
iii

ETHERNET BASED REAL TIME COMMUNICATIONS

FOR

EMBEDDED SYSTEMS

OZAN YILMAZ

MAY 2010

 O
. Y

IL
M

A
Z

 M
E

T
U

 2
0
1
0

iv

ETHERNET BASED REAL TIME COMMUNICATIONS FOR

EMBEDDED SYSTEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

OZAN YILMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE IN

ELECTRICAL AND ELECTRONICS ENGINEERING

MAY 2010

v

Approval of the thesis:

ETHERNET BASED REAL TIME COMMUNICATIONS FOR
EMBEDDED SYSTEMS

Submitted by OZAN YILMAZ in partial fulfillment of the requirements for the

degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences _____________

Prof. Dr. İsmet Erkmen

Head of Department, Electrical and Electronics Engineering _____________

Asst. Prof. Dr. Şenan Ece Schmidt

Supervisor, Electrical and Electronics Engineering Dept., _____________

METU

Examining Committee Members:

Prof. Dr. Semih Bilgen

Electrical and Electronics Engineering Dept., METU _____________

Asst. Prof. Dr. Şenan Ece Schmidt

Electrical and Electronics Engineering Dept., METU _____________

Prof. Dr. Hasan Güran

Electrical and Electronics Engineering Dept., METU _____________

Assoc. Prof. Dr. Cüneyt Bazlamaçcı

Electrical and Electronics Engineering Dept., METU _____________

Yusuf Bora Kartal, M.Sc. ASELSAN. A Ş _____________

Date: 10.05.2010

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

 Name, Last name : Ozan YILMAZ

Signature :

iv

ABSTRACT

ETHERNET BASED REAL TIME COMMUNICATIONS FOR

EMBEDDED SYSTEMS

Yılmaz, Ozan

M.Sc., Department of Electrical and Electronics Engineering

Supervisor:Asst. Prof. Dr. Şenan Ece Schmidt

May 2010, 96 Pages

Fast paced improvement of Ethernet technology has also received attention in the

industry field like it did in other fields and ways of usage have started to be studied.

As it is understood that the standard Ethernet protocols cannot be used due to the

unsatisfied real time requirements, industrial and academic researchers have started

to develop solutions to overcome this deficiency. In this thesis, the real hardware

adaptations of Real Time Ethernet and RTXX protocol algorithms are implemented

and their behaviors on the hardware are observed. Each parameter that affects the

system’s real time behavior is individually examined and the solution proposals are

discussed.

Keywords: Industrial communication, real-time, Ethernet

v

ÖZ

GÖMÜLÜ SİSTEMLER İÇİN ETHERNET TABANLI GERÇEK ZAMANLI

HABERLEŞME

Yılmaz, Ozan

Yüksek Lisans, Elektrik ve Elektronik Muhendisliği Bölümü

Tez Yöneticisi: Y. Doç. Dr. Şenan Ece Schmidt

Mayıs 2010, 96 Sayfa

Ethernet teknolojisinin hızla gelişmesi diğer alanlarda olduğu gibi endüstri alanında

dikkatleri çekmiş ve kullanım yolları aranmaya başlanmıştır. Gerçek zamanlılık

ihtiyaçları nedeniyle standard Ethernet protokollerinin kullanılamayacak oluşunun

anlaşılmasıyla sanayii ve akademik kaynaklar bu eksikliği kapatmaya yönelik

çözümler üretmeye başlamışlardır. Bu tez çalışmasında Gerçek Zamanlı Ethernet ve

RTXX Protokol algoritmalarının gerçek donanım uyarlamaları gerçekleştirilmiş ve

donanım üzerinde davranışları izlenmiştir. Sistemin gerçek zamanlılığını etkileyen

her bir parametre ayrı ayrı incelenmiş ve çözüm önerileri tartışılmıştır.

Anahtar Kelimeler: Endüstriyel haberleşme, Gerçek Zamanlılık, Ethernet

vi

To My Parents

vii

ACKNOWLEDGEMENTS

I am in great debt to Asst. Prof. Dr. Şenan Ece Schmidt, my research advisor; she

labored hard for two years to ensure I would accomplish my research goals.

I wish to thank TEKTRONIK A.S for giving me the opportunity of continuing my

education

I would like to thank my parents, my sister and my fiancee for their patience and

trust throughout my thesis.

I wish to thank to my friend Koray OKŞAR and my colleagues for their valuable

support.

viii

TABLE OF CONTENTS

ABSTRACT .. IV

ÖZ ... V

ACKNOWLEDGEMENTS ... VII

TABLE OF CONTENTS .. VIII

LIST OF TABLES .. X

TABLE OF FIGURES ... XII

TABLE OF CODES .. XV

LIST OF ABBREVIATIONS AND ACRONYMS .. XVI

1 INTRODUCTION ... 1

2 REAL-TIME INDUSTRIAL COMMUNICATION PROTOCOLS 4

3 RTXX PROTOCOL ... 9

3.1 RTXX Protocol Architecture ... 10

3.1.1 Network Node .. 11

3.1.2 Message Structure .. 16

3.1.3 Communication Operation ... 17

3.1.4 Correct Networked System Operation ... 18

3.1.5 Non-Real Time Traffic Support ... 19

4 REAL TIME ETHERNET MEDIUM ACCESS IMPLEMENTATION 21

4.1 Time Domain Multiple Access .. 21

4.1.1 Timing Mechanism .. 22

4.1.2 Locking Mechanism ... 26

4.1.3 Synchronization Mechanism .. 33

4.2 Programming Architecture for Real Time Ethernet Implementation 42

4.2.1 TDMAController() ... 43

4.2.2 InitTDMAController() ... 44

4.2.3 IEEE1588Master() and IEEE1588Slave() ... 44

5 RTXX PROTOCOL IMPLEMENTATION .. 46

5.1 Processing and Priority Queue Management ... 47

ix

5.1.1 enqueueGlobal() ... 47

5.1.2 dequeueGlobal(); .. 47

5.2 Implementation of RTXX Protocol over Ethernet ... 48

5.2.1 Real Time Ethernet Interface ... 49

5.2.2 RTXX Protocol Core Implementation ... 49

5.2.3 RTXX Protocol Application Interface ... 53

6 EXPERIMENTAL EVALUATION OF OUR IMPLEMENTATION 56

6.1 Experiment Environment ... 57

6.2 Experimental Results ... 58

6.2.1 Periodic Timer Accuracy ... 58

6.2.2 Slot Switching Latency: ... 60

6.2.3 Periodic Timer Synchronization Accuracy .. 62

6.2.4 Roundtrip Latency .. 65

6.2.5 IEEE 1588 Time Synchronization Accuracy ... 69

6.2.6 RTXX Application Interface Latency .. 73

6.2.7 Queuing Latency .. 75

6.2.8 Real Time Traffic Experiments .. 76

6.2.9 Non Real Time Traffic Experiment ... 81

7 CONCLUSIONS .. 83

REFERENCES .. 85

APPENDIX A .. 88

APPENDIX B .. 94

x

LIST OF TABLES

Table 1: Comparison of IEEE 1588 Implementations [27]: 39

Table 2: Experimental Results for Periodic Timer Accuracy for 10KHz with Non

Real Time Scheduling ... 59

Table 3: Experimental Results for Periodic Timer Accuracy for 10KHz with Real

Time Scheduling ... 60

Table 4: Experimental Results for Slot Switching Latency with Non Real Time

Scheduling ... 61

Table 5: Experimental Results for Slot Switching Latency with Real Time

Scheduling ... 62

Table 6: Experimental Results for Periodic Timer Synchronization Accuracy with

Non Real Time Scheduling ... 64

Table 7: Experimental Results for Periodic Timer Synchronization Accuracy with

Real Time Scheduling ... 65

Table 8: Experimental Results for Roundtrip Latency for 1514 Byte Packets with

Real Time Scheduling ... 67

Table 9: Experimental Results for Roundtrip Latency for 1514 Byte Packets with

Non Real Time Scheduling ... 68

Table 10: Experimental Results for Roundtrip Latency for 60 Byte Packets with Non

Real Time Scheduling ... 69

Table 11: Experimental Results for Roundtrip Latency for 60 Byte Packets with Real

Time Scheduling ... 69

Table 12: Experimental Results for IEEE 1588 Time Synchronization Accuracy for

60 Byte Packets with Non Real Time Scheduling .. 71

xi

Table 13: Experimental Results for IEEE 1588 Time Synchronization Accuracy for

60 Byte Packets with Real Time Scheduling .. 72

Table 14: Experimental Results for IEEE 1588 Time Synchronization Accuracy for

1514 Byte Packets with Non Real Time Scheduling .. 72

Table 15: Experimental Results for IEEE 1588 Time Synchronization Accuracy for

1514 Byte Packets with Real Time Scheduling .. 73

Table 16: Experimental Results for RTXX Application Interface Latency with Non

Real Time Scheduling ... 74

Table 17: Experimental Results for RTXX Application Interface Latency with Non

Real Time Scheduling ... 75

Table 18:Summary of Real Time Scheduling Experimental Results 77

Table 19: Experimental Results RTXX Latency for 1mS Deadline for Real Time

Scheduling ... 79

Table 20: Experimental Results RTXX Latency for 4mS Deadline for Real Time

Scheduling ... 81

Table 21: Experimental Results RTXX Latency for 4mS Deadline for Real Time

Scheduling ... 82

Table 22:Menuconfig Configuration ... 95

xii

TABLE OF FIGURES

Figure 1: Different Levels of Communication over Industrial Networks 5

Figure 2: Bottle Filling Machine Model .. 13

Figure 3: Discrete Event System Automata of Industrial Bottle Filling Machine 13

Figure 4: Communication Model of Bottle Filling Machine 15

Figure 5: A Sample Transmission Schedule of RTXX Protocol [30] 20

Figure 6: IEEE 1588 PTP Network Topology ... 35

Figure 7: IEEE 1588 Synchronization Mechanism .. 36

Figure 8: IEEE 1588 Clock Rate Correction Mechanism .. 38

Figure 9: IEEE 1588 PTP Software Implementation ... 40

Figure 10: Periodic Timer Synchronization Algorithm ... 42

Figure 11: TDMAController() Algorithm .. 43

Figure 12: InitTDMAController() Algorithm .. 44

Figure 13: IEEE1588Master() Algorithm .. 45

Figure 14: IEEE1588Slave() Algorithm .. 45

Figure 15: Software Architecture ... 48

Figure 16: rtxxBusSniffer() Algorith ... 51

Figure 17: rtxxSender() Algorithm .. 52

Figure 18:recvfromRTXX() Algorithm ... 54

Figure 19: sendtoRTXX() Algorithm .. 55

Figure 20: Periodic Timer Accuracy for 10KHz with Non Real Time Scheduling .. 59

Figure 21: Periodic Timer Accuracy for 10KHz with Real Time Scheduling 59

file:///C:/Users/oyilmaz/Desktop/Ozan_YILMAZ_thesis_final_commented_v4_ece_accept%20all_v7.docx%23_Toc265677628
file:///C:/Users/oyilmaz/Desktop/Ozan_YILMAZ_thesis_final_commented_v4_ece_accept%20all_v7.docx%23_Toc265677634
file:///C:/Users/oyilmaz/Desktop/Ozan_YILMAZ_thesis_final_commented_v4_ece_accept%20all_v7.docx%23_Toc265677636
file:///C:/Users/oyilmaz/Desktop/Ozan_YILMAZ_thesis_final_commented_v4_ece_accept%20all_v7.docx%23_Toc265677638
file:///C:/Users/oyilmaz/Desktop/Ozan_YILMAZ_thesis_final_commented_v4_ece_accept%20all_v7.docx%23_Toc265677639
file:///C:/Users/oyilmaz/Desktop/Ozan_YILMAZ_thesis_final_commented_v4_ece_accept%20all_v7.docx%23_Toc265677640
file:///C:/Users/oyilmaz/Desktop/Ozan_YILMAZ_thesis_final_commented_v4_ece_accept%20all_v7.docx%23_Toc265677641
file:///C:/Users/oyilmaz/Desktop/Ozan_YILMAZ_thesis_final_commented_v4_ece_accept%20all_v7.docx%23_Toc265677643
file:///C:/Users/oyilmaz/Desktop/Ozan_YILMAZ_thesis_final_commented_v4_ece_accept%20all_v7.docx%23_Toc265677644

xiii

Figure 22: Slot Switching Latency with Non Real Time Scheduling 61

Figure 23:Slot Switching Latency with Real Time Scheduling 62

Figure 24: Periodic Timer Synchronization Accuracy for with Non Real Time

Scheduling ... 64

Figure 25: Periodic Timer Synchronization Accuracy for with Real Time Scheduling

 ... 65

Figure 26: Roundtrip Latency for 1514 Byte Packets with Real Time Scheduling, . 67

Figure 27: Roundtrip Latency for 1514 Byte Packets with Non Real Time

Scheduling ... 68

Figure 288: Roundtrip Latency for 60 Byte Packets with Non Real Time Scheduling

 ... 68

Figure 29: Roundtrip Latency for 60 Byte Packets with Real Time Scheduling 69

Figure 30: IEEE 1588 Time Synchronization Accuracy for 60 Byte Packets with Non

Real Time Scheduling ... 71

Figure 31: IEEE 1588 Time Synchronization Accuracy for 60 Byte Packets with

Real Time Scheduling ... 71

Figure 32: IEEE 1588 Time Synchronization Accuracy for 1514 Byte Packets with

Non Real Time Scheduling ... 72

Figure 33: IEEE 1588 Time Synchronization Accuracy for 1514 Byte Packets with

Real Time Scheduling ... 73

Figure 34: RTXX Application Interface Latency with Non Real Time Scheduling .. 74

Figure 35: RTXX Application Interface Latency with Non Real Time Scheduling .. 75

Figure 36: Transmission Schedule for Real Time Traffic Experiment 1 79

Figure 37: RTXX Latency for 1mS Deadline for Real Time Scheduling.................. 79

Figure 38:Transmission Schedule for Real Time Traffic Experiment 2 80

Figure 39: RTXX Latency for 4mS Deadline for Real Time Scheduling.................. 81

xiv

Figure 40: RTXX Latency for 4mS Deadline for Real Time Scheduling.................. 82

Figure 41: Linux Menu Config Window ... 95

xv

TABLE OF CODES

Code 1: Sample Usage of POSIX Mutexes ... 28

Code 2: Sample Usage of POSIX Conditional Variables .. 29

Code 3: Sample Usage of POSIX Semaphores .. 30

Code 4: Psudocode for Psudo Transmission Function ... 33

Code 5: timespec Structure... 41

Code 6: net_device Structure ... 89

Code 7: Psudo Transmission Function ... 92

xvi

LIST OF ABBREVIATIONS AND ACRONYMS

ACPI Advanced Configuration and Power Interface

API Application Programming Interface

APIC Advanced Programmable Interrupt Controller

CAN Controller Area Network

CM Communication Model

CMOS Complementary Metal Oxide Semiconductor

CSMA/CD Carrier Sense Multiple Access with Collision Detection

DES Discrete Event System

FPGA Field-Programmable Gate Array

FTP File Transfer Protocol

GPS Global Positioning System

HPET High Precision Event Timer

IEEE The Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPC Inter Process Communication

MAC Medium Access Controller

MTSD Master to Slave Delay

NRT Non Real Time

PHY Physical

PIT Programmable Interval Timer

PLC Programmable Logic Controller

POSIX Portable Operating System Interface for Unix

xvii

PTP Precision Time Protocol

RT Real Time

RTC Real Time Clock

RTE Real Time Ethernet

STMD Slave to Master Delay

TDMA Time Domain Multiple Access

TSC Time Stamp Counter

1

CHAPTER 1

 INTRODUCTION

Nowadays, the use of communication networks is common at all levels of industrial

automation systems in the process control and manufacturing industry. Amongst

others, communication networks are employed to enable the acquisition and

distribution of sensor and actuator data on the device or machine level, the

coordination of processes among distributed controller devices on the cell and

subsystem level, and the production scheduling, monitoring and management at the

system and factory level.

The traffic that has to be carried by such industrial communication networks has

different characteristics. While hard real-time applications such as closed-loop

control demand guaranteed bounds on the delivery times up to under 1ms and soft

RT applications in automation and manufacturing require delivery times in the order

of 10ms, there are non-real-time (nRT) processes such as diagnostic monitoring or

maintenance without stringent timing requirements.

In the past, the communication requirements were met by different network types at

different levels of the automation hierarchy. On the one hand, Fieldbuses were

developed for the frequent and timely communication of small data packets as

required on the lower levels of the automaton hierarchy. On the other hand, Ethernet

is well-suited for the less time-critical operations on the higher levels of the

automation hierarchy.

2

In the recent years, there is a strong tendency to replace fieldbusses by Ethernet due

to various reasons. Since fieldbusses cannot cope with the increasing data volumes

on industrial networks, they must be upgraded in order to support higher data rates.

However, considering the relatively small market for such devices, the development

costs are disproportionate. In contrast, Ethernet provides high speeds at low costs due

to its pervasiveness in home and office environments. The main obstacle for the

direct use of Ethernet for the time-critical data transmission on the lower levels of the

automation hierarchy is its lack of RT support due to the nondeterministic carrier

sense multiple access with collision detection (CSMA/CD) arbitration mechanism .

Hence, there is an ongoing effort to provide Ethernet-based industrial network

solutions with RT support and thus converge to a single network technology on the

different levels of the automation hierarchy.

Different approaches for the development of Real-time Ethernet (RTE) are pursued

in both industry and academia. In order to achieve a deterministic timing behavior

without collisions on the medium, such approaches propose modifications and

additions to the network protocol stack of conventional shared-medium Ethernet or

employ switches. Industrial protocols that belong to the first category combine the

use of standard Ethernet hardware with master-slave communication and the

definition of pre-specified periodic sending instants. There are also protocols which

are based on full-duplex switched Ethernet with a specialized prioritization scheme,

or which are designed for customized controller or switch hardware.

A common feature of these protocols is that they provide real-time support on

Ethernet by a static configuration of the possible sending instants or the RT-

bandwidth allocated to each networked controller device. However, it is not

considered that the communication requirements of automation applications

dynamically change depending on the operating condition of the application .

In this thesis the implementation and performance evaluation of RTXX, an Ethernet-

based industrial communication protocol is presented. RTXX is designed to be

implemented with TDMA over shared Ethernet and it exploits the determinism of the

3

industrial applications that communicate over the network. In this protocol, each

node computes the forthcoming communication requirements of the application and

informs the other nodes in the network accordingly. Consequently each node is able

to compute independently the order of medium access among the nodes for a certain

number of coming time slots.

The implementation of RTXX protocol presented in this thesis includes the

realization of TDMA over Ethernet and the required time synchronization

mechanism among the nodes. In addition the decision mechanism for the medium

access and the required information exchange is incorporated. The correctness of the

operation and the satisfaction of the real time requirements are verified with an

experimental study.

The remainder of this thesis is constructed as follows. In Chapter 2 we review the

Real Time Communication Protocols in the literature. Characteristic requirements for

Industrial applications is defined and discussed during this chapter. In Chapter 3,

architecture and characteristics of the RTXX Protocol is defined, a sample

communication model for an industrial bottle filling machine is illustrated. In

Chapter 4 Time Domain Multiple Access based Real Time Ethernet Implementation

is proposed and discussed in detail. In addition, the requirements for software and

hardware implementations presented in detail and solutions are discussed. Time

synchronization mechanisms were also included in this chapter. In Chapter 5 RTXX

Software Implementation is proposed and related software modules discussed in

detail. Interface between TDMA Layer and RTXX Protocol Implementation also

explained in this chapter. User application interfaces for RTXX Protocol is defined

and presented in this chapter. Chapter 6 contains the experiments and discussion

about measurement results. Chapter 7 concludes the thesis.

4

CHAPTER 2

 REAL-TIME INDUSTRIAL COMMUNICATION PROTOCOLS

Industrial control systems that communicate over a network is formed by the sensors,

the controllers (programmable logic controllers), industrial PCs and actuators [1]

which are coordinated over a communication channel. The industrial control

applications which are getting more complex and large scale and industrial control

equipment which are being manufactured with computer and network support has

made the industrial control systems that communicate over network an important

industrial and academic research topic. For these systems different industrial

communication networks are developed for the last twenty years. [1],[2],[3],[4].

In industrial communication networks messages should be transmitted which have

varying purposes and properties. [2]

T1) Equipment level data transfer between sensors, controllers and actuators:

Continuous or sampled data are usually sent periodically and with time constraints.

Example: The data that is collected from the speed sensor in the servo driver is sent

to the controller, output current value is sent from the controller to the actuator.

T2) Messages that are at the supervisory control level: Communication between

system components that are at different hierarchical levels is required according to

the hierarchical organization of the controllers and the controlled systems. Mostly,

data which necessitates event based and deterministic reaction times is sent. Because

the system’s behavior changes at discrete times, the system’s next condition and the

messages that will be sent in this condition can be known beforehand by using the

condition that the system is in and the system’s dynamic model. Example: According

5

to the model of a controller system that controls two machines, after the work finish

event of the first machine occurs it sends a message to the second machine to make it

start working. This is stated in the system model in which the message will be sent

together with the first machine’s finish work event.

Figure 1: Different Levels of Communication over Industrial Networks

T3) Diagnostic data and remote control oriented applications: Mostly moved as non

real time and event based communication.

6

When these traffic types are examined, four impo rtant requirements in the industrial

communication systems can be identified:

1) Real time traffic transfer: The transferring of the messages (T1, T2 traffic

types) before a determined deadline after their creation.

2) Concurrent communication: The requirement of the nodes in the network

to have a shared time base for providing a real time traffic transfer. (T1,

T2 traffic types)

3) Dependability: The dependability support for the fault and failure

conditions in the industrial control applications.

4) Non real time traffic support: The transport of these kinds of messages

without sacrificing the effectiveness of the real time messages. (T3 traffic

type)

Providing the real time guarantees in industrial communication networks requires the

delivery of the messages with no delay at least. Likewise the dependability support

should be according to the worst conditions to provide the desired error possibility.

For these reasons, total capacity requirement in industrial networks and the capacity

allocation are calculated according to the usually unrealistic assumptions such as

sending of all the messages at the same time.

The preliminary communication networks for the industrial environments like CAN,

Lon Works and Profibus are started to be used nearly twenty years ago [5]. These

field buses were proprietary, expensive, hard to develop, not compatible with each

other and had not fastly attuned to the changing industrial applications. On the other

hand, the simple, cheap and fast Ethernet which is prevalent in home and office

environments is an important candidate for industrial communication. Despite these

superiorities, on Ethernet, the messages that are sent at the same time are colliding

and being resent at random times. Because of this reason, the standard Ethernet

cannot provide deterministic network access and cannot support real time dependable

7

communication. Academic and industrial studies are being conducted for the

advancement of real time Ethernet (RTE) since recent years.

Real time control applications have necessities like: receiving reactions at restricted

times, minimum deflection from periodicity of events which need to be periodic and

protection of the time sequences of the events. For these requirements to be satisfied

in the distributed systems, concurrency and temporal consistency should be ensured

between system components. [3],[4]. IEEE 1588 which is a new protocol is designed

especially for synchronization of real time systems over small distributed networks

like industrial control systems. IEEE 1588 which makes the clocks in the system

synchronous by message exchange with a preselected main clock can provide

precision at the interval of 10-100µs for software implementation and below

microsecond level for hardware implementation. [3],[4],[6],[7],[8]. Precision is

decreased to some extent for the key based systems. IEEE 1588 has been fastly put

into use in industrial systems and started to be implemented onboard on several

PLCs.

Dependability is an important requirement for the applications that are being run on

industrial control systems and have critical safety constraints [9]. Dependability

concept also includes factors like availability, safety, integrity and maintainability.

[10]. To call a distributed industrial control system that communicates over network

dependable, dependability of both the network and the controllers should be ensured.

When designing a dependable industrial communication network, dependable

distributed synchronization and the consistency of the values that are sent with the

messages with each other and with the system condition is important. The

dependability problem is more prominent for RTE based solutions due to the

Ethernet’s nondeterministic properties [11]. Dependable communication should

ensure that the right information is being sent to the right location at the right time

and sequence. Dependability support is usually provided by allocation of static extra

load according to the expected worst condition. [4]. As an example, for a TDMA

based protocol, for resending of every lost message, allocation of extra time

8

segments as much as the time segments that are separated as nodes is required and

only half of the capacity can be useful.

9

CHAPTER 3

 RTXX PROTOCOL

When we look at the industrial networks, we basically see two approaches. First of

these is the fieldbus [31] type networks that are stated in Chapter 2, the second

which is also the subject of this thesis is the Ethernet based approach [32] . As also

discussed in Chapter 2 , fieldbus type approaches development costs are high,

expansion and update of the existing system is both costly and complex. Another

difficulty on this type of networks is increasing the data flow amount on the network.

The Ethernet technology however is being spread everyday and its data flow capacity

is continuously increasing.

When we look at the conventional Ethernet architecture, it can be seen that the

shared medium access time interval is indeterminate. In other words, the access to

the shared medium can be performed from several units simultaneously which can

result in collision. Due to the collision avoidance algorithms that exist on the MAC

layer of the Ethernet, collisions can be prevented but since it is not possible to

estimate delay times because of these algorithms, usage in the industrial networks is

difficult. To avoid this, Ethernet switch structures are being used today. This way,

one physical medium is used for each connection which can handle the collision

problem. But because of their costs, delays resulting from the Switch buffers and the

QoS requirements, usability in the industrial networks is decreasing .

RTXX Protocol [30] offers a new approach on the Ethernet interface. In the first part

of this approach, the time slot division of the physical Ethernet medium as real time

and non real time according to the Time Domain Multiple Access (TDMA) principle

is predicted. In the second part, providing the real time communication infrastructure

10

and ensuring the shared medium access to stay in the boundaries of the protocol rules

is provided. With these properties, it can both offer the real time requirements of the

industrial communications and the coexistence of the real time and non real time

traffic in the same medium while providing the above mentioned advantages. In this

thesis, the distributed separated event control approaches of the RTXX protocol in

industrial applications will be discussed in detail, rather the communication model

will be the main scope.

3.1 RTXX Protocol Architecture

RTXX is defined as a protocol to operate in distributed architectures [34]. According

to this definition, each controller on the network, like PLCs, is defined as a node.

Communication relationships between the nodes will be explained in the following

sections. To be a brief description of the protocol, each node in the system knows

when to send the next message and who the sender is. Thus, it organizes its

functionality according to this information. The node which will send the data over

the shared medium sends the message in a form of communication request in order to

inform the other nodes in the system and make reservation for the future nodes which

are waited a response from. The other nodes that receive the communication request,

process the request and determine the next message sender on the network.

In order to avoid collision on the shared medium, RTXX Protocol proposes time-

slotted access [30]. According to the protocol proposal, each time slot constructed as

a fixed size time interval and the transmission of the messages should be done in the

predetermined time slots. However, RTXX protocol proposes time-slotted access of

the shared medium, it does not define the implementation method of time-slotted

access over Ethernet bus. Within the scope of this study, implementation of time-

slotted architecture over Ethernet bus will be explained in more details in Chapter 3.

When we look at the overall structure of the RTXX Protocol, we can analyze it in

five sections;

1. Network Node

11

2. Message Structure

3. Communication Operation

4. Correct Network Operation

5. Non Real Time Traffic Support

Rather than explaining the discrete event control approaches of the RTXX Protocol,

communication model of RTXX Protocol will be the main focused in this section.

Certain terms and their definitions in RTXX protocol is explained in the following;

Shared events - Tasks: These are the events which organize the communication

between system nodes and determine the operation of nodes.

Non-Shared Events: These are the events defined in the controller’s communication

models that control the internal operation of each node regardless of other system

nodes.

Jobs: These are the communication messages which are transmitted during the

execution of tasks. Many controllers may require communication between each other

to perform a specific task. To establish this communications, jobs are used as a

container on the shared medium.

For instance, If the operation of an air motor is a task in the system, each message

transmitted over the system to operate the air motor is defined as jobs.

3.1.1 Network Node

Each network node Ri, in RTXX protocol has to implement the following entities;

 A communication model automaton CMRi

 An input buffer to store the input requests

 An output buffer to store outgoing messages

 An active task list currently initiated in the communication model

 A priority queue to store and sort the incoming request based on their

deadline parameter

12

Communication model is based on the principle of the communication between

distributed controllers on the same system that are interconnected by a shared

medium. In this model, each controller is responsible to manage a subunit of the

system and the lifecycle’s of the controllers are determined by automata. Modeling

principle and the execution of automata are illustrated in Example 3.1

Example 3.1: A small industrial bottle filling machine model is illustrated in Figure

2 . The model consist of a conveyor belt (R1), a filling unit (R2) and a high level

controller (R3) which is responsible from the control of R1 and R2. The high level

controller, R3, can start the process (sp), inform the controllers that bottle is ready to

fill (rtf) and the filling is finished (ff). R3 is also responsible from the system security

by preventing unwanted behavior of low level controllers as R1 and R2. The

conveyor belt moves the bottles to the filling point and after the filling process it

moves to bottles for further processes. Basic operation of the conveyor belt is, start

the process (sp), run until bottle detected (bd) by the sensor and stop the belt (sb)

after than wait until the ff and sp commands to start the whole process again. The

filling unit waits until the rtf command, starts the filling (sf) process, finishes filling

process (ff)and waits until the rtf signal to start filling process again.

13

R1

R2

R3

Figure 2: Bottle Filling Machine Model

R2 21

3

rtf

ff sf

R1 2

1 3

4

5

6

sp rb

bd

sbrtf

ff

R3

21 3
sp rtf

ff

Figure 3: Discrete Event System Automata of Industrial Bottle Filling Machine

14

Each controller, Ri, has its own communication model, CMRi, in the system. Figure 3

shows the discrete event system automata of the example system given in Figure 2

and Figure 4 illustrates the communication model of the example discrete event

system. Every state in communication model CMRi, corresponds a state in controller

Ri and the initial states are marked with a double circle. For instance, the states 1_1,

1_2, and 1_3 in CMR1 corresponds to state 1 in R1. The communication between the

controllers is expounded hereafter and it is assumed that each controller is at their

initial states;

 The controller R3 emits the question job ?spR3 to deduce the R1 is in initial state

or not.

 The controller R1 senses the question job ?spR3 and it replies to R3 with the !spR1

job when it is ready to start

 R3 receives the !spR1 job and it sends the command job spc to make R1 switch to

state 1_3 to 2_1 which makes it to actuate the conveyer belt engine.

 To run the rtf task in the system, R3 controller must know the states of the low

level controllers R1 and R2. Therefore, R3 sends ?rtfR3 question job to interrogate

whether low level controllers are ready to execute this task.

15

?rtfR3

spc

6_16_1

!spR1

?spR3

3_12_1 4_1

2_2 3_2

5_1

4_2 5_2

5_31_1
rtfc

!rtfR1

ffc

CMR1
rb

?rtfR3 ?rtfR3 ?rtfR3

rb

bd

bd

sb

sb

CMR3
1_1 2_1

2_32_43_3 3_13_2

ffc

?spR3 spc ?rtfR3

rtfc?ffR3

!spR1

!rtfR2!rtfR1

!rtfR2

!rtfR1!ffR2

2_21_2 1_3

CMR2
1_1 2_1

3_13_23_3

ffc

?rtfR3 !rtfR2 rtfc
?ffR3

sf sf

?ffR3
!ffR2

2_21_2 1_3

1_2 1_3

Figure 4: Communication Model of Bottle Filling Machine

 R1 and R2 receives the question job ?rtfR3.

 ?rtfR3 question job is applicable for R2 at initial state thus it replies question job

with the !rtfR2 job immediately and state in the CMR2 switches from 1_2 to 1_3.

 On the other hand, ?rtfR3 question job is not possible until the R1 finishes the non-

shared events rb, bd and sb. After R1 finishes the non-shared events, it replies the

R3 with the !rtfR1 job and switches the state in CMR1 from 5_2 to 5_3.

 R1 and R2 respond to R3 controller, R3 emits rtfC command job to execute the rtf

task in the system and switches the state in CMR3 from 2_4 to 3_1.

16

 With the rtfC command job, CMR1 switches to state 5_3 to 6_1, CMR2 switches to

state 1_3 to 2_1 and R2 controller starts to filling process.

 Communication keeps going with the interrogation of the current situation in low

level controllers for ff system task by R3.

To exploit a system task, each job related to the task must be totally completed. If

we denote the number of jobs related to task σ by Nσ, then we can describe the

deadline for each job as dj:=r(σ) / Nσ where r(σ) illustrates the time interval between

the occurrence of the event and its execution. In accordance with this definition, we

can say that the jobs that are ready to be sent must be transmitted at least in dj time.

As an illustration, If the job ready to be sent at t0 instant, then it must be sent at t0+dj

latest. By this definition, the communication model is combined with the deadline

parameters that communication model is made into a real time communication

model.

3.1.1.1 Priority Queue

Priority queue is used for storing the requests that are defined as a tuple in the system

in form of (N,e,d,T) which indicate the transmission of the the future requests. N

represents the Node which the request is relevant to. e represents the eligibility time

that the demander Node requires to finish its internal process to accept the reply

messages. d represents the deadline parameter of the job and T represents the active

task that issued the request. Priority queue stores each request as it is and order them

by their deadline and eligibility time elements.

3.1.2 Message Structure

In RTXX Protocol, each job in the system is transmitted as a message on the shared

medium. The Protocol proposes to send only one message within a time slot whose

interval must be determined by the longest size that a message can be constructed to

prevent the shared medium from physical collisions.

17

The message structure of RTXX protocol consist of the following entities.

 A set of jobs to be sent by the node Ni.

 A set of receiver nodes.

 A minischedule contains the communication requests.

 A set of terminated tasks in node Ni.

In this study, in Chapter 5, multi-message per slot approach is implemented to

achieve timing overhead arising from the locking mechanisms in Linux operating

system. Multiple accesses on shared medium are prevented by the priority queue

implementation in Section 5.1.

3.1.3 Communication Operation

Priority queue constitutes the main foundation of RTXX Protocol. The following

part explains the initial and subsequent runtime operation of the protocol.

 The highest level controller generates an initialization message and transmits

it on the shared medium to other controllers in the system. At this time, each

controller is on its initial state and monitors the physical transmission line for

possible incoming messages.

 Controllers captures the request from the shared medium and stores it in their

priority queue

 After the initialization, each controller takes out the nearest deadline eligible

communication request from the priority queue.

 The node which take place in the request sends its message into output buffer

and sends it through the shared medium

18

 Every node in the system inserts the communication requests in the

minischedule to their priority queues. Thanks to this, each node has the same

unique priority queue order that makes the system fully synchronized and

make the nodes choose the same node as the sender.

 The receiver nodes in the system capture the incoming message, put it to their

input buffer, update their state according to the computations, generates the

outgoing message and put it into their output buffers

Protocol follows the same way for each real time message in the system that makes it

work properly during the lifecycle of the system

3.1.4 Correct Networked System Operation

Each ready job in the system must meet the deadlines and are transmitted in

accordance with the communication model to warranty correct system operation.

Some network and transmission parameters must be defined and computed to

provide real time characteristics and correct operation. Hereafter, definition and the

calculation of these parameters will be illustrated.

The most basic requirement for the correct operation is computing the frequency of

the real time slot and bandwidth of the real-time traffic. The calculation of minimum

tolerable transmission frequency of real time slot is illustrated in Equation 1 [30].

Qmax represents maximum estimated priority queue size, dmin represents the minimum

job deadline and emax represents the maximum eligibility time.

19

rmin = (Qmax+1) / (dmin-emax) (1)

After determining the minimum tolerable transmission frequency rmin, with the

knowledge of the largest message size that can be created on the system Fmax, the

minimum bandwidth requirement for real time traffic can be calculated as in

Equation 2.

C ≥ rmin x Fmax (2)

With the help of Equation 1 and, bandwidth and the frequency requirements can be

calculated for the correct networked system operation.

3.1.5 Non-Real Time Traffic Support

If the total bandwidth in the network is considered as C, then the amount of the

available bandwidth excluding RTXX Protocol can be calculated as C – (rmin x Fmax).

Usage of this additional bandwidth for non real time applications is proposed by the

RTXX Protocol as follows;

rmin value in Equation 1 is defined as the minimum tolerable transmission frequency

for real time slots. By this definition the period of the real time slots can be defined

as 1 / rmin. Protocol proposes to split this period into G time slices, named as time

slots, assign the first time slice to real time traffic and the other G-1slices to non real

time traffic. By this approach, the protocol both guaranties the real time

communication bounds for real time traffic and opens the shared medium for non

real time traffic usage.

Protocol proposes to schedule the non real time slots with a pre-computed

transmission schedule. In each non real time slot, only one node can access the

shared medium and transmit its messages according to transmission schedule. If

there are no eligible request during a real time slot, protocol also proposes to use that

20

real time slot for non real time traffic. Figure 5 illustrates the scheduling of real time

and non real time slots for the period of 1 / rmin and G=5. As can be seen in the

Figure 5, Slot 11 is used for non real time instead of real time traffic

Figure 5: A Sample Transmission Schedule of RTXX Protocol [30]

21

CHAPTER 4

 REAL TIME ETHERNET MEDIUM ACCESS
IMPLEMENTATION

As we discussed in previous sections, communicating over shared Ethernet networks

is nondeterministic as more than two nodes can start to transmit packets at the same

time. In a collision situation, collision avoidance algorithms in MAC layer of IEEE

802.3 [12] tries to retransmit buffered data after random intervals which make delay

bounds unpredictable. To avoid this kind of collision sources, this study proposes

Time Domain Multiple Access (TDMA) approach in the Ethernet level for Linux

operating system.

4.1 Time Domain Multiple Access

TDMAController() thread constitutes the core Real Time Ethernet implementation.

Simply, it divides Ethernet Bus into pieces, called time slots, over temporal plane

and coordinates the bus access between applications and Linux kernel. These time

slots can be dedicated to real time protocols like RTXX, non real time traffic like IP,

IEEE 1588 Protocol or another custom protocol on demand. With this flexibility,

bandwidth allocated to protocol applications may be configured statically or

dynamically.

The main objective of TDMAController() thread is managing the schedule of the

packets to be sent over Ethernet Bus. TDMAController() consists of a periodic timer

and locking mechanism for related protocol threads.

22

4.1.1 Timing Mechanism

Two of the most important timing requirements for TDMA Controller

implementation are, high precision and high accuracy periodic timers and a real time

capable operating system kernel.

4.1.1.1 Timer Clock Accuracy

The accuracy and the precision of the timer counter clock in the system determine

the reliability of time interval of each time slot. In order to provide deterministic and

predictable slot intervals, timer clock source should be selected as accurate as

possible. This accuracy is dependent on hardware clock source and driver interface

of this clock hardware.

4.1.1.1.1 Hardware Clock Sources

Building a scheduler, which is the core of an Operating System, requires keeping

track of time to switch between parallel executed software threads. There are several

timer devices produced for this aim. Common architecture for this timer devices

usually covers an oscillator and a counter components. When the oscillator provides

input frequency for the timer device, the counter controls counting process for each

cycle of the oscillator. The counter is controlled by software which defines counter

inputs, modes (one-shot or periodic) and generates a state signal which may

interrupt the processor at any time.

PC Timer Devices and Components are considered below [13].

The Programmable Interval Timer (PIT)

The oldest PC timer device is the PIT. PIT has a 1.193182MHz input oscillator, 16-

bit counter and counter input registers. The PIT covers three timers to manage

system timekeeping. Timer 0 provides interrupt signals, Timer 1 refreshes RAM and

Timer 2 generates tone signals for PC speaker. This timer was not suitable for

timekeeping of today PCs, because it was designed for the first PC architecture.

23

The CMOS Real Time Clock (CMOS RTC)

The CMOS RTC is a function of the battery-backed memory device. There are two

functions in the RTC. One of them keeping the time of day (TOD) information and

the other one is generating periodic interrupts by a timer clock. But it is not possible

to read or write on the counter. Only counter inputs can be set to any power of two

rating from 2Hz to 8192Hz.

The Local Advanced Programmable Interrupt Controller (Local APIC)

The Local APIC is another timer device in multiprocessor systems. Each processor

has one local APIC. The Local APIC has a 32 bit counter and a number of counter

input registers. The input frequency depends on memory bus frequency before the

multiplication. So, counter capability is wider than PIT or CMOS. But counter

frequency cannot be determined by software.

The Advanced Configuration and Power Interface (ACPI)

The another additional system timer is the ACPI which is known the power

management timer. ACPI has 24 bit counter but does not have a counter input

register. The ACPI timer is used to control power saving functionality.

Time Stamp Counter (TSC)

The TSC is a 64-bit cycle counter which is used on new type processors. It has no

capability to generate interrupts and does not have counter input registers. TSC can

be read by software with the rdtsc instruction. But the rdtsc instruction can be used in

user mode and there would be an issue on operating system side. Also there are a few

drawbacks for TSC such as:

 There is no reliable way to determine the TSC’s input frequency

 There are several power management technologies which change Processor’s

clock speed dynamically with little or no notice.

 The TSC can be stopped in their lower-power halt states

24

HPET (High Precision Event Timer)

The HPET device is available in new generation PCs. It has 32 or 64 bit counter

which runs until stopped by software. The HPET has multiple timers which have

timeout registers that are compared with the central counter and takes measures

against the timeout if the timer was set to be periodic. Thus, The HPET is used

instead of the PIT and the CMOS periodic timers. [14], [13]

4.1.1.1.2 Timer Interfaces provided by Linux Kernel

Standard Linux distributions only implement system clock timers, called jiffies, that

has the maximum frequency of 1000Hz with an unpredictable accuracy and alarm

mechanisms based on RTC clock in the BIOS which has the maximum timer period

of 125uS for software developers. Other clock sources are dedicated to specific

procedures like power saving mechanisms and hardware synchronizations. The Real

Time Ethernet implementation requires accurate and high resolution user timers, so

standard Linux distributions can not be used for this implementation.

First prototypes of high resolution timer support for Linux kernel were developed by

Thomas Gleixner for Intel x86 architecture. During the time, there were several

updates and new kernel patches were developed and merged in to Linux kernel by

Thomas Gleixner [15] and Ingo Molnar. By this patch, POSIX [16] timers became as

accurate as the hardware clock allows which is about 1 nanosecond HPET timer

today.

There are several types of POSIX high resolution timer sources in the real time

kernel which can be selected during the timer creation routines as

CLOCK_REALTIME, CLOCK_MONOTONIC,

CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID. All of

these timers use the same high precision clock hardware to generate timer interrupts

and signals. CLOCK_REALTIME timer mechanism uses system-wide high

resolution timer for timer expiration interrupts and signals. Timer period for this type

of timer may change if someone changes the system timer during the lifecycle of the

25

working thread. CLOCK_MONOTONIC timer uses high precision timer which

starts to count from 0 when the system powered up and can not be set/reset until the

next power on. Timer period for this type of timer is not affected by changes in

system timer so this timer type is suitable for most of the periodic applications.

CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID can be

used to measure the consumed CPU time for applications [17].

In our TDMA Controller implementation CLOCK_MONOTONIC type of timer is

selected to generate periodic and stable timer events.

4.1.1.1.3 Signaling and Real Time Scheduling Characteristic

TDMA Controller implementation uses signals in the operating system to trigger the

slot switching mechanism resulting from timer interrupts. Therefore the signaling

performance and real time scheduling characteristic of the operating system is the

third major factor in the Time Slotted Architecture after timer clock hardware and

timer clock interface.

Standard Linux signal delivery times and thread switching times may vary depending

on CPU load of the system. For this reason real time characteristics of signaling and

thread scheduling should be implemented to Linux kernel. In order to provide this

capability to Linux Kernel, PREEEMPT_RT [18] kernel patch is applied to system

[19].

Signals in Linux operating system are used to notify a thread or process of a

particular event. Signals may also be called as software interrupts. Standard Linux

kernel implements 31 signals for interrupt and exception handling, synchronization

and inter process communications (IPC) in the system. POSIX standard adds a new

class of signals called real time signals ranging from 32 to 63. There are some major

differences between normal signals and POSIX real time signals. The first difference

is the priority level of signals. For normal signals, lower numbered signals have

higher priority then higher number signals. In contrast to normal signals, POSIX real

time signal priorities proportional to signal numbers. The second difference is the

26

signal queuing mechanism. POSIX real time signals uses signal queues to guaranty

successfully delivery of signals to the related application. On the other hand normal

signals is merged if a process has already a have pending signal, so only signal is

delivered for overall signal activity [20].

 In TDMA Controller implementation highest priority POSIX signal, SIGRTMAX, is

used to handle timer interrupts. In this way, in case of a signaling latency, TDMA

Controller application always know the time slot it is related to and will not miss any

timer interrupt during its life cycle.

In addition to high resolution timer support implementations, Ingo Molnar developed

real time preemption kernel patch which is providing fully priority preemption

mechanism to the Linux kernel. By applying preemption kernel patch and high

resolution timer support, standard Linux kernel gains real time capabilities which

makes it suitable for Real Time Ethernet implementation.

For this study, Linux kernel version 2.6.32.12 is selected and related real time patch

is used to build a real time capable Linux kernel. Configuration and the build

process is explained in Appendix B.

4.1.2 Locking Mechanism

Locking mechanism is the other main requirement for Real Time Ethernet

implementation. Main idea behind the locking mechanism is to prevent simultaneous

access to physical Ethernet layer. In order to provide this capability to TDMA

Controller thread, POSIX mutexes, conditional variables, semaphores and user

defined system calls are used by TDMA Controller application.

In Real Time Ethernet implementation, to ensure the system’s proper operability it is

required that all the nodes in the system work in accordance with the Real Time

Ethernet implementation. Even though the implementation supports real time and

non real time communication, if a standard Ethernet connection is realized over the

shared medium, the traffic flow over the shared medium may be disrupted by the

27

packets that will transferred from this node . In this study, it is assumed that all the

nodes in the system support Real Time Ethernet protocol and the access of the nodes

to the medium is performed inside the predetermined time slots. In future work, the

possible actions for the error cases resulting from the reasons mentioned above may

be discussed.

It can be observed that the Real Time Ethernet implementation is split into real time

and non real time slots in the shared medium. In these two types of slots the behavior

of the Real Time Ethernet implementation differs. When the system is in the real

time slot, non real time traffic flow is blocked in every node that forms the system.

As the blocking mechanism, the blocking APIs which the driver functions use for

warning the system when the hardware transmission buffers are full are called. With

this method, all the non real time traffic in the non real time slot interval can be

stopped while the system’s general behavior are not affected. The non real time

traffic that is stopped, like the video streaming or FTP, is buffered by the buffering

mechanisms during the blockage interval. So, any corruption or packet loss is

prevented for the Layer 3 protocol connections.

The base effect of the blockage to the system is the inability to deliver the Layer 2

and Layer 3 protocol packets during the real time slot interval and buffering delays

for these unsent packets. If the frequency and the interval length of the real time slots

are increased, the buffering amount on the networks stack starts to increase according

to the non real time traffic density on the node. The buffering structure on the

network stack is dynamic and limited with the memory amount on the node. If the

memory amount on the node starts to be insufficient, buffering is stopped and packet

loss occurs. Moreover, the high waiting time for the packets may also result in Layer

3 protocol connection cut offs. When the system is in the non real time slot, real time

traffic is blocked and non real time traffic is allowed to flow. The structure of the real

time traffic and packet delay amounts can change according to the type and

execution manner of the protocol running in the real time slot.

28

Filling the network stack buffers will take time because of the high memory amount

when the experiment setup is considered. So this experiment is not performed.

Instead NRT delay experiments that measure the delay time of real time traffic is

performed.

The aim of this experiment is to detect the delays occurring on the non real time

traffic depending on the density of the real time traffic.

First part of the locking mechanism is POSIX based synchronizations objects. There

are three types of POSIX objects used in TDMA Controller implementation which

are mutexes, conditional variables and semaphores.

4.1.2.1 Mutexes

Mutexes are the synchronization mechanism aims to prevent race conditions over

shared objects and generally used by driver functions. For Real Time Ethernet

Implementation, TDMA Controller must lock and release threads periodically based

on slot type information. Because of this TDMA controller creates one POSIX mutex

for each thread that has possibility to access Ethernet layer. Basic usage of the

POSIX mutexes illustrated in Code 1

/* Function C */

void foo()

{

 pthread_mutex_lock(&mutex);

 testcount--;

 pthread_mutex_unlock(&mutex);

}

Code 1: Sample Usage of POSIX Mutexes

29

4.1.2.2 Conditional Variables

Condition variables are the synchronization mechanisms that block the waiting task

until a specific condition is true. Conditional variables must be used with a mutex

variable to avoid race conditions. If a thread signals another thread with a condition,

the signaled thread will be unlocked if the condition is true, otherwise signaled

thread will locked again. In TDMA Controller implementation, every element that

can access the network transmission in a time slot is controlled by these conditional

variables. A simple locking mechanism for conditional variables is illustrated in

Code 2

Code 2: Sample Usage of POSIX Conditional Variables

Thread1()

{

 pthread_mutex_lock(&mutex);

 while(testCount < 10)

 {

 pthread_cond_wait(& cond, &mutex);

 }

 pthread_mutex_unlock(&mutex);

}

Thread2()

{

 pthread_mutex_lock(&mutex);

 testCount--;

 pthread_mutex_unlock(&mutex);

}

30

4.1.2.3 Semaphores

Semaphores are the third synchronization mechanism used by the TDMA Controller

implementation. By definition, semaphores are kernel objects that contain a variable

which can be checked and modified by the processes and threads. Semaphores are

one of the fastest synchronization mechanisms in Linux operating system. There are

two types of POSIX semaphores. First one is the named semaphore which can be

accessible between separate processes, the other one is unnamed semaphore which is

accessible only in process memory which threads in the process can be use to

synchronize between each other. TDMA Controller implementation uses unnamed

semaphore to prevent access from other application processes. A simple

synchronization mechanism for POSIX semaphores illustrated in Code 3

timerHandler(){

 sem_post(&timer_sem);

}

periodicThread(){

for(;;){

 sem_wait(&timer_sem);

 do something;

}

}

Code 3: Sample Usage of POSIX Semaphores

Standard Linux system, memory space is separated into two distinct regions as user

space and kernel space. Linux kernel and all of the kernel services including device

drivers run in the kernel space and applications run on the user space. Accessing

distinct regions is prohibited by Linux kernel. In order to provide kernel level

services to user applications like capturing data from keyboard, mouse or a webcam,

Linux kernel offers special gateways to user space programs named system calls.

31

4.1.2.4 System Calls

System calls are the services provided by Linux kernel to attract kernel resource from

a user space application [21].

A system call is executed in the kernel space and a user program is executed in the

user space. In a Linux system, hardware access is restricted to the kernel space to

protect the hardware routines from user space programs. Some cases, user space

application requires to access directly to hardware to perform the specific job, like

high precision timer access. In this case, there is a special need for bridging user

programs to hardware which is called “system calls”.

System call implementations are dependent to microprocessor architecture. Every

system call has a unique number associated with it. For Intel x86 architecture, when

a user space program calls a system call, a library routine traps the kernel via

executing the special “INT 0x80” assembly instruction and the associated number of

the system call is passed to kernel via EAX register.

The arguments of the system call are also passed to kernel via EBX,EBC, etc.

register. Return value of the system call is passed from kernel to user program via

other CPU registers. [22]

Detailed information about implementing system calls to Linux kernel is explained in

Appendix A In this implementation, TDMA controller needs to control and access

Ethernet hardware which is located in kernel space. Standard kernel does not offer

system calls to access Ethernet hardware from user space so new system calls are

required for TDMA Conroller.

There are three new user defined system calls added to Linux kernel which are

lockNetDevice(), unlockNetDevice() and sendNetDriver(). lockNetDevice() system

call locks the upper layer packet flow to Ethernet physical layer. When a real time

traffic dedicated slot is activated by TDMA Controller, this system call used for

locking Linux network stack. unlockNetDevice() system call releases the Linux

network stack. When a non real time dedicated slot activated by TDMA controller,

32

this system call used for unlocking Linux network stack. sendNetDriver() system call

sends a packet directly to Ethernet driver routines. When the upper layer traffic is

suspended by the lockNetDevice() system call, real time protocol applications can

not use standard socket APIs to access Ethernet hardware. In order to bypass Linux

network stack, real time applications must use this system call to send their packets

to Ethernet hardware. This system call involves some changes in driver level to add

additional access capability to driver functions.

Standard Linux network device drivers must have some specific procedures to

interact with Linux kernel. This procedures are defined in the “net_device” structure

and device drivers should be written based on this procedures. Linux network stack

uses a specific procedure reference pointer, called “hard_start_xmit”, to send

buffered packet to physical layer and Linux kernel provides some locking

mechanisms on this procedure to prevent multiple accesses simultaneously.

In the network device driver source code, there is a hardware transmit function which

is referenced by this “hard_start_xmit” procedure. Linux network stack uses that

reference to send next packet in the network stack queue to network hardware

buffers. In order to send network packets to Ethernet hardware without using

standard operating system interfaces, there should be a backdoor in driver source

code. In order to provide minimum impact on device driver source code a new

transmission function, ”psudo_start_xmit” , is added to source code as a backdoor

instead of changing standard driver functions and “hard_start_xmit” routine

forwarded to that psudo transmission function instead of real transmission function.

Psudocode for pseudo transmission function illustrated in Code 4.

33

psudoTransmitFunc () {

 if (timeSlot==REALTIME){

 lockNetwork();

 }

 else{

 if (nonRtTrafficType==ONESHOT){

 realTransmitFunc();

 lockNetwork();

 }

 else {

 realTransmitFunc();

 }

 }

}

Code 4: Psudocode for Psudo Transmission Function

4.1.3 Synchronization Mechanism

Synchronization mechanism is the third main requirement for Real Time Ethernet

infrastructure. All the nodes in the Real Time Ethernet network must synchronize

their clocks and periodic timers to the master node to communicate between each

other.

First step of the synchronization is the system clock synchronization.

4.1.3.1 System Clock Synchronization

System clock synchronization algorithm is determined as the IEEE 1588 Precision

Time Protocol [23] for this implementation.

4.1.3.1.1 IEEE 1588 Precision Time Protocol

Measurement and Control Systems are used in many manufacturing technology and

many other areas of industrial automation. Day by day, timing requirements are

34

growing rapidly and new time synchronization methodologies are needed by the

industry. IEEE 1588 PTP is a protocol that mainly targets the timing requirements

coming from this necessity.

The first protocol studies about Precision Time Protocol were done in the 1990s by

Agilent Technologies [24]. Then to meet the industrial requirements, academic and

industrial studies for time synchronization is re-established in 2000s and following

that studies, first version of the standard was published in November 2002 by The

Institute of Electrical and Electronics Engineers, Inc. (IEEE)[25] as “IEEE Standard

for a Precision Clock Synchronization Protocol for Networked Measurement and

Control Systems” [23]

IEEE 1588 is a high precision time synchronization protocol suited for network and

industrial systems which defines time synchronization methodology over packet

based networks, like Ethernet.

IEEE 1588 PTP differentiates from older synchronization methods used in

measurement and control systems by the method. Older control and communication

standards uses a dedicated synchronous connection to capture frequency from the

control link and requires specific hardware modifications which makes them to

follow strict hierarchy. However IEEE 1588 PTP calculates the time by a specific

PTP algorithm and determines the frequency by this calculations. The time

distribution hierarchy determined by the clock source quality in spite of spatial

location that makes it more flexible then older standards.

4.1.3.1.2 IEEE 1588 PTP Network Configuration

IEEE 1588 PTP Network consists of Master and Slave nodes in the system and

creates a hierarchy based on this network elements. Figure 6 illustrates a sample

IEEE 1588 network topology. IEEE 1588 network is a spanning tree network which

a Slave node in a level can be a Master node for sublevels of the tree.

35

The Master node on the top layer of the spanning tree uses a primary clock source,

named as Grandmaster Clock, which may be a GPS, Rubidium or a trusted clock to

synchronize Slave nodes in the network.

In the medium levels of the tree, a simple node acts like a bridge between upper

layers and lower layers and uses Boundary Clocks to synchronies lower layer Slaves

nodes based on Grandmaster clock. Generally medium layer nodes are physical

network switches have support for IEEE 1588 Precision Time Protocol in addition to

standard switching capabilities. Bottom layer nodes synchronize their clocks, named

as Ordinary Clock, based on upper layer Boundary Clocks.

Figure 6: IEEE 1588 PTP Network Topology

4.1.3.1.3 Synchronization principle of IEEE 1588

CSMA/CD procedure in MAC layer of the IEEE 802.3 [12] Ethernet interface may

cause to time packages being delayed or disappearing completely. IEEE 1588 PTP

protocol offers a special time synchronization method to achieve this

nondeterministic behavior.

36

Figure 7: IEEE 1588 Synchronization Mechanism

IEEE 1588 uses relatively simple procedure for calculating the clock offset in the

network which is illustrated in Figure 7

In the Figure 7 two vertical lines indicates the time line for both master and slave

devices.

 In the first step, Master node sends a sync message to the Slave node. Master

node takes timestamps (t1) when the message leaves the node.

 Slave node records the timestamp (t2) when it receives that message.

 The master node then sends a follow up message to the slave node which is

carrying payload of the original timestamp (t1).

 At that time, slave node has both timestamp 1 (t1) and timestamp 2 (t2) and

calculates Master to Slave Delay (MTSD).

 Then Slave node sends a delay request message and timestamps this (t3).

37

 Master node timestamps the reception of this message (t4) and sends a delay

response to the slave which is carrying the payload of the timestamp (t4) of

delay request.

 Slave receives the delay response. After that time, Slave node has the

timestamps to calculate the Slave to Master Delay (STMD) and the total

offset between the nodes. After the calculation Slave node synchronies its

clock to Master node.

Time stamping accuracy is the main factor affecting the success of the IEEE 1588

synchronization which should be made as close as the physical layer.

In addition to clock synchronization, clock rates should be adjusted with the protocol

due to clock frequency differences in the system. Rate correction is done by

measuring subsequent synchronization cycles and calculating differences between

start of packets in Master node and arrival of packets to Slave node. Rate correction

accuracy is dependent to synchronization period that IEEE 1588 PTP uses [26]. The

more frequent the synchronization is, the more accurate is the rate correction. Rate

correction algorithm is illustrated in Figure 8.

There are several implementation methods for IEEE 1588 in the literature. Basically

implementations can be separated two groups as;

38

Figure 8: IEEE 1588 Clock Rate Correction Mechanism

4.1.3.1.4 Software Only Implementation:

This implementation is the basic implementation for IEEE 1588. All of the

synchronization mechanism implemented via software and it does not requires any

hardware assist which makes it very flexible to adapt newer platforms. However the

software complexity makes the design harder and timestamping performance suffers

from software based delays and jitters. Because of this delays, software based

implementation is the least precision solution and results >10uS synchronization

accuracy. This kind of accuracy is enough for process based communication

requirements like factory automation.[27]

4.1.3.1.5 Hardware Assisted Implantation:

This implementation requires specific hardware modifications on network interface

modules. There are several hardware implementations on FPGA, ASIC,

Microcontroller or Ethernet controller based architectures. In terms of performance

hardware assisted solutions has much higher accuracy than software based solution

which is less than 10 nanoseconds today. However hardware assisted solutions are

39

much expensive and strict to specific hardware. Table 1 illustrates the comparison

between hardware and software based solutions in terms of development

considerations and precision performance [27].

In this thesis, implementation method is determined as software only implementation

which provides flexibility and adaptability in comparison to previously done

academic studies. During the implementation, the same hardware architecture used

for Master Node and Slave Node in the system. Since the clock sources are the same,

rate correction algorithm is not necessary for this implementation so rate correction

algorithms did not included in the IEEE 1588 PTP implementation. Software

Implementation architecture is illustrated in Figure 9

Approach Development
Considerations Precision Performance

Software Only Software development

required

Precision is low for most applications
Typical: >10 microsecond on single

link

Hardware Assist in
FPGA

Significant hardware

change required
Software and FPGA IP

development required

FPGA approach timestamps at the

Ethernet MAC level
Typical: >30 nanosecond on single

link

Hardware Assist in
Microcontroller

Requires change to new

microcontroller
Existing software changes

may need to be

customized

Microcontroller approach timestamps

at the Ethernet MAC level
Typical: >30 nanosecond on single

link

Hardware Assist in
Ethernet PHY

Simple Hardware

implementation
Tightest time synchronization
Typical: <10 nanosecond

Table 1: Comparison of IEEE 1588 Implementations [27]:

40

4.1.3.2 Periodic Timer Synchronization

Second step of the time synchronization is the periodic timer synchronization.

Synchronizing system time is not enough for Real Time Ethernet implementation by

itself, because nodes in the network must switch between slots at the same time as

well. In order to provide this ability to nodes, additional synchronization over

periodic timers is required.

System time is stored in the system as timespec structure. timespec structure consists

of two long integers, each of two is 32 bit long. First long integer named as tv_sec

which stores the seconds part of the system time and second long integer named as

tv_nsec which stores the nanoseconds part of the system time. Code 5 illustrates the

timespec structure.

Figure 9: IEEE 1588 PTP Software Implementation

41

struct timespec {

long ts_sec; /* seconds */

long ts_nsec; /* nanoseconds */

};

Code 5: timespec Structure

A new synchronization algorithm has been developed to ensure the synchronization

over periodic timers which is illustrated in Figure 10. Main idea behind the

algorithm is capturing system time, ts, and starting the periodic timer at “ts+ t∆” .

Value of t∆ may change due to expected synchronization accuracy and the priority

of the synchronization thread.

The synchronization thread enters a loop and compares the actual time , ta , with the

predetermined periodic timer start time, tstart, which is determined as the beginning of

“ts+2” second. If the actual time is greater than the tstart and “ta- tstart” value is

smaller than the predefined accuracy value, a , then related thread in the Node starts

its periodic timer. Otherwise it increases tstart value by a predefined repeat period, rp ,

and keeps trying again and again until predefined accuracy a is achived.

Synchronization algoritm may also be canceled after a specific number of tries if

required. By this way, all the nodes in the system has the same system time as

accurate as possible by IEEE 1588 PTP synchronization and has the same slot

switching times with a worst-case drift of a.

42

Figure 10: Periodic Timer Synchronization Algorithm

4.2 Programming Architecture for Real Time Ethernet Implementation

Real Time Ethernet Implementation contains four different functions to provide

protocol functionality.

43

4.2.1 TDMAController()

The first and most important function is “TDMAController()” which is responsible to

manage all the functionality including timing, locking and synchronization of Real

Time Ethernet. This function is created as the highest priority thread in the operating

system (priority = 80). Algorithm for this thread is illustrated in Figure 11

In addition to TDMAController() thread function, InitTDMAController(),

IEEE1588Master() and IEEE1588Slave() also written to work with

TDMAController() thread.

START

Create Slot Schedule

Lock outgoing traffic

Call

InitTDMAController ();

Wait until timer signal

Change time slot

Lock all the network

Unlock related

network protocol

Figure 11: TDMAController() Algorithm

44

4.2.2 InitTDMAController()

InıtTMDAController() function is responsible to prepare all of the necessary

conditions including starting IEEE1588 synchronization and periodic timer

synchronization that TDMAController() needs. InitTDMAController() algorithm is

illustrated in Figure 12.

Figure 12: InitTDMAController() Algorithm

4.2.3 IEEE1588Master() and IEEE1588Slave()

TDMAController() functions changes its behavior based on operation mode. If the

system will act as a Master node, the TDMAController() thread controls the

IEEE1588Master() thread to synchronize Slave nodes in the system. Otherwise,

TDMAController() uses IEEE1588Slave() to synchronize system time to master

node in network. Algorithms for IEEE1588Master() and IEEE1588Slave() illustrated

in Figure 13 and Figure 14.

START

Call IEEF1588 Function to

Syncronize System Clocks

Synchronize Periodic Timer

END

45

Timestamp Current

time, t1

Send SYNC Message

Send FOLLOW-UP

Message including t1

Wait for DELAY

REQUEST

Timestamp current

time, t4

Send DELAY

RESPONSE including

t4

END

START
Wait for SYNC

Message

Timestramp Current

time t2

Wait for FOLLOW_UP

Message

Pick t1 time from

FOLLOW_UP

Message

Timestamp DELAY

REQUEST time, t3

Send DELAY

REQUEST message

Wait for DELAY

RESPONSE message

Pick t4 time from

DELAY RESPONSE

message

Calculate OFFSET

value

Adjust system time

END

START

Figure 14: IEEE1588Slave() Algorithm

Figure 13: IEEE1588Master() Algorithm

46

CHAPTER 5

 RTXX PROTOCOL IMPLEMENTATION

 RTXX Communication Model implements message based Communication Requests

which contains the following tuple to reserve communication channel for

transmission.

Communication request tuple (N,e,d,T) consist of;

 A NodeId (N); a unique identifier representing the receiver node,

 an eligibility time (e), containing the time, when the receiver node is able to

transmit a message,

 a deadline (d), based on protocol applicaition,

 a TaskId (T), that identifies the task, the message corresponds to.

Reservation of the communication channel is made by deadline parameter in the

message structure which is sorted in a priority queue. Activation time of the

reservations is determined by the eligibility time parameter in the message structure.

If the eligibility time parameter of the communication request is smaller than the

current time, request has processed by the priority queue and sorted by the system by

deadline parameter otherwise communication request waits until eligibility time to be

valid. A single node may request to transmit more than one communication request

in a single message. In order to add this capability to RTXX protocol,

communication requests are combined and named as minischedule in the message

structure. Priority queues located in the nodes should be updated based on this

minischedule during the lifecycle of the application. Because the communication

medium is visible and accessible to all nodes, each node updates its priority queue

47

and contains the same scheduling table based on the minischedule of the transmitted

message.

5.1 Processing and Priority Queue Management

RTXX Communication model requires a priority queue implementation to schedule

outgoing packets in RTXX network. Scheduling of the packets changes dynamically

based on the content of flowing traffic, eligibility time of precaptured packets and

terminated task lists defined in RTXX Protocol.

This implementation assumes eligibility time of the packets and terminated task list

member number is zero which means that packet is ready to be sent when it is

created and there is no need to remove terminated task from priority queue. In this

study, one global priority queue is created for each node to organize packet

transmission types.

This implementation uses Binary Heap [28] Sorting algorithm for adding a new

element to priority queue and removing an element from priority queue. In the

priority queue elements are stored as structures which consist of nodeID, application

ID, eligibility time and deadline and sorting is done based on deadline value of the

queue element. There are two functions developed to access priority in the system.

5.1.1 enqueueGlobal()

First priority queue related function is enqueueGlobal() function. This function gets

the new element and it stores it in priority queue based on its deadline value. It

returns “0” after finishing enqueue process. If the queue is full then it returns “-1” to

indicate caller application that the priority queue is full.

5.1.2 dequeueGlobal();

The second priority queue related function is dequeueGlobal() function. This

function enters the priority queue and removes the head element of the priority queue

48

and returns it to caller thread. If the priority queue is empty then it returns NULL

structure to notify caller thread.

5.2 Implementation of RTXX Protocol over Ethernet

Implementation of RTXX Protocol consists of several software modules that some of

them are discussed in the Real Time Ethernet implementation in Chapter 3 .

In this part of the thesis, RTXX Protocol Implementation will be discussed in three

sections;

 Real Time Ethernet Interface

 RTXX Protocol Core Implementation

 RTXX Protocol Application Interface

In Section 5.2.1, integration between Real Time Ethernet Implementation and RTXX

Protocol Implementation will be discussed. In Section 5.2.2, RTXX Protocol

Software Architechture and lifecycle behavior of implementation threads will be

discussed. Finally in Section 5.2.3, interfaces that are provided for RTXX Protocol

TDMAController() RTXX Protocol

rtxxBusSniffer()

1588 PTP

Linux

Network

Stack

Time:Node

ID
Time:Node

ID
Time:Node

ID

Priority

Queue

rtxxSender()

RTXX

Application

Figure 15: Software Architecture

49

Application Interface will be discussed.

Full software architecture including Real Time Ethernet Infrastructure is illustrated

in Figure 15.

5.2.1 Real Time Ethernet Interface

RTXX Protocol needs to be controlled by TDMAController() thread in Real Time

Ethernet implementation. TDMAController() thread have to create separate locking

mechanisms for each custom protocol or application which needs to access Ethernet

bus. For RTXX Protocol Implementation there is a new condition variable, named

condRTXX, is created and added to TDMAController() function. Then a POSIX

conditional variable locking mechanism for condRTXX variable implemented to the

transmission thread of the RTXX Protocol Implementation. By this way

TDMAController application can enable or disable transmission from RTXX

protocol at anytime.

5.2.2 RTXX Protocol Core Implementation

RTXX Implementation contains 2 main threads to organize communication. These

are rtxxBusSniffer() and rtxxSender(). Each of the function is described in the

following sections.

5.2.2.1 rtxxBusSniffer() Thread

The main function of this thread is monitoring the incoming ethernet traffic and

updating the system level the priority queue by the content of the captured packets.

When an RTXX Protocol packet captured by this thread, its reservation in the

priority queue is removed. Then rtxxBusSniffer() thread checks the destination

address of the packet to understand if the packet belongs to its host or another host in

the network. If the packet is for its own host, it sends the packet directly to the

RTXX Protocol Application over POSIX message queues. Then it decomposes

communication requests from the captured packet and updates the priority queue

50

with these new requests. After then it checks the head of the priority queue to

analyze next packet sender's identification. If the sender identification belongs to

computer which bus sniffer running on, it indicates the rtxxSender() thread by

sending a signal. After that, rtxxBusSniffer()waits for a new packet to receive.

Algorith for rtxxBusSniffer is illustrated in Figure 16.

5.2.2.2 rtxxSender() Thread

This thread is responsible to send RTXX Protocol packets to the Ethernet bus. It

activity is controlled by the TDMAController() thread via POSIX mutexes and

conditional variables. rtxxBusSniffer activates the rtxxSender() by sending a signal

to it. After than rtxxSender() checks the time slot and if it is not real time slot it

blocks itself with POSIX conditional variable. When the real time slot comes,

TDMAController thread unblocks the TDMAController conditional variable and let

rtXXSender() run. Then rtxxSender() thread gets the RTXX protocol packet from

RTXX application via POSIX message queues, sends it to Ethernet bus and waits

until the next signal receives. Algorithm for rtxxSender() thread is illustrated in

Figure 17

51

Figure 16: rtxxBusSniffer() Algorith

Wait Ethernet Packet

If packet is from

rtxxSender()

If packet is for RT

traffic

If next packet sender is

my host

If next packet sender is my host

Update Prioriy

Queue

semp-post()

to

rtxxSender()

Update Priority

Queue

NO

YES

NO

NO

NO

YES

YES

START

YES

semp-post()

to

rtxxSender()

52

Wait until real time

slot

If next packet sender

is my host

Get data packet from

RTXX aplication

Send packet over

Ethernet

Wait for signal

NO

YES

START

Figure 17: rtxxSender() Algorithm

53

5.2.3 RTXX Protocol Application Interface

RTXX Protocol Implementation provides user interfaces to RTXX Protocol

applications. Protocol packet content creation and configuration is under

responsibility of application. Packet buffering mechanism between applications and

RTXX Protocol is also provided in this implementation via Priority Based Posix

Message Queues.

This study only implements low level communication requirements for RTXX

Protocol such as interfaces for accessing RTXX Protocol Layer, buffering and

priority based packet transmission in RTXX Protocol.

5.2.3.1 recvfromRTXX()

Control applications can send and receive packets on RTXX Protocol via two

application protocol interfaces (API). One of these interfaces is recvfromRTXX().

This API requires a buffer as an argument which the decomposed application data

coming from the rtxxBusSniffer() thread will be stored in via application reception

buffers which is the buffering mechanism between the receiver application and

RTXX Protocol. Algoritm for recvfromRTXX() function is illustrated in Figure 18

5.2.3.2 sendtoRTXX()

The other API that RTXX Implementation offers is the sendtoRTXX() API. This

function requires five arguments to run. These are destination host id,

communication request buffer, communication request size, application data and

application data size. Controller application can call sendtoRTXX() function after

filling these arguments. After then, senttoRTXX() function generates a new Ethernet

frame buffer based on these arguments and puts it into application transmission

buffer queue which is the buffering mechanism between the application and RTXX

Protocol. Afterward, rtxxSender() function takes the application data from

transmission buffer queue and sends it through Ethernet Interface. Algorithm for

sendtoRTXX() function is illustrated in Figure 19.

54

START

Get Protocol packet from

reception buffer queue

Decompose data information

Return Data to RTXX

Consumer Application

END

Packet available?

Wait for packet

during a specific

timeout

Deadline missed?

Inform application

thread

Timeout occurred?

No

Yes

No

Yes

No

Yes

Figure 18:recvfromRTXX() Algorithm

55

Figure 19: sendtoRTXX() Algorithm

START

Send generated protocol packet

to transmission buffer queue

END

Is transmission buffer

queue full?

Wait until transmission

buffer queue is available

during a specific timeout

Inform application

thread

Timeout occurred?

No

No

Yes

Yes

56

CHAPTER 6

 EXPERIMENTAL EVALUATION OF OUR IMPLEMENTATION

There are three protocol implementations made during the thesis study as IEEE 1588

PTP, Real Time Ethernet Protocol and RTXX Protocol. Although the

implementation software passed from the software debugging process, for detecting

possible delays on target and seeing the proper operation, additional target based

experiments are required.

In the following sections there are several experiments for each protocol

implementation. The experiments aim to measure the delays arising from each

underlying mechanisms of protocols, detect and correct possible coding and

designing faults. Because the protocols need to operate within time bounds, in other

words real-time, determining the delays and their sources properly will help us to

know the limits and applicability of the protocol implementations

Experiments are divided into 4 groups as Timing Experiments, Network Stack

Experiments, IEEE 1588 PTP Experiments and RTXX Protocol Experiments

Timing Experiments which are Periodic Timer Accuracy Experiment, Slot Switching

Latency Experiment and Periodic Timer Synchronization Accuracy Experiment

measure latencies arising from the Operating System. These experiments show us the

timing limits and capabilities of the Operating System Test results are collected for

both Real Time and Non Real Time operations as scheduling, signaling and timing.

The Network Stack Experiment as Roundtirp Delay Experiment aims to measure the

delays arising from Linux Network Stack. Each node in the Real Time Network use

Linux network stack to manage incoming packet and outgoing packets. Therefore,

57

these experimental results help us determine the throughput of the protocol

implementations.

IEEE 1588 PTP Experiment as IEEE 1588 PTP Time Synchronization Accuracy

Experiment is done to measure the IEEE 1588 PTP synchronization accuracy in

terms of packet size and scheduling type of the Operating System as real-time and

non real-time. The results of this experiment determine the time drift between nodes

in the Real Time Ethernet Network which affect the time slot synchronization

accuracy and utilization of Real Time Network.

RTXX Protocol Experiments as RTXX Application Interface Latency Experiment,

Queuing Latency Experiment, Real Time Traffic Experiments and Non Real-Time

Traffic Experiment are done to verify the correct operation and measure latencies

arising from RTXX Protocol implementation. These experimental results affect the

deadline and eligibility parameter of RTXX Protocol Structure.

6.1 Experiment Environment

Experimental results were conducted with following hardware and software

configuration:

 Intel® Atom™ Processor Z5xx Series and Intel® System Controller Hub

US15W Development Kit

 Intel® 82574L Gigabit Ethernet Controller

 Open Suse 11.2 with/without Preempt-rt patch

 Cross over Ethernet cable

C programming language and POSIX programming standards are used to conduct

test applications.

58

6.2 Experimental Results

6.2.1 Periodic Timer Accuracy

Periodic Timer Accuracy experiments were made in order to measure the accuracy

and reliability of the timing mechanism of the real time network node. Experimental

results are important to see the accuracy of the periodic timer which directly affects

the true interoperability of the Real Time Ethernet and RTXX Protocol

implementations. Rather than measuring the operability of the implementation, this

experiment aims to measure the real time capability of the Operating System.

Periodic timer implementation determines the time slot interval accuracy. In this

experiment, TDMAController() thread instance is generated for periodic timer

creation to measure the time interval between sequential timer ticks. Measurements

are collected respectively for 10.000Hz and scheduling types as real time and non

real time. During the experiments CPU is loaded up to %99 with dummy functions to

measure the worst case accuracy. For real time scheduling mode, the priority of the

thread is determined as “99” which is the highest real time priority in Real Time

Linux. The test is repeated 1000 times and graphs are generated based on these test

results.

High resolution timers of Intel Architecture, as Time Stamp Counter and HPET, are

used to measure the time interval between each sequential timer ticks. The following

histograms show the distribution of time intervals between sequential clock ticks.

Figure 20 shows the measurements with non real time scheduling and Figure 21

shows the measurements with real time scheduling.

When we look at the results, it is observed that there are delays at the microsecond

level and real time threads have a deterministic and more consistent structure

compared to the non real time ones which makes real time threads more suitable for

TDMAController() implementation.

59

In Table 7 and Table 8 measurements are illustrated with the statistical information.

Figure 20: Periodic Timer Accuracy for 10KHz with Non Real Time Scheduling

Table 2: Experimental Results for Periodic Timer Accuracy for 10KHz with Non Real Time Scheduling

Number of
Samples

Minimum Maximum Average Standard
Deviation

Confidence Int
(%95)

1000 0 2976 48 111,111 6.89

Figure 21: Periodic Timer Accuracy for 10KHz with Real Time Scheduling

0

50

100

150

200

250

300

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

M
o

re

Fr
eq

ue
nc

y
of

 S
am

pl
es

Jitter in Microseconds

Periodic Timer Accuracy NRT -10KHz

0

20

40

60

80

100

120

0 4 8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

Fr
eq

ue
nc

y
of

 S
am

pl
es

Jitter in Microseconds

Periodic Timer Accuracy RT -10KHz

60

Table 3: Experimental Results for Periodic Timer Accuracy for 10KHz with Real Time Scheduling

Number of
Samples

Minimum Maximum Average Standard
Deviation

Confidence Int
(%95)

1000 0 206 26 35,46 2,2

6.2.2 Slot Switching Latency:

Slot Switching Delay is the time interval between arrival of the timer signal and

release of the specific software lock for related protocol. Slot Switching Delay

experiments aim to measure the interval of the slot switching time which is the core

of Real Time Ethernet implementation and the observing the changes for that

switching time interval according to types of the scheduling such as real time and

non real time. Experimental results will be effective in determining the time slot

intervals in Real Time Ethernet implementation.

Measurements are taken with high resolution timers of Intel Architecture. Figure 23

and Figure 22 illustrate the slot switching delay for real time and non real time

threads. In this experiment, TDMAController() thread is generated to activate

periodic timer and signaling mechanism of RTXX Protocol. Test software output

consists of a series of delay values. Each delay value is calculated from the

differences between two time samples that the first sample captured at the reception

of the timer signal and the second sample captured when the release of the software

lock of determined protocol. Test software is executed 1000 times and the graphs are

generated based on these test results

During the experiments CPU is loaded up to %99 with dummy functions. For real

time scheduling mode, the priority of the thread is determined as “99”.

Experiments show that the slot switching latency values are almost the same for both

real time and non real time scheduling. This stems from the size of switching code

which is relatively small compared to other parts of the implementation. The

experiment shows us that the real time scheduling performance does not have

remarkable effects on slot switching delay.

61

We observe that the slot switching latency values are around 4500 Microseconds for

both real time and non real time scheduling. and the jitter values varies a lot. This

may arise from the interrupt latencies coming form peripherals as mouse, keyboard

etc.Based on these delay values it’s seen that slot switching delay has much lower

effect on real time Ethernet implementation compared to other delay sources.

Figure 22: Slot Switching Latency with Non Real Time Scheduling

Table 4: Experimental Results for Slot Switching Latency with Non Real Time Scheduling

Number of
Samples

Minimum Maximum Average

1000 3632 26260 4494

0

50

100

150

200

250

300

350

400

450

4
1

0
0

4
1

5
0

4
2

0
0

4
2

5
0

4
3

0
0

4
3

5
0

4
4

0
0

4
4

5
0

4
5

0
0

4
5

5
0

4
6

0
0

4
6

5
0

4
7

0
0

4
7

5
0

4
8

0
0

4
8

5
0

4
9

0
0

Fr
eq

ue
nc

y
of

 S
am

pl
es

Jitter in Nanoseconds

Slot Switching Latency NRT

62

Figure 23:Slot Switching Latency with Real Time Scheduling

Table 5: Experimental Results for Slot Switching Latency with Real Time Scheduling

Number of
Samples

Minimum Maximum Average

1000 4050 22978 4473

6.2.3 Periodic Timer Synchronization Accuracy

Periodic timer synchronization accuracy is another mechanism that influences the

slot switching time in the implementation. Periodic Timer Synchronization

Algorithm aims to synchronize periodic timer startup time of each RTXX Node after

the synchronization of the system time with IEEE 1588 PTP Implementation. The

difference between periodic timer accuracy experiments and periodic timer

synchronization accuracy experiments is, periodic timer accuracy experiments aim to

measure the periodicity of the timer, on the other hand, periodic timer

synchronization accuracy experiments aims to measure the time difference between

periodic timer startup times in master and slave node.

In this experiment, the aim is to measure the accuracy of the periodic timer

synchronization algorithm. In the current implementation, besides synchronizing the

system time, synchronized timer signal generation is required for simultaneous slot

switching in the real time network. In the implementations found in the literature for

0

50

100

150

200

250

300

350

4
1

7
5

4
2

0
0

4
2

2
5

4
2

5
0

4
2

7
5

4
3

0
0

4
3

2
5

4
3

5
0

4
3

7
5

4
4

0
0

4
4

2
5

4
4

5
0

4
4

7
5

4
5

0
0

4
5

2
5

M
o

re

Fr
eq

ue
nc

y
of

 S
am

pl
es

Latency in Nanoseconds

Slot Switching Latency RT

63

synchronized clock generation, the clock inputs are being used to create a shared

clock and this necessitates special hardware elements. However in this

implementation special hardware should not be required and standard Network

Interface Cards should be used. Because of this, unlike the other implementations in

the literature, software solutions are considered to assure the periodic timer

synchronization. The first method that comes to mind is using the Ethernet packets as

a trigger and starting the periodic timers after receiving the packets. But this method

is not applicable when the aimed few microsecond sensitivity is considered because

of the delays resulting from the transmission of the packet on a physical environment

and Master and Slave nodes’ network stacks.

In the system developed, from the start of the 2nd second of system time after

making the system clock synchronization with IEEE 1588 PTP, trials are performed

at 100 microsecond periods until the value of deviation is obtained that has a lower

value then the predetermined deviation value. The number of the trials are increased

or decreased according to the determined deviation value. For example, one trial may

be enough for a 10 microseconds deviation value whereas tens or hundreds of trials

may be required for a 1 microsecond deviation depending also on the processor’s

speed.In this experiment, repeating period is determined as 100 microseconds.

TDMAController() thread with Periodic Timer Synchronization Algorithm is

spawned to measure periodic timer synchronization delays in the system. Test

software outputs consist of a series of deviation values. Each deviation value

illustrates the time deviation from predetermined synchronization point. Test

software is executed 1000 times and the graphs are generated based on these test

results.

 Figure 24 shows the distribution of deviations from predefined synchronization time

point for non real time scheduling. There are some peak points on the right side of

the graphs which makes it unsuitable for this implementation. If we compare

minimum and maximum values of the measured accuracy, we can see very big

difference arising from the non real time scheduling. Figure 25 shows the

64

distribution of delay deviations from predefined synchronization time point for real

time scheduling. That figure has a uniform distribution of delay deviation around 1-2

Microseconds. Based on test results, periodic timer synchronization delays can be

said to be sufficient for Real Time Ethernet implementation.

Figure 24: Periodic Timer Synchronization Accuracy for with Non Real Time Scheduling

Table 6: Experimental Results for Periodic Timer Synchronization Accuracy with Non Real Time
Scheduling

Number of
Samples

Minimum Maximum

1000 35 25111503

0

10

20

30

40

50

60

70

80

1
0

0

3
0

0

5
0

0

7
0

0

9
0

0

1
1

0
0

1
3

0
0

1
5

0
0

1
7

0
0

1
9

0
0

2
1

0
0

2
3

0
0

2
5

0
0

2
7

0
0

2
9

0
0

M
o

re

Fr
eq

ue
nc

y
of

 S
am

pl
es

Latency in Nanoseconds

Periodic Timer Synchronization Accuracy NRT

65

Figure 25: Periodic Timer Synchronization Accuracy for with Real Time Scheduling

Table 7: Experimental Results for Periodic Timer Synchronization Accuracy with Real Time Scheduling

Number of
Samples

Minimum Maximum Average Standard
Deviation

Confidence Int
(%95)

1000 35 2409 1349 694 43,04

6.2.4 Roundtrip Latency

The purpose of this experiment is to determine the delays that are resulting from the

network stack of the operating system. For this purpose, a test software is developed

in which a connection is set between two nodes with cross cable and the roundtrip

latencies of Ethernet packets are recorded.

When developing the real time Ethernet and RTXX protocol implementations it is

assumed that the whole communication network is shared because of this the

implementation software is developed accordingly. When we look at the shared

medium communications in general, we see that the receive and transmit channels

are both connected to the same transmission channel and so every packet that is sent

to the shared medium is also detected by the receiver channel.

0

10

20

30

40

50

60

70

80

90

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0
1

1
0

0
1

2
0

0
1

3
0

0
1

4
0

0
1

5
0

0
1

6
0

0
1

7
0

0
1

8
0

0
1

9
0

0
2

0
0

0
2

1
0

0
2

2
0

0
2

3
0

0
2

4
0

0
2

5
0

0
M

o
re

Fr
eq

ue
nc

y
of

 S
am

pl
es

Jitter in Nanoseconds

Periodic Timer Synchronization Accuracy RT

66

The RTXX implementation owing to the same shared medium communication

principle needs every outgoing packet’s header data to update the priority queue in

the protocol implementation. Because converting the standard Ethernet connection to

shared ethernet requires hardware changes like shorting transmission lines with

reception lines, considering the line emphedance and signaling issues, RAW socket

background is used for packets that are sent to the system in the test software. If there

is a raw socket that is listening on the same computer, a copy of every packet that is

delivered outside is also sent to other raw sockets. So, like the shared medium

communications, every packet that is sent is also recognized by the receiver channel

and the actions can be taken accordingly.

When determining the time slot interval, the delays resulting from the network stack

should also be taken into account because of the RAW socket usage in the Real Time

Ethernet and RTXX protocol implementations. Round trip delay experiments are

measured according to both the packet size and the scheduling type and the graphical

representation of the experiment results are prepared.

During the experiment, a dummy thread is developed which will keep the system

completely busy to reflect the potential changes on the system load and experiments

are started. The test software has been run a thousand times and every delay value is

recorded and represented on the graphics.

When we look at the test results, we observe that the packet size and the delay

change as directly proportional to each other as expected. When the scheduling type

is considered, we can conclude that the delay times are variable and inconsistent for

non real time threads but they show a smooth distribution for the real time threads.

When we consider the real time 60 byte packets, average roundtrip delay value is

seen to be 729 microseconds. When 1 Gbit Ethernet connection is used, the theorical

transmission time is about 0,5 microseconds in the physical medium. In this case, the

delay value resulting from the network stack is find as:

67

 Roundtrip Delay = 2 x (Transmit Delay + Propagation Delay + Reception Delay)

 729 = 2 x (Transmit Delay + 0 + Reception Delay)

 364,5 = Transmit Delay + Reception Delay

 In this experiment Propagation Delay is not included in the calculation above

because the delay value of propagation on the transmission line is very low, between

3.71 to 8.34 Nanosecond/Meter [29], compared to other delay sources in the

implementation. It is considered that propagation delay has not any remarkable effect

on performance of the Real Time Ethernet and RTXX Protocol implementation.

It can be concluded that the required time for a single packet to be transmitted and

received in the real time Ethernet and RTXX protocol implementations should be

minimum 365 Microseconds for above test conditions. When determining the time

slot interval this value should be considered.

Figure 26: Roundtrip Latency for 1514 Byte Packets with Real Time Scheduling,

Table 8: Experimental Results for Roundtrip Latency for 1514 Byte Packets with Real Time Scheduling

Number of
Samples

Minimum Maximum Average Standard
Deviation

Confidence Int
(%95)

1000 639 1152 844 78,18 4,84

0

50

100

150

200

250

300

350

6
0

0

6
2

0

6
4

0

6
6

0

6
8

0

7
0

0

7
2

0

7
4

0

7
6

0

7
8

0

8
0

0

8
2

0

8
4

0

8
6

0

8
8

0

9
0

0

9
2

0

9
4

0

9
6

0

9
8

0

1
0

0
0

1
0

2
0

1
0

4
0

M
o

re

Fr
eq

ue
nc

y
of

 S
am

pl
es

Roundtrip Latency in Microseconds

Roundtrip Latency RT - 1514 Bytes

68

Figure 27: Roundtrip Latency for 1514 Byte Packets with Non Real Time Scheduling

Table 9: Experimental Results for Roundtrip Latency for 1514 Byte Packets with Non Real Time
Scheduling

Number of
Samples

Minimum Maximum Average Standard
Deviation

Confidence Int
(%95)

1000 665 1103 911 84,9 5,26

Figure 288: Roundtrip Latency for 60 Byte Packets with Non Real Time Scheduling

0

10

20

30

40

50

60

70

80

90

100

7
0

0

7
2

0

7
4

0

7
6

0

7
8

0

8
0

0

8
2

0

8
4

0

8
6

0

8
8

0

9
0

0

9
2

0

9
4

0

9
6

0

9
8

0

1
0

0
0

1
0

2
0

1
0

4
0

1
0

6
0

1
0

8
0

1
1

0
0

M
o

re

Fr
eq

ue
nc

y
of

 S
am

pl
es

Roundtrip Latency in Microseconds

Roundtrip Latency NRT - 1514 Bytes

0

50

100

150

200

250

5
0

0

5
2

0

5
4

0

5
6

0

5
8

0

6
0

0

6
2

0

6
4

0

6
6

0

6
8

0

7
0

0

7
2

0

7
4

0

7
6

0

7
8

0

8
0

0

8
2

0

8
4

0

8
6

0

8
8

0

9
0

0

9
2

0

M
o

re

Fr
eq

ue
nc

y
of

 S
am

pl
es

Roundtrip Latency in Microseconds

Roundtrip Latency NRT - 60 Bytes

69

Table 10: Experimental Results for Roundtrip Latency for 60 Byte Packets with Non Real Time
Scheduling

Number of
Samples

Minimum Maximum Average Standard
Deviation

Confidence Int
(%95)

1000 495 1551 697 79,67 4,94

Figure 29: Roundtrip Latency for 60 Byte Packets with Real Time Scheduling

Table 11: Experimental Results for Roundtrip Latency for 60 Byte Packets with Real Time Scheduling

Number of
Samples

Minimum Maximum Average Standard
Deviation

Confidence Int
(%95)

1000 557 931 729 77,39 4,49

6.2.5 IEEE 1588 Time Synchronization Accuracy

Time synchronization over IEEE 1588 is the main requirement for both Real Time

Ethernet and RTXX Protocol Implementations. Success of the implementations

depends on synchronization accuracy of IEEE 1588 PTP Implementation. This

experiment aims to measure the time drifts between Master Node and Slave Node in

Real Time Network after the IEEE 1588 PTP synchronization algorithm is executed.

In this experiment, TDMAController() thread was generated on both Master and

Slave Node and IEEE 1588 PTP protocol algorithm was executed for time

synchronization. This process was repeated 1000 times sequentially and time

0

20

40

60

80

100

120

140

160

180

5
5

0

5
7

5

6
0

0

6
2

5

6
5

0

6
7

5

7
0

0

7
2

5

7
5

0

7
7

5

8
0

0

8
2

5

8
5

0

8
7

5

9
0

0

9
2

5

9
5

0

M
o

re

Fr
eq

ue
nc

y
of

 S
am

pl
es

Roundtrip Latency in Microseconds

Roundtrip Latency RT - 60 Bytes

70

differences between Master and Slave node, called offset, were recorded. Test

software output consists of these offset values.

Test software is executed for different scheduling types as real time and non-real

time and different packet sizes as 60 Byte and 1514 Bytes and offset values for these

experiments are illustrated in graphs. Figure 31 and Figure 30 illustrates the

synchronization offset distribution for 60 Byte Ethernet packet size for real time and

non-real time scheduling. Figure 31 and Figure 32 illustrates the synchronization

offset distribution for 1514 Byte Ethernet packet size for real time and non-real time

scheduling. Figures show that packet size does not have remarkable effect on the

synchronization accuracy. On the other hand, scheduling has effect on

synchronization accuracy that real time scheduling has much more deterministic

results compared to non real time scheduling

With this test conditions average IEEE 1588 PTP synchronization drift is about 35

Microseconds and worst-case synchronization drift seems 166 Microseconds for real

time scheduling. For non real time scheduling, difference between the maximum and

minimum values of the synchronization accuracy is too big so non real time

scheduling does not acceptable for this implementation. During the time slot

calculation this drift must be considered and time slots should have big enough to

tolerate this synchronization jitter.

71

Figure 30: IEEE 1588 Time Synchronization Accuracy for 60 Byte Packets with Non Real Time Scheduling

Table 12: Experimental Results for IEEE 1588 Time Synchronization Accuracy for 60 Byte Packets with
Non Real Time Scheduling

Number of
Samples

Minimum Maximum Average

1000 0 500308 1043

Figure 31: IEEE 1588 Time Synchronization Accuracy for 60 Byte Packets with Real Time Scheduling

0

20

40

60

80

100

120

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

Fr
eq

ue
nc

y
of

 S
am

pl
es

Synchronization Accuracy in Microseconds

IEEE 1588 Time Synchronization Accuracy NRT - 60
Bytes

0

10

20

30

40

50

60

70

80

90

100

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

M
o
re

Fr
eq

ue
nc

y
of

 S
am

pl
es

Synchronization Accuracy in Microseconds

IEEE 1588 Time Synchronization Accuracy RT - 60
Bytes

72

Table 13: Experimental Results for IEEE 1588 Time Synchronization Accuracy for 60 Byte Packets with
Real Time Scheduling

Number of
Samples

Minimum Maximum Average Standard
Deviation

Confidence Int
(%95)

1000 0 166 38 28,72 1,78

Figure 32: IEEE 1588 Time Synchronization Accuracy for 1514 Byte Packets with Non Real Time
Scheduling

Table 14: Experimental Results for IEEE 1588 Time Synchronization Accuracy for 1514 Byte Packets with
Non Real Time Scheduling

Number of
Samples

Minimum Maximum Average

1000 0 500029 1024

0

20

40

60

80

100

120

140

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

M
o

re

Fr
eq

ue
nc

y
of

 S
am

pl
es

Synchronization Accuracy in Microseconds

IEEE 1588 Time Synchronization Accuracy NRT -
1514 Bytes

73

Figure 33: IEEE 1588 Time Synchronization Accuracy for 1514 Byte Packets with Real Time Scheduling

Table 15: Experimental Results for IEEE 1588 Time Synchronization Accuracy for 1514 Byte Packets with
Real Time Scheduling

Number of
Samples

Minimum Maximum Average Standard
Deviation

Confidence Int
(%95)

1000 0 164 31 27,01 1,677

6.2.6 RTXX Application Interface Latency

Another latency source in the protocol implementation is RTXX Application

Interface Latency. This latency is arising from the aplication interfaces that an

applicaiton uses for accessing RTXX Protocol engine. As mentioned in Section 5.2.3,

there are some buffering mechnisms at application interfaces which uses Posix

Message Queues. The following experiments aims to measure the overall latency

results from buffering and computation at user interface layer.

During the experiments two types of latecies were mesured in the system. First one

was the application to RTXX Protocol latency, and the second one was RTXX

Protocol to application latency. Message queue size was determined as 60 Bytes in

0

20

40

60

80

100

120

140

160

180

200

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

M
o

re

Fr
eq

ue
nc

y
of

 S
am

pl
es

Synchronization Accuracy in Microseconds

IEEE 1588 Time Synchronization Accuracy RT - 1514
Bytes

74

the experiments that the simulations shows that this size is sufficient for RTXX

Protocol messaging [30].

In the experimental results, CPU is loaded up to %99 with dummy functions to

measure the worst case latency. For real time scheduling mode, the priority of the

thread is determined as “99”. Test is repeated 1000 times and Figure 34 and Figure

35 are generated based on these test results.

It is seen that the latency values resulting from RTXX Protocol to RTXX application

and RTXX application to RTXX Protocol is almost the same. On the other hand,

latency values varies for real-time and non real-time scheduling which the values are

illustrated in Table 35 and Table 34. The results show that the real time scheduling

gives more deterministic and lower latency values compared to non real-time

scheduling. The worst-case latency is determined as 90 Microseconds that should be

considered during the slot interval determination of RTXX Protocol

Figure 34: RTXX Application Interface Latency with Non Real Time Scheduling

Table 16: Experimental Results for RTXX Application Interface Latency with Non Real Time Scheduling

Number of
Samples

Minimum Maximum Average Standard
Deviation

Confidence Int
(%95)

1000 17 313 47 17,51 1,09

0

50

100

150

200

250

300

1
5

1
9

2
3

2
7

3
1

3
5

3
9

4
3

4
7

5
1

5
5

5
9

6
3

6
7

7
1

Fr
eq

ue
nc

y
of

 S
am

pl
es

Latency in Microseconds

RTXX Application Interface Latency NRT

75

Figure 35: RTXX Application Interface Latency with Non Real Time Scheduling

Table 17: Experimental Results for RTXX Application Interface Latency with Non Real Time Scheduling

Number of
Samples

Minimum Maximum Average Standard
Deviation

Confidence Int
(%95)

1000 11 90 44 16,195 1

6.2.7 Queuing Latency

Priority queue implementation is the main requirement for the RTXX Protocol.

Because of this priority queue update delay is another factor that may affect the

width of Real-time slot interval. Because the update process of the priority queue is

repeated for each incoming and outgoing packet realted to RTXX protocol, knowing

the update delays is important to determine the RTXX real time slot interval in the

network. Few microseconds update latency is expected for this implementation.

There are two functions, named enqueueGlobal() and dequeueGlobal, in the software

which interracts with priority function directly. enqueueGlobal() function is

responsible to add new element into the priority queue and dequeueGlobal() is

responsible to remove the smallest deadlined element in the priority queue. Because

0

50

100

150

200

250

300

350

2
3

2
7

3
1

3
5

3
9

4
3

4
7

5
1

5
5

5
9

6
3

6
7

7
1

7
5

7
9

M
o

re

Fr
eq

ue
nc

y
of

 S
am

pl
es

Latency in Microseconds

RTXX Application Interface Latency RT

76

the Binary Heap algorithm used in priority queue adaptation update time of the queue

may varies according to the value of each added and removed element and number of

elements in the queue.

In the experiments maximum number of elements in the Priority Queue size is

determined as 1000 for the test software. Firstly, the queue is filled with new

elements by calling enqueueGlobal() 1000 times. After that the dequeueGlobal()

functions called 1000 times to clear the the queue completely and each of

enqueueGlobal() and dequeueGlobal() function time consumptions are recorded. To

measure the worst-case latency of the priority queue access with enqueue and

dequeue functions, each new element’s value that will added to the queue is

dicreased. During the experiments CPU is loaded up to %99 with a dummy

functions to measure the worst case access delay to the queue. Experiment were

repeated for both real time and non real time scheduling. For real time scheduling

mode, the priority of the thread is determined as “99”.

Previous studies for the RTXX Protocol shows that the maximum required element

number for the priority queue is about 32. Experimental worst-case queuing delay for

32 elements for Real Time scheduling is about 4 Microseconds in this

implementation. Although the queuing latencies have not much influence in overall

latency, it should be considered during the determination of time slot interval of

RTXX Protocol.

6.2.8 Real Time Traffic Experiments

In experiments so far, infrastructural measurements have been taken for Real Time

Ethernet and RTXX Protocols. In this and subsequent experiments, measurements

will be taken at system level. Previously collected measurements will be used to

obtain time slot size and frequency of RTXX protocol.

For the determination of the delay parameters and their values in the system, real

time scheduling will be used to generate protocol threads. Thus the experimental

results which are collected with the real time scheduling will be used.

77

Table 18 illustrates the summary of the real time experimental results.

Table 18:Summary of Real Time Scheduling Experimental Results
Delay Parameter Minimum Average Maximum

Periodic timer accuracy 0 26 206

Slot switching latency 4 4,5 23

Periodic timer

synchronization accuracy
0 1,5 2,5

Network Stack

Transmission Delay
279 365 466

IEEE 1588 Time

Synchronization accuracy
0 38 166

RTXX Application

interface latency
11 44 90

Queuing Latency 4 4 4

Considering these values, it can be seen that the best case latency for overall system

is 298 Microseconds, Average latency is 483 Microseconds and the worst-case

latency is 957 microseconds. Some delays may occur more than one node, because

of this determining the value of the slot interval as the range of 1 Millisecond will

not be wrong. In this case maximum frequency for the real time slot will be 1000 Hz.

During the experiments Two Intel® Atom™ Processor Z5xx Series and Intel®

System Controller Hub US15W Development Kit connected each other with a cross

cable and Developed Real Time Ethernet and RTXX Protocol application test

software installed both PC. First computer named as N1 and the second computer

named as N2. The following statements explains the operation of test software.

 The initialization process is started by 1588 PTP Time Synchronization

process.

78

 After the time synchronization N1 sends an RTXX job including (N2,d,0,T)

request.

 N2 captures the job which is sent by the N1 and puts to request to its priority

queue.

 Because the eligibility time is 0, N2 immediately sends its first message that

includes (N2,d,0,T) request and the timestamp of the system time . By sending

(N2,d,0,T) request, N2 reserves shared medium for itself for future messages.

 N1 captures the packet coming from N2, calculates the time difference

between its system time and the time instance located in the packet and

records it.

 N2 continues to send (N2,d,0,T) request with the message periodically during

the lifecycle of test software.

 After a specific number of samples collected test software finalizes itself.

For the first RTXX Protocol experiment, time slot interval is determined as 1

Millisecond which is the smallest applicable time slot for this platform, deadline, d,

is determined as 1 Millisecond, eligibility time, e, is determined as 0, Qmax is

determined as 1 and the maximum message size in the system, Fmax, is determined as

the minimum Ethernet frame length 60 Bytes = 480 bits. In this conditions the

theoretical minimum tolerable frequency value is as follows;

rmin = (Qmax+1) / (dmin-emax) (1)

rmin = (1+1) /(0,001-0)=2000 Hz (1)

And the theoretical bandwidth for this experiment is computed as follows;

rmin x Fmax = 2000 x 480 =960000 bit per seconds

79

The overall bandwidth for the system is 1Gbps so the theoretical bandwidth

requirement is less than one percent of the overall bandwidth. On the other hand,

applicable time slot frequency for real time implementation can be at most 1000Hz

and even in this frequency, the bandwidth usage is hundred percent of overall

bandwidth because of the software delays. The transmission schedule for the first

experiment is illustrated in Figure 36. The first set of experimental results illustrated

in Figure 37 that shows the latency distribution of packets sent by N2 in

Microseconds level.

RT RT RTRTRT RT RT RTRTRT RT RT RT RT RT RT

1/rmin

Figure 36: Transmission Schedule for Real Time Traffic Experiment 1

Figure 37: RTXX Latency for 1mS Deadline for Real Time Scheduling

Table 19: Experimental Results RTXX Latency for 1mS Deadline for Real Time Scheduling

Number of
Samples

Minimum Maximum Average Standard
Deviation

Confidence Int
(%95)

100 280 483 382 57,98 11,36

0

2

4

6

8

10

12

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

M
o
re

Fr
eq

ue
nc

y
of

 S
am

pl
es

Latency in Microseconds

RTXX Latency 1mS Deadline

80

It can be seen that, for 1 Millisecond deadline, all of the experimental results are less

than 1 Millisecond which means that the deadline requirement was met and the

protocol worked fine during the experiment.

In the second RTXX Protocol experiment, time slot interval is determined as 1

Millisecond which is the smallest applicable time slot for this platform, deadline, d,

is determined as 4 Millisecond, eligibility time, e, is determined as 0, Qmax is

determined as 1 and the maximum message size in the system, Fmax, is determined as

the minimum Ethernet frame length 60 Bytes = 480 bits. In this conditions the

theoretical minimum tolerable frequency value is as follows;

rmin = (Qmax+1) / (dmin-emax) (1)

rmin = (1+1) /(0,004-0)=500 Hz (1)

And the theoretical bandwidth for the second experiment is computed as follows;

rmin x Fmax = 500 x 480 =240000 bits per seconds

The highest applicable frequency for the experiment is 250Hz for this platform

because of the time slot interval of 1 Millisecond. The transmission schedule for the

second experiment is illustrated in Figure 38 The second set of experimental results

illustrated in Figure 39 that shows the latency distribution of packets sent by N2 in

Microseconds level.

1/rmin 1/rmin
1/rmin 1/rmin

RT N1 N2 N1RT RTRT N1 N1N1N1 N2N2N2N2 N2

Figure 38:Transmission Schedule for Real Time Traffic Experiment 2

81

Figure 39: RTXX Latency for 4mS Deadline for Real Time Scheduling

Table 20: Experimental Results RTXX Latency for 4mS Deadline for Real Time Scheduling

Number of
Samples

Minimum Maximum Average

100 3112 3879 3600

It can be seen that, for 4 Millisecond deadline, all of the experimental results are less

than 4 Millisecond which means that the deadline requirement was met and the

protocol worked correctly during the experiment.

6.2.9 Non Real Time Traffic Experiment

RTXX Protocol allows us to use non real time and real time traffic on the same

shared medium. The following experiment aims to measure the non real time traffic

delays occurs on N2 with the transmission schedule illustrated in Figure 38. A new

thread is created on N2 to generate non real traffic messages that contains the time

instance of the system. Time instance in the message is captured at the packet

creation time and sent by a container Ethernet packet. Another thread on N1 is also

created to capture incoming Ethernet packets from N2. The following statements

explains the operation of test software;

0

2

4

6

8

10

12

3
1

0
0

3
1

5
0

3
2

0
0

3
2

5
0

3
3

0
0

3
3

5
0

3
4

0
0

3
4

5
0

3
5

0
0

3
5

5
0

3
6

0
0

3
6

5
0

3
7

0
0

3
7

5
0

3
8

0
0

3
8

5
0

3
9

0
0

Fr
eq

ue
nc

y
of

 S
am

pl
es

Latency in Microseconds

RTXX Delay 4mS Deadline RT

82

 The initialization process is started by 1588 PTP Time Synchronization

process.

 After the time synchronization, the non real time packet generator thread on

N2 starts to send non real time Ethernet packets

 When a message arrives to N1, the thread on N1 parses the time instance

value from the packet, calculates the time difference between its actual

system time and the time instance coming from the Ethernet and stores it.

After a specific number of samples collected test software finalizes itself.

Figure 40 illustrates the measured delay values for non real time traffic with

unloaded system. The standard deviation for this experiment is too high because the

scheduling for the test thread is non real time.

Figure 40: RTXX Latency for 4mS Deadline for Real Time Scheduling

Table 21: Experimental Results RTXX Latency for 4mS Deadline for Real Time Scheduling

Number of
Samples

Minimum Maximum

100 283 100023

0

5

10

15

20

25

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

1
9

0
0

2
0

0
0

2
1

0
0

2
2

0
0

2
3

0
0

2
4

0
0

2
5

0
0

M
o

re

Fr
eq

ue
nc

y
of

 S
am

pl
es

Latency in Microseconds

Non Real Time Traffic Latency

83

CHAPTER 7

 CONCLUSIONS

In this thesis performance of the Real Time Ethernet ,IEEE 1588 Precision Time

Protocol and RTXX Protocol implementations are experimentally evaluated and the

results of the experiments are presented.

Performance metrics for the Real Time Ethernet implementations are determined as

periodic timer accuracy, periodic timer synchronization accuracy, slot switching

latency. and one way packet transmission time. Results of the experimental

measurements interpreted in Section 6.2.1, Section 6.2.2 and Section 6.2.3 and

Section 6.2.4 As a summary of the experiments, delay bounds was understood to be

due to the thread priority levels and real time scheduling of the operating system

directly.

For the IEEE 1588 Precision Time Protocol the experimental performance parameter

determined as the synchronization accuracy of the implementation. The experimental

results are interpreted in Section 6.2.5. it is seen that the synchronization accuracy is

depending on priority of the threads in the system. Nonetheless it is seen that packet

size does not have remarkable effect on synchronization accuracy. Average accuracy

for IEEE 1588 time synchronization is presented as 38 microseconds for 60 Byte

packets with a standard deviation of 28,72,

In this thesis, the phase correction algorithm for IEEE 1588 Precision Time Protocol

is not implemented due to the fact that both lab computers are exactly the same. For

future studies, this feature can be implemented to current IEEE 1588 Precision Time

Protocol and additional experiments can be done on different hardware architectures.

84

This thessis only implements the communicational operation of the RTXX Protocol

with a limited request number per message. For fully functional RTXX

implementation that explained in Chapter 3, a communication model should be

defined and message creation algorithms based on this model should be provided

The system level tests underwent on the lab nodes. Performance bottlenecks

determined as hardware clock source, priority of the application threads and real time

scheduling capability of the Operating System that experiments run on.

Priority queue interaction between separate nodes is tested by the test software which

indicates that both Real Time Ethernet Implementation and RTXX Protocol work

seamlessly in the system.

85

REFERENCES

[1] J. Baillieul ve P.J. Antsaklis, "Control and Communication Challenges in

Networked Real-Time Systems," Proceedings of the IEEE , vol.95, no.1, pp.9-28,

Jan. 2007.

[2] J.R. Moyne ve D.M.Tilbury, "The Emergence of Industrial Control

Networks for Manufacturing Control, Diagnostics, and Safety Data," Proceedings of

the IEEE , vol.95, no.1, pp.29-47, Jan. 2007.

[3] J.-.Decotignie, "Ethernet-based real-time and industrial communications,"

Proceedings of the IEEE, vol. 93, no. 6, pp. 1102-1117, 2005.

[4] J.-.Decotignie, "The Many Faces of Industrial Ethernet [Past and present],"

IEEE Industrial Electronics Magazine, vol. 3, no. 1, pp. 8 - 19, 2009.

[5] J. Thomesse, "Fieldbus technology in industrial automation," Proceedings of

the IEEE, vol. 93, no. 6, pp. 1073-1101, 2005.

[6] John C. Eidson, Measurement, Control, and Communication Using IEEE

1588, Springer, 2006.

[7] K. Correll, N. Barendt, ve M. Branicky, “Design considerations for software

only implementations of the IEEE 1588 precision time protocol”, Proc. Conference

on IEEE-1588 Standard for a Precision Clock Synchronization Protocol for

Networked Measurement and Control Systems, NIST and IEEE, 2005.

[8] J. C. Eidson ve K. Lee, “Sharing a common sense of time”, IEEE

Instrumentation and Measurement Magazine, vol. 6, no. 1, pp. 26-32, 2003.

[9] 1st IFAC Workshop on Dependable Control of Discrete Event Systems,

2007.

86

[10] A. Avizienis, J.-C. Laprie, B. Randell, ve C. Landwehr, "Basic concepts and

taxonomy of dependable and secure computing," IEEE Transactions on Dependable

and Secure Computing, vol. 1, no. 1, pp. 11-33, 2004.

[11] M. Felser ve T. Sauter, "Standardization of industrial Ethernet - The next

battlefield?," IEEE International Workshop on Factory Communication Systems,

2004.

[12] IEEE Std 802.3 Part 3: Carrier sense multiple access with collision detection

(CSMA/CD) access method and physical layer specifications

[13] Timekeeping in VMware Virtual Machines, Infotmation Guide,

http://www.foedus.com/downloads/solutions/whitepapers/vmware_timekeeping.pdf

[14] IA-PC HPET (High Precision Event Timers) Specification, October 2004

[15] http://www.osadl.org/Thomas-Gleixner.hannover-2008-thomas-

gleixner.0.html

[16] http://en.wikipedia.org/wiki/POSIX

[17] J. Vidal, F. Gonzálvez, I. Ripoll. POSIX TIMERS implementation in

RTLinux

[18] https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO

[19] http://www.osadl.org/Latest-Stable-Quick-RT-Preempt-kerne.realtime-

kernel-installation.0.html

[20] B. Thangaraju, Linux Signals for the Application Programmer, Mar, 2003

[21] He, Jialong, LINUX System Call Quick Reference

[22] Choudhary, Amit , Implementing a System Call on Linux 2.6 for i386,

Revison 1.0, 2006, http://tldp.org/HOWTO/html_single/Implement-Sys-Call-Linux-

2.6-i386/

http://www.osadl.org/Thomas-Gleixner.hannover-2008-thomas-gleixner.0.html
http://www.osadl.org/Thomas-Gleixner.hannover-2008-thomas-gleixner.0.html
http://en.wikipedia.org/wiki/POSIX
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://www.osadl.org/Latest-Stable-Quick-RT-Preempt-kerne.realtime-kernel-installation.0.html
http://www.osadl.org/Latest-Stable-Quick-RT-Preempt-kerne.realtime-kernel-installation.0.html
http://www.linuxjournal.com/user/801166
http://tldp.org/HOWTO/html_single/Implement-Sys-Call-Linux-2.6-i386/
http://tldp.org/HOWTO/html_single/Implement-Sys-Call-Linux-2.6-i386/

87

[23] IEEE 1588 Standard for a Precision Clock Synchronization Protocol for

Networked Measurement and Control Systems.[Online].

Available:http://ieee1588.nist.gov, 2002.

[24] http://www.home.agilent.com/agilent/home.jspx?cc=US&lc=eng

[25] http://www.ieee.org/index.html

[26] O’Farrell Patrick,Rosselot David, IEEE 1588 Synchronization Over Standard

Networks Using the DP83640, 2009

[27] Tan, Alexander, Synchronizing Networks with IEEE 1588 Precision Time

Protocol (PTP),

[28] http://en.wikipedia.org/wiki/Binary_heap

[29] http://www.ethermanage.com/ethernet/ch13-ora/ch13.html#81137

[30] K. Schmidt, E. Schmidt, and J. Zaddach, “RTDESC – A Real-time

Communication Protocol for Distributed Discrete Event Control”

[31] J.-P. Thomesse, “Fieldbus technology in industrial automation,” Proceedings

of the IEEE, vol. 93, pp. 1073 – 1101, 2005.

[32] J.-D. Decotignie, “Ethernet-based real-time and industrial communications,”

Proceedings of the IEEE, vol. 93, pp. 1102 – 1117, 2005.

[33] M. Felser, “Real-time Ethernet - industry prospective,” Proceedings of the

IEEE, vol. 93, pp. 1118– 1129, 2005.

[34] P. Ramadge and W. Wonham, “The control of discrete event systems,”

Proceedings IEEE, Special Issue Discrete Event Dynamic Systems, vol. 77, pp. 81–

98, 1989.

http://www.home.agilent.com/agilent/home.jspx?cc=US&lc=eng
http://www.ieee.org/index.html

88

APPENDIX A

System Calls

System calls are the services provided by Linux kernel to attract kernel resource from

a user space application [21].

A system call executes in the kernel space and a user program executes in the user

space. In a Linux system, hardware access is restricted to the kernel space to protect

the hardware routines from user space programs. Some cases, user space application

requires to access directly to hardware to perform the specific job, like high precision

timer access. In this case, there is a special need for bridging user programs to

hardware which is called “system calls”.

System call implementations are dependent to microprocessor architecture. Every

system call has a unique number associated with it. For Intel x86 architecture, when

a user space program calls a system call, a library routine traps the kernel via

executing the special “INT 0x80” assembly instruction and the associated number of

the system call is passed to kernel via EAX register. The arguments of the system

call are also passed to kernel via EBX,EBC, etc. register. Return value of the system

call is passed from kernel to user program via other CPU registers. [22]

OpenSUSE 11.x is based Linux kernel version 2.6.27.7-9 so system call

implementation method for RTXX protocol is described for this specific kernel

version.

Modified kernel source files:

/usr/src/linux-version/include/linux/netdevice.h

/usr/src/linux-version/arch/x86/kernel/syscall_table_32.S

/usr/src/linux-version/include/asm-x86/unistd_32.h

89

/usr/src/linux-version/include/linux/syscalls.h

/usr/src/linux-version/Makefile

/usr/src/linux-version/include/linux/netdevice.h

netdevice.h is the core of network device structure in Linux. Every network

interfaces in the system is based on net_device structure which is referenced in the

netdevice.h file. To ensure that the locking mechanism can run on all interfaces, a

special integer parameter is added in net_device structure. With this modification,

every network interface may be locked independently from RTXX protocol

application.

There are two integer arguments are implemented in the net_device structure. First

one is MESSAGETYPE and the second one is POCKETMODE. MESSAGETYPE

argument is used by the interface driver for determining the time slot. If the time

slot belongs to real time traffic, driver locks its transmit queues coming from Layer 3

protocols, like IP, otherwise driver works as usual. POCKETMODE argument is

used for shape the non real time Layer 3 traffic.

Struct net_device {

.

.

/* Modification in net_device structure */

int MESSAGETYPE;

int POCKETMODE;

.

.

}

Code 6: net_device Structure

/usr/src/linux-version/arch/x86/kernel/syscall_table_32.S

This file contains the system call names in the kernel. In order to provide full control

of transmission on network interfaces in user space applications as RTXX Protocol

90

Application. Every new system call should be added to the end of system call list

located in this file. There are three new system call added to the the sytem call list as

below.

 .long sys_lockRTXXDevice

.long sys_unlockRTXXDevice

.long sys_sendToRTXXDriver

lockRTXXDevice system call locks the transmission queues of the related interface.

unlockRTXXDevice system call releases the transmission queues of the related

interface. sendToRTXXDriver system call transfers user modified socked buffer

directly to the interface’s driver transmission routine without using the socket

interface. This system can be used anytime by the user application.

/usr/src/linux-version/include/asm-x86/unistd_32.h

This file contains the system call numbers which is transferred to kernel through

EAX register when the system call is invoked by the user application. New system

call numbers should be defined in the file to notify the kernel about new system calls.

Define parameters of the new system calls should be added to the end of predefined

system call list. Highest system call number in the original file should increment by

one and assigned to firstly added system call. For later arrivals, highest system call

number should also be incremented by one and assigned as their system call number.

If the highest system call number in the system is 332 then new system calls should

be defined as below:

#define __NR_ lockRTXXDevice 333

#define __NR_ unlockRTXXDevice 334

#define __NR_ sendToRTXXDriver 335

In addition to newly added system call numbers, total system call number value

should also be modified. If the highest system call number is 335, then total system

call number should be assigned as 336 because system call number index starts from

0. If __NR_syscalls definition is not exist in the file, user should define it as;

#define __NR_syscalls 336

91

/usr/src/linux-version/include/linux/syscalls.h

This file contains the declaration of system calls. All the system call arguments

should be declared in this file. Kernel will use these declarations for system call trap

procedures. New system call declarations should be added at the end of the file as

below;

asmlinkage long sys_lockRTXXDevice(char * device);

asmlinkage long sys_unlockRTXXDevice(char * device);

asmlinkage long sys_sendToRTXXDriver(char * device, struct sk_buff __usr *skb);

To notify compiler about socket buffer structure which is referenced in

sendToRTXXDriver system call,

Struct sk_buff;

should be added at the beginning of the file.

/usr/src/linux-version/Makefile

Makefile of the linux kernel should be modified to add new system calls to kernel. In

the Makefile, directory of the new system call function should be referenced to be

compiled and linked to Linux kernel. A new folder, named “RTXXSystemCalls”, is

created in “/usr/src/linux-version/” directory and new system call source codes

located in that folder. To reference that folder in the Makefile, user should search the

“ core-y +=” parameter and add the folder name at the end of the folder list.

Modified driver source code

Driver of the Ethernet interface should be modified to bring locking mechanism to

RTXX Protocol implementation. To provide minimum impact on the driver source

code, a new transmission function, ”rtxx_start_xmit” , is added to source code

instead of changing standard driver routines and the transmission entry function is

routed to the new transmission routine. By this method, all the packets coming from

operating system buffers can be controlled before reaching the real transmission

function. Following changes have been made in the driver source code;

92

Adding a psudo transmission function:

A psudo transmission function is added to driver source to control realtime and non

real time pocket traffic. Psudo code for the psudo transmission function is illustrated

in Code 7

psudoTransmitFunc () {

 if (timeSlot==REALTIME){

 lockNetwork();

 }

 else{

 if (nonRtTrafficType==ONESHOT){

realTransmitFunc();

lockNetwork();

 }

 else {

 realTransmitFunc();

 }

 }

}

Code 7: Psudo Transmission Function

Normally driver functions can not be accessed from kernel modules or user space

function to avoid conflicts in the system, however RTXX protocol should access the

driver codes to control the network traffic. To provide this capability to RTXX

protocol applications, real transmission function of the network driver should be

added to Linux kernel symbol table via EXPORT_SYMBOL() macro as below;

EXPORT_SYMBOL(realTransmitFunc);

In addition to that macro “static” identifier in the definition of realTransmitFuntion

should be removed.

After defining the psudo transmit function and exporting it to the kernel symbol

table, driver entry function should be redirected to this psudo function by modifying

related part of the driver as below;

dev->hard_start_xmit = &psudoTransmitFunc;

93

New directories and files created for the Linux kernel:

/usr/src/linux-version/RTXXSystemCalls

/usr/src/linux-version/RTXXSystemCalls/lockRTXXDevice.c

/usr/src/linux-version/RTXXSystemCalls/unlockRTXXDevice.c

/usr/src/linux-version/RTXXSystemCalls/sendToRTXXDriver.c

/usr/src/linux-version/RTXXSystemCalls/Makefile

/usr/src/linux-version/RTXXSystemCalls

A new folder, named “RTXXSystemCalls”, is created in “/usr/src/linux-version/”

directory to put new system call source codes in it.

/usr/src/linux-version/RTXXSystemCalls/lockRTXXDevice.c

A new file created as the source code of lockRTXXDriver system call

/usr/src/linux-version/RTXXSystemCalls/unlockRTXXDevice.c

A new file created as the source code of unlockRTXXDriver system call

/usr/src/linux-version/RTXXSystemCalls/sendToRTXXDriver.c

A new file created as the source code of sendToRTXXDriver system call

/usr/src/linux-version/RTXXSystemCalls/Makefile

A new file created as the Makefile for the system calls. Makefile of the linux kernel

references this make file to build and link new system calls. To notify compiler about

systemcall source files following parameters should be added to this Makefile;

obj-y: lockRTXXDevice.o unlockRTXXDevice.o sendToRTXXDriver.o

94

APPENDIX B

Configuring and Building Linux Kernel for RTXX Implementation:

Linux kernel must be rebuild to activate the modifications on kernel and driver

source codes. Building process of the kernel is explained in the following parts:

Configuring Linux Kernel

There are several ways to configure Linux kernel. Most user friendly method for the

configuration is doing it by graphically. Before starting the configuration, user must

login the command prompt with administrator/root permissions .Then to configure

Linux kernel , user should enter the kernel source directiory, “/usr/src/linux-version/”

and enter following command to command prompt;

- make menuconfig

Graphic output of the kernel configurator illustrated in Figure 41

95

Figure 41: Linux Menu Config Window

Standard linux kernels are designed for general purpose requirements like

multithreading, multimedia, graphical applications etc. Because of this, the following

changes illustrated in Table 22 must be done to Linux kernel to provide it more real

time characteristics.

Processor type and features

 (x) Tickless System (Dynamic Ticks

 (x) High Resolution Timer Support

 (x) HPET Timer Suppor

 Preemption model

 (x) Preemptible Kernel (Low-Latency Desktop

 Timer frequency

 (x) Timer frequency (1000)

Table 22:Menuconfig Configuration

Building kernel

After configuration process, linux kernel should be recompiled for new kernel. .

Before starting the configuration, user must login the command prompt with

administrator/root permissions .Then to compile Linux kernel , user should enter the

96

kernel source directiory, “/usr/src/linux-version/” and enter following command to

command prompt;

- make

Building process should start immediately. Although the estimated compilation time

is about 1 hour, this time may vary depending on CPU speed. After building the

kernel, kernel modules should be installed the related directories. This process is

done by the following command;

- make modules_install

Final step is generating the final Linux image and installing it to the boot location.

This process is done by the following command

-make install

Computer should be restarted to boot the latest kernel.

