

ENVIRONMENT GENERATION TOOL

FOR ENABLING ASPECT VERIFICATION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ġENOL LOKMAN ALDANMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JUNE 2010

Approval of the Graduate School of Informatics

 Prof. Dr. Nazife Baykal

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Assist. Prof. Dr. Tuğba T. Temizel

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Dr. Aysu Betin Can

 Supervisor

Examining Committee Members

Prof. Dr. Semih Bilgen (METU, EEE)_______________

Assist. Prof. Dr. Aysu B. Can (METU, II)_______________

Assist. Prof. Dr. Erhan Eren (METU, II)_______________

Assist. Prof. Dr. Altan Koçyiğit (METU, II)_______________

Assoc. Prof. Dr. Halit Oğuztüzün (METU, CENG)_______________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name : Şenol Lokman Aldanmaz

Signature : _________________

iv

ABSTRACT

ENVIRONMENT GENERATION TOOL

FOR ENABLING ASPECT VERIFICATION

Aldanmaz, ġenol Lokman

M.S., Department of Information Systems

Supervisor: Assist. Prof. Dr. Aysu Betin Can

June 2010, 96 pages

Aspects are units of aspect oriented programming developed for influencing the

software behavior. In order to use an aspect confidently in any software, first it

should be verified. For verification of an aspect, the mock classes for the original

software should be prepared. These mock classes are a model of the aspect

environment which the aspect is woven. In this study, considering that there are not

enough tools for supporting the aspect oriented programming developers, we have

developed a tool for enabling aspect verification and unit testing. The tool enables

verification by generating the general environment of the

aspect. By this tool the users are ensured to focus on the verification of aspects

isolated from woven software.

v

Keywords: Aspect Oriented Programming, Enabling Software Verification, Code

Generation, AspectJ

vi

ÖZ

ĠLGĠ DOĞRULAMASINA OLANAK SAĞLAYAN

ORTAM TÜRETĠCĠ ARAÇ

Aldanmaz, ġenol Lokman

Yüksek Lisans, BiliĢim Sistemleri Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Aysu Betin Can

Haziran 2010, 96 sayfa

Ġlgiler, ilgi yönelimli programlamada yazılım davranıĢını etkilemek için geliĢtirilen

birimlerdir. Bir ilgiyi herhangi bir yazılımda güvenli olarak kullanabilmek için ilk

önce o ilgi doğrulanmalıdır. Bir ilginin doğrulanması için asıl yazılımın taklit

sınıfları hazırlanmalıdır. Bu taklit sınıflar ilgilinin örülü olduğu ilgi ortamının bir

modelidir. Biz bu çalıĢmada, ilgi yönelimli programlama geliĢtiricilerini

destekleyecek yeterli miktarda araç olmadığını göz önünde bulundurarak, ilginin

doğrulanmasına ve birim testine olanak sağlayan bir araç geliĢtirdik. GeliĢtirilen araç

ilginin genel ortamını üreterek doğrulamaya olanak sağlar. Bu araçla kullanıcılar,

örülü olduğu yazılımdan yalıtılmıĢ olan ilgilerin doğrulanmasına odaklanmaları

konusunda temin edilmektedirler.

vii

Anahtar Kelimeler: Ġlgi Yönelimli Programlama, Yazılım Doğrulamasına Olanak

Sağlamak, Kod Üretimi, AspectJ

viii

To my parents, brother and tatiş

ix

ACKNOWLEDGEMENTS

I would like to thank my advisor Assist. Prof. Dr. Aysu Betin Can for her guidance

and support with sympathy and patience through out my study.

Also, I thank my lovely fiance and family for their endless support and motivation.

x

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... vi

DEDICATION .. viii

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS ... x

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS / ACRONYMS .. xvii

CHAPTER

INTRODUCTION……..1

I.1 Aspect Oriented Programming Methodology ... 2

I.2 Software Verification and Unit Testing .. 2

I.3 Scope of This Thesis ... 3

I.4 Outline of This Thesis .. 4

BACKGROUND AND RELATED WORK..6

II.1 Aspect Oriented Programming .. 7

II.1.1 Point-cuts .. 11

II.1.2 Advices ... 16

II.1.3 Other Elements ... 18

II.1.4 Weaving and Compilation Process ... 19

II.2 Software Verification and Unit Testing .. 19

xi

II.3 JTB .. 20

II.4 Verification of Aspect Oriented Programs .. 24

PROBLEM DEFINITION..28

III.1 Need for This Study ... 29

III.2 Difficulties of Base Code Generation .. 33

SYSTEM ARCHITECTURE...35

ASPECT ENVIRONMENT GENERATION...39

V.1 Rules of the Solution ... 39

V.1.1 Make Filtering on Data Collection Process.. 40

V.1.2 Consider Verification and Simulation Purposes 40

V.1.3 Determine the Necessary Elements .. 40

V.2 Data Collection Process .. 45

V.2.1 Design of Data Collection Process ... 46

V.2.2 Parsing .. 47

V.2.3 Collecting Data ... 49

V.3 Base Code Generation ... 53

V.3.1 Design and Details of Code Generation ... 54

V.3.2 Variable Domains ... 57

V.4 Final Product: Aspect Base Code Generation Tool .. 65

EXPERIMENTS...70

VI.1 Examples of Handling Tricky Usages of AspectJ Syntax 71

VI.2 Case Study ... 76

CONCLUSION AND FUTURE WORK...80

xii

REFERENCES ... 85

APPENDICES ... 89

A. RANDOM UTILITY CLASS ... 89

B. ADDITIONS TO JTB GRAMMAR ... 91

C. DETAILS OF JTB SYNTAX TREE USAGE .. 94

xiii

LIST OF TABLES

Table 1: Join Points and Point-cuts [12] .. 11

xiv

LIST OF FIGURES

Figure 1: Student Class .. 8

Figure 2: Student Controller Aspect .. 9

Figure 3: Point-cut (call type) .. 12

Figure 4: Join Point (call type) ... 12

Figure 5: Point-cut (execution type) .. 12

Figure 6: Join Point (execution type) ... 12

Figure 7: Point-cut (constructor call type) ... 13

Figure 8: Join Point (constructor call type) .. 13

Figure 9: Point-cut (constructor execution type) ... 13

Figure 10: Join Point (constructor execution type) .. 13

Figure 11: Point-cut (get type) ... 14

Figure 12: Join Point (get type) .. 14

Figure 13: Point-cut (set type).. 14

Figure 14: Join Point (set type) .. 14

Figure 15: Named Point-cut ... 15

Figure 16: Anonymous Point-cut ... 15

Figure 17: Sample Advice .. 16

Figure 18: Sample Before Advice .. 17

Figure 19: Sample After Advice .. 17

Figure 20: Sample Around Advice .. 17

Figure 21: Student Controller Aspect with Intertype Variable 18

Figure 22: JTB input and outputs [7] ... 21

Figure 23: JavaCC Grammar Declarations .. 21

Figure 24: Syntax Tree Node Classes .. 23

Figure 25: Student Class .. 30

xv

Figure 26: Student Aspect .. 31

Figure 27: Simple Student Class .. 31

Figure 28: Infinite While Loop .. 32

Figure 29: Student Aspect Driver .. 32

Figure 30: Aspect and Base Code Relation.. 35

Figure 31: System Architecture ... 37

Figure 32: Aspect and Generated Base Code Relation .. 38

Figure 33: Student Aspect with Read Intertype Variable .. 41

Figure 34: Student Aspect with Write Intertype Variable ... 42

Figure 35: Student Aspect and Generated Code .. 43

Figure 36: Advice Body Analysis .. 44

Figure 37: Cflow Usage ... 44

Figure 38: Data Collection Process Design ... 46

Figure 39: Aspect Declaration ... 47

Figure 40: Student Aspect .. 48

Figure 41: Aspect Declaration ... 49

Figure 42: Example Class Diagrams of Data Types .. 50

Figure 43: Extending Visitor Class .. 53

Figure 44: Code Generation Process Design ... 54

Figure 45: Student Aspect .. 55

Figure 46: Working Style of Composite Design Pattern in the Solution 56

Figure 47: Student Aspect and Its Environment .. 58

Figure 48: Application of the Strategy Design Pattern for Variable Domains 60

Figure 49: Example Aspect Code .. 61

Figure 50: Random Utility Class ... 62

Figure 51: Generated Code Blocks for Simulation Mode .. 62

Figure 52: Generated Code Blocks for Verification Mode .. 64

Figure 53: Main Window of the Tool .. 65

Figure 54: Editor - Aspect Editor Tab.. 66

Figure 55: Editor – Variable Domains Editor Tab ... 67

Figure 56: Base Code Generation Window – Base Classes – 68

xvi

Figure 57: Environment Generator – Driver Class – ... 69

Figure 58: Usage of „+‟ in AspectJ .. 71

Figure 59: Generated Environment for the Usage of „+‟ in AspectJ 71

Figure 60: Usage of „!cflow‟ in AspectJ .. 72

Figure 61: Generated Environment for the Usage of „!cflow‟ in AspectJ 72

Figure 62: Usage of „*‟ in AspectJ .. 73

Figure 63: Generated Environment for the Usage of „*‟ in AspectJ.......................... 74

Figure 64: Usage of Conditional Statements in AspectJ .. 75

Figure 65: Generated Environment for the Usage of Conditional Statements in

AspectJ ... 75

Figure 66: A Realistic DBConnection example in AspectJ 76

Figure 67: Generated Environment for the Realistic DBConnection example in

AspectJ ... 77

Figure 68: A Realistic Factorial Optimization example in AspectJ 78

Figure 69: Generated Environment for the Realistic Factorial Optimization example

in AspectJ ... 79

Figure 70: JTB Syntax Tree – Aspect Content – (Debug View) 94

Figure 71: Aspect Body Declaration .. 95

Figure 72: JTB Syntax Tree – Advice Content – (Debug View) 95

Figure 73: JTB Syntax Tree – Point-cut Type in Advice Content – (Debug View) .. 96

xvii

LIST OF ABBREVIATIONS / ACRONYMS

JavaCC : Java Compiler Compiler

JML : Java Modeling Language

JPF : Java Path Finder

JTB : Java Tree Builder

UML : Unified Modeling Language

 1

CHAPTER I

INTRODUCTION

Aspect oriented programming is first proposed nearly a decade ago and it enhances

its popularity as the time passes. It is expected to be a significant step in the growth

of software world. Instead of being an alternative for object oriented programming,

aspect oriented programming is a different view and a complementary methodology

of it.

Since aspect oriented programming is a relatively fresh work area in software world

(became available in 2001) there are incomplete parts of it and one of those missing

parts, verification of aspect oriented programs, is studied by several people from

different perspectives. As any other type of programs, aspect oriented programs need

to be verified within a software verification process and they should be unit tested.

Considering the verification and unit testing processes of other programming

methodologies, aspect oriented programming developers need to be supported by

several automatic operations during these processes.

Our motivation in this study is to support developers of aspect oriented programming

by enabling verification and unit testing. We enable verification and unit testing of

aspect oriented programs by isolating aspects and automatically generating its

general environment.

 2

I.1 Aspect Oriented Programming Methodology

Aspect oriented programming methodology is not a totally different or alternative

methodology among programming methodologies. Actually, it can be considered as

a supporting methodology for object oriented programming. In object oriented

programming highly cohesive coding is preferred always, however sometimes there

appears leakages of that methodology in terms of cohesion and there is no way to

handle it with it‟s own elements. Aspect oriented programming comes to the help of

object oriented programming at this point. As an example, consider the logging

feature and its implementation in object oriented programming. The logging task

needs to be performed with a method call in each procedure of the system; hence,

every method in every class need to do an additional work, which is not related with

it directly and this situation damages the high cohesion goal. Aspect oriented

programming exist for handling such cross-cutting concerns. It is possible to do such

a general logging task without changing the original code in aspect oriented

programming by using aspects [1]. All of the processes related with logging task are

kept in a logging aspect. Nothing appears in the original code related with logging

task. Logging aspect assumes the control at specific points that it determines and

does the processes related with logging task. It is completely beyond the control of

original code. Thus, the original code can focus on its own processes [2]. Details

about aspect oriented programming are discussed in the next chapter.

I.2 Software Verification and Unit Testing

The goal of software verification is to examine the correctness of software. Until last

two decades, the common practice to verify code was the expert people to model that

code at high level and those models were subject to verification. Since modeling is

not a cheap process, recently tendency originated through verification of the code

directly, instead of model verification, however it is not so easy to check the

correctness of the code directly [3].

 3

Unit testing is one of the software verification and testing techniques that focus on

testing the smallest testable units of a program. It aims to make tests on isolated parts

of software to find the actual source of problem more easily [4].

We aim to prepare the environment of an aspect for unit testing and for making it

possible to verify with an automated verification tool, such as Java PathFinder (JPF)

[5]. Details including software verification, JPF tool and unit testing are discussed in

the next chapter.

I.3 Scope of This Thesis

In this thesis, we aim to feather the aspect oriented program developers‟ nest on the

verification of the aspects. By providing a tool that automatically isolates an aspect

we support the developers during their verification process.

As any other software program, aspect oriented programs need to be verified to have

a reliable program at the end. There are several ways to verify an aspect oriented

program; however, in this study, we focus on the verification of aspects, without

getting the base program from the developer. Actually we aim to prepare a temporary

base program from the given aspect without any developer effort.

The method that we suggest for verification of aspects is as follows. Given an aspect,

generate its environment that enables the aspect to show all of its possible behaviors.

Thus aspect oriented program developer can do verification of aspects with the

generated base code easily. The advantage of using the generated base code is

finding the problematic points in only the aspects and focusing only on the aspect

code problems. If the developer does not use this tool or the code generated by this

tool, there are two choices for him. First one is using the original base code.

Disadvantage of this choice is that during verification problems may be both the

problems of the aspect code and the problems of base code. This means that the

developer cannot focus on the problems of aspects only. The other choice is writing a

 4

general environment for focusing only on the aspect problems, however again at this

time it is not possible to guarantee that the written environment is errorless.

Basically, the subject of this thesis is parsing the aspect code and generating base

code from the information that is collected during parsing. The generated base code

can be thought as a mock class of the real base program to verify the aspect code

correctly. Since aspect oriented programming has different implementations for

different programming languages, it is not possible to generalize our project on all of

the programming languages. We focus on AspectJ programming language, which

represents aspect oriented programming that is implemented for Java programming

language [6]. It is one of the most popular aspect oriented programming languages.

I.4 Outline of This Thesis

This document consists of seven chapters to describe the work done in this thesis.

The first chapter is the introductory part of the document. In this chapter, to give an

initial idea about the topic, the necessary subjects and their brief descriptions are

identified.

Chapter II presents the background information of this study and related work on

verification of aspect oriented programming. The necessary information, to fully

understand this thesis study, is provided in this chapter.

In chapter III, the need for such a study on verification of aspects and the problems

related with verification of aspect oriented programming are explained.

Chapter IV is reserved for description of the general architecture of our solution to

the problem. Several parts of our solution are displayed at a high level in this chapter

of the document.

 5

Chapter V aims to explain the method that we suggest for enabling verification of

aspects in aspect oriented programming. Details of several parts of our solution are

explained in this chapter with their logics.

In chapter VI several examples of aspect code are experimented. Possible tricky

usages of AspectJ code that is supported by our tool is displayed at this chapter.

Last chapter presents the conclusion of this thesis study and the future work. This

study is expected to present a useful tool for AspectJ software developers.

 6

CHAPTER II

BACKGROUND AND RELATED

WORK

Aspect oriented programming, AspectJ programming language and its elements

constitute the first part of this chapter. To realize the work done in this study, it is

necessary to have an idea about the terms and usages in aspect oriented

programming. The summarized information is sufficient for understanding the

remaining chapters of the document.

Software verification and unit testing form the second part of the chapter. Instead of

helping the realization of the terms and the idea in the thesis, this part helps to

understand the purpose of this thesis study, because the study aims to help

verification of aspect oriented programs.

The third part is about JTB. JTB is an open source application that is used for

facilitating the parsing process of aspects in AspectJ [7]. Only the necessary parts

related with this thesis study is explained in this document.

After the background information, related studies on the topic are discussed at last

part of this chapter.

 7

II.1 Aspect Oriented Programming

Object oriented programming is the dominating software development methodology

for a long time, because it is powerful from several points of views. It is possible to

prepare lowly coupled, highly cohesive software designs in object oriented

programming and this makes it more popular [8]. However, nothing is perfect, and of

course there are points that object oriented programming methodology cannot fulfill

perfectly.

As an example, sometimes developers need to do the same thing and write the same

code again and again for every class or for every method. Logging is a suitable

example for here. In an object oriented programming language the developer needs

to write the code block for logging in all methods. This is an unnecessary extra load

and there is no way to handle such an extra work easily in object oriented

programming. Aspect oriented programming is in the service of the developer in

such a case.

Aspect oriented programming is a developing technology aiming to enhance

cohesion where object oriented programming fails short to do it. In order to achieve

this goal, it adopts separation of concern principle [9]. As mentioned above for the

logging example, instead of interfering all of the classes, a single aspect handles the

logging process and localizes the code to a shared place. A keyword here is cross-

cutting concern, in other words aspects crosscut classes. In aspect oriented

programming those classes are called as base classes and through this document this

definition is used frequently [9]. Similarly, variables of base classes are referred as

base variables and methods of base classes are referred as base methods. To sum up,

in addition to classical object oriented programming elements, there are aspects in

aspect oriented programming and these aspects are woven into the classes. After this

process the behavior of the resultant program involves both the behavior of the base

program and the behavior of the cross-cutting concern (aspect) [10].

 8

There are several programming languages that are developed for aspect oriented

programming. For this thesis study we have chosen AspectJ which is an aspect

oriented programming language based on the Java programming language. Aspects

in AspectJ can be considered like the classes in object oriented programming

although there are differences. A basic difference, for example is that it is not

possible to instantiate an aspect on its own like a class. The aspects have to depend

on classes and they do not exist when there is no class [11]. The elements that may

exist in the content of an aspect can be grouped under three sub-topics as point-cuts,

advices and other elements [12].

To explain these concepts, it is better to work with an example. Although the

definitions of concepts like point-cut, advice, intertype variable and so on are not

provided yet, by this example a general idea is given about them. The definitions of

AspectJ specific concepts are given in the following sections. A class in Figure 1 and

an aspect in Figure 2 that is interfering it are presented and aspect oriented

programming concepts are going to be analyzed on this code blocks.

Figure 1: Student Class

 9

Figure 2: Student Controller Aspect

As presented in Figure 1, there is a class as Student with paidMoney,

isRegistered attributes and payMoney, register methods. The methods aim to

change the values of attributes.

Assume that a university announced some restrictions on student registration process

and one of them is “Nobody can register before paying the registration fee” There

exist several methods to achieve this goal. For example, if a new variable as

isPaidMoney is added into the Student class and is used as a flag for controlling

 10

money payment the problem can be solved. Another solution may be controlling the

amount of money. If paidMoney attribute equals to zero then registration would not

be accepted. These are the methods that anybody can think at first sight. However in

order to explain the concepts in AspectJ, the problem is solved with a different

methodology.

The solution that AspectJ proposes is adding an aspect and leaving the code of

Student class as is. The name of the aspect is chosen as StudentController and

the content of it is given in Figure 2. Firstly, an intertype variable is declared (line 2)

as isPaidMoney and its default value is set to false. This variable acts as if it is an

attribute of the Student class (that is why it is called intertype variable).Then, a

point-cut is defined as payMoneyPct (line 3-4), which is activated when payMoney

method of Student class is called. Line 5-7 is corresponding to JML code that is

telling the variable isPaidMoney is surely set to true when this advice (line 8-10) is

processed. JML code is generally used for verification and specification purposes;

however, in our study they are used for explanation like comment lines. Therefore

we are not going to deal with JML and no detailed information is provided related

with it. Line 8-10 declares an after advice, which is processed when the

payMoneyPct is activated. Therefore, when the call to payMoney method of

Student class is ended, Advice 1 is triggered and then the advice sets the

intertype variable isPaidMoney as true. The second advice (line 11-16) is activated

before an assignment to the variable, isRegistered in Student class, is done. It

displays a message by checking the variable isPaidMoney, if money is not paid

then a message declaring that registration is prohibited is shown. Line 17-19

constitutes JML code about Advice 3. It explains that if money is not paid, then

registration is not accepted. This is done by the code of lines 20-25.

 11

II.1.1 Point-cuts

Point-cuts are the most differentiating parts of aspect oriented programs comparing

with other programming methodologies. Before explaining point-cuts, it is necessary

to have an idea about the definition of join points. Join points can be defined as the

critical and well-defined points through the execution of a program. Actually, they

are points that aspect can join base program execution. Point-cuts can be defined as

the elements, which are catching the join points during flow of a program. After join

points are caught by point-cuts, advices affect the flow of program by using these

point-cuts.

Below table is showing the basic and significant matches of join points with point-

cuts [12].

Table 1: Join Points and Point-cuts [12]

 Join Point Point-cut

1. Method call call(Method signature)

2. Method execution execution(Method signature)

3. Constructor call call(Constructor signature)

4. Constructor execution execution(Constructor signature)

5. Field read get(Field signature)

6. Field write set(Field signature)

7. Object initialization initialization(Constructor signature)

8. Static initialization staticinitialization(Type signature)

 The first join point is representing method calls. A simple example is shown

in Figure 3 and Figure 4 from StudentController aspect.

 12

Aspect code

Figure 3: Point-cut (call type)

Base code

Figure 4: Join Point (call type)

 Second one is for execution of method instead of calling. For the same point-

cut an example for execution is represented in Figure 5 and Figure 6.

Aspect code

Figure 5: Point-cut (execution type)

Base code

Figure 6: Join Point (execution type)

 13

 Third join point is representing constructor calls. It is very similar to method

calls.

Aspect code

Figure 7: Point-cut (constructor call type)

Base code

Figure 8: Join Point (constructor call type)

 Forth point-cut is for execution of constructor. For the same point-cut an

example for execution is shown in Figure 9 and Figure 10.

Aspect code

Figure 9: Point-cut (constructor execution type)

Base code

Figure 10: Join Point (constructor execution type)

 14

 Fifth join point represents field reading process. A simple example is shown

in Figure 11 and Figure 12 from StudentController aspect.

Aspect code

Figure 11: Point-cut (get type)

Base code

Figure 12: Join Point (get type)

 Join point six represents field writing process. A simple example is shown in

Figure 13 and Figure 14 from StudentController aspect.

Aspect code

Figure 13: Point-cut (set type)

Base code

Figure 14: Join Point (set type)

 15

Point-cuts are used in two different ways in AspectJ [12].

 Named point-cuts are the first type of that usage. Named point-cuts are

defined as separate elements in an aspect and used in an advice with its name.

Syntax of named point-cut is shown in Figure 15.

Figure 15: Named Point-cut

First element is an optional access sign public. Then a fixed expression

comes, pointcut. After that, name of the point-cut is located,

payMoneyPct. Then, the arguments of point-cut are located, but they are

optional. After the arguments, the ‘:’ is used as a delimiter. The expressions

after ‘:’ are changing according to the type of point-cut which is discussed

above. The expression && args(money) is used for getting and using the

only argument of payMoney method inside the aspect code.

 Anonymous point-cuts are the second type of point-cut usage. They do not

have a name and they are directly used in advices. Since they do not have

names, it is impossible to use an anonymous point-cut more than once. An

example of this usage is shown in Figure 16.

Figure 16: Anonymous Point-cut

set(public boolean Student.isRegistered) is point-cut part of the

advice.

 16

II.1.2 Advices

Point-cuts are important; however they are not useful without advices. Flow of

program execution is captured by point-cuts and advice interfere that flow by its

actions. The syntactical structure of an advice consist of three basic parts, these parts

and their positions are shown in Figure 17 with an after advice example.

Figure 17: Sample Advice

Part 1 is the advice declaration. This part involves an advice identifier, which is

after keyword this time, and optional advice parameters. These parameters are

used to catch and use the original instances or values of variables in base code.

Part 2 represents the point-cut part of the advice and point-cuts are already discussed

in the former section.

Third part of advice is called as advice body. Between the curly brackets any AspectJ

code can be written and that code constitutes the body of advice [12].

There are three types of advices. Those types and their explanations are listed below

[12].

 Before advice

The body of this type of advice is executed before the execution of join point

of the point-cut, which is second part of the advice. Normally, if no exception

is thrown from the body of the advice, after the execution of advice body, the

program execution flow continues from the join point. However, if an

 17

exception is thrown during advice body execution, then the join point in the

base code is not executed. A sample code of before advice is shown in Figure

18.

Figure 18: Sample Before Advice

 After advice

In this type of advice, advice body is executed after the execution of join

point of point-cut. An example of after advice usage is shown in Figure 19.

 Figure 19: Sample After Advice

 Around advice

Around advice is a more talented advice compared to others. By using around

advice, it is possible to take an action before and after a join point, ignore the

join point, call the join point more than once or call it with different

parameters. In an around advice body, a proceed() statement is used for the

base code execution to continue from the join point. In Figure 20 there is an

example of around advice usage.

Figure 20: Sample Around Advice

 18

II.1.3 Other Elements

In addition to the effects of point-cuts and advices to base program at run-time, there

are some other elements in AspectJ to affect the compile-time of base program and

behavior of these elements is called as static-crosscutting. It is possible to group

static-crosscutting methods under four topics. They are member introduction, type

hierarchy modification, compile-time error and warning declaration, and exception

softening [12]. For this study it is sufficient to explain only the first element of these

4 elements.

A variable can be declared in an aspect and the type of that variable depends on its

declaration type. There are two types of declaration of members in aspects; aspect

member, intertype member. Aspect members are similar to attributes of a class, i.e.

they belong to the aspect. On the other hand, intertype variables belong to the base

class.

The difference of an intertype variable from an aspect variable is, there exist an

owner class of an intertype variable and the variable is considered as a member of

that class. Example in Figure 21 displays an intertype variable usage:

Figure 21: Student Controller Aspect with Intertype Variable

isPaidMoney is a boolean type intertype variable with initial value false. This

variable is declared as a member of Student class.

 19

II.1.4 Weaving and Compilation Process

To compile the base code and aspects together AspectJ uses a different compiler on

its own. It has also its own byte code weaver (ajc) just like its own compiler. AspectJ

compiler checks if aspect code and base code are in coordination and they can run

together. The process of this running in coordination is called as aspect weaving [12].

In other words, aspect weaving can be described as activating the advice code in

aspects at their related join points.

Working strategy of AspectJ compiler at join points can be considered as method

calls. Bodies of advices are weaved like static or final methods in Java code. Since

they are like static method calls there is not much performance loss at run-time of

AspectJ code [6].

II.2 Software Verification and Unit Testing

Automated software verification aims to find deadlocks, unspecified receptions, non-

executable code, flags incompleteness, race conditions, and unwarranted assumptions

about the relative speeds of processes of the given input code [13]. Since it is

yielding promising results, its usage area is expanding continuously.

One of the automated verification techniques is model checking. It is a very

successful and popular technique in recent years. The model of the software should

be prepared before the usage of model checking techniques and then verification

process should run over that software model. Since the conversion process from

software to a high level model is not an easy process, lately the idea of direct

verification of implementation level code became popular [14]. Although our project

is not directly related with software verification, the actual aim of this study is to

generate environment for aspects and make it possible to verify aspect code with the

generated environment.

 20

Java Pathfinder [5] (JPF) is one of the most popular software verification tools. It is

used for Java programming language. The aim of usage of JPF is described as

focusing on the defects, coverage and several more information about the given input

Java code.

Unit testing is one of the favorite testing methodologies to focus on small pieces of

codes. It is a handy and easy way to obtain an accurate and quality program at the

end [15]. The point that unit testing stands out with is isolation. Unit test of a code

piece deals only with that code piece. Success of most of the huge software projects

relies on the strict disciplined testing especially unit testing policy.

In unit testing to make an isolated test on small units of software a temporary

environment should be prepared for that unit [15]. This is done via preparing the

stubs or mocks of the classes that are in interaction with the unit. By this way, it is

possible to focus on the problems of the unit independently from its environment.

II.3 JTB

Java Tree Builder (JTB) is a syntax tree builder application. It is also called as a

frontend for the Java Compiler Compiler (JavaCC) parser generator [7]. JTB also

provides visitor for traversing the syntax tree that it has built. Input and outputs of

JTB are shown in Figure 22 [16].

 21

Figure 22: JTB input and outputs [7]

Input:

 JavaCC Grammar

In order JTB to be able to build a syntax tree, it is necessary to supply a JavaCC

grammar. Every detail should be provided in this grammar file. Figure 23 shows

a sample block from the content of our input grammar file.

Figure 23: JavaCC Grammar Declarations

 22

Here, TypeDeclaration syntax is a member of JavaCC grammar. Options

about what kinds of syntaxes may correspond to a TypeDeclaration are

declared. One of those options involves ClassDeclaration syntax and the

syntax of ClassDeclaration is provided in above sample block as an insider

member of TypeDeclaration. In the block above, declarations of

AspectDeclaration, InterfaceDeclaration, and

UnmodifiedClassDeclaration are not presented, however in the original

grammar file of this study, hundreds of other declarations including these three

declarations are supplied to JTB [7]. Most of these declarations are already

provided in sample JavaCC grammar of JTB. The necessary declarations of

AspectJ are added to this sample grammar file in this study and those

declarations are explained Chapter V of this document. During the document the

parser that we have generated by using JTB is referred as JTB parser.

Outputs:

 Syntax Tree Node Classes

For each declaration in JavaCC grammar file, a Java class is produced by JTB to

make those elements open to visiting by visitor. For example, the class generated

for TypeDeclaration is shown in Figure 24.

 23

Figure 24: Syntax Tree Node Classes

 Visitor Class

For visiting the nodes of generated syntax tree, a default visitor class is generated

by JTB. The traversal of syntax tree methodology is depth-first visiting. In order

for collecting information from the syntax tree, a class that is extending this

default visitor class is necessary. For example an AspectDepthFirstVisitor

that is extending the default visitor class should be prepared to capture the

elements of aspects. Point-cuts, advices, intertype variables and so on, can be

captured by this specialized visitor and then this information can be used in

generation of the base classes for verification or mocks for unit testing.

 JavaCC Grammar with Embedded Java Code

JavaCC grammar is the third output of JTB. This grammar is generated with

embedded Java code for building syntax tree. The visitor is traversing this tree

instance.

 24

II.4 Verification of Aspect Oriented Programs

In this section of the chapter, previous and ongoing studies on verification of aspect

oriented programs are discussed. There exist several studies on the same and similar

topics but the ideas and their views to handle those problems are different from our

solution. In spite of the differences, it is beneficial to mention the related studies on a

summary view before explaining the details of our study.

Larsson and Alexandersson studied verification of the aspects that add fault tolerance

to software [14]. Although they focus on only the fault tolerance aspects, they also

discuss general verification of aspect-oriented programs and compare several

alternatives of verification methodologies of aspect-oriented programming. While

discussing several alternatives they mainly introduce the idea about verifying the

aspect without any base program. They propose that all kinds of point-cuts can be

converted to an “around” advice in a way. Thus, if it is possible to handle the

situation for “around” advice, then obtaining the final solution of the problem

becomes easier. First, the advice body is split into two parts as before the “proceed”

keyword and after the “proceed” keyword. Since there is not any dependency to

return value of the “proceed” only the second part is considered for verification.

After the “proceed” statement if there is a dependency to the return value of that

statement then according to the dependency, the verification is branched out at that

point. Therefore all possibilities are covered with this methodology. One of the

advantages of this solution is lost of the dependency of aspect to the base program

considering the verification process and this property is similar to the approach in our

study. On the other hand, unlike we did, they do not try to handle all types of advices

and eliminate others by converting them to “around” advice. Another advantage of

choosing this approach is that it is possible to create libraries of aspects that involve

dependable and reusable aspects.

In [17] a language for AspectJ, which is named as Pipa, is introduced and by using

Pipa the transformation of AspectJ program into Java program with JML

 25

specifications is explained. Aspect specifications are considered at transformation

and JML is used for this purpose. Their proposal is modifying Aspectj compiler to

handle the modification. Since conventional verifiers can handle the verification of

Java and JML, it is possible to use those verification applications at this alternative.

This approach serves the same purpose with our study although their methodology is

completely different from ours.

Clifton and Leavens propose a different approach in [8]. There exists base code just

like in [17] but this time, instead of converting to Java code, the constructors of

AspectJ language is used as they are. There is need for too much analysis of the base

code at this approach. Considering a point-cut of an advice in an aspect, whole base

code should be traversed for each join point of that point-cut. Traverse is necessary,

because while thinking from the verification view, for each join point a proof branch

should be started. Additionally, extra new definitions are added that are coming from

the language constructors of AspectJ language. At this approach base program and

aspect code are separated. Unlike our study, for such an approach usage of base code

as part of the proof is important and this major difference is the striking complexity

and disadvantage of the related alternative.

Another methodology for verification in aspect oriented programming is proposed in

[18]. This study aims to provide a solution for aspect verification by analyzing

aspects modularly according to stable point-cut designators. The most critical

problematic point of this study is its lack of support on most of AspectJ features.

Instead of providing a much more implementation like ours, they aim to present their

methodology with a basic implementation support. They also divide the aspect into

modules and handle each module separately on the contrary to our approach.

Mostefaoui and Vachon propose another approach as verifying models of aspects

that are written Aspect-UML language [19]. The most appearing disadvantage of this

approach is the conversion effort from aspect to its model. Dissimilar to our study,

they do not aim to enable verification in implementation level and they add a major

conversion module to their methodology.

 26

Although the aim of approach that is described in [20] is not directly related with

enabling the verification of aspects, the used methodology makes it easy to verify

aspects. In the approach aspects are transformed into alternating transition systems

by using several properties. By using those properties it is easier to verify aspect

code. This approach includes a conversion process unlike our approach and it is

similar to converting the aspects into models.

[21] and [22] explain a tool that is developed for verification and validation of

aspects. However in these studies the verification is not done with using base code or

some mock classes, instead verification with respect to requirements and design of

aspect are discussed. In these approaches the point of view is different from ours.

They only work on enabling verification according to specifications, although we do

not have any previously stated specifications.

Different types of analysis of aspect oriented programs are done in several studies

such as [2] and [23]. Although they do not directly aim to enable verification of

aspect oriented programs, they are analyzing aspects in detail.

In [24], a methodology for formally verifying aspect oriented programs is described.

After the base classes and aspects are specified in a formal way separately, their

models are integrated. Then the implementation level byte code is reverse engineered

and the model of the output of the reverse engineering process is compared with the

initially specified models. Instead of concentrating on the behavior of aspects as we

did, in this study they verify the aspect oriented programs according to their general

requirement specification.

A contract-oriented approach for verifying aspect behavior is analyzed in [25]. Pre-

conditions, post-conditions and invariants are used in this approach. The aim is to

show the correctness of the behavior after integrating aspects into base code. In

addition to showing correctness they consider reasoning the behavior and structure of

the aspect oriented programs. As most of other approaches, the aim is similar;

however the approach is different from ours. They perform verification of the aspect

 27

behavior affect on the aspect oriented programs by including base program in the

analysis.

The approach in [26] is close to the one described in [24] considering their ideas. In

[26] they first model the base code and aspect in Unified Modeling Language and

generate a system. By performing a generation process, an algebraic Calculus of

Communicating Systems description is obtained from the system. After that, state

machines are generated from that system description. The behavior of the model is

verified and tested by using the obtained state machines. There are several

conversion processes to enable verification and testing in this approach and that is an

obvious disadvantage. On the other hand, it is certain that if the conversion process is

successful, the verification and testing processes would become very reliable by

using state machines.

The approach in [27] is introducing a specification technique that enables writing

modular specification for reasoning about the control impacts of aspects on base

code. They implemented their approach for Ptolemy programs [28]. Although they

state that it is possible to use approach for different programs if there are different

implementations, the disadvantage of the study is its usability scope.

When we consider the approaches that are mentioned in this section of the chapter, it

is seen that there are different proposals to apply verification on aspect-oriented

programs. All of them have advantages and disadvantages when compared with each

other. It is going to be seen in the next section that obviously our solution occupies a

place among the approaches explained in this section. There are similarities and

differences between our solution and the approaches that are mentioned here.

 28

CHAPTER III

PROBLEM DEFINITION

Although almost more than a decade has passed since the appearance of aspect

oriented programs in software community and despite the fact that it is proposing a

new modularization method to provide high cohesion, usage of aspect oriented

programs fail short of meeting the expectations. One of the important reasons is the

lack of established technology for reasoning about the reliability of aspect oriented

programs. The two basic methods that stand in the forefront are testing and

automated verification. Filling the gap for a verification framework of aspect

oriented programming is an active ongoing research effort [14],[18],[19].

A common technique in program verification and testing is isolation of units and

performing assume-guarantee reasoning. For this purpose, in this thesis, we focus on

the question of how to isolate an aspect and encapsulate the aspect with its most

general environment automatically. An automation tool is a necessity for achieving

our goal and in the section below the details of that necessity is explained.

 29

III.1 Need for This Study

In the first and the second chapters, it is stated several times that verification of an

AspectJ programs is different from verification of other programs. The difference

comes from the existence of two separate parts of an AspectJ program, because

verification types vary when the number of parts of a program increases. In AspectJ,

it is difficult to determine the reason or detail of a problem that is exposed during

verification. In other words, growing functional interleaving among separate parts of

software makes the verification process more complex. Another point of view is

related with the reusability of aspects. It is more practical to check the aspect once

separately and then use it with any base code. In order to get more specific results

from verification and avoid state space explosion up to some point during

verification process, it is necessary to work on the base code and the aspect code

separately.

Consider the verification of the aspects in isolation. A developer needs to perform

extra effort to write new classes, instances of which are behaving like the actual

objects of base code. In other words the developer needs to verify the aspect code

with mock objects of the base class objects. An example for explaining this process

is as follows.

 30

Figure 25: Student Class

Assume that the Student class in Figure 25 is given and the developer is expected

to write an aspect that works on this class. The aspect is supposed to keep the

information about the activeness of a student and use it somehow in another method.

We are not dealing with the usage of activeness information in this example. A hint

about the activeness of the student is also supported: “If the updateGpa method of

Student class is called at any time, student is considered as active”.

In such a scenario as declared above, one way to present a solution is keeping an

intertype variable in the aspect. An aspect as StudentAspect that represents this

solution is shown in Figure 26.

 31

Figure 26: Student Aspect

An intertype variable namely isActive is used as a flag in the aspect and it is set to

true when the updateGpa method is called and if isActive is not already set to

true formerly. Then isActive variable is used later in the aspect code block.

After the base code and the aspect are ready, in order to verify the aspect code the

developer has to run the verification of the woven code. Then, although the

developer is responsible only for the correctness of the aspect code, compulsively it

becomes necessary to check the correctness of base code as well. In order not to deal

with the verification of base code, developer needs to write an extra class for only

verification of aspect. A possible mock Student class may be the one provided in

Figure 27. (This example is chosen to explain the topic as simply as possible; tricky

examples, which are difficult to write mock classes manually, are provided in

Chapter VI)

Figure 27: Simple Student Class

 32

By writing the mock class in Figure 27, developer tries to eliminate the problems of

base code during verification, and actually he is successful at this point. When we

look at carefully to the below code block which is taken from the original base code

of Student class, it is obvious that using mock class is necessary for pure

verification of aspects.

Figure 28: Infinite While Loop

Since the shown while loop in Figure 28 is an infinite loop, developer would have to

deal with this problem during verification, if he did not use the mock class of Student

class.

After writing the aspect code and the mock class of base class, the last step for a

developer to prepare the aspect for verification is writing a driver class (a class with

main method) to call the base class methods for activation of point-cuts of the

aspect. A possible driver class for the current example is shown in Figure 29.

Figure 29: Student Aspect Driver

The driver class creates an instance of Student class, and then initializes a random

variable of type float to use as parameter of method updateGpa. Finally calls the

method and then triggers the only advice in StudentAspect aspect. Thus, the

 33

preparation process through verification is completed. After this process, usually by

using a verification tool, the aspect with its environment is tested several times and

the tool returns the results of verification.

In conclusion considering the process after the aspect was written, it is surely found

that to only focus on the problems of aspect, some extra effort is necessary for a

developer to perform. Basically, preparation of a mock class and an environment

class constitutes the content of that extra effort.

III.2 Difficulties of Base Code Generation

Lightening the unnecessary load of developer during aspect verification by an

automation tool is a good idea; however it is not easy to make that idea work. In this

part of the chapter we focus on the difficulties of creation of such an automation tool,

especially the difficulties of base code generation processes of that tool are listed.

 Difficulty of Any Code Generation

Code generation can be a difficult subject on it‟s own to work on when we

consider the software development subject areas. Actually, difficulty is more

obvious if the generated code should conform to the rules of a traditional

programming language [29]. Every detail of the language should be taken into

consideration carefully. One of the most important points of correct code

generation processes is handling the common syntactic issues of language.

Syntaxes that are specific to AspectJ like dots, commas, and capital letters are

expected to be handled painstakingly.

 Difficulty of Satisfying Code Generation

This is the most critical issue among the difficulty issues that are explained in

this part. In order to be sure that verification of aspect is done completely or

without any problem, it is important to generate all necessary code for base part.

 34

For example, all of the join points in the aspect should be enabled once or more

than once during verification. While generating base code, these kinds of criteria

are critical, although any missing of such points is not realized during verification

process. As another example, since it is possible for values of base variables to

change, it is not enough to assign fixed values to base variables. To achieve

coverage, each variable should have every value that will affect the behavior of

the unit. Because of such significant issues discussed in here, this is the most

critical point that should be considered during base code verification process.

 Difficulty of Efficient Code Generation

Another difficulty point that is important for code generation process is

efficiency of generated code. Efficiency term in here comprises the meanings of

the concept of minimum cost from the view of line of code, efficient memory

usage, and speed.

Generated code is not supposed to include unnecessary or dead code and every

lines of code are expected to be generated for one purpose or more than one

purpose while none of the two different code blocks are expected to be doing the

same job during verification process of aspects.

For verification, the state space is a problematic issue. During verification all

possible unique execution paths are exercised to realize a complete verification.

If the code is written without any care about memory usage, then during the

verification, state space explosion becomes inevitable. At base code generation

process, in order to prevent a possible state space explosion, the code should be

generated with memory usage consideration. From the memory usage view, the

most important point is at initialization of objects. If it is possible, an object

should be initialized once and then used many times, instead of initializing a new

object every time.

The significance of this item is not as high as the former item‟s, however this is a

more difficult item to handle.

 35

CHAPTER IV

SYSTEM ARCHITECTURE

This chapter presents the architecture of the aspect environment generation system

proposed in this thesis. Environment of an aspect is composed of the base code that it

is weaved and the driver code that triggers it. Driver code is necessary for

verification goal. On the other hand, existence of base code in generated environment

is urgent, considering aspect oriented programming rules. Recall that an aspect

oriented program is composed of two basic parts. An aspect and base code classes

are those composing parts of an aspect oriented program. Interaction points of these

two separate parts are called as join points (detailed information about them is

provided in the Chapter II). Figure 30 visualizes the interaction of join points

between the aspect and the base code.

Figure 30: Aspect and Base Code Relation

 36

Figure 31 visualizes the general work principle of the system with its most general

architecture. There are two modes in the system. These modes are; environment

generation for simulation and environment generation for verification. Generated

code in verification mode enables the evaluation of all possible execution paths for

verification tool. On the other hand in simulation mode as much possible values as

possible are provided by the generated code.

In order to start code generation, two files are taken from user as input. One of them

is aspect code and the other is the file that contains the data domain definitions of the

variables that aspect uses while interacting with its environment. This second file is

used only for the code generation for verification mode.

User interface redirects the input(s) to the „Encloser‟ module of the core of project.

„Encloser‟ redirects the aspect file to JTB parser for parsing and keeps the variable

domains file in hand. Then by traversing the syntax tree returned by JTB parser,

„Encloser‟ module fills the data objects that are specified in section V.2.3 in order to

prepare the inputs of „Generator‟ module. Then, „Encloser‟ sends those objects to

„Generator‟ module by adding the variable domains file content as another

parameter. „Generator‟ module generates three outputs by using the inputs coming

from „Encloser‟ module. These three outputs are; base classes to interact with the

aspect code, driver class to activate the join-points and domain-utility classes to

enable verification and simulation goals. „Generator‟ module sends these three

outputs to user interface. Lastly, user interface displays these outputs to the user and

saves them to the file system according to the user‟s command.

 37

Figure 31: System Architecture

If we look at the key idea of our solution from the most general view, we aim to find

the points that the aspect cuts the base code analyze it and then create a general

environment for the aspect. Creating a general environment means to create base

code that is providing all possible aspect-behavior affecting input values and that is

triggering all possible aspect-behavior affecting points. Abstracting the aspect-

unrelated parts of base is a side effect of this solution. Figure 32 displays an

automatically generated base code structure and its consistency with the aspect. Base

code is generated for the aspect visualization in Figure 30. The generated base code

fits with the join points of the aspect, although there are some differences with the

original base code.

 38

While generating the base code, a utility class, a variable domains class and a driver

class are also generated. Driver class is generated for enabling all of the join points

for verification of the aspect. While the driver class is enabling the join points, all of

the data values for variables that are specified in the variable domains file are

enabled. By doing this, we consider that the code will be used as input of a

verification tool. Variable domains file is not only used by the driver class but also

by the generated base code. Utility class is a fixed class that is used for generating

random values for different types of variables. Methods of utility class are called

from base classes and driver class.

Figure 32: Aspect and Generated Base Code Relation

 39

CHAPTER V

ASPECT ENVIRONMENT

GENERATION

Through this chapter, the method that we propose for enabling the verification of

aspects is discussed in detail. General system architecture of our solution is already

represented in Chapter IV and in this chapter we are explaining them in detail with

their logic. First, the rules that are determined for constructing the solution are listed

with their explanations. Second, the data collection process that is performed by the

„Encloser‟ module is presented. Finally, code generation process of „Generator‟

module is explained.

V.1 Rules of the Solution

Before starting to explain the technical view and details of the study, it is important

to pay attention on the rules of the study. This section can be considered as the key

section of the study, because it conducts the plan of technical part.

 40

V.1.1 Make Filtering on Data Collection Process

Efficiency is very important in our study as any other software implementation.

Considering the general structure in Figure 31, we should first clarify the step to

filter the unnecessary code segments from the input aspect code. The necessary

elements are discussed in the next rule; however this rule determines when to select

necessary code elements. It is reasonable to make the filtering as early as possible,

because unnecessary elements will be using the same extra effort required for the

necessary elements during the process. Since parsing is handled by JTB parser, it is

not possible to make filtering on the parsing sub-process of data collection process. It

is suitable to make the filtering on data collection process of „Encloser‟. By this way

the effort for unnecessary elements during the data collection and code generation

processes are saved. Only necessary data objects are created during first step and

only those objects are used during code generation.

V.1.2 Consider Verification and Simulation Purposes

One of the core work principles of our study is generating the code considering that it

is going to be used for verification and simulation purposes. In light of the foregoing,

the point-cuts of advices should be enabled with all possible inputs for verification

mode. The principle is same for simulation mode except for „all possible inputs‟

parts; it is „as much as different inputs‟ for this mode.

V.1.3 Determine the Necessary Elements

This rule composes of a number of sub rules. The necessary elements for data

collection and code generation are determined by this rule. While determining the

necessary elements and their code generation processes, Rule 2 is taken into

consideration. Rule 2 says that point-cuts should be activated with all possible inputs

for verification mode and much possible inputs for simulation mode. To be able to

 41

satisfy rule 2; each variable, which is read in any part of an advice should be

assigned with its all domain values, because variable-reading points are out-effect

points and they affect aspect behavior. These are the points where the advice gets

input from its environment; therefore, these are the points where the environment can

influence the aspect behavior. We handle these points by assigning all possible

values; i.e., we model the affect of the environment by enabling all possible (at least

behavior effecting) input values. On the other hand, a variable that is written in any

part of an advice is not important for our case because these write operations are

either internal to the aspect or they are an effect of the advice on the base code. In

other words, these write operations are not input coming from the environment;

hence, they do not have to be modeled and can be left as is. To make it more clearly,

elements of an aspect are discussed one by one.

Below the sub rules of Rule 3 on necessary elements and their explanations are

listed.

 Intertype Variables

If an intertype variable is read in an advice code than that advice becomes

dependent on that variable. Consider the example in Figure 33; it is possible

for Student class to change value of isActive variable at any time.

Therefore, to reason about the correctness of this advice, the advice should be

enabled with all possible values of that intertype variable. Instead of dealing

with this tiring process, the intertype variables are declared in base code as

any other base variable and the procedure that is applied to base variables are

applied to these intertype variables.

Figure 33: Student Aspect with Read Intertype Variable

 42

If an intertype variable is assigned a value in an advice, in other words if it is

written, that is not important for our case, because we do not model any case

that is not an input coming from environment.

Figure 34: Student Aspect with Write Intertype Variable

 Base Variable

Base variables, in the scope of this thesis, are the variables that are declared

in the base code. Base variables are used as arguments of set-get type point-

cuts and therefore they affect the behavior of aspect. Additionally base

variables can be visible to aspects by the arguments of args and target

keywords. While arguments of args correspond to arguments of method of

point-cut, argument of target represents the actual object of the point-cut.

As it is same for intertype variables, the reads of base variables need to be

handled during code generation process and there is no need to deal with

write base variables or assignments to base variables in advice code. If a base

variable is read in an advice and that advice has a point-cut of type method

call, then that base variable should be assigned with its domain values before

activating the point-cut of advice. The following example code block

demonstrates the situation more clearly.

 43

Figure 35: Student Aspect and Generated Code

The statements of RandomUtil.fixedFloat(); and

VariableDomains.next_boolean_isActive_Student(); are going

to be explained in the Base Code Generation section of this chapter.

 Base Method

Base methods are referred in this document as methods that are declared and

implemented in base code. Base methods are used in method call and execute

type point-cuts of advices. Differently from intertype and base variables, all

kinds of base methods are important for our study. Update method of Student

class in Figure 35 is an example usage for base methods. Considering this

example, since update method changes the value of isActive base

variable and since base variables affect aspect behavior, we can conclude that

base methods affect aspect behavior.

 44

 Advice Body Elements

Other than the base and intertype elements of aspects, there are also code

blocks in advice bodies to consider during code generation. Therefore advice

bodies are analyzed to extract the related elements and generate their base

code. Some example analyses are shown in Figure 36.

Figure 36: Advice Body Analysis

 Cflow Statements

Figure 37: Cflow Usage

 45

Cflow keyword in AspectJ is the abbreviation of control flow. It is easier to

explain it on an example. Considering the example DirtyTrackerWithCflow

aspect in Figure 37, a statement stands out as cflow (DB1.query1()). This

statement means that if an assignment to the credit variable of Account class

is done in the control flow of the query1 method of DB1 class, then the point-cut

of the advice should be activated, otherwise the assignment event should be

ignored. To put the meaning and usage of cflow aside, here the focus is on the

need for a query1 method of DB1 class. As any other elements to be generated

in the base code, the code for the declaration of query1 method of DB1 class

should also be generated.

In addition to the methods, it is possible for cflow statements to take point-cuts

as inputs [12]. This fact makes the handling of the cflow statements very

complicated. Actually, considering the aim of our study it is not a critical issue to

enable the point-cuts in the control-flow a method. It is critical to enable point-

cuts independent of the point that it is enabled. Therefore, our tool does not

support cflow statements; however, !cflow usage is supported. It is not

necessary to worry about control-flow condition for !cflow usage, because we

are sure that it is not possible for the generated method (that we enable the point-

cut in) to be the parameter of !cflow statement.

V.2 Data Collection Process

To be able to generate a meaningful and functional Java code for verification, firstly

the aspect code needs to be parsed successfully. Since parsing is a tedious task and

there are some open source applications that are already in use, we prefer to use a

suitable parser for parsing the aspect code. Although there are different parsers to be

used for AspectJ, the best one to integrate to the project is the one that is generated

by using JTB. It is specific to Java programming language, it is used widely and

therefore there are several resources about it, it is easier to understand and to use

 46

compared to other tools [7]. Considering these reasons, we have chosen JTB parser

for parsing and have modified the sample grammar file in it to make it possible to

handle AspectJ code. By parsing AspectJ code we collect data to fill the data objects

that are explained in section V.2.3.

To have a reusable design and application the „Data Collection Process‟ part is

constructed by applying the strategy design pattern [30]. Before explaining the data

collection process of our solution in detail, first the design of this process is

explained.

V.2.1 Design of Data Collection Process

Figure 38: Data Collection Process Design

Since we want a solution that is open for extension, for the data collection process of

our solution, we have chosen to use the strategy design pattern [30]. Although, at the

scope of this study there is only one data collection methodology, for the future work

and possible changes of the study, we have designed our solution by using this

pattern. Considering Figure 38, DataCollector is our application and it

corresponds to Context in strategy design pattern. IDataCollMeth is the interface

of strategies that are used for data collection process. ParserDataCollStrtg is

the concrete strategy that is in use. If a new methodology is needed, the strategy class

of that methodology is prepared and set to the main application as shown in Figure

38.

 47

V.2.2 Parsing

We analyze the parsing process of the AspectJ code under 2 sub-topics as „Additions

to JTB Grammar‟, which explains the additions to the grammar in this study, and

„JTB Syntax Tree‟, which focuses on the syntax tree output of the JTB and its

analysis.

V.2.2.1 Additions to JTB Grammar

In the standard distribution of JTB, a Java grammar is provided as a sample grammar

[7]. To use JTB parser for parsing AspectJ code, the sample grammar of JTB needs

to be extended to recognize AspectJ specific statements. The necessary syntax rules

for AspectJ language is obtained from [31]. Based on these rules, the grammar is

modified and the parser is recompiled with the new grammar file generating new

syntax tree nodes and visitors that will traverse the syntax tree (see Section II.3).

Normally, the generated JTB parser is expected to be faultless however there were

some faults in the generated parser and those faults are corrected manually. The

newly added syntax rules, which are elements of AspectJ programming language, are

given in Appendix B. The first one, AspectDeclaration, is explained in detail

here as an example.

Figure 39: Aspect Declaration

AspectDeclaration text block in Figure 39 is added to make the parser aware of

this syntax rule between the curly braces. An example about the usage of syntax rules

is provided in the following section. Detailed information about JTB and the

grammar used by it is provided in Chapter II.

 48

In this example most of the elements that are constructing the AspectDeclaration

syntax are already defined in sample JTB grammar. One of them,

ModifiersOpt(), is a known syntax in JTB grammar and we have used this

element as a part of our AspectDeclaration element. In the definition of

AspectDeclaration only AspectBody is an unknown element for the existing

grammar. We have defined this element as shown in Appendix B and we have used it

at here as a part of AspectDecleration.

Just like AspectDeclaration the other elements in Appendix B are defined in the

grammar file and the parser is generated according to that grammar.

V.2.2.2 JTB Syntax Tree

JTB takes a grammar file as input and produces a syntax tree, a depth first visitor

class to traverse that syntax tree, and JavaCC grammar with embedded Java code.

For customizing the tool and data collection from the parsing process, the users

extend the default visitor class generated. By extending the visitor class we overwrite

the parts that define the rules which we are of our concern and collect only the data

that we need. To understand it more clearly, consider the following example.

Figure 40: Student Aspect

Assume that we have an AspectJ file as student.aj with the content as shown in

Figure 40. StudentAspect is an aspect with an intertype variable called isActive

and an advice. The advice is a before type advice. The point-cut expression in the

 49

advice is dealing with the gpa variable in the Student base class. When the value

of float type gpa variable is changed, the advice is activated. To explain the syntax

tree only the advice is considered in this example. The root of the syntax tree for this

code segment is an AspectDecleration node. Recall that the aspect declaration

rule is as in Figure 39. Figure 41 gives the derivation of this rule for the given

example.

Figure 41: Aspect Declaration

In the grammar file we declared that AspectDeclaration includes an

AspectBody, AspectBody includes an AspectBodyDeclarations and so on.

After the “student.aj” file is given to JTB as input, it returns a syntax tree as output.

By traversing the output syntax tree we can find AdviceDecleration and collect

the data that we need to generate the aspect environment. Details of all these

processes are explained by an example at Appendix C.

V.2.3 Collecting Data

After the basics of syntax tree traversing are determined, there is a need for the data

types to load the collected data from the tree. In this section these data types and data

collecting methodology are explained.

V.2.3.1 Data Types

An example class diagram is shown in Figure 42 to simply explain the structures of

data types.

 50

Figure 42: Example Class Diagrams of Data Types

As it is seen in the class diagram, all of the data types are implementing the

IDCBasis interface. Details of the methods in IDCBasis are explained in section

V.3 while explaining the base code generation sub-topic.

The data types and their brief explanations are listed below. DC affix in front of the

class names represents that the class is a Data Container.

 DCAspect

This is the highest level container. It may contain DCAdvice,

DCBaseVariable, DCIntertypeVariable or DCBaseMethod type other

containers.

 DCAdvice

DCAdvice represents the data type of advices in aspects. It may contain

DCPointcutTypeSet or DCPointcutTypeCall.

 DCBaseVariable

This data type exists for base variables. It is one of the lowest level data types

and it does not contain any one of containers, listed in here.

 51

 DCIntertypeVariable

This data type exists for intertype variables. It is one of the lowest level data

types and it does not contain any one of containers listed in here.

 DCBaseMethod

DCBaseMethod represents the data type of base methods. It may contain any

number of DCMethodParameter type containers.

 DCMethodParameter

This data type exists for keeping data of method parameters. It is one of the

lowest level data types and it does not contain any one of containers listed in

here.

 DCPointCutTypeCall

DCPointCutTypeCall data container is for the point-cut types other than set,

such as call, initialize, executions and so on. It may contain

DCPointCutParameterTypeCall, DCBaseRW, DCIntertypeRW types of

containers.

 DCPointCutParameterTypeCall

This data type represents parameters of point-cuts that are not type of set. It may

contain any number of DCMethodParameter type data containers.

 DCPointCutTypeSet

DCPointCutTypeSet data container is for the point-cut types of set. It may

contain DCPointCutParameterTypeSet, DCBaseRW, DCIntertypeRW types

of containers.

 52

 DCPointCutParameterTypeSet

This data type represents parameters of point-cuts that are type of set. It is one

of the lowest level data types and it does not contain any one of containers listed

in here.

The RW affix in the following two data types is abbreviation of read-write. These

two data types are used for keeping the data of written or read, base or intertype

variables in advice bodies.

 DCBaseRW

This data type exists for written or read base variables in advices. It is one of the

lowest level data types and it does not contain any one of containers, listed in

here.

 DCIntertypeRW

This data type exists for written or read intertype variables in advices. It is one of

the lowest level data types and it does not contain any one of containers, listed in

here.

V.2.3.2 Methodology of Collecting Data

JTB provides us a class for obtaining the syntax tree. DepthFirstVisitor is that

class and to use syntax tree, we need to overwrite the necessary “visit” methods of

this class in our class, which is extending DepthFirstVisitor [7]. The code block

in Figure 43 explains more clearly the usage of syntax trees.

 53

Figure 43: Extending Visitor Class

The class AspectDepthFirstVisitor is extending the DepthFirstVisitor

class that is generated by JTB as shown in line 1. In this example, as it is seen from

line 2 to line 4, the visit method of AdviceDeclaration is overwritten. A data

object of type DCAdvice is created and sent to the method inspectAdvice as the

second parameter. The method takes the caught object of type

AdviceDeclaration as the first parameter and the DCAdvice type object as the

second parameter. The method traverses the first argument and fills the second

argument. Just like the AdviceDeclaration type, other necessary types are visited

and the data objects are filled.

V.3 Base Code Generation

After the parsing and data collecting processes are completed the next step is code

generation. Parsing and data collecting are means to go code generation, and our

actual goal is generating the environment of aspect. In this section, details about

default methodology of code generation process in our study and variable domain

assignment points are discussed.

 54

V.3.1 Design and Details of Code Generation

Figure 44: Code Generation Process Design

As it is described in section V.2.3, there is a containment relationship among the data

objects that we use and this property makes composite design pattern usable for us

[30]. IDCBasis interface of our design in Figure 44 corresponds to IComponent

participant of the composite design pattern. Similarly DCAspect is corresponding

element of Composite item while DCMethodParameter is the same for a Leaf

node of composite design pattern. The idea in here is that, code generation process is

embedded into the data objects and they generate only the codes that they are related

with. There are two methods in IDCBasis interface. The first one

generateOwnPartForBase method of a data object generates the environment

code that is related with the object except for related codes in driver class. Then if the

data object is a composite one like DCAspect, this method calls the same method of

each data object that it contains. generateOwnPartForTest works similarly, the

only difference is that this method generates only the driver class code piece of that

data object.

To explain clearly, it is better to follow an example for code generation process.

DCAspect is the out most enclosing data type and it may contain DCAdvice type

objects. DCAdvice type objects may contain DCPointCutTypeCall type objects

and DCPointCutTypeCall objects may contain objects of type

DCPointCutParameterTypeCall. Finally, DCPointCutParameterTypeCall

 55

objects may contain DCMethodParameter. The aspect in Figure 45 is prepared to

explain this code generation process and the generation flow from DCAspect to

DCMethodParameter.

Figure 45: Student Aspect

From StudentAspect aspect the code blocks represented in Figure 46 are

generated with our tool. The Student class is the only class in base part of the

generated code, and StudentAspectEnvironment class exists for the verification

process of the aspect with the generated base code.

 56

Figure 46: Working Style of Composite Design Pattern in the Solution

By the tool for every aspect at least one base class and exactly one driver class (for

verification) is generated. For this example the only base class is Student. In this

example we focus on the point-cut part of the advice. In other words line 1 and line 3

of StudentAspect aspect is important for us. Before starting, it is considered that

the parsing process is completed already and the data objects (DCAspect etc.) are

ready.

The data object DCAspect produces line 1 and line 7 of Student class, and then line

1, line 2, line 7, line 8 of StudentAspectEnvironment class. After it finished its

generation process, DCAspect object calls the code generation methods of the data

objects in it and adds that insider code between its lines of code. Although there is an

intertype variable we do not deal with it in this example and we focus on the

DCAdvice object in DCAspect. Since we go on our example with the point-cut part

of the advice, the advice does not generate any code related with this example and

directly calls the code generation method of the DCPointCutTypeCall object in it.

 57

DCPointCutTypeCall object does not generate any code in the Student class and

calls directly the method of DCPointCutParameterTypeCall. In the

StudentAspectEnvironment line 3 is generated by DCPointCutTypeCall,

however details of this line of code are discussed in the next section. Except for the

method parameter in line 3, the lines 3, 4, 5, 6 of Student class are generated by

DCPointCutParameterTypeCall. Similarly, except for the method parameter of

StudentAspectEnvironment at line 6, the lines 4, 5, 6 of

StudentAspectEnvironment are generated by the object of type

DCPointCutParameterTypeCall. The method parameters in both Student and

StudentAspectEnvironment are generated by the data object of type

DCMethodParameter in DCPointCutParameterTypeCall.

V.3.2 Variable Domains

In this section the variable domains used in code generation process is discussed. The

technical and algorithmic views are presented in addition to general view of the

usage. The necessity of variable domain assignments and usages arise from more

than one reasons. Firstly, these reasons and their related usages are discussed with

some examples. Then, in the second part technical information about variable

domain assignments and usages are provided.

V.3.2.1 Type of Variable Domains Usages

Recall that one of our goals is simulating the inputs of aspect that are coming from

outside. It is impractical to assign all possible values; therefore we aim to assign all

values that can affect aspect behavior. There are three points that we can model the

outside effects by using these values. First one arises from base and intertype

variable usages inside advice bodies whose point-cut part is type of „call‟ or

„execute‟. The second usage comes out at „return‟ statements of methods, inside the

generated base classes, and the last one is about calling methods with random

parameters. For a general example, an aspect and the generated code from it are

 58

shown in Figure 47. Then the three types of usages are explained by pointing the

example.

Figure 47: Student Aspect and Its Environment

 If the advice of a „call‟ type point-cut uses base variables inside its body, it

means that potentially the code of body is dependent of the base variable

value. Since we consider the intertype variables as base variables to facilitate

the code generation process, both intertype variables and base variables are

considered in the scope of this item.

Considering the example code in Figure 47, before calling the update

method, which is marked with method call label, an assignment is done to

isActive variable. This assignment is focused with point 3 label. Details

of right hand sight of the assignment are going to be discussed in following

sections; however, here basically it is enough to see that a domain value is

 59

assigned to an intertype variable before calling a method that is using it in its

body.

Since it is possible for the method update to change the value of variable

isActive, at line that is marked with label point 1, a domain value

assignment to the intertype variable isActive is done. This is a similar

assignment to the one explained in the former paragraphs.

 The second usage of domain values is focused with point 2 label in the

example. Since the return type of method is float, a fixed value is returned to

produce faultless code. This fixed value actually models the behavior of the

base code. If return value of method is not a primitive type, an instance of the

class is created and returned as the return value of the method.

 The third or the last usage style is shown in the line that is marked as point

4 in the example code. Since update method of Student class takes an

argument of type float, a variable of that type is created and given as input to

the method at the next line.

Looking from the verification view; although it seems like an assignment of a

domain value just one time, it is not, because verification tools, such as JPF, make all

tries on the same line of code until all domain values of related variable that is

specified by the user are finished and thus instead of a single domain value usage, it

becomes an exhaustive usage. Domain value usage styles are explained with

examples at this part.

V.3.2.2 Domain Value Assignment Algorithm and Methodology

As in the data collection process of our study, for the variable domain usages,

strategy pattern [30] is used. A variable domain strategy of the code generation

process is determined according to the code generation mode choice of the user. If

 60

the user chooses verification mode code generation then VerificationMode

strategy is created and set to application; if simulation mode is chosen then

SimulationMode strategy is created and set to application. Contents of utility

classes and variable domain value assignments are changed according to these

strategies. If there is any need for a different methodology, it is easily applicable.

Figure 48: Application of the Strategy Design Pattern for Variable Domains

The strategy produces a right hand side value when the getRHS method of it is

called and then this string is used by the context. getUtilityClass method of the

strategy produces the utility class that is used for variable domains assignments in

generated code.

For the aspect that is shown in Figure 49 both the code generated in Simulation mode

and Verification mode are analyzed after their brief explanations.

 61

Figure 49: Example Aspect Code

 Simulation Mode Strategy

This strategy exists for simulation purpose. Instead of a user specified domain, in

this strategy, a static random value utility class is used and the variables are

assigned with the methods in the utility class according to its type. Since in this

mode the goal is not full exploration of all possible execution, the program is

going to be run just once for a single path. Therefore, state space explosion is not

a problem and there is no need for the user to supply domain constraints. The

static random utility class is given in Appendix A. Sample code blocks from the

related utility class are shown in Figure 50.

 62

Figure 50: Random Utility Class

Considering the DirtyTracker aspect in Figure 49, the code that is displayed in

Figure 51 is generated in Simulation mode.

Figure 51: Generated Code Blocks for Simulation Mode

 Verification Mode Strategy

Verification mode is used for preparing the base code suitable for verification.

Difference from the simulation mode is the effect of user for variable domains.

Within a file, user prepares a list of base and intertype variables with their data

domains and gives that file as input to our tool. Then when the code generator

 63

needs to make an assignment to one of those variables, it uses a

VariableDomains object that contains the information given in that file. The

implementation of the VariableDomains class is prepared to make JPF

verification tool possible to try all possible values of the variable in its domain.

We ask the user to provide the domain values since all possible valuations, as in

the simulation mode, makes the verification impossible due to practically

unlimited number of combinations and backtrackings.

When we analyze the generated code in Figure 52 for the same aspect in

verification mode, we see that the RandomUtility class is still in use at some

points. RandomUtility class is used at the points that do not have an effect on

aspect behavior and that it is not possible for the user to define domain values

for; on the other hand that it is necessary to make an assignment to have

syntactically correct code. The instanceString317 variable of

Aspect1Environment in Figure 52 is an example for this type of usage.

InstanceString317 is a variable that is automatically generated during code

generation process and it is not possible and not necessary for the user to specify

its domain values. Therefore RandomUtility class is necessary for

Verification Mode Strategy.

 64

Figure 52: Generated Code Blocks for Verification Mode

Elements of the input file content that is provided by the user should be in the

following format.

Type_VariableName_ ClassName

For example, a myType type variable myVar that is defined in myClass class

should be added to the input file like myType_myVar_ myClass = …

 65

Considering the example in Figure 52, we understand that for credit base

variable the user placed the following statement in the variable domains file.

int_credit_Account = 0, 1, 7, 8, 9

V.4 Final Product: Aspect Base Code Generation Tool

Data Collection and Base Code Generation processes are the subjects that expose the

structural side of the study in detail. After investigating the technical view of the

study, in this part of the document a user level introduction about it is provided. User

interfaces are used to analyze the tool step by step.

Figure 53: Main Window of the Tool

The window that is shown in Figure 53 is the main window of the tool. By using this

main window, user may access other windows.

 66

Figure 54: Editor - Aspect Editor Tab

By clicking the EDITOR button from the main window, user accesses the window

that is shown in Figure 54. This window is an editor for users before starting to code

generation process. By using the Aspect Editor tab that is illustrated in Figure

54 and by using the Variable Domains Editor tab that is illustrated in Figure

55, user can create new files or edit the existing ones.

First tab is used for creation and editing of aspect codes. By using easy aspect

control buttons, user can easily make additions to the code. If the content of an

existing file is needed to be investigated or it is needed to be updated then firstly it

should be loaded from the Aspect Loader panel at the top of the tab. If a new

aspect is going to be created than this panel is not used until saving process of the

file. File saving process works independently from the purpose of editing or creating.

When the user clicks Save button the tool saves the content of the Aspect Editor

 67

panel into the Aspect URL directory that is provided in the Aspect Loader

panel and the file is saved with name that is written in the Aspect name text

field in the same panel.

Figure 55: Editor – Variable Domains Editor Tab

Just like the Aspect Editor tab, Variable Domains Editor tab is used for

creating, editing and saving. This time the argument is not an aspect, but it is a

Properties file in which the domains of variables in the code are specified by the

user.

 68

Figure 56: Base Code Generation Window – Base Classes –

From the base code generation window, the user should load an aspect by using the

Aspect Selection panel. It is also possible for the user to choose a file for

defining the variable domains from Variable Domains File Selection

panel. Then the user is expected to choose a mode for code generation, default

mode is verification mode. After that process, user can generate the base code by

clicking the Generate Aspect Environment button. At the first tab of the detail

view of the window, generated base classes are displayed as shown in Figure 56. At

the second tab generated driver class, which is going to use base classes, is presented.

This view is shown in Figure 57.

 69

Figure 57: Environment Generator – Driver Class –

Generated classes can be saved into the file system by using the same window.

 70

CHAPTER VI

EXPERIMENTS

In order to make some tests on the tool with different types of examples, this chapter

is prepared before concluding the document of the thesis study. There are also

examples that show the tricky usages of AspectJ syntax supported by the tool. Since

the content of VariableDomains and RandomUtil classes are similar for all of the

examples, their contents are not provided within these examples. All of the aspects

that are used in the examples of this chapter are taken from [12]. To make them

suitable to show the effect of our study, several updates are performed on the original

aspects.

 71

VI.1 Examples of Handling Tricky Usages of AspectJ

Syntax

Figure 58: Usage of ‘+’ in AspectJ

The first example focuses on the usage of ‘+’ symbol inAspectJ. ‘+’ is used for

representing the subclasses of the class. In Figure 58, the example point-cuts catch

the join points of any subclasses of Account class (including Account class itself)

and our tool supports this syntax. The output of our tool for input in Figure 58 is

shown in Figure 59.

Figure 59: Generated Environment for the Usage of ‘+’ in AspectJ

 72

Figure 60: Usage of ‘!cflow’ in AspectJ

Another example is about the usage of !Cflow keyword. !Cflow is a control-flow

based point-cut. Differently from the point-cuts that are explained in Chapter II, join

point of this point-cut is determined at run-time [12]. !Cflow syntax as shown in

Figure 60 is supported in our tool, but Cflow usage is not supported. Related code

generations are done in accordance with the statements in it. In other words the class

and the method to generate are extracted from it. The output is represented in Figure

61.

Figure 61: Generated Environment for the Usage of ‘!cflow’ in AspectJ

 73

Figure 62: Usage of ‘*’ in AspectJ

Another symbol that is used in AspectJ is ‘*’. It is used for representing any

number of characters [6]. Several examples showing the usage of this symbol are

represented in Figure 62. The aim of usage of this symbol is shortcut specifying, for

 74

example, all the attributes of an object as in Advice2 in Figure 62 .The generated

environment for the aspect in Figure 62 is displayed in Figure 63.

Figure 63: Generated Environment for the Usage of ‘*’ in AspectJ

 75

Figure 64: Usage of Conditional Statements in AspectJ

Finally, conditional statements as in Figure 64 are supported by our tool. If there are

too many conditional statements in the aspect code, it becomes very tedious to

prepare its environment manually; however independently from the number of

conditional statements, its environment can be generated by our tool easily. The

environment in Figure 65 is generated for the given aspect.

Figure 65: Generated Environment for the Usage of Conditional Statements in

AspectJ

 76

VI.2 Case Study

We performed a case study on two realistic examples to show that our tool is a useful

tool for AspectJ developers. The first example is a slightly different version of its

original that is represented in [12]. It is a database connection pooling example and

details about the problem and its solution by using AspectJ are explained in [12].

Figure 66: A Realistic DBConnection example in AspectJ

Our focus is on the generation of the environment of the aspect in Figure 66. Base

code for a realistic DBConnection aspect as in Figure 66 can be generated as well by

using the tool that we have developed. The generated base code output of the tool is

shown in Figure 67.

 77

Figure 67: Generated Environment for the Realistic DBConnection example in

AspectJ

From the third line of the code in Figure 66, the tool realizes that

SimpleDBConnectionPool is a class that is extending DBConnectionPool class

and creates SimpleDBConnectionPool class according to this information. From

Advice 1 and Advice 2 the methods of DBConnectionPool class are generated.

From connectionRelease point-cut, Connection class and its content are

genereted. From connectionCreation point-cut DriverManager class and its

 78

content are created. The driver class Aspect1Environment is generated to enable

the join points for verification.

Figure 68: A Realistic Factorial Optimization example in AspectJ

The second realistic example is a caching mechanism for the factorial values of the

inputs of a factorialOperation method. The aspect is called the

OptimizeFactorialAspect and it is provided in [12]. This aspect is shown in

Figure 68, and our tool generated the environment given in Figure 69.

 79

Figure 69: Generated Environment for the Realistic Factorial Optimization

example in AspectJ

A Manager class with its content is generated according to the static initialization

line in Figure 68. The only point-cut is used for the generation of Factorial class

and its content. FactorialCache and its content are generated by using the

information in the advice block of the aspect. Aspect1Environment is generated

to enable the join points for verification.

 80

CHAPTER VII

CONCLUSION AND

FUTURE WORK

In this study, we aim to describe the necessity for automation of aspect verification,

and then we have proposed our solution at AspectJ programming language. Our

proposed solution is a tool for generating mock classes of an aspect and making it

ready for verification.

General architecture of our solution is formed of two basic parts. Firstly, the data

including point-cuts, advices, variables, methods is collected from the supplied input

aspect and then in the second step the output, which is the environment code of the

input aspect, is generated from the collected data in the first part.

Data collection is a process that involves two sub-processes that are working

subsequently. Aspect code parsing is the first one of those sub-processes. At the

aspect code parsing stage, aspect code is parsed by using JTB parser [7].

The second sub-process of the data collection process is filling data objects. We

traverse the output syntax tree by our visitor class that is overriding the visitor class

 81

generated by JTB. While traversing the syntax tree we fill the data objects of classes

that we prepared as suitable for code generation process.

Second step in the general structure of the project is base code generation part. At

this step by using the collected information from the aspect the actual goal of this

study, which is generation of base code for aspect, is completed. By using the

composite design pattern [30], we have constructed a reasonable code generation

algorithm. All data objects were put in another one during data filling process and

from the outmost to the innermost all objects generate some part of the base code that

is related with its own, and then call the method generation methods of the inner

objects. By this way whole base code including the actual application classes and the

trigger class is generated.

Since our aim at generating Java base code is making it possible for aspects to be

verified without any other input from the user, the other significant points of

verification has been considered during preparation of the base code generation

methodology. The most critical one of them was the need for domain value

assignments. To be sure about a complete verification, verification tools make many

tries on each line of code. By making use of domain values we provide variation on

code execution and become closer to generate base code that is ready for a more

complete verification. Domain value assignments change according to the code

generation mode selected by the user. The tool is able to generate base code in two

modes; verification mode and simulation mode.

Our solution facilitates the work of a developer at aspect verification process. By

taking only the aspect as input and not expecting any other effort of the developer, it

proves its usefulness. The tool takes an aspect as input and produces all the necessary

base classes in Java programming language. The produced output code has the

following properties.

 Complete

 Correct

 82

 General (Enabling all behavior affecting input values)

 Efficient (No unnecessary or dead code, goal oriented code)

Considering the verification process at code generation, above properties are

necessary to be satisfied in the generated code.

One of the goals of this study is to discriminate the faults of aspect code from the

faults of base code. By producing a complete, correct, general (enabling all behavior

affecting input values) and efficient environment code (no unnecessary or dead code,

goal oriented code) we are promising that the faults that developer comes across

during the verification process completely belong to the aspect code.

The points that differentiate our study from the current literature and the

contributions of this study are listed as follows.

 We enable modular verification and testing of the aspects on the contrary to

most of the approaches that are using base code in the same processes. This

modular approach that we use gives advantage of aspect reusability

 We put together both the ability of aspect environment generation for

verification and ability of aspect mocking framework for unit testing in one

tool. Other studies focus on just one of these purposes

 We provide a useful and detailed implementation in addition to the

description of our approach

 In verification mode we consider the state space explosion problem of

software verification processes and apply an original methodology for solving

that problem in generated environment

 Lastly, the idea that we use for detecting aspect behavior affecting points and

generating over-approximations of those points make our approach original

and different from others

 83

There are limitations for the syntax of the aspects that can be used as input for our

application. The following limitations should be considered.

 The tool facilitates the use of the common point-cuts, which are method

calling, method execution, and attribute setting and attribute getting point-

cuts. However other types of point-cuts are not supported.

 All types of advices are supported.

 Base methods, base variables, intertype variables are supported, on the other

hand intertype methods are not supported.

 The „*‟ (any number of any characters) and „+‟ (sub-classing) wild-cards can

be used in point-cut declarations; other special symbols are not supported

 „!cflow‟ control flow point-cut can be used, but „cflow‟ is not supported

If these syntactic limitations are exceeded, no output is generated by the tool. In

addition to the limitations of syntax, there are other limitations for the tool usage and

they are listed as follows.

 The tool should not be used in verification mode without a variable domain

file.

 For random value assignments of primitive types a generator is used.

However for composite types the methodology is different. For composite

types there are two possibilities; one of them is assignment of a null value

and the other one is an initialization with the default constructor. There is not

any other methodology for random value assignments of composite types.

 Domain value assignments are similar to the random value assignments. In

other words, only the domain values of primitive types are expected to be put

in variable domains input file.

 There are no random value and domain value assignments for containers like

arrays, vectors, and so on.

 The tool can be used for only one aspect at a time.

 Considering that the environment for an aspect is generated automatically, it

is not going to be reasonable to use our application for an aspect that is

checking the state of the base program. It is possible that, while the state of

 84

the original base code was changing at any execution process, it is not going

change in the process of automatically generated base code.

On the contrary to the syntactic limitations, these limitations do not prevent the

generation of outputs. However, the outputs become incorrect. Before using the tool

all of these limitations should be considered.

The immediate future work of this study is making our application available for

global public usage over the web. By this way we aim to obtain feedback from users

and consider possible improvements in the application.

Certainly the best idea as a future work of this study should be on the verification

subject. The materials for verification are ready after our study. The aspect that is

supplied by the developer and the base code that is generated by our tool can be used

as inputs of that study. After taking the two inputs, which are aspect and base code,

the application of the assumed future work is going to guide these inputs to a

verification tool such as JPF, and then it is going to make some analysis on the

returned result from verification tool. The difficult part of this study would be

obviously on the analysis part. After the analysis is completed the application is

going to display an easy to understand, useful, detailed view for the results of the

analysis of verification.

As another future work of this study, it is possible to look at picture from another

angle. In our study we have focused on the verification of the aspect part of an

AspectJ program and generated the base code with our tool for discriminating the

faults of aspect from faults of base code. Looking from the other view, it is also a

good idea to find the faults of base code separately from the faults of aspect. By

combining such a study with our study, a complete verification tool can be provided

to AspectJ developers.

 85

REFERENCES

[1] N. Ubayashi and T. Tamai, "Aspect-oriented programming with model

checking," in Proceedings of the 1st international conference on Aspect-

oriented software development, Enschede, The Netherlands, 2002, pp. 148-

154.

[2] M. Storzer, "Analysis of AspectJ programs," Aspect-Oriented Software

Development, p. 39, 2003.

[3] G. Holzmann, "Trends in software verification," FME 2003: Formal

Methods, vol. 2805, pp. 40-50, 2003.

[4] H. Zhu, P. Hall, and J. May, "Software unit test coverage and adequacy,"

ACM Computing Surveys (CSUR), vol. 29, pp. 366-427, 1997.

[5] JPF Web site. Available: http://babelfish.arc.nasa.gov/trac/jpf

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold,

"An overview of AspectJ," ECOOP 2001--Object-Oriented Programming,

vol. 2072, pp. 327-354, 2001.

[7] Java Tree Builder (JTB) Web site. Available: http://compilers.cs.ucla.edu/jtb

[8] C. Clifton and G. Leavens, "Observers and assistants: A proposal for modular

aspect-oriented reasoning," in Foundations of Aspect-Oriented Languages

Workshop at AOSD 2002, Department of Computer Science, Iowa State

University, 2002, pp. 33-44.

http://babelfish.arc.nasa.gov/trac/jpf
http://compilers.cs.ucla.edu/jtb

 86

[9] R. Filman and D. Friedman, "Aspect-oriented programming is quantification

and obliviousness," in Workshop on Advanced Separation of Concerns,

Minneapolis, 2000, pp. 21-35.

[10] R. Alexander, J. Bieman, and A. Andrews, "Towards the systematic testing of

aspect-oriented programs," Department of Computer Science, Colorado State

University, Fort Collins, Colorado, USA. Technical Report CS-4-105, 2004.

[11] J. Pérez, N. Ali, J. Carsí, and I. Ramos, "Designing software architectures

with an aspect-oriented architecture description language," Component-Based

Software Engineering, vol. 4063, pp. 123-138, 2006.

[12] R. Laddad, AspectJ in action: Manning, 2003.

[13] G. Holzmann, "The model checker SPIN," IEEE Transactions on software

engineering, vol. 23, pp. 279-295, 1997.

[14] D. Larsson and R. Alexandersson, "Formal verification of fault tolerance

aspects," in International Symposium on Software Reliability Engineering

(ISSRE), Los Alamitos, 2005, pp. 279-280.

[15] Y. Cheon and G. Leavens, "A simple and practical approach to unit testing:

The JML and JUnit way," ECOOP 2002--Object-Oriented Programming, pp.

1789-1901, 2003.

[16] JavaCC Grammar Web site. Available:

https://javacc.dev.java.net/doc/javaccgrm.html

[17] J. Zhao and M. Rinard, "Pipa: A Behavioral Interface Specification Language

for Aspect," in Proceedings of the 6th international conference on

Fundamental approaches to software engineering, Warsaw, Poland, 2003,

pp. 150-165.

[18] S. Krishnamurthi, K. Fisler, and M. Greenberg, "Verifying aspect advice

modularly," ACM SIGSOFT Software Engineering Notes, vol. 29, pp. 137-

146, 2004.

 87

[19] F. Mostefaoui and J. Vachon, "Verification of Aspect-UML models using

Alloy," in Proceedings of the 10th international workshop on Aspect-oriented

modeling, Vancouver, Canada, 2007, pp. 41-48.

[20] B. Devereux, "Compositional reasoning about aspects using alternating-time

logic," in Foundations of Aspect-Oriented Languages, 2003, pp. 40-43.

[21] S. Katz and A. Rashid, "From aspectual requirements to proof obligations for

aspect-oriented systems," architecture, vol. 25, p. 26, 2004.

[22] S. Katz and A. Rashid, "PROBE: From Requirements and Design to Proof

Obligations for Aspect-Oriented Systems," Computing Department,

Lancaster University, Lancaster COMP-002-2004, 2004.

[23] M. Rinard, A. Salcianu, and S. Bugrara, "A classification system and analysis

for aspect-oriented programs," SIGSOFT Softw. Eng. Notes, vol. 29, pp. 147-

158, 2004.

[24] M. Qamar, A. Nadeem, M. Khan, and M. Ali, "An Automatable Framework

for Formal Specification & Verification of Aspect Oriented Programs," 2008.

[25] N. Ubayashi, J. Piao, S. Shinotsuka, and T. Tamai, "Contract-Based

Verification for Aspect-Oriented Refactoring," presented at the Proceedings

of the 2008 International Conference on Software Testing, Verification, and

Validation, 2008.

[26] M. Pérez-Toledano, A. Navasa, J. Murillo, and C. Canal, "A Safe Dynamic

Adaptation Framework for Aspect-Oriented Software Development," Journal

of Universal Computer Science, vol. 14, pp. 2212-2238, 2008.

[27] M. Bagherzadeh, H. Rajan, G. Leavens, and S. Mooney, "Translucid

Contracts: Expressive Specification and Modular Verification for Aspect-

oriented Interfaces," 2010.

[28] Ptolemy with Translucid Contracts.

http://www.cs.iastate.edu/~ptolemy/contract/

 88

[29] F. Budinsky, M. Finnie, J. Vlissides, and P. Yu, "Automatic code generation

from design patterns," IBM Systems Journal, vol. 35, pp. 151-171, 1996.

[30] J. Cooper, The Design Patterns Java Companion: NY: Addison-Wesley,

1998.

[31] ABC Web site. Available: http://abc.comlab.ox.ac.uk/introduction

http://abc.comlab.ox.ac.uk/introduction

 89

APPENDICES

APPENDIX A. RANDOM UTILITY CLASS

import java.util.Random;

public class RandomUtil {

 Random generator = new Random();

 public static boolean randomBoolean() {

 return generator.nextBoolean();

 }

 public static short randomShort() {

 return (short) generator.nextInt(1000);

 }

 public static int randomInt() {

 return generator.nextInt();

 }

 public static long randomLong() {

 return generator.nextLong();

 }

 public static float randomFloat() {

 return generator.nextFloat();

 }

 public static double randomDouble() {

 return generator.nextDouble();

 }

 public static String randomString() {

 return "";

 }

 90

 public static char randomChar() {

 return ' ';

 }

 public static boolean fixedBoolean() {

 return true;

 }

 public static short fixedShort() {

 return 0;

 }

 public static int fixedInt() {

 return 0;

 }

 public static long fixedLong() {

 return 0;

 }

 public static float fixedFloat() {

 return 0;

 }

 public static double fixedDouble() {

 return 0;

 }

 public static String fixedString() {

 return "";

 }

 public static char fixedChar() {

 return ' ';

 }

}

 91

APPENDIX B. ADDITIONS TO JTB GRAMMAR

 AspectDeclaration

{

ModifiersOpt() ["privileged" ModifiersOpt()] "aspect"

<IDENTIFIER> SuperOpt() InterfacesOpt() PerClauseOpt()

AspectBody()

}

 AspectBody

{

"{" (AspectBodyDeclarations())* "}"

}

 AspectBodyDeclarations

{

AspectBodyDeclaration()

(LOOKAHEAD(2)AspectBodyDeclaration())*

}

 AspectBodyDeclaration

{

LOOKAHEAD(ClassBodyDeclaration()) ClassBodyDeclaration()

| DeclareDeclaration()

| LOOKAHEAD(AdviceDeclaration()) AdviceDeclaration()

| LOOKAHEAD(InterTypeMemberDeclaration())

InterTypeMemberDeclaration()

| PointcutDeclaration()

}

 DeclareDeclaration

{

"declare" (

"parents" ":" ClassNamePatternExpr()

("extends"|"implements") NameList() ";"

| "warning" ":" PointcutExpr() ":" <STRING_LITERAL> ";"

| "error" ":" PointcutExpr() ":" <STRING_LITERAL> ";"

| "soft" ":" Type() ":" PointcutExpr() ";"

| "precedence" ":" ClassNamePatternExprList() ";"

)

}

 AdviceDeclaration

{

ModifiersOpt() AdviceSpec() ThrowsOpt() ":"

PointcutExpr() MethodBody()

 92

}

 AdviceSpec

{

"before" "(" FormalParameterListOpt() ")"

| "after" "(" FormalParameterListOpt() ")"

[("returning" | "throwing") ["(" [FormalParameter()

] ")"]]

| Type() "around" "(" FormalParameterListOpt() ")"

| "void" "around" "(" FormalParameterListOpt() ")"

}

 InterTypeMemberDeclaration

{

ModifiersOpt() (

"void" "." <IDENTIFIER> "(" FormalParameterListOpt()

")" ThrowsOpt() MethodBody()

| LOOKAHEAD(Name())

Name() "." "new" "(" FormalParameterListOpt() ")"

ThrowsOpt() ConstructorBody()

| LOOKAHEAD(Type())

Type() Name() "." <IDENTIFIER> (

"(" FormalParameterListOpt() ")" ThrowsOpt()

MethodBody()

| "=" VariableInitializer() ";"

| ";"

)

)

}

 PointcutDeclaration

{

<CONTRACT>

ModifiersOpt() "pointcut" <IDENTIFIER>

"("FormalParameterListOpt()")" [":" PointcutExpr()] ";"

}

 PointcutExpr

{

OrPointcutExpr() ("&&" OrPointcutExpr())*

 }

 OrPointcutExpr

{

 UnaryPointcutExpr() ("||" UnaryPointcutExpr())*

}

 UnaryPointcutExpr

{

BasicPointcutExpr()

 | "!" UnaryPointcutExpr()

 }

 93

 BasicPointcutExpr

{

"(" PointcutExpr() ")"

| "call" "(" MethodConstructorPattern() ")"

| "execution" "(" MethodConstructorPattern() ")"

| "initialization" "(" ConstructorPattern() ")"

| "preinitialization" "(" ConstructorPattern() ")"

| "staticinitialization" "(" ClassNamePatternExpr() ")"

| "get" "(" FieldPattern() ")"

| "set" "(" FieldPattern() ")"

| "handler" "(" ClassNamePatternExpr() ")"

| "adviceexecution" "(" ")"

| "within" "(" ClassNamePatternExpr() ")"

| "withincode" "(" MethodConstructorPattern() ")"

| "cflow" "(" PointcutExpr() ")"

| "cflowbelow" "(" PointcutExpr() ")"

| "if" "(" Expression() ")"

| "this" "(" TypeIdStar() ")"

| "target" "(" TypeIdStar() ")"

| "args" "(" TypeIdStarListOpt() ")"

| Name() "(" TypeIdStarListOpt() ")"

}

 AspectJReservedIdentifier

{

 "aspect" | "privileged"

| "adviceexecution" | "args" | "call" | "cflow" |

"cflowbelow" | "error"

| "execution" | "get" | "handler" | "initialization" |

"parents"

| "precedence" | "preinitialization" | "returning" |

"set"

| "soft" | "staticinitialization" | "target" |

"throwing"

| "warning" | "withincode"

 }

[31]

 94

APPENDIX C. DETAILS OF JTB SYNTAX TREE USAGE

Figure 70 is showing the branches of an example syntax tree produced by JTB from

the highest level, AspectDeclaration, to AdviceDeclaration.

Figure 70: JTB Syntax Tree – Aspect Content – (Debug View)

In order to generate the base code from the aspect code, the necessary nodes of

syntax tree need to be visited. For example, to find the AdviceDeclaration from

the AspectDeclaration node, first node f7 of AspectDeclaration is taken.

This kind of information is fixed information and we are sure that node f7 is of type

 95

AspectBody. From AspectBody by visiting the shown nodes in Figure 70 we find

AspectBodyDeclaration. Here there is a conditional case from

AspectBodyDeclaration to AdviceDeclaration, because it is not certain that

every AspectBodyDeclaration has to involve AdviceDeclaration. This kind

of conditional cases in the program is solved as shown in the Figure 71.

Figure 71: Aspect Body Declaration

If there is an f0 node in the aspectBodyDecl we look for the type of data in it.

aspectBodyDecl.f0.which == 2 statement does this work. JTB syntax tree

provides this information us to differentiate the types of branches.

Figure 72: JTB Syntax Tree – Advice Content – (Debug View)

After we have AdviceDecleration in hand, we can search the necessary

information that we need for base code generation. Assume that we need to know the

type of advice. In other words we want to learn if it is a „before‟, „after‟ or „around‟

type advice. That information is supposed to be under AdviceSpec sub-branch. It

means that we continue our search on f1 node of AdviceDeclaration as shown

on Figure 72. The way to access the before tokenImage is shown in Figure 73. As

shown here, to find the necessary information, the syntax tree is traversed.

 96

Figure 73: JTB Syntax Tree – Point-cut Type in Advice Content – (Debug View)

