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ABSTRACT

USING TROPICAL DEGENERATIONS FOR PROVING THE
NONEXISTENCE OF CERTAIN NETS

Güntürkün, Mustafa Hakan

Ph.D., Department of Mathematics

Supervisor : Assoc. Prof. Dr. Sefa Feza Arslan

Co-Supervisor : Assoc. Prof. Dr. Ali Ulaş Özgür Kişisel

June 2010, 43 pages

A net is a special configuration of lines and points in the projective plane. There are certain

restrictions on the number of its lines and points. We proved that there cannot be any (4,4)

nets in CP2. In order to show this, we use tropical algebraic geometry. We tropicalize the

hypothetical net and show that there cannot be such a configuration in CP2.

Keywords: line arrangements, k-nets, Latin squares, tropical curves, tropicalization
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ÖZ

TROPİK DEJENERASYON YÖNTEMİ KULLANILARAK
BELİRLİ NETLERİN OLMADIĞININ KANITLANMASI

Güntürkün, Mustafa Hakan

Doktora, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Sefa Feza Arslan

Ortak Tez Yöneticisi : Doç. Dr. Ali Ulaş Özgür Kişisel

June 2010, 43 sayfa

Netler projektif düzlemde doğru ve noktaların özel konfigürasyonlarıdır. Bir netteki dogru-

ların ve noktaların sayıları üzerinde bazı kısıtlamalar mevcuttur. Biz CP2 de bir (4,4) net

olamayacağını gösterdik. Bunun için tropik cebirsel geometri kullandık. Hipotetik bir neti

tropik dejenerasyona uğratarak, CP2 de böyle bir konfigürasyonun olamayacağını gösterdik.

Anahtar Kelimeler: doğru ayarlamaları, k-netler, Latin kareler, tropik eğriler, tropikleştirme
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Can you always feel love? I can...
To Fatma
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CHAPTER 1

INTRODUCTION

A finite hyperplane arrangement is a finite set of hyperplanes in a projective space over a

field. If the space is the projective plane, then the arrangement is called a line arrangement. A

net is a special line configuration in the projective plane. There are some restrictions on the

structure of nets discovered by S. Yuzvinsky and some open problems remain.

One way to understand tropical algebraic geometry is by looking at certain limits of complex

algebraic varieties under the logarithm map. It may be easier to deal with the tropical counter-

parts of the classical problems because we can use combinatorics extensively on these simpler

objects.

In this thesis we show that there cannot be any (4,4)-nets in CP2. To show this we take a

hypothetical net, we tropicalize its lines and points. We draw some of them on the tropical

plane. Then by using the tropical picture and intersection relations, we find the possible

locations of some of the other lines and points. This leads to a contradiction which shows the

nonexistence of (4,4)-nets in CP2.
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CHAPTER 2

PRELIMINARIES

2.1 NETS

Definition 2.1.1 Let k > 1 be a positive integer and P2 the complex projective plane. Let Ai

be a finite set of lines for each i ∈ {1 . . . k}, and X a finite set of points.

The collection (A1, . . . ,Ak,X) is called a k-net if the following are satisfied:

1. When i , j,Ai andA j are disjoint.

2. If i , j, ` ∈ Ai and m ∈ A j then ` ∩ m ∈ X.

3. For every p ∈ X and i ∈ {1, . . . , k} there exists a unique ` ∈ Ai such that p ∈ `.

Example 2.1.2 The following is an example of a 3-net.

A1 = {`11, `12}

A2 = {`21, `22}

A3 = {`31, `32}

X = {p11, p12, p21, p22}

The points are indexed according to the rule `1i ∩ `2 j = pi j

2



12 12 21

11

22

11

Figure 2.1: A 3-Net

2.1.1 Some Properties

Proposition 2.1.3 Let k ≥ 3. (A1, . . . ,Ak,X) be a k-net. Then the following properties hold:

1. |Ai| = |A j| ∀i, j

2. |X| = |A1|
2

Proof. LetAi andA j be two of the line sets, i , j.

1. By the second statement of Definition 2.1.1 all the intersections of the lines in Ai and

A j are in X, hence Ai ∩ A j ⊆ X. On the other hand each element of X is an element

ofAi ∩A j, hence X ⊆ Ai ∩A j. So X = Ai ∩A j. Furthermore note that |Ai ∩A j| =

|Ai||A j| by the third statement of Definition 2.1.1. Therefore |X| = |Ai||A j|. Since

k ≥ 3, choose ` , i, j. But then |A`||Ai| = |A j||A`| which means that |Ai| = |A j| ∀i, j.

2. Using |X| = |Ai||A j| and |Ai| = |A j| = |A1|, we get |X| = |A1|
2.

�

If |Ai| = d then |X| = d2. From here on we shall use the phrase “(k, d)-net” instead of “k-net”.

For instance the 3-net above will be called a (3,2)-net.

3



2.1.2 Pencils of curves and (k, d)-nets

Proposition 2.1.4 [15] Let {Ai}
k
i=1 be disjoint sets of lines each of which includes d different

lines, |Ai ∩ A j| = d2 f or all i , j, and {Ci}
k
i=1 be the curves of degree d formed by the union

of lines in each set. Then theAi are the sets of lines of a (k, d)-net if and only if the Ci are the

fibers of a pencil formed by any two of them.

Proof. The proof follows from Noether’s AF+BG theorem. See Lemma 3.1 of [15]. �

Example 2.1.5 The Figure 2.2 is a (3, 2)-net. Suppose the equations of the lines involved are:

`11 : y − 1 = 0

`12 : y + 1 = 0

`21 : x + 1 = 0

`22 : x − 1 = 0

`31 : y − x = 0

`32 : y + x = 0

If we take any two of the classes and form a pencil the other will be an element of that pencil.

For instance if we take λ(x2 − 1) + µ(y2 − 1) = 0 as the pencil, then

[λ : µ] ∈ {[1 : 0], [0 : 1], [1 : −1]} give the fibers. We show this in Figure 3.2.

4
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Figure 2.2: A (3,2)-Net

l31

l21 l22

l32

l11

l12

Figure 2.3: A Pencil of Quadrics
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2.1.3 The restrictions on (k, d)-nets

There does not exist any 1-net because of the definition of the net. If we take two sets includ-

ing arbitrary numbers of lines and if we take all the intersections as the point set, it forms a

(2, d)-net provided that no 3 of these lines are concurrent. Therefore the k = 2 case is trivial.

For k = 3, d = 1 we would have X = {p},Ai = {`i} and `1, . . . , `k are concurrent.

Theorem 2.1.6 (S.Yuzvinsky)[15]: If a (k, d)-net where d > 1 exists in P2 then (k, d) must be

one of the following:

• k = 3, d ≥ 2

• k = 4, d ≥ 3

• k = 5, d ≥ 6

Proof. See Theorem 3.2 at [15]. �

2.1.4 The Main Problem

We can find (3, d)-nets for every d. For the construction of (3, d)-nets see Proposition 3.3 of

[15]. J. Stipins proved in his dissertation that there cannot be any 5-nets [13]. Other than

these, there is only one 4-net known which is the (4, 3)-net. In this dissertation we showed

that there cannot be any (4, 4)-nets in CP2. We used tropical geometry to solve this problem.

2.1.5 Latin Squares and (k, d)-nets

Definition 2.1.7 (Latin Square) A d × d matrix such that there exists a bijection between

each row and each column and the set {1, . . . , d} is called a d × d Latin square.

Definition 2.1.8 (Orthogonal Pairs) Let L,L′ be two Latin squares. If one can find a bijec-

tion between the sets {1 . . . d} × {1 . . . d} and the set of pairs {(Li j,L
′
i j)} then the pair of Latin

squares (L, L′) is called an orthogonal pair.

6



Definition 2.1.9 (Orthogonal Set) A set of Latin squares {L1, . . . ,Ln} such that (Li , L j) is

an orthogonal pair for all 1 ≤ i < j ≤ n is called an orthogonal set.

The following two propositions below are taken from Chapter 2 of [13].

Proposition 2.1.10 Let (A1, . . . ,Ak,X) be a (k, d)-net. Then the set of Latin squares {M3, . . . ,Mk}

below is an orthogonal set:

l1i, l2 j and lt(Mt)i j pass through the same point. (∗) where 3 ≤ t ≤ k

The converse of the above is also true:

Proposition 2.1.11 Let A1 = {l11, . . . , l1d},A2 = {l21, . . . , l2d} be two sets containing d lines

intersecting at d2 points. Let X = A1 ∩ A2, {M3, . . . ,Mk} be an orthogonal Latin square

set. Suppose that (A1, . . . ,Ak) be the sets of lines satisfying the incidence relations (*). Then

(A1, . . . ,Ak,X) forms a (k, d)-net.

Therefore an orthogonal set of Latin squares can be thought of as defining an abstract (k, d)-

net. Our problem is to determine whether an abstract (k, d)-net can be embedded in CP2.

For some values of k and d, even an abstract (k, d)-net is impossible to find. For example we

know by the famous Euler’s conjecture on Latin squares (stated by Euler in 1779, proved by

Gaston Tarry in 1900 [14]) that there are no 6 × 6 orthogonal pairs of Latin squares. Because

of this there are no (4, 6)-nets. However the (k, d)-nets we interested in (and the nets which

have restrictions above) are not abstract nets, they are nets which can be seen in CP2. So that,

although the Latin squares determine the existence of the abstract nets, we should use other

methods to find whether or not a net can be realized in CP2. Let us finish this section by the

next proposition which is straightforward to prove.

Proposition 2.1.12 X = {p1, . . . , pd2}. The elements of X are the points of a (k, d)-net if and

only if X can be partitioned in k different ways into d sets each of which includes d collinear

points.

7



Figure 2.4: The Amoeba of V

2.2 TROPICAL LINES

There are many ways to describe tropical curves, and in particular tropical lines [5] [12]. We

choose the pathway using amoebas of curves.

Definition 2.2.1 [9] Let V ⊂ (C∗)n be an algebraic variety where C∗ = C − {0}

Log : (C∗)n → Rn

(z1, . . . , zn) 7→ (log|z1|, . . . , log|zn|)

Then the set Log(V) is called the amoeba of V.

Proposition 2.2.2 If V = {z1 + z2 = −1} then the graph of Log(V) is as in Figure 2.4 [8].

Proof. z1 = r1eiθ1 and z2 = r2eiθ2 , r1 = |z1| and r2 = |z2|. A point (x, y) with x = log(r1) and

y = log(r2) belongs to the amoeba if and only if there exist θ1, θ2 such that r1eiθ1 +r2eiθ2 = −1.

By the triangle inequality, the boundaries of the amoeba correspond to r2 − r1 = 1, r1 − r2 = 1

and r1 + r2 = 1. We check the boundaries one by one:

r2 − r1 = 1 ⇒ ey − ex = 1: We solve this equality as y = log(1 + ex). We see that y increases

with x, and lim
x→∞

(y) → ∞. The graph of y = log(1 + ex) is asymptotic to y = x. Also

lim
x→−∞

(y) = 0 which explains the boundary in the second quadrant.

8



r1 − r2 = 1 ⇒ ex − ey = 1: We may obtain this graph by changing x and y in the above case

which means that the graph of ex − ey = 1 is the symmetric to the graph of ey − ex = 1 with

respect to x = y.

r1 + r2 = 1⇒ ex + ey = 1: y = log(1− ex). y decreases if x increases. This function is defined

when ex < 1, that is x < 0. If x < 0 then y < 0. lim
x→0−

(y) → −∞ and lim
x→−∞

(y) → 0. This

explains the lower left boundary. �

Proposition 2.2.3 If V = {az1 + bz2 + c = 0} then the graph of the amoeba of V is the

translation of Figure 2.4 by log c
a and log c

b in the directions of log|z1| and log|z2| respectively.

Proof. Since log|az1| = log|a|+log|z1|, the effect of a is translation of the figure in the direction

of the negative log|z1| axis by log|a|. Similarly the effect of b is translation of the figure in the

direction of the negative log|z2| axis by log|b|. The effect of c is translation of the figure in the

direction of the positive log|z1| axis and the positive log|z2| axis by log|c|. The overall effect

is translation by log|c| − log|a| and log|c| − log|b| in the directions of log|z1| and log|z2| axes

respectively. �

Definition 2.2.4 Let Vt ⊂ (C∗)n be a one parameter family of subvarieties of (C∗)n. The set

lim
t→∞

(logt(Vt)) is called the tropicalization of Vt. If Vt is a family of lines in (C∗)2 the graph of

lim
t→∞

(logt(Vt)) is called a tropical line.

Proposition 2.2.5 If Vt = {az1 +bz2 = c} where a, b, c ∈ C then the tropical line lim
t→∞

(logt(Vt))

is in Figure 2.5.

9



Figure 2.5: A Tropical Line

Proof. logt|az1| = logt|a| + logt|z1| =
log|a|
logt +

log|z1 |

logt . If t → ∞ then log|a|
logt → 0 so the number

a has no impact. Similarly the numbers b and c have no impact. The effect of logt on log|z1|

and log|z2| is shrinking the figure. Let us consider what happens to the boundary curves.

The upper boundary curve becomes (logt)y = log(1 + e(logt)x). This function is increasing and

above the proposed limit curve. We want to find the y-intercept of the graph. If x = 0, that is,

logr1 = 0 then r1 = 1. Since z1 + z2 = −1, z2 may be at most 2, therefore y = logt2. Therefore

the y − intercept approaches 0 as t → ∞ and, y′′ = logt e(logt)x

((1+e(logt)x)2 which is always greater

than 0 where t is big enough. Therefore the graph of the upper boundary curve is concave up

with the y − intercept shrinking to 0. Notice that y =
log(1+e(logt)x)

logt is asymptotic to x as x→ ∞

and to y = 0 as x→ −∞.

The boundary curve on the right is similar. The x-intercept is (0, logt2) and y′′ < 0.

The lower boundary curve would be (logt)y = log(1 − e(logt)x). This function is decreasing

and below the proposed limit curve. We have x, y < 0, therefore r1, r2 < 1. The equation is

z1 +z2 = −1, the point on x = y on the boundary is (log 1
2 , log 1

2 ) = (−logt2,−logt2). This point

aproaches (0, 0) as t → ∞. We have y′′ = −logt e(logt)x

((1+e(logt)x)2 , which is smaller than 0 for big

values of t. Therefore the graph is concave down. Notice that y =
log(1−e(logt)x)

logt is asymptotic to

y = 0 as x→ −∞, and to −∞ as x = 0. �

If the coefficients are just numbers then the tropical line always has a center at origin. In order

to get nontrivial tropical lines, instead of looking at just one variety, we look at families of

10



varieties. Hence we change the coefficients to polynomials in t. In the next proposition we

will see the effect of these polynomials to the tropical line.

Proposition 2.2.6 Let Vt = { f (t)z1 + g(t)z2 = h(t)} be a family of lines in (C∗)2 where f(t),

g(t), h(t) are polynomials and n f , ng and nh are the degrees of f , g and h respectively. Then

the graph of the tropical line lim
t→∞

(logt(Vt)) is the translation of Figure 2.7 by nh − n f and

nh − ng in the directions of log|z1| and log|z2| axes respectively.

Proof. The degree of f(t) is n f . The other powers of f(t) does not have an effect on lim
t→∞

(logt( f (t))),

hence the graph is only effected by n f . Similarly the graph is effected by ng and nh. The rest

is similar to the proof of Proposition 2.2.3. �

Proposition 2.2.7 Let Vt and Wt be two families of lines in (C∗)2.

Then lim
t→∞

(logt(Vt ∪Wt)) = lim
t→∞

(logt(Vt)) ∪ lim
t→∞

(logt(Wt))

Proof. It is clear that lim
t→∞

(logt(Vt)) ∪ lim
t→∞

(logt(Wt)) ⊂ lim
t→∞

(logt(Vt ∪Wt))

Conversely, say P ∈ lim
t→∞

(logt(Vt ∪Wt)). Then there exists a sequence {ak} ⊂ Vtk ∪Wtk such

that lim ak = P. But {ak} contains either infinitely many points from Vt or from Wt. Thus

P ∈ lim
t→∞

(logt(Vt)) ∪ lim
t→∞

(logt(Wt)) �

Tropicalization gives the opportunity to see some features of a given complex plane curve

using a simpler picture in R2. For example, Mikhalkin [10] found a simpler way of counting

curves in P2 satisfying certain conditions by using tropical geometry. Recently many classical

concepts in algebraic geometry have been translated into tropical geometry [2] [3] [5] [6] [7]

[8] [11].
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2.3 TROPICAL NETS

2.3.1 Tropicalization of a (3, 2)-net:

As an example, we find a tropicalization of the following (3,2)-net. In this case, it is possible

to find a tropicalization in which all line families have distinct tropical limits.

`11 = {x = 0} `12 = {y − z = 0} `21 = {z = 0}

`22 = {x − y = 0} `31 = {y = 0} `32 = {x − z = 0}

We will denote each line in P2 by its dual coordinates in (P2)∗. So ax + by + cz = 0 will be

denoted by [a : b : c] (or its transpose). We form the following matrix by writing the dual

coordinates of `11, `12, `21, `22, `31 and `32 in columns.

`11 `12 `21 `22 `31 `32
1

0

0

0

1

−1

0

0

1

1

−1

0

0

1

0

1

0

−1



We will apply a linear transformation with coefficients in C[t] to this configuration. The

logarithmic limit of this family will give the tropicalization of this net.


t t2 t4

t3 t t2

t2 t5 1




1 0 0 1 0 1

0 1 0 −1 1 0

0 −1 1 0 0 −1



Looking at the z , 0 chart, the lines transform to the following lines after this tropicalization:
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`11 : (t)x + (t3)y + (t2) = 0

`12 : (t2 − t4)x + (t − t2)y + (t5 − 1) = 0

`21 : (t4)x + (t2)y + 1 = 0

`22 : (t − t2)x + (t3 − t)y + (t2 − t5) = 0

`31 : (t2)x + (t)y + (t5) = 0

`32 : (t − t4)x + (t3 − t2)y + (t2 − 1) = 0

Now we want to determine the centers of the resulting tropical lines. For simplicity we write

the highest powers of t in the coefficients of x, y, z in a matrix.

Ł11 Ł12 Ł21 Ł22 Ł31 Ł32
1

3

2

4

2

5

4

2

0

2

3

5

2

1

5

4

3

2


We use Proposition 2.2.6 to find the centers of the lines. We subtract the first and second

row from the third. The numbers in the first row(the highest power of t as a coefficient of

x) shift the center in the negative x-direction, the numbers in the second row shift the graph

in the negative y-direction and the numbers in the third row shift the graph to the positive

x-direction and the positive y-direction by the same amount.

Ł11 Ł12 Ł21 Ł22 Ł31 Ł32 1

−1

1

3

−4

−2

3

2

3

4

−2

−1


After this procedure, the graph looks like the one in Figure 2.6.
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L31
L32

L32
P11

P12

P21

P22

L12
L22

L21
L31
L32

Figure 2.6: A (3,2) Tropical Net
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CHAPTER 3

NONEXISTENCE OF (4,4)-NETS

3.1 ORTHOGONAL LATIN SQUARES OF ORDER 4

In the next section we prove the nonexistence of (4,4)-nets. We need two orthogonal Latin

squares (OLS) of order 4 to construct an abstract (4,4)-net.

Proposition 3.1.1 The following is the unique pair of orthogonal Latin squares (OLS) of

order 4 up to relabeling the numbers, and reordering rows and columns.





1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1


,



1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3




Proof. Without loss of generality, we may assume

M=



1 2 3 4

2

3

4


and N=



1 2 3 4


If N21 = 3⇒ N31 = 4 and N41 = 2.

If N21 = 4, then change the roles of M and N, and reorder the rows. We are back to the

N21 = 3 case. So we have
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M=



1 2 3 4

2

3

4


and N=



1 2 3 4

3

4

2


Now, either M22 = M44 = 3 or M24 = M42 = 3.

But if M22 = M44 = 3, the (3,2) pair requires N22 = 2 or N44 = 2, contradiction.

So M24 = M42 = 3⇒ N24 = 2 and N42 = 1.

M=



1 2 3 4

2 3

3

4 3


and N=



1 2 3 4

3 2

4

2 1


We immediately get N44 = 3, N34 = 1, N43 = 4, N23 = 1, N33 = 2, N32 = 3, N22 = 4

M=



1 2 3 4

2 3

3

4 3


and N=



1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3


In order to complete the remaining entries of M, look at (1,2). It can only occur at (M33,N33),

so M33 = 1.

So M23 = 4, M22 = 1, M32 = 4, M34 = 2, M43 = 2, M44 = 1

M=



1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

,


and N=



1 2 3 4

3 4 1 2

4 3 2 1

2 1 4 3


So the proof is complete. �

This pair of OLS of order 4 gives us an abstract (4,4)-net.
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3.2 THE INCIDENCE STRUCTURE OF THE POSSIBLE (4,4)-NET

Suppose that we have a hypothetical (4,4)-net (A1,A2,A3,A4,X) in CP2. Denote the sets

of its lines by

Ak = {`k1, . . . , `k4} where k ∈ {1, . . . , 4}

and X = {pi j} where i, j ∈ {1 . . . 4}

and the points are labeled as pi j = `1i ∩ `2 j.

Then by regarding the OLS of order 4 we find the incidence relations,

pi j = `1i ∩ `2 j ∩ `3Mi j ∩ `4Ni j

3.3 A TROPICALIZATION OF THE POSSIBLE (4,4)-NET

By using the fundamental theorem of projective geometry we can find a unique transformation

between the lines `11, `12, `21 and `22 and z = 0, x + y + z = 0, x = 0 and y = 0 respectively.

Note that no 3 of `11, `12, `21 and `22 are concurrent because of the net axioms.

Now we will find the new location of the points p11, p12, p21 and p22 after the transformation.

p11 = `11 ∩ `21 = (0 : 1 : 0)

p12 = `11 ∩ `22 = (1 : 0 : 0)

p21 = `12 ∩ `21 = (0 : 1 : −1)

p22 = `12 ∩ `22 = (1 : 0 : −1)

The incidence relations immediately give two more pieces of information, that is, the equa-

tions of the lines `31 and `32. Since `31 passes through the points p11 and p22, the equation of

`31 is x + z = 0. Similarly `32 passes through p12 and p21, therefore its equation is y + z = 0.
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3.3.1 The Tropicalization Of The Lines

Writing the dual coordinates of `11, `12, `21, `22, `31 and `32 in columns, we get the following

matrix:
`11 `12 `21 `22 `31 `32
0

0

1

1

1

1

1

0

0

0

1

0

1

0

1

0

1

1


Tropicalize the net as explained in Section 2.3 using the matrix

T =


t − t2 t2 − t4 t4

t3 + t2 1 −t3

t2 t5 1


Proposition 3.3.1 The matrix above has nonzero determinant except for finitely many values

of t.

Proof. The determinant of T is det(T ) = t − t2 − t4 − t5 + 2t9 − t10 + t11 + t12. T = 0 has 4 real

and 8 complex roots. Hence the determinant is nonzero except for these values of t. �

This tropicalization sends the lines `11, `12, `21, `22, `31 and `32 to the tropical lines Ł11,Ł12,Ł21,Ł22,Ł31

and Ł32 respectively, whose centers are listed below in columns.

Ł11 Ł12 Ł21 Ł22 Ł31 Ł32 −4

−3

4

3

0

−1

1

5

−2

0

3

2


Lemma 3.3.2 Let ax + by + cz = 0 be a line in P2 and `i j = [a : b : c] ∈ (P2)∗ We use the

transformation 
t − t2 t2 − t4 t4

t3 + t2 1 −t3

t2 t5 1


Say ψ(`i j) denotes the coordinates of the center of Łi j. Then
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i. • ψ([0 : 0 : 1]) = (−4,−3)

• ψ([0 : 1 : 0]) = (1, 5)

• ψ([1 : 0 : 0]) = (0,−1)

• ψ([1 : 1 : 1]) = (4, 3)

• ψ([1 : 0 : 1]) = (−2, 0)

ii. • ψ([a : 1 : 1]) = (3, 2) f or a , 1

• ψ([a : 0 : 1]) = (−2,−1) f or a < {0, 1}

• ψ([1 : b : 1]) = (1, 3) f or b < {0, 1}

iii. For all other values of [a : b : c] , ψ([a : b : c]) = (1, 2)

In particular for the values of (x, y) in Part (i), ψ−1(x, y) contains a unique line.

Proof.


t − t2 t2 − t4 t4

t3 + t2 1 −t3

t2 t5 1




a

b

c

 =


a(t − t2) + b(t2 − t4) + ct4

a(t3 + t2) + b − ct3

at2 + bt5 + c


If we replace the values for a, b and c, we get the centers above. �

The centers of Ł11,Ł12,Ł21,Ł22,Ł31 and Ł32 were given before Lemma 3.3.2. The different

possible centers for the lines other than Ł11,Ł12,Ł21,Ł22,Ł31 and Ł32 are (3,2), (-2,-1), (1,3),

(1,2). The graphs of the lines Ł11,Ł12,Ł21,Ł22,Ł31 and Ł32 are given in Figure 3.1.
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L12,21,32

L32

L32

L31

L31

L31

L11

L11

L11

L12

L12L22

L22
L22

L21

P12

L21

P21

P11

P22

3

2

-3

-4
4

3

5

1-1
-2

-1

1

Figure 3.1: The lines and points in the tropical plane after tropicalization
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3.3.2 The Tropicalization Of The Points

Lemma 3.3.3 If a matrix M(t) is used to tropicalize the coordinates of the lines in (P2)∗, then

adj(M(t)) can be used to tropicalize the coordinates of the points in P2.

Proof. Let p be the coordinates in P2 and ` be the coordinates in (P2)∗ as column vectors.

Let `t = M(t)`, and pt the coordinates of the point after the relevant transformation. We know

that pT ` = 0⇔ p lies on `⇔ pt lies on `t ⇔ pT
t `t = 0 and `t = M`.

We claim that pT
t = pT M−1. This is because

pT
t `t = pT M−1M` = pT ` = 0

Multiplying both sides of pT
t = pT M−1 by det(M) does not change the homogenous coordi-

nates. Therefore

pT
t = pT M−1(det M) = pT (adjM)T

where (adjM)T is the transpose of adjM.

⇒ pt = (adjM)p

�
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Now let

M =


t − t2 t2 − t4 t4

t3 + t2 1 −t3

t2 t5 1


Then

adj(M) =



∣∣∣∣∣∣∣∣∣
1 −t3

t5 1

∣∣∣∣∣∣∣∣∣ −

∣∣∣∣∣∣∣∣∣
t2 + t3 −t3

t2 1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

t2 + t3 1

t2 t5

∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣
t2 − t4 t4

t5 1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

t − t2 t4

t2 1

∣∣∣∣∣∣∣∣∣ −

∣∣∣∣∣∣∣∣∣
t − t2 t2 − t4

t2 t5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
t2 − t4 t4

1 −t3

∣∣∣∣∣∣∣∣∣ −
∣∣∣∣∣∣∣∣∣

t − t2 t4

t2 + t3 −t3

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

t − t2 t2 − t4

t2 + t3 1

∣∣∣∣∣∣∣∣∣



=


1 + t8 −t2 − t3 − t5 −t2 + t7 + t8

−t2 + t4 + t9 t − t2 − t6 t4 − 2t6 + t7

−t4 − t5 + t7 t4 − t5 + t6 + t7 t − t2 − t4 − t5 + t6 + t7


Remark 3.3.4 In the process of dehomogenization the effect of the transformation on the

points is the reverse of the effect of the transformation on the dual coordinates. For the points

we subtract the highest power of the third row from the highest power of the first row and

the highest power of the second row. The first and the second numbers shall be the first and

second coordinates of the location of the point.
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Lemma 3.3.5 Let pi j = (a : b : c) ∈ P2. We use the transformation


1 + t8 −t2 − t3 − t5 −t2 + t7 + t8

−t2 + t4 + t9 t − t2 − t6 t4 − 2t6 + t7

−t4 − t5 + t7 t4 − t5 + t6 + t7 t − t2 − t4 − t5 + t6 + t7


Say ϕ(pi j) = Pi j. Then

i. • ϕ((0 : 1 : 0)) = (−2,−1)

• ϕ((1 : 0 : −1)) = (1, 3)

• ϕ((0 : 1 : −1)) = (4, 3)

ii. • ϕ((1 : b : −1 − b)) = (2, 3) f or b , 0

• ϕ((0 : b : 1)) = (1, 0) f or b , −1

• ϕ((1 : b : −1)) = (0, 2) f or b , 0

iii. For all other values of (a : b : c) , ϕ((a : b : c)) = (1, 2)

In particular each of ϕ−1(−2,−1), ϕ−1(1, 3), ϕ−1(4, 3) is a single point.

Proof. This follows from the same argument as in the proof of Lemma 3.3.2 �

3.3.3 Point line table

We collect below the information about the points on the tropical plane which can either be the

center of a point or a tropical line after the degeneration. The lines column gives the classical

equation of the line if the coordinate is a center of a line of the net. The points column gives

the location of the classical point if there is a point of the net on that coordinate. If there is

no a point or line there we write NS as an abbreviation of Not Special. Note that we show

the coordinate of a point by (a : b : c) and of a line by [d : e : f ]. We write all the relations

between a, b, c and d, e, f in the table.
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coordinates points lines

(a : b : c) [d : e : f ]



(1, 2)

(0, 2)

(2, 3)

(1, 0)

(4, 3)

(1, 3)

(−2,−1)

(3, 2)

(−2, 0)

(0,−1)

(1, 5)

(−4,−3)

no relations

a + c = 0

{a + b + c = 0} or

{c = 0, a + b = 0}

{a = 0} or {a, b = 0}

a = 0, b + c = 0

b = 0, a + c = 0

a = 0, c = 0

NS

NS

NS

NS

NS

no relations

NS

NS

NS

d = e = f

d = f

e = 0

{e = f } or

{d = 0, e = f }

e = 0, d = f

e = 0, f = 0

d = 0, f = 0

d = 0, e = 0
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3.3.4 Determining Other Lines And Points

Up to now we know the equations of Ł11,Ł12,Ł21,Ł22,Ł31,Ł32 and the location of the points

P11, P12, P21, P22. Now we will determine some of the other lines and points by using the

tables above.

By using the incidence relations, Ł31 passes through P11, P22, P33, P44. Let us determine the

locations of P33 and P44. The line Ł31 has its center at (−2, 0). The only location of the

points on Ł31 may be (−2,−1), (0, 2), (1, 3). Now, we check the point line table to look at

the classical coordinates. (−2,−1) belongs to (0 : 1 : 0) which is p11. The coordinate (1, 3)

belongs to (1 : 0 : −1) which is p22. The coordinate (0, 2) belongs to (1 : b : −1) where

b ∈ Z − {0}. Therefore p33 = (1 : m1 : −1) and p44 = (1 : m2 : −1) where m1,m2 ∈ Z − {0}

m1 , m2

Similarly considering P11, P21, P31, P41 on Ł21, we get p31 = (0 : 1 : t1) and p41 = (0 : 1 : t2)

where t1, t2 ∈ Z − {−1, 0} t1 , t2

By the same methods, looking at P21, P22, P23, P24 on Ł12, we get p23 = (1 : s1 : −1− s1) and

p24 = (1 : s2 : −1 − s2) where s1, s2 ∈ Z − {0} s1 , s2

Now we want to determine the center of the line Ł41. The line Ł41 passes through P11. The

only possible centers for a line passing through P11 are (−2,−1), (−2, 0), (0,−1), (−4,−3).

Considering the point-line table, if a line has a center at (−2, 0) then its equation is x + z = 0,

so the line is `31. Similarly if a line has a center at (0,−1) then its equation is x = 0, so

the line is `21. If a line has a center at (−4,−3) then its equation is z = 0, so the line is `11.

Therefore the only possible center for Ł41 is (−2,−1) and the equation of `41 is x + k1z = 0

where k1 ∈ Z − {0, 1}.

Similarly considering p21 on Ł43, we get that the center of Ł43 is (3, 2) and the equation of `43

is k2x + y + z = 0 where k2 ∈ Z − {0, 1}.

If we make similar calculations for Ł44, by using that P22 lies on Ł44 we get that the center of

Ł44 is (1, 3) and the equation of `44 is x + k3y + z = 0 where k3 ∈ Z − {0, 1}.
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Up to now we have the following data:

`11 : z = 0

`12 : x + y + z = 0

`21 : x = 0

`22 : y = 0

`31 : x + z = 0

`32 : y + z = 0

`41 : x + k1z = 0

`43 : k2x + y + z = 0

`44 : x + k3y + z = 0

p11 : (0 : 1 : 0)

p12 : (1 : 0 : 0)

p21 : (0 : 1 : −1)

p22 : (1 : 0 : −1)

p23 : (1 : s1 : −1 − s1)

p24 : (1 : s2 : −1 − s2)

p31 : (0 : 1 : t1)

p33 : (1 : m1 : −1)

p41 : (0 : 1 : t2)

p44 : (1 : m2 : −1)

k1, k2, k3 ∈ Z − {0, 1}

m1,m2 ∈ Z − {0} and m1 , m2

s1, s2 ∈ Z − {0} and s1 , s2

t1, t2 ∈ Z − {−1, 0} t1 , t2
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We determine the other points by using the intersection relations.

p11 = `11 ∩ `21 = [0 0 1] ∩ [1 0 0] = (0 : 1 : 0)

p12 = `11 ∩ `22 = [0 0 1] ∩ [0 1 0] = (1 : 0 : 0)

p13 = `11 ∩ `43 = [0 0 1] ∩ [k2 1 1] = (1 : −k2 : 0)

p14 = `11 ∩ `44 = [0 0 1] ∩ [1 k3 1] = (−k3 : 1 : 0)

p21 = `12 ∩ `21 = [1 1 1] ∩ [1 0 0] = (0 : 1 : −1)

p22 = `12 ∩ `22 = [1 1 1] ∩ [0 1 0] = (1 : 0 : −1)

p23 = `12 ∩ `41 = [1 1 1] ∩ [1 0 k1] = (−k1 : k1 − 1 : 1)

p24 = (1 : s2 : −1 − s2)

p31 = `21 ∩ `44 = [1 0 0] ∩ [1 k3 1] = (0 : 1 : −k3)

p32 = `22 ∩ `43 = [0 1 0] ∩ [k2 1 1] = (1 : 0 : −k2)

p33 = (1 : m1 : −1)

p34 = `32 ∩ `41 = [0 1 1] ∩ [1 0 k1] = (k1 : 1 : −1)

p41 = (0 : 1 : t2)

p42 = `22 ∩ `41 = [0 1 0] ∩ [1 0 k1] = (−k1 : 0 : 1)

p43 = `32 ∩ `44 = [0 1 1] ∩ [1 k3 1] = (k3 − 1 : −1 : 1)

p44 = `31 ∩ `43 = [1 0 1] ∩ [k2 1 1] = (−1 : k2 − 1 : 1)

We know the equations of the 9 lines up to here. We determine some of the other lines by

using the points above. We need two points to determine a line. By using the extra points we

get some new equations.
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`13 :

Let `13 = [x : y : z] ∈ (P2)∗

p31, p32, p33, p34 ∈ `13

y − k3z = 0 (3.1)

x − k2z = 0 (3.2)

x + m1y − z = 0 (3.3)

k1x + y − z = 0 (3.4)

By (3.1), i f z = 1⇒ y = k3, by (3.2), x = k2

S o `13 = [k2 : k3 : 1]

By (3.3) k2 + m1k3 − 1 = 0 (3.5)

By (3.4) k1k2 + k3 − 1 = 0 (3.6)

By (3.6) k3 = 1 − k1k2 (3.7)

`14 :

Let `14 = [x : y : z] ∈ (P2)∗

p41, p42, p43, p44 ∈ `14

y − t2z = 0 (3.8)

−k1x + z = 0 (3.9)

(k3 − 1)x − y + z = 0 (3.10)

−x + (k2 − 1)y + z = 0 (3.11)

By (3.9), i f x = 1⇒ z = k1, by (3.8), y = t2k1

S o `14 = [1 : t2k1 : k1]

By (3.10) (k3 − 1) − t2k1 + k1 = 0 (3.12)

By (3.11) − 1 + (k2 − 1)t2k1 + k1 = 0 (3.13)
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`23 :

Let `23 = [x : y : z] ∈ (P2)∗

p13, p23, p33, p43 ∈ `23

x − k2y = 0 (3.14)

−k1x + (k1 − 1)y + z = 0 (3.15)

x + m1y − z = 0 (3.16)

(k3 − 1)x − y + z = 0 (3.17)

By (3.14), i f y = 1⇒ x = k2

By (3.15), z = k1k2 − k1 + 1

S o `23 = [k2 : 1 : k1k2 − k1 + 1]

By (3.16) k2 + m1 − k1k2 + k1 − 1 = 0 (3.18)

By (3.17) k1k2 + k2k3 − k1 − k2 = 0 (3.19)

`34 :

Let `34 = [x : y : z] ∈ (P2)∗

p14, p23, p32, p41 ∈ `34

−k3x + y = 0 (3.20)

−k1x + (k1 − 1)y + 1 = 0 (3.21)

x − k2z = 0 (3.22)

y + t2z = 0 (3.23)

By (3.22), i f z = 1⇒ x = k2

By (3.23), z = 1⇒ y = −t2

S o `34 = [k2 : −t2 : 1]

By (3.21) k1k2 + k1t2 − t2 − 1 = 0 (3.24)
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We get a contradiction as follows:

Using (3.7), (3.19) and k1 , 0 we get k2
2 − k2 + 1 = 0 (3.25)

I f we subtract (3.5) f rom (3.18) we get m1k2 − k2 + 1 = 0 (3.26)

Using (3.7), (3.12) and k1 , 0 we get t2 = 1 − k2 (3.27)

Using (3.13), (3.25) and (3.27) we get k1 + k1k2 = 1 (3.28)

Using (3.7) and (3.28) we get k3 = k1 (3.29)

Using (3.24) and (3.27) we get k1 + k2 = 0 (3.30)

Using (3.28) and (3.30) we get k2
2 + k2 + 1 = 0 (3.31)

Using (3.25) and (3.31) we get k2 = 0 which contradicts to k2 cannot be 0.

This contradiction proves that there cannot be any (4,4)-nets in CP2.
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CHAPTER 4

UNIQUENESS OF (4,3)-NET

4.1 ORTHOGONAL LATIN SQUARES OF ORDER 3

Stipins proved in his thesis that there is a unique (4,3)-net [13]. Here we give another proof

by using tropical geometry. We need two orthogonal Latin squares of order 3 to construct an

abstract (4,3)-net.

Proposition 4.1.1 The following is the unique pair of orthogonal Latin squares (OLS) of

order 3 up to relabeling the numbers, and reordering rows and columns.




1 2 3

2 3 1

3 1 2

 ,


1 2 3

3 1 2

2 3 1




Proof. Without loss of generality, we may assume

M=


1 2 3

2

3

 and N=


1 2 3


M21 = 2, N11 = 1⇒ N21 = 3, N22 = 1 and N23 = 2.

The other entries are straightforward. �
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4.2 THE INCIDENCE STRUCTURE OF THE POSSIBLE (4,3)-NET

Suppose that we have a hypothetical (4,3)-net (A1,A2,A3,X) in CP2. Denote the sets of its

lines by

Ak = {`k1, `k2, `k3} where k ∈ {1, 2, 3}

and X = {pi j} where i, j ∈ {1, 2, 3}

and the points are labeled as pi j = `1i ∩ `2 j.

Then by regarding the OLS of order 3 we find the incidence relations,

pi j = `1i ∩ `2 j ∩ `3Mi j ∩ `4Ni j

4.3 A TROPICALIZATION OF THE POSSIBLE (4,3)-NET

We use a method that is similar to the method explained in Section 3.3 to tropicalize the

possible (4,3)-net. We find a transformation between the lines `11, `12, `21 and `22 and z = 0,

x + y + z = 0, x = 0 and y = 0 respectively. Then we find the new locations of the points

p11, p12, p21 and p22 after the transformation.

p11 = `11 ∩ `21 = (0 : 1 : 0)

p12 = `11 ∩ `22 = (1 : 0 : 0)

p21 = `12 ∩ `21 = (0 : 1 : −1)

p22 = `12 ∩ `22 = (1 : 0 : −1)

Also, we know the equations of the lines `32 and `41. Since `32 passes through the points p12

and p21, the equation of `32 is y + z = 0. Similarly `41 passes through p11 and p22, therefore

its equation is x + z = 0. Then p33 would be (1 : 1 : −1), since it is at the intersection of `32

and `41.
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4.3.1 The Tropicalization Of The Lines and The Points

We use the same matrix

T =


t − t2 t2 − t4 t4

t3 + t2 1 −t3

t2 t5 1


as in Section 3.3.1 to tropicalize the lines. By Proposition 3.3.1 the matrix above has nonzero

determinant except for finitely many values of t. The possible coordinates of the center of a

line that is the transformation of ax + by + cz = 0 is given in Lemma 3.3.2. Also, the possible

coordinates for a point that is the transformation of pi j = (a : b : c) is given in Lemma 3.3.5.

4.3.2 Determining Other Lines And Points

After the tropicalization, the lines and the points are are as follows:

Ł11 Ł12 Ł21 Ł22 Ł31 Ł32 −4

−3

4

3

0

−1

1

5

3

2

−2

0


and

P11 = (−2,−1)

P12 = (1, 2)

P21 = (4, 3)

P22 = (1, 3)

P33 = (0, 2)

These are given in Figure 4.1.
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L12,21,32
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L32

L41

L41

L41

L11
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L12

L12L22
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L21

P12

L21

P21

P11

P22

3

2

-3

-4
4

3

5

1-1
-2

-1

1

P33

Figure 4.1: Some of the lines and points of the (4,3)-net

We want to determine the center of the line Ł31. The line Ł31 passes through P11. The

only possible centers for a line passing through P11 are (−2,−1), (−2, 0), (0,−1), (−4,−3).

Considering the point-line table, if a line has a center at (−2, 0) then its equation is x + z = 0,

so the line is `41. Similarly if a line has a center at (0,−1) then its equation is x = 0, so

the line is `21. If a line has a center at (−4,−3) then its equation is z = 0, so the line is `11.

Therefore the only possible center for Ł31 is (−2,−1) and the equation of `31 is x + k1z = 0

where k1 ∈ Z − {0, 1}.

Similarly considering P22 on Ł33, we get that the center of Ł33 is (1, 3) and the equation of

`33 is x + k3y + z = 0 where k3 ∈ Z − {0, 1}.

If we make similar calculations for Ł43, by using that P21 lies on Ł43 we get that the center of

Ł43 is (3, 2) and the equation of `43 is k2x + y + z = 0 where k2 ∈ Z − {0, 1}.
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Up to now we know the following:

`11 : z = 0

`12 : x + y + z = 0

`21 : x = 0

`22 : y = 0

`31 : x + k1z = 0

`32 : y + z = 0

`33 : x + k3y + z = 0

`41 : x + z = 0

`43 : k2x + y + z = 0

p11 : (0 : 1 : 0)

p12 : (1 : 0 : 0)

p21 : (0 : 1 : −1)

p22 : (1 : 0 : −1)

p33 : (1 : 1 : −1)

k1, k2, k3 ∈ Z − {0, 1}
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We determine the other points and lines.

p13 :

Let p13 = (x : y : z) ∈ P2

p13 = `11 ∩ `23 ∩ `33 ∩ `43

z = 0 (4.1)

x + k3y + z = 0 (4.2)

k2x + y + z = 0 (4.3)

By (4.1) and (4.2) i f y = 1⇒ x = −k3

S o p13 = (−k3 : 1 : 0)

By (4.3) k2k3 = 1

S ince k2 , 0 k3 =
1
k2

(4.4)

By (4.4) p13 = (−1 : k2 : 0)

p32 :

Let p32 = (x : y : z) ∈ P2

p13 = `13 ∩ `22 ∩ `31 ∩ `43

y = 0 (4.5)

x + k1z = 0 (4.6)

k2x + y + z = 0 (4.7)

By (4.6) i f z = 1⇒ x = −k1

S o p13 = (−k1 : 0 : 1)

By (4.7) k1k2 = 1

S ince k2 , 0 k1 =
1
k2

(4.8)

By (4.8) p32 = (−1 : 0 : k2)
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p23 :

Let p23 = (x : y : z) ∈ P2

p23 = `12 ∩ `23 ∩ `31 ∩ `42

x + y + z = 0 (4.9)

x + k1z = 0 (4.10)

By (4.9) and (4.10) i f z = 1⇒ x = −k1, y = k1 − 1

S o p23 = (−k1 : k1 − 1 : 1)

By (4.8) p23 = (−1 : 1 − k2 : k2)

p31 :

Let p31 = (x : y : z) ∈ P2

p31 = `13 ∩ `21 ∩ `33 ∩ `42

x = 0 (4.11)

x + k3y + z = 0 (4.12)

By (4.7) and (4.8) i f y = 1⇒ z = −k3

S o p31 = (0 : 1 : −k3)

By (4.4) p31 = (0 : k2 : −1)

`13 :

Let `13 = [x : y : z] ∈ (P2)∗

p31, p32, p33 ∈ `13

k2y − z = 0 (4.13)

−x + k2z = 0 (4.14)

x + y − z = 0 (4.15)

By (4.13), i f y = 1⇒ z = k2, by (4.14), x = k2
2

S o `13 = [k2
2 : 1 : k2]

By (4.15) k2
2 − k2 + 1 = 0 (4.16)
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`23 :

Let `23 = [x : y : z] ∈ (P2)∗

p13, p23, p33 ∈ `23

−x + k2y = 0 (4.17)

−x + (1 − k2)y + k2z = 0 (4.18)

x + y − z = 0 (4.19)

By (4.17), i f y = 1⇒ x = k2, by (4.19), z = k2 + 1

S o `23 = [k2 : 1 : k2 + 1]

(4.18) is satis f ied since k2
2 − k2 + 1 = 0

`42 :

Let `42 = [x : y : z] ∈ (P2)∗

p12, p23, p31 ∈ `42

x = 0 (4.20)

−x + (1 − k2)y + k2z = 0 (4.21)

k2y − z = 0 (4.22)

By (4.22), i f y = 1⇒ z = k2

S o `42 = [0 : 1 : k2]

(4.21) is satis f ied since k2
2 − k2 + 1 = 0

The equation has two solutions 1∓
√
−3

2 , so we obtain two (4,3)-nets. Complex conjugation

gives us an isomorphism between these two. Hence up to isomorphism there exists a unique

(4,3)-net. The lines and the points of the (4,3)-net are given below:
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`11 : z = 0

`12 : x + y + z = 0

`13 : k2
2 x + y + k2z = 0

`21 : x = 0

`22 : y = 0

`23 : k2x + y + (k2 + 1)z = 0

`31 : k2x + z = 0

`32 : y + z = 0

`33 : k2x + y + k2z = 0

`41 : x + z = 0

`42 : y + k2z = 0

`43 : k2x + y + z = 0

p11 : (0 : 1 : 0)

p12 : (1 : 0 : 0)

p13 : (−1 : k2 : 0)

p21 : (0 : 1 : −1)

p22 : (1 : 0 : −1)

p23 : (−1 : 1 − k2 : k2)

p31 : (0 : k2 : −1)

p32 : (−1 : 0 : k2)

p33 : (1 : 1 : −1)

where k2
2 − k2 + 1 = 0
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