PERFORMANCE ANALYSIS AND COMPARISON OF SOA SERVERS
DIFFERENT APPLICATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MACIEJ KUSZEWSKI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JULY 2010

Approval of the thesis:
PERFORMANCE ANALYSIS AND COMPARISON OF SOA SERVERS
IN DIFFERENT APPLICATIONS

submitted byMaciej Kuszewskiin partial fulfilment of the requirements for the
degree ofMaster of Science in Computer Engineering Departmen Middle
East Technical Universityby,

Prof. Dr. Canan Ozgen

Dean, Graduate School Nftural and Applied Sciences

Prof. Dr. Adnan Yazicli

Head of DepartmenGomputer Engineering

Assoc. Prof. Dr. Ahmet Gar
SupervisorComputer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Faruk Polat

Computer Engineering Dept., METU

Assoc. Prof. Dr. Ahmet Gar
Computer Engineering Dept., METU

Prof. Dr. Adnan Yazici
Computer Engineering Dept., METU

Prof. Dr. Hakki Toroslu

Computer Engineering Dept., METU

Assoc. Prof. Dr. gur Gudukbay

Dept. of Computer Engineering, BILKENT

Date:

| hereby declare that all information in this document has been obtained
and presented in accordance with academic rules arethical conduct. | also
declare that, as required by these rules and condyd have fully cited and

referenced all material and results that are not aiginal to this work.

Name, Last name: Maciej Kuszewski

Signature:

ABSTRACT

PERFORMANCE ANALYSIS AND COMPARISON OF SOA SERVERS
DIFFERENT APPLICATIONS

Kuszewski Maciej
M.Sc., Computer Engineering

Supervisor : Assoc. Prof. Dr. Ahmet@&o

July 2010, 80 pages

One of the most crucial decisions when developigysiem based on Service
Oriented Architecture is to select an approprigt@er which will be the ground
for building the application. Similar to databases, application server has
significant influence on efficiency, stability, anskecurity of entire system.
During the preparation of architecture for systeemedopment one has to decide

which available application server would be optifealhosting and maintaining

Web Services in the given case. There are mukigleificant criteria that lead to
the proper choice. The impact on a decision amdhgrahings is type of the
physical machine on which the application servenssalled, estimated number
of simultaneous clients, and sizes of requestsresipbonses between clients and
server. The goal for this thesis is to conductabmparative analysis of the most
commonly used application servers using Servicer@ed Architecture and to
determine which server should be applied in whiattipular cases. Performance
and load tests will be conducted using SoapUl appbn.

Keywords: SOA, web services, application serve ABO

Oz

Farkli Uygulamalar ile SOA Sunucularinin Kiyaslasmee Performans Analizi

FARKLI UYGULAMALAR ILE SOA SUNUCULARININ KIYASLANMASI
VE PERFORMANS ANALZi

Kuszewski Maciej
Yuksek Lisans, Bilgisayar MuhendgglAna Bilim Dali

Tez Yoneticisi : Dog. Dr. Ahmet g€

Temmuz 2010, 80 sayfa

Uygulama geklitirme ortami olmasi acgisindan uygun sunucu secBeivis
Yonelimli Mimari tabanl sistem galirmede en 6nemli kararlardan birisidir.
Benzer olarak veritabani ig¢in, uygulama sunucusutiim sistem Uzerinde
guvenlik, etkinlik ve guvenilirlik agisindan cok @mli etkisi vardir. Sistem
mimarisi gelstirmeye hazirlanirken, uygulama sunucusunun vererumdaki

web hizmetlerini daha verim$iekilde barindiracak ve strdirebilecek bir sunucu

Vi

olmasi gerekir. Dgru olan secimi yapabilmek icin bir cok dnemli kriteardir.
Karar etkileyen dier konular ise uygulama sunucusunun ne tir bikdei
makine Uzerine kurulaga tahmini @zamanl kullanici sayisi, sunucu ve alici
arasindaki istem ve cevaplarin buy@ddir. Bu tezin amaci; Servis Yonelimli
Mimari kullanan en yaygin uygulama sunucularinirrsikastirmali analizini
yapmak ve 0Ozellikle belirtilen durumlarda hangi ulgma sunucusunun
secilmesi gerekgini belirlemektir. Performans testlerinde SoapUlgukamasi

kullaniimistir.

Anahtar Kelimeler: SOA, web servisleri, uygulamawscusu, SOAP

vii

To My Parents

viii

ACKNOWLEDGEMENTS

First of all |1 would like to thank my thesis supesar Assoc. Prof. Dr. Ahmet
Cosar for his abundant help and their prolific sugmest. | appreciate also his
swift actions regarded with the issue of arrangimg server on which | could

conduct my experiments.

| am grateful to Assoc. Prof. Dr. Tolga Can for #iehis help during my studies
at Computer Engineering Department. Especiallyhisr support with solving
formal issues related with applying for the maspgogram at Computer

Engineering Department.

Lastly, | want to thank all my interviewees. Theiositive attitude and
willingness to participate in the study and to shdreir valuable experiences

greatly motivated me to put forth a good work.

TABLE OF CONTENTS

ABSTRACT L.ttt mmmm et e e e e et e e e e s et r e e e e e e e e e e e annees iv

(@ Y2 OSSOSO SRR vi

ACKNOWLEDGEMENTS ...t e et e eeaan e e IX

TABLE OF CONTENTS ..ot n e X..

LIST OF TABLESooioi ittt ettt e e e e e e e Xii

LIST OF FIGURES. ..ottt ettt Xiii

CHAPTER

1. INTRODUCTION ..ottt s e et e e e e e e e e e s ea e e e e s ees 1
1.1 Thesis Objective and SCOPE............. e e eeeeeennnnnnnnninaaaeeeaeaeaaaees 4
1.2 TRESIS OULINE ...ttt ccmme et 5

2. BACKGROUND ... oottt et e et e e et e e e et e e e eaa s enennns 6
2.1 Service Oriented Architecture and Web Services..........cccccuuueee. 6
2.2 Application servers, Apache Tomcat, and Orsééb Logic 12
2.3 Related WOIKSccvviiiiiiiiei i 51

3. EXPERIMENTAL SETUP ..ottt eeme e 20
3.1 Performance teSting tO0]................coommeernnnninaeee e e e eeeeeeeeeieneienns 20
3.2 TeSt ENVIFONMENTcoiiiiiiiiiiiie e eeeeee bbb e e e e e e e e e e e e e e 22
3.3 General test environment desCriptionccccceevvvvvveiiiiiiiee e eeeeee, 22
3.4. Performance configurations.............coeeemeeeeeiiiiieeeeeeeeseeeseeeeeennnenns 24
3. 4.1 PaylOad SIZEooiiiiiiieeeeei i e 25.

3.4.2 Configurations - Single web service request............... 25
3.4.3 Configurations - A web service dependentvam ather web
SEIVICES . ..iiiiiiie ettt e e e e e e e e e e e e e e e 26

3.2.3 Configurations - very complex SOA environment....... 27

3.3 Performance mMeasSUIrEMENTS........c. ... o eeeeeeeeeeareaeennennnennn 28

3.4 Performance teSt SIrateQy........... .. ummmmmmsesennnnnsseseeeeeeeeeeereeemmnnnnnne 29
3.5 INJection Profile ... e 31
3.6 Experimental SEtup SUMMAIYcoooeiieeeiieeee e 32
4. EXPERIMENTAL RESULTS ..ottt et e e 34
4.1 Single self-dependent web service testS.ccoevvvvvviiiiiiiieeeeeeen. 36

4.1.1 Test 1: Simple 5 thread load test................................. 36
4.1.2 Test 2: Simple 15 thread load test...c.eeeeeeeeeeeeene... 38
4.1.3 Test 3: Simple 30 thread load test.. .o eeeeeeeeenenn... 40

4.1.4 Test 4: Ramp-up performance test....cccccceevveeeeeeennnn.e. 42
4.1.5 Test5: Burstload test............co e e oo e eeeeeeeeeeeeiiiiis 44
4.1.6 Test 6: Ramp-up performance test with in@e@aSOAP
message payload SiZe............oovvveiiiviceemmmmneiieee e e e 46
4.2 Web service dependent on other web services...............cceee. 50
4.2.1 Test 7: Simple 5 thread load test.....cccoee oo 50

4.2.2 Test 8: Simple 15 thread load test... .o eeeeeeieeeeenennn.. 52
4.2.3 Test 9: Simple 25 thread load test.....oeeeeeeeeeeennnee... 54

4.2.4 Test 10: Ramp-up performance test.......ccccceeeeeeeeeeenn.n. 57
4.2.5 Test 11: Ramp-up performance stress test................. 61
4.2.6. Test 12: Burstload tesSt.........ooo e 64
4.3 Very complex SOA enVIrONMENTuueiiiieeneieeeeeeeeeeeeeeeeeiiiiienne 66
4.3.1 Test 13: Simple 1 thread load test....cmm.eeeeeeeeeneeeee.... 66
4.3.2. Test 14: Ramp-up performance test........ccc.cceeeeeeeenn. 68
5. CONCLUSIONSoei et et e et e e e e e eeean 71
5.1 Future research opportunitiescceeeeeeeiiiiinneee e 77
REFERENCES. ...ttt etee ettt e e e et e e e e snnnee s 78

Xi

LIST OF TABLES

Table 4.1 — Tests conducted on single, self-depengeb service 57
Table 4.1 — Tests conducted on a web service depérmh two other web
SBIVICES .ttt ittt et e et et e e e e e e e 57
Table 4.1 — Tests conducted on a very complex S@A&@ment.............. 58
Table 4.1 — Results TOr TeSt L....ccouiiiiee e e e 58
Table 4.2 — ReSUItS TOr TeSE 2. i e 59
Table 4.3 — Results for Test 3o i 62
Table 4.4 — ReSUlts for TeSt 4. e 65
Table 4.5 — Results for TeSt S.cn. .o 69
Table 4.6 — ReSUItS TOr TESE G.cn.evni e e e 71
Table 4.7 — ReSUILS fOr TeSt 7. e 76
Table 4.8 — Results for Test 8. e 79
Table 4.9 — Results Tor TeSt O....vivi i 81.
Table 4.13 — Results for TeSt 10.......ovvuiiiii i e e 86
Table 4.14 — Results for TeSt 11.......oiiuiiiii i e e 90
Table 4.15 — Results for Test 12.......c.ciiiiiiiiiiii e 95
Table 4.16 — Results for Test 13.........ccoiiiiiiiiiiiiiiiienie e e 2.98
Table 4.17 — Results for Test 14.......oovviiiiiiiiii e e 101

Xii

LIST OF FIGURES

Figure 2.1 — Basic scheme of enterprise SOA-bapetication 23
Figure 2.2 — Enterprise architecture in an SOAISHAc.cvevnnnnne 25
Figure 2.3 — Basic structure of SOAP message..............cceummmmeeeven.. 27
Figure 2.4 — An example of SOAP request message syiecified parameters
anNd WSDL fil€.. ..o 0. 28

Figure 2.5 — General idea Of WSDL.cu...ccooviiiiiiiiii e 29
Figure 2.6 — Application server scheme...........c.ccooviiiiiiiie e cnens 30
Figure 2.7 — Test results for 5-thread load test............ccooeiiiiiiinin, 34
Figure 3.1 - General scheme of the test environment.......................41
Figure 3.2 - Single web service with many requestS............................ 44
Figure 3.3 - A web service dependent on two othels services................ 45
Figure 3.4 - Highly dependent web service.............cocoiiiiiiiiiin e, 47
Figure 4.1 — Average response time for Test 1ccoceviiiviinennen. 59

Figure 4.2 —Throughput for Test 1ccoiiiiiiiiiii e e el 59

Figure 4.3 — Average response time for Test 2..........ccovev i iiiennns 61
Figure 4.4 — Throughput fOor TeSt 2......cciiiiiiii e 61
Figure 4.5 — Average response time for Test.3..........ccccovviviiiiiinenns 64
Figure 4.6 — Throughput for Test 3. .o e 64
Figure 4.6 — Average response time for Test.4.........ccooviiiiiiiiininn. 66
Figure 4.7 — Throughput for Test 4.......cciiiiiiii s 66
Figure 4.8 — Average response time for Test.5..........ccoevviiiiiiinenns 68

Figure 4.9 — Average response time for Test.6..................cceeeennn 71
Figure 4.10 — Throughput for Test G.........coooiiiiiiiiiiiiii e, 72

Xiii

Figure 4.11 — Average response time for Test.Z.............cooevvieiininn, 77

Figure 4.12 — Throughput for TeSt 7. e 77
Figure 4.13 — Average response time for Test8............ccooviviiiininn, 80
Figure 4.14 — Throughput for Test 8.......ccooi i e 80
Figure 4.15 — Average response time for Test9.............cooovieiininns 82
Figure 4.16 — Throughput for Test Q.........cccooiiiiiiiiiii e, 83
Figure 4.17 — Missing responses for Test 9................co oot v e e, 83
Figure 4.18 — Average response time for Test 10.............cooiieinnnnn. 87
Figure 4.19 — Throughput for Test 10..........ccoi it iiiiiiiiiiie e, 88
Figure 4.20 — Number of error or missing resporisegest 10................. 88
Figure 4.21 — Average response time for Test 11......cccceeiviiiiiiiienns 92
Figure 4.22 — Throughput for Test 11.........coiiiiiiiiiiiiiii e 92
Figure 4.23 — Number of error or missing resporieegest 11................ 93
Figure 4.24 — Throughput for Test 12.........cccciiiiiiii i e, 96
Figure 4.25 — Average response time for Test 13............coceviiiiinnn. 100
Figure 4.26 — Throughput for Test 13........ccoiiiiiiiiiii e, 101

Figure 4.27 — Average response time for Test 14..........................103
Figure 4.28 — Throughput for Test 14.........coviiiiiiiiiiii e e, 103

Xiv

CHAPTER 1

INTRODUCTION

Nowadays, the chances of a marketing success @tased product seem to be
more difficult to achieve than it was a few or dozears ago. Even if success is
achieved, the subsequent product maintenance owahe of popularity can be
similarly difficult. Under the pressure of fierceoropetition, each company
willing to be meaningful in the contemporary worlthust reasonably control
their spending. Only a balance between incomes speinding on new
investment, wages and other costs, may allow fercintinuous profitable
existence [Endrei2004]. Companies in the IT indusiot only try to cut down
costs and to maximize use of existing technolodiasalso strive to continuously
offer their customers products which are more cditipe and relevant to their

needs.

Before taking on a given project, it must first planned well. Apart from the
decomposition of the project into individual tasksie of the most important
issues is the costs planning. One shouldn’t foatpeiut the next stage in product
life cycle, which is further maintenance of the eleyed system and the costs
involved. In order to correctly estimate the pratbility of a project, all potential

costs to be faced during the project and costscadsd with the continuing

operation and maintenance of the system, shoukdken into account. Another
cost factor, apart from staff costs, is expenskdgea® to the infrastructure system.
Assuming that the IT project uses the benefitheflhternet, it is most likely that
the system designer will have to face the crudiallenge, which is to choose the
appropriate application server. In fact, it doesnétter that much, whether it is a
large company that has its own data center ressuwdgether it is just a growing
company that puts their servers into care of amo#wgernal specialized
company. In both of these cases, the cost of systamtenance usually depends
on the actual demand on the resources of servers sipport the system
[Endrei2004]. For this reason, companies wishingcampete effectively with
competitors, they should look for efficient solutsothat will effectively lower the
system maintenance costs. In this work, | wish égote particular attention to
the problem of selection of an appropriate sergesystems with some particular

load characteristics.

Currently in the market there are a number of lalsée free and commercial
application servers. Thorough review and justifmatof the choice of servers to
compare will be given in the following chapters. thifh the resources of the
Internet it is possible to find a comparative parfance tests aimed to check the
quality of certain application servers. The vasjamgy of them, however, cover
old, currently unused workloads and/or softwaresw#s. In designing the
system, it is always good to use the latest vessairsoftware, especially server
software. During the maintenance phase of the sysitemay be necessary to
update the component, which in turn may requireeaar version of software
used so far. By using the latest version, any rescghange in the future, might
be much easier. Another issue is the performaraentost vendors are seeking
to improve with each new version. Therefore, thastaised in this thesis will

cover only the most recent versions of the testessr

Nowadays more and more popular and trusted Iritesystems are based on

Service Oriented Architecture (SOA). This prefeeenie because of some

advantages related with this type of architectuBA is no longer an
experimental, uncertain, and new technology whisérsi usually consider with a
certain reserve and apprehension. According to RB&®], most companies have
already recognized the benefits of the SOA approlidiKinsey's research[??7?]
has shown that two-thirds of enterprise financra asurance sectors declared in
2007 that they were involved in the implementatmithis architecture. Of
course, these are not the only areas where SOA&anccessfully applied. This
is due to many advantages that come from this teicthre, i.e. greater flexibility,
no need to be forced to use only one supplier, taedpossibility of gradual

expansion.

As it was mentioned earlier, in order to save sastd thereby increase the
competitiveness of a product, one should selecapipeopriate application server
built into the system. While the number of tests f&erver performance
comparisons of static and/or dynamic pages sudPH# or CGl, is quite big, a
competent analysis of server performance in suppfoBOA is very difficult to
find. Particularly for studies conducted in a syséic and complete way where
we have to inspect the exact configuration of emnment on which the tests
were carried out and the available precise desonpbf the performed
experiments. For this reason this research of egipdn server performance will

be conducted on SOA based systems.

1.1 Thesis Objective and Scope

This study will examine and compare the most papsgavers that support SOA,
and then determine the application server in padiccases. Performance tests
will be carried out using the free application, fld&a It is intended to examine
the performance of applications operating in a S&&ironment. The software
developed in this research on web services will under different application
servers. It will consist of receiving the requestat by the load generator to the
examined web service. By executing the same sangtusing the environment
on the same physical server with various applicagervers, one can see the
performance differences that are caused by diffaapplication servers. The test
environment will consist of two physical serversieQof them will perform the
task of generating service requests. In additiamlithave to verify the received
responses to requests that were previously seéhétexamined server.

Another feature is the measurement of time whicpsts between sending
individual requests to the web service and recaptd the corresponding

response. The most important performance paranetdre average response
time. Each application server will be subjectedifiterent amounts of load, i.e.
different frequency of requests generated usingp8ba Another thing that will

change is the size of a request. In the case dbhgeSOA applications, we are
talking about the size of the SOAP messages setftetoveb service. It may
happen that some of the examined application serperform better with

requests of a certain size (XML payload size) tlthe others. One of the
objectives of this work is to capture these diffexes and define a profile for the
tested web application servers. The same appliebdages in the frequency of
generated requests. Similarly, in case of a heaag lof a server, it will be

checked, if the responses do not contain any eramrd if the client received a
response for each request that has been sentrddifies in the behavior of

servers, particularly under high, and extremelhhHaads may also be interesting.

The exact description of the configuration of thvieonment and the types of

measurements that are being performed are givE€hapter 4.

1.2 Thesis outline

This thesis is organized in five chapters. The finse includes introduction part,
where wide background and motivation are describbds chapter characterizes

also the scope of the thesis and experiments titldienconducted.

Second chapter of thesis is focused on the backdroknowledge and
technologies related with service oriented archite; web services, and
application servers. Being familiar with them isracial to understand the idea of
experiments which will be conducted. Second pathisf chapter contains review
of literature related with the subject of the tkesi

Chapter 3 consists of detailed experimental setupncludes description of
performance tests, server parameters that willdmepared, performance testing
applications, test environments, measurements estdstrategies. There is also
the specification of physical server and descriptid how services interact with

each other.

Chapter 4 contains all experimental results. ttivéded into three parts, each for
one SOA test environment. There are also brief rgggins of all tests and

comments about obtained results.

Chapter 5 is the summarizing of the results frora phrevious chapter and

subsequent conclusions. It contains also recomntieng&or further studies.

CHAPTER 2

BACKGROUND

2.1 Service Oriented Architecture and Web Services

The explicit definition of SOA is not an easy tadlere are several different
definitions, which are not always compatible withcle other. One of the most

common is [Newcomer2005]:

“...[an enabling] framework for integrating business processes and
supporting information technology infrastructure as [loosely coupled and]
secure, standardized components — services — thaarc be reused and

combined to address changing business priorities.”

In order to supplement this definition it is alsecassary to describe the term of
“web service”, which is the basic element of sesvigriented architecture
[Newcomer2005].

“a family of technologies that consist of specifations, protocols, and
industry-based standards that are used by heterogewous applications to

communicate, collaborate, and exchange informatioamong themselves in a
secure, reliable, and interoperable manner.”

Services in SOA are modules of business or techfuoationality with exposed
interfaces to the functionality.

(Web Service
b 4
()

- \u_/\L/’\'J N

Il

ANV

,/" ~J L""'_
. 1 .
{_Web Service =)

il b,
, —— G 4
() . \
b [. :h
K_ﬂ__/\w et

Service Orchestration -~ Client

Point “ F

P

-

S Web Service)
I\]

=

=

ey

Figure 2.1 — Basic scheme of enterprise SOA-bagplication [Salter2008]

In other words, SOA is a way to build systems thatis on the applications as a
combination of business services with other typésservices. One of the

objectives is to ensure flexibility and rapid reawstto any unexpected but

necessary changes. For this services must be indepefrom each unit and
perform very specific functions. When designingyatesm based on SOA, it is
necessary to know how the capabilities that are ptiamt with business
requirements are organized (web service interfaceg) who and how will use
these services. Properly designed architecture psesiples and a set of
practices to meet business and technical requiresnéd the implementation
level, software architecture allows to achieve petelency of the technology and
then adapt it to specific technology and configorat SOA refers to the
architecture, which is a formal specification ofrvéees, their types and
characteristics. It supports business processesitanelation with the whole

architecture and design process [14a].

Being oriented to business processes architecsuceucial in building flexible
and suitable for re-use services, and adaptatiothede processes along with
strategies and services for business purposedderifiy all needed services it is
necessary to prepare business and information motteladdition, completely
defined context of the enterprise helps to idergifysting services and to assign
to them responsibility for given functionalitieser8ice description contains
information about what specific role it performsdahow to use it. When all
required services within the enterprise are bet@ptified, there are three basic
ways to implement them. One option is to purchdseady existing services
according to our requirements. The other one @der the implementation from
an external company (outsourcing). The most comiaguast to construct it on
your own. When you choose the last option, it igisable to use approaches such
as middle-out, which usually turns out to be ma&cpical and efficient than the

typical bottom-up or top-down [14b].

Business
Madel
)

Business Objectives
Business Strategies |

L Business
Process
4

Core Processes

Enterprise
Architecture

Senice
Qrientation

Senice Platform]

z Processes Senice
S§mce Senices Ori d
Oriented b riente

Architecture Information Enterprise
Technology
Infrastructure

Applications
Databases
Processes

Systems
Technologies
Technology Strategy

Governance

Models

Information Technology
SOA

Figure 2.2 — Enterprise architecture in an SOAtatya[Lawler2008]

A project, which is based on SOA, is placed on a&fpitm that supports Web
Service. SOAP is the XML-based language used bytbwcol for exchanging
messages between interoperable services. Web &erldescription Language
(WSDL) is also an XML based standard for descritéegvices. In particular it

describes location and interfaces along with patarseof these services.

However, the standard of Universal Description, cbiery and Integration

(UDDI) is used to publish services in the registoythat they can be found by
any application. SOA is essentially focused on dadars, which allow

maintaining interoperability and independence fritra technology or platform
[Lawler2008].

The basic unit of communication within web serviégesa message. Message
format is based on XML standard of SOAP. In ordetransfer request and result
data, SOAP uses HTTP protocol. The structure basedML standard does not

change under different operating systems or progriagn languages. SOAP body
and header parts of the message must be includadobject named Envelope. It
identifies the transmitted message as a SOAP mesbadrigure 2.4 there is an

example code of a weather forecast web servicecatian based on a SOAP

request message.

SOAP SOAP
Header | Body

SOAP Envelope

Figure 2.3 — Basic structure of SOAP message

10

<soapenv:Envelope xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmins:ndf="http://www.weather.gov/forecasts/xml//DWMLgen/wsdl/ndfdXML.wsdl">

<soapenv:Header/>

<soapenv:Body>

<ndf:NDFDgenByDay

soapenv:.encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

<latitude xsi:type="xsd:decimal">39.0000</latitude>

<longitude xsi:type="xsd:decimal">-77.0000 </longitude>

<startDate xsi:type="xsd:date">2010-05-11T12:00 </startDate>

<numbDays xsi:type="xsd:integer">1</numDays>

</ndf:NDFDgenByDay>

</soapenv:Body>

</soapenv:Envelope>

Figure 2.4 — An example of SOAP request messadespicified parameters and
WSDL file

WSDL is an XML-based standard that specifies homel service operates. It is
defined essentially as a collection of interfaceth warameters. A client while
having access to the WSDL file which defines a iservs even not aware of
actual location of the service. The exact locabbmeb service is defined inside
the WSDL file. The general idea is presented infttlewing diagram.

11

,"‘.l'.’--'f"l-“-' = '1_—.‘\
“‘ WSDL
e oW “J.IJ
... 8
e
XML (SOAP)
requests and
- ds
Service respan -
) Client
provider

Figure 2.5 — General idea of WSDL

2.2 Application servers, Apache Tomcat, and Oracl&/eb Logic

Application Server is based on components. Ittisased in the middle tier of web
application architecture. It provides security $&8, maintenance applications,
along with an access to services provided on thiges. Application Server is
usually based on J2EE (Java 2 Platform, Enterpd#ion), which uses a
distributed multi-layer model. It contains cliemért middle tier and enterprise
information system tier. The client tier can be ebviborowser or other application
that uses services and data hosted on the sergdleMier is composed mainly
of http web server and EJB server. It can alsoxbeneled by further sub-levels.

Enterprise information system tier (EIS) houseseaiting applications along

12

with all files and database. The structure showsg ftiiagram below
[AppServ2010].

Client Tier

J2EE Platform
Middle Tier

EIS Tier

Figure 2.6 — Application server scheme [AppServ2010

13

The most popular application servers are Apachecbbrand Oracle Web Logic,
which was a separate company until 2008 when itleas taken over by Oracle
and was renamed as BEA Web Logic. Both serversst@®OAP standard used
for sending XML-based messages. This is an essefi@ent of communication
used in SOA.

Apache Tomcat uses Java HTTP Servers (Coyote)isténk for incoming
requests on a particular TCP port. Then passesetheests to Tomcat Engine in
order to be handled and returned directly to thentlthat sent the request. In
addition, the Tomcat has also servlet containeal@at, which implements the
Java Servlets and JSP (JavaServer Pages). Apacheaf s a completely free
product offered under the GPL license. This appbeaserver is constantly being
developed by the community of Apache Software Fatiod. A very important
thing related with this development process is mgwvcollaboration between
developers and users, which notify about potentiterabilities and bugs. This
applies to either stable or beta versions of Apdaracat application server.

Apache Tomcat Architecture is composed of a sariemponents, interacting
in accordance with the predefined rules. The stinecdf the server installation is
defined in the XML file. Tomcat allows also the eagity of clustering. For this

purpose there are different types of data repboatiThese are replication of
session amongst server clusters, replication ofesdrattributes and deployment
via WAR files. The latter provides the same appiccarunning on all available

clusters. The other two maintain an open sessiothendifferent clusters and
access to attributes on all the servers [Zambor2007

Oracle Web Logic is a scalable, Java EE based cgtign server. It is a very

powerful system made up of many components. Infrestre provides

14

deployment of many types of distributed applicagiamd is designed specifically
for service-oriented architecture (SOA). The cortelmplementation of the Java
EE specification provides a set of APIs for creatihistributed web applications
with access to various network services. The erd oistains the access to these
applications through a web browser or other cliapplications. Oracle Web
Logic also supports the Spring Framework. In cakdwlding applications,
which have to handle heavy traffic, it offers tregability of clustering, in order
to distribute the load within particular nodes. Sban be also used as a protection
against data loss in case of hardware failure. I©@\eb Logic application server
has also many diagnostic tools that allow systemimidtrators to monitor in
detail applications that are deployed on the se®@eacle Web Logic also offers
powerful server management capabilities such asryadvanced administrative
panel [OracleCorp2009].

Another very popular application server is GlassFigvhich includes web
services implementation according to Java EE 5ipatmon. Nevertheless the
engine of GlassFish application server is basedmache Tomcat. That is why
GlassFish will not be taken into further performamomparison. To justify this
decision has been conducted a load test for the 8Q@Aronment described in
subsection 3.4.3. Load was equal to 5 threads ggngrconstantly requests to

the service provider.

15

Throughput
[transactions / sec]

Gl

70 A

G0 1

40

30

20 1

10 4

0 30 G0 80 120 Time [sec]

——Apache Tomcat & —— GlassFish v3

Figure 2.7 — Test results for 5-thread load test

The results only confirm that it would be betterfé@aus on Oracle Web Logic

and Apache Tomcat application servers, rather ithende also GlassFish V3.

2.3 Related works

At today's pace of Internet technologies developmeach subsequent year
brings many new versions of popular applicatiorvees or emergence of totally
new products. Recently quite common is also takingr a company by another

one and offering old products under new name. Gmefiod a lot of researches

16

and comparisons on the performance of pure htigesgrhowever most of which
is no longer developed. One example might be tlsts tperformed by Jef
Poskanzer (ACME Labs) [Poskanzer2010]. They reféhé typical http servers,
but unfortunately they are not very detailed anteesive, which may lead to
incorrect conclusions. There is a lack of tests ftifferent cases and
configurations that could simulate the server work real users. Most web
servers, which are subject to testing, including Apache version 1.3 are in
general no longer used. Experiments were condugtetkbr Solaris operating
system. The results showed significant differenceperformance between the
Apache 1.3.0, and victorious Zeus 3.1.4 servelchvivas faster to use small

files even up to 320%.

Further tests [Zeuscat2010] conducted by Andrewfétms on comparison of
two versions of the Apache HTTP 1.3 and 2.0. Initeald there is also thttpd
server included. Tests, which were carried outediffom each other mainly by
degree of server load. Each test is based on rampadl injection profile, which
progressively increases the number of threadsgda¢rate requests. The author
analyzes each test in terms of average througlgowt $pecific range of threads,
and latency. A single test takes 30 seconds. T8te &xplicitly indicated thttpd as
a winner. The slowest HTTP server was Apache 1.3.

In more recent studies [LitespeedTech2010] thepeiformance comparison of
different versions of popular Web servers (Apat¢hepd, Lighttpd, LightSpeed).
Used tool for testing was the Apache Benchmark.eGerd requests regards to
small static files, dynamically generated pages PEBI, Fast CGI, or a simple
Perl script. The test results explicity showedttithe fastest server was
LiteSpeed. However, because of the fact that theyewpublished at the

LiteSpeed official website, it may be better togaeéve them with some degree of

17

skepticism and distrust. Nevertheless descriptibthe tests, client and server

environments, have been prepared very accuratdlynegetail.

Another similar performance test has been conduzyeglun [SunJava2010]. Sun
Java System Web Server 6.1 and Apache Tomcat XCcerapared. The latter
server turned out to be a bit slower. Apart frora kbad test which consisted of
static and dynamic requests (JSP), also differemiisk of experiments were
conducted. Amongst the tests the characteristiseover behavior under very
heavy load was analyzed as well. In this kind dftde the difference was
significant. As a result Apache Tomcat was genegatmany more error

responses than the Sun Java System Web Serveve@ga Apache Tomcat was
generating 24 times more errors than Sun Java8yéteb Server. The greater
the load was and the longer the test ran, therdiffee was greater as well. Also
in case of Apache Tomcat, error responses werertiegunuch earlier (lower

load) than in the Sun Java System Web Server.

Other types of tests on the web servers performeacde find in articles "Linux
Is The Web Server's Choice"[Nichols2010] and "Linup Close: Time To
Switch" [LitespeedTech2010] by Steven J. Vaugharhblis and Eric Carr. They
focus on a comparison of performance under difteoperating systems, mostly
of Linux systems but in addition there was also #éivs NT 4.0. The final
results showed that Windows NT was the slowestaipey system that supports

Apache server. It was about 50% slower than theda€aldera OpenLinux.

A. Van Abs and Jason Brittain compared Apache Taracd Oracle Web Logic
[Brittain2009]. They state that sometimes it isrewrth to take up the challenge

of migration from one server to another in an ayeamplemented and

18

functioning system. In their work they put forwaadlot of arguments against
using Oracle Web Logic. One of the most appareffitréinces is obviously the
type of license on which the two servers are alklaApache Tomcat in
contrary to Oracle Web Logic is a completely frggplecation. Another reason
may be also too high complexity of the Oracle Wedgit. Although this is a
robust tool it is also quite elaborate, both fovelepers or administrators. The
authors justify this argument by the time requifed configuration or for an
update of application. Usually it also requirestingl and restarting the server. It
causes a problem with availability provision. Apaclhomcat requires a far
shorter time. If a certain application requiressl@saintenance costs, and fewer
employees, it can be a good argument for movingatme other technologies.
Similarly, the speed of reaction to unexpected gkarof system requirements,
which in the case of a complex application servarirenment requires more

time and hence a certain product may not be alitedp the pace of competition.

19

CHAPTER 3

EXPERIMENTAL SETUP

3.1 Performance testing tool

A significant issue related with conducting perfammoe and load tests is selection
of an appropriate testing tool. Doubtless, the npagtular one which is used for
examining J2EE web application server is defini®pache JMeter. This tool is
completely developed in Java and is aimed to measgpplication efficiency and
server utilization. The most relevant physical seryarts that undergo
measurements are utilization of server's CPU ressurand utilization of its
RAM memory. Certainly from a web application deysdo point of view an
important measurement is the maximum number ofsuskan application that
the server can handle satisfactorily. Modern penéorce and load testing tools
can naturally deal with such tasks. The basic patanthat is used for efficiency
assessment is the time which lapse from the mowfeatrequest sent by a tool
that generates workload to the time of receptionesponse from the tested web
server. Depending on load, which web server isesaibgl to, the response time

will vary. Apache JMeter and other similar toolsvbaa wide range of

20

functionalities for a more thorough study of theve€'s behavior during server

work with multiple parallel requests.

Despite so many advantages and features offerethdoyApache JMeter, to
conduct performance tests a different tool has besed this thesis. An
alternative testing tool is proposed by Eviwaref@dlalt is also a powerful tool
to perform various tests on a web system, but Wiéhdifference that its design
goal was not testing the traditional web appligaidut those based on SOA
architecture, or just a single web service. Pratadvantage of this application is
the automatic identification of interfaces (Port€gp defined as a WSDL or
REST. This is graphically represented in the progis a hierarchy of these
interfaces. There is also available a preview etibmck messages received from
the web service. Besides this, there is functibpalvhich is helpful in carrying
out performance tests, called SOAP Monitor. It $2dito capture information
about traffic that has been generated and senhdbe form of service requests
for their further analysis. SoapUl also has marepteatures, which will not be
used within this thesis for performing tests. Thaseude support for WS-
Security, NTLM authentication Web Service, Basidgdst, WS-Addressing.
Other types of tests that can be carried out by thol are: functional tests,
attachments testing, compliance testing and theilpibsy of simulation of a
certain web service using MockServices built justrf a WSDL file. Due to the
type of research that is being conducted in thesith) the choice of SoapUl as the

main testing tools seem to be natural.

21

3.2 Test environment

The next step in building Experimental Setup rigfier establishing SoapUl as
the principle tool for testing, is to develop attesvironment. The main goal of
this thesis is to examine the efficiency of pafacuweb servers in certain
configurations. In the case of testing a specijgtem based on web services it is
advisable to specify the general purpose of testingan be for example, the
estimated number of potential users that the sys@mefficiently handle. It is
then needed to access a working system installeéteotarget computers and the
injection of the database (if any) generated vatoesmulate test conditions that
are the most similar to a real workload, which sieever will be very likely to

face while performing it’s work in a real environnte

If only the web server is being tested, the comigon in which the web service
also obtains and processes data from the databasenecessary and may be
subject of a separate research work. Another isstie functional tests, which in

the case of this thesis makes no sense. In ordardiore the greatest reliability of
the obtained results the physical server that ramsttested web service should
be physically an independent entity. It is necgssarprevent occurrence of a
situation where the response time to a request alglb depend on external
factors, which could be for example, another exteYWAN web service which

has an impact on the total response time of thedeservice. It is similar if we

wanted to access a database server. It is not sagelsut can only negatively

affect the quality of measurements.

3.3 General test environment description

The web services that will be tested are assumdx tlocated on a single, and

only server. While configuring the server, whicHlie specifically described in

22

the remaining part of this thesis, it is necessargiose all unnecessary processes
running on this machine. Traffic on the test semwér be generated through the
SoapUl application from a different external congsutThis second computer
will generate a specified number of requests thttbhe forwarded to the service
provider. The specification of requests and resesiis in SOAP (Simple Object
Access Protocol) standard. Of course, clients slsmuld have an access to the
web service definition language (WSDL), compatifike that will be used by the
service provider. Then, it will be possible to gexte the correct request (SOAP).
Only if the request is compatible with the speaifion of interfaces defined in
WSDL it will be handled. Every single request geted by a load generator,
then waits for a response from a web service tachvthe request was sent. The
time that has elapsed since sending a single refqyesy individual client, until
receiving a reply, will be included when calculgtithe server average response
time. The methods of testing will be described ietadl in the following
paragraphs. SoapUl will use another computer, kvhidl be used for generating
requests sent to the service provider.

23

Service

Load
rovider
P XML (SOAP) _ _ Generator
requests and > &
responds S
N Service
Requestors

Figure 3.1 - General scheme of the test environment

3.4. Performance configurations

In order for these experiments to make sense, éefesting it should be
considered which configurations of physical seraad service provider may
have the greatest impact on the results that wall dbtained. Particularly
interesting can be those configurations that cay plrole in finding significant

differences in the application web servers.

24

3.4.1 Payload size

A parameter that is specific for web services & phayload size. During the tests
the size of a SOAP request messages will be diftan different test cases. The
change of request size sent to Service Provideregaose if any of the Web

servers, if any, performs well only for small-sizedjuests. The aim is to identify
a Web server that is doing well with both smalled éarger request sizes that are

sent from a great number of clients.

In each case the server will be subjected to diffefoads. This means that, a
different number of requests will be generated imrgt of time. Thus it is
possible to observe certain characteristics (@pfdf tested web servers. Of
course, each server has certain limits which, deexled, can cause completely
unpredictable performance results. Such a threshalglbe e.g. too long average
response time that cannot be accepted. Anotherjildgss to receive erroneous
responses from the Service Provider. These areob\digns of overloading the
server, which should never be allowed. This typtests helps developers to raise
awareness and to estimate the number of usersdfybtem, which can cause
hazard in the system availability for its clienfhis is even more important
because any behavior of that kind reduces the isgafrthe data stored in a

server.

3.4.2 Service provider configurations - Single webervice request

In this case all generated load will attempt toegsca single web service, that is a

self-dependent entity.

25

Client

Figure 3.2 - Single web service with many requests.

3.4.3 Service provider configurations - A web seree dependent

on two other web services

In this case a service provider consists of threb wservices among which the
main one relies on the other two. A client sendscaest to the web service with
certain request parameters that is further propadgtt the remaining two web
services. Eventually the client receives a respdrea the main web service,

which got initial client request.

26

Service Provider

— —~ S S

N
'@

o \ﬁ\l — | :

d - - (o D)

'Web Service1 (——————— [) ' Web Semcez)
b

C. 2 » @ -

= R A e

4 {

M

Client

Figure 3.3 - A web service dependent on two othels Bervices.

3.2.3 Service provider configurations - very compbe SOA

environment

The third environment on which tests will be conedcis extremely complex. It
consists of multiple web services, which are tighdllated with each other. Client
sends SOAP requests message, which contains @-stpe parameter. This
parameter is further propagated amongst whole S@/kanment, and eventually
all responses from all web services are being ¢bimecording to service

orchestration point approach and returned to tieafcl

27

Service Provider

i, pis
\ !
k_/\\-_//\‘\._/" —

—/ g v -7."\,, — = o9 V =
{ A)
‘-;_,Web Service5 . —— \J'eb Semce4)
{) i .)
. S~
=y

S

! -) .;'/'/// .
‘Web Service6 | \Tf__
() N
%\/_/_/ g i \\
h- J v‘vw
Client

Figure 3.4 - Highly dependent web service

3.3 Performance measurements

Another important point in developing a test plas deciding on which
measurements will be collected. The first measurénie naturally the web
server response time. For performance testingiesteserver will be subjected to
very heavy load (stress test). Especially nearugher limits of the capacity of
the server, the response times may be significalitfgrent from those for light
loads. Under extreme loads a web service may gieeriect results, or not

respond at all. For this reason only the averagpamse time is meaningful. This

28

is by far the most important factor that determities quality of the examined

web server [Molyneaux2009].

As it already has been mentioned, there are siusin which the response time
measurement is flawed. These cases will also bestmgated. It is possible that
certain web server would provide responses to maguter a long time, but on
the other hand, a higher percentage of correct ensswill be received. In the
final assessment all these factors should be iedu&xamining the two above
guality evaluation criteria for the examined webvses, one can determine cases

for which they suit the best.

3.4 Performance test strategy

In order to decide whether the efficiency test #mal quality test of SOA-based
system, was duly carried out, usually one typeest is not enough. This is
because of the different goals of the differenetypf tests. The most common of
them is of course load test, where the primary tasto examine the response
time for requests sent to the server [Priyanka200Bgse requests are generated
with different frequencies. Usually the measurenwdrdverage response time is
made at a certain threshold, ranging from very kssaver load. With increasing
load on the server, the response times will bedoag well. At a high frequency
of generated requests the server starts to belesge dredictably. This may
manifest itself in many ways. One of the most commobservations is lack of
response to the request or receiving a responseaftunreasonably long period
of time. Other possible cases are receiving a latgeber of wrong answers or
not being able to connect to the service. For @iBpally studying this kind of

behaviors of a server stress tests have been ishtdhl It lasts as long as any of

29

these behaviors will start to occur. Basically, #im is to determine the limits at

which the test system may still work.

In this way, we can estimate the upper limit totkaenber of users that the server
can handle. In contrary to the load test, thisigrfecused solely on bringing the
server to an invalid state or behavior and to deiter when it occurs. When
testing the efficiency of various web servers,skt®r a service provider will be
very simple, but sufficient to perform a proper gamnson of performance of web
servers. For this reason, in my case, conductingtrafss test does not make
greater sense. Stress tests are usually used gtngtea complete system,
estimating the maximum number of its users. Naegt the performance of the
web server. When performing the load test, thevdstreceive correct answers,
and those affected by the error will be includedhie final evaluation of a web

server.

Another type of test that you can perform is sdechl baseline test

[Priyanka2008]. It determines a specific referepoént for subsequent tests.
Thanks to it you know the best possible outcomé witly a single request. To
make tests results more reliable, the test shoaladdrried out repeatedly and
there should be selected the best possible rédatise note that while obtaining
the results the server may be busy with other,rs#any processes, which could
distort the result. For my research, baseline itestdundant, mainly due to the
small amount of information that gives this typetes$t in my case. Differences
between servers in a single request, where theiserwiot loaded are essentially
negligible. In real systems, the waiting time fbe tsingle request to the server,
depends mainly on the quality of network connectioetween a client and a
service provider. In a real system, the differengbgh could reach milliseconds

are irrelevant.

30

3.5 Injection profile

In developing a performance test plan, one canassider the characteristics of
requests generating by the load generator (injeqtiofiles). The most popular
and the most commonly used method is called rampRtpanka2008]. It starts
from only one client that simulates a web systerar.udVithin next regular
intervals the number of requests to the serviceigen is being increased, until

the desired number of requests per second.

This method can also be used with slight modifaati It involves the
introduction of breaks while the increasing frequenf requests to the server.
After a short break, again frequency of generaggglests is increasing, and then
soon another break, that occur at some fixed tbtdsfhis is helpful when one
want to observe the server load at certain sigamitithresholds of the intensity of

requests.

Another common method is called big bang. Main ideto start generating all
the requests in the same moment. Unlike the previoethod the server is

subjected to a constant load.

In my research | decide to use ramp-up method thighmodification. My main
goal is to compare the behavior of each servehatspecified load. Thanks to
modification, it is relatively easy to observe sfgant differences at certain
thresholds.

31

3.6 Experimental setup summary

Experimental setup for the tests is as follows:

Servers to be compared
* Apache Tomcat 6.0
* Oracle WebLogic 10

Testing tool Eviware SoapUl

Server hardware specification:
» CPU: XEON (2 core of 2.0 GHz each)
« 2GBRAM
« 80 GB WD SATA HDD

Physical test environment:
Single server for load generator (SoapUIl) and arotine (xeon) as a

service provider

Configurations:
* Load generator settings are determined by theddiX®L request
message (size of payload) and by requests per déoad level)
» Service Provider will be represented as a single sesvice, a web
service dependent on two other web services, andrgomplex SOA

environment

Comparison criteria:

« Average response time

32

* Responds per second

* Number of service responses saddled with errasek 6f response

Test strategy
* Load test

e Stress test
Injection profile

* Ramp-up (with steps)
* Big bang

33

CHAPTER 4

EXPERIMENTAL RESULTS

The following Chapter is divided into three secioRach section represents

another SOA environment. Tests included in thigptdraare as follows:

Table 4.1 — Tests conducted on single, self-dependeb service

Test tvpe Injection Total
yp profile Load Payload size [time
Test 1 |Simple load | Big bang 5 threadd 259 bytes 120 sec
Test 2 [Simple load [Big bang 15 threads| 259 bytes 120 sec
Test 3| Simple load [Big bang 30 threads| 259 bytes 120 sec
Test 4 | Ramp-up load Ramp-up 1to 40 259 bytes 300 sec
threads

34

Test 5 | Burst load Big bang |35 thread [259 bytes 150 sec
Test 6 | Ramp-up load Ramp-up 1to 20 129 000 bytes| 120 sec
threads

Table 4.2 — Tests conducted on a web service depeod two other web

services
Test tvpe Injection Total
yp profile Load Payload size [time
Test 7 |Simple load |Big bang |5 threads |262 bytes 120 sec
Test 8 |Simple load |Big bang |15 threads|262 bytes 120 sec
Test 9 |Simple stress |Big bang |25 threads| 262 bytes 120 sec
Test 10 |Ramp-up load | Ramp-ug 1 to 20 262 bytes 300 sec
threads
Test 11 | Ramp-up stressRamp-up |25to 50 |262 bytes 300 sec
threads
Test 12 | Burst load Periodical 35 threads| 262 bytes 150 sec
big bang

Table 4.3 — Tests conducted on a very complex SQA&x@ment

Injection

profile

Load

Payload
size

Total
time

35

Test type

Test 13 | Simple stress|Big bang |1 threads 260 bytes | 120 sec

Test 14 [Ramp-up load Ramp-up |1 to 3 threads| 260 bytes | 300 sec

4.1 Single self-dependent web service tests

Tests conducted in this section are aimed to compae performance of web

servers when they handle simple web service.

4.1.1 Test 1: Simple 5 thread load test

During this test the load generator uses five tiise¢hat simultaneously send
requests to the server. We do not take into acabengimplicity of single web

service. The load is constant for the whole peabtist.

The test configuration is as follows:
* Number of threads generating requests: 5
* Injection profile: big bang
* Environment: single web service
» Testtime: 120 seconds

» SOAP message payload size: 259 bytes

Table 4.4 — Results for Test 1

Apache Tomcat| Oracle Web Logic
Average response time [ms] 15,150 15,018
Average throughput [transactions/sec] 312,795 3,1
Standard deviation of response times 1,204 0,292

36

Average response time
[mis]

40

35 A
30 A

23 A

201
13 1

10

] 30 G0 20 120 Time [sec]

—Apache Tomcat5 —— Cracle Web Logic 10

Figure 4.1 — Average response time for Test 1

Throughput
[transactions sec]

350

300 A

250

200 4

] 30 G0 a0 120 Time [sec]

——Apache Tomcat 5 —— Oracle Web Logic 10

Figure 4.2 —Throughput for Test 1

37

As expected the server wasn't loaded very muchofting to the table 4.1 in
both cases average response time was around 15 hascharacteristics of
throughput (Figure 4.2) were very similar as wéhly standard deviation of
Apache Tomcat average response time was slightatgr than Oracle Web
Logic. Apparently it is related with the early beging of the test (first 1-2
seconds). Response times of the initial respons@sazle Web Logic were more

aligned. The remaining part of the test looks neigientical for both web servers.

4.1.2 Test 2: Simple 15 thread load test

In this test the load has been increased to 1adkréhat are generating requests.

The remaining parameters are the same as in tdstase (Test 1).

The test configuration is as follows:
* Number of threads generating requests: 15
* Injection profile: big bang
* Environment: single web service
» Testtime: 120 seconds

» SOAP message payload size: 259 bytes

Table 4.5 — Results for Test 2

Apache Tomcat| Oracle Web Logi¢
Average response time [ms] 18,971 19,937
Average throughput [transactions/sec 716,150 680,9
Standard deviation of response times 0,216 0,655

38

Average response time
[ms]

25

20 A [W

15 1

10

0 30 G0

——Apache Tomcat 5

20

— Oracle Web Logic 10

120 Time [sec]

Figure 4.3 — Average response time for Rest

Throughput
[transactions sec]

200

700 'rt;_)————l//

600
500 A
400 A
300 A
200 A

100 A

0

——Apache Tomcat 6

a0

— Oracle Web Logic 10

120 Time [sec]

Figure 4.4 — Throughput for Test 2

39

Load generated by 15 threads turned out to betatllittle in order to observer
any significant differences (Table 4.2). The averagsponse time increased just
to 19-20 ms from 15 ms in last test where were wsdyl five threads. In the test
1, slightly better performance had Oracle Web Lo@i0,9%) but in this test

Apache Tomcat was faster about 5%.

4.1.3 Test 3: Simple 30 thread load test
In previous two tests generated load turned obetquite little for the server. So

in this test the load was consequently increasé&f tinreads.

The test configuration is as follows:
* Number of threads generating requests: 30
* Injection profile: big bang
» Environment: single web service
» Testtime: 120 seconds

» SOAP message payload size: 259 bytes

Table 4.6 — Results for Test 3

Apache Tomcat| Oracle Web Logic
Average response time [ms] 38,692 38,120
Average throughput [transactions/sec] 710,365 18,1
Standard deviation of response times 1,429 0,712

40

Average response time
[ms]

45

40

35

30 A

25 1

20

15 1

10

0 30 6o 90 120 Time [sec]

——Apache Tomcat & —— Oracle Web Logic 10

Figure 4.5 — Average response time for Test

Throughput
[transactions / sec]

200

700 A
00 A
300 -I
400 A
300 A
200 4

100 4

0

] 30 G0 20 120 Time [sec]

——Apache Tomcat 6 — Oracle Web Logic 10

Figure 4.6 — Throughput for Test 3

41

Comparing to the test 2, in this one the load wasbted (Table 4.3). Also the

average response (Figure 4.5) time was nearly dduland the average
throughput remains same as in test 2. It meansthieathreshold of maximum

efficiency has been reached in the previous testgaring these two servers a
little bit faster (1,1%) was Oracle Web Logic buetdifference is very small

(Figure 4.6).

4.1.4 Test 4. Ramp-up performance test
This is the first test where intensity of load iaried. This test is aimed to
examine behavior of the servers when load is bgradually increased from 1 to

40 threads used by load generator.

The test configuration is as follows:
» Initial number of threads generating requests: 1
* Final number of threads generating requests: 40
* Injection profile: ramp-up
* Environment: single web service
» Test time: 300 seconds

» SOAP message payload size: 259 bytes

Table 4.7 — Results for Test 4

Apache Tomcat Oracle Web Logic
Average response time [ms] 22,846 23,26
Average throughput [transactions/sec] 678,359 455,
Number or error or missing responses 0 0

42

Average response time
[ms]

50

45 A
40
35 -
30 -
25 -
20
15
10 -
5]

T3 5 T 352 1143 9510319 292325 37 2931 333537 33 Threads

——Apache Tomcat 8 —— Oracle Web Logic 10

Figure 4.6 — Average response time for Test 4

Throughput
[transactions / sec]

800

700 A

1 3 5 7 9 1113 15 17 12 21 23 25 27 29 31 33 35 37 39 [hreads

——Apache Tomcat & — Qracle Web Logic 10

Figure 4.7 — Throughput for Test 4

43

As it has been already stated in last test sumntlagymaximum throughput was
already reached in test 2 because even higher nuaibreads didn’'t make
throughput higher as well. In the figures 4.7 an@l ke can see that in fact the
maximum throughput is already reached by around® 8hteads used by load
generator. In both servers when using more thamta®® threads throughput is
being a little decreasing. Overall performance piaghe Tomcat is a bit better
than Oracle Web Logic. In spite of all the diffecens just around 2%. Despite
quite high load in the end of the test (35-40 tds3doth servers behaved stably

and didn’t return any errors.

4.15 Test5: Burst load test

The main goal is to examine the behavior of serwdren they have to deal with
rapidly changing load (burst test). After 10 secomd idle server state all 35
threads immediately start sending requests toghees After 30 seconds of load
server is becoming idle again for 10 seconds, &ed the load is generated

again. The period when server is totally idle is stiown at the charts.

The test configuration is as follows:
* Number of threads generating requests: 35
» Injection profile: periodical big-bang
» Burst time 30 seconds
» Time of break between bursts: 10 seconds
* Environment: single web service

« Testtime: 180 seconds

44

» SOAP message payload size: 259 bytes

Table 4.8 — Results for Test 5

Apache Tomcat Oracle Web Logi
Average response time [ms] 43,29 42,89
Average throughput [transactions/sec] 695,2 712,25
Number or error or missing responses 0 4

Average response time
[ms]

G0

50

40 -

30

20 1

10 4

——Apache Tomcat6 —— Oracle Web Logic 10

120 Time [sec]

Figure 4.8 — Average response time for Test 5

45

The characteristics of average response timesdadk similar (Figure 4.7). The
only small difference is that Apache Tomcat wasavetg a bit less regularly
than Oracle Web Logic. After some short time frdrma start of given load burst
the average response times are being aligned t@xdpyately 43-45 ms in both
cases. Oracle Web Logic returned 4 error messagies tve take into account
the total number of requests and responses it becoeaningless. Similar like in
previous test differences in performance are goéegow (0,9%) but this time
Oracle Web Logic was faster (Table 4.5).

4.1.6 Test 6: Ramp-up performance test with increasl SOAP
message payload size

What differs this test from the previous is theestf the messages sent to the
server as a SOAP XML request message and the mspessage. This test is
aimed to examine whether the size of the message amy meaning in

comparison of both web servers.

The test configuration is as follows:
* Initial number of threads generating requests: 1
* Final number of threads generating requests: 20
* Injection profile: ramp-up
* Environment: single web service
» Testtime: 300 seconds

* SOAP message payload size: 129 890 bytes

46

Table 4.9 — Results for Test 6

Apache Tomcat Oracle Web Logi
Average response time [ms] 989,5 1013,1
Average throughput [transactions/sec] 7,3 7,7
Number or error or missing responses 0 0

Ayerage response time
[ms=]

2000

1800
1600 1
1400
1200 4
1000 4
200 H
60D A
400 -
200

0

T2 3 4.5 6B T8 540 711243 445 46 1718 19 30 Threads

——Apache Tomcat 6 —— Oracle Web Logic 10

Figure 4.9 — Average response time for Test 6

a7

Throughput
[transactions / sec]

10

E_
847

o =
1

12 3 45 6 €8 9 1 Wi1213 {1516 1718 13 20 Hireads

——Apache Tomcat& —— Oracle Web Logic 10

Figure 4.10 — Throughput for Test 6

Comparing to the corresponding test 4 with muchelomessage size (259 bytes)
the average response time has been significantieased to around 1000 ms
(Table 4.6). The difference in performance betwienservers is equal to 2,5%
in favour of Apache Tomcat. To remind in the copesding test with low

payload size it was 2% difference. In this test ¢haracteristics of throughput
and average response time of the servers wereasirBibth servers also didn’t
return any errors (Table 4.6). Change of messaglega size didn't indicate any

significant differences in two examined web sen(€igure 4.10).

48

To summarize amongst six tests that has been ctadjuwithin three of them

faster was Apache Tomcat and within remaining tHester was Oracle Web
Logic. However difference in performance wasn’tybrg. In maximum it was

5% in test 2. In the first seconds of simple orsbuests where server was
subjected to rapid load, Oracle Web Logic was redpw faster and more stable.
That is why got better results in the majority e$ts where injection profile was
big-bang. On the other hand in all ramp-up test@ohp Tomcat had better
performance. With respect to simplicity of envircemh that servers had to deal
with (single web service) in all tests servers wargy stable and there wasn't any
problem with overloading. Also throughput under maxm load of 35 or 40

threads didn’'t get much lower as we could expeestd in the next part of this
chapter are conducted using more elaborated emagnts and will be also more

focused on the stability under extremely high losdiuding stress tests.

49

4.2 WWeb service dependent on other web services

Tests conducted in this section are aimed to coengiae application servers
performance in case when they are dealing with sesbice dependent on other

web services. The detailed description of this mmment is placed in Chapter 3.

4.2.1 Test 7. Simple 5 thread load test

Similar as in the test 1 of the environment coesistf single web service this
load generator in this test uses five threads gimtlltaneously send requests to
the server. The load is constant for the wholeqgakoif test.

The test configuration is as follows:
* Number of threads generating requests: 5
* Injection profile: big-bang
« Environment: web service dependent on other webcssr
* Test time: 120 seconds

« SOAP message payload size: 262 bytes

Table 4.10 — Results for Test 7

Apache Tomcat Oracle Web Logic
Average response time [ms] 81,498 205,634
Average throughput [transactions/sec] 62,211 24,083
Standard deviation of response times 31,778 57,640

50

Average response time
[ms]

1400

1200

1000 A

800 ~

600+

400 A

200 A

0 30 G0 90 120 Time [sec]

——Apache Tomcat 5 —— Oracle Wehb Logic 10

Figure 4.11 — Average response time for Test 7

Throughput
[transactions | sec]

80

7a

0 30 G0 a0 120 Time [sec]

——Apache Tomeat6 —— Oracle Web Logic 10

Figure 4.12 — Throughput for Test 7

51

Already the first of the tests conducted on moebetated environment showed
significant differences in performance (Table 4.Characteristics of average
response times (Figure 4.11) are quite similartafpam the early beginning of
the test where Oracle Web Logic had some anomaifter that the response
times became aligned and gradually decreased tairtdevel. The average
response time of Apache Tomcat was 81,498 ms wisich53% faster than
Oracle Web Logic (205,634 ms). Next experimentd tyl to show if this big

difference will change under heavier load.

4.2.2 Test 8: Simple 15 thread load test

In this test the load was increased to 15 threddshwis already quite big load for

this environment. The load degree remains consbarihe whole period of test.

The test configuration is as follows:
* Number of threads generating requests: 15
* Injection profile: big-bang
« Environment: web service dependent on other webcssr
* Test time: 180 seconds

* SOAP message payload size: 262 bytes

Table 4.11 — Results for Test 8

Apache Tomcat Oracle Web Logjc
Average response time [ms] 215,7694 651,23
Average throughput [transactions/sec] 68,3 21,76
Standard deviation of response times 1,287 47,336
Number or error or missing responses 0 1

52

Average response time
[ms]

a00

200 A

?I:II:I i /
500 _W

500 1

400 A

300 A

200 A

100 ~

0

0 30 6o 90 120 Time [sec]

——Apache Tomcat & —— Oracle Web Logic 10

Figure 4.13 — Average response time for Test 8

Throughput
[transactions [sec]

g0

70 A & "

G0 4'

30 A

40

30 A

20 ™ ———e]

10

] 30 G0 20 120 Time [sec]

——Apache Tomcat5 —— Oracle Web Logic 10

Figure 4.14 — Throughput for Test 8

53

Basing on the results from Table 4.8 average respdme of Apache Tomcat
was 202% greater than Oracle Web Logic. ComparimgTést 1 despite
increasing the number of threads the throughpuOddcle Web Logic has
decreased from 24,083 to 21,76 requests per se€@mthe other hand Apache
Tomcat behaved in the opposite way. Throughput been slightly increased
from 62,211 to 68,3 requests per second. It mdaatsduring test 7, five threads
made Oracle Web Logic fully loaded (but stable)Figures 4.13 and 4.14 we
can see that Apache Tomcat remains very stablehvdigo confirms very little
standard deviation of response times. Responses tiime Oracle Web Logic
(Figure 4.15) are quite different and even worse tiay upward trend. It is
apparent symptom that this server is not able & d&h such a load in a long

term.

4.2.3 Test 9: Simple 25 thread load test

The previous test 8 showed that 15 threads is dyreauch for both servers
especially to Oracle Web Logic. The current tedb@ised on even greater load
in order to see how servers behave under extrelmadlyof 25 threads.

The test configuration is as follows:
* Number of threads generating requests: 25
* Injection profile: big-bang
* Environment: web service dependent on other welcssr
* Test time: 180 seconds

« SOAP message payload size: 262 bytes

54

Table 4.12 — Results for Test 9

Apache Tomcal

Oracle Web Logig

Average response time [ms] 375,720 4379,995
Average throughput [transactions/sec]| 65,006 5,127
Number or error or missing responses 182 0

Average response time
[ms]

7000

G000 A

3000 ~

4000 ~

3000 ~

2000 A

1000 ~

——Apache Tomcat & —— Oracle Web Logic 10

120 Time [sec]

Figure 4.15 — Average response time for Test 9

55

Throughput

[transactions [sec]

70

30

20 1

10

/,_—H—“———_

W w

0

30 60 a0 120 Time [sec]

——Apache Tomcat& —— Oracle Web Logic 10

Figure 4.16 — Throughput for Test 9

Mumber of missing responses

200

130

100

30 G0 90 120 Time [sec]

——Apache Tomcat 6 —— Oracle Web Logic 10

Figure 4.17 — Missing responses for Test 9

56

According to the results obtained in this test,dliterences between both servers
that showed previous test 8 are even bigger nove fidure 4.14 from the
previous test of Oracle Web Logic average respdmse shows, that for 15
threads it has upwards trend. In current test ®tH2eads it was much steeper
and was constantly increasing. Server was not tbldeal with such a load.
Oracle Web Logic server was completely overloaded eouldn’t even find a
way to prevent from such a big load. For instangeadhe Tomcat started
refusing the excess of requests that could makenstable and consequently
elongate response time to enormous level as itinvease of Oracle Web Logic.
The average response time of Apache Tomcat wasealitp approximately 375

ms.

4.2.4 Test 10: Ramp-up performance test

This is the first test of this environment wheréemsity of load is varied. It is
aimed to examine the behavior of servers when isd@ing gradually increased
from 1 to 30 threads used by load generator. Adogrtb previous test results

(4.2.3 and 4.2.2) such a load is already very heavy

The test configuration is as follows:
* Initial number of threads generating requests: 1
* Final number of threads generating requests: 30
* Injection profile: ramp-up
* Environment: web service dependent on other welcssr
» Testtime: 300 seconds

» SOAP message payload size: 262 bytes

57

Table 4.13 — Results for Test 10

Apache Tomcat Oracle Web Logi
Average response time [ms] 152 579
Average throughput [transactions/sec] 57,9 20,2
Number or error or missing responses 344 0

Average response time
[m=]

1400

1200 1

1000

500

500

400

200

1 32 5 7 9 W 13 % 17 19 27 23 25 27 29 ‘Threads

——Apache Tomcat& —— Oracle Web Logic 10

Figure 4.18 — Average response time for Test 10

58

Throughput
[transactions | sec]

]

o

10 1

1 2 B F 5 VW A3 I S 2% 23 25 P 29 Theads

——Apache Tomeat 6

— Oracle Web Logic 10

Figure 4.19 — Throughput for Test 10

Mumber of missing responses
400

330 A

300 1

230 1

200 1

1 3 5 7 9 11 13 15 17 19 29 23 25 27 29 Threads

——Apache Tomcat B

— Oracle Web Logic 10

Figure 4.20 — Number of error or missing resporse$est 10

59

This test (Table 4.13) showed similar server beatracharacteristics like the
previous tests for this environment. Apache Tomisamuch faster (380%-
550%), mainly because of the problems with handhigdper load of Oracle Web
Logic in second part of the test. Moreover Apaclmen€at was stable in each
probe and all obtained results were very simifan the other hand test results of
Oracle Web Logic were quite diversified. Also aaling to figure 4.18 the
average response time within single test was miuitarehtiated for the given
number of active threads. As it was already noticegrevious test (4.2.3) the
interesting issue is related with refusing requéstsApache Tomcat when it's
very loaded. Also when approximately 24 threadsewgenerating requests,
Apache Tomcat started to turning down pending reiguéis it showed last test
4.2.3 it prevented from loosing stability and iragsieg response time under same
degree of load. In the figure 4.19 we can see ¢batesponding value for 24
thread load is around 350 ms which is similar @ l#st test 4.2.3 (370 ms) when
after some time Apache Tomcat was also refusinghanaequests. Admittedly
the time of responses is getting higher quite dgpilit still it remains much
shorter than Oracle Web Logic which was completelgrloaded and unstable in

this test.

60

4.2.5 Test 11: Ramp-up performance stress test

This test is focused even more on the behaviorruexteemely high load. That is

why it starts already from 25 threads that genedtstdoad.

The test configuration is as follows:
» Initial number of threads generating requests: 25
* Final number of threads generating requests: 50
* Injection profile: ramp-up
* Environment: web service dependent on other welcssr
» Testtime: 300 seconds

» SOAP message payload size: 262 bytes

Table 4.14 — Results for Test 11

Apache Tomcat Oracle Web Logic
Average response time [ms] 510,75 1348
Average throughput [transactions/sec] 47,5 16,9
Number or error or missing responses 1392 0

61

Average response time
[ms]

2000

1800
1600
1400
1200
1000+
800
600
400 -
200 -

23 a0 35 40 45 50Threads

——Apache Tomecat& — Oracle Web Logic 10

Figure 4.21 — Average response time for Test 11

Throughput
[transactions / sec]

70

60
50 4
40 -
30

g ik

25 30 35 40 45 50 Threads

——Apache Tomcat 6 —— Oracle Web Logic 10

Figure 4.22 — Throughput for Test 11

62

Mumber of missing responses
1600

1400 1

1200 -

1000

800 A1

GO0 A

400 A

200 A

0 4

-200
25 30 35 40 45 50 Threads

——Apache Tomcat6 —— Oracle Web Logic 10

Figure 4.23 — Number of error or missing resporige$est 11

This test only confirms the results and conclusibos) two previous tests (4.2.4
and 4.2.3). Difference in performance between thevess turned out to be
smaller than in previous tests but again Apache ¢atrwas faster 164% (Table
4.14). In the figure 4.22 we can see that this tm@gponse times of Apache
Tomcat were more diversified but eventually in 28tseconds of test (from 45
thread) got aligned and stabled again.

63

4.2.6. Test 12: Burst load test

This test is to examine the behavior of serversnwtieey have to deal with

rapidly changing very high load (burst test). Afl€r seconds of idle server state,
then all 35 threads immediately start sending rstgu® the server. This number
of thread as showed last tests makes server odedoafter 40 seconds the
server is becoming idle again for 10 seconds, &ed the load is generated

again. The period when server is totally idle is stiown at the charts.

The test configuration is as follows:
* Number of threads generating requests: 35
» Injection profile: periodical big-bang
» Burst time 40 seconds
» Time of break between bursts: 10 seconds
* Environment: web service dependent on other welcssr
» Testtime: 180 seconds

 SOAP message payload size: 262 bytes

Table 4.15 — Results for Test 12

Apache Tomcat Oracle Web Logic
Average response time [ms] 582,2 1182,4
Average throughput [transactions/sec] 56,027 22,873
Number or error or missing responses 6 0

64

Throughput
[transactions / sec]

il

-10
0 45 a0 135 180 Time [sec]

——Apache Tomcat& —— Oracle Web Logic 10

Figure 4.24 — Throughput for Test 12

In case of Oracle Web Logic application server \&e observe some anomalies
(figure 4.25) but the load within this test didoduse any greater problems for the
servers. Apache Tomcat didn't respond only for sequests which is
meaningless. Such a small number of error resprmaparing to test 11) is
most probably caused by 10 seconds breaks betwedoad bursts. During this
time servers could attend to all pending requdsts. overall performance (Table

4.15) was again better in Apache Tomcat case (102%

65

4.3 Very complex SOA environment

Tests conducted in this section are aimed to coenffeg performance of both

web servers in case when they are handling verypt®aSOA environment.

4.3.1 Test 13: Simple 1 thread load test

Since servers deal with extremely elaborated SOA@mment the number of
threads that generate requests should be much thamin last two simpler

environments. This test compares performance &irjjuhread.

The test configuration is as follows:
* Number of threads generating requests: 1
* Injection profile: big-bang
« Environment: a web service relies on multiple wetviees
* Test time: 180 seconds

* SOAP message payload size: 260 bytes

Table 4.16 — Results for Test 13

Apache Tomcat Oracle Web Logic
Average response time [ms] 199,797 469,980
Average throughput [transactions/sec] | 4,722 1,908
Number or error or missing responses | 0 0

66

Average response time
[ms]

200

700 1

600

300 1

400 -

300 1

200 ~

100+

o

——Apache Tomcat B

a0

— Oracle Web Logic 10

120 Time [sec]

Figure 4.25 — Average response time for Test 13

Throughput
[transactions [sec]

6

A

——Apache Tomcat 6

20

— Oracle Web Logic 10

120 Time [sec]

Figure 4.26 — Throughput for Test 13

67

This test showed that even if there is just oneatir(no parallel requests) it took
relatively lot of time to generate response (TablE6). For Apache Tomcat it
was on average 200 ms. Oracle Web Logic similaingsrevious tests for the

environment consisted of web service and other milipg web services

(description in chapter 3) was slower for approxehal35% (469,980 ms). Both
servers were stable which is understood for jubtdad (Figure 4.26).

4.3.2. Test 14: Ramp-up performance test

During this test the number of threads generatogiest is constantly increasing
from 1 to 3. This test is aimed to compare perfaroesof servers for this kind of

SOA environment.

The test configuration is as follows:
* Initial number of threads generating requests: 1
* Final number of threads generating requests: 3
* Injection profile: ramp-up
* Environment: a web service relies on multiple wetviees
» Testtime: 300 seconds

* SOAP message payload size: 260 bytes

Table 4.17 — Results for Test 14

Apache Tomcat, Oracle Web Logic
Average response time [ms] 247,769 611,404
Average throughput [transactions/sec] | 7.217 2,506
Number or error or missing responses | 0 0

68

Average response time

[ms]

1200

1000 A

800

600. 1

400 4

200 ~

— [~

U LR RN RN RN RN RN R RN R RN R RN RN NN NN R NN R RN R RN N RN N R RN RN RN RN RN RRR RN R RRIN RN RRIRNRI]

1

i) 3

——Apache Tomcat8 —— Oracle Web Logic 10

Threads

Figure 4.27 — Average response time for Test 14

Throughput

[transactions | sec]

10

o 4

8
7

(s3]
1

n
1

LAV

—Apache Tomecat6 —— Oracle Web Logic 10

Threads

Figure 4.28 — Throughput for Test 14

69

This test results another time confirms that Apa€hencat is much faster with
complex environments (Table 4.17). Also in thisecise average response time
was 147% lower than Oracle Web Logic. Moreover ediog to Figure 4.27 and
4.28 after the second thread joined Apache TomaatErage response time
hardly increased but in Oracle Web Logic case difference was bigger. After
third thread in both servers response time hagased significantly but Oracle

Web Logic was less aligned.

70

CHAPTER 5

CONCLUSIONS

The main objective of this thesis is to comparefquarance of two popular
application servers Apache Tomcat and Oracle WefgjicLeerver in terms of
Service Oriented Architecture applications. Fos ttéason three different SOA-
based applications has been implemented. All teste conducted using SoapUl
as a load generator and the main testing tool d& Wwke main types of
performance tests used in experiments are loadvigsta constant load degree,
load test with increasing load (ramp-up), and blaad test with diversified load
degree. The results were analyzed against averaggonse time (latency),
throughput (requests per second), and number of errlacking responses. All
measurements were conducted under different loadyvé&rifying correctness of

responses, responsible was SoapUl.

Performance load tests for which all results arailable in Chapter 4 were
divided into three main parts. Each part represents SOA environment with

different degree of complexity, which was deployedhe servers.
The first SOA environment consists of just a sirggd-dependent web service. It

was necessary to use many threads that were gegelaad in order to make

server overloaded. Nevertheless amongst all sig that were conducted for this

71

environment, none of them was able to make seigeifisantly overloaded or
force server to turning down or responding by inecr responses. Even when 40
threads were used to generate requests, both afmicservers were stable. In
most of the simple load tests where the constanibewn of threads was used,
faster was Oracle Web Logic. However differencesewé really big. It wasn’t
more then 1,1,%. The chart (Figure 4.6 and 4.5xdst 4.1.3 of 30 thread load
shows that throughput is unaligned only at the iti@gg of the test. After
approximately 10 seconds it keeps constant levednedl to about 720
transactions per second. Both servers don't hathereupward or downward
trend which means that they are able to handle iitésl in a long term
perspective. It applies to all kinds of experimetitat were conducted for the

environment of single web service.

While in simple load tests (Subsections 4.1.1,24.4.1.3) at the beginning all
threads simultaneously were starting to generajeess, in test 4.4 the profile
injection was smooth. In the tests with ramp-ugeatipn profile the situation
became different. In this case Oracle Web Logiveseneeded more time on
average to generate a response SOAP message..Idsstarts from just one
thread and ends up with 40 threads that are simadtasly generating a load. The
change of the injection profile was sufficient tause that Oracle Web Logic
wasn’t faster at this time. However the differeneas just around 2%. Despite
quite high load in the end of the test (35-40 tls3doth servers behaved stably.
It's easy to conclude that for application whergidaype injection profiles occur
Oracle Web Logic may be a better choice as an egipn server.

Test 4.1.5 aims to increase the frequency of ilgestand the impact of load
injection towards the final test result. The magralgwas to examine the behavior
of servers when they have to handle rapidly chan{pad. The rule that Oracle
Web Logic server is better in handling this kinddofersified load, proved to be
true also in this test (4.1.5). Again the differemdn average response time

weren’t very big. Overall it was approximately j@st9%.

72

At first impression the characteristics of averaggponse times (figure 4.9 and
figure 4.10) look quite similar. In both of them g difficult to observe any
anomalies. But after more careful observation igire 4.10 it is possible to see
that Oracle Web Logic Application Server for evemybsequent burst of load
needed less time to generate corresponding respgeseept the last™burst).

This pattern does not apply to Apache Tomcat.

In the last test for the simple SOA environmentsisted of single self-dependent
web service the size of payload size of SOAP XMQuest message was
significantly increased to 129 890 bytes. In realla such big request messages
aren’t very common but it can happen in case of BO@&sponse message from
server to a client. In order to examine performanteservers for increased
message payload size, the load test with ramp-&atian profile was applied
(test 4.1.6). The conducted test doesn't bring lang results. The difference in
performance between the servers is equal to 2,r6fdvour of Apache Tomcat.
To remind in the corresponding test with low paglaize it was 2% difference.
The conclusion from this test is that XML messaggl@ad size doesn’t have any
significant impact which could distinguish both apgtion servers. It just doesn’t
favour one of them more than the other.

The second part of experiments was focused on nwmplex SOA environment.
It is not just a single web service but few of theollaborating with each other.
The detailed description is given in Chapter 3.

Likewise in the first part of chapter 4, experingefdr this environment began
from a series of simple load tests with the condtzad of 5, 15, and 25 threads.
It is important to take into account significanthigher complexity of this
environment. In the first's experiments, 5 or 1Be#dds make server already very

loaded unlike to tests in the previous simple S@d@nment.

73

All three load tests with a constant load degreeb§8ctions 4.2.1, 4.2.2, and
4.2.3) explicitly proved that Oracle Web Logic apation server is not very
swift with handling complex SOA-based applicatiodgpache Tomcat in all
cases was much faster. In the test 4.2.2 which 1/Sdtireads to generate a load,
the throughput became slightly smaller (10, 5%yramparison to the first test
4.2.1 of 5 threads. In contrary Apache Tomcat anttst in Subsection 4.2.2 (15
threads) reached its maximum throughput. The diffee of performance in the
first in Subsection 4.2.1 test was equal to 153%wour to Apache Tomcat. This

is already very big difference and under heaviadli became even bigger.

Load test with ramp-up injection profile (Subsenti#.2.4) which starts with 1
thread and ends up with 30 threads generatingda &tewed similar correlation.
Apache Tomcat was much faster (280%). Moreover Apdmmcat was stable in
each probe and all obtained results were very aimilOn the other hand test
results of Oracle Web Logic were quite diversifiéderage response time was
from 579 ms to 844,77 ms. This kind of behavioOoécle Web Logic has been

already noticed in burst test in Subsection 4.1.5.

Another issue is related with error responses. Wdqgproximately 24 threads
were generating requests, Apache Tomcat startathgudown pending requests.
The average response time of Apache Tomcat foaioeidad level is increasing
quite vastly, it still remains much shorter thana®e Web Logic which was

completely overloaded and unstable in this test.

Another ramp-up load test (Subsection 4.1.6) watenoed to be stress
performance test which is to show what happensuexteemely high load. The

results and behavior patterns were similar as évipus test in Subsection 4.1.5.
Both servers had some problems with such a head; lout again Oracle Web
Logic didn’t return any error responses while Apachomcat returned 1392

during the whole test.

74

Burst test in Subsection 4.2.6 only confirmed tla#tgrns that were observed in
previous tests. The only difference between previstiess tests is number of
error responses which this time didn’'t occur. Mastbably it was caused by 10
seconds breaks between the bursts of load. Agairotierall performance was

again better in case of Apache Tomcat (102%).

In the last part experiments were conducted undeemely elaborated SOA
environment. The detailed description is placedcchapter 3. Because of the
complexity of the environment, number of threadat thenerate requests was

lower than in last two simpler environments.

All tests conducted on this environment explicglyowed that similarly like in
previous part (Section 4.2) Oracle Web Logic isirdefly slower than Apache
Tomcat application server. It applies to all testhjch were conducted on this
complex SOA environment. Apache Tomcat had 135%14786 shorter average

response times.

To summarize, when servers were handling simple seebice, both application
servers had very similar performance. Usually Gradleb Logic was a few
percents faster where the degree of load was ahgnfgist. In smooth tests

without ant rapid load bursts Apache Tomcat hatebgerformance.

For more elaborated SOA environments the differeimcgerformance was
significant. The higher load was the bigger ddéfeze was in performance
between Oracle Web Logic and Apache Tomcat apmicaerver.

Apache Tomcat was not only faster in all condudtsds but also more stable,
and behaved more predictably. Oracle Web Logic uhig load was sometimes
losing stability and the times of response wereoheog very scattered. Oracle
Web Logic application server even under moderatiigh load (comparing to

Apache Tomcat) during the simple load test (condtad degree) had downward

75

trend of throughput. It is very bad sign in longreperspective work. Heavy load
stress tests showed that Apache Tomcat is nottaliiandle all the requests. For
this reason turns some of them down. Nevertheless ander extremely heavy
load Apache Tomcat is relatively stable. Oracle Welgic application server

tries to response to every request but on the dtaed its performance in this

kind of load is very poor comparing to Apache Tomca

Regarding to the architecture of application senm@middle tier is composed
mainly of http web server and EJB server, whichudes also implementation of
J2EE specification. These two components have tae mfluence on overall
performance of two compared application serverg fEists showed that the way
of implementing J2EE specification can be crucwal dverall application server
performance. Moreover Oracle Web Logic applicat@nver needs much more
memory. It could be one of the reasons of relagivelv Oracle Web Logic
performance in complex SOA environments. Anothasoa is implementation
of J2EE specification supported by Oracle Web Logibe HTTP server
delivered by Oracle Web Logic should be excludedaaseason of lower
performance. As it showed load tests for the simieb Service, the
performance for this environment was similar forotwompared application
servers. It means that both HTTP servers as aesigfities have most likely
similar performances. In test for the complex emwinents important issue is
also related with reliability. The way of dealingthva very high load was
different in two compared application servers. Timplementation offered by
Apache Tomcat was faster but under high load semas denying oncoming
requests. Therefore the client couldn’'t use theriserat that moment while

Oracle Web Logic was always handling requests.

76

5.1 Future research opportunities

The main goal of conducted experiments in this ithegas to compare the
performance of two application servers Oracle Webit. and Apache Tomcat in

different SOA applications (environments).

There are other factors that may have impact orpémrmance of the servers.
One of them is operating system. Tests conductdlirwihis thesis weren’t
aimed to compare server performance also agaimesatipg systems. All of them
were carried out under Windows XP. It is possiblst bne application server has
better performance under certain operating systeite\second server behaves in
the opposite manner. This can be the subject ahanoesearch focused on this

issue.

All conducted experiments in this thesis were bamethe server with Intel Xeon
2 core processor. Nowadays we can observe the tkemtreasing number of
cores rather than increasing CPU clock rate. Thakig application servers can
be also compared against scalability. It could pout which server can assure
more efficient work, while computing resources (m@m of cores) are being
increasing. In this research could be also includé@rent operating systems.
Scalability is important especially in commerciansces which have to keep
their customers satisfied and leave the door operam expected growth and

expansion.

Another issue of concern related with scalabilign de problem of distributed
work load among multiple instances of applicatienvers, run on multiple or a
single physical server. Incoming requests baseldaxh balancing algorithms can

be routed to other server instances in a certastals.

77

REFERENCES

[IBM2009] IBM Smart SOA solutions September 200@hite paperMaking

sense of SOA and today’s IT innovations

[Endrei2004] Mark Endrei, Jenny Ang, Ali Arsanjaisook Chua, Philippe
Comte, Pal Krogdahl, Min Luo, Tony Newling (Ap@D04)Patterns: Service-
Oriented Architecture and Web Services IBM

[Josuttis2007] Nicolai M. Josuttis; O’Reill (200 BOA in Practice

[Molyneaux2009] lan Molyneaux Beijing (2009)fhe Art of Application

Performance Testing

[Priyanka2008] Priyanka Mane , Budhaditya Das, Aztét Ltd.(2008);

Scalability Factors of JMeter In Performance TegtRrojects

[Brittain2009] A. Van Abs, Jason Brittain, (2009Yjigrating Applications From

Oracle WebLogic to Apache Tomcat

[Salter2008] David Salter, Frank Jennings (20B8iJding SOA-Based Composite
Applications Using NetBeans IDE 6

[Zambon2007] Giulio Zambon, Michael Sekler (20@§ginning JSP JSF and

Tomcat Web Development

[Gao2007] Tom Yuan Gao (2007Mhe Complete Reference To Professional SOA
With Visual Studio 2005

78

[Newcomer2005] Newcomer, E. and Lomow, G. (2003hderstanding SOA
with Web Services.

[Rosen2008] Mike Rosen, Boris Lublinsky, Kevin Tmigh, Marc J. Balcer
(2008),Applied SOA Service Oriented Architecture and DeSigategies

[Lawler2008] James P. Lawler,H. Howell-Barber (2P08ervice-Oriented
architecture SOA Strategy, Methodology and Techgyolo

[AppServ2010] Application server definition, Ld3ate Accessed: 03/07/2010,
Url: http://www.service-architecture.com/applicati

servers/articles/application_server_definition.html

[W3C2010] W3C, Web Service Description (WSD), LBstte Accessed:
03/07/2010,
Url: http://www.w3.0rg/2004/Talks/1117-hh-wsdI20¢&6-0.html

[OracleCorp2009] Oracle Corporation (2009) Ora&alsion Middleware
Introduction to Oracle WebLogic Server, Last Datedssed: 03/07/2010,
Url: http://sqltech.cl/doc/oas11gR1/web.1111/e13@8R

[Poskanzer2010] Jef Poskanzer Web Server Casopar Last Date Accessed:
03/07/2010,
Url: http://www.acme.com/software/thttpd/benchnsahkmi

[Nichols2010] Linux Is The Web Server's Choicast.Date Accessed:

03/07/2010, Url:
http://pauillac.inria.fr/~lang/hotlist/free/bench@637_ 2196115 00.html

79

[LitespeedTech2010] Web Server Performance Commpariiast Date
Accessed: 03/07/2010, Url: http://lwww.litespeetiteom/web-server-
performance-comparison-litespeed-2.1-vs.html

[SunJava2010] Sun Java System Web Server Perfoemmizanchmarks, Last

Date Accessed: 03/07/2010,
Url: http://www.sun.com/software/products/web_dperichmarks.xml

[Zeuscat2010] Apache Webserver Benchmarks, Last Batessed: 03/07/2010,

Url: http://lwww.zeuscat.com/andrew/work/aprbench/

[Pulier2006] Eric Pulier, Hugh Taylor (20068nderstanding Enterprise SOA

80

