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ABSTRACT 

 
 

 

QUANTUM MECHANICAL TREATMENT OF FULLERENE-BASED SYSTEMS 

DOPED WITH VARIOUS METAL AND NON-METAL ELEMENTS AS 

PROSPECTIVE SPIN-QUBITS 

 
 

Polad, Serkan 

M.S., Micro and Nanotechnology Program 

Supervisor: Prof. Dr. ġakir Erkoç 

Co-Supervisor: Prof. Dr. IĢık Önal 

 

July 2010, 87 pages 

           In this thesis, We have calculated the optimized geometries, electronic structures 

and spin distributions of metal and non-metal elements Li, Na, N and P doped C60 

fullerene dimers and trimers with different spin multiplicities using hybrid density 

functional theory (DFT) at the B3LYP/6-31G level of theory. Natural population 

analysis and Mulliken population analysis show that non-metal elements (N, P) inside 

the C60 fullerene dimers and trimers are well isolated and preserve their electronic 

structures while charge transfer processes occur between metal elements(Li, Na) and C60 

structures. Energy calculations showed that both doped and undoped linear C60 

structures are energetically lower than triangular C60 structures. Calculated spin density 

distributions make non-metal doped C60 structures advantageous over metal doped C60 

cages as spin cluster qubits. 

Keywords: Quantum information, Quantum computation, Fullerenes, Density Functional 

Theory. 
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ÖZ 

 

 

 
ÇEġĠTLĠ METAL VE METAL OLMAYAN ELEMENTLERLE 

KATKILANDIRILMIġ FULLEREN-ESASLI YAPILARIN SPĠN KÜBĠT 

ÖZELLĠKLERĠNĠN KUANTUM MEKANĠĞE GÖRE ĠNCELENMESĠ 

 
 

Polad, Serkan 

Yüksek Lisans, Mikro ve Nanoteknoloji Programı 

Tez Yöneticisi: Prof. Dr. ġakir Erkoç 

Ortak Tez Yöneticisi: Prof. Dr. IĢık Önal 

 

Temmuz 2010, 87 sayfa 

          Bu tezde, Li, Na, N ve P metal ve metal olmayan elementlerle katkılandırılmıĢ 

ikili ve üçlü C60 fullerenlerin en uygun Ģekle getirilmiĢ geometrilerini, elektronik 

yapılarını ve spin dağılımlarını farklı spin değerleri için yoğunluk fonksiyon teorisi 

(DFT) metodu B3LYP/6-31G temel seviyesinde hesapladık. Doğal popülasyon ve 

Mulliken popülasyon analizleri gösterdi ki C60 kafes yapıları içerisindeki Li ve Na metal 

elementleri ve C60 kafes yapılar arasında yük transferi olurken, C60 kafes yapıları 

içerisindeki metal olmayan elementler N ve P iyi isole edildiler ve elektronik yapılarını 

korudular. Enerji hesaplamarı gösterdi ki; katkılandırılmıĢ ve katkılandırılmamıĢ lineer 

C60 yapılar enerji olarak üçgensel C60 yapılardan daha düĢüktür. Spin dağılımlar gösterdi 

ki; metal olmayan elementlerle katkılandırılmıĢ C60 yapılar spin kübit özellikleri 

bakımından metal elementlerle katkılandırılmıĢ yapılara göre daha avantajlı 

durumdadırlar. 

Anahtar kelimeler: Kuantum bilgi teorisi, Kuantum bilgisayarlar, Fullerenler, Yoğunluk 

fonksiyon teorisi. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

1.1 Nanotechnology 

Although the term nanotechnology was first used and defined as the ability to engineer 

materials precisely at the scale of nanometers in 1974 by N. Taniguchi [1] from 

University of Tokyo, the birth of nanotechnology is said to have occurred in 1959 at an 

American Physical Society meeting when R. Feynman gave his speech “There is Plenty 

of Room at the Bottom” and later he published it as an article [2]. In his speech, he was 

talking about imagination of new discoveries if we make materials and devices at the 

atomic and molecular scale. He also stated that a new class of instrumentation is needed 

to measure and manipulate the properties of  nanoscale (10
-9

-10
-7

 m) structure. 

Feynman’s talk focused mainly on solid state physics instead of fundamental physics. 

Because when the size of the structure diminishes to molecular and atomic dimensions, 

main role of classical physical principles is replaced and emergence of new 

phenomenons are inevitable such as wave-like transport. At this level of sizes, classical 

approximations that treat electrons as particles are not proper any more and these 

systems satisfy the law of quantum mechanics since the wave character of electrons 

becomes more pronounced . 

Consider a school bus, when its size is reduced to nanoscale, problems with the friction 

will disappear. Mass and inertia become irrelevant due to the reduced size but there will 

be problems related to the electric and magnetic properties. Also there will be changes 

when we reduce the size of a big gold piece to the nanoscale; the gold’s color, melting 

point and chemical properties will change. To understand why this happens, 
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nanotechnology uses the benefits from many disciplines. Physicists care about the 

properties of matters, chemists are generally concerned about molecules and engineers 

are concerned with the understanding and utilization of nanoscale materials.  

In 1980s, instruments were invented as a result of Feynman’s ideas. These instruments, 

including scanning tunneling microscopes and  atomic force microscopes, have become 

important research tools. Today  a large number of nanoparticle based materials such as 

paints nano particle-doped materials, sunscreens and nano-enhanced golf and tennis 

balls are used.  

If we become more futuristic, we can say that nanotechnology will have an strong effect 

on military and other industries. Effect of nanotechnology on military applications is 

increasing and has a huge impact on it,  usage of nanorobotics, nanoelectronics and 

nanobased armors and special nanobio devices will be realistic in the coming years. 

Table 1 shows the potential and future markets for nanotechnology. 

Nano related materials and sevices could be a $1 trillion market by 2015 and increasing 

approximately ten percent each year according to U.S National Science and 

Foundation’s  predictions [4-8]. Nanotechnology is already a  priority to goverments and 

technology companies in the world; their research capabilities and expenses are growing 

each year.  

The results of this growth can be understood from the patent activities, Table 2 shows 

the patent activities of U.S. The number of total of patents referencing the word “nano” 

is 21122 and there are 41,208 pending U.S. Patent Applications that reference only nano 

[9] in 2009. Therefore it seems that nanotechnology is one of the fastest growing 

industries. 
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Table 1:  Potential and future markets for nanotechnology [3]. 

 Current  1-5 years 6-10 years 10-50 years 

Health 

care/Medicine 

Sun 

screens 

Biological nano 

sensors for 

diagnostics  

Artificial muscle 

lab on a chip 

technology for 

more efficient 

drug and gene 

delivery 

Nano machines 

for in vivo 

treatment 

 

Nanopumps/valv

es for tissue 

engineering 

/artificial organs  

Energy Nano-

catalyst 

enhanced 

fuels for 

better 

efficiency  

Nanomaterials 

for fuel 

cells/batteries  

More efficient 

solar cells using 

nanotechnology 

Nanomaterials 

for hydrogen 

storage fuell cells  

Security  Nano bar 

coding and 

tagging  

 

Nanotubes for 

thermal 

protection 

  

Electronics   Carbon 

nanotube 

electronic 

components 

Nanomaterials in 

light emiting 

diodes and PV 

devices 

 

Single electron/ 

molecule devices  

Communications/ 

computation 

  Flat panel 

flexible displays 

using 

nanotechnology 

 

High density  

data storage 

using nano 

magnetic effects 

Faster processing 

using quantum 

computing  

 

DNA computers 
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Figure 1:  Cumulative total number of U.S patents referencing nano [9]. 

 

1.2 Orbital Hybridization and New Carbon Materials 

This subsection is mainly based on Refs [10]. 

Usage of carbon based materials has a huge impact on the development of 

nanotechnology and it served as one of the most important factors that increased the 

popularity of nanotechnology. Even though carbon is the sixth most common element in 

the universe, it is the defining factor for the microscopic act of life. The reason for this 

probably that carbon binds itself to other light atoms without large expense of energy. 

Furthermore, carbon based materials have a great affect on nanotechnological 

applications because of their unique structural, electrical, magnetic and thermal 

properties caused by the ability of forming possible hybridized orbitals.  

A carbon material can be found in many different forms such as graphene, diamond, 

carbon nanotube and fullerene. Main reason for this variety is the orbital hybridization 

that is also responsible for the unique character of these clusters. 

Electronic configuration of carbon is 1s
2
2s

2
2p

2
 containing six electrons and four 

electrons in the 2s
2
2p

2 
orbitals are called valence electrons. Hybridizations occur when s 

and p orbitals in the n=2 shell make a linear combination. Three possible hybridisation 

occurs in carbon materials: sp, sp
2
 and sp

3
; other elements such as Ge shows sp

3
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hybridization and lack of sp and sp
2 

hybridization could be related to the lack of Ge 

based organic materials. In order to clarify the hybridisation of orbitals we discuss in 

detail sp hybridization;  

sp hybridization is a combination of 2s and one of the 2p orbitals out of 2px and 2py. We 

represent the hybridized wave function as;  

                                                          𝑠𝑝1   =  𝑎1  2𝑠 + 𝑎2  2𝑝𝑥                                       (1.1) 

                                                          𝑠𝑝2   =  𝑎3  2𝑠 + 𝑎4  2𝑝𝑥                                       (1.2) 

or 

                                                                𝑠𝑝1   =  𝑏1  2𝑠 + 𝑏2  2𝑝𝑦                                       (1.3) 

                                                         𝑠𝑝2   =  𝑏3  2𝑠 + 𝑏4  2𝑝𝑦                                       (1.4) 

Using the orthonormality condition we can find an or bn values and write wavefunctions 

once more; 

                                                          𝑠𝑝1  =
1

 2
(  2𝑠 +   2𝑝𝑥                                         (1.5) 

                                                          𝑠𝑝2  =
1

 2
(  2𝑠 −   2𝑝𝑥                                         (1.6)  

Positive and negative signs mean that binding energy will be higher in the +x direction 

for sp1  and –x direction for sp2.  Figure 2 illustrates the overlap or the orbitals for this 

sp hybridization. 

Similarly, in sp
2
 hybidization; 2s and two 2p orbitals are hybirized and in sp

3
 

hybidization; 2s orbital and three 2p orbitals are mixed with each other to form sp
3
 

hybidization.  

Carbon exists in two main forms, diamond graphene with sp
3
  and sp

2
  orbital 

hybridization. Discovery of carbon nanotube [13] and C60  fullerene [14] also known as 

buckminsterfullerene created a bridge between different disciplines because of different  
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Figure 2: Orbitals for the sp hybridization [12]. 

 

 

technological applications. For example today there are numerous experimental and 

theoretical studies about doped carbon and other type of fullerenes and nanotubes [15-

17], even about fullerene inside nanotubes so-called pepods [19,20]. As shown in Figure 

3, special carbon materials like C60 fullerenes, carbon nanotubes, graphenes and 

diamond  have different hybridization therefore shows different structural  and electrical 

character. 

 

 

 

Table 2: Schematic classification of the different forms of carbon (adapted from [21]). 

Form C60 fullerene Carbon 

nanotube 

Graphite Diamond 

Hybridization Sp
2
 Sp

2
-sp Sp

2
 Sp

3
 

Bond length 

(A
0
) 

1.40 (C=C)  

1.46 (C-C)  

1.33-1.44 (C=C) 1.42(C=C) 1.54 (C-C) 

Electronic 

properties 

Semiconductor Metal or 

Semiconductor 

Semi metal  Insulating  
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Hybridization of s and p orbitals leads either σ-type or π-type covalent chemical bonds  

and while simple bonding allows us to indicate thermal, structural and mechanical 

properties, the  existence of π orbitals will be essential for electronic and magnetic 

properties. 

Orbital hybridization also occurs in other type of materials such as boron, zinc oxide, 

gallium nitride, boron nitride, silicon carbide nanotubes and fullerenes etc. and so it is 

responsible for the different effects shown by these structures in technological 

applications. 

1.3 Birth Of Quantum Computing and Quantum Cryptography 

1.3.1 Electronic Technology and Moore’s Law 

Today we are experiencing the fast growth of electronic devices, silicon based chips take 

place in every technological application including CD players, cars, televisions and 

cellular phones etc. This revolution is started with the foundation of integrated circuit by 

Jack Kilby of Texas Instruments in 1958 for which he received Nobel price in Physics in 

2000 [22]. 

Main speciality of the silicon revolution is the miniaturization of transistors inside the 

integrated circuits because of enhanced performance and reduced costs. There is a huge 

growth of the size miniaturization and it is continuing almost exponentially even that the 

feature size of newest generation silicon devices is 40-45 nm in other words this kind of 

integrated circuits contain billions of transistors. 

In 1965, Gordon Moore, co-founder of Intel , made an empirical prediction, so-called 

Moore’s law, that number of transistors on a microprocessor doubles every 18 to 24 

months [23]. This means that fast miniaturization reaches transistors take silicon 

electronics into the size of the atoms or nanometer scales. 

The question is why does the Moore’s law seem important and contain essential 

consequences for today’s and future technological applications. Moore’s law is 
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important because when the miniaturization comes to the atomic/molecular scale, 

processors start being affected by the rules of Quantum Mechanics. For example, 

thickness of the silicon dioxide used as an insulator for gate electrode in field effect 

transistors, FET, will be smaller when we reduce the dimensions. If this thickness comes 

to nanometer scales, electrons leak through by the quantum tunneling effect. 

Emergence of quantum mechanical rules in nanometer scale is not the only reason for a 

new technology. Today’s large supercomputers used in scientific research, military, 

technological applications and  film industry waste too much energy both for cooling 

and running. As an example; TÜBĠTAK/ULAKBIM Trgrid project has its 

supercomputing  power of almost 2000 nodes using grid computing in order to provide 

computational simulation projects running by  the researchers in Turkey which is also 

the main source of computational power of the quantum mechanical calculations of 

molecules that we made in these thesis studies. The structure of the system distributed to 

ten locations in Turkey and each refrigerator sized supercomputer in these locations 

need to be cooled by very big  special air conditioning units and waste thousands of 

kilowatts of power with hundrends of data traffic routers and kilometers of cables. 

Ulakbim allowed to  spent 3 million TL in order to make improvements on the system 

each year . Even bigger systems are already available in the world located in large cities 

and getting bigger every year. Finally, the necessity of new technologies operated by 

physics of quantum mechanics with smaller energy costs will be inevitable in the future. 

 

1.3.2 Feynman’s Contribution  

Richard Feynman was the first physicist to make most essential contribution to the 

quantum mechanical way of computation through  his famous articles in 1982 [24] and 

1985 [25]. The idea of Feynman is an imagination of a computer that could act as a 

quantum mechanical simulator by using quantum mechanical rules such as 

superposition. He also made descriptions of the quantum computers in his article in 

1982, “Simulating Physics with Computers”  by  mentioning “quantum computers” and 

“universal quantum simulators”. In his further paper “Quantum Mechanical Computers”, 
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his main goal is to understand how quantum systems could simulate ordinary computers 

by giving  detailed suggestions for quantum implementations of classical tasks. 

 

1.3.3 Quantum Money 

The most important idea that made quantum cryptography possible was given by 

Stephen Wiesner in his article “Conjugate Coding”  in late 1960s and his idea is based 

on the impossibility of  counterfeiting  a quantum money [26]. 

Unlike classical states quantum states cannot in general be copied because a general 

quantum system is disturbed by measurement i.e. loses its coherence and yields 

incomplete information about its state before the measurement, it is the so called no-

cloning theorem caused by uncertainty principle and states that we can not copy an 

unknown state. If we would do it, this is against Heisenberg’s uncertainty principle. We 

can not copy a state with exactly same momentum and position.  This un-clonability of 

quantum states create the idea of quantum money and quantum communication systems 

in which any outside attempt on a quantum communication channel causes an 

unavoidable disturbance, alerting the users. 

Briefly, Weisner’s idea of quantum money is that a central bank can make and verify 

banknotes but it is impossible for anyone to copy it. By printing random polarized 

photons on the money the bank will be able to prevent counterfeit, in other words, it is 

not possible to copy the banknotes since the measurement on the arbitrary quantum 

states will disturbs it, however, the bank must keep the record of photon polarizations 

for each banknote. If the bank knows each the quantum states of banknotes, it can find 

the possibility of a banknote to become a copy. 

Taking Weisner’s idea as the starting point, the first quantum cryptography protocol, 

BB84,  is published by C. H. Bennett and G. Brassard in 1984 [27]. Since then, lots of 

quantum cryptography protocols is studied, published and experimentally verified such 

as A. Ekert’s E91 EPR [28], COW coherent one way protocol [29], DPS differential 

phase shift [30] and S09 Protocol with Private-Public Key [31]. 

http://en.wikipedia.org/w/index.php?title=E91_protocol&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=S09_protocol&action=edit&redlink=1
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1.3.4 Quantum Algorithms  

The structure of the algorithms in any quantum computer can make important 

improvements on speed up as well as the ones caused by the speciality of quantum 

hardwares which work based on the principles of quantum mechanics.  

The first essential contribution to the idea of quantum computers after R. P. Feynman 

was proposed by D. Deutsch in 1985 [32] by introducing his “Deutsch Algorithm” and it 

exhibits two to one speed up over classical ones. In 1992, this algorithm was generalized 

as Deutsch–Jozsa Algorithm [33] but unfortunately this is not an efficient quantum 

algorithm because it has not much application and there are classical algorithms that 

solve that problem efficiently. 

Biggest achievement of quantum algorithms is given by Peter Shor’s factorization 

algorithm called Shor’s algorithm in 1994 [34]. This algorithm makes possible the 

factorization of large integers quickly. Besides it is better than the best known classical 

algorithm. Figure 3 shows the advantage of Shor’s algorithm over classical ones. This 

algorithm was tested experimentally in 2001 by the joint researchers from Stanford 

University and IBM Almaden Research Center [35]. They were successful in 

factorization of N = 15.  

There are other types of theoretically successful algorithms like Grover’s search 

algorithm[36] and Simon’s algorithm [37] but none of them could achieve the power of 

Shor’s algorithm. 
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       Figure 3:  Shor’s factorization algorithm vs. best known classical algorithm. 

 

 

1.3.5 Recent Achievements 

Today many applications of quantum information theory are carried out by 

governments, institutions, and large companies like IBM, France Telecom, Hitachi, 

Pirelli, Hewlett-Packard and European Space Agency (ESA) etc. Most interesting and 

striking of all is that D-Wave Inc. in February 13
th

 2007 announced a 16-qubit quantum 

computer called ORION [38]. As a first demonstration, ORION solved the Sudoku 

puzzle. The company has produced 128 qubit quantum computer chip in 2009 [39]. 

In October 11, 2007 Switzerland used technology of quantum cryptography in 

collaboration with university of Geneva and the company called id-Quantique  to protect 

voting ballots cast in the Geneva / Switzerland during parliamentary elections and they 

used  more improved technology during the 2008 and 2009 elections, this was the first 

time to use this technology for this kind of purposes. Japan, Italy, Austria, Spain, 
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Germany and UK are already testing satellite and ground based quantum 

communications [40-48]. 

Recently in 2010, scientists of Harvard University and the University of Queensland, 

Australia have built a quantum computer and a special algorithm to simulate the 

Hydrogen molecule [49]. This was the the first quantum computer to simulate and 

calculate the behavior of a molecule. 

1.3.6 Outline 

This thesis is divided into seven parts, chapter 2 contains a very introductory 

descpription of quantum computers and properties of qubits and quantum algorithms. 

Theoretical background information on quantum chemistry methods used in this thesis is 

given in chapter 3 including density functional and Hartree Fock methods. In chapter 4, 

density functional theory results of electronic and geometrical structures of endohedral 

fullerenes Li@C60, Na@C60, N@C60 and P@C60 is given. Chapter 5 contains again 

results of DFT calculations on metal atoms Li,Na and non-metal atoms N,P doped C60 

dimer structures. Chapter 6 is divided into two parts, first part have the DFT resılts of 

electronic and geometrical results of Li, Na, N, P doped linearly [2+2] type  aligned 

three C60 fullerene structure while second part contains DFT results of Li, Na, N, P 

doped [5+5] type aligned triangular C60 fullerene structure. Chapter 7 is the conclusion 

part, this parts compares the spin-qubit properties of structures given in chapters 4-5-6 

and possibility of their usage as spin cluster qubits. 
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CHAPTER 2 

 

QUANTUM WAY OF COMPUTATION 

The aim of this chapter is to give a very introductory information about how a quantum 

computer works and necessary requirements for molecular based quantum computers. 

This chapter’s information is mainly based on the studies in Refs. [50-77] and 

information inside them constructed the structure of this chapter. 

2.1 Quantum Mechanical Tools 

2.1.1 Superposition Principle & The Measurement Problem 

Schrödinger’s equation in quantum mechanics gives how a quantum state evolves in 

time and it is a linear differencial equation;  

 

                                               𝑖ħ 
𝜕𝜓(𝑥 ,𝑡)

𝜕𝑡
 = 

 −ħ2

2𝑚

𝜕2𝜓 𝑥 ,𝑡 

𝜕𝑥2
+ 𝑉(𝑥) 𝜓

(𝑥,𝑡)
                         (2.1) 

If  𝜓1 and 𝜓2 are two solutions of this equation then  𝜓1 + 𝜓2 is also the solution of the 

equation. This property is supported by the linearity of Hilbert space in which wave 

functions are represented by vectors. Vectors    𝜓1   and    𝜓2   represent states in Hilbert 

space but a linear combination of these states, 𝑎   𝜓1  + 𝑏   𝜓2  , also represent a state. 
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This is called the superposition principle. Here  𝑎 2 and  𝑏 2 are probabilities and 

 𝑎 2 +  𝑏 2 = 1 from the normalization.  

To give a physical example, as we can see from the Figure we can assign    𝜓1    as an 

electron’s ground state and    𝜓2   as its exited state or    𝜓1   for spin up and    𝜓2   for spin 

down state. However, according to the superposition principle state of electron is in a 

linear combination of these states. Above 𝑎 and b coefficients can be arbitrary complex 

numbers, only requirement is to satisfy the normalization condition i.e. their squares add 

up to 1. For example, superposition state can be  
1

 5
   𝜓1  +

2𝑖

 5
    𝜓2   or  

1

 2
   𝜓1  +

1

 2
   𝜓2   . 

 

 

 

Figure 4: Electron states as a physical example of a superposition state.  

 

 

 

 

 

This kind of states can be observed experimentally such as effect of interference. In 

contrast, in classical (macroscopic) world, we are not able to see such states. For 

example, A car is never in a state of being in our garage and on the top of a tree, 

simultaneously. The question is why is a superposition of macroscopic states never 

observed?  Problem arised by the behavior of  large systems to show classical properties 

is called the measurement problem. This phenomenon is very important for all quantum 
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computer proposals because it is crucial that quantum computer must be well isolated 

from the environment. 

There are many studies including wavefunction collapse mechanisms to try to explain 

the measurement problem. One of them is given in 2.1.3 and investigates the 

decoherence phenomenon in the quantum physics. 

 

2.1.2 Quantum Entanglement  

Entanglement phenomenon is very crucial not only for quantum cryptography but also 

for the theory of quantum computing because every proposal of quantum computer gains 

its power from entanglement as well as quantum paralelism.  

We can write two quantum states in their superposition forms as follows;                       

                                        𝜓1  =  𝑐𝑖𝑖   𝑖  1                                         (2.2) 

                                      𝜓2  =  𝑑𝑗𝑗   𝑗  2                                                         (2.3) 

Where   𝑖  1 and   𝑗  2 are basis vectors in Hilbert spaces H1 and H2, respectively. 

Combined system’s state is written as;    

                              𝜓1  ⨂   𝜓2  =   𝑐𝑖𝑖   𝑖  1 ⨂  𝑑𝑗𝑗   𝑗  2 =  𝜆𝑖𝑗𝑖𝑗   𝑖  1  𝑗  2            (2.4) 

if 𝜆𝑖𝑗 = 𝑐𝑖𝑑𝑗 , it means the state is separable, however 𝜆𝑖𝑗 ≠ 𝑐𝑖𝑑𝑗  then it is said to be non-

separable i.e. combined system’s state can no longer be expressed as a product state 

because of this inseparability and such states are called entangled states.  

Most famous example of an entangled state is Einstein, Podolsky and Rosen (EPR) state[78] of 

combined systems A and B; 

                                              𝛹  =
1

 2
(  0  𝐴  0  𝐵 +   1  𝐴  1  𝐵)                           (2.5)  

Let’s assume that these two systems are away from each other, A is in Turkey and B is 

in Germany. When we measure A the result is   0  𝐴 with ½ probability and   1  𝐴 with ½ 

probability and systems state changes (or collapses) to   0  𝐴  0  𝐵 and   1  𝐴  1  𝐵 for two 

different cases, respectively. Therefore after the measurement of A, we measure B in the 
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Germany and if measured A value is   0  𝐴 we find   0  𝐵 with probability 1 and if 

measured value of A is   1  𝐴, we find   1  𝐵 with probability 1 after the measurement of B.  

Entanglement plays an important role in both explaining the measurement problem and 

in quantum algorithms. 

 

2.1.3 Decoherence Interpretation  

Decoherence program carries great potential to describe the measurement problem and 

its description has great influence on molecular quantum computer architectures. 

Decoherence can be known as one of the interpretations of quantum physics by 

introducing the so-called wave function collapse as a result of the interaction between 

the environment and the physical system. 

The most widely accepted intepretation of quantum mechanics is the Copenhagen 

interpretation which is based mainly on the studies of Bohr and partly Heisenberg. It 

contains two important principles making it a non-deteministic interpretation; Bohr’s 

complementarity and Heisenberg’s uncertainty principles. According to the 

complementarity principle an object such as an electron can not behave as particle and 

wave at the same time, while Heisenberg’s uncertainty principle makes impossible to 

determine all the properties at the same time, like energy and time or position and 

momentum, and we must describe them as probabilities.  

Copenhagen interpretation explains the measurement problem as wave function 

collapses due to the measurement but measurement is not clearly defined in this 

interpretation in other words, measurement is considered classically. 

Decoherence interpretation [63-77], however, tries to explain the measurement problem 

by giving the idea that correlations between environment (or measurement apparatus) 

and the system can lead to non-local entanglements which are responsible for the 

emergence of classicality (measurement problem). 
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Before giving a mathematical explanation of the wave function collapse caused by the 

entanglement in decoherence program let’s talk about interference loss in the Mach-

Zehnder interferometer;  

 

 

 

Figure 5: Experimental setup to explain the loss of interference. 

 

 

 

 

When we send a photon toward a beam splitter (or a half-silvered mirror), photon will 

travel in both direction and with the help of the two ordinary-mirrors we change their 

directions through another beam splitter (or half-silvered mirror) and photon is always 

detected in the right direction. Our photon is preserving its superposition and 

interference. However, if we place a block on one path, in Figure 5b, superposition will 

be broken and destruction of interference occurs.  

Now we will look at the similar interference loss which is the source of the decoherence 

in open quantum systems (computers). Let’s think Q as the system of the quantum 

computer and E as the environment and suppose that Q and E are entangled to each 

other. The state of the entangled system, EPR state in eq.2.5, is; 

                                              𝛹  =
1

 2
(  0  𝑄  0  𝐸 +   1  𝑄  1  𝐸)                                 (2.6) 
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Use an unitary transformation called Hadamard on the system and a measurement on the 

final system’s state cause loss of interference, like in the previous experiment.  

                                                  H  0  𝑄,𝐸 =
1

 2
(  0  𝑄,𝐸 +   1  𝑄,𝐸)                                   (2.7) 

                                            H  1  𝑄,𝐸 =
1

 2
(  0  𝑄,𝐸 −   1  𝑄,𝐸)                                   (2.8) 

 

Then the state is; 

 

                                 (½)(  0  𝑄  0  𝐸 +  1  
𝑄  0  𝐸 +   0  𝑄  0  𝐸 −   1  𝑄  1  𝐸)                   (2.9) 

 

Measurement on Q gives us ½ probability   0  𝑄  and ½ probability   1  𝑄 , which means 

interference is destroyed just like in Figure 5b and this situation is a partial description 

of the classical behavior of A after the measurement.  

Let’s apply the same transformation on a system which is in a linear combination of  

  0  𝑄  and   1  𝑄  ; 

                                                  𝛹  =
1

 2
(  0  𝑄 +   1  𝑄)                                               (2.10) 

                                                           H  𝛹  =   0  𝑄                                                    (2.11) 

Result of a measurement on these systems will be   0  𝑄  with probability 1, just like in 

Figure5a. 

Quantum computers are quantum mechanical computers and must preserve their 

quantum nature while quantum operations are used. Therefore, due to this operations 

there may be correlations between systems leading to disturbance of the the quantum 

nature (quantum coherence) of the quantum system. There are lots of studies 

investigating “decoherence time” of various molecular structures [79-81] and this 

problem can be solved by finding operation speeds faster than decoherence time of these 

molecular systems. 
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2.2 Usage of Qubits and Quantum Algorithms  

 

2.2.1 Quantum analogy of classical information units 

Classical digital computers use binary system, 0 and 1, to encode information and those 

bits are manipulated by logic gates based on Boolean algebra. However, a quantum 

computer’s information unit, qubit can be in a state of a linear combination of   0   and 

  1 ;   𝑎  0 + 𝑏  1   , where  𝑎 2 and  𝑏 2 are probabilities of finding   0   and    1  , 

respectively, and  𝑎 2 +  𝑏 2 = 1 from the normalization condition. Usage of the qubits 

is not the only possibility to operate a quantum computer but it is the most commonly 

used one; others are qutrits and qudits. Firstly a classical ternary (trit) bit system’s 

quantum mechanical analogy is called qutrit and uses three basis   0 ,   1     and    2   or a 

linear combinations of them; 

                                                         𝑎  0  + 𝑏  1  + 𝑐  2                                                     (2.12) 

Secondly, qudits use n-bases (n-level quantum system) or a linear combination of these; 

                                               𝑎  0  + 𝑏  1  + 𝑐  2  + ⋯ + 𝑥  𝑛                                           (2.13) 

Power of quantum computers comes from the quantum parallelism in qubit structures. 

N-qubit system contains 2
n
 possible states, for example, two qubit quantum system’s 

state is, also called quantum register, written as; 

                                       𝛹  = 𝑎  00  + 𝑏  01  + 𝑐  10  + 𝑑  11                                 (2.14) 

System’s state    𝛹    contains two qubits and four components (2
n
=2

2
=4) with  𝑎 2 +

 𝑏 2 +  𝑐 2 +  𝑑 2 = 1. When we decide to compute a function, f, we apply an 

appropriate unitary operation on the system; 

                                                     𝛹  → 𝑈  𝛹  =  𝑓(𝛹)                                                 (2.15) 

𝑎  00  + 𝑏  01  + 𝑐  10  + 𝑑  11  → 𝑎  𝑓(00)  + 𝑏  𝑓( 01)  + 𝑐 𝑓( 10)  + 𝑑  𝑓(11)      

(2.16) 
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As a note, only allowed transformations are unitary transformations in quantum 

computers. Because the Hamiltonian which generates evolution of Schrodinger’s 

equation has its solution only if the linear operator is unitary and quantum superpositions 

can only be protected by unitary operations. To be more understandable, unitary 

operations are reversible by inverse operation; 

                                                    𝑈  𝛹  =   𝛹𝜄                                                             (2.17) 

                                                    𝑈−1  𝛹𝜄  =   𝛹                                                         (2.18) 

The reversibility written in equations 2.17-18 cause preservation of the superposition 

and conservation of the total probability. 

Operation in eq.2.15-16 computes f simultaneously on all four, 2
n
=2

2
=4, parts due to 

quantum parallelism while a classical n-bit sequence or register can index 2
n
 state but 

only one state can be stored in the register at a time. However, we have to make a 

measurement to take this information out of the quantum system and this measurement 

will destroy the superposition and causes the system to lose its quantum nature, or 

causes so-called wave function collapse. At this point, we have to design the unitary 

operations carefully in order that we can obtain the desired solution with highest 

probability after the measurement. To do this, we need another tool called quantum 

interference. Quantum interference is used in such a way that the final unobserved 

quantum system’s superposition state contains only the wanted parts those are more 

likely to be observed after the measurement and so these operations increase the 

possibility to obtain correct answer. This is like constructive and destructive 

interferences of light. All we have to do is to arrange the correct cancelations by 

applying suitable unitary transformations or quantum gates to manipulate superposition 

state. These kinds of operations are the task of special quantum algorithms. We have to 

keep in mind that quantum computing is a probabilistic computational model and 

reading the final state of the quantum system must be the final step because 

measurement operations are destructive. Next section will be more illustrative about this 

situation. 
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2.2.2 Deutsch algorithm 

Quantum algorithms have great influence on the performance of the quantum computers, 

as we discuss in the previous section. One of the earliest examples of a quantum 

algorithm is proposed by D. Deutsch [32] to solve the problem called “Deutsch 

Problem” and quantum computers are superior to the classical ones for this problem.  

Deutsch problem is based on the investigation of whether a function f: {0,1}→{0,1} is 

constant or balance using only a single input. It is said to be constant if f(0)=f(1) and 

balanced if f(0)≠f(1). Structure of the solution of this problem is based on the Deutsch 

algorithm. It is important that the problem here is not to find out what f is, but to 

determine a property of it. 

 

 

Figure 6: Classical circuit for the solution of Deutsch problem. 

 

 

 

 

Classical computers solve the problem by evaluating f twice; circuit diagram shown in 

Figure 6 evaluates f(0) and then f(1) and resulting values determine whether f is 

balanced or constant. 

Quantum computational circuit evaluates the problem as follows; firstly Figure 7a shows 

the evaluation principle, input (first qubit) x becomes unchanged after appropriate 
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unitary operation, Uf,  D. Deutsch called it “Oracle” or “Black box” and second qubit y 

becomes y+f(x) (mod 2). 

 

 

 Figure 7:  Quantum circuit for the solution Deutsch problem a) general computing  

 

 

structure of a quantum circuit with only one input, x. b) Quantum circuit for the Deutsch 

algorithm. 

Firstly Hadamard transformations (or gates) are acted on   0   and   1  , here the usage of 

the Hadamard gates can be taught as the usage of interference explained in previous the 

chapter and shown in Figure 5. How Hadamard gates act on qubits shown in Figure 7b is 

as follows; 

                                                 H  0  = 1/ 2(  0  +   1  )                                           (2.19) 

                                                 H  1  = 1/ 2(  0  −   1  )                                           (2.20) 

Combined system’s state after Hadamard transformations applied is, after the stage 1 

shown in Figure 7b; 

           𝛹  𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =
1

2
   0  +   1      0  −   1   =

1

2
   00  −   01 +   10 −   11           (2.21) 

We define that U  𝑥    𝑦  →   𝑥   𝑦⨁𝑓 𝑥    , by putting ⨁ we apply mod 2 to the y+f(x) and 

after these state enters the oracle (U), system’s state according to our definition U  𝑥    𝑦   

is; 
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                                            U   𝑥  ⨂  𝑦  =(−1)𝑓 𝑥   𝑥  ⨂  𝑦                                         (2.22) 

            U 
   0  +  1   

 2
⨂

   0  −  1   

 2
 = 

(−1)𝑓 0   0  +(−1)𝑓 1   1  

 2
⨂

   0  −  1   

 2
     (2.23) 

We have one more step, stage 2, to complete the algorithm which is to apply one more 

Hadamard gate to the first qubit   𝑥   in eq.2.23 after the U operation; 

                                         𝑥   =
(−1)𝑓 0   0  +(−1)𝑓 1   1  

 2
                                        (2.24) 

                                   H  𝑥  =(−1)𝑓 0  
  0 +   1  

 2
 + (−1)𝑓 1  

  0 −   1  

 2
                         (2.25) 

Assume possibility of two scenario f(0)=f(1)=0 and f(0)=f(1)=1 i.e. f is constant, then 

the resulting state, in eq. 2.25, becomes; 

                                            𝑥   =±  
  0 +   1  

 2
 ±  

  0 −   1  

 2
  =±  0                                   (2.26)                        

 Then, if f is balanced f(0)≠f(1) with f(0)=0, f(1)=1 and f(0)=1, f(1)=0, resulting state 

will be; 

                                            𝑥   =±  
  0 +   1  

 2
 ∓  

  0 −   1  

 2
  =±  1                                  (2.27) 

Equations 2.26 and 2.27 assure that if f is constant our measurement on both final 

possible states of x shown in eq. 2.25 will give us with certainty the outcome   0   and if f 

is balanced, our measurement on both final possible states of x shown in eq. 2.26 will 

give us with certainty the outcome   1  . By applying this algorithm, we gain advantage 

over the classical computers because using the interference and quantum parallelism we 

were able to solve the problem with only one operation, or evaluation of f. 

It can be also explain with to the Mach-Zehnder interferometer shown in Figure 5 that 

we can solve the problem with only one photon. Half-silvered mirrors serve as 

Hadamard transformations in Deutsch algorithm and at this time the problem will be 

about phase shifters, φ
1
, φ

2
 ∈{0,π} are equal or not (φ

1
=φ

2 
or φ

1≠φ
2
). All we have to do 

to find the phase difference φ
1
- φ

2
 and so determine whether φ

1
=φ

2 
or φ

1≠φ
2
 by 
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detecting the direction of photon just like the determination of f to be constant or 

balanced. When phases are φ
1
=0, φ

2
=π and φ

1
= π, φ

2
=0, outcome will be  1   and φ

1
=0, 

φ
2
=0 and φ

1
= π, φ

2
= π, outcome will be   0  . 

 

 

Figure 8:  Analogy of the solution of Deutsch problem using Mach-Zehnder 

interferometer, φ
1 
and φ

2
 are phase shifters. 

 

 

 

2.3 Sympathy for a spin-qubit   

Theoretically investigated properties of quantum computers are given in previous 

chapters taking into account the special structure and phenomenons of quantum physics 

including interference, superposition, measurement, entanglement and decoherence. 

However, to construct a working physical implementation of a quantum computer is a 

very challenging task and the requirements that any physical quantum computer must 

satisfy are known as DiVincenzo criteria [82] given by D. DiVincenzo in 2000. Most 
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important ones are that qubits must be well isolated from the environment to reduce 

quantum decoherence caused by interaction between system and environment, however, 

we also need gate operations act much faster than decoherence times of the qubits. 

Because of the consequences of the no-cloning theorem [83,84] which states that 

arbitrary quantum states can not be copied, qubits must be initialized to some state such 

as   0   state before the computation. We should be able to read, or measure, the final state 

to extract the result. In addition, there must be a possibility of making specific qubit 

measurements.  

There are many physical implementations partly satisfying these requirements including 

spin-based quantum computation (Nuclear magnetic resonance, Kane, and Loss-

Divincenzo quantum computers) [85-87], trapped ions [88-91], optical lattice [92], 

cavity QED [93-95], superconducting [96-98], topological quantum computers [99,100] 

and adiabatic quantum computers [101]. Appendix A contains full list of DiVincenzo 

criteria and the quantum computer proposals based on the U.S Advanced Research and 

Development Activity (ARDA) report [102]. 

Recently, there are studies investigating the possibility of usage of fullerene 

nanostructure based quantum computation [103-107] and two of the promising ones are 

nanopeapods [108,109] and endohedral fullerenes [110-114] and nuclear and electron 

spins are the qubit candidades of these proposals. Necessary requirements for these 

structures is given in Ref [115]. These requirements can be also drived from some of the 

DiVincenzo’s criteria and include charge arrangements of the fullerene, spin density 

distributions and qubit-qubit interactions.  

Electron, nuclear spin and electron orbital state qubits are mainly used in fullerene based  

proposals of quantum computers and electron spins inside the fullerene based materials 

have advantages over nuclear spin qubits and great potential to become a qubit 

candidate.  As we have stated that qubit operations are badly affected by the 

decoherence phenomenon and also operations must act faster than the decoherence 

times. Figure 9 shows the comparion of decoherence times, or dephasing times, and time 

scales required for the control of the qubits for electron and nuclear spin qubits. As we 
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can see from the figure today’s fast microprocessors operation time is between the time 

scales of decoherence and control times, while nuclear and orbitals states time scales can 

not  reach the microprocessors time scales. This makes spin-qubits more favorable over 

the other qubit proposals. 

 

 

Figure 9: Control and decoherence times of nuclear, electron spin and electron orbital 

states. 
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CHAPTER 3 

 

 

 

METHODS IN COMPUTATIONAL QUANTUM CHEMISTRY 

 

The purpose of this chapter is to give brief information about theoretical methods used 

for determining special properties of materials. Theoretical background contained in this 

chapter is summarized from Refs [116-120]. 

3.1 Many Body Problem and Adiabatic Approximation 

Investigating special properties of molecules using computational chemistry methods on 

computers rather than experiments is growing field of study in many disiplines such as 

in physics, chemistry and biology. This kind of investigations including energy, charge 

distribution, reactivity and geometry optimisation enable us not only to look at the 

chemical and physical properties but also find the desired modifications on the materials 

that provide pre-determination of these properties. Moreover, dealing with nanoscale 

materials is experimentally difficult and so computational studies becomes an important 

characterization tool in these scales. 

Computational quantum chemical methods use tools of quantum mechanics to estimate 

the properties of materials and some of these are ab-initio methods such as Hartree Fock 

method, Møller–Plesset perturbation theory [121], configuration interaction (CI) 

[122,123], multi-configurational self-consistent field (MCSCF) and Density functional 

theory [124,125]. The need for these methods is caused by the inseparability of many 
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body schrödinger equation. To understand this,  let’s write the  time-independent 

schödinger equation : 

𝐻𝛹 =  𝐸𝛹 

                                                             𝐻 = 𝑇 + 𝑉                                                      (3.1) 

H= Tn+Te+ Vnn+Vne+Vee 

Where H is the system’s many body hamiltonian, T is kinetic energy and V is the 

potential energy term. Properties of materials is investigated through solving this 

equation. As shown in eq. system’s many body hamiltonian consists of kinetic and 

potential parts, potential part contains three terms caused by nucleus-nucleus, nucleus-

electron and electron electron interactions, Vnn, Vne, Vee, respectively and kinetic part 

consists of two terms which are kinetic energy of nuclei and electron, Tn  and Te, 

respectively.  

  

  𝐻 = −  
ħ2

2𝑀𝑛

𝑀
𝑛=1 ∇2

𝑛 −  
ħ2

2𝑚𝑒

𝑁
𝑒=1 ∇2

𝑒 +
1

2
 

1

4𝜋𝜀0

𝑍𝑛 𝑍𝑘𝑒2

 𝑅𝑛 −𝑅𝑘  
 +  

1

2
 

1

4𝜋𝜀0

𝑒2

 𝑟𝑒−𝑟𝑓  

𝑁
𝑒≠𝑓=1  −𝑀

𝑛≠𝑘=1

 . 𝑀
𝑛  

1

4𝜋𝜀0

𝑁
𝑒

𝑍𝑛 𝑒2

 𝑅𝑛 −𝑟𝑒  
                                                                                             (3.2) 

 Schrödinger’s equation that we have to solve now becomes; 

                𝐻𝛹 𝑅  , 𝑟  =  (𝑇n+𝑇e+ 𝑉nn+𝑉ne+𝑉ee) 𝛹 𝑅  , 𝑟  = 𝐸𝛹 𝑅  , 𝑟                        (3.3) 

Where R and r are nuclear and electronic coordinates. In order to give an acceptable 

solution to this inseparable equation, different approximations are applied. Considering 

electrons’ movement much faster than the nuclei (i.e the nuclei can be regarded as fixed) 

is the basis of Born-Oppenheimer or adiabatic approximation [126]. This appoximation 

is based on the idea that motions of electron and nuclei can be separated, then the wave 

function can be written in product form as; 

                                                 𝛹 𝑅  , 𝑟  = 𝛹 𝑅  , 𝑟  𝛹 𝑅                                                 (3.4) 

Fixed nuclei causes nuclear kinetic term to become zero, 𝑇n=0, and Vnn term to become 

constant, so the final form of the Eq.3.3 is; 
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                                                       𝐻e= 𝑇e+𝑉ee+𝑉ne                                                   (3.5) 

We have now two different Schrödinger equations as we consider Eq. 3.4 and these are 

shown in Eqs.3.6 and 3.7.  

                                                       (𝑇𝑒 + 𝑉𝑒𝑒 + 𝑉ne )𝛹 𝑅  , 𝑟  = 𝐸𝑒(𝑅)𝛹 𝑅  , 𝑟                                (3.6)           

                                                        (𝑇𝑛 + 𝑉𝑛𝑛 + 𝐸𝑒(𝑅))𝛹 𝑅   = 𝐸 𝛹 𝑅                                        (3.7) 

Eq.3.6 is called electronic schrödinger equation and 𝐸𝑒(𝑅) are electronic energies. The 

total energy can be written as;                                        

                                        𝐸 = 𝐸𝑒 𝑅 +
1

2
 

1

4𝜋𝜀0

𝑍𝑛 𝑍𝑘𝑒2

 𝑅𝑛 −𝑅𝑘  
 𝑀

𝑛≠𝑘=1                                       (3.8) 

3.2 Hartree-Fock Approximation 

Hartree-Fock approximation uses the idea that each electron moves in the average 

potential field of the other electrons i.e system can be treated as many body system of 

independent particles. In this method, Schrodinger equation of many-electron system 

solved with the help of variational principle and many body wave function is created by 

Slater determinant [127] satisfiying Pauli’s exclusion  principle and the antisymmetry 

condition.  Therefore, many-body wave function in terms of spin orbitals can be written 

as; 

                                𝛹 =
1

 𝑁!
 

Ѳ1 𝑥 1    Ѳ2 𝑥 2 … . . Ѳ𝑁 𝑥 1 
⋮ ⋮

 Ѳ𝑁 𝑥 1    Ѳ2 𝑥 2 … . .      Ѳ𝑁 𝑥 𝑁 
                           (3.9) 

Hamitonian of an atom with N electrons can be written as; 

                                                   𝐻 =  ℎ1(𝑥𝑖)
𝑁
𝑖=1 +  ℎ2

𝑁
𝑖<𝑗 (𝑥𝑖 ,𝑗 )                             (3.10) 

Where ℎ1(𝑥𝑖) is single particle hamiltonian of i
th

 particle and ℎ2(𝑥𝑖 ,𝑗 ) is the interaction 

between i and j particles. ℎ1(𝑥𝑖)  and ℎ2(𝑥𝑖 ,𝑗 )  is written as (in a.u.); 

                                                 ℎ1(𝑥𝑖) = −
1

2
∇i

2 −
𝑍

𝑟𝑖
                                                 (3.11) 
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                                              ℎ2(𝑥𝑖 ,𝑗 ) =
𝑍

 𝑟𝑖−𝑟𝑗  
                                                           (3.12)            

Choosing Ѳ𝑁 𝑥 1 , Ѳ2 𝑥 2 … Ѳ1 𝑥 𝑁  as orthonormal, expectation value of the 

Hamiltonian in Eq.3.10 ( or total energy of the Hartree-Fock method ) is found by 

inserting 𝛹 in slater deteminant form into the Eq.3.10. 

          𝛹 𝐻 𝛹 =   Ѳ𝑖 ℎ1 Ѳ𝑖 
𝑁
𝑖=1 +

1

2
   Ѳ𝑖Ѳ𝑗  ℎ2 Ѳ𝑖Ѳ𝑗  −  Ѳ𝑗 Ѳ𝑖 ℎ2 Ѳ𝑖Ѳ𝑗   

𝑁
𝑖 ,𝑗         (3.13) 

                                 EHF =  𝐴𝑖
𝑁
𝑖=1 +

1

2
  Bij − Cij 

𝑁
𝑖 ,𝑗                                                 (3.14) 

Here, Bij  is called Coloumb and Cij  is called Exchance integral terms. By applying 

Lagrange multipliers method we protect the normalization constraint  Ѳ𝑖 Ѳ𝑗  = 𝛿𝑖𝑗  ( 

minimization of expectation value) and the equation of constraint is multiplied by some 

constant and it is added to the equation which is to be minimized. Our constrait equation 

is  Ѳ𝑖 Ѳ𝑗  − 𝛿𝑖𝑗 = 0. The new expectation value of the hamiltonian is; 

                                        𝐹 =  𝛹 𝐻 𝛹 −  𝑍𝑖𝑗  
𝑁
𝑖 ,𝑗   Ѳ𝑖 Ѳ𝑗  − 𝛿𝑖𝑗                             (3.15) 

                                            𝛿𝐹 = 𝛿𝐸 −  𝑍𝑖𝑗  
𝑁
𝑖 ,𝑗 𝛿  Ѳ𝑖 Ѳ𝑗   = 0                               (3.16) 

What we do here is to use functional derivatives and insert new orbitals   Ѳ𝑖  →   Ѳ𝑖  +

  𝛿Ѳ𝑖   into Eq.3.15. After some long calculations which is not included here but readers 

looking for more detailed calculations can see Ref [116],  we find the Hartree-Fock 

equation and Hartree-Fock operator, F as follows; 

                                         ℎ1 +   𝐵𝑖 − 𝐶𝑖 
𝑁
𝑖=1  Ѳ𝑘 =  𝑍𝑘𝑖

𝑁
𝑖=1 Ѳ𝑖                               (3.17) 

                                                                       𝐹 Ѳ𝑘 =  𝑍𝑘𝑖
𝑁
𝑖=1 Ѳ𝑖                               (3.18) 

We have to keep in mind that Hartree-Fock method is a wave function based method and 

atomic orbitals (AOs) represented by functions that can be Hydrogen like, Slater and 

Gaussian functions. We define basis functions 𝜔𝑖 , which are used to write molecular 

orbitals as linear combinations of atomic orbitals (LCAO approximation),                

Ѳ𝑘 =  𝐴𝑖𝑘
𝑁
𝑖=1 𝜔𝑖(𝑥), in order to overcome the difficulty of solving the HF equations. 

Because still evaluation of these equations is a hard task. Idea of  basis function 

expansion is proposed by Roothaan. 
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Slater type orbitals (STO)[127] and Gaussian-type orbitals (GTO) are given in Eqs.3.19 

and 3.20. STOs are not orthogonal while GTOs are orthogonal orbitals.  

                                      𝜔 𝑟 =
 2𝜇 𝑛+

1
2

 2𝑛 ! 
1
2

𝑟𝑛−1𝑒−𝜇𝑟  𝑌𝑙𝑚 (𝜃, ∅)                            (3.19) 

                                     𝜔 𝑟 =
 2 𝑛+1𝛼(2𝑛 +1)/4

  2𝑛+1 ! 
1
2(2𝜋)1/4

𝑟𝑛−1𝑒−𝛼𝑟2  𝑌𝑙𝑚 (𝜃, ∅)           (3.20) 

 

Basis sets STO-nG [128] in which n represents the number of Gaussians to approximate 

Slater Type Orbitals ( it means expantion of each Slater Type Orbital (STO) in three 

GTO) are known as minimal basis sets expansion or smallest basis sets. They are 

preferentially to used in large molecules. 

Extended basis sets by definition gives more detail about orbitals. Double-Zeta, Triple-

Zeta, Quadruple-Zeta, Diffuse Sets, Split-Valence and Polarized Sets are examples of 

such basis sets. Approximation of orbitals gives the same orbital shape in minimal basis 

sets but Double-Zeta functions are obtained by expressing each atomic orbital as the sum 

of two STOs. Eq.3.21 is the example for the 2s orbitals; 

                                             𝜔 𝑟 = 𝜔𝑆𝑇𝑂 𝑟, 𝜁1 + 𝐴𝜔𝑆𝑇𝑂 𝑟, 𝜁2                              (3.21) 

Different 𝜁 means different orbital sizes and constant A represents the  second’s orbitals 

contribution. Triple-Zeta and  Quadruple-Zeta consist of three and four STOs, 

respectively. 

Split-Valence basis sets are described by the representation of inner-shell electrons with 

single STO. They are suitable for the calculations in which the contribution of the core 

electrons contribution is very small. Some examples of SV basis sets are 3-21G [129] 

and 6-31G [130]. In this representation, 3 (in 3-21G) and  6 (in 6-31G) means number of 

Gaussian functions (GTO) used to construct inner-shell orbital. Numbers 2 (in 3-21G) 

and 3 (in 6-31G) are the number of gaussian functions that form first Slater type orbital 
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of the double zeta and finally 1 (in 3-21G and 6-31G) mean number of GTOs in the 

second double zeta. 

 

3.3 Density Functional Theory 

The idea behind the Density Functional Theory (DFT) is to represent the fermionic 

systems as electron density instead of many body wave functions. The main advantage 

of  this idea is that wave functions have complete information of the system but a system 

with N electrons depends on 3N spatial and N spin coordinates and this dependence on 

too many variables. In addition, interactions in a realistic system, like Vee,  are very time 

consuming processes. Although the idea of representing total energy as electronic 

density is proposed by Thomas and Fermi [131-133], structure of the of DFT is 

constructed by two theorems of Hohenberg-Kohn [134] and equations of Kohn–Sham 

[135]. 

 

3.3.1 Hohenberg-Kohn Theorems 

Hohenberg-Kohn’s first theorem states that Vne potential term in the system’s 

hamiltonian is uniquely determined by electron density (𝜌) which means that same 

ground state electronic density is not achieved by two different potential i.e. each Vne 

corresponds only one ground state density (there is a one to one correspondence between 

them). The total energy can be written in functional form as follows; 

                                             𝐸 𝜌 = 𝑇 𝜌 + 𝑉𝑛𝑒  𝜌 + 𝑉𝑒𝑒  𝜌                                      (3.22) 

                                             𝑉𝑛𝑒  𝜌 =  𝜌 𝑟  𝑣(𝑟 )𝑑𝑟                                                (3.23) 

Term 𝑇 𝜌 +𝑉𝑒𝑒  𝜌 = 𝐹𝐻𝐾  is known as Hohenberg-Kohn functional and it does not 

depend on 𝑣(𝑟 ) potential. It can be seen from the first theorem that knowing 𝜌 𝑟  gives 

𝑣(𝑟 ) and so 𝛹, therefore gives all the electronic properties. 
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Hohenberg-Kohn’s second theorem uses the energy variational principle and states that 

the density that minimizes the total energy is the exact ground state density. Any 

arbitrary electron density 𝜌(𝑟) satisfy the conditions; 

                                            𝜌 𝑟 ≥ 0    and     𝜌 𝑟 𝑑𝑟 = 𝑁                                    (3.24) 

Lowest energy 𝐸0 is only given as a functional of real ground state density 𝜌0 and   

𝐸0 = 𝐸[𝜌0] ≤ 𝐸[𝜌] which is analogous for variational principle of wavefunction 

𝐸0 ≤ 𝐸[𝛹]. 

Energy minimization applied with the constraint given in Eq.3.24 with the Lagrange 

multipliers method to maintain this constraint just like we did in Hartree-Fock method is 

as follows; 

                                                𝛿 𝐸[𝜌] − 𝜇  𝜌 𝑟 𝑑𝑟 − 𝑁  = 0                               (3.25) 

It gives Euler-Langrange equation; 

                                              𝜇 =
𝛿𝐸[𝜌]

𝛿𝜌 𝑟  
=  𝑣 𝑟  +

𝛿𝐹𝐻𝐾 [𝜌]

𝛿𝜌 𝑟  
                                          (3.26) 

If we know the functional 𝐹𝐻𝐾 𝜌 , problem of ground state determination will change to 

the issue of minimization of a functional of electron density. Note that energy functional 

𝐹𝐻𝐾  is unknown and we have to deal with approximate energy functionals. 

3.3.2 Kohn-Sham Method 

The Kohn-Sham method based on approximating the kinetic energy term given in 

Eq.3.22 and also inside the Hohenberg-Kohn functional 𝐹𝐻𝐾 . The method considers a 

system of N non-interacting particles in some external potential 𝑣𝐾𝑆  to find the kinetic 

energy of the interacting system. 

Method gives the wave function of the non-interacting system 𝛹 composed of N orbitals 

which are lowest eigenstates of non-interacting hamiltonian, kinetic energy 𝑇𝑛𝑜𝑛  𝜌 , 

total hamiltonian 𝐻𝑛𝑜𝑛  and ground state density 𝜌(𝑟) in an external potential as; 
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                                              𝛹 =
1

 𝑁!
 ∅1∅2 … ∅𝑁                                                     (3.27) 

                                       𝑇𝑛𝑜𝑛  𝜌 =   ∅𝑖 −
1

2
∇2 ∅𝑖 

𝑁
𝑖=1                                             (3.28) 

                                              𝐻𝑛𝑜𝑛 = −
1

2
∇2 + 𝑣𝐾𝑆(𝑟)                                               (3.29) 

                                            𝜌 𝑟  =   ∅𝑖(𝑟) 2𝑁
𝑖=1                                                        (3.30) 

As a note Hohenberg-Kohn’s first theorem is valid for this non-interacting system. 

Then, the system’s total energy 𝐸[𝜌] can be written as; 

                              𝐸 𝜌 = 𝑇𝑛𝑜𝑛  𝜌 +  𝑣 𝑟 𝑑𝑟 + 𝐽[𝜌] + 𝐸𝑥𝑐 [𝜌]                              (3.31) 

                                      𝐽 𝜌 =
1

2
 

1

𝑟12
𝜌(𝑟1) 𝜌(𝑟2)d𝑟1d𝑟2                                          (3.31) 

                             𝐸𝑥𝑐  𝜌 =  𝑇 𝜌 − 𝑇𝑛𝑜𝑛  𝜌  +  𝑉𝑒𝑒  𝜌 − 𝐽 𝜌                                (3.32) 

Where 𝐽 𝜌  is the classical repulsion i.e. electrostatic energy of the charge density and 

𝐸𝑥𝑐 [𝜌] is the exchange-correlation energy and has constributions of many body 

correlation and exchange. 

All we have to do now is to minimize 𝐸 𝜌  using variational principle; 

                          𝛿𝐸 𝜌 = 𝛿𝑇𝑛𝑜𝑛  𝜌 + 𝛿  𝑣 𝑟 𝑑𝑟 + 𝐽[𝜌] + 𝐸𝑥𝑐  𝜌  = 0                 (3.33) 

We can find the 𝛿𝑇𝑛𝑜𝑛  𝜌   term by giving non-interacting energy functional;                                             

                                    𝐸𝑛𝑜𝑛  𝜌 =   ∅𝑖 −
1

2
∇2 + 𝑣𝐾𝑆 ∅𝑖 

𝑁
𝑖=1                                     (3.34) 

                                                  = 𝑇𝑛𝑜𝑛  𝜌 +  𝑣𝐾𝑆𝜌(𝑟)𝑑𝑟                                        (3.35) 

And a variation of 𝛿𝜌(𝑟) gives; 

                                  𝛿𝐸𝑛𝑜𝑛  𝜌 = 𝛿𝑇𝑛𝑜𝑛  𝜌 +  𝑣𝐾𝑆𝛿𝜌(𝑟)𝑑𝑟 = 0                            (3.36) 

                                                      𝛿𝑇𝑛𝑜𝑛  𝜌 = −  𝑣𝐾𝑆𝛿𝜌(𝑟)𝑑𝑟                                (3.37) 

 

 



 

35 
 

Final form is; 

                     𝛿𝐸 𝜌 = 𝛿𝑇𝑛𝑜𝑛  𝜌 +  𝑑𝑟  𝑣 𝑟 +
𝜕𝐽  𝜌 

𝜕𝜌  𝑟 
+

𝜕𝐸𝑥𝑐  𝜌 

𝜕𝜌  𝑟 
 𝛿𝜌 𝑟 = 0             (3.38)  

              𝛿𝐸 𝜌 = −  𝑣𝐾𝑆𝛿𝜌(𝑟)𝑑𝑟 +  𝑑𝑟  𝑣 𝑟 +
𝜕𝐽  𝜌 

𝜕𝜌  𝑟 
+

𝜕𝐸𝑥𝑐  𝜌 

𝜕𝜌  𝑟 
 𝛿𝜌 𝑟 = 0        (3.39) 

We obtain potentials 𝑣𝐽  and 𝑣𝑥𝑐  from Eq.3.34;                                                                       

                                                   𝑣𝐽 =
𝛿𝐽 [𝜌]

𝛿𝜌(𝑟)
=  

𝜌(𝑟 ′ )

 𝑟−𝑟 ′  
                                                 (3.40) 

                                                  𝑣𝑥𝑐 =
𝛿𝐸𝑥𝑐  𝜌 

𝛿𝜌(𝑟)
                                                              (3.41) 

Then, the Kohn-Sham potential can be taken from 𝛿𝐸 𝜌  and written as 𝑣𝐾𝑆 = 𝑣 𝑟 +

𝑣𝐽 + 𝑣𝑥𝑐  and  total energy can be computed directly from Eq.3.33. 

The problem arises because of the exchange-correlation functional because we don’t 

know its correct form and there are possible functionals including local density 

approximation (LDA) and generalized gradient approximation (GGA) and other hybrid 

methods. 

Local density approxiamation (LDA) is defined as; 

                                              𝐸𝑥𝑐
𝐿𝐷𝐴[𝜌] =  𝜌 𝑟 𝜖𝑥𝑐 (𝜌) 𝑑𝑟                                         (3.42) 

Where 𝜖𝑥𝑐  is defined as exchange-correlation per electron and corresponding potential 

𝑣𝑥𝑐
𝐿𝐷𝐴  is; 

                                    𝑣𝑥𝑐
𝐿𝐷𝐴 =

𝛿𝐸𝑥𝑐
𝐿𝐷𝐴 [𝜌]

𝛿𝜌(𝑟)
= 𝜖𝑥𝑐  𝜌 + 𝜌(𝑟)

𝛿𝜖𝑥𝑐 (𝜌)

𝛿𝜌(𝑟)
                               (3.43) 

Common LDA functinals are Perdew-Zunger [136], M. Teter-Pade[137] and Vosko-

Wilk-Nusair [138]. 

The Local Spin Density Approximation (LSDA), on the other hand,  uses two spin 

densites 𝜌1 and 𝜌2 from which we can drive relations for exchange-correlation term for 

systems with uneven spin density distributions called spin-polarized systems. 
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Generalized gradient approximation (GGA) is the improved version of LDA to the 

inhomogenous systems. Here local exchange-correlation energy depends also on the 

local density  gradient. Exchange-correlation energy functinal is written as; 

                                        𝐸𝑥𝑐
𝐿𝐷𝐴 𝜌 =  𝑓 𝜌 𝑟 , ∇𝜌(𝑟) 𝑑𝑟                                         (3.44) 

Examples of GGA are Becke [140], Perdew [141] and Perdew and Wang [142]. 

There are also hybrid methods that combine Hartree Fock exact exchange and 

LDA/GGA exchange-correlations. The simplest of these methods is half-and-half 

functional which is written as; 

                                         𝐸𝑥𝑐
𝐻+𝐻 =

1

2
𝐸𝑥

𝐻𝐹 +
1

2
𝐸𝑥𝑐

𝐷𝐹𝑇                                                     (3.45) 

There is an improved version of this called B3LYP[143-145] and it is written as; 

     𝐸𝑥𝑐
𝐵3𝐿𝑌𝑃 = 𝐸𝑥𝑐

𝐿𝐷𝐴 + 𝑎(𝐸𝑥
𝐻𝐹 − 𝐸𝑥

𝐿𝐷𝐴) + 𝑏(𝐸𝑥
𝐺𝐺𝐴 − 𝐸𝑥

𝐿𝐷𝐴) + 𝑐(𝐸𝑐
𝐺𝐺𝐴 − 𝐸𝑐

𝐿𝐷𝐴)        (3.46) 

Where a,b and c are determimed by fitting expermental data. 
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CHAPTER 4  

 

 

 

UNDERSTANDING SPIN-QUBIT PROPERTIES AND 

ENDOHEDRAL C60 FULLERENES AS A START 

 

 

4.1 Introduction 

Carbon based materials have attracted much interest in chemistry, physics, biology and 

material science after the discovery of C60 fullerenes [14], endohedral fullerenes [146] 

and carbon nanotubes [13]. In addition, lots of theoretical and experimental studies have 

been carried out in order to investigate the use of these structures in molecular 

electronics [147,148], drug delivery systems [149-151] and in the field of 

superconductivity [152-154] etc. Furthermore, a number of researches on fullerene 

systems which include N4@C60 [155], K@C60 [156,157], La@C82 [158-160],  Li@C60 

[161,162], GeH4@C60 [163], Kr@C60 [164], Y@C60 [165], Sc3N@C80 [166], La2@C78 

[167,168],  Sr@C60 [169], Be@C60 [170,171] are reported in various articles studied 

both as fullerenes and peapod structures and carbon fullerenes are not the only kind that 

studied experimentally and theoretically. 

Endohedrally doped fullerene chains can be a promising candidates in spin based 

quantum computer proposals because especially carbon based materials are believed to 

have long spin coherence times due to low spin orbit coupling and provide preserved 

electronic properties allowing well defined spin-qubits. Nuclear and electron spins of 

metal and non-metal atoms inside the fullerenes can serve as spin-qubits in these 

systems. Although there not many studies in this field especially in the field of electronic 

structure calculations for spin-qubit properties, studies are increasing every year. 
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Possible qubit candidate studies are N@C60 [172-177], Sc@C82 [178,179], P@C60 

[180,181] and Na@C60 [182].   

Necessary requirements of successful implementation of a quantum computer system 

known as DiVincenzo's five criteria[82] mentioned in previous chapters including long 

coherence times, qubit-specific measurement, universal quantum gates, initialization to a 

pure state and scalable physical system with well-defined qubits. Furthermore, 

requirements for fullerene based spin-qubits including the studies of charge 

arrangements, spin distributions and interaction mechanisms are given in Ref [183]. The 

possibility of a two-qubit operation studies in these systems is based on the investigation 

of singlet-triplet configurations of the spin-qubits to find the possibility of Heisenberg 

exchange physical interaction between coupled spins [178] and the necessary value of 

the exchange coupling for a suitable quantum gate operation is 0.1 meV [184]. The 

theoretical study on interactions between spin clusters can be found in [185]. 

In this chapter (and all the other following chapters), we carried out DFT calculations on 

endohedral fullerenes Li@C60, Na@C60, N@C60 and P@C60 with hybrid exchange-

correlation density functional of Becke, Lee, Parr and Yang(B3LYP[186-188] using 6-

31G basis set [189] in parallel Gaussian03 [190] package. We calculated electron 

density distributions and electronic configurations and these are found by applying 

Natural population analysis(NPA) [191] and Mulliken population analysis(MPA) [192]. 

The optimization of each model considered was carried out as follows; Molecular 

mechanics [193] method with MM+ force field [194] has been applied first, then 

Hartree-Fock method [195] with various basis sets (starting from STO-3G up to 6-31G) 

have been performed. As a final stage DFT/B3LYP/6-31G was applied with the default 

precision value of the Gaussian-03 software. 

4.2 Li and Na Doped C60 Fullerenes 

In the calculated optimized geometries, Li and Na is located nearly at the center of the 

C60 cages. Minimum and maximum Li-C and Na-C distances are 3.522/3.611 Å for 
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Li@C60 and 3.46/3.687 Å for Na@C60. Optimized geometries with the charge 

arrangements of the Li and Na doped C60 is given in Figure 10. 

 

 

 

Figure 10: Optimized geometries and MPA/NPA charge arrangements of a) Doublet 

Li@C60 and b) Doublet Na@C60. 

 

 

As shown in Table 3, singlet-triplet and doublet-quartet energies of empty C60 and 

Li@C60 and Na@C60 endohedral fullerenes show that singlet state of empty C60 and 

doublet states of Li@C60 and Na@C60 are energetically more favorable and 

encapsulation of Li and Na reduces the HOMO-LUMO gap. Energy difference between 

HOMO-1 and HOMO is 1.914 eV and HOMO-LUMO gap is 0.820 eV for Li@C60. The 

same quantities are, respectively, 1.926/0.822 for Na@C60. These calculated values are 

suitable for spin qubit applications.  
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Table 3: Total energies, ET, and HOMO-LUMO energy gaps, Eg, of empty C60, Li@C60, 

Na@C60 for differentspin multiplicites (M). 

  

 

 

Charge transfer is from Li and Na to the C60 cage and charges on Li and Na are 

+1.047/+0.831 and 0.912/0.840 according to Mulliken and NPA methods, respectively. 

NPA charges for both structures are lower than the Mulliken charges. Charges and 

electronic configurations are shown in Table 4. NPA electronic configurations for both 

metal atoms encapsulated inside the cage show that electrons have less tendency to 

spread the upper orbitals than they have in gross orbital populations. 

 

 

Table 4: Charges and electronic configurations of Li and Na insidethe C60 cage. 
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Figure 11 shows frontier molecular orbitals (MOs) and spin density distribution of 

Li@C60 and Na@C60 endohedral fullerenes. HOMO, LUMO and spin density is 

distributed around the cage for both cases, furthermore HOMO is identical to spin 

density distribution for both structures. 

 

 

 

Figure 11: a) HOMO of singlet C60 b) LUMO of singlet C60 and HOMO, LUMO, Spin 

density graphics of c) Li@C60 d) Na@C60, green and red colors represent the positive 

and negative isosurfaces for HOMO, LUMO, respectively, whereas green and blue 

colors in spin density graphics represent alpha and beta spins, respectively. 

 

 

4.3 N and P Doped C60 Fullerenes 

In the optimized geometry, N and P is located almost at the center of the C60 cage. 

Minimum and maximum N-C distances are 3.514/3.610 Å and P-C distances are 
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3.545/3.581 Å. Figure 12 shows optimized geometries including the MPA and NPA 

charge distributions. 

 

 

 

Figure 12: Optimized geometries and MPA-NPA charge arrangements of a) Quartet 

P@C60 and b) Quartet N@C60. 

 

 

Total energies of different spin multiplicites of N and P doped fullerenes are shown in 

the Table 5, quartet states of both non-metal doped fullerenes are lower in energy and 

encapsulation of  N and P reduces the HOMO-LUMO gap. Energy difference between 

HOMO-1 and HOMO is 0.00081 eV and HOMO-LUMO gap is 1.498 eV for N@C60. 

On the other hand, P@C60 has HOMO-LUMO gap of 2.871 eV and HOMO-(HOMO-1) 

gap of 0.0011 eV.  

Charge transfer is from C60 to N in Mulliken analysis and from N to the cage in NPA 

analysis, charge transfer of P@C60 is from the cage to the P in both methods. Excess 

charge on N is -0.00034/+0.00076 and on P is -0.0293/-0.0294 according to Mulliken 

and NPA methods, respectively. It is interesting that the elements N and P are not 
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Table 5: Total energies, ET, and HOMO-LUMO energy gaps, Eg, of empty C60, N@C60 

and P@C60 for different spin multiplicites (M). 

 

 

 

interacting much with the C60 cage and retain their atomic configurations, therefore 

cages can provide protection by isolating the non-metal atoms against the environment 

and can fulfill one of the DiVincenzo's criteria by giving the possibility of providing 

long coherence times. Charges and electronic configurations are shown in Table 6. NPA 

electronic configurations for both metal atoms encapsulated inside the cage show that  

 

 

 

Table 6: Charges and electronic configurations of N and P inside the C60 cage. 
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electrons have less tendency to spread the upper orbitals than they have in gross orbital 

populations. 

Figure 13 shows frontier MOs and spin density distribution of N@C60 and P@C60. 

HOMO-LUMO orbitals are distributed around the cages for both N@C60 and P@C60 

fullerenes, while spin density is mainly concentrated on the N and P (inside the cage). 

Preserved electronic configurations of these non-metal doped  fullerenes can yield long 

decoherence times which is in a good agreement with[197-199]. Besides, N@C60 and 

P@C60 are already two of the strongest spin-qubit candidates[200-205] in solid state 

quantum computer proposals. 

 

 

Figure 13: HOMO, LUMO, spin density graphics of a) N@C60 and b) P@C60, green and 

red colors represent the positive and negative isosurfaces for HOMO, LUMO, 

respectively, whereas green and blue colors in spin density graphics represent alpha and 

beta spins, respectively. 
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CHAPTER 5 

 

 

 

ELECTRONIC AND GEOMETRICAL STRUCTURE OF METAL 

AND NON-METAL DOPED C60 DIMERS 

 

5.1 Li and Na Doped C60 Dimers 

Geometries of the two metals (Li,Na) doped C60 fullerene dimers are based on two C60 

cages bonded through two carbon atoms with bond distances 1.596/1.596 Å for triplet 

state of the Li@C60 dimer and 1.593/1.591 Å for triplet state of the Na@C60 dimer. 

Figure 14 shows the [2+2] bond distances of the optimized geometries and charge 

arrangements of the the dimers. Na atoms are not at the center of the fullerenes in the 

optimized geometry of triplet Na@C60 dimer, while Li atoms are located at the center of 

the structure. Minimum/maximum Li-C distances are 3.452/3.837 Å for the first Li@C60 

and 3.508/3.949 Å for the second one with Li-Li distances of 9.186 Å. 

Minimum/maximum Na-C distances are 2.760/4.400 Å  and 2.881/4.401 Å with Na-Na 

distance of 9.675 Å. Double C=C bond formations, shown in Figure 14d, are observed 

on two hexagons near the linkage of two C60 cages of the triplet Li@C60 and Na@C60 

dimers in the optimized geometries.  

Energies and HOMO-LUMO energy gaps of the empty C60, Li@C60 and Na@C60 

dimers for different spin multiplicities are given in Table 7. Triplet state of both 

structures are lower in energy with singlet-triplet energy separation of 0.244 and 0.227 

eV. 

 

 



 

46 
 

 

Figure 14: Optimized geometries and charge arrangements of a) C60 dimer b) Li@C60 

dimer c) Na@C60 dimer d) Double bond formations near the linkage sides, red and green 

colors represent negative and positive charges. 

 

 

 

Table 7: Total energies, ET, and HOMO-LUMO energy gaps, Eg, of empty C60, Na@C60 

and Li@C60 dimers for different spin multiplicites. 
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Triplet Li@C60 dimer has HOMO-LUMO gap of 0.7897 eV and HOMO-(HOMO-1) 

energy gap of 0.031 eV. Triplet state of Na@C60 dimer has HOMO-LUMO gap of 

0.7921 eV and HOMO-(HOMO-1) energy gap of 0.0331 eV. Studied Charge transfer 

mechanisms given in Table 8 using Mulliken and natural population analysis show that 

electron transfer is from two Li to the C60 cages, 1.032-1.032(Mulliken)/0.832-

0.832(NPA), and two Na to the C60 cages, 0.819-0.820(Mulliken)/0.870-0.870(NPA). 

 

 

 

Table 8: Charges and electronic configurations of Li and Na inside triplet Na@C60 and 

triplet Li@C60 dimers. 

 

 

 

HOMO, LUMO and spin density distributions are given in Figure 15. HOMO, LUMO 

and spin density distributions are around the cages and HOMO and spin densities are 

almost identical for both dimers. Charges and electronic configurations given in Table 8 

show the presence of an interaction between cages and metal atoms. In contrast to 

natural electron configurations electrons have a tendency to stay at the p orbitals for the 

metal atoms inside the two dimers. 
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Figure 15: HOMO and LUMO graphics of a) empty C60 dimer b) Li@C60 dimer c) 

Na@C60 dimer, green and red colors represent the positive and negative isosurfaces for 

HOMO-LUMO, whereas green and blue colors in spin density graphics represent alpha 

and beta spins. 

 

 

5.2 N and P Doped C60 Dimers 

Two non-metals (N,P) doped C60 fullerene dimers are bonded through two carbons with 

two C-C bond distances of 1.597 Å and 1.597 Å for N@C60 dimer and 1.596 Å and 

1.596 Å for P@C60 dimer. Figure 16 shows the optimized geometries with [2+2] bond 

distances of both structures. Both atoms N and P are located near the center of the 

optimized structures. Minimum-maximum N-C distances are 3.508/3.840 Å and 

3.480/3.937 Å. Minimum-maximum P-C distances are 3.484/3.818 Å and 3.535/3.863 Å. 

Compared to the Li-Li and N-N distances of 9.18639 Å and 9.18599 Å, respectively, and 

min/max distances, P@C60-P@C60 dimer has P-P distance of 9.09439 Å which means P 
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atoms are closer to each other. Double C=C bond formation occurs on two hexagons of 

each C60 cage after full optimization of both dimers.  

 

Figure 16: Optimized geometries and charge arrangements of a) N@C60 dimer b) P@C60 

dimer, red and green colors represent negative and positive charges. 

 

 

Energies and HOMO-LUMO energy gaps of the empty C60, N@C60 and P@C60 dimers 

for different spin multiplicities are given in Table 9. Singlet state of N@C60 and triplet 

state of P@C60 dimers are lower in energy with singlet-triplet energy separation of 1.203 

eV and 0.728 eV, respectively 

HOMO-LUMO gap of N@C60 dimer is 2.589 eV and HOMO-(HOMO-1) energy gap is 

0.056 eV and the same quantities are, respectively, 2.566/0.057 for P@C60 dimer. 

Calculated charge transfer values using Mulliken and natural population analysis 

indicate that electron transfer is from C60 cages to the N with excess charges -0.0014/-

0.0016 (Mulliken) and +0.00007/-0.00003 (NPA), and two P to the C60 cages with 

excess charges of -0.037/-0.032 (Mulliken) and -0.035/-0.031 (NPA). Mulliken-NPA 

charges and electronic configurations are shown in Table 10. It is seen that NPA 

electronic structure of the N and P are almost not affected by the encapsulation inside 

the C60 dimers, electronic configurations of two N atoms are 2s
0.931 

2p
1.888 

3s
1.069 

3p
1.370
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Table 9: Total energies, ET, and HOMO-LUMO energy gaps, Eg, of empty C60, N@C60 

and P@C60 dimers for different spin multiplicites. 

 

 

 

 
(Gross orbital population) and 2s

0.931 
2p

1.889 
3s

1.0689 
3p

1.371 
(Gross orbital population), 

while NPA electronic configurations are both 2s
2.00 

2p
3.00

.  Electronic configuration of 

two P atoms are 3s
1.357 

3p
1.973 

4s
0.646 

4p
1.101

  (Gross orbital population)  and 3s
0.09 

3p
0.20 

4s
0.04 

4p
0.05 

(Gross orbital population), while NPA electronic configurations are 3s
2.00 

3p
3.03 

4s
0.01

 and 3s
2.00 

3p
3.02 

4s
0.01

. 

It can be seen that a part of the HOMO is concentrated on the double C=C bonding sides 

near the linkage of two C60 cages of the singlet N@C60 and triplet P@C60 dimers in the 

optimized geometry. LUMO is concentrated inside the left N@C60 cage, while it is 

concentrated in the right C60 cage of P@C60 dimer. HOMOs of both structures are 

almost identical to the HOMO of empty C60 dimer shown in Figure 15a. Alpha and beta 

spin density distributions are mainly concentrated on the N and P atoms inside the cages 

and system's alpha spin density is fully concentrated on left fullerene and beta spin 

density is fully concentrated on right fullerene for N@C60 dimer, while spin density 

distribution of the right cage consists of partly alpha and beta spins. Figure 17 shows 

HOMO-LUMO and spin density distributions of N@C60 and P@C60 dimers. 
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Table 10: Charges and electronic configurations of N and P inside singlet N@C60 and 

triplet P@C60 dimers. 

 

 

 

 

Figure 17: HOMO-LUMO-Spin density graphics of a) N@C60 dimer b) P@C60 dimer, 

green and red colors represent positive and negative isosurfaces for HOMO-LUMO, 

whereas green-blue colors in spin density graphics represent alpha and beta spins. 
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CHAPTER 6 

 

 

 

ELECTRONIC AND GEOMETRICAL STRUCTURE OF METAL 

AND NON-METAL DOPED C60 TRIMERS 

 

 

 

6.1 Linear C60 Trimers 

6.1.1 Li and Na Doped Linear C60 Trimers 

In this section, three atoms of Li and Na doped linearly [2+2] type bonded three C60 

fullerene structures are investigated. Bond lengths between three fullerenes are reduced 

after the encapsulation of metals and Figure 18 shows the optimized bond lengths. Li 

atoms are located at the center of the cages with Li-Li distances of 9.176-9.125 Å, while 

Na atoms inside linear Na@C60 trimer are not located at the center of the cages.  

Off center positions can be seen from the maximum and minimum Na-C distances 

shown in Table 11. Compared to the positions of Li atoms maximum and minimum 

distances change, respectively, by 0.36 Å and 0.65 Å in the linear Na@C60 trimer. 

Optimized geometries show that fullerenes at the middle side of the structure extends 

horizontally and becomes shorter vertically after the encapsulation and four C=C bond 

formations on the left and right C60 cages and eight C=C formations on the middle cage 

are observed on two hexagons near the linkage sides of three C60 cages of empty linear 

C60 trimer just like on the C60 dimers in Chapter 5 except that there are eight C=C bonds 

on the two linkage sides of the middle cage, however optimized geometry of the doublet 
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Figure 18: Optimized geometries and charge arrangements of a) Linear C60 trimer b) 

Linear Li@C60 trimer and c) Linear Na@C60 trimer with given bond distances, red and 

green colors represent negative and positive charges. 

 

 

linear Li@C60 trimer has only two C=C bonds on left cage, two C=C bonds on the 

middle cage and three C=C bonds on the right cage located at the linkage sides just like 

in Figure 14d, while five C=C bond formations occur on linkage sides of the middle 

cage, two C=C bonds on linkage side of the left cage and two C=C bonds on right cage 

in the optimized geometry of quartet state of the linear Na@C60 trimer. 

Energies of empty linear C60, Li@C60, Na@C60 trimers for different spin multiplicities 

with HOMO-LUMO energy gaps are given in Table 12. Singlet state of empty linear 

C60, doublet states of linear Li@C60 trimer and quartet state of Na@C60 trimer are lower 

in energy. Doublet-quartet energy differences is 0.00272 eV for  Li@C60 trimer and the 

same quantity is 0.320 eV for Na@C60 trimer. HOMO-LUMO energy separations are, 

respectively, reduced to 0.7758 eV and 0.8046 eV while empty linear C60 trimer has 

HOMO-LUMO gap of 2.5258 eV. 
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Table 11: Maximum and minimum distances (in Å) between metals Li-Na and C60 cages 

inside the linear Li@C60 and Na@C60 trimers. 

 

 

Table 12: Total energies, ET, and HOMO-LUMO energy gaps, Eg, of empty linear C60, 

Li@C60 and Na@C60 trimer for different spin multiplicites. 

 

 

 

Mulliken/NPA electron transfers from Li to the C60 cages are 1.022/0.831, 1.016/0.833, 

1.024/0.831. Same quantities from Na to the C60 cages are 0.908/0.838, 0.903/838, 

0.908/838. Table 13 shows the Mulliken and NPA charges, and also the corresponding 

electron configurations. Gross orbital populations for Na and Li atoms show tendency to 

spread electrons more in upper orbitals, while electrons have tendency to stay in the 1s 

and 2s orbitals in NPA analysis. It is seen that presence of the interaction between metal 

atoms Li, Na and C60 cages generate charge transfers and so changes the electronic 

configurations. 
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Table 13: Charges and electronic configurations of Li and Na inside doublet state of the 

linear Li@C60 and quartet state of Na@C60 trimers. 

 

 

 

 

 

Figure 19: HOMO and LUMO graphics of empty linear C60 trimer of linear empty C60 

trimer     a) HOMO b) LUMO, green and red colors represent positive and negative 

isosurfaces. 
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Spin densities of linear Li@C60 and Na@C60 trimers are mainly distributed around the 

C60 cages. In linear Li@C60 trimer, compared to the empty C60 trimer's HOMO and 

LUMO which are localized around the middle cage shown in Figure 19,  HOMO is 

concentrated on the right side of the trimer, while LUMO is distributed equally around 

the C60 cages. HOMO states of quartet Na@C60 trimer distributed mainly around the two 

right cages, while LUMO is distributed equally around the C60 cages. Figure 20 shows 

the HOMO-LUMO and spin density distributions. 

 

 

 

Figure 20: HOMO-LUMO orbital graphics and spin densities of a) linear Li@C60 trimer 

b) linear Na@C60 trimer, green and red colors represent the positive and negative 

isosurfaces of HOMO-LUMO, whereas green-blue colors of spin density graphics 

represent alpha and beta spins. 
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6.1.2 N and P Doped Linear C60 Trimers 

Optimized geometries of linear N@C60 and P@C60 trimers show that three non-metal 

atoms of N and P are located almost at the center of the cages. Charge arrangements of 

the N and P doped systems with bond lengths and maximum-minimum N-C and P-C 

distances are given in Figure 21 and Table 14.  

 

 

 

Figure 21: Optimized geometries and charge arrangements of a) Linear N@C60 trimer 

and b) Linear P@C60 trimer with given bond distances, green and red colors represent 

positive and negative charges. 

 

 

Distances between three N atoms are 9.14 -9.09 Å and P atoms are 9.00-9.36 Å in the 

optimized geometries. Maximum and minimum distances show that fullerenes at the 

middle side of the structures extends horizontally and becomes shorter vertically and 

double C=C bond formations, four C=C on the left cage, eight C=C on the middle cage 

and four C=C on the right cage, are observed on two hexagons near the linkage sides of 

three C60 cages of quartet N@C60 and P@C60 trimers which are exactly the same bond 
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formations as on the singlet empty C60 trimer in Chapter 6.1.1. Compared to metal doped 

linear trimers, there is no change in double bond formations after non-metal doping. 

 

Table 14: Maximum and minimum distances (in Å) between metals N-P and C60 cages 

inside the linear N@C60 and P@C60 trimers. 

 

 

 

Energies of empty linear C60, linear N@C60, P@C60 trimers with different spin 

multiplicities and HOMO-LUMO energy gaps are given in Table 15. Singlet state of 

empty linear C60 and quartet states of linear N@C60 and P@C60 trimers are lower in 

energy with the energy gap of 0.001 eV and 0.7733 eV, respectively. HOMO-LUMO 

energy gap is lowest in doublet P@C60 trimer. 

Mullilken/NPA, electron transfers from the C60 cages to the N atoms are 

0.001357/0.00011, 0.007030/0.00410, 0.004597/0.00351. The same quantities from C60 

cages to the P atoms are 0.0323/0.0311, 0.0356/0.0335, 0.0318/0.0306. It can be seen 

that presence of low interactions between atoms and the cages preserve electronic 

configurations of the atoms. Table 16 shows the excess charge and electronic 

configurations of the structures. 
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Table 15: Total energies, ET, and HOMO-LUMO energy gaps, Eg, of empty linear C60, 

N@C60 and P@C60 trimers for different spin multiplicites. 

 

 

 

 

Table 16: Charges and electronic configurations of N and P inside quartet linear N@C60 

and P@C60 trimers. 
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Spin densities of linear N@C60 and P@C60 trimers are inside the C60 cages but with 

different alpha and beta distributions. HOMO of N@C60 trimer is distributed around the 

middle cage and LUMO is inside that cage. However, in linear P@C60 trimer LUMO is 

concentrated around the middle C60 cage while HOMO is identical to HOMO of the 

linear N@C60 trimer. Both structures' HOMOs are almost identical HOMO of the empty 

linear C60 trimer and LUMO of linear P@C60 trimer is almost identical to LUMO of the 

empty linear C60 trimer shown in Figure 19. Figure 22 shows the HOMO-LUMO and 

spin density distributions. 

 

 

 

Figure 22: HOMO-LUMO orbital graphics and spin density of a) linear N@C60 trimer b) 

linear P@C60 trimer, green and red colors represent the positive and negative 

isosurfaces of HOMO LUMO, whereas and green-blue colors in spin density graphics 

represent alpha and beta spins. 
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6.2 Triangular  C60 Trimers 

 

6.2.1 Li and Na Doped Triangular C60 Trimers 

Li and Na doped triangular C60 trimers consist of three C60 fullerenes linked by [5+5] 

type C-C bonds. Bond lengths of the empty triangular C60, Li@C60 and Na@C60 trimers 

are given in Table 17 and maximum/minimum Li-C and Na-C distances are in Table 18.  

 

 

Table 17: [5+5] bond lengths of triangular singlet C60, quartet Li@C60 and doublet 

Na@C60 trimers in Å. 
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After encapsulation of metals a1,2 , b1,2 and c1,2 bond lengths shown in Figure 23d are 

reduced by 0.01 Å . It can be seen from the max./min. distances that Li atoms are not 

located at the center of the cages in the optimized geometry of quartet triangular Li@C60 

trimer and their off center positions change about 1 Å compared to triangular Na@C60 

trimer.  

 

 

Table 18: Maximum and minimum distances between metals Li-Na and C60 cages inside 

the triangular Li@C60 and Na@C60 trimers in Å. 

 

 

 

Mulliken charge arrangements of the empty C60 is different from NPA charge 

arrangements in such a way that five carbon atoms in the [5+5] type bonded C-C linkage 

sides are negatively charged and hexagon sides of the three fullerene cages have two 

extra negatively charged atoms. Mulliken and NPA charge arrangements are given in 

Figure 23. 

Energies and HOMO-LUMO gaps of the Li-Na doped triangular systems are given in 

Table 19. Calculated total energies show that energy of quartet state of triangular 

Li@C60 is lower than doublet state with an energy separation of 1.6055 eV. However 

same situation is not valid for triangular Na@C60, its doublet state is lower than quartet 

state with energy separation of 0.0708 eV. HOMO-LUMO energy gap of quartet state of 

triangular Li@C60 trimer is higher than the HOMO-LUMO energy gap of doublet state 
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Figure 23: Optimized geometry and charge arrangements of triangular C60 trimer; a) 

Mulliken and NPA charge arrangements of C60 b) Mulliken/NPA charge arrangements 

of quartet state of triangular Li@C60 trimer c) Mulliken/NPA charge arrangements of 

doublet state of triangular Na@C60 trimer d) [5+5] type bonds represented by a1,2,3,4,5, 

b1,2,3,4,5 and c1,2,3,4,5, green and red colors represent positive and negative charges. 

 

of linear Li@C60 trimer, while doublet state of triangular Na@C60 trimer has lower 

HOMO-LUMO energy gap than quartet state of linear Na@C60 trimer which is lower in 

total energy. Mulliken/NPA, electron transfer from Li atoms to the C60 cages are 

0.637/0.868, 0.633/0.871, 0.616/0.867. The same quantities from Na to the C60 cages are 

0.8805/0.8321, 0.8769/0.8275, 0.8763/0.8270. Final electronic configurations of Na 

inside the trimer show that remaining valence electrons stay in the 3p-4p orbitals 

according to Mulliken analysis and 3s orbital according to NPA. Electronic  

configurations and excess charges are given in Table 20. 
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Table 19: Total energies, ET, and HOMO-LUMO energy gaps, Eg, of singlet triangular 

C60, quartet Li@C60 and doublet Na@C60 trimers for different spin multiplicities. 

 

 

 

Table 20: Charges and electronic configurations of Li and Na inside doublet triangular 

Li@C60 and Na@C60 trimers. 

 

 

HOMO and LUMO are given in Figure 24. HOMO of triangular Li@C60 trimer has a 

different distribution on the cages than triangular Na@C60 trimer, both HOMO and 

LUMO are concentrated on the left cages of triangular Li@C60. On the other hand, 
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Figure 24b shows that HOMO of triangular Na@C60 is distributed around the lower two 

cages and LUMO is on the upper cage. 

 

 

 

Figure 24: HOMO-LUMO orbital graphics of a) quartet triangular Li@C60 b) doublet 

triangular Na@C60 c) Singlet triangular C60 trimer, green and red colors represent the 

positive and negative isosurfaces. 

 

 

Spin densities of both structures are around the fullerene sides. However, spin 

distribution of the quartet state of the triangular Li@C60 is around all three fullerenes 

while spin density is around the upper cage in triangular Na@C60 trimer. Spin density 

distributions are given in Figure 25. 
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Figure 25: Spin densities of triangular Li@C60 and Na@C60, green-blue colors represent 

alpha and beta spins. 

 

 

6.2.2 N and P Doped Triangular C60 Trimers 

In this section, structures of three N and P doped trimers are investigated. Optimized 

geometries with charge arrangements are given in Figure 26. Both N and P atoms are 

located at the center of the C60 cages. [5+5] bond lengths and maximum-minimum N-C 

and P-C distances are given in Tables 21-22. 

Carbon [5+5] bond lengths are almost not changed, vary between 0.001 Å and 0.0005 Å, 

compared to the [5+5] bonds of metal doped trimers. It is seen that quartet states of 

triangular N@C60 and P@C60 trimers are lower in energy and separated from the doublet 

state by 0.381 eV and 0.737 eV. Total energies and HOMO-LUMO energy gaps are 

given in Table 23. Both quartet states have HOMO-LUMO gap near 1 eV. 

Mulliken/NPA, electron transfer from N atoms to the C60 cages are -0.00344/ -0.00204, -

0.00477/ -0.00337, -0.00434/ -0.00294. The same quantities from P to the C60 cages are -

0.02946/ -0.02123, -0.02942/ -0.02115, -0.02955/ -0.02144. Like in the N and P doped 

dimer and linear trimer structures, it can be seen that presence of low interactions 

between atoms and the cages preserve electronic configurations of the atoms. Electronic 

configurations and excess charges are given in Table 24. 
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Table 21: [5-5] bond lengths of triangular singlet C60, quartet N@C60 and quartet P@C60 

trimers in Å. 

 

 

 

Table 22: Maximum and minimum distances (in Å) between non-metals N-P and C60 

cages inside the triangular N@C60 and P@C60 trimers. 
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Figure 26: Optimized geometries and MPA/NPA charge arrangements of a) triangular 

N@C60 trimer b) triangular P@C60 trimer, red and green colors represent negative and 

positive charges. 

 

 

Table 23: Total energies, ET, and HOMO-LUMO energy gaps, Eg, of triangular C60, 

N@C60 and P@C60 trimers for different spin multiplicites (M). 
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Table 24: Charges and electronic configurations of N and P inside quartet triangular 

N@C60 and P@C60 trimers. 

 

 

 

HOMOs of triangular N@C60 and P@C60 trimers are concentrated on the linkage sides 

of the C60 cages and LUMOs are concentrated on the right cage. Figure 27 shows 

HOMO-LUMO of triangular N@C60 and P@C60 trimers. Both structures show almost 

identical HOMO-LUMO distributions to empty C60 as shown in Figure 24c. 

The spin density distribution of the N doped triangular trimer is shown in Figure 28. 

Most of the spin resides on the N atom (inside the cages). In doublet state of the N@C60 

trimer, spin density of the two N doped C60 parts have their spin densities inside the C60 

cages but the third one is not exactly inside the cage with its all parts. However, the spin 

density of the quartet state of N@C60 trimer is fully inside the cage. Figure 28 shows this 

comparison. 
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Figure 27: HOMO, LUMO graphics of quartet triangular N@C60 and doublet triangular 

P@C60 trimers. a) HOMO, LUMO of N@C60, b) HOMO, LUMO of P@C60. Green and 

red color represent the positive and negative isosurfaces, respectively. 

 

 

 

Figure 28: Spin density distributions of a) doublet state of triangular N@C60 trimer, b) 

quartet state of triangular N@C60 trimer. Green, blue colors represent alpha and beta 

spins, respectively. 
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Spin distributions of both doublet and quartet states of P doped trimer are inside the C60 

cages. The upper P@C60 cage of the doublet state consists of alpha and beta spin 

distributions while the spin density distribution of the upper part of the quartet state of 

triangular P@C60 trimer is fully consists of beta spin. These results are shown in Figure 

29. 

  

 

 

 

 

Figure 29: Spin density distributions of a) doublet state of triangular P@C60 trimer, b) 

quartet state of triangular P@C60 trimer. Green, blue colors represents alpha and beta 

spins, respectively. 
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CHAPTER 7 

 

 

 

CONCLUSION 

 

 

Number of studies on the subject of quantum information and computation including 

experimental and theoretical studies  grow very fast and there are already many 

proposals of quantum computers some of them are mentioned in this study. Taking into 

account the DiVincenzo criteria, the main aim of this thesis is to investigate the spin-

qubit properties of different fullerene structures using DFT calculations by giving the 

charge transfer mechanism, electronic configurations and spin density distributions. 

Based on the requirements of DiVincenzo[82] and its adapted version for molecular 

spin-qubits[54] which consists of nature and mechanism of interaction and charge and 

spin distributions, little work has been done using ab-initio studies to investigate this 

spin-qubit properties of molecular structures by looking at nature of the interactions 

some of which are referenced in this thesis. Hovewer, the studies, investigating charge-

spin distribution and electronic configurations of metal and nonmetal doped dimer and 

trimer fullerene structures using density functional theory in order to find a suitable spin-

qubit condidates, given in this thesis is probably the first study in this field.  

In this thesis, electronic structure calculations of metal (Li,Na) and non-metal (N,P) 

doped C60 dimers and trimers are carried out using hybrid density functional theory in 

order to investigate the spin-qubit properties by giving spin density distributions, charge 

arrangements and electronic configurations. Spin densities of the metal doped structures 

are around the fullerene sides and presence of an interaction between the metal atoms 

and the cages does change the electronic configurations and charge transfer occurs 

between metal atoms and C60 cages, it is from metal atoms to the cages, so they might be 

tested inside nanotube structures to study the function of the nanotube. Optimized 
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structures of linear C60 trimers are more stable than triangular trimers, i.e. their total 

energy is lower than triangular trimers and the most stable configuration of triangular 

ones are not doublet states except for Na@C60. Spin densities of non-metal doped 

structures are mainly inside the cages and there is no significant charge transfer between 

non-metal atoms and the C60 cages therefore electronic configurations become 

unchanged.  

Protected spins and electronic configurations and low charge transfer between carbon 

cages and non-metal atoms N and P inside the fullerene-based structures (based on the 

results given in this thesis studies) are desired structures for a well defined spin  qubit 

because a quantum computer’s units must be well isolated from the environment and 

carbon cages in the studied structures provides a good isolation against the environment 

for the non-metal atoms N and P. These results are also supported by previously studied 

long decoherence times of N and P doped fullerenes [197-199]. In addition, we think 

that calculated HOMO-LUMO orbitals can be used to determine the type of 

experimental operations that is planned to use in manipulations of spin-qubits in solid 

state quantum computer proposals. Recently, there are studies to investigate the 

interactions, manipulations, electronic structures, transport properties and 

characterization of quantum dots in triangular configuration as spin-qubits and qutrits 

[206-213]. We hope that calculated electronic structures, spin density distributions and 

energy differences for different spin configurations of the metal and non-metal doped 

C60 chains can be helpful to study the designing of special spintronic devices including 

spin cluster qubits and qutrits of doped triangular C60 trimers in fullerene based quantum 

computer proposals. 

The numerical calculations reported in this thesis were performed at TUBITAK 

ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure) 

and based on the studies and the idea depicted in this thesis, there are two articles have 

been planned to to be published; one article called “Investigation of metal and non-metal 

doped dimer and trimer C60 fullerene chains as prospective spin cluster qubits” is 

prepared and submitted. 
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APPENDIX 

 

 

 

The Mid-Level Quantum Computation Roadmap  

 

 

 

 

The column numbers correspond to the following QC criteria: 

#1. A scalable physical system with well-characterized qubits. 

#2.The ability to initialize the state of the qubits to a simple fiducial state 

#3. Long (relative) decoherence times, much longer than the gate-operation time. 

#4. A universal set of quantum gates. 

#5. A qubit-specific measurement capability. 

#6. The ability to interconvert stationary and flying qubits. 

#7. The ability to faithfully transmit flying qubits between specified locations.  


