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ABSTRACT

ON THE PROBLEM OF LIFTING FIBRATIONS ON
ALGEBRAIC SURFACES

Kaya, Celalettin

Ph. D., Department of Mathematics

Supervisor : Prof. Dr. Mustafa HurşiẗOnsiper

June 2010, 33 pages

In this thesis, we first summarize the known results about lifting algebraic surfaces in charac-

teristic p > 0 to characteristic zero, and then we study lifting fibrations on these surfaces to

characteristic zero.

We prove that fibrations on ruled surfaces, the natural fibration on Enriques surfaces of classi-

cal type, the induced fibration onK3−surfaces covering these types of Enriques surfaces, and

fibrations on certain hyperelliptic and quasi-hyperelliptic surfaces lift. We also obtain some

fragmentary results concerning the smooth isotrivial fibrations and the fibrations on surfaces

of Kodaira dimension 1.

Keywords: Liftings, Fibrations.
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ÖZ

CEBİRSEL Y ÜZEYLER ÜZERİNDEK İ L İFLENMELER İ
KALDIRMA PROBLEM İ HAKKINDA

Kaya, Celalettin

Doktora, Matematik B̈olümü

Tez Yöneticisi : Prof. Dr. Mustafa HurşiẗOnsiper

Haziran 2010, 33 sayfa

Bu tezde,önce karakteristiği sıfırdan farklı olan cisimler̈uzerindeki ÿuzeylerin karakteris-

tik sıfıra kaldırma problemiyle ilgili bilinen sonuçlar̈ozetlenmiş, sonra da bu tip yüzeyler

üzerindeki liflenmelerin karakteristik sıfıra kaldırılması çalışılmıştır.

Regle ÿuzeylerüzerindeki liflenmelerin, klasik tipteki Enriques yüzeylerüzerindeki dŏgal

liflenmenin, bu tipteki Enriques ÿuzeylerini örten K3 yüzeyleri üzerinde elde edilen liflen-

menin ve bazı hipereliptik ve kuasi-hipereliptik yüzeylerüzerindeki liflenmelerin kaldırldığı

ispat edilmiştir. Ayrıca, p̈urüzs̈uz izotrivial liflenmelerle ve Kodaira boyutu 1 olan yüzeyler

üzerindeki liflenmelerle ilgili bazı kısmi sonuçlar elde edilmiştir.

Anahtar Kelimeler: Kaldırmalar, Lif Uzayları.
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CHAPTER 1

INTRODUCTION

In this thesis, we are concerned with the problem of lifting fibrations on surfaces in charac-

teristic p > 0 to characteristic zero. More precisely, we letX be a smooth projective surface

over an algebraically closed fieldk of characteristicp > 0, which admits a fibration

φ : X→ Y

(with geometrically connected fibers) over a curveY and we ask the following questions :

• Existence of a lifting : Do we have surfaceX and a curveY over a complete discrete

valuation ringR of mixed characteristic with residue fieldk, and a fibration

X Φ−→ Y

ց ւ

S = S pec(R)

such that over the closed points : S pec(k) ֒→ S

Φs : Xs � X→ Ys � Y

is the original fibrationφ ?

• Moduli of liftings : What is the moduli of these liftings? That is, intuitively, in “how

many” different ways can we liftX→ Y ?

We recall in relation to the moduli question that two liftings

Φ1 : X1→ Y1, Φ2 : X2→ Y2

are identified if we have a commutative diagram given byS-isomorphismsα, β
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X1
α−→ X2

Φ1 ↓ ↓ Φ2

Y1
β
−→ Y2

such thatαs = idX, βs = idY.

Throughout the thesis, we will keep in focus the subtler question of whether “a lifting in the

strong sense” (that is a lifting over the Witt ringW(k) - “no ramification” case) exists. The

importance of this question can not be over emphasized; it suffices to recall the remarkable

consequences of the existence of a lifting of a variety toW2(k) ([7]).

Obviously, the existence part of the problem has two aspects :

1. Problem 1 : Lift the pair (X,Y) to a pair (X, Y) (over a suitableR).

2. Problem 2 : Lift φ to a morphismΦ : X → Y.

We start with an overview of Problem 1 which has been a subject of considerable interest

over a long period of time. Since any smooth projective curve lifts without anyrestriction, we

consider solely the lifting problem for surfaces.

We will adopt the following notation :

• k is a field (algebraically closed unless otherwise stated) of characteristicp > 0.

• R is a complete discrete valuation ring (dvr) of characteristic zero with residuefield k.

• W(k) is the ring of Witt vectors overk andWn(k) =W(k)/mn is the ring of Witt vectors

of length n.

• X is a projective smooth minimal surface overk.

• c1, c2 denote the first and the second Chern classes.

• A lifting of X means a projective smooth schemeX over S = S pec(R) with special

fiberX ×S S pec(k) � X.

• µp = Spec(k[t]/(tp − 1)), αp = Spec(k[t]/(tp)) are the standard infinitesimal group

schemes.
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• For a varietyX, PicX denotes the Picard scheme ofX. Pic0
X is the component ofPicX

containing the identity.

• For an abelian varietyX, X∨ is the dual abelian variety, i.e.,X∨ = Pic0
X.

We refer to a statement in the text by quoting the number of the chapter and the number as-

signed to that statement in that chapter.

An Overview of Problem 1 :

We recall the basic lifting results concerning smooth projective surfaces.The results are listed

according to Enriques-Kodaira classification (it is well-known that the Kodaira dimension is

invariant under lifting ([12], Theorem 9.1)) and we assume that all surfaces are minimal.

I) κ = −1 : SinceP2 does not admit a fibration, it suffices to consider ruled surfaces.

It is easy to see that the lifting problem for ruled surfaces is unobstructed. In fact, any lifting

of a ruled surface is aP1-bundle over a suitable curve (II, Proposition 1).

II) κ = 0 : In this caseX belongs to one of the classes listed below.

A. K3-Surfaces :

Deligne proved that allK3-surfaces lift to characteristic zero with no ramification ifchar(k) >

2 and toW(k)[
√

p] in all cases ([6]).

B. Enriques Surfaces :

We have the following types of Enriques surfaces as explained in [5] :

3



• Classical Enriques Surfaces :

Definition 1. An Enriques surfaceX is said to beclassical, if the canonical divisor

classKX ≁ 0, i.e.,KX is not linearly equivalent to 0.

It is known that every Enriques surface is classical ifchar(k) , 2 ([5], Theorem 1.1.3),

and in this case they can be lifted to characteristic zero ([5], Corollary 1.4.1).

In char(k) = 2, a classical Enriques surfaceX can be lifted to characteristic 0 if we have

a regular 1-form with only isolated singularities onX ([5], Corollary 1.4.1).

• Non-classical Enriques Surfaces :

Definition 2. A non-classical Enriques surfaceX is called aµ2-surface(respectively

anα2-surface) if PicτX/k � µ2 (respectivelyα2). In analogy with abelian varieties, a

µ2-surface (respectively anα2-surface) is calledordinary (respectivelysupersingular).

– Ordinary Enriques Surfaces (µ2-Surfaces) :

It is known that everyµ2-surface lifts to characteristic zero ([5], Corollary 1.4.1).

– Supersingular Enriques Surfaces (α2-Surfaces) :

If X is aα2-surface, then it can not be lifted even toW2(k). However, there are

examples where such a surface can be lifted to a ramified extension of the Witt

vectors. But it is not known whether everyα2-surface can be lifted to characteris-

tic zero.

C. Abelian Surfaces :

The problem of lifting abelian varieties (not just abelian surfaces) to characteristic zero was

solved completely. Before summarizing the results about this problem, we givesome basic

definitions.

Definition 3.

a. Let char(k) = p > 0. We say that an abelian varietyX over k is ordinary if αp 6֒→ X.

Equivalently, an abelian varietyX of dimensionn is said to beordinary if the set of elements

of orderp, X[pn] has precisely (Z/pZ)n elements. An equivalent formulation is that the kernel

of the geometric Frobenius isµn
p.
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b. A polarization divisoron an abelian varietyX is an effective divisorD which isample, i.e.,

for some positive integerN, the multipleND of D is a hyperplane sectionHX of X ⊂ Pm for

somem≥ 1. The pair (X, D) is said to be apolarized abelian variety.

c. Let (X,D) be ann-dimensional polarized abelian variety. Then the degree ofD is given by

Dn
= (Hn

X)/Nn,

((Hn
X) is the degree of the varietyX ⊂ Pm). D is said to be aprincipally polarized divisorif

Dn
= n!.

d. Let L be a line bundle on the abelian varietyX and let

µ : X × X→ X (respectivelypi : X × X→ X, i = 1,2)

be the multiplication (respectively the projection maps). We defineK(L) to be the maximal

subscheme ofX such that the line bundle

µ∗(L) ⊗ p∗1(L)−1 ⊗ p∗2(L)−1

is trivial on K(L) × X ([16], p. 123).

One knows that

1. K(L) is the kernel of the homomorphismφL : X→ X∨ = Pic0
X defined set theoretically

by

φL(x) = the isomorphism class ofT∗xL ⊗ L−1

whereTx : X→ X, Tx(y) = x+ y is “the translation byx” ([16], Corollary 5, p. 131).

2. K(L) is a finite subgroup scheme (equivalently,φL is an isogeny) if and only ifL is

ample.

Definition 4. A polarized abelian variety (X, L) is said to beseparably polarizedif the isogeny

φL : X→ X∨ is separable.

Now, we list the main results concerning the problem of lifting an abelian varietyX to char-

acteristic zero.

1. If dim(X) ≤ 2, then we can find a polarizationλ on X such thatX together withλ lifts to

W(k) :
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Theorem 1 ([20], Proposition 11.1).If X is an abelian variety,dim(X) ≤ 2, then there exists

a polarizationλ on X such that(X, λ) lifts to W(k).

2. If dim(X) ≥ 3, then we have examplesX for which there exists no polarizationλ such that

the pair (X, λ) lifts to W(k) ([20], p. 186-189).

3. The most general result in this direction is the following theorem of Mumford :

Theorem 2 ([20], Theorem (Mumford)). Any polarized abelian variety can be lifted to

characteristic zero (possibly with ramification!).

The index of ramification needed is determined in an article by P. Norman :

Theorem 3 ([18], Main Theorem).Let k be a field of characteristic p, p, 0,2; let (X, λ) be

a polarized abelian variety over k. Let W be a local, p-adically complete andseparated ring

of characteristic zero such that W/pW� k. Let A be a local W-algebra of characteristic zero

that is also p-adically complete and separated; let e denote the ramification index of p in A.

Assume either

i. k is perfect and1 < e≤ p− 1, or

ii. 1 < e< p− 1.

Then(X, λ) lifts to A.

Clearly, this result implies that any abelian varietyX lifts in the weak sense, that is, it lifts over

an integral domainR of characteristic zero which admits a surjective homomorphismR→ k.

However, ifX has a separable polarizationλ, then (X, λ) lifts to W(k) :

Theorem 4 ([19], Corollary 2.4.2).Any abelian variety which admits a separable polariza-

tion (in particular, any abelian variety which admits a principal polarization) can be lifted to

characteristic zero (with no ramification).

Thus we see that for the example of (2) in ([20]),X does not admit a separable polarization.

4. The problem of lifting abelian varieties is related to the well-known fact that ifp is not a

square inR, then the group schemeαp does not lift toS pec(R). The following result shows
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that the main obstruction to lifting an abelian variety without ramification is the existence of

infinitesimal unipotent subgroup schemes (i.e., non-ordinariness of the given abelian variety).

Theorem 5 ([20], Theorem (Serre and Tate)).Let X be an ordinary abelian variety over

a perfect field k of char(k) = p > 0. Then there exists an abelian schemeX → S pec(W(k))

such that every endomorphism of X lifts toX :

EndW(X)
∼→ Endk(X),

and every polarization of X lifts toX (andX/W(k) is called the canonical lifting of X/k).

D. Hyperelliptic and Quasi-hyperelliptic Surfaces :

We consider smooth projective surfacesX with invariantsκ(X) = 0 = χ(OX) = K2
X and

dim(AlbX) = 1.

Definition 5. X is said to behyperelliptic(respectivelyquasi-hyperelliptic) if the fibers of the

albanese mappingX→ E are elliptic curves (respectively rational curves with one cusp).

We know that a hyperelliptic surfaceX is of the formX = (E1 × E2)/G for a groupG of

automorphisms whose type and action on the elliptic curvesE1 andE2 were worked out in

([2]). If there is no wild ramification in the action ofG onE2, thenX lifts to characteristic zero

trivially by takingX = E1×E2/G whereE1 (respectivelyE2) is the lifting of E1 (respectively

E2) with G-action.

Question.DoesX lift if there is wild ramification in the action ofG on E2?

Remark 1. One knows that a pair (X, α) whereX is a smooth projective curve andα ∈ Aut(X)

lifts if p2 ∤ ord(α) ([20], p. 172). Still working with finite groups acting on curves, Green-

Matignon obtained a more general result relating the ramification in the group action to the

lifting problem (cf. II, p. 24).

Without employing the explicit construction given above, one can deduce the existence of

lifting for certain hyperelliptic surfaces from the following vanishing result for cohomology.

Theorem 6 ([15], Theorem 4.9).If X is a hyperelliptic surface over a field k of characteristic

, 2 with ord(KX) = 3,4,6, then

H2(X, ΘX) = 0, H2(X,OX) = 0.
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Corollary 1. If X is a hyperelliptic surface in characteristic, 2 with ord(KX) = 3,4,6, then

X lifts to S= S pec(R), for any complete discrete valuation ring R with residue field k.

Remark 2. Comparing with the following list of possible values forKX ([2], p. 37)

• ord(KX) = 2,3,4,6 if char(k) , 2,3,

• ord(KX) = 1,3 if char(k) = 2,

• ord(KX) = 1,2,4 if char(k) = 3,

we see that there are hyperelliptic surfaces which lift (ord(KX) = 3 in characteristic 2,

ord(KX) = 2 in characteristic 3) but are not covered by the Corollary 1.

Quasi-hyperelliptic surfaces exist only in characteristics 2 and 3. A quasi-hyperelliptic surface

X is of the formX = (E1×C0)/G whereE1, (respectivelyC0) is an elliptic curve (respectively

a cuspidal rational curve),G is a finite subgroup scheme ofE1 and the action ofG is given

by g.(u, v) = (u+ g, α(g)v) for some injective homomorphismα : G → Aut(C0); X admits a

natural fibrationX→ E = E1/G with cuspidal fibers ([3]).

For a quasi-hyperelliptic surfaceX, the possible values oford(KX) are as follows ([3], p. 214):

• ord(KX) = 1,2,3,4,6 if char(k) = 2,

• ord(KX) = 1,2,3,6 if char(k) = 3.

Recall. A fibration with a section is called aJacobian fibration.

Theorem 7 ([15], Theorem 4.2 and Theorem 4.3).If X is a Jacobian quasi-hyperelliptic

surface with ord(KX) = 3,6 or a non-Jacobian quasi-hyperelliptic surface with ord(KX) =

2,3,6 over a field k of characteristic3, then

H2(X, ΘX) = 0, H2(X,OX) = 0.

Thus we see that the obstruction to lifting suchX vanishes and we obtain the following corol-

lary.
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Corollary 2. A surface X of one of the types listed in Theorem 7 lifts to S= S pec(R), for any

complete discrete valuation ring R with residue field k.

III) κ = 1 : In this caseX is elliptic or quasi-elliptic.

• Elliptic Surfaces :

Definition 6. A smooth projective surfaceX with κ(X) = 1 is said to beelliptic if there

exists a morphismf : X→ C, whereC is a smooth curve, such that the general fiber is

a smooth curve of arithmetic genusg = 1.

Theorem 8 ([12], Theorem 5.2).The elliptic fibration X→ C arises from the n-th

canonical map for every n≥ 14.

There is a class of elliptic surfaces obtained as theétale quotient of a productC × E by

a group-scheme of the formZ/p2Z or Z/pZ × µn, (p,n) = 1 ([12], Section 8). Since

such actions on curves lift to characteristic zero, the elliptic surfaces of this type lift. It

is not known whether a general elliptic surface lifts.

• Quasi-elliptic Surfaces :

Definition 7. A smooth projective surfaceX of Kodaira dimensionκ(X) = 1 is said to

bequasi-elliptic if there is a morphismf : X → C, whereC is a smooth curve, such

that the general fiber is a singular curve of arithmetic genusg = 1.

Quasi-elliptic surfaces exist only in characteristic 2 and 3.

The general fiber of a quasi-elliptic fibration has one ordinary cusp ([15]).

It is also not known whether a general quasi-elliptic surface lifts.

• A surfaceX may be both elliptic and quasi-elliptic.

IV) κ = 2 :

There are surfaces of general type which do not lift to characteristic zero. We will recall an

example due to Serre. In Chapter II (p. 18), we will discuss Szpiro’s example of a family of

non-liftable surfaces of general type admitting smooth fibrations.

9



Example 1. (Serre’s Example)

This example is due to Serre (indim≥ 3) and it was modified by Mumford to get an example

of a non-liftable surface.

Serre constructs a smooth projective schemeX0 which does not lift over any integral, com-

plete, local, noetherian ringA with residue fieldk and field of fractionsK of characteristic

zero. To do this, he first constructs a non-liftable homomorphismρ0, and then shows that

the constructedX0 is not liftable by using the non-liftability of thisρ0. The details of Serre’s

arguments are given in ([8], p. 228-231), and we summarize this construction in the sequel.

Let k be an algebraically closed field of characteristicp > 0, r andn be integers with 2≤ r <

n, andp > n+ 1. And letG = Fs
p , with s≥ n+ 1.

Choose an injective homomorphismh : G→ k, wherek is considered as an additive group.

Let N = (ui j ) be the nilpotent matrix of ordern+ 1 defined byui j = 1 if j = n+ 1 andui j = 0

otherwise.

Forg ∈ G, let

ρ̃0(g) = exp(h(g)N) ∈ GLn+1(k)

(which makes sense sincep ≥ n + 1), and letρ0(g) be the image of ˜ρ0(g) in PGLn+1(k)

(= GLn+1(k)/k∗). We thus get a representation

ρ0 : G→ PGLn+1(k)

which is faithful, becauseh is injective.

First, by the following theorem,ρ0 is not liftable to any integral local ringA with residue field

k and field of fractionsK of characteristic zero.

Theorem 9 ([8], Proposition 8.6.6). Assume that p> n + 1. Let A be an integral local

ring with residue field k and field of fractions K of characteristic zero. Thenthere exists no

homomorphism

ρ : G→ PGLn+1(A)(= GLn+1(A)/A∗)

lifting ρ0.

Now, since the group ofk-automorphisms ofP0 = Pn
k is PGLn+1(k), ρ0 defines a (right) action

of G on P0.
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For g ∈ G, denote by Fix(g) the closed subscheme of fixed points ofg (intersection of the

graph ofg and the diagonal inP0 ×k P0).

Let Q0 ⊆ P0 be the union of the Fix(g)’s for g , e.

In our case, for anyg ∈ G, g , e, Fix(g) consists of the single rational point [1:0:...:0] ofP0.

In particular, dim(Q0) = 0.

Then, sincer + dim(Q0) < n, we can find a smooth, projective, complete intersectionY0 as

stated explicitly in the following theorem.

Theorem 10 ([8], Proposition 8.6.2).Assume that

r + dim(Q0) < n.

Then there exists an integer d0 ≥ 1 such that, for any integer d divisible by d0, one can find

a smooth, projective, complete intersection Y0 = V(h1, ...,hn−r ) of dimension r in P0, with

deg(hi) = d for 1 ≤ i ≤ n − r, which is stable under the action of G on P0 defined by the

representationρ0, and on which G acts freely.

Finally, let

X0 = Y0/G

be the quotient ofY0 by G. Then, sinceG acts freely onY0, X0/k is a smooth, projective

scheme of dimensionr. And it is non-liftable as stated explicitly in the following theorem.

Theorem 11 ([8], Corollary 8.6.7). Let r,n be integers such that2 ≤ r < n and p> n+ 1.

Let G = Fs
p, with s ≥ n + 1. There exists a smooth, projective, complete intersection Y0

of dimension r in P0, stable under the action of G on P0 defined by the representationρ0

constructed above, and on which G acts freely, and such that the smooth,projective scheme

X0 = Y0/G

has the following property. Let A be an integral, complete, local noetherianring with residue

field k and field of fractions K of characteristic zero. Then there exists no formal schemeX,

flat over A, lifting X0. �
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Now we return to our main problem; lifting fibrations on surfaces.

Once the first question (Problem 1) is answered affirmatively, the second question (which is

the relative version of the problem of lifting curves) is a problem in the general theory of

deformation of maps. Both of these problems can be treated, in principle, by the infinitesi-

mal deformation theory combined with the techniques of algebraization in formalgeometry.

This theory developed by Grothendieck ([10]) particularly for smooth morphisms, was later

extended by Illusie ([8]) to cover non-smooth cases too.

This approach consists of two steps :

1. One constructs a formal lifting of the structure under consideration. In our problem, we

want to obtain a commutative diagram

X̂ −→ Ŷ

ց ւ

Ŝ

of formal schemes.

2. Then one proves that the formal solution in step (1) is in fact the completion ofan algebraic

lifting. In our problem, we need to show that the digram in step (1) arises by completion from

an algebraic solution overS:

X −→ Y

ց ւ

S

In both steps of this program, as in the case with any deformation theoretic approach, it is

hard to determine whether the relevant obstructions vanish. The theory is efficient only for the

cases where the cohomology groups, in which the obstructions survive,vanish. As expected

such cases are quite rare.

In this thesis, on one hand we work out the obstruction theory in favourable cases (i.e., cases

in which vanishing of the obstruction(s) can be verified readily). On the other hand, we give

explicit constructions whenever possible by exploiting the geometry of the given fibration.
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κ = 0 case is more or less covered in our M. Sc. Thesis ([13]). Here, we elaborate on the

techniques used in that thesis to give a more systematic and uniform treatment. These results

comprise part of Chapter II of this thesis. The rest of Chapter II contains fragmentary results

concerning isotrivial fibrations and the fibrations on surfaces of Kodaira dimensionκ = 1.

We do not have considerable progress related to the most interesting case, namely the fibra-

tions on surfaces of general type. We did not include the obvious applications of our basic

results (on isotrivial fibrations, canonical fibrations and albanese fibrations) to surfaces of

general type. We quot in Chapter II a fundamental “uniqueness” result (due to Szpiro) con-

cerning the lifting of families of curves of genusg ≥ 2, again without elaborating on obvious

applications to surfaces of general type.

As expected, the problem of lifting fibrations on surfaces is related to otherinteresting prob-

lems in geometry in positive characteristic. We will observe connections with

• the non-smoothness of the Picard schemePicX,

• the ordinariness of the fibrationX→ Y,

• the existence of non-closed regular differential forms onX.

As a brief indication of these relations, we note that

1. The obstruction to projectivization of̂X/Ŝ vanishes ifPicX is smooth.

2. It is known that semi-stable (relatively) ordinary fibrations are isotrivial([23]). This fact

will be used in Chapter II to prove an elementary lifting result for such fibrations.

3. The existence of non-closed differential forms is an obstruction to liftingX to W2(k) (as

follows from the work of Deligne-Illusie in [7]). In fact, exploiting this property, W. Lang

constructed examples of hyperelliptic surfaces which do not lift toW(k) but lift to W(k)(
√

p)

([14]).
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RESULTS :

We state a sample of results. For the details and for some more fragmentary results, we refer

to Chapter II.

Proposition 1. Let π : X = P(E) → C be a ruled surface over a smooth projective curve C

and let R be a complete discrete valuation ring with residue field k. Then :

• π lifts to aP1-bundle over any curveC/S lifting C.

• Any liftingX of X over S= S pec(R), is aP1-bundle over a suitable liftingC of C.

Proposition 2. Assume that p> 2 and let X be an Enriques surface with the double étale

coveringϕ : Y→ X. Then :

• The natural fibration X
π→ P1 lifts to a fibrationX → P1

S.

• The induced elliptic fibrationπ ◦ ϕ : Y → P1 on the K3-surface Y lifts to a fibration

Y → P1
S.

Proposition 3. Let X→ Y be a smooth fibration of the form

(Y′ × F)/G,

where F is the fiber and Y′ → Y is a Galois cover with group G which is of the form described

in the Theorem of Green-Matignon (II, Theorem 16). Then X→ Y lifts to a fibration

X → Y

over S pec(W(k)[ζ(2)]).

Corollary. Let X be a hyperelliptic surface. And assume that there is no wild ramificationin

the action of G on E2. Then the natural fibrations

X→ Ei/G,

i = 1,2 lift over W(k) to give

X = (E1 ×S E2)/G→ Ei/G.

14



CHAPTER 2

MAIN RESULTS

We first recall the basic results of deformation theory and the main examples which can be

worked out by standard cohomological techniques. For the deformation theory and formal

geometry, we follow the treatment given in ([8]).

A. The Smooth Fibration Case

Theorem 12 ([8], Theorem 8.5.9). a.Let X and Y be schemes over a scheme S , with Y

smooth over S , and let j: X0 → X be a closed subscheme defined by an ideal J of square

zero. Let g: X0→ Y be an S -morphism. There is an obstruction

o(g, j) ∈ H1(X0, J ⊗OX0
g∗ΘY/S)

whose vanishing is necessary and sufficient for the existence of an S -morphism h: X → Y

extending g, i.e., such that h j= g. When o(g, j) = 0, the set of extensions h of g is an affine

space under H0(X0, J ⊗OX0
g∗ΘY/S).

b. Let i : S0→ S be a thickening of order one defined by an ideal I of square zero, and let X0

be a smooth S0-scheme. There is an obstruction

o(X0, i) ∈ H2(X0, f
∗
0 I ⊗ ΘX0/S0)

(where f0 : X0 → S0 is the structural morphism) whose vanishing is necessary and sufficient

for the existence of a deformation X of X0 over S (8.5.7). When o(X0, i) = 0, the set of

isomorphism classes of such deformations is an affine space under H1(X0, f ∗0 I ⊗ΘX0/S0), and

the group of automorphism of a fixed deformation is isomorphic to H0(X0, f ∗0 I ⊗ ΘX0/S0). In

particular, if X0 is étale over S0, there exists a deformation X of X0 over S , which is unique

up to a unique isomorphism.
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This theorem applied in case ofI = mn/mn+1, wherem is the maximal ideal ofR, together

with

Theorem 13 ([8], Corollary 8.5.6). LetX be a proper, flat adic locally noetherian formal

scheme over̂S . Then :

a. If X/S is a proper scheme such thatX = X̂, X is flat over S . Moreover, if H2(X0,OX0) = 0,

any line bundle L0 on X0 can be lifted to a line bundle L on X, which is unique (up to an

isomorphism) if H1(X0,OX0) = 0.

b. If X0 is projective and an ample line bundle L0 on X0 can be lifted to a line bundleL onX,

there exists a projective and flat scheme X/S such thatX = X̂ and an ample line bundle L on

X such that̂L = L.

leads to the following basic result

Theorem 14 ([8], Theorem 8.5.19 [SGA1, III 7.3]).Let A be a complete local noetherian

ring, with residue field k. Let S= SpecA, s= Speck, and let X0 be a projective and smooth

scheme over s satisfying

(i) H2(X0, ΘX0/s) = 0.

Then there exists a proper and smooth formal scheme (8.5.8)X over Ŝ lifting X0. If, in

addition to (i), X0 satisfies

(ii ) H2(X0,OX0) = 0,

then there exists a projective and smooth scheme X over S such that Xs = X0.

Example 2. (Ruled Surfaces)

The case of ruled surfaces, by the virtue of having a very simple geometry, is practically the

only class where we can answer completely all the questions posed in the Introduction. We

will need the following results.

Theorem 15 ([8], Theorem 8.5.3).Suppose a smooth projective scheme X lifts toX over

S pecR and letE be a locally free sheaf on X. We have :

i. If H2(X,End(E)) = 0, thenE lifts to a locally free sheaf onX.

ii. If furthermore H1(X,End(E)) = 0, then this lifting is unique.
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In particular,

Any locally free sheafE on a smooth proper curve C/k, lifts to a locally free sheaf on any

given liftingC of C.

Lemma 1 ([13], Lemma 2).LetX be a lifting of X over a complete discrete valuation ring

and assume that the fibrationπ : X→ C satisfies one of the following conditions :

a. π is the albanese fibration and Pic0
X is smooth or lifts with ramification index e< p− 1.

b. π is the n-th canonical fibration.

Thenπ lifts to a fibrationX → C for a suitable liftingC of C.

Proof. a. We consider the dual of the reduced component of the Picard schemePicX/S

containing the identity. Under the given hypothesis this is an abelian scheme and is the relative

albanese schemeAlbX/S of X/S. As the base scheme is Henselian, the point inX(k) used in

defining the albanese map of the special fiber, lifts to a section inX(S). Thus the relative

albanese mapX → AlbX/S is defined overS and gives the required curveC.

b. If the given fibration corresponds to the n-th canonical map, then clearlythe image of the

mapX → P(πS∗(w⊗n
X/S)) is a curveC; the result follows.�

Proposition 1 ([13], Lemma 4). Let π : X = P(E) → C be a ruled surface over a smooth

projective curve C and let R be a complete discrete valuation ring with residuefield k. Then :

a. π lifts to aP1-bundle over any curveC/S lifting C.

b. Any liftingX of X over S= S pec(R), is aP1-bundle over a suitable liftingC of C.

Proof. a. Let X = P(E) for a vector bundleE of rank 2 onC. For any lifting

C → S pec(R)

of C, the obstruction to liftingE to someẼ on C̃ vanishes. We let̃E be a lifting ofE to C and

we take

X = P(Ẽ)→ C.

b. This follows from Lemma 1(a), becauseX→ C is the Albanese fibration andPic0
X = JC is

smooth.�
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Other than this general obstruction theory, one has obstructions arising from the special ge-

ometry we are working in.

It is well-known in characteristic zero that ifX is a surface of general type, thenc2
1(X) ≤ c2(X).

However, there are examples which show that this inequality does not hold incharacteristic

p > 0. On the other hand, one has the following fact ( [13], Lemma 1) :

Fact 1. If a surface X lifts to characteristic zero, then the Bogomolov inequality holds for X.

Thus, by constructing fibered surfaces violating the Bogomolov-Miyaoka-Yau inequality, one

can give examples of non-liftable surfaces. One such example was given by Szpiro in ([23],

p. 195). Starting with a non-isotrivial fibrationf : X → C with fiber genusg ≥ 2, Szpiro

constructs a family of surfaces of general type with fixed positive second Chern classc2 and

with c2
1 unbounded in the family. His construction is as follows.

Example 3. (Szpiro’s Example)

Let C be a curve of genusq ≥ 2, f : X → C be a smooth non-isotrivial fibration with fiber

genusg ≥ 2. (Note : Such fibrations exist ([23], 3.1).)

Let Fn : C→ C be then-th iteration of Frobenius onC, and letX(pn) → C be the correspond-

ing pull back ofX→ C.

Let d = deg( f∗ΩX/C). (Note : It is known thatd is positive.)

Then one proves that

• c2(X(pn)) = 4(g− 1)(q− 1) for eachn,

• c2
1(X(pn)) = pnd + 8(g− 1)(q− 1),

from which one concludes thatc2
1→ ∞, butc2 is a fixed positive integer.�

Fact 2. If a surface X lifts to W(k) (even to W2(k)), then X is free from certain pathologies,

e.g. Hodge-deRham spectral sequence degenerates. In particular,all regular forms on X are

closed.

W. Lang constructed examples of hyperelliptic surfaces which do not lift toW(k) by verifying

that the corresponding Hodge-deRham spectral sequence does notdegenerate ([14]). These

surfaces lift to characteristic zero if one permits (minimal) ramification, i.e.,e= 2.
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In cases where the lifting of the surface is possible only over ramified extensions ofW(k), it

is a challenging problem to show that the obstruction in

H2(X, ΘX) ⊗ m
m2
,

wherem is the maximal ideal ofW(k), is non-zero, but is zero in

H2(X, ΘX) ⊗ m̃
m̃2
,

wherem̃ is the maximal ideal ofW(k)[π]. (Note : The equation satisfied byπ over W(k)

determinese.)

Deformation theoretic approach to lifting fibrations on a surfaceX which lifts as a surface,

is reduced to the problem of deforming the morphismX → Y inducing the fibration. In the

(rare) case of smooth fibrationsg : X→ Y the obstruction to a formal lifting is in

H1(X,g∗ΘY) ⊗ mn

mn+1
.

In this case too, as is illustrated in the following example, it is hard to deduce the existence of

liftings of fibrations by computing the obstructions.

Example 4. Let g : X → Y be a smooth geometrically connected fibration over an elliptic

curve. Theng∗ΘY = g∗OY = OX andH1(X,OX) , 0;

dim(H1(X,OX)) = dim(Lie(PicX)) ≥ dim((PicX)red) = dim(AlbX) ≥ 1

since the baseY is an elliptic curve. Therefore, computing the obstruction to liftingg is not

trivial even for ruled surfaces (by Proposition 1, we know that it vanishes).�

Example 5. One can write examples of abelian surfaces admitting fibrations over elliptic

curves, which lift as an abelian surface overW(k), but yet the fibration does not extend over

this lifting. To demonstrate this situation, we quot the following example given in our M. Sc.

Thesis ([13]).

Consider the affine “plane” curveC given by

y2
= x(x− 1)(x− 2)(x− 5)(x− 6) overS = S pec(W(F7)).
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The complete nonsingular model is a curve of genus 2. We take the jacobian schemeJC/S.

The generic fiber is a geometrically simple abelian surface (cf. [4], p. 159), but the special

fiber is the jacobian of the curve birational to the plane curve

y2
= x(x− 1)(x− 2)(x+ 2)(x+ 1) (since 6≡ −1,5 ≡ −2 (mod 7))

which admits an elliptic fibration ([4], Thm. 14.1.1(iii)) over an elliptic curveE. �

This result, clearly is in conformity with the obstruction theory for liftings. The obstruction

to infinitesimallifting of the fibration is in the cohomology groupH2(J,ΘJ/E) ⊗ π∗(I ) where

J is the special fiber ofJC/S andΘJ/E is the relative tangent bundle. SinceΘJ/E � OJ we

haveH2(J,ΘJ/E) = F7. Therefore, it is not surprising to find out that the obstruction does not

vanish.

Question. Can we write a non-isotrivialsmooth fibrationf : X → C of fiber genusg ≥ 2

such thatX lifts, but f does not?

B. Non-smooth Fibrations

As a motivating example, we considerK3-surfaces admitting fibrations; here we come across

an example of Problem 2 (in the Introduction) for non-smooth fibrations.

Example 6. (K3-Surfaces)

First step : Lifting X as a surface.

It is well known thatH2(X, ΘX) = 0.

Therefore, X lifts as a formal scheme ([8], Theorem 8.5.19(a)). But since H2(X,OX) �

H0(X,OX) � k, one can not deduce that the obstruction to lifting very ample bundles van-

ishes. However, it is true thatX lifts with no ramification ifchar(k) > 2 and toW(k)[
√

p] in

all cases ([6]).

Suppose the givenK3-surface has a fibration

φ : X→ Y

and letX → S pec(R) be a lifting ofX. Doesφ lift?
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We first recall that any such fibration is elliptic with rational base curve :

Lemma 2 ([13], Lemma 5).A generically smooth fibration on a K3-surface X is necessarily

elliptic with baseP1.

Proof. SinceH0(X,ΩX) = 0 in all characteristics, the base isP1. If F is the generic fiber, then

2g(F) − 2 = F.(KX + F) = 0 sinceKX = 0. ThusF is an elliptic curve.�

Restricting ourselves toK3-surfaces which cover Enriques surfaces, we have the following

complete solution (given in our M. Sc. Thesis) to the lifting problem without resorting to

deformation theory.

Proposition 2. Assume that p> 2 and let X be an Enriques surface with the double étale

coveringϕ : Y→ X. Then :

• The natural fibration X
π→ P1 lifts to a fibrationX → P1

S.

• The induced elliptic fibrationπ ◦ ϕ : Y → P1 on the K3-surface Y lifts to a fibration

Y → P1
S.

To prove Proposition 2, we will need the following fact describing the induced fibration on

theK3-surfaceY.

Lemma 3. The fibrationπ ◦ ϕ : Y → P1 is not connected. After a suitable “Stein factoriza-

tion” we obtain a connected fibration Y→ P1.

Proof. We first verify thatπ ◦ ϕ is not connected, whereϕ : Y→ X is the “universal covering

map” andπ : X→ P1 is the natural fibration :

Y
ϕ
→ X

↓ π

P1

If πoϕ is connected, then we obtain an elliptic fibrationπoϕ : Y→ P1 on theK3−surfaceY,

with precisely two double fibers, say overp1 andp2. Then by the canonical bundle formula

for elliptic fibrations, we getwY = (πoϕ)∗(L)⊗OY(F
′
1+F

′
2) whereL is a line bundle onP1 of

degree,deg(L) = χ(OY) − χ(OP1) = 0, sinceχ(OY) = 2. Therefore,wY � OY(F
′
1 + F

′
2) , OY;

contradiction sinceKY = 0. �
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Therefore, we need “Stein factorization” obtained from the double cover P1 → P1, to get a

connected fibrationY → P1 (cf. [1], p.274, Remarks). (We note that this coveringP1 → P1

corresponds to the line bundleO(p1 + p2) � O(2) onP1).

Proof of Proposition 2.

First of all, it is known that an Enriques surfaceX of classical type lifts to characteristic zero

if p > 2 ([5]), andY is the degree 2́etale covering ofX.

Now, letX be a lifting of X over a Henselian ring (for instanceW(k)). To prove that the

fibrationπ : X→ P1 lifts to a fibrationX → P1
S, we constructP(E) overS for a suitable rank

2 locally free sheafE and the mapX → P(E) lifting π.

The mapX → P1 corresponds to the linear system determined by the line bundleL =

π∗(OP1(1)) � O(2F
′
i ), where 2F

′
i is one of the double fibers ofπ lying over p1, p2 ∈ P1.

SinceEnd(L) � OX, H2(X,End(L)) � H2(X,OX) = 0 andH1(X,End(L)) � H1(X,OX) = 0,

becauseX is an Enriques surface. Therefore by ([8], Thm.8.5.3)L lifts to a unique line bun-

dle L on X. TakingE = ϕ∗(L) we obtainX → P(E) (corresponding to the natural map

ϕ∗(ϕ∗(L))→ L → 0) which liftsπ : X→ P1.

Then one checks that the induced fibration on the generic fiberXη is connected and has pre-

cisely two double fibers; in fact these double fibers lie over the generic points of the sections

si : S→ P(E) which lift the pointsp1, p2 ∈ P1(k) in the special fiber (Henselian base!).

And to prove that the induced elliptic fibrationY→ P1 on theK3-surfaceY lifts to a fibration

Y → P1
S, we first note that the coveringY→ X lifts to giveY → X, because the base scheme

is Henselian. Then the composite mapY → X → P(E) induces an elliptic fibration which

we proved is not connected. The “Stein factorization”Y → P(E) obtained from the double

coverP(E) → P(E) which ramifies precisely overs1 ∪ s2, lifts the elliptic fibration on the

K3-surfaceY. �
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Next, still working with the fibrations onK3-surfaces, we takeX to be a generalized Kummer

surface which is the minimal desingularization ofE1 × E2/G, the quotient by a finite group

of the product of the elliptic curvesE1, E2. Katsura proves in ([11], Theorem 3.7) that if

char(k) , 2,3,5, thenG is isomorphic to one of the following groups :

G =



































































cyclic group of order 2,3,4,5,6,8,10,12,

binary dihedral group< 2,2,n >, n = 2,3,4,5,6,

binary tetrahedral group< 2,3,3 >,

binary octahedral group< 2,3,4 >,

binary icosahedral group< 2,3,5 >.

Now, X admits a natural fibration

X→ E1/G = P1.

And the corresponding lifting problem is solved if we can lift the action ofG on E1 × E2 to

an action onE1 × E2 and then resolve the singularities of (E1 × E2)/G. Thus the problem is

related to the following equivariant lifting problem.

Problem G. Does the pair (Z,G) whereZ is a variety andG is a group of automorphisms of

Z lift ?

Remark 3. Comparing the list given by Katsura with the list of groupsG for (generalized)

Kummer surfaces inchar(k) = 0, and applying Deligne’s result on liftingK3-surfaces, one

can compile a list of examples for lifting Kummer surfaces to obtain(relative) Kummer sur-

faces.

Example 7. (Hyperelliptic and Quasi-hyperelliptic Surfaces)

Fibrations on hyperelliptic surfaces and on quasi-hyperelliptic surfacesfurnish the other two

examples of the equivariant lifting problem. The results concerning the hyperelliptic surfaces

is in fact a special case of the problem of lifting isotrivial fibrations. We first recall the

definition of an isotrivial fibration.

Definition 8. A fibration X → Y is isotrivial if after a (finite)étale extensionY′ → Y, the

surfaceX′ = X ×Y Y′ is birational to a trivial fibrationY′ × F.
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In caseY′ → Y is Galois with groupG, the following result of Green-Matignon ([9]), which

is a fundamental result in this direction, can be used to prove the existence of liftings of

fibrations.

Theorem 16 ([9], Theorem 2).Let C/k be a smooth integral proper curve of genus g= g(C).

Let G be a finite subgroup ofAutk(C). Let f : C→ C/G := D be a G-Galois cover of smooth

integral proper curves over k. Assume that the inertia groups are pae-cyclic with a≤ 2 and

(e, p) = 1. Then f can be lifted over R= W(k)[ζ(2)] as a G-Galois cover of smooth integral

proper R-curves, whereζ(2) is a primitive p2-root of unity.

And applying this theorem, we obtain the following elementary result :

Proposition 3. Let X→ Y be a smooth fibration of the form

(Y′ × F)/G,

where F is the fiber and Y′ → Y is a Galois cover with group G which is of the form described

in the above theorem. Then X→ Y lifts to a fibration

X → Y

over S pec(W(k)[ζ(2)]).

Proof. Action of G lifts to curvesY′, F overS pec(W(k)[ζ(2)]) which gives a lifting

X = (Y′ × F )/G→ Y′/G

of X→ Y. �

In particular, this result applies to certain hyperelliptic surfacesX = (E1 × E2)/G ( see [2]

for all possible types and the action ofG on E1 andE2) and we obtain the following result

concerning the lifting of an hyperelliptic surface :

Corollary. Let X be a hyperelliptic surface. And assume that there is no wild ramificationin

the action of G on E2. Then the natural fibrations

X→ Ei/G,

i = 1,2 lift over W(k) to give

X = (E1 ×S E2)/G→ Ei/G.

24



Proof. Since there is no ramification in the action ofG onE1, the pair (E1, G) lifts overW(k)

([21]). The second pair (E2, G) lifts overW(k) if there is no wild ramification in the action of

G on E2 ([21]). �

Remark 4.

a. For the corollary, we may replace the Theorem of Green-Matignon by a weaker result given

in ([20]).

b. In characteristics 2 and 3 we have quasi-hyperelliptic surfaces which weknow to lift

in certain cases (I, Corollary 2). On a quasi hyperelliptic surface we have two fibrations

X→ C0/α(G) � P1 andX→ E1/G � E whereE = Alb(X). It follows from Lemma 1(a) that

the second fibration lifts for surfaces indicated in (I, Corollary 2).

c. W. Lang’s example ([14]) is a hyperelliptic surface in characteristicp = 2 and withG � Z2

which acts on the second component with wild ramification. Lang proves thatX does not

lift over W(k), but lifts over an extension of degree 2 ofW(k). Thus, for lifting the fibrations

in this example we obtain the same conclusion as in the preceding paragraph, only after we

allow ramification of degree 2 (minimum possible !).

We note that this example of W. Lang is related to non-smoothness ofPicX. PicX = α2 is a

non-smooth group scheme which lifts over a discrete valuation ringRof residue characteristic

2 if and only if 2∈ m2, wherem is the maximal ideal ofR.

Next result on lifting smooth isotrivial fibrations, makes use of the conceptof ordinariness

for relative curves.

Let X → Y be a smooth family of curves over a field of characteristicp and considerX(p)
=

X ×F Y whereF : Y→ Y is the (absolute) Frobenius.

Definition 9. X → Y is ordinary (relative to Y)if the Y-group schemeN := Ker(JX(p)/Y →

JX/Y) is locally isomorphic toµg
p, whereg is the fiber genus ofX→ Y.

Lemma 4. Letϕ : X→ Y be a smooth family of ordinary curves of genus g≥ 2. Thenϕ lifts

to W(k).

Proof. We recall the proof of ([22], Theorem 5).
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Y′ = IsomY−groups(N, µ
g
p × Y) is a finiteétale covering andX ×Y Y′ � Y′ × F.

Lifting Y′ andF to W(k), we obtainY′ ×W(k) F of Y′ × F lifting the group actionY′ → Y. �

Remark 5. It follows from the isotriviality of smooth families of ordinary curves ([22],The-

orem 5) that the fibrations on the surfaces in Szpiro’s example ([23]) are non-ordinary.

Now we return to non-smooth fibrations.

In the case of non-smooth fibrations, one has to replace the tangent bundle by the tangent

complex. In fact, one works with the cotangent complex and derives the following result.

Theorem 17 ([8], Theorem 8.5.31). a.Let X and Y be schemes over a scheme S , and let

j : X0 → X be a closed subscheme defined by an ideal J of square zero. Let g: X0 → Y be

an S -morphism. There is an obstruction

o(g, j) ∈ Ext1(g∗LY/S, J)

whose vanishing is necessary and sufficient for the existence of an S -morphism h: X → Y

extending g, i.e., such that h j= g. When o(g, j) = 0, the set of extensions h of g is an affine

space underExt0(g∗LY/S, J) = Hom(g∗Ω1
Y/S, J).

b. Let i : S0 → S be a thickening of order1 defined by an ideal I of square zero, and let X0

be a flat S0-scheme. There is an obstruction

o(X0, i) ∈ Ext2(LX0/S0, f
∗
0 I )

(where f0 : X0 → S0 is the structural morphism) whose vanishing is necessary and sufficient

for the existence of a deformation X of X0 over S (8.5.7). When o(X0, i) = 0, the set of isomor-

phism classes of such deformations is an affine space underExt1(LX0/S0, f
∗
0 I ), and the group of

automorphisms of a fixed deformation is isomorphic toExt0(LX0/S0, f
∗
0 I ) = Hom(Ω1

X0/S0
, f ∗0 I ).

Illusie applies his theory to prove that singular curves which are complete intersections can

be lifted ([8]). However, if the singularities are restricted suitably, one can prove the existence

of liftings (to singularS-schemes) without applying the obstruction theory. We work out the

following example.
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Example 8. (Lifting by Rigidification)

Details and the relative version will appear elsewhere.

Let X be a smooth projective curve, andJX be its Jacobian.

Let Xsing be the curve obtained by glueing{p1, .., pm} ⊂ X, andJXsing be its Jacobian. Note

that this set-up corresponds to a rigidification byR =∐m
1 S pec(k)i and we have the following

exact sequence

0 → GL → JXsing → JX → 0 (∗)

l

Pic0(X,R)

LetX be a lifting ofX to W(k) andJX/W(k) be its Jacobian.

Note that

i. SinceR =∐S pec(k)i is reduced,GL is multiplicative, i.e., does not have unipotent part.

ii. R has a trivial liftingR̃ =∐S pec(W(k))i .

Now, let

R
f
−→ X

ց ւ

S pec(k)

be the set of sectionsf (S pec(k)i) = pi .

Since the base scheme is Henselian andX is smooth over the base,f lifts to

R̃
f̃
−→ X

ց ւ

S pec(W(k))

We glueX along f̃ (R̃); the resulting non-smooth schemeXsing is a lifting of Xsing andPic0
Xsing

is the jacobian of the curveXsing overS pec(W(k)). As a by-product one obtains a lifting

0→ GL → Pic0
Xsing
→ JX → 0

of (*). �
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Now we return to the application of Illusie’s theory to lifting non-smooth fibrations, as given

in Szpiro’s article ([23]).

Theorem 18 ([23], Theorem 2.3).Let R be a complete discrete valuation ring, and letπ :

C → S = S pec(R) be a smooth projective curve. Let D⊂ C be a flat divisor over S . Let

fs : X → Cs be a non-isotrivial morphism from a smooth surface X over k, the residue field

of R into the special fiber Cs of π.

Suppose that the generic fiber of fs is projective, smooth, and geometrically connected curve

of genus g≥ 2. Suppose in addition that singular fibers of fs are semi-stable, and lie over Ds

(the special fiber of D).

Then there exist at most one smooth surfaceX over S , and a morphism f: X → C such that

a. on the special fiber over S , f is fs,

b. f is smooth outside D.

Theorem 19 ([23], Corollary 2, page 184).A non-isotrivialsmooth fibration X→ C with

fiber genus g≥ 2 has at most one liftingX → C over a given liftingC of C.

Finally, we consider fibrations on properly elliptic surfacesX, i.e., surfaces withκ(X) = 1. It

is known that the elliptic fibration on suchX is unique and that it arises from then-th canonical

map, for everyn ≥ 14 (I, Theorem 8).

If X lifts to a surfaceX over a complete discrete valuation ringR, then then-th canonical

fibration lifts (Lemma 1(b)). This applies in particular to elliptic surfaces which are quotients

by étale group actions on productsC × E of curves (I). However, we do not know whether all

elliptic surfaces lift to characteristic zero.

An elliptic surfaceX may admit a fibration (necessarily non-elliptic) which does not arise

from then-th canonical map. We give an elementary example of a family of elliptic surfaces

(with varying base curveE and fiberF) with liftable non-elliptic fibration.

Example 9. We work in char(k) , 2, we take an elliptic curveE, and a smooth projective

curveF with g(F) ≥ 2 which is a double covering of an elliptic curveE2 � F/Z2.

We consider a subgroupG ⊂ E(k), G � Z2 and we letX = (F × E)/Z2, where the action of

Z2 is defined componentwise.
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Then we have the following diagram :

F × E −→ (F × E)/Z2 = X
π2−→ F/Z2 = E2

↓ π1

E/G = E′

In this diagram,π1 : X → E′ is a smooth genus 2 fibration andπ2 : X → E2 is an elliptic

fibration with 2 double fibersF1, F2. Therefore,ωX = ωX/E2 = OX(F1 + F2). And this

implies thatπ2 is the canonical map.

Now, F,E lift with Z2-action (sincep , 2). Therefore,

X = (F × E)/Z2→ S pec(R)

lifts X, and

X → F /Z2

↓

E/Z2

lift the fibrationsπ1 andπ2. �
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