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ABSTRACT 

 

A FINITE ELEMENT STUDY  

ON THE EFFECTIVE WIDTH OF FLANGED SECTIONS 

 

Küçükarslan, Sertaç 

M.Sc., Department of Civil Engineering 

Supervisor: Prof. Dr. Mehmet Utku 

 

July 2010, 63 pages 

 

 

Most of the reinforced concrete systems are monolithic. During construction, 

concrete from the bottom of the deepest beam to the top of slab, is placed at 

once. Therefore the slab serves as the top flange of the beams. Such a beam is 

referred to as T-beam. In a floor system made of T-beams, the compressive 

stress is a maximum over the web, dropping between the webs. The 

distribution of compressive stress on the flange depends on the relative 

dimensions of the cross section, span length, support and loading conditions. 

For simplification, the varying distribution of compressive stress can be 

replaced by an equivalent uniform distribution. This gives us an effective 

flange width, which is smaller than the real flange width. In various codes 

there are recommendations for effective flange width formulas. But these 

formulas are expressed only in terms of span length or flange and web 

thicknesses and ignore the other important variables.  
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In this thesis, three-dimensional finite element analysis has been carried out on 

continuous T-beams under different loading conditions to assess the effective 

flange width based on displacement criterion. The formulation is based on a 

combination of the elementary bending theory and the finite element method, 

accommodating partial interaction in between. The beam spacing, beam span 

length, total depth of the beam, the web and the flange thicknesses are 

considered as independent variables. Depending on the type of loading, the 

numerical value of the moment of inertia of the transformed beam cross-

section and hence the effective flange width are calculated. The input data and 

the finite element displacement results are then used in a nonlinear regression 

analysis and two explicit design formulas for effective flange width have been 

derived. Comparisons are made between the proposed formulas and the ACI, 

Eurocode, TS-500 and BS-8110 code recommendations. 

   

Keywords: Flange, Building Codes, T-beam, Compressive Stress, Effective 

Flange Width, Finite Element Analysis, Nonlinear Regression Analysis.  
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ÖZ              

 

TABLALI KESİTLERİN ETKİLİ TABLA GENİŞLİĞİNİN SONLU 

ELEMANLAR YÖNTEMİ İLE ANALİZİ 

 

Küçükarslan, Sertaç 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mehmet Utku 

 

Temmuz 2010, 63 sayfa 

 

 

Çoğu betonarme sistemler monolitikdir. İnşa sırasında beton en derindeki 

kirişin altından, döşemenin üstüne kadar bir kerede dökülür. Bu yüzden 

döşeme, kirişlerin üst tablası gibi çalışır. Böyle kirişlere T-kiriş denir. T-

kirişlerden oluşmuş döşeme sistemlerinde basınç gerilimi kiriş gövdesi 

üzerinde maksimum olup, gövde aralarında düşer. Tabla üzerindeki basınç 

gerilimi dağılımı kesit boyutlarına, kiriş açıklığına, mesnet ve yükleme 

koşullarına bağlıdır. Basitleştirmek için değişen basınç gerilimi dağılımı 

eşdeğer düzgün dağılımla yer değiştirilebilir. Bu bize gerçek tabla 

genişliğinden daha küçük olan etkili tabla genişliğini verir. Çeşitli 

yönetmeliklerde etkili tabla genişliği formülleri için öneriler mevcuttur. Ancak 

bu formüller diğer önemli değişkenler ihmal edilerek, sadece kiriş açıklığı 

veya gövde ve tabla kalınlıkları cinsinden ifade edilmişlerdir.  

 

Bu çalışmada, deplasmana dayalı etkili tabla genişliğinin belirlenmesi için 

sürekli T-kirişlerin üç boyutlu sonlu elemanlar analizi gerçekleştirilmiştir. 

Formulasyon, basit eğilme teorisi ile sonlu elemanlar methodunun kısmi 
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etkileşimine dayanmaktadır. Kirişler arasındaki uzaklık, kiriş açıklığı, kiriş 

derinliği, tabla ve gövde kalınlığı bağımsız değişkenler olarak alınmıştır. 

Sonlu elemanlar analizinden elde edilen desplasman değerleri kullanılarak, 

belirtilen değişkenlerin çeşitli değerleri için etkili tabla genişlikleri 

hesaplanmıştır. Yükleme durumuna bağlı olarak, dönüştürülmüş kiriş kesitinin 

atalet momenti ve dolayısıyla etkili tabla genişliği hesaplanmıştır. Veriler ve 

sonlu eleman deplasman sonuçları kullanılarak, doğrusal olmayan regresyon 

analizi yapılmış ve  etkili tabla genişliği için açık tasarım formülleri 

türetilmiştir. Bu formüller ile ACI, Eurocode, TS-500 ve BS-8110 

yönetmeliklerinin önerileri karşılaştırılmıştır. 

   

Anahtar Kelimeler: Tabla, Yapı Yönetmelikleri, T-kiriş, Basınç Gerilimi, 

Etkili Tabla Genişliği, Sonlu Elemanlar Analizi, Doğrusal Olmayan 

Regresyon Analizi.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1. Preliminary Remarks 

 

Reinforced concrete structural systems such as floors and roofs are almost 

monolithic, except precast systems. In a one-way beam-and-slab floor 

system, the slab is assumed to carry the loads in the direction perpendicular 

to the supporting beams. Under different service loading types, beams under 

slabs will have negative moment at support regions whereas they will have 

positive moment along unsupported span zone. This positive internal 

moment will cause compression in the upper part of the beam. Due to 

monolithic property of such systems where beam stirrups and top reinforcing 

bars of beams extend up into the slab, monolithically placed part of the slab 

and supporting beam will interact as a single unit in resisting the flexural 

compressive stresses caused by the positive moment. This results in a T-

shaped beam cross section rather than a rectangular beam. Such a beam is 

referred to as a T-beam. The slab forms the beam flange while the part of the 

beam projecting below the slab forms the web. These details are described in 

such texts as Nilson and Winter (1991), Ersoy (1994) and MacGregor 

(2005). The typical monolithic structural system is shown in Figure 1.1 and a 

cross-section passing through such a T-beam defining the parameters is 

shown in Figure 1.2. 
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Figure 1.1 T-beams in a one-way slab floor (From MacGregor (2005)) 

 

 

 

 
 

Figure 1.2 Typical cross-section and dimensions of a T-beam 

 

in this direction
slab carries load

T- beams
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Figure 1.3 Forces on a T-beam 

 

Figure 1.3 shows the forces acting on the flange of a simply supported         

T-beam. There are no compressive stresses in the flange at the supports 

because of zero moment value. However, when the midspan section is 

examined, the flexural compressive stresses will be observed to be 

distributed over the full width. This increment in flange from zero stress to 

full compressive stress causes horizontal shear stresses on the web-flange 

interface. As a result, there is what is called a “shear-lag” effect within the 

beam. This shear-lag effect causes higher stresses in the flange closest to the 

web and lower stresses in the flange away from the web as shown in Figure 

1.3.  

 

For a series of parallel beams, the flexural compressive stress distribution in 

the slab at a section of maximum positive moment is shown in Figure 1.4. 

The compressive stress reaches its maximum value over the web and 

decreases between the webs.  

compression
Flexural 

Transverse
tension

flow
Shear

Support

Midspan

Transverse
compression
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Magnitude of compressive stress in flange 

 

 

 

 

 

 

 

Figure 1.4 Distribution of maximum flexural compressive stresses 

(From MacGregor (2005)) 

 

 Considering the actual stress distribution in a T-beam, the exact solution of 

T-beam problems is too time consuming for practical engineering 

calculations. Therefore, the familiar concept of effective width offers 

remarkable advantages in design. The actual stress distribution is replaced by 

a uniform linear stress distribution which provides the same compression. 

The width of this uniform stress block in the flange is called as “effective 

flange width”, be. The stress block for the effective width concept is 

illustrated in Figure 1.5. 

 

 
Figure 1.5 Uniform stress distribution and “effective flange width” 

S
be
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1.2. Survey of Previous Studies 

 

The effective width of wide beam flanges was investigated by Theodore von 

Karman which is discussed in Timoshenko’s (1970) “Theory of Elasticity” 

book. The problem has been analyzed by minimum- energy principle using 

theory of elasticity. 

 

In earlier attempts, folded plate theory or its equivalent was used to assess 

the effective width. The analysis were based either on stress criterion or 

deflection consideration. For example, Brendel (1964) used stress criterion 

in his analysis to determine the effective width. By contrast, the analysis 

done by Fraser and Hall (1973) was based on deflection considerations. A 

similar strategy was also used by Pecknold (1975) to assess the slab effective 

width for equivalent frame analysis. 

 

Later on, Loo and Sutandi (1986) used a finite element analysis for simply 

supported T-beams utilizing solid elements. From the resulting data on the 

effective width, they derived empirical design formulas using statistical 

means. 

 

In a quite recent investigation, a similar approach has been used by Utku and 

Aygar (2002) who extended this to derive design formulas for the effective 

flange width of continuous T-beams using a three-dimensional finite element 

analysis.  

 
1.3. Scope of Thesis 

 

In the present study, a new formulation is proposed for the evaluation of the 

effective flange width formulas for continuous T-beams. The analysis is 
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based on a deflection criterion. The codes of various countries have certain 

limitations and may be considered as approximate, since they are expressed 

only in terms of span length or flange and web thicknesses, but they ignore 

the loading conditions and other significant parameters. In this study, a 

three-dimensional finite element analysis is carried out on continuous T-

beams. The beam spacing, span length, overall depth, web thickness and 

flange thickness are considered as independent variables in the analysis. The 

derivation of the effective flange width employs usual elastic beam theory 

and the displacement results of the finite element solution. The effective 

flange width for each beam is calculated analytically and design formulas are 

derived for the corresponding two different loading conditions by using 

nonlinear regression analysis. The proposed formulas are compared with the 

available code recommendations and presented in graphical format. 

 

The study is organized as follows. In Chapter 1, an introduction to the thesis 

and a limited survey of previous work done on the subject is presented. In 

Chapter 2 the concept of effective flange width and theoretical basis for 

determination of effective width are given.  TS-500, Eurocode 2, ACI and 

BS-8110 code recommendations are also presented in this chapter. The 

proposed formulation is then presented in Chapter 3. Analytic solutions are 

given for deflection, shear and moments of continuous beams for two 

different load cases. Finite element analysis for two different loading 

conditions is also given in Chapter 3 and Chapter 4. In Chapter 5, empirical 

design formulas are derived using nonlinear regression analysis. The new 

formulation is compared with the code recommendations. Finally, Chapter 6 

discusses the results and includes conclusions and recommendations. 
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CHAPTER 2 

 

 

EFFECTIVE FLANGE WIDTH  

AND CODE RECOMMENDATIONS 

 

 

 

2.1. Concept of Effective Flange Width 

 

Considering the number of factors affecting the actual stress distribution in a 

T-beam such as the type of loading (uniform, concentrated), the type of 

supports, the spacing of the beams, the dimensions of the cross section, the 

T-beam design is a rather complex problem. Therefore the familiar concept 

of “effective flange width” has been accepted by the profession for many 

decades. Effective flange width offers remarkable advantages; it enables the 

designer to apply simple bending formulas of rectangular sections to T-

beams. Under the assumption of a straight neutral axis and the 

proportionality of all stresses to the distance from this axis, the effective 

width of the flanges can be defined. Simple bending formulas can now be 

used to furnish the actual extreme fiber stress σymax of the concrete at the top 

of the section and the actual total compressive force. The stress block for 

effective width concept is indicted in Figure 2.1. 

 

Because of simplicity, its use is still being recommended in all known codes 

of practice. Three of them are going to be presented in the following 

sections. The code equations can only be very approximate as they are 
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expressed merely in terms of span length or flange and web thicknesses, but 

they ignore other significant variables mentioned above. 

            

Figure 2.1 Compressive stress block of T-section (From Brendel (1964)) 
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2.2 Code Recommendations 

 

2.2.1. ACI Building Code 

 

T-Beam construction: 

This section contains provisions identical to those of previous ACI Building 

Codes for limiting dimensions related to stiffness and flexural calculations. 

Special provisions related to T-beams and other flanged members are stated 

in part 11.6.1.of the code with regard to torsion.  

 

• In T-beam construction, the flange and web shall be built integrally or 

otherwise effectively bonded together. 

• Width of slab effective as a T-beam flange shall not exceed one-quarter 

of the span length of the beam, and the effective overhanging flange 

width on each side of the web shall not exceed:                                                                 

(a) eight times the slab thickness, and         

    (b) one-half the clear distance to the next web. 

• For beams with a slab on one side only, the effective overhanging flange 

width shall not exceed: 

(a) one-twelfth the span length of the beam, 

(b) six times the slab thickness, and 

(c) one-half the clear distance to the next web. 

• Isolated beams, in which the T-shape is used to provide a flange for 

additional compression area, shall have a flange thickness not less than 

one-half the width of web and an effective flange width not more than 

four times the width of web. 

• Where primary flexural reinforcement in a slab that is considered as a T-

beam flange (excluding joist construction) is parallel to the beam, 
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reinforcement perpendicular to the beam shall be provided in the top of 

the slab in accordance with the following: 

• Transverse reinforcement shall be designed to carry the factored               

     load on the overhanging slab width assumed to act as cantilever.  

• For isolated beams, the full width of overhanging flange shall be              

iiiiiiiconsidered. For other T-beams, only the effective overhanging slab 

      width needs to be considered. 

•  Transverse reinforcement shall be spaced not farther apart than five 

       times the slab thickness, or 18 in (45.7 cm). 
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2.2.2. Eurocode 

 

Effective Flange Width: 

 

• The effective flange width of a flange, beff, should be based on the 

distance, l0, between points of zero moments as shown in Figure 2.2 and 

defined in Figure 2.3. 

 

                                    2,1, effeffweff bbbb ++=                                          (2.1) 

     

where 

 

)1.02.0( 011, lbbeff += but 02.0 l≤  and 1b≤             (2.2) 

=2,effb  to be calculated in a similar manner to 1,effb  but 2b  should be 

substituted for 2b  in the above 

 

 
Figure 2.2 Elevation showing definition of l0 for calculation of flange 

width 

 

 

• The distance lo between points of zero moment may be obtained from 

Figure 2.2 for typical cases. 
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Figure 2.3 Section showing effective flange width parameters 
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2.2.3. TS 500 

In dimensioning the flanged sections, the flange width, which is required to 

calculate the necessary moment of inertia for structural analysis and in 

finding the deflections must be calculated by using the equations below, 

referring to Figure 2.4. 

 

In symmetrical sections:                       

 

   

In nonsymmetrical sections: 

 

 

On the other hand, the overhanging flange width on each side of the web 

shall not exceed six times the flange thickness and one-half the clear distance 

to the next web (≤ 6hf or 1/2an). In equations (2.3) and (2.4), lp is the distance 

between the points of zero moments and l is the span length (lp= αl). For 

analysis, when a great accuracy is not required, the following values for α 

can be used. 

 

Table 2.1 Values for α 

 

Simply supported beams α = 1.0 

Continuous beams (edge span) α = 0.8 

Continuous beams (middle span) α = 0.6 

Cantilever beams α = 1.5 

pw lbb
5
1

+= (2.3)

pw lbb
10
1

+= (2.4)
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Figure 2.4 Definition of dimensions in T-beams 

 

2.2.4. British Standards BS-8110 

 

In the absence of any more accurate determination effective flange width 

should be taken as: 

a) for T-beams: web width +lz/5 or actual flange width if less; 

b) for L-beams: web width + lz /10 or actual flange width if less; 

where 

lz is the distance between points of zero moment (which, for a continuous 

beam, may be taken as 0.7 times the effective span). 
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CHAPTER 3 

 

 

FORMULATION OF THE PROBLEM 

 

 

3.1 Effective Flange Width Based on Deflection Criterion 

 

In this study, the effective flange width of T-beams is investigated based on 

displacement criterion. The derivation of effective width employs usual 

elastic beam theory and matching the equation of the elastic curve with the 

beam deflections obtained from finite element analysis. 

 

As mentioned in Chapter 1, two types of loading are considered. As the first 

case, the beam is exposed to point loads at midspan. Uniformly distributed 

load on the flange is the second load case. Analytical (Closed Form) 

solutions for both cases are given in the following sections. 

 

 

3.2 Point Load at Midspan 

 

In this type of loading, point loads are applied at midpoint of each span as 

shown in Figure 3.1.  
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Figure 3.1 Load at midspan 

 

The differential equation of the elastic curve of the beam is obtained by 

direct integration. Due to symmetry, only the left span is considered in the 

calculations. For the beam considered, the bending moment equations for the 

intervals 0 ≤ x ≤ L/2 and L/2 ≤ x ≤ L are substituted into the differential 

equation of the elastic curve. The two differential equations are integrated 

twice to obtain the equations of the elastic curve for each interval. These 

equations contain four constants of integration which are evaluated by using 

the boundary conditions 

 

         0)()0( 21 == Lvv  
 

 and the continuity conditions 

 

      
,

)2/()2/( 21

dx
Ldv

dx
Ldv

=         )2/()2/( 21 LvLv =  

 

where v1 is the deflection for  0 ≤ x ≤ L/2 and v2 is the deflection for L/2 ≤ x 

≤ L. Shear, moment, and deflection diagrams for this beam are shown in 

Figure 3.2. 
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The elastic curve for interval 0 ≤ x ≤ L/2 becomes 

 

                
)35(

96
)( 23 xLx

EI
Pxv −=              (3.1a) 

 

For L/2 ≤ x ≤ L: 

 

     ⎩
⎨
⎧

⎭
⎬
⎫−−−= xLLxx

EI
Pxv 233 3)

2
(165

96
)(        (3.1b) 

The point of maximum deflection is at x = L / √5, which follows from setting 

the expression for the slope equal to zero. The deflection at this point is 

 

                            EI
PLv

548

3

max
=                 (3.2) 

 

For the point load case, the maximum flexural stress occurs at the loading 

points. The deflection at applied load P, which will be used later for the 

effective width calculations, is 

 

                          EI
PLLv
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7)2/(

3

−=               (3.3) 
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(Shear Diagram) 

(Moment Diagram) 

(Deformed Shape) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Shear, moment, and deflection diagrams for load at midspan 
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 3.3 Uniformly Distributed Load on Flange 

 

As a second load case, the uniformly loaded continuous beam shown in 

Figure 3.3 is considered. The beam supports a uniform load of w per unit 

length which results from a uniform pressure p applied on the flange.  

 

 
 

Figure 3.3 Uniformly distributed load 

 

The length of each span is L, and because of symmetry, the solution is 

obtained by considering the deflection for either span. Following similar 

steps as in the point load case, shear, moment, and deflection diagrams 

appear as shown in Figure 3.4. 

 

The elastic curve for interval 0 ≤ x ≤ L becomes 

 

)23(
48

)( 323 xLxL
EI

wxxv +−−=         (3.4) 

 

The largest deflection occurs at x = 0.422 L, which follows from setting the 

expression for the slope equal to zero. The deflection at this point is 

 

 



 

20

EI
wLxv

4
3

max
10416.5 −−=           (3.5) 

 

For the uniformly distributed load, the maximum compressive stress occurs 

at x = 3L / 8 from the left support. The deflection at x = 3L / 8, which will be 

used later for the effective width calculations, is 

 

EI
wLxLv

4
3103406.5)8/3( −−=          (3.6) 
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(Shear Diagram) 

(Moment Diagram) 

(Deformed Shape) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Shear, moment, and deflection diagrams for uniform loading 
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3.4 Transformed T-Section 

 

An interior beam of a beam-and-slab floor system develops positive 

moments at midspan and negative moments over the support. At midspan, 

the compression zone is in the flange. For the computation of effective width 

two cases are possible: 

1) the neutral axis may shift down into the web, giving a T-shaped 

compression zone, and  

2) the neutral axis is in the flange and hence, the compression zone is 

rectangular. 

 

For the first case where the neutral axis passes through the web                 

(see Figure 3.5) , the calculation is as follows. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Neutral axis passing through the web 

 

The beam cross-section is examined in three parts. The first part is a 

rectangular area defined by the flange width be and flange thickness h. The 

second part is that portion of the web with height x and web thickness bw as 

shown in Figure 3.6b. Finally; the third part consists of the web below the 

Neutral axis 
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neutral axis as illustrated in Figure 3.6c. Area moments of these three parts 

are calculated separately and place of centerline is determined. 

 

 

 

 

 

 

Figure 3.6a Part A1 of the cross-section 

 

 

 

  

 

 

Figure 3.6b Part A2 of the cross-section 

 

 

 

 

 

 

 

 

Figure 3.6c Part A3 of the cross-section 

 

The area of each component part and the moments of the component areas 

with respect to the neutral axis are then computed. 

 

Neutral axis 

Neutral axis 

Neutral axis 
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For the third part (D-h) term is replaced by d in order to simplify the 

expressions. Equating the first moment of the area on one side of the neutral 

axis to the first moment of the area on the other side, 

 

                                               321 AAA MMM =+          (3.7) 
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It has to be noted that z in the above formula represents the distance between 

the neutral axis and the bottom of the flange. By solving Eq.(3.7) with flange 

thickness h equal to 12 cm, the distance z is obtained as 

 

                     
dbb

bdb

z
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e
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×

=
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72
2

2

                            (3.8) 

 

It is observed that the distance z given by Eq. (3.8) depends on the effective 

width be which is an unknown quantity at the moment. Finally, the moment 

of inertia for the transformed T-section can be written in terms of z and be as 

 

))((
3

)
3

( 33
2

2 zdz
bhhzzbhI w

ebeam −+×+++××=              (3.9) 
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For the second case where the neutral axis is passing through the flange (see 

Figure 3.7), the steps for the calculation of the neutral axis and the moment 

of inertia are same as the first case where centerline was within the web. 

 

 

  

 

 

 

 

 

 

Figure 3.7 Neutral axis passing through the flange 

 

After the necessary calculations, the following expressions are obtained for 

the position of the neutral axis, and the moment of inertia.  
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                     (3.10) 
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The effective flange width be is calculated by equating the above expression 

for the moment of inertia to the numerical value computed from finite 

element displacement results as explained in Section 4.4 on “Numerical 

Studies”. 

 

Neutral axis 
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CHAPTER 4 

 

 

FINITE ELEMENT ANALYSIS 

 

 

 

4.1 The Solid Element 

The finite element method is the most appropriate numerical tool for the 

displacement and stress analysis for structural systems. In the finite element 

models adopted in this study, the solid elements are used to model the beam-

and-slab floor system. The software SAP2000 v.11.0, which is one of the 

widely used finite element analysis programs, is used for the three-

dimensional modeling and displacement analysis. A 2 x 2 x 2 numerical 

integration scheme is used for the solid element. Stresses in the element local 

coordinate system are evaluated at the integration points and extrapolated to 

the joints of the element. Six stress components are calculated as nodal 

average stresses, the three normal stresses and the three shear stresses.  

 

 

 

 

 

 

 

Figure 4.1 (a) Three-dimensional state of stress. (b) Eight-node solid 

element. (c) Degrees of freedom at a typical node (i= 1, 2... 8)  
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Cartesian Coordinate System Local Coordinate System

The eight-node element shown in Figure 4.1 has eight nodes located at the 

corners and has three translational degrees of freedom at each node. In terms 

of generalized coordinates βi , the displacement field can be written as  

               u = β1+β2 x+β3 y+β4 z+β5 xy+β6 yz+β7 zx+β8 xyz 

               v = β9+β10 x+β11 y+β12 z+β13 xy+β14 yz+β15 zx+β16 xyz           (4.1)  

              w = β17+β18 x+β19 y+β20 z+β21 xy+β22 yz+β23 zx+β24 xyz 

 

The eight-node element can be of arbitrary shape when it is formulated as an 

isoparametric element (Cook et. al. 1989). The coordinates used are shown 

in Figure 4.2. 

 

 

 

 

 

 

Figure 4.2 Eight-node isoparametric solid element 

 

The displacement expressions can then be written as 

 

                                u=Σ Ni ui          v=Σ Ni vi           w=Σ Ni wi                   (4.2) 

 

where the index i runs from 1 to 8 in each summation. The shape functions 

defining the geometry and variation of displacements are given by, 

 

where r, s and t are local (natural) coordinates and ri , si , ti , are the values of 

local coordinates for node i. 

 
i=1, 2,…,8 ( )( )( )iiii tt1ss1rr1

8
1N +++=
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4.2 Parameters Influencing the Effective Flange Width 

 

It is known from the available literature on T-beams that the effective width 

be is affected by sectional dimensions and by the beam span L for both 

uniformly distributed and concentrated load. In the following finite element 

analysis, the effect of various parameters on the effective flange width is 

studied. These parameters include the beam spacing S, beam span length L, 

total depth of the beam D, web thickness bw, and flange thickness h, as 

shown in Figure 4.3.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 Dimensions of a T-beam 

 

These parameters are independent variables that influence the effective 

flange width be. In addition to the above parameters, the effect of loading 

type is also considered as another parameter for the investigation of effective 

flange width. Uniformly distributed load and concentrated load at midspan 

are the two loading types applied separately on the three dimensional finite 

element models.  
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In order to investigate the dependency of effective flange width on these 

parameters, they are varied in a systematic way using a combination of the 

ratios of the beam parameters. Specifically, the ratios of S/L, L/D, bw/D and 

h/D are defined in groups of three to provide data for deriving the design 

formulas. In finite element analysis, the flange thickness h is considered as 

constant for all T-beams. The flange thickness is assumed to be 120 mm, and 

the dimensional parameters are varied as shown in Table 4.1.  

 

Table 4.1 Dimensionless parameters 

S/L 0.20 0.25 0.30 

L/D 10 15 20 

bw/D 0.65 0.70 0.75 

h/D 0.20 0.30 0.40 

 

These require 81 T-beams for each of the three loading conditions defined in 

Figure 3.1 and Figure 3.3. This results in a total number of 162 finite 

element analyses. 

 

4.3 Finite Element Model 

 

This study is performed for a two-span continuous T-beam. Due to double 

symmetry only a quarter of the beam over a span length L is modeled by 

using solid elements. Boundary conditions are specified taking into 

consideration symmetry and the simple-support conditions. The symmetry 

boundary conditions are applied on two planes. The vertical yz-plane is a 

plane of symmetry. For nodes of the finite element mesh on this plane, the 

displacement degree of freedom in x-direction is fixed. Similarly, the 

transverse xz-plane at the middle support is another plane of symmetry. For 
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all nodes on this plane, on the other hand, the displacement degree of 

freedom in y-direction is fixed. 

 

The finite element beam model is meshed into nearly equal sized elements 

which have aspect ratios near unity. This requirement results in a finite 

element mesh in which the beam is divided into 64 equal segments along the 

beam span. On a transverse section, the flange is divided into 3 segments in 

the vertical direction. The symmetrical half of the web below the flange is 

divided into 8 equal segments in the vertical dimension. For each transverse 

section, there are 27 elements in the flange and 24 elements in the web. 

These result in a total of 3264 elements and 4680 nodal points. 

  

In the finite element analysis of the T-beam, the modulus of elasticity for 

concrete is taken as 30 GPa. The Poisson’s ratio is assumed to be 0.2 and the 

total load intensity is taken as 20 kN/m2. The self weight of the beam is 

neglected in the analysis. The distributed load is applied as force per unit 

area on the flange for the uniformly distributed load case. For the point load 

case, concentrated loads are applied at the appropriate nodes. A longitudinal 

view of the model is illustrated in Figure 4.4. A cross section of the model 

and a typical three dimensional finite element mesh used for the analysis are 

shown in Figure 4.5a and 4.5b respectively. The stress distribution and the 

deformed shapes for typical cases are also given in Figures 4.6 through 4.9. 

 

 

 

 
 
 
 

Figure 4.4 Longitudinal view of the finite element model 
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4.4 Numerical Studies 
 

In the concept of effective width, the actual distribution of the flexural 

compressive stresses in the flange is replaced by a uniform distribution to 

produce the same total compression. Since, almost the full flange width is 

stressed in compression at a section of maximum positive moment; the 

reduction to effective width is also done at this section. 

 

Motivated by the above strategy, the beam deflections at the section of 

maximum positive moment are equated to the displacements obtained from a 

three-dimensional finite element analysis of the beam-and-slab floor system. 

For point load cases, the maximum positive moment and hence the 

maximum compressive stress occurs at the loading points. By using Eq. 

(3.3), the equivalence expression for beam deflections at x = L / 2 is 

 

                   
EI

PLLvLvFE 768
7)2/()2/(

3

−==           (4.3) 

 

Hence, the moment of inertia of the T-section is 

 

                       
)2/(768

7 3

LvE
PLI

FE
T −=             (4.4) 

 

For the uniformly distributed load, on the other hand, the maximum 

compressive stress occurs at x = 3L / 8 from the left support. Then, equating 

the finite element deflections to beam deflections given by Eq. (3.6), 

 

      EI
wLxLvLvFE

4
3103406.5)8/3()8/3( −−==             (4.5) 
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Solving for the moment of inertia of the T-section gives 

 

                                )8/3(
103406.5

4
3

LvE
wLxI

FE
T

−−=             (4.6) 

 

In Equations (4.4) and (4.6), IT represents the moment of inertia of the 

transformed T-section. In a beam-and-slab floor system, the web dimensions 

and the slab thickness, and hence the flange thickness of the T-section are 

known in advance. However, the effective flange width be remains as an 

unknown to be determined. 

 

Depending on the type of loading, the numerical value for IT can easily be 

computed either from Eq. (4.4) or Eq. (4.6) using the input data and the finite 

element displacement results.  The computed value of the moment of inertia 

is then substituted into the appropriate expression for the moment of inertia 

calculations given in Equations (3.9) and (3.11). As a sample case, for 

instance, for the case of point load, and when Eq. (3.9) applies, the resulting 

expression for the effective flange width is 

 

 [ ]
)2/(768

7)(
3

)33(
3

3
3322

LvE
PLzdz

b
hhzz

hb

FE

we −=−++++
   

   (4.7) 

 

It should be remembered that in the above equation, the distance z between 

the neutral axis and the bottom edge of the flange is also a function of the 

effective flange width be. The moment of inertia expression given in Eq. 

(4.7) can be solved for the unknown effective width be by using Mathcad 

program. The results are given for both loading types in Tables 4.2 and 4.3. 
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CHAPTER 5 

 

 

MULTIPLE NONLINEAR REGRESSION ANALYSIS 

 

 

 

5.1 Multiple Nonlinear Regression Analysis 

 

The basic idea of nonlinear regression is the same as that of linear 

regression, namely to relate a response Y to a vector of predictor variables in 

the form x = (x1, ……..,xk)T. Nonlinear regression is characterized by the 

fact that the prediction equation depends on one or more unknown 

parameters. Whereas linear regression is often used for building a purely 

empirical model, nonlinear regression usually arises when there are physical 

reasons for believing that the relationship between the response and the 

predictors follows a particular functional form. A nonlinear regression model 

has the form  

 

                ( ) iii xfY εθ += ,          i = 1…, n              (5.1) 

 

where Yi are responses, f is a known function of the covariate vector            

xi = (xi1, ……..,xik)T and the parameter vector θ = (θ1,…….., θp)T and ε i are 

random errors.  

 

Nonlinear regression analysis estimates the coefficients of the nonlinear 

equation, involving one or more independent variables that best predict the 

value of the dependent variable.  
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In most empirical studies, the value of dependent variable Y is not uniquely 

determined when the level of independent variable X is specified. Such 

relations are called statistical relations. Statistical relations can be either 

linear or nonlinear. In this study, the model that defines the relation between 

dependent and independent variables is selected as nonlinear so as to make a 

comparison with the previous studies. 

 

5.2 Nonlinear Regression Model 

 

The statistical model used in this study is nonlinear and the regression 

equation takes the form as; 

 
5432

43211
βββββ AAAAY ××××=                                    (5.2) 

This form is considered to fit the model in the same format with the result of 

those studies done by Loo and Sutandi (1986), Utku and Aygar (2002). In 

the above equation, β1 to β5 represent constant values of the regression 

model, which are called as the estimates of the model, and A1 to A4 

represent the set of independent predictor variables.  

 

This statistical technique allows us to predict the ratio of effective flange 

width to beam spacing (be/S) on the basis of some independent variables. 

There are four independent variables which influence this ratio. These 

independent variables are obtained as the ratios of beam geometric 

parameters. Four independent variables from A1 to A4 are “S/L”, “L/D”, 

“h/D” and “bw/D” respectively. 

The effective flange width values are given in Table 4.2 and 4.3 for 81 

combinations of these four independent variables and for each loading 

condition. Then, nonlinear regression analyses were carried out on this 
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available data using the software SPSS, “Statistical Package for the Social 

Sciences” (2006).  

For the determination of the relation equation, the format of the relationship 

is defined by using nonlinear regression in SPSS program. Since the program 

will use an iterative method for obtaining such an equation, first values of all 

parameters used in this study are assigned to initial values equal to zero. 

When the iteration is completed, the estimated values of β1 to β5 are given 

as output with their correlations with respect to each other.  

 

For nonlinear regression model of the load at midspan case, 26 iterations 

were performed using SPSS program, resulting in the parameter estimates as 

given in Table 5.1. 

 

 

Table 5.1 Estimate values of parameters (Load at midspan) 

 
 

The use of the above parameters in Eq. (5.2) led to the following nonlinear 

equation for effective flange width, be, for point load: 
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Analysis of variance is also performed for the parameters by SPSS, giving 

95.1 % value of variance which illustrates that model is a good 

representative of the finite element analysis results. 

 

For the nonlinear model of uniformly distributed load case, the parameter 

estimates obtained after 26 iterations are given in Table 5.2. 

 

Table 5.2 Estimate values of parameters (Uniformly distributed load) 

 

 

 

 

 

 

 
 

For the uniformly distributed load case, the substitution the above 

parameters into Eq. (5.2) again led to the following nonlinear equation for 

effective flange width be: 

 

 

                  
1473.0086.02746.03058.0
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D
h

D
b

D
L

L
S

S
b we       (5.4) 

 

Analysis of variance for this model was obtained as 95.6 % which is an 

indication of a good correlation between the formulas and the finite element 

analyses.  
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5.3. Comparison with the Code Equations 

 

The design formulas defined in Equations (5.3) and (5.4) for effective flange 

width are compared with the code equations given in ACI, Eurocode, 

BS8110 and TS500. Moreover, these formulas are also compared with the 

expressions given by Utku and Aygar (2002). In Figure 5.1 the be/S ratios 

permitted by various codes for the assumed cases of L/D, bw/D and h/D are 

compared with the proposed formulas against S/L. Three of the typical 

curves for load at midspan are shown in Figure 5.1.  The cases considered 

and the corresponding values of parameters are as follows: 

Case 1: L/D = 10, bw/D = 0.75, h/D = 0.4 

Case 2: L/D = 15, bw/D = 0.7, h/D = 0.3 

Case 3: L/D = 20, bw/D = 0.65, h/D = 0.2 

It should be noted that with the chosen values of the parameters, the change 

from Case1 to Case 3 represents the change from stubby beams to slender 

beams. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) L/D = 10 , bw/D = 0.75 , h/D = 0.4 
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(b) L/D = 15 , bw/D = 0.7 , h/D = 0.3 

 

 
 
 

 

 

 

 

 

 

 

(c) L/D = 20 , bw/D = 0.65 , h/D = 0.2 

Figure 5.1 Comparison of design formulas with the code equations  

for load at midspan 
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It is observed from Figure 5.1 that for the concentrated load case, the codes 

considered here are unsafe for the stubby beams. As the beam gets slender, 

this trend changes and smaller effective flange width values are obtained for 

increasing values of the beam spacing. However, for all cases the 

recommendations given by Eurocode give overestimated results. 

 

The results for be/S obtained from Eq. (5.3) for three cases are shown in 

Figure 5.2 over a larger interval of S/L. The comparison of the three cases 

shows that as the beam spacing S increases, be/S decreases. Moreover, for 

the same value of the beam spacing S, the ratio be/S increases as the span 

length L increases. It is also observed from Figure 5.2 that graphs are very 

close to each other, and even Cases 2 and 3 happen to lie on top of each 

other. Therefore, it can be concluded that the beam spacing S and the beam 

span length L affect the effective flange width more significantly than the 

other parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 “S/L” versus “be/S” for Case1, Case2 and Case3 
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In addition to these comparison curves, results of each three cases are also 

compared with those of Utku and Aygar (2002) in Figure 5.3. It is observed 

that the results of the present work compare well with results based on stress 

criterion.   

 

 

 
 

(a) L/D = 10 , bw/D = 0.75 , h/D = 0.4 
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(b) L/D = 15 , bw/D = 0.7 , h/D = 0.3 

 
 

 

 

 

 

 

 

 

 

(c) L/D = 20 , bw/D = 0.65 , h/D = 0.2 

Figure 5.3 Effective flange width based on stress criterion and 

   deflection consideration (Point load) 
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Similar curves are also prepared for uniformly distributed load case and 

these curves are represented in Figures 5.4, 5.5 and 5.6. 

 

It is observed from Figure 5.4a that for stubby beams, the proposed formula 

gives rather conservative results with respect to the code equations. 

However, as the beams get slender all codes give very conservative 

assessments of be for uniformly distributed load case except for Eurocode 

which gives consistently overestimated results for all cases. For most of the 

beams under a uniform distributed load, Eurocode values of be/S are very 

close to unity. 

 

 
 

(a) L/D = 10 , bw/D = 0.75 , h/D = 0.4 
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(b) L/D = 15 , bw/D = 0.7 , h/D = 0.3 

 

 
 

(c) L/D = 20 , bw/D = 0.65 , h/D = 0.2 

Figure 5.4 Comparison of design formulas with the code equations 

for uniformly distributed load 
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The results for be/S obtained from Eq. (5.4) for the three cases again are 

shown in Figure 5.5 over a larger interval of S/L. From the comparison of 

Figure 5.2 for point load case and Figure 5.4 for uniform loading, a similar 

trend is observed for the variation of effective flange width against the beam 

spacing, except a very small increase in the be/S results for the uniform 

loading. 

 

 
 

Figure 5.5 “S/L” versus “be/S” for Case1, Case2 and Case3 

 

Figure 5.6 shows the comparison between the deflection based results of the 

present study and those obtained from stress criterion of Utku and Aygar 

(2002). It is observed that the results of the proposed equation for the 

uniformly distributed load case exhibit very good agreement with the results 

of stress criterion when the beam spacing is small. However, as the beam 

spacing increases the proposed equation has a tendency to produce 

conservative effective flange width values.  
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(a) L/D = 10 , bw/D = 0.75 , h/D = 0.4 

 

 
 

(b) L/D = 15 , bw/D = 0.7 , h/D = 0.3 
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(c) L/D = 20 , bw/D = 0.65 , h/D = 0.2 

Figure 5.6 Effective flange width based on stress criterion and 

   deflection consideration (uniform loading) 
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

In this thesis, three-dimensional finite element analysis has been carried out 

on continuous T-beams to assess the effective flange width based on 

displacement criterion. The formulation is based on a combination of the 

elementary bending theory and the finite element method, accommodating 

partial interaction. Eight-node brick elements have been used to model the T-

beams. The beam spacing, beam span length, total depth of the beam, the 

web and the flange thicknesses are considered as independent variables. 

Depending on the type of loading, the numerical value of the moment of 

inertia of the transformed beam cross-section and hence the effective flange 

width are calculated. The input data and the finite element displacement 

results are then used in a nonlinear regression analysis and two explicit 

design formulas for effective flange width have been derived. Comparisons 

are made between the proposed formulas and the ACI, Eurocode, TS-500 

and BS-8110 code recommendations. 

 

The following conclusions can be drawn from the results obtained in this 

study: 

1. For the point load case, all codes give highly overestimated values for 

the effective flange width particularly for short and deep beams when 

the results are compared with the analyses based either on stress 

criterion or deflection consideration. 

2. As the beam gets slender, this trend changes and smaller effective 

flange width values are obtained for increasing values of the beam 
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spacing. However, for all cases the recommendations given by 

Eurocode give overestimated results. 

3. Using the curves developed from the proposed equations, it is 

observed that as the beam spacing S increases, be/S decreases. 

Moreover, for the same value of the beam spacing S, the ratio be/S 

increases as the span length L increases. 

4. It is also concluded that the beam spacing S and the beam span length 

L affect the effective flange width more significantly than the other 

parameters. 

5. For beams under a uniformly distributed load, it is found that the 

proposed formula gives underestimated results for stubby beams with 

respect to the code equations. However, as the beams get slender all 

codes yield very conservative assessments of be for uniformly 

distributed load case except for Eurocode which gives consistently 

overestimated results for all cases. For most of the beams under a 

uniform distributed load, Eurocode values of be/S are very close to 

unity. 

6. Comparisons are made between the proposed deflection-based 

formulas and the formulation based on stress criterion. It is found that 

the results of the proposed equation for the uniformly distributed load 

case exhibit very good agreement with the results of stress criterion 

when the beam spacing is small. However, as the beam spacing 

increases the proposed equation has a tendency to produce 

conservative effective flange width values. 
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