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ABSTRACT 

ETHERNET BASED REAL TIME COMMUNICATIONS FOR 

EMBEDDED SYSTEMS 

Yılmaz, Ozan 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor:Asst. Prof. Dr. Şenan Ece Schmidt 

May 2010, 96 Pages 

Fast paced improvement of Ethernet technology has also received attention in the 

industry field like it did in other fields and ways of usage have started to be studied. 

As it is understood that the standard Ethernet protocols cannot be used due to the 

unsatisfied real time requirements, industrial and academic researchers have started 

to develop solutions to overcome this deficiency. In this thesis, the real hardware 

adaptations of Real Time Ethernet and RTXX protocol algorithms are implemented 

and their behaviors on the hardware are observed. Each parameter that affects the 

system’s real time behavior is individually examined and the solution proposals are 

discussed. 

 

Keywords: Industrial communication, real-time, Ethernet 

  



v 

ÖZ 

GÖMÜLÜ SİSTEMLER İÇİN ETHERNET TABANLI GERÇEK ZAMANLI 

HABERLEŞME 

Yılmaz, Ozan 

Yüksek Lisans, Elektrik ve Elektronik Muhendisliği Bölümü 

Tez Yöneticisi: Y. Doç. Dr. Şenan Ece Schmidt 

Mayıs 2010, 96 Sayfa 

Ethernet teknolojisinin hızla gelişmesi diğer alanlarda olduğu gibi endüstri alanında 

dikkatleri çekmiş ve kullanım yolları aranmaya başlanmıştır. Gerçek zamanlılık 

ihtiyaçları nedeniyle standard Ethernet protokollerinin kullanılamayacak oluşunun 

anlaşılmasıyla sanayii ve akademik kaynaklar bu eksikliği kapatmaya yönelik 

çözümler üretmeye başlamışlardır.  Bu tez çalışmasında Gerçek Zamanlı Ethernet ve 

RTXX Protokol algoritmalarının gerçek donanım uyarlamaları gerçekleştirilmiş ve 

donanım üzerinde davranışları izlenmiştir. Sistemin gerçek zamanlılığını etkileyen 

her bir parametre ayrı ayrı  incelenmiş ve çözüm önerileri tartışılmıştır. 

 

Anahtar Kelimeler: Endüstriyel haberleşme, Gerçek Zamanlılık, Ethernet 
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CHAPTER 1 

    INTRODUCTION 

Nowadays, the use of communication networks is common at all levels of industrial 

automation systems in the process control and manufacturing industry. Amongst 

others, communication networks are employed to enable the acquisition and 

distribution of sensor and actuator data on the device or machine level, the 

coordination of processes among distributed controller devices on the cell and 

subsystem level, and the production scheduling, monitoring and management at the 

system and factory level.  

The traffic that has to be carried by such industrial communication networks has 

different characteristics. While hard real-time applications such as closed-loop 

control demand guaranteed bounds on the delivery times up to under 1ms and soft 

RT applications in automation and manufacturing require delivery times in the order 

of 10ms, there are non-real-time (nRT) processes such as diagnostic monitoring or 

maintenance without stringent timing requirements. 

In the past, the communication requirements were met by different network types at 

different levels of the automation hierarchy. On the one hand, Fieldbuses were 

developed for the frequent and timely communication of small data packets as 

required on the lower levels of the automaton hierarchy. On the other hand, Ethernet 

is well-suited for the less time-critical operations on the higher levels of the 

automation hierarchy. 
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In the recent years, there is a strong tendency to replace fieldbusses by Ethernet due 

to various reasons. Since fieldbusses cannot cope with the increasing data volumes 

on industrial networks, they must be upgraded in order to support higher data rates. 

However, considering the relatively small market for such devices, the development 

costs are disproportionate. In contrast, Ethernet provides high speeds at low costs due 

to its pervasiveness in home and office environments. The main obstacle for the 

direct use of Ethernet for the time-critical data transmission on the lower levels of the 

automation hierarchy is its lack of RT support due to the nondeterministic carrier 

sense multiple access with collision detection (CSMA/CD) arbitration mechanism . 

Hence, there is an ongoing effort to provide Ethernet-based industrial network 

solutions with RT support and thus converge to a single network technology on the 

different levels of the automation hierarchy.   

Different approaches for the development of Real-time Ethernet (RTE) are pursued 

in both industry and academia. In order to achieve a deterministic timing behavior 

without collisions on the medium, such approaches propose modifications and 

additions to the network protocol stack of conventional shared-medium Ethernet or 

employ switches. Industrial protocols that belong to the first category combine the 

use of standard Ethernet hardware with master-slave communication and the 

definition of pre-specified periodic sending instants. There are also protocols which 

are based on full-duplex switched Ethernet with a specialized prioritization scheme, 

or which are designed for customized controller or switch hardware.  

A common feature of these protocols is that they provide real-time support on 

Ethernet by a static configuration of the possible sending instants or the RT-

bandwidth allocated to each networked controller device. However, it is not 

considered that the communication requirements of automation applications 

dynamically change depending on the operating condition of the application . 

In this thesis the implementation and performance evaluation of RTXX, an Ethernet-

based industrial communication protocol is presented. RTXX is designed to be 

implemented with TDMA over shared Ethernet and it exploits the determinism of the 
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industrial applications that communicate over the network. In this protocol, each 

node computes the forthcoming communication requirements of the application and 

informs the other nodes in the network accordingly. Consequently each node is able 

to compute independently the order of medium access among the nodes for a certain 

number of coming time slots.  

The implementation of RTXX protocol presented in this thesis includes the 

realization of TDMA over Ethernet and the required time synchronization 

mechanism among the nodes. In addition the decision mechanism for the medium 

access and the required information exchange is incorporated. The correctness of the 

operation and the satisfaction of the real time requirements are verified with an 

experimental study.   

The remainder of this thesis is constructed as follows. In Chapter 2 we review the 

Real Time Communication Protocols in the literature. Characteristic requirements for 

Industrial applications is defined and discussed during this chapter. In Chapter 3, 

architecture and characteristics of the RTXX Protocol is defined, a sample 

communication model for an industrial bottle filling machine is illustrated. In 

Chapter 4 Time Domain Multiple Access based Real Time Ethernet Implementation 

is proposed and discussed in detail. In addition, the requirements for software and 

hardware implementations presented in detail and solutions are discussed. Time 

synchronization mechanisms were also included in this chapter.  In Chapter 5 RTXX 

Software Implementation is proposed and related software modules discussed in 

detail. Interface between TDMA Layer and RTXX Protocol Implementation also 

explained in this chapter. User application interfaces for RTXX Protocol is defined 

and presented in this chapter. Chapter 6 contains the experiments and discussion 

about measurement results. Chapter 7 concludes the thesis. 
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CHAPTER 2 

    REAL-TIME INDUSTRIAL COMMUNICATION PROTOCOLS  

Industrial control systems that communicate over a network is formed by the sensors, 

the controllers (programmable logic controllers), industrial PCs and actuators [1] 

which are coordinated over a communication channel. The industrial control 

applications which are getting more complex and large scale and industrial control 

equipment which are being manufactured with computer and network support has 

made the industrial control systems that communicate over network  an important 

industrial and academic research topic. For these systems different industrial 

communication networks are developed for the last twenty years. [1],[2],[3],[4]. 

In industrial communication networks messages should be transmitted which have 

varying purposes and properties. [2] 

T1) Equipment level data transfer between sensors, controllers and actuators: 

Continuous or sampled data are usually sent periodically and with time constraints. 

Example: The data that is collected from the speed sensor in the servo driver is sent 

to the controller, output current value is sent from the controller to the actuator. 

T2) Messages that are at the supervisory control level: Communication between 

system components that are at different hierarchical levels is required according to 

the hierarchical organization of the controllers and the controlled systems. Mostly, 

data which necessitates event based and deterministic reaction times is sent. Because 

the system’s behavior changes at discrete times, the system’s next condition and the 

messages that will be sent in this condition can be known beforehand by using the 

condition that the system is in and the system’s dynamic model. Example: According 
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to the model of a controller system that controls two machines, after the work finish 

event of the first machine occurs it sends a message to the second machine to make it 

start working. This is stated in the system model in which the message will be sent 

together with the first machine’s finish work event. 

 

Figure 1: Different Levels of Communication over Industrial Networks 

T3) Diagnostic data and remote control oriented applications: Mostly moved as non 

real time and event based communication. 
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When these traffic types are examined, four impo rtant requirements in the industrial 

communication systems can be identified: 

1) Real time traffic transfer: The transferring of the messages (T1, T2 traffic 

types) before a determined deadline after their creation. 

2) Concurrent communication: The requirement of the nodes in the network 

to have a shared time base for providing a real time traffic transfer. (T1, 

T2 traffic types) 

3) Dependability: The dependability support for the fault and failure 

conditions in the industrial control applications. 

4) Non real time traffic support: The transport of these kinds of messages 

without sacrificing the effectiveness of the real time messages.  (T3 traffic 

type) 

 

Providing the real time guarantees in industrial communication networks requires the 

delivery of the messages with no delay at least. Likewise the dependability support 

should be according to the worst conditions to provide the desired error possibility. 

For these reasons, total capacity requirement in industrial networks and the capacity 

allocation are calculated according to the usually unrealistic assumptions such as 

sending of all the messages at the same time. 

The preliminary communication networks for the industrial environments  like CAN, 

Lon Works and Profibus are started to be used nearly twenty years ago [5]. These 

field buses were proprietary, expensive, hard to develop, not compatible with each 

other and had not fastly attuned to the changing industrial applications. On the other 

hand, the simple, cheap and fast Ethernet which is prevalent in home and office 

environments is an important candidate for industrial communication. Despite these 

superiorities, on Ethernet, the messages that are sent at the same time are colliding 

and being resent at random times. Because of this reason, the standard Ethernet 

cannot provide deterministic network access and cannot support real time dependable 
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communication. Academic and industrial studies are being conducted for the 

advancement of real time Ethernet (RTE) since recent years. 

Real time control applications have necessities like: receiving reactions at restricted 

times, minimum deflection from periodicity of events which need to be periodic and 

protection of the time sequences of the events. For these requirements to be satisfied 

in the distributed systems, concurrency and temporal consistency should be ensured 

between system components. [3],[4]. IEEE 1588 which is a new protocol is designed 

especially for synchronization of real time systems over small distributed networks 

like industrial control systems. IEEE 1588 which makes the clocks in the system 

synchronous by message exchange with a preselected main clock can provide 

precision at the interval of 10-100µs for software implementation and below 

microsecond level for hardware implementation. [3],[4],[6],[7],[8]. Precision is 

decreased to some extent for the key based systems. IEEE 1588 has been fastly put 

into use in industrial systems and started to be implemented onboard on several 

PLCs. 

Dependability is an important requirement for the applications that are being run on 

industrial control systems and have critical safety constraints [9]. Dependability 

concept also includes factors like availability, safety, integrity and maintainability. 

[10]. To call a distributed industrial control system that communicates over network 

dependable, dependability of both the network and the controllers should be ensured. 

When designing a dependable industrial communication network, dependable 

distributed synchronization and the consistency of the values that are sent with the 

messages with each other and with the system condition is important. The 

dependability problem is more prominent for RTE based solutions due to the 

Ethernet’s nondeterministic properties [11]. Dependable communication should 

ensure that the right information is being sent to the right location at the right time 

and sequence. Dependability support is usually provided by allocation of static extra 

load according to the expected worst condition. [4]. As an example, for a TDMA 

based protocol, for resending of every lost message, allocation of extra time 
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segments as much as the time segments that are separated as nodes is required and 

only half of the capacity can be useful. 
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CHAPTER 3 

    RTXX PROTOCOL 

When we look at the industrial networks, we basically see two approaches. First of 

these is the fieldbus [31] type networks that are stated in Chapter 2, the second 

which is also the subject of this thesis is the Ethernet based approach [32] . As also 

discussed in Chapter 2 , fieldbus type approaches development costs are high, 

expansion and update of the existing system is both costly and complex. Another 

difficulty on this type of networks is increasing the data flow amount on the network. 

The Ethernet technology however is being spread everyday and its data flow capacity 

is continuously increasing. 

When we look at the conventional Ethernet architecture, it can be seen that the 

shared medium access time interval is indeterminate. In other words, the access to 

the shared medium can be performed from several units simultaneously which can 

result in collision. Due to the collision avoidance algorithms that exist on the MAC 

layer of the Ethernet, collisions can be prevented but since it is not possible to 

estimate delay times because of these algorithms, usage in the industrial networks is 

difficult. To avoid this, Ethernet switch structures are being used today. This way, 

one physical medium is used for each connection which can handle the collision 

problem. But because of their costs, delays resulting from the Switch buffers and the 

QoS requirements, usability in the industrial networks is decreasing . 

RTXX Protocol [30] offers a new approach on the Ethernet interface. In the first part 

of this approach, the time slot division of the physical Ethernet medium as real time 

and non real time according to the Time Domain Multiple Access (TDMA) principle 

is predicted. In the second part, providing the real time communication infrastructure 
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and ensuring the shared medium access to stay in the boundaries of the protocol rules 

is provided. With these properties, it can both offer the real time requirements of the 

industrial communications and the coexistence of the real time and non real time 

traffic in the same medium while providing the above mentioned advantages. In this 

thesis, the distributed separated event control approaches of the RTXX protocol in 

industrial applications will be discussed in detail, rather the communication model 

will be the main scope. 

3.1 RTXX Protocol Architecture 

RTXX is defined as a protocol to operate in distributed architectures [34]. According 

to this definition, each controller on the network, like PLCs, is defined as a node. 

Communication relationships between the nodes will be explained in the following 

sections. To be a brief description of the protocol, each node in the system knows 

when to send the next message and who the sender is. Thus, it organizes its 

functionality according to this information. The node which will send the data over 

the shared medium sends the message in a form of communication request in order to 

inform the other nodes in the system and make reservation for the future nodes which 

are waited a response from. The other nodes that receive the communication request, 

process the request and determine the next message sender on the network. 

In order to avoid collision on the shared medium, RTXX Protocol proposes time-

slotted access [30]. According to the protocol proposal, each time slot constructed as 

a fixed size time interval and the transmission of the messages should be done in the 

predetermined time slots. However, RTXX protocol proposes time-slotted access of 

the shared medium, it does not define the implementation method of time-slotted 

access over Ethernet bus. Within the scope of this study, implementation of time-

slotted architecture over Ethernet bus will be explained in more details in Chapter 3. 

When we look at the overall structure of the RTXX Protocol, we can analyze it in 

five sections; 

1. Network Node 
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2. Message Structure 

3. Communication Operation 

4. Correct Network Operation 

5. Non Real Time Traffic Support 

Rather than explaining the discrete event control approaches of the RTXX Protocol, 

communication model of RTXX Protocol will be the main focused in this section. 

Certain terms and their definitions in RTXX protocol is explained in the following; 

Shared events - Tasks: These are the events which organize the communication 

between system nodes and determine the operation of nodes. 

Non-Shared Events: These are the events defined in the controller’s communication 

models that control the internal operation of each node regardless of other system 

nodes. 

Jobs: These are the communication messages which are transmitted during the 

execution of tasks. Many controllers may require communication between each other 

to perform a specific task. To establish this communications, jobs are used as a 

container on the shared medium. 

For instance, If the operation of an air motor is a task in the system, each message 

transmitted over the system to operate the air motor is defined as  jobs. 

3.1.1 Network Node 

Each network node Ri, in RTXX protocol has to implement the following entities; 

 A communication model automaton CMRi 

 An input buffer to store the input requests 

 An output buffer to store outgoing messages 

 An active task list currently initiated in the communication model 

 A priority queue to store and sort the incoming request based on their 

deadline parameter 
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Communication model is based on the principle of the communication between 

distributed controllers on the same system that are interconnected by a shared 

medium. In this model, each controller is responsible to manage a subunit of the 

system and the lifecycle’s of the controllers are determined by automata. Modeling 

principle and the execution of automata  are illustrated in Example 3.1 

Example 3.1: A small industrial bottle filling machine model is illustrated in Figure 

2 . The model consist of a conveyor belt (R1),  a filling unit (R2) and a high level 

controller (R3) which is responsible from the control of R1 and R2. The high level 

controller, R3, can start the process (sp), inform the controllers that  bottle is ready to 

fill (rtf) and the filling is finished (ff). R3 is also responsible from the system security 

by preventing unwanted behavior of low level controllers as R1 and R2. The 

conveyor belt moves the bottles to the filling point and after the filling process it 

moves to bottles for further processes. Basic operation of the conveyor belt is, start 

the process (sp), run until bottle detected (bd) by the sensor and stop the belt (sb) 

after than wait until the ff and sp commands to start the whole process again. The 

filling unit waits until the rtf command, starts the filling (sf) process, finishes filling 

process (ff)and waits until the rtf signal to start filling process again. 
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Figure 2: Bottle Filling Machine Model 
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Figure 3: Discrete Event System Automata of Industrial Bottle Filling Machine 
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Each controller, Ri, has its own communication model, CMRi, in the system. Figure 3 

shows the discrete event system automata of the example system given in Figure 2 

and Figure 4 illustrates the communication model of the example discrete event 

system. Every state in communication model CMRi, corresponds a state in controller 

Ri and the initial states are marked with a double circle. For instance, the states 1_1, 

1_2, and 1_3 in CMR1 corresponds to state 1 in R1. The communication between the 

controllers is expounded hereafter and it is assumed that each controller is at their 

initial states; 

 The controller R3 emits the question job ?spR3 to deduce the R1 is in initial state 

or not. 

 The controller R1 senses the question job ?spR3 and it replies to R3 with the !spR1 

job when it is ready to start 

 R3 receives the !spR1 job and it sends the command job spc to make R1  switch to 

state 1_3 to 2_1 which makes it to actuate the conveyer belt engine.  

 To run the rtf task in the system, R3 controller must know the states of the low 

level controllers R1 and R2. Therefore, R3 sends ?rtfR3 question job to interrogate 

whether low level controllers are ready to execute this task. 
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Figure 4: Communication Model of Bottle Filling Machine 

 R1 and R2 receives the question job ?rtfR3. 

 ?rtfR3 question job is applicable for R2 at initial state thus it replies question job 

with the !rtfR2 job immediately and state in the CMR2 switches from 1_2 to 1_3. 

 On the other hand, ?rtfR3 question job is not possible until the R1 finishes the non-

shared events rb, bd and sb. After R1 finishes the non-shared events, it replies the 

R3 with the !rtfR1 job and switches the state in CMR1  from 5_2 to 5_3.  

 R1 and R2 respond to R3 controller, R3 emits rtfC command job to execute the rtf 

task in the system and switches the state in CMR3 from 2_4 to 3_1.  
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 With the rtfC command job, CMR1 switches to state 5_3 to 6_1, CMR2 switches to 

state 1_3 to 2_1 and R2 controller starts to filling  process. 

 Communication keeps going with the interrogation of the current situation in low 

level controllers for ff system task by R3. 

To exploit a system task, each job related to the task must be totally completed.  If 

we denote the number of jobs related to task σ by Nσ, then we can describe the 

deadline for each job as dj:=r(σ) / Nσ where r(σ) illustrates the time interval between 

the occurrence of the event and its execution. In accordance with this definition, we 

can say that the jobs that are ready to be sent must be transmitted at least in dj time. 

As an illustration, If  the job ready to be sent at t0 instant, then it must be sent at  t0+dj 

latest. By this definition, the communication model is combined with the deadline 

parameters that communication model is made into a real time communication 

model. 

3.1.1.1 Priority Queue 

Priority queue is used for storing the requests that are defined as a tuple in the system 

in form of (N,e,d,T) which indicate the transmission of the the future requests. N 

represents the Node which the request is relevant to. e represents the eligibility time 

that the demander Node requires to finish its internal process to accept the reply 

messages. d represents the deadline parameter of the job and T represents the active 

task that issued the request. Priority queue stores each request as it is and order them 

by their deadline and eligibility time elements. 

3.1.2 Message Structure 

In RTXX Protocol, each job in the system is transmitted as a message on the shared 

medium. The Protocol proposes to send only one message within a time slot whose 

interval must be determined by the longest size that a message can be constructed to 

prevent the shared medium from physical collisions.  
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The message structure of  RTXX protocol consist of the following entities. 

 A set of jobs to be sent by the node Ni. 

 A set of receiver nodes. 

 A minischedule contains the communication requests. 

 A set of terminated tasks in node Ni. 

In this study, in Chapter 5, multi-message per slot approach is implemented to 

achieve timing overhead arising from the locking mechanisms in Linux operating 

system. Multiple accesses on shared medium are prevented by the priority queue 

implementation in Section 5.1. 

3.1.3 Communication Operation 

Priority queue constitutes the main foundation of  RTXX Protocol. The following 

part explains the initial and subsequent runtime operation of the protocol. 

 The highest level controller generates an initialization message and transmits 

it on the shared medium to other controllers in the system. At this time, each 

controller is on its initial state and monitors the physical transmission line for 

possible incoming messages. 

 Controllers captures the request from the shared medium and stores it in their 

priority queue 

 After the initialization, each controller takes out the nearest deadline eligible 

communication request from the priority queue. 

 The node which take place in the request sends its message into output buffer 

and sends it through the shared medium 



18 

 

 Every node in the system inserts the communication requests in the 

minischedule to their priority queues. Thanks to this, each node has the same 

unique priority queue order that makes the system fully synchronized and 

make the nodes choose the same node as the sender. 

 The receiver nodes in the system capture the incoming message, put it to their 

input buffer, update their state according to the computations, generates the 

outgoing message and put it into their output buffers 

Protocol follows the same way for each real time message in the system that makes it 

work properly during the lifecycle of the system 

3.1.4 Correct Networked System Operation 

Each ready job in the system must meet the deadlines and are transmitted in 

accordance with the communication model to warranty correct system operation. 

Some network and transmission parameters must be defined and computed to 

provide real time characteristics and correct operation. Hereafter, definition and the 

calculation of these parameters will be illustrated.   

The most basic requirement for the correct operation is computing the frequency of 

the real time slot and bandwidth of the  real-time traffic. The calculation of minimum 

tolerable transmission frequency of real time slot is illustrated in Equation 1 [30]. 

Qmax represents maximum estimated priority queue size, dmin represents the minimum 

job deadline and emax represents the maximum eligibility time. 
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rmin = (Qmax+1) / (dmin-emax)   (1) 

  

After determining the minimum tolerable transmission frequency rmin, with the 

knowledge of the largest message size that can be created on the system Fmax, the 

minimum bandwidth requirement for real time traffic can be calculated as in 

Equation 2.  

C ≥ rmin x Fmax   (2) 

 

With the help of Equation 1 and, bandwidth and the frequency requirements can be 

calculated for the correct networked system operation. 

3.1.5 Non-Real Time Traffic Support 

If the total bandwidth in the network is considered as C, then the amount of the 

available bandwidth excluding RTXX Protocol can be calculated as C – (rmin x Fmax). 

Usage of this additional bandwidth for non real time applications is proposed by the  

RTXX Protocol as follows; 

rmin value in Equation 1 is defined as the minimum tolerable transmission frequency 

for real time slots. By this definition the period of the real time slots can be defined 

as 1 / rmin. Protocol proposes to split this period into G time slices, named as time 

slots,  assign the first time slice to real time traffic and the other G-1slices to non real 

time traffic. By this approach, the protocol both guaranties the real time 

communication bounds for real time traffic and opens the shared medium for non 

real time traffic usage. 

Protocol proposes to schedule the non real time slots with a pre-computed 

transmission schedule. In each non real time slot, only one node can access the 

shared medium and transmit its messages according to transmission schedule. If 

there are no eligible request during a real time slot, protocol also proposes to use that 
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real time slot for non real time traffic. Figure 5 illustrates the scheduling of real time 

and non real time slots for the period of 1 / rmin and G=5. As can be seen in the 

Figure 5, Slot 11 is used for non real time instead of real time traffic 

 

Figure 5: A Sample Transmission Schedule of RTXX Protocol [30] 
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CHAPTER 4 

    REAL TIME ETHERNET MEDIUM ACCESS 
IMPLEMENTATION 

As we discussed in previous sections, communicating over shared Ethernet networks 

is nondeterministic as more than two nodes can start to transmit packets at the same 

time.  In a collision situation, collision avoidance algorithms in MAC layer of IEEE 

802.3 [12] tries to retransmit buffered data after random intervals which make delay 

bounds unpredictable. To avoid this kind of collision sources, this study proposes 

Time Domain Multiple Access (TDMA) approach in the Ethernet level for Linux 

operating system.  

4.1 Time Domain Multiple Access 

TDMAController() thread constitutes the core Real Time Ethernet implementation. 

Simply, it divides Ethernet Bus into pieces, called time slots, over temporal plane 

and coordinates the bus access between applications and Linux kernel. These time 

slots can be dedicated to real time protocols like RTXX, non real time traffic like IP, 

IEEE 1588 Protocol or another custom protocol on demand. With this flexibility, 

bandwidth allocated to protocol applications may be configured statically or 

dynamically. 

The main objective of TDMAController() thread is managing the schedule of the 

packets to be sent over Ethernet Bus. TDMAController() consists of a periodic timer 

and locking mechanism for related protocol threads. 
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4.1.1 Timing Mechanism 

Two of the most important timing requirements for TDMA Controller 

implementation are, high precision and high accuracy periodic timers and a real time 

capable operating system kernel. 

4.1.1.1 Timer Clock Accuracy 

The accuracy and the precision of the timer counter clock in the system determine 

the reliability of time interval of each time slot. In order to provide deterministic and 

predictable slot intervals, timer clock source should be selected as accurate as 

possible. This accuracy is dependent on hardware clock source and driver interface 

of this clock hardware. 

4.1.1.1.1 Hardware Clock Sources 

Building a scheduler, which is the core of an Operating System, requires keeping 

track of time to switch between parallel executed software threads. There are several 

timer devices produced for this aim. Common architecture for this timer devices 

usually covers an oscillator and a counter components.  When the oscillator provides 

input frequency for the timer device, the counter controls counting process for each 

cycle of the oscillator. The counter is controlled by software which defines counter 

inputs, modes (one-shot or periodic ) and generates a state signal which may 

interrupt the processor at any time. 

PC Timer Devices and Components  are considered below [13].   

The Programmable Interval Timer ( PIT ) 

The oldest PC timer device is the PIT. PIT has a 1.193182MHz input oscillator, 16-

bit counter and counter input registers.  The PIT covers three timers to manage 

system timekeeping. Timer 0 provides interrupt signals, Timer 1 refreshes RAM and 

Timer 2 generates tone signals for PC speaker.    This timer was not suitable for 

timekeeping of today PCs, because it was designed for the first PC architecture. 
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The CMOS Real Time Clock ( CMOS RTC ) 

The CMOS RTC is a function of the battery-backed memory device.  There are two 

functions in the RTC. One of them keeping the time of day (TOD) information and 

the other one is generating periodic interrupts by a timer clock. But it is not possible 

to read or write on the counter. Only counter inputs can be set to any power of two 

rating from 2Hz to 8192Hz. 

The Local Advanced Programmable Interrupt Controller ( Local APIC ) 

The Local APIC is another timer device in multiprocessor systems. Each processor 

has one local APIC.  The Local APIC has a 32 bit counter and a number of counter 

input registers. The input frequency depends on memory bus frequency before the 

multiplication.  So, counter capability is wider than PIT or CMOS. But counter 

frequency cannot be determined by software.      

The Advanced Configuration and Power Interface ( ACPI ) 

The another additional system timer is the ACPI which is known the power 

management timer.  ACPI has 24 bit counter but does not have a counter input 

register. The ACPI timer is used to control power saving functionality.  

Time Stamp Counter  ( TSC ) 

The TSC is a 64-bit cycle counter which is used on new type processors. It has no 

capability to generate interrupts and does not have counter input registers.  TSC can 

be read by software with the rdtsc instruction. But the rdtsc instruction can be used in 

user mode and there would be an issue on operating system side. Also there are a few 

drawbacks for TSC such as: 

 There is no reliable way to determine the TSC’s input frequency 

 There are several power management technologies which change Processor’s 

clock speed dynamically with little or no notice.  

 The TSC can be stopped in their lower-power halt states 
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HPET ( High Precision Event Timer ) 

The HPET device is available in new generation PCs. It has 32 or 64 bit counter 

which runs until stopped by software. The HPET has multiple timers which have 

timeout registers that are compared with the central counter and takes measures 

against the timeout if the timer was set to be periodic. Thus, The HPET is used 

instead of the PIT and the CMOS periodic timers. [14], [13] 

4.1.1.1.2 Timer Interfaces provided by Linux Kernel 

Standard Linux distributions only implement system clock timers, called jiffies, that 

has the maximum frequency of 1000Hz with an unpredictable accuracy and alarm 

mechanisms based on RTC clock in the BIOS which has the maximum timer period 

of 125uS for software developers. Other clock sources are dedicated to specific 

procedures like power saving mechanisms and hardware synchronizations. The Real 

Time Ethernet implementation requires accurate and high resolution user timers, so 

standard Linux distributions can not be used for this implementation.  

First prototypes of high resolution timer support for Linux kernel were developed by 

Thomas Gleixner for Intel x86 architecture. During the time, there were several 

updates and new kernel patches were developed and merged in to Linux kernel by 

Thomas Gleixner [15] and Ingo Molnar. By this patch, POSIX [16] timers became as 

accurate as the hardware clock allows which is about 1 nanosecond HPET timer 

today.  

There are several types of POSIX high resolution timer sources in the real time 

kernel which can be selected during the timer creation routines as 

CLOCK_REALTIME, CLOCK_MONOTONIC, 

CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID. All of 

these timers use the same high precision clock hardware to generate timer interrupts 

and signals. CLOCK_REALTIME timer mechanism uses system-wide high 

resolution timer for timer expiration interrupts and signals. Timer period for this type 

of timer may change if someone changes the system timer during the lifecycle of the 
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working thread. CLOCK_MONOTONIC timer uses high precision timer which 

starts to count from 0 when the system powered up and can not be set/reset until the 

next power on. Timer period for this type of timer is not affected by changes in 

system timer so this timer type is suitable for most of the periodic applications.  

CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID  can be 

used to measure the consumed CPU time for applications [17].  

In our TDMA Controller implementation CLOCK_MONOTONIC type of timer is 

selected to generate periodic and stable timer events.  

4.1.1.1.3 Signaling and Real Time Scheduling Characteristic 

TDMA Controller implementation uses signals in the operating system to trigger the 

slot switching mechanism resulting from timer interrupts. Therefore the signaling 

performance and real time scheduling characteristic of the operating system is the 

third major factor in the Time Slotted Architecture after timer clock hardware and 

timer clock interface.  

Standard Linux signal delivery times and thread switching times may vary depending 

on CPU load of the system.  For this reason real time characteristics of signaling and 

thread scheduling should be implemented to Linux kernel. In order to provide this 

capability to Linux Kernel, PREEEMPT_RT [18] kernel patch is applied to system 

[19]. 

Signals in Linux operating system are used to notify a thread or process of a 

particular event. Signals may also be called as software interrupts. Standard Linux 

kernel implements 31 signals for interrupt and exception handling, synchronization 

and inter process communications (IPC) in the system. POSIX standard adds a new 

class of signals called real time signals ranging from 32 to 63. There are some major 

differences between normal signals and POSIX real time signals. The first difference 

is the priority level of signals. For normal signals, lower numbered signals have 

higher priority then higher number signals. In contrast to normal signals, POSIX real 

time signal priorities proportional to signal numbers. The second difference is the 
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signal queuing mechanism. POSIX real time signals uses signal queues to guaranty 

successfully delivery of signals to the related application. On the other hand normal 

signals is merged if a process has already a have pending signal, so only signal is 

delivered for overall signal activity [20].  

 In TDMA Controller implementation highest priority POSIX signal, SIGRTMAX, is 

used to handle timer interrupts. In this way, in case of a signaling latency, TDMA 

Controller application always know the time slot it is related to and will not miss any 

timer interrupt during its life cycle.  

In addition to high resolution timer support implementations, Ingo Molnar developed 

real time preemption kernel patch which is providing fully priority preemption 

mechanism to the Linux kernel. By applying preemption kernel patch and high 

resolution timer support, standard Linux kernel gains real time capabilities which 

makes it suitable for Real Time Ethernet implementation. 

For this study, Linux kernel version 2.6.32.12 is selected and related real time patch 

is used to build a real time capable Linux kernel.  Configuration and the build 

process is explained in Appendix B. 

4.1.2 Locking Mechanism 

Locking mechanism is the other main requirement for Real Time Ethernet 

implementation. Main idea behind the locking mechanism is to prevent simultaneous 

access to physical Ethernet layer. In order to provide this capability to TDMA 

Controller thread, POSIX mutexes, conditional variables, semaphores and user 

defined system calls are used by TDMA Controller application.  

In Real Time Ethernet implementation, to ensure the system’s proper operability it is 

required that all the nodes in the system work in accordance with the Real Time 

Ethernet implementation. Even though the implementation supports real time and 

non real time communication, if a standard Ethernet connection is realized over the 

shared medium, the traffic flow over the shared medium may be disrupted by the 
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packets that will transferred from this node . In this study, it is assumed that all the 

nodes in the system support Real Time Ethernet protocol and  the access of the nodes 

to the medium is performed inside the predetermined time slots. In future work, the 

possible actions for the error cases resulting from the reasons mentioned above may 

be discussed. 

It can be observed that the Real Time Ethernet implementation is split into real time 

and non real time slots in the shared medium. In these two types of slots the behavior 

of the Real Time Ethernet implementation differs. When the system is in the real 

time slot, non real time traffic flow is blocked in every node that forms the system. 

As the blocking mechanism, the blocking APIs which the driver functions use for 

warning the system when the hardware transmission buffers are full are called. With 

this method, all the non real time traffic in the non real time slot interval can be 

stopped while the system’s general behavior are not affected. The non real time 

traffic that is stopped, like the video streaming or FTP, is buffered by the buffering 

mechanisms during the blockage interval. So, any corruption or packet loss is 

prevented for the Layer 3 protocol connections. 

The base effect of the blockage to the system is the inability to deliver the Layer 2 

and Layer 3 protocol packets during the real time slot interval and buffering delays 

for these unsent packets. If the frequency and the interval length of the real time slots 

are increased, the buffering amount on the networks stack starts to increase according 

to the non real time traffic density on the node. The buffering structure on the 

network stack is dynamic and limited with the memory amount on the node. If the 

memory amount on the node starts to be insufficient, buffering is stopped and  packet 

loss occurs. Moreover, the high waiting time for the packets may also result in Layer 

3 protocol connection cut offs. When the system is in the non real time slot, real time 

traffic is blocked and non real time traffic is allowed to flow. The structure of the real 

time traffic and packet delay amounts can change according to the type and 

execution manner of the protocol running in the real time slot. 
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Filling the network stack buffers will take time because of the high memory amount 

when the experiment setup is considered. So this experiment is not performed. 

Instead NRT delay experiments that measure the delay time of real time traffic is 

performed. 

The aim of this experiment is to detect the delays occurring on the non real time 

traffic depending on the density of the real time traffic. 

First part of the locking mechanism is POSIX based synchronizations objects. There 

are three types of POSIX objects used in TDMA Controller implementation which 

are mutexes, conditional variables and semaphores. 

4.1.2.1 Mutexes 

Mutexes are the synchronization mechanism aims to prevent race conditions over 

shared objects and generally used by driver functions. For Real Time Ethernet 

Implementation, TDMA Controller must lock and release threads periodically based 

on slot type information. Because of this TDMA controller creates one POSIX mutex 

for each thread that has possibility to access Ethernet layer. Basic usage of the 

POSIX mutexes illustrated in Code 1  

 

/* Function C */ 

void foo() 

{ 

   pthread_mutex_lock( &mutex ); 

   testcount--; 

   pthread_mutex_unlock( &mutex ); 

} 

Code 1: Sample Usage of POSIX Mutexes 
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4.1.2.2 Conditional Variables 

Condition variables are the synchronization mechanisms that block the waiting task 

until a specific condition is true. Conditional variables must be used with a mutex 

variable to avoid race conditions.  If a thread signals another thread with a condition, 

the signaled thread will be unlocked if the condition is true, otherwise signaled 

thread will locked again.  In TDMA Controller implementation, every element that 

can access the network transmission in a time slot is controlled by these conditional 

variables. A simple locking mechanism for conditional variables is illustrated in 

Code 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code 2: Sample Usage of POSIX Conditional Variables 

 

Thread1() 

{ 

      pthread_mutex_lock( &mutex ); 

      while( testCount < 10  ) 

      { 

         pthread_cond_wait( & cond, &mutex ); 

      } 

      pthread_mutex_unlock( &mutex ); 

} 

Thread2() 

{ 

      pthread_mutex_lock( &mutex ); 

      testCount--; 

      pthread_mutex_unlock( &mutex ); 

 

} 
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4.1.2.3 Semaphores 

Semaphores are the third synchronization mechanism used by the TDMA Controller 

implementation. By definition, semaphores are kernel objects that contain a variable 

which can be checked and modified by the processes and threads. Semaphores are 

one of the fastest synchronization mechanisms in Linux operating system. There are 

two types of POSIX semaphores. First one is the named semaphore which can be 

accessible between separate processes, the other one is unnamed semaphore which is 

accessible only in process memory which threads in the process can be use to 

synchronize between each other. TDMA Controller implementation uses unnamed 

semaphore to prevent access from other application processes. A simple 

synchronization mechanism for POSIX semaphores illustrated in Code 3 

 

timerHandler(){ 

 sem_post(&timer_sem); 

} 

periodicThread(){ 

for(;;){ 

 sem_wait(&timer_sem); 

 do something; 

} 

} 

 

Code 3: Sample Usage of POSIX Semaphores 

Standard Linux system, memory space is separated into two distinct regions as user 

space and kernel space.  Linux kernel and all of the kernel services including device 

drivers run in the kernel space and applications run on the user space.  Accessing 

distinct regions is prohibited by Linux kernel.  In order to provide kernel level 

services to user applications like capturing data from keyboard, mouse or a webcam, 

Linux kernel offers special gateways to user space programs named system calls.   
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4.1.2.4 System Calls 

System calls are the services provided by Linux kernel to attract kernel resource from 

a user space application [21]. 

A system call is executed in the kernel space and a user program is executed in the 

user space. In a Linux system, hardware access is restricted to the kernel space to 

protect the hardware routines from user space programs. Some cases, user space 

application requires to access directly to hardware to perform the specific job, like 

high precision timer access. In this case, there is a special need for bridging user 

programs to hardware which is called “system calls”. 

System call implementations are dependent to microprocessor architecture. Every 

system call has a unique number associated with it. For Intel x86 architecture, when 

a user space program calls a system call, a library routine traps the kernel via 

executing the special “INT 0x80” assembly instruction and the associated number of 

the system call is passed to kernel via EAX register.  

The arguments of the system call are also passed to kernel via EBX,EBC, etc. 

register. Return value of the system call is passed from kernel to user program via 

other CPU registers. [22] 

Detailed information about implementing system calls to Linux kernel is explained in 

Appendix A In this implementation, TDMA controller needs to control and access 

Ethernet hardware which is located in kernel space. Standard kernel does not offer 

system calls to access Ethernet hardware from user space so new system calls are 

required for TDMA Conroller. 

There are three new user defined system calls added to Linux kernel which are 

lockNetDevice(), unlockNetDevice() and sendNetDriver(). lockNetDevice() system 

call locks the upper layer packet flow to Ethernet physical layer.  When a real time 

traffic dedicated slot is activated by TDMA Controller, this system call used for 

locking Linux network stack. unlockNetDevice() system call releases the Linux 

network stack. When a non real time dedicated slot activated by TDMA controller, 
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this system call used for unlocking Linux network stack. sendNetDriver() system call 

sends a packet directly to Ethernet driver routines. When the upper layer traffic is 

suspended by the lockNetDevice() system call,  real time protocol applications can 

not use standard socket APIs to access Ethernet hardware. In order to bypass Linux 

network stack, real time applications must use this system call to send their packets 

to Ethernet hardware. This system call involves some changes in driver level to add 

additional access capability to driver functions.  

Standard Linux network device drivers must have some specific procedures to 

interact with Linux kernel. This procedures are defined in the “net_device”  structure 

and device drivers should be written based on this procedures. Linux network stack 

uses a specific procedure reference pointer, called “hard_start_xmit”, to send 

buffered packet to physical layer and Linux kernel provides some locking 

mechanisms on this procedure to prevent multiple accesses simultaneously.  

In the network device driver source code, there is a hardware transmit function which 

is referenced by this “hard_start_xmit” procedure. Linux network stack uses that 

reference to send next packet in the network stack queue to network hardware 

buffers. In order to send network packets to Ethernet hardware without using 

standard operating system interfaces, there should be a backdoor in driver source 

code. In order to provide minimum impact on device driver source code a new 

transmission function, ”psudo_start_xmit” , is added to source code as a backdoor 

instead of changing standard driver functions and “hard_start_xmit” routine 

forwarded to that psudo  transmission function instead of real transmission function. 

Psudocode for pseudo transmission function illustrated in Code 4.  
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psudoTransmitFunc () { 

 if (timeSlot==REALTIME){ 

  lockNetwork(); 

 } 

 else{ 

  if (nonRtTrafficType==ONESHOT){ 

  realTransmitFunc(); 

  lockNetwork(); 

  } 

  else { 

   realTransmitFunc(); 

  } 

 } 

} 

Code 4: Psudocode for Psudo Transmission Function 

4.1.3 Synchronization Mechanism 

Synchronization mechanism is the third main requirement for Real Time Ethernet 

infrastructure.  All the nodes in the Real Time Ethernet network must synchronize 

their clocks and periodic timers to the master node to communicate between each 

other. 

First step of the synchronization is the system clock synchronization.  

4.1.3.1 System Clock Synchronization 

System clock synchronization algorithm is determined as the IEEE 1588 Precision 

Time Protocol [23] for this implementation. 

4.1.3.1.1 IEEE 1588 Precision Time Protocol 

Measurement and Control Systems are used in many manufacturing technology and 

many other areas of industrial automation. Day by day, timing requirements are 
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growing rapidly and new time synchronization methodologies are needed by the 

industry. IEEE 1588 PTP is a protocol that mainly targets the timing requirements 

coming from this necessity. 

The first protocol studies about Precision Time Protocol were done in the 1990s by 

Agilent Technologies [24]. Then to meet the industrial requirements, academic and 

industrial studies for time synchronization is re-established in 2000s and following 

that studies,  first version of the standard was published in November 2002 by The 

Institute of Electrical and Electronics Engineers, Inc. (IEEE)[25] as “IEEE Standard 

for a Precision Clock Synchronization Protocol for Networked Measurement and 

Control Systems” [23] 

IEEE 1588 is a high precision time synchronization protocol suited for network and 

industrial systems which defines time synchronization methodology over packet 

based networks, like Ethernet.  

IEEE 1588 PTP differentiates from older synchronization methods used in 

measurement and control systems by the method. Older control and communication 

standards uses a dedicated synchronous connection to capture frequency  from the 

control link and requires specific hardware modifications which makes them to 

follow strict hierarchy.  However IEEE 1588 PTP calculates the time by a specific 

PTP algorithm and determines the frequency by this calculations.  The time 

distribution hierarchy determined by the clock source quality in spite of spatial 

location that makes it more flexible then older standards. 

4.1.3.1.2 IEEE 1588 PTP Network Configuration  

IEEE 1588 PTP Network consists of Master and Slave nodes in the system and 

creates a hierarchy based on this network elements. Figure 6 illustrates a sample 

IEEE 1588 network topology.  IEEE 1588 network is a spanning tree network which 

a Slave node in a level can be a Master node for sublevels of the tree.  
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The Master node on the top layer of the spanning tree uses a primary clock source, 

named as Grandmaster Clock, which may be a GPS, Rubidium or a trusted clock to 

synchronize Slave nodes in the network.  

In the medium levels of the tree, a simple node acts like a bridge between upper 

layers and lower layers and uses Boundary Clocks to synchronies lower layer Slaves 

nodes based on Grandmaster clock. Generally medium layer nodes are physical 

network switches have support for IEEE 1588 Precision Time Protocol in addition to 

standard switching capabilities. Bottom layer nodes synchronize their clocks, named 

as Ordinary Clock, based on upper layer Boundary Clocks. 

 

Figure 6: IEEE 1588 PTP Network Topology 

 

4.1.3.1.3 Synchronization principle of IEEE 1588 

CSMA/CD procedure in MAC layer of the IEEE 802.3 [12] Ethernet interface may 

cause to time packages being delayed or disappearing completely. IEEE 1588 PTP 

protocol offers a special time synchronization method to achieve this 

nondeterministic behavior. 
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Figure 7: IEEE 1588 Synchronization Mechanism 

IEEE 1588 uses relatively simple procedure for calculating the clock offset in the 

network which is illustrated in Figure 7 

In the Figure 7 two vertical lines indicates the time line for both master and slave 

devices.  

 In the first step, Master node sends a sync message to the Slave node. Master 

node takes timestamps (t1) when the message leaves the node. 

  Slave node records the timestamp (t2) when it receives that message.  

 The master node then sends a follow up message to the slave node which is 

carrying payload of the original timestamp (t1). 

  At that time, slave node has both timestamp 1 (t1) and timestamp 2 (t2) and 

calculates Master to Slave Delay (MTSD). 

 Then Slave node sends a delay request message and timestamps this (t3).  
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 Master node timestamps the reception of this message (t4) and sends a delay 

response to the slave which is carrying the payload of the timestamp (t4) of 

delay request.  

 Slave receives the delay response. After that time, Slave node has the 

timestamps to calculate the Slave to Master Delay (STMD) and the total 

offset between the nodes. After the calculation Slave node synchronies its 

clock to Master node. 

Time stamping accuracy is the main factor affecting the success of the IEEE 1588 

synchronization which should be made as close as the physical layer.   

In addition to clock synchronization, clock rates should be adjusted with the protocol 

due to clock frequency differences in the system. Rate correction is done by 

measuring subsequent synchronization cycles and calculating differences between 

start of packets in Master node and arrival of packets to Slave node. Rate correction 

accuracy is dependent to synchronization period that IEEE 1588 PTP uses [26]. The 

more frequent the synchronization is, the more accurate is the rate correction. Rate 

correction algorithm is illustrated in Figure 8. 

There are several implementation methods for IEEE 1588 in the literature. Basically 

implementations can be separated two groups as; 
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Figure 8: IEEE 1588 Clock Rate Correction Mechanism 

4.1.3.1.4 Software Only Implementation: 

This implementation is the basic implementation for IEEE 1588. All of the 

synchronization mechanism implemented via software and it does not requires any 

hardware assist which makes it very flexible to adapt newer platforms.  However the 

software complexity makes the design harder and timestamping performance suffers 

from software based delays and jitters. Because of this delays, software based 

implementation is the least precision solution and results >10uS synchronization 

accuracy. This kind of accuracy is enough for process based communication 

requirements like factory automation.[ 27] 

4.1.3.1.5 Hardware Assisted Implantation: 

This implementation requires specific hardware modifications on network interface 

modules. There are several hardware implementations on FPGA, ASIC, 

Microcontroller or Ethernet controller based architectures. In terms of performance 

hardware assisted solutions has much higher accuracy than software based solution 

which is less than 10 nanoseconds today. However hardware assisted solutions are 
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much expensive and strict to specific hardware. Table 1 illustrates the comparison 

between hardware and software based solutions in terms of development 

considerations and precision performance [27]. 

In this thesis, implementation method is determined as software only implementation 

which provides flexibility and adaptability in comparison to previously done 

academic studies. During the implementation, the same hardware architecture used 

for Master Node and Slave Node in the system. Since the clock sources are the same, 

rate correction algorithm is not necessary for this implementation so rate correction 

algorithms did not included in the IEEE 1588 PTP implementation. Software 

Implementation architecture is illustrated in Figure 9 

 

 

Approach Development 
Considerations Precision Performance 

Software Only Software development 

required 

Precision is low for most applications 
Typical: >10 microsecond on single 

link 

Hardware Assist in 
FPGA 

Significant hardware 

change required 
Software and FPGA IP 

development required 

FPGA approach timestamps at the 

Ethernet MAC level 
Typical: >30 nanosecond on single 

link 

Hardware Assist in 
Microcontroller 

Requires change to new 

microcontroller 
Existing software changes 

may need to be 

customized 

Microcontroller  approach timestamps 

at the Ethernet MAC level 
Typical: >30 nanosecond on single 

link 

Hardware Assist in 
Ethernet PHY 

Simple Hardware 

implementation 
Tightest time synchronization 
Typical: <10 nanosecond 

Table 1: Comparison of IEEE 1588 Implementations [27]:  
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4.1.3.2 Periodic Timer Synchronization 

Second step of the time synchronization is the periodic timer synchronization. 

Synchronizing system time is not enough for Real Time Ethernet implementation by 

itself, because nodes in the network must switch between slots at the same time as 

well. In order to provide this ability to nodes, additional synchronization over 

periodic timers is required.  

System time is stored in the system as timespec structure.  timespec structure consists 

of two long integers, each of two is 32 bit long. First long integer named as tv_sec 

which stores the seconds part of the system time and second long integer named as 

tv_nsec which stores the nanoseconds part of the system time. Code 5 illustrates the 

timespec structure. 

Figure 9: IEEE 1588 PTP Software Implementation 
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struct timespec { 

long ts_sec; /* seconds */ 

long ts_nsec; /* nanoseconds */ 

}; 

 

Code 5: timespec Structure 

A new synchronization algorithm has been developed to ensure the synchronization 

over periodic timers which is illustrated in Figure 10.  Main idea behind the 

algorithm is capturing system time, ts, and starting the periodic timer at “ts+ t∆” . 

Value of  t∆  may change due to expected synchronization accuracy and the priority 

of the synchronization thread.  

The synchronization thread enters a loop and compares the actual time , ta , with the 

predetermined periodic timer start time, tstart, which is determined as the beginning of  

“ts+2” second. If the actual time is greater than the  tstart and “ta- tstart” value is 

smaller than the predefined accuracy value, a , then related thread in the Node starts 

its periodic timer. Otherwise it increases tstart value by a predefined repeat period, rp ,  

and keeps trying  again and again until predefined accuracy a is achived. 

Synchronization algoritm may also be canceled after a specific number of tries if 

required. By this way, all the nodes in the system has the same system time as 

accurate as possible by IEEE 1588 PTP synchronization and has the same slot 

switching times with a worst-case drift of a. 
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Figure 10: Periodic Timer Synchronization Algorithm 

4.2 Programming Architecture for Real Time Ethernet Implementation 

Real Time Ethernet Implementation contains four different functions to provide 

protocol functionality.  
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4.2.1 TDMAController() 

The first and most important function is “TDMAController()” which is responsible to 

manage all the functionality including timing, locking and synchronization of Real 

Time Ethernet. This function is created as the highest priority thread in the operating 

system (priority = 80).  Algorithm for this thread is illustrated in Figure 11 

In addition to TDMAController() thread function, InitTDMAController(), 

IEEE1588Master() and IEEE1588Slave() also written to work with 

TDMAController() thread.  

 

  
START

Create Slot Schedule

Lock outgoing traffic

Call 

InitTDMAController ();

Wait until timer signal

Change time slot

Lock all the network

Unlock related 

network protocol

Figure 11: TDMAController() Algorithm 
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4.2.2 InitTDMAController() 

InıtTMDAController() function is responsible to prepare all of the necessary 

conditions including starting IEEE1588 synchronization and periodic timer 

synchronization that TDMAController() needs. InitTDMAController() algorithm is 

illustrated in Figure 12.  

 

Figure 12: InitTDMAController() Algorithm 

 

4.2.3  IEEE1588Master() and IEEE1588Slave() 

TDMAController() functions changes its behavior based on operation mode. If the 

system will act as a Master node, the TDMAController() thread controls the  

IEEE1588Master() thread to synchronize Slave nodes in the system. Otherwise, 

TDMAController() uses IEEE1588Slave() to synchronize system time to master 

node in network. Algorithms for IEEE1588Master() and IEEE1588Slave() illustrated 

in Figure 13 and Figure 14. 

START

Call IEEF1588 Function to 

Syncronize System Clocks

Synchronize Periodic Timer

END
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Timestamp Current 

time, t1

Send SYNC Message 

Send FOLLOW-UP 

Message including t1

Wait for DELAY 

REQUEST

Timestamp current 

time, t4

Send DELAY 

RESPONSE including 

t4

END

START
Wait for SYNC 

Message

Timestramp Current 

time t2

Wait for FOLLOW_UP 

Message

Pick t1 time from 

FOLLOW_UP 

Message

Timestamp DELAY 

REQUEST time,  t3

Send DELAY 

REQUEST message

Wait for DELAY 

RESPONSE message

Pick t4 time from 

DELAY RESPONSE 

message

Calculate OFFSET 

value

Adjust system time

END

START

Figure 14: IEEE1588Slave() Algorithm 

Figure 13: IEEE1588Master() Algorithm 
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CHAPTER 5 

    RTXX PROTOCOL IMPLEMENTATION 

 RTXX Communication Model implements message based Communication Requests 

which contains the following tuple to reserve communication channel for 

transmission. 

Communication request tuple ( N,e,d,T ) consist of; 

 A NodeId (N); a unique identifier representing the receiver node, 

 an eligibility time (e), containing the time, when the receiver node is able to 

transmit a message, 

 a deadline (d), based on protocol applicaition, 

 a TaskId (T), that identifies the task, the message corresponds to. 

Reservation of the communication channel is made by deadline parameter in the 

message structure which is sorted in a priority queue. Activation time of the 

reservations is determined by the eligibility time parameter in the message structure. 

If the eligibility time parameter of the communication request is smaller than the 

current time, request has processed by the priority queue and sorted by the system by 

deadline parameter otherwise communication request waits until eligibility time to be 

valid. A single node may request to transmit more than one communication request 

in a single message. In order to add this capability to RTXX protocol, 

communication requests are combined and named as minischedule in the message 

structure. Priority queues located in the nodes should be updated based on this 

minischedule during the lifecycle of the application. Because the communication 

medium is visible and accessible to all nodes, each node updates its priority queue 
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and contains the same scheduling table based on the minischedule of the transmitted 

message. 

5.1 Processing and Priority Queue Management  

RTXX Communication model requires a priority queue implementation to schedule 

outgoing packets in RTXX network. Scheduling of the packets changes dynamically 

based on the content of flowing traffic, eligibility time of precaptured packets and 

terminated task lists defined in RTXX Protocol. 

This implementation assumes eligibility time of the packets and terminated task list 

member number is zero which means that packet is ready to be sent when it is 

created and there is no need to remove terminated task from priority queue. In this 

study, one global priority queue is created for each node to organize packet 

transmission types.  

This implementation uses Binary Heap [28] Sorting algorithm for adding a new 

element to priority queue and removing an element from priority queue. In the 

priority queue elements are stored as structures which consist of nodeID, application 

ID, eligibility time and deadline and sorting is done based on deadline value of  the 

queue element. There are two functions developed to access priority in the system.  

5.1.1 enqueueGlobal() 

First priority queue related function is enqueueGlobal() function. This function gets 

the new element and it stores it in priority queue based on its deadline value. It 

returns “0” after finishing enqueue process. If the queue is full then it returns “-1” to 

indicate caller application that the priority queue is full.  

5.1.2 dequeueGlobal(); 

The second priority queue related function is dequeueGlobal() function. This 

function enters the priority queue and removes the head element of the priority queue 
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and returns it to caller thread. If the priority queue is empty then it returns NULL 

structure to notify caller thread. 

5.2 Implementation of RTXX Protocol over Ethernet 

Implementation of RTXX Protocol consists of several software modules that some of 

them are discussed in the Real Time Ethernet implementation in Chapter 3 .  

In this part of the thesis, RTXX Protocol Implementation will be discussed in three 

sections; 

 Real Time Ethernet Interface 

 RTXX Protocol Core Implementation 

 RTXX Protocol Application Interface 

In Section 5.2.1, integration between Real Time Ethernet Implementation and RTXX 

Protocol Implementation will be discussed. In Section 5.2.2, RTXX Protocol 

Software Architechture and lifecycle behavior of implementation threads will be 

discussed. Finally in Section 5.2.3, interfaces that are provided for RTXX Protocol 

TDMAController() RTXX Protocol

rtxxBusSniffer()

1588 PTP

Linux

Network

Stack

Time:Node

ID
Time:Node

ID
Time:Node

ID

Priority 

Queue

rtxxSender()

RTXX

Application

Figure 15: Software Architecture 
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Application Interface  will be discussed. 

Full software architecture including Real Time Ethernet Infrastructure is illustrated 

in Figure 15.  

5.2.1 Real Time Ethernet Interface 

RTXX Protocol needs to be controlled by TDMAController() thread in Real Time 

Ethernet implementation. TDMAController() thread have to create separate locking 

mechanisms for each custom protocol or application which needs to access Ethernet 

bus. For RTXX Protocol Implementation there is a new condition variable, named 

condRTXX, is created and added to TDMAController() function. Then a POSIX 

conditional variable locking mechanism for condRTXX variable implemented to the 

transmission thread of the RTXX Protocol Implementation. By this way 

TDMAController application can enable or disable transmission from RTXX 

protocol at anytime. 

5.2.2 RTXX Protocol Core Implementation 

RTXX Implementation contains 2 main threads to organize communication. These 

are rtxxBusSniffer() and rtxxSender(). Each of the function is described in the 

following sections. 

5.2.2.1 rtxxBusSniffer() Thread 

The main function of this thread is monitoring the incoming ethernet traffic and 

updating the system level the priority queue by the content of the captured packets. 

When an RTXX Protocol packet captured by this thread, its reservation in the 

priority queue is removed. Then rtxxBusSniffer() thread checks the destination 

address of the packet to understand if the packet belongs to its host or another host in 

the network. If the packet is for its own host, it sends the packet directly to the 

RTXX Protocol Application over POSIX message queues. Then it decomposes 

communication requests from the captured packet and updates the priority queue 
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with these new requests. After then it checks the head of the priority queue to 

analyze next packet sender's identification. If the sender identification belongs to 

computer which bus sniffer running on, it indicates the rtxxSender() thread by 

sending a signal. After that, rtxxBusSniffer()waits for a new packet to receive. 

Algorith for rtxxBusSniffer is illustrated in Figure 16.  

5.2.2.2 rtxxSender() Thread 

This thread is responsible to send RTXX Protocol packets to the Ethernet bus. It 

activity is controlled by the TDMAController() thread via POSIX mutexes and 

conditional variables. rtxxBusSniffer activates the rtxxSender() by sending a signal 

to it. After than rtxxSender() checks the time slot and if it is not real time slot it 

blocks itself with POSIX conditional variable. When the real time slot comes, 

TDMAController thread unblocks the TDMAController conditional variable and let 

rtXXSender() run. Then rtxxSender() thread gets the RTXX protocol packet from 

RTXX application via POSIX message queues, sends it to Ethernet bus and waits 

until the next signal receives. Algorithm for rtxxSender() thread is illustrated in 

Figure 17 
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Figure 16: rtxxBusSniffer() Algorith 
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Figure 17: rtxxSender() Algorithm 
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5.2.3 RTXX Protocol Application Interface 

RTXX Protocol Implementation provides user interfaces to RTXX Protocol 

applications. Protocol packet content creation and configuration is under 

responsibility of application. Packet buffering mechanism between applications and 

RTXX Protocol is also provided in this implementation via Priority Based Posix 

Message Queues.  

This study only implements low level communication requirements for RTXX 

Protocol such as interfaces for accessing RTXX Protocol Layer, buffering and 

priority based packet transmission in RTXX Protocol. 

5.2.3.1 recvfromRTXX() 

Control applications can send and receive packets on RTXX Protocol via two 

application  protocol interfaces (API). One of these interfaces is recvfromRTXX(). 

This API requires a buffer as an argument which the decomposed application data 

coming from the rtxxBusSniffer() thread will be stored in via application reception 

buffers which is the buffering mechanism between the receiver application and 

RTXX Protocol. Algoritm for recvfromRTXX() function is illustrated in Figure 18 

5.2.3.2 sendtoRTXX() 

The other API that RTXX Implementation offers is the sendtoRTXX() API. This 

function requires five arguments to run. These are destination host id, 

communication request buffer, communication request size, application data and 

application data size. Controller application can call sendtoRTXX() function after 

filling these arguments. After then, senttoRTXX() function generates a new Ethernet 

frame buffer based on these arguments and puts it into application transmission 

buffer queue which is the buffering mechanism between the application and RTXX 

Protocol. Afterward, rtxxSender() function takes the application data from 

transmission buffer queue and sends it through Ethernet Interface. Algorithm for 

sendtoRTXX() function is illustrated in Figure 19.  
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Figure 18:recvfromRTXX() Algorithm 
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Figure 19: sendtoRTXX() Algorithm 
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CHAPTER 6 

    EXPERIMENTAL EVALUATION OF OUR IMPLEMENTATION 

There are three protocol implementations made during the thesis study as IEEE 1588 

PTP, Real Time Ethernet Protocol and RTXX Protocol. Although the 

implementation software passed from the software debugging process, for detecting 

possible delays on target and seeing the proper operation, additional target based 

experiments are required. 

In the following sections there are several experiments for each protocol 

implementation. The experiments aim to measure the delays arising from each 

underlying mechanisms of protocols, detect and correct possible coding and 

designing faults. Because the protocols need to operate within time bounds, in other 

words real-time, determining the delays and their sources properly will help us to 

know the limits and applicability of the protocol implementations 

Experiments are divided into 4 groups  as Timing Experiments, Network Stack 

Experiments, IEEE 1588 PTP Experiments and RTXX Protocol Experiments   

Timing Experiments which are Periodic Timer Accuracy Experiment, Slot Switching 

Latency Experiment and Periodic Timer Synchronization Accuracy Experiment 

measure latencies arising from the Operating System. These experiments show us the 

timing limits and capabilities of the Operating System Test results are collected for 

both Real Time and Non Real Time operations as scheduling, signaling and timing.  

The Network Stack Experiment as Roundtirp Delay Experiment aims to measure the 

delays arising from Linux Network Stack. Each node in the Real Time Network use 

Linux network stack to manage incoming packet and outgoing packets. Therefore, 
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these experimental results help us determine the throughput of the protocol 

implementations. 

IEEE 1588 PTP Experiment as IEEE 1588 PTP Time Synchronization Accuracy 

Experiment is done to measure the IEEE 1588 PTP synchronization accuracy in 

terms of packet size and scheduling type of the Operating System as real-time and 

non real-time. The results of this experiment determine the time drift between nodes 

in the Real Time Ethernet Network which affect the time slot synchronization 

accuracy and utilization of Real Time Network. 

RTXX Protocol Experiments as RTXX Application Interface Latency Experiment, 

Queuing Latency Experiment, Real Time Traffic Experiments and Non Real-Time 

Traffic Experiment are done to verify the correct operation and measure latencies 

arising from RTXX Protocol implementation. These experimental results affect the 

deadline and eligibility parameter of RTXX Protocol Structure. 

6.1 Experiment Environment 

Experimental results were conducted with following hardware and software 

configuration: 

 Intel® Atom™ Processor Z5xx Series and Intel® System Controller Hub 

US15W Development Kit  

 Intel® 82574L Gigabit Ethernet Controller 

 Open Suse 11.2 with/without Preempt-rt patch 

 Cross over Ethernet cable 

C programming language and POSIX programming standards are used to conduct 

test applications. 
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6.2 Experimental Results 

6.2.1 Periodic Timer Accuracy 

Periodic Timer Accuracy experiments were made in order to measure the accuracy 

and reliability of the timing mechanism of the real time network node. Experimental 

results are important to see the accuracy of the periodic timer which directly affects 

the true interoperability of the Real Time Ethernet and RTXX Protocol 

implementations. Rather than measuring the operability of the implementation, this 

experiment aims to measure the real time capability of the Operating System.      

Periodic timer implementation determines the time slot interval accuracy. In this 

experiment, TDMAController() thread instance is generated for periodic timer 

creation to measure the time interval between sequential timer ticks. Measurements 

are collected respectively for 10.000Hz and scheduling types as real time and non 

real time. During the experiments CPU is loaded up to %99 with dummy functions to 

measure the worst case accuracy. For real time scheduling mode, the priority of the 

thread is determined as “99” which is the highest real time priority in Real Time 

Linux. The test is repeated 1000 times and graphs are generated based on these test 

results. 

High resolution timers of Intel Architecture, as Time Stamp Counter and HPET, are 

used to measure the time interval between each sequential timer ticks. The following 

histograms show the distribution of time intervals between sequential clock ticks. 

Figure 20 shows the measurements with non real time scheduling and Figure 21 

shows the measurements with real time scheduling.  

When we look at the results, it is observed that there are delays at the microsecond 

level and real time threads have a deterministic and more consistent structure 

compared to the non real time ones which makes real time threads more suitable for 

TDMAController() implementation. 
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In Table 7 and Table 8 measurements are illustrated with the statistical information. 

  

Figure 20: Periodic Timer Accuracy for 10KHz with  Non Real Time Scheduling 

Table 2: Experimental Results for Periodic Timer Accuracy for 10KHz with  Non Real Time Scheduling 

Number of 
Samples 

Minimum Maximum Average Standard 
Deviation 

Confidence Int 
(%95) 

1000 0 2976 48 111,111 6.89 
 

 

 

Figure 21: Periodic Timer Accuracy for 10KHz with  Real Time Scheduling 
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Table 3: Experimental Results for Periodic Timer Accuracy for 10KHz with Real Time Scheduling 

Number of 
Samples 

Minimum  Maximum Average Standard 
Deviation 

Confidence Int 
(%95) 

1000 0 206 26 35,46 2,2 

6.2.2 Slot Switching Latency: 

Slot Switching Delay is the time interval between arrival of the timer signal and 

release of the specific software lock for related protocol. Slot Switching Delay 

experiments aim to measure the interval of the slot switching time which is the core 

of Real Time Ethernet implementation and the observing the changes for that 

switching time interval according to types of the scheduling such as real time and 

non real time. Experimental results will be effective in determining the time slot 

intervals in Real Time Ethernet implementation. 

Measurements are taken with high resolution timers of Intel Architecture. Figure 23 

and Figure 22 illustrate the slot switching delay for real time and non real time 

threads. In this experiment, TDMAController() thread is generated to activate 

periodic timer and signaling mechanism of RTXX Protocol. Test software output 

consists of a series of delay values. Each delay value is calculated from the 

differences between two time samples that the first sample captured at the reception 

of the timer signal and the second sample captured when the release of the software 

lock of determined protocol. Test software is executed 1000 times and the graphs are 

generated based on these test results 

During the experiments CPU is loaded up to %99 with dummy functions. For real 

time scheduling mode, the priority of the thread is determined as “99”.  

Experiments show that the slot switching latency values are almost the same for both 

real time and non real time scheduling. This stems from the size of switching code 

which is relatively small compared to other parts of the implementation. The 

experiment shows us that the real time scheduling performance does not have 

remarkable effects on slot switching delay. 
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We observe that the slot switching latency values are around 4500 Microseconds for 

both real time and non real time scheduling. and the jitter values varies a lot. This 

may arise from the interrupt latencies coming form peripherals as mouse, keyboard 

etc.Based on these delay values it’s seen that slot switching delay has much lower 

effect on real time Ethernet implementation compared to other delay sources. 

 

Figure 22: Slot Switching Latency with Non Real Time Scheduling 

Table 4: Experimental Results for Slot Switching Latency with  Non Real Time Scheduling 

Number of 
Samples 

Minimum Maximum Average 

1000 3632 26260 4494 
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Figure 23:Slot Switching Latency with Real Time Scheduling 

Table 5: Experimental Results for Slot Switching Latency with Real Time Scheduling 

Number of 
Samples 

Minimum Maximum Average 

1000 4050 22978 4473 

6.2.3 Periodic Timer Synchronization Accuracy 

Periodic timer synchronization accuracy is another mechanism that influences the 

slot switching time in the implementation.  Periodic Timer Synchronization 

Algorithm aims to synchronize periodic timer startup time of each RTXX Node after 

the synchronization of the system time with IEEE 1588 PTP Implementation. The 

difference between periodic timer accuracy experiments and periodic timer 

synchronization accuracy experiments is, periodic timer accuracy experiments aim to 

measure the periodicity of the timer, on the other hand, periodic timer 

synchronization accuracy experiments aims to measure the time difference between 

periodic timer startup times in master and slave node.  

In this experiment, the aim is to measure the accuracy of the periodic timer 

synchronization algorithm. In the current implementation, besides synchronizing the 

system time, synchronized timer signal generation is required for simultaneous slot 

switching in the real time network. In the implementations found in the literature for 
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synchronized clock generation, the clock inputs are being used to create a shared 

clock and this necessitates special hardware elements. However in this 

implementation special hardware should not be required and standard Network 

Interface Cards should be used. Because of this, unlike the other implementations in 

the literature, software solutions are considered to assure the periodic timer 

synchronization. The first method that comes to mind is using the Ethernet packets as 

a trigger and starting the periodic timers after receiving the packets. But this method 

is not applicable when the aimed few microsecond sensitivity is considered because 

of the delays resulting from the transmission of the packet on a physical environment 

and Master and Slave nodes’ network stacks. 

In the system developed, from the start of the 2nd second of system time after 

making the system clock synchronization with IEEE 1588 PTP, trials are performed 

at 100 microsecond periods until the value of deviation is obtained that has a lower 

value then the predetermined deviation value. The number of the trials are increased 

or decreased according to the determined deviation value. For example, one trial may 

be enough for a 10 microseconds deviation value whereas tens or hundreds of trials 

may be required for a 1 microsecond deviation depending also on the processor’s 

speed.In this experiment, repeating period is determined as 100 microseconds. 

TDMAController()  thread with Periodic Timer Synchronization Algorithm is 

spawned to measure periodic timer synchronization delays in the system. Test 

software outputs consist of a series of deviation values. Each deviation value 

illustrates the time deviation from predetermined synchronization point. Test 

software is executed 1000 times and the graphs are generated based on these test 

results. 

 Figure 24 shows the distribution of deviations from predefined synchronization time 

point for non real time scheduling.  There are some peak points on the right side of 

the graphs which makes it unsuitable for this implementation. If we compare 

minimum and maximum values of the measured accuracy, we can see very big 

difference arising from the non real time scheduling. Figure 25 shows the 



64 

 

distribution of delay deviations from predefined synchronization time point for real 

time scheduling. That figure has a uniform distribution of delay deviation around 1-2 

Microseconds. Based on test results, periodic timer synchronization delays can be 

said to be sufficient for Real Time Ethernet implementation. 

 

Figure 24: Periodic Timer Synchronization Accuracy for with Non Real Time Scheduling 

Table 6: Experimental Results for Periodic Timer Synchronization Accuracy with  Non Real Time 
Scheduling 

Number of 
Samples 

Minimum Maximum 

1000 35 25111503 
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Figure 25: Periodic Timer Synchronization Accuracy for with Real Time Scheduling 

Table 7: Experimental Results for Periodic Timer Synchronization Accuracy with Real Time Scheduling 

Number of 
Samples 

Minimum Maximum Average Standard 
Deviation 

Confidence Int 
(%95) 

1000 35 2409 1349 694 43,04 

 

6.2.4 Roundtrip Latency 

The purpose of this experiment is to determine the delays that are resulting from the 

network stack of the operating system. For this purpose, a test software is developed 

in which a connection is set between two nodes with cross cable and the roundtrip 

latencies of Ethernet packets are recorded. 

When developing the real time Ethernet and RTXX protocol implementations it is 

assumed that the whole communication network is shared because of this the 

implementation software is developed accordingly. When we look at the shared 

medium communications in general, we see that the receive and transmit channels 

are both connected to the same transmission channel and so every packet that is sent 

to the shared medium is also detected by the receiver channel.  
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The RTXX implementation owing to the same shared medium communication 

principle needs every outgoing packet’s header data to update the priority queue in 

the protocol implementation. Because converting the standard Ethernet connection to 

shared ethernet requires hardware changes like shorting transmission lines with 

reception lines, considering the line emphedance and signaling issues,  RAW socket 

background is used for packets that are sent to the system in the test software. If there 

is a raw socket that is listening on the same computer, a copy of every packet that is 

delivered outside is also sent to other raw sockets. So, like the shared medium 

communications, every packet that is sent is also recognized by the receiver channel 

and the actions can be taken accordingly. 

When determining the time slot interval, the delays resulting from the network stack 

should also be taken into account because of the RAW socket usage in the Real Time 

Ethernet and RTXX protocol implementations. Round trip delay experiments are 

measured according to both the packet size and the scheduling type and the graphical 

representation of the experiment results are prepared. 

During the experiment, a dummy thread is developed which will keep the system 

completely busy to reflect the potential changes on the system load and experiments 

are started. The test software has been run a thousand times and every delay value is 

recorded and represented on the graphics. 

When we look at the test results, we observe that the packet size and the delay 

change as directly proportional to each other as expected. When the scheduling type 

is considered, we can conclude that the delay times are variable and inconsistent for 

non real time threads but they show a smooth distribution for the real time threads. 

When we consider the real time 60 byte packets, average roundtrip delay value is 

seen to be 729 microseconds. When 1 Gbit Ethernet connection is used, the theorical 

transmission time is about 0,5 microseconds in the physical medium. In this case, the 

delay value resulting from the network stack is find as: 
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 Roundtrip Delay    = 2 x (Transmit Delay + Propagation Delay + Reception Delay) 

           729  = 2 x (Transmit Delay + 0 + Reception Delay) 

        364,5  =  Transmit Delay + Reception Delay 

 In this experiment Propagation Delay is not included in the calculation above 

because the delay value of propagation on the transmission line is very low, between 

3.71 to 8.34 Nanosecond/Meter [29], compared  to other delay sources in the 

implementation. It is considered that propagation delay has not any remarkable effect 

on performance of the Real Time Ethernet and RTXX Protocol implementation. 

It can be concluded that the required time for a single packet to be transmitted and 

received in the real time Ethernet and RTXX protocol implementations should be 

minimum 365 Microseconds for above test conditions. When determining the time 

slot interval this value should be considered. 

 

Figure 26: Roundtrip Latency for 1514 Byte Packets  with Real Time Scheduling, 

Table 8: Experimental Results for Roundtrip Latency for 1514 Byte Packets with  Real Time Scheduling 

Number of 
Samples 

Minimum Maximum Average Standard 
Deviation 

Confidence Int 
(%95) 

1000 639 1152 844 78,18 4,84 
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Figure 27: Roundtrip Latency for 1514 Byte Packets  with Non Real Time Scheduling 

Table 9: Experimental Results for Roundtrip Latency for 1514 Byte Packets with Non Real Time 
Scheduling 

Number of 
Samples 

Minimum Maximum Average Standard 
Deviation 

Confidence Int 
(%95) 

1000 665 1103 911 84,9 5,26 
 

 

Figure 288: Roundtrip Latency for 60 Byte Packets  with Non Real Time Scheduling 
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Table 10: Experimental Results for Roundtrip Latency for 60 Byte Packets with Non Real Time 
Scheduling 

Number of 
Samples 

Minimum Maximum Average Standard 
Deviation 

Confidence Int 
(%95) 

1000 495 1551 697 79,67 4,94 
 

 

Figure 29: Roundtrip Latency for 60 Byte Packets  with Real Time Scheduling 

Table 11: Experimental Results for Roundtrip Latency for 60 Byte Packets with Real Time Scheduling 

Number of 
Samples 

Minimum Maximum Average Standard 
Deviation 

Confidence Int 
(%95) 

1000 557 931 729 77,39 4,49 

6.2.5 IEEE 1588 Time Synchronization Accuracy 

Time synchronization over IEEE 1588 is the main requirement for both Real Time 

Ethernet and RTXX Protocol Implementations. Success of the implementations 

depends on synchronization accuracy of IEEE 1588 PTP Implementation. This 

experiment aims to measure the time drifts between Master Node and Slave Node in 

Real Time Network after the IEEE 1588 PTP synchronization algorithm is executed.  

In this experiment, TDMAController() thread was generated on both Master and 

Slave Node and IEEE 1588 PTP protocol algorithm was executed for time 

synchronization. This process was repeated 1000 times sequentially and time 
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differences between Master and Slave node, called offset, were recorded. Test 

software output consists of these offset values. 

Test software is executed for different scheduling types as real time and non-real 

time and different packet sizes as 60 Byte and 1514 Bytes and offset values for these 

experiments are illustrated in graphs. Figure 31 and Figure 30 illustrates the 

synchronization offset distribution for 60 Byte Ethernet packet size for real time and 

non-real time scheduling. Figure 31 and Figure 32 illustrates the synchronization 

offset distribution for 1514 Byte Ethernet packet size for real time and non-real time 

scheduling. Figures show that packet size does not have remarkable effect on the 

synchronization accuracy. On the other hand, scheduling has effect on 

synchronization accuracy that real time scheduling has much more deterministic 

results compared to non real time scheduling 

With this test conditions average IEEE 1588 PTP synchronization drift is about 35 

Microseconds and worst-case synchronization drift seems 166 Microseconds for real 

time scheduling. For non real time scheduling, difference between the maximum and 

minimum values of the synchronization accuracy is too big so non real time 

scheduling does not acceptable for this implementation. During the time slot 

calculation this drift must be considered and time slots should have big enough to 

tolerate this synchronization jitter. 
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Figure 30: IEEE 1588 Time Synchronization Accuracy for 60 Byte Packets with Non Real Time Scheduling 

Table 12: Experimental Results for IEEE 1588 Time Synchronization Accuracy for 60 Byte Packets with 
Non Real Time Scheduling 

Number of 
Samples 

Minimum Maximum Average 

1000 0 500308 1043 
 

 

Figure 31: IEEE 1588 Time Synchronization Accuracy for 60 Byte Packets with Real Time Scheduling 
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Table 13: Experimental Results for IEEE 1588 Time Synchronization Accuracy for 60 Byte Packets with 
Real Time Scheduling 

Number of 
Samples 

Minimum Maximum Average Standard 
Deviation 

Confidence Int 
(%95) 

1000 0 166 38 28,72 1,78 
 

 

Figure 32: IEEE 1588 Time Synchronization Accuracy for 1514 Byte Packets with Non Real Time 
Scheduling 

Table 14: Experimental Results for IEEE 1588 Time Synchronization Accuracy for 1514 Byte Packets with 
Non Real Time Scheduling 

Number of 
Samples 

Minimum Maximum Average 

1000 0 500029 1024 
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Figure 33: IEEE 1588 Time Synchronization Accuracy for 1514 Byte Packets with Real Time Scheduling 

Table 15: Experimental Results for IEEE 1588 Time Synchronization Accuracy for 1514 Byte Packets with 
Real Time Scheduling 

Number of 
Samples 

Minimum Maximum Average Standard 
Deviation 

Confidence Int 
(%95) 

1000 0 164 31 27,01 1,677 

 

6.2.6 RTXX Application Interface Latency 

Another latency source in the protocol implementation is RTXX Application 

Interface Latency. This latency is arising from the aplication interfaces that an 

applicaiton uses for accessing RTXX Protocol engine. As mentioned in Section 5.2.3, 

there are some buffering mechnisms at application interfaces which uses Posix 

Message Queues. The following experiments aims to measure the overall latency 

results from buffering and computation at user interface layer. 

During the experiments two types of latecies were mesured in the system. First one 

was the application to RTXX Protocol latency, and the second one was RTXX 

Protocol to application latency. Message queue size was determined as 60 Bytes in 
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the experiments that the simulations shows that this size is sufficient for RTXX 

Protocol messaging [30].  

In the experimental results, CPU is loaded up to %99 with dummy functions to 

measure the worst case latency. For real time scheduling mode, the priority of the 

thread is determined as “99”. Test is repeated 1000 times and  Figure 34 and Figure 

35 are generated based on these test results.  

It is seen that the latency values resulting from RTXX Protocol to RTXX application 

and RTXX application to RTXX Protocol is almost the same. On the other hand, 

latency values varies for real-time and non real-time scheduling which the values are 

illustrated in Table 35 and Table 34. The results show that the real time scheduling 

gives more deterministic and lower latency values compared to non real-time 

scheduling. The worst-case latency is determined as 90 Microseconds that should be 

considered during the slot interval determination of RTXX Protocol 

 

Figure 34: RTXX Application Interface Latency with Non Real Time Scheduling 

Table 16: Experimental Results for RTXX Application Interface Latency with Non Real Time Scheduling 

Number of 
Samples 

Minimum Maximum Average Standard 
Deviation 

Confidence Int 
(%95) 

1000 17 313 47 17,51 1,09 
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Figure 35: RTXX Application Interface Latency with Non Real Time Scheduling 

Table 17: Experimental Results for RTXX Application Interface Latency with Non Real Time Scheduling 

Number of 
Samples 

Minimum Maximum Average Standard 
Deviation 

Confidence Int 
(%95) 

1000 11 90 44 16,195 1 

 

6.2.7 Queuing Latency 

Priority queue implementation is the main requirement for the  RTXX Protocol. 

Because of this priority queue update delay is another factor that may affect the 

width of Real-time slot interval. Because the update process of the priority queue is 

repeated for each incoming and outgoing packet realted to RTXX protocol, knowing 

the update delays is important to determine the RTXX real time slot interval in the 

network. Few microseconds update latency is expected for this implementation. 

There are two functions, named enqueueGlobal() and dequeueGlobal, in the software 

which interracts with priority function directly. enqueueGlobal() function is 

responsible to add new element into the priority queue and dequeueGlobal() is 

responsible to remove the smallest deadlined element in the priority queue. Because 
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the Binary Heap algorithm used in priority queue adaptation update time of the queue 

may varies according to the value of each added and removed element and number of 

elements in the queue.  

In the experiments maximum number of elements in the Priority Queue size is 

determined as 1000 for the test software. Firstly, the queue is filled with new 

elements by calling enqueueGlobal() 1000 times. After that the dequeueGlobal() 

functions  called 1000 times to clear the the queue completely and each of 

enqueueGlobal()  and dequeueGlobal() function time consumptions are recorded. To 

measure the worst-case latency of the priority queue access with enqueue and 

dequeue functions, each new element’s value that will added to the queue is 

dicreased. During the experiments CPU is  loaded up to %99 with a dummy 

functions to measure the worst case access delay to the queue. Experiment were 

repeated for both real time and non real time scheduling. For real time scheduling 

mode, the priority of the thread is determined as “99”.  

Previous studies for the RTXX Protocol shows that the maximum required element 

number for the priority queue is about 32. Experimental worst-case queuing delay for 

32 elements for Real Time scheduling is about 4 Microseconds in this 

implementation.  Although the queuing latencies have not much influence in overall 

latency, it should be considered during the determination of time slot interval of 

RTXX Protocol. 

6.2.8 Real Time Traffic Experiments 

In experiments so far, infrastructural measurements have been taken for Real Time 

Ethernet and RTXX Protocols. In this and subsequent experiments, measurements 

will be taken at system level. Previously collected measurements will be used to 

obtain time slot size and frequency of RTXX protocol. 

For the determination of the delay parameters and their values in the system, real 

time scheduling will be used to generate protocol threads. Thus the experimental 

results which are collected with the real time scheduling will be used. 
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Table 18 illustrates the summary of the real time experimental results. 

 

Table 18:Summary of Real Time Scheduling Experimental Results 
Delay Parameter Minimum Average Maximum 

Periodic timer accuracy 0 26 206 

Slot switching latency 4 4,5 23 

Periodic timer 

synchronization accuracy 
0 1,5 2,5 

Network Stack 

Transmission Delay 
279 365 466 

IEEE 1588 Time 

Synchronization accuracy 
0 38 166 

RTXX Application 

interface latency 
11 44 90 

Queuing Latency 4 4 4 

 

 

Considering these values, it can be seen that the best case latency for overall system 

is 298 Microseconds, Average latency is 483 Microseconds and the worst-case 

latency is  957 microseconds. Some delays may occur more than one node, because 

of this determining the value of the slot interval as the range of  1 Millisecond will 

not be wrong. In this case maximum frequency for the real time slot will be 1000 Hz. 

During the experiments Two Intel® Atom™ Processor Z5xx Series and Intel® 

System Controller Hub US15W Development Kit connected each other with a cross 

cable and Developed Real Time Ethernet and RTXX Protocol application test 

software installed both PC. First computer named as N1 and the second computer 

named as N2. The following statements explains the operation of test software.  

 The initialization process is started by 1588 PTP Time Synchronization 

process. 
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 After the time synchronization N1 sends an RTXX job including (N2,d,0,T) 

request. 

 N2 captures the job which is sent by the N1 and puts to request to its priority 

queue. 

 Because the eligibility time is 0, N2 immediately sends its first message that 

includes (N2,d,0,T) request and the timestamp of the system time . By sending 

(N2,d,0,T) request, N2 reserves shared medium for itself for future messages. 

 N1 captures the packet coming from N2, calculates the time difference 

between its system time and the time instance located in the packet and 

records it. 

 N2 continues to send (N2,d,0,T) request with the message periodically during 

the lifecycle of test software. 

 After a specific number of samples collected test software finalizes itself. 

 

For the first RTXX Protocol  experiment, time slot interval is determined as 1 

Millisecond which is the smallest  applicable time slot for this platform, deadline, d, 

is determined as 1 Millisecond, eligibility time, e, is determined as 0, Qmax is 

determined as 1 and the maximum message size in the system, Fmax, is determined as 

the minimum Ethernet frame length 60 Bytes = 480 bits. In this conditions the 

theoretical minimum tolerable frequency value is as follows; 

 

rmin = (Qmax+1) / (dmin-emax)   (1) 

 

rmin = (1+1) /( 0,001-0)=2000 Hz  (1) 

 

And the theoretical bandwidth for this experiment is computed as follows; 

 

rmin x Fmax = 2000 x 480 =960000 bit per seconds 
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The overall bandwidth for the system is 1Gbps so the theoretical bandwidth 

requirement is less than one percent of the overall bandwidth. On the other hand, 

applicable time slot frequency for real time implementation can be at most 1000Hz 

and even in this frequency, the bandwidth usage is hundred percent of overall 

bandwidth because of the software delays. The transmission schedule for the first 

experiment is illustrated in Figure 36.  The first set of experimental results illustrated 

in Figure 37 that shows the latency distribution of packets sent by N2 in 

Microseconds level.  

 

RT RT RTRTRT RT RT RTRTRT RT RT RT RT RT RT

1/rmin

 

Figure 36: Transmission Schedule for Real Time Traffic Experiment 1 

 

 

Figure 37: RTXX Latency for 1mS Deadline for Real Time Scheduling 

Table 19: Experimental Results RTXX Latency for 1mS Deadline for Real Time Scheduling 

Number of 
Samples 

Minimum Maximum Average Standard 
Deviation 

Confidence Int 
(%95) 

100 280 483 382 57,98 11,36 
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It can be seen that, for 1 Millisecond deadline, all of the experimental results are less 

than 1 Millisecond which means that the deadline requirement was met and the 

protocol worked fine during the experiment. 

In the second RTXX Protocol  experiment, time slot interval is determined as 1 

Millisecond which is the smallest  applicable time slot for this platform, deadline, d, 

is determined as 4 Millisecond, eligibility time, e, is determined as 0, Qmax is 

determined as 1 and the maximum message size in the system, Fmax, is determined as 

the minimum Ethernet frame length 60 Bytes = 480 bits. In this conditions the 

theoretical minimum tolerable frequency value is as follows; 

 

rmin = (Qmax+1) / (dmin-emax)   (1) 

 

rmin = (1+1) /( 0,004-0)=500 Hz  (1) 

 

And the theoretical bandwidth for the second experiment is computed as follows; 

 

rmin x Fmax = 500 x 480 =240000 bits per seconds 

 

The highest applicable frequency for the experiment is 250Hz for this platform 

because of the time slot interval of 1 Millisecond. The transmission schedule for the 

second experiment is illustrated in Figure 38 The second set of experimental results 

illustrated in Figure 39 that shows the latency distribution of packets sent by N2 in 

Microseconds level. 

 

1/rmin 1/rmin
1/rmin 1/rmin

RT N1 N2 N1RT RTRT N1 N1N1N1 N2N2N2N2 N2

 

Figure 38:Transmission Schedule for Real Time Traffic Experiment 2 
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Figure 39: RTXX Latency for 4mS Deadline for Real Time Scheduling 

Table 20: Experimental Results RTXX Latency for 4mS Deadline for Real Time Scheduling 

Number of 
Samples 

Minimum Maximum Average 

100 3112 3879 3600 
 

It can be seen that, for 4 Millisecond deadline, all of the experimental results are less 

than 4 Millisecond which means that the deadline requirement was met and the 

protocol worked correctly during the experiment. 

 

6.2.9 Non Real Time Traffic Experiment 

RTXX Protocol allows us to use non real time and real time traffic on the same 

shared medium. The following experiment aims to measure the non real time traffic 

delays occurs on N2 with the transmission schedule illustrated in Figure 38. A new 

thread is created on N2 to generate non real traffic messages that contains the time 

instance of the system. Time instance in the message is captured at the packet 

creation time and sent by a container Ethernet packet. Another thread on N1 is also 

created to capture incoming Ethernet packets from N2. The following statements 

explains the operation of test software; 
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 The initialization process is started by 1588 PTP Time Synchronization 

process. 

 After the time synchronization, the non real time packet generator thread on 

N2 starts to send non real time Ethernet packets 

 When a message arrives to N1,  the thread on N1 parses the time instance 

value from the packet,  calculates the time difference between its actual 

system time and the time instance coming from the Ethernet and stores it. 

After a specific number of samples collected test software finalizes itself. 

 

Figure 40 illustrates the measured delay values for non real time traffic with 

unloaded  system. The standard deviation for this experiment is too high because the 

scheduling for the test thread is non real time. 

 

 

Figure 40: RTXX Latency for 4mS Deadline for Real Time Scheduling 

Table 21: Experimental Results RTXX Latency for 4mS Deadline for Real Time Scheduling 

Number of 
Samples 

Minimum Maximum 

100 283 100023 
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CHAPTER 7 

    CONCLUSIONS 

In this thesis performance of the Real Time Ethernet ,IEEE 1588 Precision Time 

Protocol and RTXX Protocol implementations are experimentally evaluated and the 

results of the experiments are presented.  

Performance metrics for the Real Time Ethernet implementations are determined as 

periodic timer accuracy, periodic timer synchronization accuracy, slot switching 

latency. and one way packet transmission time. Results of the experimental 

measurements interpreted in Section 6.2.1, Section 6.2.2 and Section 6.2.3 and 

Section 6.2.4 As a summary of the experiments, delay bounds was understood to be 

due to the thread priority levels and real time scheduling of the operating system 

directly. 

For the IEEE 1588 Precision Time Protocol the experimental performance parameter 

determined as the synchronization accuracy of the implementation. The experimental 

results are interpreted in Section 6.2.5. it is seen that the synchronization accuracy is 

depending on priority of the threads in the system. Nonetheless it is seen that packet 

size does not have remarkable effect on synchronization accuracy. Average accuracy 

for IEEE 1588 time synchronization  is presented as 38 microseconds for 60 Byte 

packets with a standard deviation of 28,72,  

In this thesis, the phase correction algorithm for IEEE 1588 Precision Time Protocol 

is not implemented due to the fact that both lab computers are exactly the same. For 

future studies, this feature can be implemented to current IEEE 1588 Precision Time 

Protocol and additional experiments can be done on different hardware architectures. 
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This thessis only implements the communicational operation of the RTXX Protocol 

with a limited request number per message. For fully functional RTXX 

implementation that explained in Chapter 3, a communication model should be 

defined and message creation algorithms based on this model should be provided  

The system level tests underwent on the lab nodes. Performance bottlenecks 

determined as hardware clock source, priority of the application threads and real time 

scheduling capability of the Operating System that experiments run on. 

Priority queue interaction between separate nodes is tested by the test software which 

indicates that both Real Time Ethernet Implementation and RTXX Protocol work 

seamlessly in the system. 
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APPENDIX A 

System Calls 

 

System calls are the services provided by Linux kernel to attract kernel resource from 

a user space application [21]. 

A system call executes in the kernel space and a user program executes in the user 

space. In a Linux system,  hardware access is restricted to the kernel space to protect 

the hardware routines from user space programs. Some cases, user space application 

requires to access directly to hardware to perform the specific job, like high precision 

timer access. In this case, there is a special need for bridging user programs to 

hardware which is called “system calls”. 

System call implementations are dependent to microprocessor architecture. Every 

system call has a unique number associated with it. For Intel x86 architecture, when 

a user space program calls a system call, a library routine traps the kernel via 

executing the special “INT 0x80” assembly instruction and the associated number of 

the system call is passed to kernel via EAX register. The arguments of the system 

call are also passed to kernel via EBX,EBC, etc. register. Return value of the system 

call is passed from kernel to user program via other CPU registers. [22] 

OpenSUSE 11.x is based Linux kernel version 2.6.27.7-9 so system call 

implementation method for RTXX protocol is described for this specific kernel 

version. 

 

Modified kernel source files: 

 

/usr/src/linux-version/include/linux/netdevice.h 

/usr/src/linux-version/arch/x86/kernel/syscall_table_32.S 

/usr/src/linux-version/include/asm-x86/unistd_32.h 



89 

 

/usr/src/linux-version/include/linux/syscalls.h 

/usr/src/linux-version/Makefile 

 

/usr/src/linux-version/include/linux/netdevice.h 

netdevice.h is the core of network device structure in Linux. Every network 

interfaces in the system is based on net_device structure which is referenced in the 

netdevice.h file.  To ensure that the locking mechanism can run on all interfaces, a 

special integer parameter is added in net_device structure. With this modification, 

every network interface may be locked independently from RTXX protocol 

application. 

There are two integer arguments are implemented in the net_device structure.  First 

one is MESSAGETYPE and the second one is POCKETMODE. MESSAGETYPE 

argument  is used by the interface driver  for determining the time slot. If the time 

slot belongs to real time traffic, driver locks its transmit queues coming from Layer 3 

protocols, like IP, otherwise driver works as usual. POCKETMODE argument is 

used for shape the non real time Layer 3 traffic. 

 

Struct net_device { 

. 

. 

/* Modification in net_device structure */ 

int  MESSAGETYPE; 

int  POCKETMODE; 

. 

. 

} 

 

Code 6: net_device Structure 

 

/usr/src/linux-version/arch/x86/kernel/syscall_table_32.S 

This file contains the system call names in the kernel. In order to provide full control 

of transmission on  network interfaces in user space applications as RTXX Protocol 
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Application. Every new system call should be added to the end of system call list 

located in this file. There are three new system call added to the the sytem call list as 

below. 

 .long sys_lockRTXXDevice 

.long sys_unlockRTXXDevice 

.long sys_sendToRTXXDriver 

lockRTXXDevice system call locks the transmission queues of the related interface. 

unlockRTXXDevice system call releases the transmission queues of the related 

interface. sendToRTXXDriver system call transfers user modified socked buffer 

directly to the interface’s driver transmission routine without using the socket 

interface. This system can be used anytime by the user application. 

 

/usr/src/linux-version/include/asm-x86/unistd_32.h 

This file contains the system call numbers which is transferred to kernel  through 

EAX register when the system call is invoked by the user application. New system 

call numbers should be defined in the file to notify the kernel about new system calls. 

Define parameters of the new system calls should be added to the end of predefined 

system call list. Highest system call number in the original file should increment by 

one and assigned to firstly added system call. For later arrivals, highest system call 

number should also be  incremented by one and assigned as their system call number. 

If the highest system call number in the system is 332 then new system calls should 

be defined as below: 

#define __NR_ lockRTXXDevice  333 

#define __NR_ unlockRTXXDevice 334 

#define __NR_ sendToRTXXDriver 335 

In addition to newly added system call numbers, total system call number value 

should also be modified. If the highest system call number is 335, then total system 

call number should be assigned as 336 because system call number index starts from 

0. If __NR_syscalls definition is not exist in the file, user should define it as;  

#define __NR_syscalls  336 



91 

 

/usr/src/linux-version/include/linux/syscalls.h 

This file contains the declaration of system calls. All the system call arguments 

should be declared in this file. Kernel will use these declarations for system call trap 

procedures. New system call declarations should be added at the end of the file as 

below; 

asmlinkage long sys_lockRTXXDevice(char  * device); 

asmlinkage long sys_unlockRTXXDevice(char * device); 

asmlinkage long sys_sendToRTXXDriver(char * device, struct sk_buff __usr *skb); 

To notify compiler about socket buffer structure which is referenced in 

sendToRTXXDriver system call,  

Struct sk_buff; 

should be added at the beginning of the file.  

 

/usr/src/linux-version/Makefile 

Makefile of the linux kernel should be modified to add new system calls to kernel. In 

the Makefile, directory of the new system call function should be referenced  to be 

compiled and linked to Linux kernel. A new folder, named “RTXXSystemCalls”, is 

created in “/usr/src/linux-version/”  directory and new system call source codes 

located in that folder. To reference that folder in the Makefile, user should search the 

“ core-y +=” parameter and add the folder name at the end of the folder list.  

 

Modified driver source code 

Driver of the Ethernet interface should be modified to bring locking mechanism to 

RTXX Protocol implementation. To provide minimum impact on the driver source 

code, a new transmission function, ”rtxx_start_xmit” , is added to source code 

instead of changing standard driver routines and the transmission entry function is 

routed to the new transmission routine. By this method, all the packets coming from 

operating system buffers can be controlled before reaching the real transmission 

function. Following changes have been made in the driver source code; 
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Adding a psudo transmission function: 

A psudo transmission function is added to driver source to control realtime and non 

real time pocket traffic. Psudo code for the psudo transmission function is illustrated 

in Code 7 

 

psudoTransmitFunc () { 

 

 if (timeSlot==REALTIME){ 

  lockNetwork(); 

 } 

 else{ 

  if (nonRtTrafficType==ONESHOT){ 

realTransmitFunc(); 

lockNetwork(); 

  } 

  else { 

   realTransmitFunc(); 

  } 

 } 

} 

 

Code 7: Psudo Transmission Function 

Normally driver functions can not be accessed from kernel modules or user space 

function to avoid conflicts in the system, however RTXX protocol should access the 

driver codes to control the network traffic. To provide this capability to RTXX 

protocol applications, real transmission function of the network driver should  be 

added to Linux kernel symbol table via EXPORT_SYMBOL() macro as below; 

EXPORT_SYMBOL(realTransmitFunc); 

In addition to that macro “static” identifier in the definition of realTransmitFuntion 

should be removed. 

After defining the psudo transmit function and exporting it to the kernel symbol 

table, driver entry function should be redirected to this psudo function by modifying 

related part of the driver as below;  

dev->hard_start_xmit = &psudoTransmitFunc; 
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New directories and files created for the Linux kernel: 

/usr/src/linux-version/RTXXSystemCalls 

/usr/src/linux-version/RTXXSystemCalls/lockRTXXDevice.c 

/usr/src/linux-version/RTXXSystemCalls/unlockRTXXDevice.c 

/usr/src/linux-version/RTXXSystemCalls/sendToRTXXDriver.c 

/usr/src/linux-version/RTXXSystemCalls/Makefile 

 

/usr/src/linux-version/RTXXSystemCalls 

A new folder, named “RTXXSystemCalls”, is created in “/usr/src/linux-version/”  

directory to put new system call source codes in it.  

 

/usr/src/linux-version/RTXXSystemCalls/lockRTXXDevice.c 

A new file created as the source code of lockRTXXDriver system call 

 

/usr/src/linux-version/RTXXSystemCalls/unlockRTXXDevice.c 

A new file created as the source code of unlockRTXXDriver system call 

 

/usr/src/linux-version/RTXXSystemCalls/sendToRTXXDriver.c 

A new file created as the source code of sendToRTXXDriver system call 

 

/usr/src/linux-version/RTXXSystemCalls/Makefile 

A new file created as the Makefile for the system calls. Makefile of the linux kernel 

references this make file to build and link new system calls. To notify compiler about 

systemcall source files following parameters should be added to this Makefile; 

obj-y: lockRTXXDevice.o unlockRTXXDevice.o sendToRTXXDriver.o 
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APPENDIX B 

Configuring and Building Linux Kernel for RTXX Implementation: 

Linux kernel must be rebuild to activate the modifications on kernel and driver 

source codes. Building process of the kernel is explained in the following parts: 

 

Configuring Linux Kernel 

There are several ways to configure Linux kernel. Most user friendly method for the 

configuration is doing it by graphically. Before starting the configuration, user must 

login the command prompt with administrator/root permissions .Then to configure 

Linux kernel , user should enter the kernel source directiory, “/usr/src/linux-version/” 

and enter following command to command prompt; 

- make menuconfig 

Graphic output of the kernel configurator illustrated in Figure 41 
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Figure 41: Linux Menu Config Window 

Standard linux kernels  are designed for general purpose requirements like 

multithreading, multimedia, graphical applications etc. Because of this, the following 

changes illustrated in Table 22 must be done to Linux kernel to provide it more real 

time characteristics.  

 

Processor type and features 

  (x) Tickless System (Dynamic Ticks 

  (x) High Resolution Timer Support 

  (x) HPET Timer Suppor 

  Preemption model 

    (x) Preemptible Kernel (Low-Latency Desktop 

  Timer frequency 

    (x) Timer frequency (1000) 
 

Table 22:Menuconfig Configuration 

Building kernel 

After configuration process, linux kernel should be recompiled for new kernel. . 

Before starting the configuration, user must login the command prompt with 

administrator/root permissions .Then to compile Linux kernel , user should enter the 
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kernel source directiory, “/usr/src/linux-version/” and enter following command to 

command prompt; 

 

- make 

 

Building process should start immediately. Although the estimated compilation time 

is about 1 hour, this time may vary depending on CPU speed. After building the 

kernel, kernel modules should be installed the related directories. This process is 

done by the following command; 

 

- make modules_install 

 

Final step is generating the final Linux image and installing it to the boot location. 

This process is done by the following command 

 

-make install 

 

Computer should be restarted to boot the latest kernel. 


