
1

COMPUTATION AND ANALYSIS OF SPECTRA OF LARGE UNDIRECTED
NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZGE ERDEM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

SCIENTIFIC COMPUTING

JUNE 2010

Approval of the thesis:

COMPUTATION AND ANALYSIS OF SPECTRA OF LARGE UNDIRECTED

NETWORKS

submitted by ÖZGE ERDEM in partial fulfillment of the requirements for the degree of Mas-
ter of Science in Department of Scientific Computing, Middle East Technical University
by,

Prof. Dr. Ersan Akyıldız
Dean, Graduate School of Applied Mathematics

Prof. Dr. Bülent Karasözen
Head of Department, Scientific Computing

Prof. Dr. Bülent Karasözen
Supervisor, Department of Mathematics, METU

Prof. Dr. Jürgen Jost
Co-supervisor, Max-Planck Institute for Mathematics in Sciences,
Leipzig, Germany

Examining Committee Members:

Prof. Dr. Gerhard Wilhelm Weber
Institute of Applied Mathematics, METU

Prof. Dr. Bülent Karaözen
Department of Mathematics & Institute of Applied Mathematics,
METU

Assoc. Prof. Dr. Ömür Uğur
Institute of Applied Mathematics, METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: ÖZGE ERDEM

Signature :

iii

ABSTRACT

COMPUTATION AND ANALYSIS OF SPECTRA OF LARGE UNDIRECTED
NETWORKS

Erdem, Özge

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Bülent Karasözen

Co-Supervisor : Prof. Dr. Jürgen Jost

June 2010, 91 pages

Many interacting complex systems in biology, in physics, in technology and social systems,

can be represented in a form of large networks. These large networks are mathematically rep-

resented by graphs. A graph is represented usually by the adjacency or the Laplacian matrix.

Important features of the underlying structure and dynamics of them can be extracted from the

analysis of the spectrum of the graphs. Spectral analysis of the so called normalized Laplacian

of large networks became popular in the recent years. The Laplacian matrices of the empirical

networks are in form of unstructured large sparse matrices. The aim of this thesis is the com-

parison of different eigenvalue solvers for large sparse symmetric matrices which arise from

the graph theoretical representation of undirected networks. The spectrum of the normalized

Laplacian is in the interval [0, 2] and the multiplicity of the eigenvalue 1 plays a particularly

important role for the network analysis. Moreover, the spectral analysis of protein-protein

interaction networks has revealed that these networks have a different distribution type than

other model networks such as scale free networks. In this respect, the eigenvalue solvers

implementing the well-known implicitly restarted Arnoldi method, Lanczos method, Krylov–

Schur and Jacobi Davidson methods are investigated. They exist as MATLAB routines and

iv

are included in some freely available packages. The performances of different eigenvalue

solvers SPEIG, AHBEIGS, IRBLEIGS, EIGIFP, LANEIG, JDQR, JDCG in MATLAB and

the library SLEPc in C++ were tested for matrices of size between 100-13000 and are com-

pared in terms of accuracy and computing time. The accuracy of the eigenvalue solvers are

validated for the Paley graphs with known eigenvalues and are compared for large empirical

networks using the residual plots and spectral density plots are computed.

Keywords: Empirical networks, Undirected graphs, Spectral Graph Theory, Eigenvalue Solvers

v

ÖZ

YÖNSÜZ GENİŞ AĞLARIN SPEKTRUM HESAPLAMALARI VE ANALİZLERİ

Erdem, Özge

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Bülent Karasözen

Ortak Tez Yöneticisi : Prof. Dr. Jürgen Jost

Haziran 2010, 91 sayfa

Biyoloji, fizik, teknoloji ve sosyal sistemler gibi alanlarda yer alan kompleks sistemler büyük

ağlar şeklinde gösterilebilinirler. Bu ağlar, daha sonra matematiksel olarak çizgeler şeklinde

ifade edilirler. Çizgeler, Adjacency ve Laplace matrisleriyle gösterilebilinecekleri bulunmuştur.

Böylece sistemlerin yapılarının ve dinamiklerinin önemli özellikleri matrislerin spektrum

analizlerinden çıkarılır. Büyük ağların birimleştirilmiş Laplace matrislerinin analizi son yıllarda

popüler hale gelmiştir. Bu matrisler genellikle 0 ların çoğunlukta olduğu ve düzensiz bir

yapıya sahiptirler. Bu tezin amacı farklı özdeğer çözücülerin yönsüz ağların simetrik ma-

trisler şeklinde gösterimlerinden doğan büyük ve sparse yapıdaki matrisler üzerindeki perfor-

manslarını karşılaştırmaktır. Birimleştirilmiş Laplace matrisinin özdeğerleri [0,2] aralığındadır

ve 1 özdeğerlerinin çokluğu (multiplicity) ağların analizinde önemli rol oynamaktadır. Ayrıca

protein etkileşim ağları üzerinde yapılan çalışmalar sonucunda bu ağların mevcut olarak bi-

linen model ağlara göre daha farklı bir spektral dağılıma sahip olduğu bulunmuştur. Bu

çerçevede, dolaylı olarak yeniden başlayan Arnoldi(IRA), blok Lanczos, Krylov–Schur ve

Jacobi–Davidson metotlarına dayanan özdeğer çözücüler araştırılmıştır. Bu çözücüler MAT-

LAB rutini olarak ve ücretsiz yazılımlar halinde bulunmaktadır. MATLAB da yazılmış özdeğer

vi

çözücülerinden, SPEIG, AHBEIGS, IRBLEIGS, EIGIFP, LANEIG, JDQR, JDCG, ve C++

da yazılmış olan SLEPc paketinin performansları büyüklükleri 100 ile 13000 arasında değişen

matrisler üzerinde kesinlik ve süreleri açısından karşılaştırıldı. Bu bazda özdeğerleri bilinen

Paley çizgeleri ile ampirik ağlardan doğan çizgelerin birimleştirilmiş Laplace matrisleri kul-

lanıldı. Paley çizgelerinin özdeğerleri için hata figürleri, ampirik ağların özdeğerleri için ise

residual figürleri ile spektral dağılımlarının gösteren figürler oluşturuldu.

Anahtar Kelimeler: Ampirik ağlar, Yönsüz Çizgeler, Çizge Teorisi, Özdeğer Çözücüler

vii

ACKNOWLEDGMENTS

I would like to show my gratitude to all people who supported me during the completion of

this thesis. First of all, I am heartily grateful to my supervisor Professor Dr. Bülent Karasözen

for introducing me this subject and his guidance through this study from initial to final level.

I would like to thank him for his valuable suggestions and careful examination of this thesis.

I also owe my deepest gratitude to Professor Dr. Jürgen Jost. He has made available his

support in a number of ways starting from hosting me at Max Planck Institute and sharing

his valuable ideas and advices on the research results. It was a great pleasure to have the

opportunity for being a member of such an important scientific society.

I also would like to thank to Assist. Professor Dr. Ömür Ugur for his helps and orientations

for implementations in the operating system Linux. Warmest thanks to Mario Thüne for

providing the necessary data sets and valuable discussions in MPI.

Finally, special thanks to my family for their support and love. I really appreciate them for

their patience and kindness to me.

viii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTERS

1 INTRODUCTION . 1

2 LARGE NETWORKS AND SPECTRAL GRAPH THEORY 4

2.1 Basics of Graph Theory . 7

2.2 Spectral Graph Theory . 13

2.2.1 Connectivity Matrices 13

2.2.2 Eigenvalues of Graphs 15

2.3 Spectrum of Some Special Graphs 21

2.4 An Example For Real Networks: Protein Protein Interaction Networks 23

3 COMPUTATION OF EIGENVALUES OF LARGE SPARSE MATRICES . . 26

3.1 Krylov Subspace Methods . 29

3.1.1 Arnoldi Method . 30

3.1.2 Lanczos Method . 37

3.2 Krylov-Schur Methods . 43

3.3 Inverse Free Preconditioned Krylov Subspace Method 48

3.4 Jacobi-Davidson Type Algorithms 51

4 SPARSE EIGENVALUE PACKAGES . 58

4.1 SPEIG . 59

ix

4.2 AHBEIGS . 60

4.3 IRBLEIGS . 61

4.4 LANEIG . 62

4.5 EIGIFP . 64

4.6 JDQR . 65

4.7 JDCG . 67

4.8 SLEPc . 68

4.9 ANAZASI . 70

5 NUMERICAL RESULTS . 72

5.1 Performance of Eigensolvers . 72

5.1.1 Spectra of Paley Graphs 73

5.1.2 Spectra of Empirical Networks 78

5.2 Spectral Density Plots . 82

5.3 Conclusions . 85

REFERENCES . 87

x

LIST OF TABLES

TABLES

Table 4.1 Character strings for exterior parts of spectrum 59

Table 4.2 Parameters of SPEIG . 60

Table 4.3 Parameters of AHBEIGS . 61

Table 4.4 Parameters of IRBLEIGS . 63

Table 4.5 Character strings for computing exterior eigenvalues with laneig 64

Table 4.6 Parameters of LANEIG . 64

Table 4.7 Parameters of EIGIFP . 65

Table 4.8 Parameters of JDQR . 66

Table 4.9 Parameters of JDCG . 67

Table 5.1 CPU times of Packages in MATLAB . 74

Table 5.2 The CPU times . 79

Table 5.3 mpd and the CPU times for Real Networks 81

xi

LIST OF FIGURES

FIGURES

Figure 2.1 (a) A simple graph (b) A general graph 8

Figure 2.2 A directed graph with 4 vertices and 5 edges 8

Figure 2.3 (a) A simple graph with 6 vertices with an example of a walk (b) and a

cycle (c) . 9

Figure 2.4 Isomorphic two graphs . 11

Figure 2.5 (a) Complete graph of 5 vertices and (b) complete bipartite graph (K5,3) of

8 vertices . 12

Figure 2.6 Regular graph with 6 vertices and degree 4 12

Figure 2.7 A simple graph with 5 vertices . 14

Figure 2.8 Paley graph of 13 vertices . 23

Figure 5.1 Paley graph of size 109, left: SLEPc, Arnoldi method, right: SLEPc,

Krylov–Schur method . 74

Figure 5.2 Paley graph of size 109, left: SLEPc, Krylov–Schur method right with

Cayley transformation: SLEPc, Krylov–Schur method with harmonic extraction . 75

Figure 5.3 Paley graph of size 109, left: SPEIG, right: AHBEIGS 75

Figure 5.4 Paley graph of size 109, left: IRBLEIGS, right: LANEIG 76

Figure 5.5 Paley graph of size 109, left: EIGIFP, right: JDCG 76

Figure 5.6 JDQR, left: Paley graph of size 109, right: Paley graph of size 2089 77

Figure 5.7 Paley graph of size 2089, left: SLEPc, Krylov–Schur method, right: SPEIG 77

Figure 5.8 Paley graph of size 2089, left: LANEIG, right: IRBLEIGS 78

Figure 5.9 Protein–Protein interaction network of yeast of size 2361, left: SPEIG,

right: SLEPc, Krylov–Schur . 80

xii

Figure 5.10 Protein–Protein interaction network of yeast of size 2361, left: LANEIG,

right: IRBLEIGS . 80

Figure 5.11 Protein–Protein interaction network of melongester of size 6900, left: SLEPc,Krylov–

Schur with harmonic extraction around 0.9999, right: SLEPc,Krylov–Schur Cay-

ley transformation around 0.9999 . 81

Figure 5.12 SLEPc,Krylov–Schur method, left: Collaboration network of size 7343,

right: Word network of size 13332 . 82

Figure 5.13 SLEPc,Krylov–Schur method, Erdös collaboration network of size 6027 . 82

Figure 5.14 The spectral distribution of a protein protein network in size 2361. First

picture is plotted with Gaussian kernel. Second picture is plotted with Lorenz

distribution. 83

Figure 5.15 The spectral distribution in left belongs to a protein protein interaction

network of size 6900 . 84

Figure 5.16 The spectral distribution belongs to collaboration network by Erdös, of size

6027 . 84

Figure 5.17 The spectral distribution belongs to a collaboration network in computa-

tional geometry of size 7343 . 85

Figure 5.18 The spectral distribution belongs to a word network of size 13332 85

xiii

CHAPTER 1

INTRODUCTION

The power grid system of a country, the supply chain bringing products from world to a

country, air traffic system, WWW system, biological networks like protein-protein interaction

networks are examples of complex systems from different application areas. Despite the dif-

ferences in the origins of these problems, they all have an important common feature: their

elements (components) interact with each other and compose a hierarchy of subsystems. This

hierarchy is determined through following certain rules or dynamics defined by external and

internal influences. As a result of this behavior, the interactions inherit characteristic proper-

ties such as adaptation, evolution and uncertainty. In addition, the hierarchy of components

constitutes the internal structure of systems. Therefore in order to understand the interac-

tions, it is important to analyze the dynamics of structural properties of complex systems in

networked form. The study of large networks became very popular in various disciplines,

like mathematics, physics, biology and sociology. Many methodologies, theories, schemes

are introduced for modeling, manipulating, understanding and analyzing the networks. The

analysis of networks, based on graph theory, is an emerging and promising branch of science

that captures important characteristics of complex systems. Networks are analyzed using var-

ious graph theoretical tools connected with algebra, topology, dynamical systems and matrix

theory. In this respect, sample models are constructed in order to mimic or reconstruct the

behavior of real world models; structural relations between parameters are found; relations

between spectrum of the matrices describing the graph structures are exploited. All these

methodologies aim to capture the qualitative information about the structure of networks.

They somehow achieve this but in a restricted sense: only some certain qualitative properties

can be revealed. The spectrum of the normalized Laplacian of a graph plays an important

role in this respect. The distribution of eigenvalues reflects important qualitative features of

1

graphs. It was found that some certain evolutionary processes leave characteristic traces in

the spectrum. Then this result is used to reconstruct model networks aiming to mimic the

behavior of real networks.

Recent results about spectral properties of normalized Laplacian matrix have given rise to the

practical problem of determining the spectrum of a matrix. Although, in theory there is a

simple expression for calculating eigenvalues and eigenvectors of matrices, in practice this is

a very difficult task to accomplish especially for large sparse matrices. Direct solvers which

attempt to solve the problem in finite steps are not applicable in case of large, sparse matri-

ces. Therefore iterative eigenvalue solvers are usually used. The most widely used iterative

eigenvalue solvers are appropriate for eigenvalue problems with dense, small and structured

matrices. On the other hand, matrices arising from network applications are large, sparse

(mostly consist of zeros) and do not have a regular structure. Therefore, usual algorithms are

not efficient for matrices arising from networks. Methods taking the advantages of sparsity

structure should be used instead of them. Krylov subspace algorithms and Jacobi Davidson

type methods are two important classes of these algorithms. They exploit the sparsity of

matrices only requiring matrix vector multiplications.

Several eigenvalue packages (will be referred as eigensolver or eigenvalue solver) depending

on Krylov and Jacobi–Davidson methods are developed and most of them are freely available

on Internet. They differ in various aspects such as, the programming language (C++, Fortan

or MATLAB are the most widely used), the versions of the methods or simply the design

of algorithms. For example, the most popular and widely used sparse matrix eigensolver is

ARPACK. It is written in FORTRAN (there is also a C++ interface) and implements a famous

Krylov subspace method: Implicitly Restarted Arnoldi algorithm.

This thesis focuses on computing and analyzing the spectrum of normalized Laplacian ma-

trices of networks. The eigenvalue distribution of this matrix reveals important information

about the structure and dynamics of the network. Evolutionary processes for the network

leaves certain traces in the spectrum. For these cases, computing the whole spectrum is an

objective and efficient eigenvalue solvers are required to achieve this. The goal of this work

is to provide a comparison of the already existing sparse eigenvalue solvers. They are based

on Krylov subspace algorithms and Jacobi Davidson methods and written in MATLAB and

C + +.

2

The outline of the thesis is as follows:

In Chapter 2, basic definitions and elementary notions of graph theory will be given. In

Section 2.2, first necessary tools for spectral analysis of a graph is introduced then general

and recent results about relations between spectrum of normalized Laplacian matrix and the

structure of networks is given.

In Chapter 3, iterative eigenvalue solvers based on Krylov subspace and Jacobi–Davidson

methods are introduced with their numerical properties. In addition, different variants of

the methods (implicitly restarted Arnoldi (IRA), Lanczos methods and their block variants,

Krylov–Schur method, inverse free preconditioned Lanczos algorithm and Jacobi–Davidson

algorithm with conjugate gradient method) are included.

Software packages in MATLAB like SPEIG, AHBEIGS, IRBLEIGS, EIGIFP, LANEIG,

JDQR, JDCG and the package SLEPc in C++ are described in Chapter 4.

In Chapter 5, the spectrum of the normalized Laplacian matrices of Paley graphs with known

eigenvalues and some empirical networks, like protein - protein interaction networks, are

computed and the performance of the eigenvalue solvers are compared with respect to the

accuracy using the residual plots and to computing times and spectral density plots with the

Gaussian and Lorenz kernels are computed. The thesis ends with some conclusions.

3

CHAPTER 2

LARGE NETWORKS AND SPECTRAL GRAPH THEORY

Networks are useful tools for analyzing complex systems. A complex system has components

interacting with each other. These interactions generally follow some rules and dynamics that

are changing over time. The structure of the systems are shaped by adapting the relations

between changes and interactions of components. On the other hand, structure also effects the

interactions. In brief, both the dynamics and the structure of networks are affected from each

other. Therefore in order to understand the internal dynamics of the systems, it is necessary

to investigate the structural properties of the network [14]. In this respect, network theory

consists of methods and tools for doing such analyzes.

Today, many real systems from different applications such as in sociology, in biology, in

physics, in chemistry and in information technologies can be represented by networks. Net-

works represented by movie actors, company directors, scientific co-authorship, telephone

calls, emails, friendships and sexual contacts are considered as social networks; citation,

word co-occurrence and world wide web are information networks; internet, power grids,

train routes, electronic circuits and software packages can be considered as technological net-

works; metabolic reactions, protein-protein interaction (PPI), gene regulation and food web

are classified as biological networks. These networks are analyzed in order to understand the

qualitative features of the data that they are describing. For example, sexual contacts networks

are analyzed to understand the spread of infection of diseases. Email networks are used in or-

der to understand how viruses are spread over. (For various examples and extended research,

see [9, 10, 14, 51].)

The study of complex systems in the form of networks depends on graph theory (see for

example [19]). The components of the complex systems can be considered as vertices and

4

relations or interactions between these components can be assigned as edges of the graph.

Therefore, the first issue in analyzing systems with graph theoretical tools is to decide what

would be the vertices and what would be the edges (the construction scheme). The initial

proof about this subject can be traced back to 1735, when Leonard Euler declared the solution

of Könisberg bridges problem through graphical representation. In this famous problem, the

lands are assigned as vertices and bridges are assigned as edges. Although this problem is

much smaller in size than today’s problems, it is an important step in the history of graph

theory.

The primary focus of analyzing networks has two aspects. The first aspect includes the in-

troduction of qualitative and quantitative parameters. Many graph theoretical tools such as

degree distribution, path length, diameter, clustering coefficient, centrality, betweennes, chro-

matic number are introduced in order to capture and reveal the structural properties of net-

works [18, 19, 33, 43, 51]. The question here is which parameters reveal global properties

and which parameters are more graph invariant. For example, how difficult it is to break the

graph into disjoint components [21] or how difficult it is to synchronize the coupled dynam-

ics operating at individual vertices [44]. However, it should be noticed that these parameters

can capture only some parts of structural properties of graphs. They do not give information

about all the qualitative properties of networks. More information about graph invariants and

parameters can be found in [18, 33, 51]. The second aspect about analyzing networks in-

cludes development of model networks such as random graphs [64], scale free networks [15]

and small-world networks [76]. These models are constructed in order to help to understand

the characteristic structures or behaviors of real networks. They are also used to understand

the interaction of the parameters described in the first aspect. For example, in [27] random

graph models are constructed inspiring from social networks. In this model, every pair of

nodes have a probability p of being connected. Interesting properties of these graphs with

different values of p are investigated in [28] and [29]. Moreover, the question that asks if the

constructed model networks can capture the properties of real networks after fitting certain

parameters is currently being investigated.

Among various graph analyzing tools spectral graph theory is important in the sense that it

combines algebraic matrix theory and linear algebra with graph theory [21, 22, 23]. The

main goal of spectral graph theory is to investigate structural properties of networks from the

spectrum of the matrices describing the graph structure of the network. It tries to answer that

5

in what limits the spectrum informs us about the qualitative characteristics of networks or if

it is possible to make a classification of the networks with respect to their spectrums. In other

words, is it possible to trace back the structural properties of graphs from their spectrum?

In the early stages of spectral graph theory, adjacency matrices are used for analyzing net-

works. Relations between qualitative properties and eigenvalues of adjacency matrices are

found [33, 51]. In recent years, a new approach from geometric perspective is realized. The

analogy between spectral graph theory and Riemannian geometry has led this subject to en-

ter a new era. The combinations of algebraic spectral methods and Riemannian geometry in

graph theory introduced the Laplacian matrix [8, 21]. The new researches on Laplacian matrix

of a graph has revealed that spectrum of Laplacian is a powerful tool in analyzing networks. It

reflects the global properties of the graphs better than the adjacency matrices [8, 10, 11, 12].

In [77] the characteristic properties of the spectrum of random matrices are studied. A new law

called Wigner’s semi circle law was introduced (for details see [8] and [77]). Then the studies

on Erdös and Rényi’s random graphs showed that the distribution of eigenvalues of adjacency

matrices of these graphs follow the semi-circle law [31], whereas spectral distributions of

adjacency matrices of Barabási and Albert’s scale-free graphs follow a power law distribution

[34]. Later on, in [23] it is found that spectral distributions of different matrices of a graph

may follow different rules. For example, the spectrum of adjacency matrix of a graph may

obey a power law whereas the distribution of eigenvalues of Laplacian matrix may follow

Wigner’s semicircle law [21]. In this study, the primary focus will be on spectral distribution

of Laplacian matrices of graphs.

In this Chapter recent studies about spectral graph theory are summarized by emphasizing

especially spectral properties of the Laplacian matrix. The first Section includes basic defini-

tions related with graph theory. These definitions will be used through the rest of the Chapter.

Second section consists of two subsections. In the first part, the basic tools of spectral graph

theory like the connectivity matrices are introduced. Some general and recent results about

relations between parameters and spectrum of connectivity matrices are given in the second

part. Examples of spectra of graphs are presented in the last Section.

6

2.1 Basics of Graph Theory

In the following Section, the definitions in [43], Chapter 1 and [8] will be made used of.

Definition 2.1 A graph G = (V, E) consists of two sets V and E such that the elements of

V are joined by the elements of E. The elements of V are called vertices and the elements

of E are called edges. Each edge has one or two vertices associated to it which are called

endpoints. The order of a graph is the cardinality of its vertex set and the size of a graph is

the cardinality of its edge set.

Definition 2.2 Adjacent edges are two edges that have a common endpoint. An edge joining

two distinct end points is called a proper edge. A multi-edge is a collection of two or more

edges having same endpoints. A loop is an edge that joins a single vertex to itself.

Definition 2.3 A vertex v is an end point of an edge e, in other words v is said to be incident

on e and e is said to be incident on v. A vertex u is adjacent to a vertex v if they are joined

by an edge. Two adjacent vertices, i and j, are called neighbors, is denoted by i ∼ j. The

edge multiplicity is the number of edges between two vertices. The degree of a vertex v is the

number of edges incident to v plus twice the number of self-loops. In some context, valence is

also used instead of degree.

For example in Figure 2.1 (a), the graph has vertex set V = {1, 2, 3, 4, 5} with edges between

them. The neighboring vertices are 1 ∼ 2, 1 ∼ 3, 3 ∼ 2, 4 ∼ 2, 3 ∼ 5, 4 ∼ 5 and the edge

multiplicity is one for all vertices. The degrees with respect to vertex numbers are 2, 3, 3, 2, 2.

Definition 2.4 One vertex forms a trivial graph. A graph without loops and multi-edges is

called simple graph. Other graphs in which multi-edges and loops are existed are called

general graphs.

In Figure 2.1, both graphs have 5 vertices and 6 edges. The first figure is an example of

a connected simple graph whereas the second figure is an example of a general graph with

two components. In the picture on the right, one vertex is connected to itself, it is a loop.

Moreover, two vertices has multiple edges between them and one vertex is isolated.

7

1

2

3

4

5

(a)

5

1

2

3

4

(b)

Figure 2.1: (a) A simple graph (b) A general graph

Simple graphs are easier to analyze than general graphs. Because of their simple structure,

most of researches emphasize on simple graphs. In this study, simple graphs are dealt with

rather than general graphs. From now on, unless the opposite is specified, the word graph will

refer to a simple graph through this thesis.

Definition 2.5 A directed graph (Digraph) is a graph each of whose edges have a direction.

The direction to an edge is assigned by naming the endpoints of the edge as head and tail.

Then the edge is said to be directed from its tail to its head. The indegree of a vertex v in a

digraph is the number of edges directed to v and the outdegree of v is the number of edges

directed from v. If there are no directions assigned to the edges, the graph is called undirected

graph.

1

2

3

4

Figure 2.2: A directed graph with 4 vertices and 5 edges

The graph in Figure 2.2 is a directed graph with 4 vertices. The directions of vertices are:

1→ 2, 1→ 4, 3→ 1, 4→ 2, 3→ 2

8

The out and indegrees of vertices of the directed graph are given below:

Vertex Number Indegree Outdegree

1 1 2

2 3 0

3 0 2

4 1 1

Definition 2.6 A walk, W, in a graph G is an alternating sequence of vertices and edges

W = v0, e1, v1, e1, . . . , en, vn

such that for j = 1, . . . , n the vertices v j−1 and v j are the endpoints of the edge e j. The length

of a walk is the number of vertices within it. A walk is said to be called trial if all edges are

distinct. An Eulerian trail in a graph G is a walk that contains each edge of G. When no

internal vertex is repeated in a trial it is called a path. A closed path is a cycle. It is of length

at least 1.

1

2

3

4

5

6

(a)

1

2

3

4

5

(b)

1

2

3

(c)

Figure 2.3: (a) A simple graph with 6 vertices with an example of a walk (b) and a cycle (c)

9

In a simple graph a walk can be represented by listing vertices:

W = v0, v1, . . . , vn

such that for j = 1, 2, . . . , n the vertices v j and v j−1 are adjacent. Here v0 is called the initial

vertex, vn is the final vertex and all other vertices are called internal vertices.

For example, the walk given in Figure 2.3 can be represented as:

W = 1, 2, 3, 4, 5

where vi is represented by numbers i here. 1 is the initial vertex and 5 is the final vertex. Here,

W is also a trial and a path. Another example of a walk from the same figure would be:

Wa = 2, 3, 4, 6

Definition 2.7 A graph is connected if there is walk for every pair of vertices. A digraph

is weakly connected if its underlying graph is connected. Strongly connected for a directed

graph means there is a directed walk from each vertex to other vertices.

Definition 2.8 The distance between two vertices u and v in a graph is the length of the short-

est walk between them. It is denoted by d(u, v). The eccentricity of a vertex in a connected

graph is the distance to a vertex farthest from v. Maximum eccentricity in a connected graph

is the diameter of the graph.

For example the eccentricity of vertex 3 in Figure 2.4(b) is three and the eccentricity of vertex

5 is 2. The diameter of the graph is three.

Definition 2.9 An isomorphism between two graph G and H is a pair of bijections φV :

VG → VH and φE : EG → EH such that for every pair of vertices u, v ∈ VG, the set of edges

in EG joining u and v is mapped bijectively to the set of edges in EH joining the vertices φ(u)

and φ(v). Two graphs are isomorphic if there is bijection between them.

The graphs in Figure 2.4 are isomorphic and the relation between vertices are

1↔ z 2↔ v

3↔ u 4↔ x

5↔ y 6↔ w

10

z
v

u

x

y
w

(a)

1

23

4

5 6

(b)

Figure 2.4: Isomorphic two graphs

Definition 2.10 A subgraph of a graph G is a graph H such that VH ⊆ VG and EG ⊆ EH . The

induced set on vertices W = {w1, . . . ,wk} has W as its vertex set and contains every edge of G

whose end points are in W. It is denoted by G(W). A subgraph H of G is spanning subgraph

if the vertex set of H is equal to vertex set of G. The maximal connected subgraph of a graph

is called component.

Definition 2.11 A connected graph without cycles is called a tree. A spanning tree of a graph

is a spanning subgraph that is a tree.

Up to here, basic definitions about graph theory are introduced. Some important types of

graphs will be announced in the rest of this Section.

Definition 2.12 A complete graph is a simple graph such that every pair of vertices are

connected with an edge. It is denoted by Kn where n is the number of vertices.

Definition 2.13 A simple or multi–graph is bipartite if the vertices can be partitioned into

two sets such that no edge joins two vertices in the same set. If the vertex set of the graph

can be divided into k sets such that edge joins two vertices in the same set, the graph is called

k-bipartite.

Trees are examples of bipartite graphs. Moreover every cycle with even number of vertices are

bipartite whereas cycles with odd number of vertices are not. Bipartite graphs are important

for graph coloring problems. A graph is k-colorable if and only if it is k-partite.

11

Definition 2.14 A complete bipartite graph is a simple bipartite graph which each vertex in

one set is connected by edges to all vertices in the other set. It is denoted by Km,n, where m

and n represents the number of vertices in each set and m + n is the total number of vertices

in the graph.

(a) (b)

Figure 2.5: (a) Complete graph of 5 vertices and (b) complete bipartite graph (K5,3) of 8
vertices

Another interesting class of graphs is regular graphs in which every vertex has the same

degree.

Definition 2.15 A graph is regular if every vertex has the same degree. If the degree is k, it

is generally said k-regular. A regular graph G = (V, E) with degree k is strongly regular if

every adjacent vertex has the same number of common neighbors a and every nonadjacent

vertex has the same number of common neighbors d. A strongly regular graph is generally

represented by these numbers: (n, k, a, d)

Figure 2.6: Regular graph with 6 vertices and degree 4

12

2.2 Spectral Graph Theory

Spectral graph theory is an important tool for analyzing the structure of graphs. The ana-

lyzes are done through the matrix representations of graphs. In the early days of the spectral

graph theory, combination of linear algebra, matrix and graph theory are used to analyze the

adjacency matrices. The relations between quantitative parameters and eigenvalues of adja-

cency matrix were investigated in [33, 51]. In the recent years, a new approach has started

to gain popularity. The analogy between Riemannian geometry and spectral graph theory is

noticed and this concept brought many new insights and useful tools [21, 22]. Spectrum of

normalized Laplacian matrix is one of these useful tools. It is found that the eigenvalues of

normalized Laplacian matrix relate well to some graph invariants. Moreover the spectrum

reveals important features of the structural inheritance [8, 10, 11].

2.2.1 Connectivity Matrices

A graph G = (V, E) can be represented by various kinds of matrices. Eigenvalues of some

of these matrices play an important role in the analysis of graphs. Before going in a de-

tailed analysis of spectrums, the four important matrices will be introduced in this section:

Adjacency, Laplacian and two normalized Laplacian matrices.

• Adjacency Matrix: The matrix A=[ai j] such that

ai j =

 1, if i j is an edge

0, otherwise

is the adjacency matrix of the graph.

• Laplacian Matrix: The matrix L=[li j] such that

li j =


ni, if i = j

−1, if j is an edge

0, otherwise

is the Laplacian matrix of the graph.

• Normalized Laplacian Matrix: There are different kinds of normalized Laplacian

matrices with respect to normalization factors. Here, two of them will be presented.

The first one is in accordance with the matrix introduced by Chung [21].

13

The matrix L = [li j] such that

li j =


1, if i = j and ni , 0

− 1
√nin j

, if i j is an edge

0, otherwise

The matrix ∆ = [li j] such that

li j =


1, if i = j and ni , 0

− 1
n j
, if i j is an edge

0, otherwise

are normalized Laplacian matrix of the graphs.

Unfortunately, for many graphs, there is no clear relationship between the connectivity ma-

trices. However, the following relations would sometimes be useful especially in designing

algorithms:

L = D − A,

where D is a diagonal matrix with degree on diagonal entries

L = D
−1
2 LD

−1
2 = I − D

−1
2 AD

−1
2

and there is similarity between two kinds of normalized Laplacian matrices:

∆ = D
1
2LD

−1
2

Example: The connectivity matrices of the graph in Figure 2.7 are as follows:

1

2

3

4

5

Figure 2.7: A simple graph with 5 vertices

14

The adjacency matrix

A =



0 1 0 0 1

1 0 1 1 0

0 1 0 1 1

0 1 1 0 0

1 0 1 0 0


.

The Laplacian matrix is

L =



2 −1 0 0 −1

−1 3 −1 −1 0

0 −1 3 −1 −1

0 −1 −1 2 0

−1 0 −1 0 2


.

The normalized matrices are given by

L =



2 − 1√
6

0 0 − 1
2

− 1√
6

3 −1
3 − 1√

6
0

0 − 1
3 3 − 1√

6
− 1√

6

0 − 1√
6
− 1√

6
2 0

− 1
2 0 − 1√

6
0 2


, ∆ =



1 − 1
3 0 0 − 1

2

− 1
2 1 −1

3 −1
3 0

0 −1
2 1 −1

2 − 1
2

0 −1
3 −1

3 1 0

− 1
2 0 −1

3 0 1


.

2.2.2 Eigenvalues of Graphs

In graph theory, eigenvalues of graphs refers to the eigenvalues of one of the connectivity

matrices that are found from the usual eigenvalue problem:

Ax = λx,

where A is a suitable connectivity matrix of the graph.

The spectrum of an adjacency matrix carries details about local structural properties of graphs

such as the number of edges, triangles, loops or bipartiteness. Moreover, the extremal eigen-

values also provide bounds for some parameters such as chromatic number. The chromatic

number of a graph G, χ(G), is the minimum number of colors required for coloring it. Com-

puting this number is NP-hard problem but a bound is obtained by extremum eigenvalues of

adjacency matrix:

1 −
λn

λ1
≤ χ(G) ≤ 1 + λn,

15

where λ1 is the smallest and λn is the largest eigenvalue.

The average degree, d is the ratio between the sum of the degrees of vertices and the size of

the graph. d = 1
n
∑

i∈V(G) d(i). It can not be larger than the largest eigenvalue of the adjacency

matrix:

d ≤ λn.

The connected components of the graph can be found by smallest eigenvalues of the Laplacian

matrix. In addition, Laplacian matrix can be used to determine the spanning trees of the

graphs. In the early days of spectral graph theory, most of the researches have focused on the

analysis of adjacency matrix and Laplacian matrix. Detailed analysis of these can be found in

[22, 33]. The studies on spectrum of normalized Laplacian are more recent. It is found that

the eigenvalues of this matrix carry information about the graph that the other connectivity

matrices fail to determine. The evolutionary structure of the network can be traced back from

spectral distribution of this matrix and multiplicities of some eigenvalues [8].

In the rest of this section we summarize the recent results about the spectral properties of

normalized Laplacian matrix. These results are can be found in [8, 9, 10, 11, 13, 14, 21].

The normalized Laplacian matrix of the graph defined in the previous section can also be

interpreted as an operator on the set of vertices. Let u : V → R be a real valued function on

the vertex set and the inner product be defined as

(u, v) =
∑

i

niu(i)v(i).

Then the effect of normalized Laplacian on a function can be reformulated:

∆u(i) := u(i) −
1
ni

∑
j, j∼i

u(j). (2.1)

This action of Laplacian on functions reveals three important properties of the operator:

1. ∆ is a self adjoint operator with respect to the inner product defined above.

This property implies that the operator is symmetric. Therefore, the eigenvalues of

normalized Laplacian matrix are real.

2. ∆ is nonnegative. This implies that all eigenvalues are nonnegative.

3. ∆u = 0 when u is constant. This property implies that the smallest eigenvalue is 0.

16

The effect of Laplacian as an operator on the functions defined on vertices leads to apply

the famous Courant-Fischer theorem to determine the eigenvalues [21]. The theorem is as

follows:

Theorem 2.16 (Courant-Fischer Theorem) Let M be a real symmetric matrix with eigenval-

ues λ0 ≤ λ0 − 1 ≤ . . . ≤ λn−1. Let Xk denote any k dimensional subspace of Rn and x⊥Xk

signifies that x⊥y for all y ∈ Xk. Then

λi = min
Xn−i−1

(
max

x⊥Xn−i−1,x,0
R(X)

)
= max

Xi

(
min

x⊥Xi,x,0
R(x)

)
, (2.2)

where R(x) = x>Mx
x>x is the Rayleigh quotient.

Let the eigenvalues be ordered as

λ0 = 0 ≤ λ ≤ . . . ≤ λN−1.

If this theorem is adapted to Laplacian matrix, the following expressions would be obtained:

λi = min
Yn−i−1

 max
y⊥Yn−i−1,y,0

∑
i∼ j(yi − y j)2∑

i y2
i di

 . (2.3)

From Equation (2.3), the following expressions for λ1 and λn−1 can be deduced:

λn−1 = max
y,0

∑
i∼ j(yi − y j)2∑

i y2
i di

, (2.4)

λ1 = min
y⊥D1,y,0

∑
i∼ j(yi − y j)2∑

i y2
i di

. (2.5)

These results are consequences of application of Courant-Fischer Theorem to the Laplacian

matrix. The eigenvalues are bounded above by 2. The last eigenvalue, λN−1, equals to 2 if and

only if the graph is bipartite. The difference between λN−1 and 2 gives an idea about how far

the graph is from being bipartite.

If N is the number of vertices in the graph G = (V, E), then∑
i

λi ≤ N

and equality holds if and only if the graph is connected. For connected graphs the equivalence

comes from an algebraic fact: the sum of eigenvalues of a matrix equals to trace of the matrix.

Important properties of eigenvalues of normalized Laplacian matrix will be summarized from

now on. The multiplicity of the smallest eigenvalue (λ0 = 0) gives the number of connected

17

components of the graph, i.e. if

λ0 = λ1 = . . . = λk−1 = 0 and λk > 0

then the graph has k-connected components. For connected graphs, λ1 is an important eigen-

value. The difference between λ0 and λ1 carries the information about how difficult it is to sep-

arate the graph into its disjoint components. In this respect, Cheeger constant (denoted by hG)

gives a bound for λ1. Cheeger constant is parameter adapted from Riemannian geometry and

defined by:

hG = inf
{

|E0|

min{
∑

i∈Γ1 ni,
∑

j∈Γ2 n j}

}
.

The infimum in the definition is taken over E0 which is a subset whose removal breaks the

graph into two disjoint graphs Γ1 and Γ2. |E0| represents the cardinality of the set E0. Cheeger

constant for a graph is important in the sense that it helps to answer the question: for any

subset of vertices of a specified volume, how many edges can be guaranteed to connect the

subset to the rest of the graph. The definition implies that for any small subset E0, there are

at least hG vol(E0) edges leaving E0. The bound on λ1 is

2hG ≥ λ1 ≥
h2

G

2
.

For a connected graph, the diameter and volume provides a bound for λ1:

λ1 ≥
1

D volG
,

where D represents the diameter and volG =
∑

i ni Moreover, the following expression shows

that the diameter can also be bounded by volume and λ1 by a different expression:

D(G) ≤
log vol(G)

min dx

log 1
1−λ1

.

This inequality can be generalized to find the distance of subgraphs of the graph G. If X and

Y are two different subgraphs with a distance of at least 2, the distance between them is defied

by

d(X,Y) = min{d(x, y) : x ∈ X and y ∈ Y}.

Extremum eigenvalues provide a bound for this value:

d(X,Y) ≤
log

√
vol(X̂)vol(Ŷ)
vol(X)vol(Y)

log λn−1+λ1
λn−1−λ1

.

18

Up to now, the general properties of spectrum of normalized Laplacian are presented. Recent

studies in [8, 10, 9] and [13] showed that some graphs has peaks at the eigenvalue 1. They

investigated the graph evolutionary process related with these peaks. The rest of this section

summarizes these results. The proofs of the theorems will not be included, but they can be

found in [8].

Combining the Equation (2.1) with the usual eigenvalue Equation, ∆u − λu = 0, results in

1
ni

∑
j∼i

u(j) = (1 − λ)u(i), ∀ i = 1, . . . , n

So, if the eigenfunction vanishes at vertices i, the sum of the values of the function on neigh-

bors of i would equal to 0,
∑

j∼i u(j) = 0. On the other hand, if λ = 1, then∑
j∼i

u(j) = 0. (2.6)

Therefore, for the eigenvalue 1, there are functions whose sum of values on neighboring ver-

tices is zero. A function u satisfying this property is called balanced solution. The multiplicity

of eigenvalue 1 gives the dimension of the set of linearly independent balanced functions on

the graph. Moreover, it can be deduced from Equation (2.6) that the multiplicity of eigenvalue

1 equals to the dimension of the kernel of the adjacency matrix of the graph.

Definition 2.17 A motif Σ is a connected small subgraph of the graph Γ containing all edges

of Γ between vertices of Σ.

In this context, Γ is supposed to be very large when compared with the motif Σ. Now, some

theorems about graph operations and their effect on spectrum will be presented.

Theorem 2.18 Let ΓΣ be obtained from Γ by adding a copy of the motif Σ consisting of

vertices q1, . . . , qm and connections between them and connecting each qα with p does not

belong to Σ that are neighbors of pα. Then ΓΣ possesses the eigenvalue 1 with a localized

eigenfunction that is nonzero only at pα and qα.

Corrollary 2.19 Let ΓΣ be obtained from Γ by adding a copy of the motif Σ1, a copy of the

motif Σ consisting of vertices q1, . . . , qm and the corresponding connections between them and

connecting each qα with all p that are neighbors of pα. Then ΓΣ possesses m more eigenvalues

1 that Γ with a localized eigenfunctions f α1 (α = 1, . . . ,m) that are 1 at pα, −1 at qα and zero

elsewhere.

19

This theorem also holds when Σ is a single vertex. Thus, with the corollary if there is a high

multiplicity for the eigenvalue 1, the graph may be evolved by many doubling of vertices or if

the graph is constructed by doubling vertices, the multiplicity of eigenvalue 1 would be high.

If one wants a high multiplicity at 1, he/she can perform many vertex doubling. This could be

done both by doubling a vertex many times or doubling different vertices. But it is claimed

that each procedure leaves certain traces in the spectrum [8].

Unfortunately, this result can not be generalized for more general eigenvalues. But the fol-

lowing theorem has some useful implications:

Theorem 2.20 Let Σ be a motif in Γ. Suppose f satisfies

1
ni

∑
j∈Σ, j∼i

f (j) = (1 − λ) f (i), (2.7)

for all i ∈ Σ and some λ. Then the motif doubling of above theorem produces the graph ΓΣ

with eigenvalue λ and eigenfunction f ΓΣ

agreeing with f on Σ, with - f the double of Σ and

identically 0 on the rest of ΓΣ.

This theorem can be applied to the smallest motif, an edge. Assuming the vertices of the motif

are p1 and p2, the Equation (2.7) becomes;

1
np1

f (p1) = (1 − λ) f (p2),

1
np2

f (p2) = (1 − λ) f (p1),

and admits the solution λ = 1 ± 1
√np1 np2

.

Therefore, as the degree of vertex increases, the eigenvalues start to gather around 1 more and

more. Moreover they would be symmetric around 1. The following theorem is about doubling

the entire graph.

Theorem 2.21 Let Γ1 and Γ2 be isomorphic graphs with vertices p1, . . . , pn and q1, . . . , qn

respectively where pi corresponds to qi for all i. Then a graph Γ0 can be constructed by

connecting pi with q j whenever p j ∼ pi. If λ1, . . . , λn are eigenvalues of Γ1 and Γ2, then the

new graph has the same eigenvalues as well as the eigenvalue 1 with multiplicity n.

The next result is about motif joining and works for any eigenvalue.

20

Theorem 2.22 Let Γ1 and Γ2 be graphs with common eigenvalue λ and corresponding eigen-

functions f 1
λ and f 2

λ . Assume that f 1
λ (p1) = 0 and f 2

λ (p2) = 0 for some p1 ∈ Γ1 and p2 ∈ Γ2.

Then the graph Γ obtained by joining Γ1 and Γ2 by identifying p1 and p2 also has the same

eigenvalue λ with eigenfunction given by f 1
λ on Γ1 and f 2

λ on Γ2.

2.3 Spectrum of Some Special Graphs

Definitions of examples of special graphs are given in Section 2.1. Some of these graphs’

spectrums can easily be formulated and examples for these graphs are given in this Section.

• Bipartite Graphs: The largest eigenvalue of a bipartite graph is 2 and this property is

specific to bipartite graphs. Moreover if λ is an eigenvalue of the graph, 2− λ is also an

eigenvalue for the graph. Therefore the spectrum of a bipartite graph is symmetric.

• Complete Graphs: Except the first eigenvalue, all eigenvalues of a complete graph, Kn,

are equal:

λ1 = λ2 = . . . = λN−1 =
N

N − 1
and λ0 = 0.

• Complete Bipartite Graphs: For a complete bipartite graph Km,n, the eigenvalues are

0, 1 and 2. The multiplicity of 1 is m + n − 2.

• Regular Graphs: An important property of regular graphs is the following relations

between connectivity matrices:

L = kI − A,

L = I −
1
k

A,

where k is the degree of vertices, A is adjacency, L is Laplacian matrix and L is nor-

malized Laplacian matrices of graphs.

There is no explicit formulation for the eigenvalues of this type of graphs. However,

the above relations can be adapted to the eigenvalues. Let θ1, . . . , θn be eigenvalues of

adjacency matrix. Then

spectrum(L) = {k − θn, . . . , k − θ1}, (2.8)

spectrum(L) =

{
1 −

θn

k
, . . . , 1 −

θ1

k

}
.

21

Therefore, for a k-regular graph it would be enough to determine eigenvalues of one of

connectivity matrices.

• Strongly Regular Graphs: As it can be understand from the name strongly regular

graphs are a type of regular graphs. Therefore it would be enough to find one matrices’

eigenvalues so that the other eigenvalue can be found by (2.9). The eigenvalues of adja-

cency matrix of a strongly regular graph are determined by the parameters of the graph.

Let G be a strongly regular graph with parameters (n, k, a, c), then the eigenvalues of

adjacency matrix of G would be:

θ =
(a − c) +

√
∆

2
,

τ =
(a − c) −

√
∆

2
,

where ∆ = (a − c)2 + 4(k − c)with the multiplicities

mθ =
1
2

(
(n − 1) −

2k + (n − 1(a − c))
√

∆

)
,

mτ =
1
2

(
(n − 1) −

2k + (n − 1(a − c))
√

∆

)
.

Since the multiplicities must be integers, these formulas can also be used to check

whether a strongly regular graph exists with the given parameters or not.

• Paley Graphs:

Definition 2.23 Let q be a prime such that q ≡ 1 (mod 4). The Paley graph Pq has a

vertex set consisting of elements of GF(q). Two vertices in Pq are adjacent if and only if

their difference is a square in GF(q). Let p be any prime number. The Paley sum graph,

P̂p, has vertices 0, 1, . . . , p − 1 and two vertices i and j are adjacent if and only if i + j

is a quadratic residue module p. For p ≡ 3 mod(4), Paley sum graphs are directed.

Paley graphs are examples of strongly regular graphs with parameters

(q,
q − 1

2
,

q − 5
4

,
q − 1

4
),

where q is the number of vertices, q−1
2 is the degree of vertices, q−5

4 is the number of

common neighbors of each adjacent vertex and q−1
4 is the number of common neighbors

of each nonadjacent vertex.

22

A property of Paley graphs is that they belong to the family of expander graphs. There

is no strict definition about expander graphs. Intuitively, they contain the class of graphs

that each subset X of vertex set have many neighbors. In other words, any ‘small’ subset

of vertices has a relatively ‘large’ neighbors. Although, there is no explicit explanation

of concepts small, large and many, some restrictions about these concepts and more

information about expanders can be found in [21], Chapter 6.

Figure 2.8: Paley graph of 13 vertices

The above formulation of eigenvalues of adjacency matrix can be applied to eigenvalues

of adjacency matrix of Paley graphs too. The simplified formulation for them is:

θ1 =
−1 +

√
q

2
, (2.9)

θ2 =
−1 −

√
q

2
.

with θ1 and θ2 have equal multiplicities q−1
2 .

Moreover by the relation between matrices of regular graphs, the eigenvalues of Lapla-

cian matrix of Paley graphs can be found:

λ = 0, λ1 = 1 +
1 −
√

q
q − 1

and λ2 = 1 +
1 +
√

q
q − 10

, (2.10)

with the same multiplicities as above.

2.4 An Example For Real Networks: Protein Protein Interaction Networks

Recent researches on cellular biology have showed that understanding only the functioning of

individual cellular components is not enough to explain certain processes within the cell. For

example, during cancer researches, although the responsible genes and proteins are found,

23

their effect on suppressing the growth of cancer can not be maintained. This problem is

resolved by a new approach which is an emerging and popular perspective in biological re-

searches nowadays. It includes, taking into account the whole system interacting with the

related proteins and genes in addition to investigating specific genes responsible for cancer

[17, 73]. Observations showed that many functional activities within the cell arise from in-

teractions between the components such as RNA, DNA, small molecules and proteins. As

a result, understanding and analyzing the relations, interactions between these components

have become one of the key challenges of biological research in 21th century [16].

Proteins within the cell are responsible for many important tasks. They form the basics of

enzymes (which catalyzes and regulates the reactions) and dominate transcriptions, synthesis

of some proteins and the translation of information through the cell (a signalling molecule

attaches to the matching protein and the signal propagates along a pathway by series of inter-

actions between proteins) [17]. Therefore, analyzing the interactions between proteins have

great importance in understanding the vital processes within the cell.

The physical relations between proteins can easily be conceptualized to vertex-edge repre-

sentation: proteins are assigned as vertices and two vertices are linked each other if the cor-

responding proteins interact with each other. Moreover, the nature of links determines the

type of the graph: directed or undirected. In a directed protein protein interaction (PPI) net-

work, the interactions have follow a certain path. For example, the flow of materials from

one protein to another would have a certain path. Therefore the graphical representation of

the network would be directed. On the other hand, the links are not assigned by a specific

direction in an undirected network as in the case of binding of a protein to another [16]. This

graph theoretical representation of PPI networks enabled to reveal the important features such

as disassortativity property, high clustering, small world property and robustness against ran-

dom attacks [16, 17, 72]. Disassortativity [16] property is related with making new connection

tendency of vertices. In PPI networks, it is observed that highly connected proteins tend to

make connections with proteins having fewer neighbors. Small world property in a graph

indicates the existence of short paths among vertices. The existence of this property in PPI

networks explains the quick information transformation among proteins. Another interesting

property of PPI’s is that although they have a high degree of tolerance for removing randomly

selected nodes, attacks on highly connected vertices could be very important for the network.

In addition, it is also possible to trace back the evolutionary process of PPI’s with this graph

24

representations [8]. It was found that the spectral distribution of related normalized Lapla-

cian matrices of real networks of PPI’s have a different structure than network models like

Erdös Renyi random graphs, small world graphs, Watts–Strogatz graph or Barabasi Albert

graph [8, 10]. This implies these model networks are insufficient to imitate real PPI networks.

In other words, different models are required in order to understand specific features of PPI

networks.

Duplication of proteins and mutation of connections are the two basic processes that con-

stitute the evolution of PPI networks. They correspond to duplication of vertices and edges

respectively and result in different motifs such as triangles or squares in the graph. More-

over these processes are reflected to the spectrum of the normalized Laplacian matrix as high

multiplicities at eigenvalue 1 and sometimes relatively less multiplicities at 3/2 [8, 9, 10].

Many algorithms depending on node duplication process are constructed for modeling PPI’s

from different aspects (for example see [1]) such as imitating the degree distribution of ver-

tices. However, they are generally insufficient to recover all structural properties of real PPI

networks such as clustering coefficient. Inspiring by the evolutionary process behind the PPI

networks, a new algorithm is suggested in [10]. Apart from the usual algorithms, the authors

made some modifications on the assumption of links between old and duplicated copies. In-

stead of cross links between old and duplicated vertices, they assumed a low probability pref-

erence for second order neighbors as recipients of new connections. They observed a corre-

spondence between spectral distributions of normalized Laplacian matrices of this model and

real PPI networks and also the parameters such as clustering coefficient, maximum degree

etc. Detailed analysis of algorithm and comparisons can be found in [8, 10].

More information about construction graphs of PPI networks can be found in [71, 72, 73] and

for more references and examples about structural properties of PPI networks the reader is

referred to [10, 12, 16, 17].

25

CHAPTER 3

COMPUTATION OF EIGENVALUES OF LARGE SPARSE

MATRICES

The connectivity matrices of graphs described in Chapter 2 do not have a regular structure and

in general they are in sparse form. Most of the entries of the Laplacian matrices are zero. In

contrast to the dense matrices, in case of sparse matrices only the nonzero entries are stored.

This property is especially important for very large matrices in terms of storage restrictions

when numerical methods are applied to determine the eigenvalues and eigenvectors.

Numerical methods can be divided into two classes: direct methods and iterative methods.

Direct methods produce the solution in a finite number of steps whereas iterative methods

produce a sequence of approximations that converges to the true solution. Theoretically, an

iterative method requires infinite number of steps, but in applications when the desired accu-

racy is reached, the iterations are terminated. Almost all eigenvalue algorithms are iterative

[74].

The most widely used iterative method for solving eigenvalue problems is the QR algorithm.

The practical idea of this algorithm depends on writing the matrix A as a product of an orthog-

onal matrix Q and an upper triangular matrix R. Each step of the algorithm performs a unitary

similarity transformation to the matrix A (see for example Chapters 3 and 5 [74], Chapters 1

and 3 [45], Chapters 2 and 3 [69]). Although, the similarity transformations preserve the basic

structures of the matrices such as symmetry and real form, the sparsity structure of the matrix

A is not preserved. After a few steps of the QR algorithm, due to fill-in, the sparse matrix

A becomes dense. Therefore, when the eigenvalues of sparse matrices are sought, the algo-

rithms preserving the sparse structure should be used [74]. Excluding the QR algorithm, the

most widely used iterative methods for the computation of the eigenvalues and eigenvectors

26

of sparse matrices are the projection methods, which exploit matrix vector multiplications, so

that the sparse structure is preserved. The basic idea of a projection method is to find eigen

pairs by extracting the approximate eigenvector from a specified low dimensional subspace.

First, the eigenvalue problem is reduced to an approximate lower dimensional problem, then

lower dimensional problem is solved by generally QR method or some similar algorithms. In

other words, the method consists of approximating the exact eigenvector u by a vector ũ be-

longing to some projection subspace K [6]. The uniqueness of the eigenvalues and eigenvec-

tors is guaranteed by imposing the Petrov–Galerkin condition ([74], Chapter 4 [69], Chapter

3 [6]). This condition assures that the residual (Aλ̃ − λ̃ũ) of the approximate eigenvector ũ

must be orthogonal to some subspace L:

v∗(Aλ̃ − λ̃ũ) = 0 ∀v ∈ L,

where ũ ∈ K . If the matrix V with the column vectors v1, . . . , vn is a basis for L, left sub-

space, and the matrix W with the column vectors wi, . . . ,wn is a basis for K , right subspace,

the Petrov–Galerkin condition reduces the eigenvalue problem into a lower dimensional sub-

space:

Bmy = λ̃y, Bm = V∗AW. (3.1)

Projection methods are classified as oblique projection methods and orthogonal projection

methods with respect to the choice of left subspace, L. If L is chosen to be different from

K , the method becomes an oblique projection method [6]. In an oblique projection method,

two different bases for K and L are constructed. These basis must be bi-orthogonal to each

other. This may seem expensive but there are cheaper oblique projection methods than other

projection methods [59]. A disadvantage of this method is that the approximated eigenvalue

problem 3.1 becomes more ill-conditioned than orthogonal projection methods. Despite this

fact, oblique methods are efficient in approximating right eigenvectors [6]. If L is chosen to

be equal to K , it is then called an orthogonal projection method [6]. There are two important

classes of orthogonal projection methods: Krylov subspace methods and Jacobi-Davidson

type algorithms. Both methods are based on the multiplication of the matrix A, with a starting

vector q, and approximating the eigenvectors by constructing the set K = {q, Aq, A2q, . . .}.

However, as the powers of A increase, the vectors, Aq, in the set K become linearly dependent.

Instead of this, both methods try to create an orthogonal basis for approximating the eigen

space. The Krylov subspace methods insists on keeping a Krylov structure on the set K

whereas Jacobi-Davidson type algorithms use a correction equation [67] and Chapter 6 [69].

27

Projection methods compute the external (largest and smallest) and well separated eigenval-

ues very efficiently. However they are not very efficient in computing the clustered eigen-

values or the eigenvalues lying in the interior of the spectrum directly. An alternative way

for increasing the performance of methods is applying spectral transformations to the matri-

ces. These transformations basically rely on the idea that if p(x) is a polynomial of degree

k, p(x) = b0 + b1x + . . . + bkxk, and λ is an eigenvalue of matrix A with eigenvector x then

p(λ) would be an eigenvalue of p(A) with the same corresponding eigenvector x. In the trans-

formed matrix, the desired eigenvalues should be well separated, and the spectrum should

be computed with a reasonable effort. Therefore, to apply such a transformation, it remains

only to detect a polynomial satisfying these requirements. The most popular spectral trans-

formation is shift and invert method. It starts by choosing a shift, say σ close to the desired

eigenvalue. Then the matrix A is shifted with this value, (A − σI), and the eigen problem is

applied to the inverse of the shifted matrix:

(A − σI)−1x = λ̃x.

The desired eigenvalues of the transformed matrix would be largest in magnitude and they can

be computed easily by methods like the power method. Then eigenvalues of A can be found by

the following formula λ j = σ+ 1
λ̃ j

. The most important drawback of shift and invert method is

that it brings the problem of inverting a matrix. This is handled by transforming the problem

to a linear system and then solving this linear system (forward and backward substitution). In

many applications, the linear system is solved by applying LU decomposition. Experiments

showed that for large sparse matrices, computing LU is an expensive approach. An alternative

way to avoid this expensive decomposition is using harmonic Ritz vectors which will be

explained in Section 3.4.

There are excellent books about the large sparse eigenvalue problems [68], Chapters 5 and 6

[69], Chapter 6 [74], Chapters 8 and 9 [75], Chapters 4, 5, 7 and 8 [6]. See also the review

article of Sorensen [67] and the article of Golub, van der Vorst [35] about the history of the

eigenvalue computation in the last century. In the rest of this Chapter, we will outline the

algorithms for the Krylov subspace methods like the Arnoldi method, the Lanczos method,

the Krylov-Schur method, the inverse free preconditioned Krylov method (EIGIFP), Jacobi-

Davidson type methods, (JDQR).

28

3.1 Krylov Subspace Methods

This section is based on Chapter 4 [6], Chapters 1 and 2 [24], Chapter 13 [56] and Chapter 6

[74] and on the articles [47, 57, 65, 66, 67].

The basic and simplest iterative method for solving eigenvalue problem

Ax = λx (3.2)

is the power method. It starts with a random vector q and goes over multiplying the vector with

higher powers of the matrix A. Krylov subspace methods follow the path of power method.

The difference is that methods depending on Krylov subspace use all the information from

the previously computed vectors whereas power method uses only the recent information that

comes from last computed vector.

We will now give some definitions which are needed throughout this chapter.

Definition 3.1 Let A ∈ Rn×n be a matrix and q ∈ Rn×1 be a vector. The space spanned by

the set {q, Aq, A2q, . . . , A j−1q} is called the j–th Krylov space associated by A and q. It is

denoted by K j(A, q).

Definition 3.2 A matrix A is called upper Hessenberg if ai j = 0 for i > j + 1 and lower

Hessenberg if ai j = 0 for i < j − 1.

The basic idea of the Krylov subspace methods originates from the famous Schur theorem.

According to Schur theorem every matrix has a basic Schur decomposition, or can be trans-

lated to a Jordan form. The methods exploit this idea and translate the matrices into a simpler

and lower dimensional form so that it would be easy to compute the eigenvalues of the trans-

formed matrices.

Krylov methods try to find an approximate eigenpair {λ̃, q̃} to the eigenproblem (3.2) by pro-

jecting the matrix A onto the associated Krylov subspace. This is done by imposing the

Galerkin condition (Aq̃ − λ̃q̃)⊥K :

v∗(Aq̃ − λ̃q̃) = 0 ∀v ∈ K . (3.3)

29

Let {q1, q2, . . . , qm} be an orthogonal basis for the Krylov subspace and Q = [q1 q2 . . . qm]

with columns consisting of these basis vectors. The condition (3.3) is equivalent to

q∗j(AQy − λ̃Qy) = 0, j = 1, . . . ,m,

where q̃ = Qy. Therefore (λ̃, y) is an eigen pair of the matrix Q∗AQ i.e. the projection of

the matrix A onto the Krylov subspace. Here λ̃ is called Ritz value and the corresponding

eigenvector q̃ is called the Ritz vector.

The construction scheme of basis set is the key point of Krylov subspace algorithm. There

exist different types of method depending on different approaches in this construction scheme.

For the rest of this section, we will present the main different versions of Krylov subspace

methods.

3.1.1 Arnoldi Method

Arnoldi process can be seen as an improved version of power method. Basically, it starts with

a random vector q, continues to compute Aq, A2q, . . . and tries to construct the Krylov space

with these vectors. The major difference from power method is that Arnoldi process uses the

information gained from all computed vectors.

Starting with a random vector q and computing {q, Aq, A2q, . . . , A jq} results in an ill-conditioned

set of vectors. Because as j increases, the vectors A jq points to the dominant eigenvector of

A more and more, i.e. they point the same direction. Therefore they will not constitute a good

basis set and should be replaced with an orthonormal set. This can be achieved by applying

various orthogonalization techniques to the Krylov subspace. The most common orthogonal-

ization scheme is the Gram−Schmidt process. In literature, Arnoldi method is sometimes in-

terpreted as a modified Gram−Schmidt process for building an orthonormal basis for Krylov

subspace, Km(A, q). However, different implementations also exist. For example, in [32]

Householder transformations are applied in Arnoldi method for constructing the orthogonal

basis. It is reported that Householder algorithm is numerically reliable but it is more expensive

than Gram Schmidt [6]. We describe here the standard Arnoldi method with Gram–Schmidt

orthogonalization process.

30

Gram–Schmidt orthogonalization starts with normalizing the random initial vector q

q1 =
q
||q||2

.

Then Aq1 is calculated and orthogonalized against q1:

q̃2 = Aq1− < Aq1, q1 > .

Then q̃2 is normalized and so on. At the k-th step, qk is computed by

q̃k = Aqk −

k∑
j=1

g jh jk, where h jk =< Aqk, q j >, (3.4)

qk+1 =
q̃k+1

hk+1,k
where hk+1,k = ||q̃k+1||2. (3.5)

From Equations 3.4 and 3.5, we obtain:

Aqk =

k+1∑
j=1

q jh jk, k = 1, 2, 3, . . . , (3.6)

where the values h jk are as given above.

Algorithm 1 shows the basic steps of Arnoldi method with modified Gram-Schmidt re-ortho-

galization. Here, the computation of eigenvalues are not included. It can be noticed that matrix

vector product is done only in one step, 3–rd step. The steps 5 to 8 are orthogonalization steps

of qk+1 against already computed vectors. Re-orthogonalization is done in the steps between

9 and 14. These steps are irrelevant in exact arithmetic because Arnoldi procedure without

reorthogonalization would produce orthogonal vectors. However, in floating point arithmetic,

orthogonality is generally lost due to rounding errors. Therefore a second re-orthogonalization

procedure is required. At 15–th step, the algorithm stops if the condition, hk+1,k = 0, is

satisfied. Because if hk+1,k = 0, by Equation (3.5) q̃k+1 = 0. This means that the vectors

q, Aq, A2q, . . . , Akq are linearly independent, i.e. Krylov subspace is invariant under A. The

computed Ritz values will be exact eigenvalues of A. However, in floating point arithmetic

hk+1,k will never be zero. But its quantity gives an idea for determining the convergence of

approximations.

The equations (3.6) can be represented in matrix form: Let Qm = [q1, . . . , qm] ∈ Cn×m be an

31

Algorithm 1 The basic Arnoldi process with re-orthogonalization
1: Give the matrix A and the initial vector q

2: q1 =
q
||q||2

3: for k = 1, . . . ,m − 1 do

4: qk+1 ← Aqk

5: for j= 1, . . . , k do

6: h jk ← q∗jqk+1 → Orthogonalizing the vector computed in step 3

7: qk+1 ← qk+1 − q jh jk

8: end for

9: for j=1, . . . , k do

10: α← q∗jqk+1 → Re-orthogonalization

11: qk+1 ← qk+1 − q jα

12: h jk ← h jk + α

13: hk+1,k ← ||qk+1||2

14: end for

15: if hk+1,k = 0 then

16: Stop → An invariant subspace is detected and the algorithm is stopped

17: end if

18: qk+1 ←
qk+1

hk+1,k
→ Orthonormalization

19: end for

32

orthogonal matrix and the Hessenberg matrix be

Hm+1,m =



h11 h12 · · · h1,m−1 h1m

h21 h22 · · · h2,m−1 h2m

0 h32 · · · h3,m−1 h3m

0
. . .

...
...

0 hm,m−1 hmm

0 0 . . . 0 hm+1,m


.

Then the Arnoldi process is described by Equation (3.6) can be rewritten as:

AQm = Qm+1Hm+1,m. (3.7)

If Qm+1Hm+1,m = QmHm + qm+1hm+1,me>m where em equals to the m-th column of the identity

matrix, the process can be summarized as:

AQm = QmHm + qm+1hm+1,me>m. (3.8)

The columns of Qm are referred as Arnoldi vectors and Hm is referred as Arnoldi matrix.

If hm+1,m = 0, Equation (3.8) becomes

AQm = QmHm −→ Q∗mAQm = Hm.

This means that the projection of A onto the m dimensional Krylov subspace is the matrix Hm.

Since m � n, eigenvalues of Hm can easily be computed by QR algorithm and they will be

exactly the m eigenvalues of A restricted to that subspace. However, in applications it is very

rare to have hm+1,m = 0 and in the Arnoldi method this idea is used to find approximations to

the eigenvalues of A.

Even if |hm,m+1| , 0, the eigenvalues of A can still be approximated by the eigenvalues of Hm.

Let µ be the eigenvalue of Hm with associated eigenvector x and v = Qmx. The pair (µ, v)

is called Ritz pair. If it was an exact eigen pair of A, the residual norm, ||Av − µv||, would

equal to 0. In addition, if the residual was small, the pair would still be a good approximation.

Therefore, the residual can be used as a parameter for checking the convergence degree of

Ritz values. Fortunately, the norm of the residual is not needed to be calculated by direct

33

computations. Instead, the following formulation exists [74]:

||Av − µv||2 = ||AQmx − µQmx||2

= ||QmHmx + qm+1hm+1,me>mx − µQmx||2

= ||Qmµx + qm+1hm+1,me>mx − µQmx||2

= ||qm+1hm+1,me>mx||2

= ||qm+1|||hm+1,m|||e>mx||2

= |hm+1,m||xm|

where xm is the last component of the vector x.

From this result, it can be seen that whenever the eigenvalues are well conditioned, if hm+1,m

and the last component of eigenvector of Hm are small, the approximations to the eigenvalues

of A will be good.

The performance of the Arnoldi algorithm depends strongly on the initial vector q. The al-

gorithm behaves different with respect to q. For example, if one wants to find the largest

eigenvalue of the matrix A and if the initial starting vector is the related eigenvector then

the process terminates in one step. If the initial eigenvector is a linear combination of j

eigenvectors, the algorithm terminates in j steps. Unfortunately in real applications, such an

information for choosing a good initial vector q is not available. However, the information

obtained after a few Arnoldi steps can be used to develop the initial vector, q. This is done by

applying restarting. Restarting means replacing the starting vector q with an improved vector

q+ and continuing the factorization with this new vector.

There are two restarting methods applied to Arnoldi algorithm. One restarting scheme is

applied explicitly. It starts with a random vector and implements m steps of Arnoldi process

to obtain an approximate eigenvector and eigenvalue. If the desired accuracy is not reached,

this new eigenvector is then used as an initial vector and the algorithm is started from the

beginning. This is called explicitly restarting Arnoldi algorithm.

The other restarting approach is called implicit restarting which was introduced by Sorensen

[65]. This approach is more reliable and saves computer storage and time. Therefore, it is

a common choice used in many applications. The implicitly restarting procedure basically

combines the implicitly shifted QR algorithm and Arnoldi method. The idea originates from

the fact that if q is a linear combination of k desired eigenvectors, the algorithm ends in

34

k steps. Implicitly restarted Arnoldi (IRA) algorithm tries to build the initial vector with

approximations of wanted eigenvectors by the help of polynomial filters (see for example

[74]). An iteration of implicitly restarted Arnoldi process will be described below.

If k eigenvalues of the matrix A are sought, then m = k + j steps of Arnoldi process is

performed (generally j is chosen equal to k) and Equation (3.8) is obtained: Then the m

eigenvalues, µ1, . . . , µm, of Hm are computed by QR iteration and the spectrum of Hm is

divided into two sets. One set contains the wanted eigenvalues, µ1, . . . , µk, and the other set

contains the unwanted eigenvalues, µk+1, . . . , µm. After this point, the shifts related with the

unwanted portion of the spectrum are chosen and QR algorithm is applied to Hm with shifts

ν1, . . . , ν j.

(Hm − ν1I) . . . (Hm − ν j) = VmRm, (3.9)

where Vm is an orthogonal matrix and Rm is an upper triangular matrix. Let Ĥm = V−1
m HmVm,

Q̂m = QmVm and q̂1 be the first column of Q̂m. The next step would be to restart the Arnoldi

process from the beginning with q̂ (the initial vector). But now, there is no need to start it

from the beginning, because multiplying (3.8) by Vm yields:

AQmVm = QmHmVm + qm+1hm+1,me>mVm,

AQ̂m = QmVmĤm + qm+1hm+1,me>mVm, (3.10)

AQ̂m = Q̂mĤm + qm+1hm+1,me>mVm.

The vector e>mVm has exactly m− j−1 leading zeros so if last j entries are dropped, βek would

be obtained where β is a scalar. If the last j columns of equation are dropped:

AQ̂k = Q̂kĤk + q̆k+1h̆k+1,ke>k + qm+1hm+1,mβe>k ,

where q̆k+1 is (k+1)st columns of Q̂k and h̆k+1,k is (k+1,k) entry of Ĥk.

Finally, we obtain

AQ̂k = Q̂kĤk + q̂k+1ĥk+1,ke>k , (3.11)

where q̂k+1 = γ(q̆k+1h̆k+1,k + qm+1hm+1,mβ, γ is chosen so that ||q̂k+1||2 = 1 and ĥk+1,k = 1
γ

It should be noticed that Equation (3.11) is the same as the Equation (3.8) except the indices

(In Equation (3.11), the index numbers, k, represent a lower number than the index numbers

in Equation 3.8), m.) Therefore it can be concluded that IRA does not need to start from

35

the beginning with q̂1, instead the algorithm can be designed to extract Q̂k and Ĥk to start at

step k, so that k − 1 steps of Arnold algorithm are saved [74]. IRA is analyzed in detail in

[66] and a comparison of explicit and implicit restarting with an analysis of using exact shifts

can be found in [50]. The method can be interpreted as applying a polynomial to the matrix

A and then multiplying the starting vector with this polynomial to improve the accuracy of

approximate eigenvalues and eigenvectors

q̂ = p(A)q,

where p(x) is a polynomial designed to suppress the unwanted portion of the spectrum. The

key point here is the choice of the right polynomial. Determining polynomial equals to find-

ing the appropriate shifts in the algorithm. These shifts are chosen according to the wanted

part of the spectrum which has to be suppressed. The most reliable shifts are the exact un-

wanted eigenvalues of Hm. But in the applications alternative strategies such as Chebsyhev

polynomial [57] or Leja points are also used [67].

IRA is implemented in the popular software ARPACK [48] which is known to be one of the

most reliable software package for eigenvalue and eigenvector computation. However, due

to the instability problems of QR algorithm, the method may fail to detect the eigenvalues.

Moreover, the IRA is not very efficient for detecting clustered or multiple eigenvalues. For

this kind of eigenvalue problems, block versions of the method are used [2]. The difference

of a block method from one step Arnoldi algorithm is that it starts with an n× r matrix instead

of a vector and the Krylov space would be of the form:

Kmr(A, X) = span{X, AX, A2X, . . . , Am−1X}, (3.12)

where X is a n × r matrix of starting vectors. The block version of Arnoldi was developed

in [2], which called as augmented block Householder Arnoldi method (ABHA). It exploits as

an orthogonalization technique, the Householder method to set up the Krylov basis instead of

Gram-Schmidt orthogonalization. The method implements a compact WY representation. In

this representation the Q matrix in Householder QR decomposition (A = QR) is replaced with

Q = I + YTY>, where Y is lower trapezoidal and T is square upper triangular matrix. More

information about this application can be found in [2]. After applying these transformations

to the subspace Kmr(A, X), the following Arnoldi equation is obtained:

AVmr = Vmr+rHmr+r = VmrHmr + Vm+1Hm+1,mE>r , (3.13)

36

whereas Vmr is n×mr orthogonal matrix and Hmr is mr ×mr upper block Hessenberg matrix.

During computations, some block diagonal matrices H j+1, j may become singular. This means

the set of vectors in (3.12) became linearly dependent to previously computed vectors. But

unlike the single vector case, this linear dependency does not imply the invariance of the

subspace under A. The subspace, Kmr, will be invariant under A if the block diagonal matrix

is totally zero.

After m steps of Arnoldi method, a compact Schur form of Hmr is computed to find the

eigenvalues:

HmrQHmr
mr = QHmr

mr UHmr
mr ,

where UHmr
mr is a quasi triangular matrix with eigenvalues of Hmr are in 1 × 1 or 2 × 2 blocks.

Then the eigenvalues are sorted with respect to the desired ones and undesired ones like the

case in IRA. The general scheme of the method is similar to IRA but details are different.

In [2], a block version of IRA is presented for computing the restarting vectors and then

implicitly starting the method. The idea in this algorithm is mainly inspired from IRA. The

difference is using Householder methods instead of Gram-Schmidt orthogonalization schemes

and a starting matrix is used instead of the starting vector.

3.1.2 Lanczos Method

Lanczos method is a special case of Arnoldi method. In the simplest sense, it can be seen

as an abbreviated version of Arnoldi algorithm for symmetric matrices. Despite this fact,

historically Lanczos method was developed earlier than Arnoldi method [35].

When A is symmetric, the Hessenberg matrix Hm in Equation (3.8) becomes tridiagonal.

Hm =



α1 β1 0 . . . 0

β1 α2 β2 . . . 0

0 β2 . . . 0
...

. . .
...

0 βm−1

0 βm−1 αm


.

This structure of Hm simplifies most of the coefficients in Equations (3.4) and (3.5). The

37

Equation (3.4) becomes a recurrence:

q̃k+1 = Aqk − qkαk − qk−1βk−1 where αk =< Aqk, qk >, (3.14)

qk+1 =
q̃k+1

βk
where βk = ||q̃k+1||2. (3.15)

The basic steps of Lanczos method without re-orthogonalization is given in Algorithm 2 (The

algorithm is taken from [74]).

Algorithm 2 Lanczos method without re-orthogonalization
Require: Initial nonzero vector q ∈ Rn and symmetric matrix A ∈ Rn×n

1: q1 =
q
||q||2

2: for k= 1, . . . ,m − 1 do

3: qk+1 ← Aqk

4: αk ← q>k qk+1 → Computation of Lanczos coefficient

5: qk+1 ← qk+1 − qkαk

6: if k > 1 then

7: qk+1 ← qk+1 − qk−1βk−1

8: end if

9: βk ← ||qk+1||2 → Computation of other Lanczos coefficient

10: if βk = 0 then

11: Stop → The algorithm breaks down

12: end if

13: end for

14: qk+1 ←
qk+1
βk+1

Like Arnoldi method, the only matrix vector product occurs at third step. Then the related

coefficients and vectors are computed between the steps 4 to 9. At step 10 when the condition,

βk = 0, is fulfilled, the algorithm terminates. Because βk = 0 implies that the vector qk+1 is

zero and that means the space span{q1, . . . , qk} is invariant under A. Moreover it is easy to see

that at each step the new Lanczos vector is calculated using only two previously computed

vectors, which is advantageous for saving computer storage.

At each iteration step k the new Lanczos vector qk+1 is calculated by orthogonalizing Aqk

against two previously computed vectors qk and qk−1. In exact arithmetic the orthogonality of

space spanned by {q1, . . . , qm} is being kept for all m. The following theorem and corollary in

38

[24] highlights this result:

Theorem 3.3 Let A be n × n, real, symmetric matrix with n distinct eigenvalues. Let v1 be

a unit starting vector with a nonzero projection on every eigenvector of A. Using the basic

single vector Lanczos recursions defined by (3.16) and (3.15) to generate Lanczos matrices

H j and Lanczos vectors Q j = [q1, . . . , q j]. Then for any j ≤ n, we have that

Q>j Q j = I j.

Furthermore for each such j

H j = Q>j AQ j,

is the orthogonal projection of A onto the subspace spanned by the Q j. In other words, H j

represents the operator A restricted to span{Q j}.

Corrollary 3.4 Theorem (3.3) implies that for each 2 ≤ j ≤ n the basic single Lanczos

recursion given by the equations (3.16) and (3.15) generates an orthonormal basis for each

of the Krylov subspaces, K j = span{q1, Aq1, . . . , A j−1q}. Furthermore for each such j the

Lanczos matrix H j is the representation of the restriction of the matrix A to that Krylov space.

Therefore the eigenvalues of T j are the eigenvalues of A restricted to K .

Unfortunately the results of the theorem is true only in exact arithmetic. Generally, in floating

point arithmetic, the orthogonality of Lanczos vectors is being lost after a few steps. This

is an important problem because loss of orthogonality results in ill conditioned sets and this

affects approximations. At the early stages of the development of the Lanczos algorithm, it

was thought that the loss of orthogonality was due to only the rounding errors and therefore

they were inevitable. This lead to a decrease in the interest for the method. But then, in [53]

and [54] Paige found that the losses of orthogonality in Lanczos algorithm is not only due

to computational errors. Instead, they are a combination of round-off errors in floating point

arithmetic and the convergence of one or more of the eigenvalues of the Lanczos matrices

H j to the eigenvalues of A as j has increased. Paige examined Lanczos algorithm without

reorthogonalization and with reorthogonalization. He found that the first one behaves like the

latter one until the convergence of the eigenvalues of Lanczos matrices. In other words, the

significant losses in the orthogonality of Lanczos vectors appears if the algorithm has been

carried out far enough that eigenvalues of Lanczos matrix have converged to desired ones.

39

Moreover it was shown in [54] that the loss of orthogonality occurs along the directions of the

corresponding converged Ritz vectors. In summary, the lost of orthogonality among Lanczos

vectors is due to the interaction of round off errors with convergence of eigenvalues [24].

In the floating point arithmetic, the Equation (3.16) can be rewritten as:

β j+1q j+1 = Aq j − α jq j − β jq j−1 − f j, (3.16)

where f j is a vector corresponding to the rounding errors at step j. The rounding errors are

important in the sense that they show the degree of loss of orthogonality between the Lanczos

vectors. It was proved in [60] that this loss follows a certain rule.

Theorem 3.5 Let wik = q∗i qk. Then the wik satisfy the following recurrence

wkk = 1 f or k = 1, . . . , j,

wkk−1 = q∗kqk−1 f or k = 2, . . . , j, (3.17)

β j+1w j+1k = βk+1w jk+1 + (αk − α j)w jk + βkw jk−1 − β jw j−1k + q∗j fk − q∗k f j,

for 1 ≤ k < j, and w jk+1 = wk+1 j. Here wk0 = 0.

The theorem implies that the loss of orthogonality depends somehow on the coefficients in

the Lanczos procedure. The loss of orthogonality has two important consequences on the

approximate eigenvalues. The first of impact is about the multiplicity of eigenvalues: simple

eigenvalues of the matrix A may appear as multiple eigenvalues of H j. The second one is

about the appearance of ghost eigenvalues: some Ritz values of H j may not belong to the

spectrum of A.

One way to prevent the loss of orthogonality is using orthogonalization schemes i.e. re-

orthogonalize each Lanczos vector against all or some previously computed ones. The other

way is to accept the loss of orthogonality and then try to deal with outcomes of this loss [24].

Lanczos, himself, also proposed re-orthogonalization to maintain orthogonality. Two kinds

of re-orthogonalization methods are suggested for Lanczos algorithm. One is using full re-

orthogonalization, i.e. re-orthogonalize the new computed vector against all previously com-

puted ones. To do this, all vectors are needed to be saved. This may result in loss of the

advantages of Lanczos method in saving storage. The other re-orthogonalization method is

limited reorthogonalization. There are two different types of this technique. The one is local

40

re-orthogonalization. It is done over a few computed vectors. Generally, these vectors are

chosen as the recently computed Ritz vectors. The other limited re-orthogonalization scheme

is called selective re-orthogonalization. In this approach, orthogonality is kept with respect

to some selected eigenvectors. Both types of re-orthogonalization methods can overcome the

problems occurring by full re-orthogonalization. They also produce more accurate results.

More information about these methods is given in [24].

Methods using no re-orthogonalization aim to solve the problem over computed Lanczos

vectors. If the Ritz values have appeared over and over as an eigenvalue of the Lanczos

matrix H j, it is assigned as an eigenvalue. Otherwise it is not accepted as an eigenvalue. This

method is advantageous and efficient in calculating the spectrum of very large matrices.

We will now outline the Lanczos partial reorthogonalization and implicitly restarted block

Lanczos method, which are efficient versions of the Lanczos method for computing eigenval-

ues of large sparse matrices.

The first method is the Lanczos partial reorthogonalization (LPRO) developed by Horst Simon

in [60]. The idea in LPRO originates from using the Equations (3.17) for estimates of the level

of orthogonality. The level of orthogonality, K j, among Lanczos vectors at step j is defined

as

K j = max
1≤k≤ j−1

|q∗jqk|.

But, computational experiments showed that assigning K j =
√
ε, i.e., maintaining semi-

orthogonality between Lanczos vectors, is sufficient to compute well approximated eigen-

values. When the equations (3.17) were used, the calculating f j’s became problem (due to the

Equation 3.16). Because of this, the following alternative formula is suggested in [60]:

wkk = 1 for k = 1, . . . , j

wkk−1 = ψk for k = 2, . . . , j (3.18)

w j+1k =
1
β j+1

[βk+1w jk+1 + (αk − α j)w jk + βkw jk−1 − β jw j−1k] + ϕ jk

for 1 ≤ k < j, and w jk+1 = wk+1 j where wk0 = 0 and ϕ jk and ψk are certain random numbers.

Computational experiments in [60] showed that this new formulation (3.18) can detect quite

well the steps at which the orthogonalization has been lost. Moreover, depending on the com-

putational experiments for different values of ϕ jk and ψk, using random numbers is suggested

41

in [60]:

ϕ jk = ε(βk+1 + β j+1)Θ

ψk = εn
β2

β j+1
Ψ

where Θ ∈ N(0, 0.3) represents the numbers distributed normally with mean 0 and standard

deviation 0.3 and Ψ ∈ N(0, 0.6)

The information obtained from the Equation (3.18) is then used to decide which Lanczos

vectors should be orthogonalized against the current vectors. When the orthogonality is lost, it

was first suggested to group the vectors into batches and then orthogonalize the current vector

against the ones from the batch. Each batch is constructed according to the following scheme:

when w j+1k >
√
ε the values w j+1k are checked until w j+1k−s < ε3/4 and w j+1k+l < ε3/4 is

satisfied so that an index set is obtained. Then q j+1 is orthogonalized against all the vectors

belonging the index set. The value ε3/4 is the optimal value determined by computational

experiments.

The second example for different implementations of Lanczos algorithm is the implicitly

restarted block Lanczos method (IRBL). Implicit restarts can also be applied to Lanczos

method as in the case for Arnoldi method. A combination of both implicit restarts and block

vectors is developed by Calvetti, Reichel and Baglama in [4]. The algorithm starts with a

set of orthonormal vectors, Vr = [v1, . . . vr], with block size r. Applying m steps of Lanczos

method with the initial matrix Vr results in the following equation

AVmr = VmrHmr + FrE∗r , (3.19)

where Vmr ∈ Rn×mr, VmrImr×r, V∗mr×mrVmr×mr and Fr ∈ Rn×r with V∗mrFr = 0. Imr is mr × mr

identity matrix, Imr×r is the matrix consisting of first r columns of Imr and Er is the mr × r

matrix consisting last r columns of Imr. Notice that this equation is similar to (3.13).

Tmr is mr × mr symmetric block tridiagonal matrix of the form

Tmr =



D1 B>1 0

B1 D2 B>2

B>2 D3

. . .
. . .

B>m−1

Bm−1 Dm


,

42

where D j’s are r× r Hermitian diagonal blocks and B j’s are r× r nonsingular upper triangular

subdiagonal blocks. If {θ, y} are the eigen pairs of Tmr, {θ, x = Vmry} will be the Ritz pair of

A. The residual norm for this Ritz pair will be

||Ax − θx||2 = ||AVmr − θVmry||2, (3.20)

= ||FrE∗r y||2. (3.21)

The residual norm for IRBL can also be computed directly without calculating the Ritz pairs

as in Lanczos algorithm.

The idea behind implicit restarts in block Lanczos method is the same as the idea behind IRA

and IRL, i.e. it aims to represent the initial starting matrix with a new improved matrix in the

direction of the wanted eigenvectors. After applying m steps of block Lanczos algorithm, if

the residual error is larger than the desired value, implicit restart is applied. The matrix Ur

is defined by Ur := pm(A)Vr, where pm is a polynomial of degree m and important for the

efficiency of restarts. The polynomials are determined with respect to unwanted portion of

the spectrum. The roots are referred as shifts. In the implementation of method in [3], Leja

points are used for roots of polynomials. The columns of Ur are orthogonalized:

Ur = V+
r R+

r ,

where V+
r is n × r orthonormal matrix and R+

r is upper triangular. Vr is replaced by V+
r and

then an m step of block Lanczos algorithm is performed again. This process is continued until

residual norm is below the desired value.

3.2 Krylov-Schur Methods

This section is based on Chapter 5 [69], and on the articles [39, 58, 70]. Krylov-Schur method

is developed for avoiding the numerical instabilities of IRA. It was proposed by Stewart in

[70]. The method can be viewed as a simplification of the IRA when exact shifts are used in

(3.9). Before we explain the details of the method, we will give some useful facts about the

Krylov subspaces.

Definition 3.6 Let u1, . . . , uk+1 be linearly independent and let Uk = (u1 . . . uk). A Krylov

decomposition of order k is a relation of the form

AUk = UkBk + uk+1bH
k+1. (3.22)

43

Equivalently, the equation can be written

AUk+1 = Uk+1B̂k, (3.23)

where Uk+1 = (Uk uk+1) and B̂k =

 Bk

b̂k+1

 .
If Uk+1 is orthonormal, then the Krylov decomposition is called orthonormal decomposition.

R(Uk+1) is the space spanned by this decomposition and Uk+1 constitutes a basis for this

decomposition. Thus, when the Equations (3.8) and (3.22) are compared, it can be seen that

Arnoldi Equation (3.8) is a specialized version of Krylov decomposition (3.22).

An important property of Krylov decompositions is that they are closed under the similarity

and translation transformations. If Q is a nonsingular matrix, post multiplying Equation (3.22)

by Q

AUkQ = UkQ(Q−1BkQ) + uk+1bH
k+1Q

results in a Krylov decomposition similar to the previous one. Let γũk+1 = uk+1 − uka, then

putting this into the Equation (3.22) yields

AUk = Uk(Bk + abH
k+1) + ũk+1(γbH

k+1)

and this decomposition is again equivalent to the decomposition in (3.22) since the range of

basis are the same. This translation is called transition. These two properties of decomposition

yield the following important result:

Theorem 3.7 Every Krylov decomposition is equivalent to (a possibly reduced) Arnoldi de-

composition.

This theorem can be proved by applying the transformations described above on the Equation

(3.22). The proof in [69] yields the general scheme of the algorithm for transforming a Krylov

decomposition to an Arnoldi decomposition.

Krylov–Schur method consists of two parts: expansion and extraction. The expansion phase

starts with multiplying the initial vector with the matrix A and proceeds as the usual Arnoldi

algorithm. After m steps of Krylov–Schur method, the following equation is obtained:

AUm = UmS m + uk+1bH
k+1

44

, where S m is a quasi-triangular matrix in real Schur form (with 1×1 or 2×2 blocks on the

diagonal entries). In general, this stage is accomplished by first obtaining an Arnoldi decom-

position of degree m. Then this decomposition is transformed to a Krylov-Schur form by

unitary similarities.

The extraction phase of Krylov–Schur method is simpler. Since the matrix S m is of quasi-

triangular form, the Ritz values are on the diagonals. They are either on 1× 1 or 2× 2 blocks.

These values are divided into two sets: Ωw (containing wanted portion of the spectrum) and Ωu

(containing unwanted portion of the spectrum). Then the desired Ritz values of the matrix are

moved into the leading submatrix of S m with orthogonal transformations. So that a reordered

Krylov–Schur form is obtained:

AŨm = (Ũm um+1)


S w ?

0 S u

b∗w ?

 ,
where λ(S w) = Ωw and λ(S u) = Ωu and b∗w is of length p and the leading subvector.

At the end, this decomposition is truncated to order p and then extended to a Krylov decom-

position of order m. The truncated decomposition is of the form:

AŨp = (Ũp ũp+1)

 S w

b∗w

 ,
where Ũp is the first p columns of Ũm and um+1 = ũp+1 [39].

The key point in the last step originates from the fact that Krylov–Schur decomposition can

be truncated at any point, i.e. if the truncation is in the form

A(U1 U2) = (U1 U2)

 S 11 S 12

0 S 22

 + U(bH
1 bH

2),

then AU1 = U1S 11 + ubH
1 is still a Krylov–Schur decomposition.

The basic steps of the method are illustrated in algorithm 3 (This algorithm is adapted from

[69]). At step 3, the decomposition is expanded to order m by the Arnoldi method. At step

7, the transformations are determined and applied to the Hessenberg matrix to obtain the

Schur form. Then spectrum is divided into two parts at step 8, this is done by appropriate

transformations. In the rest of the algorithm, the truncation procedures is implemented. If the

45

Algorithm 3 The Krylov–Schur cycle
Require: A Krylov–Schur decomposition AU = ÛŜ = US + uk+1b>k+1

1: T̂ = Ŝ

2: for j= k + 1, . . . ,m do

3: Apply Arnoldi algorithm to expand the decomposition to order m

4: end for

5: T = T̂ [1 : m, 1 : m]

6: B = T̂ [m + 1,m]

7: Transform S = QHT Q so that it is triangular

8: Select m − k Ritz values and move them to the end of S

9: S = S [1 : k, 1 : k]

10: bH = BQ[m, 1 : k]

11: U = UQ[:, 1 : k]

work counts in implicitly restarted Arnoldi (IRA) and Krylov–Schur methods were compared,

the total number of floating point additions and multiplications in expansion phase would be

2n(m2 − k2). However, for contraction phase these values are different. The accumulation of

U is done in m × m Q matrix and new Uk is obtained from UmQ[:, 1 : k] for both algorithms.

Then, the total number of works for IRA would be nmk − 1
2 k2 and for Krylov–Schur method

would be nmk. If m is taken to be equal to 2k, the operation counts for Krylov–Schur is 7nk2

whereas for IRA, it is 3nk2. Hence IRA is superior to Krylov–Schur in marginal operation

cost [70].

Implicitly restarted Arnoldi method with exact shifts and Krylov–Schur method with the same

shifts have the same effect which was proved in [70]. But each have their pros and cons.

Different polynomials can be used instead of shifts in IRA but this is not possible in Krylov–

Schur method. On the other hand when exact shifts are used Krylov–Schur method is more

preferable due to the reliable process for exchanging the eigenvalues. The residual of the

approximate eigen pair (M,Z), r = AZ − ZM, provides a good criteria for determining the

convergence. In the Frobenius norm, it is equivalent to

||AZ − ZM||2r = ||BW −WM||2F + ||bH
W ||

2
F ,

where Z = UW. More information about the residual and stability of method can be found in

[70].

46

Like Arnoldi method, Krylov–Schur can also be adapted to symmetric case. It is realized that

when this happens, Krylov–Schur method becomes equivalent to the thick restarted Lanczos

method [78]. The significant difference arises from the structure of the Krylov–Schur matrix,

S m, which consists of a diagonal and tridiagonal part. So, obtaining S m from thick restarted

form equals to diagonalization in the Lanczos procedure. However, this requires a special

treatment in order to benefit from the symmetry [39].

Harmonic extraction for finding the interior eigenvalue can be implemented to Krylov–Schur

method instead of usual shift and invert methods. Basic information about this extraction

theory is given in Section 3.4. We give here only the general procedure for applying them to

Krylov–Schur method.. The linear subspace Wk in Definition 3.8 given as

Wk = V := (A − τI)Uk,

where τ is he target value around which the eigenvalues are sought. Then from the Krylov–

Schur decomposition, this subspace is equivalent to

V = U(B + τI) + ub∗.

Here V is not orthonormal but by some extra work it can be orthonormalized. After some

calculations, one obtains

U = V(B − τI)−1 − ug∗, (3.24)

where g := (B − τI)−∗b. Equation (3.24) is the Krylov decomposition of the shifted and

inverted operator. In [58], it is shown that the eigenvalues of the matrix (B + gb∗) are the

harmonic Ritz values of A with corresponding harmonic Ritz vectors, Vz:

(B + gb∗)z = (θ̃−1 + τ)z.

This idea is implemented to the Krylov–Schur method by applying a translation to the original

Krylov–Schur decomposition in order to obtain the Equation 3.24. More details about this

implementation can be found in [58].

The block version of Krylov–Schur method for symmetric matrices is proposed by Saad and

Zhou in [79]. This block implementation starts with an n × b matrix, where b is the size of

blocks, instead of an initial vector like other block algorithms (ABHA, IRBL) defined in pre-

vious Sections. However, the rest of the implementation includes some important alterations.

47

The first one is the internal increase in the size of starting vector, ks. That is, algorithm aug-

ments the block Krylov decomposition of size ks to size k f by a special block Lanczos pseudo

code given in [79]. After, invoking this pseudo code, the following equation is obtained:

HVk f = Vk f Tk f + FB> (3.25)

with V>k f
V>k f

= Ik f and F>Vk f = 0. After this enlargement of space the algorithm goes on

as in the one vector case with appropriate modifications for the blocks. The other important

alteration is about handling the rank deficiency. The rank deficiency of matrix F implies that

the augmented basis is not orthogonal any more. This situation appears when the computed

vectors are not linearly independent. The authors in [79] dealt with this problem by suggesting

an adaptive block size b. They proposed to adjust the block size with respect to the rank

deficiency of matrix F. The details of this implementation and numerical comparisons with

other block methods can be found in same article.

3.3 Inverse Free Preconditioned Krylov Subspace Method

Inverse free Krylov subspace method is developed by Golub and Ye in [36]. This method is a

combination Krylov subspace methods with preconditioning. It is an extension of the inexact

inverse iteration scheme and Rayleigh-Ritz projection methods. It is designed for solving the

generalized eigenvalue problems

Ax = λBx

but it can also be applied to standard eigenvalue problems by choosing B = I. We will describe

here the application of the method for generalized eigenvalue problems.

The algorithm starts with a normalized initial vector, x0, then the The Rayleigh-Ritz quotient

with respect to initial vector x0 is computed

ρ0 =
x>0 Ax0

x>0 Bx0
(3.26)

Then a basis, Vm, for the shifted Krylov subspace

Km = span{x0, (A − ρ0B)x0, . . . , (A − ρ0B)mx0}

is calculated. Here m denotes a user specified value and it determines the dimension of the

48

shifted Krylov space. The new matrices are

Am = V>m (A − ρ0B)Vm, (3.27)

Bm = V>m BVm. (3.28)

calculated. The smallest eigen pair (µ1, q1) of (Am, Bm) is found and new approximations are

computed:

ρ1 = ρ0 + µ1, (3.29)

x1 = Vmq1. (3.30)

This procedure is iterated until with k until the desired accuracy is reached and is called

outer iteration. The inner iteration is the construction of the basis, Vm, for Krylov subspace.

Three different ways to construct the basis is proposed in [36]: by the Lanczos algorithm, a

B-orthonormal basis by Arnoldi algorithm and Ck-orthogonal basis by a variation of Lanczos

algorithm. The method was tested using all these three basis and the first two bases performed

similarly, and the last basis showed poorer performance than the others [36].

Using Lanczos algorithm for inner iteration is just an application of the algorithm 2 to the

matrix Ck = A − ρkB. The loss of orthogonality with increasing m is also observed in this ap-

plication. However, this loss is not very important until Vm becomes seriously ill-conditioned.

In that case partial reorthogonalization is suggested to apply in order to resolve the problem.

The idea of constructing a B-orthonormal basis by Arnoldi algorithm is nearly the same as

algorithm 1 with some small modifications. The convergence analysis of the procedure is

described in [36]. They proved the following theorem which indicates that ρk converges to an

eigenvalue and xk converges in the direction of an eigenvector [49].

Theorem 3.8 Let λ1 < λ2 ≤ . . . ≤ λn be the eigenvalues of (A,B) and (ρk+1, xk) be the

approximate eigen pair obtained from (ρk, xk)by one step of inverse free Krylov subspace

method. Let σ1 < σ2 ≤ . . . ≤ σn be the eigenvalues of A − ρkB. If λ1 < ρk < λ2 then

ρk+1 − λ1 ≤ (ρk − λ1)ε2
1 + O((ρk − λ1)3/2), (3.31)

where

εm = min
ρ∈PM ,ρ(σ1)=1

max |ρ(σi)| ≤ 2
(
1 −
√
ψ

1 +
√
ψ

)m

.

49

Here, Pm denotes the set of all polynomials of degree greater than m and φ =
σ2−σ1
σn−σ1

. This

theorem implies also that the convergence of algorithm depends on the spectral distribution

of Ck, which leads to apply appropriate preconditioning on Ck that leaves the eigenvalues of

(A, B) same.

The idea of preconditioning originates from above theorem, that aims to transform the pencil

(A, B) to a new pencil (Â, B̂) with the same eigenvalues but Ĉk = Â − ρk B̂ has more appropri-

ate spectrum distribution. Here the notion of appropriate means having a suitable spectrum

distribution for applying the bounds on theorem.

Let Lk be some matrix used for preconditioning:

(Â, B̂) = (L−1
k AL−>k , L−1

k BL−>k). (3.32)

Applying the method for the transformed matrices requires the calculation of

Ĉ = Â − ρk B̂ = L−1
k (A − ρkB)L−>k . (3.33)

So if Lk is chosen so that Ck has a good spectral distribution, the algorithm will accelerate.

For example, if a complete LDL> factorization of (A−ρkB) was found then assigning LK = L

would yield

Ck = L−1
k (A − ρkB)L−>k = L−1

k LDL>L−>k = D,

where D is a diagonal matrix and can be accepted to have an appropriate diagonal entries.

An implicit implementation of preconditioning for the method is also developed in [35]. The

algorithm starts the same way as non–preconditioned method. One step of new algorithm is

as follows:

First an appropriate preconditioner Lk is constructed. Then the basis Vm = [v0, . . . , vm] for

L−>k K̂m is constructed. The new matrices Â and B̂ are formed in the usual way:

Am = V>m (A − ρkB)Vm,

Bm = V>m BVm.

Then smallest eigenvalues, µ1, and eigenvectors, q, of Am and Bm are found and new approx-

imations are:

ρk+1 = ρk + µ1,

xk+1 = Vmq.

50

The only difference from non–preconditioned case is in the inner iteration. The basis is con-

structed for the space L−>k K̂m instead of Km. As in the previous case there are two alternatives

for inner iterations: constructing with Arnoldi method or constructing with Lanczos method.

However the numerical studies have revealed that using Arnoldi method for preconditioned

algorithm is much more efficient than using Lanczos method for preconditioned algorithm

[36, 49].

3.4 Jacobi-Davidson Type Algorithms

This section is based on Chapter 6 [74], Chapter 4 [6] and on the papers [62, 63]. Jacobi-

Davidson method for solving eigenvalue problems originates from the idea of projecting the

matrix onto a subspace like the Krylov subspace algorithms. The difference to the meth-

ods like Arnoldi and Krylov–Schur depending on preserving Krylov space, is that Jacobi-

Davidson algorithm does not insist on keeping a Krylov structure in the projected subspace.

The general principle of the algorithm depends on approximating the eigenvalues and eigen-

vectors by expanding the previously obtained subspace. That is, if {q1, q2, . . . , qk} spans the

subspace that A is projected onto, then the algorithm tries to find a qk+1 to obtain a better

approximation for the desired eigenvector. The origin of the algorithm is based on the ap-

proaches by Jacobi and Davidson. Therefore first, a brief summary of the Davidson’s and

Jacobi’s method will be given:

Davidson in his article [25] claimed to expand the subspace by orthogonalizing the correction

against the residual. That is, assume A is projected over some subspace K and {q1, . . . , qk}

forms an orthonormal basis for that subspace. Let θk be the Ritz value and vk be the corre-

sponding Ritz vector of A. The residual is rk = Avk − θkvk. Davidson suggested to compute

the correction t for vk from the equation:

(DA − θkI)t = rk, (3.34)

where DA is the matrix consisting of the diagonal entries of A. Then the correction t is

orthogonalized against the basis vectors. Finally, the orthogonalized correction is assigned as

qk+1 and the subspace is expanded by one dimension. This method worked very well with the

diagonally dominant matrices.

51

Jacobi in his paper [42], offered two new iterative methods. Today, one is very well known

as the Jacobi method, the other was called Jacobi’s orthogonal component correction (JOCC)

by Gerard Sleijpen and Henk Van der Vorst in [62]. Jacobi developed the first approach to

increase the efficiency of his second method. It is about transforming a matrix into a new form

with plane rotations. The second idea, JOCC, starts with assuming the matrix is diagonally

dominant and partitioning the matrix as

A =

 µ c>

b F

 ,
where µ is the largest diagonal elements, c and b are the vectors in the related size and F is a

square matrix. µ can be interpreted as an approximation to the largest eigenvalue of A with

corresponding eigenvector q and e1 be the corresponding approximation to the eigenvector q.

Let

q =

 1

z

 ,
where z is the other component of the vector q orthogonal to e1. Then, the eigenvalue problem

turns into  µ c>

b F


 1

z

 = λ

 1

z

 .
Equivalently, it becomes a linear system of the form:

µ + c>z = λ,

(F − λI)z = −b. (3.35)

A rearrangement of the system (3.35) will yield:

λ = µ + c>z,

(D − λI)z = (D − F)z − b. (3.36)

where D is the diagonal of F. To solve the system (3.36), Jacobi suggested an iterative

method.

θk = µ + c>zk,

(D − θkI)zk+1 = (D − F)zk − b.

by setting z1 = 0 with some appropriate error bound until desired convergence is reached.

52

Combining the ideas of Davidson and Jacobi, Gerard Sleijpen and Henk Van der Vorst sug-

gested a new method, the Jacobi-Davidson method [62]. We will give the basics of this

method in the rest of this section.

Let {q1, . . . , qk} span the k−th dimensional subspace, K which A is projected onto. The

algorithm tries to expand the subspace by a correction on qk. This correction is being searched

in the orthogonal complement of qk, q>k . Suppose the largest eigenvalue, λ, and corresponding

eigenvector, x, are sought. If qk is an approximation for x, then the correction would satisfy:

A(qk + t) = λ(qk + t) (3.37)

with the condition t⊥qk.

The orthogonality condition implies that A can be restricted to the complement of qk (The

orthogonal projection of a matrix A to the complement of a vector u is B = (I−u u∗)A(I−u u∗)).

With this restriction the Equation 3.37 becomes

(I − qkq∗k)(A − λI)(I − qkq∗k)t = −(A − θk)qk (3.38)

with t⊥qk where θ j is the corresponding Ritz value. In practice, λ is unknown, so it can be

replaced by

(I − qkq∗k)(A − θkI)(I − qkq∗k)t = −rk. (3.39)

Equation (3.39) is called the Jacobi’s correction equation. Various iterative solvers can be used

to solve this equation. It is reported in [62] that the method does not require to solve 3.39 with

a high accuracy. On the other hand numerical experiments showed that the convergence of

whole algorithm increases with more accurate solutions of Equation (3.39).

From Equation (3.39), it can be deduced that

(A − θkI)t − εqk = −rk. (3.40)

If there is a suitable preconditioner M, then t can be approximated by

t̃ = M−1εqk − M−1rk, (3.41)

where

ε =
q∗k M−1rk

q∗k M−1qk
,

53

as a result of the condition t̃⊥uk.

In the article [62], it is reported that solving Equation (3.39) with an iterative solver is easier

than solving Equation (3.41). Because when θk becomes very close to λ, the ill-conditioning

of the matrix (A− θkI) increases and finding a good preconditioner becomes a big problem. It

is also claimed that iteratively solving (3.39) yields more accurate and stable results.

A basic implementation of the algorithm is given in algorithm 4 (This algorithm is adapted

from [6]). The steps 3 − 5 represent the orthogonalization of computed correction against the

Algorithm 4 The basic algorithm for Jacobi-Davidson Method
Require: The starting vector v0 and the error bound ε is determined by the user.

1: Start with t = v0

2: for m= 1, 2, . . . do

3: for j= 1, . . . ,m − 1 do

4: t = t − (q∗i t)qi → Orthogonalize the correction

5: end for

6: qm = t/||t||2, qA
m = Aqm

7: for i=1, . . . ,m do

8: Mi,m = q∗i qA
m → Compute the projection matrix of A

9: end for

10: Compute the largest eigen pair (θ, s) of M

11: u=Qs

12: uA = qAs

13: r = uA − θu → The residual is computed

14: if ||r||2 ≤ ε λ̃ = θ,x̃ = u then

15: stop → The residual is checked

16: end if

17: Solve approximately a t⊥u from

18: (I − qq∗)(A − θI)(I − qq∗)t = −r → The corrector equation

19: end for

basis vectors and in steps 7−9 the projection matrix of A is computed. At step 13, the residual

is calculated. If residual is below some user prescribed ε value, then Ritz values are accepted

as the approximated eigenvalues. If convergence is not reached, at 18-th step Jacobi-Davidson

54

correction equation is solved by an iterative solver. In other words, a new update is calculated.

As m increases the storage and computational cost also increases like the situation in Arnoldi’s

method. An efficient way to struggle this difficulty is to restart the algorithm with the most

recent Ritz vector obtained. However, using only one eigenvector would cause a lot of loss

of information and sometimes results in stagnation. In order to prevent this problem, some

set of vectors should be taken. This set should contain more information about the wanted

eigen pair. For example, some Ritz vectors close enough to desired eigenvalue would be an

appropriate choice [6, 62].

All the process described up to this part were for computing the largest eigenvalue with its

corresponding eigenvector of the matrix (generally for largest eigenvalues). But it is also

possible to compute more than one eigen pair and also other parts of the spectrum with JD

method. A common procedure, deflation, is used in order to calculate other eigenvalues. Let

{v1, . . . , vk} be the accepted eigenvector approximations for the matrix A and Vk = (v1, . . . , vk)

be the matrix with columns consisting of these approximate eigenvectors. Then to compute

the (k+1)th eigenvector, the Algorithm 4 is applied to the deflated matrix

B = (I − VkV∗k)A(I − VkV∗k).

Then Equation (3.38) becomes

Pm(I − VkV∗k)(A − θmI)(I − VkV∗k)Pmt j = −r j,

where Pm = (I − q jq∗j). In order to solve this system, a slightly adapted version of the

procedure described before should be applied.

The theory developed until here is only applicable when the external eigenvalues of the matrix

are sought. Computation of interior eigenvalues needs a much more detailed analysis. This

is due to the unclear behavior of the Ritz values for interior parts of the spectrum, where the

convergence behavior of Ritz values for interior eigenvalues are not regular. For handling

with this difficulty, it was suggested in [62] to use harmonic Ritz values instead of Ritz values

for finding interior eigenvalues.

Definition 3.9 If Vk is a linear subspace of Cn then θ̃k is called a harmonic Ritz value of

A with respect to some linear subspace Wk if θ̃−1
k is a Ritz value of A−1 with respect to the

subspace Wk [20].

55

With harmonic Ritz values more regular convergence behavior is expected for the eigenvalues

closest to origin in case of normal matrices. From the above definition, the requirement for

calculating A−1 seems to be a disadvantage for using harmonic Ritz values. Fortunately, the

following theorem shows this computation is no longer needed.

Theorem 3.10 [62] Let Vk be some k dimensional subspace with basis vectors {v1, . . . , vk}. A

value θ̃k is a harmonic Ritz value of A with respect to the subspace Wk = AVk if and only if

(Aũk − θ̃kũk)⊥AVk (3.42)

for some ũk ∈ Vk, ṽk , 0. If {w1, . . . ,wk} span AVk. Let Vk := [v1| . . . |vk] and Wk =

[w1| . . . |wk] and H̃k := (W∗k Vk)−1W∗k AVk. Condition (3.42) is equivalent to H̃ks = θ̃ks for

some s.

The above theorem implies that the harmonic Ritz values of a matrix can be computed with-

out calculating the inverse of the matrix. Therefore it is enough to calculate the matrix

H̃ := (W∗k Vk)−1W∗k AVk and find its eigenvalues. In the context of Jacobi-Davidson method

H̃k can be obtained by either constructing an orthogonal basis for AVk or constructing a bi-

orthogonal basis for Vk and AVk [62]. Constructing an orthogonal basis is more preferable

due to the stability reasons. The construction schemes of orthogonal and biorthogonal bases

are explained in [62] with a report that using an orthogonal basis in constructing H̃ is more

advantageous in terms of stability.

Equation 3.39 implies that, the Jacobi–Davidson method requires to solve a linear system of

equations. This part of the algorithm is referred as the inner system and the other part is

referred as outer system. It was reported in [62] that the solution of the linear system do not

need to be very accurate. Notay, in his article [52], performed an analysis of the connection

between the accuracy of the solution of the inner and outer systems and obtained similar

results with [62]. He analyzed the case for positive definite matrices and used the conjugate

gradient method CG to solve the inner system. Whenever A is positive definite the matrix

(I −qkq∗k)(A− θkI)(I −qkq∗k) in Equation 3.39 and its preconditioner, (I −qkq∗k)K(I −qkq∗k), are

proved to be positive definite. He also found a relation between the residual, rk, in Equation

3.39 and inner iteration. This result lets the user to have an idea about the convergence of

outer iterations while inner iterations are still being running. More information about this

procedure can be found in [52].

56

Jacobi–Davidson method is an example of the accelerated Newton scheme [30, 61]. Consider

ũ is a vector with nontrivial component in the direction of desired eigenvector q and uk is the

approximation of q such that (uk, ũ) = (q, ũ) = 1. Here, θk is chosen so that the residual is

orthogonal to another vector w. Then the map defined by

F(q) = 0 where F(u) = Au − Qu with θ = θ(u) =
w∗Auk

w∗u

is the nonlinear representation of eigenvalue problem.

If uk approximates the eigenvector q, the next Newton approximate uk+1 would be calculated

by

uk+1 = uk + t where t⊥ũ and

∂F
∂u

∣∣∣∣∣∣
uk

 t = −rk

and the Jacobian of F is equal to∂F
∂u

∣∣∣∣∣∣
uk

 =

(
I −

ukw∗

w∗uk

)
(A − θk).

Hence, the correction equation of Newton step would be

t⊥ũ and
(
I −

ukw∗

w∗uk

)
(A − θk) = −rk.

If ũ = uk and w = uk, then Newton correction equation will be the same as Jacobi–Davidson

method [61]. For more details about accelerated Newton schemes and relations with other

methods, the reader is referred to [30].

57

CHAPTER 4

SPARSE EIGENVALUE PACKAGES

In this Chapter, we will give description of programs and software packages of the eigen-

value solvers mentioned in Chapter 3. Because the solution of linear systems of equations

and eigenvalue problems have wide range of applications in science and engineering, there

exists many efficient solvers. Computation of eigenvalues is more difficult than solving linear

systems of equations. Most of the methods for solving sparse eigenvalue problems described

in Chapter 3 were developed with the last fifteen years. Parallel to the development of new

methods, several eigenvalues packages were developed, which can be used in applications. A

detailed survey of current sparse eigenvalue freely available packages on the Internet can be

found in [40]. Most of the programs are in MATLAB, C, C++ and FORTRAN. The programs

are written in MATLAB are SPEIG, AHBEIGS, IRBLEIGS, EIGIFP, LANEIG, JDQR, JDCG

and in C++, the SLEPc library. MATLAB, which become a standard language in scientific

computing, is a numerical computing environment used both in industry and academia. On

the other hand, C++, which is very popular among both industry and academia, is a gen-

eral purpose object oriented programming language. All eigenvalue solvers implemented in

MATLAB are designed for serial computation but, SLEPc library can also be used for parallel

computations.

ARPACK is one of the most popular eigen solvers [48], due to its efficiency and robustness.

It is written in FORTRAN but a C++ interface, ARPACK++, is also available. ARPACK

implements the implicitly restarted Arnoldi(IRA) method (Section 3.2) for both symmetric

and non-symmetric problems. In the symmetric case, Lanczos algorithm is used with full

re-orthogonalization is used instead of Arnoldi (Section 3.3). In addition it can be used for

both standard and generalized problems in both real and complex arithmetic .

58

In most MATLAB implementations, the user can pass a MATLAB matrix as well as to specify

a MATLAB function for the matrix-vector product. Packages like ARPACK are implementing

reverse communication, which is independent of the matrix representation and very flexible.

4.1 SPEIG

SPEIG is the MATLAB implementation of the implicitly restarted Arnoldi(IRA) algorithm

described in Section 3.1.1. The solver SPEIG is developed by Sorensen and Radke in [57]

as an alternative for the eig command of MATLAB. When the eig command of MATLAB is

called for a sparse matrix, eig internally calls SPEIG to calculate the eigenvalues.

The basic syntax of SPEIG is >> d = speig(A) where d is a vector with entries con-

sisting of desired eigenvalues of the matrix. If eigenvalues are also needed the syntax is

>> [D,V] = speig(A) so D is the diagonal matrix with eigenvalues on diagonal entries and

V is the matrix with columns as eigenvectors. SPEIG lets the user to change the default

value of the number of eigenvalues calculated by >> d = speig(A, k) where k represents the

desired number of eigenvalues. SPEIG is designed for calculating largest eigenvalues with

default parameters. But, the user also has chance to calculate other parts of the spectrum with

>> d = speig(A, k, σ), where σ is the value around which the user wants to calculate the

eigenvalues. Moreover, σ has special characters for some parts of the spectrum:

Table 4.1: Character strings for exterior parts of spectrum

‘LM’ Largest magnitude
‘SM’ Smallest magnitude
‘LR’ Largest real part
‘SR’ Smallest real part
‘BE’ Both ends

The other parameters of SPEIG can be changed by using two functions: speigget and speigset.

speigset is designed to change the default values of parameters:

>> opts = speigset(‘name1′, ‘value1′, ‘name2′, ‘value2′, . . .)

where name1 is the name of the parameter and value1 is the value desired to assign. If only

speigset is used, the variable names with their types are displayed.

59

speigget is designed to extract the parameter values that are created by speigset:

>> p = speigget(opts, ‘name1′)

gives the value of parameter name1. If only speigget is used, the variable names and their

values are displayed.

The parameters and their default values used in SPEIG are given in the Table 4.2. If the

Table 4.2: Parameters of SPEIG

parameter description default value

n dimension of the problem none
p dimension of Arnoldi basis 2k
tol Tolerance for convergence of ||AV−VD||

||A|| A sym 10−10,
A nonsym 10−6

maxit maximum number of Arnoldi iterations 300
issym positive if A is symmetric 0 otherwise 0
dopoly Positive if it specifies a matrix vector 0

product, σ is LR, SR or numeric and
polynomial interpolation is to be used to
convergence acceleration

gui 0
v0 starting vector rand(n,1)-0.5

convergence is not reached for the given number of iterations, SPEIG provides the computed

result for the eigenvalues and eigenvector with a warning message that maximum number

of iterations are exceeded. The parameter dopoly indicates the activation or deactivation of

polynomial acceleration. If the parameter gui set to a negative number, a convergence report is

displayed, containing the residual norm at each step, the current iteration number, the elapsed

time and the eigenvalues are plotted. Additionally, the general properties of the problems such

as size of matrix, number of requested eigenvalues, dimension of the Arnoldi basis, tolerance

and maximum number of iterations are displayed.

4.2 AHBEIGS

AHBEIGS is the MATLAB implementation of augmented block Householder Arnoldi method

[2] described in Section 3.1.1, with some modifications on the number of the restarting vec-

tors. The codes are available at http : //www.math.uri.edu/ jbaglama/#S o f tware. In theory

60

the number of restarting vectors are taken to be j and in the package they are implemented as

j + 3. The number of computed eigenvalues are also determined internally by the algorithm,

which can also be larger than the desired values.

The basic syntax of AHBEIGS >> d = ahbeigs(A) returns a vector d with the entries con-

sisting of largest eigenvalues of the matrix. >> [X,D] = ahbeigs(A) where X is a matrix

with columns eigenvectors of A and D is the diagonal matrix with eigenvalues in the diagonal

entries. The other parameters of the algorithm can be changed by using options structure:

>> options.parametername = parametervalue.

In Table 4.3 the parameters used in the algorithm are described. blsz corresponds to the

Table 4.3: Parameters of AHBEIGS

parameter description default value
blsz block size of Hessenberg matrix 3
nbls number of blocks in Hessenberg matrix 6
k number of eigenvalues 6
sigma desired portion of spectrum LM
tol tolerance for convergence 1d-6
V0 starting matrix randn
maxit maximum number of restarts 100
dispr sets history 0

number of columns of starting matrix (i.e. it is the r value in the formula 3.13). nbls is

the m value in the formulas (example 3.13), it is increased automatically by the solver if

required. The value of sigma determines which portion of the spectrum is being calculated,

which can take a numerical value or a character. When it is a numerical value, eigenvalues

around that value are calculated. The exterior eigenvalues on the spectrum can be calculated

with the same special characters in SPEIG in Table 4.1. The value of tol determines the

convergence. Convergence is controlled by the inequality ||Aλ − λx||2 ≤ tol max(abs(Ritz))

where Ritz represent the Ritz value of upper block Hessenberg matrix. When the parameter

disp is set to a positive number, the k Ritz values and related residuals are displayed.

4.3 IRBLEIGS

The package is an implementation of implicitly restarted block Lanczos algorithm described

in section 3.2. It was developed in [5] as an extension of the implicitly restarted Lanczos algo-

61

rithm described in Section 3.2. A detailed description of the method package can be found in

[3, 4]. The MATLAB code is available at http : //www.math.uri.edu/ jbaglama/#S o f tware

The basic syntax of IRBLEIGS is >> d = irbleigs(A) where d is a vector with entries con-

sisting of eigenvalues. If eigenvectors are also needed >> [D,V] = irbleigs(A) has to be

used, where V is a matrix consisting of eigenvectors and D is a diagonal matrix with eigenval-

ues on diagonal entries is used. The package calculates largest eigenvalues but it is possible

to change this choice. This can be done by >> [D,V] = irbleigs(A, opts) where opts is a

structure that performs the desired changes in parameters. One can also change the parameter

values from the m–file of IRBLEIGS. But this method is not very practical. The syntax for

using opts is: >> opts.parametername = parametervalue or

opts = struct(′parametername‘,′ parametervalue‘). The parameter used in IRBLEIGS are

given in Table 4.4.

The solver IRBLEIGS uses Leja points as shifts for the implicit restarts. The letters ML and

WL are used for zertyp and they refer to the types of the zeros of the Leja polynomials. ML

refers to the mapped Leja points and WL refers to the fast Leja points. It should be noted

that choosing ML for numerical values of σ is not applicable in the code. The errors for each

iteration can also be displayed by setting the parameter dispr greater than zero. Irbleigs also

provides computation history with >> [D,V, Exitin f o] = irbleigs(A, opts). Here, exitinfo is

a 2-dimensional vector. The first entry of that vector contains the information about accuracy

of computed eigenvalues. If exitinfo(1)=0, the desired accuracy is achieved. If exitinfo(1)=1,

desired accuracy is not reached in the given number of iterations. When this happens, one

choice is to increase the iteration number or use the computed matrix V containing the ap-

proximate eigenvectors as an initial matrix and restart the code. Second array of exitinfo

contains the information about total matrix vector product.

When the code can not determine the k-eigenvalues for given number of iterations for the

desired accuracy, the outputs D and V are empty arrays.

4.4 LANEIG

LANEIG is the eigenvalue solver of the PROPACK package [46] which was developed for

solving SVD and eigenvalue problems for large sparse matrices. Each routine is implemented

62

Table 4.4: Parameters of IRBLEIGS

parameter description default value

k number of desired eigenvalues 3
nbls number of steps of the block-

Lanczos method between restarts 3
at the begin of the computation

tol tolerance 10−6

maxit maximum number of restarts of the 100
block-Lanczos method

sigma type of the desired eigenvalues LE
blsz block size of block-Lanczos method 3

σ is LR, SR or numeric
polynomial interpolation to be 0
used to accelerate the convergence

eigvec matrix which the user wants the [,]
eigenvectors converge

v0 matrix of blsz orthonormal starting randn(n,blsz)
vectors

maxdpol maximum degree of acceleration n if σ is numerical
polynomial 200 otherwise

zertyp determines how the zeros of ML if σ =SE or LE
acceleration polynomial are chosen WL if σ is numerical

endpt determines the strategy for choosing FLT if σ is numerical
the endpoints of interval K. MON if σ is SE or LE

sizint the interval size 1

separately, so that they can be used alone. The routines in the package depends mainly on

Lanczos methods. For example, the SVD solver implements Lanczos bi-orthogonalization

with partial re-orthogonalization. LANEIG [60] is the implementation of Lanczos algorithm

with partial re-orthogonalization (LPRO) described Section 3.3. The MATLAB codes can be

obtained from the following link http : //soi.stan f ord.edu/ rmunk/PROPACK/

The basic syntax of LANEIG is >> d = laneig(A) where d is the vector consisting of smallest

eigenvalues of the matrix. If the eigenvectors are also required, one has to use >> [X,D] =

laneig(A) where X is the matrix with eigenvectors are columns and D is the diagonal matrix

with eigenvalues on diagonal entries. It is also possible to change the number of eigenvalues

and also the portion of spectrum desired to compute by using >> d = laneig(A, k, sigma),

where k represents the number of eigenvalues and sigma represents the portion of spectrum

desired to compute. It can be either a number or character string: The parameters of the algo-

63

Table 4.5: Character strings for computing exterior eigenvalues with laneig

‘AL’ algebraically largest
‘AS’ algebraically smallest
‘LM’ largest in magnitude
‘BE’ at both ends

rithm can be changed with the option >> options.parametername = parametervalue. These

changes are assigned to solver by the command line: >> [X,D] = laneig(A, k, sigma, options)

In Table 4.6 the values of the parameters are given.

Table 4.6: Parameters of LANEIG

Parameter Description Default value
k Number of eigenvalues 5
tol Convergence tolerance 16*eps
lanmax Maximum dim. Lanczos subspace
v0 Starting vector rand(n,1)-0.5
delta Level of orthogonality among Lanczos vectors sqrt(eps/k)
eta Level of orthogonality after reorthogonalization 10 ∗ eps3/4

4.5 EIGIFP

EIGIFP [49] is the implementation of the inverse free preconditioned Krylov subspace method

[36]. It can be found from the web page: http : //www.ms.uky.edu/ qye/so f tware.html.

The basic syntax of EIGIFP is >> d = eigi f p(A, B) Here, d is the smallest eigenvalue of

the matrix and the corresponding eigenvector can be computed by >> [D,V] = eigi f p(A, B)

where V is a n × 1 vector. It is also possible to compute more than one eigenvalues with

corresponding eigenvectors using the command: >> [D,V] = eigi f p(A, B, k) where D is a

diagonal matrix containing the eigenvalues and V is the matrix with columns as correspond-

ing eigenvectors. EIGIFP is designed to compute the smallest eigenvalues of the matrix. But

it is also possible to compute the largest eigenvalue by assigning −A instead of A. Some of

the parameters of the algorithm can also be changed to improve the efficiency of the pack-

age. The syntax for changing the default values of parameters is >> opts.parametername =

parametervalue and it is implemented in the code as >> [D,V] = eigi f p(A, B, opts).

64

Table 4.7 gives a description of parameter values. The parameter inneriteration determines

Table 4.7: Parameters of EIGIFP

Parameter description default value

size dimension of matrix A none
tolerance termination threshold
maxiterations maximal number of outer iterations 500
inneriteration sets number of inner iteration
useprecon allows preconditioning or not
iluthresh threshold value for the incomplete LDL> 10−3

preconditioner matrix given by the user for preconditioning

the dimension of the Krylov subspace constructed by inner iterations. Setting inneriteration to

a large number sometimes causes out of memory warnings. Setting useprecon to NO disables

the preconditioning. The parameter iluthresh determines the degree of factorization in LU

decompositions. Setting it to 0 results in a full(exact) LU factorization and setting it to 1

results in incomplete LU factorization.

4.6 JDQR

The Jacobi-Davidson method in Section 3.5 is implemented in the solver JDQR. The MAT-

LAB codes can be obtained from http : //www.math.uu.nl/people/slei jpen/.

The basic syntax of JDQR is >> d = jdqr(A), where d is a vector with entries equal to five

largest eigenvalues of the matrix A. >> [X, J] = jdqr(A) returns the normalized eigenvectors

of A in columns of X and the Jordan form of A is given by the matrix J. The eigenvalues

are diagonal entries of J. It is also possible to visualize the Schur form of A with JDQR:

>> [X, J,Q, S] = jdqr(A). Q is n×5 orthonormal matrix and S is 5×5 upper triangular matrix.

The diagonal of S contains the eigenvalues of A and X = Q+Y , where Y is the eigenvectors of

the pair S : S Y = Y J. The other parts of the spectrum can also be calculated. This can be done

with the command line: >> d = jdqr(A, k, σ), where k represents the number of eigenvalues

and σ determines the part of the spectrum desired to compute. The exterior eigenvalues can

be computed with the special characters defined on Table 4.1. Moreover, some parameters of

the algorithm can also be changed very practically by using different options. These changes

are generally done to increase the efficiency of algorithm. There are two ways to change by

65

options: >> options = struct(′parametername‘,′ parametervalue‘) or

options.parametername = parametervalue. Then they are assigned to the code by

>> d = jdqr(A, options)

The parameters that can be changed by optional structure are given in Table 4.8. The parame-

Table 4.8: Parameters of JDQR

Parameter description default value

jmin minimum dimension of V k + 5
jmax maximum dimension of V jmin+k
maxit maximum number of matrix vector products 5000
tol convergence tolerance for 10−8

maxit maximum number of restarts of the 100
block-Lanczos method

v0 starting vector
disp provides information about the procedure 0
testspace defines the test subspace W. standard
LSolver linear solver GMRES
LS-MaxIt maximum iteration number carried in 5

linear solver
precond preconditioner identity matrix
Schur gives Schur decomposition no
Disp information about convergence history 0
AvoidStag precaution to prevent stagnation no

ter testspace determines the type of the Ritz values used during calculation. If it is assigned to

”standard”, standard Ritz values are chosen and if it is assigned to ”harmonic”, Harmonic Ritz

values are chosen. Interior eigenvalues are more accurately computed if testspace assigned to

harmonic. LSolver gives the opportunity to choose the linear solver used for correction Equa-

tion (refjacdav2). Linear solvers that can be used are FGMRES, CG, MINRES, SYMMLQ.

Among them, CG, MINRES, SYMMLQ requires positive definite preconditioners. The de-

fault value for disp is ”no”. But when it is changed to ”1” or ”yes”, the convergence history

is plotted and residual size at each step is displayed. Moreover if it is set to ”2”, approximate

eigenvalues are plotted at each iteration step. Sometimes, the angle between the search space

and recently computed eigenvectors may decrease. This means these new vectors are close to

the search space. After some iteration, this will lead to stagnation. The parameter Avoidstag

is designed to prevent this problem. If it is set to ”yes”, JDQR projects on whole space in

correction equation.

66

4.7 JDCG

The solver JDCG [52] implements the Jacobi-Davidson method with conjugate gradient al-

gorithm described in Section 3.6. The MATLAB algorithm can be found at

http : //homepages.ulb.ac.be/ ynotay/.

The basic syntax of JDCG is >> d = jdcg(A) where d is a 1 × 5 row vector consisting of

smallest eigenvalues of the matrix. >> [X,D] = jdcg(A) returns two matrices X and D where

X is the matrix with eigenvectors are columns and D is the diagonal matrix with eigenvalues

diagonal entries. It is also possible to change the other input parameters. The values of

parameters are changed with options >> options.parametername = parametervalue. These

changes are assigned to solver by the command line: >> [X,D] = jdcg(A, k, sigma, options)

where k represents the number of eigenvalues and sigma represents the scalar shift taken as a

lower bound for the smallest eigenvalue.

Table 4.9 shows the parameters with default values. The solver defines no preconditioner

Table 4.9: Parameters of JDCG

parameter description default value
tol tolerance 1e-8
jmin minimum dim. of the search subspace 7
jmax maximum dim of the search subspace 14
maxit maximum iteration number 5000
V0 starting vector ones
disp visualizes history 0
precond preconditioner No

internally. In other words, the preconditioner matrix must be defined by the user. When the

parameter disp is set to 1, the input parameters, residual size for each step are displayed with a

plot of convergence history. It is also possible to see the details of the computation procedure

directly by the command line: >> [X,D,History] = jdcg(A). The last argument ”history”

has 5 columns. First column is the index of the eigen pair, second column is the number of

completed JD iterations, third column is the total multiplications with the matrix A, fourth is

the residual and the last column keeps the information about approximations of the searched

eigenvalue.

67

4.8 SLEPc

SLEPc is a package developed for solving large scaled sparse eigenvalue problems. The name

stands for Scalable Library for Eigenvalue Problem Computation. It is built on PETSc(Portable,

Extensible Toolkit for Scientific Computing). Based on PETSc, SLEPc avoids software com-

plications such as matrix definitions. In other words, it is able to interoperate with existing

softwares and can handle different storage formats (depending on PETSc). The software is

written in C but a Fortran interface is also available. It can be used to solve the standard and

generalized eigenvalue problems both in complex and real arithmetic. In addition, some rou-

tines for singular value decomposition problems are also available [38]. SLEPc is designed to

deal with large sparse problems. Therefore its emphasis is on projection methods such as sub-

space iteration, Arnoldi, Lanczos and Krylov–Schur methods. Moreover, access to external

libraries is also possible. The software also gives the user the opportunity to apply different

spectral transformations. Some properties will be explained here and more information can be

found in [40, 37]. The software can be downloaded from http : //www.grycap.upv.es/slepc/.

Other documents and information for installing the package also can be found from this web

site.

SLEPc has two main objects EPS and ST. EPS stands for eigenvalue problem solver. It is

used to specify the problem and provides the access to eigen problem solvers. In addition,

it manages the modifications in default parameters such as the number of eigenvalues(nev)

or the value of tolerance. ST stands for spectral transformations. The package gives the

user the chance to apply the methods with or without spectral transformations (accelerations).

Different types of problems such as (generalized) Hermitian or (generalized) non Hermitian

matrices are supported. The default problem type is nonhermitian. If a Hermitian matrix is

used, this should be specified because the software exploits the advantages of symmetry while

applying the methods.

Available methods on SLEPc are power method with deflation, subspace iteration, Arnoldi

method with explicit restarts, Lanczos algorithm and Krylov-Schur method. Moreover ex-

ternal libraries such as LAPACK, ARPACK, TRLAN can also be used. The default method

is Krylov-Schur. All solvers are designed to find the largest eigenvalue. But it is possible to

change this option and find other exterior values or even interior eigenvalues. For determining

interior eigenvalues, the software has two different options: harmonic extraction and spectral

68

transformations. Harmonic extraction uses a target value κ around which the user wants to

find the eigenvalues. Spectral transformations is used for two reasons: to compute the inte-

rior eigenvalues or to accelerate the convergence. The available transformations are shift of

origin, spectrum folding, shift and invert and Cayley transformations. Shift of origin means

shifting the matrix with the given σ value. In spectrum folding, the matrix is shifted and then

its square is taken. Cayley transformations applies a shift and an anti shift to the problem.

The shift and the anti-shift are taken equal for Cayley transformation by default.

The methods are designed to find only one eigenvalue. Although it is possible to increase

this number, one should be careful while applying this option. Because changing nev affects

the dimension of the working subspace(ncv). The relation between these two values (nev

and ncv) are valid for all methods and ncv must equal to max{2nev,nev+15}. This applica-

tion is reasonable if small portions of spectrum are being searched. When large number of

eigenvalues are required, changing the ncv value with respect to the relation results becomes

meaningless. If this is done, then the program would have to store a large dimensional dense

matrix. This brings a lot of problems in terms of storage and a high computational cost. In

the latest version of SLEPc, a parameter, mpd, is introduced to solve this problem. The pa-

rameter mpd stands for maximum projected dimension and provides bounds for the size of

the problem [38]. But there is no specified relation between mpd and any other parameters.

The values for mpd should be assigned intuitively.

The errors are controlled by the residual, r = Ax̃ − λ̃x̃. For the Hermitian case, the 2-norm

of the residual is used as a bound for the eigenvalue problem. The default value for the

error estimate bound, tol, is 10e − 7. This bound is used to decide whether the approximate

eigenvalues are converged or not and it can be changed depending on the problem.

It was mentioned above that SLEPc has objects, EPS and ST, to make the necessary changes

on default values. These objects contain functions to apply the changes in the prescribed

commands. But it is also possible to apply the changes during run time from the command

line. Some example commands with descriptions for this type of calling sequence are given

below:

./ex4 -file matrix -eps nev 50 -eps ncv 100 -eps hermitian

-eps type lanczos -eps tol 10e − 5 -st type cayley -st shift 1

This command tells to the package to find 50 eigenvalues around 1 of the Hermitian matrix

69

with the tolerance 10e − 5 using the Lanczos method with Cayley transformation. The com-

mand at the beginning ./ex4 presents one of the examples in SLEPc. This example takes a

matrix from an exterior address and then finds its eigenvalues. When the matrix of interest is

already available, it is advantageous to use the following command:

./ex4 -file matrix -eps nev 40 -eps ncv 80 -eps hermitian

-eps type -eps krylovschur -eps harmonic -eps target 1

This command tells to the package to find 40 eigenvalues around 1 of the Hermitian matrix

by Krylov–Schur method using harmonic extraction.

./ex4 -file matrix -eps nev 5000 -eps mpd 450 -eps hermitian

-eps type -eps arnoldi -eps smallest magnitude

This tells to the package to find 5000 smallest eigenvalues of the hermitian matrix by Arnoldi

method. It should be noticed that the parameter mpd is used instead of ncv in this command.

The reason is that the number of requested eigenvalues is quite high.

4.9 ANAZASI

ANASAZI is a package within the Trilinos project, a parallel object-oriented software frame-

work containing many packages. Trilinos consists of different packages each of which are

designed to solve different numerical analysis problems. The latest version of software can

be downloaded from http : //trilinos.sandia.gov/download/trilinos − 10.2.html.

ANASAZI being a part of TRILINOS is designed to solve the generalized eigenvalue problem

Ax = λMx for both Hermitian and non Hermitian cases (by simply taking M = I, it can be

used to solve the eigenvalue problem Ax = λx). It implements the block extension of Krylov–

Schur method defined in [70], block Davidson method described in [55] and an implementa-

tion of LOBPCG as described in [41]. It is implemented in ANSI C++ language. The package

consists of 6 basic classes. Each class is dedicated to perform a specific job for computing

eigenvalues. For example, the solver class Eigenproblem provides to access to the compo-

nents of the problems such as matrices, vectors, eigenvalue approximations, preconditioners.

The other class Eigensolver is designed to keep the basic iterations of the implemented al-

gorithms. However, it does not include the intelligence part to determine where to stop the

70

iteration, what the eigenvalues of interest are, which output to send and to where or how to

orthogonalize the basis for subspaces [7]. Instead, there are four classes to perform these

tasks: StatusTest, SortManager, OrthoManager and OutputManager. This property provides

an advantage for users and developers to organize the problems in their desired prescribed

way. For instance, one can select the stopping criteria at runtime. More information about

ANASAZI can be found in [7, 59].

71

CHAPTER 5

NUMERICAL RESULTS

5.1 Performance of Eigensolvers

In this section, examples of complex networks are provided in order to illustrate the perfor-

mance of eigensolvers described in Chapter 4. The solvers are compared in terms of accuracy

and computing time. The eigensolvers SPEIG, AHBEIGS, IRBLEIGS, EIGIFP, LANEIG,

JDQR and JDCG are written in MATLAB whereas SLEPc is in C ++. The focus of this study

is on symmetric matrices but it should be kept in mind that the codes SPEIG, AHBEIGS,

JDQR and the library SLEPc can be applied to the unsymmetric matrices. In addition, the

solvers EIGIFP, JDQR and JDCG are developed and designed to handle problems with pre-

conditioning and they are quite effective when a good preconditioner is available [49, 52, 62].

However, we use them here without preconditioning. Moreover it has already been mentioned

in previous Chapter that parallel implementation is available in SLEPc but this option is not

used in this study.

All eigensolvers investigated in this study are designed to compute k interior or exterior eigen-

values of matrices where k is the number of desired eigenvalues specified by the user. Our

purpose in this study is to compute the whole spectrum, so we have assigned n, the size of the

matrix, as the value of k. However, some solvers can not compute the whole spectrum. For

instance, SPEIG is designed to compute at most n − 3 eigenvalues. Moreover, we have to ad-

just some certain parameters in order to compute the whole spectrum with solvers IRBLEIGS

and AHBEIGS. The maximum number of eigenvalues computed by them depends on the size

of the matrix and some parameters. With all the other solvers, we were able to compute the

whole spectrum with the default parameters.

72

5.1.1 Spectra of Paley Graphs

We will present now the numerical results about the spectra of normalized Laplacian matrices

of Paley graphs and some real networks. The Paley graphs are constructed by the matgraph

toolbox of MATLAB (available at http://www.ams.jhu.edu/ ers/matgraph/) and most real net-

works are taken from the Pajek group (http://www.cise.ufl.edu/research/sparse/matrices/). Dur-

ing the calculations we h used the version 2007a of MATLAB on Intel Core 2 Duo CPU with

2.66 GHz and 3.37 GB RAM, Windows XP operating system and Fedora Core 12.

For testing the accuracy of eigensolvers we have computed the normalized Laplacian matrix

of Paley graphs from Chapter 2. These matrices are dense in the sense that the number of

nonzero elements is about the half of the whole matrix. For a example, for a Paley graph

of size 109, the number of nonzero elements is 5995. The normalized Laplacian matrix of

Paley graphs have three eigenvalues computed by (2.10) (0 eigenvalue with multiplicity 1 and

two other eigenvalues with multiplicity (n−1)
2). In Figures 5.1–5.8, on the y-axis the absolute

values of errors between exact and approximate eigenvalues and on the x-axis the eigenvalue

numbers are given. The eigenvalues are numbered starting from the largest eigenvalue to the

smallest in all figures except for EIGIFP.

In Figures 5.1–5.8, the distribution of errors between exact and approximate eigenvalues of

Paley graphs of size n = 109 and n = 2089 are plotted. As mentioned above, we could

compute the whole spectrum with all solvers except SPEIG, AHBEIGS and IRBLEIGS. We

have computed n − 3 eigenvalues with SPEIG. For smaller matrix, we were able to compute

97 eigenvalues with AHBEIGS and IRBLEIGS with parameters nbls= 53 for AHBEIGS,

nbls= 51 for IRBLEIGS and blsz= 2 whereas for larger one, AHBEIGS and IRBLEIGS have

calculated 2070 eigenvalues with initial parameters nbls = 220 and blsz = 6.

The eigenvalues of the normalized Laplacian matrices of Paley graphs are computed by all

solvers with a high accuracy. The errors vary between 10−14 and 10−15. However, the distri-

butions of errors differ from solver to solver. Especially the block versions of the solvers have

different error distributions than the non–block versions (see Figures 5.3 and 5.4 for block

versions of algorithms).

The CPU times for calculating eigenvalues of normalized Laplacian matrices are given in

Table 5.1. With SLEPc, Krylov–Schur method, it took less than one minute to compute the

73

Table 5.1: CPU times of Packages in MATLAB

CPU Times in Seconds
n=109 n=2089

SPEIG 0.34 856.64
AHBEIGS 0.30 1309.94
IRBLEIGS 0.58 4765.94
LANEIG 0.36 290.89
EIGIFP 0.19 363.44
JDQR 1.09 6860.38
JDCG 0.22 -

whole spectrum for smaller Paley graph whereas it took 4416 seconds for larger matrix. For

smaller matrices the CPU times are quite close for all packages. But as the size of matrices

increase, the differences between the CPU times for solvers are much more visible (see Table

5.1).

0 10 20 30 40 50 60 70 80 90 100

10
−15.9

10
−15.8

10
−15.7

10
−15.6

10
−15.5

10
−15.4

10
−15.3

Eigenvalue Numbers

E
rr

o
rs

Paley Graph of size 109, Arnoldi, nev=100,ncv=200

0 10 20 30 40 50 60 70 80 90 100
10

−16

10
−15

10
−14

Eigenvalue Number

E
rr

o
r

Paley Graph of size 109, Krylov Schur, nev=109, mpd=100

Figure 5.1: Paley graph of size 109, left: SLEPc, Arnoldi method, right: SLEPc, Krylov–
Schur method

74

0 10 20 30 40 50 60 70 80 90 100
10

−16

10
−15

10
−14

10
−13

10
−12

Eigenvalue Number

E
rr

o
r

Paley Graph of size 109, Cayley Transformation, nev=109,mpd=50

10 20 30 40 50 60 70 80 90 100
10

−16

10
−15

10
−14

Eigenvalue number

E
r
r
o

r
s

Paley Graph of size 109, Harmonic Extraction, nev=109,mpd=100

Figure 5.2: Paley graph of size 109, left: SLEPc, Krylov–Schur method right with Cayley
transformation: SLEPc, Krylov–Schur method with harmonic extraction

10 20 30 40 50 60 70 80 90 100

10
−15.9

10
−15.8

10
−15.7

Eigenvalue Number

E
r
r
o

r

Paley Graph of size 109, IRA, k=106

10 20 30 40 50 60 70 80 90
10

−16

10
−15

10
−14

Eigenvalue Nmber

E
rr

o
r

Paley Graph of size 109, Augmented Block Arnoldi, k=97, nbls=53, blsz=2

Figure 5.3: Paley graph of size 109, left: SPEIG, right: AHBEIGS

75

10 20 30 40 50 60 70 80 90

10
−15.9

10
−15.7

10
−15.5

10
−15.3

10
−15.1

Eigenvalue Number

E
rr

o
r

Paley graph of size 109, Block Lanczos, k=97, nbls=51, blsz=2

0 10 20 30 40 50 60 70 80 90 100

10
−15.9

10
−15.8

10
−15.7

10
−15.6

10
−15.5

10
−15.4

Eigenvalue Number

E
rr

o
r

Paley Graph of size 109, Lanczos Partial Bidiagonalization, k=109

Figure 5.4: Paley graph of size 109, left: IRBLEIGS, right: LANEIG

0 10 20 30 40 50 60 70 80 90 100

10
−15.9

10
−15.8

10
−15.7

10
−15.6

10
−15.5

10
−15.4

Eigenvalue Numbers

E
r
r
o

r
s

Paley Graph of size 109, Inverse Free Preconditioned, k=109

0 20 40 60 80 100 120

10
−15.9

10
−15.8

10
−15.7

10
−15.6

10
−15.5

10
−15.4

10
−15.3

10
−15.2

Eigenvalue Number

E
rr

o
r

Paley Graph of size 109, Jacobi Davidson with Conjugate Gradient, k=109

Figure 5.5: Paley graph of size 109, left: EIGIFP, right: JDCG

76

0 10 20 30 40 50 60 70 80 90 100
10

−16

10
−15

10
−14

Eigenvalue Number

E
rr

o
rs

Paley Graph of size 109, Jacobi Davidson, k=109

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−60

10
−50

10
−40

10
−30

10
−20

10
−10

Eigenvalue Number

E
rr

o
rs

Paly Graph of siz 2089, Jacobi Davidson, k=2089

Figure 5.6: JDQR, left: Paley graph of size 109, right: Paley graph of size 2089

200 400 600 800 1000 1200 1400 1600 1800 2000
10

−16

10
−15

10
−14

Eigenvalue Number

E
rr

o
r

Paley Graph of size 2089, Krylov Schur, nev=2089,mpd=400

200 400 600 800 1000 1200 1400 1600 1800 2000
10

−16

10
−15

10
−14

Eigevalue Number

E
r
r
o

r
s

Paley graph of size 2089, IRA, k=2086

Figure 5.7: Paley graph of size 2089, left: SLEPc, Krylov–Schur method, right: SPEIG

77

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
−15.9

10
−15.8

10
−15.7

10
−15.6

10
−15.5

10
−15.4

10
−15.3

10
−15.2

Eigenvalue Number

E
r
r
o

r
s

Paley graph of size 2089, Lanczos Partial Bidiagonalization,k=2089

200 400 600 800 1000 1200 1400 1600 1800 2000

10
−15

10
−14

Eigenvalue Number

E
rr

o
r

Paley Graph of size 2089, Block Lanczos, k=2070, nbls=220, blsz=6

Figure 5.8: Paley graph of size 2089, left: LANEIG, right: IRBLEIGS

5.1.2 Spectra of Empirical Networks

In Figures 5.9–5.11, we have computed the eigenvalues of normalized Laplacian matrices of

protein protein interaction networks (PPI). First network represents the interactions of proteins

in the microorganism yeast of size 2361 and second one is the interactions in D. melanogaster

of size 6900. The first network is taken from Pajek group and the latter is downloaded from

Protein Protein Data Set (PPD) (http : //dip.doe − mbi.ucla.edu/dip/Download.cgi?S M =

2). The normalized Laplacian matrices of these networks are unstructured and highly sparse.

The density of nonzero elements of smaller network’s matrix is %0.2793 and larger networks’

is %0.1013.

Since the exact eigenvalues are not known, we have compared the solvers by relative residuals.

SLEPc internally calculates the relative residuals with respect to the following formulas:

rλ =
||Ax||2
||x||2

, if λ = 0 (5.1)

rλ =
||Ax − λx||2
||λx||2

, else (5.2)

where λ is the eigenvalue and x is the related eigenvector. In order to be consistent with the

results in SLEPc, we have also used Formula 5.2 for calculating errors for other eigensolvers.

78

Table 5.2: The CPU times

Krylov–Schur n=6900
without any transformation 6518 s
with Cayley transformation 4567 s
with Harmonic extraction 19459 s

For the smaller network of size 2361, we could compute 2350 eigenvalues with AHBEIGS

and IRBLEIGS and 2358 eigenvalues with SPEIG. On the other hand JDQR failed to compute

the whole spectrum. When k number of eigenvalues are required to compute, the package has

computed less than k eigenvalues. For instance, when k is assigned as 100, JDQR computed

only 33 eigenvalues. It was reported in [25, 42, 61] that JDQR are efficient for diagonally

dominant matrices. The normalized Laplacian matrices of Paley graphs are diagonally domi-

nant but those from PPI networks are not.

In Figures 5.9–5.11, the relative residuals are plotted for PPI networks of two different sizes.

In the figures, the y–axis represents the relative residuals and the x–axis represents the eigen-

value numbers in decreasing order from left to right except for EIGIFP. The residuals for

Krylov-Schur method has clusters around 10−8 and 10−16 for interior eigenvalues and they

fluctuate between these numbers for exterior eigenvalues. On the other hand, the relative

residuals for results computed by SPEIG and LANEIG are around 10−15 and by IRBLEIGS

have clusters around 10−15 and 10−10. The high peak in the relative errors of SPEIG, LANEIG

and IRBLEIGS are due to the 0 eigenvalue or eigenvalues very close to 0. They reflected as

peaks in the figures because these packages do not use the relative error formula for smaller

eigenvalues.

In Figure 5.11, the residual plots belong to the calculations by SLEPc-Krylov Schur method

with transformations applied to the larger matrix (of size 6900). The transformations are done

with Cayley method and harmonic extraction and around 0.9999. The CPU times are given

on Table 5.2.

The distribution of relative residuals in Figure 5.11 consists of two sets: exterior (eigenvalues

between 1-2500th and 4500-6900th arrays) and interior (eigenvalues between 2500th and

4500th arrays) eigenvalues. In this figure, we can see that interior eigenvalues are computed

more accurately (with errors around 10−15) than exterior eigenvalues (with errors around 10−8)

79

when the transformations are applied. All the other solvers failed to compute the whole

spectrum for this matrix.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Eigenvalue Numbers

R
e

s
id

u
a

l

Pajek Yeast Graph of size 2361, Speig, k=2358

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eigenvalue Number

R
e

s
id

u
a

l

Pajek Yeast PPI Network of size 2361, Krylov−Schur, nev=2361, mpd=400

Figure 5.9: Protein–Protein interaction network of yeast of size 2361, left: SPEIG, right:
SLEPc, Krylov–Schur

0 500 1000 1500 2000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Eigenvalue Number

R
e

s
id

u
a

l

Pajek Yeast PPI Network of size 2361, Lanczos with Partial Reorthogonalization,k=2361

0 500 1000 1500 2000
10

−15

10
−10

10
−5

10
0

10
5

10
10

Eigenvalue Number

R
e

s
id

u
a

l

Pajek Yeast PPI Network of size 2361, Block Lancozs,k=2300, nbls=395, blsz=6

Figure 5.10: Protein–Protein interaction network of yeast of size 2361, left: LANEIG, right:
IRBLEIGS

80

Table 5.3: mpd and the CPU times for Real Networks

Matrix size mpd Time
6027 600 3390 s
7343 1000 7015 s
13332 4000 47333s

1000 2000 3000 4000 5000 6000
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

Eigenvalue Number

R
e

s
id

u
a

l

Melongester PPI Network of size 6900, Krylov Schur with Harmonic Extraction around 0.9999

1000 2000 3000 4000 5000 6000
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

Eigenvalue Number
R

e
s
id

u
a

l

Melongester PPI Network of size 6900, Krylov−Schur with Cayley Transformation

Figure 5.11: Protein–Protein interaction network of melongester of size 6900, left:
SLEPc,Krylov–Schur with harmonic extraction around 0.9999, right: SLEPc,Krylov–Schur
Cayley transformation around 0.9999

We have also computed the eigenvalues of normalized Laplacian matrices of some real net-

works. The data is taken from the University of Florida Matrix Collection [26]. The first

data describes an Erdös collaboration network and of size 6027, second one is geometric

collaboration network and of size 7343 and the final one is a word network and of size 13332.

Figures 5.12 and 5.13 show the relative residual plots for SLEPc–Krylov Schur method.

On Table 5.3, the mpd values and CPU times for each matrix are given. The parameter

mpd(maximum projected dimension) restricts the dimension of the space that the matrix is

projected onto and if the value of this parameter is not big enough the number of iterations to

compute eigenvalues will be large. Other solvers failed to detect the whole spectrum also for

these matrices.

The residuals in Figure 5.12 left and right varies between 10−6 and 10−20. Especially, in 5.12

left, they are around 10−20 for smaller eigenvalues but increase up to 10−5 for some interior

eigenvalues. In Figure 5.13, the residuals vary between 100 and 10−20.

81

1000 2000 3000 4000 5000 6000 7000
10

−20

10
−15

10
−10

10
−5

Eigenvalue Number

R
e

s
id

u
a

l

Collaboration Network of size 7343, Krylov Schur, nev=7343, mpd=1000

2000 4000 6000 8000 10000 12000
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

Eigenvalue number

R
e

s
id

u
a

l

Reuters Network of size 13332, Krylov−Schur, nev=13332, mpd=4000

Figure 5.12: SLEPc,Krylov–Schur method, left: Collaboration network of size 7343, right:
Word network of size 13332

0 1000 2000 3000 4000 5000 6000
10

−20

10
−15

10
−10

10
−5

10
0

Eigenvalue Number

R
e

s
id

u
a

l

Erdos Network of size 6927, Krylov Schur, nev=6927, mpd=600

Figure 5.13: SLEPc,Krylov–Schur method, Erdös collaboration network of size 6027

5.2 Spectral Density Plots

In this section, we give the spectral density plots of the normalized Laplacian matrices of

networks from previous Section. It was mentioned in Chapter 2 that spectrum of this matrix

carries important information about the structural properties of network. We used the density

functions resulted by convolving the Dirac delta function, δ(λ, λk), with the Gaussian and the

Lorenz kernels [8]:

f (x) =

∫
g(x, λ)

∑
k

δ(λ, λk)dλ =
∑

k

g(x, λk) (5.3)

where g(x, λ) = 1√
2πσ

exp(− (x−λx)2

2σ2), the Gaussian kernel and g(x, λ) = 1
π

γ

(x−m)2+γ2 , the Lorenz

kernel. When the parameter values σ and γ are decreased, the finer details of the spectrum

can be seen more clearly.

82

In Figure 5.14, the spectral density plot of yeast PPI network of size 2361 is shown both with

Gaussian and Lorenz distributions. The PPI networks represent the interactions of proteins in

the organisms. The nodes are proteins and there is an edge between two nodes if they interact

with each other. In Figure 5.15, the spectral distribution of another PPI network of size 6900

is shown. The original network was of size 40028 with many unconnected components. Here

we investigated the largest connected component of the network.

The general pattern observed in Figures 5.14 and 5.15 are in correspondence with the results

reported in [9] about PPI networks. Two important features of distributions should be noticed

in these figures: the sharp peak around 1 and the symmetry with respect to 1. According to

the results in Section 2.2.2, this structure in distribution of eigenvalues indicates a process of

node duplications during the evolutionary process of network and this is a general structure

observed in PPI networks [8].

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03
Gaussian Kernel

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Lorenz Distrubution

Figure 5.14: The spectral distribution of a protein protein network in size 2361. First picture
is plotted with Gaussian kernel. Second picture is plotted with Lorenz distribution.

Figure 5.17, the eigenvalue distribution of collaboration in computational geometry network is

shown. Originally the network was weighted. The weights represents the number of common

papers between authors. However, in this study all weights are taken 1, so that the number

of each work between two authors are assumed to be same. In the Figure 5.17, the peak at 0

signals the presence of small eigenvalues. This implies that the network may consist of many

components which are weakly connected to each other. There are smaller peaks at 1 and 1.5

signalling a node and vertex duplications procedures in the evolution of network.

In Figure 5.16 the plot on the left is the eigenvalue distribution of collaboration network

constructed by Erdös. In this Figure, although there is a high peak around 1, its shape is

83

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03
Gaussian Kernel

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Lorenz Distribution

Figure 5.15: The spectral distribution in left belongs to a protein protein interaction network
of size 6900

0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Gaussian Kernel

0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Lorenz Distribution

Figure 5.16: The spectral distribution belongs to collaboration network by Erdös, of size 6027

different than the PPI networks. The figure is not symmetric around 1 so we can not expect

any bipartite structure and also it consists of a very large connected component.

Figure 5.18 the left plot is the eigenvalue distribution of a Reuters word network. The Reuters

terror news network is based on all stories released during 66 consecutive days by the news

agency Reuters concerning the September 11 attack on the U.S. The data set in Pajek’s format

is obtained from the CRA networks and produced by Steve Corman and Kevin Dooley at Ari-

zona State University. The vertices of a network are words (terms); there is an edge between

two words if and only if they appear in the same text unit (sentence). Originally the network

was weighted and the weights represent the frequency of the edge. But we have taken all

weights equal to 1.

84

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Gaussian Kernel

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Lorenz Distrubution

Figure 5.17: The spectral distribution belongs to a collaboration network in computational
geometry of size 7343

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025
Gaussian Kernel

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03
Lorenz Distrubution

Figure 5.18: The spectral distribution belongs to a word network of size 13332

5.3 Conclusions

In this thesis, the performance and accuracy of different sparse eigensolvers are compared for

computing the spectrum of the normalized Laplacian matrices of undirected graphs, which

arise in large empirical networks. Usually, the eigensolvers are designed to compute a few

eigenvalues of matrices but we have computed the whole spectrum by appropriate adjust-

ments of the parameters. The eigensolvers EIGIFP, LANEIG, JDQR and JDCG have calcu-

lated the whole spectrum without adjustments of parameters. On the other hand, for SPEIG,

AHBEIGS, IRBLEIGS and SLEPc some parameters must be adjusted.

The computational experiments showed that, the solvers behave similarly and have almost the

same performance and accuracy for Paley graphs and empirical networks of size 100 − 2000.

85

The CPU times of the solvers start to differ as the size of the normalized Laplacian matrices

became large. The eigensolvers SPEIG, LANEIG and the Krylov-Schur method of library

SLEPc required less computing time than the others. Moreover JDQR and JDCG failed to

compute the eigenvalues for large empirical networks. In addition, we could not compute the

whole spectrum with the eigen solvers SPEIG, AHBEIGS, IRBLEIGS, LANEIG, EIGIFP,

JDQR and JDCG for matrices of size larger than 3000 due to the memory limitations of

MATLAB. On the other hand, the eigensolvers of SLEPc worked without any problem for

larger matrices up to size 13000 and the numerical results were quite satisfactory in terms

of accuracy and computing time. The spectral density plots of protein protein networks,

collaboration networks were in correspondence with those in literature (especially in [8, 9,

10]).

In a future study, we aim to use the block Krylov-Schur and block Jacobi–Davidson algo-

rithms of the ANASAZI package and compare it with the eigensolvers of the SLEPc library.

In order to perform spectral analysis of very large networks, parallel implementations of these

packages should be used.

86

REFERENCES

[1] A. Maritan A. Vazquez, A. Flammini and A. Vespignani. Modeling of protein interac-
tion networks. ComPlexUs, 1:38–44, 2003.

[2] J. Baglama. Augmented block Householder Arnoldi method. Linear Algebra and its
Applications, 429:2315 – 2334, 2008.

[3] J. Baglama, D. Calvetti, and L. Reichel. Algorithm 827: irbleigs: a MATLAB program
for computing a few eigenpairs of a large sparse Hermitian matrix. ACM Trans. Math.
Software, 29:337–348, 2003.

[4] J. Baglama, D. Calvetti, and L. Reichel. IRBL: an implicitly restarted block-Lanczos
method for large-scale Hermitian eigenproblems. SIAM J. Sci. Comput., 24:1650–1677,
2003.

[5] J. Baglama, D. Calvetti, L. Reichel, and A. Ruttan. Computation of a few small eigen-
values of a large matrix with application to liquid crystal modeling. J. Comput. Phys.,
146:203–226, 1998.

[6] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the
Solution of Algebraic Eigenvalue Problems. SIAM, 2000.

[7] C.G. Baker, U.L. Hetmaniuk, R.B. Lehoucq, and H.K. Thornquist. Anasazi software for
the numerical solution of large-scale eigenvalue problems. ACM Trans. Math. Softw.,
36:1–23, 2009.

[8] A. Banerjee. The Spectrum of the Graph Laplacian as a Tool for Analyzing Structure
and Evolution of Networks. PhD thesis, Fakultät für Mathematik und Informatik der
Universität Leipzig, 2008.

[9] A. Banerjee and J. Jost. Spectral plots and the representation and interpretation of bio-
logical data. Theory in Biosciences, 126:15– 21, 2007.

[10] A. Banerjee and J. Jost. Laplacian spectrum and protein-protein
interaction networks. Technical report, 2008. Available at
http://www.citebase.org/abstract?id=oai:arXiv.org:0705.3373.

[11] A. Banerjee and J. Jost. On the spectrum of the normalized graph Laplacian. Linear
Algebra Appl., 428:3015–3022, 2008.

[12] A. Banerjee and J. Jost. Spectral plot properties:towards a qualitative classification of
networks. Networks and Heterogenous Media, 3:395–411, 2008.

[13] A. Banerjee and J. Jost. Graph spectra as a systematic tool in computational biology.
Discrete Appl. Math., 157:2425–2431, 2009.

87

[14] A. Banerjee and J. Jost. Spectral characterization of network structures and dynamics.
In N. Ganguly, A. Deutsch, and A. Mukherjee, editors, Dynamics On and Of Complex
Networks, pages 117–132. Birkhäuser Boston, 2009.

[15] A.L. Barabasi and R. Albert. Emergence of Scaling in Random Networks. Science,
286:509–512, 1999.

[16] A.L. Barabasi and Z.N. Oltvai. Network biology: understanding the cell’s functional
organization. Nature Reviews Genetics, 5:101–113, 2004.

[17] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang. Complex networks:
Structure and dynamics. Physics Reports, 424:175–308, 2006.

[18] B. Bollobas. Modern Graph Theory. Springer, 1998.

[19] U. Brandes and T. Erlebach. Network Analysis: Methodological Foundations (Lec-
ture Notes in Computer Science / Theoretical Computer Science and General Issues).
Springer, 2005.

[20] B.N. Parlett C.C. Paige and H.A. van der Vorst. Approximate solutions and eigenvalue
bounds from Krylov subspaces. Numerical Linear Algebra with Applications, 2:115–
133, 1995.

[21] F.R.K. Chung. Spectral Graph Theory (Cbms Regional Conference Series in Mathe-
matics). CBMS Regional Conference Series in Mathematics. American Mathematical
Society, 1997.

[22] F.R.K. Chung and L. Lu. Complex Graphs and Networks. CBMS Regional Conference
Series in Mathematics. American Mathematical Society, 2006.

[23] F.R.K. Chung, L. Lu, and V. Vu. Spectra of random graphs with given expected degrees.
Proc Natl Acad Sci U S A, 100:6313–6318, 2003.

[24] J.K. Cullum and R.A. Willoughby. Lanczos Algorithms for Large Symmetric Eigenvalue
Computations, Vol. 1. SIAM, 2002.

[25] E.R. Davidson. The iterative calculation of a few of the lowest eigenvalues and cor-
responding eigenvectors of large real symmetric matrices. Journal of Computational
Physics, 17:87–94, 1975.

[26] T.A. Davis. University of Florida sparse matrix collection.
http://www.cise.ufl.edu/research/sparse. Technical report, 1997.

[27] P. Erdös and A. Rényi. On random graphs, i. Publicationes Mathematicae (Debrecen),
6:290–297, 1959.

[28] P. Erdös and A. Renyi. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5:17–61, 1960.

[29] P. Erdös and A. Rényi. On the strength of connectedness of a random graph. Acta Math.
Acad. Sci., 12:261–267, 1961.

[30] D.R. Fokkema, G.L.G. Sleijpen, and H. Van der Vorst. Accelerated inexact newton
schemes for large systems of nonlinear equations. SIAM J. Sci. Comput., 19:657–674,
1998.

88

[31] Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices. Combinator-
ica, 1:233–241, 1981.

[32] Homer F.W. Implementation of the GMRES method using Householder transforma-
tions. SIAM Journal on Scientific and Statistical Computing, 9:152–163, 1988.

[33] C.D. Godsil and G. Royle. Algebraic Graph Theory. Springer, New York, 2001.

[34] K.I. Goh, B. Kahng, and D. Kim. Spectra and eigenvectors of scale-free networks.
Physical Review E, 64:051903, 2001.

[35] G.H. Golub and H.A. van der Vorst. Eigenvalue computation in the 20th century. J.
Comput. Appl. Math., 123:35–65, 2000.

[36] G.H. Golub and Q. Ye. An inverse free preconditioned Krylov subspace method for
symmetric generalized eigenvalue problems. SIAM J. Sci. Comput., 24:312–334, 2002.

[37] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: Scalable library for eigenvalue prob-
lem computations. Lecture Notes in Computer Science, 2565:377–391, 2003.

[38] V. Hernandez, J.E. Roman, E. Romero, A. Tomas, and V. Vidal. SLEPc Users
Manual. Technical Report DSIC-II/24/02 - Revision 3.0.0, D. Sistemas In-
formáticos y Computación, Universidad Politécnica de Valencia, 2009. Available at
http://www.grycap.upv.es/slepc.

[39] V. Hernandez, J.E. Roman, A. Tomas, and V. Vidal. Krylov–Schur method in slepc.
Technical Report STR-7, Universidad Politécnica de Valencia, 2007.

[40] V. Hernandez, J.E. Roman, A. Tomas, and V. Vidal. A survey of software for sparse
eigenvalue problems. Technical Report STR-6, Universidad Politécnica de Valencia,
2007. Available at http://www.grycap.upv.es/slepc.

[41] U. Hetmaniuk and R. Lehoucq. Basis selection in LOBPCG. J. Comput. Phys.,
218:324–332, 2006.

[42] C.G.J. Jacobi. Über eine leichtes verfahren, die in der Theorie der säcularstörungen
vorkommenden Gleichungen numerisch aufzulösen. Journal Reine Angew. Math, pages
51–94, 1846.

[43] Y. Jay and L.G. Jonathan. Handbook of Graph Theory (Discrete Mathematics and Its
Applications). CRC, 2003.

[44] J. Jost and M.P. Joy. Spectral properties and synchronization in coupled map lattices.
Rev. E, 65:16–21, 2001.

[45] D. Kressner. Numerical Methods for General and Structured Eigenvalue Problems.
Springer, 2005.

[46] R.M. Larsen. Lanczos bidiagonalization with partial reorthogonalization. Technical
report, 1998.

[47] R.B. Lehoucq and D.C. Sorensen. Deflation techniques for an implicitly restarted
Arnoldi iteration. SIAM J. Matrix Anal. Appl, 17:789–821, 1996.

[48] R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, 1998.

89

[49] J.H. Money and Q. Ye. Algorithm 845: EIGIFP: a MATLAB program for solving large
symmetric generalized eigenvalue problems. ACM Trans. Math. Softw., 31:270–279,
2005.

[50] R.B. Morgan. On restarting the Arnoldi method for large nonsymmetric eigenvalue
problems. Math. Comput., 65:1213–1230, 1996.

[51] M.E.J. Newman. The structure and function of complex networks. SIAM Review,
45:167–256, 2003.

[52] Y. Notay. Combination of Jacobi-Davidson and conjugate gradients for the partial sym-
metric eigenproblem. Numerical Linear Algebra with Applications, 9:1070–5325, 2002.

[53] C.C. Paige. Error analysis of the Lanczos algorithms for tridiagonalizing a symmetric
matrix. J. Inst. Math. Appl., 18:341–349, 1976.

[54] C.C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric
eigenproblem. Linear Algebra Appl, 34:235–258, 1980.

[55] P.Arbenz, U.L.Hetmaniuk, R.B.Lehoucq, and R.S.Tuminaro. A comparison of eigen-
solvers for large-scale 3d modal analysis using amg-preconditioned iterative methods.
Int. J. Numer. Meth. Engng, 64:204–236, 2005.

[56] B.N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, 1980.

[57] R.J. Radke. A Matlab Implementation of the Implicitly Restarted Arnoldi Method for
Solving Large Scale Eigenvalue Problems. PhD thesis, Rice University, 1996.

[58] J.E. Roman. Practical implementation of harmoic Krylov Schur. Techni-
cal Report STR-9, Universidad Politécnica de Valencia, 2009. Available at
http://www.grycap.upv.es/slepc.

[59] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, second edition, 2003.

[60] H.D. Simon. The Lanczos algorithm with partial reorthogonalization. Mathematics of
Computation, 42:115–142, 1984.

[61] G.L.G. Sleijpen and H. Van Der Vorst. The Jacobi-Davidson method for eigenvalue
problems and its relation with accelerated inexact Newton schemes. In in Iterative Meth-
ods in Linear Algebra II, pages 17–20. Publishing Co. Inc, 1996.

[62] G.L.G. Sleijpen and H.A. Van Der Vorst. A Jacobi-Davidson iteration method for linear
eigenvalue problems. SIAM Rev, 42:267–293, 2000.

[63] G.L.G. Sleijpen, H.A. Van Der Vorst, and D.R. Fokkema. Jacobi-Davidson style QR
and QZ algorithms for the reduction of matrix pencils. SIAM J.Sci.Comput, 20:94–125,
1998.

[64] R. Solomonoff and A. Rapoport. Connectivity of random nets. Bulletin of Mathematical
Biophysics, 13:107–117, 1951.

[65] D.C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method.
SIAM J. Matrix Anal. Appl., 13:357–385, 1992.

90

[66] D.C. Sorensen. Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue
calculations. In Parallel Numerical Algorithms(Hampton,VA,1994), volume 4, pages
119–165. Kluwer, 1997.

[67] D.C. Sorensen. Numerical methods for large eigenvalue problems. Acta Numerica,
11:519–584, 2002.

[68] G.W. Stewart. Matrix Algorithms, Vol I. SIAM, 1998.

[69] G.W. Stewart. Matrix Algorithms, Vol II. SIAM, 2001.

[70] G.W. Stewart. A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix
Anal. Appl., 24:599–601, 2002.

[71] A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Global protein function
prediction in protein-protein interaction networks. ArXiv Condensed Matter e-prints,
2003.

[72] S. Vishveshwara, K.V. Brinda, and N. Kannan. Protein structure: Insights from graph
theory. Journal of Theoretical Computational Chemistry, 1:187–211, 2002.

[73] C. von Mering, R. Krause, B. Snel, M. Cornell, S.G. Oliver, S. Fields, and P. Bork.
Comparative assessment of large-scale data sets of protein-protein interactions. Nature,
417:399–403, 2002.

[74] D.S. Watkins. Fundamentals of Matrix Computations. Wiley, second edition, 2002.

[75] D.S. Watkins. The Matrix Eigenvalue Problem. SIAM, 2007.

[76] D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,
393:440–442, 1998.

[77] E.P. Wigner. Characteristic vectors of bordered matrices with infinite dimensions. The
Annals of Mathematics, 62:548–564, 1955.

[78] K. Wu and H. Simon. Thick-restart Lanczos method for large symmetric eigenvalue
problems. SIAM J. Matrix Anal. Appl., 22:602–616, 2000.

[79] Y. Zhou and Y. Saad. Block Krylov-Schur method for large symmetric eigenvalue prob-
lems. Numerical Algorithms, 47:341–359, 2008.

91

