

MODELS OF SYNCHRONOUS PRODUCTION LINES

WITH NO INTERMEDIATE BUFFERS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HANDE ÇET�NAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

JULY 2010

ii

Approval of the thesis:

MODELS OF SYNCHRONOUS PRODUCTION LINES
WITH NO INTERMEDIATE BUFFERS

submitted by HANDE ÇET�NAY in partial fulfillment of the requirements for the
degree of Master of Science in Industrial Engineering Department, Middle East
Technical University by,

Prof. Dr. Canan Özgen | |
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Nur Evin Özdemirel | |
Head of Department, Industrial Engineering

Prof. Dr. Sinan Kayalıgil | |
Supervisor, Industrial Engineering Dept., METU

Prof. Dr. Sencer Yeralan | |
Co-Supervisor, Agricultural and Biological Engineering Dept., University of
Florida, USA

Examining Committee Members:

Assist. Prof. Dr. Pelin Bayındır | |
Industrial Engineering Dept., METU

Prof. Dr. Sinan Kayalıgil | |
Industrial Engineering Dept., METU

Prof. Dr. Sencer Yeralan | |
Agricultural and Biological Engineering Dept., University of Florida, USA

Assist. Prof. Dr. �smail Serdar Bakal | |
Industrial Engineering Dept., METU

Prof. Dr. Ülkü Gürler | |
Industrial Engineering Dept., Bilkent University

 Date: | 21/07/2010 |

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

 Name, Last name : Hande, Çetinay

 Signature :

iv

ABSTRACT

MODELS OF SYNCHRONOUS PRODUCTION LINES
WITH NO INTERMEDIATE BUFFERS

Çetinay, Hande

M.Sc., Department of Industrial Engineering

Supervisor: Prof. Dr. Sinan Kayalıgil

Co-Supervisor: Prof. Dr. Sencer Yeralan

June 2010, 91 pages

Production lines with unreliable machines have received a great amount of attention

in the literature. Especially, two-station systems have mostly been studied because

such systems are easier to handle when compared to the longer lines. In literature,

longer lines are usually evaluated by a decomposition algorithm, whereby the long

line is partitioned into chunks of two-station lines. Decomposition algorithms require

intermediate buffer storages of capacity at least two or three. The trends in modern

manufacturing practices, on the other hand, such as the Toyota Production System,

dictate that intermediate storages be eliminated. Our work studies multi-station lines

with no intermediate storage. We develop software to automate the generation of

transition probability matrices to allow the analysis of system behavior.

The algorithm allows the use of software packages to handle computations and to

solve for exact solutions. Long-run behavior is obtained via the algorithm developed

in the computational environment MATLAB. The purpose is to analyze the system

performance measures such as starvation and blockage times of stations, production

rate and work-in-process.

v

In addition, the production rate and the work-in-process measures over failure and

repair probabilities are curve-fit to establish simple and useful empirical formulas for

lines consisting three, four and five identical stations. Numerical analyses show that

the proposed algorithm is effective for exact solutions and the suggested formulas are

valid for approximate solutions.

Keywords: Multi-Station Production Lines, Discrete-Time Markov Chains,

Unreliable Machines, Exact Solutions, No Intermediate Buffers

vi

ÖZ

ARA STOKSUZ E�ZAMANLI ÜRET�M HATTI MODELLER�

Çetinay, Hande

Yüksek Lisans, Endüstri Mühendisli�i Bölümü

Tez Yöneticisi: Prof. Dr. Sinan Kayalıgil

Ortak Tez Yöneticisi: Prof. Dr. Sencer Yeralan

Temmuz 2010, 91 sayfa

Bozulabilir makinalardan olu�an üretim hatları literatürde geni� yer bulmu�tur.

Özellikle iki makinalı hatlar, model ve analiz kolaylı�ı nedeniyle çok makinalı

hatlara kıyasla daha çok çalı�ılmı�tır. Literatürde, uzun hatlar, ayrı�tırma methodu

ile, iki makinalı hatlara bölünerek incelenmi�tir. Ayrı�tırma methodu, makinalar arası

en az iki veya üç ara stok ko�ulu getirmektedir. Fakat, Toyota üretim sistemi gibi

günümüz modern üretim hatları, makinalar arası ara stokları kaldırmak istemektedir.

Çalı�mamız, çok makinalı ve ara stoksuz üretim sistemlerini konu almaktadır. Sistem

davranı� analizleri için, sistem karakteristiklerini belirleyen, sistem geçi� olasılıkları

matrisini otomatik olarak yaratan algoritmalar geli�tirilmi�tir.

Geli�tirilen algoritmalar, yazılım paketleri kullanıma uygun ve kesin sonuç veren

çalı�malardır. MATLAB yazılım ortamında geli�tirilen program sonucu dura�an

durum olasılıkları hesaplanmı�tır. Burada amaç, makinaların bo� kalma ve tıkanma

oranları, sistemin üretim hızı ve hattaki parça sayısı gibi performans ölçütlerini

analiz etmektir. Ek olarak, üç, dört ve be� özde� makinalı sistemler için, dura�an

durum olasılıkları hesaplanarak sistem parametreleri ve sistem performansı

arasındaki ili�ki incelenmi�tir.

vii

Üretim hızı ile üretimdeki parça sayısı kriterleri icin data analizi yapılarak geçerli

formüller elde edilmi�tir. Analiz sonuçları, geli�tirilen algoritmaların kesin sonuçlar

için ve de önerilen formüllerin ise yakla�ık sonuçlar için geçerli ve kullanılabilir

oldu�unu göstermi�tir.

Anahtar kelimeler: Çok �stasyonlu Üretim Hatları, Kesikli Zaman Markov Modeli,

Bozulabilir Makinalar, Kesin Çözümler, Sıfır Ara Stok

viii

To My Family, and

To my Robert…

ix

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to all people at Industrial

Engineering Department, METU, with whom I spent my years of undergraduate and

graduate studies.

I would like to thank Prof. Dr. Sencer Yeralan, who I met in sports center, and

thereafter with his great guidance and support both academically and personally, I

completed my graduate studies.

I am grateful to Prof. Dr. Sinan Kayalıgil due to his guidance, time and advices for

the research. Moreover, I would like to thank jury members for their valuable

contributions.

Special thanks to Robert De Korte, with his day and night support in every part of

my life including my master thesis.

In addition to my genius sister, Hale Çetinay, who initiated the logic with her

brilliant advices, I would like to express my enduring love to my parents, Nurhan and

�brahim Çetinay, who are always supportive, loving and caring to me in every

possible way in life.

Finally, I would like to thank TÜB�TAK for providing a qualified and reliable

environment for my graduate study with their funding.

x

TABLE OF CONTENTS

ABSTRACT..iv

ÖZ..vi

ACKNOWLEDGEMENTS...ix

TABLE OF CONTENTS..x

LIST OF TABLES..xiii

LIST OF FIGURES...xv

CHAPTERS

1.INTRODUCTION...1

1.1 System Description .. 1

1.2 Related Literature .. 3

1.3 Contribution of This Study .. 5

1.4 Outline ... 7

2.THE MARKOV CHAIN MODEL ... 8

2.1 System Parameters .. 8

2.2 Station States ... 9

2.3 Model Assumptions ... 11

3.THE CARDINALITY OF SYSTEM STATES .. 12

3.1 Backward Induction Algorithm ... 12

3.2 Explanatory Computations .. 13

3.2.1 Two-Station Production Line ... 13

3.2.2 Three-Station Production Line ... 13

3.2.3 Four-Station Production Line ... 14

3.2.4 Five-Station Production Line ... 14

xi

3.3 The Total Number of States .. 15

4.TRANSITION PROBABILITY MATRIX GENERATION 18

4.1 Generation of Single Step Transitions ... 19

4.2 The Principles .. 20

 4.2.1 Preliminary Notation ... 20

4.2.2 The Methodolgy ... 21

4.3 The Algorithms .. 25

4.4 Tree Expansion Method .. 25

4.4.1 The Structure of the Tree Expansion Algorithm 27

4.4.2 The Pseudo Code of the Tree Expansion Algorithm 29

4.4.3 Examples of the Tree Expansion Algorithm .. 31

4.5 Tabular Method ... 34

4.5.1 The Pseudo Code of the Tabular Algorithm .. 36

4.5.2 Examples of the Tabular Algorithm ... 39

4.6 Generation of the Transition Probabilities .. 41

4.7 Verification of the Results ... 43

5.SYSTEM PERFORMANCE MEASURES .. 44

5.1 Starvation and Blockage Probability ... 44

5.2 Production Rate ... 45

5.3 Work-In-Process .. 45

6.ANALYSIS OF THE SYSTEM BEHAVIOR .. 47

6.1 Computing the Steady-State Probabilities ... 47

6.2 Analysis of the Results .. 47

6.2.1 Analysis of Production Rate .. 48

6.2.2 Analysis of Work-In-Process ... 49

xii

7.NUMERICAL ANALYSIS .. 53

7.1 Analysis of Production Lines with Identical Machines 53

7.2 Rational Equation Parameterization for the Production Rate 53

7.2.1 Rational Function Fit Optimization Procedure 55

7.2.2 Error Analysis for the Production Rate Function 56

7.2.3 Rational Equation Parameterization for the Work-In-Process 59

7.2.4 Error Analysis for the Work-In-Process Function 60

7.2.5 Summary of the Rational-Fit Forecasting .. 62

7.3 Analysis of Balanced Lines ... 62

7.4 Analysis of Production Lines with Different Machines 64

7.5 Further Considerations .. 68

7.5.1 Order of Stations .. 68

7.5.2 Mean First Passage Times .. 69

8.CONCLUSIONS ... 72

8.1 Concluding Remarks ... 72

8.2 Future Work .. 73

REFERENCES...74

APPENDICES

A. MATLAB CODE FOR THE TABULAR METHOD....................................76

B. SAMPLE OF EXACT ANALYSIS RESULTS...84

C. MATLAB CODE FOR CURVE-FITTING AND 3D-PLOTTING...............85

 D. CALCULATIONS FOR MAPE AND MSEP..90

 E. MATLAB CODE FOR MEAN FIRST PASSAGE TIMES...........................91

xiii

LIST OF TABLES

TABLES

Table 1.1 Literature Survey ... 4

Table 3.1 System States of the Two-Station Production Line 17

Table 4.1 Dimensions of the Transition Probability Matrices 18

Table 4.2 Transitions from Xj = [U, D, S] ... 20

Table 4.3 Working States from Xj (i) � {U, B, DB} ... 22

Table 4.4 Non-Working States from Xj (i) � {U, DB} ... 23

Table 4.5 Working States from Xj (i) � {D, S} ... 23

Table 4.6 Non-Working States from Xj (i) � {D} ... 23

Table 4.7 From Xj (i) � {U, B, DB} .. 24

Table 4.8 From Xj (2) � {D, S} ... 24

Table 4.9 Transitions from X1 .. 32

Table 4.10 Transitions from Xj = [B B, D] .. 32

Table 4.11 Transitions from Xj = [D, B, D] ... 33

Table 4.12 Transition probabilities .. 42

Table 4.13 Transition Probabilities from Xj = [U, S, D, S] 43

Table 7.1 Constants for the Production Rate Function .. 55

Table 7.2 Production Rate Error Statistics ... 57

Table 7.3 Constants for the Work-In-Process Function ... 60

Table 7.4 Work-In-Process Error Statistics ... 61

Table 7.5 Four-Station Balanced Line ... 63

xiv

Table 7.6 Lower and Upper Bounds for the Balanced Line 64

Table 7.7 Four-Station Lines with Different Machines ... 65

Table 7.8 Stand-Alone Availability of the Stations (%) .. 66

Table 7.9 Lower (LB) and Upper (UB) Bounds .. 66

Table 7.10 Balanced Lines with Average Availability .. 67

Table 7.11 Limits and Average Approximation .. 68

Table 7.12 Different Order of Machines .. 68

Table 7.13 System States ... 70

Table 7.14 The Transition Probability Matrix ... 70

Table 7.15 Steady State Probabilities .. 70

Table 7.16 Mean First Passage Times ... 71

Table A.1 Sample Results .. 84

xv

LIST OF FIGURES

FIGURES

Figure 1.1 N-Station Production Line .. 2

Figure 2.1 Station States .. 10

Figure 3.1 Two-Station Line .. 16

Figure 4.1 Recursive Manner of Generating Station States 21

Figure 4.2 Rooted Tree Structure of the Tree Expansion Algorithm 27

Figure 4.3 Parent-Child Relations in a Rooted Tree .. 28

Figure 4.4 Generation from X1 = [U, U, U] .. 31

Figure 4.5 Generation from Xj = [B, B, D] .. 33

Figure 4.6 Generation from Xj = [D, B, D] ... 34

Figure 4.7 Column-wise Generations by the Tabular Method 40

Figure 4.8 Transition matrix from Xj = [U, U, U] ... 40

Figure 4.9 Transition matrix from Xj = [D, D, S] .. 41

Figure 4.10 Generation from Xj = [U, S, D, S] .. 42

Figure 6.1 Production Rate versus Repair Probability ... 48

Figure 6.2 Expected Production Rates ... 49

Figure 6.3 Work-In-Process versus Repair Probability ... 50

Figure 6.4 Expected Work-In-Process ... 51

Figure 6.5 Work-In-Process per Station .. 51

Figure 6.6 Expected Occupancy versus Repair Probability 52

Figure 7.1 Production Rate versus q and r ... 54

xvi

Figure 7.2 Error Plot for the Production Rate Function ... 57

Figure 7.3 Generation of Data Sample ... 58

Figure 7.4 Work-In-Process versus q and r ... 59

Figure 7.5 Error Plot for the Work-In-Process Function ... 61

1

CHAPTER 1

 INTRODUCTION

1.1 System Description

The main reason for line inefficiency is the unreliable nature of stations. The

starvation and blocking conditions on stations are idle times, which are defined and

studied by many researched such as Muth and Yeralan (1981). When one machine in

the flow fails then the rest of the line is prone to fail, especially if there is no

intermediate buffer present. A failure may cause the preceding machine to be

blocked, while at the same time, the downstream machines may be starved because

there is no upstream input available. Analyzing the system behavior in manufacturing

environments is crucial for production efficiency. Furthermore, the production rate

and work-in-process are the main performance measures of the production lines.

A part of manufacturing systems that employ long lines typically contain several

automated workstations tightly coupled without intermediate buffers. This is the case

for many mass production plants like in the automobile manufacturing, where three

to five assembly stations are combined into workstations.

The common approach to model tightly coupled lines is to consider each workstation

as an individual machine. The characteristics of these composite machines need to be

derived from the characteristics of the individual stations that comprise the

workstation. This study evolves with the purpose of developing the composite

workstation characteristics from the individual station characteristics. Note that the

composite workstation will have the same processing time as the other stations in the

line.

2

Figure 1.1 N-Station Production Line

The system under study includes a linear network of machines without intermediate

buffer, as illustrated in Figure 1.1. Work pieces enter the system starting with station

N. The system assumes infinite supply of raw materials; in other words, station N is

never starved. An operation is performed on work piece by a single machine at each

station. The system assumes infinite storage possibilities for the finished products;

henceforth, station 1 is never blocked.

The aim is to foresee the system behavior of the production lines with no

intermediate buffers. Regarding performance measures, the long run behavior of the

system is important to describe the efficiency and effectiveness of the production

lines. In addition, it is also important to gain insights about the production lines when

the total number of stations in the line increased. This study enables developing

transition probability matrices for multi-station production lines in order to describe

the system behavior. Steady state probabilities are calculated from transition

probability matrices are used to identify various performance measures. The main

performance measures for the production lines are defined as; starvation and

blockage probabilities, expected work-in-process (WIP), and expected production

rate of the system. Particularly, it is essential to analyze the expected production rate

and expected work-in-process as a function of line characteristics because these

measures are the most valid and effective system behavior indicators.

3

1.2 Related Literature

Production lines and queuing systems have received much attention in the literature.

To begin with; production rate of lines with and without intermediate buffer has been

studied starting from the mid-fifties. The studies of Muth (1979) and Schick and

Gershwin (1978) among many others are important studies conducted for modeling

production lines.

In the literature, analytical models for multi-station production lines, which are the

focus of this research, are classified in two main categories; modeling by continuous-

time and discrete-time Markov models. Continuous-time models are favored in the

process industry where no identification of the individual units exists. On the other

hand, discrete models treat individual parts as successive states of the line, which is

also the case in this study. Gershwin and Schick (1983) is an example of discrete

modeling. Studies conducted by Yeralan et al. (1986), Yeralan and Tan (1997)

provide examples of continuous-time models.

Moreover, operation-dependent failures have been studied in many studies, that is,

machines in line can only fail when they are processing a work piece. Idle machines

are not subject to failure as assumed by Gershwin (1987). Some studies also

concentrated on time-dependent failures of machines that machines are subject to

failure only due to aging such as Tan (1997).

A great deal of interest focused on the stochastic modeling of production systems.

Most of the studies are intended to determine the performance measures, mainly the

expected production rate and the expected buffer of the manufacturing lines.

Recently, closed loop production lines with finite number of pallets and multiple

failure modes for unreliable stations have received attention. Examples are Maggi et

al. (2009) and Tolio et al. (2002). Table 1.1 summarizes the literature survey that was

conducted with regard to the modeling of production lines. Mainly discrete-time

models are the focus in the available literature.

4

T
a

b
le

 1
.1

 L
it

er
at

u
re

 S
u

rv
ey

M
et

h
o

d
 o

f

A
n

a
ly

si
s

A
p

p
ro

x
im

at
e

D
ec

o
m

p
o

si
ti

o
n

E
x

ac
t

S
o

lu
ti

o
n

C
lo

se
d

 f
o

rm

fo
rm

u
la

A
p

p
ro

x
im

at
e

D
ec

o
m

p
o

si
ti

o
n

B
y

 s
o
lv

in
g

li
n

ea
r

eq
u

at
io

n
s

A
p

p
ro

x
im

at
io

n

A
d

d
it

io
n

a
l

P
ro

p
er

ty

M
u

lt
ip

le

F
ai

lu
re

 M
o
d

es
,

C
lo

se
d

 L
o

o
p

M
u

lt
ip

le

F
ai

lu
re

 M
o
d

es

C
o

n
ti

n
u

o
u

s-

p
ar

am
et

er
s

2
 s

ta
te

s
fo

r

st
at

io
n

s

2
 s

ta
te

s
fo

r

st
at

io
n

s

4
 s

ta
te

s
fo

r

st
at

io
n

s

F
a

il
u

re

a
n

d
 R

ep
a

ir

G
eo

m
et

ri
c

G
eo

m
et

ri
c

E
x

p
o

n
en

ti
al

G
eo

m
et

ri
c

G
eo

m
et

ri
c

G
eo

m
et

ri
c

L
in

e

P
ro

p
er

ty

S
y

n
ch

ro
n

o
u

s

S
y

n
ch

ro
n

o
u

s

H
o

m
o

g
en

o
u

s

H
et

er
o

g
en

eo
u

s

S
y

n
ch

ro
n

o
u

s

S
y

n
ch

ro
n

o
u

s

H
o

m
o

g
en

o
u

s

B
al

an
ce

d
 l

in
e

B
u

ff
er

S
iz

e

F
ix

ed

n
u

m
b

er
 o

f

p
al

le
ts

N
 ≥

 3

0

F
in

it
e

N

N
≤

1
5

F
in

it
e

N

N
u

m
b

er
 o

f

S
ta

ti
o

n
s

3
 s

ta
ti

o
n

(2
 s

ta
ti

o
n

su
b

sy
st

em
s)

2
 s

ta
ti

o
n

M
u

lt
i-

st
at

io
n

M
u

lt
i-

st
at

io
n

(2
 s

ta
ti

o
n

su
b

sy
st

em
s)

2
 s

ta
ti

o
n

3
 s

ta
ti

o
n

2
 s

ta
ti

o
n

M
o

d
el

D
is

cr
et

e-

ti
m

e

D
is

cr
et

e-

ti
m

e

D
is

cr
et

e-

ti
m

e

D
is

cr
et

e-

ti
m

e

D
is

cr
et

e-

ti
m

e

D
is

cr
et

e-

ti
m

e

M
ag

g
i

et
 a

l.

(2
0

0
9

)

T
o

li
o

 e
t

a
l.

(2
0

0
2

)

T
an

 (
1

9
9

7
)

G
er

sh
w

in

(1
9

8
7

)

G
er

sh
w

in
 a

n
d

S
ch

ic
k

 (
1

9
8

3
)

M
u

th
 a

n
d

Y
er

al
an

 (
1

9
8

1
)

5

All the mentioned studies except Tan (1997) focused on operation-dependent

failures, which is also the case in this study. To begin with, systems containing two

stations have received most attention as they are easy to model and analyze

compared to the longer lines. For longer production lines, the exact analytical

evaluation brings conceptual and computational model complexity. As a result,

Gershwin (1987) introduced the decomposition method to estimate the system

behavior of multi-stations. Thereafter, many studies have concentrated on

decomposition approximations for multi-station production lines. The decomposition

method decomposes the system into several two-station representative parts that are

examined independently and combined somehow to represent the whole system.

It is necessary to point out that the complexity is reduced by decreasing the number

of states for stations in the model. Studies by Gershwin and Schick (1983) and

Gershwin (1987) defined mainly two station states, namely operational and non-

operational machines at stations. Yet, idle conditions of the machines, namely

starvation and blockage, are also important to define and analyze the model.

Exact studies are relatively rare compared to the approximation studies in the

literature. Exact studies are restricted with two-station or three-station production

lines. Decomposition approximations, on the other hand, allow evaluation of longer

lines, yet they typically require intermediate buffers of a certain capacity. In

summary, the context of this study brings a novelty for modeling production lines

with no intermediate buffers.

1.3 Contribution of This Study

Production lines with unreliable machines have received considerable attention in the

literature. Especially two-station systems are most commonly studied, since these

systems are easier to handle and analyze. The complexity with multi-station lines is

that, with an increasing station number, the state space of the system has to be

substantially expended. Hence, model handling and computation becomes difficult.

6

Recent research on multi-station lines with a finite buffer has focused on the

decomposition approach to estimate the system behavior. In the approximation

approaches, long line systems are partitioned into two-station sub-lines that when

they are connected, represent the whole system. Such approaches require

intermediate buffer storages of capacities at least two or three and the states of

stations are classified into two, namely being operational and non-operational

stations. Those restrictions prevent irregularities in the transition probability matrix

and allow easy manipulation and solution of the steady-state solutions.

The trend in modern manufacturing practices, on the other hand, such as performed

by the Toyota Production System (TPS), is to eliminate intermediate storages

between stations as much as possible. Different from approximation methods, this

study, based on the configuration of an automotive factory model, develops an

efficient algorithm to analyze the exact system behavior of multi-station lines

without intermediate buffer through generation of automated transition probability

matrix and solution of linear steady-state equations.

With the proposed methodology, exact solutions are available for lines having more

than two machines. Different from the past studies, our model defines five different

station states considering the blockage and starvation of stations due to machine

interference as a result of unreliable machines in the production line. In this research,

discrete-time Markov chains are used to explore the system characteristics.

Furthermore, an algorithm is introduced to efficiently generate the transition

probability matrices for exact computations.

The algorithm allows the use of software packages to handle computations and

compute exact solutions of such linear systems. The long-run behavior of the system

is obtained via an algorithm, developed within this study, and implemented by the

computational software package MATLAB. System performance measures, such as

starvation and blockage probabilities of each station, as well as overall production

rate and work-in-process have been the subject of analysis.

7

In addition, the production rate and the work-in-process measures over failure and

repair probabilities are approximated with a polynomial curve-fit to establish simple

and useful empirical formulas for lines consisting three, four and five stations.

Numerical analyses show that the proposed methodology is effective for exact

solutions and the suggested formulas are reasonably accurate for approximate

solutions.

1.4 Outline

In Chapter 2, an introduction of the discrete-time Markov chain model and the

system model assumptions are given. Chapter 3 presents the backward induction

algorithm that generates the number of system states in multi-station lines. In

Chapter 4 the principles of the backward algorithms are presented, namely the

transition probability matrix generation algorithms. Thereafter the proposed

algorithms are described. Chapter 5 explains the system performance measures and,

followed by Chapter 6, which briefly exhibits the analysis of the sampled numerical

results and qualitative observations in terms of system performance measures.

Furthermore, Chapter 7 presents numerical analysis for developing simple and

reasonably accurate production rate and work-in-process equations for

approximation. Finally, Chapter 8 concludes the study.

8

CHAPTER 2

THE MARKOV CHAIN MODEL

Markov chains are by definition memory-less, which means that at any time, the

transition probability between the system states depends only on the current state. It

is independent of the past history of transitions; in other words, the transition from

one system state to another is independent of how the system originally got to the

past states. In this study, a discrete-time Markov chain model that represents the

system behavior of the production lines is formulated. Herein, each period is

represented by the constant duration of processing of work pieces by any station in

the production line.

2.1 System Parameters

Machines are unreliable in nature. In the stochastic model under study, each machine

has a unique probability to fail at the end of periods if it is operating during the

current period. In addition, the machine failures occur at the end of periods, after the

station completes its operation on the work piece. As Schick and Gershwin (1978)

assumed, the repair of a failed machine starts at the beginning of the next period after

the failure happened. Similarly, there is a constant probability of repair for failed

machines during the periods. For machine (i), where 1 ≤ i ≤ N, the failure and repair

parameters are geometrically distributed and defined as:

q[i]: The failure probability of a working machine (i)

r[i]: The repair probability of a failed machine (i)

 (qb[i] = 1 – q[i] and rb[i] = 1 – r[i])

9

2.2 Station States

Each station in the production line can be represented by one of the five defined

station states, each representing the condition of the station throughout a period from

the start of the period. All the station states define the system state of the production

line at the beginning of the current period and remain the same during the period.

Station state transitions occur at the end of the periods hence, therefore the change in

the system states also occurs at the end of the periods. A period is defined as the

sequence that a unit is processed by the stations. Five possible station states are

described as:

1) Up (U)

If a machine is in up condition at the beginning of the period, it operates and

processes the work piece during the period. The machine completes processing

the piece at the end of the period. As machine breakdowns occur at the end of

periods by definition, the machine can either fail or can be in good condition

after it completes processing the work piece at the end of the period that is at the

beginning of the next period.

2) Down (D)

If a machine is in down condition at the beginning of the period, then during the

period the machine can either be repaired with probability r[i] or cannot be

repaired with probability rb[i] = 1- r[i].

3) Blocked (B)

If a machine, with up condition in the beginning of the period, finishes

processing a work piece and does not fail at the end of the period, while the

downstream machine is full, then the machine cannot pass the item to the next

station and the machine becomes blocked. If a machine is blocked at the

beginning of the period, for the next period it can still be blocked or not

depending on the downstream station state. Note that a blocked machine does

not fail.

10

4) Down-Blocked (DB)

If a machine, with up condition in the beginning of the period, finishes

processing a work piece and then fails at the end of the period, while the

downstream machine is full, then the machine cannot pass the work piece that is

completed and the machine becomes both down and blocked. It can therefore not

deliver the work piece until the downstream station is available and the machine

needs repair to operate again. A down-blocked machine at the beginning of the

period can either be repaired or not during the period and it can either pass the

finished item or not to the downstream, which demonstrates the possible station

states of the machine at the beginning of the next period.

5) Starved (S)

If a machine with good condition is not fed by the upstream, then it is starved.

Similarly, a starved machine does not fail.

The possible states for the stations are summarized in Figure 2.1. As Figure 2.1

demonstrates, all five station states are valid for stations in the line except the first

and the last one. Recall that, station 1 can never be blocked or down-blocked due to

the assumption of infinite storage. In addition, station N is never starved due to

infinite supply.

Figure 2.1 Station States

11

2.3 Model Assumptions

Schick and Gershwin (1978) is one of the pioneers who studied discrete-time Markov

chains in modeling manufacturing lines. Regarding their model and assumptions, the

relevant assumptions that define the system are given by:

1) The model considers homogenous lines where the processing time for stations

is constant and equal for all stations.

2) Time is scaled so that the station periods take one time unit.

3) Transportation time between stations is negligible.

4) Machine capacities are limited to one; only one unit can be processed at a time.

5) An infinite supply of work pieces is available to the station N, and an unlimited

storage area is considered for the last station, defined as station 1. As a result,

station N is never starved, and station 1 is never blocked.

6) No intermediate buffer between machines is present.

7) Only operation dependent failures of machines are considered, which means

that machines can only fail while they are processing a work piece. The failure

probability of a starved or blocked machine is therefore zero.

8) Whenever a machine is processing a work piece, there is a unique probability

(q[i]) that the machine fails. By convention, machine breakdowns occur at the

end of periods after machines complete their operations on the work piece.

9) There is a unique probability (r[i]) that given a failed machine at the beginning

of any period can be repaired during the period.

12

CHAPTER 3

THE CARDINALITY OF SYSTEM STATES

The cardinality of system states is crucial in order to analyze the system behavior.

Transition probability matrix should be constructed to foresee the system

performance. The size of the matrix and the complexity of the exact analysis directly

depend on the cardinality of the system state set. Increasing the number of stations,

increases the cardinality of the system states accordingly. To analyze the effect of

increasing the number of stations in production lines on the total number of system

states, backward induction is applied.

3.1 Backward Induction Algorithm

Notation:

F (i, j) is the number of feasible downstream station states of station (i), being in state

(j), where 1 ≤ i ≤ N and j ∈ M, M = {U, D, DB, B, S}.

G (N) is the total number of system states in the production line containing (N)

stations.

Initial Conditions for i = 1

F (1, U) = F (1, D) = F (1, S) = 1,

F (1, B) = F (1, DB) = 0.

13

Recursion Equations for i = 2, 3, …, N

F (i, U) = F (i-1, U) + F (i-1, D) + F (i-1, S) + F (i-1, B) + F (i-1, DB)

F (i, D) = F (i, S) = F (i, U) (1)

F (i, B) = F (i-1, D) + F (i-1, B) + F (i-1, DB)

F (i, DB) = F (i, B) (2)

The total number of system states of a line having N stations:

G (N) = F (N, U) + F (N, D) + F (N, B) + F (N, DB) (3)

Note that the station N is never starved.

3.2 Explanatory Computations

3.2.1 Two-Station Production Line

F (2, U) = F (1, D) + F (1, U) + F (1, S) + F (1, B) + F (1, DB)

 = 1 + 1 + 1 + 0 + 0 = 3.

F (2, D) = F (2, S) = F (2, U) = 3.

F (2, B) = F (1, D) + F (1, B) + F (1, DB)

 = 1 + 0 + 0 = 1.

F (2, DB) = F (2, B) = 1.

The cardinality of the system states of a two-station production line is:

G (2) = F (2, U) + F (2, D) + F (2, B) + F (2, DB) = 3 + 3 + 1 + 1 = 8.

3.2.2 Three-Station Production Line

F (3, U) = F (2, D) + F (2, U) + F (2, S) + F (2, B) + F (2, DB)

 = 3 + 3 + 3 + 1 + 1 = 11.

14

F (3, D) = F (3, S) = F (3, U) = 11.

F (3, B) = F (2, D) + F (2, B) + F (2, DB)

 = 3 + 1 + 1 = 5.

F (3, DB) = F (3, B) = 5.

The total number of the system states of a three-station production line is:

G (3) = F (3, U) + F (3, D) + F (3, B) + F (3, DB) = 11 + 11 + 5 + 5 = 32.

3.2.3 Four-Station Production Line

F (4, U) = F (3, D) + F (3, U) + F (3, S) + F (3, B) + F (3, DB)

 = 11 + 11 + 11 + 5 + 5 = 43.

F (4, D) = F (4, S) = F (4, U) = 43.

F (4, B) = F (3, D) + F (3, B) + F (3, DB)

 = 1 + 5 + 5 = 21.

F (4, DB) = F (4, B) = 21.

The total number of the system states of a four-station production line is:

G (4) = F (4, U) + F (4, D) + F (4, B) + F (4, DB) = 43 + 43 + 21 + 21 = 128.

3.2.4 Five-Station Production Line

F (5, U) = F (4, D) + F (4, U) + F (4, S) + F (4, B) + F (4, DB)

 = 43 + 43 + 43 + 21 + 21 = 171.

F (5, D) = F (5, S) = F (5, U) = 171.

F (5, B) = F (4, D) + F (4, B) + F (4, DB)

 = 43 + 21 + 21 = 85.

F (5, DB) = F (5, B) = 85.

15

The total number of the system states of a five-station production line is:

G (5) = F (5, U) + F (5, D) + F (5, B) + F (5, DB) = 171 + 171 + 85 + 85 = 512.

The algorithm iterates the variable i = 2, 3, …, N to recursively increase the number

of stations, as a result of which, the system state set cardinality increases accordingly.

3.3 The Total Number of States

Theorem 1:

G (N+1) = 4 · G (N) for 2 ≤ N (4)

Proof:

Using Equation 3:

G (N+1) = F (N+1, U) + F (N+1, D) + F (N+1, B) + F (N+1, DB) (5)

One can rewrite Equation 5 by using recursion equations as:

G (N+1) = 2 · [F (N, U) + F (N, D) + F (N, S) + F (N, B) + F (N, DB)]

 + 2 · [F (N, D) + F (N, B) + F (N, DB)] (6)

After substituting (2) and (3) into (6), one finds:

G (N+1) = 2 · [F (N, U) + F (N, U) + F (N, U) + F (N, B) + F (N, B)]

 + 2 · [F (N, U) + F (N, B) + F (N, B)]

G (N+1) = 8 · [F (N, U) + F (N, B)] (7)

16

Finally, substituting (2) and (3) into (1), one can rewrite G (N) as:

G (N) = F (N, U) + F (N, U) + F (N, B) + F (N, B]

 = 2 · [F (N, U) + F (N, B)] (8)

Hence; using (7) and (8), Equation 4 is satisfied.

The theorem shows that when the number of stations in a production line is increased

by one, then the total number of system states increases by four times.

Theorem 2:

G (N) = 2
(2N-1)

 for 2 ≤ N

Proof:

Considering the minimum number of stations in a production line, which is two, all

possible system states are enumerated in Table 3.1. In addition, the line in

consideration is shown in Figure 3.1.

.

Figure 3.1 Two-Station Line

17

Table 3.1 System States of the Two-Station Production Line

Station 2 Station 1

Up Up

Up Down

Up Starved

Down Up

Down Down

Down Starved

Blocked Down

Down-Blocked Down

As shown in Table 3.1, by explicit enumeration: G (2) = 8. Considering N = 2 and

using Equation 4 with G (2) = 8, the total number of system states can explicitly be

written as:

G (N) = 8 = 2
(N+1)

G (N+1) = 4 · G (N) = 2
(N)

 · 2
(N+1)

 (9)

After rewriting Equation 9, one can conclude that:

G (N) = 2
(N-1)

· 2
(N)

= 2
(2N-1)

for 2 ≤ N

Hence, given an N-station production line, the total number of system states is:

G (N) = 2
2N-1

18

CHAPTER 4

TRANSITION PROBABILITY MATRIX GENERATION

The generation of the transition probability matrix is essential to calculate the long-

run system behavior through steady-state probabilities of the Markov chain model.

However, due to the increasing size of the transition probability matrix, it is not

possible to handle the model and the computations manually. The matrix generation

should be automated in order to have the exact analysis for multi-station lines. Table

4.1 shows the dimensions of the transition probability matrices based on Theorem 2.

Table 4.1 Dimensions of the Transition Probability Matrices

Number of

Stations

Total Number of

System States

Dimensions of the

Transition Probability Matrix

2 8 8 x 8

3 32 32 x 32

4 128 128 x 128

5 512 512 x 512

6 2048 2048 x 2048

… … …

N 2
2N-1

 2
2N-1

 x 2
2N-1

The logic behind the automated transition matrix construction has two stages:

• Generation of single step transitions from current to the next system state.

• Calculation of transition probabilities.

19

4.1 Generation of Single Step Transitions

In the developed methodology, the backward induction was implemented to

investigate one-step transitions between the system states. The procedure generates

the station states starting at the final station towards the initial station, to determine

every possible transition from a system state. After generating all possible transitions

between the system states it is rather easy to find the transitions probabilities.

The forward induction was however found to be insufficient to model the system.

This is due to the peculiar structure of the blocked state of the stations. Considering a

starved machine in the current period, the state of the machine for the next period can

be determined only by looking at the state of the preceding machine making a

forward recursion feasible. Therefore, if the previous machine is able to supply a

piece, then the downstream will be in up condition, if not, then the machine will be

starved at the beginning of the next period. That is to say, the starvation condition of

the stations enables a forward formulation; on the other hand, the blockage condition

of the machines does not allow a forward formulation. To determine the condition of

a blocked machine both forward and backward information are necessary. Whether a

machine will be blocked or not at the next period depends on all other consequent

machine states. A blocked machine at or near the end of the production line for

example can cause all the upstream machines to be blocked suddenly. Henceforth, to

obtain the state of a blocked machine at the next period, one needs to look at the

arrangement not only the upstream station but also the following downstream station.

This is basic principle triggered this study and formulates the reason why the

backward methodology was implemented instead of a forward one.

In summary, the backward induction algorithm was developed in order to generate all

one-step transition states from a priori known system state vector, which is applicable

to any production line with N stations. The purpose of the algorithm is to generate the

transition probability matrix of the system and then analyze the related performance

measures to understand the system behavior.

20

4.2 The Principles

4.2.1 Preliminary Notation

N is an integer that indicates the number of stations in the production line. The

minimal number of stations is two, hence N ≥ 2.

Xj (i) is the station state of station (i) being in the (j)
th

 station state with 1 ≤ i ≤ N.

Notice that a backwards notation is used, where Xj (N) is the state of the first, that is,

the upstream station state, and Xj (1), the state of the last station.

Xj is the system state indicator and a row vector with length N, i.e. Xj ∈ M
1xN

 with 1 ≤

j ≤ 2
2N-1

 is the system state index. The state of an N-station production line is

represented by Xj = [Xj (N), Xj (N-1), …, Xj (2), Xj (1)], containing all station states.

There are transitions among systems states. Those states that can be reached from

system state Xj are denoted by Yj,k. Yj,k is a row vector with length N, i.e. Yj,k ∈ M
1xN

.

The first subscript of Yj,k denotes that the system state can be reached from state Xj , 1

≤ j ≤ 2
2N-1

. Depending on the specific system state Xj, there are a number of alternate

states that could be reached in a single step. The second subscript of Yj,k enumerates

these alternatives. The elements of Yj,k are likewise defined. Yj,k (i) is the state of

station (i) of the system state Yj,k , 1 ≤ i ≤ N.

To illustrate, given Xj = [U, D, S], the final machine is starved, that is Xj (1) = S. The

second machine is down, Xj (2) = D and the initial machine is up, which is

represented by Xj (3) = U. The one-step transitions from Xj are provided in Table 4.2.

Table 4.2 Transitions from Xj = [U, D, S]

Yj,1 = [U, U, S] Yj,2 = [D, U, S] Yj,3 = [B, D, S] Yj,4 = [DB, D, S]

21

4.2.2 The Methodology

The basic principle behind the presented procedures is to find the system states (Yj,k)

that are reachable from Xj in a single step. It is possible to obtain the subsequent

period’s station states, i.e. Yj,k (i), in a recursive manner. The following information

is necessary to find Yj,k (i), as demonstrated in Figure 4.1.

• The current state of the (i)
th

 station, i.e. Xj (i),

• The state of the upstream station in the current system state, namely Xj (i+1),

• The state of the downstream station in the following step, namely Yj,k (i-1).

Current Period System State: Xj

Next Period System State: Yj,k

Figure 4.1 Recursive Manner of Generating Station States

Observation: There is at least one transition (Yj,k) generated from every current state

Xj. In addition, the total number of feasible solutions, i.e. the upper limit on k of Yj,k

can easily be calculated from Xj and is defined by the parameter Zj.

22

Definition: Generating set Λ1 = {U, D, DB}

The station states, included in set Λ1, doubles the number of transitions (Yj,k). This is

because an up station can either be broken down or not, and a down station can either

be repaired or not, therefore these conditions generate twice more possibilities for the

one-step transition states. For example, given current system state as Xj = [U, U, U],

all of the three station states are included in Λ1. Hence, there are a total of Zj = 2
3

different one-step transitions (Yj,k , 1 ≤ k ≤ Zj) present from the current system state

Xj .

The Table 4.3, 4.4, 4.5 and 4.6 were prepared in order to represent all one-step station

state transitions for the in-between station. According to the information of the

current station state Xj (i), the algorithm selects the applicable table and then with the

information of Xj (i+1) and Yj,k (i-1), the new transition states (Yj,k (i) for 1 ≤ k ≤ Zj)

are easily found from the related tables in a backward recursive manner.

Henceforth, considering an N-station production line, using the tables and the

necessary downstream and upstream information, the Yj,k (2) to Yj,k (N-1) transition

states can be created. The transitions state of the first and the last machine are

defined as the boundary conditions below.

Table 4.3 Working States from Xj (i) ∈ {U, B, DB}

Xj (i) ∈∈∈∈ {U,B,DB} Yj,k (i-1)

Xj (i+1)

 U D DB B S

U U B B B B

D S B B B B

DB U B B B B

B U B B B B

S S B B B B

23

Table 4.4 Non-Working States from Xj (i) ∈ {U, DB}

Xj (i) ∈ ∈ ∈ ∈ {U,DB} Yj,k (i-1)

Xj (i+1)

 U D DB B S

U D DB DB DB DB

D D DB DB DB DB

DB D DB DB DB DB

B D DB DB DB DB

S D DB DB DB DB

Table 4.5 Working States from Xj (i) ∈ {D, S}

Xj (i) ∈ ∈ ∈ ∈ {D,S} Xj,k (i-1)

Xj (i+1)

 U D DB B S

U - U U U U

D - S S S S

DB - U U U U

B - U U U U

S - S S S S

Table 4.6 Non-Working States from Xj (i) ∈ {D}

Xj (i) ∈ ∈ ∈ ∈ {D} Xj,k (i-1)

Xj (i+1)

 U D DB B S

U - D D D D

D - D D D D

DB - D D D D

B - D D D D

S - D D D D

24

Note that empty columns in Table 4.5 and 4.6 indicate that there is no transition

between those states.

Boundary Conditions:

• Initialization: Generation of Yj,k (1)

Given the current station state of the last station, i.e. Xj (1), the last station state of the

transition system, Yj,k (1), can easily be calculated based on the information of Xj (2)

only. Table 4.7 and 4.8 summarize the transitions for the last station.

• Finalization : Generation of Yj,k (N)

At the final step of the algorithm all transition states of Yj,k (N) are created. Yj,k (N) is

literally the first station of the transition system. As by definition an infinite supply is

assumed, the algorithm assumes a hypothetical station, which is always in up

condition, in the upstream. Hence, from the developed four tables, Yj,k (N) can be

easily found with the information of Xj (N), Yj,k (N-1) and the hypothetical station

given Xj (N+1) = U.

Table 4.7 From Xj (2) ∈ {U, B, DB} Table 4.8 From Xj (2) ∈ {D, S}

Xj (2) Yj,k (1) Xj (2) Yj,k (1)

U U U D

D S D D

DB U DB D

B U B D

S S S D

25

4.3 The Algorithms

• Tree Expansion Method

The tree expansion algorithm is developed to generate all possible transition vectors

from a system state vector. An approach like a branching tree is introduced to

improve the computational effectiveness.

• Tabular Method

A tabular form based algorithm is introduced by logical shifting of the station states

in order to generate all possible transitions from a system state vector. The main

difference between the two algorithms is that the number of transitions from a

system state is implicitly calculated within the tree expansion method; however, the

tabular method is based on the direct enumeration of the transition states.

4.4 Tree Expansion Method

The tree expansion algorithm is developed to generate all possible transitions

between system states. A methodology similar to branching is used to automatically

generate the transition probability matrix in order to reduce the modeling and

computational burden.

The algorithm includes the following routines:

1) Initialization: Starts the core-routine with a priori known system state.

2) Core-Routine: Defines the general structure of the algorithm and determines

the terminating condition.

3) Sub-Routine: This is the branching procedure, which is called by the core-

routine. Given a system state, it returns the system state transitions through tree

expansion by recursion.

26

Notation:

M is the set of all possible station states: M = {U, D, DB, B, S}.

Λ1 is the set from which two branches can be generated: Λ1 = {U, D, DB}.

Λ2 is the set from which a single branch can be generated: Λ2 = {B, S}.

Ω1 is the initial set of system states to initialize the core-routine.

Ω2 is the set of system states that are updated after the sub-routine is run. The set

includes the system states that have not entered the core-routine yet. Thus, it is the

set of system states that need to be processed in the next loop by the algorithm.

Ω3 is the set of all system states generated at the end of each run of the sub-routine.

Ω1 and Ω2 are updated with Ω3. Ω1 and Ω2 are external sets that are generated and

updated after each loop of the algorithm; whereas Ω3 is a local set generated and

erased at every loop of the sub-routine. Note that Ω2 ⊆ Ω1.

β1 is the set of all y1, which are the states of nodes at level 1, generated from Xj (1).

βi+1 is the set of all yi+1, which are the state of the nodes at level (i+1) after set βi ,

where 1 ≤ i ≤ N-1, N ≥ 3 and yi ∈ M.

The tree expansion algorithm generates and fills Yj,k (i+1)’s by using Table 4.3, 4.4,

4.5 and 4.6. Thus instead of Xj (i+1) and Yj,k (i-1) in the tables to find Yj,k (i)’s, Xj (i+2)

and yi are used to refer to the predefined tables in section 4.4.2.

Initialization:

The main algorithm starts with an a priori known state. Notice that N is the total

station number in the production line and is determined by the user at the

initialization step by defining X1.

Set Ω1 and set Ω2 are initialized with the system state vector X1 as follows:

Ω1 = {X1} and Ω2 = {X1}, where X1 (i) = U for 1 ≤ i ≤ N.

27

4.4.1 The Structure of the Tree Expansion Algorithm

The tree expansion algorithm starts branching from the final station state X1 (1)

creating Y1,k (1). Then the algorithm iterates with the logic of the Tables 4.3, 4.4, 4.5,

4.6, 4.7 and 4.8, and generates transitions by branching at levels and creating new

nodes filled with the station states from tables up to the first station state Yj,k (N). In

this manner the algorithm constructs the state transitions as a tree structure.

A tree graph is a connected graph without any cycles as shown in Figure 4.2. The tree

has one unique root which is Xj (1) at level 0. Thereafter, at each subsequent level,

one or two branches are generated from each node. The number of levels is restricted

to the number of stations in the line, namely N, which also represents the depth of the

tree. Such a tree is referred to as a rooted tree. For more information on rooted trees

the reader is referred to Lipschutz and Lipson (1997).

Figure 4.2 Rooted Tree Structure of the Tree Expansion Algorithm

28

A rooted tree is a tree graph where a vertex is designated as the root of the tree. There

is a unique simple path from the root to any other vertex, that is, every vertex except

the root has a unique parent in the structure. It is important to notice that the parent of

a node is the node that is connected to it on the upward path to the root node as

shown in Figure 4.3.

Figure 4.3 Parent-Child Relations in a Rooted Tree

Notation:

g (yi) is a function which finds the parent of the given node yi and returns the station

state of the parent node.

A rooted tree structure enables precedence relation between the vertices.

Consequently, the rooted tree is a beneficial tool to enumerate all the logical

possibilities of a sequence of events where each event can occur within a succession

in a finite number of ways. This is exactly the case in the model under study.

29

4.4.2 The Pseudo Code of the Tree Expansion Algorithm

Initialization:

Input X1 and define Ω1 = {X1}, Ω2 = {X1}.

Core-Routine:

Step 1 Stop, if | Ω2

| = 0,

Step 2 Get a system state Xj, Xj ∈ Ω2,

Step 3 Update Ω2 by eliminating the selected Xj from set Ω2

Step 4 Run the sub-routine, which updates set Ω1 and set Ω2,

Step 5 Go to Step 1.

Sub-Routine: Generation of the nodes from level 1 to level N

Phase 1: Generation of level 1

Step 1a If Xj (1) ∈ Λ1, then:

 Create two new nodes by generating two branches from node Xj (1).

 Check Xj (2), and then generate one node using Table 4.7 and the

 other node using Table 4.8.

Step 1b If Xj (1) ∈ Λ2, then:

 Create one new node by generating a single branch from node Xj (1).

 Check Xj (2), and then generate the child node using Table 4.7.

Step 2 Set β1 = {y1 | y1 is the state of the nodes at level 1, generated from Xj (1)}.

Phase 2: Generation of level 2 to level (N-1)

Step 1 Iterate for every i = 1, 2,…, N-2, N-1

Step 2 For all yi ∈ βi

 Step 2.1a If yi ∈ Λ1, then:

 Create two new nodes (yi+1) by generating two branches from node yi.

 Step 2.1b If yi ∈ Λ2, then:

 Create one new node (yi+1) by generating a single branch from node yi.

30

Step 3 Check Xj (i+2) and yi,

 Step 3.1a If Xj (i+1) ∈ {U, DB}, then:

 Generate one node yi+1 using Table 4.3 and the other using Table 4.4.

 Step 3.1b If Xj (i+1) ∈ {B}, then:

 Generate the child node yi+1 using Table 4.3.

 Step 3.1c If Xj (i+1) ∈ {S}, then:

 Generate the child node yi+1 using Table 4.5.

 Step 3.1d If Xj (i+1) ∈ {D}, then:

 Generate one node yi+1 using Table 4.5 and the other using Table 4.6.

Step 4 Set βi+1 = {yi+1 | yi+1 is the state of the nodes at level (i+1) from βi}

Phase 3: Generation of level N

Step 1 For all yN-1 ∈ βN-1

Step 1a If yN-1 ∈ Λ1, then:

 Create two new nodes yN by generating two branches from node yN-1,

Step 1b If yN-1 ∈ Λ2, then:

 Create one new node yN by generating a single branch from node yN-1.

Step 2 Set Xj (N+1) = U and check yN-1, then:

 Generate one node yN using Table 4.3 and the other using Table 4.4.

Step 3 Set βN = {yN | yN is the state of the nodes at level N from set βN-1}

Phase 4: Traversing the tree from level N to level 1

Step 1 Iterate for every i = N, N-1, …, 2

Step 1.1 Stop if i = 2 and go to Step 2.

Step 1.2 For all yN ∈ βN, call function g (yi), and set: Xj (i) = g (yi)

Step 2 Set Ω3 = {Xj | Xj is the system state generated after Step 1}

After phase 3, the rooted tree structure is constructed, at phase 4 the tree is traversed

from level N to level 1 to obtain the transition system states. When all transition

states from system state Xj are generated, the information of the system state and the

transition states are saved to find the transition probabilities.

31

Phase 5: Updating Ω1 and Ω2

Step 1 For every Xj ∈ Ω3, initiate Step 2.

Step 2 If Xj ∈ Ω1, include Xj into set Ω1 and Ω2.

4.4.3 Examples of the Tree Expansion Algorithm

Example 1

The algorithm starts with a priori known system state, i.e. X1 = [U, U, U]. The

number of stations in the line, i.e. the length of the row vector (three in this case) is

given to the algorithm by defining X1. Recall that, it is the depth of the rooted tree.

Figure 4.4 demonstrates the algorithm. The core-routine supplied level 0 information,

and then at phase 1 of the sub-routine, level 1 is generated. Phase 2 generates level 2

and finally phase 3 generates the last level, which is level 3 here.

Figure 4.4 Generation from X1 = [U, U, U]

32

At phase 4, the tree is traversed from level 3 to level 1 and the Y1,k ’s are generated as

presented in Table 4.9. The number of transition states (Y1,k) are implicitly calculated

within the algorithm. It is the total number of nodes at level N.

Table 4.9 Transitions from X1

Y1,1 = [U, U, U] Y1,5 = [B, B, D]

Y1,2 = [D, U, U] Y1,6 = [DB, B, D]

Y1,3 = [B, D, U] Y1,7 = [B, DB, D]

Y1,4 = [DB, D, U] Y1,8 = [DB, DB, D]

Finally at phase 5, the algorithm updates sets Ω1 and Ω2. Set Ω2 includes the new

system state that was generated but whose transition states are still missing, and set

Ω1 keeping track of all the system states that have been generated.

Example 2

Given Xj = [B, B, D], the constructed rooted tree is in Figure 4.5. In addition, the

transition vectors that are generated from the rooted tree in Figure 4.5 are stated in

Table 4.10.

Table 4.10 Transitions from Xj = [B, B, D]

Yj,1 = [U, U, U] Yj,2 = [B, B, D]

33

Figure 4.5 Generation from Xj = [B, B, D]

Example 3

Given Xj = [D, B, D], the rooted tree is constructed according to Figure 4.6. In

addition, Table 4.11 shows the transition vectors found that are by backward

traversing of the tree.

Table 4.11 Transitions from Xj = [D, B, D]

Yj,1 = [U, S, U] Yj,3 = [U, B, U]

Yj,2 = [D, S, U] Yj,4 = [D, B, D]

34

Figure 4.6 Generation from Xj = [D, B, D]

4.5 Tabular Method

The tabular algorithm uses logical shifting of the station states combined with the

logic developed in the transition surveillance tables, namely Table 4.3, 4.4, 4.5, 4.6,

4.7 and 4.8, to generate all possible transitions between the system states. The

algorithm yields the same results with the tree expansion method. They enable

automated generation of transition probability matrices for multi-station lines.

The algorithm includes the following routines:

1) Initialization: Generates the system state set for N stations.

2) Core-Routine: Defines the transition matrix from a given system state, then the

transition matrix is filled in by the sub-routine.

3) Sub-Routine: Constructs and fills in the transition matrix. The sub-routine

generates a matrix, every row of which is a one-step transition.

35

Notation: Only additional notation is presented.

Vj is the total number of stations of Xj, where Xj (i) ∈ Λ1, 1 ≤ i ≤ N and Vj ≤ N.

Zj is the number of transition vectors Yj,k generated from a system state vector Xj,

where 1 ≤ k ≤ Zj. Note that Zj = 2
Vj .

A* is a 5
N
 x N matrix, with every row a permutation of the station states over N

stations. With the five possible station states this gives 5
N
 possible combinations.

A is a 2
2N-1

x N matrix, every row of which includes a feasible system state Xj.

Qj* is initially a zero matrix with dimensions Zj x N. Every row of Qj* is

subsequently filled in within the sub-routine with the transition vector Yj,k that is

generated from the system state Xj. Subsequently filling in Qj* per row results in Qj

Qj is a Zj x N matrix, every row of which includes a transition (Yj,k) from Xj.

R(i) = Count (Xj (i)) is the function defined to find the total number of station states

in the range from Xj (1) to Xj (i) that belong to the set: Λ1 = {U, D, DB}.

The variable H(i) is a count of the number of these station states in the given range.

The function returns a value R(i), which is the number of consecutive rows in a

column to be filled in within the algorithm.

The value R(i) is associated to H(i) and is calculated as:

 R(i) = Zj / 2
H(i)

.

As an example consider Xj = [U, D, B, D]. Here, the total number of stations being in

a state which is included in the set Λ1 is: Vj = 3. Hence, the solutions of R(i):

Count (Xj (1)) = 2
3-1

= 4 Count (Xj (3)) = 2
3-2

= 2

Count (Xj (2)) = 2
3-1

= 4

Count (Xj (4)) = 2
3-3

= 1

36

4.5.1 The Pseudo Code of the Tabular Algorithm

Initialization:

There are N machines in a line. Without considering the special requirements for the

first and the last station, every machine can be at most in one of the five states (M =

{U, B, S, D, DB}). There are 5
N
 possible permutations of N. Yet, some permutations

are not feasible. These infeasible states are eliminated in the initialization step.

Phase 1: Generation of A*

Step 1 Input N,

Step 2 Generate all permutations of the system states for N stations, and construct

a 5
N

x N matrix, every row of which includes a permutation.

Phase 2: Generation of A

Step 1 Eliminate the system state vectors where station N is starved, hence discard

the rows of A* where Xj (N) ∈ {S} due to infinite supply assumption.

Step 2 Eliminate the system state vectors where station 1 is either blocked or

down-blocked, hence discard the permutations where Xj (1) ∈ {B, DB} due

to the infinite storage assumption.

Step 4 Eliminate the system state vectors that have a blocked or a down-blocked

machine as the upstream of a starved machine in the line. Henceforth, the

rows of A* that satisfy the condition are discarded from A*:

 Xj (i) ∈ {S} and Xj (i+1) ∈ {B, DB} for 1 ≤ i ≤ N-1

 Clearly, a machine can never be starved if its upstream machine is blocked.

Step 5 Eliminate the system state vectors that have a blocked or a down-blocked

machine as the upstream of an up machine in the line. The permutations

that contain the condition are discarded from A*:

 Xj (i) ∈ {U} and Xj (i+1) ∈ {B, DB} for 1 ≤ i ≤ N-1

37

By definition, a machine’s capacity is one, thus a machine cannot process two units

at the same time. At the end of each period the machine can therefore not pass one

unit to the downstream while remaining blocked.

After phase 2, the remaining rows of the A* matrix give the matrix A, which has a

dimension of 2
2N-1

x N.

Core-Routine: Generation of Qj*

Step 1 For all Xj, contained at every (j)
th

 row of the A matrix do the following:

Step 2 Given Xj, find Vj ,

Step 3 Calculate Zj,

Step 4 Generate a zero matrix Qj* of dimensions Zj x N,

Step 5 Run the sub-routine.

Sub-Routine: Generation of Qj

Phase 1: Filling the last column of the Qj* matrix

Step 1a If Xj (1) ∈ {U, D},

 Check Xj (2) and fill the first half rows of the last column of Qj* from

Table 4.7 and fill the rest of the rows of the last column of Qj* from

Table 4.8.

Step 1b If Xj (1) ∈ {S},

 Check Xj (2) and fill the last column of matrix Qj* from Table 4.7.

Phase 2: Column-wise filling in the rest of Qj* up to the first column

Step 1 Iterate for every i = N-1,…, 2;

Step 2 If Xj (i) ∈ {U, DB},

Step2.1 Find R (i) using the function: R(i) = Count (Xj (i)),

Step 2.2 For all k = 2 · R (i) · (c-1) +1, c = 1, 2, …, (Zj /(2 · R(i))), do:

Step 2.2a Define k1 = k, (k + 1), …, (k + R (i) - 1) , and

k2 = (k + R(i)), (k + R(i) +1), …, (k+2 · R(i) -1)

38

Step 2.2b If Yj,k (i+1) ∈ {D, B, DB},

then Yj,k1 (i) = B and Yj,k2 (i) = DB.

 Step 2.2c If Yj,k (i+1) ∈ {U} and Xj (i-1) ∈ {U, B, DB},

then Yj,k1 (i) = U and Yj,k2 (i) = D.

Step 2.2d If Yj,k (i+1) ∈ {U} and Xj (i-1) ∈ {D, S},

then Yj,k1 (i) = S and Yj,k2 (i) = D.

Step 3 If Xj (i) ∈ {D},

Step3.1 Find R (i) using the function: R(i) = Count (Xj (i)),

Step 3.2 For all k = 2 · R(i) · (c-1) +1, c = 1, 2, …, (Zj /(2 · R(i))), do:

Step 3.2a Define k1 = k, (k + 1), …, (k + R(i) - 1) , and

 k2 = (k + R(i)), (k + R(i) +1), …, (k+2 · R(i) -1)

Step 3.2b If Yj,k (i+1) ∈ {D, B, DB,S} and Xj (i-1) ∈ {U, B, DB},

 then Yj,k1 (i) = U and Yj,k2 (i) = D.

Step 3.2c If Yj,k (i+1) ∈ {D, B, DB,S} and Xj (i-1) ∈ {D, S},

 then Yj,k1 (i) = S and Yj,k2 (i) = D.

Step 4 If Xj (i) ∈ {S},

Step 4.1 For all k = 1, 2,…, Zj, do:

Step 4.1a If Xj (i-1) ∈ {U, B, DB}, then Yj,k (i) = U.

Step 4.1b If Xj (i-1) ∈ {D, S}, then Yj,k (i) = S.

Step 5 If Xj (i) ∈ {B},

Step 5.1 For all k = 1, 2,…, Zj, do:

Step 5.1a If Yj,k (i+1) ∈ {D, B, DB}, then Yj,k (i) = B.

Step 5.1b If Yj,k (i+1) ∈ {U} and Xj (i-1) ∈ {U, B, DB}, then Yj,k (i) = U.

Step 5.1c If Yj,k (i+1) ∈ {U} and Xj (i-1) ∈ {D, S}, then Yj,k (i) = S.

Phase 3: Filling the first column of Qj*

Step 1 For all k = 1, 3, 5,…, Zj, do:

39

Step 1a If Xj (1) ∈ {U, DB} and Yj,k (2) ∈ {D, B, DB},

 then Yj,k (1) = B and Yj,k+1 (1) = DB.

Step 1b If Xj (1) ∈ {U, DB} and Yj,k (2) ∈ {U},

 then Yj,k (1) = U and Yj,k+1 (1) = D.

Step 1c If Xj (1) ∈ {D} and Yj,k (2) ∈ {D, B, DB, S},

 then Yj,k (1) = U and Yj,k+1 (1) = D.

Step 2 For all k = 1, 2, 3,…, Zj, do:

Step 2a If Xj (1) ∈ {B} and Yj,k (2) ∈ {D, B, DB}, then Yj,k (1) = B.

Step 2b If Xj (1) ∈ {B} and Yj,k (2) ∈ {U}, then Yj,k (1) = U.

After phase 3, the transition matrix Qj is formed, which includes a transition vector

Yj,k from system state Xj at every row.

4.5.2 Examples of the Tabular Algorithm

Example 1

 After defining N = 3, an A matrix with the dimensions of 2
2N-1

x N is constructed by

the initialization routine of the algorithm. Every row of matrix A is a feasible system

state Xj that is to be processed by the algorithm.

For instance, when the core-routine is run with a given Xj = [U, U, U], the algorithm

defines Qj, an 8x3 zero matrix. The sub-routine fills in the zero matrix starting from

the last column (phase 1) and the middle columns (phase 2) as demonstrated in

Figure 4.7.

In phase 3 of the sub-routine, the first column is filled in. The resulting matrix is

defined as the transition matrix, Qj of Xj = [U, U, U], as presented in Figure 4.8.

40

Figure 4.7 Column-wise Generations by the Tabular Method

Figure 4.8 Transition matrix from Xj = [U, U, U]

41

Example 2

Given system vector Xj = [D, D, S], the transition matrix generated by the algorithm

is presented in Figure 4.9.

Figure 4.9 Transition matrix from Xj = [D, D, S]

As seen, there are a 4x3 matrix is constructed, rows of which correspond to different

transitions from Xj = [D, D, S] and columns include the station states.

4.6 Generation of the Transition Probabilities

After generating one-step transitions in a recursive manner by the proposed

algorithms, it is easy to calculate of the transition probability between system states.

Table 4.12 summarizes the applicable transition probabilities between station states

between each consecutive period.

For example, given Xj = [U, S, D, S], the constructed rooted tree is shown in Figure

4.10 and the resulting transition probabilities are presented in Table 4.13.

42

Table 4.12 Transition probabilities

 Yj,k (i)

Xj (i)

At the beginning of the next period

 U B S D DB

At the

beginning

of the

current

period

U qb[i] qb[i] q[i] q[i] q[i]

B 1 1 1 0 0

S 1 0 1 0 0

D r[i] 0 r[i] rb[i] 0

DB r[i] r[i] r[i] rb[i] rb[i]

Figure 4.10 Generation from Xj = [U, S, D, S]

43

Table 4.13 Transition Probabilities from Xj = [U, S, D, S]

From To Transition Probability

Xj = [U, S, D, S] Yj,1 = [U, U, S, S] Pj,1 = qb[4] · 1 · r[2] · 1

Xj = [U, S, D, S] Yj,2 = [D, U, S, S] Pj,2 = q[4] · 1 · r[2] · 1

Xj = [U, S, D, S] Yj,3 = [U, U, D, S] Pj,3 = qb[4] · 1 · rb[2] · 1

Xj = [U, S, D, S] Yj,4 = [D, U, D, S] Pj,4 = q[4] · 1 · rb[2] · 1

Notation:

Pj,k is the one-step transition probability from the current period system state to the

next period system state.

4.7 Verification of the Results

In this study, all the computations based on the tabular method were developed in

MATLAB. The algorithm generates the system state transitions and transition

probabilities, and then steady-state probabilities were calculated. In addition, the tree

expansion algorithm was also coded in Linux to verify the exact solutions offered by

the backward formulation. It is important to indicate that the results of the two

algorithms verify each other. The same transition probability matrices were

constructed; hence identical steady-state probabilities were obtained from both

algorithms. This shows that the computational effort devoted to this project were

verified.

44

CHAPTER 5

 SYSTEM PERFORMANCE MEASURES

5.1 Starvation and Blockage Probability

The starvation and blockage probabilities are important because they indicate the

situations where machines are idle, which is an undesirable situation for the

production lines.

Notation:

 π (Xj) is the steady-state probability of the (i)
th

 station being in one of the station

state conditions at the (j)
th

 system state.

The starvation probability of machine (i) in the long-run is computed as follows:

Furthermore, the blockage probability of machine (i) in the long-run is given by:

The results for the starvation and blockage probabilities for stations were gathered

while analyzing exact results of production lines as data sample in Appendix B

displays.

45

5.2 Production Rate

The most essential performance measure is the production rate. The system under

study, with serial-connected stations without intermediate buffer is efficient only

when all stations are up and operating. These types of systems provide a lower bound

on the production rate of systems with buffer as discussed by Tan (1997).

The expected production rate can be calculated by the sum of steady-state

probabilities of all system states where the final station Xj (1) is up and operating.

The production rate of an N-station line is given by:

Remark: Since there are no buffers involved, all the stations in the line have the

same expected production rate which defines the expected production rate, i.e.:

5.3 Work-In-Process

Another important performance measure is the work-in-process, which is important

especially for production lines with discrete items like automobile, fridge, and others.

For an N-station line without buffer, the upper bound on the work-in-process is N,

which is the situation where all machines are occupied with one work piece.

Notation:

θj is the total number of stations of Xj, where Xj (i) ∈ {U, B, DB}, and 1 ≤ i ≤ N.

46

The work-in-process of an N-station line is computed as:

In order to see the occupancy of the stations in a production line, work-in-process of

every station was analyzed. The work-in-process for station (i) for an N-station

production line is calculated as:

Another measure for work-in-process that averages the expected work-in-process for

N-station production lines are defined as:

Expected Occupancy = [WIP(N)] / N.

47

CHAPTER 6

ANALYSIS OF THE SYSTEM BEHAVIOR

6.1 Computing the Steady-State Probabilities

Having obtained the transition probability matrix, one can solve a set of linear

equations to obtain the steady-state probabilities of the system states. More

information on how the steady-state equations were solved can be found in the

MATLAB code giving in Appendix A. The transition probability matrix generation

was coded by tabular algorithm code and the long-run probabilities were achieved.

The transition probability matrix dimensions grow substantially for longer lines. Yet,

for single solutions, the algorithm computational times are in the order of minutes for

lines up to six stations. For more than six stations, MATLAB is out of memory for a

computer with 3GB of physical memory. In automotive production typically lines

consist of five-station zero buffer sub-lines connected with a buffer to another sub-

line, thus, the results are useful for car body shop sub-lines.

6.2 Analysis of the Results

The performance measures were collected for specific failure and repair

probabilities, a sample of the collected data is provided in Appendix B. For the

failure probability, the interval of [0.001, 0.1] and for the repair probability, the

interval of [0.01, 0.95] were taken as the interval of interest. The study includes

three-station, four-station and five-station lines with identical machines as those

represent the sub-lines in automotive production lines.

48

Notation:

q is the failure probability of every station 1, 2, .. , N.

r is the repair probability of every station 1, 2, .. , N.

The performance analysis was realized based on exact results collected from the

results of the algorithm. A sample of the collected exact solutions for three-station

lines is given in Appendix B.

6.2.1 Analysis of Production Rate

Production rate analysis is the most critical in the analysis as a measure for

efficiency. Relationship between the production rate and the repair probability and

the failure probability is visualized in Figure 6.1 for different failure probabilities.

Figure 6.1 Production Rate versus Repair Probability

49

It is clear from Figure 6.1 that, as the repair probability increases, the production rate

also increases, however, as the failure probability increases the production rate

decreases as well. Moreover it was shown that as the number of stations increases in

a production line, the production rate decreases relatively as depicted in Figure 6.2.

Figure 6.2 Expected Production Rates

6.2.2 Analysis of Work-In-Process

Based on the exact results, for the work-in-process measure:

• For 3-station lines, mean is 2.434 and variance is 0.193.

• For 4-station lines, mean is 3.199 and variance is 0.322.

• For 5-station lines, mean is 3.952 and variance is 0.480.

50

There is a negative slope relation between the failure probability and the work-in-

process, whereas a positive relation exists with the repair probability. The situation is

demonstrated in Figure 6.3.

Figure 6.3 Work-In-Process versus Repair Probability

As the number of stations increases in a production line, the number of work pieces

in the line increases relatively. The situation is depicted in Figure 6.4.

In addition, for a four-station line, work-in-process of every station, i.e. WIPi (N) for

1 ≤ i ≤ 4, is demonstrated in Figure 6.5. As Figure 6.5 suggests, the stand-alone

occupancy of the stations increase while going towards the beginning of the line, this

is basically due to the infinite supply assumption.

51

Figure 6.4 Expected Work-In-Process

Figure 6.5 Work-In-Process per Station

52

As Figure 6.5 suggests, the work-in-process for the station 4 is the highest. This is

reasonable as it is the first station and an infinite supply was assumed for the system.

Respectively, the work-in-process of each station decreases gradually towards the

end of the production line. The last station, station 1, has the lowest work-in-process.

Note that for an N-station line, the total of the work-in-process per station, WIPi (N),

gives the expected work-in-process value for the entire production line. For the

stations demonstrated in Figure 6.5, the total was illustrated in Figure 6.4.

Moreover, to indicate the expected occupancy and vacancy of the stations, Figure 6.6

was prepared. It is shown that the expected occupancy of the stations enlarges with

an increase in the repair probability. Furthermore, the expected occupancy is slightly

higher for shorter lines compared to the longer lines.

Figure 6.6 Expected Occupancy versus Repair Probability

53

CHAPTER 7

NUMERICAL ANALYSIS

7.1 Analysis of Production Lines with Identical Machines

In order to develop simple and useful formulas to find the production rate and the

work-in-process measures for multi-station production lines, a curve-fit analysis was

conducted. The aim of this analysis is to formulate simple functions that provide

forecasts of the important performance measures with a reasonable accuracy. Only

production lines with identical machines were considered in this numerical analysis.

A rational function fit was realized for the production rates and the work-in-process

values based on the exact solutions gathered for the performance analysis in Chapter

6 for production lines with three, four and five stations. The approximate formulas

were then analyzed in terms of the forecast error. Furthermore, the mean absolute

error statistics (i.e. mean and variance) were collected and the approximate solutions

were shown to be effective. The curve-fit and the error analysis were conducted in

MATLAB and the code is included in Appendix C.

7.2 Rational Equation Parameterization for the Production Rate

The production rate is the most crucial production performance measure. To depict

the relation between the expected production rates of production lines and the failure

and repair probabilities, three-dimensional plots were generated using MATLAB

(Appendix C). The relation between the expected production rate and the failure and

repair probabilities for three-station lines is illustrated in Figure 7.1.

54

Based on the results of the exact analysis providing a smooth surface as shown by the

three-dimensional plot in Figure 7.1, curve-fitting was realized to develop a

reasonably accurate equation in order to establish reliable forecasts with simple

formulas. As a result; the relation of the production rate of an N-station production

line with the failure and the repair probabilities was found to be adequately

represented by a simple rational function defined as:

PR(N) = (a0 + a1 · q + a2 · r + a3 · q · r) / (1 + a4 · q + a5 · r + a6 · q · r) (10)

where a0, a1, a2, a3, a4, a5, and a6 are the parameters that need to be solved based

on the exact solutions.

Figure 7.1 Production Rate versus q and r

55

Using non-linear least squares optimization routine in MATLAB, the rational

function in Equation 10 was parameterized for different production lines. The found

parameters were rounded and concluded to keep the acquired precision. The

determined parameters are presented in the Table 7.1. Based on the acquired forecast

equations, in order to analyze the accuracy of the forecast, an error analysis was

realized and the results of the analysis are given in the following section.

Table 7.1 Constants for the Production Rate Function

Constants 3-Station Line 4-Station Line 5-Station Line

a0 1.9382 2.5989 2.1335

a1 -13.5482 -14.2351 -11.918

a2 10068.0462 8250.5246 4583.4131

a3 13340.8192 18240.4894 14615.8399

a4 30676.5171 33796.6908 23606.7762

a5 10082.9442 8272.8800 4601.3483

a6 11231.9814 14755.4887 11447.0396

7.2.1 Rational Function Fit Optimization Procedure

To find an approximate equation to represent adequate production rate and work-in-

process forecasts for the lines, a rational function was considered. A three-

dimensional function of PR(N) and WIP(N) versus q and r were constructed. With the

exact results, PR = f (q, r) and WIP = f (q, r), obtained from the tabular method, the

rational function was parameterized and an optimization procedure was executed to

minimize the error between the data points and the parameterized function. The non-

linear least squares optimization procedure was used as the rational function is non-

linear in the parameters.

56

Least squares optimization uses a prior data inputs (q and r) and the related data

outputs (production rate and work-in-process) to minimize the error with respect to a

parameterized approximate function. The residual is: ePR = PR (q, r) – f (q, r, θ)

where f (q, r, θ) is the rational function with the known applicable data of q and r and

the parameter vector θ. The parameter vector is computed by the non-linear least

squares routine available within the MATLAB optimization toolbox in an iterative

procedure. It finds optimal solution by minimizing the mean and variance of the

residual error sequence in an iterative procedure.

7.2.2 Error Analysis for the Production Rate Function

In order to measure the accuracy of the obtained forecast equations for the

production rate and work-in-process the error statistics have been analyzed. The used

non-linear least squares optimization procedure finds an optimal solution of the

parameters by minimizing the variance and the mean of the residual, i.e. the error

was statistically minimized. Analyzing these statistics, the effectiveness of the

rational functional fits for production rate and work-in-process forecast was

determined.

In addition to minimum and maximum absolute error statistics, mean absolute error,

the mean of error, and variance of error were collected. Furthermore, the mean

absolute percent error (MAPE) and mean standard error percent (MSEP) were

calculated for further insight in terms of accuracy and precision of the fit. More

information about the calculations of MAPE and MSEP were given in Appendix D.

Table 7.2 summarizes the error statistics collected for the production rate forecasts

based on the rational function approximations in Table 7.1. The statistics, collected in

Table 7.2, show that the forecasts perform well when compared to the exact solutions

in terms of mean and variance of error in addition to the absolute and percent error

indicators. Figure 7.2 depicts the errors over forecasted production rate values.

57

Table 7.2 Production Rate Error Statistics

 3-Station Line 4-Station Line 5-Station Line

Min. Absolute Error 2.4 · 10
-6

 1.3 · 10
-6

 2.2 · 10
-7

Max. Absolute Error 0.0053 0.0100 0.0127

Mean Absolute Error 6.3 · 10
-4

 0.0010 0.0013

Mean of Error -3.4 · 10
-6

 3.3 · 10
-6

 -8.0 · 10
-8

Variance of Error 6.5 · 10
-7

 1.7 · 10
-6

 2.9 · 10
-6

Min. Abs. Percent Error 3.1 · 10
-4

 1.6 · 10
-4

 3.4 · 10
-5

Max. Abs. Percent Error 0.6829 1.3935 1.9027

Mean Percent Error -0.0073 -0.0179 -0.0279

MAPE (%) 0.1011 0.1767 0.2498

MSEP (%) 0.1583 0.2869 0.4190

Figure 7.2 Error Plot for the Production Rate Function

58

As demonstrated, Figure 7.2 gives the forecast error sequence for a four-station

production line versus sample number. Every sample relates to a specific

combination of q and r values, as depicted in Figure 7.3. Figure 7.3 indicates that the

failure probability is varied over the whole sample range, whereas the repair

probability is variable over every value of q.

The peaks that are evident in the error plot in Figure 7.2 are due to the definition of

the gathered data samples with respect to q and r as shown in Figure 7.3. Therefore,

as a result of the data generation, the peaks are present in the error plots.

Figure 7.3 Generation of Data Sample

59

Note that the non-linear least squares optimization procedure minimizes the error

(mean and variance) over the whole sample range using a uniform weight so every

data sample has the same weight in the optimization routine. The accuracy of the

obtained rational fit is considered more than adequate. As a result, the error analyses

showed that the developed formulas yield very effective approximations.

7.2.3 Rational Equation Parameterization for the Work-In-Process

It is also critical to find representative forecast equations for the average work-in-

process of the system in terms of the failure and repair probabilities. The three-

dimensional plot that illustrates the average number of items for three-station, four-

station, and five-station production lines is given in Figure 7.4.

Figure 7.4 Work-In-Process versus q and r

60

It is clear from Figure 7.2 and 7.4 that that the production rate and the work-in-

process plots suggest the use of the same rational function for curve-fitting. Hence,

similar to the production rate function (10), the same parameterization was also

realized for the work-in-process function.

WIP(N) = (b0 + b1 · q + b2 · r + b3 · q · r) / (1 + b4 · q + b5 · r + b6 · q · r) (11)

where b0, b1, b2, b3, b4, b5, and b6 are again parameters to be fitted by use of the

non-linear least squares optimization routine.

 Performing the same curve-fitting methodology, , the parameters in Equation 11 for

different production lines were obtained as summarized in Table 7.3.

Table 7.3 Constants for the Work-In-Process Function

Constants 3-Station Line 4-Station Line 5-Station Line

b0 5.1715 14.1778 21.0819

b1 33126.9234 116504.2231 177702.1167

b2 32658.3901 75938.8111 86391.1440

b3 40948.2095 155263.8189 250044.0336

b4 33153.8861 77696.4095 88863.9427

b5 10897.0572 19017.5184 17320.6444

b6 12128.7591 33787.0170 42810.9255

7.2.4 Error Analysis for the Work-In-Process Function

Table 7.4 presents the error statistics collected for the work-in-process forecasts

based on the rational function approximation in Table 7.3. Table 7.4 shows that the

forecast function provides reliable estimates.

61

Table 7.4 Work-In-Process Error Statistics

 3-Station Line 4-Station Line 5-Station Line

Min. Absolute Error 1.5 · 10
-6

 3.8 · 10
-7

 5.2 · 10
-6

Max. Absolute Error 0.0112 0.0253 0.0405

Mean Absolute Error 0.0013 0.0025 0.0040

Mean of Error 7.1 · 10
-7

 6.6 · 10
-6

 2.4 · 10
-6

Variance of Error 2.6 · 10
-6

 1.0 · 10
-5

 2.6 · 10
-5

Min. Abs. Percent Error 5.4 · 10
-5

 1.1 · 10
-5

 2.3 · 10
-4

Max. Abs. Percent Error 0.4423 0.7687 1.0122

Mean Percent Error -1.6 · 10
-4

 1.7 · 10
-5

 -3.1 · 10
-4

MAPE (%) 0.0521 0.0790 0.1014

MSEP (%) 0.0696 0.1056 0.1354

Furthermore, error plot for the forecasts was analyzed. Figure 7.5 shows the forecast

error sequence versus the sample of data points for four-station production lines.

Figure 7.5 Error Plot for the Work-In-Process Function

62

7.2.5 Summary of the Rational-Fit Forecasting

So far the exact analysis results were gathered and it is shown that the important

performance measures can also be estimated by relatively easy rational equations as a

function of particular line characteristics, namely the failure and repair probabilities.

Only lines with identical machines are considered for the approximated fits; hence all

stations have the same failure and repair probability.

Consequently, it is shown that the obtaining rational function to forecast the expected

work-in-process is effective. As the error analysis shows, the approximate

parameterizations can be used most adequately and computationally more effective

instead of the exact solutions for lines with identical machines.

7.3 Analysis of Balanced Lines

After the analysis of production lines with identical machines, the subsequent step is

to analyze the behavior of balanced lines, where all stations have the same stand-

alone availability. The stand-alone availability of a station (i), that is SAA(i), is

defined by Muth and Yeralan (1981):

This means that there may be different failure and repair probabilities for each

machine, however that each machine still has an identical ratio. As an example, given

90% availability for a line, then the repair probability is nine times larger than the

failure probability for every station.

The aim of this section is to forecast the production rate and work-in-process of the

balanced lines using the numerical results of the developed methodology and

MATLAB code. Based on the analysis, an upper bound and a lower bound to

estimate the production rate and work-in-process of the balanced lines are defined.

63

• Lower bound: The solution of a line consisting of identical machines is used

as a lower bound for the production rate and work-in-process estimates. The

identical machines are chosen to have the same characteristics as the machine

having the lowest failure and repair probability of the balanced line.

• Upper bound: Similarly, a production line with identical machines is used as

an upper bound for the production rate and work-in-process estimates. In this

case the identical machines are chosen to have the same characteristics as the

machine having the highest failure and repair probability of the balanced line.

Regarding the above mentioned interval for the balanced lines, after several runs of

the results, it is found out that the width of the interval lies within a 5% range

provided that 0.001 ≤ q ≤ 0.1 and 0.01 ≤ r ≤ 0.975 for balanced lines with 85 to 95%

availability.

Example

Given a four-station balanced line with 90% availability, the stations and the exact

solutions are summarized in Table 7.5.

Table 7.5 Four-Station Balanced Line

q[4] q[3] q[2] q[1] r[4] r[3] r[2] r[1] PR(4) WIP(4)

0.05 0.07 0.009 0.02 0.45 0.63 0.081 0.18 0.705 3.266

The lower and upper bound for the balanced line are calculated using the rational-fit

equations developed for identical machines. Table 7.6 demonstrates the lower and

upper bound for the balanced line.

64

Table 7.6 Lower and Upper Bounds for the Balanced Line

i = 1, 2, 3, 4 q[i] r[i] PR(4) WIP(4)

Lower Bound 0.009 0.0081 0.696 3.240

Upper Bound 0.07 0.63 0.728 3.322

As suggested, the exact solution of the balanced line yields results that are within the

interval defined by the identical machines as the lower and upper bounds:

• The production rate (0.705) of the balanced line lies within [0.696, 0.728].

• The work-in-process (3.266) of the balanced line lies within [3.240, 3.322].

The analysis showed that the intervals suggest a reliable range for the estimates and

the wideness of the interval is small enough to give beneficial information.

7.4 Analysis of Production Lines with Different Machines

For production lines that consist of different machines, the useful failure and repair

probability interval for estimating system behavior are defined based on the findings

of the numerical analysis. For the production rate of line with the different machines

the following lower and upper limits were observed, moreover, a point estimate

within the limits was suggested for the production rate approximation:

• Lower bound: The solution of a balanced line is used as a lower bound for

the production rate of the lines. The considered balanced line has availability,

equal to the lowest availability of the stations in the line.

• Upper bound: Similarly, a balanced line is used to find an upper bound for

the production rate estimates. The considered balanced line has availability,

equal to the highest availability of the stations in the line.

65

• Average Availability: Based on the average availability of the stand-alone

availabilities of the stations, an average availability approximation yields

useful insights for the original line.

The balanced line approximations were performed by changing failure probability

over stations while keeping the repair probability of the stations constant. This is

because the production rate of the systems is more sensitive to changes in the repair

probability. Henceforth, to equate the availabilities of the stations for lower and

upper bounds, the failures probabilities of the stations were adjusted.

The wideness of the interval came out to be relatively larger than the ranges defined

for the balanced lines in the previous section. Yet the point estimation by average

availability approximation was realized to provide reliable estimates. The failure and

the repair probability of the machines are in consistence with the system

characteristics of the automotive plants, that is the stand-alone availabilities of the

stations were chosen within the interval of 85% to 95%.

Example

For four-station lines with different machines, the system parameters and behavior

were obtained using the tabular method and presented in Table 7.7.

Table 7.7 Four-Station Lines with Different Machines

Line q[4] q[3] q[2] q[1] r[4] r[3] r[2] r[1] PR(4)

A 0.008 0.050 0.010 0.070 0.045 0.575 0.190 0.511 0.698

B 0.100 0.080 0.050 0.020 0.566 0.720 0.575 0.313 0.723

C 0.007 0.002 0.070 0.030 0.093 0.013 0.396 0.570 0.690

66

There are four different failure and repair probabilities that give way to four different

stand-alone availabilities (SAA(i)) of the stations in the line. Table 7.8 shows the

stand-alone availabilities and the average availability of the lines.

Table 7.8 Stand-Alone Availability of the Stations (%)

Line Station 4 Station 3 Station 2 Station 1 Average

A 85 92 95 88 90

B 85 90 92 94 90

C 93 87 85 95 90

The upper and lower bound of the balanced lines are calculated using the balanced

lines with the lowest and highest stand-alone availability. Table 7.9 demonstrates the

characteristics of the balanced lines that are used as the upper and the lower bounds

for the lines that consist of different machines.

Table 7.9 Lower (LB) and Upper (UB) Bounds

Line q[4] q[3] q[2] q[1] r[4] r[3] r[2] r[1] LB

A 85% 0.008 0.101 0.034 0.090 0.045 0.575 0.190 0.511 0.605

B 85% 0.099 0.127 0.101 0.055 0.566 0.720 0.575 0.313 0.636

C 85% 0.016 0.002 0.069 0.101 0.093 0.013 0.396 0.570 0.609

Line q[4] q[3] q[2] q[1] r[4] r[3] r[2] r[1] UB

A 95% 0.002 0.030 0.01 0.027 0.045 0.575 0.190 0.511 0.835

B 95% 0.029 0.038 0.03 0.016 0.566 0.720 0.575 0.313 0.837

C 95% 0.005 0.001 0.021 0.030 0.093 0.013 0.3966 0.57 0.811

67

Remark: The exact production rate solution of the balanced lines with the applicable

availabilities is then defined the lower and upper bound limits on the production rate

of the line with different machines as indicated in Table 7.9.

The balanced line approximations were performed by keeping the repair probability

constant while changing the failure probabilities of the lines to obtain the desired

stand-alone availability of the stations, namely the lowest and highest availabilities in

Table 7.8.

A useful estimate was found by assuming a balanced line with the average

availability of the stand-alone availabilities of the stations as given in Table 7.8.

Table 7.10 shows the balanced line approximations with the average availability.

These are obtained by adjusting the failure probabilities of the stations to acquire the

target availability while keeping the repair probabilities constant.

Table 7.10 Balanced Lines with Average Availability

Line

q[4] q[3] q[2] q[1] r[4] r[3] r[2] r[1]

Average

Availability

A 90% 0.005 0.064 0.021 0.057 0.045 0.575 0.190 0.511 0.704

B 90% 0.062 0.080 0.064 0.035 0.566 0.720 0.575 0.313 0.721

C 90% 0.010 0.001 0.044 0.063 0.093 0.013 0.396 0.570 0.718

In addition, Table 7.11 presents the solutions for the production rate of the balanced

line approximations in Table 7.9 and Table 7.10, defining upper and lower bounds

with average line approximations. The results of the balanced line assumption with

the average availability yield reliable estimates for the production lines with different

machines as shown in Table 7.11.

68

Table 7.11 Limits and Average Approximation

Line

Real

PR(4)

Lower

Bound

Upper

Bound

Average

Approximation

A 0.698 0.605 0.835 0.704

B 0.723 0.636 0.837 0.721

C 0.690 0.609 0.811 0.718

As suggested, the exact solutions of the lines yield results that are situated within the

intervals that are defined by the balanced lines. It is clear that as the stand-alone

availabilities of the stations come closer to each other, the interval for production rate

estimate becomes less wide. In addition, the average availability approximation

provides reliable point estimate for the exact solutions.

7.5 Further Considerations

7.5.1 Order of Stations

To analyze the relation between the system behavior and the order of the machines in

a production line, necessary experiments were conducted. Table 7.12 presents

example cases for different order of stations for a four-station production line.

Table 7.12 Different Order of Machines

q[4] q[3] q[2] q[1] r[4] r[3] r[2] r[1] PR(4) WIP(4)

0.008 0.050 0.010 0.070 0.051 0.453 0.115 0.511 0.679715 3.163381

0.050 0.010 0.070 0.008 0.453 0.115 0.511 0.051 0.679534 3.269736

0.010 0.070 0.008 0.050 0.115 0.511 0.051 0.453 0.679618 3.227851

0.070 0.008 0.050 0.010 0.511 0.051 0.453 0.115 0.679833 3.135742

69

Table 7.12 shows that the order of the machines in the line does not have any effect

on the performance measures of the system. The main reason is the availabilities of

the stations are close to each other, namely within 85% to 95% availability.

7.5.2 Mean First Passage Times

It is also essential to figure out the first passage times between system states. This

gives beneficial insights of how systems behavior evolves. The expected number of

transitions before the system reaches the state (j), given that the system is currently in

state (i) is defined as the mean passage time from (i) to state (j).

Notation:

mi,j is the mean first passage time from system state Xi to state Xj.

The mean first passage time equations are formulated as:

where Pi,k is the transition probability from system state Xi to Xk. and πi is the steady-

state probability of the system state Xi.

The set of linear equations were generated and then solved within MATLAB. The

code generates all relevant mean first passage times between system states and is

included in Appendix E.

To exemplify, the simplest case of two-station line was considered. All applicable

system states (2
3
 = 8) are summarized in Table 7.13.

70

Table 7.13 System States

X1 = [D,D] X5 = [U,U]

X2 = [D,U] X6 = [U,S]

X3 = [D,S] X7 = [B,D]

X4 = [U,D] X8 = [DB,D]

The corresponding 8x8 transition probability matrix generated by the tabular

algorithm is given in Table 7.14 given q[2] = 0.009, r[2]=0.4 and q[2] = 0.009,

r[2]=0.4. The steady-state probabilities calculated for the system is in Table 7.15.

Table 7.14 The Transition Probability Matrix

 X1 X2 X3 X4 X5 X6 X7 X8

X1 0.3 0 0.3 0.2 0 0.2 0 0

X2 0.03 0 0.57 0.02 0 0.38 0 0

X3 0 0 0.6 0 0 0.4 0 0

X4 0 0.0045 0 0 0.4955 0 0.4955 0.0045

X5 0 0.00855 0 0 0.94145 0 0.04955 0.00045

X6 0 0.009 0 0 0.991 0 0 0

X7 0 0 0 0 0.5 0 0.5 0

X8 0 0.3 0 0 0.2 0 0.2 0.3

Table 7.15 Steady State Probabilities

X1 X2 X3 X4 X5 X6 X7 X8

0.00033 0.0078 0.01136 0.00022 0.88407 0.00758 0.08806 0.00057

71

In addition, Figure 7.16 presents the 8x8 matrix representing the mean first passage

times between system states that is generated by the developed program.

 Table 7.16 Mean First Passage Times

 X1 X2 X3 X4 X5 X6 X7 X8

X1 2991.86 128.56 126.08 3207.12 3.81 40.59 21.30 2504.50

X2 4145.52 128.22 91.80 4360.78 3.56 6.31 23.94 2507.15

X3 4273.70 128.18 87.99 4488.96 3.53 2.50 24.24 2507.44

X4 4272.53 127.01 218.81 4487.79 2.02 133.31 11.44 2494.65

X5 4271.34 125.81 217.62 4486.59 1.13 132.12 20.71 2503.91

X6 4271.20 125.68 217.49 4486.46 1.03 131.99 21.74 2504.94

X7 4273.34 127.82 219.62 4488.59 2.00 134.12 11.35 2505.91

X8 4219.41 73.89 165.70 4434.67 3.52 80.21 17.61 1755.11

As seen from Table 7.15, the minimum mean first passage time between system

states is m6,5 = 1.03 and the maximum is m3,4 = 4488.96.

As a result, by the help of the transition matrix generation steady-state solutions and,

mean first passage times can be analyzed for multi-station production lines with no

intermediate buffers.

72

CHAPTER 8

CONCLUSIONS

8.1 Concluding Remarks

This study is focused on the exact analysis of the system behavior of multi-station

production lines without intermediate buffer. Production lines that are operated under

a fixed-cycle-time policy, with stations subject to breakdown are modeled by

discrete-time Markov chains.

Based on the methods proposed, the tabular algorithm was programmed in

MATLAB, which provided exact solutions of the transition probability matrix by

generating transitions with transition probabilities a given number of stations in a

multi-station production line. Moreover, steady-state solutions were found and

important performance measures were analyzed in order to foresee the system

behavior. The results for three, four and five-station production lines were analyzed

in detail.

Critical performance measures such as production rate and work-in-process measures

were further analyzed to establish valid formulas in accordance with the system

parameters. A curve-fit analysis was performed and valid equations were found to

forecast the production rate and the work-in-process with a reasonable accuracy.

Furthermore, for lines with non-identical machines, approximations were suggested

and numerical analysis was realized.

73

To verify the results, the tree expansion and tabular algorithms were developed in

different programming environments, namely Linux and MATLAB, respectively. The

tree expansion algorithm was developed for an automotive body shop production

system. The constructed transition probability matrices and the calculated steady-

state solutions of the two algorithms yield the same results. This verifies the

computational efforts devoted to this research.

8.2 Future Work

This study provided exact solutions of the steady-state probabilities by constructing

the transition probability matrices of multi-station production lines without

intermediate storage. In addition, lines with identical machines are curve-fitted to

obtain useful approximate equations for production rate and work-in process

measures.

Furthermore, the analyses of the balanced lines, where all stations have the same

availability were also realized based on the exact solutions of the algorithms.

Effective lower and upper bounds for the production rate and the work-in-process

were suggested with acceptable range and accuracy. In addition, the cases where all

machines have different failure and repair probabilities were also considered.

Approximations with upper and lower bounds were suggested.

Further research can be devoted to include intermediate storage between the

machines. Furthermore, the code can be expanded to allow for intermediate buffer

with one unit capacity easily. That is; a machine with zero failure probability and one

repair probability can act like an intermediate storage of capacity one between two

stations. Consequently, a next step after this research can be the including of buffers

between stations based on the developed algorithm.

74

REFERENCES

Gershwin, S.B. (1987), “An efficient decomposition method for the approximate

evaluation of tandem queues with finite storage space and blocking”, Operations

Research 35(2), pp. 291-305.

Gershwin, S. B. and Schick, I.C. (1983), “Modeling and analysis of three-stage

transfer lines with unreliable machines and finite buffers”, Operations Research,

31(2), pp. 354-380.

Lipschutz, S. and Lipson, M. (1997), “Schaum’s Outline of Discrete Mathematics”,

2
nd

 Edition, ISBN: 0-07-038045-7, McGraw Hill.

Maggio, N., Matta, A., Gershwin, S. B. and Tolio, T. (2009), “A decomposition

approximation for three-machine closed-loop production systems with unreliable

machines, finite buffers and a fixed population”, IIE Transactions 41(6), pp. 562-

574.

Muth, E. J. (1979), “Models for production lines in which stations are subject to

breakdown”, Methods of Operations Research 35, pp. 345-346.

Muth, E. J. and Yeralan, S. (1981), “Effect of buffer size on productivity of work

stations that are subject to breakdown”, Proceedings of the 20
th

 IEEE Conference on

Decision and Control.

Schick, I.C. and Gershwin, S.B. (1978), “Modeling and analysis of unreliable

transfer lines with finite interstage buffers”, Complex Material Handling and

Assembly Systems, Volume IV, Report ESLFR-834-6, Electronic Systems

Laboratory, Massachusetts Institute of Technology, Cambridge, MA.

Tan, B. (1997), “Variance of the throughput of an N-station production line with no

intermediate buffers and time dependent failures”, European Journal of Operational

Research 101(3), pp. 560-576.

75

Tolio, T., Matta, A. and Gershwin, S.B. (2002), “Analysis of two-machine lines with

multiple failure modes”, IIE Transactions 34(1), pp. 51-62.

Yeralan, S., Franck, W. and Quasem, M.A. (1986), “A continuous materials flow

production line model with station breakdown”, European Journal of Operational

Research 27, pp. 289-300.

Yeralan, S. and Tan, B. (1997), “A station model for continuous materials flow

production”, International Journal of Production Research 35(9), pp. 2525–2541.

76

APPENDIX A

MATLAB CODE FOR THE TABULAR METHOD

% Sub-Function: tara2.h

function sayi=tara(array,num)

 n=length(array);

sayi = length(find(array(num:n)~=2 & array(num:n)~=3));

% Main Script:

close all; clear all; clc;

% Number of machines

k = 2:3;

QplusR = 0; % if 1 then fixed 'q+r' else it uses fixed q

%Interval

r_varr = [0.01 0.025:0.025:0.95]';

q_varr = (0.001:0.002:0.099)';

Nq = size(q_varr,1);

Nr = size(r_varr,1);

% NOTE: running for variable q and r over the number of machines is

% possible by defining the columns of the q_var and r_var matrix. The rows

% presents the sequence of variables (per machine) for which the algorithm

% is run, whereas the columns give the probabilities for every machine. If

% the user wants to allow for these variable probabilities k must be scalar.

display(['counting length = ',num2str(Nq)]);

for k=k(1):k(end)

display(['Now running for ',num2str(k),' Machines']);

77

q_var = kron(q_varr,ones(1,k)); % makes matrix; every column a machine

r_var = kron(r_varr,ones(1,k)); % makes matrix; every column a machine

%--%

% Building the Permutation Matrix

%--%

elem = [0,1,2,3,4]; % 0=D, 1=U, 2=S, 3=B, 4=DB

x = npermutek(elem,k);

rr = find(x(:,1)~=2 & x(:,k)<3);

x = x(rr,:);

n = size(x,1);

j = 1;

t = 0;

for i = 1:1:n

 for l=2:k

 if x(i,l) == 2 || x(i,l) == 1

 if x(i,l-1) ~= 3 && x(i,l-1) ~= 4

 t = t+1;

 end

 else

 t = t+1;

 end

 end

 if t == k-1

 X(j,1:k) = x(i,:);

 n1 = size(X);

 j = n1(1)+1;

 end

 t = 0;

end

%--%

% Generating the Transition Matrix

%--%

N = size(X,1);

% Obtaining 'a'; checking each row: how many of '0 or 1 or 4' there are...

for i1 = 1:N

 a(i1,:) = length(find(X(i1,:) ~= 2 & X(i1,:) ~= 3));

 Y(i1).Y = zeros(2^a(i1,:),k);

end

78

%------------------------------------%

% Last row, for n = k

%------------------------------------%

for i1=1:size(X,1) % Loop iterating possible sequences (rows of X)

 rowYi = 2^a(i1);

 if X(i1,k) == 1 || X(i1,k) == 0

 % ---- for only first half of the rows ----

 switch X(i1,k-1)

 case {1,4,3}

 Y(i1).Y(1:rowYi/2,k) = ones(rowYi/2,1);

 case {0,2}

 Y(i1).Y(1:rowYi/2,k) = 2*ones(rowYi/2,1);

 end

 elseif X(i1,k) == 2

 switch (X(i1,k-1))

 case {1, 4, 3}

 Y(i1).Y(1:rowYi,k) = ones(rowYi,1);

 case {0 , 2}

 Y(i1).Y(1:rowYi,k) = 2*ones(rowYi,1);

 end

 end

%--%

% Middle rows, for n = k-1 to 2

%--%

for n = k-1:-1:2

%FIRST INNER-LOOP

if X(i1,n) == 1 || X(i1,n) == 4

 C = tara2(X(i1,:),n);

 M = 2^(a(i1)-C);

 for w=1:2*M:2^a(i1)

 if Y(i1).Y(w,n+1) == 0 || Y(i1).Y(w,n+1) == 3 || Y(i1).Y(w,n+1)== 4

 % count not starving and not blocked 'n' to 'k'

 Y(i1).Y(w:w+M-1,n) = 3*ones(M,1);

 Y(i1).Y(M+w:w+2*M-1,n) = 4*ones(M,1);

 end

 if Y(i1).Y(w,n+1) == 1

 switch X(i1,n-1)

 case {1,4,3}

 Y(i1).Y(w:w+M-1,n) = ones(M,1);

 Y(i1).Y(M+w:w+2*M-1,n) = zeros(M,1);

 case {0,2}

 Y(i1).Y(w:w+M-1,n) = 2*ones(M,1);

79

 Y(i1).Y(M+w:w+2*M-1,n) = zeros(M,1);

 end

 end

 end

end

% SECOND INNER-LOOP

if X(i1,n) == 0

 C = tara2(X(i1,:),n);

 M = 2^(a(i1)-C);

 for w=1:2*M:2^a(i1)

 if Y(i1).Y(w,n+1) ~= 1 % like if equals to 0,3,4, or 2

 switch X(i1,n-1)

 case {1, 4, 3}

 Y(i1).Y(w:w+M-1,n) = ones(M,1);

 Y(i1).Y(M+w:w+2*M-1,n) = zeros(M,1);

 case {0,2}

 Y(i1).Y(w:w+M-1,n) = 2*ones(M,1);

 Y(i1).Y(M+w:w+2*M-1,n) = zeros(M,1);

 end

 end

 end

end

 if X(i1,n) == 2

 switch X(i1,n-1)

 case {1, 4, 3}

 Y(i1).Y(1:2^a(i1),n) = ones(2^a(i1),1);

 case {0,2}

 Y(i1).Y(1:2^a(i1),n) = 2*ones(2^a(i1),1);

 end

end

% THIRD INNER-LOOP

if X(i1,n) == 3

 for w=1:1:2^a(i1)

 if Y(i1).Y(w,n+1) == 0 || Y(i1).Y(w,n+1) == 3 || Y(i1).Y(w,n+1)== 4

 Y(i1).Y(w,n) = 3;

 end

 if Y(i1).Y(w,n+1) == 1

 switch X(i1,n-1)

 case {1, 4, 3}

 Y(i1).Y(w,n) = 1;

 case {0, 2}

 Y(i1).Y(w,n) = 2;

 end

 end

 end

80

end

end % end of the k-1 generation

%---------------------------------------%

% First row, for n = 1

%---------------------------------------%

if X(i1,1)== 1 || X(i1,1) == 4

 for w=1:2:2^a(i1)

 if Y(i1).Y(w,2) == 0 || Y(i1).Y(w,2) == 3 || Y(i1).Y(w,2) == 4

 Y(i1).Y(w:w+1,1) = [3;4];

 end

 if Y(i1).Y(w,2) == 1

 Y(i1).Y(w:w+1,1) = [1;0];

 end

 end

end

if X(i1,1)== 0

 for w=1:2:2^a(i1)

 if Y(i1).Y(w,2) ~= 1 % like if equals to 0,3,4, or 2

 Y(i1).Y(w:w+1,1) = [1;0];

 end

 end

end

if X(i1,1)== 3

 for w=1:1:2^a(i1)

 if Y(i1).Y(w,2) == 0 || Y(i1).Y(w,2) == 3 || Y(i1).Y(w,2) == 4

 Y(i1).Y(w,1) = 3;

 end

 if Y(i1).Y(w,2) == 1

 Y(i1).Y(w,1) = 1;

 end

 end

end

Y(i1).XY=[X(i1,:);Y(i1).Y];

end % end of loop iteration over rows of X

%--%

% Transition Probability Matrix:

%--%

results = [];

for qi = 1:Nq % loop iteration 'for every value of q'

for ri = 1:Nr % loop iteration 'for every value of r'

% Defining the r and q probabilities per loop run:

r = r_var(ri,:);

if QplusR == 1

 q = q_var(qi,:)-r;

else

81

 q = q_var(qi,:);

end

qb = ones(1,k)-q; % q_bar

rb = ones(1,k)-r; % r_bar

for i1=1:N

 ny = size(Y(i1).Y,1);

 Y(i1).P = ones(ny,1);

 for ik = 1:k

 if X(i1,ik) == 1

 for iny = 1:ny

 switch Y(i1).Y(iny,ik)

 case {0,4}

 Y(i1).P(iny) = Y(i1).P(iny)*q(ik);

 case {1,2,3}

 Y(i1).P(iny) = Y(i1).P(iny)*qb(ik);

 end

 end

 elseif X(i1,ik) == 0

 for iny = 1:ny

 switch Y(i1).Y(iny,ik)

 case {0}

 Y(i1).P(iny) = Y(i1).P(iny)*rb(ik);

 case {1,2}

 Y(i1).P(iny) = Y(i1).P(iny)*r(ik);

 end

 end

 elseif X(i1,ik) == 4

 for iny = 1:ny

 switch Y(i1).Y(iny,ik)

 case {0,4}

 Y(i1).P(iny) = Y(i1).P(iny)* rb(ik);

 case {1,2,3}

 Y(i1).P(iny) = Y(i1).P(iny)*r(ik);

 end

 end

 end

 end

end

%--%

% Filling in the probabilities:

%--%

T = zeros(N,N); % Initializing the Transition Probability Matrix

for i1=1:N

 ny = size(Y(i1).Y,1);

 for i2=1:ny

82

 for i3=1:N

 if X(i3,:) == Y(i1).Y(i2,:)

 hm=i3;

 end

 end

 T(i1,hm) = Y(i1).P(i2);

 end

end

%--%

% Solving phi * T = phi

% phi * (T-I) = 0

%--%

TI = T-eye(N);

% replacing one column of T-I with the condition sum(phi_i) = 1

A = TI; A(:,1)=ones(N,1);

rhs = [1 zeros(1,N-1)];

% Computing the steady-state solutions (phi)

phi = rhs*A'*inv(A*A'); % Linear Least Squares; assuming A*A' nonsingular

% mathematical checks

sumone(qi,ri) = sum(phi); % should be 1

isnul(qi,ri) = max(phi - phi*T); % should be 0 (close to zero)

% Save results in the Structure Q:

Q(qi).Res(ri).X = X; % Current States

Q(qi).Res(ri).Y = Y; % Transition States

Q(qi).Res(ri).T = T; % Transition Propability Matrix

Q(qi).Res(ri).phi = phi; % Steady State Propability

Q(qi).Res(ri).M = MFPT(T,phi); % Mean First Passage Time

Q(qi).qs = q_var(qi,:);

Q(qi).rs = r_var;

%--%

% Computing the Production Rates and WIP:

%--%

% Production Rates:

for i = 1:k

 indices = find(X(:,i)==1);

 indices2 = find(X(:,i)==2);

 indices3 = find(X(:,i)==3 | X(:,i)==4);

 indices4 = find(X(:,i)==1 | X(:,i)==3 | X(:,i)==4);

 Q(qi).ProdRates(ri,i) = sum(phi(indices));

83

 Q(qi).StarvRates(ri,i) = sum(phi(indices2));

 Q(qi).BlockRates(ri,i) = sum(phi(indices3));

 Q(qi).WIP(ri,i) = sum(phi(indices4));

end

% Total WIP (as the k+1 column):

Q(qi).WIP(ri,k+1) = sum(Q(qi).WIP(ri,:)')';

% QR = [q^3 q^2 q];

end % end loop r varialbes

tempres = [kron(ones(Nr,1),q_var(qi,:)) r_var(:,:) Q(qi).ProdRates(:,1) Q(qi).WIP...

 Q(qi).StarvRates Q(qi).BlockRates];

results = [results ; tempres];

display(['count ',num2str(qi)]);

end % end loop q variables

svstr = ['HH_',num2str(k),'Machines.mat'];

save(svstr,'Q','results','q_var','r_var','QplusR');

display(['Saved for k=',num2str(k)]);

save temp.mat k Nq Nr q_varr r_varr

clear all

load temp.mat

load(['HH_',num2str(k),'Machines.mat']);

end

84

APPENDIX B

SAMPLE OF EXACT ANALYSIS RESULTS

Table A.1 Sample Results

Starvation

Probability Blockage Probability

q r PR(3) WIP(3) m/c 3 m/c 2 m/c 1 m/c 3 m/c 2 m/c 1

0.01 0.05 0.628 2.256 0 0.123 0.247 0.248 0.124 0

0.01 0.10 0.771 2.543 0 0.076 0.151 0.152 0.076 0

0.01 0.15 0.835 2.670 0 0.054 0.109 0.110 0.055 0

0.01 0.20 0.871 2.742 0 0.043 0.085 0.086 0.043 0

0.01 0.25 0.894 2.788 0 0.035 0.070 0.071 0.035 0

0.01 0.30 0.910 2.820 0 0.030 0.059 0.060 0.029 0

0.01 0.35 0.922 2.844 0 0.026 0.052 0.052 0.026 0

0.01 0.40 0.931 2.862 0 0.023 0.046 0.046 0.022 0

0.01 0.45 0.938 2.877 0 0.020 0.041 0.041 0.020 0

0.01 0.50 0.944 2.888 0 0.018 0.037 0.037 0.018 0

0.02 0.05 0.460 1.921 0 0.177 0.355 0.359 0.180 0

0.02 0.10 0.631 2.261 0 0.121 0.243 0.246 0.123 0

0.02 0.15 0.719 2.439 0 0.092 0.185 0.187 0.093 0

0.02 0.20 0.774 2.547 0 0.074 0.149 0.151 0.075 0

0.02 0.25 0.811 2.621 0 0.062 0.125 0.126 0.063 0

0.02 0.30 0.837 2.674 0 0.053 0.107 0.108 0.054 0

0.02 0.35 0.857 2.714 0 0.047 0.094 0.095 0.047 0

0.02 0.40 0.873 2.746 0 0.042 0.084 0.085 0.042 0

0.02 0.45 0.885 2.771 0 0.037 0.075 0.076 0.038 0

0.02 0.50 0.896 2.791 0 0.034 0.068 0.069 0.034 0

0.03 0.05 0.365 1.730 0 0.206 0.416 0.422 0.212 0

0.03 0.10 0.535 2.071 0 0.151 0.304 0.309 0.155 0

0.03 0.15 0.634 2.267 0 0.119 0.240 0.244 0.122 0

0.03 0.20 0.698 2.395 0 0.098 0.198 0.201 0.101 0

85

APPENDIX C

MATLAB CODE FOR CURVE-FITTING AND 3D-PLOTTING

clear all; close all; clc

global qry unity

% number of stations:

k = 3;

% load saved data from the main file

svstr = ['HH_',num2str(k),'cMachines.mat'];

load(svstr);

%---%

% LSQ NonLIN Curve-fit optimization routine %

%---%

display([num2str(k),' Machines']);

% The Function:

% y = (b0 + b1q + b2r + b3qr)/(1 + b4q + b5r + b6qr)

% y = b0 + b1q + b2r + b3qr - b4qy - b5ry - b6qry

% NOTE: y = PR or y = WIP, b=[b0,....b6] = b(1),...b(7)

ii = 0;

for qi=1:length(q_var(:,1))

 for ri=1:length(r_var(:,1))

 q = q_var(qi,1);

 r = r_var(ri,1);

 ii = ii+1;

 PR(ii,:) = Q(qi).ProdRates(ri,1);

 WIP(ii,:) = Q(qi).WIP(ri,1);

 qr(ii,:) = [q r];

 Xq(qi) = q;

 Yr(ri) = r;

86

% Matrices used for 3D plots:

 X_q(ii) = q;

 Y_r(ii) = r;

 Z_prod(ri,qi) = Q(qi).ProdRates(ri,1);

 Z_wip(ri,qi) = Q(qi).WIP(ri,1);

 end

end

% summary of results:

totalres = [qr PR WIP];

% starting position of the optimization routine

x0 = [1 1 1 1 1 1 1];

% used options set for the leoptimization

options=optimset('MaxIter',100);

options=optimset(options,'MaxFunEvals',3000);

options=optimset(options,'TolFun',1e-6);

options=optimset(options,'LargeScale','off');

options=optimset(options,'LevenbergMarquardt','on');

options=optimset(options,'Jacobian','off');

% Running the optimization problem for PR:

unity = 1;

qry = [qr PR];

[xpr ep] = lsqnonlin('HRationalfit',x0,[],[],options);

% round solution to 4 decimals

xpr = round(xpr*10000+0.0055)/10000;

% Mean and Variance of PR:

MeanPR = sum(PR)/length(PR);

VarPR = PR'*PR/length(PR)-MeanPR^2;

% Compute the stochastic characteristics of the error (PR):

errPR = HRationalfit(xpr);

MinAbsErrPR = min(abs(errPR))

MaxAbsErrPR = max(abs(errPR))

MeanErrPR = mean(errPR)

MeanAbsErrPR = mean(abs(errPR))

% percentage error:

PerErrPR = errPR./PR*100;

MinAbsPerErrPR = min(abs(PerErrPR))

MaxAbsPerErrPR = max(abs(PerErrPR))

MeanPerErrPR = mean(PerErrPR)

87

MAPE_PR = mean(abs(PerErrPR))

% Variance and MSEP:

VarErrPR = errPR'*errPR/length(errPR)-MeanErrPR^2

MSEP_PR = mean(sqrt(VarErrPR)./PR*100)

f10 = figure(10);

subplot(2,1,1);

plot(qry(:,1),'k');

xlabel('Samples');

ylabel('q');

subplot(2,1,2);

plot(qry(:,2),'k');

xlabel('Samples');

ylabel('r');

f1 = figure(1);

plot(PerErrPR,'k');

title(['Percent Error of PR for ',num2str(k),' Machines']);

ylabel('e (%)');

xlabel('Samples');

f2 = figure(2);

plot(errPR,'k');

title(['Error for PR for ',num2str(k),' Machines']);

ylabel('e');

xlabel('Samples');

% Running the optimization problem for WIP:

unity = 1;

qry = [qr WIP];

[xwip ew] = lsqnonlin('HRationalfit',x0,[],[],options);

% round to 4 decimals

xwip = round(xwip*10000+0.0055)/10000;

% Mean and Variance of WIP:

MeanWIP = sum(WIP)/length(WIP);

VarWIP = WIP'*WIP/length(WIP)-MeanWIP^2;

% Compute the stochastic characteristics of the error (WIP):

errWIP = HRationalfit(xwip);

MinAbsErrWIP = min(abs(errWIP))

MaxAbsErrWIP = max(abs(errWIP))

88

MeanErrWIP = mean(errWIP)

MeanAbsErrWIP = mean(abs(errWIP))

% percentage error (WIP:

PerErrWIP = errWIP./WIP*100;

MinAbsPerErrWIP = min(abs(PerErrWIP))

MaxAbsPerErrWIP = max(abs(PerErrWIP))

MeanPerErrWIP = mean(PerErrWIP)

MAPE_WIP = mean(abs(PerErrWIP))

% Variance and MSEP (WIP):

VarErrWIP = errWIP'*errWIP/length(errWIP)-MeanErrWIP^2

MSEP_WIP = mean(sqrt(VarErrWIP)./WIP*100)

f3 = figure(3);

plot(PerErrWIP,'k');

title(['Percent Error of WIP for ',num2str(k),' Machines']);

ylabel('e (%)');

xlabel('Samples');

f4 = figure(4);

plot(errWIP,'k');

title(['Error for WIP for ',num2str(k),' Machines']);

ylabel('e');

xlabel('Samples');

saveas(f10,['qrVSsamples.jpg'],'jpg');

saveas(f1,['PR_',num2str(k),'MC_PercentErr.jpg'],'jpg');

saveas(f2,['PR_',num2str(k),'MC_AbsErr.jpg'],'jpg');

saveas(f3,['WIP_',num2str(k),'MC_PercentErr.jpg'],'jpg');

saveas(f4,['WIP_',num2str(k),'MC_AbsErr.jpg'],'jpg');

%---%

% 3D PLOTS %

%---%

Y_r = r_var(:,1)';

X_q = q_var(:,1)';

for qi=1:length(q_var)

 for ri=1:length(r_var)

 q = q_var(qi,1);

 r = r_var(ri,1);

 Z_xpr(ri,qi) = (xpr(1)+xpr(2)*q+xpr(3)*r+xpr(4)*q*r)/(unity...

 + xpr(5)*q+xpr(6)*r+xpr(7)*q.*r);

 Z_xwip(ri,qi) = (xwip(1)+xwip(2)*q+xwip(3)*r+xwip(4)*q*r)/(unity...

 + xwip(5)*q+xwip(6)*r+xwip(7)*q.*r);

 end

end

89

f5 = figure(5);

surf(X_q,Y_r,Z_prod)

title(['Production Rate versus q and r (',num2str(k),'-station)']);

xlabel('q')

ylabel('r')

zlabel('Production Rate')

f6 = figure(6);

surf(X_q,Y_r,Z_xpr)

title(['Forecast PR versus q and r (',num2str(k),'-station)']);

xlabel('q')

ylabel('r')

zlabel('Production Rate')

f7 = figure(7);

surf(X_q,Y_r,Z_wip/k)

title(['WIP/N versus q and r (',num2str(k),'-station)']);

xlabel('q')

ylabel('r')

zlabel('WIP/N')

f8 = figure(8);

surf(X_q,Y_r,Z_xwip/k)

title(['Forecast WIP versus q and r (',num2str(k),'-station)']);

xlabel('q')

ylabel('r')

zlabel('WIP/N')

saveas(f5,['PR_',num2str(k),'MC_3Dplot.jpg'],'jpg');

saveas(f6,['PRest_',num2str(k),'MC_3Dplot.jpg'],'jpg');

saveas(f7,['WIP_',num2str(k),'MC_3Dplot.jpg'],'jpg');

saveas(f8,['WIPest_',num2str(k),'MC_3Dplot.jpg'],'jpg');

% HRationalfit function code

function e = HRationalfit(x)

% The Function:

% y = (b0 + b1q + b2r + b3qr)/(b4 + b5q + b6r + b7qr) + b8

% NOTE: y = PR or y = WIP, b=[b0,....b8] = x(1),...x(9), b8 = offset

global qry unity

q = qry(:,1);

r = qry(:,2);

y = qry(:,3);

 e = y - (x(1)+x(2)*q+x(3)*r+x(4)*q.*r)./(unity+x(5)*q+x(6)*r+x(7)*q.*r);

90

APPENDIX D

CALCULATIONS FOR MAPE AND MSEP

The Mean Absolute Percent Error (MAPE) is calculated as:

The Mean Standard Error Percent (MSEP) is calculated as:

Where the Root-Mean-Square (RMS) of the forecast error is equal to the square root

of the variance (or standard deviation) of the error as presented in Table 7.2 and 7.4.

Note that both the MAPE and MSEP are percentage error statistics.

91

APPENDIX E

MATLAB CODE FOR MEAN FIRST PASSAGE TIMES

function M = MFPT(P,phi)

 % The MFPT function is called in the 'core routine' code.

% This function computes the Mean First Passage Time (MFPT) based the

% Transition Probability matrix 'P' and the steady state probability matrix 'phi'

% (with dimension: N x 1). The MFPT is defined as the matrix 'M' which has

% identical dimensions as 'P'. The equations to be solved are:

% M(i,i) = 1/phi(i)

% M(i,j} = 1 + SUM(T(i,k) * M(k,j)) for 'k' not equal to 'j'

% In the latter equation, M(i,j) is solved in a column-wise manner.

% Example of solving the third column, i.e. for j=3:

% [M(1,3)] [M(1,3)]

% [M(2,3)] [M(2,3)]

% [M(4,3)] = ones(N-1,1) + P([1:2,4:N],[1:2,4:N]) * [M(4,3)]

% [:] [:]

% [M(N,3)] [M(N,3)]

% In the above the column M(:,3) can easily be solved.

% NOTE: in the example the M(3,3) related parts are discarded.

% ------ Start Function Code ----- %

% ------------------------------------- %

N = length(phi);

Icol = ones(N-1,1);

 % Computing the diagonal entries, i.e. M(i,i) = 1/phi(i):

% (note: the M(i,j) entries are initialized as zero)

M = diag(1./phi);

% Solving M(i,j) in a column-wise approach:

for i=1:N

 % discard the M(i,i) related parts:

 ind = [1:i-1,i+1:N];

 % Solve M(:,i) using linear least squares (pseudo inverse):

 temp = (eye(N-1)-P(ind,ind));

 M(ind,i) = pinv(temp)*Icol;

end

