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ABSTRACT

COMPUTATION AND ANALYSIS OF SPECTRA OF LARGE NETWORKS WITH
DIRECTED GRAPHS

Sarıaydın, Ayşe

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. B̈ulent Karas̈ozen

Co-Supervisor : Prof. Dr. J̈urgen Jost

June 2010, 88 pages

Analysis of large networks in biology, science, technology and social systems have become

very popular recently. These networks are mathematically represented asgraphs. The task is

then to extract relevant qualitative information about the empirical networksfrom the analysis

of these graphs.

It was found that a graph can be conveniently represented by the spectrum of a suitable differ-

ence operator, the normalized graph Laplacian, which underlies diffusions and random walks

on graphs. When applied to large networks, this requires computation of thespectrum of large

matrices. The normalized Laplacian matrices representing large networks are usually sparse

and unstructured.

The thesis consists in a systematic evaluation of the available eigenvalue solvers for nonsym-

metric large normalized Laplacian matrices describing directed graphs of empirical networks.

The methods include several Krylov subspace algorithms like implicitly restartedArnoldi

method, Krylov-Schur method and Jacobi-Davidson methods which are freely available as

standard packages written in MATLAB or SLEPc, in the library written C++.
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The normalized graph Laplacian as employed here is normalized such that its spectrum is

confined to the range[0,2]. The eigenvalue distribution plays an important role in network

analysis. The numerical task is then to determine the whole spectrum with appropriate eigen-

value solvers. A comparison of the existing eigenvalue solvers is done with Paley digraphs

with known eigenvalues and for citation networks in sizes 400, 1100 and 4500 by computing

the residuals.

Keywords: undirected graph, directed graph, spectral graph theory, eigenvalue, Krylov sub-

spaces, empirical networks
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ÖZ

GEṄIŞ AG̃LARDA SİMETRİK OLMAYAN SPEKTRUM HESAPLAMALARI VE
ANAL İZLERİ

Sarıaydın, Ayşe

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. B̈ulent Karas̈ozen

Ortak Tez Ÿoneticisi : Prof. Dr. J̈urgen Jost

Haziran 2010, 88 sayfa

Biyoloji, bilim, teknoloji ve sosyal sistemlerdeki geniş ag̃ların analizi son zamanlarda çok

pop̈uler olmuştur. Bu ãglar matematiksel olarak çizgiler şeklinde gösterilebilmektedir. Bu

tür deneysel ãgların çizge şeklinde g̈osterimleri, ãg yapısıyla ilgili gerekli niteliksel bilgileri

çıkarabilmede b̈uyük önem taşımaktadır.

Bir grafik, birimleştirilmiş Laplace g̈osterimi diye adlandırılan, grafik̈uzerindeki yayılmaları

ve olası gidişleri belirleyen uygun bir fark işleticisinin spektrumu tarafından g̈osterilebilmektedir.

Bu işlem geniş ãglara uygulandı̃gında b̈uyük matrislerin spektrumunun sayısal yöntemlerle

belirlenmesi gerekmektedir. B̈uyük ãgları temsil eden birimleştirilmiş Laplace matrisi düzenli

bir yapıya sahip olmamaktadır ve dog̃al ölçeklenmëozellig̃i göstermemektedir.

Bu tezde, deneysel ag̃ların ÿonlendirilmiş çizgelerini g̈osteren simetrik olmayan birimleştirilmiş

Laplace matrisi için uygun̈ozdẽger ÿontemleri karşılaştırılacaktır. Bu metodlar MATLAB ya

da C++ daki kitaplık programı olan SLEPc gibi paket programlar olarak serbestc¸e bulunabilen

tam olarak yeniden başlatılmayan Arnoldi metodu, Krylov-Schur metodu ve Jacobi-Davidson

metodları gibi çeşitli Krylov alt uzay algoritmalarını kapsamaktadır.

vi



Uygulanan Laplace grafig̃i normalize edilmiş olup spektrumu(0,2) aralı̃gından oluşmaktadır.

Özdẽger dãgılımı ãg analizinde b̈uyük önem taşımaktadır. Sayısal olarak yapılması gereken

tüm özdẽgerlerin uygun ÿontemlerle hesaplanmasıdır. Bu yüzden mevcut ÿontemlerin bir

karşılaştırması ÿonlendirilmiş Paley çizgelerinin bilinen̈ozdẽgerleriyle ve 400, 1100 ve 4500

büyüklüklerindeki alıntı ãglarıyla kalıntı hesaplanarak yapılacaktır.

Anahtar Kelimeler: ÿons̈uz çizge, ÿonlendirilmiş çizge, spektral grafik teorisi,özdẽger, Krylov

altuzayları, deneysel ag̃lar
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CHAPTER 1

INTRODUCTION

Many complex systems in nature have complex network structure [51]. The structure of the

complex network displays significant features of complex systems and worthan extensive

study. The network structure of complex systems can be treated with graph theory. To ana-

lyze these systems structural relation parameters are introduced [30, 32,73]. Then, they are

represented by matrices to exploit the relation between spectrum of these matrices and the

structure of complex systems. However, all these procedures can only capture some certain

qualitative properties, not all of them. The normalized Laplacian spectrum [5, 8] is a signifi-

cant tool in this respect. Its spectrum reflects properties of the network structure such that the

source of the network can be recognized.

Recent developments about spectral properties of normalized Laplacianmatrix require com-

putation of the all eigenvalues of large matrices. Since the large matrices obtained from

network applications are sparse and unstructured matrices, direct solvers for eigenvalue prob-

lems using finite number of operations are not appropriate because of computational cost and

memory limitations. Therefore, iterative solvers are preferred for eigenvalue computation of

large sparse matrices as they make use of sparse structure of large matrices. Krylov subspace

algorithms and Jacobi-Davidson methods are two widely used iterative methodswhich make

use of sparse structure of matrices.

There have been various softwares applying these methods and most of them are freely avail-

able. They may be different in terms of the language (C+ +, Fortran or MATLAB), version

or simply the design of algorithms. For example, the most popular and widely used sparse

matrix eigensolver ARPACK is written in FORTRAN and also it has a C++ interface and

implements a famous Krylov subspace method called implicitly restarted Arnoldi method.
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In this thesis the comparison of the existing sparse eigenvalue solvers is provided by means

of directed graphs. Also, the spectrum of normalized Laplacian matrices ofdirected graphs

describing large networks is computed with the existing eigenvalue solvers since the eigen-

value distribution of this matrix reveals important information about the structural properties

of network.

The outline of the thesis is as follows:

Chapter 2 starts with a brief introduction to the study of complex systems with network theory.

The development of network modeling is described. Then, basic definitionsand elementary

notions of undirected and directed graphs needed for the following chapters are given. Also,

some necessary tools for spectral analysis of both type of graphs are introduced. Then, gen-

eral and recent results about relations between spectrum of normalizedLaplacian matrix and

structure of networks for both types of graphs are given.

In Chapter 3, basic notations and methods for eigenvalue problems are given. The Krylov

subspace algorithms with their variations implicitly restarted Arnoldi method, Krylov-Schur

methods and augmented block Householder Arnoldi method are introduced.Then Jacobi-

Davidson methods are presented with their a new different application Jacobi-Davidson type

QR algorithm. A schematic description is done for each type of methods. Applications of

methods for symmetric matrices are briefly introduced. The comparison of methods with

each other is also provided.

In Chapter 4, the MATLAB implementations of Krylov subspace algorithms: implicitlyrestarted

Arnoldi method (speig), augmented block Householder Arnoldi method (ahbeigs) and for the

Jacobi-Davidson type QR algorithm (jdqr) are introduced. Also, the SLEPc library in C++

for the Krylov subspace methods is presented. The parameters used in each package and the

usage of the eigenvalue solvers are described.

The thesis concludes with Chapter 5, where the numerical results are given. Firstly, the com-

parison results for eigenvalue solvers described in Chapter 4 are presented. During this com-

parison a special digraph called Paley digraph is used in addition to some other network ex-

amples. Then, the spectral analysis of citation networks in sizes 400, 1000and 4500 are done.

These networks are analyzed by means of the spectral density plots to investigate the prop-

erties of networks using the knowledge described in Chapter 2. Also, somespectral density

2



plots are provided for a comparison between the spectrum of directed graphs and the under-

lying undirected graphs. Three dimensional spectral density plots are represented. Finally,

the main conclusions for the spectral analysis of directed graphs are described and possible

future researches are proposed.
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CHAPTER 2

SPECTRAL GRAPH THEORY OF UNDIRECTED AND

DIRECTED GRAPHS

Complex systems emerge in many disciplines like bioscience, neuroscience, physics, com-

puter science, artificial life, economics, earthquake prediction, heart cell synchronization,

immune systems or reaction-diffusion systems. They have been extensively studied with the

help of network theory which is a useful tool for analyzing complex systems. From bio-

logical, social, economical, ecological, and technical systems, networks are constructed by

means of the components and interactions between the components of the system. Also, they

are used to analyze the related data underlying them. The world-wide-web (WWW), scien-

tific collaborations, protein-protein interactions, food webs, nervous systems, gene regulation

and metabolic reactions are some examples of complex networks. For variousexamples and

extended research see [6, 7, 51] and [9].

In a complex system, there are many components interacting with each other. The interaction

inside the system occurs between close neighbors, however, since the system is coupled,

the properties and construction of the system have been affected by each interaction. The

interactions may follow some dynamics such that, the system takes some inheritance structure

on. So the dynamics influence the structure of the system on one hand or thestructure reflects

some properties of the dynamics on the other hand. Since the relation betweenthese two

properties are very close to each other, it may be useful to analyze the structure and inheritance

properties of a complex system [6]. Network theory emerging area of science captures with

those properties to some extent.

Complex systems in the form of networks are usually studied by means of graph theory. Graph

theory has been playing an important role in analyzing and understanding network structures

4



since 1735 with the Leonard Euler’s solution to the Königsberg bridges problem. In graph

theory, the components of a network can be considered to be vertices andthe relation between

the components can be considered to be edges of the graph. In analyzingnetwork structures

with the help of graph theoretical tools, one has to decide first what shouldbe chosen as

vertices and which kinds of relations between vertices should be considered describing the

edge. However, it is better to think about whether the construction of network from a given

system would be helpful to study that system or not, otherwise it would not worth building

a network. New methodologies, tools have been introduced to analyze networks intensely.

Furthermore, old methods from graph theory have been reconsidered.Thus a new research

area of science called network science has been emerged which is basedon graph theory.

For long time, scientists have thought that networks consist of sets of components with ran-

dom connections. Afterwards, they tried to model networks with random connections be-

tween the components. By means of social structures, Erdös and Renyi proposed a very sim-

ple model [25] to construct a random graph that represents a random network where each node

has probabilityp of being connected by an edge. Interesting properties of this graph model for

different values ofp are investigated in [26, 27]. Many parameters such as degree distribution,

average path length, diameter, betweenness, centrality, transitivity, clustering coefficient, etc

have been constructed to analyze the structural properties of networks[10, 26, 51, 71]. The

random graph model that Erdös and Renyi proposed has a typical kind of degree distribution.

To capture the properties of real networks which have a low average path length and high

clustering coefficient, Watts and Strogatz proposed a model [71] that exhibits a “small world

phenomenon” by randomizing a fraction of edges connecting nodes in a regular lattice. Net-

works generated by this model also have similar degree distributions as Erdös and Renyi’s

random graphs such that they have a more pronounced peak different from real networks as

they have a power-law degree distribution. Degree distributions that followa power law are

scale invariant. Because of this, networks that have a power law degreedistribution are called

scale-free networks [10] although only their degree distributions are scale-free. The first ob-

servation of a power law degree distribution in a real network was made by Price in a network

of citations of scientific papers in 1965 [53]. By this model it was explained the emergence

of the property of a power law degree distribution which was based on the previous work by

Simon on wealth distributions in 1950 was explained[59]. After looking at power law degree

distributions in the WWW network, Barabasi and Albert proposed a model [10] to generate

5



a network that shows scale-free degree distribution property. In this network model which is

still in progress, a new node is attached to the network not in random way, by establishing

connections towards higher-degree nodes. To obtain a new connectionwith an existing nodei

with degreeni depends on the probabilitypi =
ni∑
j n j

. So the network constructed by attaching

a new node to already existing nodes by edges with this preference has power law degree dis-

tribution. Since then, to capture the structural properties of real networks many models have

been introduced [5, 11, 18, 30].

There exists many parameters and tools in graph theory, but many of them can not capture the

all features of networks. To obtain the unique and special properties ofa network from a spe-

cial class and to classify the general qualities that are shared by other network structures could

be achieved by means of spectral analysis of graphs [5, 16, 30]. In this respect, the eigenval-

ues and eigenvectors of matrices obtained from network applications play animportant role

in order to understand structural properties of networks.

In graph theory, connections between edges come in different forms like undirected, directed,

unweighted or weighted. Connections that are non-directional or connections that have an im-

plicit direction and connections that are associated with a weight or not. To distinguish these

cases we need to define types of graphs. The term undirected graph indicates a graph where

the connections are non-directional. For situations in which the connectionsare directional,

the graphs are called directed graph or digraph. The term weighted graph is used for graphs

whose edges are associated with a weight and the term unweighted graph for the graphs whose

edges are not associated with a weight. Through this study we call undirected graph as graph

and directed graph as digraph and also, we use unweighted digraphs and graphs. We first

summarize some basic notations and spectral properties of undirected graphs then we provide

a wide overview about the directed graphs.

2.1 Undirected Graphs

In this section, we will make use of definitions in Chapter 1 of books [5] and [32] about

spectral graph theory.

Definition 2.1 Anundirected graph denoted by G is an ordered pair of two sets, a non empty

set V= V(G), called vertex set, consisting of objects v1, v2, . . . , vN that are called vertices or
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sometimes called nodes and another set E= E(G), called edge set, consisting of edges and

one edge connects two vertices.

Definition 2.2 A vertex u isadjacent to vertex v if they are joined by an edge. Two adjacent

vertices can be calledneighbors and denoted by v∼ u.

Definition 2.3 A multi-edge is a collection of two or more edges having identical endpoints.

Theedge multiplicity between a pair of vertices u and v is the number of edges between them.

A loop is an edge that joins a single endpoint to itself.

Two of the most fundamental notations in graph theory are those of the degree of a vertex and

the distance between vertices.

Definition 2.4 Thedegree of a vertex v in a graph G, denoted by dv, is the number of edges

incident on v plus the number of self-loops.(For simple graphs, of course, the degree is sim-

ply the number of neighbors.) Thedegree sequence of a graph is the sequence formed by

arranging the vertex degrees into non-decreasing order.

Definition 2.5 Thedistance between two vertices in a graph G is the length of the shortest

walk between them.

For example, in the Figure 2.1 (a), the vertex set isV = {1,2,3,4} with edges between them.

The neighboring vertices are 1∼ 2, 1 ∼ 3, 2 ∼ 3, 2 ∼ 4. The edge multiplicity is 1 for all

vertices. The degrees with respect to the vertex numbers are 2, 3, 2, 1.In the Figure 2.1 (b),

there is a loop, that is, one of the vertices is connected to itself, two vertices have multi-edges

and one vertex in isolated as it has no connections.
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(a)

1 2

3

4

1

2 3

4

(b)

1 2

3

4

52
3

4

5

6

1

Figure 2.1: (a) Simple graph, (b) General graph

Definition 2.6 A simple graph is a graph that has no self-loops or multi-edges. Other graphs

in which multi-edges and loops are existing are calledgeneral graphs.

There are also many other types of graphs. However, the simple graphs are the most common

one as a tool in theoretical graph theory as many problems regarding general graphs can be

reduced to problems about simple graphs. In Figure 2.1 (a) and (b) we can see an example of

simple graph and general graph respectively.

Definition 2.7 A walk in a graph G is an alternating sequence of vertices and edges

w = v0,e1, v1,e2, ...,eN, vN

such that for j= 1, ...,N, the vertices vj−1 and vj are the endpoints of the edge ej . Here, v0 is

the initial vertex and vN is theterminal vertex. A vertex which is neither initial nor terminal

vertex is calledinternal vertex. A walk isclosed if the initial vertex is also the final vertex;

otherwise, it isopen. Thelength of a walk is the number edges.

For example, the walk given in Figure 2.2 (a) can be represented as

w = 1,1,2,2,3,3,4

wherev j andej is represented by numbers here. 1 is the initial vertex and 4 is the final vertex.

Definition 2.8 A trail in a graph G is a walk such that no edge occurs more than once. A

Eulerian trail in a graph G is a walk that contains each edge of G exactly once. Apath in a

graph is a trail such that no internal vertex is repeated. Acycle is a closed path of length at

least1.
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(a)

1 2

3

4

1

2

3

(b)

1 2

3

4

1

4

2

3

(c)

1 2 3

4 5

1 2

3 4

5

Figure 2.2: (a) A walk, (b) A cycle, (c) Trail

In Figure 2.2 (b), we can see an example of cycle whose initial and the finalvertices are the

same, also Figure 2.2 (c) shows a trail as all edges are distinct.

Definition 2.9 A graph G isconnected if there is a walk between every pair of vertices.

Definition 2.10 Theeccentricity of a vertex u in a connected graph is its distance to vertex

farthest from v. Theradius of a connected graph is its minimum eccentricity. Thediameter of

a connected graph is its maximum eccentricity.

Definition 2.11 A trivial graph is a graph consisting of one vertex and no edges.

Definition 2.12 Let G and H be two graphs. They are calledisomorphic if there exists a

bijectionω : VG → VH that has the adjacent vertices relation, i.e., u∼ v ⇔ ω(u) ∼ ω(v),
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for all u, v. See Figure 2.3. If there exists an isomorphism from a graph G to itself, then G is

calledsymmetric.

(a)

1 2

3

4

(b)

1 2

3

4

Figure 2.3: Two isomorphic graphs

Definition 2.13 A subgraph of a graph G is a graph H such that VH ⊂ VG and EH ⊂ EG.

For example, in Figure 2.4 (b) is a subgraph of (a).

Definition 2.14 A tree is a connected graph with no cycle.

(a)

1

2

3

4

(b)

1

2

3

Figure 2.4: (a) Graph (b) A subgraph of (a)

Now, we will give definitions of some important graphs.
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Definition 2.15 A complete graph is a simple graph that every pair of vertices are connected

with an edge. It is denoted by Kn where n represents the number of vertices.

Definition 2.16 A graph G is called abipartite graph if the vertex set V(G) can be decom-

posed into two disjoint subsets V1 and V2, such that each edge of G connects a vertex in V1

with a vertex in V2. Hence there is no edge which joins two vertices in the same subset. If ev-

ery vertex of one set is connected by edges with all vertices of other subset, then the bipartite

graph is called acomplete bipartite graph, and is usually denoted by Km,n, where m and n

are called the cardinalities of the two subsets.

Definition 2.17 A graph is calledd-regular if each of its vertices have degree d. A regular

graph G= (V,E) with degree d is strongly regular if every adjacent vertex has the same num-

ber of common neighbors a and every nonadjacent vertex has the same number of common

neighbors c. A strongly regular graph is denoted by(n,d,a, c).

(a) (b)

(c)

Figure 2.5: (a) Complete graph, (b) Complete bipartite graphK3,2 of 5 vertices

and (c) Regular graph of degree 3
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2.1.1 Connectivity Matrices

A graphG = (V,E) is represented by different kinds of matrices. Eigenvalues of these matri-

ces play an important role in the analysis of graphs. Before describing thespectral properties

of graphs, we introduce the connectivity matrices which are the adjacencymatrix, Laplacian

matrix, and the normalized Laplacian matrix.

Let ni andn j be degrees of the verticesi and j of the graphG, respectively. Then connectivity

matrices can be defined as follows:

• Adjacency Matrix: The matrix A=[ai j ] such that

ai j =


1, if ij is an edge,

0,otherwise,

is the adjacency matrix of the graph.

• Laplacian Matrix: The matrix L=[l i j ] such that

l i j =



ni , if i=j,

−1, if ij is an edge,

0,otherwise,

is the Laplacian matrix of the graph.

• Normalized Laplacian Matrix: There are different kinds of normalized Laplacian

matrices with respect to normalization factors. Here, two of them will be introduced.

The first one is introduced by Chung [16].

– The matrixL = [l i j ] such that

l i j =



ni , if i=j andni , 0,

−1√
nin j
, if ij is an edge,

0,otherwise,

– The matrix∆ = [l i j ] such that

l i j =



1, if i=j andni , 0,

−1
ni
, if ij is an edge,

0,otherwise,
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are normalized Laplacian matrix of the graphs.

Unfortunately, there is no clear relationship between the connectivity matrices for most of the

graphs. However, the following relations can be used:

L = D − A

whereD is a diagonal matrix with degree on diagonal entries.

L = D
−1
2 LD

−1
2 = I − D

−1
2 AD

−1
2

and there is similarity between the two kinds of normalized Laplacian matrices:

∆ = D
1
2LD

−1
2

Example: The connectivity matrices of the graph in Figure 2.6 are as follows:

1

2

3 4

Figure 2.6: A simple graph with 4 vertices

The adjacency matrix:

A =



0 1 1 1

1 0 0 0

1 1 0 1

1 0 0 0



.
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The Laplacian matrix is:

L =



3 −1 −1 −1

−1 1 0 0

−1 0 1 0

−1 0 0 0



.

The normalized matrices are:

L =



1 − 1−√
3
− 1−√

3
− 1−√

3

− 1√
3

1 0 0

− 1−√
3

0 1 0

− 1−√
3

0 0 1



, ∆ =



1 −1 −1 −1

−1
3 1 0 0

−1
3 0 1 0

−1
3 0 0 1



.

2.1.2 Spectral Graph Theory

Spectral graph theory is one of the important tools in spectral analysis of graphs. The spectral

analysis of graphs can be done by means of the connectivity matrices. By this way many

important properties of a network can be extracted from the eigenvalues of these matrices.

The eigenvalue distribution of these matrices shows different information about a network.

For instance, the spectrum of adjacency matrix shows details about local structural properties

of a graph like number of edges, triangles or loops. The smallest eigenvalues of the Laplacian

matrix reveals the connected components in a graph. It can also be used to determine the

spanning trees of graphs. The adjacency and Laplacian matrices have played an important

role in the early days of spectral graph theory [13, 30, 51]. However, in many practical appli-

cations the spectrum of the normalized Laplacian [16, 17] is the most useful one as it shows

information about the graph that other connectivity matrices fail to determine.The advantages

of the normalized Laplacian are due to the fact that it is consistent with the eigenvalues in the

spectral geometry and in stochastic process. By means of normalized Laplacian many results

which were only known for regular graphs can be generalized to other graphs. Furthermore,

the normalized Laplacian spectrum also provides information about the structural properties

of graphs like in protein-protein interaction networks [5].

In this section we will first present some basic facts about the normalized Laplacian operator

given in [5, 6, 7, 9, 16].

The normalized Laplacian can be defined as an operator on a connected graph with vertex set

14



V = {i : i = 1 . . .N}. Let u : V → R be a real-valued function onG such that

(u, v) :=
∑

niu(i)v(i).

Then the effect of normalized Laplacian of a function defined as above can be reformulated:

∆u(i) := u(i) − 1
ni

∑

j, j∼i

u( j). (2.1)

This action of Laplacian on functions reveals three important properties ofthis operator:

• ∆ is a self adjoint operator implying that the operator is symmetric. Therefore, the

eigenvalues of normalized Laplacian matrix are real.

• ∆ is nonnegative such that all eigenvalues are nonnegative.

• ∆u = 0 when u is constant. This property implies that the smallest eigenvalue is 0.

Since we have assumed thatG is connected, the other eigenvalues are greater than 0 i.e.,

λk > 0 for all k > 0. The eigenvalues can be ordered in non-decreasing order such that

0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN−1.

The highest eigenvalue is bounded above with 2, that is,λN−1 ≤ 2 and equality holds if and

only if the graph is bipartite. The difference between 2 and the largest eigenvalueλN−1 is an

indicator, how different the graph is from a bipartite graph. For a bipartite graph, ifλ is an

eigenvalue, then 2− λ is also an eigenvalue.

If the graph is complete, then the relation

λ1 = λ2 = ... = λN−1 =
N

N − 1

is satisfied and
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0 ≤ λ1 ≤
N

N − 1
≤ λN−1 ≤ 2

holds. But if the graph is not complete, thenλ1 ≤ 1.

Also, the eigenvalues of a complete bipartite graphKm,n are 0, 1 and 2. The multiplicity of 1

is m+ n− 2.

If N is the number of vertices in a graphG,

∑

i

λi ≤ N,

wherei = 0,1, . . . ,N − 1 and quality holds if and only if the graph is connected.

The numberλ1 is an important eigenvalue of a graph. It shows how difficult it is to cut up

the graph into two disjoint components. The Cheeger constant is one of the tools for breaking

a graphG into two componentsG1 andG2. This constant was introduced by Cheeger in the

context of Riemannian geometry [14]:

h(λ) = in f

{
|E0|

min(
∑

i∈G1
ni ,

∑
j∈G2

n j)

}

where the infimum is taken over subsetsE0 of edges, such that removingE0 disconnectsG

into componentsG1 andG2, and|E0| is the cardinality ofE0.

The relation betweenλ1 and the Cheeger constanth(λ) for a connected graph is given by

1
2

h(λ)2 ≤ λ1 ≤ 2h(λ).

For a connected graphλ1 can also be bounded by the diameter and volume such that

λ1 ≥
1

Dvol (G)
,

whereD is the diameter of the graphG andvol (G) =
∑

i ni .
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Up to now the general properties of spectrum of the normalized Laplacian are presented.

Recent studies in [5, 7, 8] and [9] show that some graphs have peaks at the eigenvalue 1. It is

investigated that the graph evolutionary process is related with these peaks. In the rest of this

section these results are summarized. The proofs of the theorems are not provided, however,

they can be found in [5].

Combination of the equation (2.1) with the usual eigenvalue equation∆u− λu = 0 results in

1
ni

∑

j∼i

u( j) = (1− λ)u(i),∀ i = 1, . . . ,N

So if the eigenfunction vanishes at verticesi, the sum of the values of the function on neigh-

bors ofi would vanish,
∑

j∼i u( j) = 0. On the other hand, whenλ = 1,

∑

j∼i

u( j) = 0. (2.2)

So, for the eigenvalue 1, there are functions that their sum of values on neighboring vertices

are zero. A function u satisfying this property is called balanced solution. The multiplicity

of eigenvalue 1 gives the dimension of the set of linearly independent balanced functions on

the graph. Furthermore, it can easily be seen from Equation (2.2) that themultiplicity of

eigenvalue 1 equals to the dimension of the kernel of the adjacency matrix of the graph.

Definition 2.18 Let G be a graph. A motifΣ is a connected small subgraph of G containing

all edges of G between vertices ofΣ.

Here, the graphG is supposed to be very large when compared with the motifΣ. Following

theorems are about the operations on the graph and their effect on spectrum.

Theorem 2.19 Let GΣ be obtained from G by adding a copy of the motifΣ consisting of

vertices q1, . . . ,qm and connections between them and connecting each qα with all p < Σ that

are neighbors of pα. Then GΣ possesses the eigenvalue1 with a localized eigenfunction that

is nonzero only at pα and qα.

Corrollary 2.20 Let GΣ be obtained from G by adding a copy of the motifΣ‘ , a copy of the

motifΣ consisting of vertices q1, . . . ,qm and the corresponding connections between them and
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connecting each qα with all p that are neighbors of pα. Then GΣ possesses m more eigenvalues

1 than G with localized eigenfunctions fα1 (α = 1, . . . ,m) that are 1 at pα, -1 at qα and zero

elsewhere.

This theorem is also satisfied whenΣ is a single vertex. Then, according to the corollary if the

eigenvalue 1 has a high multiplicity, the graph can be constructed by many vertex doubling or

viceversa.

Unfortunately, this result can not be generalized to more general eigenvalues. However, the

following theorem has some useful applications:

Theorem 2.21 LetΣ be a motif in G. Suppose f satisfies

1
ni

∑

j∈Σ, j∼i

f ( j) = (1− λ) f (i) (2.3)

for all i ∈ Σ and someλ. Then the motif doubling of above theorem produces the graph GΣ

with eigenvalueλ and eigenfunction fG
Σ

agreeing with f onΣ, with - f the double ofΣ and

identically 0 on the rest of GΣ.

This theorem can be applied to the smallest motif of a graphG, an edge. Assume that the

vertices of the motif arep1 andp2. Then the Equation (2.3) equals to

1
np1

f (p1) = (1− λ) f (p2)

1
np2

f (p2) = (1− λ) f (p1)

and admits the solutionλ = 1± 1√np1np2
.

Therefore, as the degree of vertex increases, the eigenvalues gather around 1 more and more,

and they are also symmetric with respect to 1. The following theorem is about doubling the

entire graph.

Theorem 2.22 Let G1 and G2 be isomorphic graphs with vertices p1, . . . , pn and q1, . . . ,qn

respectively where pi corresponds to qi for all i. Then a graph G0 can be constructed by

connecting pi with qj whenever pj ∼ pi . If λ1, . . . , λn are eigenvalues of G1 and G2 then the

new graph has the same eigenvalues as well as the eigenvalue 1 with multiplicityn.
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The next result is about motif joining and works for any eigenvalue.

Theorem 2.23 Let G1 and G2 be graphs with common eigenvalueλ and corresponding eigen-

functions f1
λ

and f2
λ

. Assume that f1
λ

(p1) = 0 and f2
λ

(p2) = 0 for some p1 ∈ G1 and p2 ∈ G2.

Then the graph G obtained by joining G1 and G2 by identifying p1 and p2 also has the same

eigenvalueλ with eigenfunction given by f1
λ

on G1 and f2
λ

on G2.

2.1.3 Some Special Graphs

In this section, we introduce the eigenvalues of some special graphs and relations in terms of

connectivity matrices.

• Regular Graphs:There is no explicit formulation for the eigenvalues of regular graphs.

However, there is useful formulation between the connectivity matrices of regular graphs:

L = dI − A,

L = I − 1
k

A,

whered is the degree of vertices, A is adjacency, L is Laplacian andL is normalized

Laplacian matrices of graphs.

• Strongly Regular Graphs:The eigenvalues of the adjacency matrix of strongly regular

graphG are determined by the parameters of the graph. For a strongly regular graphG

with parameters (n,d,a, c), the eigenvalues of adjacency matrix ofG are determined by

the following formulas:

θ =
(a− c) +

√
∆

2
,

τ =
(a− c) −

√
∆

2
,

where∆ = (a− c)2 + 4(k− c). The multiplicities of the eigenvalues are
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mθ =
1
2

(
(n− 1)− 2k+ (n− 1(a− c))

√
∆

)
,

mτ =
1
2

(
(n− 1)− 2k+ (n− 1(a− c))

√
∆

)
,

• Paley Graphs:

Definition 2.24 Let q be a prime such that q≡ 1 (mod 4). ThePaley graph [16, 30] Pq

has a vertex set consisting of elements of GF(q). Two vertices in Pq are adjacent if and

only if their difference is a square in GF(q). Let p be any prime number. The Paley sum

graph,P̂p, has vertices0,1, . . . , p− 1 and two vertices i and j are adjacent if and only

if i − j is a quadratic residue module p. For p≡ 3 mod(4), Paley graphs are directed

such that we introduce in Section 3.5.

Paley graphs are examples of strongly regular graphs with parameters

(q,
q− 1

2
,
q− 5

4
,
q− 1

4
),

where q is the number of vertices,q−1
2 is the degree of vertices,q−5

4 is the number of

common neighbors of each vertex andq−1
4 is the number of non common neighbors of

each vertex. The eigenvalues of the adjacency matrix are

θ1 =
q− 1

2
, θ2 =

−1+
√

q

2
, θ3 =

−1− √q

2

with θ1 of multiplicity 1 andθ2 andθ3 have equal multiplicitiesq−1
2 .

2.2 Directed Graphs

In this section, basic definitions and properties of digraphs from Chapter1 of the book [32],

Chapter 8 of the books [12] and [29] are given and some spectral properties of them are

introduced.
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Definition 2.25 A digraph D consists of two sets, a non empty set V= V(D), calledvertex

set, consisting of objects{v1, v2, ..., vN} that are calledvertices and another E= E(D), called

edge set, consisting of directed edges{e1,e2, ...,eN}. If e = (vi , v j) is an edge of D, then vi is

the initial vertex and vj is theterminal vertex. Two directed edges e and e’ of a digraph D

are said to beparallel if e and e’ have the same initial vertex and the same terminal vertex.

Definition 2.26 Theout degree of a vertex is the number of edges of which it is the initial

vertex; thein degree is the number of edges of which it is the terminal vertex. The out

degree vector of D is the vector R= (r1, r2, ..., rN) where ri is the out degree of vertex vi for

i = 1,2, ...,N. The in degree vector is S= (s1, s2, ..., sN) where si is the in degree of vertex

vi for i = 1,2, ...,N. Thus R is the row sum vector of the adjacency matrix A of D, and S is

the column sum vector. Themaximum degree ∆ of a digraph D is the maximum integer that

occurs among its in degrees and out degrees.

1 2

34

5

1

578 234

6

9

Figure 2.7: Directed graph with 5 vertices and 8 edges

In the Figure 2.7, an example of a directed graph is given with 5 vertices and9 edges. For

the edge 1,2 is the initial vertex and 1 is the final vertex. The edges 2,3,4 are parallel as they

have the same initial and final vertex. The in degrees and out degrees ofeach vertex are the

followings:
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vertex number in degree out degree

1 3 1

2 0 4

3 4 1

4 1 2

5 1 0

Definition 2.27 If D is a digraph, the graph obtained from D by removing the arrows from the

directed edges is called theunderlying graph of D. This graph is also called the undirected

graph corresponding to D.

(a)

1 2

3 4

3

2

1

(b)

1 2

3 4

3

2

1

Figure 2.8: (a) A digraph, (b) An underlying graph of (a)

Figure 2.8 (a) shows a digraph and (b) is the underlying graph of it, that is, undirected graph

underlying in this digraph.

Definition 2.28 If v is a vertex of a digraph D, then v is called anisolated vertex of D if

din(v) = dout(v) = 0. If v is a vertex of a digraph D then v is called asource of D if din(v) = 0.

If v is a vertex of a digraph D then v is called asink of D if dout(v) = 0.

In Figure 2.7, there is no isolated vertex. However, the vertex 2 is an source and the vertex 5

is a sink.

Definition 2.29 A directed walk in a digraph D is a sequence of the form{v0,e1, v1,e2 . . .eN, vn}

where v0, v1, ..., vn are vertices of D in some order and e1,e2, ...,en are edges of D. A vertex
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can appear more than once in a directed walk but not an edge. An open directed walk in which

no vertex is repeated is called adirected path. A closed directed walk in which no vertices,

except the initial and final vertices are repeated is called adirected circuit or a directed cycle.

The number of edges present in a directed walk, directed path, directedcircuit is called its

length.

In Figure 2.7, examples of these definitions can easily be seen.

Definition 2.30 A tournament is an oriented complete graph. Tournaments with two and

three vertices are shown in Figure 2.9.

(a) (b)

Figure 2.9: Tournaments with 3 and 4 vertices

Definition 2.31 A digraph D is said to bestrongly connected if there is at least one directed

path from every vertex to every other vertex.

Definition 2.32 A digraph D is said to beweakly connected if its corresponding undirected

graph is connected but D is not strongly connected.

Figure 2.10 shows an example for strongly connected and weakly connected digraphs.
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(a) (b)

Figure 2.10: (a) Strongly connected (b) Weakly connected digraph

Definition 2.33 A digraph that has no self-loop or parallel edges is called asimple digraph.

Definition 2.34 Digraphs that have at most one directed edge between a pair of vertices, but

are allowed to have self-loops, are calledasymmetric or antisymmetric digraph.

Definition 2.35 Digraphs in which for every edge(u, v) (i.e., from vertex u tov) there is also

an edge(v,u).

Definition 2.36 Isomorphic graphs are defined such that they have identical behaviorin

terms of graph properties. In other words, if their labels are removed,two isomorphic graphs

are indistinguishable. For two digraphs to be isomorphic not only their corresponding undi-

rected graphs must be isomorphic, but the directions of the corresponding edges must also

agree. Two digraphs D1 and D2 are said to beisomorphic if both of the following conditions

hold:

• The underlying graphs of D1 and D2 are either identical or isomorphic.

• Under the one-to-one correspondence between the edges of D1 and D2 the directions

of the corresponding edges are preserved.
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1

2 3

4

5

1 2

345

Figure 2.11: Two isomorphic digraphs

Definition 2.37 A digraph D is said to be abalanced digraph or an isograph if din(v) =

dout(v) for every vertex v of D.

Definition 2.38 A balanced digraph is said to beregular if every vertex has the same in-

degree and out-degree as every other vertex.

(a) (b)

Figure 2.12: (a) 1-regular digraph (b) Complete digraph

Definition 2.39 A complete undirected graph was defined as a simple graph in which every

vertex is joined to every other vertex exactly by one edge. Acomplete digraph is a simple

digraph such that between each pair of its vertices oppositely directed edges exist.

2.2.1 Connectivity Matrices

Digraphs (directed graphs) are also represented by using adjacencymatrix, Laplacian matrix

or the normalized Laplacian matrix similar to graphs (undirected graphs). However, the defi-

nitions of these matrices are different from those for graphs and spectral analysis of digraphs

25



with these matrices is a very active research area in graph theory [12, 19, 20, 50]. Here, the

definitions of these matrices are given before going on to the spectral analysis of digraphs.

• Adjacency Matrix: The matrix A=[ai j ] such that

ai j =


1, if there is an edge from i to j,

0,otherwise.

is the adjacency matrix of the digraph.

Unfortunately, there is no explicit definition for the Laplacian and the normalized Lapla-

cian matrices of digraphs which is similar to definitions for undirected graphs.Instead,

the following relation is used.

• Laplacian Matrix: The matrix L=[l i j ] such that

L = D − A

is the Laplacian matrix of the graph whereA is the adjacency matrix of digraph andD

is the diagonal matrix with in degrees or out degrees on diagonal entries.

The Laplacian matrix of a digraph can also be defined by using the transition probability

matrix. This definition is done by Chung in [20].

For a given digraphD, a typical transition probability matrixP = PD is defined as

P(i, j) =



1
ni
, if ij is an edge,

0,otherwise

When digraph is weighted, that is, its each edge has weightswi j ≥ 0, a general transition

probability matrixP can be defined as

P(i, j) =
wi j∑
k wik
,

wherek = 1, . . . ,N.

An unweighted digraph is just a special case with weights having the values 1or 0.

An irreducible matrixM with non-negative entries has a unique (left) eigenvector with

positive entries according to Perron-Frobenius theorem. Assume thatρ denote the
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eigenvalues of the positive eigenvector ofP. Then, the absolute values of all eigen-

values ofM are bounded aboveρ. This situation can be extended to digraphs. The

transition probability matrixP of a strongly connected digraph has a unique left eigen-

vectorφ used as a row vector withφ(v) > 0 for all edgesv, and

φP = ρφ.

Since the 1-vector satisfies the relationP1 = 1, we haveρ = 1 and according to the

Perron-Frobenius theorem all other eigenvalues ofP have absolute value at most 1. We

can normalize and chooseφ satisfying

∑

v

φ(v) = 1.

Here,φ is called the Perron vector ofP. For a general digraph, there is no closed form

solution ofφ. So, the Laplacian matrix of a digraphD is defined as

L = I − Φ
1/2PΦ−1/2 + Φ−1/2P∗Φ1/2

2
,

whereφ is a diagonal matrix with entriesΦ(v, v) = φ(v) andP∗ denotes the conjugated

transpose ofP. Clearly, it satisfies the relation

L∗ = L.

• Normalized Laplacian Matrix: For any digraphD associated with an adjacency ma-

trix A, the normalized Laplacian matrixL = [l i j ] is defined as

L = I − D−1A.

Here,L has a number of important properties.D−1A is a stochastic matrix i.e., its row

sums are all 1 and its possibly complex eigenvalues have modulus in the interval [0,1].

Consequently, the eigenvalues of the normalized Laplacian matrixL have modulus in

the interval [0,2].
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Example: The connectivity matrices of the graph in Figure 2.13 are as follows:

1 2

34

Figure 2.13: A digraph with 4 vertices

The adjacency matrix is

A =



0 1 0 1

0 1 0 0

1 1 1 1

0 0 0 0



.

The Diagonal matrix is

D =



1 0 0 0

0 3 0 0

0 0 1 0

0 0 0 2



,

where in degree is used.

The Laplacian matrix is

L =



1 −1 0 −1

0 2 0 0

−1 −1 0 −1

0 0 0 2



.

The normalized Laplacian matrix is given by:
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L =



1 −1 0 −1

0 2
3 0 0

−1 −1 0 −1

0 0 0 1



.

2.2.2 Spectral Properties of Digraphs

Spectral analysis of digraphs is also done through the eigenvalues of connectivity matrices.

However, it is not well developed as for the graphs. In spectral analysis of digraphs the relation

between digraph parameters and eigenvalues of adjacency matrix have been analyzed [12]. In

recent years, eigenvalues of the Laplacian matrix have also gained popularity [19, 20]. The

normalized Laplacian eigenvalues are also used. However, it is really newfor digraphs. In

contrast to graphs, the applications for real networks are very few.

In this section, recent studies about the spectral properties of the adjacency matrix and Lapla-

cian matrix are introduced. The proofs of the theorems provided here arenot included but they

can be found in [12, 19, 20]. Also, the relationship between spectral properties and eigenvalue

distribution of digraphs and their underlying graphs are provided [50].

The eigenvalues of the adjacency matrixA are the eigenvalues of digraphD. SinceA is

not necessarily a symmetric matrix, the eigenvalues ofD are, in general, complex numbers

λ1, λ2, ..., λN, where we usually assume that

|λ1| ≥ |λ2| ≥ . . . ≥ |λN| .

The spectral radius of digraphD denoted byρ(D) is equal to|λ1|, the largest absolute value of

an eigenvalue of the adjacency matrixA. When digraphD is regular, in this case the spectral

radius ofD is equal to the in degree or similarly the out degree of regular digraph.

The adjacency matrixA of a digraphD is a nonnegative matrix. Thus, the Perron-Frobenius

theory of nonnegative matrices provides information on the spectrum of digraph. Theorem 1.1

in [12] provides some important information. By the following theorem a classical result of

the adjacency matrix eigenvalues of digraph is obtained. Remember that the period or index

29



of imprimitivity of a digraphD is the greatest common divisord of the lengths of the cycles

of D and a cycle of lengthk of a digraph is a sequencev1, v2, ..., vN, v1 of vertices such that

v1, v2, ..., vN are distinct, and (v1, v2), ..., (vN−1, vN), (vN, v1) are edges.

Theorem 2.40 Let D be a strongly connected digraph of order N, then:

• The spectrum of D, as a set of points in the complex plane, is invariant under a rotation

about the origin by the angle2π/d

• The spectral radius of D satisfies

min {r1, r2, ..., rN} ≤ ρ(D) ≤ max{r1, r2, ..., rN} .

Also, ρ(D) = min {r1, r2, ..., rN} if and only if ρ(D) = max{r1, r2, ..., rN}, and these

inequalities hold if and only if digraph D has a constant out degree vector such that

R = {r1, r2, ..., rN}. A similar conclusion holds using the in degree vector S in place of

the out degree vector R.

• If D
′
is a digraph obtained from D by deleting one or more edges, thenρ(D

′
) < ρ(D).

It is known that a digraphD is bipartite when its vertex set can be partitioned into two sets

V1 andV2 such that each edge has its initial vertex inV1 and its terminal inV2. Thus, the

adjacency matrix of a bipartite digraph is of the form

A =


0 A1

A2 0

 ,

where the zero matrices are square matrices of order|V1| and|V2|, respectively. We have

A2 =


A1A2 0

0 A1A2

 ,

whereA1A2 have the same nonzero eigenvalues. The Perron-Frobenius theory ofnonnegative

matrices generalizes a result for bipartite graphs in [12] by the following theorem.
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Theorem 2.41 [12] A digraph is bipartite if and only if its spectrum is invariant under multi-

plication by−1, equivalently, if and only if the spectral radius of D is the nonnegative of some

eigenvalue D.

Recent studies in [19, 20] show that eigenvalues of the Laplacian matrix provide some infor-

mation about the spectral properties of digraphs such as Cheeger constant, Cheeger inequality

or diameter. In the rest of this section these spectral properties are introduced.

For a directed graphD with the transition probability matrixP and the Perron vectorφ, which

are given above, the Rayleigh quotient for anyf : V(D)→ C is defined as

R( f ) =
∑

u→v | f (u) − f (v)|2φ(u)P(u, v)∑
v | f (v)|2φ(v)

The Laplacian matrix of a digraphD is

L = I − Φ
1/2PΦ−1/2 + Φ−1/2P∗Φ1/2

2
,

whereΦ is a diagonal matrix with entriesΦ(v, v) = φ(v) andP∗ is the conjugated transpose of

P.

Theorem 2.42 [20] For a directed graph D with the transition probability matrix P suppose

the Rayleigh quotient and the Laplacian are defined as above. Then we have

R( f ) = 2
〈 f L, f 〉
〈 fΦ, f 〉

= 2− f (ΦP+ P∗φ) f ∗

fΦ f ∗

= 2
〈gL,g〉
‖g‖2

where g= fφ1/2.

A consequence of this theorem is the following:

Corollary 2.43 [20] Suppose a directed graph D has the Laplacian eigenvalues0 = λ0 ≤

λ1 ≤, ...,≤ λN−1. Then the eigenvalues and the Rayleigh quotient are related as follows:
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• For λ1, we have

λ1 = inf∑
x f (x)φ(x)=0

R( f )
2

= inf
f

sup
c

∑
u→ v| f (u) − f (v)|2φ(u)P(u, v)

2
∑

u | f (v) − c|2φ(v)
,

whereφ is the Perron vector andΦ is the Perron diagonal matrix.

• Supposeφi is an eigenvector of the Laplacian associated with eigenvalueλi . For fi =

φiΦ
−1/2, we have

λi fi(x)φ(x) =

[
fi(Φ −

ΦP+ P∗Φ
2

)

]
(x)

= φ(x) fi(x) −
∑

y→x fi(y)φ(y)P(y, x)

2
−

∑
x→y fi(y)P(x, y)φ(x)

2

=
1
2

∑

y

( fi(x) − fi(y))(φ(y)P(y, x) + P(x, y)φ(x))

for each vector x.

Theorem 2.44 [20] For a directed graph D, the eigenvalueλ1 of the Laplacian L is related

to the eigenvaluesρi of the transition probability matrix P as follows.

λ1 ≤ min
i,0

(1− Re(ρi))

where i= 1, . . . ,N and Re(x) denotes the real part of the complex number x.

It is also possible to define the Cheeger constant and the Cheeger inequality for digraphs by

means of Laplacian matrix. LetS denote a subset of vertices of the directed graphD. The

out-boundaryof S, denoted by∂S, consists of all edges (u, v) with u ∈ S andv < S

F(∂S) =
∑

u∈S,v<S
F(u, v).

If F is a circulation, it satisfies
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F(∂S) = F(∂S̄),

whereS̄ denotes the complement ofS.

For a vertexv, we defineF(v) =
∑

u,u→v F(u, v) and F(S) =
∑

v∈S F(v). So, for a strongly

connected digraphD with stationary distributionφ, if we consider the circulation flowFφ, the

Cheeger constant as in the following form

h(D) = inf
S

Fφ(∂S)

min
{
Fφ(S), Fφ(S̄)

}

whereS ranges over all non-empty proper subset of the vertex set ofD. Here,h can be

related to the eigenvalues of the Laplacian by establishing the directed analogof the Cheeger

inequality. The following theorem explains this situation.

Theorem 2.45 [20] For a directed graph D with eigenvaluesλi of the Laplacian. Thenλ =

mini,0 |λi | satisfies

2h(D) ≥ λ ≥ h2(G)
2
,

where h(D) is the Cheeger constant of D.

Following theorems give lower bounds for the Cheeger constants for various families of di-

graphs is provided:

Theorem 2.46 [20] For a strongly connected regular directed graph D on n vertices and

degree k, we have

h(D) ≥ 2
kn
.

Theorem 2.47 [20] For a strongly connected Eulerian directed graph D on m edges, wehave

h(D) ≥ 2
m
.
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Theorem 2.48 [20] For some directed graphs D with bounded out-degrees, the Cheeger con-

stant of D can be exponentially small, i.e.,

h(D) ≤ c−n

for some constant c.

It has been known that the diameter of graphs can be bounded using the eigenvalues of the

Laplacian matrix. In this situation a natural question is to see if it is feasible to extend these

relations to digraphs. In a digraph, the diameter can be naturally defined. It has been known

that a directed graph is strongly connected if for any two verticesv1 andv2, there is a directed

path fromv1 to v2. The diameter of a strongly connected digraph is defined as the maximum

distance among pairs of vertices. If a digraph is not strongly connected then its diameter is

taken to be infinity.

Theorem 2.49 [20] For a strongly connected directed graph D, the diameter diam(D) of D

satisfies

diam(D) ≤

2minx log(1/φ(x))

log 2
2−λ

 + 1

whereλ is the first non-trivial eigenvalue of the Laplacian andφ is the Perron vector of the

random walk on D.

It is naturally seen that the eigenvalues of the Laplacian is quite useful forcapturing various

properties which can not done through adjacency matrix eigenvalues of digraphs.

Up to now, the general properties of the spectrum of the adjacency matrix and the Laplacian

matrix of a digraph are introduced, which is not simple as the case for graphs. In spectral

analysis of graphs, relation between some exact eigenvalues of graphsand their spectral prop-

erties is provided. However, there is no such a relationship for digraphs. Instead of this, there

is a relationship between some spectral properties of digraphs and the eigenvalue distribution.

Furthermore, digraphs and graphs are related according to eigenvaluedistribution. From now

on, we describe some of these properties.
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The Flow in the Network:The connectivity matrices of a digraph are generally nonsymmet-

ric. Therefore, the corresponding eigenvalues are in complex form. A ring structure in the

complex spectrum represents the existence of a loop-like flow in the network. This situation

can easily be explained by considering the simplest network with a loop-like flow. The eigen-

values of this simplest network can be computed analytically by using the Fourier transform.

Assume that digraphD hasn nodes and each node is connected to its k th neighbors at farthest

and the edges are ordered in one direction. The eigenvalues of the digraph D can be written

in the form:

λn =

k∑

m=1

ei 2πn
N m.

In the case ofk = 1, which is the simple one-dimensional directed chain with a periodic

boundary condition, we obtain

λn = ei 2πn
N m.

This constitutes the unit circle in the complex plane which is the simplest ring structure we

can consider.

The one-dimensional directed chain is a directed loop ofN steps. If we have a directed loop

of N steps, the eigenvalues satisfy

λn = 1.

They form a ring structure in the complex plane. When there are more complicated loops,

which means regular directed rings withk ≥ 2, the ring structure is still dominant.

Relation With Graph Spectra:The real and imaginary parts of the eigenvalues of complex

eigenvalues of a digraphD have their own information. They also have different roles in

graph in that spectral graph theory. If the directions of all edges of a digraphD, the spectral

density of the resulting undirected graph is the same as the density of the realpart of the

eigenvalues of digraph. Thus, the distribution of real part of eigenvalues of a digraph reflects

the undirected graph topology.

The graph spectrum of a undirected graph is directly related to the number of loops in the

network. Thus, it is known that the variance of the spectral density corresponds to the total

number of edges in the network. In directed graphs, there is also a relationbetween the

spectrum and the number of loops. For a digraphD, the variance of the distribution of the
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imaginary part of the eigenvalues of digraph approximately gives the number directed edges.

For different examples and details see [50].

2.2.3 Some Special Digraphs

In this section, we list some special digraphs and eigenvalues.

• Regular Digraphs:There is no explicit formulation for the eigenvalues of regular di-

graphs as in the case of regular graphs. However, the useful formulation between the

connectivity matrices of regular graphs can also be used for regular digraphs:

L = dI − A,

L = I − 1
k

A,

whered is the degree of vertices, A is adjacency, L is Laplacian andL is normalized

Laplacian matrices of graphs.

These equations can be adapted to the eigenvalues of a digraph. Letλ1, . . . , λN be

eigenvalues of the adjacency matrix of digraphD. Then we have

spectrum(L) = {d − λ1, . . . ,d − λN} , (2.4)

spectrum(L) =
{
1− λ1

d
, . . . ,1− λN

d

}
.

Therefore, for ad-regular graph it is enough to determine eigenvalues of one of con-

nectivity matrices.

• Strongly Regular Digraphs:The eigenvalues of the adjacency matrix of strongly regular

digraphs are determined by digraph parameters. LetD be a digraph with parameters

(n, k, t,a, c), wheren is the number of nodes,k is the in degree of each vertex,t is the

out degree of each vertex anda andc represents the common and uncommon neighbors

of each node, respectively.For a strongly regular digraph, as each vertex has the same

in degree and out degree we callk = t = d. Then the digraph parameters are defined

as (n,d,a, c) and the eigenvalues of adjacency matrix of strongly regular digraphD are

determined by the following formulas:
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θ =
(a− c) +

√
∆

2
,

τ =
(a− c) −

√
∆

2
,

where∆ = (a− c)2 + 4(d − c).

• Paley Digraphs:

Definition 2.50 Let q be a prime such that q≡ 3 (mod 4). ThePaley digraph [16, 30]

Pq has a vertex set consisting of elements of GF(q). Two vertices in Pq are adjacent if

and only if their difference is a square in GF(q).

1

2

3

45

6

7

Figure 2.14: (a) Paley digraph with 7 vertices

Paley graphs are examples of strongly regular digraphs. The eigenvalues of the adja-

cency matrix are

λ1 =
q− 1

2
, λ2 =

−1− i
√

q

2
, λ3 =

−1+ i
√

q

2
.

with λ1 of multiplicity 1 andλ2 andλ3 have equal multiplicitiesq−1
2 whereq is the

number of vertices.

Moreover with the relation between matrices of regular digraphs the eigenvalues of

Laplacian matrices of Paley digraphs can also be formulated as:

λ1 = 0, λ2 = 1− 1+ q
2(1− i

√
q)

andλ3 = 1+
−1+ q

2(−1+ i
√

q)

with the same multiplicities as above.
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CHAPTER 3

EIGENVALUE COMPUTATION OF LARGE

NONSYMMETRIC MATRICES

Complex networks are represented by graphs or digraphs discussed inChapter 2 and matrices

obtained from network applications do not have a regular structure. They are generally in

sparse form, that is, most of the entries of matrices are zero. Different from dense matrices

only the nonzero entries are stored. This property provides many advantages when numerical

methods are applied to determine eigenvalues and eigenvectors of large matrices.

Most of the numerical methods for eigenvalue computation of large matrices are based on

symmetric matrices [21, 31, 52, 74]. On the other hand, the ability to compute eigenvalues

and corresponding eigenvectors of large sparse non symmetric matrices isa very active and

challenging research area. It is becoming increasingly important in a wide variety of appli-

cations. This increasing demand has improved interest in the development ofnew methods

and softwares for numerical solution of eigenvalues and correspondingeigenvectors of large

sparse non symmetric matrices. The existence of these new methods and softwares has unable

the solution of problems that would not have been posed five or ten years ago. Until very re-

cently, there were nearly no softwares for large-sparse non symmetric problems. Fortunately,

this situation is improving rapidly.

In the light of these developments in methods and softwares for large sparse non symmetric

problems, in this chapter we provide a wide overview of numerical solution ofeigenvalues

and corresponding eigenvectors of large sparse non symmetric matrices [23, 55, 56, 63]. The

focus will be on two classes of methods called Krylov subspace (projection) methods and

Jacobi-Davidson methods [56, 65, 66, 67, 68]. The discussion beginswith a brief theory of

eigenvalues and basic iterations suitable for large scale problems to motivate the introduction
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of Krylov subspaces.Then, Krylov subspace projection methods, implicitly restarted Arnoldi

method, Krylov-Schur method and augmented block Householder Arnoldi method, and fi-

nally Jacobi-Davidson methods are presented in detail.

3.1 Eigenvalues and Single Vector Iterations

To understand the behavior and limitations of the algorithms, a brief discussionof the math-

ematical structure of the eigenvalue problem is necessary. In this discussion, the real and

complex number fields are denoted byR andC respectively. The standard n-dimensional real

and complex vectors are denoted byR
n andC

n. The symbolsRm×n andC
m×n denote the real

and complex vectors with m rows and n columns. The transpose of a matrixA is denoted by

AT , A∗ denotes the complex conjugate, and the symbol‖.‖ denotes the Euclidean or 2-norm

of a vector.

The elements of the discrete setσ(A) ≡ {λ ∈ C : rank(A− λI ) < n} are the eigenvalues ofA

and they may be characterized as then roots of the characteristic polynomialpA = det(A−λI ).

There is at least one nonzero vectorx such thatAx= λx corresponding to each distinct eigen-

valueλ ∈ σ(A). This vector is called a right eigenvector ofA corresponding to eigenvalue

λ. The pair (x, λ) is an eigenpair. A nonzero vectory such thaty∗A = λy∗ is called a left

eigenvector. The algebraic multiplicityna(λ) of an eigenvalue is ofλ is its multiplicity as a

root of the characteristic polynomial. The geometric multiplicityng(λ) of an eigenvalueλ is

the number of linearly independent eigenvectors to that eigenvalue. A matrixis defective if

ng(λ) < na(λ) and otherwise it is called non defective. An eigenvalue of algebraic multiplicity

1 is said to be simple.

A subspaceS of C
n×n is called invariant subspace ofA if AS ⊂ S. It is straightforward to

show if A ∈ C
n×n, X ∈ C

n×k, andB ∈ C
k×k satisfy

AX = XB (3.1)

thenS ≡ RangeX is an invariant subspace ofA. Moreover, ifX has full column rankk then

the columns ofX form a basis for this subspace andσ(B) ⊂ σ(A). If k = n, thenσ(B) = σ(A),

andA is said to be similar toB under the similarity transformationX. A is diagonalizable if it
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is similar to a diagonal matrix and this property is equivalent toA being non-defective.

Schur decomposition is a fundamental theorem to discuss the numerical algorithms for eigen-

problems.

Definition 3.1 Every square matrix A possesses a Schur decomposition

AQ= QR,

where Q is unitary QTQ = I and R is upper triangular. The diagonal elements of R are the

eigenvalues of A. The diagonal elements of Rk are the eigenvalues of A.

If Vk represents the leadingk columns ofQ, andRk the leading principalk × k sub matrix of

R, then

AVk = VkRk.

This is called a partial Schur decomposition ofA, and there is always a partial Schur de-

composition ofA with the diagonal elements ofRk consisting of any specified subset ofk

eigenvalues ofA.

3.1.1 Single-vector Iterations

Single-vector iterations are the simplest and most storage-efficient ways of computing a single

eigenvalue and corresponding eigenvector. The power method is the oldest and simplest of

these methods and also underlies the behavior of all methods for large-scale problems. It only

requires multiplication of an arbitrary nonzero vector repeatedly by a matrixA. It converges

to the dominant eigenvalue of the matrixA as long as the starting vector has a component in

the direction of dominant eigenvector.

The power method seems useful in practice. However, it has two important drawbacks. The

convergence rate of the power method proportional toλ2
λ1

whereλ2 is the eigenvalue having
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second-largest magnitude may be very slow, or may not happen at all andonly one eigenvalue

and corresponding eigenvector can be computed.

The problem of slow convergence and convergence to interior eigenvalues may be prevented

by replacingA by (A− σI )−1, whereσ is near the eigenvalue of interest. More can be learnt

about such spectral transformations from [23, 33, 65, 66, 67]. To address the problem of

obtaining several eigenvalues and corresponding eigenvectors, deflation schemes have been

used [55]. However, this scheme is not suitable for non symmetric problems.In stead of

this scheme , various linear combinations of power iterations can be used to approximate

additional eigenvalues and eigenvectors such that there is a systematic wayto consider all

such possibilities at once and pick the most suitable one automatically.

3.2 Krylov Projection Methods

This section is based on Chapter 4 of book [23] and [55, 63] and articles[62, 64, 70].

The successive vectors produced by a power iteration may contain considerable information

along eigenvector directions corresponding to eigenvalues near the onewith largest magni-

tude. A single vector power iteration ignores this useful information. Subspace projection

provides a way to extract this additional information. Rather than discard thevectors pro-

duced during the power iteration, additional eigen information is obtained by looking at var-

ious linear combinations of the power sequence. This leads to considerationof the Krylov

subspace

Km(A, x) = span
{
x,Ax,A2x, . . . ,Am−1x

}

and to look for the best approximate eigenvector that can be constructed from this space.

Methods which use linear combinations of vectors in this space are called Krylov subspace or

projection methods [23].

The basic idea in Krylov projection methods is to construct approximate eigenvectors in the

Krylov subspaceKm(A, x). We define a Ritz pair as any pair (xi , λi) that satisfies the Galerkin

condition
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υT(Axi − λi xi) = 0 for all υ ∈ Kk(A, υ0).

That is, the Ritz pair satisfies the eigenvalue-eigenvector relationship in the projection onto a

smaller space. To obtain a good approximation for an eigenpair ofA, the component orthog-

onal to the space must be sufficiently small.

3.2.1 Implicitly Restarted Arnoldi Method

The Arnoldi method is a Krylov-based projection algorithm that computes an orthogonal basis

of the Krylov subspace and at the same time computes a projected matrix. It is a generalization

of the Lanczos method [62] and it was first introduced as a direct algorithm for reducing a

general matrix into upper Hessenberg form. Later, it was discovered that this algorithm leads

to a good iterative technique for approximating eigenvalues and corresponding eigenvectors

of large sparse non symmetric matrices. It is really useful for cases whenthe matrixA is large

but the matrix-vector products are relatively inexpensive to perform. Here, we begin with the

basic definition of Arnoldi factorization and then describe a number of variations of it.

Definition 3.1 An m-step Arnoldi factorization of A∈ C
n×n is defined as a relationship of the

form

AVm = VmHm+ fmeT
m,

where Vm is an n× m orthonormal matrix, Hm is a m× m upper Hessenberg matrix with

non-negative sub diagonal elements, and VH
m fm = 0.

When the matrixA is Hermitian, this relationship is called anm-step Lanczos factorization,

and the upper Hessenberg matrixH is actually real, symmetric, and tridiagonal.

Note that if (x, θ) is an eigenpair ofHm. Then,x = Vmy satisfies the relationship

||Ax− xθ|| = ||AVmy− Vmyθ||

= ||(AVm− VmH)y||

= || fke⊤my||

= β|e⊤my|,

whereβ = || fm||. The basic idea behind the Arnoldi factorization is to compute eigenpairs of

the large matrixA from the eigenpairs of the small matrixH. Since we assume thatm << n,
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the eigenpairs ofH can be computed by conventional means. The main purpose is to drive

|eT
my| → 0, so that the eigenpairs ofHm well approximates the eigenpairs ofA. Here, the term

β|eT
my| is called the Ritz estimate, and describes the goodness of the eigenpair approximation.

Of course, whenfm = 0 the equation will be simplified to

AVm = VmHm

implying thatVm is an invariant subspace ofA and the eigenpairs ofHm will be preciselym

eigenpairs ofA [54, 56, 62, 64]. The basic algorithm for Arnoldi factorization [54] is

Algorithm 1 m-step Arnoldi Factorization

Input:(Vm,Hm, fm) such thatAVm = VmHm+ fmeT
m

Output:(Vm+1,Hm+1, fm+1) such thatAVm+1 = Vm+1Hm+1 + fm+1eT
m+1

1. βm = || fm||; υ← fm/βm ;

2. Vm+1← (Vm, υ); Hm+1←


Hm

βmeT
m

;

3. z← Aυm+1;

4. hm+1← VT
m+1z; fm+1← z− Vm+1hm+1;

5. Hm+1← (Hm+1,hm+1);

6. end;

In this algorithm a subindex is used inV andH to make their dimension explicit. At each

iteration of the algorithm a new column of bothH andV is computed and the explicit orthog-

onalization operations are carried out by means of Gram-Schmidt procedure [23].

It should be clear that Arnoldi factorization entirely depends on the choice of the starting

vector. In fact, the factorization is uniquely determined by the choice of starting vector until

a sub diagonal element ofHm is zero. At this point an invariant subspace has been computed

and the factorization is continued with a new starting vector.

For good approximations, the starting vector used to begin the Arnoldi factorization should be

rich in the direction of wanted eigenvectors and with very small components in the direction

of other eigenvectors. However, in practice this is usually not possible and it likely requires

many iterations. This causes serious problems because increasing numberof iterations implies

a growth in storage requirements and, more importantly, a growth of computational cost per
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iteration. A good way of preventing this drawback is to restart the algorithm, that is, stop

the algorithm afterm iterations and rerun it with a new vector computed from the recently

obtained spectral approximations. One possible approach is called explicitrestarting. The

idea of explicit restarting is to iteratively compute different m-step Arnoldi factorizations with

successively better starting vectors. The starting vector for the next Arnoldi run is computed

from the information available in the most recent factorization. The simplest way to select

the new starting vector is to take the Ritz vector (or Schur vector) associatedwith dominant

eigenvalue. This strategy is described in [23, 35].

There is another approach called implicit restarting. Implicit restarting combines the implic-

itly shifted QRmechanism with am-step Arnoldi factorization. Am-step Arnoldi factoriza-

tion is extended to a (m+ p)-step Arnoldi factorization, which is then compacted again to an

m-step one. The process of extending this newm-step factorization to a (m+ p)-step factor-

ization is iterated by applying shifts and condensing. The payoff this process is that each of

these shifts results in the implicit application of a p th degree polynomial inA to the starting

vector. The roots of this polynomial are the shifts that were applied toQR factorization. So,

if we choose the shiftsσi as the eigenvalues that are unwanted, the starting vector will be rich

in the direction of wanted eigenvectors.

There are many strategies for selecting shiftsσi . One of the useful strategies is the Exact

Shift Strategy. This method takes the shifts asp eigenvalues ofHm which are furthest away

from the wanted eigenvalues. However, there are alternative strategiessuch as Chebyshev

polynomials [52] or Leja points [64].

Now, we are ready to present the full implicitly restarted Arnoldi method [54].
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Algorithm 2 Implicitly Restarted Arnoldi Method Algorithm
Input: The matrixA, the number of eigenpairs to be computedm, the number of implicit

shifts to apply to the factorization at each iterationp, a sort criterion which determines

which are ’wanted’ eigenvaluesS, starting vectorυ0, toleranceτ

Output: (x1, λ1), (x2, λ2), . . . , (xn, λn), approximations to thek wanted eigenvalues ofA.

1. Usingυ0 as a starting vector, generate am-step Arnodi factorization

AV = VH + f eT
m

2. for i = 1,2, . . . until ||Axi − λi xi || < τ for all i = 1, . . . ,m

a.) Extend am-step Arnoldi factorization to (m+ p) step Arnoldi factorization

AV = VH + f eT
m+p

b.) Letq = em+p

c.) Sort the eigenvalues ofH from best to worst according to the sort criterionS and take

σ1, . . . , σp to be thep worst eigenvalues.

d.) for j = 1,2, ..., p

d1. FactorH − σ j I = QR.

d2. H ← QHHQ.

d3. V ← VQ.

d4. q← qHQ.

e.) f ← V(:,m+ 1)Ḣ(m+ 1,m) + f q̇(m).

f.) Take the firstk columns on each side of he factorization to getV = V(:,1 : m), H =

H(1 : m,1 : m).

g.) Take as eigenpair approximations (xi , λi) the Ritz pairs of the problem.

3. end.

3.2.2 Krylov-Schur Method

To overcome the difficulties with implementing implicit restarting technique, the Krylov-

Schur method was proposed by Stewart in 2001 [68].

The Krylov-Schur method is defined by generalizing the m-step Arnoldi factorization,

45



AVm = VmHm+ fmeT
m

computed by Algorithm 1, to a so-called Krylov decomposition of orderm

AVm = VmBm+ υm+1bT
m+1, (3.2)

where the matrixBm is not restricted to be upper Hessenberg andbm+1 in an arbitrary vector.

Assume that all theυi vectors are mutually orthonormal. Then premultiplying Equation (3.2)

by VT
m shows thatBm is the Rayleigh quotientV

T

mAVm. So, the Rayleigh-Ritz procedure is still

valid.

The last equation can be written in the form

AVm =

[
Vm υm+1

]


Bm

bT
m+1

 . (3.3)

A special case of the above relation is called the Krylov-Schur decomposition, in which matrix

Bm is in real Schur form, that is, quasi-triangular form displaying eigenvalues are in the 1× 1

or 2× 2 diagonal blocks.

It can easily be seen that Arnoldi decomposition is a special case of the Krylov decomposition.

It is shown in [68] that any Krylov decomposition is equivalent to an Arnoldi decomposition,

that is, both have the same Ritz approximations. Also, a Krylov decomposition can be trans-

formed into an equivalent Krylov-Schur decomposition by means of orthogonal similarity

transformations. The main idea of the Krylov-Schur method is to expand iteratively with the

Arnoldi process and contract a Krylov-Schur decomposition. A systematic description of the

method is given in the following algorithm that can be found in [36].
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Algorithm 3 Krylov-Schur Method
Input: Matrix A, starting vectorx1, and number of stepsm;

Output:m≤ p Ritz pairs

1. Build an initial Krylov decomposition of orderm

2. Apply orthogonal transformations to get a Krylov-Schur decomposition

3. Reorder the diagonal blocks of the Krylov-Schur decomposition

4. Truncate to a Krylov-Schur decomposition of orderp

5. Extend to a Krylov decomposition of orderm

6. If not satisfied, go to step 2

Step 1 can be accomplished with an Arnoldi decomposition. At step 2, to get a Krylov-Schur

decomposition it is necessary to apply theQR algorithm in order to compute an orthogonal

matrix Q1 such thatTm = QT
1 BmQ1 which has real Schur form, and then

AVmQ1 =

[
VmQ1 υm+1

]


Tm

bT
m+1Q1

 . (3.4)

At this point, from the diagonal blocks ofTm the Ritz values are already available. These Ritz

values are divided in two subsets. The first one containsp < m ”wanted” Ritz values and the

other one containsm− p ”unwanted” Ritz values. By step 3 the algorithm moves the subset of

wanted Ritz values to the leading principal submatrix ofTm. This can also be accomplished by

means of an orthogonal transformationQ2, resulting in the following reordered Krylov-Schur

decomposition:

AṼm =

[
Ṽm υm+1

]


Tw ∗

0 Tu

bT
w ∗


, (3.5)

whereṼm = VmQ1Q2, λ(Tw) = Ωw. Here,Ωw shows the set of wanted Ritz values,λ(Tu) = Ωu

whereΩu is a set of unwanted Ritz values, andbT
w is the length-p leading sub vector of

bT
m+1Q1Q2. The truncation in step 4 of the algorithm is achieved simply by writing
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AṼp =

[
Ṽp υ∼

p+1

]


Tw

bT
w

 , (3.6)

whereṼp is equal to the firstp columns ofṼm, but υ∼

p+1 = υm+1. Finally, step 5 is accom-

plished by means of a variation of Algorithm 1 in which the vectors are computedstarting

from υp+2 but vectorsυ1 to υp+1 are also taken into account in the orthogonalization step.

If the total number of works are compared in implicitly restarted Arnoldi method (IRA) and

Krylov-Shur method, IRA is superior to Krylov-Schur in marginal operation cost [68]. More-

over, implicitly restarted Arnoldi method with exact shifts and Krylov-Schur method with the

same shifts have the same effect which was proved in [68]. But each have theirs pros and

cons. Different polynomials can be used instead of shifts in IRA but this is not possiblein

Krylov-Schur. On the other hand when exact shifts are used Krylov-Schur is more preferable

due to the reliable process for exchanging the eigenvalues.

In the case of that the matrixA is symmetric, the Krylov-Schur method is equivalent to another

method called the thick-restart Lanczos method [72]. The most important difference between

the symmetric and non symmetric cases of the Krylov-Schur method is the shape ofmatrix

Bm. The structure of this matrixBm has more difficulties than in the case of a simple explicitly

restarted variant of Lanczos, where the projected matrix consisted of a diagonal part and

a tridiagonal part. In the case of thick-restart Lanczos, obtaining the Krylov-Schur form

of Bm is equivalent to diagonalizing it. So, taking into account its special structuremay

yield a reduction in the operation count for standard solvers. Therefor, using a general dense

symmetric method is more appropriate. An alternative may be to write a specific algorithm

for this particular structure, although it is not obvious how to do this.

The other thing to be considered in the symmetric case is whether orthogonalization of the

Lanczos vectors should be carried out explicitly against all previous vectors or using a tech-

nique for the cure of loss of orthogonality. In the context of thick-restart Lanczos, full orthog-

onalization is the best option since it provides the maximum robustness.
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3.2.3 Augmented Block Householder Arnoldi Method

The implicitly restarted Arnoldi (IRA) method proposed by Sorensen [62, 64] modifies the

starting vector at each iteration via shiftedQR algorithm as we presented previously. This

method is based on a very popular software package ARPACK [44]. A comparison of soft-

wares provided in [42] concluded that ARPACK was generally the fastest and most depend-

able. However, many numerical examples have shown that there may be propagated round-off

errors which can delay or prevent convergence of desired eigenvalues and eigenvectors [42].

The reason for this numerical instability is the underlyingQR-algorithm. It is shown in [47]

that the implicitly restarted Arnoldi (IRA)method of Sorensen [64] can be implemented by

augmenting the sequence of Krylov subspace basis by certain Ritz vectors. This implemen-

tation is mathematically equivalent to the implementation in [64]. It can be less sensitive

to propagated round-off errors than [64]. This relationship has been exploited in [72] for

symmetric eigenvalue problems, in [46] for linear systems and non symmetric eigenvalue

problems and in [4] for singular value problems by Baglama and Reichel. Theextension of

this idea to block Krylov subspaces (3.8) has been implemented by Möller for non symmetric

eigenvalue problems. The extensions to block methods have many favorableattributes even

though they are not mathematically equivalent to the block form of the IRA method.

The main purpose of augmented block Householder Arnoldi method is creating an augmented

block Krylov subspace method for the eigenvalue problem

Ax= λx. (3.7)

The block Arnoldi method only differs from the Arnoldi method in that it uses a set of starting

vectorsX = [x1, x2, x3, . . . , xn] and builds an orthonormal basis for the block Krylov subspace

Kmr(A,X) = span
{
X,AX,A2X, . . . ,Am−1X

}
. (3.8)

A block routine generally requires more computational effort and larger subspaces for good

approximations. However, a block routine is more efficient to compute multiple or clustered

eigenvalues than an unblock routine [1, 2, 43]. This advantage of blockroutines has resulted in

a considerable number of softwares/algorithms. The augmented block Householder Arnoldi

49



(ABHA) method developed by Baglama [3] combines the advantages of a block routine and

an augmented routine. The development of an augmented block Arnoldi method is not new.

The implementation of it for solving linear systems of equations is presented in [48] and

for solving non symmetric eigenvalue problems in [49]. However, here we will present a

new implementation of augmented block Householder Arnoldi method with MATLABcode

ahbeigswhich is introduced in Chapter 4.

The foundation of ABHA method is the use of Householder process to create an orthonormal

basis for the block Krylov subspace (3.8). Algorithm 4 [3] extends the Householder Arnoldi

method in [69] to block form. It uses the Householder process for creating an orthonormal

basis for the Krylov subspace. This method uses the compactWYrepresentation of the House-

holder product. In this representation theQ matrix in the HouseholderQR-decomposition is

formed from the product with the formI + YTYT , whereY is a lower trapezoidal matrix and

T is a square upper triangular matrix.

After applying these transformations to the subspaceKmr(A,X), the following block Arnoldi

decomposition is obtained:

AVmr = VmrHmr + V(m+1)H(m+1,m)E
T
r , (3.9)

whereVmr is ann×mr orthogonal matrix andHmr is mr×mr upper block Hessenberg matrix.

During the computation of the block Arnoldi methodH j+1, j which is a sub-diagonal block of

the blocked Hessenberg matrix may become singular. This means that a set ofvectors in (3.8)

have become linearly dependent on previously computed vectors. Different from the single

vector Arnoldi method, this linear dependency of vectors may not imply an invariant subspace

has been computed unlessH j+1, j ≡ 0. This breakdown rarely occurs, and the Householder

block Arnoldi method handles this in step 3 of the Algorithm 4 by adding a random vector at

step 3 so that a validQR factorization is computed. Now, we are ready to outline our block

restarted method.

After an m-step of Arnoldi method the real Schur decomposition ofHmr is computed such

that
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Algorithm 4 [3] Block Arnoldi Householder Algorithm
Input: A ∈ R.n×n

Output:Y ∈ R
n×mr+r , T ∈ R

mr+r×mr+r , andHi, j ∈ R
r×r , where j = 0, . . . ,m, i = 1, . . . , j + 1

1. Chooser random vectorsxi and setX = [x1, . . . , xr ] ∈ R
n×r ;

2. For j = 1,2, . . . ,m

3. Compute the HouseholderQR-decomposition where

X( jr + 1 : n,1 : R) = QRandQ = (I +WS WT)


I

0

, whereI ∈ R
r×r and 0∈ R

(n−r)×r

4. if j = 0

a.) Set



Y := W

T := S

H(1,0) := R


else

b.)Set





H(1, j)

...

H( j, j)


:=

[
X(1 : jr ,1 : r)

]

[
H( j+1, j)

] [
R

]



, whereX(1 : jr ,1 : r) ∈ R
jr×r and

R ∈ R
r×r

c.) Set



W :=


0

W

 where0∈ R
jr×randW∈ R

n− jr×r

T :=


T TYTWS

0 S

 ∈ R
( j+1)r×( j+1)r

Y :=
[

Y W
]
∈ R

n×( j+1)r


end

5. If j < m

6. ComputeX = (I + YTTYT)A(I + YTYT)



0

I

0


where 0∈ R

jr×r , I ∈ R
r×r and

0 ∈ R
(n− jr−r)×r , respectively.

7. end

8. end
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HmrQ
(Hmr)
mr = Q(Hmr)

mr U(Hmr)
mr , (3.10)

whereU(Hmr)
mr is a quasi-triangular matrix where the eigenvalues ofHmr are either a real 1× 1

matrix or a real 2×2 matrix. The latter case constitutes complex conjugate pairs andQ(Hmr)
mr =

[q(Hmr)
1 . . .q(Hmr)

mr ] is an orthogonal matrix. The real Schur decomposition can be reordered so

that the desired eigenvalues occur in the upper left part of the matrixU(Hmr)
mr .

Assume thatk be the number of desired eigenvalues and for ease of the presentation, kdoes

not split a conjugate pair. After reordering the real Schur decompositionof Hmr and truncating

the last (mr− k) columns we have

HmrQ
(Hmr)
k = Q(mr)

k U(mr)
k , (3.11)

For a given matrixA we can find the approximate real partial Schur decompositionAQ(A)
k =

Q(A)
k U(A)

k from the equation (3.10), where

Q(A)
k = [q(A)

1 ,q
(A)
2 , . . . ,q

(A)
k ] = VmrQ

(Hmr)
k and U(A)

k = U(Hmr)
k . (3.12)

We can easily obtain the partial eigenvalue decomposition ofA by computing the eigenvalue

decompositionU(Hmr)
k Sk = SkD(Hmr)

k and setting

V(A)
k = VmrQ

(Hmr)
k Sk,D

(A)
k = D(Hmr)

k to get AV(A)
k = V(A)

k D(A)
k . (3.13)

Using the (3.9), (3.10) and (3.13) we have the following

AV(A)
k − V(A)

k D(A)
k = V(m+1)H(m+1,m)E

T
r Q(Hmr)

k Sk. (3.14)

It can be easily seen from (3.14) that we have an acceptable approximate partial eigenvalue

decomposition ofA when

||H(m+1,m)ErT Q(Hmr)
k Sk|| ≤ αṫol, (3.15)
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where tol is a user input tolerance value andα is chosen to assure a small backward error, see

[3], [44]. Then, rearranging (3.14) gives the following relationship

AQA
k =

[
QA

k Vm+1

]
:=


UA

k

H(m+1,m)ET
r QHmr

k

 . (3.16)

By means of orthogonal transformations (3.16) can be transformed into ak block Arnoldi

decomposition. Therefore, the block Arnoldi algorithm can be restarted or continued with the

matrix V(m+1). In order to continue block Arnoldi Householder Algorithm 3, the orthogonal

matrix
[

Q(A)
k V(M+1)

]
is replaced into the compactWY representation of the Householder

product. The reference [3] can be seen more details. After this orthogonalization process we

have

(I + ȲT̄ȲT)Ik+r =

[
QA

k Vm+1

]
R, (3.17)

whereR is a diagonal matrix of±1. Then multiplying (3.16) bŷR= R(k,k) ∈ R
k×k gives

AQ(A)
k R̂= (I + ȲT̄ȲT)Ik+r H̄k+r . (3.18)

If we chooseQ(A)
k R̂=

[
q1,q2, ...,qk

]
, the block Householder Algorithm can be continued with

the next set ofr vectors. Then, matrices̄Y andT̄ are updated to get the next set of vectors and

the restarted method is continued.

The following algorithm combines the results and restarted method to obtain augmented block

Householder Arnoldi method [3]:

3.3 Jacobi-Davidson Type Methods

This section is based on books [23, 63, 67] and the articles [60, 61].

Jacobi-Davidson methods [60, 61] have been introduced as a powerful technique for solving

a variety of eigen problems. The basic idea in these methods is projecting the matrix onto a
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Algorithm 5 Augmented Block Arnoldi Householder Algorithm
Input: A ∈ R

n×n, k, m, r, tol such that (m− 1)r ≥ k

Output:eigenvaluesλ j
k
j=1 and eigenvectorsx j

k
j=1 of A

1. Perform m steps of the block Arnoldi Householder algorithm 3 to get theblock Arnoldi

decomposition (3. 3)

2. Compute and start the Real Schur decomposition of the matrixHmr andHk+r+m1r+r

3. Check the convergence of the k desired eigenvalues using

||H(m+1,m)ErT Q(Hmr)
k Sk|| ≤ αṫol

a.)if all k values converge then computeλ j
k
j=1 andx j

k
j=1 using (3. 7)

4. Compute restarting vectors (I + YTY
T
)Ik+r = [Q(A)

k V(m+1)]R

5. Compute the matrixHk+r,k

6. Performm1 steps of the block Arnoldi Householder Algorithm to get the block Arnoldi

decomposition

7. Go to step 2.

subspace like the Krylov subspace algorithms. Different from the methods like Arnoldi and

Krylov-Schur depending on preserving Krylov subspace, the Jacobi-Davidson method does

not insist on keeping a Krylov structure in the projected subspace.

Jacobi-Davidson methods are based on the approach by Jacobi and Davidson. In the Davidson

method [60], the subspace is expanded by orthogonalizing the correctionagainst the residual.

This method works very well with the matrices which are diagonally dominant. Jacobi method

for eigenvalue approximation is a combination of Jacobi rotations, Gauss-Jacobi iterations and

an almost forgotten method called Jacobi’s orthogonal component correction (JOCC) [39].

Combining the ideas in the Jacobi and Davidson methods, a new approach called Jacobi-

Davidson method is introduced in [60] for symmetric matrices.

Here, we introduce the Jacobi-Davidson type algorithms for non symmetric eigenvalue prob-

lems [61]. These algorithms are based on the Jacobi-Davidson method described in [60] and

adapted for generalized and standard eigenvalue problems. In these algorithms the Jacobi-

Davidson approach is modified such that partial (generalized) Schur forms are computed.Since

they involve orthogonal bases, the partial Schur forms have been chosen for numerical stabil-

ity.
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In Jacobi-Davidson methods, the small projected problem is reduced to Schur form by theQZ

method [45] for generalized eigen problems or byQRmethod for the standard eigen problems.

The construction of the subspace and the projected system is viewed as iterative inexact forms

of QZ andQRmethods. For this reason the methods introduced here have been named JDQZ

and JDQR, respectively. The JDQZ method produces a partial generalized Schur form for

the generalized eigenvalue problem and JDQR generates a partial Schurform for the standard

eigenvalue problem. Here we focus on JDQR method, however, a brief introduction for JDQZ

method is presented as JDQR method is a simplification of the JDQZ method.

Similar to subspace approaches for standard eigenvalue problems, the approximate eigenvec-

tor q̃ is selected from a search subspace span{V} in each step of the method. The Galerkin

condition, with associated approximate generalized eigenvalue
〈
α̃, β̃

〉
, involves orthogonality

with respect to some test subspace span{W}

β̃Aq̃− α̃Bq̃⊥spanW (3.19)

For generalized eigenvalue problems, it is natural to take the test subspace span{W} different

from the search subspace called the Petrov-Galerkin approach. Assume that search subspace

and test subspace are of the same dimension, sayj. Equation (3.19) leads to the projected

eigen problem

(β̃WTAV− α̃WT BV)u = 0, (3.20)

such that it can be easily solved by standard techniques, and a solution (u,
〈
α̃, β̃

〉
) is selected.

Then the Petrov vector ˜q = Vu and the residualr ≡ β̃Aq̃ − α̃Bq̃ associated with the Petrov

value
〈
α̃, β̃

〉
are computed. In each step of the iterative process, the subspaces span {V} and

span{W} are expanded. In the Jacobi-Davidson method introduced here, the search subspace

is expanded by a vectorv such that it is orthogonal to ˜q and it solves approximately the Jacobi

correction equation

(I − z̃z̃T)
z̃T z̃

) − (β̃A− α̃B)(I − q̃q̃T)
q̃T q̃

)v = −r. (3.21)

In the next step of the iteration process of the algorithm span{V, v} defines the new search
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subspace. As we choose orthogonal matricesV andW, the columns ofV andW are orthonor-

malized by modified Gram-Schmidt method. Then theQZ method is used to reduce Equation

(3.20) to a partial generalized Schur form. After convergence, the partialSchur form is ex-

panded with the converged Schur vector, and the algorithm is repeated witha deflated pencil

for other eigenpairs. More details aboutJDQZmethod can be found in [61].

Now, we are ready to introduce a simple case of this method called Jacobi-Davidson type QR

(JDQR) method.

3.3.1 Jacobi-Davidson QR Method

Jacobi-Davidson type QR method is a simplification of Jacobi-Davidson type QZmethod

[61] to standard eigenvalue problem. In Jacobi-Davidson method for standard eigenvalue

problems, the projected eigenproblem reduce to

(V∗AV− λ̃V∗V)u = 0. (3.22)

For this low-dimensional problem a solution, say (u, λ̃), is selected by standard computational

techniques. The Ritz valueλ and the Ritz vector ˜q ≡ Vu form an approximate eigenvalue and

eigenvector with residualr ≡ (A− λ̃I )q̃.

For the expansion ofV, a vectorv that is orthogonal to ˜q is taken and it solves the Jacobi

correction equation

q̃∗v = 0and(I − q̃q̃∗)(A− λ̃I )(I − q̃q̃∗)v = −r. (3.23)

The expanded search subspace is span{V, v} whereV is a orthonormal matrix, i.e.,V∗V = I .

In this method for the construction of an orthonormal basis of the search subspace modified

Gram-Schmidt is used.

If λ̃ is replaced in the correction equation (Equation (3.23)) by an eigenvalueλ, then the space

spanned byV and the exact solution of the Jacobi correction equation contains the associated

eigenvector.
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The projected eigenproblem (3.22) is reduced to Schur form by the QR algorithm and then

the Schur form is exploited for the selection of a Ritz pair ( ˜q, λ̃) and for restriction of the

dimension of the subspace span{V}.

Now, we will give the main expressions for Jacobi-Davidson type QR algorithm based on the

article [61].

Assume that we have detected the (k − 1) Schur pairs, that is, we already know the partial

Schur

AQk−1 = Qk−1Rk−1.

Then the new Schur pair (q, λ) is an eigenpair of the deflated matrix

(I − Qk−1QT
k−1)A(I − Qk−1Qk−1T ). (3.24)

The eigenvalue problem for the deflated matrix (3.20) can be solved easily. For the deflated

matrix (3.20) Jacobi-Davidson method constructs a subspace span{V} for finding the approx-

imate eigenpairs, whereV is an orthonormal matrix such thatVTQk−1 = 0. Then, for the

deflated interaction matrixM we obtain

M ≡ VT(I − Qk−1QT
k−1)A(I − Qk−1Qk−1T )V = VTAV. (3.25)

For a wanted eigenpair of the deflated matrix (3.20), the ordered Schur form

MU = US

gives an approximated eigenpair ( ˜q, λ̃) ≡ (VU(:,1),S(1,1)). Then, according to the Jacobi-

Davidson approach, the search subspace span{V} is expanded by the orthonormal complement

of v to V, wherev is the approximate solution of the deflated Jacobi correction equation

QT
k−1v = 0, q̃Tv = 0
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and

(I − q̃q̃T)(I − Qk−1QT
k−1)(A− λ̃I ) × (I − Qk−1QT

k−1)(I − q̃q̃T)v = −r, (3.26)

wherer ≡ (I − Qk−1QT
k−1)(A− λ̃I )(I − Qk−1QT

k−1)q̃.

Note that the projections in Equation (3.26) can be subdivided into two parts.The first part

is (I − q̃q̃T) associated with Jacobi-Davidson and the second one is the deflation part(I −

Qk−1QT
k−1).

Similar to Arnoldi’s method, for subspace iterations there is two deflation techniques in the

literature. They are called as explicit and implicit deflation techniques. In explicit deflation,

after detection of Schur vector the computation is continued with a deflated matrix. In implicit

deflation, each new vector is generated withA itself for the search subspace. Then it is made

orthogonal to the detected Schur vectors before adding it to the search subspace. This method

uses a mixture of both techniques. In Jacobi correction equation

q̃Tv = 0 and (I − q̃q̃T)(A− λ̃I )(I − q̃q̃T)v = −r

with residual r ≡ (A − λ̃I )q̃, the explicitly deflated matrix can be used. The solutions of

the deflated correction equations are orthogonal to the detected Schur vectors. So, there is no

need to use deflated matrix for computing the deflated interaction matrixM. It is also possible

to use implicit deflation in the following way: the correction equation with the non deflated

A is solved approximately and the resulting solution is made orthogonal to the detected Schur

vectors. In this approach the expensive matrix-vector multiplications are avoided but, explicit

deflation seems to improve the condition numbers the linear system and this leads toa faster

convergence process for the Jacobi correction equation. When compared with implicit de-

flation, it seems that the explicitly deflated correction Equation (3.26) leads to more stable

results. This can be explained as follows. The resulting solution of the correction equation

without deflation may have an important component in the space spanned by the detected

Schur vectors. Subtracting this component as an implicit deflation may result incancellation.

So, working with an explicitly deflated matrix prevents this cancellation.

Now, we briefly discuss preconditioning for the Jacobi correction equation. We need to solve

a deflated Jacobi correction equation (3.26) for a given ˜q and λ̃ in each iteration step. For
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the approximate solution of this equation a Krylov subspace method may be used.The rate

of convergence and the efficiency of Krylov subspace methods can be improved by precon-

ditioning. However, there may be a problem during the identification of an effective precon-

ditioner. For instance, for interior eigenvalues the construction of an effective incomplete

LU-factorization for
(
A− λ̃I

)
may require much fill in, which makes the construction expen-

sive. So, it may be a good strategy to compute a good (and possibly expensive) preconditioner

K for (A− τI ) whereτ is an user specified fixed target value and to use

K̃ ≡ (I − q̃q̃T)(I − Qk−1QT
k−1)K(I − Qk−1QT

k−1)(I − q̃q̃T) (3.27)

as the preconditioner for various ˜q and λ̃. For more details about preconditioning in JDQR

method see [61].

JDQR algorithm has some nice properties. While the process converges to aSchur pair,

the search subspaceV will provide good initial approximations for the nearby Schur pairs.

Moreover, slow convergence during one stage may be compensated forby faster convergence

in the next stage, because the subspace span{V} will be enriched with more components of

other Schur pairs due to the repeated amplifications.
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CHAPTER 4

EIGENVALUE SOLVERS

In the chapter, we present description of programs and software packages described in Chapter

3. Since eigenvalue problems have a wide range of application areas in science and engineer-

ing, there exists many efficient eigensolvers. Most of the methods for sparse non symmetric

eigenvalue problems were developed with in the last fifteen years. Paralleltoo the develop-

ment of new methods, several eigenvalue solvers were developed suchthat most of them can

be used in applications. For a detailed survey of current solvers you can see [34].

The programs used in this study are written in MATLAB (speig, ahbeigs, jdqr) and C++

(SLEPc). MATLAB is a numerical computing environment which has good visualization

skills. Today, it is a popular language among numerical mathematicians. On the other hand,

C++ is a general purpose programming language. It is used in both industrial and academic

environment. All of the eigenvalue solvers investigated in this study can be found on the

Internet freely. They can only be applied to sparse matrices. The solvers implemented in

MATLAB are designed for serial computation, however, the SLEPc is alsodesigned for par-

allel computation. In this study, we use both programming languages in serial computation.

4.1 Descpription of speig

speigis a MATLAB implementation of implicitly restarted Arnoldi method (IRAM) described

in Chapter 2. Its name is built by the combination of the first letters of words sparse and eigen-

value. It is developed as an alternative to theeig command of MATLAB which is for dense

matrices. Thespeigsolver is available with its own package at ftp.task.gda.pl/pub/software/mat

lab/toolbox/matlab/sparfun/speig/. A detailed description and implementation of the solver
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′LM′ Largest Magnitude
′S M′ Smallest Magnitude
′LR′ Largest Real Part
′S R′ Smallest Real Part
′BE′ Both ends

Table 4.1: Character signs forσ

can be found at [54].

The basic syntax of the solverspeigis

>> d = speig(A),

such that it provides one output argument the vectord which is the eigenvalues ofA. If the

eigenvectors are also needed the syntax will be

>> [V,D] = speig(A)

such that it provides two output arguments, the matrixV consisting of eigenvectors and the

diagonal matrixD with eigenvalues on its diagonal.

The general syntax of the eigenvalue solverspeigis

>> d = speig(A, k, σ)

whereA is the matrix whose eigenvalues are desired to compute,k is the desired number of

eigenvalues andσ is the around which the user wants to compute the desired eigenvalues.

Here,σ is numeric or a two letter string described in Table 4.1.

There are also many input parameters for the solverspeigother than these ones. The de-

fault values of parameters in the solverspeigcan be changed with the help of two functions:

speigsetandspeigget.

The functionspeigsetchanges and saves the parameter values by the syntax
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Parameter Name Description Default value
n Dimension of the problem none
p Dimension of Arnoldi basis 2k
tol Tolerance for convergence of||AV−VD||

||A|| 10−10 (symmetricA, B)
10−6 (non symmetricA, B)

maxit Maximum number of Arnoldi iterations 300
issym Positive ifA is symmetric, 0 otherwise 0
dopoly Positive if it specifies a matrix vector 0

product,σ is LR, SR or numeric and
polynomial interpolation is to be used to
accelerate convergence

gui 0

Table 4.2: Parameter list ofspeig

>> opts= speigset(‘name1′, ‘value1′, ‘name2′, ‘value2′, . . .),

wherename1represents the name of the parameter andvalue1represents the specified value

of the parameter.

speiggetis designed to extract the parameter values that are created byspeigset. Its syntax is

>> v = speigget(opts,′ name1′).

The parameters and their default values for the solverspeigare given in Table 4.2.

The parameterdopolyshows the activation or deactivation of polynomial acceleration. The

qui parameter is related to opening a convergence history window of the solver. It shows the

residual norm at each step, current iteration number, elapsed time and convergence report.

The general properties of the problems like matrix size, tolerance and maximumnumber of

iterations are also reported.

4.2 Descpription of ahbeigs

ahbeigsis a MATLAB implementation of the augmented block Householder Arnoldi method

(AHBEIGS). Its name is built by the combination of the first letters of the algorithm aug-

mented block Householder Arnoldi and eigenvalues. It is developed by J. Baglama to take
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the advantage of block Krylov subspaces. It is used for both generaland standard eigen-

value problems. The solverahbiegsis available at www.math.uri.edu/∼jbaglama/software. A

detailed description can be found in [3].

The basic syntax ofahbeigsis

>> d = ahbeigs(A),

whered is a vector with entries consisting of desired eigenvalues of the matrixA which can

be represented as a numeric or as a M-file (’Afunc’). IfA is passed as an M-file, then the size

of the matrixA must also be introduced. If the corresponding eigenvectors are needed, the

syntax becomes

>> [X,D] = ahbeigs(A),

whereD is a diagonal matrix that contains the desired eigenvalues along the diagonaland the

matrix X contains the corresponding eigenvectors, such thatAX = XD or AX = BXD for

generalized eigenvalue problem.

It is also possible to see the convergence history of the algorithm by the following syntax:

>> [X,D, FLAG] = ahbeigs(A),

which returns the same as the above option plus a two dimensional array FLAGthat reports

if the algorithm converges and the number of matrix vector products.

Similar to other algorithms,ahbiegsis also contains many parameters and it is possible to

change these parameter values by using ‘OPTS’ command ofahbeigs. The structure to change

the default values of parameters is

>> OPTS.parameter name= desired value of the parameter

Then by adding the ‘OPTS’ command as an input argument to one of the syntaxes ofahbeigs,
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Parameter Description Default value
k Number of desired eigenvalues 6
adjust Initial number of vectors added to the k restart 3

vectors to speed up the convergence
tol Tolerance used for convergence 10−6

maxit Maximum number of iterations 100
blsz Block-size of block Arnoldi Hessenberg matrix,Hmr 3
nbls Number of blocks in the block Arnoldi Hessenberg matrix,Hmr. 10

If value ofnbls is not sufficiently large enough then
ahbeigswill not converge or miss some desired eigenvalues

dspr Sets history 0
V0 starting vector V0 = randn
υ0 Initial matrix of r columns for the block Arnoldi method rand

Table 4.3: Parameter list ofahbeigs

the user can achieve to set up new parameter values. Table 4.3 shows the parameters and

default values used in the eigenvalue solverahbeigs.

The parameterblsz shows the number of columns of starting matrix which is ther value

in the formula. nbls parameter is them value in the formula and if required it is increased

automatically by the solver. The input parametersigmashows the portion of the spectrum.

It can be a numeric or a letter string defined in Table 4.1. The convergenceof the method is

determined by the parametertol described in Chapter 3.

4.3 Description of jdqr

jdqr is a MATLAB implementation of Jacobi-Davidson QR method. The name JDQR comes

from the first letters of the Jacobi-Davidson QR method. It is developed byGerard Sleijpen

and Han Der Vorst. A detailed description of the method can be found in [60,61]. The

MATLAB code of the solver is available at www.staff.science.uu.nl/∼sleij101/JD software.

The basic syntax ofjdqr is given as

>> d = JDQR(A),

whered is a vector whose entries are eigenvalues of the matrixA. Unless it is changed, vector

d includes five largest eigenvalues of the matrixA. When the corresponding eigenvectors are
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needed, the syntax becomes

>> [X, Lambda] = JDQR(A).

The way of calculating other parts of the spectrum can be achieved by the command

>> d = JDQR(A, k, sigma)

where the first input argument is either a square matrix that can be full or sparse, symmetric

or non symmetric, real or complex.k is the number of desired eigenvalues andσ is a numeric

or a two letters string that determines the portion of the spectrum. The two letters string for

jdqr is given in Table 4.1.

Other parameters in the solver can also be changed in a practical way by thefollowing options

structure:

>> OPTS.parameter name= parameter value.

Then assigning these changes to the code by

>> d = JDQR(A,OPTS)

ends up with changes of the parameter.

The parameters used injdqr are given in Table 4.4.

The type of the Ritz values used during calculation is determined by parametertest space.

If it is assigned as ‘STANDARD’, standard Ritz values are used. If it is assigned as ‘HAR-

MONIC’, the harmonic Ritz values are selected. For computing interior eigenvalues, choosing

the type of the Ritz values as ‘HARMONIC’ gives better results.

The parameterLSolverdetermines the opportunity to select the linear solver used for correc-

tion equation. Linear solver can be chosen as GMRS, CG, MINRES or manyothers which

requires a positive preconditioner to work.
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Parameter Description Default value
Tol Convergence tolerance 1e-8
jmin Minimum dimension search subspace k+5
jmax Maximum dimension search subspace jmin+5
maxit Maximum number of Arnoldi iterations 100
v0 Starting space ones+1*rand
testspace For using harmonic Ritz values. If ’Standard’

′testspace′ =′ harmonic′, thenS IGMA= 0 is
the default value forS IGMA

Lsolver Linear solver ’GMRES’
LSTol Residual reduction linear solver 1, 0.7, 0.72, . . .
LSMaxit Maximum number iterations of linear solver 5
Precond Preconditioner M=[].

Table 4.4: Parameter list ofjdqr

By assigning the parameter value ofdispto 1, the user will have a chance to see convergence

history and residual at each step. If it is not changed, there is no chance to see the history.

4.4 Descpription of SLEPc

SLEPc, the Scalable Library for Eigenvalue Problem Computations, is a software library

for the solution of large, sparse eigenvalue problems. It is built on top of PETSc (Portable,

Extensible Toolkit for Scientific Computation) [38] and extends it with all the functionality

necessary for the solution of eigenvalue problems. It is written in C++ but a Fortran interface

is also available. It can be downloaded from www.grycap.upv.es/slepc/ and many documents

can be found in this web page.

SLEPc can be used for the solution of eigenvalue problems given in either standard or gen-

eralized form, both Hermitian and non-Hermitian, as well as other related problems such

as the singular value decomposition [37]. It focuses on sparse problems. Therefore it is

based on projection methods such as Krylov-Schur, Lanczos, Arnoldi,Subspace Iteration and

Power/RQI. It also gives the opportunity to apply for different types of problems and spectral

transformations. More information can be found in [34].

The main objects provided by SLEPc are the Eigenvalue Problem Solver (EPS) and the Spec-

tral Transformation (ST). ST is used to compute the internal eigenvalues and accelerate the

convergence. EPS is used to specify an eigenvalue problem and provides an efficient access
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Problem Type Command Line Key
Hermitian −eps−hermitian
Non-Hermitian −eps−non−hermitian
Generalized Hermitian −eps−gen−hermitian
Generalized Non-Hermitian −eps−gen−non−hermitian
GNH with positive (semi-) definiteB −eps−pos−gen−non−hermitian

Table 4.5: Promlem Types in SLEPc

to all eigensolvers included in the package. Furthermore, it is used to change default values of

parameters such as eigenvalue number, tolerance, maximum number of iterations, etc. SLEPc

is able to cope with many types of problems. Currently supported problem types are given in

Table 4.5. The default problem type is non-Hermitian. So it is not necessary to change the

problem type for non symmetric problems.

The available methods for solving the eigenvalue problems on SLEPc are power iteration

with deflation, Arnoldi method with explicit restarting, Lanczos method, Krylov-Schur. The

default method is Krylov- Schur. Each method is designed to compute the largest eigenval-

ues. However, it is possible to compute the smallest eigenvalues, smallest/largest real part or

smallest/largest imaginary part of the eigenvalues. It is also possible to compute the interior

eigenvalues with harmonic extraction or spectral transformations. In harmonic extraction the

user can compute eigenvalues around a target valueκ. The spectral transformation methods

in SLEPc are given in Table 4.6.
Sorting criterion options name
shift of origin shift

spectrum folding fold
shift-and-invert sinvert

cayley cayley

Table 4.6: Spectral Transformation Methods in SLEPc

In the shift of origin the matrix is shifted with the givenσ value. Spectrum folding means

shifting then taking the square of the matrix. By Cayley transformation a shift and an anti

shift is applied to the problem. the default value for the shift and anti shift inCayley transfor-

mations is equal.

All methods are designed to compute only one eigenvalue. It is possible to change this num-
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ber, however, the user should be careful while changing the desired number of eigenvalues.

As the number of eigenvalues (nev) affects the dimension of the working space (ncv), there

must be a relation between nev and ncv such that they satisfyncv = max(2nev,nev+ 15).

This is reasonable when the small portion of spectrum is needed. However, when the large

number of eigenvalues are required, changing the ncv according to this relation causes storage

problems and high computational costs. So, instead of ncv another parameter, mpd, is used to

handle with these problems. This parameter bound the size of the problem [37]. There is no

specified relation between mpd and other parameters.

The errors are controlled by the residual vectorr = Ax̃ − λ̃x̃. In the case of the Hermitian

problems, the 2-norm is used as a bound for the absolute error in the eigenvalue. However, in

the case of the non-Hermitian problems, the situation is worse as there is no simplerelation

similar to the case of Hermitian problems. This means that the error bounds may stillgive an

indication of the actual error but the user should be aware that they sometimes may be wrong,

especially in the case of highly non-normal matrices. The default value of the error estimate

bound,tol, is 10e− 07. It can be changed depending on the problem.

The two objects of SLEPc, EPS and ST, are used to make the necessary changes on default

values. These objects contain functions to apply the changes in the written commands. It

is also possible to apply changes during the run time from the command line. An example

command with descriptions is given below:

./ex4 − f ile matrix − epsnev20 − epsncv40 − epshermitian

−epstype arnoldi − epstol 10e− 8 − st type cayley − st shi f t 1.

This command computes 50 eigenvalues around 1 of the Hermitian matrix with tolerance

10e− 8 by Arnoldi method applied with Cayley transformations. The command at the begin-

ning of the command line./ex4 represents one of the examples in SLEPc. This example takes

a matrix from an exterior address and then finds its eigenvalues.

./ex4 − f ile matrix − epsnev50 − epsncv100

−epstype krylovschur − epsharmonic − epstarget1.
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This command says the package to find 50 eigenvalues around 1 of the non Hermitian matrix

by Krylov Schur method with harmonic extraction.

./ex4 − f ile matrix − epsnev10000 − epsmpd600 − epshermitian

−epstype − epsarnoldi − eps−smallest−magnitude.

This command computes 10000 smallest eigenvalues of the Hermitian matrix by Arnoldi

method. It should be noticed that the parametermpd is used instead ofncvas the number of

desired eigenvalues is quite high.

SLEPc also gives an opportunity to display the error estimates during the execution of the

algorithm and plotting the computed approximations of the eigenvalues at the endof the

process for any problem. The reference [37] can be seen for closer details.
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CHAPTER 5

NUMERICAL RESULTS

5.1 Performance of Eigensolvers

In this section, we give numerical results for computation of eigenvalues ofsome directed

graphs. A direct comparison between the solvers described in Chapter 3is made in terms

of the accuracy. Although the scope of this study would be on non symmetric matrices, the

solversspeigand jdqr and library SLEPc can also be applied to symmetric matrices. Also,

the solverjdqr is designed to solve the problems with preconditioning which makes the solver

really effective as reported in [60] and [61]. However, through this chapter, the solverjdqr is

used without preconditioning.

The solversspeig, ahbeigsandjdqr are written in MATLAB while SLEPc is written in C++.

Therefore, a comparison of CPU-times between these solvers is not possible.

All eigensolvers investigated in this study are designed to compute some part of the spec-

trum: exterior or interior eigenvalues of the spectrum. However, we try to compute as many

eigenvalues as possible. For this reason default values of some parameters are rearranged to

compute all spectrum. Nevertheless, we were unable to compute the whole spectrum for some

eigensolvers. For instance,speigis designed to compute at mostn− 3 eigenvalues wheren is

the size of the matrix. Ifn eigenvalues of the matrix are desired to compute, an error occurred

and eigenvalues are not computed. On the other hand, whenn − 3 eigenvalues are desired,

it runs with a warning about the number of requested eigenvalues are highand convergence

may not be reached. The maximum number of eigenvalues computed byahbeigschanges

depending onn and the internal relations betweennbls, blszandmaxdpol.

All computations for MATLAB are done with version 2007a and carried outon Intel Core
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2 Duo CPU with 2.1 GHz and 2 GB RAM, Windows Vista operating system. TheC + +

computations are carried out on Fedora Core 12.

5.2 Spectra of Paley Digraphs

The normalized Laplacian matrix for two Paley digraphs are used in this example. Paley

digraphs are a class of strongly regular digraphs. The normalized Laplacian matrix of Paley

digraph has three distinct eigenvalues. The multiplicity of the 0 eigenvalue is 1 and the other

eigenvalues have multiplicities(n−1)
2 wheren is the size of the matrix. The y-axis in Figures

5.1, 5.2, 5.3, 5.4, 5.5, represents the absolute values of errors betweenexact and approximate

eigenvalues.

Figures 5.1, 5.2, 5.3, and 5.4 (a) are forn = 103. The number of nonzero elements of

matrix is 5253 which is nearly half of the total elements which indicates that the normalized

Laplacian matrix is dense. In spite of the design of algorithms, we force them tocompute

as many eigenvalues as possible as mentioned above.speigcomputed 100 eigenvalues and

ahbeigscomputed 96 eigenvalues with parametersnbls= 53 andblsz= 2. The other solver

can compute all eigenvalues.

Figure 5.1 represents the errors for eigenvalues computed with Krylov Schur and Arnoldi

methods by SLEPc and they have similar error distribution. On the other hand,the error

distribution of the solverahbiegsis totally different as it implements the block version (see

Figure 5.3). However, despite the differences in the shape of error distribution, errors for each

solver fluctuates around 10−15 and 10−17.

Figures 5.4 (b), 5.5, and 5.6 are prepared forn = 1019. ahbeigscalculated 1010 eigenval-

ues with initial parametersnbls = 509 andblsz= 2 andspeigcalculated 1016 eigenvalues

whereas the other solverjdqr computes all eigenvalues without any problem as the Laplacian

matrix of Paley digraph is diagonally dominant.

In Table 5.1 CPU times of solvers for two Paley digraphs are given to obtain arough idea

about eigenvalue computing times of solvers. These results show CPU times ofsolvers for

computing all eigenvalues of Paley digraphs. The solverahbeigsseems the fastest one as

it uses block Arnoldi method. The comparison is only done between the solvers which are
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Table 5.1: CPU times of Packages

CPU Times in Seconds
n=103 n=1019

speig 0.22 231.60
ahbeigs 0.30 82.38

jdqr 0.74 332.54

written in MATLAB. SLEPc is not included, as it is written in C++.
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Figure 5.1: Approximate eigenvalues of Paley digraph forn = 103. (a) SLEPc-Krylov Schur
method (b) SLEPc-Arnoldi method
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Figure 5.2: Approximate eigenvalues of Paley digraph forn = 103. (a) SLEPc-Krylov Schur
method with Cayley transformations (b) SLEPc-Krylov Schur method with harmonic extrac-
tion
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Figure 5.3: Approximate eigenvalues of Paley digraph forn = 103. (a) speig (b) ahbeigs
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Figure 5.4: Approximate eigenvalues of Paley digraph calculated by JDQR.(a) n = 103 (b)
n = 1019
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Figure 5.5: Approximate eigenvalues of Paley digraph forn = 1019. (a) SLEPc-Krylov Schur
method (b) SLEPc Arnoldi Method
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Figure 5.6: Approximate eigenvalues of Paley digraph forn = 1019. (a) ahbeigs (b) speig

5.3 Spectra of Empirical Networks

For the rest of this chapter, all examples are taken from the University ofFlorida Sparse Matrix

Collection [22] that each of them represents network and belongs to Pajekgroup. All matrices

in this collection available in adjacency matrix form but we have computed the normalized

Laplacian form via related formulas given in Chapter 2.

The normalized Laplacian matrix of a network in size 396 is used as first example. It repre-
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sents a citation network. As there is no available information about the exact eigenvalues of

the the normalized Laplacian matrix of this network, we have computed relative residuals for

eigenvalues.

The relative residual for eigensolvers is computed according to the following formula

rλ =
‖Ax− λx‖
‖λx‖ , (5.1)

whereλ is the approximate eigenvalue andx is the corresponding eigenvector of it. SLEPc

internally computes this value during computations and at the end of the process displays it

on the screen. For other solvers we have computed the residuals according to 5.1. Ifλ = 0,

Eq. 5.1 is undefined. Therefore, we use

rλ =
‖Ax‖

x
. (5.2)

In Figure 5.7 and 5.8 the relative residuals are calculated with respect to theeigenvalue num-

bers for citation network in size 396. The eigenvalue numbers are increaing from left to right

and they are arranged from largest eigenvalue in magnitude to smallest one. The residual

for Krylov-Schur method clusters around 10−14 and 10−15 for whole spectrum. On the other

hand, the relative residual forspeigis calculated for 393 eigenvalue because of its design as

it is mentioned above. It fluctuates around 10−10 and 10−15. The solverahbeigscomputed

388 eigenvalues with parametersnbls= 197 andbls= 2. The relative residuals for it clusters

around 10−15.

As next example we compute the normalized Laplacian matrix of a citation network insize

1059. Computations are done with SLEPc-Krylov Schur,speig, andahbeigs. The solver

jdqr could not work to compute all eigenvalues since the normalized Laplacian matrixis not

diagonally dominant. Figures 5.7 and 5.10 show relative residuals for this citation network.

speigcalculates the 1056 eigenvalues andahbeigscalculates 1050 eigenvalues with parameter

valuesnbls= 529 andblsz= 2. The relative residuals for SLEPc Krylov-Schur andahbeigs

clusters around 10−14 and 10−15. Forspeigthe relative residuals fluctuates between 10−9 and

10−15.
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As next example we have computed the spectrum of a larger normalized Laplacian matrix of

a citation network in size 4470. The relative residual is calculated by SLEPc-Krylov Schur

method as the other solvers failed to compute all eigenvalues. They all returned errors about

memory. Figure 5.14 shows the residual plot calculated by SLEPc-Krylov Schur method.

According to this figure, the relative residuals for SLEPc Krylov-Schurfluctuates between

10−14 and 10−15.

In Figures 5.1 to 5.11, the accuracy of solvers for different networks is illustrated. The ac-

curacy of all eigenvalue solvers studied here is around machine epsilon.However, they have

some pros and cons. For instance,speigandahbeigscan not compute the all eigenvalues.

Also, when size of the network increase they can not compute any of the eigenvalues. Ac-

cording to Figures 5.8 (a) and 5.10 (a) the solverspeig is not good at computing interior

eigenvalues when the accuracy is compared with exterior eigenvalues. For the solverahbeigs,

in Figures 5.8 (b) and 5.10 (b) there is not such a exact difference between exterior and inte-

rior eigenvalues. It accuracy clusters around 10−15 for both exterior and interior eigenvalues.

jdqr is designed for computing eigenvalues of diagonally dominant matrices. So, itfailed

except for Paley digraphs. We do not meanjdqr can not compute any of the eigenvalues. It

compute few eigenvalues. For computing many eigenvalues it needs a lot of iterations. When

compared to other solvers, SLEPc-Krylov Schur seems the most efficient solver for now as it

works for all network types in this study. Also, its accuracy generally fluctuates around 10−14

and 10−15.
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Figure 5.7: Approximate eigenvalues of citation network forn = 396 are calculated by
SLEPc-Krylov Schur method.
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Figure 5.8: Approximate eigenvalues of citation network forn = 396. (a) speig (b) ahbeigs
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Figure 5.9: Approximate eigenvalues of citation network forn = 1059 are calculated by
SLEPc-Krylov Schur method.

77



(a)

100 200 300 400 500 600 700 800 900 1000
10

−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

Eigenvalue Number

E
rr

o
r

Citation network of size 1056, IRAM, k=1053

(b)

0 100 200 300 400 500 600 700 800 900 1000

10
−14.5

10
−14.4

10
−14.3

10
−14.2

10
−14.1

Eigenvalue Number

E
rr

o
r

Citation network of size 1059, AHBEIGS, nbls=529, blsz=2

Figure 5.10: Approximate eigenvalues of citation network forn = 1059. (a) speig (b) ahbeigs
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Figure 5.11: Approximate eigenvalues of citation network forn = 4470 are calculated by
Krylov-Schur method.

5.4 Spectral Density Plots

In this section we will investigate the eigenvalue distribution of networks from the previous

Section. We also provide the spectral density plots for the real part of theeigenvalues of

the normalized Laplacian matrix. When the directions of all edges of a directedgraph are

ignored, then the spectral density of the resulting undirected graph is the same in the first-

order approximation as the density of the real part of the eigenvalues of the directed graph.

The distribution of the real part of the eigenvalues reflects the undirectedtopology of the graph
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and the distribution of the imaginary part of the eigenvalues approximately gives the number

of directed edges [50]. There are different plotting methods for looking into spectral density

suggested in [5, 41]. The density functions with Gaussian and Lorenz kernels are used:

f (x) =
∫

g(x, λ)
∑

k

δ(λ, λk)dλ =
∑

k

g(x, λk) (5.3)

whereg(x, λ) = 1√
2πσ

exp(− (x−λx)2

2σ2 ), the Gaussian kernel org(x, λ) = 1
π

γ

(x−m)2+γ2 , the Lorenz

distribution. Through this study, Lorenz distribution is used and as the smallervalues are

taken for the parameter, the finer details are emphasized.

The spectral density plots of some citation networks are plotted with respect tothe formula-

tion of Lorentz and Gaussian distribution. In citation network, vertices represent a published

article and directed edges stand for reference from one article to another article.

Figures 5.12 and 5.13 show the spectral density plots for real part of eigenvalues of a digraph

(network) and for its underlying graph in sizes 1059 and 4470. From these figures it is seen

that they show similar distributions. In all figures there is a high peak at 1 which shows that

the underlying graph (undirected graph) consists of vertex doubling. Also, the peak at 0 is

an evidence for the number of connected components in undirected graph(see Chapter 2). In

Figure 5.14 eigenvalue distribution shows a ring structure for all networks. By Figure 5.15,

a 3D visualization is provided for the same citation networks which shows symmetric eigen-

value distribution at 1. This 3D visualization is provided with Lorentz distributionsuggested

in [41].
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Figure 5.12: The spectral density for real part of the eigenvalues of citation network for
n = 1059 with (a) Lorenz (b) Gaussian distribution.
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Figure 5.13: The spectral density for real part of the eigenvalues of citation network for
n = 4470 with (a) Lorenz (b) Gaussian distribution.
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Figure 5.14: (a) Eigenvalue distribution of citation network forn = 396. (b) Eigenvalue
distribution of citation network forn = 1059. (b) Eigenvalue distribution of citation network
for n = 4470.
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Figure 5.15: The spectral density with Lorenz distribution for citation networks. (a)n = 396
(b) n = 1059 (c)n = 4470

5.5 Conclusions

The contribution of this study is on computing and analyzing the spectrum of normalized

Laplacian matrices of directed graphs. We provide the comparison of the sparse eigenvalue

solversspeig, ahbeigs, jdqr, and Krylov-Schur in SLEPc. In this comparison firstly, we use

Paley digraphs as they have three distinct exact eigenvalues. Then, citation networks in dif-

ferent sizes are used. Both type of networks give an idea about the accuracy of eigenvalue

solvers. While the absolute error is used for Paley digraphs, relative error is computed for

citation networks as we do not know the exact eigenvalues of them. All the eigenvalue solvers

have a good accuracy. The accuracy of each of them fluctuates between 10−14 and 10−17.
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However, the eigenvalue solversspeig, ahbeigsdo not allow us to compute all eigenvalues

because of their design. Also, they do not work as the size of network increases because of

the memory limitations. The solverjdqr only works with Paley digraphs as Jacobi-Davidson

methods are designed for diagonally dominant matrices. As citation networks are not diag-

onally dominant, it can not compute all eigenvalues. It can only compute a feweigenvalues

for citation networks, however, to achieve this large number of iterations is needed. The

Krylov-Schur method in SLEPc works very well with all examples in this study.

By means of the numerical examples for finding the most appropriate algorithms, we compute

the all eigenvalues of some citation networks in different sizes. The eigenvalue distribution

of these networks show a circular distribution. In terms of a network, this means that there

is flow in networks [40, 50]. In three dimensional visualization of networksall eigenvalues

gather around 1 and shows a symmetric distribution around 1. For a citation network, this

means that there multiple edges for a pair of node and these edges are in opposite directions.

Furthermore, spectral density plots for the real part of the eigenvaluesand for the eigenvalues

of undirected graph which underlies these citation networks show approximately the same

eigenvalue distribution. Then, instead of finding the eigenvalue distribution of underlying

graphs of digraphs, the eigenvalue distribution of the real part of eigenvalues of digraphs can

be used.

Computing the whole spectrum of large matrices obtained from network applications is really

challenging as it requires memory efficient algorithms. The efficient algorithm in this study,

SLEPc, may fail because of memory limitations when it is applied to larger networks. For this

reason, parallel computing can be applied with SLEPc algorithms or any othereigenvalues as

a future work in the field of eigenvalue computation of large sparse matrices.

Spectral analysis of digraphs is a very active research area as it is thought as a special case of

graphs for long times. By means of memory efficient algorithms this research area can also

be extended. The relations between some exact eigenvalue of digraphs and construction type

of the graph may be obtained similar to the case in protein protein interaction network. Many

digraph parameters can be defined which are undefined now. By means of intense study in

this area, many questions for digraphs which have not been solved yet could be answered.
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ommenden gleichungen numerish aufzulösen,Journal Reine Angew. Math., 30:51–94,
1846.

[40] J.B. Jensen and G. Gutin.Digraphs Theory, Algorithms and Applications, Springer,
2007.

[41] P.F. Kaluza,Evolutionary engineering of complex functional networks, PhD Thesis, Von
der Fakultat II–Mathematik und naturwissenschaften der Technishen Universitat Berlin,
Berlin, 2007.

[42] R.B. Lehoucq and D.C. Sorensen. Deflation Techniques for an implicitly Restarted
Arnoldi Iteration.,SIAM, J. Matrix Anal. Appl., 17:789–821, 1996.

[43] R.B. Lehoucq and K.J. Maschhoff. Implementation of an Implicitly Restarted Block
Arnoldi Method, 1997.

[44] R.B. Lehoucq, D.C. Sorensen and C.Yang.ARPACK Users’ Guide: Solution of Large
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, 1998.

[45] C.B. Moler and G.W. Stewart. An algorithm for generalized matrix eigenvalue problems,
SIAM J. Numer. Anal., 10:241–256, 1973.

[46] R. Morgan. Computing Interior Eigenvalues of Large Matrices,Linear Algebra Appl.,
154/159:289–309, 1991.

[47] R.B. Morgan. On Restarting the Arnoldi Method For Large Nonsymmetric Eigenvalue
Problems,Math. Comput., 65:1213–1230, 1996.

[48] R. Morgan. Restarted Block GMRES with Deflation of Eigenvalues,Applied Numerical
Mathematics, 54:222-236, 2005.

[49] J. Möller. Implementations of the implicitly restarted block Arnoldi method. Techni-
cal Report, Royal Institute of Technology, Dept. of Numerical Analysis and Computer
Science, 2004.

[50] T. Murai. Spectral Analysis of Directed Complex Networks, M.S Thesis, Department
of Physics, Graduate School of Science and Engineering, Aoyama Gakuin University,
2002.

86



[51] M.E.J. Newman. The Structure and Function of Complex Networks,SIAM Review,
45:167–256, 2003.

[52] B.N. Parlett.The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, N.J.,
1980.

[53] D.J.D. Price.Networks of Scientific Papers, Science, 149:510–515, 1965.

[54] R.J. Radke.A Matlab Implementation of the Implicitly Restarted Arnoldi Method for
Solving Large Scale Eigenvalue Problems, PhD Thesis, Rice University, 1996.

[55] Y. Saad.Numerical Methods For Large Eigenvalue Problems, Halsted Press, New York,
1992.

[56] Y. Saad.Iterative Methods for Sparse Linear Systems, SIAM, Second Edition, 2003.

[57] Y. Saad. Chebyshev Acceleration Techniques for Solving Nonsymmetric Eigenvalue
Problems,Math. Comp., 42:567–588, 1984.

[58] R. Schreiber and C. Van Loan. A Storage Efficient WY Representation for Products of
Hoseholder Transformations,SIAM J. Sci. Stat. Comput., 10:53–57, 1989.

[59] H. Simon. On a Class of Skew distribution functions,Biometrika, 42:425–440, 1955.

[60] G.L. Sleijpen and H.A. Van Der Vorst. A Jacobi-Davidson Iteration Method for Linear
Eigenvalue Problems,SIAM Rev, 42:267–293, 2000.

[61] G.L. Sleijpen, H. A. Van Der Vorst, and D. R. Fokkema. Jacobi-Davidson style QR and
QZ algorithms for the reduction of matrix pencils,SIAM J. Sci. Comput, 20:94–125,
1998.

[62] D.C. Sorensen. Implicitly Restarted Arnoldi/Lanczos Methods For Large Scale Eigen-
value Calculations, InParallel Numerical Algorithms(Hampton,VA,1994), volume 4,
pages 119–165. Kluwer, 1997 ICASE, 1996.

[63] D.C. Sorensen. Numerical Methods For Large Eigenvalue Problems, Acta Numer.,
50(1):519–584, 2002.

[64] D.C. Sorensen. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method,
SIAM J. Matrix Anal. Appl., 13:357–385, 1992.

[65] G.W. Stewart.Introduction to Matrix Computations, Academic Press, New York, 1973.

[66] G.W. Stewart.Matrix Algorithms, Vol I, SIAM, 1998.

[67] G.W. Stewart.Matrix Algorithms, Vol II, SIAM, 2001.

[68] G.W. Stewart. A Krylov-Schur Algorithm For Large Eigenproblems,SIAM J. Matrix
Anal.Appl., 23:601–614, 2001.

[69] H. Walker. Implementation of the GMRES Method Using Householder Transforma-
tions,SIAM J. Sci.Compt., 9:152–163, 1988.

[70] D.S. Watkins. A Refined Iterative Algorithm Based on the Block Arnoldi Process for
Large Unsymmetric Eigenproblems,Linear Algebra and Its Applications, 1998.

87



[71] D.J. Watts and S.H. Strogatz. Collective dynamics of ‘small-world’ networks, Nature,
393:440–442, 1998.

[72] K. Wu and H. Simon. Thick-Restart Lanczos Method for Large Symmetric Eigenvalue
Problems,SIAM, J. Matrix Anal. Appl., 22:602–616, 2001.

[73] C. Vasudev.Graph Theory with Applications, New Age International Publisher, 2006.

[74] Y. Zhou and Y. Saad.Block Krylov-Schur method for large symmetric eigenvalue prob-
lems, Numerical Algorithms, 47:341–359, 2008.

88


