albuIS a1buIS ASQUIlN |ON 204nosay ||y @01nosay Y OSS uoiounyg aAalqo
QI QHWaTY sibuisary eibuls ary ASQUI ABQUIN 31buIS AOSS @IbuIS YOSS
[T JAquinN AINPY

((zs16d) d2UH) §

3weN anpayds

(9 pue g s3INpaYds) synsay |euoieindwo) — €' d|qel

73

*SUOIIOUNY SAISIND3I JO F[BD SAISUSIXS 0} NP , 01T MOHUSAQ YIBIS,, S91edipul OS

g c'c anjeA uoippung
0 0 000 000 00°€8 00°£T8T 00°088¢ an1P3[q0 [eundo
19 0se 0 0 0 1€ beT (S)aurL
uoneindwo)
61611 61611 9 9% QEST S€C0L 2602ST | pauado sspou jo #
ynsay
) (0] A0 oS A0 O oS (0 O oS oS O MO uonejuswadxg
SOUXeW ON “JIPO IV . SOYXEW ON “JIPO IV .
wipobly WypoBly SOYXB ON “JIPOW 1Y wiguoBly WLRLIoBlY SOUXEW ON JIPOW IV ‘
yobus yopug QYW + QR¥jwLobY 3y wuoby ¥ ALY gopus -yopbus AP0 UW |wipLobly »y wipuobly -y 0SS uodung aA3Iqo
. . slbuisary albuls ary : : 31buIS YOSS 3IbulS YOSS
QINHATY QUWHATY ASQUIIN ASQuIly
91 JaquinN AINPDY
((196d) eleqniy) 8 aweN JNpayds
. anjeA uoipung
0S°€C 05°€C 00°0¢ 00°0¢ 00'SL 00°SL 0506 00°£94£ 00°£9L¢£ 0S°00cCE an18(qO [eundo
(s)owi L
#9¢€ 96¢ i%3 S8¢ €L 0L 8 /LS qS 1314 uoneIndwion
€PC6L £ve6L €bC6L €bC6L 6CESCT 6CESCT 0TES6 6910TT 69T0TT 6¢S99 pauado sspou Jo #
ynsay
) [0) A0 oS A0) (0] oS A0 O) (0] A0 O MO uonejuswadxg
SOUXeW ON “JIPOW IV . SOYXEW ON “JIPO IV .
wyyobly wpLiobly SOUEN oz HPOW __<. wuyuobly wpobly SOUXEW oz PO __<. [
oBuS "y 9jbuIS QI + Ty wuyobly ¥ Wby Y and 4 9BUIS 4 2IBUIS A U [wipiobly ¥ wiplobly ¥ WOSS uoipung aNPalqo
. . slbuisary albuls ary X ‘ 3IbuIS YOSS 3IbulS YOSS
QINHADY QUWHATY ASQUIIN ASQuIly
81 3qunN AJADY
L SweN 9npayds

(8 pue £ s3|Npayds) synsay [euoneindwo) — ¢ djqeL

74

*SUOIIoUN} BAISIND3I JO S|ED SAISUSIXS 0} aNp ,JoLJ MOUBAQ YIS, SI1LJPUl OS

oN|eA uoijoun
0SHT 0S%T 00'ST | 00'8T 00'8T S/8T | 00SH 00'Sh 00'0EST 00°0EST OSTOTTT | | \,_pr o me_um o
(s)awn L
ST TT 9%t 9T TT 89¢ 4 T [44 [44 OTT uoneIndwod
127401% £06¢ 85£86 12401% £06¢ 0r19L 991 991 S VA4~4 S9/Lty 061987 | pauado sapou Jo #
Jnsoy
(o] A0 MO MO ple} p (o] MO A0 (05 A0 p (o] (0] uoneluswLadxg
SOUXEW ON “JIPO IV . SOUXeN ON “JIPOW IV .
wyobly wipLobly SSUXE ON = SIPOW IIV wupuoBly wipLoBly SOYKBI ON 'JIPOW IIY .
WoBuS ¥ albuIS QAN + ATy wptobly Y wyylobly "y and N oBuS "y 9BuIS ASQ Ul |wiptioBly y wytobly ' ¥DSS uoippund aAeIlqo
: . sbuisary 9|buls ary ‘ : 3|buIS YOSS 3IBUIS YOSS
QIN+HATY QYW+ADY ASQUIW ASQUIN
o1 JaquinN AYAdY
01 swieN npayds
°N|eA uoijoun
0S5'¢c 0S5°¢c 0S°€ET 00°€€ 00°€e SL'ST 00°Tvy 00°Ty SL'Ty 00°£ECT 00°Ze¢T STarA T4t mzuww\wno rumE_uM__o
T T € T T € T T b T 1 b (S)ouwnL
uoneindwo)
299 299 9811 8¢9 8¢9 91T S/9T S/9T P9 €LLT SHaT G8SL pauado sapou Jo #
ynsoy
(o] A0 MO (o] p[6] p (o] MO A0 MO p[6] (0] (o] uoneluswLadxg
SOUXEW ON “JIPO IV . SOUXeW ON “JIPOW IV .
wyobly wipLobly SSUXEI ON — SIPOW IIV wupuoBly wipLoBly SOYXBI ON 'JIPOW IIY
. . QYN + aTY|wptobly Y wyylobly "y and . . ASQ Ul |wiptioBly Y wytobly . ¥OSS uoiouny aAPS[qo
¥ 2/6uis o 26uis sbuisary 9lbus ary o 2buls o 2lbuis 3BuIS YOSS 3IbuIS YOSS
QIN+HATY QUW+ADY : : ASQUIW ASQUIN : :
9T J_quinN AANDY
6 SWeN 9npayds

(0T pue g S9INPaYdS) S)NSaY |euonjeindwo) — §*f djqeL

75

. anjeA uoipung
00°TT 00°TT 8C'TT 00°0 000 00°'S 00°S0T 00°S0T QLECT 00°6¢C9 00°9CC9 SL'899%% aA1P3[q0 lewndo
(s)awn L
9/1 8¢T 661 T T 9Py TS % 9 144 194 33 uonendwod
6v£0¢ 6v£0¢C PS18¢C 1 X4 X4 o6 059801 059801 €011 VASYAAN! VASTAAN ! 8¢/9S pauado sapou Jo #
ynsay
A0 A0 (6] (6] (6] (0] p[6) p[6) p (6]) [6] A0 (6] uoneswLadxg
SOUXBW ON “JIPOW IV . SOUXeW ON "HIPO IV .
wyuobly wipLobly SOUWEW N~ HPON IV Wby WLRLIOB)Y SSYXBIN ON JIPOW IIY
~ 9[b o 216 QUIN + ATy|wptobly . Wwuyobly "y any ~ Bi6 g 516 ASQ Ul |wipuobly Yy wipobly Y YOSS uoipung aARR(qoO
DS o SIbuIS dibuisary 91buls ary o SIBuIS o opuS 31buIS YOSS 316uIS YOSS
QIWHARY QAT : : ASQUIW ASQUIN : :
ST JaquinN AYARY
((2-666T) DISMaUGHS) 2T aweN JNpayds
. anjeA uoijpung
00°'S 00°'S SL'6 00°T 00°'T 0S'S 00°6¢ 00°6¢ 00'8+ 00°£¢6 00°£¢6 00°S8ET aA13[q0 lewndo
(s)own L
8 S 8T 0] 8 8 8T S 9 S 4 € 14 uoneandwon
£L189 a8vE 5989 £€8L €96/ €LLL 6£¢0T 6£¢0T »SeSL SCIS Y48 [AS") pauado sapou Jo #
ynsay
A0 p[6) A0 (0] h [0]) (0] p[0) p[0) A0 (0] (0]) [0] uoneswLadxg
SOUXBW ON "JIPOW IV . SOUXeW ON 'JIPOW IV)
wwLobly wiyliobly SOUPEW N~ HPON IV wyobly wyioBly SOUXBW ON — JIPOW IIV
-y 3jbuIS o 9BuIS QN + ATY|wpobly ~d Wyobly "y and 4 3BUIS 4 9BUIS AQ U |wuauobly Y wyiobly 'y ¥OSS uoipung aAPR[qO
QUAWHARS QAT PPusand ibuls and ASQUIN ASQUIN 3I6uIS WSS 2ABUIS WSS
ST JaquinN AYAY
1 SweN 9npayds

(21 pue 1T S9INPaYdS) SyNsay |euoneindwo) — 9* dqelL

76

*SUOIIOUNY SAISIND3I JO S| SAISUSIX3 0} aNnp ,J0LT MOLSAQ YIBIS, S21Bapul OS «

((0ooo2) no1) €1

0STT 0S'TT 00SZT | 0000 000'0T 0000 | 000'SET 000'SET 000°COT | 000°EHOT 000'EHOT 0ST'90KT | _ oA UoRRUNd
aAB[qO |ewndo
0 0 0 0 0 0 0 0 0 0 0 (S)aurL
I uonendwo)
(013 (013 99T (013 o€ 08T S6T (44 Sy 09 S SOT pauado sspou Jo #
Jnsoy
MO p[o] MO MO MO MO MO MO MO MO MO MO uonEURULSdXT
mm_%m_\,_moz HPOW m__< SSUXBW ON "JIPOW IV mumxm_\,_moz PO m_< SSYXeW ON “JIPOI IV
Wby wipiobly wwprobly wpLobly
yopug yopug ddW + AT wuobly ¥ wyobly - AT gopus yopug °0UNW wupoBly Y wpuobly Y WOSS uoipund analqo
QUNHATY QYWY slbuisard 3IbuIS arY ASQUIN ASQUIN 3BuIS ¥DSS IbuIS WOSS
bT JaquinN AYAPY
((1216d) TWMBN) T SWeN 3Npayds
c . . . anje/\ uoioung
00591 000°0 000°0 0000 analgo [ewndo
(s)awi L
€081 0 0 6T uonendwo)
98¢68¢ /9 /9 80¢¢ pauado sspou Jo #
0s 0s 0 0 0 0 0s 0s 0s 0s 0s 0s NSy
uonejuawRdxg
mm_%mz A SSUXeW ON "JIPOW IV SSYXEW N JIPOW 11V SSYXeW ON “JIPOI IV
Wpuobly wiynobly wuyobly wiLiobly
yopus yopug JUW + ATM WyoBlY Y wiyIobly Y and NobuS Y 9IS ASQ U |wipuobly Ny wpobly ¥ ¥DSS uopung dAP3[qO
QAT MW sibuisary 3IbuIS ary ASQUIN ASQUIW 3IbuIS WDSS 3IBuIS YOSS
ST J_quinN AIApy

awieN 9npayds

(b1 pue €T s3INpayds) sNsay |euoneindwo) — £*y d|qel

77

005" 005" s/e's | 0000 0000 0OSz 00061 00061 00S" 000516 000°ST6 0SZ°00 SMEA uapung
12 1% L [T T v T T cooL | AP0 lewndo
1 L S T T 1 I I (s)pwiL
4 0 0 0 uoinendwo)
TH61 61 9ebe 69 69 T18¢ L6ET L6ET LTEC 006T 668T PH0C pauado sspou Jo #
)| | | | | MO | | | |)| MO sy
(0] 0] (e} 0] (¢} 0] (0] 0] o 0] uonejuswRdxg
SOYXeW ON “JIPOW IV) S9YXeW ON “JIPOW IV .
wyobly wipobly SOYXeW ON “JIPOW IV wyHobly wiyLobly SOYXEW ON “}IPOW IV
. . QI + ATy wuyobly o wyyobly o and . . ASQ U [wupioBly Y wyiiobly Y YOSS uoipung aARIqo
d 2lbuis ¥ 2bu's sbuisard oIbuls ary W 3buls ¥ BIbus 3IbuIS YOSS BIBUIS YOSS
QIW+AY QYT : : ASQUIIN ASQUIW : :
€T JequuinN AYNdY
((1-666T) PISMaUGNS) 9T SweN 9npayds
e e T . . G . . s . . cz anjeA uoipung
000 000 [4%:] 0000 0000 00S°€ 000°6¢ 000°6¢ 0S4'vE 000°'TZ¢8 000°'TZ¢8 0SC°096 analqo [ewndo
0 0 0 0 0 (S)aurL
1% T v T 4 T T uoneINdwon
08T 08T 60¢E 9¢ 9¢ 8¢ 896T £€8T¢ G86¢ QELT S6TT 068T pauado sspou Jo #
JNsay
MO MO MO N0 MO O O ple} MO MO (6] MO uonejuswLadxg
SOYXeW ON “JIPOW IV) S9YXeW ON “JIPOW IV .
wupuobly wipLobly STUXEW ON -~ JIPOM IV WipuoBly WiRLIOB]Y SOUXBW ON JIPOW I
4 2|6 1 016 QAW + ATY|{wuyobly Y wipiobly Y an i 16 1 16 ASQ U |wiprobly o wyuobly - HOSS uoiung 3RO
iBuis "y 3|BuIS oIS I |BUIS O 4 3buls g ajbuls a|buIS YOSS 9IBUIS WOSS
QIW+ARY QYT : : ASQUIW ASQUIW : :
€1 1Rqunn Ay
((066T) SieH) ST QwieN 9npayds

(9T pue GT S9INPaYS) SyNsay |euoneindwo) — 8* dqel

78

. aneA uoippung
05’6 056 £9'8 000 000 000 00°7¢c 00°¢c 00°6¢ 007¢¢SE 00'¢eseE 0S'/LbEc analqo [ewndo
0 0 0 b 1 1 0 1 S (s)outL
4 4 1 uopendwo)
T9T¢ T9T¢ €/8€T 1€ 1€ 212474 £G69¢ £G69¢ 995991 900T 900T TLTbT pauado sspou jo #
Jnsay
O O MO MO MO MO MO p[0) p[0) p[0) O O uoneyuawLadxXg
SOYXEW ON “JIPOW IV . SOYXeW ON “JIPOW IV .
wipobly wyiobly SN 0N dIPOW Il wiobly wyLobly SOUXBW ON -~ JIPON 1V
wopuig yopug JUW + AN wpLobly Y Wpobly Y and yopus yopus OQUW wrobly ¥ wipobly Y YOSS uoipung aA3[go
QINHATY QYWHADY slbuis ard 1buIs ary ASQUIN ASQUIN 9IbuIS ¥OSS lbuls WOSS
4! JaquinN AYNPY
((91+ bd) Je3s98WaINBWRQ) 8T SWeN npayds
. anje/ uooung
0SS 0SS 00°0T 000 000 00°£ 00°09 00°09 SL€S 00°€SST 00°€SST SC'ET9T sn3(q0 [ewndo
(s)awnL
0 0 0 T 0 0 0 0 0 0 0 0 uoneandwon
123 123 9¢T 123 123 44" 61T SOT €qT TST 98 LTT pauado sapou 4o #
Jnsay
0 0 O A0 A0 (0] p[0) (0] (0] (0] (0] 0 uoneuswLIadXg
SOUXeW ON “}IPO IV) SOYXeW ON “JIPOW IV .
wpuobly wiuyyobly SO ON PO __<. wpLobly wipobly SOWEW o_.,_ HPOW __<.
yopug yopug JUW + AT wpLobly Y Wyyobly Y and yopus yopug OQUW wipHobly Y wylobly - YOSS uoipuNng aARIqO
QUAHATY QUW+HAT sibuis ard 1buIS ATy ASCIUIN ASQUIN 3|buIS ¥YDSS IbuIS WOSS
€1 JaquinN AYAPY
((£96d) esegnin) £T SWeN 9npayds

(8T pue /T S9INpaYdSs) synsay [euoneindwo) — 6'y dqelL

79

((£126d) Yeseqni) 61

anjeA uoioun
0S'9 0S9 S¢9 00°0 000 SL°0 00'8T 00°8T 00'v¢ 00°8€¢T 00°8€¢T 00°'T66 wzuww\m/go WME;M__O
0 0 0 0 0 0 0 0 0 0 0 0 (S)aurL
uonendwo)
61 6T 9 6T 61 14 123 123 /L8 (474 [474 L8 pauado sspou Jo #
INsay
MO O MO MO A0 MO O A0 MO A0 MO MO uoneswadxg
SOUXRW ON “JIPOW IV) SOUXBW ON “JIPO IV .
wipLobly WLoBly SRPEW ON 31RO IV wuLoBly WRLOB)Y SOUXBW ON “JIPOW IIY
4 2(BuIS 4 3IBUIS QdIW + ATy wyiobly y wyylobly Y and 4 2IBUIS 4 9(buIS ASQ U |wipuobly Y wtobly N YOSS uoipoung aAPa[go
QUNFATY QHN+ATY slbuisard ajbuls ary ASQUIN ASQUIN 91buIs YOSS 91buIS YOSS
8 JsquinN Ayay
0¢ awieN npayds
anjeA uoipun
009 009 €9'8 00°0 000 SC'E 0086 00'86 SCvL 0079€9T 009€9T 09'99¢T mzuwwpo WmuE_um_o
(s)awnL
0 0 0 0 0 0 0 0 0 0 0 0 uonendwon
8 8 ST 8 8 ST 8¢ 8 144 8¢ 9¢ 174 pauado sspou Jo #
ynsay
MO A0 p[o] A0 O A0 O A0 A0 (0] A0 MO uoneuswIadxg
SOUXEW ON “JIPOW IV) SOYXEW ON “JIPOW IV .
wuypobly wipriobly SOYXel ON “JIPOW IIV wwptobly wuyiobly SOYXeW ON “JIPOW IV
yobus -yopug QAW + AQIYwuLobly y wyobly ¥ ATY yopus yopug 0 UW |Wyobly ¥ winLobly Y 0SS uoidund aAaR[qo
QUAHATY QAT sibuisary 3lbuls ary ASqUI ASQUIN 3IBuUIS DSS SIBuUIS HDSS
o1 1BquNN AYn3Y

SWeN 9npayds

(0T pue 6T S9INPaYDS) S)NsaY |euonjendwo) — 0T dlqeLl

80

One of the most evident indications of network complexity is the number of
activities included in a schedule. Therefore, problems in the above tables are
sorted according to the decreasing activity numbers. If the results are
examined, it can be realized that some problems in Tables 4.1 to 4.7, i.e. with
higher numbers of activities, could not be solved successfully by the algorithm
for some objective functions. This situation is reported with the letters “SO”,
which stands for the stack overflow error. This type of error, which is caused
by too much memory usage due extensive calls to recursive functions,
prevented the solution of 19 multi resource and 9 single resource problems
out of 80 instances. In fact, it is stack overflow error that constituted the most
significant barrier for the algorithm for not being able to solve medium and
large size problems. Probable ways to overcome stack overflow error are
going to be suggested later as a further study option. At this point, however,
it should be indicated that the main reason for this problem to occur is the low
random access memory (RAM) capacity of the computer on which

experimentations have been carried out.

Although some instances could not be solved due to the stack overflow error,
branch and bound algorithm was still able to solve most of the multi resource
and single resource instances. For SSQR objective function, 16 multiple and 16
single resource problems out of 20 instances have been solved successfully,
whereas for MinDev metric these values turned out to be 14 for multiple
resource and 16 for single resource networks. As to the other objective
functions, 16 multiple resource and 19 single resource instances for RID
metric and 15 multiple resource and 18 single resource instances for
RID+MRD metric could be solved to optimality. Considering the results
reported in Tables 4.6 to 4.10, it can be commented that the developed
procedure can effectively deal with problems including up to 15 activities. For
problems with 15 to 22 activities, however, the algorithm might fail in finding

a solution due to stack overflow error.

81

As mentioned in previous chapters, one of the most significant drawbacks of
exact methods is that they require higher computation time compared to
heuristic based methods. To check whether a developed algorithm is suitable
for practical purposes, it is a commonly employed method to measure the
amount of problems that can be solved within a reasonable amount of time.
Introduced procedure in this study has been experimented with 20 RLPs in a
PC with the characteristics given at the beginning of this section and it has
been observed that all of the problems that the algorithm could solve
successfully are solved in a computation time less than 30 minutes except for
the multiple resource problem solved for RID metric in Table 4.1. If a time
limit of 10 minutes is taken into the account, the amount of problems that
could be solved successfully in this much of time out of 20 instances is as in
the following; for SSQR metric 16 multiple and 16 single resource networks
and for MinDev metric 14 multiple and 16 single resource problems. For RID
metric, on the other hand, 15 multiple and 19 single resource networks have
been solved to optimality in a duration less than 10 minutes. As to the
RID+MRD metric these values became 14 and 17 for multiple and single
resource networks respectively. As these results indicate, developed algorithm

usually requires longer processing time to solve multiple resource networks.

As mentioned in the previous section, Schedule 1 (Jun and El-Rayes, 2009)
and Schedules 12 and 16 (Son and Skibniewski, 1999) are solved to optimality
for the first time in literature by the developed branch and bound method.
Also, RID metric suggested by Jun and El-Rayes (2009) has been incorporated
in an exact optimization procedure for the first time both with and without
limiting the maximum daily resource demand. In addition to this, several
networks adopted from the referenced text books and papers have been
addressed. Data regarding the addressed problems is going to be provided in
Appendix A in order to provide a small benchmark library for interested

researchers.

82

Another issue important to be mentioned in this chapter is the effect of the
maximum allowable daily resource improvement on the overall performance of
the algorithm. Next section deals with this question and tries to find out the
extent to which this suggested improvement enhances the performance of the
algorithm.

4.3 Effect of the Maximum Allowable Daily Resources

Improvement on the Performance of the Algorithm

In order to find out the effect of the suggested improvement on
computational efficiency, CPU times spent by the algorithm working both with
and without maximum allowable resource limitations have been compared. As
seen on Table 4.11, which summarizes the run durations, in most instances
putting limits on the maximum allowable daily resource amounts resulted in
shorter run durations. To check the extent to which the suggested
improvement enhanced the computational efficiency, a one tail, paired t-test
has been employed.

Paired t-test is an analysis method to be employed when each measurement
in one sample is matched with a certain measurement in the other sample. It
is applied to test the hypothesis that the means of the two samples are
different (Ott, 1988). The formulation of this test may be presented as in the
following;

Ho: Mg = Hi - M2 = 0
d

sd/x/;

t =

For degrees of freedom = n-1, reject H, if t > t..

83

Where H, is the null hypothesis and H, is the alternative hypothesis; p; and
are the means of the first and second populations respectively and pq is the
mean value of the differences; sy is the sample standard deviation of the
differences; d is the sample mean and n is the number of pairs.

To calculate the sample standard deviation (sg);

n—1|" n

2 _
s, =

Where di is the difference between the values of the i pair (Ott, 1988).

Table 4.11 — CPU Times Spent by Algorithms with and without Employing

Maximum Allowable Daily Resources (MaxRes) Improvement (seconds)

SSQR MinDev RID RID + MRD
hedul Duration|Duration | Duration|Duration | Duration|Duration|Duration|Duration
S¢ ;ou ®| with |without| With |Without| With |Without| With |Without
MaxRes | MaxRes | MaxRes | MaxRes | MaxRes | MaxRes | MaxRes | MaxRes
1 17 17 32 32 2 2 292 335
2 49 49 1590 1644
3 3 3 2 2 5 5 4 6
4 12 14 16 16 25 36 26 38
5 0 0 0 1 0 0 0 0
6
7 350 461
8 1 1 1 1 1 1 1 1
9 55 57 70 73 285 346 296 364
10 22 22 1 2 11 16 11 15
11 3 2 5 8 10 5 8
12 43 44 46 51 1 1 128 176
13 0 0
14 1 0 0 0 0 0 0 0
15 0 1 1 0 1 0 0 0
16 1 1 0 1 0 0 1 2
17 0 0 0 0 0 1 0 0
18 1 0 1 1 0 0 2 2
19 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0

84

While applying one tail, paired t-test to see whether the suggested
improvement caused a significant reduction in the CPU times, networks with
15 and more activities have been taken into the consideration. In other words,
projects below the double line of Figure 4.11 are discarded since the durations

required to solve these smaller problems were very low.

Results of the tests carried out separately for all metrics revealed that the
maximum allowable daily resources improvement suggested in this study
reduced the CPU times required by the algorithm at different levels for all
objective functions. Significance levels at which the means of the run
durations with and without MaxRes improvement are different are given in
Table 4.12 for different types of objective functions.

Table 4.12 — Significance Levels (&) at which Means of the Computation

Times with and without MaxRes Improvement are Different

SSQR MinDev RID RID+MRD
a 0.1124 0.0737 0.1105 0.0087

The results presented in Table 4.12 reveal that the suggested improvement is
useful in increasing the computational efficiency. It should be noted that;
although, maximum allowable daily resources improvement requires the
algorithm to carry out some additional checks while allocating the free
resources on the nodes, it is still able to reduce the CPU time by providing

tighter lower bounds and consequently pruning more of the search tree.

85

CHAPTER 5

CONCLUSIONS

In this study a depth-first branch and bound algorithm for solving resource
leveling problem is presented. Developed algorithm, which is applicable to
both single resource and multi resource networks, assumes no resource
availability limits and aims minimization of undesirable fluctuations in resource
distribution graphs without extending the project duration. This method is
introduced, so that more efficient schedules could be prepared to minimize all
kinds of losses due unbalanced resource distributions.

To measure undesired fluctuations in resource curves, traditional resource
leveling metrics, namely sum of squares of daily resource
requirements (SSQR) and minimum absolute deviation from the uniform
resource level (MinDev), have been utilized in addition to more recently
suggested metrics such as the resource idle day (RID). First two objective
functions have certain drawbacks that make applicability of them to
construction projects questionable. While the sum of squares metric
disregards fluctuations between consecutive time periods, minimum absolute
deviation method tries to fit resource utilization curves into rectangular
profiles, which is not very suitable to the nature of the construction projects.
Resource idle day metric, on the other hand, solely minimizes idle durations of
resources caused by resource level fluctuations and is flexible enough to deal
with unbalanced resource distributions. It is especially effective if maximum

resource demand is also minimized simultaneously as in the RID+MRD

86

objective function introduced. This metric, which is applicable for projects
which do not allow frequently releasing and rehiring resources, has been
utilized in an exact solution procedure for the first time and optimal solutions
for several problems have been reported.

Efficiency of the developed algorithm is achieved by lower bound calculation
methods adopted from the related literature and by the maximum allowable
daily resources improvement suggested for the first time in this study. Effect
of this improvement on the computational performance of the algorithm is
tested via a paired t-test based on the computational results. It is found out
that the tighter lower bounds calculated by limiting daily resource
requirements enable the algorithm to locate optimal solutions in considerably

shorter durations.

Validation of the procedure is done by solving resource leveling problems that
were available in the literature. Results obtained by the developed algorithm
are compared to the solutions of previous researchers. 3 of the addressed
problems for this purpose were solved previously via metaheuristic methods.
Developed algorithm solved these to optimality and located solutions which
have the same objective function values as reported in previous studies. In
this manner it is proved that the algorithm is capable of locating the best
known solutions for these problems so far. Moreover, the optimality of the

previously suggested solutions is also verified.

The fact that developed branch and bound algorithm finds solutions as good
as the ones reported in previous heuristic based researches signals a good
solution quality. Still, applying this type of validation only, it can not be said
that the developed procedure is always capable of locating optimal solutions.
Optimality is ensured by comparing results of the algorithm to the optimal
solutions of 8 resource leveling problems obtained via linear integer

programming. These problems are solved by a similar method to the one

87

explained in Easa (1989). Due to the limitations of the linear programming
method only MinDev metric could be utilized.

To test the computational performance of the algorithm, 20 problem instances
are solved to optimality for all of the presented metrics (i.e. SSQR, MinDeyv,
RID and RID+MRD) both in single and multi resource modes. CPU times and
number of search tree nodes required to ensure global optimum solution of
each problem and for each of these metrics is presented as well as the
optimum objective function values obtained. The largest single resource
network that could be solved by our algorithm included 22 activities whereas
the largest 4-resource network included 21 activities. It has been observed
that the performance of the algorithm depends on the resource leveling metric
and on the complexity of the problem under consideration. Therefore it is
difficult to estimate the problem size that can effectively be dealt via the
developed procedure. However, it can be said that resource leveling problems

with activity numbers around 20 are solvable via exact procedures.

Within the context of this study two main contributions to the existing
literature are made. Firstly, an improvement to the previously employed lower
bound calculation methods is introduced. The extent to which this maximum
allowable daily resources improvement enhanced computational performance
is determined based on the experiment results. Secondly, a problem set of 20
small size resource leveling problems has been presented and exact solutions
of these are reported in order to form a basis for performance evaluation of

heuristic studies.

As computational results indicate, CPU time required by the algorithm to reach
to the optimal solution may become relatively high in some instances. Due to
this fact, applicability of the algorithm in practice might be questionable.
Although the developed method is able to solve all kinds of networks without
requiring the user to input variables and constraints etc. as in the linear

integer programming, still the computation time may constitute a significant

88

barrier for practical purposes. Yet, rapid advances in computer technologies
have been and are going to be the major booster of exact methodologies.
There is no doubt that in the future more complex projects are going to be
solved to optimality in much shorter durations. Furthermore, exact methods
are always going to be needed since evaluation of heuristic performance
depends on the optimal solutions obtained by these methods.

As a further study, development of new and effective lower bound calculation
methods might be suggested since such improvements are believed to be the
most effective tools in enhancing the performance of branch and bound based
procedures. Also, incorporating heuristic rules or metaheuristics to the branch
and bound procedure might enhance the computational performance
significantly. Starting the search by employing such methods and obtaining a
near optimal solution in the root node could save the algorithm from visiting a
large portion of the tree by enabling it to fathom many nodes in the very
beginning of the search. In this manner, more complex problems might be
solved to optimality and developed procedure might be applied to real size

construction projects.

It is believed that carrying out experiments on a computer with larger random
access memory (RAM) would result in increased performance and would
enable solutions of more complex problems. Similarly, supercomputers with
several parallel processing units might be used to check the extent to which
new technologies enhance the computational performance. It is expected that
new technologies will reduce the CPU time requirements and eliminate stack
overflow problems to some extent enabling optimal solutions of larger

instances.

89

REFERENCES

Agin, N., (1966). "Optimum Seeking with Branch and Bound”, Management
Science, Vol. 13, No. 4, pp. B-176-B-185.

Bandelloni, M., Tucci, M. and Rinaldi, R., (1994). “Optimal Resource Leveling
Using Non-serial Dynamic Programming”, European Journal of Operational
Research, Vol. 78, Issue 2, pp. 162-177.

Bettemir, O. H., (2009). “Optimization of Time-Cost-Resource Trade-Off
Problems in Project Scheduling Using Meta-Heuristic Algorithms”, Middle East
Technical University, PhD. Dissertation.

Brucker, P., Knust, S., Schoo, A. and Thiele, O., (1998). “A Branch and Bound
Algorithm for the Resource-Constrained Project Scheduling Problem”,
European Journal of Operational Research, Vol. 107, pp. 272-288.

Burgess, A. R. and Killebrew, J. B., (1962). “Variation in Activity Level on a
Cyclic Arrow Diagram”, Industrial Engineering, March-April, pp. 76-83.

Cekmece, K., (2009). “"The Resource Allocation Capabilities of Commercial
Project Management Software Packages for Resource Constrained Project
Scheduling Problem”, Middle East Technical University, MS. Dissertation.

Chan, W., Chua, K. H. and Kannan, G., (1996). “Construction Resource

Scheduling with Genetic Algorithms”, Journal of Construction Engineering and
Management, Vol. 122, No. 2, pp. 125-132.

90

Christodolou, S. E., Ellinas, G. and Michaelidou-Kamenou, A., (2010).
“Minimum Moment Method for Resource Leveling Using Entropy
Maximization”, Journal of Construction Engineering and Management, Vol.
136, No. 5, pp. 518-527.

De Reyck, B. and Herroelen, W., (1998). “A Branch and Bound Procedure for
the Resource-Constrained Project Scheduling Problem with Generalized
Precedence Relations”, European Journal of Operational Research, Vol. 111,
Issue 1, pp. 152-174.

Demeulemeester, E. and Herroelen, W., (1992). “A Branch-and-Bound
Procedure for the Multiple Resource-Constrained Project Scheduling Problem”,
Management Science, Vol. 38, No. 12, pp. 1803-1818.

Demeulemeester, E., (1995). “*Minimizing Resource Availability Costs in Time-
Limited Project Networks”, Management Science, Vol. 41, No. 10, pp. 1590-
1598.

Demeulemeester, E. and Herroelen, W., (1997). “A Branch-and-Bound
Procedure for the Generalized Resource-Constrained Project Scheduling
Problem”, Operations Research, Vol. 45, No. 2, pp. 201-212.

Demeulemeester, E. and Herroelen, W., (2002). “Project Scheduling: A

Research Handbook”, Kluwer Academic Publishers, Boston.

Easa, S., (1989). "Resource Leveling in Construction by Optimization”. Journal

of Construction Engineering and Management, Vol. 115, No. 2, pp. 302-316.
El-Rayes, K. and Jun, D. H., (2009). “Optimizing Resource Leveling in

Construction Projects”, Journal of Construction Engineering and Management,
Vol. 135, No. 11, pp. 1172-1180.

91

Guo, Y., Li, N., Ye, T., (2009). “Multiple Resources Leveling in Multiple
Projects Scheduling Problem Using Particle Swarm Optimization”, Fifth
International Conference on Natural Computation, pp. 260-264.

Harris, R. B., (1990). “Packing Method for Resource Leveling (PACK)”, Journal
of Construction Engineering and Management, Vol. 116, No. 2, pp. 331-350.

Hegazy, T., (1999). “Optimization of Resource Allocation and Leveling Using
Genetic Algorithms”, Journal of Construction Engineering and Management,
Vol. 125, No. 3, pp. 167-175.

Herroelen, W., (2005). “Project Scheduling — Theory and Practice”, Production
and Operations Management, Vol. 14, No. 4, pp. 413-432.

Hinze, J. W., (2004). “Construction Planning and Scheduling”, Pearson
Prentice Hall, Upper Saddle River, New Jersey.

Hiyassat, M. A. S., (2000). “Maodification of Minimum Moment Approach In
Resource Leveling”, Journal of Construction Engineering and Management,
Vol. 126, No. 4, pp. 278-284.

Hiyassat, M. A. S., (2001). “Applying Modified Minimum Moment Method to
Multiple Resource Leveling”, Journal of Construction Engineering and
Management, Vol. 127, No.3, pp. 192-198.

Icmeli, O. and Erenguc, S. S., (1996). “A Branch and Bound Procedure for the

Resource Constrained Project Scheduling Problem with Discounted Cash
Flows”, Management Science, Vol. 42, No. 10, pp. 1395-1408.

92

Jiang, G. and Shi, J., (2005). “Exact Algorithm for Solving Project Scheduling
Problems under Multiple Resource Constraints”, Journal of Construction
Engineering and Management, Vol. 131, No. 9, pp. 986-992.

Karshenas, S. and Haber, D., (1990). “Economic Optimization of Construction
Project Scheduling”, Construction Management and Economics, Vol. 8, pp.
135-146.

Leu, S. and Yang, C., (1999). “GA-Based Multicriteria Optimal Model for
Construction Scheduling”, Journal of Construction Engineering and
Management, Vol. 125, No. 6, pp. 420-427.

Leu, S., Yang, C. and Huang, J., (2000). “Resource Leveling in Construction by
Genetic Algorithm-Based Optimization and Its Decision Support System
Application”, Automation in Construction, Vol. 10, pp. 27-41.

Martinez, J. and Ioannou, P., (1993). “Resource Leveling Based on the
Modified Minimum Moment Heuristic”, Computing in Civil and Building
Engineering, Conference Proceeding Paper, pp. 287-294.

Mason, A. T. and Moodie, C. L., (1971). “A Branch and Bound Algorithm for
Minimizing Cost in Project Scheduling”, Management Science, Vol. 18, No. 4,
pp. B-158-B-173.

Mattila, K. G. and Abraham, D. M., (1998). “"Resource Leveling of Linear
Schedules Using Integer Linear Programming”, Journal of Construction

Engineering and Management, Vol. 124, No. 3, pp. 232-244.

Mubarak, S. A., (2004). “Construction Project Scheduling and Control”,

Pearson Prentice Hall, Upper Saddle River, New Jersey.

93

Neumann, K. and Zimmermann, J., (1999). “"Resource Levelling for Projects
with Schedule-Dependent Time Windows”, European Journal of Operational
Research, Vol. 117, pp. 591-605.

Neumann, K. and Zimmermann, J., (2000). “Procedures for Resource Leveling
and Net Present Value Problems in Project Scheduling with General Temporal
and Resource Constraints”, European Journal of Operational Research, Vol.
127, pp. 425-443.

Newitt, J. S., (2005). “Construction Scheduling: Principles and Practices”,
Pearson Prentice Hall, Upper Saddle River, New Jersey.

Oral, M., Laptali Oral, E., Bozkurt, S. and Erdis, E, (2003). “Resource Leveling
in Construction Projects by Using Genetic Algorithms”, C. U. J. Fac. Eng. Arch,
Vol. 18, No. 2, pp. 185-194.

Ott, L., (1988). “"An Introduction to Statistical Methods and Data Analysis”,
PWS-KENT Publishing Company, Boston.

Pang, N., Shi, Y. and You, Y., (2008). “"Resource Leveling Optimization of
Network Schedule Based on Particle Swarm Optimization with Constriction
Factor”, International Conference on Advanced Computer Theory and

Engineering, pp.652-656.

Patterson, J. H., (1984). “A Comparison of Exact Approaches for Solving the
Multiple Constrained Resource, Project Scheduling Problem”, Management
Science, Vol. 30, No. 7, pp. 854-867.

Savin, D., Alkass, S. and Fazio, P., (1996). “Construction Resource Leveling

Using Neural Networks”, Canadian Journal of Civil Engineering, Vol. 23,
Issue 4, pp. 917-925.

94

Senouci, A. B. and Eldin, N. N., (2004). “Use of Genetic Algorithms in
Resource Scheduling of Construction Projects”, Journal of Construction
Engineering and Management, Vol. 130, No. 6, pp. 869-877.

Shah, K. A., Farid, F. and Baugh, J. W., Jr. (1993). “Optimal Resource Leveling
Using Integer Linear Programming”, Proceedings 4™ International Conference
on Computing in Civil and Building Engineering, pp. 501-508.

Son, J. and Skibniewski, M. J., (1999). “Multiheuristic Approach for Resource
Leveling Problem in Construction Engineering: Hybrid Approach”, Journal of
Construction Engineering and Management, Vol. 125, No. 1, pp. 23-31.

Son, J. and Mattila, K. G., (2004). “Binary Resource Leveling Model: Activity
Splitting Allowed”, Journal of Construction Engineering and Management, Vol.
130, No. 6, pp. 887-894.

Stevens, J. D., (1990). “Techniques for Construction Network Scheduling”, Mc
Graw-Hill, New York.

Vanhoucke, M., Demeulemeester, E. And Herroelen, W., (2001). “On
Maximizing the Net Present Value of a Project under Renewable Resource

Constraints”, Management Science, Vol. 47, No. 8, pp. 1113-1121.

Woodworth, M. W. and Willie, C. J., (1975). “A Heuristic Algorithm for
Resource Leveling in Multi-Project, Multi-Resource Scheduling”, Decision
Sciences, Vol. 6, Issue 3, pp. 525-540.

Younis, M. A. and Saad, B., (1996). “Optimal Resource Leveling of Multi-

Resource Projects”, Computers and Industrial Engineering, Vol. 31, Issue 1,2,

pp. 1-4.

95

Zheng, D. X. M., Ng S. T. and Kumaraswamy, M. M., (2003), ASCE
Construction Research Congress, pp. 1-8.

96

APPENDIX A

PROBLEM INPUTS

Inputs of the problems presented in Chapter 4 for computational performance
measurement purposes are to be seen in Tables A.1 to A.20. References
which are given in some tables indicate the paper or the book from which the
problem or some part of the problem has been obtained. Data presented in
the first column indicates id numbers of the activities. This column is followed
by the durations (Dur.), resources (Res.) and successors (Succ.) of the
activities. For single resource networks, results of which were presented in

Chapter 4, only first resources (Res. 1) of activities are considered.

Table A.1 — Inputs for Problem No. 1

Schedule Number: 1
Reference: (El-Rayes and Jun, 2009)
1D Dur. |Res. 1| Res. 2| Res. 3| Res. 4 |Succ. 1|Succ. 2|Succ. 3
1 0 0 0 0 0 2 3 5
2 6 2 5 8 7 4 6 9
3 3 3 0 3 8 6 9 0
4 4 2 3 0 6 7 12 0
5 6 5 1 5 8 8 0 0
6 6 3 0 9 2 12 13 0
7 5 9 0 9 2 11 15 0
8 2 3 2 5 4 10 13 0
9 2 0 9 6 7 10 13 0
10 2 3 2 1 4 14 0 0
11 6 6 0 2 4 17 19 0
12 1 4 6 5 3 14 0 0
13 2 8 0 0 2 15 16 0
14 4 3 9 9 7 17 0 0
15 2 3 4 9 3 17 0 0
16 3 6 8 2 2 18 19 0
17 5 4 9 4 3 20 0 0
18 8 1 2 9 3 20 0 0
19 2 5 9 1 4 21 0 0
20 5 2 5 6 4 22 0 0
21 3 5 9 1 9 22 0 0
22 0 0 0 0 0 0 0 0

97

Table A.2 — Inputs for Problem No. 2

Schedule Number: 2
Reference: (Stevens (Pg 172))
ID Dur. | Res. 1|Res. 2 Res. 3| Res. 4 Succ. 1|Succ. 2|Succ. 3|Succ. 4}Succ. 5|Succ. 6
1 0 0 0 0 0 2 3 4 5 6 7
2 2 5 0 4 0 12 14 0 0 0 0
3 5 0 6 0 5 8 9 0 0 0 0
4 3 3 1 2 4 13 0 0 0 0 0
5 4 6 2 0 5 16 0 0 0 0 0
6 10 5 0 2 0 18 19 0 0 0 0
7 2 1 6 2 2 20 0 0 0 0 0
8 3 5 1 5 5 10 0 0 0 0 0
9 5 4 4 0 4 10 11 0 0 0 0
10 2 0 0 1 3 12 13 0 0 0 0
11 2 5 3 5 4 12 13 0 0 0 0
12 2 6 0 0 3 17 0 0 0 0 0
13 1 3 6 4 5 14 0 0 0 0 0
14 4 1 6 5 5 15 16 0 0 0 0
15 2 2 0 3 4 17 0 0 0 0 0
16 2 5 2 3 0 17 0 0 0 0 0
17 3 6 1 2 3 18 19 0 0 0 0
18 15 4 2 4 0 20 0 0 0 0 0
19 5 4 2 5 1 20 0 0 0 0 0
20 1 3 3 4 5 21 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0
Table A.3 — Inputs for Problem No. 3
Schedule Number: 3
ID Dur. |Res. 1| Res. 2 |Res. 3 |Res. 4 |Succ. 1|Succ. 2|Succ. 3
1 0 0 0 0 0 2 3 4
2 3 2 4 1 5 5 0 0
3 5 3 2 3 4 7 9 10
4 2 6 3 5 1 10 0 0
5 4 1 2 4 3 6 11 0
6 2 4 5 2 2 8 17 0
7 1 1 0 4 3 6 0 0
8 3 3 4 2 0 16 0 0
9 4 0 1 1 2 8 15 0
10 5 4 2 0 1 8 12 0
11 4 3 3 4 3 14 0 0
12 1 5 4 6 4 17 0 0
13 4 2 4 4 5 20 0 0
14 3 3 2 3 1 16 0 0
15 5 0 6 4 5 13 18 0
16 6 1 0 0 2 20 0 0
17 4 5 3 4 4 18 19 0
18 4 6 6 3 3 20 0 0
19 2 2 4 0 1 20 0 0
20 0 0 0 0 0 0 0 0

98

Table A.4 — Inputs for Problem No. 4

Schedule Number: 4

Reference: (Newitt (Pg 82))
ID Dur. | Res. 1! Res. 2| Res. 3| Res. 4 |Succ. 1{Succ. 2|Succ. 3
1 0 0 0 0 0 2 0 0
2 3 6 1 1 1 3 4 0
3 6 5 4 5 4 5 0 0
4 1 6 1 3 0 5 0 0
5 5 6 4 3 1 6 7 0
6 2 5 1 0 3 8 9 0
7 3 1 3 4 0 10 11 12
8 4 6 5 4 2 12 0 0
9 2 5 3 4 5 13 0 0
10 5 6 2 6 0 16 0 0
11 4 4 5 2 1 14 0 0
12 3 0 1 0 3 13 0 0
13 6 4 1 0 4 15 0 0
14 3 1 5 3 3 16 0 0
15 3 3 1 2 3 16 0 0
16 2 4 2 3 5 17 0 0
17 1 3 6 3 6 18 0 0
18 0 0 0 0 0 0 0 0

Table A.5 — Inputs for Problem No. 5

Schedule Number: 5

Reference: (Hinze (Pg 152))
ID Dur. | Res. 1| Res. 2| Res. 3| Res. 4 |Succ. 1{Succ. 2|Succ. 3
1 0 0 0 0 0 2 0 0
2 1 3 6 2 3 3 4 0
3 1 4 5 1 1 5 0 0
4 2 4 3 1 3 6 0 0
5 1 1 5 4 6 7 0 0
6 2 3 4 2 2 9 0 0
7 4 2 2 1 6 8 9 0
8 2 3 6 2 2 10 0 0
9 3 3 6 5 3 11 12 13
10 2 2 4 6 4 15 0 0
11 2 5 6 1 4 14 0 0
12 3 2 6 5 3 15 0 0
13 2 3 1 2 4 16 0 0
14 2 2 3 2 2 15 0 0
15 2 6 4 6 5 16 0 0
16 1 2 5 5 5 17 0 0
17 0 0 0 0 0 0 0 0

Xo)
o)

Table A.6 — Inputs for Problem No. 6

Schedule Number: 6

15

13

12

14

11

10
11

11

17

Res. 1| Res. 2| Res. 3| Res. 4 |Succ. 1|Succ. 2|Succ. 3jSucc. 4|Succ. 5/Succ. 6/Succ. 7

Dur.

12

12

Reference: (Stevens (Pg 97)

1D

10
11
12
13

14
15

16
17

Table A.7 — Inputs for Problem No. 7

Schedule Number: 7

15

10

12

16

14

17

12

13

18
11

12

18
11
13

14

Res. 1| Res. 2| Res. 3| Res. 4 |Succ. 1|Succ. 2|Succ. 3|Succ. 4

Dur.

ID

10
11
12
13
14
15
16
17
18

100

Table A.8 — Inputs for Problem No. 8

Schedule Number: 8

Reference: (Mubarak (Pg 61))
ID Dur. |Res. 1| Res. 2|Res. 3|Res. 4|Succ. 1{Succ. 2|Succ. 3
1 0 0 0 0 0 2 0 0
2 2 2 5 6 3 3 4 5
3 7 0 3 2 4 6 7 0
4 10 3 1 6 2 7 8 0
5 4 0 4 0 2 8 9 0
6 6 2 1 2 3 12 0 0
7 5 1 5 6 6 10 11 14
8 8 4 4 2 4 10 13 0
9 9 3 3 6 3 13 14 0
10 12 5 6 6 5 15 0 0
11 5 5 0 0 0 12 0 0
12 5 3 5 3 0 15 0 0
13 6 2 5 4 5 15 0 0
14 4 1 1 3 6 15 0 0
15 3 3 4 4 5 16 0 0
16 0 0 0 0 0 0 0 0

Table A.9 — Inputs for Problem No. 9

Schedule Number: 9
ID Dur. |Res. 1| Res. 2| Res. 3| Res. 4|Succ. 1|Succ. 2|Succ. 3
1 0 0 0 0 0 3 4 10
2 8 3 3 2 6 16 0 0
3 4 1 1 2 1 2 0 0
4 5 3 4 3 2 5 11 0
5 7 2 5 0 3 2 7 8
6 2 2 0 4 4 16 0 0
7 4 1 1 2 3 6 0 0
8 5 4 2 4 0 16 0 0
9 5 0 3 1 4 12 13 0
10 4 7 6 5 2 9 0 0
11 4 2 2 3 2 12 0 0
12 3 2 4 1 1 14 0 0
13 2 3 2 2 3 15 0 0
14 3 4 1 3 2 15 0 0
15 3 2 2 1 0 16 0 0
16 0 0 0 0 0 0 0 0

101

Table A.10 — Inputs for Problem No. 10

Schedule Number: 10

15

12
11

14

13

16

10
16
12

14
16
14

Res. 1| Res. 2 | Res. 3| Res. 4 |Succ. 1|Succ. 2|Succ. 3

Dur.

ID

10
11

12
13

14
15

16

Table A.11 — Inputs for Problem No. 11

Schedule Number: 11

10

13

14

11

15
10

15
11

12

Res. 1| Res. 2 | Res. 3 | Res. 4 |Succ. 1|Succ. 2|Succ. 3

Dur.

ID

10
11

12
13

14
15

102

Table A.12 — Inputs for Problem No. 12

Schedule Number: 12
Reference: (Son and Skibniewski, 1999)
1D Dur. | Res. 1| Res. 2|Res. 3] Res. 4|Succ. 1|Succ. 2
1 0 0 0 0 0 2 3
2 5 6 7 5 7 4 0
3 10 3 4 2 3 5 6
4 10 5 2 4 7 7 8
5 5 4 9 1 1 9 0
6 5 6 0 3 9 10 11
7 10 4 4 5 0 12 0
8 5 7 4 2 5 13 0
9 10 0 3 9 4 13 0
10 5 5 5 3 6 13 0
11 10 6 6 0 4 14 0
12 5 8 2 2 0 14 0
13 10 8 5 2 7 14 0
14 5 9 5 0 4 15 0
15 0 0 0 0 0 0 0
Table A.13 — Inputs for Problem No. 13
Schedule Number: 13
Reference: (Leu, Yang and Huang, 2000)
ID Dur. |Res. 1| Res. 2| Res. 3| Res. 4|Succ. 1|Succ. 2| Succ. 3|Succ. 4|Succ. 5
1 0 0 0 0 0 2 0 0 0 0
2 3 15 7 4 8 3 4 5 6 7
3 3 6 12 11 11 8 0 0 0 0
4 8 12 5 15 0 9 10 0 0 0
5 2 10 6 11 4 11 0 0 0 0
6 4 15 4 7 10 14 0 0 0 0
7 6 10 2 8 8 14 0 0 0 0
8 3 7 1 13 4 14 0 0 0 0
9 5 12 11 13 6 12 0 0 0 0
10 2 6 10 7 4 13 0 0 0 0
11 2 10 13 11 7 13 0 0 0 0
12 3 14 12 4 13 14 0 0 0 0
13 2 8 14 6 8 14 0 0 0 0
14 2 10 5 4 5 15 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0

103

Table A.14 — Inputs for Problem No. 14

Schedule Number: 14

Reference: (Newitt (Pg 121))
1D Dur. | Res. 1| Res. 2| Res. 3| Res. 4|Succ. 1{Succ. 2{Succ. 3|Succ. 4
1 0 0 0 0 0 2 0 0 0
2 4 4 2 1 6 3 4 0 0
3 2 2 4 0 3 11 0 0 0
4 5 6 0 3 6 8 0 0 0
5 2 0 0 5 1 10 0 0 0
6 2 6 6 0 0 12 0 0 0
7 5 2 5 6 6 12 0 0 0
8 7 4 6 6 6 5 6 7 9
9 3 6 1 0 3 12 0 0 0
10 2 3 0 6 6 11 0 0 0
11 4 5 5 2 3 13 0 0 0
12 3 1 4 5 6 13 0 0 0
13 21 0 5 4 2 14 0 0 0
14 0 0 0 0 0 0 0 0 0

Table A.15 — Inputs for Problem No. 15

Schedule Number: 15

Reference: (Harris, 1990)
ID Dur. | Res. 1| Res. 2 |Res. 3| Res. 4 |Succ. 1|Succ. 2|Succ. 3
1 0 0 0 0 0 2 3 4
2 2 2 6 4 4 5 6 0
3 4 1 2 2 1 6 7 0
4 1 4 1 6 4 7 8 0
5 4 4 4 3 2 9 0 0
6 3 2 5 6 2 9 10 0
7 6 4 3 6 3 11 0 0
8 6 6 4 6 0 10 11 0
9 1 0 2 5 1 12 0 0
10 4 2 1 0 6 12 0 0
11 5 1 1 3 3 12 0 0
12 1 2 6 3 2 13 0 0
13 0 0 0 0 0 0 0 0

104

Table A.16 — Inputs for Problem No. 16

Schedule Number: 16

Reference: (Son and Skibniewski, 1999)
ID Dur. | Res. 1| Res. 2 |Res. 3| Res. 4 |Succ. 1|Succ. 2
1 0 0 0 0 0 2 10
2 8 2 0 5 4 3 0
3 3 3 2 1 4 5 0
4 3 3 1 1 1 8 0
5 5 3 2 4 3 13 0
6 3 2 1 2 5 5 0
7 3 4 1 1 3 6 4
8 4 4 3 1 0 9 0
9 3 4 0 1 1 13 0
10 6 3 3 0 3 7 11
11 5 3 4 4 2 12 0
12 5 3 3 5 2 8 0
13 0 0 0 0 0 0 0

Table A.17 — Inputs for Problem No. 17

Schedule Number: 17

Reference: (Mubarak (Pg 67))
ID Dur. | Res. 1|Res. 2 |Res. 3| Res. 4 |Succ. 1|Succ. 2|Succ. 3
1 0 0 0 0 0 2 0 0
2 2 2 4 6 2 3 4 0
3 5 5 4 3 3 5 6 7
4 6 0 2 4 1 7 8 0
5 6 1 1 6 6 9 11 0
6 7 5 2 5 0 9 10 0
7 4 3 2 4 5 9 10 0
8 5 2 6 2 2 10 0 0
9 10 5 5 5 1 12 0 0
10 8 5 0 5 3 12 0 0
11 7 0 1 1 1 12 0 0
12 1 3 4 6 6 13 0 0
13 0 0 0 0 0 0 0 0

105

Table A.18 — Inputs for Problem No. 18

Schedule Number: 18
Reference: (Demeulemeester (Pg 416))
ID Dur. | Res. 1| Res. 2| Res. 3| Res. 4|Succ. 1]|Succ. 2|Succ. 3|Succ. 4|Succ. 5|Succ. 6
1 0 0 0 0 0 2 3 4 5 6 7
2 7 7 4 4 0 8 0 0 0 0 0
3 7 4 4 3 1 8 0 0 0 0 0
4 5 2 0 6 3 9 0 0 0 0 0
5 9 3 1 1 0 9 0 0 0 0 0
6 4 5 4 5 6 12 0 0 0 0 0
7 2 4 6 2 5 10 0 0 0 0 0
8 9 2 3 6 3 12 0 0 0 0 0
9 5 5 0 2 5 12 0 0 0 0 0
10 3 3 5 2 0 11 0 0 0 0 0
11 7 6 6 5 0 12 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0
Table A.19 — Inputs for Problem No. 19
Schedule Number: 19
Reference: (Mubarak (Pg 217))
ID Dur. |Res. 1| Res. 2| Res. 3| Res. 4 |Succ. 1|Succ. 2 Succ. 3
1 0 0 0 0 0 2 0 0
2 5 1 3 1 1 3 4 5
3 7 2 1 4 5 6 0 0
4 8 4 0 5 5 6 7 0
5 11 5 2 3 0 8 0 0
6 6 6 3 3 4 9 0 0
7 4 1 6 1 6 8 9 0
8 7 4 2 2 6 10 0 0
9 6 0 3 6 0 10 0 0
10 0 0 0 0 0 0 0 0
Table A.20 — Inputs for Problem No. 20
Schedule Number: 20
ID Dur. |Res. 1| Res. 2| Res. 3| Res. 4 |Succ. 1|Succ. 2|Succ. 3
1 0 0 0 0 0 2 4 6
2 12 3 2 4 3 8 0 0
3 2 5 6 2 4 8 0 0
4 5 6 1 5 2 3 5 0
5 6 2 4 2 2 8 0 0
6 6 4 4 1 7 7 0 0
7 1 8 1 4 1 3 0 0
8 0 0 0 0 0 0 0 0

106

