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ABSTRACT

COMPUTATION AND ANALYSIS OF SPECTRA OF LARGE NETWORKS WITH
DIRECTED GRAPHS

Sariaydin, Ayse
M.S., Department of Scientific Computing
Supervisor . Prof. Dr. Blent Kara$zen

Co-Supervisor : Prof. Dr.ifgen Jost

June 2010, 88 pages

Analysis of large networks in biology, science, technology and soc&ésys have become
very popular recently. These networks are mathematically represengedpdss. The task is
then to extract relevant qualitative information about the empirical netvitoksthe analysis

of these graphs.

It was found that a graph can be conveniently represented by thegpeaf a suitable dier-
ence operator, the normalized graph Laplacian, which underligsitins and random walks
on graphs. When applied to large networks, this requires computation gi¢icerum of large
matrices. The normalized Laplacian matrices representing large netwerksally sparse

and unstructured.

The thesis consists in a systematic evaluation of the available eigenvaluesgoheonsym-
metric large normalized Laplacian matrices describing directed graphs ofieahpgtworks.
The methods include several Krylov subspace algorithms like implicitly restaatedidi

method, Krylov-Schur method and Jacobi-Davidson methods which agly fagailable as

standard packages written in MATLAB or SLEPCc, in the library writterC

iv



The normalized graph Laplacian as employed here is hormalized such thaedtsusn is
confined to the rangg, 2]. The eigenvalue distribution plays an important role in network
analysis. The numerical task is then to determine the whole spectrum withpaiapeaigen-
value solvers. A comparison of the existing eigenvalue solvers is done aligly Bigraphs
with known eigenvalues and for citation networks in sizes 400, 1100 ad@ % computing

the residuals.

Keywords: undirected graph, directed graph, spectral graphytheigenvalue, Krylov sub-

spaces, empirical networks



Oz

GENIS AGLARDA SIMETRIK OLMAYAN SPEKTRUM HESAPLAMALARI VE
ANAL IZLERI

Sariaydin, Ayse
Y iiksek Lisans, Bilimsel HesaplamaBmi
Tez Yoneticisi . Prof. Dr. Bilent Karagzen

Ortak Tez Yoneticisi : Prof. Dr. drgen Jost

Haziran 2010, 88 sayfa

Biyoloji, bilim, teknoloji ve sosyal sistemlerdeki geniglarin analizi son zamanlarda ¢cok
populer olmustur. Bu glar matematiksel olarak cizgiler seklindésgerilebilmektedir. Bu
tur deneysel @arin gizge seklinde@sterimleri, & yapisiyla ilgili gerekli niteliksel bilgileri

cikarabilmede tyuk onem tasimaktadir.

Bir grafik, birimlestirilmis Laplace gsterimi diye adlandirilan, grafikzerindeki yayilmalari
ve olasi gidisleri belirleyen uygun bir fark isleticisinin spektrumu tarafmgbsterilebilmektedir.
Bu islem genis @lara uygulandjinda kiyuk matrislerin spektrumunun sayisa@ntemlerle
belirlenmesi gerekmektedir.tBuk ajlari temsil eden birimlestirilmis Laplace matrigizenli

bir yapiya sahip olmamaktadir ve @l dlceklenmedzelli§i gdstermemektedir.

Bu tezde, deneysegjtarin yonlendirilmis gizgelerini §steren simetrik olmayan birimlestirilmis
Laplace matrisi icin uygubzddjer yontemleri karsilastirilacaktir. Bu metodlar MATLAB ya
da G++ daki kitaplhk programi olan SLEPc gibi paket programlar olarak serbéstitinabilen
tam olarak yeniden baslatiimayan Arnoldi metodu, Krylov-Schur metodaaehi-Davidson

metodlari gibi ¢esitli Krylov alt uzay algoritmalarini kapsamaktadir.
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Uygulanan Laplace grdfi normalize edilmis olup spektrun{0, 2) aral§indan olusmaktadir.
Ozddjer ddjilimi & analizinde byiik onem tasimaktadir. Sayisal olarak yapilmasi gereken
tum ozddjerlerin uygun pntemlerle hesaplanmasidir. Bizgden mevcut §ntemlerin bir
karsilastirmasignlendirilmis Paley cizgelerinin bilinebzdderleriyle ve 400, 1100 ve 4500

buyukluklerindeki alinti lariyla kalinti hesaplanarak yapilacaktir.

Anahtar Kelimeler: wndiz cizge, ynlendirilmis cizge, spektral grafik teorigizddjer, Krylov

altuzaylari, deneysebdar
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CHAPTER 1

INTRODUCTION

Many complex systems in nature have complex network structure [51]. tiinetge of the
complex network displays significant features of complex systems and aordxtensive
study. The network structure of complex systems can be treated with gregty.tifo ana-
lyze these systems structural relation parameters are introduced [38]34hen, they are
represented by matrices to exploit the relation between spectrum of theseemaind the
structure of complex systems. However, all these procedures canagptiyre some certain
qualitative properties, not all of them. The normalized Laplacian spectus s a signifi-
cant tool in this respect. Its spectrum reflects properties of the netwaoidtsre such that the

source of the network can be recognized.

Recent developments about spectral properties of normalized Laplaei@ix require com-
putation of the all eigenvalues of large matrices. Since the large matrices eabfagm

network applications are sparse and unstructured matrices, direatssimiveigenvalue prob-
lems using finite number of operations are not appropriate because ofitatiopal cost and
memory limitations. Therefore, iterative solvers are preferred for eajaavcomputation of
large sparse matrices as they make use of sparse structure of large snétnjdev subspace
algorithms and Jacobi-Davidson methods are two widely used iterative metinazts make

use of sparse structure of matrices.

There have been various softwares applying these methods and maahadith freely avail-
able. They may be derent in terms of the language (C+, Fortran or MATLAB), version
or simply the design of algorithms. For example, the most popular and widetlyspsese
matrix eigensolver ARPACK is written in FORTRAN and also it has a+dnterface and

implements a famous Krylov subspace method called implicitly restarted Arnoldi chetho



In this thesis the comparison of the existing sparse eigenvalue solverwvidgatdy means
of directed graphs. Also, the spectrum of normalized Laplacian matricesaaited graphs
describing large networks is computed with the existing eigenvalue solvess thia eigen-
value distribution of this matrix reveals important information about the strugbuoaerties

of network.
The outline of the thesis is as follows:

Chapter 2 starts with a brief introduction to the study of complex systems with rietiaaory.

The development of network modeling is described. Then, basic defindimhglementary
notions of undirected and directed graphs needed for the followingetsaare given. Also,
some necessary tools for spectral analysis of both type of graphsttar@uced. Then, gen-
eral and recent results about relations between spectrum of normatipéatian matrix and

structure of networks for both types of graphs are given.

In Chapter 3, basic notations and methods for eigenvalue problems are giie Krylov
subspace algorithms with their variations implicitly restarted Arnoldi method, Kf@lchur
methods and augmented block Householder Arnoldi method are introdddeh Jacobi-
Davidson methods are presented with their a nefeint application Jacobi-Davidson type
QR algorithm. A schematic description is done for each type of methods. Appiliseof
methods for symmetric matrices are briefly introduced. The comparison of dsethith

each other is also provided.

In Chapter 4, the MATLAB implementations of Krylov subspace algorithms: implicgbtarted
Arnoldi method (speig), augmented block Householder Arnoldi methdaefgh) and for the
Jacobi-Davidson type QR algorithm (jdqgr) are introduced. Also, the SUbBPary in C++
for the Krylov subspace methods is presented. The parameters usethipaekage and the

usage of the eigenvalue solvers are described.

The thesis concludes with Chapter 5, where the numerical results are givstly, the com-
parison results for eigenvalue solvers described in Chapter 4 amnpeds During this com-
parison a special digraph called Paley digraph is used in addition to somenethw@rk ex-
amples. Then, the spectral analysis of citation networks in sizes 400 a0@0500 are done.
These networks are analyzed by means of the spectral density plots stgate the prop-

erties of networks using the knowledge described in Chapter 2. Also, speatral density



plots are provided for a comparison between the spectrum of directpdgaad the under-
lying undirected graphs. Three dimensional spectral density plots presented. Finally,
the main conclusions for the spectral analysis of directed graphs arglsasand possible

future researches are proposed.



CHAPTER 2

SPECTRAL GRAPH THEORY OF UNDIRECTED AND
DIRECTED GRAPHS

Complex systems emerge in many disciplines like bioscience, neuroscierysgsptrtom-
puter science, artificial life, economics, earthquake prediction, he#irsynchronization,
immune systems or reactionfilision systems. They have been extensively studied with the
help of network theory which is a useful tool for analyzing complex systeFRr®m bio-
logical, social, economical, ecological, and technical systems, netwagksoastructed by
means of the components and interactions between the components of the #\ste they

are used to analyze the related data underlying them. The world-wideWMRH/\(), scien-

tific collaborations, protein-protein interactions, food webs, nervostesys, gene regulation
and metabolic reactions are some examples of complex networks. For vexaugles and

extended research see [6, 7, 51] and [9].

In a complex system, there are many components interacting with each otbentdiaction
inside the system occurs between close neighbors, however, sincgsteends coupled,
the properties and construction of the system have b&ented by each interaction. The
interactions may follow some dynamics such that, the system takes some inleesitarture
on. So the dynamics influence the structure of the system on one handstnutttere reflects
some properties of the dynamics on the other hand. Since the relation bdtvesentwo
properties are very close to each other, it may be useful to analyzeubtusérand inheritance
properties of a complex system [6]. Network theory emerging area aficeieaptures with

those properties to some extent.

Complex systems in the form of networks are usually studied by means ¢f graqry. Graph

theory has been playing an important role in analyzing and understanetiwgni structures



since 1735 with the Leonard Euler’s solution to thérkgsberg bridges problem. In graph
theory, the components of a network can be considered to be verticéseamrdation between
the components can be considered to be edges of the graph. In analgiivayk structures
with the help of graph theoretical tools, one has to decide first what shmmulthosen as
vertices and which kinds of relations between vertices should be coedidescribing the
edge. However, it is better to think about whether the construction of mietfnam a given
system would be helpful to study that system or not, otherwise it would nahvbuilding

a network. New methodologies, tools have been introduced to analyzerkstintensely.
Furthermore, old methods from graph theory have been reconsidéned. a new research

area of science called network science has been emerged which isonagegbh theory.

For long time, scientists have thought that networks consist of sets of canisowith ran-
dom connections. Afterwards, they tried to model networks with randommextions be-
tween the components. By means of social structure§is=add Renyi proposed a very sim-
ple model [25] to construct a random graph that represents a ranetwrank where each node
has probabilityp of being connected by an edge. Interesting properties of this grapHh foode
different values op are investigated in [26, 27]. Many parameters such as degree distribution
average path length, diameter, betweenness, centrality, transitivity,rolgstedficient, etc
have been constructed to analyze the structural properties of netj@@rka6, 51, 71]. The
random graph model that Eid and Renyi proposed has a typical kind of degree distribution.
To capture the properties of real networks which have a low averatelgragth and high
clustering co#ficient, Watts and Strogatz proposed a model [71] that exhibits a “small world
phenomenon” by randomizing a fraction of edges connecting nodes gukardattice. Net-
works generated by this model also have similar degree distributions as Bndl Renyi's
random graphs such that they have a more pronounced p&eatedi from real networks as
they have a power-law degree distribution. Degree distributions that fallpawer law are
scale invariant. Because of this, networks that have a power law deigtebution are called
scale-free networks [10] although only their degree distributions ale-$ee. The first ob-
servation of a power law degree distribution in a real network was madeids/iR a network

of citations of scientific papers in 1965 [53]. By this model it was explainedetihergence

of the property of a power law degree distribution which was based orréviops work by
Simon on wealth distributions in 1950 was explained[59]. After looking atgrdaw degree

distributions in the WWW network, Barabasi and Albert proposed a mddgltp generate



a network that shows scale-free degree distribution property. In thisolemodel which is
still in progress, a new node is attached to the network not in random wagstablishing

connections towards higher-degree nodes. To obtain a new conneiticem existing nodé

N

Zin;’
a new node to already existing nodes by edges with this preferenceweaslpw degree dis-

with degreen; depends on the probability = So the network constructed by attaching
tribution. Since then, to capture the structural properties of real neswodny models have

been introduced [5, 11, 18, 30].

There exists many parameters and tools in graph theory, but many of timemtoeapture the
all features of networks. To obtain the unique and special propertesetfwork from a spe-
cial class and to classify the general qualities that are shared by othrkstructures could
be achieved by means of spectral analysis of graphs [5, 16, 30]islrepect, the eigenval-
ues and eigenvectors of matrices obtained from network applications playpantant role

in order to understand structural properties of networks.

In graph theory, connections between edges comdiierdnt forms like undirected, directed,
unweighted or weighted. Connections that are non-directional or ctione that have an im-
plicit direction and connections that are associated with a weight or notisfioglish these
cases we need to define types of graphs. The term undirected graqatesch graph where
the connections are non-directional. For situations in which the conneetierdirectional,
the graphs are called directed graph or digraph. The term weightel graped for graphs
whose edges are associated with a weight and the term unweightedgréphdraphs whose
edges are not associated with a weight. Through this study we call utedirg@ph as graph
and directed graph as digraph and also, we use unweighted digraghluggagoins. We first
summarize some basic notations and spectral properties of undirectég rap we provide

a wide overview about the directed graphs.

2.1 Undirected Graphs

In this section, we will make use of definitions in Chapter 1 of books [5] &#] about

spectral graph theory.

Definition 2.1 Anundirected graph denoted by G is an ordered pair of two sets, a non empty

set V= V(G), called vertex set, consisting of objecisw, ..., vy that are called vertices or

6



sometimes called nodes and another set [E(G), called edge set, consisting of edges and

one edge connects two vertices.

Definition 2.2 A vertex u isadjacent to vertex v if they are joined by an edge. Two adjacent

vertices can be calledeighborsand denoted by w u.

Definition 2.3 A multi-edge is a collection of two or more edges having identical endpoints.
Theedge multiplicity between a pair of vertices u and v is the number of edges between them.

Aloop is an edge that joins a single endpoint to itself.

Two of the most fundamental notations in graph theory are those of thealefja vertex and

the distance between vertices.

Definition 2.4 Thedegree of a vertex v in a graph G, denoted by, i the number of edges
incident on v plus the number of self-loops.(For simple graphs, of eptiie degree is sim-
ply the number of neighbors.) Tliegree sequence of a graph is the sequence formed by

arranging the vertex degrees into non-decreasing order.

Definition 2.5 Thedistance between two vertices in a graph G is the length of the shortest

walk between them.

For example, in the Figure 2.1 (a), the vertex sal is {1, 2, 3, 4} with edges between them.
The neighboring vertices are 2, 1 ~ 3, 2~ 3, 2 ~ 4. The edge multiplicity is 1 for all
vertices. The degrees with respect to the vertex numbers are 2, 3ini2he Figure 2.1 (b),
there is a loop, that is, one of the vertices is connected to itself, two veréweshulti-edges

and one vertex in isolated as it has no connections.



(@) (b)

Figure 2.1: (a) Simple graph, (b) General graph

Definition 2.6 Asimplegraph is a graph that has no self-loops or multi-edges. Other graphs

in which multi-edges and loops are existing are caliiederal graphs,

There are also many other types of graphs. However, the simple gnagptieeanost common
one as a tool in theoretical graph theory as many problems regardingabgregpphs can be
reduced to problems about simple graphs. In Figure 2.1 (a) and (b)mseeaan example of

simple graph and general graph respectively.

Definition 2.7 Awalk in a graph G is an alternating sequence of vertices and edges

W=V, €1,V1, €, ..., N, VN

such that for j=1, ..., N, the vertices }; and v, are the endpoints of the edgg elere, \ is
theinitial vertex and W is theterminal vertex. A vertex which is neither initial nor terminal
vertex is callednternal vertex. A walk isclosed if the initial vertex is also the final vertex;

otherwise, it isopen. Thelength of awalk is the number edges.

For example, the walk given in Figure 2.2 (a) can be represented as
w=1122334

wherev; ande; is represented by numbers here. 1 is the initial vertex and 4 is the finatverte

Definition 2.8 Atrail in a graph G is a walk such that no edge occurs more than once. A
Eulerian trail in a graph G is a walk that contains each edge of G exactly ongeatthin a
graph is a trail such that no internal vertex is repeatedcysle is a closed path of length at

leastl.



(@) (b)

(©

Figure 2.2: (a) A walk, (b) A cycle, (c) Trail

In Figure 2.2 (b), we can see an example of cycle whose initial and thevériades are the

same, also Figure 2.2 (c) shows a trail as all edges are distinct.

Definition 2.9 A graph G isconnected if there is a walk between every pair of vertices.

Definition 2.10 Theeccentricity of a vertex u in a connected graph is its distance to vertex
farthest from v. Theadius of a connected graph is its minimum eccentricity. dianeter of

a connected graph is its maximum eccentricity.

Definition 2.11 Atrivial graph is a graph consisting of one vertex and no edges.

Definition 2.12 Let G and H be two graphs. They are calledmorphic if there exists a

bijectionw : Vg — V4 that has the adjacent vertices relation, i.e.,uv & w(U) ~ w(V),

9



for all u,v. See Figure 2.3. If there exists an isomorphism from a graph G to itsetfGhe

called symmetric.

@) (b)
Figure 2.3: Two isomorphic graphs
Definition 2.13 A subgraph of a graph G is a graph H such thatyvc Vg and By C Eg.
For example, in Figure 2.4 (b) is a subgraph of (a).

Definition 2.14 Atreeis a connected graph with no cycle.

3
3
\A |
2 4
2

(@) (b)

Figure 2.4: (a) Graph (b) A subgraph of (a)

Now, we will give definitions of some important graphs.

10



Definition 2.15 A complete graph is a simple graph that every pair of vertices are connected

with an edge. It is denoted by,Kvhere n represents the number of vertices.

Definition 2.16 A graph G is called aipartite graph if the vertex set YG) can be decom-
posed into two disjoint subsetg ¥nd \5, such that each edge of G connects a vertexiin V
with a vertex in \§. Hence there is no edge which joins two vertices in the same subset. If ev-
ery vertex of one set is connected by edges with all vertices of othsetstiben the bipartite
graph is called acomplete bipartite graph, and is usually denoted byn, where m and n

are called the cardinalities of the two subsets.

Definition 2.17 A graph is calledd-regular if each of its vertices have degree d. A regular
graph G= (V, E) with degree d is strongly regular if every adjacent vertex has the same nu
ber of common neighbors a and every nonadjacent vertex has the rsamber of common

neighbors c. A strongly regular graph is denoted(hyd, a, c).

PN

(@) (b)

(©

Figure 2.5: (a) Complete graph, (b) Complete bipartite gtaphof 5 vertices
and (c) Regular graph of degree 3

11



2.1.1 Connectivity Matrices

A graphG = (V, E) is represented by fierent kinds of matrices. Eigenvalues of these matri-
ces play an important role in the analysis of graphs. Before describirgp#wtral properties
of graphs, we introduce the connectivity matrices which are the adjaceatrix, Laplacian

matrix, and the normalized Laplacian matrix.

Letn; andn; be degrees of the verticeand | of the graplG, respectively. Then connectivity

matrices can be defined as follows:
e Adjacency Matrix: The matrix A=[a;j] such that

1,ifijis an edge
ajj =

0, otherwise
is the adjacency matrix of the graph.
e Laplacian Matrix: The matrix L=[l;;] such that

n,ifi=,
lij =4 —1,ifijis an edge

0, otherwise

is the Laplacian matrix of the graph.

e Normalized Laplacian Matrix: There are dferent kinds of normalized Laplacian
matrices with respect to normalization factors. Here, two of them will be intedu

The first one is introduced by Chung [16].

— The matrixZ£ = [l;;] such that

n,ifi=jandn; # 0,

lij = _\/E.l—nj if ij is an edge
0, otherwise

— The matrixA = [ljj] such that

Lifi=jandn; # 0,
lij = ‘Fil,if ij is an edge

0, otherwise

12



are normalized Laplacian matrix of the graphs.

Unfortunately, there is no clear relationship between the connectivity mafacenost of the

graphs. However, the following relations can be used:

L=D-A

whereD is a diagonal matrix with degree on diagonal entries.

£=D?LD? =| —-D7AD?

and there is similarity between the two kinds of normalized Laplacian matrices:

A=D?£D?

Example: The connectivity matrices of the graph in Figure 2.6 are as follows:

Figure 2.6: A simple graph with 4 vertices

The adjacency matrix:

B O
o +» O
o O O
o +r O BB



The Laplacian matrix is:

3 -1 -1 -1

|11 0 o0

-1 0 1 o0

-1 0 0 O

The normalized matrices are:

1 -5 -5F -3 1 -1 -1 -1
L:—%loo’Az—%loo
- 0 1 0 -3 0 1 o0
= 0 0 1 -1 0 0 1

2.1.2 Spectral Graph Theory

Spectral graph theory is one of the important tools in spectral analysigplig. The spectral
analysis of graphs can be done by means of the connectivity matrices.iBwdl many
important properties of a network can be extracted from the eigenvafubsse matrices.
The eigenvalue distribution of these matrices shovifedint information about a network.
For instance, the spectrum of adjacency matrix shows details abouttiaczlsal properties
of a graph like number of edges, triangles or loops. The smallest eigesvalthe Laplacian
matrix reveals the connected components in a graph. It can also be usetttmide the
spanning trees of graphs. The adjacency and Laplacian matrices lageel an important
role in the early days of spectral graph theory [13, 30, 51]. Howévenany practical appli-
cations the spectrum of the normalized Laplacian [16, 17] is the most usefldDit shows
information about the graph that other connectivity matrices fail to determimeadvantages
of the normalized Laplacian are due to the fact that it is consistent with theveilges in the
spectral geometry and in stochastic process. By means of normalizeaiaaptaany results
which were only known for regular graphs can be generalized to otiaphg. Furthermore,
the normalized Laplacian spectrum also provides information about thewtablproperties

of graphs like in protein-protein interaction networks [5].

In this section we will first present some basic facts about the normalizelddian operator

givenin[5, 6, 7,9, 16].
The normalized Laplacian can be defined as an operator on a connesgdedigth vertex set
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V={i:i=1...N}. Letu:V — R be a real-valued function da such that

(V) = ) mu(i)v().

Then the &ect of normalized Laplacian of a function defined as above can benefated:

Au(i) = u(i) - nl > (). (2.1)

'~

This action of Laplacian on functions reveals three important propertiggsobperator:

e A is a self adjoint operator implying that the operator is symmetric. Therefoee, th

eigenvalues of normalized Laplacian matrix are real.
e Ais nonnegative such that all eigenvalues are nonnegative.

e Au = 0 when uis constant. This property implies that the smallest eigenvalue is 0.

Since we have assumed thatis connected, the other eigenvalues are greater than 0 i.e.,

Ax > 0 for allk > 0. The eigenvalues can be ordered in non-decreasing order such that

O=Ag <A1 £ < ... < AN-1.

The highest eigenvalue is bounded above with 2, thatys; < 2 and equality holds if and
only if the graph is bipartite. The fierence between 2 and the largest eigenvajug is an
indicator, how diferent the graph is from a bipartite graph. For a bipartite graphjsfan

eigenvalue, then 2 1 is also an eigenvalue.

If the graph is complete, then the relation

M=y =y = D
1=42=...= N—l—N_l

is satisfied and
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holds. But if the graph is not complete, thén< 1.

Also, the eigenvalues of a complete bipartite gr&pty are 0, 1 and 2. The multiplicity of 1

ism+n-2.

If N is the number of vertices in a grafh

Z/li <N,
i
wherei = 0,1,...,N -1 and quality holds if and only if the graph is connected.

The number; is an important eigenvalue of a graph. It shows hoffidilt it is to cut up
the graph into two disjoint components. The Cheeger constant is one obteddpbreaking
a graphG into two component§&; andG,. This constant was introduced by Cheeger in the

context of Riemannian geometry [14]:

h(1) = inf { [Eol }

min(ZieGl Ni, ZjeGg nj)

where the infimum is taken over subsé&isof edges, such that removirkgp disconnect$s

into component§; andG,, and|Ey| is the cardinality ofeg.

The relation between; and the Cheeger constan{ft) for a connected graph is given by

%h(/l)z < A3 < 2h(Q).

For a connected graph can also be bounded by the diameter and volume such that
A1 > 1
1= Dvol(G)’

whereD is the diameter of the gragh andvol (G) = ; n.

16



Up to now the general properties of spectrum of the normalized Laplaceaprasented.
Recent studies in [5, 7, 8] and [9] show that some graphs have petileseigenvalue 1. It is
investigated that the graph evolutionary process is related with these pe#ks rest of this
section these results are summarized. The proofs of the theorems arevidég@, however,

they can be found in [5].

Combination of the equation (2.1) with the usual eigenvalue equationAu = 0 results in

23 u(i) = (- Qui).Vi= 1. N

i~

So if the eigenfunction vanishes at verticethe sum of the values of the function on neigh-

bors ofi would vanish 3 ;..; u(j) = 0. On the other hand, wheh= 1,

Z u(j) = 0. (2.2)

j~i
So, for the eigenvalue 1, there are functions that their sum of valuesighboring vertices
are zero. A function u satisfying this property is called balanced solutitwe. multiplicity

of eigenvalue 1 gives the dimension of the set of linearly independemdmaddunctions on

the graph. Furthermore, it can easily be seen from Equation (2.2) thatdhiplicity of

eigenvalue 1 equals to the dimension of the kernel of the adjacency matrix gfdph.

Definition 2.18 Let G be a graph. A mot# is a connected small subgraph of G containing

all edges of G between verticesXf

Here, the grapi® is supposed to be very large when compared with the rotFollowing

theorems are about the operations on the graph and theit en spectrum.

Theorem 2.19 Let G* be obtained from G by adding a copy of the mationsisting of
vertices g, . .., gm and connections between them and connecting eagtith all p ¢ X that
are neighbors of p. Then G possesses the eigenvallith a localized eigenfunction that

is nonzero only at pand g,.

Corrollary 2.20 Let G* be obtained from G by adding a copy of the matifa copy of the

motifX consisting of verticesyq. . ., gm and the corresponding connections between them and
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connecting eachgwith all p that are neighbors ofp Then G possesses m more eigenvalues
1 than G with localized eigenfunction§ e = 1,...,m) thatare 1 at p, -1 at g, and zero

elsewhere.

This theorem is also satisfied whEris a single vertex. Then, according to the corollary if the
eigenvalue 1 has a high multiplicity, the graph can be constructed by many deribling or

viceversa.

Unfortunately, this result can not be generalized to more general eilgesvy However, the

following theorem has some useful applications:

Theorem 2.21 LetX be a motif in G. Suppose f satisfies
LS i) = @- i) 2.3)
nj . &4 . = '
JEZ, ]~
for all i € £ and somel. Then the motif doubling of above theorem produces the graph G
with eigenvaluel and eigenfunction § agreeing with f orE, with -f the double of and

identically 0 on the rest of &

This theorem can be applied to the smallest motif of a gi@phan edge. Assume that the

vertices of the motif arg@, and p,. Then the Equation (2.3) equals to

Lt = (@ Df(p)
P1
Lt = (- DT
P2

1

and admits the solution= 1 + s
1" P2

Therefore, as the degree of vertex increases, the eigenvalues gatihied 1 more and more,
and they are also symmetric with respect to 1. The following theorem is ababtidg the

entire graph.

Theorem 2.22 Let G; and G, be isomorphic graphs with verticeg,p.., pn and q,...,0n
respectively wherepcorresponds to igfor all i. Then a graph @ can be constructed by
connecting pwith g; whenever p~ p. If A4,..., A, are eigenvalues of Gand G then the

new graph has the same eigenvalues as well as the eigenvalue 1 with multiplicity
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The next result is about maotif joining and works for any eigenvalue.

Theorem 2.23 Let G; and G be graphs with common eigenvaluand corresponding eigen-
functions f and 2. Assume thati(p;) = 0 and f2(p,) = O for some p € G and p € Go.
Then the graph G obtained by joiningg@nd G, by identifying p and p also has the same

eigenvaluel with eigenfunction given bylfon G; and 2 on G,.

2.1.3 Some Special Graphs

In this section, we introduce the eigenvalues of some special graphslatidns in terms of

connectivity matrices.

e Regular GraphsThere is no explicit formulation for the eigenvalues of regular graphs.

However, there is useful formulation between the connectivity matricegafar graphs:

L = di-A
1
L= 1-7A

whered is the degree of vertices, A is adjacency, L is Laplacian 4rid normalized

Laplacian matrices of graphs.

e Strongly Regular GraphsThe eigenvalues of the adjacency matrix of strongly regular
graphG are determined by the parameters of the graph. For a strongly regubdr@ra
with parametersn(, d, a, ), the eigenvalues of adjacency matrix®are determined by

the following formulas:

(a-c)+ VA

0= =7
_ (a-0- VA

T = —2 N

whereA = (a- ¢)? + 4(k — ¢). The multiplicities of the eigenvalues are
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1 2k+ (n-1(a-1c))
mo- (e-n- SRS
1 2k+(n-1(a-c))
mo= (n-n-SEEEED),

e Paley Graphs:

Definition 2.24 Let g be a prime such thatg 1 (mod 4). Thédaley graph [16, 30] Pq
has a vertex set consisting of elements of GF(q). Two verticeg amePadjacent if and
only if their difference is a square in G[). Let p be any prime number. The Paley sum
graph,|’5p, has vertice®, 1,..., p— 1 and two vertices i and j are adjacent if and only
if i — j is a quadratic residue module p. For 3 mod(4), Paley graphs are directed

such that we introduce in Section 3.5.

Paley graphs are examples of strongly regular graphs with parameters

g-19g-59g-1
@773

):

where q is the number of vertice%" is the degree of verticed;> is the number of
common neighbors of each vertex aﬁé is the number of non common neighbors of

each vertex. The eigenvalues of the adjacency matrix are

q-1 , _-1+ya |, _-1-d

=" 2 =3

with 81 of multiplicity 1 and#, anddz have equal multiplicitie§‘;—l .

2.2 Directed Graphs

In this section, basic definitions and properties of digraphs from Chapiéthe book [32],
Chapter 8 of the books [12] and [29] are given and some spectrpkpies of them are

introduced.
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Definition 2.25 A digraph D consists of two sets, a non empty set V(D), calledvertex
set, consisting of objectdr, vo, ..., vy} that are calledvertices and another E= E(D), called
edge set, consisting of directed edgés;, e, ...,en}. If e = (vj,V;) is an edge of D, then; vs
theinitial vertex and v is theterminal vertex. Two directed edges e and e’ of a digraph D

are said to beparallel if e and e’ have the same initial vertex and the same terminal vertex.

Definition 2.26 Theout degree of a vertex is the number of edges of which it is the initial
vertex; thein degree is the number of edges of which it is the terminal vertex. The out
degree vector of D is the vectorR (rq,ro,...,rn) Where i is the out degree of vertex for

i =12..N. Thein degree vectoris S (s1, S, ..., SN) Where sis the in degree of vertex

v, fori = 1,2,...,N. Thus R is the row sum vector of the adjacency matrix A of D, and S is
the column sum vector. Theaximum degree A of a digraph D is the maximum integer that

occurs among its in degrees and out degrees.

Figure 2.7: Directed graph with 5 vertices and 8 edges

In the Figure 2.7, an example of a directed graph is given with 5 vertice® a&uges. For
the edge 12 is the initial vertex and 1 is the final vertex. The edge3 2 are parallel as they
have the same initial and final vertex. The in degrees and out degreeslofvertex are the

followings:
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vertex number indegree out degree

1 3 1
2 0 4
3 4 1
4 1 2
5 1 0

Definition 2.27 If D is a digraph, the graph obtained from D by removing the arrows from the
directed edges is called thenderlying graph of D. This graph is also called the undirected

graph corresponding to D

(@) (b)

Figure 2.8: (a) A digraph, (b) An underlying graph of (a)

Figure 2.8 (a) shows a digraph and (b) is the underlying graph of it, thah@rected graph
underlying in this digraph.

Definition 2.28 If v is a vertex of a digraph D, then v is called asolated vertex of D if
din(v) = dour(V) = 0. If v is a vertex of a digraph D then v is calledsaurce of D if dip(v) = O.
If vis a vertex of a digraph D then v is calledsank of D if dgy(V) = O.

In Figure 2.7, there is no isolated vertex. However, the vertex 2 is acsamd the vertex 5

is a sink.

Definition 2.29 Adirected walk in a digraph D is a sequence of the fofm, €1, V1, € ... en, Vn}

where ¥, v1, ..., v, are vertices of D in some order and, e, ..., e, are edges of D. A vertex
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can appear more than once in a directed walk but not an edge. An operet! walk in which
no vertex is repeated is calleddirected path. A closed directed walk in which no vertices,
except the initial and final vertices are repeated is callaliracted circuit or a directed cycle.
The number of edges present in a directed walk, directed path, diregtRdt is called its

length.

In Figure 2.7, examples of these definitions can easily be seen.

Definition 2.30 A tournament is an oriented complete graph. Tournaments with two and

three vertices are shown in Figure 2.9.

(@) (b)

Figure 2.9: Tournaments with 3 and 4 vertices

Definition 2.31 A digraph D is said to batrongly connected if there is at least one directed

path from every vertex to every other vertex.

Definition 2.32 A digraph D is said to baveakly connected if its corresponding undirected

graph is connected but D is not strongly connected.

Figure 2.10 shows an example for strongly connected and weakly dexndigraphs.
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(@) (b)

Figure 2.10: (a) Strongly connected (b) Weakly connected digraph

Definition 2.33 A digraph that has no self-loop or parallel edges is callesiraple digraph.

Definition 2.34 Digraphs that have at most one directed edge between a pair of veiiges

are allowed to have self-loops, are callesymmetric or antisymmetric digraph.

Definition 2.35 Digraphs in which for every edde,, v) (i.e., from vertex u tov) there is also

an edggv, u).

Definition 2.36 Isomorphic graphs are defined such that they have identical behavior
terms of graph properties. In other words, if their labels are remowed,isomorphic graphs
are indistinguishable. For two digraphs to be isomorphic not only theiregponding undi-
rected graphs must be isomorphic, but the directions of the correpgredges must also
agree. Two digraphs Pand D, are said to beésomorphic if both of the following conditions

hold:

e The underlying graphs of Dand D, are either identical or isomorphic.

e Under the one-to-one correspondence between the edgesafdD, the directions

of the corresponding edges are preserved.
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Figure 2.11: Two isomorphic digraphs

Definition 2.37 A digraph D is said to be dalanced digraph or an isograph if di,(v) =

dout(V) for every vertex v of D

Definition 2.38 A balanced digraph is said to beegular if every vertex has the same in-

degree and out-degree as every other vertex.

(@) (b)

Figure 2.12: (a) 1-regular digraph (b) Complete digraph

Definition 2.39 A complete undirected graph was defined as a simple graph in which every
vertex is joined to every other vertex exactly by one edgeondplete digraph is a simple

digraph such that between each pair of its vertices oppositely directezbemigst.

2.2.1 Connectivity Matrices

Digraphs (directed graphs) are also represented by using adjacetigy, Laplacian matrix
or the normalized Laplacian matrix similar to graphs (undirected graphs)ettwthe defi-

nitions of these matrices arefidirent from those for graphs and spectral analysis of digraphs
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with these matrices is a very active research area in graph theory [120190]. Here, the

definitions of these matrices are given before going on to the spectigsenaf digraphs.

e Adjacency Matrix: The matrix A=[a;j] such that

1,if there is an edge from i tq |

gjj =
0, otherwise

is the adjacency matrix of the digraph.

Unfortunately, there is no explicit definition for the Laplacian and the normaliapla-
cian matrices of digraphs which is similar to definitions for undirected gradpktead,

the following relation is used.

e Laplacian Matrix: The matrix L=[l;;] such that
L=D-A
is the Laplacian matrix of the graph whehds the adjacency matrix of digraph abd

is the diagonal matrix with in degrees or out degrees on diagonal entries.

The Laplacian matrix of a digraph can also be defined by using the transitibalglity

matrix. This definition is done by Chung in [20].

For a given digraplb, a typical transition probability matri® = Pp is defined as

e if ij is an edge
Pa.j) = _
0, otherwise

When digraph is weighted, that is, its each edge has weights 0, a general transition

probability matrixP can be defined as

i)
Tk Wik

Pa.j) =

wherek=1,...,N.
An unweighted digraph is just a special case with weights having the valoie8.1
An irreducible matrixM with non-negative entries has a unique (left) eigenvector with

positive entries according to Perron-Frobenius theorem. Assume tahote the
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eigenvalues of the positive eigenvectorfaf Then, the absolute values of all eigen-
values ofM are bounded above This situation can be extended to digraphs. The
transition probability matriXP of a strongly connected digraph has a unique left eigen-

vectorg used as a row vector wii(v) > 0 for all edgess, and

¢P = pg.

Since the 1-vector satisfies the relatiBh = 1, we haveo = 1 and according to the
Perron-Frobenius theorem all other eigenvalueB béve absolute value at most 1. We

can normalize and choogesatisfying

2, 4W =1

Vv

Here,¢ is called the Perron vector & For a general digraph, there is no closed form

solution of¢. So, the Laplacian matrix of a digrajihis defined as

(Dl/ZP(D—l/Z + (I)—l/ZP*(I)l/Z
_ 5 ,

whereg¢ is a diagonal matrix with entrie®(v, v) = ¢(v) andP* denotes the conjugated

transpose oP. Clearly, it satisfies the relation
L* = L.

Normalized Laplacian Matrix: For any digraptD associated with an adjacency ma-

trix A, the normalized Laplacian matrig = [l;;] is defined as

L£=1-D1A

Here, £ has a number of important propertig3-'A is a stochastic matrix i.e., its row
sums are all 1 and its possibly complex eigenvalues have modulus in the in@djal [
Consequently, the eigenvalues of the normalized Laplacian méthiave modulus in

the interval [Q2].

27



Example: The connectivity matrices of the graph in Figure 2.13 are as follows:

Figure 2.13: A digraph with 4 vertices

The adjacency matrix is

0101
0100
A= .
1111
0 00O
The Diagonal matrix is
1 000
0 300
D= ,
0010
0 00 2
where in degree is used.
The Laplacian matrix is
1 -1 0 -1
0O 2 0 O
-1 -1 0 -1
0O 0 0 2

The normalized Laplacian matrix is given by:
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. 0 2 00
-1 -1 0 -1
0 0 0 1

2.2.2 Spectral Properties of Digraphs

Spectral analysis of digraphs is also done through the eigenvalueséaosity matrices.
However, itis not well developed as for the graphs. In spectral aizady digraphs the relation
between digraph parameters and eigenvalues of adjacency matrix lesvertsdyzed [12]. In
recent years, eigenvalues of the Laplacian matrix have also gainethgtp[l19, 20]. The
normalized Laplacian eigenvalues are also used. However, it is reallyanedigraphs. In

contrast to graphs, the applications for real networks are very few.

In this section, recent studies about the spectral properties of theeadjamatrix and Lapla-
cian matrix are introduced. The proofs of the theorems provided hermtirecluded but they
can be foundin[12, 19, 20]. Also, the relationship between spectpbpties and eigenvalue
distribution of digraphs and their underlying graphs are provided [50].

The eigenvalues of the adjacency matfixare the eigenvalues of digrafh SinceA is
not necessarily a symmetric matrix, the eigenvalueb a@fre, in general, complex numbers

A1, A2, ..., AN, Where we usually assume that

[A1] = A2l = ... > |ANI .

The spectral radius of digragh denoted by (D) is equal td11], the largest absolute value of
an eigenvalue of the adjacency mattixWhen digraptD is regular, in this case the spectral

radius ofD is equal to the in degree or similarly the out degree of regular digraph.

The adjacency matriA of a digraphD is a nonnegative matrix. Thus, the Perron-Frobenius
theory of nonnegative matrices provides information on the spectrummaigtig Theorem 1.1
in [12] provides some important information. By the following theorem a classesult of

the adjacency matrix eigenvalues of digraph is obtained. Remember thatiie greindex
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of imprimitivity of a digraphD is the greatest common divisdrof the lengths of the cycles
of D and a cycle of lengtlk of a digraph is a sequeneg, vo, ..., Vn, v1 Of vertices such that

V1, Vo, ..., VN are distinct, andu, v»), ..., (vn-1, Vn), (Vn, V1) are edges.

Theorem 2.40 Let D be a strongly connected digraph of order N, then:

e The spectrum of D, as a set of points in the complex plane, is invariaet antation

about the origin by the angler/d
e The spectral radius of D satisfies
min{ry,ro,....rn} < p(D) < maxi{ry,ro,...,In}.

Also, p(D) = min{ry,ro,..,ry} if and only if o(D) = max{ry,ro,...,rn}, and these
inequalities hold if and only if digraph D has a constant out degree veatoh shat
R = {rq,ro,....,rn}. A similar conclusion holds using the in degree vector S in place of

the out degree vector R.
e If D" is a digraph obtained from D by deleting one or more edges, HiEn) < p(D).
It is known that a digraplD is bipartite when its vertex set can be partitioned into two sets

V1 andV, such that each edge has its initial vertexMnand its terminal inv,. Thus, the

adjacency matrix of a bipartite digraph is of the form

A:OAl,
A O

where the zero matrices are square matrices of ¢vdeand|V,|, respectively. We have

| Pt 0
0 A

whereA; A, have the same nonzero eigenvalues. The Perron-Frobenius thexnmyrafgative

matrices generalizes a result for bipartite graphs in [12] by the followingréme.
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Theorem 2.41[12] A digraph is bipartite if and only if its spectrum is invariant under multi-
plication by—1, equivalently, if and only if the spectral radius of D is the nonnegative miso

eigenvalue D.

Recent studies in [19, 20] show that eigenvalues of the Laplacian matridersome infor-
mation about the spectral properties of digraphs such as Cheegtarto@heeger inequality

or diameter. In the rest of this section these spectral properties areLiogd

For a directed grapB with the transition probability matri and the Perron vectar, which

are given above, the Rayleigh quotient for anyV (D) — C is defined as

Sy F(U) = F(WP(u)P(u, V)

Rh = MECZ)

The Laplacian matrix of a digraph is

(I)l/ZP(I)—l/Z + q)—l/ZP*q)l/Z
_ 5 ,

L=1I

where® is a diagonal matrix with entrieb(v, v) = ¢(v) andP* is the conjugated transpose of

P.

Theorem 2.42 [20] For a directed graph D with the transition probability matrix P suppose

the Rayleigh quotient and the Laplacian are defined as above. Thenwge ha

(fL, f)
2<ch, f)

f(OP + P*¢) f*
- fof
(gL, 9)

llall?

R(f) =

2

where g= f¢%/2.

A consequence of this theorem is the following:

Corollary 2.43 [20] Suppose a directed graph D has the Laplacian eigenvalliesiy <

A1 <,..., < An-1. Then the eigenvalues and the Rayleigh quotient are related as follows:
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e For 4;, we have

R(f)

S O000=0 2
Sus VIT(U) = F(V)IPe(U)P(u,v)

2% lf(v) — c?p(v) ’

A1 =

inf sup
foc
whereg is the Perron vector and is the Perron diagonal matrix.

e Suppose&; is an eigenvector of the Laplacian associated with eigenvaju€or f; =

@12, we have

- 5D 0

=00 fi( - 2 (y);’(y)P(y’ X Doy (y)ZP(x, Y)6(X)

= 5 D) - HONGOIPY, ) + P Y)O09)
y

Ai fi(X)p(X)

for each vector Xx.

Theorem 2.44 [20] For a directed graph D, the eigenvaluy of the Laplacian L is related

to the eigenvalues; of the transition probability matrix P as follows.

A1 < min(1 - Re(pi))
i#0

where i=1,..., N and Réx) denotes the real part of the complex number x.

It is also possible to define the Cheeger constant and the Cheegerlityeflgualigraphs by
means of Laplacian matrix. L& denote a subset of vertices of the directed grBphrhe

out-boundaryof S, denoted byS, consists of all edgesi(v) withue Sandv ¢ S

F(4S) = Z F(u,v).

ueS,v¢S
If F is a circulation, it satisfies
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F(0S) = F(8S),

whereS denotes the complement 8f

For a vertexv, we defineF(v) = 3, F(u,v) and F(S) = }s F(v). So, for a strongly
connected digrapB with stationary distributiow, if we consider the circulation flow, the

Cheeger constant as in the following form

_ Fys(0S)
h(D) = inf -
S min{Fy(S). Fy(S)}

where S ranges over all non-empty proper subset of the vertex s&.ofHere,h can be
related to the eigenvalues of the Laplacian by establishing the directed afiategCheeger

inequality. The following theorem explains this situation.

Theorem 2.45 [20] For a directed graph D with eigenvaluek of the Laplacian. Thenl =

min;.q |j| satisfies

2h(D) > 1 > hZ(ZG),

where KD) is the Cheeger constant of D.

Following theorems give lower bounds for the Cheeger constants fimugatamilies of di-

graphs is provided:

Theorem 2.46 [20] For a strongly connected regular directed graph D on n verticesl an
degree k, we have
2
h(D) > —.
()= kn
Theorem 2.47 [20] For a strongly connected Eulerian directed graph D on m edgedave

2
h(D) = —.

33



Theorem 2.48 [20] For some directed graphs D with bounded out-degrees, the Eneeg-

stant of D can be exponentially small, i.e.,
h(D) <c™

for some constant c.

It has been known that the diameter of graphs can be bounded usinigé¢meatues of the
Laplacian matrix. In this situation a natural question is to see if it is feasible to@xiese
relations to digraphs. In a digraph, the diameter can be naturally definleals been known
that a directed graph is strongly connected if for any two vertigesmdv,, there is a directed
path fromv; to vo. The diameter of a strongly connected digraph is defined as the maximum
distance among pairs of vertices. If a digraph is not strongly connectedithdiameter is

taken to be infinity.

Theorem 2.49 [20] For a strongly connected directed graph D, the diameter diajof D

satisfies

2miny log(1/¢(x)) 1
log>%;

diam(D) < [

whereA is the first non-trivial eigenvalue of the Laplacian ands the Perron vector of the

random walk on D.

It is naturally seen that the eigenvalues of the Laplacian is quite usefabfiiuring various

properties which can not done through adjacency matrix eigenvaluégraptls.

Up to now, the general properties of the spectrum of the adjacency mattithe Laplacian
matrix of a digraph are introduced, which is not simple as the case for grdphspectral
analysis of graphs, relation between some exact eigenvalues of graghtiseir spectral prop-
erties is provided. However, there is no such a relationship for digrapstead of this, there
is a relationship between some spectral properties of digraphs and theadigedistribution.
Furthermore, digraphs and graphs are related according to eigeaistlilsution. From now

on, we describe some of these properties.
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The Flow in the NetworkThe connectivity matrices of a digraph are generally nonsymmet-
ric. Therefore, the corresponding eigenvalues are in complex formngAstructure in the
complex spectrum represents the existence of a loop-like flow in the netWwhik situation
can easily be explained by considering the simplest network with a loop-like Tloe eigen-

values of this simplest network can be computed analytically by using the Faamnsform.

Assume that digrapB hasn nodes and each node is connected to its k th neighbors at farthest
and the edges are ordered in one direction. The eigenvalues of thphdiy@an be written

in the form:

k
m=1

In the case ok = 1, which is the simple one-dimensional directed chain with a periodic

boundary condition, we obtain

/ln:el_

This constitutes the unit circle in the complex plane which is the simplest ring steuwt

can consider.

The one-dimensional directed chain is a directed looN steps. If we have a directed loop

of N steps, the eigenvalues satisfy

AN=1

They form a ring structure in the complex plane. When there are more coneplitzops,

which means regular directed rings wklx 2, the ring structure is still dominant.

Relation With Graph SpectraThe real and imaginary parts of the eigenvalues of complex
eigenvalues of a digrapP have their own information. They also havdfdrent roles in
graph in that spectral graph theory. If the directions of all edges djraphD, the spectral
density of the resulting undirected graph is the same as the density of theareaif the
eigenvalues of digraph. Thus, the distribution of real part of eigeagadfia digraph reflects

the undirected graph topology.

The graph spectrum of a undirected graph is directly related to the nurhbmops in the
network. Thus, it is known that the variance of the spectral densitgspands to the total
number of edges in the network. In directed graphs, there is also a relstareen the

spectrum and the number of loops. For a digr@ptthe variance of the distribution of the
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imaginary part of the eigenvalues of digraph approximately gives the nuinieeted edges.

For different examples and details see [50].

2.2.3 Some Special Digraphs

In this section, we list some special digraphs and eigenvalues.

e Regular Digraphs:There is no explicit formulation for the eigenvalues of regular di-
graphs as in the case of regular graphs. However, the useful fdaromulzetween the

connectivity matrices of regular graphs can also be used for regulapthg;

L = dl-A
1
L = I_EA’

whered is the degree of vertices, A is adjacency, L is Laplacian 4rid normalized

Laplacian matrices of graphs.

These equations can be adapted to the eigenvalues of a digraphi;, Let Ay be

eigenvalues of the adjacency matrix of digrdphThen we have

spectruml) = {d—Ag,...,d— AN}, (2.4)
spectrum{) = {1—%,...,1—%\'}.

Therefore, for al-regular graph it is enough to determine eigenvalues of one of con-

nectivity matrices.

e Strongly Regular DigraphsThe eigenvalues of the adjacency matrix of strongly regular
digraphs are determined by digraph parameters.OLbe a digraph with parameters
(n,k, t,a c), wheren is the number of nodeg;is the in degree of each vertexis the
out degree of each vertex aaéndc represents the common and uncommon neighbors
of each node, respectively.For a strongly regular digraph, as eatdxhas the same
in degree and out degree we calE t = d. Then the digraph parameters are defined
as f, d, a, c) and the eigenvalues of adjacency matrix of strongly regular digbagte

determined by the following formulas:
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(@a-c)+ VA

o= 2
(a-0)- VA
T 2 s

whereA = (a- c)? + 4(d - ¢).
e Paley Digraphs:

Definition 2.50 Let g be a prime such thatg 3 (mod 4). ThePaley digraph [16, 30]
Pq has a vertex set consisting of elements of GF(q). Two verticeg anePadjacent if

and only if their djference is a square in ).

Figure 2.14: (a) Paley digraph with 7 vertices

Paley graphs are examples of strongly regular digraphs. The eigeavaihe adja-

cency matrix are

q-1 —1-i0 —1+i0
o = 3=

with A1 of multiplicity 1 and A, and A3 have equal muItipIicities“'%1 whereq is the

number of vertices.

Moreover with the relation between matrices of regular digraphs the eigesvaf

Laplacian matrices of Paley digraphs can also be formulated as:

-1+q

=0 42=1 2C1+ivO)

andis =1+

__1+9
2(1— i +/0)

with the same multiplicities as above.
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CHAPTER 3

EIGENVALUE COMPUTATION OF LARGE
NONSYMMETRIC MATRICES

Complex networks are represented by graphs or digraphs discusSkdpiter 2 and matrices
obtained from network applications do not have a regular structurey dieegenerally in

sparse form, that is, most of the entries of matrices are zenderBint from dense matrices
only the nonzero entries are stored. This property provides many &g when numerical

methods are applied to determine eigenvalues and eigenvectors of largeematric

Most of the numerical methods for eigenvalue computation of large matrieelsased on
symmetric matrices [21, 31, 52, 74]. On the other hand, the ability to computeveiges
and corresponding eigenvectors of large sparse non symmetric matreceerng active and
challenging research area. It is becoming increasingly important in a \aitdkety of appli-
cations. This increasing demand has improved interest in the developmesiahethods
and softwares for numerical solution of eigenvalues and correspogijegvectors of large
sparse non symmetric matrices. The existence of these new methods aratemftas unable
the solution of problems that would not have been posed five or ten ygardatil very re-
cently, there were nearly no softwares for large-sparse non symmeililems. Fortunately,

this situation is improving rapidly.

In the light of these developments in methods and softwares for largeespamssymmetric
problems, in this chapter we provide a wide overview of numerical soluticiggnvalues
and corresponding eigenvectors of large sparse non symmetric ma2d&b| 56, 63]. The
focus will be on two classes of methods called Krylov subspace (proj¢atiethods and
Jacobi-Davidson methods [56, 65, 66, 67, 68]. The discussion begfima brief theory of

eigenvalues and basic iterations suitable for large scale problems to motaterdiduction
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of Krylov subspaces.Then, Krylov subspace projection methods, impliestarted Arnoldi
method, Krylov-Schur method and augmented block Householder Arnoldtiotieand fi-

nally Jacobi-Davidson methods are presented in detail.

3.1 Eigenvalues and Single Vector Iterations

To understand the behavior and limitations of the algorithms, a brief discuskiba math-
ematical structure of the eigenvalue problem is necessary. In this dscutse real and
complex number fields are denotedlRyandC respectively. The standard n-dimensional real
and complex vectors are denoted®yandC". The symbolRR™" andC™" denote the real
and complex vectors with m rows and n columns. The transpose of a Magidenoted by
AT, A* denotes the complex conjugate, and the synijfjadienotes the Euclidean or 2-norm

of a vector.

The elements of the discrete ggtA) = {2 € C : rank(A — A1) < n} are the eigenvalues &
and they may be characterized asnheots of the characteristic polynomigl = det(A—Al).
There is at least one nonzero veck@uch thatAx = Ax corresponding to each distinct eigen-
valued € o(A). This vector is called a right eigenvector Afcorresponding to eigenvalue
A. The pair &, 1) is an eigenpair. A nonzero vectgrsuch thaty*A = Ay* is called a left
eigenvector. The algebraic multiplicityy(1) of an eigenvalue is of is its multiplicity as a
root of the characteristic polynomial. The geometric multiplicigf1) of an eigenvaluel is
the number of linearly independent eigenvectors to that eigenvalue. A natefective if
ng(4) < na(1) and otherwise it is called non defective. An eigenvalue of algebraic muitiplic

1 is said to be simple.

A subspaces of C™" is called invariant subspace #fif AS c S. It is straightforward to

show if Ae C™", X e C™K andB e C*K satisfy

AX = XB (3.1)

thenS = Rangeé( is an invariant subspace & Moreover, ifX has full column rank then
the columns oK form a basis for this subspace an(B) c o(A). If k = n, theno(B) = o(A),

andA is said to be similar t@® under the similarity transformatio®. A is diagonalizable if it
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is similar to a diagonal matrix and this property is equivalerA teeing non-defective.

Schur decomposition is a fundamental theorem to discuss the numericathatgior eigen-

problems.

Definition 3.1 Every square matrix A possesses a Schur decomposition

AQ=QR

where Q is unitary @Q = | and R is upper triangular. The diagonal elements of R are the

eigenvalues of A. The diagonal elements p&fe the eigenvalues of A.

If Vi represents the leadirigcolumns ofQ, andR the leading principak x k sub matrix of
R, then

AV = VkR«.

This is called a partial Schur decompositionAfand there is always a partial Schur de-
composition ofA with the diagonal elements &% consisting of any specified subset lof

eigenvalues oA.

3.1.1 Single-vector Iterations

Single-vector iterations are the simplest and most storégseat ways of computing a single
eigenvalue and corresponding eigenvector. The power method is tret altk simplest of
these methods and also underlies the behavior of all methods for ladggemlalems. It only
requires multiplication of an arbitrary nonzero vector repeatedly by a matrikconverges

to the dominant eigenvalue of the matdas long as the starting vector has a component in

the direction of dominant eigenvector.

The power method seems useful in practice. However, it has two impor@mbdcks. The

convergence rate of the power method proportion%twhere/lz is the eigenvalue having
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second-largest magnitude may be very slow, or may not happen at alhindne eigenvalue

and corresponding eigenvector can be computed.

The problem of slow convergence and convergence to interior eilyes/may be prevented
by replacingA by (A — o1)~, whereo is near the eigenvalue of interest. More can be learnt
about such spectral transformations from [23, 33, 65, 66, 67]. divess the problem of
obtaining several eigenvalues and corresponding eigenvectoratiaieichemes have been
used [55]. However, this scheme is not suitable for non symmetric problémstead of
this scheme , various linear combinations of power iterations can be usegruximpate
additional eigenvalues and eigenvectors such that there is a systematio w@ysider all

such possibilities at once and pick the most suitable one automatically.

3.2 Krylov Projection Methods

This section is based on Chapter 4 of book [23] and [55, 63] and arfg2e$4, 70].

The successive vectors produced by a power iteration may contaiideatde information
along eigenvector directions corresponding to eigenvalues near theittmkargest magni-
tude. A single vector power iteration ignores this useful information. Sadesprojection
provides a way to extract this additional information. Rather than discardettters pro-
duced during the power iteration, additional eigen information is obtaineddijrig at var-
ious linear combinations of the power sequence. This leads to consideoétioa Krylov

subspace

Km(A, X) = span{x, Ax A%X, ..., A”Hx}

and to look for the best approximate eigenvector that can be construotadtliis space.
Methods which use linear combinations of vectors in this space are calléalvisybspace or

projection methods [23].

The basic idea in Krylov projection methods is to construct approximate eigemg in the
Krylov subspacé (A, X). We define a Ritz pair as any pait (1;) that satisfies the Galerkin

condition
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v (AX — Ai%) =0 forall v e Kg(A, vo).

That is, the Ritz pair satisfies the eigenvalue-eigenvector relationship imdjee{ion onto a
smaller space. To obtain a good approximation for an eigenpdiy thfe component orthog-

onal to the space must befBaiently small.

3.2.1 Implicitly Restarted Arnoldi Method

The Arnoldi method is a Krylov-based projection algorithm that computesthngonal basis
of the Krylov subspace and at the same time computes a projected matrix. drisiatization
of the Lanczos method [62] and it was first introduced as a direct algoffitin reducing a
general matrix into upper Hessenberg form. Later, it was discoveréththalgorithm leads
to a good iterative technique for approximating eigenvalues and conéypeigenvectors
of large sparse non symmetric matrices. It is really useful for cases thibenatrixA is large

but the matrix-vector products are relatively inexpensive to performe Hee begin with the

basic definition of Arnoldi factorization and then describe a number édtians of it.

Definition 3.1 An m-step Arnoldi factorization of AC™" is defined as a relationship of the
form

where \, is an nx m orthonormal matrix, I is @ mx m upper Hessenberg matrix with

non-negative sub diagonal elements, arjify = O.

When the matrixA is Hermitian, this relationship is called am-step Lanczos factorizatipn

and the upper Hessenberg mattixs actually real, symmetric, and tridiagonal.

Note that if x, #) is an eigenpair oHn,. Then,x = Vyy satisfies the relationship

IAX— X0 IAVimY — Vimyél|

[I(AVin = VmH)VII

I fiemyll

Blenyl,

wherep = ||fyl|. The basic idea behind the Arnoldi factorization is to compute eigenpairs of

the large matrixA from the eigenpairs of the small matrtk. Since we assume that << n,
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the eigenpairs oH can be computed by conventional means. The main purpose is to drive
lelyl — 0, so that the eigenpairs bf,, well approximates the eigenpairs Af Here, the term
Blelyl is called the Ritz estimate, and describes the goodness of the eigenpaiiayapian.

Of course, wherf,, = 0 the equation will be simplified to

implying thatVy, is an invariant subspace #fand the eigenpairs d,, will be preciselym

eigenpairs ofA [54, 56, 62, 64]. The basic algorithm for Arnoldi factorization [54] is

Algorithm 1 m-step Arnoldi Factorization
Input(Vm, Hm, fm) SUCh thathm = VmHm + fmer-l-;-l

Output(Vms1, Hni1, fme1) such thatAVin1 = VineaHimer + fm+1e:n+1

1. B = [l fmll; v — fm/Bm;

Hm
2. Vi1 < (Vo v); Hme1 < - ;
Bm€m

3.2« AUm+1;

4. N1 < V;H]_Z; fmr1 < 2= Vinrihme1;
5. Hmi1 < (Hme1, hmea);
6. end;

In this algorithm a subindex is used YhandH to make their dimension explicit. At each
iteration of the algorithm a new column of bdthandV is computed and the explicit orthog-

onalization operations are carried out by means of Gram-Schmidt pnecg8].

It should be clear that Arnoldi factorization entirely depends on the ehoidhe starting
vector. In fact, the factorization is uniquely determined by the choice dirggarector until
a sub diagonal element éf,, is zero. At this point an invariant subspace has been computed

and the factorization is continued with a new starting vector.

For good approximations, the starting vector used to begin the Arnoldrization should be
rich in the direction of wanted eigenvectors and with very small componentg idittection
of other eigenvectors. However, in practice this is usually not possildlét dikely requires
many iterations. This causes serious problems because increasing fiitéyations implies

a growth in storage requirements and, more importantly, a growth of compw@tiatiost per
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iteration. A good way of preventing this drawback is to restart the algorithat,ish stop

the algorithm aftem iterations and rerun it with a new vector computed from the recently
obtained spectral approximations. One possible approach is called exgdiGtting. The
idea of explicit restarting is to iteratively computdtdrent m-step Arnoldi factorizations with
successively better starting vectors. The starting vector for the nextidirun is computed
from the information available in the most recent factorization. The simplegttavaelect

the new starting vector is to take the Ritz vector (or Schur vector) assoevitedominant

eigenvalue. This strategy is described in [23, 35].

There is another approach called implicit restarting. Implicit restarting coralbiveeimplic-

itly shifted QR mechanism with an-step Arnoldi factorization. An-step Arnoldi factoriza-

tion is extended to anf + p)-step Arnoldi factorization, which is then compacted again to an
m-step one. The process of extending this mestep factorization to anf+ p)-step factor-
ization is iterated by applying shifts and condensing. The fiai@ process is that each of
these shifts results in the implicit application of a p th degree polynomialtmthe starting
vector. The roots of this polynomial are the shifts that were appliggRdactorization. So,

if we choose the shifts; as the eigenvalues that are unwanted, the starting vector will be rich

in the direction of wanted eigenvectors.

There are many strategies for selecting shifftsOne of the useful strategies is the Exact
Shift Strategy. This method takes the shiftspasigenvalues oH,, which are furthest away
from the wanted eigenvalues. However, there are alternative strategibsas Chebyshev
polynomials [52] or Leja points [64].

Now, we are ready to present the full implicitly restarted Arnoldi method.[54]
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Algorithm 2 Implicitly Restarted Arnoldi Method Algorithm
Input: The matrixA, the number of eigenpairs to be computadthe number of implicit

shifts to apply to the factorization at each iteratipna sort criterion which determines
which are 'wanted’ eigenvalues, starting vectoi, tolerancer
Output: k1, 1), (X2, 12), . . ., (X0, An), @pproximations to thk wanted eigenvalues &.

1. Usingug as a starting vector, generatensstep Arnodi factorization
AV = VH + fel

2. fori=12,...until||JAXx —Aixl| <7 for ali=1,....,m

a.) Extend an-step Arnoldi factorization tong + p) step Arnoldi factorization
AV =VH + fe,

b.) Letq = em.p

c.) Sort the eigenvalues of from best to worst according to the sort criteriBrand take
o1,...,0p to be thep worst eigenvalues.

d)forj=12,..,p

dl. FactoH - ojl = QR

d2.H « Q"HQ.

d3.V « VQ.

d4.q < q"Q.

e)f — V(i m+1Hm+1,m) + fgm).

f.) Take the firstk columns on each side of he factorization to ¥et V(;,1 : m), H =
H(1:m,1:m).

g.) Take as eigenpair approximations, ;) the Ritz pairs of the problem.

3. end.

3.2.2 Krylov-Schur Method

To overcome the diculties with implementing implicit restarting technique, the Krylov-

Schur method was proposed by Stewart in 2001 [68].
The Krylov-Schur method is defined by generalizing the m-step Arnoltbferation,
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computed by Algorithm 1, to a so-called Krylov decomposition of order

AV = VinBmn + umeab! (3.2)

m+1°

where the matrixB, is not restricted to be upper Hessenberg lgnad in an arbitrary vector.
Assume that all the; vectors are mutually orthonormal. Then premultiplying EquatioB)(3
by V] shows thaB, is the Rayleigh quotier\!;AVm. So, the Rayleigh-Ritz procedure is still

valid.

The last equation can be written in the form

Bm

T
brmtl

AVin = [ Vi et ] (3.3)

A special case of the above relation is called the Krylov-Schur decompusitiorhich matrix
Bn is in real Schur form, that is, quasi-triangular form displaying eigengadue in the X 1

or 2x 2 diagonal blocks.

It can easily be seen that Arnoldi decomposition is a special case of fieviKiecomposition.
Itis shown in [68] that any Krylov decomposition is equivalent to an Arnd&tomposition,
that is, both have the same Ritz approximations. Also, a Krylov decompositiobecaans-
formed into an equivalent Krylov-Schur decomposition by means of odiaigsimilarity
transformations. The main idea of the Krylov-Schur method is to expand velsatwith the
Arnoldi process and contract a Krylov-Schur decomposition. A sydiemascription of the

method is given in the following algorithm that can be found in [36].
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Algorithm 3 Krylov-Schur Method
Input: Matrix A, starting vectox;, and number of steps;

Output:m < p Ritz pairs

1. Build an initial Krylov decomposition of orden

2. Apply orthogonal transformations to get a Krylov-Schur decomposition
3. Reorder the diagonal blocks of the Krylov-Schur decomposition

4. Truncate to a Krylov-Schur decomposition of orger

5. Extend to a Krylov decomposition of order

6. If not satisfied, go to step 2

Step 1 can be accomplished with an Arnoldi decomposition. At step 2, to gst@kSchur
decomposition it is necessary to apply Q& algorithm in order to compute an orthogonal

matrix Q; such thafl, = QI BnmQ: which has real Schur form, and then

Tm

. 3.4
b—r|1—1+1Q1 &0

AVinQ1 = VmQ1 Urml]

At this point, from the diagonal blocks @, the Ritz values are already available. These Ritz
values are divided in two subsets. The first one contpirsm "wanted” Ritz values and the
other one containgi— p "unwanted” Ritz values. By step 3 the algorithm moves the subset of
wanted Ritz values to the leading principal submatriX,gf This can also be accomplished by
means of an orthogonal transformati@p, resulting in the following reordered Krylov-Schur

decomposition:

Tw =
A\7m = [ V~m Umt+1 ] 0 Tu (3.5)
bl,

whereVi, = VinQ1Qz, A(Tw) = Qu. Here Oy, shows the set of wanted Ritz valuggT,) = Qu
whereQ, is a set of unwanted Ritz values, abf) is the length-p leading sub vector of

bIMQle. The truncation in step 4 of the algorithm is achieved simply by writing
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- » T
AV = | V. o ", (3.6)
p P Yp+1 va

Where\7ID is equal to the firsp columns ofVy, but Upi1 = Uil Finally, step 5 is accom-
plished by means of a variation of Algorithm 1 in which the vectors are commiseting

from vp, 2 but vectorsy; to vy, are also taken into account in the orthogonalization step.

If the total number of works are compared in implicitly restarted Arnoldi methié) and
Krylov-Shur method, IRA is superior to Krylov-Schur in marginal openatost [68]. More-
over, implicitly restarted Arnoldi method with exact shifts and Krylov-Schuttrad with the
same shifts have the samffeet which was proved in [68]. But each have theirs pros and
cons. Diferent polynomials can be used instead of shifts in IRA but this is not poseible
Krylov-Schur. On the other hand when exact shifts are used KrytdwSis more preferable

due to the reliable process for exchanging the eigenvalues.

In the case of that the matrixis symmetric, the Krylov-Schur method is equivalent to another
method called the thick-restart Lanczos method [72]. The most importéetatice between
the symmetric and non symmetric cases of the Krylov-Schur method is the shaysrof

Bm. The structure of this matriB,, has more dticulties than in the case of a simple explicitly
restarted variant of Lanczos, where the projected matrix consisted @fgardl part and

a tridiagonal part. In the case of thick-restart Lanczos, obtaining tlyéo¥iSchur form

of By, is equivalent to diagonalizing it. So, taking into account its special struchag
yield a reduction in the operation count for standard solvers. Thengforg a general dense
symmetric method is more appropriate. An alternative may be to write a specifittlango

for this particular structure, although it is not obvious how to do this.

The other thing to be considered in the symmetric case is whether orthogtinaliahthe
Lanczos vectors should be carried out explicitly against all previou®rgeor using a tech-
nique for the cure of loss of orthogonality. In the context of thick-rétanczos, full orthog-

onalization is the best option since it provides the maximum robustness.
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3.2.3 Augmented Block Householder Arnoldi Method

The implicitly restarted Arnoldi (IRA) method proposed by Sorensen [@2 ntodifies the
starting vector at each iteration via shift€R algorithm as we presented previously. This
method is based on a very popular software package ARPACK [44].mpeadson of soft-
wares provided in [42] concluded that ARPACK was generally the faates most depend-
able. However, many numerical examples have shown that there maygagpted round4®
errors which can delay or prevent convergence of desired eilymsvand eigenvectors [42].
The reason for this numerical instability is the underly@B-algorithm. It is shown in [47]
that the implicitly restarted Arnoldi (IRA)method of Sorensen [64] can be implated by
augmenting the sequence of Krylov subspace basis by certain Ritz vettossimplemen-
tation is mathematically equivalent to the implementation in [64]. It can be less sensiti
to propagated roundfberrors than [64]. This relationship has been exploited in [72] for
symmetric eigenvalue problems, in [46] for linear systems and non symmetriovalge
problems and in [4] for singular value problems by Baglama and ReicheleXieasion of
this idea to block Krylov subspaces&3has been implemented bydller for non symmetric
eigenvalue problems. The extensions to block methods have many favataiietes even

though they are not mathematically equivalent to the block form of the IRA rdetho

The main purpose of augmented block Householder Arnoldi method is geatiaugmented

block Krylov subspace method for the eigenvalue problem

AX = AX. (3.7)

The block Arnoldi method only diers from the Arnoldi method in that it uses a set of starting

vectorsX = [X1, X2, X3, . . ., Xn] @nd builds an orthonormal basis for the block Krylov subspace

Kmnr(A X) = span{X, AX A’X, ..., A" X} (3.8)

A block routine generally requires more computatiornébe and larger subspaces for good
approximations. However, a block routine is mofgogent to compute multiple or clustered
eigenvalues than an unblock routine [1, 2, 43]. This advantage of bbotkes has resulted in

a considerable number of softwatagorithms. The augmented block Householder Arnoldi
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(ABHA) method developed by Baglama [3] combines the advantages of k ldatine and
an augmented routine. The development of an augmented block Arnoldi dristhot new.
The implementation of it for solving linear systems of equations is presentedjraftl
for solving non symmetric eigenvalue problems in [49]. However, here Wlepvesent a
new implementation of augmented block Householder Arnoldi method with MATcA&e

ahbeigswhich is introduced in Chapter 4.

The foundation of ABHA method is the use of Householder process ttecag@eorthonormal
basis for the block Krylov subspace.83. Algorithm 4 [3] extends the Householder Arnoldi
method in [69] to block form. It uses the Householder process for cgeatinorthonormal
basis for the Krylov subspace. This method uses the corifgacepresentation of the House-
holder product. In this representation tQamnatrix in the Householde@R-decomposition is
formed from the product with the forin+ YT Y, whereY is a lower trapezoidal matrix and

T is a square upper triangular matrix.

After applying these transformations to the subspéggA, X), the following block Arnoldi

decomposition is obtained:

AVimr = VinrHmr + Vimey)Hme1m) E;ra (3.9)

whereVy, is annx mr orthogonal matrix anét,, is mr x mr upper block Hessenberg matrix.
During the computation of the block Arnoldi methét],, j which is a sub-diagonal block of
the blocked Hessenberg matrix may become singular. This means that asetioo$ in (33)
have become linearly dependent on previously computed vectoferdit from the single
vector Arnoldi method, this linear dependency of vectors may not imply amianvt subspace
has been computed unlells, 1 ; = 0. This breakdown rarely occurs, and the Householder
block Arnoldi method handles this in step 3 of the Algorithm 4 by adding a nangector at
step 3 so that a vali@R factorization is computed. Now, we are ready to outline our block

restarted method.

After an m-step of Arnoldi method the real Schur decompositioblgf is computed such

that
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Algorithm 4 [3] Block Arnoldi Householder Algorithm
Input: A e R.™"

Output:Y € R™M* T e RM*PXMH "andH; j € R™", wherej=0,....mi=1...,j+1

1. Choose random vectors; and setX =[xy, ..., X] € R™;
2.Forj=12,...,m

3. Compute the Household@®R-decomposition where

X(jr +1:n,1:R) = QRandQ = (I + WSW) , wherel € R™ and 0e R(""*

4.if j=0

Y =
a.)Sek T - S

H(l’O) =
else ]

Hj)
= [X(l:jr,l:r)] _ '

b.)Set ,whereX(1:jr,1:r) e RI"™" and

| Hip

(1) ] [ R]
ReR™"
0 _ _
W = where®& RI"™*TandWe RMirxr
W
T
C.) Set T = T TYWS c R(j+l)r><(j+1)r
0 S

Y = [ Y W ] e RMx(j+1)r
end
5 1fj<m

0
6. ComputeX = (I + YTTYT)A( + YTY')| | [where 0c RI"™ | € R™" and

0
0 e R-I=Nx" regpectively.

7. end
8. end
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Him Q™ = Q™ Uiy, (3.10)

Whereuﬁ,'fr”“) is a quasi-triangular matrix where the eigenvaluebligf are either areal ¥ 1

matrix or a real X 2 matrix. The latter case constitutes complex conjugate pair@%ﬁﬂ =

[q(ler) o qumr)

that the desired eigenvalues occur in the upper left part of the rrlaﬁﬁl‘%).

] is an orthogonal matrix. The real Schur decomposition can be reardere

Assume thak be the number of desired eigenvalues and for ease of the presentadioes k
not split a conjugate pair. After reordering the real Schur decompositiblg,. and truncating

the last (nr — k) columns we have

Hn QU™ = QM ™), (3.11)

For a given matrixA we can find the approximate real partial Schur decomposAi@ﬁ) =

QWU from the equation (30), where

(
QM = [, q.....q™] = Ve Q™ and U =y, (3.12)

We can easily obtain the partial eigenvalue decompositiohlmf computing the eigenvalue

decompositiory"™s, = S,D"™ and setting

V& = Vi Qs D = D™ o get AW = VDA, (3.13)

Using the (39), (310) and (313) we have the following

AV|£A) - VéA)D(kA) = V<m+1)H(rm1,m) E/ Q(kar)Sk' (3.14)

It can be easily seen from @) that we have an acceptable approximate partial eigenvalue
decomposition oA when

IHmem Err Q™ Syl < atol, (3.15)
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where tol is a user input tolerance value anid chosen to assure a small backward error, see

[3], [44]. Then, rearranging (34) gives the following relationship

Aqu[ Q@ Vi1 ]

UA
k e (3.16)
H(m+1,m) E;r Qk m

By means of orthogonal transformations1@) can be transformed intolkablock Arnoldi
decomposition. Therefore, the block Arnoldi algorithm can be restartedrginued with the
matrix Vms+1). In order to continue block Arnoldi Householder Algorithm 3, the orthwajo
matrix Q(kA) v(M+1) Tis replaced into the compa@ Y representation of the Householder
product. The reference [3] can be seen more details. After this onlatigation process we

have

(1+ YTY )l =[ Q' Via ]R, (3.17)

whereRis a diagonal matrix of1. Then multiplying (3.16) byR = Ry € R gives

AQPR = (I + YTYT )y Hir. (3.18)

If we chooseQ(kA)IQ = [01, 92, ..., Ok], the block Householder Algorithm can be continued with
the next set of vectors. Then, matriceéandT are updated to get the next set of vectors and

the restarted method is continued.

The following algorithm combines the results and restarted method to obtain ateghiock

Householder Arnoldi method [3]:

3.3 Jacobi-Davidson Type Methods

This section is based on books [23, 63, 67] and the articles [60, 61].

Jacobi-Davidson methods [60, 61] have been introduced as a pbvestinique for solving

a variety of eigen problems. The basic idea in these methods is projecting tle omadra
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Algorithm 5 Augmented Block Arnoldi Householder Algorithm
Input: A e R™™ k, m, r, tol such thatih— 1L)r > k

Output:eigenvaluegj'j‘:l and eigenvectors; 'j‘:1 of A

1. Perform m steps of the block Arnoldi Householder algorithm 3 to geblihek Arnoldi
decomposition (3. 3)

2. Compute and start the Real Schur decomposition of the ma.;r,mndﬁkﬂmlm

3. Check the convergence of the k desired eigenvalues using
IH@me1m Err Q™ Syl < atol

a.)if all k values converge then compu%tﬁ:l andx; T:l using (3. 7)
4. Compute restarting vectork W(T)Ik+r = [Qf(A)V(nHl)]R

5. Compute the matrikd .k

6. Performmy steps of the block Arnoldi Householder Algorithm to get the block Arnoldi
decomposition

7. Go to step 2.

subspace like the Krylov subspace algorithmstfédent from the methods like Arnoldi and
Krylov-Schur depending on preserving Krylov subspace, the Jdzakidson method does

not insist on keeping a Krylov structure in the projected subspace.

Jacobi-Davidson methods are based on the approach by Jacobiddddda In the Davidson
method [60], the subspace is expanded by orthogonalizing the corrag@amst the residual.
This method works very well with the matrices which are diagonally dominandbiagethod
for eigenvalue approximation is a combination of Jacobi rotations, Gasdbilterations and
an almost forgotten method called Jacobi’s orthogonal component torrédOCC) [39].
Combining the ideas in the Jacobi and Davidson methods, a new apprdksch Jacobi-

Davidson method is introduced in [60] for symmetric matrices.

Here, we introduce the Jacobi-Davidson type algorithms for non symmetenwglye prob-
lems [61]. These algorithms are based on the Jacobi-Davidson methoibddsnr[60] and
adapted for generalized and standard eigenvalue problems. In thesihalg the Jacobi-
Davidson approach is modified such that partial (generalized) Schms fare computed.Since

they involve orthogonal bases, the partial Schur forms have beeprcfamsnumerical stabil-
ity.
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In Jacobi-Davidson methods, the small projected problem is reduced tio fechm by theQZ
method [45] for generalized eigen problems o method for the standard eigen problems.
The construction of the subspace and the projected system is viewedatigaterexact forms

of QZ andQR methods. For this reason the methods introduced here have been nani&d JDQ
and JDQR, respectively. The JDQZ method produces a partial gemer&izhur form for

the generalized eigenvalue problem and JDQR generates a partiaf@chdor the standard
eigenvalue problem. Here we focus on JDQR method, however, a briedirgtion for JIDQZ

method is presented as JDQR method is a simplification of the IDQZ method.

Similar to subspace approaches for standard eigenvalue problemsptbgiamte eigenvec-
tor § is selected from a search subspace gpain each step of the method. The Galerkin
condition, with associated approximate generalized eigen{ﬂg@, involves orthogonality

with respect to some test subspace gpdn

BAG — &BgLsparw (3.19)

For generalized eigenvalue problems, it is natural to take the test sebspag\W} different
from the search subspace called the Petrov-Galerkin approachmAgbkat search subspace
and test subspace are of the same dimensionj.s&guation (319) leads to the projected

eigen problem

B - & u=0, .
(BWTAV — aW'BV)u = 0 (3.20)

such that it can be easily solved by standard techniques, and a solul(@rﬂ)) is selected.
Then the Petrov vectay = Vu and the residual = SAG — @Bgj associated with the Petrov
value<5/, B) are computed. In each step of the iterative process, the subspang¥jspad
spanWj} are expanded. In the Jacobi-Davidson method introduced here, tich sespace
is expanded by a vectersuch that it is orthogonal tpand it solves approximately the Jacobi

correction equation

(1 - z), (BA - aB)(l - ‘?G_T))v =-T. (3.21)

Al grg
In the next step of the iteration process of the algorithm $@an defines the new search
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subspace. As we choose orthogonal matricendW, the columns oV andW are orthonor-
malized by modified Gram-Schmidt method. Then@#®method is used to reduce Equation
(3.20) to a partial generalized Schur form. After convergence, the p&thalir form is ex-
panded with the converged Schur vector, and the algorithm is repeated déttated pencil

for other eigenpairs. More details abaldQZ method can be found in [61].

Now, we are ready to introduce a simple case of this method called JacokisDavype QR

(JDQR) method.

3.3.1 Jacobi-Davidson QR Method

Jacobi-Davidson type QR method is a simplification of Jacobi-Davidson typen€&HAod
[61] to standard eigenvalue problem. In Jacobi-Davidson method fodatdreigenvalue

problems, the projected eigenproblem reduce to

(VAV - AV*V)u = 0. (3.22)

For this low-dimensional problem a solution, say.{), is selected by standard computational
techniques. The Ritz valukeand the Ritz vectog = Vuform an approximate eigenvalue and

eigenvector with residual= (A — 11)§.

For the expansion o¥, a vectorv that is orthogonal t@ is taken and it solves the Jacobi

correction equation

§°v = Oand(l — 8" )(A — A)(I — 6V = —r. (3.23)

The expanded search subspace is $@an whereV is a orthonormal matrix, i.e\V*V = 1.
In this method for the construction of an orthonormal basis of the seabspaoe modified

Gram-Schmidt is used.

If 1is replaced in the correction equation (Equation (3.23)) by an eigenvathen the space
spanned by and the exact solution of the Jacobi correction equation contains theiassio

eigenvector.
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The projected eigenproblem (3.22) is reduced to Schur form by the QiRitalg and then
the Schur form is exploited for the selection of a Ritz pajri)“and for restriction of the

dimension of the subspace syaf).

Now, we will give the main expressions for Jacobi-Davidson type QR #hgoibased on the

article [61].

Assume that we have detected ttke-(1) Schur pairs, that is, we already know the partial

Schur

AQk-1 = Qk-1Rk-1.

Then the new Schur paig(1) is an eigenpair of the deflated matrix

(I = Q-1 Qe AU = Qe-1Qcar)- (3.24)

The eigenvalue problem for the deflated matriX2(8 can be solved easily. For the deflated
matrix (320) Jacobi-Davidson method constructs a subspace{$péar finding the approx-
imate eigenpairs, wheré is an orthonormal matrix such th&t' Q.1 = 0. Then, for the

deflated interaction matrikl we obtain

M =VT(l - QaQr)A( - QaQ1r)V = VT AV (3.25)

For a wanted eigenpair of the deflated matriX2(, the ordered Schur form
MU =US

gives an approximated eigenpaif {J = (VU(:, 1), S(1,1)). Then, according to the Jacobi-
Davidson approach, the search subspace§fjas expanded by the orthonormal complement

of vto V, wherev is the approximate solution of the deflated Jacobi correction equation

QL,v=0,§v=0
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and

(1 =G8N — Quea QA= A1) x (I = QeaQp_)(I = GG v = -, (3.26)

wherer = (I - Q1Q_ (A - AN - Q1 Q)8

Note that the projections in Equation.28) can be subdivided into two parts.The first part

is (I — §d") associated with Jacobi-Davidson and the second one is the deflatiofl part

Qk—lQI_ 1) :

Similar to Arnoldi’'s method, for subspace iterations there is two deflation tegbsio the
literature. They are called as explicit and implicit deflation techniques. Ihoixgeflation,
after detection of Schur vector the computation is continued with a deflated matimxplicit
deflation, each new vector is generated wthself for the search subspace. Then it is made
orthogonal to the detected Schur vectors before adding it to the sedogbese. This method

uses a mixture of both techniques. In Jacobi correction equation

Gv=0 and (I-&§")(A-AD(I -§§ )v=-r

with residual r = (A — 11§, the explicitly deflated matrix can be used. The solutions of
the deflated correction equations are orthogonal to the detected SchansvéSo, there is no
need to use deflated matrix for computing the deflated interaction niatrikis also possible
to use implicit deflation in the following way: the correction equation with the ndlatsl
Ais solved approximately and the resulting solution is made orthogonal to theetkg&xhur
vectors. In this approach the expensive matrix-vector multiplications ardea/but, explicit
deflation seems to improve the condition numbers the linear system and this |eai@dster
convergence process for the Jacobi correction equation. Whenatechpith implicit de-
flation, it seems that the explicitly deflated correction EquatioBgBleads to more stable
results. This can be explained as follows. The resulting solution of theatmn equation
without deflation may have an important component in the space spannee bigtdcted
Schur vectors. Subtracting this component as an implicit deflation may resalhallation.

So, working with an explicitly deflated matrix prevents this cancellation.

Now, we briefly discuss preconditioning for the Jacobi correction éguaWe need to solve

a deflated Jacobi correction equatior2@ for a givengand 1 in each iteration step. For
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the approximate solution of this equation a Krylov subspace method may be Usedate
of convergence and thefeiency of Krylov subspace methods can be improved by precon-
ditioning. However, there may be a problem during the identification ofti@ective precon-
ditioner. For instance, for interior eigenvalues the construction offéatterze incomplete
LU-factorization f0|(A— il) may require much fill in, which makes the construction expen-
sive. So, it may be a good strategy to compute a good (and possibly ag)esconditioner

K for (A - 7l) wherer is an user specified fixed target value and to use

K=(-§8")0 - QeaQr )K( - Qe Q)1 - &d') (3.27)

as the preconditioner for variousahd 1. For more details about preconditioning in JDQR

method see [61].

JDQR algorithm has some nice properties. While the process convergeSdioua pair,
the search subspa&éwill provide good initial approximations for the nearby Schur pairs.
Moreover, slow convergence during one stage may be compensatadféster convergence
in the next stage, because the subspace {§ffanill be enriched with more components of

other Schur pairs due to the repeated amplifications.
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CHAPTER 4

EIGENVALUE SOLVERS

In the chapter, we present description of programs and softwaragesklescribed in Chapter

3. Since eigenvalue problems have a wide range of application areasrineseied engineer-
ing, there exists manyfigcient eigensolvers. Most of the methods for sparse non symmetric
eigenvalue problems were developed with in the last fifteen years. Paoallgie develop-
ment of new methods, several eigenvalue solvers were developethstichost of them can

be used in applications. For a detailed survey of current solvers yosesa[34].

The programs used in this study are written in MATLAB (speig, ahbeigs) jdad G-+

(SLEPc). MATLAB is a numerical computing environment which has goodaligation
skills. Today, it is a popular language among numerical mathematicians. Othérehand,
C++ is a general purpose programming language. It is used in both industtiacademic
environment. All of the eigenvalue solvers investigated in this study can dedfon the
Internet freely. They can only be applied to sparse matrices. The salmptemented in
MATLAB are designed for serial computation, however, the SLEPc is@signed for par-

allel computation. In this study, we use both programming languages in semglutation.

4.1 Descpription of speig

speigis a MATLAB implementation of implicitly restarted Arnoldi method (IRAM) described
in Chapter 2. Its name is built by the combination of the first letters of wordsspad eigen-
value. It is developed as an alternative to éigcommand of MATLAB which is for dense
matrices. Thepeigsolver is available with its own package at ftp.task.gdautysoftwar¢gmat

lalytoolboxmatlalisparfurispeig. A detailed description and implementation of the solver
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‘LM’ Largest Magnitude
'SM  Smallest Magnitude
'LR"  Largest Real Part
'SR Smallest Real Part
'BE’  Both ends

Table 4.1: Character signs for

can be found at [54].

The basic syntax of the solvepeigis

>> d = speidA),

such that it provides one output argument the vedtaiich is the eigenvalues &. If the

eigenvectors are also needed the syntax will be

>> [V, D] = speidA)
such that it provides two output arguments, the maifigonsisting of eigenvectors and the
diagonal matrixD with eigenvalues on its diagonal.

The general syntax of the eigenvalue solspeigis

>>d = speidA k, o)

whereA is the matrix whose eigenvalues are desired to comfuitethe desired number of
eigenvalues and- is the around which the user wants to compute the desired eigenvalues.

Here,o is numeric or a two letter string described in Table 4.1.

There are also many input parameters for the sabpaigother than these ones. The de-
fault values of parameters in the sohgmreigcan be changed with the help of two functions:

speigseandspeigget
The functionspeigsethanges and saves the parameter values by the syntax
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Parameter Name Description Default value

n Dimension of the problem none

p Dimension of Arnoldi basis 2k

tol Tolerance for convergence 8772l 1071° (symmetricA, B)
1078 (non symmetricA, B)

maxit Maximum number of Arnoldi iterations 300

issym Positive ifA is symmetric, 0 otherwise 0

dopoly Positive if it specifies a matrix vector 0

product,ois LR, SR or numeric and
polynomial interpolation is to be used to
accelerate convergence

gui 0

Table 4.2: Parameter list speig

>> opts= speigset namé’, ‘valuel’, ‘name’, ‘value?’, . . ),

wherenamelrepresents the name of the parametenaaidelrepresents the specified value

of the parameter.

speiggeis designed to extract the parameter values that are creatgukegsetIts syntax is

>> v = speiggetopts’ namd).

The parameters and their default values for the sapeigare given in Table 4.2.

The parametedopolyshows the activation or deactivation of polynomial acceleration. The
qui parameter is related to opening a convergence history window of the .skilskows the
residual norm at each step, current iteration number, elapsed time awergence report.
The general properties of the problems like matrix size, tolerance and maximonier of

iterations are also reported.

4.2 Descpription of ahbeigs

ahbeigss a MATLAB implementation of the augmented block Householder Arnoldi method
(AHBEIGS). Its name is built by the combination of the first letters of the algeridug-

mented block Householder Arnoldi and eigenvalues. It is developed Bgglama to take
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the advantage of block Krylov subspaces. It is used for both geaadhktandard eigen-
value problems. The solvahbiegss available at www.math.uri.edjbaglamasoftware. A

detailed description can be found in [3].

The basic syntax aihbeigss

>> d = ahbeiggA),

whered is a vector with entries consisting of desired eigenvalues of the matnkich can
be represented as a numeric or as a M-file CAfunc’)A I6 passed as an M-file, then the size
of the matrixA must also be introduced. If the corresponding eigenvectors are thetbee

syntax becomes

>> [X, D] = ahbeigg$A),

whereD is a diagonal matrix that contains the desired eigenvalues along the diagaiizle
matrix X contains the corresponding eigenvectors, suchAhat= XD or AX = BXD for

generalized eigenvalue problem.

It is also possible to see the convergence history of the algorithm by thevfietjsyntax:

>> [X, D, FLAG] = ahbeiggA),

which returns the same as the above option plus a two dimensional array tHafA@ports

if the algorithm converges and the number of matrix vector products.

Similar to other algorithmsahbiegsis also contains many parameters and it is possible to
change these parameter values by using ‘OPTS’ commaattb&figs The structure to change

the default values of parameters is

>> OPTS.parameter namedesired value of the parameter

Then by adding the ‘OPTS’ command as an input argument to one of thexegratahbeigs
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Parameter Description Default value

k Number of desired eigenvalues 6

adjust Initial number of vectors added to the k restart 3
vectors to speed up the convergence

tol Tolerance used for convergence -90

maxit Maximum number of iterations 100

blsz Block-size of block Arnoldi Hessenberg mattiky, 3

nbls Number of blocks in the block Arnoldi Hessenberg matry,;. 10

If value of nblsis not suficiently large enough then
ahbeigswill not converge or miss some desired eigenvalues

dspr Sets history 0
Vo starting vector Vg = randn
Vo Initial matrix of r columns for the block Arnoldi method rand

Table 4.3: Parameter list @hbeigs

the user can achieve to set up new parameter values. Table 4.3 shovesdheefers and

default values used in the eigenvalue solebeigs

The parameteblsz shows the number of columns of starting matrix which is thealue
in the formula. nbls parameter is then value in the formula and if required it is increased
automatically by the solver. The input parametgmashows the portion of the spectrum.
It can be a numeric or a letter string defined in Table 4.1. The convergéiibe method is

determined by the paramet®t described in Chapter 3.

4.3 Description of jdqr

jdgr is a MATLAB implementation of Jacobi-Davidson QR method. The name JDQR comes
from the first letters of the Jacobi-Davidson QR method. It is developg@drgard Sleijpen
and Han Der Vorst. A detailed description of the method can be found ingB0, The

MATLAB code of the solver is available at www.stascience.uu.i-sleij101/JD_software.

The basic syntax gtigr is given as

>> d = JDQR(A)

whered is a vector whose entries are eigenvalues of the matrldnless it is changed, vector

d includes five largest eigenvalues of the ma#iXWhen the corresponding eigenvectors are
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needed, the syntax becomes

>> [X, Lambdd = JDQR(A)

The way of calculating other parts of the spectrum can be achieved bypthmand

>>d = JDQR(A, k, sigma)

where the first input argument is either a square matrix that can be fylaose, symmetric
or non symmetric, real or complek.s the number of desired eigenvalues anid a numeric
or a two letters string that determines the portion of the spectrum. The two ldtiagsfer

jdqgr is given in Table 4.1.

Other parameters in the solver can also be changed in a practical wayfbildiwng options

structure:

>> OPTS.parameter nameparameter value

Then assigning these changes to the code by

>> d = JDQR(A,OPTS)

ends up with changes of the parameter.
The parameters usedijithgr are given in Table 4.4.

The type of the Ritz values used during calculation is determined by paratastespace
If it is assigned as ‘'STANDARD’, standard Ritz values are used. If issgned as ‘HAR-
MONIC’, the harmonic Ritz values are selected. For computing interior egees, choosing

the type of the Ritz values as ‘HARMONIC’ gives better results.

The parameteltSolverdetermines the opportunity to select the linear solver used for correc-
tion equation. Linear solver can be chosen as GMRS, CG, MINRES or wtheys which

requires a positive preconditioner to work.
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Parameter Description Default value

Tol Convergence tolerance le-8

jmin Minimum dimension search subspace +5k

jmax Maximum dimension search subspace TN
maxit Maximum number of Arnoldi iterations 100

vO Starting space oned*rand
testspace  For using harmonic Ritz values. If 'Standard’

'testspace=" harmonic¢, thenSIGMA=0is
the default value fo5 IGMA

Lsolver Linear solver '"GMRES’
LSrol Residual reduction linear solver 170072, ...
LSyaxit  Maximum number iterations of linear solver 5

Precond Preconditioner M.

Table 4.4: Parameter list gdqr

By assigning the parameter valuedi$pto 1, the user will have a chance to see convergence

history and residual at each step. If it is not changed, there is n@eharsee the history.

4.4 Descpription of SLEPc

SLEPc, the Scalable Library for Eigenvalue Problem Computations, is aaseftibrary
for the solution of large, sparse eigenvalue problems. It is built on togdiSe (Portable,
Extensible Toolkit for Scientific Computation) [38] and extends it with all thecfionality
necessary for the solution of eigenvalue problems. It is writtertin Gut a Fortran interface
is also available. It can be downloaded from www.grycap.ugsiesg and many documents

can be found in this web page.

SLEPc can be used for the solution of eigenvalue problems given in eitimetasd or gen-
eralized form, both Hermitian and non-Hermitian, as well as other relatedepnsbsuch
as the singular value decomposition [37]. It focuses on sparse prabléherefore it is
based on projection methods such as Krylov-Schur, Lanczos, AriSutspace Iteration and
PowefRQI. It also gives the opportunity to apply forfiirent types of problems and spectral

transformations. More information can be found in [34].

The main objects provided by SLEPc are the Eigenvalue Problem Solvey @88 $he Spec-
tral Transformation (ST). ST is used to compute the internal eigenvalutacelerate the

convergence. EPS is used to specify an eigenvalue problem andgs@ndficient access
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Problem Type Command Line Key

Hermitian —eps.hermitian
Non-Hermitian —eps.non_hermitian
Generalized Hermitian —eps.gen hermitian
Generalized Non-Hermitian —eps.gen.non hermitian

GNH with positive (semi-) definit® —eps pos.gen non hermitian

Table 4.5: Promlem Types in SLEPc

to all eigensolvers included in the package. Furthermore, it is used tgeld@hault values of
parameters such as eigenvalue number, tolerance, maximum number ofritgratio SLEPc
is able to cope with many types of problems. Currently supported problera &ypeagiven in
Table 4.5. The default problem type is non-Hermitian. So it is not negessahange the

problem type for non symmetric problems.

The available methods for solving the eigenvalue problems on SLEPc arer fitenation
with deflation, Arnoldi method with explicit restarting, Lanczos method, Kry&ohur. The
default method is Krylov- Schur. Each method is designed to compute theti@igenval-
ues. However, it is possible to compute the smallest eigenvalues, sytelgsit real part or
smallestiargest imaginary part of the eigenvalues. It is also possible to computeténmin
eigenvalues with harmonic extraction or spectral transformations. In mécragtraction the
user can compute eigenvalues around a target valdldne spectral transformation methods

in SLEPc are given in Table 4.6.
Sorting criterion  options name

shift of origin shift

spectrum folding fold
shift-and-invert sinvert
cayley cayley

Table 4.6: Spectral Transformation Methods in SLEPc

In the shift of origin the matrix is shifted with the givenvalue. Spectrum folding means
shifting then taking the square of the matrix. By Cayley transformation a ghdftaa anti
shift is applied to the problem. the default value for the shift and anti sh¥aiyley transfor-

mations is equal.
All methods are designed to compute only one eigenvalue. It is possiblengeltas num-
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ber, however, the user should be careful while changing the desireter of eigenvalues.
As the number of eigenvalues (ne\ffexts the dimension of the working space (ncv), there
must be a relation between nev and ncv such that they satisfy= max2nev, nev+ 15).
This is reasonable when the small portion of spectrum is needed. Howéwven the large
number of eigenvalues are required, changing the ncv according teldtion causes storage
problems and high computational costs. So, instead of ncv another paramadeis used to
handle with these problems. This parameter bound the size of the problgnT[&fe is no

specified relation between mpd and other parameters.

The errors are controlled by the residual veatos A% — A% In the case of the Hermitian
problems, the 2-norm is used as a bound for the absolute error in theaigeenHowever, in
the case of the non-Hermitian problems, the situation is worse as there is no sihafilen
similar to the case of Hermitian problems. This means that the error bounds maystéin
indication of the actual error but the user should be aware that they sorsetiayebe wrong,
especially in the case of highly non-normal matrices. The default valueeddrtior estimate

bound,tol, is 10— 07. It can be changed depending on the problem.

The two objects of SLEPc, EPS and ST, are used to make the necesaaggeston default
values. These objects contain functions to apply the changes in the writtemauds. It
is also possible to apply changes during the run time from the command line. almpéx

command with descriptions is given below:

.Jexd — file matrix —epsnev20 —epsncv40 - epshermitian

—epstype arnoldi —epstol 10e— 8 - sttype cayley — st shift 1.

This command computes 50 eigenvalues around 1 of the Hermitian matrix with wderan
10e — 8 by Arnoldi method applied with Cayley transformations. The command at tjia-be
ning of the command lingex4 represents one of the examples in SLEPc. This example takes

a matrix from an exterior address and then finds its eigenvalues.

.Jexd — file matrix —epsnev50 —epsncv100

—epstype krylovschur — epsharmonic — epstarget 1.
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This command says the package to find 50 eigenvalues around 1 of thesnmiitiein matrix

by Krylov Schur method with harmonic extraction.

.Jexd — file matrix —epsnev10000 — epsmpd600 - epshermitian

—epstype — epsarnoldi — eps smallestmagnitude

This command computes 10000 smallest eigenvalues of the Hermitian matrix bidiArno
method. It should be noticed that the parametedis used instead afcvas the number of

desired eigenvalues is quite high.

SLEPCc also gives an opportunity to display the error estimates during tlcetexe of the
algorithm and plotting the computed approximations of the eigenvalues at thefehd

process for any problem. The reference [37] can be seen fordetals.
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CHAPTER 5

NUMERICAL RESULTS

5.1 Performance of Eigensolvers

In this section, we give numerical results for computation of eigenvalussrok directed
graphs. A direct comparison between the solvers described in Chajgaen&de in terms

of the accuracy. Although the scope of this study would be on non symmetticesa the
solversspeigandjdqgr and library SLEPc can also be applied to symmetric matrices. Also,
the solveljdqr is designed to solve the problems with preconditioning which makes the solver
really efective as reported in [60] and [61]. However, through this chaptersdiverjdgr is

used without preconditioning.

The solverspeig ahbeigsandjdqr are written in MATLAB while SLEPc is written in €+.

Therefore, a comparison of CPU-times between these solvers is ndilposs

All eigensolvers investigated in this study are designed to compute somefihet spec-
trum: exterior or interior eigenvalues of the spectrum. However, we tryitgpote as many
eigenvalues as possible. For this reason default values of some pasaaretecarranged to
compute all spectrum. Nevertheless, we were unable to compute the whotleisp®r some
eigensolvers. For instancepeigis designed to compute at mast 3 eigenvalues wheneis

the size of the matrix. If eigenvalues of the matrix are desired to compute, an error occurred
and eigenvalues are not computed. On the other hand, whed eigenvalues are desired,

it runs with a warning about the number of requested eigenvalues arahijbonvergence
may not be reached. The maximum number of eigenvalues computatid®ygschanges

depending om and the internal relations betwephls blszandmaxdpol
All computations for MATLAB are done with version 2007a and carried @utntel Core
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2 Duo CPU with 2.1 GHz and 2 GB RAM, Windows Vista operating system. Che+

computations are carried out on Fedora Core 12.

5.2 Spectra of Paley Digraphs

The normalized Laplacian matrix for two Paley digraphs are used in this exarRaley
digraphs are a class of strongly regular digraphs. The normalizeddiaplmatrix of Paley
digraph has three distinct eigenvalues. The multiplicity of the 0 eigenvaluend fha other
eigenvalues have muItipIicitie@;—l) wheren is the size of the matrix. The y-axis in Figures
5.1,5.2,5.3, 5.4, 5.5, represents the absolute values of errors bedwasdrand approximate

eigenvalues.

Figures 5.1, 5.2, 5.3, and 5.4 (a) are for= 103. The number of nonzero elements of
matrix is 5253 which is nearly half of the total elements which indicates that thealiaed
Laplacian matrix is dense. In spite of the design of algorithms, we force thexomgute
as many eigenvalues as possible as mentioned alspagcomputed 100 eigenvalues and
ahbeigscomputed 96 eigenvalues with parameteiots= 53 andblsz= 2. The other solver

can compute all eigenvalues.

Figure 5.1 represents the errors for eigenvalues computed with Krylour&ad Arnoldi
methods by SLEPc and they have similar error distribution. On the other tizaa:rror
distribution of the solverhbiegsis totally different as it implements the block version (see
Figure 5.3). However, despite thdl@rences in the shape of error distribution, errors for each

solver fluctuates around 1¥ and 1017

Figures 5.4 (b), 5.5, and 5.6 are preparedrfee 1019. ahbeigscalculated 1010 eigenval-
ues with initial parametembls = 509 andblsz = 2 andspeigcalculated 1016 eigenvalues
whereas the other solvgtqr computes all eigenvalues without any problem as the Laplacian

matrix of Paley digraph is diagonally dominant.

In Table 5.1 CPU times of solvers for two Paley digraphs are given to obtengh idea
about eigenvalue computing times of solvers. These results show CPU tireelvefs for
computing all eigenvalues of Paley digraphs. The sohldreigsseems the fastest one as

it uses block Arnoldi method. The comparison is only done between thersaldech are
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Table 5.1: CPU times of Packages

CPU Times in Second

n=103 n=1019
speig 0.22 231.60

ahbeigs| 0.30 82.38
jdagr 0.74 332.54

[%2)

written in MATLAB. SLEPc is not included, as it is written in4G-.

Pl Graphof sze 105, Ky S, nev=103 mpé=30 Py Diaph of size 106 Aol =103 mpé=20
T T i T f T T T T

) [] E £
Egenvale Nomber Eigenvalue Nuber

(@) (b)

Figure 5.1: Approximate eigenvalues of Paley digrapmfer 103. (a) SLEPc-Krylov Schur
method (b) SLEPc-Arnoldi method

Paey Grgh of sz 103, HemonicExecton, ey 103, mpd 30
T T

; Paey Graphfsiz 109, Caye anslomaton, nev=103, =30
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Figure 5.2: Approximate eigenvalues of Paley digrapmfer 103. (a) SLEPc-Krylov Schur
method with Cayley transformations (b) SLEPc-Krylov Schur method with haicrextrac-
tion
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5.3 Spectra of Empirical Networks

For the rest of this chapter, all examples are taken from the Univerdfpatia Sparse Matrix

Collection [22] that each of them represents network and belongs to ajef. All matrices

in this collection available in adjacency matrix form but we have computed thuaalized

Laplacian form via related formulas given in Chapter 2.

The normalized Laplacian matrix of a network in size 396 is used as first dzamhpepre-
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sents a citation network. As there is no available information about the egacivalues of
the the normalized Laplacian matrix of this network, we have computed relagicuals for

eigenvalues.

The relative residual for eigensolvers is computed according to the folipfermula

_ IAX= X

- , 5.1
T ®-1)

where2 is the approximate eigenvalue ards the corresponding eigenvector of it. SLEPc
internally computes this value during computations and at the end of the prdispays it
on the screen. For other solvers we have computed the residualsiagdoré.l1. If1 = 0,

Eq. 5.1 is undefined. Therefore, we use

—a (5.2)

In Figure 5.7 and 5.8 the relative residuals are calculated with respecteéaytmevalue num-
bers for citation network in size 396. The eigenvalue numbers are ingrizaim left to right

and they are arranged from largest eigenvalue in magnitude to smallesiTbeeresidual

for Krylov-Schur method clusters around16and 101° for whole spectrum. On the other
hand, the relative residual fepeigis calculated for 393 eigenvalue because of its design as
it is mentioned above. It fluctuates aroundand 101°. The solverahbeigscomputed
388 eigenvalues with parameterisis= 197 andbls= 2. The relative residuals for it clusters

around 1015,

As next example we compute the normalized Laplacian matrix of a citation netwaikdn
1059. Computations are done with SLEPc-Krylov Sclapreig andahbeigs The solver
jdgr could not work to compute all eigenvalues since the normalized Laplacian risatrdt
diagonally dominant. Figures 5.7 and 5.10 show relative residuals for thisnit@etwork.
speigcalculates the 1056 eigenvalues amtbeigscalculates 1050 eigenvalues with parameter
valuesnbls= 529 andblsz= 2. The relative residuals for SLEPc Krylov-Schur aattbeigs
clusters around 134 and 10, Forspeigthe relative residuals fluctuates betweenénd

10715,
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As next example we have computed the spectrum of a larger normalizectizaphaatrix of
a citation network in size 4470. The relative residual is calculated by SiAov Schur
method as the other solvers failed to compute all eigenvalues. They alledtarrors about
memory. Figure 5.14 shows the residual plot calculated by SLEPc-KryttnrSmethod.

According to this figure, the relative residuals for SLEPc Krylov-Sdiuctuates between
10 and 10%°.

In Figures 5.1 to 5.11, the accuracy of solvers fdfetent networks is illustrated. The ac-
curacy of all eigenvalue solvers studied here is around machine epliitovever, they have
some pros and cons. For instanspeigandahbeigscan not compute the all eigenvalues.
Also, when size of the network increase they can not compute any of thevaiges. Ac-
cording to Figures 5.8 (a) and 5.10 (a) the solgpeigis not good at computing interior
eigenvalues when the accuracy is compared with exterior eigenvalugatersmlverahbeigs

in Figures 5.8 (b) and 5.10 (b) there is not such a exdt#réince between exterior and inte-
rior eigenvalues. It accuracy clusters around®@or both exterior and interior eigenvalues.
jdgr is designed for computing eigenvalues of diagonally dominant matrices. faled
except for Paley digraphs. We do not mgdgr can not compute any of the eigenvalues. It
compute few eigenvalues. For computing many eigenvalues it needs a loatibits. When
compared to other solvers, SLEPc-Krylov Schur seems the rfitgeat solver for now as it

works for all network types in this study. Also, its accuracy generallytilaies around 134
and 10%°,
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77



Ciaton nevork ofsize 1059, AHBEIGS, nls=529 bise=2

Claonnevofsze 1056 A, 1053 T T T T T
o T T T T
"
+ +
] + N
w ' * E + (T
e * + ¥
+ @ + {fﬂ\:& N A
* 4 3 . N 1 +
o 2 faeh o PRERERTREE AR VORI
* + 4 * * *
0 * * * 3 * e
P P s e + +
M w K + RAR ST CIFVOR T
R "+ \ "iiﬁ,‘ t:* H »t yi,t I o *,‘** .\ ;}éﬁ’ et tew *“
+ L + e IR
1ok gt + P S P 4+
W e ¢ *‘{fg*‘é# 1 N *.**f* [ATED) }#} ’i i ***;f,. XA FET I
Fah T ! A e, 4
Ve LA - *" ’;* . t;‘*& ;**iﬁ ',;*M ey é*,*f Al
. SutL oy "ot 4
' S *‘,;* J B AR %m"ﬁ o J‘* " CCIA N
i PN A A o ,:.* WM Y +
* + ir
:‘{ L g +, N [ Fa) LRY AR N
Load 4 ‘*& ' ' r + W " h
i + i N + o, **’: T (TN .t R
' x ¥ bl o .\ by, oty
+ okt
faid +
. “**‘é + + ot +
' LY
M +
0 M
i' - * ts + i
it Ei +
¥ *
k | I ! ! | ! ! ! ! !
0 | | | | | | | | | | 0 10 %0 0 ] 510 0 ) 0 w1
0 il n 0 50 0 ™ 0 0 00 Egenvale fumter
igenvake Nuber

Figure 5.10: Approximate eigenvalues of citation networkfer 1059. (a) speig (b) ahbeigs

s Ciaton etvor ofsize 470, Kyl Scur, nev=2470, =300
W
T T T T

5 I I I I I I I
w
50 1000 150 20 50 a0 3500 40

Eigenvale Number

Figure 5.11: Approximate eigenvalues of citation networkrioe 4470 are calculated by
Krylov-Schur method.

5.4 Spectral Density Plots

In this section we will investigate the eigenvalue distribution of networks frarptievious
Section. We also provide the spectral density plots for the real part adifemvalues of
the normalized Laplacian matrix. When the directions of all edges of a dirgecsgah are
ignored, then the spectral density of the resulting undirected graph isthe in the first-
order approximation as the density of the real part of the eigenvalueg alirtbcted graph.

The distribution of the real part of the eigenvalues reflects the undiregpetbgy of the graph
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and the distribution of the imaginary part of the eigenvalues approximatedg tjine number
of directed edges [50]. There ardfdrent plotting methods for looking into spectral density

suggested in [5, 41]. The density functions with Gaussian and Lorenelkeare used:

1= [ g0e) Y] o0 2081 = Y gl ) 53)
k k

(x=1)?
2072

whereg(x, 1) = \/% exp-

distribution. Through this study, Lorenz distribution is used and as the snvaliees are

), the Gaussian kernel gx, 2) = %m the Lorenz

taken for the parameter, the finer details are emphasized.

The spectral density plots of some citation networks are plotted with resptw formula-
tion of Lorentz and Gaussian distribution. In citation network, verticesesgrt a published

article and directed edges stand for reference from one article to arotiote.

Figures 5.12 and 5.13 show the spectral density plots for real parterigityes of a digraph
(network) and for its underlying graph in sizes 1059 and 4470. Frosetfigures it is seen
that they show similar distributions. In all figures there is a high peak at lhndtiows that
the underlying graph (undirected graph) consists of vertex doublingo, Ahe peak at O is
an evidence for the number of connected components in undirected(geplhapter 2). In
Figure 5.14 eigenvalue distribution shows a ring structure for all netwds~igure 5.15,
a 3D visualization is provided for the same citation networks which shows syiicregen-
value distribution at 1. This 3D visualization is provided with Lorentz distribusoggested
in [41].
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Figure 5.12: The spectral density for real part of the eigenvaluestatfon network for
n = 1059 with (a) Lorenz (b) Gaussian distribution.
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Figure 5.13: The spectral density for real part of the eigenvaluestation network for
n = 4470 with (a) Lorenz (b) Gaussian distribution.
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5.5 Conclusions

The contribution of this study is on computing and analyzing the spectrum rofialized
Laplacian matrices of directed graphs. We provide the comparison of énsespigenvalue
solversspeig ahbeigs jdqgr, and Krylov-Schur in SLEPc. In this comparison firstly, we use
Paley digraphs as they have three distinct exact eigenvalues. Theioncitatworks in dif-
ferent sizes are used. Both type of networks give an idea about theagy of eigenvalue
solvers. While the absolute error is used for Paley digraphs, relatige isrcomputed for
citation networks as we do not know the exact eigenvalues of them. All teewafyie solvers

have a good accuracy. The accuracy of each of them fluctuateseret@e4 and 1017,
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However, the eigenvalue solvespeig ahbeigsdo not allow us to compute all eigenvalues
because of their design. Also, they do not work as the size of networédses because of
the memory limitations. The solvgaqr only works with Paley digraphs as Jacobi-Davidson
methods are designed for diagonally dominant matrices. As citation netwarksadiag-
onally dominant, it can not compute all eigenvalues. It can only compute aifmvalues
for citation networks, however, to achieve this large number of iterationgésled. The

Krylov-Schur method in SLEPc works very well with all examples in this study.

By means of the numerical examples for finding the most appropriate algorivercompute
the all eigenvalues of some citation networks iffetient sizes. The eigenvalue distribution
of these networks show a circular distribution. In terms of a network, thisientwat there
is flow in networks [40, 50]. In three dimensional visualization of netwa@k®igenvalues
gather around 1 and shows a symmetric distribution around 1. For a citatiworkethis
means that there multiple edges for a pair of node and these edges aresit@gdpections.
Furthermore, spectral density plots for the real part of the eigenvahg:for the eigenvalues
of undirected graph which underlies these citation networks show appaidy the same
eigenvalue distribution. Then, instead of finding the eigenvalue distribufiemaerlying
graphs of digraphs, the eigenvalue distribution of the real part of eéd@es of digraphs can

be used.

Computing the whole spectrum of large matrices obtained from network atiptisas really
challenging as it requires memorffieient algorithms. Thef&cient algorithm in this study,
SLEPc, may fail because of memory limitations when it is applied to larger neswbds this
reason, parallel computing can be applied with SLEPc algorithms or anyaitfevalues as

a future work in the field of eigenvalue computation of large sparse matrices.

Spectral analysis of digraphs is a very active research area as itighthas a special case of
graphs for long times. By means of memofffi@ent algorithms this research area can also
be extended. The relations between some exact eigenvalue of digrapbsrestruction type

of the graph may be obtained similar to the case in protein protein interactionrketany
digraph parameters can be defined which are undefined now. By mesmense study in

this area, many questions for digraphs which have not been solveduyldtlze answered.
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