

A SINGULAR VALUE DECOMPOSITION APPROACH FOR

RECOMMENDATION SYSTEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

OSMAN NURĠ OSMANLI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

JULY 2010

 ii

Approval of the thesis:

A SINGULAR VALUE DECOMPOSITION APPROACH FOR

RECOMMENDATION SYSTEMS

submitted by OSMAN NURİ OSMANLI in partial fulfillment of the requirements

for the degree of Master of Science in Computer Engineering Department,

Middle East Technical University by,

Prof. Dr. Canan Özgen _______________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı _______________

Head of Department, Computer Engineering

Prof. Dr. Ġsmail Hakkı Toroslu

Supervisor, Computer Engineering Dept., METU _______________

Examining Committee Members:

Prof. Dr. Göktürk Üçoluk

Computer Engineering Dept., METU _____________________

Prof. Dr. Ġsmail Hakkı Toroslu

Computer Engineering Dept., METU _____________________

Assist. Prof. Dr. Tolga Can

Computer Engineering Dept., METU ____________________

Assist. Prof. Dr. Pınar ġenkul

Computer Engineering Dept., METU _____________________

Güven Fidan

AGMLab _____________________

Date: 02.07.2010

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

 Name, Last name: Osman Nuri Osmanlı

 Signature :

 iv

ABSTRACT

A SINGULAR VALUE DECOMPOSITION APPROACH FOR

RECOMMENDATION SYSTEMS

Osmanlı, Osman Nuri

M.Sc., Department of Computer Engineering

Supervisor: Prof. Dr. Ġsmail Hakkı TOROSLU

July 2010, 67 pages

Data analysis has become a very important area for both companies and researchers

as a consequence of the technological developments in recent years. Companies are

trying to increase their profit by analyzing the existing data about their customers

and making decisions for the future according to the results of these analyses.

Parallel to the need of companies, researchers are investigating different

methodologies to analyze data more accurately with high performance.

Recommender systems are one of the most popular and widespread data analysis

tools. A recommender system applies knowledge discovery techniques to the

existing data and makes personalized product recommendations during live

customer interaction. However, the huge growth of customers and products

especially on the internet, poses some challenges for recommender systems,

producing high quality recommendations and performing millions of

recommendations per second.

In order to improve the performance of recommender systems, researchers have

proposed many different methods. Singular Value Decomposition (SVD) technique

 v

based on dimension reduction is one of these methods which produces high quality

recommendations, but has to undergo very expensive matrix calculations. In this

thesis, we propose and experimentally validate some contributions to SVD

technique which are based on the user and the item categorization. Besides, we

adopt tags to classical 2D (User-Item) SVD technique and report the results of

experiments. Results are promising to make more accurate and scalable

recommender systems.

Keywords: Recommender Systems, Collaborative Filtering, Singular Value

Decomposition, Content Based Filtering, Personalization, User Modeling

 vi

ÖZ

ÖNERĠ SĠSTEMLERĠ ĠÇĠN TEKĠL DEĞER AYRIġIMI YAKLAġIMI

Osmanlı, Osman Nuri

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ġsmail Hakkı TOROSLU

Temmuz 2010, 67 sayfa

Son yıllarda meydana gelen teknolojik geliĢmeler sonucu, veri analizi Ģirketler ve

araĢtırmacılar açısından son derece önemli bir alan haline gelmektedir. ġirketler,

müĢterileri ile ilgili ellerinde varolan bilgileri analiz ederek ve ileriki kararlarını

alırken bu analizlerine göre hareket ederek karlarını artırmaya çalıĢmaktadır.

ġirketlerin bu ihtiyaçlarına paralel olarak, araĢtırmacılar veriyi daha doğru ve hızlı

iĢleyebilmek için farklı metodolojiler geliĢtirmektedir.

Öneri sistemleri bu açılardan en popüler ve en yaygın veri analiz yazılımlarıdır. Bir

öneri sistemi mevcut veriye bilgi iĢleme tekniklerini uygulayıp analiz ederek,

kullanıcılarına kisiselleĢtirilmiĢ ürün önerileri sunar. Ancak özellikle internetin

yaygınlaĢması ile müĢteri ve ürün sayısındaki büyük artıĢlar öneri sistemleri için

bazı problemleri beraberinde getirmektedir. Bu problemler yüksek kalitede

önerilerin yapılması ve saniyede milyonlarca öneri isteğine cevap verebilmektir.

Öneri sistemlerinin performansını artırmaya yönelik, araĢtırmacılar tarafından birçok

metod önerilmektedir. Boyut indirgemeye dayalı Tekil Değer AyrıĢımı (TDA), son

derece yüksek kalitede öneriler üreten fakat hesaplama açısından pahalı matris

iĢlemleri gerektiren bir yöntemdir. Bu tez kapsamında TDA‘ya dayalı öneri

 vii

tekneğine, kullanıcıya ve ürünlere göre kategoriler oluĢturma, ve bu kategorileri

öneri sürecine dahil etme iĢlemi önerilmekte ve bu eklemenin olumlu sonuçları

deneyler ile doğrulanmaktadır. Bunun yanında, klasik iki boyutlu TDA tekniğine,

üçüncü boyut olarak etiketler adapte edilmiĢ ve deneysel sonuçlar raporlanmıĢtır. Bu

iyileĢtirmeler daha doğru ve geniĢletilebilir öneri sistemleri oluĢturmayı sağlamıĢtır.

Anahtar Kelimeler: Öneri Sistemleri, Tekil Değer AyrıĢımı, Kolaboratif

Filtreleme, Ġçerik Bazlı Filtreleme, KiĢiselleĢtirme, Kullanıcı Modelleme

 viii

To my family

 ix

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to Prof. Ġsmail Hakkı

Toroslu for his encouragement and support throughout this study.

I am deeply grateful to my wife and my family for their love and support. Without

them, this work could never have been completed.

I would thank the Scientific and Technological Research Council of Turkey

(TÜBĠTAK) for providing the financial means throughout this study.

Finally, my special thanks go to my friends, Fatih Deniz, Erkay Uzun, Fatih

Gökbayrak, Metehan Aydın, Derya Susman, and Sermet Reha Yavuz for their help,

support and cheerful presence through not only the course of this study but also any

course of my life. Thanks for giving me a shoulder to lean on, whenever I need.

 x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ .. vi

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS .. x

LIST OF TABLES ... xiii

LIST OF FIGURES.. xiv

LIST OF ABBREVIATIONS .. xvi

CHAPTERS

1 INTRODUCTION ... 1

2 RECOMMENDER SYSTEMS ... 4

2.1 Definition of a Recommender System (RS) .. 4

2.1.1 Recommendation Process .. 5

2.2 Recommendation Techniques ... 6

2.2.1 Collaborative Recommendation ... 7

2.2.1.1 Memory-based Algorithms ... 7

2.2.1.2 Model-based Algorithms ... 8

2.2.2 Content-based Recommendation ... 9

 xi

2.2.3 Demographic Recommendation ... 9

2.2.4 Utility-based Recommendation .. 10

2.2.5 Knowledge-based Recommendation .. 10

2.3 Hybrid Recommendation Systems .. 10

3 SINGULAR VALUE DECOMPOSITION .. 13

3.1 Singular Value Decomposition (SVD) .. 13

3.1.1 Definition of SVD .. 13

3.1.2 Example of SVD .. 15

4 RECOMMENDATION WITH SVD .. 25

4.1 Recommendation Using SVD ... 25

4.1.1 Dimensionality Reduction .. 25

4.1.2 SVD Recommendation Algorithms ... 28

4.1.2.1 User-based Similarity .. 28

4.1.2.2 Item-based Similarity .. 30

4.2 Incremental SVD ... 31

4.3 Contributions to SVD-based Recommendation .. 33

4.3.1 Categorization of Users and Items ... 33

4.3.2 Adopting Tags to SVD Recommendation 35

4.3.2.1 Extension with Tags .. 36

5 EXPERIMENTAL RESULTS .. 39

 xii

5.1 Dataset ... 39

5.2 Results for SVD-based Recommendation by User-User Similarity 40

5.3 Results for SVD-based Recommendation by Item-Item Similarity 41

5.4 Comparison of Incremental SVD and Normal SVD 42

5.5 Categorization of Items ... 44

5.6 Categorization of Users ... 46

5.7 Categorization of Both Users and Items ... 48

5.8 Adopting Tags to SVD Recommendation ... 50

6 CONCLUSION AND FUTURE WORK .. 53

REFERENCES .. 55

APPENDICES

 A. MATRIX TERMINOLOGY .. 59

 xiii

LIST OF TABLES

TABLES

Table 2.1 - Recommendation Techniques ... 6

Table 2.2 - Hybridization Methods ... 11

Table 4.1 - Example <User, Movie> Rating Matrix ... 27

Table A.1 - Top-scorers in last 5 seasons ... 59

 xiv

LIST OF FIGURES

FIGURES

Figure 2.1 - Recommendation process as a black box .. 5

Figure 3.1 - Best-fit regression line ... 13

Figure 3.2 - Regression line along second dimension ... 14

Figure 4.1 - Dimensionality Reduction Process in SVD ... 26

Figure 4.2 - User Sampling in 2D Space for k = 2 .. 29

Figure 4.3- Semantics of Incremental SVD .. 32

Figure 4.4 - Categorizations Steps of Users and Items ... 34

Figure 4.5 - Conversion from 3D Matrix to 2D Matrixes ... 37

Figure 5.1 - Results of SVD Recommendation by U-U Similarity 41

Figure 5.2 - Results of SVD Recommendation by I-I Similarity 42

Figure 5.3 - Comparison of SVD and Incremental SVD (U-U) 43

Figure 5.4 - Comparison of SVD and Incremental SVD (I-I) 44

Figure 5.5 - Comparison of SVD and SVD with Categorization (U-U) 45

Figure 5.6 - Comparison of SVD and SVD with Categorization (I-I) 46

Figure 5.7 - Comparison of SVD and SVD with Categorization (Gender) 47

Figure 5.8 - Comparison of SVD and SVD with Categorization (Age) 48

 xv

Figure 5.9 - Comparison of SVD and SVD with Categorization (Overall) 49

Figure 5.10 - Comparison of SVD and SVD with Tags ... 51

 xvi

LIST OF ABBREVIATIONS

RS Recommender Systems

IR Information Retrieval

IF Information Filtering

CB Content Based

CF Collaborative Filtering

SVD Singular Value Decomposition

UU User to User Similarity

 II Item to Item Similarity

 1

CHAPTER 1

1 INTRODUCTION

Recommender systems apply data analysis techniques to the problem of helping

customers to find which products they would like to purchase especially on the

internet. These systems are rapidly becoming a crucial tool in E-commerce on the

Web. The tremendous growth of customers and products poses two main challenges

for recommender systems. The first challenge is to improve the quality of the

recommendations for the customers. Making good recommendations increases the

customers desire to purchase products, whereas making bad recommendations may

result losing customers. Another challenge is to improve the scalability of the

recommendation algorithms. These algorithms are able to respond tens of millions of

recommendation requests in real-time. In order to make a system scalable, the

response time for the requests should be reduced. However, if the algorithm spends

less time for recommendation, the quality of the recommendation decreases.

Actually, from this perspective these two challenges are in conflict. For this reason, it

is important to consider both of them simultaneously for the proposed solutions.

Every recommendation system follows a specific process while making

recommendations. Systems use the users‘ profiles and the information about items or

products as the inputs and produce recommendations. In other words, a

recommendation system consists of background data, the information that the system

has before the recommendation process begins, input data, the information that user

must communicate to the system in order to generate a recommendation, and an

algorithm that combines background and input data to arrive at its recommendations.

Recommendation techniques can be grouped into five as collaborative, content-

based, demographic, utility-based, and knowledge-based [11]. Moreover, some

hybrid solutions could be generated with different methods as a combination of some

 2

of these five techniques. In Chapter 2, all of these techniques are explained briefly.

Among several different techniques, collaborative recommendation is probably the

most familiar, most widely implemented one. Collaborative recommender systems

recognize commonalities between users on the basis of their ratings, and generate

new recommendations based on inter-user comparisons.

At this point, SVD has an important property that makes it interesting for

recommender systems. SVD provides the best low-rank linear approximation of the

original matrix and the low-rank approximation of the original matrix is better than

the original matrix itself [1, 2]. Filtering out of the small singular values can be

introduced as removing ―noise‖ data in the matrix. Researchers [2, 3, 4, 5] suggest

that SVD-based approaches produce results better than traditional collaborative

filtering algorithms most of the time. However, SVD requires computationally very

expensive matrix calculations and this makes SVD-based recommender systems less

suitable for large-scale systems. For this reason, most of the researches on SVD-

based recommendation focus on scalability problem while protecting the high quality

recommendations of the method.

In this thesis, SVD-based recommendation techniques are compared with

experiments and some new approaches are introduced to this technique. The first

contribution we have proposed is the categorization of items and users. Our

experiments showed that, item and user categorization increases both the

recommendation quality and speed performance of the SVD technique. Moreover,

we adopted the tags to the traditional 2-Dimensional SVD approach. By this way, we

have the chance to analyze the effect of third dimension (tags) to the SVD

recommendation performance. Our experiments illustrated that, tags also increase the

performance to some extent.

This thesis is structured in the following way:

In chapter 2, a detailed explanation about recommender systems and a more formal

description of the recommendation process is presented.

 3

Chapter 3 covers the SVD method with examples. In addition to this chapter,

Appendix A provides background information for SVD including basic matrix

terminology.

In Chapter 4, the existing SVD recommendation approaches are presented. The

algorithms are explained in details. In addition to the existing methods we report our

proposals, the categorization of users and items in SVD recommendation and

adopting tags to classical SVD approach.

In Chapter 5, the experimental results for both existing algorithms and our proposals

are demonstrated together with the comparisons and evaluations about the results.

Chapter 6 draws the conclusions of this thesis work. Other than that, some possible

future work direction in terms of both our approach and the related area are stated.

 4

CHAPTER 2

2 RECOMMENDER SYSTEMS

2.1 Definition of a Recommender System (RS)

In order to increase the users‘ satisfaction towards online information search results,

search engine developers and vendors try to predict user preference based on the user

behavior. Recommendations are provided by the search engines or online vendors to

the users. Recommendation systems are implemented in both commercial and non-

profit web sites to predict the user preferences. Accurate predictions may result in

higher selling rates and increase the customer satisfaction. The main functions of

recommendation systems are analyzing user data and extracting useful information

for further predictions [6]. Variety of techniques has been proposed for performing

recommendation, including content-based, collaborative, knowledge-based and other

techniques. To improve performance, these methods have sometimes been combined

in hybrid recommenders.

There are a lot of recommendation systems, accessible via internet, which attempt to

recommend to users several products such as music, movies, books, etc. For instance,

recommender systems are now an integral part of some e-commerce sites such as

Amazon.com and CDNow [7]. In a general way, recommendation systems are

systems which intend to acquire opinions or preferences about items from a

community of users, and use those opinions to present other users with items that are

interesting to them. From this general description we can see that recommendation

systems need two basic things to work properly:

1. Information about the preferences of the users

2. A method to determine if an item is interesting for a user

 5

Normally, the users‘ information includes external information, such as user profiles,

purchasing histories, and product ratings [8]. The way to determine whether an item

is interesting to a user or not, depends on the kind of recommendation system. In this

chapter, we will discuss the recommendation techniques which are commonly used.

2.1.1 Recommendation Process

In general, every recommendation system follows a specific process in order to

create recommendations. If we see the process of recommendation as a black box, as

shown in Figure 2.1, we can identify two sources of information needed as input for

the process. These sources of information are the users‘ profiles and the information

about items or products. Ideally the information stored in the profiles is related with

the preferences of the users and should be given explicitly by the user itself.

However, this information can also be extracted from other external sources such as

web pages, buying behavior, etc.

Figure 2.1 - Recommendation process as a black box

 6

2.2 Recommendation Techniques

Recommendation techniques have a number of possible classifications [7, 9, 10].

Specifically, recommender systems have

 background data, the information that the system has before the

recommendation process begins

 input data, the information that user must communicate to the system in order

to generate a recommendation

 algorithm that combines background and input data to arrive at its

suggestions.

On this basis, recommendation techniques can be grouped into five as shown in

Table 2.1 [11]. In the table I is the set of items over which recommendations might

be made, U is the set of users whose preferences are known, u is the user for whom

recommendations need to be generated, and i is the item for which we would like to

predict u‘s preference.

Table 2.1 - Recommendation Techniques

 7

2.2.1 Collaborative Recommendation

Collaborative recommendation is probably the most well known, most widely

implemented and most mature of the technologies. Collaborative recommender

systems aggregate ratings or recommendations of objects, recognize commonalities

between users on the basis of their ratings, and generate new recommendations based

on inter-user comparisons. A typical user profile in a collaborative system consists of

a vector of items and their ratings. In some cases, ratings may be binary (like/dislike)

or real-valued indicating degree of preference. Some of the most important systems

using this technique are GroupLens/NetPerceptions [12], Ringo/Firefly [13], and

Recommender [14]. According to [15], these systems can be:

 memory-based, comparing users against each other directly using correlation

or other measures

 model-based, in which a model is derived from the historical rating data and

used to make predictions

2.2.1.1 Memory-based Algorithms

These are algorithms which make predictions based on the entire collection of

previously rated items by the users. That is, the value of the unknown rating for a

user and an item is usually computed as an aggregate of the ratings of some other

(usually the N most similar) users for the same item [16].

Memory-based approaches are the most popular prediction methods and are widely

adopted in commercial collaborative filtering systems. The major types of memory-

based approaches are:

 User-based Approaches

User-based Collaborative Filtering predicts an active user‘s interest in a

particular item based on rating information from similar user profiles, where each

user profile corresponds to a row vector sorted in the user-item matrix. First, all

 8

similarities of any two row vectors are calculated. Then, for predicting the rating

of a user for a particular item, a set of top-N similar users are identified. The

ratings of those top-N users are averaged as the prediction by weighted [17].

These systems are extremely data-intensive, typically requiring a large number of

user ratings before they can make reasonable recommendations. Moreover,

depending on how actively a user rates content, the system may be slow to

accumulate enough information about a user‘s preferences to make accurate

recommendations, resulting in poor recommendations for a prolonged period

[18].

 Item-based Approaches

These approaches use the similarity between items instead of users. After, the

similarity of items (column vectors in the user-item matrix) are calculated,

unknown ratings can be predicted by averaging the ratings of other similar items

rated by the active user [17].

The main advantage of item-based collaborative filtering over user-based

collaborative filtering is its scalability. Item-based collaborative filtering does not

have to scour databases containing potentially millions of users in order to find

users with similar tastes. Instead, it can pre-score content based on user ratings

and/or their attributes, and then make recommendations without incurring high

computation costs [18].

2.2.1.2 Model-based Algorithms

In contrast to memory-based algorithms, model-based algorithms use the collection

of ratings as a training dataset to learn a model, which is then used to make rating

predictions [16]. The model-based approaches are often time-consuming to build and

update, and cannot cover a user range as diverse as the memory approaches [19].

 9

Model-based recommenders have used a variety of learning techniques including

neural networks [20], latent semantic indexing [21], and Bayesian networks [22].

2.2.2 Content-based Recommendation

Content-based recommendation is an outgrowth and continuation of information

filtering research [23]. In a content-based system, the objects of interest are defined

by their associated features. For example, text recommendation systems like the

newsgroup filtering system NewsWeeder [24] uses the words of their texts as

features. A content-based recommender learns a profile of the user‘s interests based

on the features present in objects the user has rated. The type of user profile derived

by a content-based recommender depends on the learning method employed.

Decision trees, neural nets, and vector-based representations have all been used. As

in the collaborative case, content-based user profiles are long-term models and

updated as more evidence about user preferences is observed.

2.2.3 Demographic Recommendation

Demographic recommender systems aim to categorize the user based on personal

attributes and make recommendations based on demographic classes. An early

example of this kind of system was Grundy [25] that recommended books based on

personal information gathered through an interactive dialogue. Some more recent

recommender systems have also taken this approach. For example, [26] uses

demographic groups from marketing research to suggest a range of products and

services. A short survey is used to gather the data for user categorization. The

representation of demographic information in a user model can vary greatly.

Demographic techniques form ―people-to-people‖ correlations like collaborative

ones, but use different data. The benefit of a demographic approach is that it may not

require a history of user ratings of the type needed by collaborative and content-

based techniques.

 10

2.2.4 Utility-based Recommendation

Utility-based recommenders make suggestions based on a computation of the utility

of each object for the user. Of course, the central problem is how to create a utility

function for each user. Tête-à-Tête and the e-commerce site PersonaLogic2 each

have different techniques for arriving at a user-specific utility function and applying

it to the objects under consideration [27]. The user profile therefore is the utility

function that the system has derived for the user, and the system employs constraint

satisfaction techniques to locate the best match. The benefit of utility-based

recommendation is that it can factor non-product attributes, such as vendor reliability

and product availability, into the utility computation, making it possible for example

to trade off price against delivery schedule for a user who has an immediate need.

2.2.5 Knowledge-based Recommendation

Knowledge-based recommendation attempts to suggest objects based on inferences

about a user‘s needs and preferences. In some sense, all recommendation techniques

could be described as doing some kind of inference. Knowledge-based approaches

are distinguished in that they have functional knowledge:

 how a particular item meets a particular user need

 reason about the relationship between a need and a possible recommendation

The user profile can be any knowledge structure that supports this inference. In the

simplest case, as in Google, it may simply be the query that the user has formulated.

In others, it may be a more detailed representation of the user‘s needs [28].

2.3 Hybrid Recommendation Systems

Hybrid recommender systems combine two or more recommendation techniques to

gain better performance with fewer of the drawbacks of any individual one. Most

commonly, collaborative filtering is combined with some other technique in an

attempt to avoid the ramp-up problem. Table 2.3 shows some of the combination

methods that have been employed [11].

 11

Table 2.2 - Hybridization Methods

 Weighted: Each of the recommendation approaches that makes predictions are

combined into a single prediction. For example, the simplest combined

hybrid would be a linear combination of recommendation scores. The P-

Tango system uses such a hybrid [32].

 Switching: One of the recommendation techniques is selected to make the

prediction when certain criteria are met. The DailyLearner system uses a

content/collaborative hybrid in which a content-based recommendation

method is employed first. If the content-based system cannot make a

recommendation with sufficient confidence, then a collaborative

recommendation is attempted [11].

 Mixed: Predictions from each of the recommendation techniques are presented

to the user. The PTV system uses this approach to assemble a recommended

program of television viewing [33]. It uses content-based techniques based on

textual descriptions of TV shows and collaborative information about the

preferences of other users. Recommendations from the two techniques are

combined together in the final suggested program.

 Feature Combination: A single prediction algorithm is provided with features

from different recommendation techniques. For example, [34] report on

experiments in which the inductive rule learner Ripper was applied to the task

 12

of recommending movies using both user ratings and content features, and

achieved significant improvements in precision over a purely collaborative

approach.

 Cascade: Output from one recommendation technique is refined by another.

Unlike the previous hybridization methods, the cascade hybrid involves a

staged process. In this technique, on recommendation technique is employed

first to produce a coarse ranking of candidates and a second technique refines

the recommendation from among the candidate set [11].

 Feature Augmentation: Output from one recommendation technique is fed to

another. One technique is employed to produce a rating or classification of an

item and that information is then incorporated into the processing of the next

recommendation technique. For example, the Libra system makes content-

based recommendations of books based on data found in Amazon.com, using

a naive Bayes text classifier. In the text data used by the system is included

―related authors‖ and ―related titles‖ information that Amazon generates

using its internal collaborative systems [35].

 Meta-level: Entire model produced by one recommendation technique is

utilized by another. This differs from feature augmentation: in an

augmentation hybrid, we use a learned model to generate features for input to

a second algorithm; in a meta-level hybrid, the entire model becomes the

input. The first meta-level hybrid was the web filtering system Fab [36].

 13

CHAPTER 3

3 SINGULAR VALUE DECOMPOSITION

In this section, SVD is explained with examples. Examples are taken from the

Singular Value Decomposition tutorial [37]. The background information about

matrix basics, Eigenvalues and Eigenvectors is available in Appendix A.

3.1 Singular Value Decomposition (SVD)

3.1.1 Definition of SVD

Singular value decomposition (SVD) can be seen as a method for data reduction. As

an illustration of this idea, consider the 2-dimensional data points in Figure 3.1 [37].

The regression line running through them shows the best approximation of the

original data with a 1-dimensional object (a line). It is the best approximation in the

sense that it is the line that minimizes the distance between each original point and

the line.

Figure 3.1 - Best-fit regression line

 14

If we drew a perpendicular line from each point to the regression line, and took the

intersection of those lines as the approximation of the original data point, we would

have a reduced representation of the original data that captures as much of the

original variation as possible. Notice that there is a second regression line,

perpendicular to the first, shown in Figure 3.2 [37].

Figure 3.2 - Regression line along second dimension

This line captures as much of the variation as possible along the second dimension of

the original data set. It does poorer job of approximating the original data because it

corresponds to a dimension exhibiting less variation to begin with. It is possible to

use these regression lines to generate a set of uncorrelated data points that will show

sub groupings in the original data not necessarily visible at first glance.

These are the basic ideas behind SVD: taking a high dimensional, highly variable set

of data points and reducing it to a lower dimensional space that exposes the

substructure of the original data more clearly and orders it from most variation to the

least.

 15

Singular Value Decomposition is a matrix factorization technique which takes a

rectangular matrix defined as A where A is an m x n matrix in which the m rows

represents the users, and the n columns represents the items. The SVD theorem (1)

states:

 Amxn= Umxm Smxn V
T

nxn (1)

 Where U
T
U = Imxm

 V
T
V = Inxn

Where the columns of U are the left singular vectors; S (the same dimensions as A)

has singular values and is diagonal; and V
T
 has rows that are the right singular

vectors. Calculating the SVD consists of finding the Eigenvalues and Eigenvectors of

AA
T

and A
T
A. The Eigenvectors of A

T
A make up the columns of V , the

Eigenvectors of AA
T

 make up the columns of U. Also, the singular values in S are

square roots of Eigenvalues from AA
T
 or A

T
A. The singular values are the diagonal

entries of the S matrix and are arranged in descending order. The singular values are

always real numbers. If the matrix A is a real matrix, then U and V are also real.

Matrix S is a diagonal matrix having only r nonzero entries, which makes the

effective dimensions of U, S and V matrices m × r, r × r, and r × n, respectively.

The diagonal entries (s1, s2, . . . , sr) of S have the property that si > 0 and s1 ≥ s2 ≥ . . .

≥ sr.

3.1.2 Example of SVD

Start with the matrix

 16

In order to find U, we have to start with AA
T
. The transpose of A is

So

Next, we have to find the Eigenvalues and corresponding Eigenvectors of AA
T
. We

know that Eigenvectors are defined by the equation

And applying this to AA
T
 gives us

We rewrite this as the set of equations

And rearrange to get

 17

Solve for λ by setting the determinant of the coefficient matrix to zero,

This works out as

To give us our two Eigenvalues λ = 10; λ = 12. Plugging λ back in to the original

equations gives us our Eigenvectors.

For λ = 10, we get

Which is true for lots of values, so we'll pick x1 = 1 and x2 = -1 since those are small

and easier to work with. Thus, we have the Eigenvector [1; -1] corresponding to the

Eigenvalue λ = 10.

For λ = 12, we get

 18

And for the same reason as before we'll take x1 = 1 and x2 = 1. Now, for λ = 12 we

have the Eigenvector [1; 1]. These Eigenvectors become column vectors in a matrix

ordered by the size of the corresponding Eigenvalue. In other words, the Eigenvector

of the largest Eigenvalue is column one, the Eigenvector of the next largest

Eigenvalue is column two, and so forth and so on until we have the Eigenvector of

the smallest Eigenvalue as the last column of our matrix. In the matrix below, the

Eigenvector for λ = 12 is column one, and the Eigenvector for λ = 10 is column two.

Finally, we have to convert this matrix into an orthogonal matrix which we do by

applying the Gram-Schmidt orthonormalization process to the column vectors. Begin

by normalizing v1.

Compute

 19

And normalize

To give

The calculation of V is similar. V is based on A
T
A, so we have

Find the Eigenvalues of A
T
A by

Represents the system of equations

 20

Rewrite as

These are solved by setting

This works out as

so λ = 0, λ = 10, λ = 12 are the Eigenvalues for A
T
A. Substituting λ back into the

original equations to find corresponding Eigenvectors yields for λ = 12

 21

So for λ = 12, v1 = [1; 2; 1].

For λ = 10, we have

Which means for λ = 10, v2 = [2; -1; 0].

For λ = 0, we have

 22

Which means for λ = 0, v3 = [1; 2; -5]. Order v1, v2, and v3 as column vectors in a

matrix according to the size of the Eigenvalue to get and use the Gram-Schmidt

orthonormalization process to convert that to an orthonormal matrix.

 23

All this to give us

When we really want its transpose

For S we take the square roots of the non-zero Eigenvalues and populate the diagonal

with them, putting the largest in s11, the next largest in s22 and so on until the smallest

value ends up in smm. The non-zero Eigenvalues of U and V are always the same, so

that's why it doesn't matter which one we take them from. The diagonal entries in S

are the singular values of A, the columns in U are called left singular vectors, and the

columns in V are called right singular vectors.

 24

Now we have all the pieces of the puzzle

 25

CHAPTER 4

4 RECOMMENDATION WITH SVD

4.1 Recommendation Using SVD

The goal of CF-based recommendation algorithms is to suggest new products or to

predict the utility of a product for a customer, based on the customer‘s previous

behaviour and other similar customers‘ opinions. However, these systems have some

problems like sparsity, scalability, and synonymy. The weakness of CF algorithms

for large, sparse databases led the researchers to alternative ways. In order to remove

noise data from a large and sparse database, some dimensionality reduction

techniques are proposed[1, 2, 3]. Latent Semantic Indexing (LSI), which is a

dimensionality reduction technique that used in information retrieval (IR), is a

widely used technique to reduce the dimensionality of user-item ratings matrix. LSI,

which uses singular value decomposition (SVD) as its underlying dimension

reduction algorithm, maps nicely into the collaborative filtering recommender

algorithm challenge [1]. SVD-based recommendation algorithms produce high

quality recommendations, but has to undergo computationally very expensive matrix

factorization steps [1].

4.1.1 Dimensionality Reduction

SVD has an important property that makes it interesting for recommender systems.

SVD provides the best low-rank linear approximation of the original matrix. It is

possible to reduce dimensions by selecting greatest k singular values. The value of k

may change according to the size and the structure of data.

The reduced matrix Sk is constructed by retaining the first k singular values. The

matrices U and V are also reduced to produce matrices Uk and Vk, respectively. The

 26

matrix Uk is produced by removing (r − k) columns from the matrix U and matrix Vk

is produced by removing (r − k) rows from the matrix V. Multiplying these three

reduced matrices, the matrix Ak is obtained. The reconstructed matrix Ak is a matrix

that is the closest approximation to the original matrix A. Figure 3.3 demonstrates

this process.

Figure 4.1 - Dimensionality Reduction Process in SVD

Some researchers [1, 2] claim that the low-rank approximation of the original matrix

is better than the original matrix itself. According to them, filtering out of the small

singular values can be introduced as removing ―noise‖ data in the matrix. Each

customer and product is represented by its corresponding Eigenvector in SVD-based

recommender systems. For instance, for a movie recommender system, users who

rated similar products are mapped into the space spanned by the same Eigenvectors.

As an example to dimension reduction, consider the <user, movie> rating matrix in

Table 4.1.

 27

Table 4.1 - Example <User, Movie> Rating Matrix

User/Movie Movie 1 Movie 2 Movie 3 Movie 4 Movie 5

User 1 1 5 0 5 4

User 2 5 4 4 3 2

User 3 0 4 0 0 5

User 4 4 4 1 4 0

User 5 0 4 3 5 0

User 6 2 4 3 5 3

Applying SVD to this matrix:

 28

Matrix U (6x6), matrix S (6x5), and matrix V (5x5) are calculated. Now, we will

collapse this matrix from a (6x5) space into a 2-Dimensional one. To do this, we

simply take the first two columns of U, S and V. The end result:

For a recommender system based on SVD, here is one very simple strategy: find the

most similar user using the 2-Dimensional matrixes above with one of the similarity

calculation algorithms and compare his/her items against that of the new user; take

the items that the similar user has rated and the new user has not and return them for

the new user. Similar to this, for a new item, find the most similar item using the 2-

Dimensional matrixes above with one of the similarity calculation algorithms and

compare the users rated similar item against the new item; take the users that rate

similar item but not the new item and return the ratings for the new item.

4.1.2 SVD Recommendation Algorithms

4.1.2.1 User-based Similarity

In SVD Recommendation, in order to decide whether two users are similar, the

reduced matrix Uk is used [1]. In the (mxk) Uk matrix, each row represents a user.

The more two rows are similar, the more the users are similar to each other. One

critical step in the SVD algorithm is to compute the similarity between users and

then to select the most similar users. There are a number of different ways to

compute the similarity between users. Here are two such methods: cosine-based

similarity and comparing the Euclidian distances in k-dimensional space.

 Cosine-based similarity:

 29

The similarity of two row vectors could be calculated with cosine similarity in order

to decide whether two users are similar or not. Formally, similarity between users i

and j is stated in (2).

Where `` '' denotes the dot-product of the two vectors.

 Comparing the Euclidian distances in k-dimensional space:

For example, in Figure 4.2 the distribution of users in 2D space is demonstrated.

For k=2

Figure 4.2 - User Sampling in 2D Space for k = 2

To find the most similar user to the user 1, the distances between point number 1 to

all points should be calculated and the user which has the smallest distance to the

point 1 is the most similar user to user 1.

The algorithm for SVD recommendation by User-based similarity:

 30

Recommendation Request (User = x, Item = y, Rating =?)

1. Find users who rated Item = y from the original matrix A.

2. Find most similar user to User = x among the users who rated Item = y using

the reduced matrix Uk.

3. Get the rating of the most similar user to Item = y from the original matrix A

and give it for the User = x , Item = y.

For the second part of the algorithm, if the User = x is an already existing user, it

exists in the reduced matrix Uk as a row. If the User = x is a new user, before starting

similarity checks, the user has to be projected from n dimensions to k dimensions.

Let the ratings of the new user vector is Nu (1xn). The projection P to the reduced

matrix Uk is made by the formula [1]:

P = Nu x Vk x Sk
-1

In the experimental part of this study, the Euclidian distance algorithm explained

above is used for the similarity check of the users. The bottleneck in this technique is

the search for similar users among a large user population.

4.1.2.2 Item-based Similarity

Item-based algorithms avoid the bottleneck mentioned in the previous section

because they explore item similarities first rather than user similarities. In most

systems items are more static than users and not changed very frequently. Therefore,

Item-based similarity is suitable for pre-computation. Run time performance of item-

based similarity method is better than user-based similarity method [38].

In SVD Recommendation, in order to decide whether two items are similar, the

reduced matrix Vk is used [1]. In the (kxn) Vk matrix, each column represents an

item. The more two columns are similar, the more the items are similar to each other.

In order to compute item-item similarities, similar methods with the user-user

similarity, such as cosine-based similarity and comparing Euclidian distances in k-

dimensional space, may be used.

 31

The algorithm for SVD recommendation by Item-based similarity:

Recommendation Request (User = x, Item = y, Rating = ?)

1. Find items which are rated by User = x from the original matrix A.

2. Find most similar item to Item = y among the items which are rated by User =

x using the reduced matrix Vk
T
.

3. Get the rating of the most similar item given by User = x from the original

matrix A and give it for the User = x , Item = y.

Similar to user-based similarity, for the second part of the algorithm, if the Item = y

is an already existing item, it exists in the reduced matrix Vk
T
 as a column. If the

Item = y is a new item, before starting similarity checks, first the item has to be

projected from n dimensions to k dimensions. Let the ratings of the new item vector

is Ni (mx1). The projection P to the reduced matrix Vk
T
 is made by the formula [1]:

P = Ni
T
 x Uk x Sk

-1

In the experimental part of this study, the Euclidian distance algorithm explained

above is used for the similarity check of the items.

4.2 Incremental SVD

In a recommender system, the entire algorithm works in two separate steps. The first

step is the offline step and the second step is the online execution step. The user-user

and item-item similarity computation steps described above can be seen as the offline

step of a recommender system. However, the actual prediction generation is done in

run-time in the online step. Usually, the offline computations are very time

consuming and is computed infrequently. For instance, a movie recommender site

may compute the user-user or item-item similarity tables only once a day or even

once a week. If the ratings database is static and if the user behavior does not change

significantly over a short period of time, this method works well. Researchers have

demonstrated that the SVD-based algorithms can make the similarity formation

 32

process of recommender systems highly scalable while producing better results in

most of the cases [3, 4, 5]. However the offline step of SVD recommendation, which

consists of decomposition and similarity computation steps is computationally very

expensive. For an (m×n) user-item matrix, the SVD decomposition requires a run-

time of O(m
3
) [1, 2]. The focus of incremental SVD is to develop an algorithm that

ensures highly scalable overall performance. It makes the offline model building of

SVD more scalable while achieving prediction quality comparable to the original

SVD.

The projection technique is known as ―folding-in‖ in SVD literature [1, 2]. To fold-in

new users into the matrix of already reduced user-item matrix Ak, we compute the

coordinates for that vector in the basis Uk. Let the size of the new user vector Nu be

(1xn). The first step in folding-in is to compute a projection P that projects Nu onto

the matrix. Such a projection P of Nu is computed as:

P = Nu x Vk x Sk
-1

This user set is then folded-in by appending the k dimensional vector Uk. Figure 4.3

[1] below shows a schematic diagram of this process.

Figure 4.3- Semantics of Incremental SVD

 33

To fold-in new items into the matrix of already reduced user-item matrix Ak, we

compute the coordinates for that vector in the basis Vk. Let the size of the new item

vector Ni be (mx1). The first step in folding-in is to compute a projection P that

projects Ni onto the matrix. Such a projection P of Ni is computed as:

P = Ni
T
 x Uk x Sk

-1

This item set is then folded-in by appending the k dimensional vector Vk .

Folding-in is based on the existing model Uk, Sk, and Vk. New users or items do not

affect existing user and items. In practice, it is possible to pre-compute the SVD

decomposition using m existing users. For a user-item ratings matrix A, the three

decomposed matrix Uk, Sk, and Vk are computed at first. However, when a new set

of ratings is added to the database, it is not necessary to compute again the low-

dimensional model from the scratch. The folding-in technique provides an

incremental system that has the potential to be highly scalable. The complexity of

adding a new user or a new item is just O(1) in incremental SVD.

4.3 Contributions to SVD-based Recommendation

4.3.1 Categorization of Users and Items

As it is mentioned before, a recommender system has to provide two properties for

its users. One of them is making good accurate recommendations and the other one is

fast responding of requests. In order to make more accurate recommendations, we

need to make more accurate similarity tables. We propose a new approach that is

categorization of items and users to SVD-based recommendation. By this way, we

perform SVD-based approach operations on relatively smaller matrices. These

smaller matrices are consisting of items in the same category and users in the same

category. By this way, we aim to increase the accuracy performance of SVD-based

recommendation. Since SVD computational complexity is very high which is O(m
3
),

smaller matrices also improve the execution time performance of the algorithm.

 34

For instance, for a movie recommender system, the movies can be categorized by

their types (action, sci-fi, horror, etc.) and the users can be categorized by their

gender, age group, etc. In the Figure 4.5 below, the categorization step of the dataset

is demonstrated.

Figure 4.4 - Categorizations Steps of Users and Items

We produce r x p matrices from the original matrix. For all of them, the SVD

operation is performed separately.

 Algorithm for SVD recommendation by categorizing the data (User-User

Similarity):

Recommendation Request (User = x, Item = y, Rating = ?)

 35

1. Find the user category for User = x

2. Find the item category for Item = y

3. Find matrix for these categories.

4. Find users who rated Item = y, in this user category.

5. Performing SVD operations on this matrix, find most similar user to User = x

among these users.

6. Give the rating of the most similar user to the rating of User = x, Item = y.

Algorithm for SVD recommendation by categorizing the data (Item-Item

Similarity):

Recommendation Request (User = x, Item = y, Rating = ?)

1. Find the user category for User = x

2. Find the item category for Item = y

3. Find matrix for these categories.

4. Find items that are rated by User = x, in this item category.

5. Performing SVD operations on this matrix, find most similar item to Item = y

among these items.

6. Give the rating of the most similar item to the rating of User = x, Item = y.

In Chapter 5, the experimental results are given for this method.

4.3.2 Adopting Tags to SVD Recommendation

In order to improve recommendation quality, metadata such as content information

of items has been used as additional knowledge. With the increasing popularity of

the systems which allow users to write tags for items, tags become interesting and

useful information to recommendation algorithms. Tags are different from the

attributes of users and items. Attributes are global descriptions of items or users,

whereas tags are descriptions of items given by the users. In this study, we have tried

to use tags for SVD recommendation algorithms and analyzed the results. To adopt

tags to normal SVD algorithm, we reduced the three-dimensional matrix<user, item,

 36

tag> to three two-dimensional matrices as <user, item>, <user, tag> and <item, tag>.

From these there two-dimensional matrices we construct a new matrix to perform

SVD recommendation using explained algorithms in the previous sections.

4.3.2.1 Extension with Tags

Unlike attributes which only have a two-dimensional relation < item, attribute >, tags

hold a three-dimensional relation < user, item, tag >. We overcome this three

dimensionality problem by projecting it as three two-dimensional problem, < user,

tag > and < item, tag > and < user, item > [39].

This can be done by augmenting the standard user-item matrix horizontally and

vertically with user and item tags correspondingly. User tags are tags that user u

writes to tag items and are viewed as items in the user-item matrix. Item tags are tags

that describe an item i by users and play the role of users in the user-item matrix.

Figure 4.6 [39] below illustrates this process:

 37

Figure 4.5 - Conversion from 3D Matrix to 2D Matrixes

Moreover, instead of viewing each single tag as user or item, clustering methods can

be applied to the tags such that similar tags are grouped together. In this study, we

tried substring, java string comparison and edit distance calculation methods to group

similar tags in order to improve the performance of recommendation.

After constructing the new two dimensional matrixes, the SVD recommendation

algorithms proposed in the previous sections are performed to measure the

performance quality improvements. In Chapter 5, the experimental results are given

for this method.

 38

Edit Distance

In information theory and computer science, the edit distance between two strings of

characters is the number of operations required to transform one of them into the

other. There are several different ways to define an edit distance, and there are

algorithms to calculate its value under various definitions. We used ―Levenshtein

Distance‖ algorithm[41] in this thesis study.

For example, the Levenshtein distance between "kitten" and "sitting" is 3, since the

following three edits transform one into the other, and there is no way to do it with

fewer than three edits:

1. kitten sitten (substitution of 's' for 'k')

2. sitten sittin (substitution of 'i' for 'e')

3. sittin sitting (insert 'g' at the end).

 39

CHAPTER 5

5 EXPERIMENTAL RESULTS

The algorithms in the experiments are implemented in java programming language.

For SVD and all other matrix calculations, JAMA matrix library [44] is used.

5.1 Dataset

Our experimental dataset is a popular database, the MovieLens dataset by the

GroupLens Research group at University of Minnesota [42]. The data set contains

100.000 ratings (1-5 scales) from 943 users on 1682 movies. Each user has rated at

least 20 movies.

Ratings are given in the format ―user id | item id | rating | timestamp‖ where user and

movie id fields are started from 1 and the time stamps are UNIX seconds since

1/1/1970 UTC.

Information about the movies is given as a tab separated list of:

Movie id | movie title | release date | video release date | IMDb URL | unknown |

Action | Adventure | Animation | Children's | Comedy | Crime | Documentary | Drama

| Fantasy | Film-Noir | Horror | Musical | Mystery | Romance | Sci-Fi | Thriller | War |

Western |

The last 19 fields are the genres which are going to be the movie categories in our

experiments.

Information about the users is given as a tab separated list of:

User id | age | gender | occupation | zip code

 40

To compare algorithms, we conducted the experiments on test data which are

randomly 80% / 20% splits of the ratings data. We use 5 disjoint test sets for 5 fold

cross validation. 5 fold cross validation means, we repeat our experiment with each

five training and test set and average the results.

In order to examine and compare the performance of the methods in the experiment,

we adopted to mean absolute error (MAE) [43]. The MAE is computed by first

summing the absolute errors of the N ratings prediction and then averaging the sum.

A smaller value of MAE indicates a better performance.

5.2 Results for SVD-based Recommendation by User-User Similarity

SVD-based recommendation by User-User similarity method is implemented as the

given algorithm in Chapter 4. The results for the 5 disjoint test sets, without making

any heuristic improvements, are demonstrated in the Figure 5.1 below:

 41

SVD-based Recommendation by User-User Similarity

1,0500 1,0600 1,0700 1,0800 1,0900

Test Set 1

Test Set 2

Test Set 3

Test Set 4

Test Set 5

Test Set

M
A

E

User-User Similarity

Figure 5.1 - Results of SVD Recommendation by U-U Similarity

The average MAE for 5 disjoint test cases = 1,0746.

5.3 Results for SVD-based Recommendation by Item-Item Similarity

SVD-based recommendation by Item-Item similarity method is implemented as the

given algorithm in section 2. The results for the 5 disjoint test sets, without making

any heuristic improvements, are demonstrated in the Figure 5.2 below:

 42

SVD-based Recommendation by Item-Item Similarity

0,940

0

0,945

0

0,950

0

0,955

0

0,960

0

0,965

0

0,970

0

0,975

0

0,980

0

Test Set 1

Test Set 2

Test Set 3

Test Set 4

Test Set 5

Test Set

M
A

E

Item-Item Similarity

Figure 5.2 - Results of SVD Recommendation by I-I Similarity

The average MAE for 5 disjoint test cases = 0,9631.

From the results for both User-based and Item-based recommendations in Figure 5.1

and 5.2, it is clearly seen that item-based similarity produced better predictions than

user-based similarity. Since the number of items is greater than the number of users

in the dataset, SVD gives better results for item-item similarity.

5.4 Comparison of Incremental SVD and Normal SVD

According to the incremental SVD algorithm explained in Chapter 4, we add users

incrementally to a base set for singular value decomposition.

The prediction accuracy results of incremental SVD and normal SVD methods for

the 5 disjoint test sets, without making any heuristic improvements, are demonstrated

in the Figure 5.3 below:

 43

Comparision Between Normal SVD and Incremental SVD by

User-User Similarity

1,0200 1,0300 1,0400 1,0500 1,0600 1,0700 1,0800 1,0900

Test Set 1

Test Set 2

Test Set 3

Test Set 4

Test Set 5

Test Set

M
A

E

Incremental SVD

Normal SVD

Figure 5.3 - Comparison of SVD and Incremental SVD (U-U)

The average MAE for 5 disjoint test cases for Incremental SVD = 1,0549.

The average MAE for 5 disjoint test cases for Normal SVD = 1,0746.

Moreover, we also examine item-item similarity with incremental SVD by adding

movies incrementally to a base set for singular value decomposition.

The prediction accuracy results of incremental SVD and normal SVD methods for

item-item similarity for the 5 disjoint test sets, without making any heuristic

improvements, are demonstrated in Figure 5.4 below:

 44

Comparison Between Normal SVD and Incremental SVD by

Item-Item Similarity

0,9400 0,9500 0,9600 0,9700 0,9800

Test Set 1

Test Set 2

Test Set 3

Test Set 4

Test Set 5

Test Set

M
A

E

Incremental SVD

Normal SVD

Figure 5.4 - Comparison of SVD and Incremental SVD (I-I)

The average MAE for 5 disjoint test cases for Incremental SVD = 0,9691.

The average MAE for 5 disjoint test cases for Normal SVD = 0,9631.

The results illustrates that, for both user-based and item-based recommendation,

normal SVD and incremental SVD have very close prediction performance. On the

other hand, while normal SVD operation of the 943 x 1682 <user, movie> matrix

takes more than 5 minutes, by incremental SVD it takes approximately 10 seconds.

These results show that, incremental SVD preserves the quality of the predictions

compared to normal SVD, whereas it increases the execution time performance

significantly. This means incremental SVD overcomes scalability problem to some

extent.

5.5 Categorization of Items

According to the movie type, we divided the dataset into categories. In our data set,

there are 18 different movie types. These are: Action, Adventure, Animation,

 45

Children's, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror,

Musical, Mystery, Romance, Sci-Fi, Thriller, War, and Western.

The prediction accuracy results of SVD with categorization and normal SVD

methods for the 5 disjoint test sets, without making any heuristic improvements, are

demonstrated in the Figure 5.5 and 5.6 below:

Comparision of Normal SVD and SVD with Categorization by

User-User Similarity

0,9000 0,9500 1,0000 1,0500 1,1000

1

2

3

4

5

Test Set

M
A

E

SVD with Categories

Normal SVD

Figure 5.5 - Comparison of SVD and SVD with Categorization (U-U)

MAE for 5 disjoint test cases for Normal SVD by U-U Similarity = 1,0746.

MAE for 5 disjoint test cases for SVD with Categories by U-U Similarity = 0,9874.

 46

Comparision of Normal SVD and SVD with Categorization by

Item-Item Similarity

0,8000 0,8500 0,9000 0,9500 1,0000

1

2

3

4

5

Test Set

M
A

E

SVD with Categories

Normal SVD

Figure 5.6 - Comparison of SVD and SVD with Categorization (I-I)

MAE for 5 disjoint test cases for Normal SVD by I-I Similarity = 0,9631.

MAE for 5 disjoint test cases for SVD with Categories by I-I Similarity = 0,8846.

For both user-based and item-based recommendation algorithms, after categorizing

the movies, the quality of predictions is significantly improved. Moreover, since the

computational complexity of SVD operation is O(m
3
) and by categorizing the

movies, the matrixes become smaller, the computation time is also significantly

improved. While normal SVD operation of the 943 x 1682 <user, movie> matrix

takes more than 5 minutes, by categorization, due to smaller matrices, SVD takes

less than 10 seconds.

5.6 Categorization of Users

According to the gender, we divided the dataset into categories. Users are divided

into two groups as Males and Females.

 47

The prediction accuracy results of SVD with categorization and normal SVD

methods for the 5 disjoint test sets, without making any heuristic improvements, are

demonstrated in the Figure 5.7 below:

Comparison of Normal SVD and SVD with Categories - Gender

1,0000 1,0200 1,0400 1,0600 1,0800 1,1000

1

2

3

4

5

Test Set

M
A

E

SVD with Categories

Normal SVD

Figure 5.7 - Comparison of SVD and SVD with Categorization (Gender)

MAE for Normal SVD by U-U Similarity = 1,0746.

MAE for SVD with User Categories(Gender) by U-U Similarity = 1,0416.

As a second experiment for User Categories, according to the age group, we divided

the dataset into categories. Users are divided into for groups as 0-20, 20-40, 40-60,

60-80.

The prediction accuracy results of SVD with categorization and normal SVD

methods for the 5 disjoint test sets, without making any heuristic improvements, are

demonstrated in the Figure 5.8 below:

 48

Comparison of Normal SVD and SVD with Categories - Age Group

1,0200 1,0300 1,0400 1,0500 1,0600 1,0700 1,0800 1,0900

1

2

3

4

5

Test Set

M
A

E

SVD with categories

Normal SVD

Figure 5.8 - Comparison of SVD and SVD with Categorization (Age)

MAE for Normal SVD by U-U Similarity = 1,0746.

MAE for SVD with User Categories (Gender) by U-U Similarity = 1,0476.

Figure 5.7 and 5.8 demonstrates that, both gender and age group improves the

performance of recommendation. Also, computational time decreases by working

with smaller matrixes. When we compare the results of categorization of users and

categorization of items, it is clearly seen that categorization of items produce better

results. However, this is mostly related with the number of categories. For movie

categories there exists 19 categories, whereas for user categories there exists

2(gender) and 4(Age Group) categories.

5.7 Categorization of Both Users and Items

According to the user genders and movie types, we divided the dataset into

categories. Users are divided into two groups as Males and Females. Movies are

divided into 18 categories as Action, Adventure, Animation, Children's, Comedy,

Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, Musical, Mystery,

Romance, Sci-Fi, Thriller, War, and Western.

 49

The prediction accuracy results of SVD with categorization and normal SVD

methods for the 5 disjoint test sets, without making any heuristic improvements, are

demonstrated in the Figure 5.9 below:

Comparision of Normal SVD and SVD with Category

0,9000 0,9500 1,0000 1,0500 1,1000

1

2

3

4

5

Test Set

M
A

E

SVD with Both User and Item

Category

SVD with User Category

SVD with Item Category

Normal SVD

Figure 5.9 - Comparison of SVD and SVD with Categorization (Overall)

MAE for Normal SVD = 1,0746.

MAE for SVD with User Categories = 1,0476.

MAE for SVD with Item Categories = 0,9874.

MAE for SVD with User and Item Categories = 0,9820.

More similar users and items come together to form smaller matrixes by

categorization and this increases the performance of recommendation process in two

different perspective. The first one is the prediction performance. Figure 5.9

summarizes the contribution of categorization to the prediction quality. And the

 50

second one is the computational time performance. Form these views; categorization

proposes solutions to sparsity and scalability problems of traditional CF algorithms.

5.8 Adopting Tags to SVD Recommendation

In order to test tag-based SVD recommendation we used a different dataset from the

MovieLens by the GroupLens Research group at University of Minnesota [42]. This

data set contains 10.000.054 ratings and 95.580 tags applied to 10.681 movies by

71.567 users.

Users were selected at random and all users selected had rated at least 20 movies.

Unlike previous data set, no demographic information is included. Each user is

represented by an id, and no other information is provided.

The data are contained in three files, movies.dat, ratings.dat and tags.dat.

Movies and ratings are given as similar to the previous data set.

All tags are contained in the file tags.dat. Each line of this file represents one tag

applied to one movie by one user, and has the following format:

UserID::MovieID::Tag::Timestamp

The lines within this file are ordered first by UserID, then, within user, by MovieID.

Tags are user generated metadata about movies. Each tag is typically a single word,

or short phrase. The meaning, value and purpose of a particular tag is determined by

each user.

Example for tags:

25::50::Kevin Spacey::1166101426

31::65::buddy comedy::1188263759

31::546::strangely compelling::1188263674

 51

39::277::classic::1188263791

39::1249::woman::1188263764

109::36::death penalty::1211433235

109::1258::Stephen King::1165555223

127::1343::stalker::1188265347

146::10::franchise::1196517851

146::16::imdb top 250::1213424434

146::26::based on a play::1206782429

146::28::based on a book::1210845801

146::32::biology::1208571447

From this we produce a sample dataset consists of randomly selected 1500 users and

1500 movies and we run the tests on this sample dataset. Here are the results in

Figure 5.10:

Comparison of Normal SVD and Recommendation with Tags

0,9620 0,9640 0,9660 0,9680 0,9700 0,9720 0,9740 0,9760

Normal SVD

SVD with tags -

String equality

SVD with tags -

Substring

SVD with tags - Java

String CompareTo

SVD with tags - Edit

Distance

Test Set

Figure 5.10 - Comparison of SVD and SVD with Tags

 52

MAE for Normal SVD = 0,9739.

MAE for SVD with Tags – String Equality = 0,9680.

MAE for SVD with Tags – Substring = 0,9672.

MAE for SVD with Tags – Java String CompareTo = 0,9675.

MAE for SVD with Tags – Edit Distance = 0,9672.

The results show that, injecting tags into 2-Dimensional SVD improves the

performance of recommendation. The reason why effect of categorization is more

crucial than effect of tags to the overall performance is the structure of tags in our

dataset. In the dataset, tags are given in free formatted texts. Therefore, matching

similar tags is quite difficult. We tried some different methods to decide tag

similarities such as string equality, substring, CompareTo function of java string

class, and edit distance algorithm. The results for all of these methods are

demonstrated in Figure 5.10.

From the experiments, we observe the contribution of tags into 2-Dimentional SVD

method. However, in order to increase the performance effect of tags adaptation to

classical SVD recommendation process, it is necessary to analyze tags, especially

semantically check to decide whether they are similar or not and find more

similarities among them. For the tags, the important point is that, having more

similar tags for the <user, item> pairs. The more similar tags means, the more

accurate predictions.

 53

CHAPTER 6

6 CONCLUSION AND FUTURE WORK

Recommender systems are rapidly becoming an important tool especially on the

Web. Recommender system developers have encountered some problems which are

currently attractive research areas in the data mining and information retrieval topics

for the researchers. The first challenge is to improve the accuracy of the

recommendations for the customers. Another challenge is to improve the scalability

of the recommendation algorithms.

SVD proposes better results than traditional collaborative filtering algorithms most

of the time, however, it includes computationally very expensive matrix calculations

and this makes SVD-based recommender systems less suitable for large-scale

systems. In this thesis study, SVD-based recommendation techniques are compared

with experiments and some new approaches are introduced to this technique. The

first contribution we have proposed is the categorization of items and users. Our

experiments showed that, item and user categorization increases both the

recommendation quality and speed performance of the SVD technique. Moreover,

we adopted the tags to the traditional 2-Dimensional SVD approach. By this way, we

have chance to analyze the effect of third dimension (tags) to the SVD

recommendation performance. Our experiments illustrated that, tags also increase the

performance to some extent.

From our experiments, we have derived some future works to increase the

performance of SVD-based approach:

 Parallelization of SVD

 54

SVD includes very expensive matrix calculations and this makes it not suitable

for large-scale systems. In our experiments, we have tried applying SVD to

matrices consist of millions of users and thousands of items. It is impossible to

make these calculations in reasonable time. As it is mentioned before, the

computational complexity of SVD is O (m
3
) which is very expensive. Therefore,

as a future work, parallel SVD methods shall be implemented in order to increase

the scalability of SVD-based approach. By this way, the effect of the

contributions that are suggested in this thesis could be analyzed on very big

sample datasets.

 Ontology on Tags

Our experiments show that, grouping similar tags directly affects the

performance of 3-Dimensional SVD. If the tags written by two different users are

similar to each other, the similarity of them calculated by SVD algorithms

becomes very high. Therefore, in order to get better results whether two users are

similar or not, it is important to group similar tags. In this thesis, we tried

substring, edit distance and some similar methods to decide the similarity of tags.

However, these methods are not sufficiently efficient. For the future work, we

suggest ontology methods to associate different tags with each other. In computer

science, ontology is a formal representation of the knowledge by a set of

concepts within a domain and the relationships between those concepts. By this

way, it will be possible to associate some tags which seem different as written

letters but similar semantically.

For instance, tags ―good‖ and ―excellent‖ are semantically similar. However, it is

not possible to associate them with string comparison algorithms. For such cases,

we think ontology techniques shall be used to relate tags. By having semantically

grouped tags, SVD-based approach will produce more accurate results.

 55

REFERENCES

[1] Badrul Sarwar, George Karypis, Joseph Konstan, John Reidl: Incremental

Singular Value Decomposition Algorithms for Highly Scalable Recommender

Systems.

[2] Berry, M. W., Dumais, S. T., and O‘Brian, G. W. (1995). Using Linear Algebra

for Intelligent Information Retrieval. SIAM Review, 37(4).

[3] Gupta, D., and Goldberg, K. (1999). Jester 2.0: A Linear Time Collaborative

Filtering Algorithm Applied to Jokes. In Proc. of the ACM SIGIR ’99.

[4] Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J. (2000). Application of

Dimensionality Reduction in Recommender System—A Case Study. In ACM

WebKDD’00 (Web-mining for Ecommerce Workshop).

[5] Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J. (2000). Analysis of

Recommendation Algorithms for E-Commerce. In Proc. of the ACM EC’00

Conference. Minneapolis, MN, pp. 158-167.

[6] Anne Yun-An Chen and Dennis McLeod, Collaborative Filtering for Information

Recommendation Systems

[7] Schafer, J. B., Konstan, J. and Riedl, J.: 1999, ‗Recommender Systems in E-

Commerce‘. In: EC ’99: Proceedings of the First ACM Conference on Electronic

Commerce, Denver, CO, pp. 158-166.

[8] J. Ben Schafer, Nathaniel Good, and Joseph Konstan et. al. Combining

collaborative filtering with personal agents for better recommendations. In

Proceedings of the 1999 National Conference of the American Association of

Artificial Intelligence, pages 439–436, 1999.

[9] Resnick, P., Varian, H., Recommender Systems. Communications of the ACM,

40, 3, (1997), 56-58.

[10] Terveen, L. and Hill, W: 2001, ‗Human-Computer Collaboration in

Recommender Systems‘. In: J. Carroll (ed.): Human Computer Interaction in the

New Millenium. New York: Addison-Wesley.

[11] Burke R (2002) Hybrid Recommender Systems: Survey and Experiments.

 56

[12] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: An

open architecture for collaborative filtering of netnews. In Proc. of ACM

Conference on Computer Supported Cooperative Work, 1994.

[13] Shardanand, U. and Maes, P.: 1995, ‗Social Information Filtering: Algorithms

for Automating "Word of Mouth"‘. In: CHI ’95: Conference Proceedings on

Human Factors in Computing Systems, Denver, CO, pp. 210-217.

[14] Hill, W., Stead, L., Rosenstein, M. and Furnas, G.: 1995, ‗Recommending and

evaluating choices in a virtual community of use‘. In: CHI ’95: Conference

Proceedings on Human Factors in Computing Systems, Denver, CO, pp. 194-

201.

[15] Breese, J. S., Heckerman, D. and Kadie, C.: 1998, ‗Empirical analysis of

predictive algorithms for collaborative filtering‘. In: Proceedings of the 14th

Annual Conference on Uncertainty in Artificial Intelligence, pp. 43-52.

[16] Gediminas Adomavicius, and Alexander Tuzhilin, Toward the Next Generation

of Recommender Systems: A Survey of the State-of-the-Art and Possible

Extensions. IEEE Transactions on Knowledge and Data Engineering, VOL. 17,

NO.6, June 2005.

[17] Heng Luo, Changyong Niu, Ruimin Shen, Carsten Ullrich (2008). A

collaborative filtering framework based on both local user similarity and global

user similarity

[18] ChoiceStream Technology Brief, Review of Personalization Technologies:

Collaborative Filtering vs. ChoiceStream‘s Attributized Bayesian Choice

Modeling.

[19] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen. Scalable

collaborative filtering using cluster-based smoothing. In Proc. of SIGIR, 2005

[20] Jennings, A. and Higuchi, H.: 1993, ‗A User Model Neural Network for a

Personal News Service.‘ User Modeling and User-Adapted Interaction, 3, 1-25.

[21] Foltz, P. W.: 1990, ‗Using Latent Semantic Indexing for Information Filtering‘.

In: R. B. Allen (ed.): Proceedings of the Conference on Office Information

Systems, Cambridge, MA, pp. 40-47.

[22] Condliff, M. K., Lewis, D. D., Madigan, D. and Posse, C.: 1999, ‗Bayesian

Mixed-Effects Models for Recommender Systems‘. SIGIR ’99 Workshop on

Recommender Systems: Algorithms and Evaluation. Berkeley, CA. <URL:

http://www.cs.umbc.edu/~ian/sigir99-rec/papers/condliff_m.ps.gz>. Last access

date is 03.07.2010.

 57

[23] Belkin N. J., Croft W. B., ―Information filtering and information retrieval: Two

sides of the same coin?‖, Communications of the ACM 35, 29–39, December

1992.

[24] K, Lang, ―Newsweeder: Learning to filter netnews‖, Proceedings of the 12th

International Conference on Machine Learning, 1995.

[25] Rich, E.: 1979, ‗User Modeling via Stereotypes‘. Cognitive Science 3, 329-354.

[26] Krulwich, B.: 1997, ‗Lifestyle Finder: Intelligent User Profiling Using Large-

Scale Demographic Data‘. Artificial Intelligence Magazine 18 (2), 37-45.

[27] Guttman, Robert H.: 1998, ‗Merchant Differentiation through Integrative

Negotiation in Agent-mediated Electronic Commerce‘. Master‘s Thesis, School

of Architecture and Planning, Program in Media Arts and Sciences,

Massachusetts Institute of Technology.

[28] Towle, B. and Quinn, C.: 2000, ‗Knowledge Based Recommender Systems

Using Explicit User Models‘. In Knowledge-Based Electronic Markets, Papers

from the AAAI Workshop, AAAI Technical Report WS-00-04. pp. 74- 77. Menlo

Park, CA: AAAI Press.

[29] Konstan, J. A., Riedl, J., Borchers, A. and Herlocker, J. L.: 1998,

‗Recommender Systems: A GroupLens Perspective.‘ In: Recommender Systems:

Papers from the 1998 Workshop (AAAI Technical Report WS-98-08).

[30] Strang, G.: 1988, Linear Algebra and Its Applications, New York: Harcourt

Brace.

[31] Alspector, J., Koicz, A., and Karunanithi, N.: 1997, ‗Feature-based and Clique-

based User Models for Movie Selection: A Comparative Study‘. User Modeling

and User-Adapted Interaction 7, 279-304.

[32] Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D. and Sartin,

M.: 1999, ‗Combining Content-Based and Collaborative Filters in an Online

Newspaper‘. SIGIR ’99 Workshop on Recommender Systems: Algorithms and

Evaluation. Berkeley, CA. <URL: http://www.cs.umbc.edu/~ian/sigir99-

rec/papers/claypool_m.ps.gz>. Last access date is 03.07.2010.

[33] Smyth, B. and Cotter, P.: 2000, ‗A Personalized TV Listings Service for the

Digital TV Age‘. Knowledge-Based Systems 13: 53-59.

[34] Basu, C., Hirsh, H. and Cohen W.: 1998, ‗Recommendation as Classification:

Using Social and Content-Based Information in Recommendation‘. In:

Proceedings of the 15th National Conference on Artificial Intelligence, Madison,

WI, pp. 714-720.

 58

[35] Mooney, R. J. and Roy, L.: 1999, ‗Content-Based Book Recommending Using

Learning for Text Categorization‘. SIGIR ’99 Workshop on Recommender

Systems: Algorithms and Evaluation. Berkeley, CA. <URL:

http://www.cs.umbc.edu/~ian/sigir99-rec/papers/mooney_r.ps.gz>. Last access

date is 03.07.2010.

[36] Balabanovic, M.:1998, ‗Exploring versus Exploiting when Learning User

Models for Text Representation‘. User Modeling and User-Adapted Interaction

8(1-2), 71-102.

[37] Kirk Baker, Singular Value Decomposition Tutorial, 2005.

[38] Badrul Sarwar, George Karypis, Joseph Konstan, John Reidl: Item-Based

Collaborative Filtering Recommendation Algorithms.

[39] Karen H. L., Tso-Sutter, Leandro B. M., and Lars S. T., Tag-aware

Recommender Systems by Fusion of Collaborative Filtering Algorithms.

[40] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman,

R. (1990). Indexing by Latent Semantic Analysis. Journal of the American

Society for Information Science. 41(6).

[41] Wikipedia. <URL: http://en.wikipedia.org/wiki/Levenshtein_distance>. Last

access date is 03.07.2010.

[42] ‗Movilens Data Set‘. Grouplens Research Group <URL:

http://www.grouplens.org/node/12>. Last access date is 03.07.2010.

[43] Wikipedia. <URL: http://en.wikipedia.org/wiki/Mean_absolute_error>. Last

access date is 03.07.2010.

[44] JAMA: A Java Matrix Package. The MathWorks and the National Institute of

Standards and Technology <URL: http://math.nist.gov/javanumerics/jama/>.

Last access date is 03.07.2010.

 59

APPENDIX A

7 MATRIX TERMINOLOGY

In Appendix A, matrix basics, Eigenvalues and Eigenvectors, are explained with

examples. Examples are taken from the Singular Value Decomposition tutorial [37].

Matrices

A matrix is a table of data, like Table A.1, which shows the top scorers of players in

a team in last 5 seasons.

Table A.1 - Top-scorers in last 5 seasons

Top-Scorers 2005 2006 2007 2008 2009

Player 1 10 11 10 11 11

Player 2 5 12 8 10 2

Player 3 0 4 9 6 6

Player 4 0 4 3 5 6

A table consists of rows, the horizontal list of scores corresponding to a player‘s

name, and columns, the vertical list of numbers corresponding to the scores for a

given season. What makes this table a matrix is that it's a rectangular array of

numbers.

As a matrix, Table A.1 looks like this:

 60

The size, or dimensions, of a matrix is given in terms of the number of rows by the

number of columns. This makes the matrix above a 4 x 5 matrix.

A little more formally than before, we can denote a matrix like this:

Let m, n are two integers which are greater than or equal to 1. Let aij, i = 1, 2,…, m, j

= 1, 2, …, n be (m x n) numbers. An array of numbers is an (m x n) matrix and the

numbers aij are elements of A.

The sequence of numbers A(i) = (ai1,…, ain) is the ith row of A, and the sequence of

numbers A(j) = (a1j,…, amj) is the jth column of A.

Matrix Terminology

Square Matrix

A matrix is said to be square if it has the same number of rows as columns. To

designate the size of a square matrix with n rows and columns, it is called n-square.

For example, the matrix below is 3-square.

 61

Transpose

The transpose of a matrix is created by converting its rows into columns; that is, row

1 becomes column 1, row 2 becomes column 2, etc. The transpose of a matrix is

indicated with a superscripted T, e.g. the transpose of matrix A is A
T
 . For example,

if

then its transpose is

Matrix Multiplication

It is possible to multiply two matrices only when the number of columns in the first

matrix and the number of rows in the second matrix are equal. The resulting matrix

has as many rows as the first matrix and as many columns as the second matrix. In

other words, if A is a (m x n) matrix and B is a (n x s) matrix, then the product AB is

an (m x s) matrix.

The coordinates of AB are determined by taking the inner product of each row of A

and each column in B.

 62

Identity Matrix

The identity matrix is a square matrix with entries on the diagonal equal to 1 and all

other entries equal zero. The n-square identity matrix is denoted variously as Inxn, In,

or simply I. The identity matrix behaves like the number 1 in ordinary multiplication,

which mean AI = A, as the example below shows.

Orthogonal Matrix

A matrix A is orthogonal if AA
T
 = A

T
A = I. For example,

 63

is orthogonal because

Diagonal Matrix

A diagonal matrix A is a matrix where all the entries aij are 0 when i = j.

Determinant

A determinant is a function of a square matrix that reduces it to a single number. The

determinant of a matrix A is denoted |A| or det(A). If A consists of one element a,

then |A| = a; in other words if A = [6] then |A| = 6.

If A is a (2 x 2) matrix, then

 64

For example, the determinant of

is

Finding the determinant of an n-square matrix for n > 2 can be done by recursively

deleting rows and columns to create successively smaller matrices until they are all

(2 x 2) dimensions, and then applying the previous definition.

For example for a (3 x 3) matrix:

Eigenvectors and Eigenvalues

An Eigenvector is a nonzero vector that satisfies the equation

 65

Where A is a square matrix, λ is a scalar, and v is the Eigenvector. λ is called an

Eigenvalue. Eigenvalues and Eigenvectors are also known as, respectively,

characteristic roots and characteristic vectors, or latent roots and latent vectors.

Eigenvalues and Eigenvectors can be calculated by treating a matrix as a system of

linear equations and solving for the values of the variables that make up the

components of the Eigenvector. For example, finding the Eigenvalues and

corresponding Eigenvectors of the matrix

means applying the above formula to get

in order to solve for λ; x1 and x2. This statement is equivalent to the system of

equations

which can be rearranged as

A necessary and sufficient condition for this system to have a nonzero vector [x1;

x2] is that the determinant of the coefficient matrix

 66

is equal to zero. Accordingly,

There are two values of λ that satisfy the last equation; thus there are two

Eigenvalues of the original matrix A, and these are λ1 = 3; λ2 = 1.

Eigenvectors which correspond to these Eigenvalues can be calculated by plugging λ

back in to the equations above and solving for x1 and x2. To find an Eigenvector

corresponding to λ = 3, start with

And substitute to get

Which reduces and rearranges to

 67

There are an infinite number of values for x1 which satisfy this equation; the only

restriction is that not all the components in an Eigenvector can equal zero. So if x1 =

1, then x2 = 1 and an Eigenvector corresponding to λ = 3 is [1; 1].

Finding an Eigenvector for λ = 1 works the same way.

So an Eigenvector for λ = 1 is [1; -1].

