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ABSTRACT 

 

A BRANCH AND BOUND ALGORITHM FOR  

RESOURCE LEVELING PROBLEM 
 

Mutlu, Mustafa Çağdaş 

M.S., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. Rıfat Sönmez 

 

August 2010, 106 Pages 

 

Resource Leveling Problem (RLP) aims to minimize undesired fluctuations in 

resource distribution curves which cause several practical problems. Many 

studies conclude that commercial project management software packages can 

not effectively deal with RLP. In this study a branch and bound algorithm is 

presented for solving RLP for single and multi resource, small size networks. 

The algorithm adopts a depth-first strategy and stores start times of non-

critical activities in the nodes of the search tree. Optimal resource distributions 

for 4 different types of resource leveling metrics can be obtained via the 

developed procedure. To prune more of the search tree and thereby reduce 

the computation time, several lower bound calculation methods are employed. 

Experiment results from 20 problems showed that the suggested algorithm 

can successfully locate optimal solutions for networks with up to 20 activities. 

 

The algorithm presented in this study contributes to the literature in two 

points. First, the new lower bound improvement method (maximum allowable 

daily resources method) introduced in this study reduces computation time 

required for achieving the optimal solution for the RLP. Second, optimal 

solutions of several small sized problems have been obtained by the algorithm 
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for some traditional and recently suggested leveling metrics. Among these 

metrics, Resource Idle Day (RID) has been utilized in an exact method for the 

first time. All these solutions may form a basis for performance evaluation of 

heuristic and metaheuristic procedures for the RLP. Limitations of the 

developed branch and bound procedure are discussed and possible further 

improvements are suggested.     

  

Keywords: Resource Leveling Problem, Branch and Bound Method, Discrete 

Optimization, Resource Idle Day 
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ÖZ 

 

KAYNAK DENGELEME PROBLEMĐNĐN ÇÖZÜLMESĐ AMACIYLA 

BĐR DAL VE SINIR ALGORĐTMASI GELĐŞTĐRĐLMESĐ 
 

 

Mutlu, Mustafa Çağdaş 

Yüksek Lisans, Đnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Rıfat Sönmez 

 

Ağustos 2010, 106 Sayfa 

 

Kaynak Dengeleme Problemi (KDP), kaynak çizelgelerindeki istenmeyen 

dalgalanmaların asgari düzeye indirilmesini, böylelikle bu dalgalanmaların yol 

açabileceği olası sorunların önlenmesini amaçlamaktadır. Proje planlamasında 

ve yönetiminde yaygın olarak kullanılan paket programların KDP’ni çözmede 

yetersiz kaldıkları çok sayıda araştırmada belirtilmiştir. Bu çalışma kapsamında, 

tek ve çok kaynaklı, küçük ölçekli şebekelerde KDP için en optimal çözümü 

bulmayı amaçlayan bir dal ve sınır algoritması geliştirilmiştir. Geliştirilen 

algoritma derinliğine arama stratejisini esas almakta ve arama ağacının herbir 

düğümünde belirli bir aktivite için geçerli bir başlangıç tarihi saklamaktadır. 4 

ayrı kaynak dengeleme ölçütü için en optimal çözümü bulabilen yöntem, çok 

sayıda alt sınır hesaplama tekniğine yer vererek arama alanını sınırlandırılmaya 

çalışmaktadır. 20 iş programı üzerinde yapılan deneyler, geliştirilen 

algoritmanın 20 aktiviteli şebekelere kadar olan problemlerde en optimal 

çözümleri bulabildiğini göstermiştir.  

 

Sunulan yöntem literatüre iki önemli noktada katkı sağlamaktadır. Öncelikle, 

önerilen alt sınır hesaplama tekniği (izin verilebilen en fazla günlük kaynak 

tüketimi) en optimal çözümün bulunması için ihtiyaç duyulan hesaplama 
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zamanının kısaltılmasını sağlamıştır. Ayrıca, bazı küçük ölçekli kaynak 

dengeleme problemlerinin çeşitli ölçütler için optimal çözümleri sunularak 

gelecekte geliştirilecek sezgisel yöntemlerin performanslarının 

değerlendirilmesi amacıyla bir örnek problem seti oluşturulmuştur. Yakın 

zamanda önerilmiş olan “atıl kaynak günü” kaynak dengeleme ölçütü için 

pekçok problemin en optimal çözümleri literatürde ilk defa bulunmuştur. 

Geliştirilen yöntemin kısıtlamaları tartışılmış ve ileride yapılabilecek çalışmalar 

ile ilgili önerilerde bulunulmuştur.      

 

Anahtar Kelimeler: Kaynak Dengeleme Problemi, Dal ve Sınır Algoritması, 

Kesikli Optimizasyon, Atıl Kaynak Günü 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Although importance of project planning is recognized in many project based 

industries, few companies depend on scheduling skills as much as 

construction companies do. Operating under continuously changing 

environmental conditions and being involved in complex and unique projects, 

which require multidisciplinary collaboration, construction companies have to 

develop realistic schedules and update them regularly. It is not only the 

nature of the construction business that makes scheduling such a vital task. 

Increasing competition within the industry also forces construction companies 

to provide products of higher quality, in shorter durations, for lower costs and 

under safer working environments. Obviously, it is not possible to achieve 

these objectives simultaneously in the absence of an adequate schedule.  

 

As characteristics of the construction business point out, preparation of a 

schedule for a construction project requires simultaneous consideration of 

several issues. Although scheduling might be perceived as a simple matter of 

determining the sequence and timing of activities within a project, a planner 

has to cope with a number of constraints and considerations. Precedence 

relations, lag times, productivity rates, site availability, working calendars and 

climatic conditions are some of the many issues to be considered during the 

preparation of a schedule. In addition to these, resource requirements of 

activities, availability of resources and shapes of the resource requirement 

curves also need to be considered to ensure economical resource utilization. 
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One of the most common reasons why schedules deviate from reality is that, 

resources are not carefully considered during planning phase. If resources are 

not scheduled together with the activities by considering resource availabilities 

and resource graph fluctuations, in other words if resource allocation is not 

carried out properly, then there is a high probability that obtained schedule 

will fail to successfully model the project in terms of duration and cost. 

Obviously, such an unsuccessful schedule would pose a threat for a company 

in that it may cause financial losses, problems, dissatisfied clients, bad 

reputation etc. In fact, an adequate schedule, which incorporates resources 

appropriately, provides competitive advantage to the company from the very 

beginning until the end of the project. 

 

One of the most commonly applied scheduling techniques is the critical path 

method (CPM). In this method, durations of activities and precedence 

relations between them are defined. Schedules are prepared based on these 

inputs and illustrated by one of the two popular methods which are activity on 

arrow (AoA) or activity on node (AoN) representations. Early start and early 

finish times and late start and late finish times of tasks are determined by 

forward pass and backward pass calculations respectively. After these 

calculations, total floats (slacks) of activities are determined by subtracting 

early start times from the late start times. Total floats give an indication of the 

amount of allowable delay in starting/completing any activity without 

extending overall project duration. If total float of a task is equal to zero, this 

means that the activity is a critical one and has to start as soon as its 

predecessors are completed. Path or paths consisting of critical activities are 

called critical path/paths and the project makespan equals the total duration 

required to complete any of these. Theoretically, preparation of a regular CPM 

network does not necessarily require resource allocation as long as durations 

of activities and precedence relations among them are defined adequately. In 

fact, schedules depending on this much consideration are commonly used 

within the construction industry, while resource utilization issues are usually 

disregarded.  
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If resources required by each activity are assigned on an early start schedule, 

in which all tasks are started as soon as possible, it is highly probable that 

there will be very high amounts of resource requirements for some periods. 

Moreover, if resource utilization graphs are considered, undesired fluctuations 

may easily be observed. These are among the major reasons why some 

schedules are far from representing actual projects and therefore should be 

prevented as much as possible. Scheduling problems try to eliminate such 

situations in order to obtain more realistic schedules and to minimize financial 

losses due inefficient planning. 

 

One of the scheduling problems commonly addressed by researchers is 

Resource Constrained Project Scheduling Problem (RCPSP). In this 

problem it is aimed to complete a project as soon as possible using available 

amounts of resources. In a feasible solution of RCPSP resource requirements 

of activities are lower than or equal to the amount of available resources at 

any instant of time. In other words, solution of RCPSP ensures effective use of 

available resources so that the project is completed as soon as possible 

without exceeding resource limitations. 

 

It has been indicated that early start schedules, inevitably, include undesired 

fluctuations in resource utilization graphs over time. Such variations are 

known to have several negative impacts from the project management point 

of view. Unproductive labor and equipment utilization, increased cost of 

temporary facilities, short term employment of the workforce and difficulties in 

attracting skilled workforce due to lack of guarantee to provide long term job 

opportunities are some of the most significant negative outcomes of these 

fluctuations. Frequently rehiring and releasing employees also reduces the 

motivation of individuals and makes the establishment of a company culture 

difficult. Moreover, companies have to make significant investments on the 

training of their staff repeatedly, since the workforce is not stable. Especially, 

in construction industry which depends on know-how at individual and 

company levels, such fluctuations’ costs to the companies are considerable.   
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Variations in resource demand curves, which might have the negative impacts 

listed in the previous paragraph, are addressed by the Resource Leveling 

Problem (RLP). The purpose of this problem is to eliminate fluctuations on 

the resource demand over time periods throughout the project makespan. A 

leveled resource distribution is aimed to be achieved by considering unlimited 

amounts of resources. To do this non-critical activities on a CPM schedule are 

shifted within their available float times. In a feasible solution of RLP, start 

times of activities are adjusted in a manner that resource level variations are 

minimized as much as possible. At this point, it might be useful to revisit some 

of the major assumptions outlined by Harris (1990) for RLP, which are also 

valid for this study. 

 

• Activities are assumed to be time continuous and are not allowed to be 

splitted. In other words, once an activity has started it can not be 

stopped until completion. 

• Resources consumed by activities are assumed to remain constant 

from the beginning until the end of the activities, i.e. each activity is 

assumed to have a constant rate of utilization of the resources. 

• Reductions or extensions in activities’ duration by changing their 

resource rates are not allowed. 

• The algorithm is not allowed to extend or shorten the project duration. 

 

As the assumptions listed above indicate, extensions in project duration are 

not allowed in traditional RLP. However, there are some studies in the 

literature which allow project makespan to be extended up to a certain time 

limit; e.g. a fraction of initial CPM duration. There are also some studies on 

RLP which allow activities to be stopped and restarted, i.e. splitted, although 

traditional assumptions do not allow this. It could be said that RLP addressed 

in these studies are variations of the traditional RLP. Such considerations, of 

course, might be useful for projects from many industries. However, it is 

believed that RLP in its traditional format is the most applicable problem for 

construction industry.    
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Quantification of the amount of resource fluctuations is an important issue to 

be considered while dealing with RLP. Several objective functions have been 

devised for this purpose in the literature. Minimization of sum of squares of 

resource demands per period, minimization of the absolute differences 

between resource demands in consecutive periods and minimization of the 

absolute deviations from a uniform or desired resource level are three of the 

oldest and most commonly used objective functions. In addition to these, 

metrics to minimize the moment of the resource histogram, to minimize the 

idle times of the resources and to minimize the rate of releasing and rehiring 

resources are also being employed by researchers. Detailed information on 

traditional objective functions and on some more innovative metrics is going 

to be presented in the following chapters. However, it should be realized at 

this point that trying to conform resource utilization graphs to predetermined 

shapes usually makes the solution of RLP even more difficult since such 

resource distributions most of the times may not be possible due precedence 

constraints. Moreover some metrics which are suitable for an industry may not 

be applicable to another one. For example, trying to fit the resource curve to a 

rectangular shape does not seem to make much sense in construction 

industry, although it might be the best resource distribution for manufacturing 

industry. This is because construction projects, by their nature, have slower 

progress rates at the beginning and towards the end of the projects. In other 

words, in construction business it is usually expected that the resource curve 

of a project is bell shaped. Therefore, trying to conform it to a rectangular 

shape is a useless effort. Thus, selection of the objective function should be 

done by considering the nature of the project and the desired outcome. 

 

Although definitions of scheduling problems are quite clear and their solutions 

appear to be easy at first glance, commercially available software seem to be 

inadequate in solving them. Especially for large networks, solutions of RCPSP 

are far from being optimal (Çekmece, 2009). It might be commented that 

there is a gap between the theoretical achievements of researchers and 

practical applications of practitioners in the field of project scheduling 
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problems. The reason for this situation is that these are difficult problems 

which require special algorithms to be addressed effectively. Since most 

software packages lack such powerful tools, they fail to handle scheduling 

problems causing inefficient schedules in terms of resource utilization. 

Moreover, awareness on these algorithms and the importance assigned to 

them within the industry is highly limited. It is reported that in Project 

Management Body of Knowledge Book (PMBOK) only 20 lines are reserved for 

resource leveling algorithms without even differentiating RCPSP and RLP 

properly (Herroelen, 2005). 

 

In order to understand why scheduling problems are difficult, one has to be 

familiar with the concept of NP classes. RCPSP is a non-deterministic 

polynomial-time hard (NP -hard) problem (Demeulemeester, 2002), whereas 

RLP is accepted as a non-deterministic polynomial-time complete (NP -

complete) problem (Son and Skibniewski, 1999). In fact, the reason why 

these problems require special attention is because of these classes they 

belong. Problems in NP class are difficult problems, solutions of which require 

parallel searches within the solution space. If a tree search procedure is 

considered, problems in NP class require the number of branches, i.e. the 

number of parallel searches, to increase much faster than the increasing 

number of decision variables. In other words, computational efforts required 

to handle such problems increase very rapidly (exponentially) with the 

increasing problem size. It is this combinatorial explosion that makes the 

solution of scheduling problems a complicated issue. 

 

As indicated formerly, solution of RLP requires special attention as most other 

complicated scheduling problems. If previous studies on the problem are 

investigated, it might be observed that suggested solutions either depend on 

heuristic/metaheuristic procedures such as genetic algorithms, simulated 

annealing, tabu search, particle swarm optimization etc. or on exact 

procedures such as linear integer programming, dynamic programming, 

branch and bound etc. Heuristic and metaheuristic methods aim to obtain an 
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acceptable solution to the problem within a short duration of time whereas 

exact methods aim to find the best possible solution, i.e. the optimal solution. 

Naturally, computational efforts required by exact methods are more than the 

heuristic based methods. Also, exact procedures are usually more difficult to 

implement compared to heuristics and metaheuristics. Moreover, achieving an 

optimal solution also requires more computer storage. In fact, it is these 

issues which make it difficult to solve RLP to optimality even for medium sized 

projects. It might be argued that solving a problem using exact methods 

should be preferred if the solution can be obtained in a reasonable amount of 

time and for a reasonable amount of computational effort. Otherwise, 

effective metaheuristics should be employed to obtain a good solution.  

 

At this point, an emphasis on the importance of the effectiveness of heuristics 

and metaheuristics is required since poor performances of commercially 

available software in solving RCPSP and RLP are usually associated to the 

ineffective heuristic rules they employ. Although they provide considerable 

time savings, heuristic and metaheuristic rules might be problem dependent 

and their performances may show variations from one project to another. This 

is perhaps the most significant drawback of these methods. Moreover, 

evaluating their performance is difficult without knowing the exact solution of 

the problem, since in this case it would not be possible to understand how 

close the obtained solution to the optimal solution is. Detailed information on 

both heuristic/metaheuristic and exact methods and their advantages and 

disadvantages is going to be presented in the next chapter.  

 

The objective of this study is to present a branch and bound algorithm which 

solves RLP to optimality for small sized projects. The algorithm has been 

developed using C++ programming language and proved to successfully 

operate on CPM schedules. It is an exact procedure which differs from the 

previous studies both in terms of the search strategy and pruning methods of 

the search tree. Traditional objective functions and innovative objective 

functions have been incorporated to the algorithm and experimentations have 
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been conducted for validation and performance analysis purposes. The study 

is organized as in the following: Chapter 2 includes detailed information on 

heuristic and exact methods. Also details of the literature related to studies 

dealing with RLP and other scheduling problems via these methods are going 

to be presented in this chapter. In Chapter 3 detailed information on the 

utilized objective functions, employed lower bound calculation methods and 

adopted search strategy is given. Chapter 4 includes results obtained from 

computational experiments in addition to a statistical analysis to check the 

significance of the suggested lower bound improvements. Finally, in 

Chapter 5, conclusions and further research suggestions are presented. 



 9

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

As indicated in previous chapter, exact solution for resource leveling problem 

requires special attention due to the complex nature of the problem. As a 

result, researchers appeal to various heuristic, metaheuristic and exact 

procedures for solving RLP. In this chapter, firstly, definitions of these 

methods are going to be provided. Afterwards, a detailed literature review on 

applications of heuristic based methods on RLP is going to be presented. 

Finally, a review on exact method applications on RLP and some other 

scheduling problems is going to be given. 

 

2.1 Heuristic, Metaheuristic and Exact Methods 

Solutions of most optimization problems require effective strategies, which 

depend on computer sciences significantly. Therefore, size and complexity of 

problems that can be solved via these procedures increases parallel to the 

developments in computer technologies. It is possible to classify these 

strategies into two major groups according to the solution types they provide 

at the end of the search. Methods in the first group, heuristic and 

metaheuristic methods, do not guarantee an optimal solution. In the second 

category, on the other hand, optimal solution of the problem is guaranteed by 

exact methods. 

 

Heuristics are named after the Greek verb “heuriskein” which means “to find”. 

They are simple rules or sets of rules aiming to obtain a “good” solution for a 
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difficult problem. They do not guarantee that the optimal solution of the 

problem is going to be obtained at the end of the search. Most popular types 

of heuristics are construction and improvement heuristics. Construction type 

heuristics try to achieve a near optimal solution by constructing it step by 

step. Decisions are made during the creation of the solution to ensure that 

appropriate steps are taken. Improvement heuristics, however, operate on a 

feasible (not necessarily a good) solution of the problem. In this type of 

heuristics, rules of thumb are employed to improve the initial solution as much 

as possible. Heuristics are easy to implement algorithms which sometimes 

may be applied manually without even requiring a computer. Burgess and 

Killebrew Heuristic is an example to heuristics applied in project scheduling 

(Burgess and Killebrew, 1962). It is an improvement type heuristic which 

operates on an early start schedule in order to locate a near optimum (local 

optimum) solution to RLP in a short time.  

 

Metaheuristics are higher level strategies adapted to solve difficult problems. 

They are complex computational methods which aim escaping from local 

optimum by directing heuristic rules accordingly. Therefore, while heuristics 

usually have a higher chance to be stuck in a local optimum, metaheuristics 

are more likely to reach one of the optimum solutions of the problem under 

consideration. However, neither of these methods guarantees optimality. The 

strength of heuristic and metaheuristic methods lies in the reduced 

computation time and effort they require. In some cases, reaching to a near 

optimal solution in a short period of time might be preferred over reaching to 

the optimal solution in a longer computation time. This practical advantage 

and the ease of adapting general purpose metaheuristics to specific problems 

are two important aspects why these methods are commonly applied in 

literature. Some of the most popular metaheuristic methods may be listed as; 

genetic algorithms, simulated annealing, tabu search, particle swarm 

optimization etc.      
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There is no way to ensure that the optimal solution of a problem is found 

unless it is solved by an exact procedure such as; linear-integer programming, 

dynamic programming, implicit enumeration, branch and bound etc.. These 

procedures usually require more computational effort and more computer 

storage since they have to explore whole search space on the contrary to 

metaheuristics which only visit promising regions. Moreover, coding exact 

methods might be more difficult for most of the optimization problems. 

Despite these difficulties and disadvantages, exact methods are essential in 

optimization. This is because they are capable of guaranteeing optimality 

which metaheuristics are never able to. In other words, their performance in 

terms of solution quality is undoubted unlike metaheuristics.  

 

It is sometimes argued that finding exact solution of an optimization problem 

is neither practical nor necessary. The proponents of this view claim that the 

optimization problems can not represent real life examples exactly and thus 

obtained exact solutions are not applicable in reality. Although this may be 

true for some problems, it can not be ignored that there are some problems 

which model real life examples almost completely. For example, optimal 

solution of travelling salesman problem (TSP), which aims to complete a tour 

consisting of a certain number of cities in the shortest possible way, may not 

be applied in reality. However, this problem is known to be analogous to DNA 

sequencing and microchip manufacturing. Obviously exact solution of TSP may 

be applied for these two problems. Another, and perhaps a more important, 

reason why exact solution procedures are necessary is that it is not possible to 

properly evaluate the solution quality of a metaheuristic unless it is 

experimented on problems with known optimal solutions. In other words, to 

estimate the closeness of the solution provided by a heuristic or metaheuristic 

to the global optimum, researchers need to know the true optimal solution of 

the problem which can only be determined via exact procedures.     

 

In addition to the above listed benefits, exact methods are also useful in 

determining the size and complexity of problems with which metaheuristic 
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methods should be dealing. In project scheduling and in many other fields 

several heuristic based methods are developed and experimented on problems 

which could easily be solved by exact methods. In order to prevent such 

useless efforts, metaheuristics are required to address problems which can not 

be tackled by exact methods due to high complexity or large problem size. 

 

Although resource leveling is an important problem whose solution may 

eliminate productivity losses and discontinuities in workflow throughout 

projects, it has not been addressed in literature as widely as RCPSP. Especially 

exact methods developed to solve RLP are very limited in number. Moreover 

some of the exact methods solve the problem by allowing CPM makespan to 

be extended, which transforms the problem to a variation of RLP. In the 

following sections heuristic and metaheuristic based studies previously applied 

on RLP are going to be presented in addition to the exact procedures 

addressing the same problem. Due to the fact that there are few exact studies 

on RLP, some of the branch and bound methods addressing RCPSP have also 

been referred in order to give a brief background of this method.     

 

2.2 Heuristic and Metaheuristic Methods for Resource 

Leveling Problem 

One of the earliest attempts to reduce resource level fluctuations is seen on 

Burgess and Killebrew (1962). Heuristic algorithm presented in this study 

operates on an early start schedule. Activities are considered according to a 

priority rule and shifted to the best possible start date one by one so that the 

objective function value is minimized. Being a general algorithm, Burgess and 

Killebrew heuristic can be applied to a variety of objective functions such as 

sum of squares or minimum deviation etc. Also, a variety of priority rules, 

such as increasing activity numbers, decreasing activity numbers or total float 

based priority lists, can be employed to obtain different results using the same 

procedure (Burgess and Killebrew, 1962).  

 



 13

Another heuristic algorithm to solve RLP in multi-project, multi-resource 

scheduling has been presented by Woodworth and Willie (1975). After this 

study, Harris (1990) introduced a new heuristic rule, named as Packing 

Method (PACK), to solve leveling problems in construction projects. This 

method was based on minimization of moment of the resource histogram. It 

has been aimed that the final distribution approaches to a rectangular shape 

so that the moment of the histogram is minimized. As to the performance of 

the algorithm, it has been reported that PACK is advantageous over previously 

developed algorithms in that it is clear, logical and computationally efficient 

(Harris, 1990).    

 

PACK method has been referred to in a number of researches. Martinez and 

Ioannou (1993) tried to improve this method by introducing Modified 

Minimum Moment Method to level resources in construction projects. This 

study has been followed by one of the earliest metaheuristic applications for 

RLP. This was the neural network based resource leveling algorithm developed 

by Savin, Alkass and Fazio (1996).  

 

Genetic algorithms (GA), being inspired by natural evolution mechanisms, are 

one of the most popular metaheuristic methods. They are being adapted to a 

number of difficult problems to obtain near-optimal solutions. A typical GA 

operates on a generation of solutions. It selects good, i.e. highly fit, solutions 

and reproduces them by crossover and mutation operators. In this manner 

fittest solutions are allowed to survive over generations finally converging to a 

local or global optimum. Being a successful and easy to implement 

metaheuristic method, GAs are commonly employed to address RLP and 

RCPSP. 

 

One of the earliest GA based attempts in construction project scheduling is 

seen on Chan, Chua and Kannan (1996). In this study, minimization of the 

deviation of required resources from available resource profiles has been 

aimed. While doing this, precedence relations among activities are considered 
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and optimal ordering of project activities has been tried to be achieved 

through selection pressure and recombination. It has been argued that the 

model is general enough to encompass both resource leveling and limited 

resource allocation problems unlike existing methods so far (Chan, Chua and 

Kannan, 1996).  

 

Neumann and Zimmermann (1999) published a study in which heuristic 

procedures have been introduced both for solving the traditional RLP (without 

resource limitations) and for solving a variation of RLP (with limited resource 

availabilities). It has been declared that a feasible solution of the traditional 

RLP could be found for the first time in polynomial time although it is an NP –

hard problem. In this study, optimization for several objective functions has 

also been experimented. Minimization of maximum resource costs per 

period (resource investment problem), minimization of the deviations from a 

desired or uniform resource level and minimization of the variations in 

resource utilization curves over time are the objective functions which have 

been employed by Neumann and Zimmermann (1999). It has been proved by 

a performance analysis that the developed method provides good solutions. 

However, it has also been declared that for some of the problem sets, 

minimum objective function values, i.e. optimum solutions, are not known 

which implies a need for further research. Also the need for a more detailed 

performance analysis has been emphasized (Neumann and Zimmermann, 

1999).   

 

A GA-based multicriteria construction scheduling model to reduce the waste 

and shortage of resources in construction projects has been developed by Leu 

and Yang (1999). The objective of the model was to solve time/cost tradeoff 

problem, RCPSP and RLP simultaneously. It has been emphasized that 

heuristic rules applied up to that date on RLP were easy to implement, yet 

their solution qualities were questionable. A more leveled resource distribution 

was tried to be achieved by minimizing the sum of absolute differences 

between daily resource usage and the uniform resource usage. The 
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performance of the GA module has been demonstrated on a case study and 

obtained results have been compared to the exact solutions obtained from 

enumeration. Finally, Leu and Yang (1999) indicated a need for clear 

guidelines on GA parameters which are known to have a significant effect on 

solution quality of GAs. 

 

Another GA based method for solving RLP has been introduced by Hegazy 

(1999). In this study, random activity priorities have been employed to 

introduce an improvement to resource allocation heuristics and a double-

moment approach has been defined as a modification to resource leveling 

heuristics. In addition to these, a GA module to simultaneously optimize 

resource allocation and resource leveling has been developed. It has been 

argued that in minimum moment method it is not considered when the 

resources are being scheduled as long as the moment about the time axis is 

minimized. To overcome this situation, which may imply problems if the 

resources are being shared among multiple projects, a double moment 

approach has been suggested. One of the disadvantages of the developed 

algorithm has been emphasized as the long processing time it required 

(Hegazy, 1999). 

 

Another model which combines a multiheuristic approach with simulated 

annealing (SA) has been presented by Son and Skibniewski (1999). It has 

been reported that SA approach enhanced performance of the multiheuristic 

model by enabling the algorithm to escape from local optimum in many cases. 

Local optimizer included four heuristic algorithms all of which employed 

different rules to determine activity shifting sequences. Hybrid model, on the 

other hand, continued the search from the best solution determined by any of 

the four heuristics in local optimizer and employed a SA approach. Son and 

Skibniewski (1999) tested their procedure on two example projects and 

reported results obtained. These two examples which were leveled using the 

sum of squares objective function have also been used in our study to validate 

the branch and bound model developed. 
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Leu, Yang and Huang (2000) developed another GA based resource leveling 

methodology. In this study it has been claimed that the performance of 

analytical and heuristic approaches developed so far is low due their 

inefficiency and inflexibility. To enable practitioners to involve in optimization 

process and to choose from several resource profiles, a decision support 

system (DSS) has been introduced. Developed model is declared to be 

capable of effectively leveling single or multiple resources considering absolute 

deviation between actual resource usage and the uniform resource usage as 

the objective function. Also, the need for further research to develop 

combined methods which are capable of considering time cost tradeoffs and 

constrained resource allocation tasks simultaneously has been emphasized. 

Extensive consideration on GA parameters such as crossover and mutation 

rates has been suggested as further research topics (Leu, Yang and Huang, 

2000). 

 

As mentioned previously, one of the earliest leveling heuristics was developed 

by Harris (1990). This method, which was based on minimizing the moment of 

the resource histogram, has been modified by Hiyassat (2000). In this 

modified method, activities to be shifted are selected by considering both their 

resource requirements and their free floats. It has been argued that the 

suggested approach performs nearly as effective as the traditional method 

requiring relatively lower computational effort. Performances of the developed 

method and the traditional method have been compared by means of several 

networks (Hiyassat, 2000). After this paper, Hiyassat (2001) argued that the 

modification of the minimum moment approach also performs well for projects 

with multiple resources. 

 

Another GA based resource leveling algorithm has been introduced by Oral et 

al. (2003). The model presented in this study has been reported to be 

applicable to projects with single resources. Three different types of scaling 

methods have been utilized in the model and deviations from uniform 

resource level were tried to be minimized (Oral et al., 2003).   
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Zheng, Ng and Kumaraswamy (2003) have introduced another GA based 

method addressing RLP. Step by step operation of the proposed model, which 

utilized minimum moment approach, has been illustrated on a case study. To 

level multiple resources, adaptive weights which aim to balance search 

pressure among different resource types, have been employed. By doing so, 

dominance of a single resource type throughout the search has been 

prevented. It has been indicated that the developed model shows promising 

performance and might be applicable to large and complicated projects which 

can not be addressed by mathematical models (Zheng, Ng and 

Kumaraswamy, 2003).  

 

Senouci and Eldin (2004) developed another GA based model which differed 

from the previous research in that it considered precedence relations, multiple 

crew strategies and total project cost minimization. In this GA model, 

minimization of the combined direct and indirect costs was aimed. Moreover, a 

penalty function has been included to the objective function calculations to 

transform constrained RLP to an unconstrained optimization problem. 

Capabilities of the developed model have been presented on a numerical 

example. It has been argued that the developed model locates optimal or near 

optimal solutions successfully and can be used by practitioners on large scale 

projects (Senouci and Eldin, 2004).  

 

Particle swarm optimization (PSO) is another metaheuristic approach inspired 

by the fact that in nature, individuals with limited intellectual capacities 

perform highly intellectual collective behaviors. A PSO based resource leveling 

algorithm has been introduced by Pang, Shi and You (2008). It has been 

declared that the high probability for the PSO to converge to a local optimum 

in an early manner has been prevented by using a constriction factor. The 

performance of the algorithm has been reported to be much better than the 

algorithms such as peak clipping, valley filling and reduced variance method. 

The need for further research to level multiple resource projects has also been 

emphasized (Pang, Shi and You, 2008). Following this study, Guo, Li and Ye 
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(2009) developed another PSO method which could be applied to multiple 

projects with multiple resources. An analytical hierarchy process has been 

employed to determine the relative weights of the resources. Two examples 

have been solved by both PSO and GA metaheuristics and the obtained results 

have been compared. It has been reported that the performance of PSO is 

better than the performance of GA (Guo, Li and Ye, 2009). 

 

Performances of 5 different GA based metaheuristic methods on RLP were 

compared by Bettemir (2009). Among these methods there were hybrid 

algorithms which included simulated annealing, variable neighborhood search 

etc. In this study, start times of non critical activities have been coded in 

genes of the algorithm and these start times have been rearranged by the 

algorithm so that a leveled resource profile was obtained according to sum of 

squares objective function. 7 projects obtained from literature have been 

solved to validate the methods and measure their performances. According to 

the experimentation results, all algorithms were capable to solve multi 

resource projects in reasonable computation times. For all of the test 

problems, best known solutions have been determined by the algorithms. 

Moreover, it has been reported that the algorithms could be applied to 

different types of projects, in that they could deal with different types of 

precedence relationships successfully (Bettemir, 2009).    

 

El-Rayes and Jun (2009) presented two new resource leveling metrics which 

are devised to measure negative effects of resource level fluctuations in 

construction projects. These two metrics, “Release and Rehire (RRH)” and 

“Resource Idle Day (RID)”, were especially useful if manpower requirement 

graphs are to be leveled. The objective of RRH metric was to quantify the 

amount of resources which are temporarily released during low demand 

periods and rehired later when there is a high demand. It has been indicated 

that this metric might be useful in construction projects in which releasing and 

rehiring of workforce is allowed. In other words, if the contractor is not 

obliged to pay idle workers on site, than RRH metric might be useful. RID, on 
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the other hand, is applied on projects for which the opposite situation is valid. 

This metric quantified total idle time of resources throughout the project. 

Therefore, it was useful to minimize payments which contractor is going to 

make for idle resources. El-Rayes and Jun (2009) claimed that on the contrary 

to the existing metrics, new metrics were not trying to fit resource 

distributions to a predetermined shape. Instead, elimination of undesired 

fluctuations was aimed. It has been argued that most appropriate objective 

function should be selected according to the characteristics of the projects. 

 

El-Rayes and Jun (2009) also developed a GA based optimization module in 

which RRH and RID metrics have been employed. In addition to these 

innovative objective functions, traditional metrics such as; sum of square of 

daily resource requirements, absolute difference between consecutive time 

periods and deviation from uniform resource requirement have also been used 

in optimization. This model, which addressed the traditional RLP with 

unlimited resources and fixed makespan, has been tested on a single resource 

network which included 14 non critical activities (El-Rayes and Jun, 2009). RID 

metric is going to be explained in detail in the following chapter since it is one 

of the objective functions employed in this study. Also the numerical example 

presented in El-Rayes and Jun (2009) is going to be used while validating the 

branch and bound procedure developed. 

 

One of the latest studies on RLP is to be seen on Christodoulou, Ellinas and 

Kamenou (2010). It has been argued that minimum moment and PACK 

methods should allow activity stretching (shortening and extending activity 

durations by changing resource utilization rates), and also daily resource limits 

should be incorporated in the method. “The entropy-maximization method” 

proposed in this paper made use of the general theory of entropy to revisit 

the minimum moment method for resource leveling. Entropy, which 

symbolizes a system’s order and stability was tried to be maximized. The 

problem has been defined as the determination of the amount of resources to 

be diverted to a specific activity to maximize its entropy without exceeding 
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available resource levels. Developed model has been validated by two 

numerical examples (Christodoulou, Ellinas and Kamenou, 2010). 

 

A summary of the heuristic and metaheuristic based methods mentioned in 

this section is to be seen in Table 2.1 in a chronological order. Remarkable 

points of each study have been given in addition to the information on the 

methods adopted and problems addressed.  
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2.3 Exact Methods for RLP and Other Scheduling

 Problems 

In this section exact methods previously applied on RLP are going to be 

discussed. Since there are limited number of branch and bound applications 

developed for RLP, some branch and bound based studies for other 

scheduling problems are also going to be mentioned. 

 

One of the earliest branch and bound algorithms developed for project 

scheduling problems is seen on Mason and Moodie (1971). In this study, 

minimization of the combined cost of resource demand and delays in project 

completion has been aimed to be minimized. Extensions in project duration 

have been allowed and penalized according to a cost function. Also a penalty 

function was applied if total resource amounts required by activities exceeded 

available resource levels. The importance of lower bound calculations in 

constructing a bounded decision tree has been emphasized and details of cost 

bound calculations have been presented. While establishing the search tree, 

activities that could be scheduled at that particular instance of time have been 

considered and corresponding lower bounds have been calculated according 

to possible scenarios. As branch and bound methodology implies, whether a 

node is going to be discarded or retained has been decided according to the 

lower bound value of that node. Also, resource constraints have been imposed 

by eliminating any scenarios that require higher amounts of resources than 

the available limits. 25 network problems have been solved to investigate the 

performance of the algorithm and total number of nodes needed to ensure 

optimality has been reported. It has been indicated that the computation time 

is significantly related to factors such as number of activities and their 

durations and resource requirements, in addition to the structure of the 

project network. Developed algorithm has been declared to be helpful in 

testing the performances of new heuristics (Mason and Moodie, 1971).      
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Patterson (1984) compared performances of three exact solution procedures 

on RCPSP each of which were enumerative based and each of which tried to 

eliminate non promising regions of the search space by utilizing special rules. 

These three methods; bounded enumeration, branch and bound and implicit 

enumeration have been tested on 110 problems in an imposed time limit of 5 

minutes. Of these, only branch and bound algorithm was able to solve all 

problems within the allowed time limit. According to the results reported, 

implicit enumeration method required far less computer storage compared to 

other two methods and bounded elimination method promised shortest 

computation times for some instances. Despite these advantages of implicit 

enumeration and bounded elimination, Patterson (1984) concluded that 

branch and bound algorithm was likely to be the preferred method since it 

allowed the search to be directed towards attractive solutions in the early 

stages. 

 

One of the earliest attempts to reduce resource level fluctuations in 

construction projects using exact methods has been done by Easa (1989). In 

this paper, an integer-linear optimization model to solve RLP optimally in small 

to medium-sized networks has been introduced. This model guaranteed 

optimal leveling by minimizing absolute deviations from a uniform resource 

level. Also an improved objective function which minimized resource level 

fluctuations in consecutive time periods has been suggested. Developed 

optimization model has been tested on a sample network and optimal 

resource histograms have been compared to the resource distribution of the 

early start schedule. One drawback of the model was outlined as the need for 

a high number of variables and constraints which made implementation of 

integer-linear optimization difficult for most practical purposes (Easa, 1989). 

 

Another linear integer optimization technique to minimize the sum of costs of 

all resources, including time, has been presented by Karshenas and Haber 

(1990). Two simple example projects’ costs have been minimized to illustrate 

the performance of the model. It has been declared that the schedules 



 25

obtained from the model had an optimal duration and the resource use was 

leveled economically. It has been indicated that a computer program is 

needed to input the extensive data required to optimize the cost of a real life 

example via the linear integer model (Karshenas and Haber, 1990). 

 

Demeulemeester and Herroelen (1992) presented a branch and bound 

procedure which adopted a depth-first methodology to solve RLP. Suggested 

algorithm has been reported to be faster than the most rapid tools developed 

so far and to be advantageous over them in that it required less computer 

storage. In the introduced model, nodes have been constructed in a manner 

that partial schedules, which were feasible both in terms of precedence 

relations and resource limitations, were coded in them. At any time instant, 

eligible activities that eligible to be scheduled have been considered and 

nodes with higher lower bounds have been fathomed according to the 

bounding rules. 110 test instances of Patterson (1984) have been employed to 

validate the algorithm. It has been reported that the branch and bound 

procedure presented in this study solved all instances successfully in an 

average CPU time of 0.215 seconds per problem. Success of the method has 

been attributed to the new bounding arguments and dominance rules 

(Demeulemeester and Herroelen, 1992). Following this study, Shah, Farid and 

Baugh (1993) introduced an integer linear optimization model which 

determined minimum amount of resources required to complete a project.  

Also, a non serial dynamic programming model to minimize absolute 

deviations from a predefined resource level has been developed by Bandelloni, 

Tucci and Rinaldi (1994). 

 

Demeulemeester (1995) also addressed resource availability cost problem 

which aims the determination of resource availability levels to minimize the 

sum of availability costs. A branch and bound method, which was the first 

exact method developed for this problem so far, was suggested for this 

purpose. Computational experiments have been conducted on a small bridge 

project in addition to the adapted problem set of Patterson (1984). Also, 
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effects of increasing resource types on the required computational efforts 

have been observed. It has been reported that utilizing more resource types 

causes the number of efficient points to increase, causing more considerations 

during the search. Thus the standard computation time is declared to be an 

increasing function of the number of resource types (Demeulemeester, 1995).  

 

Among the exact solution procedures for scheduling problems, mathematical 

model of Younis and Saad (1996) to carry out optimum resource leveling and 

study of Icmeli and Erenguc (1996) to solve resource constrained project 

scheduling problem with discounted cash flows (RCPSPDC) are also worth to 

be mentioned. In the latter study, Icmeli and Erenguc (1996) developed a 

depth first branch and bound algorithm which included a complete schedule 

(whether feasible or not) in each node of the search tree. Branching was done 

according to the “minimal delaying alternatives” concept of Demeulemeester 

and Herroelen (1992). Developed model has been verified on an example and 

experimentations have been done on a set of 90 test problems. It has been 

indicated that the obtained results proved that the algorithm outperformed 

other methods suggested to solve RCPSPDC so far (Icmeli and Erenguc, 

1996). 

 

Another depth-first branch and bound method has been developed by 

Demeulemeester and Herroelen (1997) to solve the generalized RCPSP. This 

algorithm which was an extension of the method formerly suggested by the 

same researchers was able to represent any type of precedence relations such 

as start to start, finish to finish etc. Partial feasible schedules have been 

stored in the nodes of the search tree. Precedence based lower bound 

calculations have been employed in addition to several dominance rules in 

order to prune the search tree as much as possible. Extensive experimentation 

has been conducted on Patterson’s problem set in order to compare the 

impact of their modified search strategy and to study the impact of fluctuating 

resource availabilities over time. It has been reported that 109 of 110 test 

problems have been solved via the algorithm in an average CPU time of 
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8.1065 seconds. Demeulemeester and Herroelen (1997) concluded that the 

computational experience gained with the modified algorithm was promising. 

 

Examples of linear scheduling applications are to be seen in many construction 

projects which require repetitive execution of tasks such as road projects, high 

rise building constructions, pipeline constructions etc. Mattila and Abraham 

(1998) were two of the few researchers who addressed RLP on linear 

schedules. The integer linear programming model suggested by Mattila and 

Abraham (1998) utilized an objective function to minimize the absolute 

deviation of daily resource usage from an average resource rate. Resource 

distribution of a highway project has been leveled using linear programming 

software, LINDO. Resulting resource histogram has been presented in the 

paper. Similar to most researchers who dealt with integer linear programming, 

Mattila and Abraham (1998) also indicated that a high number of variables 

were required by this method which limited the size of the problem that could 

effectively be dealt. 

 

Brucker et al. (1998) presented another branch and bound method addressing 

RCPSP. This study differed from similar methods in that it included a tabu 

search procedure in the root of the search tree to begin the search with a 

better schedule. Moreover, a linear program based lower bound calculation 

procedure has been employed on each node. Experimentations have been 

carried out on networks of 30 and 60 activities and with 4 resource types. It 

has been declared that 326 of 480 test problems with 60 activities have been 

solved to optimality within one hour (Brucker et al., 1998). Following this 

study, De Reyck and Herroelen (1998) published a paper in which they 

presented another depth first branch and bound algorithm for RCPSP with 

generalized precedence relations. Nodes of the search tree represented a time 

feasible solution for the problem which was not necessarily resource feasible. 

To overcome this resource conflict, the method of “minimal delaying 

alternatives” has been employed. Details of a new lower bound calculation 

procedure and three dominance rules have been presented. Extensive 
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experimentation results on three different data sets have been reported and it 

has been indicated that the suggested algorithm enabled significant reductions 

in the computation time. Moreover, RCPSP has been solved to optimality for 

networks with up to 100 activities (De Reyck and Herroelen, 1998).  

 

Neumann and Zimmermann (2000) published a paper in which different 

heuristic and exact procedures have been proposed in order to solve RLP and 

net present value problem. In this study RLP has been investigated under 

three main categories which are; minimization of costs due resource level 

fluctuations (resource investment problem), minimization of deviations from a 

given resource level and minimization of fluctuations in consecutive time 

periods. These objective functions and some variations of them have been 

utilized to level resources in networks with and without resource limitations. 

Similarly, net present value problem with and without resource constraints has 

been addressed via exact methods. To solve resource leveling problems,  

branch and bound and truncated branch and bound procedures have been 

employed (Neumann and Zimmermann, 2000). 

 

Branch and bound procedure developed by Neumann and Zimmermann 

(2000) was based on an enumeration of feasible start times of activities and 

each node of the tree represented a partial schedule. Consequently, each leaf, 

i.e. the deepest nodes on the tree, represented a complete schedule. Children 

of nodes have been obtained by scheduling one of the eligible activities to a 

starting date that is feasible. If multiple activities were available to be 

scheduled, than the one with the lowest total float was selected. Naturally, the 

node from which children are to be produced was selected according to a 

minimum lower bound criterion. In the truncated branch and bound 

procedure, on the other hand, a heuristic has filtered the number of branches 

to be produced from a single node. In other words, only a certain number of 

most promising branches have been allowed to grow (Neumann and 

Zimmermann, 2000). 
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Neumann and Zimmermann (2000) also presented a tabu search approach for 

RLP and reported extensive experimentation via the abovementioned exact 

and heuristic approaches. Three problem sets which included a number of 

networks with 10 to 500 activities and with 1 to 5 different types of resources 

have been used in experimentation. It has been reported that resource 

constraints significantly reduced size of the feasible regions of the search tree 

causing the algorithms to locate optimal solutions in shorter durations. Most 

problem instances consisting of up to 20 activities have been solved by the 

developed branch and bound procedures in less than 100 seconds. It has 

been declared that networks with 20 activities and five resources have been 

solved to optimality for the first time in the literature. A need for tighter lower 

bound calculations for different resource leveling metrics has been indicated 

(Neumann and Zimmermann, 2000).  

 

Another branch and bound algorithm has been introduced by Vanhoucke, 

Demeulemeester and Herroelen (2001). Maximization of the net present value 

has been aimed in this study. New upper bound computation methods and an 

extended branching strategy to prune the search tree considerably have been 

introduced. Experimentations have been conducted on the problem sets of 

Patterson (1984) and Icmeli and Erenguc (1996). It has been indicated that 

net present value problem has been solved to optimality for networks with up 

to 30 activities and 4 resource types (Vanhoucke, Demeulemeester and 

Herroelen, 2001). 

 

In project scheduling literature, one of the most common assumptions is that 

an activity can not be stopped and can not be restarted. Son and Mattila 

(2004) indicated that this assumption may not always be true in construction 

industry since some activities in construction projects can actually be splitted. 

To carry out a more realistic optimization, a linear program binary variable 

model to level resources that permits selected activities to stop and restart 

has been introduced. This model included constraints on daily resource rates. 

Moreover, total duration of activities, whether they are splitted or not was 
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fixed. Son and Mattila (2004) solved two example projects and reported that 

the developed model was capable of representing actual construction 

processes successfully.  

 

One of the most recent exact procedures to solve RCPSP was developed by 

Jiang and Shi (2005). This method, “enumerative branch and cut procedure”, 

included a cut rule to eliminate true worse schedule alternatives as done in 

the truncated branch and bound procedure of Neumann and 

Zimmermann (2000). It has been reported that 110 test problems in 

Patterson’s set could be solved via the developed algorithm in a reasonable 

amount of time. Jiang and Shi (2005) indicated that computational efficiency 

should not be a big concern while solving scheduling problems, since 

scheduling is not repeated over and over during the lifecycle of projects. 

 

Similar to Table 2.1, which presented heuristic and metaheuristic methods 

developed to solve RLP, Table 2.2 summarizes exact methods for scheduling 

problems in a chronological order. Problems addressed in these studies, 

methods developed and remarks have been highlighted.  
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Considering the literature on exact methods for solving RLP, it can be said 

that the number of studies effectively dealing with the problem is highly 

limited. Especially, resource distributions of construction projects have seldom 

been leveled to optimality. In attempts to solve RLP via optimization methods 

as integer linear optimization, several researchers declared that these efforts 

required high number of variables to be defined which in some problems even 

exceeded the limitations of commercial software. Often, branch and bound 

method has been pointed out as the most effective exact method in dealing 

with RLP.  

 

Another important aspect while solving RLP in construction projects is related 

to the objective functions employed by researchers. Some resource leveling 

metrics, such as minimum absolute deviations from uniform resource level, 

are being used by many researchers in construction project scheduling. This 

situation implies useless efforts since the rectangular resource distribution 

graph aimed in this kind of metrics is not suitable for the construction 

projects. 

 

In the following chapter, characteristics of the branch and bound method 

developed to level resources in construction projects using suitable objective 

functions to the nature of the construction business are going to be 

presented. 
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CHAPTER 3 

 

 

BRANCH AND BOUND METHOD 

 

 

 

3.1 Objective Functions 

3.1.1 Sum of Squares (SSQR) of Resource Requirements 

One of the most commonly employed resource leveling metrics in the 

literature aims to minimize the sum of squares of daily resource requirements 

throughout the project. It is a simple objective function calculation method 

which minimizes resource consumptions in all time periods. However, resource 

level fluctuations between consecutive time periods are disregarded in SSQR 

metric. Mathematical formulation of this objective function could be 

represented as in the following; 

 

 

 

 

 

where; “f” is the objective function value for SSQR metric, “n” is the project 

duration, “j” is the number of different resource types, “wi” is the relative 

weight of the ith resource type, and “rim” is the requirement of all activities on 

ith resource type at the mth day. 
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Figure 3.1 – Sample Resource Distribution 

 

A sample 6 days project is given in Figure 3.1 to be used in illustrating the 

metrics presented in this section. If the resource distribution on this figure is 

considered, then the SSQR value of the project is simply to be calculated as in 

the following; 

 

 SSQR = 52 + 32 + 22 + 42 + 22 + 32 = 67 

 

3.1.2 Minimum Absolute Deviation (MinDev) of Resource 

Requirements from Uniform Resource Level 

Another commonly employed objective function firstly calculates the uniform 

resource level required to complete the project and then minimizes absolute 

deviations from this level. To calculate this uniform resource level, total 

amount of resources required to complete the project is divided to the project 

duration and obtained number is rounded down to the closest integer. This 

metric aims to obtain a rectangle shaped resource distribution, suitability of 

which to construction projects is questionable. Still, MinDev metric has been 
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used in our study to validate the developed algorithm by comparing our 

optimal solutions to the results reported in previous studies. Mathematical 

representation of MinDev objective function may be defined as in the 

following;   

 

 

 

 

Where;  

 

 

 

 

 

 

 

And where; “f” is the objective function value for MinDev metric, “n” is the 

project duration, “j” is the number of different resource types, “wi” is the 

relative weight of the ith resource type and “rim” is the requirement of all 

activities on ith resource type at the mth day. In addition to these, “ui” 

represents uniform resource level, “y” is the total number of activities, “demxi” 

is the total demand of activity x on resource type i and durx is the duration of 

activity x. “⌊…⌋” notation used in calculation of ui symbols the floor function 

which rounds a decimal to the closest integer smaller than or equal to that 

decimal. 

 

According to this metric, objective function value of the resource distribution 

in Figure 3.1 is calculated as in the following; 

 

 ui = ⌊ (5 + 3 + 2 + 4 + 2 + 3) / 6 ⌋ = 3 

 Dev= |5 - 3| + |3 - 3| + |2 - 3| + |4 - 3| + |2 - 3| + |3 - 3| = 5 
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3.1.3 Resource Idle Days (RID) 

As mentioned in Chapter 2, El-Rayes and Jun (2009) suggested a resource 

leveling metric which is especially useful if resources can not be released and 

rehired easily throughout the makespan of a project. In other words, RID 

metric which minimizes idle times of resources without forcing the resource 

distribution to fit a predefined shape has been established by the researchers. 

Mathematical formulation of the metric defined by El-Rayes and Jun (2009) 

might be modified to level multiple resources as in the following;  

 

 

 

 

Where; “n” is the project duration, “j” is the number of different resource 

types, “wi” is the relative weight of the i
th resource type and “rim” is the 

requirement of all activities on ith resource type at the mth day.  

 

Again, considering the resource distribution in Figure 3.1; 

  

RID = [Min (5, 5) - 5] + [Min (5, 4) - 3] + [Min (5, 4) - 2] +  

[Min (5, 4) - 4] + [Min (5, 3) - 2] + [Min (5, 3) - 3] = 4 

 

If Figure 3.2 is considered, these 4 units of idle resources are seen on the 

hatched zones of the profile. RID metric aims to minimize these zones which 

indicate unproductive resource days. As can be realized, RID metric focuses 

on minimizing the undesirable fluctuations only, whereas most traditional 

metrics attempt to transform resource profiles to predetermined shapes (El-

Rayes and Jun, 2009). Hence RID can handle RLP in a more flexible way 

resulting in more efficient resource distributions.  
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Figure 3.2 – Idle Days on the Sample Resource Distribution of Figure 3.1 

 

3.1.4 Resource Idle Days and Maximum Resource Demand 

(RID+MRD) 

Since RID metric does not consider the maximum resource requirement, 

utilization curves obtained for this metric might tend to imply high peak 

resource demands. For instance, if two minimum RID solutions of a network 

contain the same number of idle days for resources and if one of them implies 

a higher peak resource demand then, RID might suggest the solution with 

higher peak resource level. This, for all practical purposes, does not make 

sense since in almost all industries it is preferred to keep maximum resource 

demands as low as possible. To overcome this shortcoming of RID metric, a 

combined objective function has been suggested which simultaneously aims to 

minimize the idle days of resources and the maximum resource demands of 

resources throughout the projects. Mathematical formulation of this metric is 

as in the following; 
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Where; “n” is the project duration, “j” is the number of different resource 

types, “wi” is the relative weight of the i
th resource type and “rim” is the 

requirement of all activities on ith resource type at the mth day. 

 

In this case the objective function value for the resource utilization graph in 

Figure 3.1 would be as in the following; 

 (RID+MRD)  = 0.5 * RID + 0.5 * Max (5, 3, 2, 4, 2, 3)  

         = 0.5 * 4 + 0.5 * 5 = 4.5 

Where; RID is calculated as explained in Section 3.1.3. 

 

3.2 Basics of the Branch and Bound Method 

According to Agin (1966), branch and bound is a powerful method capable of 

solving combinatorial problems with non-linear, discontinuous or non-

mathematically defined objective functions and under several types of 

constraints. In branch and bound method, a tree structure which consists of 

properly connected nodes is established. Throughout the search, constraints 

imposed by the problem should be taken into account. Agin (1966) divides 

these into two groups, namely implicit and explicit constraints. In a 

successfully developed branch and bound algorithm, implicit constraints are 

satisfied by the manner in which the search tree is established. Explicit 

constraints, however, are to be considered in each step of the search. An 

example to implicit constraints might be given as the precedence relations, 

whereas explicit constraints might be exemplified by resource limitations in 

RCPSP (Demeulemeester and Herroelen, 2002). A feasible solution to the 

problem, therefore, has to assign numerical values to the set of decision 

variables (e.g. start dates of all activities in RLP and RCPSP) so that both 

implicit and explicit constraints are satisfied.   
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Nodes, of which a search tree consists of, are subsets of the set of all 

solutions of the combinatorial problem. Branching, on the other hand, is the 

partitioning of any set of feasible solutions into separate subsets (Agin, 1966). 

Branching process starts from the root node (the node in the uppermost level 

of the tree) which represents the set of all solutions. In some instances during 

the search there might be nodes from which no branching has occurred yet. 

These nodes which are to be discovered further are called intermediate nodes. 

On the contrary to intermediate nodes which imply a partial solution, final 

nodes represent a complete solution. In order to reach a final node (leaf), all 

decisions required to establish a valid solution set have to be made. In RLP, 

for example, a leaf stores start dates of all non critical activities. Obviously 

final nodes are located in the lowermost level of the search tree.  

 

Two main characteristics of branch and bound algorithms presented by Agin 

(1966) are branching characteristic and bounding characteristic. According to 

the definitions provided, branching characteristic ensures that an optimal 

solution is going to be reached at the end of the search since all possible 

combinations are going to be considered. Whereas, bounding characteristic 

implies a possibility to reach the optimal solution without visiting each node by 

pruning some parts of the tree. 

 

Finally definition of lower bound should be given since this concept is in the 

very heart of the branch and bound logic. Lower bound is a value of the 

objective function for all solutions included in a specific node such that none 

of the solutions that could be branched from that node will have a better 

objective function value than that bound. As this definition implies, there is no 

use to branch a node any further if its lower bound value is worse than the 

objective function value of one of the explored final nodes (complete 

solutions). Objective function value of the best complete solution explored so 

far, i.e. upper bound, is used to decide whether a node is promising or not. 

Obviously, upper bound at the end of the search provides the optimal solution 

to the problem. 
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3.3 Problem Definition 

It has already been mentioned in previous chapters that RLP aims the 

minimization of fluctuations in resource distribution curves. In this section a 

typical RLP is going to be presented so that the characteristics of the 

developed branch and bound algorithm can be illustrated on an example.  

 

In Figure 3.3 an AoN diagram, which is partly obtained from Mubarak (2004) 

is presented. This small size project, which includes 4 non-critical activities, is 

going to be referred throughout this chapter while explaining the developed 

procedure. Daily resource requirements, which have been generated randomly 

for each activity, are given on the network, in addition to the information 

regarding the precedence relations and activity durations. Critical path of the 

project has been identified by the forward and backward pass calculations. 

Early start and early finish times, and late start and late finish times have 

been determined and total floats have been calculated. Distribution of 

resources according to the early start schedule is presented in Figure 3.4.   
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Figure 3.3 –  Sample Activity on Node Schedule 
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Figure 3.4 – Resource Distribution for the Early Start Schedule of Figure 3.3 

 

Assuming that the resources of the sample schedule are to be leveled 

according to MinDev objective function, it can be commented that the early 

start schedule is far from optimal resource allocation in that it includes high 

amount of deviations from the uniform resource level. To obtain an optimal 

solution for this network, branch and bound algorithm has to ensure that all 

non-critical activities are scheduled to the best starting dates so that the sum 

of the deviations is minimized. In order to do this, a search tree is established 

as in Figure 3.5. Throughout this search MinDev objective function is utilized.   

 

Each node of the tree illustrated in Figure 3.5 represents a decision to 

schedule a selected activity to a selected start date. As mentioned in the 

previous section, branching starts from the root node (node number zero) and 

all promising nodes are explored until a complete solution is obtained. Node 

numbers given on each node represent the order in which nodes are 

established. In addition to node numbers, id numbers of the selected activity 

and decided start date of that activity are also illustrated. In addition to this 

information, nodes also store lower bound values. The methods employed in 

lower bound calculations are going to be explained in the following sections. 
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In the sample tree given in Figure 3.5, first complete solutions are obtained in 

Nodes 6, 7 and 8 with objective function values of 98. If the nodes between 

the Root Node and the 6th Node are observed it can be realized that the non-

critical activities of the schedule in Figure 3.3, i.e. activities 3, 5, 7 and 8, are 

scheduled to start at the 6th, 6th, 7th and 8th days respectively. Once this first 

complete solution is obtained, other intermediate nodes are explored further 

to check whether a better feasible solution is available in the search space or 

not. It has been observed that there are no other complete solutions with 

objective function value less than 98. Thus, the solution presented in Node 6 

is declared to be the optimal solution. Corresponding resource distribution for 

this solution is given in Figure 3.6. 
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Figure 3.6 – Optimal Resource Distribution for the Schedule of Figure 3.3  

 

As bounding characteristic of the branch and bound method suggests, at least 

some parts of the search tree should have been pruned in Figure 3.5. 

However, it can easily be observed that the algorithm had to explore all nodes 

in the sample tree as in the case of an implicit enumeration procedure. The 

reason for this is related to the efficiency of the lower bound calculation 

methods and is going to be discussed further in the next section while 

presenting the characteristics of the developed algorithm. 
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According to Agin (1966), a branch and bound algorithm might be said to 

consist of rules for; 

1. deciding on how to continue the search given an intermediate 

node (branching rule); 

2. deciding on how to calculate lower bounds on each established node; 

3. deciding on the intermediate node from which to branch next; 

4. recognizing when a node contains only infeasible or non-optimal 

solutions; 

5. recognizing optimal solutions encountered on final nodes. 

 

These rules are going to be employed as an outline while presenting the 

characteristics of the developed algorithm. 

 

3.4 Characteristics of the Developed Branch and Bound 

Algorithm 

In this section, characteristics of the suggested depth-first least-lower-bound 

branch and bound procedure are going to be given. Developed algorithm 

enumerates feasible start times of activities and can be applied to all metrics 

presented in Section 3.1. It attempts to solve the RLP in traditional sense, i.e. 

without any resource constraints. Details of the procedure are explained in 

detail based on the schedule presented in Figure 3.3. 

  

3.4.1 Branching from Nodes to New Nodes 

Nodes in the developed algorithm store information about already sequenced 

activities and start dates of these activities. In other words, each node 

contains a partial feasible schedule and a list of unscheduled activities. In 

each node one activity is scheduled to one of its start dates. While doing this, 

feasibility of the partial or complete solutions is maintained by allowing only 

feasible start dates of activities to be established. Number of activities that 

need to be sequenced to reach a complete solution after a specific node is 

equal to the number of unscheduled activities stored in that node. 
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Nodes branched directly from a node are the children of it. If there is more 

than one children of a parent node then these are said to be brothers of each 

other. In each parent node, one activity is selected to be scheduled in the 

next step. It is the total float value of this activity that is used to decide on the 

number of children of that node. In Figure 3.5 for example, Node 1 is the 

parent of Node 3 and Node 4 which are brothers of each other. The reason 

why Node 1 has only two children is due to the fact that Activity 7, which is 

selected to be sequenced in the next step, has a total float value of one. Since 

all possible start dates of a selected activity have to be represented on 

different nodes, two nodes for Activity 7, one setting the start time to 14th day 

and one to 15th day, have to be established. In other words, once an activity 

is chosen to be scheduled, number of nodes established immediately is 

“TF+1”. At this point it is important to note that the TF under consideration is 

the updated TF value according to the previous decisions, rather than the one 

defined in the early start schedule.   

 

As the previous paragraph implies, to select the activity to be sequenced after 

a node, feasible start dates and total floats of activities have to be 

recalculated each time. Such an update is essential in order to consider the 

effects of previously made decisions on the tree. To be more specific, since 

there is a possibility that feasible start dates of a candidate activity might have 

been changed due to formerly scheduled activities, possible early and late 

start dates of all activities have to be determined again and again every time a 

node has been established. The necessity of this can better be understood if 

Node 5 on Figure 3.5 is considered. While introducing this node, Activity 8 has 

been selected to be scheduled. If the AoN diagram in Figure 3.3 is examined, 

this activity, which has a one day total float, should have two feasible start 

times which are 18th and 19th days. However, checking the parent node it can 

immediately be realized that Activity 7 which is a predecessor of Activity 8 has 

been scheduled to day 15 which means that finish date of this activity can be 

no earlier than 18th day. Thus Activity 8 is scheduled to its only possible start 

date which is the 19th day. 
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3.4.2 Determining Lower Bounds for the New Nodes 

Lower bound of each node is calculated by the algorithm in order to predict 

the best objective function value that could be obtained at the end of the 

search if that node is explored further. In other words, best scenario that 

could occur after that point of the search is taken into the account. If the best 

possible complete solution has an objective function value worse than or equal 

to one of the known solutions so far, then that node is fathomed, i.e. not 

explored any further. As emphasized earlier, lower bound calculations play an 

important role in branch and bound methods since better (tighter) lower 

bounds enable algorithms to prune more of the search space which results in 

increased computational efficiency. In fact, the extent to which a smallest 

improvement in lower bound calculations could reduce the required 

computational effort might be highly significant in some cases. An example to 

such an improvement and its effects on the search tree presented in 

Figure 3.5 is going to be provided later in this section; however, initially some 

information on the employed lower bound calculations is presented. First three 

of these lower bound calculation methods have previously been suggested by 

Neumann and Zimmermann (2000). The fourth one, however, is suggested 

for the first time in this study.   

 

3.4.2.1 – Discarding Critical Activities 

Since RLP does not allow the makespan determined in early start schedule to 

be extended, in our search none of the critical activities can be delayed. 

Resources of these activities, however, have to be incorporated in the 

resource utilization graphs in order to properly calculate the objective function 

values. Therefore, fixed resources required by the critical activities are 

determined and included to the resource distribution at the beginning of the 

search and are taken into account during each lower bound determination. 

Resource utilization graph for critical activities of the schedule presented in 

Figure 3.3 is to be seen on Figure 3.7 (a).  
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Since extensions in makespan are not allowed, it is obligatory to allocate the 

required resources to the critical activities from the beginning of their start 

dates until the end of their finish dates. Therefore, in Figure 3.7 (a) daily 

resource requirements of Activities 2, 4, 6 and 9 are directly allocated to the 

dates on which these activities have to be in progress. It should be noted at 

this point that the resources of Activities 1 and 10 are equal to zero and are 

not considered in resource distribution graph. This is because these activities 

are dummy start and dummy finish activities which do not consume time and 

resources.      

 

3.4.2.2 – Unavoidable Times of Activities 

If a schedule is examined carefully, it can be observed that some non-critical 

activities, whether they are started in the earliest or latest possible start time, 

have to be in progress on some days. Thus, resource consumptions of these 

activities on these days will be unavoidable regardless of the start date to 

which they are scheduled. These time periods on which certain amount of 

resource consumption is compulsory for certain activities are called 

unavoidable times of these activities. An activity’s unavoidable time, if there is 

any, might be formulated as in the following; 

 

 Unavoidable Time = [LS, EF]  as long as LS ≤ EF; 

 

where; “LS” indicates late start and “EF” indicates early finish of the activity. 

 

Since allocation of as much resources as possible enables calculation of a 

tighter lower bound, resources that are consumed at unavoidable times of 

activities are directly scheduled at the very beginning of the branch and bound 

procedure. Considering the schedule of Figure 3.3 once again, resources 

required during the unavoidable times of non-critical activities are to be 

scheduled as in Figure 3.7 (b). 
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In the sample network given in Figure 3.3, it can be observed that for all non-

critical activities the condition LS ≤ EF holds. This means that these activities 

are going to be in progress in their unavoidable time periods. Considering 

Activity 3, for example, unavoidable time period of this activity is the duration 

between its late start and early finish times which are given as 7th and 12th 

days. Therefore, daily resource requirement (2 units of resources/day) of this 

activity between these days is immediately scheduled, before even making 

any decisions related to its start date. Same situation holds for Activities 5, 7 

and 8 too, since for all of these tasks LS ≤ EF. However, it should be noted 

that there would be no unavoidable time for any activity for which LS>EF.   

 

3.4.2.3 – Allocating Unscheduled (Free) Resources 

After allocating resources of critical activities and resources required during 

activities’ unavoidable times as explained in Sections 3.4.2.1 and 3.4.2.2, 

there are still unscheduled resources which depend on the decisions made on 

the start dates of activities throughout the search. Thus, it is not possible to 

estimate on which day an activity’s resources are to be scheduled unless the 

decision on the start time of that activity is made. Considering Activity 5 in 

Figure 3.7 (b) for example, it can be said that 5 units of resources are going 

to be required on each day during the unavoidable time of this activity which 

is [8, 16]. This resource consumption will occur in any case regardless of the 

decision on this activity’s start date during the branch and bound procedure. 

However, without scheduling this activity, the resource requirements on 6th, 

7th, 17th and 18th days are not known. Resource requirements for this activity 

on these days purely depend on the decision about when to start this activity.  

 

Since the schedule presented in Figure 3.3 is a simple one in which non-

critical activities have only one or two days of total floats, unavoidable time 

concept helps the algorithm to determine the resource distributions 

significantly. However, in most schedules, total floats are relatively larger and 

unavoidable times of activities either do not exist or are much shorter. Hence, 

this concept might have a much less effect on lower bound calculations. In 
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this case, allocation of unscheduled resources and the strategy in allocating 

them gains importance.  

 

Although activity selection criteria is going to be mentioned in the following 

section, it can be realized by intuition that scheduling activities with the 

smaller amount of total floats firstly, helps the algorithm to reduce the amount 

of branches to be established throughout the search. Therefore, let us assume 

that the first non-critical activity to be scheduled is Activity 3 with its one day 

total float value. The resource distribution of the project after assigning 

resources of critical activities and after allocating resources consumed in 

unavoidable times of the activities is as seen on Figure 3.7 (b). After 

scheduling Activity 3 to start in the 6th day, however, the resource utilization 

graph becomes as in Figure 3.8 (a). As seen on this figure, Activity 3 

consumes 2 units of resources for 7 days starting from the 6th day at which it 

has been scheduled to start. Since unavoidable resources of this activity have 

already been scheduled, only a 2 units of resource allocation to 6th day has 

been done at this stage. In other words, resources already scheduled 

according to the improvement explained in Section 3.4.2.2 have not been 

reallocated. 

 

As seen on the figure, 159 of the 174 units of resources required for 

completion of this project have been scheduled up to this point. Still, 15 units 

of resources are waiting to be allocated. Remembering that the only decision 

made so far was on scheduling Activity 3 to start at the 6th day, it is not 

possible to say where to allocate the remaining resources at this instant of the 

search. These resources, depending on the decisions in following steps, may 

be allocated to suitable positions and may reduce the objective function 

value (sum of absolute deviations from the uniform resource level in this case) 

significantly. Also the opposite can happen and at the end of the search a very 

high objective function value can be obtained.    
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Now that the lower bound logic necessitates calculation of the closest guess 

on the best possible scenario for the future of the search after a certain point, 

determining the objective function value based on Figure 3.8 (a) would yield 

in a low quality lower bound since in this case unscheduled activities are not 

taken into the account. In order to overcome this and improve the lower 

bounds (i.e. obtain tighter lower bounds) calculated by our algorithm, all of 

the remaining  resources are scheduled one by one to the best days in which 

they either minimize the lower bound or increase it by a minimum amount. In 

order to do this, the algorithm checks the effect of scheduling one unit of 

resource on the objective function value for each day one by one and 

allocates this one unit to the best day possible. This process is repeated until 

there are no more unscheduled resources left.  

 

In Figure 3.8 (b) the unscheduled (free) resources so far in the search have 

been allocated to the resource distribution graph. On the 2nd line of this figure, 

15 units are temporarily scheduled to 1st, 2nd, 3rd, 4th, 5th and 25th days to 

reduce the sum of absolute deviations from uniform resource level as much as 

possible. It should be realized that the best days for these resources to be 

allocated may differ according to the utilized objective function. For RID 

metric, for example, days to be chosen to achieve a better lower bound would 

be different. 

 

Note that the lower bound calculated in this case is 76 units. In other words, 

there will be a minimum absolute deviation of 76 units from the uniform 

resource level (6 resource units in our case) if the search is continued from 

this node forward. The significance of this number lies in the fact that, if there 

were a known complete solution with an objective function value less than or 

equal to 76, then we would not need to continue the search from this point 

on. In other words, the node could have been fathomed since it would not 

promise a better solution than the ones known so far.   
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Although allocation of free resources is an important improvement while 

calculating the lower bounds for all objective functions in our study, it is 

particularly important for RID metric. This is because application of this metric 

requires the allocation of all resources to get an adequate estimate on the 

overall idle times of resources. If there is a certain amount of unscheduled 

resources, then it is not possible to estimate total idle days in the allocation 

graph since there will be a possibility for the unscheduled resources to be 

allocated to these idle durations and to reduce the lower bound calculated in 

the following steps. For example RID value of the node can not be calculated 

according to the resource distribution in Figure 3.8 (a). As seen on this figure, 

RID value at this instant of the search is 9 units. Obviously, this value can not 

be considered as a lower bound since there are 15 units of resources waiting 

to be scheduled which may result in better lower bounds in the following 

steps. It should be recalled that such a case can not be accepted since the 

lower bound logic requires a guess on the best possible scenario regarding the 

future search. Thus there should not be any possibility to obtain a partial or 

complete solution after a node which is better than the lower bound 

suggested in that node. This can be seen on the search tree in Figure 3.5, 

which is obtained for MinDev objective function by employing the lower bound 

improvement methods presented in Sections 3.4.2.1, 3.4.2.2 and 3.4.2.3. As 

seen on this figure, lower bound of the node in which Activity 3 is scheduled 

to start at the 6th day is 76 units as calculated in Figure 3.8 (b). It should also 

be noted that in none of the nodes, calculated lower bound value is less than 

the ones predicted by the parents of that node. In other words lower bound 

values increase as the search tree is explored deeper. This situation also 

reveals that the optimistic predictions (lower bounds) in nodes are not 

realized (mostly) as the search proceeds. Therefore, lower bound values of 

children nodes are lower than or, under best conditions, equal to the lower 

bounds of their parents.   
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3.4.2.4 – Maximum Allowable Daily Resources 

The tree presented in Figure 3.5 has been successfully established by 

employing all of the three lower bound improvement methods given in the 

preceding sections. As mentioned earlier, these improvements have originally 

been suggested by Neumann and Zimmermann (2000). Yet, they could not 

enable the algorithm to build the search tree in an effective manner. This is 

because the algorithm could not fathom any intermediate nodes. The optimal 

solution has been reached after enumerating all possible solutions to the 

problem completely. The fact that the size and complexity of the problem 

under consideration is very low, allowed this to be done. However, complete 

enumeration is an exhaustive process for larger problems, which sometimes 

can not even be completed successfully due computational limitations. In fact 

it is these limitations which made lower bound calculations so important for 

any branch and bound algorithm.     

 

In this study, another lower bound improvement method that could be used 

to increase the efficiency of free resource allocation (thereby the efficiency of 

lower bound calculations) is going to be introduced. According to this 

improvement, maximum allowable daily resources are determined at the 

beginning of the search and free resources on each node are allocated in a 

manner that daily sums do not exceed maximum allowable resource amounts. 

By doing so, it is aimed to obtain better (tighter) lower bounds and enable the 

algorithm to prune more of the search tree.  

 

According to the suggested improvement, maximum amounts of resources 

that might be required on each day are calculated at the beginning of the 

search. In order to do this, it is assumed that activities will require resources 

on each day between their early start dates and late finish dates. In other 

words, all possible dates in which an activity could consume resources are 

treated as if there were actual resource requirements by that activity in these 

days. In this manner, maximum amounts of resources that can be consumed 

by all activities are determined for all days one by one. An application of this, 
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while scheduling Activity 3 of the sample schedule, is seen on Figure 3.9 (a). 

As seen on this figure, all of the days between early start date and late finish 

date, i.e. [ES, LF], of activities are treated as if there were actual resource 

requirements on these days. Consequently, by summing all of the assumed 

resource requirements, maximum allowable daily resource amounts are 

obtained. Resource requirement on any day can not exceed the maximum 

requirement of that day no matter which decisions are made throughout the 

search. 

 

Significance of maximum allowable daily resources can be understood by 

examining how the free resources are allocated in Figure 3.9 (b). The 

operation, in fact is the same as the one presented in Figure 3.8 (b). Only 

difference between the two methods is that in this one maximum daily 

resource requirements calculated in Figure 3.9 (a) are not exceeded by the 

algorithm. Thus, free resources could not been allocated to days on which 

allowable amounts of resources have already been consumed after the 

allocation of critical activities’ resources and unavoidable resource 

consumptions. Considering days 1 to 5, for example, there should have been 

temporary resources scheduled, in order to reduce the amount of deviations 

from uniform resource demand. In fact, this was the case in Figure 3.8 (a). 

However, no free resource allocations during this period could have been done 

in this graph since the maximum resources that are allowed to be consumed 

in these days were already been allocated. It should be noted that, except for 

the 4 units of resources allocated on the 25th day, all of the temporary 

resources scheduled increase the deviations from the average level. This is 

because the algorithm can not allocate free resources to more preferable days 

due to maximum resource limitations. Although the same decision on the 

same schedules is being made in Figure 3.8 (b) and Figure 3.9 (b), lower 

bound on the latter figure has been calculated as 98 units whereas the former 

figure suggested a lower bound of 76 resource units.   
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 In order to see how much this last improvement changed the search 

procedure, trees in Figure 3.5 and Figure 3.10 have to be compared. As seen 

on Figure 3.10, thanks to the tighter lower bounds, considerable amount of 

the search tree has been pruned by fathoming the 1st and the 3rd nodes. 

Optimal solution in this tree has been reached by establishing only 8 nodes, 

whereas in Figure 3.5, 28 nodes had to be examined.  
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Figure 3.10 – Search Tree Established by Utilizing Maximum Allowable Daily 

Resources Improvement in Addition to the Improvements Given 

in Sections 3.4.2.1, 3.4.2.2 and 3.4.2.3 

 

While carrying out experiments via the developed algorithm, problems have 

been solved both by employing the maximum allowable daily resources 

improvement and without. Obtained results are going to be compared in the 

following chapter and the significance of the suggested improvement is going 

to be tested.    
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3.4.3 Choosing an Intermediate Node from Which to Branch Next 

and Selecting the Activity to be Scheduled 

In the beginning of Section 3.4 it has been indicated that the developed 

branch and bound algorithm is based on a depth-first and least-lower-bound 

criteria. According to the depth first rule, one of the nodes created in the 

previous stage is chosen and the search is carried out downwards on the tree 

node by node. If any branch is fathomed, i.e. none of the solutions that could 

be obtained by further exploring that branch is promising, then the algorithm 

retreats that branch upwards until a node which has not been totally explored 

is encountered (Demeulemeester and Herroelen, 2002). Thus the algorithm 

firstly explores the branches downwards until they are pruned or a leaf (a 

complete solution) is reached, and then finds another node to be explored. 

This procedure is repeated until all branches are explored or pruned. If 

Figure 3.10 is considered once again, it can be observed that the depth-first 

procedure explores a solution with an objective function value of 98 at the 

very beginning of the search. After finding this solution, Node 1 and Node 3 

are checked to see if they are to be explored any further or not. Since lower 

bounds of these nodes were equal to the best known solution’s objective 

function value so far, they were fathomed and the procedure has been 

terminated. 

 

During the exploration of a search tree, if there are two or more brother 

nodes that might be explored further, then the one with the least (best) lower 

bound is selected. This is simply because the node with the better lower 

bound promises better solutions. In case there is a tie in this selection, then 

the node which schedules the next activity to the latest start date is chosen.  

 

After determining the node to be branched, another selection to be made is 

about which activity to schedule in the next step. It has already been 

mentioned that the activities’ total floats and feasible start times are being 

calculated on each node considering the decisions made previously. Thus an 



 60

intermediate node which is to be branched further stores a valid list of 

candidate activities with the updated total floats. From this list, activity with 

the least amount of total float is chosen to be sequenced in the next step 

where ties are broken by preferring the activity with the lower id number. By 

employing this selection rule, branching in the upper levels of the search tree 

is limited as much as possible to improve the computational efficiency.  

 

3.4.4 Recognizing Non-promising Nodes and Optimal Solutions 

Lower bounds calculated on each node enable the algorithm to differentiate 

the promising nodes from the ones that need to be fathomed. At the 

beginning of all searches, first complete solution reached is stored as the 

current best solution. This solution, of course, is updated every time a better 

solution is encountered by the algorithm.  Throughout the search all of the 

established nodes’ lower bound values are compared to the current best 

solution’s lower bound value to ensure that non-promising nodes are 

recognized and fathomed. Similarly each time a leaf (a complete schedule) is 

encountered, its lower bound is checked against the objective function value 

of the best complete solution so far. Leaves are recognized when the number 

of scheduled activities in a node is equal to the total number of non critical 

activities of the schedule under consideration. If a better solution than the 

best solution known so far is detected at a leaf, this solution is assigned as the 

current best. Current best solution at the end of the search procedure reveals 

the optimal solution to the problem.   

 

Throughout the search, feasibility of solutions needs not to be checked since 

only valid start dates are considered while scheduling the activities. In other 

words, the algorithm ensures feasibility by the manner through which it 

constructs the solutions. Any partial or complete solutions include a set of 

feasible start dates of the activities. 
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3.5 The Branch and Bound Procedure 

In this section procedure followed by the introduced algorithm is going to be 

explained step by step.  

 

Step 1 – Initialization 

1.1 Carry out forward and backward pass calculations. Determine 

feasible start dates and total floats of activities according to the 

early start schedule. 

1.2 Determine the set of unscheduled activities (Initially equals to 

the set of noncritical activities) 

1.3 Initiate the resource utilization graph. 

1.3.1 Allocate resources for critical activities. 

1.3.2 Allocate resources required during unavoidable times of 

non-critical activities. 

Step 2 – Initial Depth-First Search 

2.1 Select the activity with the least total float value from the list of 

unscheduled activities. Break any tie by selecting the task with 

the smallest id number. 

2.2 Establish nodes by scheduling the selected activity to all its 

feasible start dates (List of feasible start dates is obtained from 

the early start schedule at the first level of the tree and from 

the parent nodes at all other levels). 

2.2.1 For each node established in the previous step, update 

feasible start dates and total floats of activities 

considering the decisions made so far. 

2.2.2 Allocate resources of the scheduled activity. Do not 

reschedule resources that are consumed in unavoidable 

times of that activity since they have already been 

allocated in Step 1.3.2. 
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2.2.3 Calculate lower bound value for each newly generated 

node by applying “unscheduled resources improvement” 

and “maximum allowable daily resources improvement”. 

2.3 As long as there is at least one unscheduled activity, select the 

node with the lowest (best) lower bound value. Break any tie 

by selecting the node which schedules the activity to the latest 

start date. 

2.4 Repeat the procedure presented in steps 2.2 and 2.3 until there 

are no more unscheduled activities (i.e. until first leaf nodes – 

complete solutions are reached). Go to step 2.5 if all non-

critical activities are scheduled. 

2.5 Determine the best complete solution (i.e. the complete 

solution with the lowest objective function value) obtained. 

Save the objective function value of this node as the current 

best value and the corresponding solution (i.e. set of start 

dates for the non-critical activities) as the current best solution.  

Step 3 – Backtracking 

3.1 Go one level up in the search tree and check for the nodes to 

be explored (i.e. nodes that have no children yet and that have 

a better lower bound value than the current best value.  

3.1.1 If there is any unfathomed node without children and 

with a lower bound value worse than the current best 

value, then fathom this non-promising node. Delete lists 

stored in this node to free the memory allocated to 

these information. If there is no promising nodes in that 

level go back to Step 3.1. 

3.1.2 If there is any node without children and with a lower 

bound value better than the current best value, then 

discover this promising node further. If there are more 

than one promising node with the same lower bound 
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value, select the node that schedules the activity to the 

latest start date. For the next step; select the activity 

with the least total float value stored in this node to 

schedule. Break any ties by selecting activity with the 

smallest id number.  

3.1.3 Establish nodes by scheduling the selected activity in 

the previous step to all its feasible start dates (List of 

feasible start dates is obtained from the parent node). 

3.1.3.1 For each node established in the previous step, 

update feasible start dates and total floats of 

activities considering the decisions made so far. 

3.1.3.2 Allocate resources of the scheduled activity. Do 

not reschedule resources that are consumed in 

unavoidable times of that activity since they 

have already been allocated in Step 1.3.2. 

3.1.3.3 Calculate lower bound value for each newly 

generated node by applying “unscheduled 

resources improvement” and “maximum 

allowable daily resources improvement”. 

3.1.3.4 Fathom nodes that have lower bound values 

equal to or more than the current best value. 

3.1.4 As long as there is at least one unscheduled activity and 

at least one promising node; select the node with the 

lowest (best) lower bound value. Break any tie by 

selecting the node which schedules the activity to the 

latest start date. Repeat Steps 3.1.3 to 3.1.4. If a 

complete solution is obtained go to Step 3.2. 

3.1.5 In case there is no promising node among the newly 

generated brother nodes go to Step 3.1. 

3.2 Determine the best complete solution (i.e. the leaf node with 

the lowest objective function value) obtained. Save the 

objective function value of this node as the current best value 
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and the corresponding solution (i.e. set of start dates for the 

non-critical activities) as the current best solution.  

3.3 Go to Step 3.1 and repeat Steps 3.2 and 3.3 until all nodes in 

the tree are either fathomed or further explored. 

3.4 If all nodes in the tree are fathomed or explored, declare the 

current best value as the optimal objective function value and 

the corresponding solution as the optimal solution to the 

problem. Then, terminate the program. 

 

3.6 Coding the Algorithm 

Branch and bound algorithm presented in this study has been coded in C++ 

computer language. Microsoft Visual Studio 2008 Professional Edition has 

been used to compile codes.  

 

For each node in the search tree, two structures have been introduced by the 

algorithm. First of these structures stores information related to the position of 

the node in the tree. The address of the parent node, addresses of the 

brother nodes and addresses of the children nodes are stored in pointers of 

this structure. Obviously, this information is required to enable the algorithm 

to navigate through the list. Thus, even if a node is fathomed, this first 

structure is not deleted to maintain the connections within the search tree. 

The second structure, on the other hand, stores sets of partial or complete 

solutions (i.e. lists of start dates for non-critical activities) and calculates lower 

bounds associated with these solutions. Also, feasible start dates for the 

unscheduled activities are stored and updated in the second structure. In 

addition to these, it also tracks the list of unscheduled activities and 

determines eligible activities that could be scheduled at any instant of search. 

Since the data stored in the second structure is related only to the suggested 

solution by that node, this structure is deleted as soon as that particular node 

is fathomed. By doing this, the memory allocated to this structure is freed.  
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While coding the algorithm, pointers are commonly employed in order to save 

time in storing and reading data, to establish branches within the search tree, 

to remember the best solution encountered so far etc. Dynamic memory 

allocation is employed to generate arrays of variable sizes. Also, vectors are 

used to generate arrays of structures size of which are not known at the 

beginning of the runtime.  

 

As it has been explained in the previous section, the algorithm continuously 

navigates through the tree to ensure optimality. While doing this, several 

branches need to be retreated upwards to check whether there are any 

promising nodes left undiscovered in the upper levels. Therefore, each time a 

leaf node is encountered and each time all brother nodes at a specific level 

are fathomed, a function that directs the search to the upper levels is called 

by the algorithm. In fact, it is these recursive function calls that limit the size 

of the problem that could be solved effectively by the algorithm. In order to 

enable the algorithm to do more recursive function calls, stack reserve size, 

which specifies the total stack allocation size in virtual memory of the 

compiler, was increased to 20 MB during the experimentations. 
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CHAPTER 4 

 

 

VALIDATION AND COMPUTATIONAL RESULTS 

 

 

 

In this chapter, validation of the developed algorithm is explained and 

computational experiments are presented. Also, significance of the maximum 

allowable daily resource improvement suggested to calculate tighter lower 

bounds is tested.  

 

4.1 Validating the Algorithm 

In order to ensure that the algorithm is capable of successfully exploring the 

search space and locating the global optima, preliminary experimentations 

have been conducted. Some of the few known solutions of RLP available in 

literature have been used in these experiments and results obtained via our 

algorithm were compared to the solutions from previous studies. In addition 

to this, some other problems have been solved to optimality via linear-integer 

programming and results obtained from these analyses were compared to the 

ones of the suggested branch and bound procedure. 

 

As mentioned previously, El-Rayes and Jun (2009) reported solutions obtained 

by their metaheuristic based method for the RLP. In this study, a single 

resource network which included 6 critical and 14 non critical activities has 

been addressed. Results obtained by the developed GA optimization module 

for traditional objective functions, such as SSQR, MinDev and Minimum 

Moment in addition to the new metrics suggested by the researchers, which 

are Release and Rehire and RID, have been reported.  
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Same application example has been solved by our branch and bound 

algorithm utilizing the SSQR, MinDev, RID and RID+MRD metrics. In all of 

these experiments, feasible solutions with the same objective function values 

suggested by El-Rayes and Jun (2009) have been found successfully. This, in 

fact, also revealed that the results obtained by the GA module of the 

researchers were the global optimal solutions.  

 

A similar validation process has been followed while addressing example 

problems presented by Son and Skibniewski (1999). These two example 

networks consisted of 13 and 15 activities (including dummy start and dummy 

finish activities) respectively and were solved by the suggested multiheuristic 

approach to minimize SSQR value implied by the resource distribution graphs. 

Branch and bound algorithm developed in our study successfully solved these 

single-resource networks and obtained the same objective function values 

presented in the original paper. Again, this situation indicates that the results 

obtained by Son and Skibniewski (1999) were the global optimum solutions 

for the problems.   

 

The last problem from the literature used for validation purposes was the 

small size network of Easa (1989). Minimum absolute deviation possible for 

this single resource network which consists of 7 activities has been 

determined employing integer-linear optimization and results are compared to 

the solution of our branch and bound algorithm.  

 

Within the context of our study, some networks other than the ones presented 

in the preceding paragraphs have also been solved to optimality via the linear 

programming software, AIMMS 3.10. This is done to compare the results of 

the branch and bound algorithm to the ones obtained by the linear 

programming procedure. 6 single resource networks which consisted of 13 to 

20 activities have been solved by the two methods and optimum MinDev 

schedules have been determined successfully both by the branch and bound 

algorithm and the linear programming method. Unfortunately, this type of 
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validation could be done for MinDev metric only, since other three objective 

functions could not been utilized in linear programming. Also the fact that the 

time and effort required to input variables and constraints to the linear 

programming software were considerably high, limited the number of 

schedules solved via this method.   

 

Throughout the validation process, 1 solution for RID metric, 1 solution for 

RID+MRD metric, 3 solutions for SSQR metric and 8 solutions for MinDev 

metric have been verified either by comparing our results to exact solutions or 

to the best known solutions in the literature. Moreover, some search trees 

established by the algorithm for small size multiple resource schedules have 

been checked node by node in order to ensure that the activity selections, 

total float updates and lower bound calculations are being done correctly.  

 

Details of all abovementioned solutions are going to be presented in the next 

section together with other computational experiment results. 

 

4.2 Computational Results 

The branch and bound algorithm, coding details of which are presented in 

Section 3.6, has been developed in C++ programming language. All 

experimentations have been carried out on a PC with 2 GB RAM and an Intel 

Core 2 Duo 3.00 GHz Processing Unit. The computer was run by Windows 7 

Professional (32 bit) operating system.  

 

As in most branch and bound based studies, main performance measure of 

this study is the CPU time spent by the algorithm while solving problems. This 

quantity was obtained by measuring the time spent while instructions are 

being executed. By definition, input and output durations are not included in 

the CPU time. In addition to this measure, number of nodes established by the 

algorithm in order to locate the optimal solutions are presented both for 

comparison reasons and to give an indication of the size of the search tree 

under consideration. 
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20 resource leveling problems have been solved for experimentation 

purposes. All of the objective functions presented in Chapter 3.1, i.e. SSQR, 

MinDev, RID and RID+MRD metrics, have been utilized for these problems. 

Resource distribution graphs of both single resource and multiple resource (4 

resource types) modes of the problems have been leveled. Two different 

types of algorithms are employed to solve single resource problems. One of 

these did include all of the improvements presented in Sections 3.4.2.1 to 

3.4.2.4. The other one, on the other hand, did not incorporate the last lower 

bound improvement suggested in this study, i.e. the maximum allowable daily 

resource limitation. In this manner, results obtained by the two types of 

algorithms have been compared in order to find out whether the suggested 

improvement made any significant contribution to the performance or not. All 

computational results obtained from the experiments are presented in 

Tables 4.1 to 4.10. 

 

Some of the problems used for experimentation and validation purposes were 

available in literature in single resource modes. Networks and resource rates 

of these problems have directly been used. To derive a multi resource 

problem, however, remaining three types of resources are generated 

randomly for each activity. Problems 1, 12, 15, 16 and 18, presented in the 

following tables are problems of this type. Activity numbers of these problems 

range from 12 to 22. 

 

In addition to the RLPs, several networks which did not include any resource 

considerations were also available in literature. These networks have been 

transformed to leveling problems by randomly generating daily resource 

requirements for each task. Problems 2, 4, 5, 6, 8, 13, 14, 17 and 19 given in 

the following tables are obtained in this manner. Activity numbers of these 

problems ranged from 10 to 21. 

 

6 of the 20 problems used for experimentation purposes have been generated 

while developing the branch and bound procedure. These problems originally 
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intend to test certain capabilities of the algorithm such as solving RLPs with 

multiple critical paths etc. The networks and resource requirements of these 

problems are generated by hand. Therefore, they may tend to be biased. 

Thus, the number of such networks is kept limited. Problems 3, 7, 9, 10, 11 

and 12 are obtained in this manner. These problems include 8 to 20 activities.  

 

Due to the characteristics of the developed algorithm, networks need to start 

and finish with dummy activities. Therefore dummy start and dummy finish 

activities with zero duration and zero resource requirements are included to 

the problems whenever necessary. While generating the resource 

requirements of activities, random number generator of Microsoft Excel has 

been employed. A resource leveling problem set with unbiased, small size 

problems was aimed to be obtained. Information on the precedence relations 

and resource requirements of activities for all problems is given in Appendix A.  

 

In the following tables, CPU times required to solve the problems and number 

of nodes established by the algorithm to ensure optimality are given for all 

objective functions defined in Section 3.1. Results for all metrics are reviewed 

in 3 columns. First columns belong to the problems which require 4 resource 

types, whereas second and third columns represent results obtained for single 

resource modes of the same networks. Results given in the second columns 

differ from the ones in the third column in that all lower bound improvements 

have been utilized in these experiments. Third columns, however, tabulate the 

performance of the algorithm without limiting the daily resource requirements.  

 

Optimal objective function values obtained at the end of our analyses are also 

given in the provided tables. These values are calculated as explained in 

Section 3.1. While calculating the optimal objective function values for multi 

resource projects, weights of each resource are assumed to be equal and are 

normalized to 1. In other words, “wi” values of each resource type are taken 

as 0.25 since there were 4 types of resources included in the multiple 

resource networks.  
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One of the most evident indications of network complexity is the number of 

activities included in a schedule. Therefore, problems in the above tables are 

sorted according to the decreasing activity numbers. If the results are 

examined, it can be realized that some problems in Tables 4.1 to 4.7, i.e. with 

higher numbers of activities, could not be solved successfully by the algorithm 

for some objective functions. This situation is reported with the letters “SO”, 

which stands for the stack overflow error. This type of error, which is caused 

by too much memory usage due extensive calls to recursive functions, 

prevented the solution of 19 multi resource and 9 single resource problems 

out of 80 instances. In fact, it is stack overflow error that constituted the most 

significant barrier for the algorithm for not being able to solve medium and 

large size problems. Probable ways to overcome stack overflow error are 

going to be suggested later as a further study option. At this point, however, 

it should be indicated that the main reason for this problem to occur is the low 

random access memory (RAM) capacity of the computer on which 

experimentations have been carried out.  

 

Although some instances could not be solved due to the stack overflow error, 

branch and bound algorithm was still able to solve most of the multi resource 

and single resource instances. For SSQR objective function, 16 multiple and 16 

single resource problems out of 20 instances have been solved successfully, 

whereas for MinDev metric these values turned out to be 14 for multiple 

resource and 16 for single resource networks. As to the other objective 

functions, 16 multiple resource and 19 single resource instances for RID 

metric and 15 multiple resource and 18 single resource instances for 

RID+MRD metric could be solved to optimality. Considering the results 

reported in Tables 4.6 to 4.10, it can be commented that the developed 

procedure can effectively deal with problems including up to 15 activities. For 

problems with 15 to 22 activities, however, the algorithm might fail in finding 

a solution due to stack overflow error.    
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As mentioned in previous chapters, one of the most significant drawbacks of 

exact methods is that they require higher computation time compared to 

heuristic based methods. To check whether a developed algorithm is suitable 

for practical purposes, it is a commonly employed method to measure the 

amount of problems that can be solved within a reasonable amount of time. 

Introduced procedure in this study has been experimented with 20 RLPs in a 

PC with the characteristics given at the beginning of this section and it has 

been observed that all of the problems that the algorithm could solve 

successfully are solved in a computation time less than 30 minutes except for 

the multiple resource problem solved for RID metric in Table 4.1. If a time 

limit of 10 minutes is taken into the account, the amount of problems that 

could be solved successfully in this much of time out of 20 instances is as in 

the following; for SSQR metric 16 multiple and 16 single resource networks 

and for MinDev metric 14 multiple and 16 single resource problems. For RID 

metric, on the other hand, 15 multiple and 19 single resource networks have 

been solved to optimality in a duration less than 10 minutes. As to the 

RID+MRD metric these values became 14 and 17 for multiple and single 

resource networks respectively. As these results indicate, developed algorithm 

usually requires longer processing time to solve multiple resource networks.  

 

As mentioned in the previous section, Schedule 1 (Jun and El-Rayes, 2009) 

and Schedules 12 and 16 (Son and Skibniewski, 1999) are solved to optimality 

for the first time in literature by the developed branch and bound method. 

Also, RID metric suggested by Jun and El-Rayes (2009) has been incorporated 

in an exact optimization procedure for the first time both with and without 

limiting the maximum daily resource demand. In addition to this, several 

networks adopted from the referenced text books and papers have been 

addressed. Data regarding the addressed problems is going to be provided in 

Appendix A in order to provide a small benchmark library for interested 

researchers. 
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Another issue important to be mentioned in this chapter is the effect of the 

maximum allowable daily resource improvement on the overall performance of 

the algorithm. Next section deals with this question and tries to find out the 

extent to which this suggested improvement enhances the performance of the 

algorithm.  

 

4.3 Effect of the Maximum Allowable Daily Resources 

Improvement on the Performance of the Algorithm 

In order to find out the effect of the suggested improvement on 

computational efficiency, CPU times spent by the algorithm working both with 

and without maximum allowable resource limitations have been compared. As 

seen on Table 4.11, which summarizes the run durations, in most instances 

putting limits on the maximum allowable daily resource amounts resulted in 

shorter run durations. To check the extent to which the suggested 

improvement enhanced the computational efficiency, a one tail, paired t-test 

has been employed.     

 

Paired t-test is an analysis method to be employed when each measurement 

in one sample is matched with a certain measurement in the other sample. It 

is applied to test the hypothesis that the means of the two samples are 

different (Ott, 1988). The formulation of this test may be presented as in the 

following; 

 

Ho: µd = µ1 - µ2 = 0 

Ha: µd > 0 

  

  

 

 For degrees of freedom = n-1, reject Ho if t > tα. 

 

n/s

d
t

d

=
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Where Ho is the null hypothesis and Ha is the alternative hypothesis; µ1 and µ2 

are the means of the first and second populations respectively and µd is the 

mean value of the differences; sd is the sample standard deviation of the 

differences;      is the sample mean and n is the number of pairs. 

 

To calculate the sample standard deviation (sd); 

 

 

 

 

Where di is the difference between the values of the i
th pair (Ott, 1988). 

 

Table 4.11 – CPU Times Spent by Algorithms with and without Employing 

Maximum Allowable Daily Resources (MaxRes) Improvement (seconds) 

Schedule 

No

Duration 

With 

MaxRes

Duration 

Without 

MaxRes

Duration 

With 

MaxRes

Duration 

Without 

MaxRes

Duration 

With 

MaxRes

Duration 

Without 

MaxRes

Duration 

With 

MaxRes

Duration 

Without 

MaxRes

1 17 17 32 32 2 2 292 335

2 49 49 1590 1644

3 3 3 2 2 5 5 4 6

4 12 14 16 16 25 36 26 38

5 0 0 0 1 0 0 0 0

6

7 350 461

8 1 1 1 1 1 1 1 1

9 55 57 70 73 285 346 296 364

10 22 22 1 2 11 16 11 15

11 3 2 6 5 8 10 5 8

12 43 44 46 51 1 1 128 176

13 0 0

14 1 0 0 0 0 0 0 0

15 0 1 1 0 1 0 0 0

16 1 1 0 1 0 0 1 2

17 0 0 0 0 0 1 0 0

18 1 0 1 1 0 0 2 2

19 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0

RIDMinDevSSQR RID + MRD

 

d
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While applying one tail, paired t-test to see whether the suggested 

improvement caused a significant reduction in the CPU times, networks with 

15 and more activities have been taken into the consideration. In other words, 

projects below the double line of Figure 4.11 are discarded since the durations 

required to solve these smaller problems were very low.    

 

Results of the tests carried out separately for all metrics revealed that the 

maximum allowable daily resources improvement suggested in this study 

reduced the CPU times required by the algorithm at different levels for all 

objective functions. Significance levels at which the means of the run 

durations with and without MaxRes improvement are different are given in 

Table 4.12 for different types of objective functions. 

 

Table 4.12 – Significance Levels (  ) at which Means of the Computation 

Times with and without MaxRes Improvement are Different 

SSQR MinDev RID RID+MRD

α 0.1124 0.0737 0.1105 0.0087

 

 

The results presented in Table 4.12 reveal that the suggested improvement is 

useful in increasing the computational efficiency. It should be noted that; 

although, maximum allowable daily resources improvement requires the 

algorithm to carry out some additional checks while allocating the free 

resources on the nodes, it is still able to reduce the CPU time by providing 

tighter lower bounds and consequently pruning more of the search tree. 

α
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CHAPTER 5 

 

 

CONCLUSIONS 

 

 

 

In this study a depth-first branch and bound algorithm for solving resource 

leveling problem is presented. Developed algorithm, which is applicable to 

both single resource and multi resource networks, assumes no resource 

availability limits and aims minimization of undesirable fluctuations in resource 

distribution graphs without extending the project duration. This method is 

introduced, so that more efficient schedules could be prepared to minimize all 

kinds of losses due unbalanced resource distributions.     

 

To measure undesired fluctuations in resource curves, traditional resource 

leveling metrics, namely sum of squares of daily resource 

requirements (SSQR) and minimum absolute deviation from the uniform 

resource level (MinDev), have been utilized in addition to more recently 

suggested metrics such as the resource idle day (RID). First two objective 

functions have certain drawbacks that make applicability of them to 

construction projects questionable. While the sum of squares metric 

disregards fluctuations between consecutive time periods, minimum absolute 

deviation method tries to fit resource utilization curves into rectangular 

profiles, which is not very suitable to the nature of the construction projects. 

Resource idle day metric, on the other hand, solely minimizes idle durations of 

resources caused by resource level fluctuations and is flexible enough to deal 

with unbalanced resource distributions. It is especially effective if maximum 

resource demand is also minimized simultaneously as in the RID+MRD 



 87

objective function introduced. This metric, which is applicable for projects 

which do not allow frequently releasing and rehiring resources, has been 

utilized in an exact solution procedure for the first time and optimal solutions 

for several problems have been reported. 

 

Efficiency of the developed algorithm is achieved by lower bound calculation 

methods adopted from the related literature and by the maximum allowable 

daily resources improvement suggested for the first time in this study. Effect 

of this improvement on the computational performance of the algorithm is 

tested via a paired t-test based on the computational results. It is found out 

that the tighter lower bounds calculated by limiting daily resource 

requirements enable the algorithm to locate optimal solutions in considerably 

shorter durations. 

 

Validation of the procedure is done by solving resource leveling problems that 

were available in the literature. Results obtained by the developed algorithm 

are compared to the solutions of previous researchers. 3 of the addressed 

problems for this purpose were solved previously via metaheuristic methods. 

Developed algorithm solved these to optimality and located solutions which 

have the same objective function values as reported in previous studies. In 

this manner it is proved that the algorithm is capable of locating the best 

known solutions for these problems so far. Moreover, the optimality of the 

previously suggested solutions is also verified.  

 

The fact that developed branch and bound algorithm finds solutions as good 

as the ones reported in previous heuristic based researches signals a good 

solution quality. Still, applying this type of validation only, it can not be said 

that the developed procedure is always capable of locating optimal solutions. 

Optimality is ensured by comparing results of the algorithm to the optimal 

solutions of 8 resource leveling problems obtained via linear integer 

programming. These problems are solved by a similar method to the one 
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explained in Easa (1989). Due to the limitations of the linear programming 

method only MinDev metric could be utilized. 

 

To test the computational performance of the algorithm, 20 problem instances 

are solved to optimality for all of the presented metrics (i.e. SSQR, MinDev, 

RID and RID+MRD) both in single and multi resource modes. CPU times and 

number of search tree nodes required to ensure global optimum solution of 

each problem and for each of these metrics is presented as well as the 

optimum objective function values obtained. The largest single resource 

network that could be solved by our algorithm included 22 activities whereas 

the largest 4-resource network included 21 activities. It has been observed 

that the performance of the algorithm depends on the resource leveling metric 

and on the complexity of the problem under consideration. Therefore it is 

difficult to estimate the problem size that can effectively be dealt via the 

developed procedure. However, it can be said that resource leveling problems 

with activity numbers around 20 are solvable via exact procedures.  

 

Within the context of this study two main contributions to the existing 

literature are made. Firstly, an improvement to the previously employed lower 

bound calculation methods is introduced. The extent to which this maximum 

allowable daily resources improvement enhanced computational performance 

is determined based on the experiment results. Secondly, a problem set of 20 

small size resource leveling problems has been presented and exact solutions 

of these are reported in order to form a basis for performance evaluation of 

heuristic studies. 

 

As computational results indicate, CPU time required by the algorithm to reach 

to the optimal solution may become relatively high in some instances. Due to 

this fact, applicability of the algorithm in practice might be questionable. 

Although the developed method is able to solve all kinds of networks without 

requiring the user to input variables and constraints etc. as in the linear 

integer programming, still the computation time may constitute a significant 



 89

barrier for practical purposes. Yet, rapid advances in computer technologies 

have been and are going to be the major booster of exact methodologies. 

There is no doubt that in the future more complex projects are going to be 

solved to optimality in much shorter durations. Furthermore, exact methods 

are always going to be needed since evaluation of heuristic performance 

depends on the optimal solutions obtained by these methods.  

 

As a further study, development of new and effective lower bound calculation 

methods might be suggested since such improvements are believed to be the 

most effective tools in enhancing the performance of branch and bound based 

procedures. Also, incorporating heuristic rules or metaheuristics to the branch 

and bound procedure might enhance the computational performance 

significantly. Starting the search by employing such methods and obtaining a 

near optimal solution in the root node could save the algorithm from visiting a 

large portion of the tree by enabling it to fathom many nodes in the very 

beginning of the search. In this manner, more complex problems might be 

solved to optimality and developed procedure might be applied to real size 

construction projects.   

 

It is believed that carrying out experiments on a computer with larger random 

access memory (RAM) would result in increased performance and would 

enable solutions of more complex problems. Similarly, supercomputers with 

several parallel processing units might be used to check the extent to which 

new technologies enhance the computational performance. It is expected that 

new technologies will reduce the CPU time requirements and eliminate stack 

overflow problems to some extent enabling optimal solutions of larger 

instances. 
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APPENDIX A 

 

PROBLEM INPUTS 

 

Inputs of the problems presented in Chapter 4 for computational performance 

measurement purposes are to be seen in Tables A.1 to A.20. References 

which are given in some tables indicate the paper or the book from which the 

problem or some part of the problem has been obtained. Data presented in 

the first column indicates id numbers of the activities. This column is followed 

by the durations (Dur.), resources (Res.) and successors (Succ.) of the 

activities. For single resource networks, results of which were presented in 

Chapter 4, only first resources (Res. 1) of activities are considered.  

 

Table A.1 – Inputs for Problem No. 1 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3
1 0 0 0 0 0 2 3 5
2 6 2 5 8 7 4 6 9
3 3 3 0 3 8 6 9 0
4 4 2 3 0 6 7 12 0
5 6 5 1 5 8 8 0 0
6 6 3 0 9 2 12 13 0
7 5 9 0 9 2 11 15 0
8 2 3 2 5 4 10 13 0
9 2 0 9 6 7 10 13 0
10 2 3 2 1 4 14 0 0
11 6 6 0 2 4 17 19 0
12 1 4 6 5 3 14 0 0
13 2 8 0 0 2 15 16 0
14 4 3 9 9 7 17 0 0
15 2 3 4 9 3 17 0 0
16 3 6 8 2 2 18 19 0
17 5 4 9 4 3 20 0 0
18 8 1 2 9 3 20 0 0
19 2 5 9 1 4 21 0 0
20 5 2 5 6 4 22 0 0
21 3 5 9 1 9 22 0 0
22 0 0 0 0 0 0 0 0

Reference: (El-Rayes and Jun, 2009)

Schedule Number: 1
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Table A.2 – Inputs for Problem No. 2 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3 Succ. 4 Succ. 5 Succ. 6
1 0 0 0 0 0 2 3 4 5 6 7
2 2 5 0 4 0 12 14 0 0 0 0
3 5 0 6 0 5 8 9 0 0 0 0
4 3 3 1 2 4 13 0 0 0 0 0
5 4 6 2 0 5 16 0 0 0 0 0
6 10 5 0 2 0 18 19 0 0 0 0
7 2 1 6 2 2 20 0 0 0 0 0
8 3 5 1 5 5 10 0 0 0 0 0
9 5 4 4 0 4 10 11 0 0 0 0
10 2 0 0 1 3 12 13 0 0 0 0
11 2 5 3 5 4 12 13 0 0 0 0
12 2 6 0 0 3 17 0 0 0 0 0
13 1 3 6 4 5 14 0 0 0 0 0
14 4 1 6 5 5 15 16 0 0 0 0
15 2 2 0 3 4 17 0 0 0 0 0
16 2 5 2 3 0 17 0 0 0 0 0
17 3 6 1 2 3 18 19 0 0 0 0
18 15 4 2 4 0 20 0 0 0 0 0
19 5 4 2 5 1 20 0 0 0 0 0
20 1 3 3 4 5 21 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0

Reference: (Stevens (Pg 172))

Schedule Number: 2

 
 

Table A.3 – Inputs for Problem No. 3 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3
1 0 0 0 0 0 2 3 4
2 3 2 4 1 5 5 0 0
3 5 3 2 3 4 7 9 10
4 2 6 3 5 1 10 0 0
5 4 1 2 4 3 6 11 0
6 2 4 5 2 2 8 17 0
7 1 1 0 4 3 6 0 0
8 3 3 4 2 0 16 0 0
9 4 0 1 1 2 8 15 0
10 5 4 2 0 1 8 12 0
11 4 3 3 4 3 14 0 0
12 1 5 4 6 4 17 0 0
13 4 2 4 4 5 20 0 0
14 3 3 2 3 1 16 0 0
15 5 0 6 4 5 13 18 0
16 6 1 0 0 2 20 0 0
17 4 5 3 4 4 18 19 0
18 4 6 6 3 3 20 0 0
19 2 2 4 0 1 20 0 0
20 0 0 0 0 0 0 0 0

Schedule Number: 3
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Table A.4 – Inputs for Problem No. 4 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3
1 0 0 0 0 0 2 0 0
2 3 6 1 1 1 3 4 0
3 6 5 4 5 4 5 0 0
4 1 6 1 3 0 5 0 0
5 5 6 4 3 1 6 7 0
6 2 5 1 0 3 8 9 0
7 3 1 3 4 0 10 11 12
8 4 6 5 4 2 12 0 0
9 2 5 3 4 5 13 0 0
10 5 6 2 6 0 16 0 0
11 4 4 5 2 1 14 0 0
12 3 0 1 0 3 13 0 0
13 6 4 1 0 4 15 0 0
14 3 1 5 3 3 16 0 0
15 3 3 1 2 3 16 0 0
16 2 4 2 3 5 17 0 0
17 1 3 6 3 6 18 0 0
18 0 0 0 0 0 0 0 0

Schedule Number: 4

Reference: (Newitt (Pg 82))

 
 
Table A.5 – Inputs for Problem No. 5 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3
1 0 0 0 0 0 2 0 0
2 1 3 6 2 3 3 4 0
3 1 4 5 1 1 5 0 0
4 2 4 3 1 3 6 0 0
5 1 1 5 4 6 7 0 0
6 2 3 4 2 2 9 0 0
7 4 2 2 1 6 8 9 0
8 2 3 6 2 2 10 0 0
9 3 3 6 5 3 11 12 13
10 2 2 4 6 4 15 0 0
11 2 5 6 1 4 14 0 0
12 3 2 6 5 3 15 0 0
13 2 3 1 2 4 16 0 0
14 2 2 3 2 2 15 0 0
15 2 6 4 6 5 16 0 0
16 1 2 5 5 5 17 0 0
17 0 0 0 0 0 0 0 0

Schedule Number: 5

Reference: (Hinze (Pg 152))
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Table A.6 – Inputs for Problem No. 6 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3 Succ. 4 Succ. 5 Succ. 6 Succ. 7
1 0 0 0 0 0 4 5 7 8 12 13 15
2 8 3 0 0 2 6 0 0 0 0 0 0
3 2 2 4 3 0 10 0 0 0 0 0 0
4 8 2 1 4 2 16 0 0 0 0 0 0
5 2 5 5 3 5 11 0 0 0 0 0 0
6 7 3 4 6 5 17 0 0 0 0 0 0
7 2 0 5 4 6 16 0 0 0 0 0 0
8 6 3 6 5 0 3 14 0 0 0 0 0
9 5 0 4 0 1 2 0 0 0 0 0 0
10 12 2 3 2 1 2 11 0 0 0 0 0
11 6 5 3 1 1 6 0 0 0 0 0 0
12 6 0 6 2 2 11 0 0 0 0 0 0
13 8 0 4 2 5 9 10 14 0 0 0 0
14 6 2 5 3 0 2 11 0 0 0 0 0
15 2 0 0 5 6 9 0 0 0 0 0 0
16 12 5 5 1 6 6 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0

Schedule Number: 6

Reference: (Stevens (Pg 97))

 
 
 
 

Table A.7 – Inputs for Problem No. 7 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3 Succ. 4
1 0 0 0 0 0 2 5 10 15
2 5 4 2 2 2 3 0 0 0
3 3 3 4 1 0 12 0 0 0
4 8 4 1 3 4 8 0 0 0
5 4 6 4 1 0 3 6 0 0
6 5 5 2 6 6 4 7 12 0
7 7 5 2 6 5 13 0 0 0
8 8 1 6 2 1 9 0 0 0
9 3 6 1 0 3 18 0 0 0
10 3 6 2 5 5 11 0 0 0
11 2 5 2 3 0 12 16 0 0
12 6 4 2 6 3 8 0 0 0
13 3 6 1 6 5 9 14 0 0
14 7 5 6 3 1 18 0 0 0
15 9 2 2 3 3 11 0 0 0
16 9 4 4 6 5 13 17 0 0
17 5 1 6 2 4 14 0 0 0
18 0 0 0 0 0 0 0 0 0

Schedule Number: 7
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Table A.8 – Inputs for Problem No. 8 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3
1 0 0 0 0 0 2 0 0
2 2 2 5 6 3 3 4 5
3 7 0 3 2 4 6 7 0
4 10 3 1 6 2 7 8 0
5 4 0 4 0 2 8 9 0
6 6 2 1 2 3 12 0 0
7 5 1 5 6 6 10 11 14
8 8 4 4 2 4 10 13 0
9 9 3 3 6 3 13 14 0
10 12 5 6 6 5 15 0 0
11 5 5 0 0 0 12 0 0
12 5 3 5 3 0 15 0 0
13 6 2 5 4 5 15 0 0
14 4 1 1 3 6 15 0 0
15 3 3 4 4 5 16 0 0
16 0 0 0 0 0 0 0 0

Schedule Number: 8

Reference: (Mubarak (Pg 61))

 
 
 
 

Table A.9 – Inputs for Problem No. 9 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3
1 0 0 0 0 0 3 4 10
2 8 3 3 2 6 16 0 0
3 4 1 1 2 1 2 0 0
4 5 3 4 3 2 5 11 0
5 7 2 5 0 3 2 7 8
6 2 2 0 4 4 16 0 0
7 4 1 1 2 3 6 0 0
8 5 4 2 4 0 16 0 0
9 5 0 3 1 4 12 13 0
10 4 7 6 5 2 9 0 0
11 4 2 2 3 2 12 0 0
12 3 2 4 1 1 14 0 0
13 2 3 2 2 3 15 0 0
14 3 4 1 3 2 15 0 0
15 3 2 2 1 0 16 0 0
16 0 0 0 0 0 0 0 0

Schedule Number: 9

 



 102

 
Table A.10 – Inputs for Problem No. 10 

 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3
1 0 0 0 0 0 2 7 0
2 6 3 6 0 1 3 6 0
3 4 1 2 3 2 4 8 0
4 8 4 6 0 2 5 0 0
5 7 2 2 4 3 16 0 0
6 8 5 1 1 2 4 12 0
7 7 6 2 1 0 3 11 0
8 3 3 3 1 0 9 0 0
9 2 5 5 4 0 10 14 0
10 2 3 1 6 5 16 0 0
11 5 0 5 1 5 12 0 0
12 3 5 5 3 0 9 13 15
13 5 1 1 2 3 14 0 0
14 1 6 0 2 0 16 0 0
15 1 3 5 6 6 14 0 0
16 0 0 0 0 0 0 0 0

Schedule Number: 10

 
 

 
 
Table A.11 – Inputs for Problem No. 11 

 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3
1 0 0 0 0 0 2 4 0
2 5 2 1 6 6 3 0 0
3 8 3 6 6 2 8 0 0
4 2 3 6 4 0 5 9 0
5 1 5 6 3 6 3 6 10
6 4 3 3 6 3 11 0 0
7 2 1 6 6 2 8 0 0
8 7 2 1 4 2 15 0 0
9 4 3 2 1 5 10 13 0
10 3 2 4 3 3 7 0 0
11 1 1 0 5 6 8 0 0
12 4 6 4 5 1 15 0 0
13 2 4 4 3 0 11 14 0
14 3 3 4 0 1 12 0 0
15 0 0 0 0 0 0 0 0

Schedule Number: 11
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Table A.12 – Inputs for Problem No. 12 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2
1 0 0 0 0 0 2 3
2 5 6 7 5 7 4 0
3 10 3 4 2 3 5 6
4 10 5 2 4 7 7 8
5 5 4 9 1 1 9 0
6 5 6 0 3 9 10 11
7 10 4 4 5 0 12 0
8 5 7 4 2 5 13 0
9 10 0 3 9 4 13 0
10 5 5 5 3 6 13 0
11 10 6 6 0 4 14 0
12 5 8 2 2 0 14 0
13 10 8 5 2 7 14 0
14 5 9 5 0 4 15 0
15 0 0 0 0 0 0 0

Schedule Number: 12

Reference: (Son and Skibniewski, 1999)

 
 

 
 
 
Table A.13 – Inputs for Problem No. 13 

 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3 Succ. 4 Succ. 5
1 0 0 0 0 0 2 0 0 0 0
2 3 15 7 4 8 3 4 5 6 7
3 3 6 12 11 11 8 0 0 0 0
4 8 12 5 15 0 9 10 0 0 0
5 2 10 6 11 4 11 0 0 0 0
6 4 15 4 7 10 14 0 0 0 0
7 6 10 2 8 8 14 0 0 0 0
8 3 7 1 13 4 14 0 0 0 0
9 5 12 11 13 6 12 0 0 0 0
10 2 6 10 7 4 13 0 0 0 0
11 2 10 13 11 7 13 0 0 0 0
12 3 14 12 4 13 14 0 0 0 0
13 2 8 14 6 8 14 0 0 0 0
14 2 10 5 4 5 15 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0

Schedule Number: 13

Reference: (Leu, Yang and Huang, 2000)
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Table A.14 – Inputs for Problem No. 14 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3 Succ. 4
1 0 0 0 0 0 2 0 0 0
2 4 4 2 1 6 3 4 0 0
3 2 2 4 0 3 11 0 0 0
4 5 6 0 3 6 8 0 0 0
5 2 0 0 5 1 10 0 0 0
6 2 6 6 0 0 12 0 0 0
7 5 2 5 6 6 12 0 0 0
8 7 4 6 6 6 5 6 7 9
9 3 6 1 0 3 12 0 0 0
10 2 3 0 6 6 11 0 0 0
11 4 5 5 2 3 13 0 0 0
12 3 1 4 5 6 13 0 0 0
13 21 0 5 4 2 14 0 0 0
14 0 0 0 0 0 0 0 0 0

Schedule Number: 14

Reference: (Newitt (Pg 121))

 
 
 
 

Table A.15 – Inputs for Problem No. 15 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3
1 0 0 0 0 0 2 3 4
2 2 2 6 4 4 5 6 0
3 4 1 2 2 1 6 7 0
4 1 4 1 6 4 7 8 0
5 4 4 4 3 2 9 0 0
6 3 2 5 6 2 9 10 0
7 6 4 3 6 3 11 0 0
8 6 6 4 6 0 10 11 0
9 1 0 2 5 1 12 0 0
10 4 2 1 0 6 12 0 0
11 5 1 1 3 3 12 0 0
12 1 2 6 3 2 13 0 0
13 0 0 0 0 0 0 0 0

Schedule Number: 15

Reference: (Harris, 1990)
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Table A.16 – Inputs for Problem No. 16 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2
1 0 0 0 0 0 2 10
2 8 2 0 5 4 3 0
3 3 3 2 1 4 5 0
4 3 3 1 1 1 8 0
5 5 3 2 4 3 13 0
6 3 2 1 2 5 5 0
7 3 4 1 1 3 6 4
8 4 4 3 1 0 9 0
9 3 4 0 1 1 13 0
10 6 3 3 0 3 7 11
11 5 3 4 4 2 12 0
12 5 3 3 5 2 8 0
13 0 0 0 0 0 0 0

Schedule Number: 16

Reference: (Son and Skibniewski, 1999)

 
 
 
 

Table A.17 – Inputs for Problem No. 17 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3
1 0 0 0 0 0 2 0 0
2 2 2 4 6 2 3 4 0
3 5 5 4 3 3 5 6 7
4 6 0 2 4 1 7 8 0
5 6 1 1 6 6 9 11 0
6 7 5 2 5 0 9 10 0
7 4 3 2 4 5 9 10 0
8 5 2 6 2 2 10 0 0
9 10 5 5 5 1 12 0 0
10 8 5 0 5 3 12 0 0
11 7 0 1 1 1 12 0 0
12 1 3 4 6 6 13 0 0
13 0 0 0 0 0 0 0 0

Schedule Number: 17

Reference: (Mubarak (Pg 67))

 



 106

Table A.18 – Inputs for Problem No. 18 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3 Succ. 4 Succ. 5 Succ. 6
1 0 0 0 0 0 2 3 4 5 6 7
2 7 7 4 4 0 8 0 0 0 0 0
3 7 4 4 3 1 8 0 0 0 0 0
4 5 2 0 6 3 9 0 0 0 0 0
5 9 3 1 1 0 9 0 0 0 0 0
6 4 5 4 5 6 12 0 0 0 0 0
7 2 4 6 2 5 10 0 0 0 0 0
8 9 2 3 6 3 12 0 0 0 0 0
9 5 5 0 2 5 12 0 0 0 0 0
10 3 3 5 2 0 11 0 0 0 0 0
11 7 6 6 5 0 12 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0

Reference: (Demeulemeester (Pg 416))

Schedule Number: 18

 
 

Table A.19 – Inputs for Problem No. 19 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3
1 0 0 0 0 0 2 0 0
2 5 1 3 1 1 3 4 5
3 7 2 1 4 5 6 0 0
4 8 4 0 5 5 6 7 0
5 11 5 2 3 0 8 0 0
6 6 6 3 3 4 9 0 0
7 4 1 6 1 6 8 9 0
8 7 4 2 2 6 10 0 0
9 6 0 3 6 0 10 0 0
10 0 0 0 0 0 0 0 0

Schedule Number: 19

Reference: (Mubarak (Pg 217))

 

 
Table A.20 – Inputs for Problem No. 20 
 

ID Dur. Res. 1 Res. 2 Res. 3 Res. 4 Succ. 1 Succ. 2 Succ. 3
1 0 0 0 0 0 2 4 6
2 12 3 2 4 3 8 0 0
3 2 5 6 2 4 8 0 0
4 5 6 1 5 2 3 5 0
5 6 2 4 2 2 8 0 0
6 6 4 4 1 7 7 0 0
7 1 8 1 4 1 3 0 0
8 0 0 0 0 0 0 0 0

Schedule Number: 20

 


