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ABSTRACT 

A SINGULAR VALUE DECOMPOSITION APPROACH FOR 

RECOMMENDATION SYSTEMS 

Osmanlı, Osman Nuri 

M.Sc., Department of Computer Engineering 

Supervisor: Prof. Dr. Ġsmail Hakkı TOROSLU 

 

 

July 2010, 67 pages 

Data analysis has become a very important area for both companies and researchers 

as a consequence of the technological developments in recent years. Companies are 

trying to increase their profit by analyzing the existing data about their customers 

and making decisions for the future according to the results of these analyses. 

Parallel to the need of companies, researchers are investigating different 

methodologies to analyze data more accurately with high performance. 

Recommender systems are one of the most popular and widespread data analysis 

tools. A recommender system applies knowledge discovery techniques to the 

existing data and makes personalized product recommendations during live 

customer interaction. However, the huge growth of customers and products 

especially on the internet, poses some challenges for recommender systems, 

producing high quality recommendations and performing millions of 

recommendations per second.  

In order to improve the performance of recommender systems, researchers have 

proposed many different methods. Singular Value Decomposition (SVD) technique 
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based on dimension reduction is one of these methods which produces high quality 

recommendations, but has to undergo very expensive matrix calculations. In this 

thesis, we propose and experimentally validate some contributions to SVD 

technique which are based on the user and the item categorization. Besides, we 

adopt tags to classical 2D (User-Item) SVD technique and report the results of 

experiments. Results are promising to make more accurate and scalable 

recommender systems.  

Keywords: Recommender Systems, Collaborative Filtering, Singular Value 

Decomposition, Content Based Filtering, Personalization, User Modeling 
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ÖZ 

ÖNERĠ SĠSTEMLERĠ ĠÇĠN TEKĠL DEĞER AYRIġIMI YAKLAġIMI 

Osmanlı, Osman Nuri 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Ġsmail Hakkı TOROSLU 

 

 

Temmuz 2010, 67 sayfa 

Son yıllarda meydana gelen teknolojik geliĢmeler sonucu, veri analizi Ģirketler ve 

araĢtırmacılar açısından son derece önemli bir alan haline gelmektedir. ġirketler, 

müĢterileri ile ilgili ellerinde varolan bilgileri analiz ederek ve ileriki kararlarını 

alırken bu analizlerine göre hareket ederek karlarını artırmaya çalıĢmaktadır. 

ġirketlerin bu ihtiyaçlarına paralel olarak, araĢtırmacılar veriyi daha doğru ve hızlı 

iĢleyebilmek için farklı metodolojiler geliĢtirmektedir. 

Öneri sistemleri bu açılardan en popüler ve en yaygın veri analiz yazılımlarıdır. Bir 

öneri sistemi mevcut veriye bilgi iĢleme tekniklerini uygulayıp analiz ederek, 

kullanıcılarına kisiselleĢtirilmiĢ ürün önerileri sunar. Ancak özellikle internetin 

yaygınlaĢması ile müĢteri ve ürün sayısındaki büyük artıĢlar öneri sistemleri için 

bazı problemleri beraberinde getirmektedir. Bu problemler yüksek kalitede 

önerilerin yapılması ve saniyede milyonlarca öneri isteğine cevap verebilmektir. 

Öneri sistemlerinin performansını artırmaya yönelik, araĢtırmacılar tarafından birçok 

metod önerilmektedir. Boyut indirgemeye dayalı Tekil Değer AyrıĢımı (TDA), son 

derece yüksek kalitede öneriler üreten fakat hesaplama açısından pahalı matris 

iĢlemleri gerektiren bir yöntemdir. Bu tez kapsamında TDA‘ya dayalı öneri 
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tekneğine, kullanıcıya ve ürünlere göre kategoriler oluĢturma, ve bu kategorileri 

öneri sürecine dahil etme iĢlemi önerilmekte ve bu eklemenin olumlu sonuçları 

deneyler ile doğrulanmaktadır. Bunun yanında, klasik iki boyutlu TDA tekniğine, 

üçüncü boyut olarak etiketler adapte edilmiĢ ve deneysel sonuçlar raporlanmıĢtır. Bu 

iyileĢtirmeler daha doğru ve geniĢletilebilir öneri sistemleri oluĢturmayı sağlamıĢtır. 

Anahtar Kelimeler: Öneri Sistemleri, Tekil Değer AyrıĢımı, Kolaboratif 

Filtreleme, Ġçerik Bazlı Filtreleme, KiĢiselleĢtirme, Kullanıcı Modelleme 
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CHAPTER 1 

1 INTRODUCTION 

Recommender systems apply data analysis techniques to the problem of helping 

customers to find which products they would like to purchase especially on the 

internet. These systems are rapidly becoming a crucial tool in E-commerce on the 

Web. The tremendous growth of customers and products poses two main challenges 

for recommender systems. The first challenge is to improve the quality of the 

recommendations for the customers. Making good recommendations increases the 

customers desire to purchase products, whereas making bad recommendations may 

result losing customers. Another challenge is to improve the scalability of the 

recommendation algorithms. These algorithms are able to respond tens of millions of 

recommendation requests in real-time. In order to make a system scalable, the 

response time for the requests should be reduced. However, if the algorithm spends 

less time for recommendation, the quality of the recommendation decreases. 

Actually, from this perspective these two challenges are in conflict. For this reason, it 

is important to consider both of them simultaneously for the proposed solutions. 

Every recommendation system follows a specific process while making 

recommendations. Systems use the users‘ profiles and the information about items or 

products as the inputs and produce recommendations. In other words, a 

recommendation system consists of background data, the information that the system 

has before the recommendation process begins, input data, the information that user 

must communicate to the system in order to generate a recommendation, and an 

algorithm that combines background and input data to arrive at its recommendations.  

Recommendation techniques can be grouped into five as collaborative, content-

based, demographic, utility-based, and knowledge-based [11]. Moreover, some 

hybrid solutions could be generated with different methods as a combination of some 
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of these five techniques. In Chapter 2, all of these techniques are explained briefly. 

Among several different techniques, collaborative recommendation is probably the 

most familiar, most widely implemented one. Collaborative recommender systems 

recognize commonalities between users on the basis of their ratings, and generate 

new recommendations based on inter-user comparisons. 

At this point, SVD has an important property that makes it interesting for 

recommender systems. SVD provides the best low-rank linear approximation of the 

original matrix and the low-rank approximation of the original matrix is better than 

the original matrix itself [1, 2]. Filtering out of the small singular values can be 

introduced as removing ―noise‖ data in the matrix. Researchers [2, 3, 4, 5] suggest 

that SVD-based approaches produce results better than traditional collaborative 

filtering algorithms most of the time. However, SVD requires computationally very 

expensive matrix calculations and this makes SVD-based recommender systems less 

suitable for large-scale systems. For this reason, most of the researches on SVD-

based recommendation focus on scalability problem while protecting the high quality 

recommendations of the method. 

In this thesis, SVD-based recommendation techniques are compared with 

experiments and some new approaches are introduced to this technique. The first 

contribution we have proposed is the categorization of items and users. Our 

experiments showed that, item and user categorization increases both the 

recommendation quality and speed performance of the SVD technique. Moreover, 

we adopted the tags to the traditional 2-Dimensional SVD approach. By this way, we 

have the chance to analyze the effect of third dimension (tags) to the SVD 

recommendation performance. Our experiments illustrated that, tags also increase the 

performance to some extent.  

This thesis is structured in the following way:  

In chapter 2, a detailed explanation about recommender systems and a more formal 

description of the recommendation process is presented. 
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Chapter 3 covers the SVD method with examples. In addition to this chapter, 

Appendix A provides background information for SVD including basic matrix 

terminology. 

In Chapter 4, the existing SVD recommendation approaches are presented. The 

algorithms are explained in details. In addition to the existing methods we report our 

proposals, the categorization of users and items in SVD recommendation and 

adopting tags to classical SVD approach. 

In Chapter 5, the experimental results for both existing algorithms and our proposals 

are demonstrated together with the comparisons and evaluations about the results. 

Chapter 6 draws the conclusions of this thesis work. Other than that, some possible 

future work direction in terms of both our approach and the related area are stated. 
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CHAPTER 2 

2 RECOMMENDER SYSTEMS 

2.1 Definition of a Recommender System (RS) 

In order to increase the users‘ satisfaction towards online information search results, 

search engine developers and vendors try to predict user preference based on the user 

behavior. Recommendations are provided by the search engines or online vendors to 

the users. Recommendation systems are implemented in both commercial and non-

profit web sites to predict the user preferences. Accurate predictions may result in 

higher selling rates and increase the customer satisfaction. The main functions of 

recommendation systems are analyzing user data and extracting useful information 

for further predictions [6]. Variety of techniques has been proposed for performing 

recommendation, including content-based, collaborative, knowledge-based and other 

techniques. To improve performance, these methods have sometimes been combined 

in hybrid recommenders. 

There are a lot of recommendation systems, accessible via internet, which attempt to 

recommend to users several products such as music, movies, books, etc. For instance, 

recommender systems are now an integral part of some e-commerce sites such as 

Amazon.com and CDNow [7]. In a general way, recommendation systems are 

systems which intend to acquire opinions or preferences about items from a 

community of users, and use those opinions to present other users with items that are 

interesting to them. From this general description we can see that recommendation 

systems need two basic things to work properly:  

1. Information about the preferences of the users 

2. A method to determine if an item is interesting for a user 
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Normally, the users‘ information includes external information, such as user profiles, 

purchasing histories, and product ratings [8]. The way to determine whether an item 

is interesting to a user or not, depends on the kind of recommendation system. In this 

chapter, we will discuss the recommendation techniques which are commonly used. 

2.1.1 Recommendation Process 

In general, every recommendation system follows a specific process in order to 

create recommendations. If we see the process of recommendation as a black box, as 

shown in Figure 2.1, we can identify two sources of information needed as input for 

the process. These sources of information are the users‘ profiles and the information 

about items or products. Ideally the information stored in the profiles is related with 

the preferences of the users and should be given explicitly by the user itself. 

However, this information can also be extracted from other external sources such as 

web pages, buying behavior, etc. 

 

 

Figure 2.1 - Recommendation process as a black box 



 6 

2.2 Recommendation Techniques 

Recommendation techniques have a number of possible classifications [7, 9, 10]. 

Specifically, recommender systems have 

 background data, the information that the system has before the 

recommendation process begins 

 input data, the information that user must communicate to the system in order 

to generate a recommendation 

 algorithm that combines background and input data to arrive at its 

suggestions.  

On this basis, recommendation techniques can be grouped into five as shown in 

Table 2.1 [11]. In the table I is the set of items over which recommendations might 

be made, U is the set of users whose preferences are known, u is the user for whom 

recommendations need to be generated, and i is the item for which we would like to 

predict u‘s preference. 

 

Table 2.1 - Recommendation Techniques 
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2.2.1 Collaborative Recommendation 

Collaborative recommendation is probably the most well known, most widely 

implemented and most mature of the technologies. Collaborative recommender 

systems aggregate ratings or recommendations of objects, recognize commonalities 

between users on the basis of their ratings, and generate new recommendations based 

on inter-user comparisons. A typical user profile in a collaborative system consists of 

a vector of items and their ratings. In some cases, ratings may be binary (like/dislike) 

or real-valued indicating degree of preference. Some of the most important systems 

using this technique are GroupLens/NetPerceptions [12], Ringo/Firefly [13], and 

Recommender [14]. According to [15], these systems can be: 

 memory-based, comparing users against each other directly using correlation 

or other measures 

 model-based, in which a model is derived from the historical rating data and 

used to make predictions 

2.2.1.1 Memory-based Algorithms 

These are algorithms which make predictions based on the entire collection of 

previously rated items by the users. That is, the value of the unknown rating for a 

user and an item is usually computed as an aggregate of the ratings of some other 

(usually the N most similar) users for the same item [16].  

Memory-based approaches are the most popular prediction methods and are widely 

adopted in commercial collaborative filtering systems. The major types of memory-

based approaches are: 

 

 User-based Approaches 

User-based Collaborative Filtering predicts an active user‘s interest in a 

particular item based on rating information from similar user profiles, where each 

user profile corresponds to a row vector sorted in the user-item matrix. First, all 
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similarities of any two row vectors are calculated. Then, for predicting the rating 

of a user for a particular item, a set of top-N similar users are identified. The 

ratings of those top-N users are averaged as the prediction by weighted [17].  

These systems are extremely data-intensive, typically requiring a large number of 

user ratings before they can make reasonable recommendations. Moreover, 

depending on how actively a user rates content, the system may be slow to 

accumulate enough information about a user‘s preferences to make accurate 

recommendations, resulting in poor recommendations for a prolonged period 

[18]. 

 

 Item-based Approaches 

These approaches use the similarity between items instead of users. After, the 

similarity of items (column vectors in the user-item matrix) are calculated, 

unknown ratings can be predicted by averaging the ratings of other similar items 

rated by the active user [17]. 

The main advantage of item-based collaborative filtering over user-based 

collaborative filtering is its scalability. Item-based collaborative filtering does not 

have to scour databases containing potentially millions of users in order to find 

users with similar tastes. Instead, it can pre-score content based on user ratings 

and/or their attributes, and then make recommendations without incurring high 

computation costs [18]. 

2.2.1.2 Model-based Algorithms 

In contrast to memory-based algorithms, model-based algorithms use the collection 

of ratings as a training dataset to learn a model, which is then used to make rating 

predictions [16]. The model-based approaches are often time-consuming to build and 

update, and cannot cover a user range as diverse as the memory approaches [19]. 
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Model-based recommenders have used a variety of learning techniques including 

neural networks [20], latent semantic indexing [21], and Bayesian networks [22].  

2.2.2 Content-based Recommendation 

Content-based recommendation is an outgrowth and continuation of information 

filtering research [23]. In a content-based system, the objects of interest are defined 

by their associated features. For example, text recommendation systems like the 

newsgroup filtering system NewsWeeder [24] uses the words of their texts as 

features. A content-based recommender learns a profile of the user‘s interests based 

on the features present in objects the user has rated. The type of user profile derived 

by a content-based recommender depends on the learning method employed. 

Decision trees, neural nets, and vector-based representations have all been used. As 

in the collaborative case, content-based user profiles are long-term models and 

updated as more evidence about user preferences is observed. 

2.2.3 Demographic Recommendation 

Demographic recommender systems aim to categorize the user based on personal 

attributes and make recommendations based on demographic classes. An early 

example of this kind of system was Grundy [25] that recommended books based on 

personal information gathered through an interactive dialogue. Some more recent 

recommender systems have also taken this approach. For example, [26] uses 

demographic groups from marketing research to suggest a range of products and 

services. A short survey is used to gather the data for user categorization. The 

representation of demographic information in a user model can vary greatly. 

Demographic techniques form ―people-to-people‖ correlations like collaborative 

ones, but use different data. The benefit of a demographic approach is that it may not 

require a history of user ratings of the type needed by collaborative and content-

based techniques. 
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2.2.4 Utility-based Recommendation 

Utility-based recommenders make suggestions based on a computation of the utility 

of each object for the user. Of course, the central problem is how to create a utility 

function for each user. Tête-à-Tête and the e-commerce site PersonaLogic2 each 

have different techniques for arriving at a user-specific utility function and applying 

it to the objects under consideration [27]. The user profile therefore is the utility 

function that the system has derived for the user, and the system employs constraint 

satisfaction techniques to locate the best match. The benefit of utility-based 

recommendation is that it can factor non-product attributes, such as vendor reliability 

and product availability, into the utility computation, making it possible for example 

to trade off price against delivery schedule for a user who has an immediate need. 

2.2.5 Knowledge-based Recommendation 

Knowledge-based recommendation attempts to suggest objects based on inferences 

about a user‘s needs and preferences. In some sense, all recommendation techniques 

could be described as doing some kind of inference. Knowledge-based approaches 

are distinguished in that they have functional knowledge:  

 how a particular item meets a particular user need 

 reason about the relationship between a need and a possible recommendation 

The user profile can be any knowledge structure that supports this inference. In the 

simplest case, as in Google, it may simply be the query that the user has formulated. 

In others, it may be a more detailed representation of the user‘s needs [28]. 

2.3 Hybrid Recommendation Systems 

Hybrid recommender systems combine two or more recommendation techniques to 

gain better performance with fewer of the drawbacks of any individual one. Most 

commonly, collaborative filtering is combined with some other technique in an 

attempt to avoid the ramp-up problem. Table 2.3 shows some of the combination 

methods that have been employed [11]. 
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Table 2.2 - Hybridization Methods 

 

 

 Weighted: Each of the recommendation approaches that makes predictions are 

combined into a single prediction. For example, the simplest combined 

hybrid would be a linear combination of recommendation scores. The P-

Tango system uses such a hybrid [32]. 

 Switching: One of the recommendation techniques is selected to make the 

prediction when certain criteria are met. The DailyLearner system uses a 

content/collaborative hybrid in which a content-based recommendation 

method is employed first. If the content-based system cannot make a 

recommendation with sufficient confidence, then a collaborative 

recommendation is attempted [11]. 

 Mixed: Predictions from each of the recommendation techniques are presented 

to the user. The PTV system uses this approach to assemble a recommended 

program of television viewing [33]. It uses content-based techniques based on 

textual descriptions of TV shows and collaborative information about the 

preferences of other users. Recommendations from the two techniques are 

combined together in the final suggested program. 

 Feature Combination: A single prediction algorithm is provided with features 

from different recommendation techniques. For example, [34] report on 

experiments in which the inductive rule learner Ripper was applied to the task 
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of recommending movies using both user ratings and content features, and 

achieved significant improvements in precision over a purely collaborative 

approach. 

 Cascade: Output from one recommendation technique is refined by another. 

Unlike the previous hybridization methods, the cascade hybrid involves a 

staged process. In this technique, on recommendation technique is employed 

first to produce a coarse ranking of candidates and a second technique refines 

the recommendation from among the candidate set [11]. 

 Feature Augmentation: Output from one recommendation technique is fed to 

another. One technique is employed to produce a rating or classification of an 

item and that information is then incorporated into the processing of the next 

recommendation technique. For example, the Libra system makes content-

based recommendations of books based on data found in Amazon.com, using 

a naive Bayes text classifier. In the text data used by the system is included 

―related authors‖ and ―related titles‖ information that Amazon generates 

using its internal collaborative systems [35]. 

 Meta-level: Entire model produced by one recommendation technique is 

utilized by another. This differs from feature augmentation: in an 

augmentation hybrid, we use a learned model to generate features for input to 

a second algorithm; in a meta-level hybrid, the entire model becomes the 

input. The first meta-level hybrid was the web filtering system Fab [36]. 
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CHAPTER 3 

3 SINGULAR VALUE DECOMPOSITION 

In this section, SVD is explained with examples. Examples are taken from the 

Singular Value Decomposition tutorial [37]. The background information about 

matrix basics, Eigenvalues and Eigenvectors is available in Appendix A. 

3.1 Singular Value Decomposition (SVD) 

3.1.1 Definition of SVD 

Singular value decomposition (SVD) can be seen as a method for data reduction. As 

an illustration of this idea, consider the 2-dimensional data points in Figure 3.1 [37]. 

The regression line running through them shows the best approximation of the 

original data with a 1-dimensional object (a line). It is the best approximation in the 

sense that it is the line that minimizes the distance between each original point and 

the line. 

 

Figure 3.1 - Best-fit regression line 
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If we drew a perpendicular line from each point to the regression line, and took the 

intersection of those lines as the approximation of the original data point, we would 

have a reduced representation of the original data that captures as much of the 

original variation as possible. Notice that there is a second regression line, 

perpendicular to the first, shown in Figure 3.2 [37]. 

 

 

Figure 3.2 - Regression line along second dimension 

 

This line captures as much of the variation as possible along the second dimension of 

the original data set. It does poorer job of approximating the original data because it 

corresponds to a dimension exhibiting less variation to begin with. It is possible to 

use these regression lines to generate a set of uncorrelated data points that will show 

sub groupings in the original data not necessarily visible at first glance. 

These are the basic ideas behind SVD: taking a high dimensional, highly variable set 

of data points and reducing it to a lower dimensional space that exposes the 

substructure of the original data more clearly and orders it from most variation to the 

least.  
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Singular Value Decomposition is a matrix factorization technique which takes a 

rectangular matrix defined as A where A is an m x n matrix in which the m rows 

represents the users, and the n columns represents the items. The SVD theorem (1) 

states: 

 Amxn= Umxm Smxn V
T

nxn             (1) 

 Where U
T
U = Imxm  

 V
T
V = Inxn 

Where the columns of U are the left singular vectors; S (the same dimensions as A) 

has singular values and is diagonal; and V
T
 has rows that are the right singular 

vectors. Calculating the SVD consists of finding the Eigenvalues and Eigenvectors of 

AA
T 

and A
T
A. The Eigenvectors of A

T
A make up the columns of V , the 

Eigenvectors of AA
T 

 make up the columns of U. Also, the singular values in S are 

square roots of Eigenvalues from AA
T
 or A

T
A. The singular values are the diagonal 

entries of the S matrix and are arranged in descending order. The singular values are 

always real numbers. If the matrix A is a real matrix, then U and V are also real. 

Matrix S is a diagonal matrix having only r nonzero entries, which makes the 

effective dimensions of U, S and V matrices m × r, r × r, and r × n, respectively. 

The diagonal entries (s1, s2, . . . , sr) of S have the property that si > 0 and s1 ≥ s2 ≥ . . . 

≥ sr. 

3.1.2 Example of SVD 

Start with the matrix 
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In order to find U, we have to start with AA
T
. The transpose of A is 

 

So 

 

Next, we have to find the Eigenvalues and corresponding Eigenvectors of AA
T
. We 

know that Eigenvectors are defined by the equation  

 

And applying this to AA
T
 gives us 

 

We rewrite this as the set of equations 

 

And rearrange to get 
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Solve for λ by setting the determinant of the coefficient matrix to zero, 

 

This works out as 

 

To give us our two Eigenvalues λ = 10; λ = 12. Plugging λ back in to the original 

equations gives us our Eigenvectors.  

For λ = 10, we get 

 

Which is true for lots of values, so we'll pick x1 = 1 and x2 = -1 since those are small 

and easier to work with. Thus, we have the Eigenvector [1; -1] corresponding to the 

Eigenvalue λ = 10.  

For λ = 12, we get 
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And for the same reason as before we'll take x1 = 1 and x2 = 1. Now, for λ = 12 we 

have the Eigenvector [1; 1]. These Eigenvectors become column vectors in a matrix 

ordered by the size of the corresponding Eigenvalue. In other words, the Eigenvector 

of the largest Eigenvalue is column one, the Eigenvector of the next largest 

Eigenvalue is column two, and so forth and so on until we have the Eigenvector of 

the smallest Eigenvalue as the last column of our matrix. In the matrix below, the 

Eigenvector for λ = 12 is column one, and the Eigenvector for λ = 10 is column two.  

 

Finally, we have to convert this matrix into an orthogonal matrix which we do by 

applying the Gram-Schmidt orthonormalization process to the column vectors. Begin 

by normalizing v1. 

 

Compute 
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And normalize 

 

To give 

 

The calculation of V is similar. V is based on A
T
A, so we have 

 

Find the Eigenvalues of A
T
A by 

 

Represents the system of equations 
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Rewrite as 

 

These are solved by setting 

 

This works out as 

 

 

so λ = 0, λ = 10, λ = 12 are the Eigenvalues for A
T
A. Substituting λ back into the 

original equations to find corresponding Eigenvectors yields for λ = 12 
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So for λ = 12, v1 = [1; 2; 1].  

For λ = 10, we have 

 

Which means for λ = 10, v2 = [2; -1; 0].  

For λ = 0, we have 
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Which means for λ = 0, v3 = [1; 2; -5]. Order v1, v2, and v3 as column vectors in a 

matrix according to the size of the Eigenvalue to get and use the Gram-Schmidt 

orthonormalization process to convert that to an orthonormal matrix. 
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All this to give us 

 

When we really want its transpose 

 

For S we take the square roots of the non-zero Eigenvalues and populate the diagonal 

with them, putting the largest in s11, the next largest in s22 and so on until the smallest 

value ends up in smm. The non-zero Eigenvalues of U and V are always the same, so 

that's why it doesn't matter which one we take them from. The diagonal entries in S 

are the singular values of A, the columns in U are called left singular vectors, and the 

columns in V are called right singular vectors. 
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Now we have all the pieces of the puzzle 
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CHAPTER 4 

4 RECOMMENDATION WITH SVD 

4.1 Recommendation Using SVD 

The goal of CF-based recommendation algorithms is to suggest new products or to 

predict the utility of a product for a customer, based on the customer‘s previous 

behaviour  and other similar customers‘ opinions. However, these systems have some 

problems like sparsity, scalability, and synonymy. The weakness of CF algorithms 

for large, sparse databases led the researchers to alternative ways. In order to remove 

noise data from a large and sparse database, some dimensionality reduction 

techniques are proposed[1, 2, 3]. Latent Semantic Indexing (LSI), which is a 

dimensionality reduction technique that used in information retrieval (IR),  is a 

widely used technique to reduce the dimensionality of user-item ratings matrix. LSI, 

which uses singular value decomposition (SVD) as its underlying dimension 

reduction algorithm, maps nicely into the collaborative filtering recommender 

algorithm challenge [1]. SVD-based recommendation algorithms produce high 

quality recommendations, but has to undergo computationally very expensive matrix 

factorization steps [1]. 

4.1.1 Dimensionality Reduction 

SVD has an important property that makes it interesting for recommender systems. 

SVD provides the best low-rank linear approximation of the original matrix. It is 

possible to reduce dimensions by selecting greatest k singular values. The value of k 

may change according to the size and the structure of data.  

The reduced matrix Sk is constructed by retaining the first k singular values. The 

matrices U and V are also reduced to produce matrices Uk and Vk, respectively. The 



 26 

matrix Uk is produced by removing (r − k) columns from the matrix U and matrix Vk 

is produced by removing (r − k) rows from the matrix V. Multiplying these three 

reduced matrices, the matrix Ak is obtained. The reconstructed matrix Ak is a matrix 

that is the closest approximation to the original matrix A. Figure 3.3 demonstrates 

this process. 

 

 

Figure 4.1 - Dimensionality Reduction Process in SVD 

 

 

 

Some researchers [1, 2] claim that the low-rank approximation of the original matrix 

is better than the original matrix itself. According to them, filtering out of the small 

singular values can be introduced as removing ―noise‖ data in the matrix. Each 

customer and product is represented by its corresponding Eigenvector in SVD-based 

recommender systems. For instance, for a movie recommender system, users who 

rated similar products are mapped into the space spanned by the same Eigenvectors. 

 

As an example to dimension reduction, consider the <user, movie> rating matrix in 

Table 4.1. 

 

 

 



 27 

Table 4.1 - Example <User, Movie> Rating Matrix 

User/Movie Movie 1 Movie 2 Movie 3   Movie 4 Movie 5 

User 1 1 5 0 5 4 

User 2 5 4 4 3 2 

User 3 0 4 0 0 5 

User 4 4 4 1 4 0 

User 5 0 4 3 5 0 

User 6 2 4 3 5 3 

 

Applying SVD to this matrix: 
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Matrix U (6x6), matrix S (6x5), and matrix V (5x5) are calculated. Now, we will 

collapse this matrix from a (6x5) space into a 2-Dimensional one. To do this, we 

simply take the first two columns of U, S and V. The end result: 

 

For a recommender system based on SVD, here is one very simple strategy: find the 

most similar user using the 2-Dimensional matrixes above with one of the similarity 

calculation algorithms and compare his/her items against that of the new user; take 

the items that the similar user has rated and the new user has not and return them for 

the new user. Similar to this, for a new item, find the most similar item using the 2-

Dimensional matrixes above with one of the similarity calculation algorithms and 

compare the users rated similar item against the new item; take the users that rate 

similar item but not the new item and return the ratings for the new item. 

4.1.2 SVD Recommendation Algorithms 

4.1.2.1 User-based Similarity 

In SVD Recommendation, in order to decide whether two users are similar, the 

reduced matrix Uk is used [1]. In the (mxk) Uk matrix, each row represents a user. 

The more two rows are similar, the more the users are similar to each other. One 

critical step in the SVD algorithm is to compute the similarity between users and 

then to select the most similar users. There are a number of different ways to 

compute the similarity between users. Here are two such methods: cosine-based 

similarity and comparing the Euclidian distances in k-dimensional space. 

 Cosine-based similarity: 
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The similarity of two row vectors could be calculated with cosine similarity in order 

to decide whether two users are similar or not. Formally, similarity between users i 

and j is stated in (2). 

                               

Where `` '' denotes the dot-product of the two vectors. 

 Comparing the Euclidian distances in k-dimensional space: 

For example, in Figure 4.2 the distribution of users in 2D space is demonstrated. 

For k=2  

 

 

Figure 4.2 - User Sampling in 2D Space for k = 2 

 

To find the most similar user to the user 1, the distances between point number 1 to 

all points should be calculated and the user which has the smallest distance to the 

point 1 is the most similar user to user 1. 

The algorithm for SVD recommendation by User-based similarity: 
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Recommendation Request (User = x, Item = y, Rating =?) 

1. Find users who rated Item = y from the original matrix A. 

2. Find most similar user to User = x among the users who rated Item = y using 

the reduced matrix Uk. 

3. Get the rating of the most similar user to Item = y from the original matrix A 

and give it for the User = x , Item = y. 

For the second part of the algorithm, if the User = x is an already existing user, it 

exists in the reduced matrix Uk as a row. If the User = x is a new user, before starting 

similarity checks, the user has to be projected from n dimensions to k dimensions. 

Let the ratings of the new user vector is Nu (1xn). The projection P to the reduced 

matrix Uk is made by the formula [1]: 

P = Nu x Vk x Sk
-1

 

In the experimental part of this study, the Euclidian distance algorithm explained 

above is used for the similarity check of the users. The bottleneck in this technique is 

the search for similar users among a large user population. 

4.1.2.2 Item-based Similarity 

Item-based algorithms avoid the bottleneck mentioned in the previous section 

because they explore item similarities first rather than user similarities. In most 

systems items are more static than users and not changed very frequently. Therefore, 

Item-based similarity is suitable for pre-computation. Run time performance of item-

based similarity method is better than user-based similarity method [38]. 

In SVD Recommendation, in order to decide whether two items are similar, the 

reduced matrix Vk is used [1]. In the (kxn) Vk matrix, each column represents an 

item. The more two columns are similar, the more the items are similar to each other. 

In order to compute item-item similarities, similar methods with the user-user 

similarity, such as cosine-based similarity and comparing Euclidian distances in k-

dimensional space, may be used.  
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The algorithm for SVD recommendation by Item-based similarity: 

Recommendation Request (User = x, Item = y, Rating = ?) 

1. Find items which are rated by User = x from the original matrix A. 

2. Find most similar item to Item = y among the items which are rated by User = 

x using the reduced matrix Vk
T
. 

3. Get the rating of the most similar item given by User = x from the original 

matrix A and give it for the User = x , Item = y.   

Similar to user-based similarity, for the second part of the algorithm, if the Item = y 

is an already existing item, it exists in the reduced matrix Vk
T
 as a column. If the 

Item = y is a new item, before starting similarity checks, first the item has to be 

projected from n dimensions to k dimensions. Let the ratings of the new item vector 

is Ni (mx1). The projection P to the reduced matrix Vk
T
 is made by the formula [1]: 

P = Ni
T
 x Uk x Sk

-1
 

In the experimental part of this study, the Euclidian distance algorithm explained 

above is used for the similarity check of the items. 

4.2 Incremental SVD 

In a recommender system, the entire algorithm works in two separate steps. The first 

step is the offline step and the second step is the online execution step. The user-user 

and item-item similarity computation steps described above can be seen as the offline 

step of a recommender system. However, the actual prediction generation is done in 

run-time in the online step. Usually, the offline computations are very time 

consuming and is computed infrequently. For instance, a movie recommender site 

may compute the user-user or item-item similarity tables only once a day or even 

once a week. If the ratings database is static and if the user behavior does not change 

significantly over a short period of time, this method works well. Researchers have 

demonstrated that the SVD-based algorithms can make the similarity formation 
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process of recommender systems highly scalable while producing better results in 

most of the cases [3, 4, 5]. However the offline step of SVD recommendation, which 

consists of decomposition and similarity computation steps is computationally very 

expensive. For an (m×n) user-item matrix, the SVD decomposition requires a run-

time of O(m
3
) [1, 2]. The focus of incremental SVD is to develop an algorithm that 

ensures highly scalable overall performance. It makes the offline model building of 

SVD more scalable while achieving prediction quality comparable to the original 

SVD.  

The projection technique is known as ―folding-in‖ in SVD literature [1, 2]. To fold-in 

new users into the matrix of already reduced user-item matrix Ak, we compute the 

coordinates for that vector in the basis Uk. Let the size of the new user vector Nu be 

(1xn). The first step in folding-in is to compute a projection P that projects Nu onto 

the matrix. Such a projection P of Nu is computed as: 

P = Nu x Vk x Sk
-1

 

This user set is then folded-in by appending the k dimensional vector Uk. Figure 4.3 

[1] below shows a schematic diagram of this process. 

 

 

Figure 4.3- Semantics of Incremental SVD 

 



 33 

To fold-in new items into the matrix of already reduced user-item matrix Ak, we 

compute the coordinates for that vector in the basis Vk. Let the size of the new item 

vector Ni be (mx1). The first step in folding-in is to compute a projection P that 

projects Ni onto the matrix. Such a projection P of Ni is computed as: 

P = Ni
T
 x Uk x Sk

-1
 

This item set is then folded-in by appending the k dimensional vector Vk . 

Folding-in is based on the existing model Uk, Sk, and Vk. New users or items do not 

affect existing user and items. In practice, it is possible to pre-compute the SVD 

decomposition using m existing users. For a user-item ratings matrix A, the three 

decomposed matrix Uk, Sk, and Vk are computed at first. However, when a new set 

of ratings is added to the database, it is not necessary to compute again the low-

dimensional model from the scratch. The folding-in technique provides an 

incremental system that has the potential to be highly scalable. The complexity of 

adding a new user or a new item is just O(1) in incremental SVD. 

4.3 Contributions to SVD-based Recommendation 

4.3.1 Categorization of Users and Items 

As it is mentioned before, a recommender system has to provide two properties for 

its users. One of them is making good accurate recommendations and the other one is 

fast responding of requests. In order to make more accurate recommendations, we 

need to make more accurate similarity tables. We propose a new approach that is 

categorization of items and users to SVD-based recommendation. By this way, we 

perform SVD-based approach operations on relatively smaller matrices. These 

smaller matrices are consisting of items in the same category and users in the same 

category. By this way, we aim to increase the accuracy performance of SVD-based 

recommendation. Since SVD computational complexity is very high which is O(m
3
), 

smaller matrices also improve the execution time performance of the algorithm. 
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For instance, for a movie recommender system, the movies can be categorized by 

their types (action, sci-fi, horror, etc.) and the users can be categorized by their 

gender, age group, etc. In the Figure 4.5 below, the categorization step of the dataset 

is demonstrated. 

 

Figure 4.4 - Categorizations Steps of Users and Items 

 

We produce r x p matrices from the original matrix. For all of them, the SVD 

operation is performed separately. 

 Algorithm for SVD recommendation by categorizing the data (User-User 

Similarity): 

Recommendation Request (User = x, Item = y, Rating = ?) 
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1. Find the user category for User = x 

2. Find the item category for Item = y 

3. Find matrix for these categories. 

4. Find users who rated Item = y, in this user category. 

5. Performing SVD operations on this matrix, find most similar user to User = x 

among these users. 

6. Give the rating of the most similar user to the rating of User = x, Item = y.   

Algorithm for SVD recommendation by categorizing the data (Item-Item 

Similarity): 

Recommendation Request (User = x, Item = y, Rating = ?) 

1. Find the user category for User = x 

2. Find the item category for Item = y 

3. Find matrix for these categories. 

4. Find items that are rated by User = x, in this item category. 

5. Performing SVD operations on this matrix, find most similar item to Item = y 

among these items. 

6. Give the rating of the most similar item to the rating of User = x, Item = y. 

 

In Chapter 5, the experimental results are given for this method. 

4.3.2 Adopting Tags to SVD Recommendation 

In order to improve recommendation quality, metadata such as content information 

of items has been used as additional knowledge. With the increasing popularity of 

the systems which allow users to write tags for items, tags become interesting and 

useful information to recommendation algorithms. Tags are different from the 

attributes of users and items. Attributes are global descriptions of items or users, 

whereas tags are descriptions of items given by the users. In this study, we have tried 

to use tags for SVD recommendation algorithms and analyzed the results. To adopt 

tags to normal SVD algorithm, we reduced the three-dimensional matrix<user, item, 
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tag> to three two-dimensional matrices as <user, item>, <user, tag> and <item, tag>. 

From these there two-dimensional matrices we construct a new matrix to perform 

SVD recommendation using explained algorithms in the previous sections. 

4.3.2.1 Extension with Tags 

Unlike attributes which only have a two-dimensional relation < item, attribute >, tags 

hold a three-dimensional relation < user, item, tag >. We overcome this three 

dimensionality problem by projecting it as three two-dimensional problem, < user, 

tag > and < item, tag > and < user, item > [39]. 

This can be done by augmenting the standard user-item matrix horizontally and 

vertically with user and item tags correspondingly. User tags are tags that user u 

writes to tag items and are viewed as items in the user-item matrix. Item tags are tags 

that describe an item i by users and play the role of users in the user-item matrix. 

Figure 4.6 [39] below illustrates this process: 
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Figure 4.5 - Conversion from 3D Matrix to 2D Matrixes 

 

Moreover, instead of viewing each single tag as user or item, clustering methods can 

be applied to the tags such that similar tags are grouped together. In this study, we 

tried substring, java string comparison and edit distance calculation methods to group 

similar tags in order to improve the performance of recommendation. 

After constructing the new two dimensional matrixes, the SVD recommendation 

algorithms proposed in the previous sections are performed to measure the 

performance quality improvements. In Chapter 5, the experimental results are given 

for this method. 
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Edit Distance 

In information theory and computer science, the edit distance between two strings of 

characters is the number of operations required to transform one of them into the 

other. There are several different ways to define an edit distance, and there are 

algorithms to calculate its value under various definitions. We used ―Levenshtein 

Distance‖ algorithm[41] in this thesis study. 

For example, the Levenshtein distance between "kitten" and "sitting" is 3, since the 

following three edits transform one into the other, and there is no way to do it with 

fewer than three edits: 

1. kitten  sitten (substitution of 's' for 'k') 

2. sitten  sittin (substitution of 'i' for 'e') 

3. sittin  sitting (insert 'g' at the end). 
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CHAPTER 5 

5 EXPERIMENTAL RESULTS 

 

The algorithms in the experiments are implemented in java programming language. 

For SVD and all other matrix calculations, JAMA matrix library [44] is used. 

5.1 Dataset 

Our experimental dataset is a popular database, the MovieLens dataset by the 

GroupLens Research group at University of Minnesota [42]. The data set contains 

100.000 ratings (1-5 scales) from 943 users on 1682 movies. Each user has rated at 

least 20 movies.   

Ratings are given in the format ―user id | item id | rating | timestamp‖ where user and 

movie id fields are started from 1 and the time stamps are UNIX seconds since 

1/1/1970 UTC.    

Information about the movies is given as a tab separated list of: 

Movie id | movie title | release date | video release date | IMDb URL | unknown | 

Action | Adventure | Animation | Children's | Comedy | Crime | Documentary | Drama 

| Fantasy | Film-Noir | Horror | Musical | Mystery | Romance | Sci-Fi | Thriller | War | 

Western | 

The last 19 fields are the genres which are going to be the movie categories in our 

experiments. 

Information about the users is given as a tab separated list of: 

User id | age | gender | occupation | zip code 
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To compare algorithms, we conducted the experiments on test data which are 

randomly 80% / 20% splits of the ratings data. We use 5 disjoint test sets for 5 fold 

cross validation. 5 fold cross validation means, we repeat our experiment with each 

five training and test set and average the results.  

In order to examine and compare the performance of the methods in the experiment, 

we adopted to mean absolute error (MAE) [43]. The MAE is computed by first 

summing the absolute errors of the N ratings prediction and then averaging the sum. 

A smaller value of MAE indicates a better performance. 

 

 

5.2 Results for SVD-based Recommendation by User-User Similarity 

SVD-based recommendation by User-User similarity method is implemented as the 

given algorithm in Chapter 4. The results for the 5 disjoint test sets, without making 

any heuristic improvements, are demonstrated in the Figure 5.1 below: 
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SVD-based Recommendation by User-User Similarity
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Figure 5.1 - Results of SVD Recommendation by U-U Similarity 

 

The average MAE for 5 disjoint test cases = 1,0746. 

5.3 Results for SVD-based Recommendation by Item-Item Similarity 

SVD-based recommendation by Item-Item similarity method is implemented as the 

given algorithm in section 2. The results for the 5 disjoint test sets, without making 

any heuristic improvements, are demonstrated in the Figure 5.2 below: 
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SVD-based Recommendation by Item-Item Similarity
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Figure 5.2 - Results of SVD Recommendation by I-I Similarity 

 

The average MAE for 5 disjoint test cases = 0,9631. 

From the results for both User-based and Item-based recommendations in Figure 5.1 

and 5.2, it is clearly seen that item-based similarity produced better predictions than 

user-based similarity. Since the number of items is greater than the number of users 

in the dataset, SVD gives better results for item-item similarity.  

5.4 Comparison of Incremental SVD and Normal SVD 

According to the incremental SVD algorithm explained in Chapter 4, we add users 

incrementally to a base set for singular value decomposition.  

The prediction accuracy results of incremental SVD and normal SVD methods for 

the 5 disjoint test sets, without making any heuristic improvements, are demonstrated 

in the Figure 5.3 below: 
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Comparision Between Normal SVD and Incremental SVD by 

User-User Similarity
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Figure 5.3 - Comparison of SVD and Incremental SVD (U-U) 

 

The average MAE for 5 disjoint test cases for Incremental SVD = 1,0549. 

The average MAE for 5 disjoint test cases for Normal SVD = 1,0746. 

Moreover, we also examine item-item similarity with incremental SVD by adding 

movies incrementally to a base set for singular value decomposition.  

The prediction accuracy results of incremental SVD and normal SVD methods for 

item-item similarity for the 5 disjoint test sets, without making any heuristic 

improvements, are demonstrated in Figure 5.4 below: 
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Comparison Between Normal SVD and Incremental SVD by 

Item-Item Similarity
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Figure 5.4 - Comparison of SVD and Incremental SVD (I-I) 

 

The average MAE for 5 disjoint test cases for Incremental SVD = 0,9691. 

The average MAE for 5 disjoint test cases for Normal SVD = 0,9631. 

The results illustrates that, for both user-based and item-based recommendation, 

normal SVD and incremental SVD have very close prediction performance. On the 

other hand, while normal SVD operation of the 943 x 1682 <user, movie> matrix 

takes more than 5 minutes, by incremental SVD it takes approximately 10 seconds. 

These results show that, incremental SVD preserves the quality of the predictions 

compared to normal SVD, whereas it increases the execution time performance 

significantly. This means incremental SVD overcomes scalability problem to some 

extent. 

5.5 Categorization of Items 

According to the movie type, we divided the dataset into categories. In our data set, 

there are 18 different movie types. These are: Action, Adventure, Animation, 
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Children's, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, 

Musical, Mystery, Romance, Sci-Fi, Thriller, War, and Western.  

The prediction accuracy results of SVD with categorization and normal SVD 

methods for the 5 disjoint test sets, without making any heuristic improvements, are 

demonstrated in the Figure 5.5 and 5.6 below: 

 

Comparision of Normal SVD and SVD with Categorization by 

User-User Similarity
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Figure 5.5 - Comparison of SVD and SVD with Categorization (U-U) 

 

MAE for 5 disjoint test cases for Normal SVD by U-U Similarity = 1,0746. 

MAE for 5 disjoint test cases for SVD with Categories by U-U Similarity = 0,9874. 
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Comparision of Normal SVD and SVD with Categorization by 

Item-Item Similarity
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Figure 5.6 - Comparison of SVD and SVD with Categorization (I-I) 

 

MAE for 5 disjoint test cases for Normal SVD by I-I Similarity = 0,9631. 

MAE for 5 disjoint test cases for SVD with Categories by I-I Similarity = 0,8846. 

For both user-based and item-based recommendation algorithms, after categorizing 

the movies, the quality of predictions is significantly improved. Moreover, since the 

computational complexity of SVD operation is O(m
3
) and by categorizing the 

movies, the matrixes become smaller, the computation time is also significantly 

improved. While normal SVD operation of the 943 x 1682 <user, movie> matrix 

takes more than 5 minutes, by categorization, due to smaller matrices, SVD takes 

less than 10 seconds. 

5.6 Categorization of Users 

According to the gender, we divided the dataset into categories. Users are divided 

into two groups as Males and Females. 



 47 

The prediction accuracy results of SVD with categorization and normal SVD 

methods for the 5 disjoint test sets, without making any heuristic improvements, are 

demonstrated in the Figure 5.7 below: 

 

Comparison of Normal SVD and SVD with Categories - Gender
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Figure 5.7 - Comparison of SVD and SVD with Categorization (Gender) 

 

MAE for Normal SVD by U-U Similarity = 1,0746. 

MAE for SVD with User Categories(Gender) by U-U Similarity = 1,0416. 

As a second experiment for User Categories, according to the age group, we divided 

the dataset into categories. Users are divided into for groups as 0-20, 20-40, 40-60, 

60-80. 

The prediction accuracy results of SVD with categorization and normal SVD 

methods for the 5 disjoint test sets, without making any heuristic improvements, are 

demonstrated in the Figure 5.8 below: 
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Comparison of Normal SVD and SVD with Categories - Age Group
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Figure 5.8 - Comparison of SVD and SVD with Categorization (Age) 

 

MAE for Normal SVD by U-U Similarity = 1,0746. 

MAE for SVD with User Categories (Gender) by U-U Similarity = 1,0476. 

Figure 5.7 and 5.8 demonstrates that, both gender and age group improves the 

performance of recommendation. Also, computational time decreases by working 

with smaller matrixes. When we compare the results of categorization of users and 

categorization of items, it is clearly seen that categorization of items produce better 

results. However, this is mostly related with the number of categories. For movie 

categories there exists 19 categories, whereas for user categories there exists 

2(gender) and 4(Age Group) categories. 

5.7 Categorization of Both Users and Items 

According to the user genders and movie types, we divided the dataset into 

categories. Users are divided into two groups as Males and Females. Movies are 

divided into 18 categories as Action, Adventure, Animation, Children's, Comedy, 

Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, Musical, Mystery, 

Romance, Sci-Fi, Thriller, War, and Western. 
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The prediction accuracy results of SVD with categorization and normal SVD 

methods for the 5 disjoint test sets, without making any heuristic improvements, are 

demonstrated in the Figure 5.9 below: 
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Figure 5.9 - Comparison of SVD and SVD with Categorization (Overall) 

 

MAE for Normal SVD = 1,0746. 

MAE for SVD with User Categories = 1,0476. 

MAE for SVD with Item Categories = 0,9874. 

MAE for SVD with User and Item Categories = 0,9820. 

More similar users and items come together to form smaller matrixes by 

categorization and this increases the performance of recommendation process in two 

different perspective. The first one is the prediction performance. Figure 5.9 

summarizes the contribution of categorization to the prediction quality. And the 
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second one is the computational time performance. Form these views; categorization 

proposes solutions to sparsity and scalability problems of traditional CF algorithms. 

5.8 Adopting Tags to SVD Recommendation 

In order to test tag-based SVD recommendation we used a different dataset from the 

MovieLens by the GroupLens Research group at University of Minnesota [42]. This 

data set contains 10.000.054 ratings and 95.580 tags applied to 10.681 movies by 

71.567 users. 

Users were selected at random and all users selected had rated at least 20 movies. 

Unlike previous data set, no demographic information is included. Each user is 

represented by an id, and no other information is provided.  

The data are contained in three files, movies.dat, ratings.dat and tags.dat. 

Movies and ratings are given as similar to the previous data set.  

All tags are contained in the file tags.dat. Each line of this file represents one tag 

applied to one movie by one user, and has the following format:  

UserID::MovieID::Tag::Timestamp  

The lines within this file are ordered first by UserID, then, within user, by MovieID.  

Tags are user generated metadata about movies. Each tag is typically a single word, 

or short phrase. The meaning, value and purpose of a particular tag is determined by 

each user.  

Example for tags: 

25::50::Kevin Spacey::1166101426 

31::65::buddy comedy::1188263759 

31::546::strangely compelling::1188263674 
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39::277::classic::1188263791 

39::1249::woman::1188263764 

109::36::death penalty::1211433235 

109::1258::Stephen King::1165555223 

127::1343::stalker::1188265347 

146::10::franchise::1196517851 

146::16::imdb top 250::1213424434 

146::26::based on a play::1206782429 

146::28::based on a book::1210845801 

146::32::biology::1208571447 

From this we produce a sample dataset consists of randomly selected 1500 users and 

1500 movies and we run the tests on this sample dataset. Here are the results in 

Figure 5.10: 
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Figure 5.10 - Comparison of SVD and SVD with Tags 
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MAE for Normal SVD = 0,9739. 

MAE for SVD with Tags – String Equality = 0,9680. 

MAE for SVD with Tags – Substring = 0,9672. 

MAE for SVD with Tags – Java String CompareTo = 0,9675. 

MAE for SVD with Tags – Edit Distance = 0,9672. 

The results show that, injecting tags into 2-Dimensional SVD improves the 

performance of recommendation. The reason why effect of categorization is more 

crucial than effect of tags to the overall performance is the structure of tags in our 

dataset. In the dataset, tags are given in free formatted texts. Therefore, matching 

similar tags is quite difficult. We tried some different methods to decide tag 

similarities such as string equality, substring, CompareTo function of java string 

class, and edit distance algorithm. The results for all of these methods are 

demonstrated in Figure 5.10.  

From the experiments, we observe the contribution of tags into 2-Dimentional SVD 

method. However, in order to increase the performance effect of tags adaptation to 

classical SVD recommendation process, it is necessary to analyze tags, especially 

semantically check to decide whether they are similar or not and find more 

similarities among them. For the tags, the important point is that, having more 

similar tags for the <user, item> pairs. The more similar tags means, the more 

accurate predictions. 
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CHAPTER 6 

6 CONCLUSION AND FUTURE WORK  

 

Recommender systems are rapidly becoming an important tool especially on the 

Web. Recommender system developers have encountered some problems which are 

currently attractive research areas in the data mining and information retrieval topics 

for the researchers. The first challenge is to improve the accuracy of the 

recommendations for the customers. Another challenge is to improve the scalability 

of the recommendation algorithms. 

SVD proposes better results than traditional collaborative filtering algorithms most 

of the time, however, it includes computationally very expensive matrix calculations 

and this makes SVD-based recommender systems less suitable for large-scale 

systems. In this thesis study, SVD-based recommendation techniques are compared 

with experiments and some new approaches are introduced to this technique. The 

first contribution we have proposed is the categorization of items and users. Our 

experiments showed that, item and user categorization increases both the 

recommendation quality and speed performance of the SVD technique. Moreover, 

we adopted the tags to the traditional 2-Dimensional SVD approach. By this way, we 

have chance to analyze the effect of third dimension (tags) to the SVD 

recommendation performance. Our experiments illustrated that, tags also increase the 

performance to some extent. 

From our experiments, we have derived some future works to increase the 

performance of SVD-based approach: 

 Parallelization of SVD 



 54 

SVD includes very expensive matrix calculations and this makes it not suitable 

for large-scale systems. In our experiments, we have tried applying SVD to 

matrices consist of millions of users and thousands of items. It is impossible to 

make these calculations in reasonable time. As it is mentioned before, the 

computational complexity of SVD is O (m
3
) which is very expensive. Therefore, 

as a future work, parallel SVD methods shall be implemented in order to increase 

the scalability of SVD-based approach. By this way, the effect of the 

contributions that are suggested in this thesis could be analyzed on very big 

sample datasets. 

 Ontology on Tags 

Our experiments show that, grouping similar tags directly affects the 

performance of 3-Dimensional SVD. If the tags written by two different users are 

similar to each other, the similarity of them calculated by SVD algorithms 

becomes very high. Therefore, in order to get better results whether two users are 

similar or not, it is important to group similar tags. In this thesis, we tried 

substring, edit distance and some similar methods to decide the similarity of tags. 

However, these methods are not sufficiently efficient. For the future work, we 

suggest ontology methods to associate different tags with each other. In computer 

science, ontology is a formal representation of the knowledge by a set of 

concepts within a domain and the relationships between those concepts. By this 

way, it will be possible to associate some tags which seem different as written 

letters but similar semantically.  

For instance, tags ―good‖ and ―excellent‖ are semantically similar. However, it is 

not possible to associate them with string comparison algorithms. For such cases, 

we think ontology techniques shall be used to relate tags. By having semantically 

grouped tags, SVD-based approach will produce more accurate results. 
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APPENDIX A 

7 MATRIX TERMINOLOGY 

 

In Appendix A, matrix basics, Eigenvalues and Eigenvectors, are explained with 

examples. Examples are taken from the Singular Value Decomposition tutorial [37]. 

Matrices 

A matrix is a table of data, like Table A.1, which shows the top scorers of players in 

a team in last 5 seasons. 

 

Table A.1 - Top-scorers in last 5 seasons 

Top-Scorers 2005 2006 2007 2008 2009 

Player 1 10 11 10 11 11 

Player 2 5 12 8 10 2 

Player 3 0 4 9 6 6 

Player 4 0 4 3 5 6 

 

A table consists of rows, the horizontal list of scores corresponding to a player‘s 

name, and columns, the vertical list of numbers corresponding to the scores for a 

given season. What makes this table a matrix is that it's a rectangular array of 

numbers. 

As a matrix, Table A.1 looks like this: 
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The size, or dimensions, of a matrix is given in terms of the number of rows by the 

number of columns. This makes the matrix above a 4 x 5 matrix. 

A little more formally than before, we can denote a matrix like this: 

Let m, n are two integers which are greater than or equal to 1. Let aij, i = 1, 2,…, m, j 

= 1, 2, …, n be (m x n) numbers. An array of numbers is an (m x n) matrix and the 

numbers aij are elements of A.  

 

The sequence of numbers A(i) = ( ai1,…, ain ) is the ith row of A, and the sequence of 

numbers A(j) = ( a1j,…, amj ) is the jth column of A. 

Matrix Terminology  

Square Matrix 

A matrix is said to be square if it has the same number of rows as columns. To 

designate the size of a square matrix with n rows and columns, it is called n-square. 

For example, the matrix below is 3-square. 
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Transpose 

The transpose of a matrix is created by converting its rows into columns; that is, row 

1 becomes column 1, row 2 becomes column 2, etc. The transpose of a matrix is 

indicated with a superscripted T, e.g. the transpose of matrix A is A
T
 . For example, 

if 

 

then its transpose is 

 

 

Matrix Multiplication 

It is possible to multiply two matrices only when the number of columns in the first 

matrix and the number of rows in the second matrix are equal. The resulting matrix 

has as many rows as the first matrix and as many columns as the second matrix. In 

other words, if A is a (m x n) matrix and B is a (n x s) matrix, then the product AB is 

an (m x s) matrix. 

The coordinates of AB are determined by taking the inner product of each row of A 

and each column in B.  
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Identity Matrix 

The identity matrix is a square matrix with entries on the diagonal equal to 1 and all 

other entries equal zero. The n-square identity matrix is denoted variously as Inxn, In, 

or simply I. The identity matrix behaves like the number 1 in ordinary multiplication, 

which mean AI = A, as the example below shows. 

 

Orthogonal Matrix 

A matrix A is orthogonal if AA
T
 = A

T
A = I. For example, 
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is orthogonal because 

 

Diagonal Matrix 

A diagonal matrix A is a matrix where all the entries aij are 0 when i = j. 

 

Determinant 

A determinant is a function of a square matrix that reduces it to a single number. The 

determinant of a matrix A is denoted |A| or det(A). If A consists of one element a, 

then |A| = a; in other words if A = [6] then |A| = 6.  

If A is a (2 x 2) matrix, then 
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For example, the determinant of 

 

is 

 

Finding the determinant of an n-square matrix for n > 2 can be done by recursively 

deleting rows and columns to create successively smaller matrices until they are all 

(2 x 2) dimensions, and then applying the previous definition.  

For example for a (3 x 3) matrix: 

 

Eigenvectors and Eigenvalues  

An Eigenvector is a nonzero vector that satisfies the equation 
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Where A is a square matrix, λ is a scalar, and v is the Eigenvector. λ is called an 

Eigenvalue. Eigenvalues and Eigenvectors are also known as, respectively, 

characteristic roots and characteristic vectors, or latent roots and latent vectors. 

Eigenvalues and Eigenvectors can be calculated by treating a matrix as a system of 

linear equations and solving for the values of the variables that make up the 

components of the Eigenvector. For example, finding the Eigenvalues and 

corresponding Eigenvectors of the matrix 

 

means applying the above formula to get 

 

in order to solve for λ; x1 and x2. This statement is equivalent to the system of 

equations 

 

 

which can be rearranged as 

 

A necessary and sufficient condition for this system to have a nonzero vector [x1; 

x2] is that the determinant of the coefficient matrix 
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is equal to zero. Accordingly, 

 

There are two values of λ that satisfy the last equation; thus there are two 

Eigenvalues of the original matrix A, and these are λ1 = 3; λ2 = 1. 

Eigenvectors which correspond to these Eigenvalues can be calculated by plugging λ 

back in to the equations above and solving for x1 and x2. To find an Eigenvector 

corresponding to λ = 3, start with 

 

And substitute to get 

 

Which reduces and rearranges to 
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There are an infinite number of values for x1 which satisfy this equation; the only 

restriction is that not all the components in an Eigenvector can equal zero. So if x1 = 

1, then x2 = 1 and an Eigenvector corresponding to λ = 3 is [1; 1].  

Finding an Eigenvector for λ = 1 works the same way. 

 

So an Eigenvector for λ = 1 is [1; -1]. 

 

 

 

 


