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ABSTRACT

ON THE PROBLEM OF LIFTING FIBRATIONS ON
ALGEBRAIC SURFACES

Kaya, Celalettin
Ph. D., Department of Mathematics

Supervisor : Prof. Dr. Mustafa Hurgdnsiper

June 2010, 33 pages

In this thesis, we first summarize the known results about lifting algebrdiacas in charac-
teristic p > 0 to characteristic zero, and then we study lifting fibrations on these ssrfac

characteristic zero.

We prove that fibrations on ruled surfaces, the natural fibration oig s surfaces of classi-
cal type, the induced fibration d63—surfaces covering these types of Enriques surfaces, and
fibrations on certain hyperelliptic and quasi-hyperelliptic surfaces lift. & abtain some
fragmentary results concerning the smooth isotrivial fibrations and tregibbs on surfaces

of Kodaira dimension 1.

Keywords: Liftings, Fibrations.
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CEBIRSEL Y UZEYLER UZERINDEK | L IFLENMELER |
KALDIRMA PROBLEM | HAKKINDA

Kaya, Celalettin
Doktora, Matematik BIUmu

Tez Yoneticisi : Prof. Dr. Mustafa Hurs®nsiper

Haziran 2010, 33 sayfa

Bu tezde,0nce karakterisi sifirdan farkh olan cisimlefizerindeki yizeylerin karakteris-
tik sifira kaldirma problemiyle ilgili bilinen sonuclaizetlenmis, sonra da bu tigigeyler

uzerindeki liflenmelerin karakteristik sifira kaldiriimasi ¢alisiimistir.

Regle yizeyleriuzerindeki liflenmelerin, klasik tipteki Enriquedizeyleriizerindeki dgal
liflenmenin, bu tipteki Enriquesiyzeyleriniorten K3 yiizeyleriuzerinde elde edilen liflen-
menin ve bazi hipereliptik ve kuasi-hipereliptikizeyleriizerindeki liflenmelerin kaldirldn
ispat edilmistir. Ayrica, prrizdiz izotrivial liflenmelerle ve Kodaira boyutu 1 olarizeyler

uzerindeki liflenmelerle ilgili bazi kismi sonuglar elde edilmistir.

Anahtar Kelimeler: Kaldirmalar, Lif Uzaylarl.
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CHAPTER 1

INTRODUCTION

In this thesis, we are concerned with the problem of lifting fibrations on sesfan charac-
teristic p > 0 to characteristic zero. More precisely, we Xebe a smooth projective surface

over an algebraically closed fiekdof characteristigp > 0, which admits a fibration
P X->Y

(with geometrically connected fibers) over a cuand we ask the following questions :

e Existence of a lifting : Do we have surfac& and a curveY over a complete discrete

valuation ringR of mixed characteristic with residue fiekgand a fibration
X 2, V'
N /
S = S pe¢R)

such that over the closed poisit S pe¢k) — S
DOs: Xg=2=X > Yg=Y
is the original fibratiory ?
e Moduli of liftings : What is the moduli of these liftings? That is, intuitively, in “how
many” different ways can we lifK — Y ?
We recall in relation to the moduli question that two liftings
D1: X1 Y, O2:X2- Y2

are identified if we have a commutative diagram giversSbigomorphismsr, 3



such thatrg = idy, Bs = idy.

Throughout the thesis, we will keep in focus the subtler question of whedHgting in the
strong sense” (that is a lifting over the Witt riMy(k) - “no ramification” case) exists. The
importance of this question can not be over emphasizedflites to recall the remarkable

consequences of the existence of a lifting of a varietWwsk) ([7]).

Obviously, the existence part of the problem has two aspects :

1. Problem 1 : Lift the pair (X, Y) to a pair X, V) (over a suitabld).
2. Problem 2 : Lift ¢ to a morphismb : X — Y.
We start with an overview of Problem 1 which has been a subject of cenadild interest

over a long period of time. Since any smooth projective curve lifts withouteslyiction, we

consider solely the lifting problem for surfaces.

We will adopt the following notation :

e kis afield (algebraically closed unless otherwise stated) of charactgristia.
e Ris a complete discrete valuation ring (dvr) of characteristic zero with regieligek.

e W(K) is the ring of Witt vectors ovek andW, (k) = W(k)/m" is the ring of Witt vectors
of length n.

e X is a projective smooth minimal surface oker
e C1, Co denote the first and the second Chern classes.

e A lifting of X means a projective smooth scheiiever S = S pe¢R) with special

fiber X xs S pe¢k) = X.

e up = Speck(t]/(tP - 1)), @, = Speck|t]/(tP)) are the standard infinitesimal group

schemes.



e For a varietyX, Picyx denotes the Picard schemeXf Pic§( is the component oPicy

containing the identity.

e For an abelian variet, X" is the dual abelian variety, i.eX" = Pic}.

We refer to a statement in the text by quoting the number of the chapter andrttimenas-

signed to that statement in that chapter.

An Overview of Problem 1 :

We recall the basic lifting results concerning smooth projective surfadesresults are listed
according to Enriques-Kodaira classification (it is well-known that thegft@ddimension is

invariant under lifting ([12], Theorem 9.1)) and we assume that albsed are minimal.

) x = =1 : SinceP? does not admit a fibration, it fices to consider ruled surfaces.

It is easy to see that the lifting problem for ruled surfaces is unobstrubitddct, any lifting

of a ruled surface is B'-bundle over a suitable curve (ll, Proposition 1).

I) k = 0 : In this caseX belongs to one of the classes listed below.

A. K3-Surfaces :

Deligne proved that akK3-surfaces lift to characteristic zero with no ramificatioahfir(k) >

2 and toW(Kk)[ 4/p] in all cases ([6]).

B. Enriques Surfaces :

We have the following types of Enriques surfaces as explained in [5] :



e Classical Enriques Surfaces :

Definition 1. An Enriques surfac& is said to beclassical if the canonical divisor

classkx ~ 0, i.e.,Kx is not linearly equivalent to 0.

It is known that every Enrigues surface is classicahiér(k) # 2 ([5], Theorem 1.1.3),

and in this case they can be lifted to characteristic zero ([5], Corollary)1.4.1

In char(k) = 2, a classical Enriques surfagecan be lifted to characteristic 0 if we have

a regular 1-form with only isolated singularities ¥r([5], Corollary 1.4.1).

e Non-classical Enriques Surfaces :

Definition 2. A non-classical Enriques surfageis called au»-surface(respectively
an az-surfacg if Picj K = M2 (respectivelyay). In analogy with abelian varieties, a

po-surface (respectively am-surface) is calledrdinary (respectivelysupersingulay.

— Ordinary Enriques Surfaces (u2-Surfaces) :

It is known that everyi,-surface lifts to characteristic zero ([5], Corollary 1.4.1).

— Supersingular Enriques Surfaces¢»-Surfaces) :
If Xis aay-surface, then it can not be lifted even\Wé (k). However, there are
examples where such a surface can be lifted to a ramified extension of the Witt
vectors. But it is not known whether evawg-surface can be lifted to characteris-

tic zero.

C. Abelian Surfaces :

The problem of lifting abelian varieties (not just abelian surfaces) toadearistic zero was
solved completely. Before summarizing the results about this problem, wesgime basic

definitions.
Definition 3.

a. Letchar(k) = p > 0. We say that an abelian varie¥/overk is ordinary if ap # X.
Equivalently, an abelian variety of dimensiom is said to beordinary if the set of elements
of orderp, X[ p"] has preciselyZ,/pZ)" elements. An equivalent formulation is that the kernel

of the geometric Frobenius .



b. A polarization divisoron an abelian variet is an dfective divisorD which isampleg i.e.,
for some positive integeX, the multipleND of D is a hyperplane sectiddjx of X c P™ for

somem > 1. The pair (X, D) is said to begolarized abelian variety
c. Let (X, D) be ann-dimensional polarized abelian variety. Then the degrd® isfgiven by
D" = (Hf%)/N",

((HE) is the degree of the variety ¢ P™). D is said to be arincipally polarized divisoiif

D" =nl.
d. LetL be a line bundle on the abelian varietyand let
u:Xx X — X (respectivelyp; : Xx X — X, i =1,2)

be the multiplication (respectively the projection maps). We défifie) to be the maximal

subscheme oX such that the line bundle
(L) epiL) e pyL)™
is trivial on K(L) x X ([16], p. 123).

One knows that

1. K(L) is the kernel of the homomorphism : X — XY = Pic?( defined set theoretically

by
¢ (X) = the isomorphism class dfL @ L1

whereTy : X — X, Tx(y) = X+ yis “the translation by’ ([16], Corollary 5, p. 131).
2. K(L) is a finite subgroup scheme (equivalenty, is an isogeny) if and only it is
ample.
Definition 4. A polarized abelian varietyX, L) is said to beseparably polarizedf the isogeny

¢ . X — XY is separable.

Now, we list the main results concerning the problem of lifting an abelian vaxi¢tychar-

acteristic zero.

1. If dim(X) < 2, then we can find a polarizatiohon X such thatX together with lifts to
W(K) :



Theorem 1 ([20], Proposition 11.1)If X is an abelian varietydim(X) < 2, then there exists
a polarizationd on X such thatX; 1) lifts to W(K).

2. If dim(X) > 3, then we have examplésfor which there exists no polarizationsuch that

the pair &, ) lifts to W(K) ([20], p. 186-189).

3. The most general result in this direction is the following theorem of Mumford :

Theorem 2 ([20], Theorem (Mumford)). Any polarized abelian variety can be lifted to

characteristic zero (possibly with ramification!).

The index of ramification needed is determined in an article by P. Norman :

Theorem 3 ([18], Main Theorem).Let k be a field of characteristic p,#0, 2; let (X, 1) be
a polarized abelian variety over k. Let W be a local, p-adically completesaparated ring
of characteristic zero such that \WW = k. Let A be a local W-algebra of characteristic zero
that is also p-adically complete and separated; let e denote the ramificatitax iof p in A.
Assume either

i. kisperfectandl<e< p-1, or

i.l<e<p-1

Then(X, 2) lifts to A.

Clearly, this result implies that any abelian varigtiifts in the weak sense, that is, it lifts over
an integral domaiR of characteristic zero which admits a surjective homomorpliRs k.
However, if X has a separable polarizatianthen (X, 2) lifts to W(K) :

Theorem 4 ([19], Corollary 2.4.2).Any abelian variety which admits a separable polariza-
tion (in particular, any abelian variety which admits a principal polarizatioande lifted to
characteristic zero (with no ramification).

Thus we see that for the example of (2) in ([20{)does not admit a separable polarization.

4. The problem of lifting abelian varieties is related to the well-known fact thatig not a

square inR, then the group schems, does not lift toS pe¢R). The following result shows
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that the main obstruction to lifting an abelian variety without ramification is the existeh

infinitesimal unipotent subgroup schemes (i.e., non-ordinariness ofitele gbelian variety).

Theorem 5 ([20], Theorem (Serre and Tate)).Let X be an ordinary abelian variety over
a perfect field k of chdk) = p > 0. Then there exists an abelian schefe-> S pe¢W(k))

such that every endomorphism of X liftsXa
Endu(X) — Endi(X),

and every polarization of X lifts tX (and X/W(K) is called the canonical lifting of X).

D. Hyperelliptic and Quasi-hyperelliptic Surfaces :

We consider smooth projective surfacéswith invariantsk(X) = 0 = y(Ox) = K>2< and

dim(Alby) = 1.

Definition 5. X is said to béhyperelliptic(respectivelyquasi-hyperelliptig if the fibers of the

albanese mapping — E are elliptic curves (respectively rational curves with one cusp).

We know that a hyperelliptic surfacé is of the formX = (E; x E»)/G for a groupG of
automorphisms whose type and action on the elliptic cuBsgeand E, were worked out in
([2]). If there is no wild ramification in the action @ on E, thenX lifts to characteristic zero
trivially by taking X = &1 x E2/G where&; (respectivelyty,) is the lifting of E; (respectively
E,) with G-action.

Question. DoesX lift if there is wild ramification in the action o on E»?

Remark 1. One knows that a paiX @) whereX is a smooth projective curve ande Aut(X)
lifts if p? { ord(e) ([20], p. 172). Still working with finite groups acting on curves, Green
Matignon obtained a more general result relating the ramification in the gdigmdo the

lifting problem (cf. II, p. 24).

Without employing the explicit construction given above, one can dedwexistence of

lifting for certain hyperelliptic surfaces from the following vanishing resattédohomology.

Theorem 6 ([15], Theorem 4.9)If X is a hyperelliptic surface over a field k of characteristic

# 2 with ord(Kx) = 3,4, 6, then

H2(X, ©x) = 0, H2(X,0x) = 0.



Corollary 1. If X is a hyperelliptic surface in characteristie 2 with ord(Kx) = 3, 4, 6, then

X lifts to S= S pe¢R), for any complete discrete valuation ring R with residue field k.

Remark 2. Comparing with the following list of possible values fiék ([2], p. 37)

e ord(Kx) = 2,3,4,6 if char(k) # 2,3,
e ord(Kx) = 1,3 if char(k) = 2,
e ord(Kx) = 1,2,4 if char(k) = 3,

we see that there are hyperelliptic surfaces which bftd(Kx) = 3 in characteristic 2,

ord(Kx) = 2 in characteristic 3) but are not covered by the Corollary 1.

Quasi-hyperelliptic surfaces exist only in characteristics 2 and 3. A-dpygerelliptic surface
Xis of the formX = (E; x Cy)/G whereE;, (respectivelyCo) is an elliptic curve (respectively
a cuspidal rational curvels is a finite subgroup scheme &f and the action o6 is given
by g.(u,v) = (u+ g, a(g)v) for some injective homomorphism: G — Aut(Cp); X admits a

natural fibrationX — E = E;/G with cuspidal fibers ([3]).

For a quasi-hyperelliptic surfacg the possible values ofd(Kx) are as follows ([3], p. 214):

o ord(Kx) = 1,2,3,4,6 if char(k) = 2,

e ord(Kx) = 1,2,3,6 if char(k) = 3.

Recall. A fibration with a section is called &acobian fibration

Theorem 7 ([15], Theorem 4.2 and Theorem 4.3)If X is a Jacobian quasi-hyperelliptic
surface with ordKx) = 3,6 or a non-Jacobian quasi-hyperelliptic surface with Gkg) =

2,3, 6 over a field k of characteristig, then

HZ(X,0x) =0,  H%(X Ox) = 0.

Thus we see that the obstruction to lifting su¢kanishes and we obtain the following corol-

lary.



Corollary 2. A surface X of one of the types listed in Theorem 7 lifts to Spe¢R), for any

complete discrete valuation ring R with residue field k.

IlI) x =1:Inthis caseX s elliptic or quasi-elliptic.

e Elliptic Surfaces :

Definition 6. A smooth projective surfack with «(X) = 1 is said to beelliptic if there
exists a morphisni : X — C, whereC is a smooth curve, such that the general fiber is

a smooth curve of arithmetic gengs= 1.

Theorem 8 ([12], Theorem 5.2).The elliptic fibration X— C arises from the n-th

canonical map for every g 14.

There is a class of elliptic surfaces obtained a<ttiaée quotient of a produ x E by
a group-scheme of the forf/ p°Z or Z/pZ x un, (p,n) = 1 ([12], Section 8). Since
such actions on curves lift to characteristic zero, the elliptic surfacessofyibe lift. It
is not known whether a general elliptic surface lifts.

e Quasi-elliptic Surfaces :

Definition 7. A smooth projective surfack of Kodaira dimension(X) = 1 is said to
be quasi-ellipticif there is a morphisnf : X — C, whereC is a smooth curve, such

that the general fiber is a singular curve of arithmetic genusl.
Quasi-elliptic surfaces exist only in characteristic 2 and 3.
The general fiber of a quasi-elliptic fibration has one ordinary cugg)(1

It is also not known whether a general quasi-elliptic surface lifts.

¢ A surfaceX may be both elliptic and quasi-elliptic.

V) k=2

There are surfaces of general type which do not lift to characteristiz 2Ve will recall an
example due to Serre. In Chapter Il (p. 18), we will discuss Szpirc@sngte of a family of

non-liftable surfaces of general type admitting smooth fibrations.

9



Example 1. (Serre’s Example)

This example is due to Serre (@m > 3) and it was modified by Mumford to get an example

of a non-liftable surface.

Serre constructs a smooth projective schefpevhich does not lift over any integral, com-
plete, local, noetherian ring with residue fieldk and field of fractionK of characteristic

zero. To do this, he first constructs a non-liftable homomorphigimand then shows that
the constructeg is not liftable by using the non-liftability of thisg. The details of Serre’s

arguments are given in ([8], p. 228-231), and we summarize this catistnin the sequel.

Letk be an algebraically closed field of characterigtis O, r andn be integers with X r <
n,andp>n+1. AndletG =F3 ,withs>n+ 1.

Choose an injective homomorphigm G — k, wherek is considered as an additive group.
Let N = (ujj) be the nilpotent matrix of order+ 1 defined byuj; = 1if j = n+1 andujj =0
otherwise.

Forge G, let
Po(9) = exph(g)N) € GLn.1(K)

(which makes sense singe > n + 1), and letpg(g) be the image 0polg) in PGLy;1(K)
(= GLn+1(K)/K*). We thus get a representation

po 1 G — PGLna(K)
which is faithful, becaush is injective.
First, by the following theoremg is not liftable to any integral local ring with residue field

k and field of fraction¥K of characteristic zero.

Theorem 9 ([8], Proposition 8.6.6). Assume that p>- n+ 1. Let A be an integral local
ring with residue field k and field of fractions K of characteristic zero. Tteme exists no
homomorphism

p G — PGLya(A)(= GLn1(A)/AY)

lifting po.

Now, since the group dé-automorphisms oPy = P} is PGLn.1(K), po defines a (right) action

of G on Py.

10



For g € G, denote by Fixg) the closed subscheme of fixed pointsgofintersection of the
graph ofg and the diagonal iy xx Pop).

Let Qg C Pg be the union of the Fixf)’s for g # e.

In our case, for ang € G, g # e, Fix(g) consists of the single rational point [1:0:...:0] .
In particular, dimQp) = 0.

Then, since + dim(Qp) < n, we can find a smooth, projective, complete intersec¥gas

stated explicitly in the following theorem.

Theorem 10 ([8], Proposition 8.6.2) Assume that
r +dim(Qg) < n.

Then there exists an integeg & 1 such that, for any integer d divisible by,dbne can find
a smooth, projective, complete intersectian = V(hg, ..., hn—r) of dimension r in B, with
degh) = dforl < i < n-r, which is stable under the action of G ory Befined by the

representatiomo, and on which G acts freely.

Finally, let
Xo = Yo/G

be the quotient offy by G. Then, sinces acts freely onYp, Xp/k is a smooth, projective

scheme of dimension And it is non-liftable as stated explicitly in the following theorem.

Theorem 11 ([8], Corollary 8.6.7). Letr,n be integers such th&<r <nand p>n+ 1.
Let G = Fg with s > n+ 1. There exists a smooth, projective, complete intersectipn Y
of dimension r in BB, stable under the action of G onyRiefined by the representatign

constructed above, and on which G acts freely, and such that the srpog#itctive scheme
Xo =Yo/G

has the following property. Let A be an integral, complete, local noethemmwith residue
field k and field of fractions K of characteristic zero. Then there exists moaflcschemeX,

flat over A, lifting >. O

11



Now we return to our main problem; lifting fibrations on surfaces.

Once the first question (Problem 1) is answerfuatraatively, the second question (which is
the relative version of the problem of lifting curves) is a problem in the ggribeory of
deformation of maps. Both of these problems can be treated, in principlegbwgfthitesi-
mal deformation theory combined with the techniques of algebraization in fayezahetry.
This theory developed by Grothendieck ([10]) particularly for smoothphisms, was later

extended by lllusie ([8]) to cover non-smooth cases too.
This approach consists of two steps :

1. One constructs a formal lifting of the structure under consideration. irpmblem, we

want to obtain a commutative diagram

>
l
<>

u»

of formal schemes.

2. Then one proves that the formal solution in step (1) is in fact the completian afgebraic
lifting. In our problem, we need to show that the digram in step (1) arisesimpletion from

an algebraic solution oves:

In both steps of this program, as in the case with any deformation theoreticaapyp it is
hard to determine whether the relevant obstructions vanish. The thediigisreg only for the
cases where the cohomology groups, in which the obstructions suvenish. As expected

such cases are quite rare.

In this thesis, on one hand we work out the obstruction theory in favteicalses (i.e., cases
in which vanishing of the obstruction(s) can be verified readily). On therdilnd, we give

explicit constructions whenever possible by exploiting the geometry of tlea dibration.

12



k = 0 case is more or less covered in our M. Sc. Thesis ([13]). Here, vbere on the
techniques used in that thesis to give a more systematic and uniform treatresé résults
comprise part of Chapter Il of this thesis. The rest of Chapter Il confaggmentary results

concerning isotrivial fibrations and the fibrations on surfaces of Kadhmensiork = 1.

We do not have considerable progress related to the most interestingaesaly the fibra-
tions on surfaces of general type. We did not include the obvious apptisaof our basic
results (on isotrivial fibrations, canonical fibrations and albanesatidns) to surfaces of
general type. We quot in Chapter Il a fundamental “uniqguenessltr@hie to Szpiro) con-
cerning the lifting of families of curves of gengs> 2, again without elaborating on obvious

applications to surfaces of general type.
As expected, the problem of lifting fibrations on surfaces is related to ottexesting prob-
lems in geometry in positive characteristic. We will observe connections with

e the non-smoothness of the Picard schéta,

e the ordinariness of the fibratiod — Y,

e the existence of non-closed regulafteiential forms orx.

As a brief indication of these relations, we note that
1. The obstruction to projectivization /S vanishes ifPicy is smooth.

2. It is known that semi-stable (relatively) ordinary fibrations are isotrig{2B]). This fact

will be used in Chapter Il to prove an elementary lifting result for such titna.

3. The existence of non-closedfidrential forms is an obstruction to lifting to Wx(K) (as
follows from the work of Deligne-lllusie in [7]). In fact, exploiting this pregy, W. Lang

constructed examples of hyperelliptic surfaces which do not INV(&) but lift to W(k)(/P)
([14]).

13



RESULTS :

We state a sample of results. For the details and for some more fragmentdiy, resuefer

to Chapter II.
Proposition 1. Letr : X = P(E) — C be a ruled surface over a smooth projective curve C
and let R be a complete discrete valuation ring with residue field k. Then :

e r lifts to aP'-bundle over any curve/S lifting C.

e Any lifting X of X over S= S pe¢R), is aP*-bundle over a suitable lifting of C.
Proposition 2. Assume that p- 2 and let X be an Enriques surface with the double étale
coveringy : Y — X. Then:

e The natural fibration X5 P! lifts to a fibrationX — PL.

e The induced elliptic fibratiom o ¢ : Y — P! on the K3-surface Y lifts to a fibration

Y - IP’%.
Proposition 3. Let X — Y be a smooth fibration of the form
(Y x F)/G,

where F is the fiber and’Y— Y is a Galois cover with group G which is of the form described

in the Theorem of Green-Matignon (I, Theorem 16). Them X lifts to a fibration
X->VY

over S peN(K)[@)])-

Corollary. Let X be a hyperelliptic surface. And assume that there is no wild ramification

the action of G on E Then the natural fibrations
X = Ei/G,
i =1, 2lift over W(K) to give

X =(E1%s5E2)/G — &/G.
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CHAPTER 2

MAIN RESULTS

We first recall the basic results of deformation theory and the main examplek wan be
worked out by standard cohomological techniques. For the deformatamytand formal

geometry, we follow the treatment given in ([8]).

A. The Smooth Fibration Case

Theorem 12 ([8], Theorem 8.5.9). a.Let X and Y be schemes over a scheme S, with Y
smooth over S, and let:jXg — X be a closed subscheme defined by an ideal J of square

zero. Let g Xg — Y be an S-morphism. There is an obstruction

0(g. J) € H'(Xo, I ®0y, 9°Ovys)

whose vanishing is necessary angfisient for the existence of an S-morphismK — Y
extending g, i.e., such that b§ g. When ¢g, j) = 0, the set of extensions h of g is affirze
space under KXo, J ®9, g*Ov;s).

b. Leti: Sop — S be a thickening of order one defined by an ideal | of square zeddehixy

be a smooth &scheme. There is an obstruction

0(Xo, i) € H*(Xo, f31 ® Oxg)s,)

(where § : Xo — Sg is the structural morphism) whose vanishing is necessary affidisat
for the existence of a deformation X of ¥ver S (8.5.7). When(¥g,i) = 0, the set of
isomorphism classes of such deformations is fin@space under HXo, ol ® Oxy/s,), and
the group of automorphism of a fixed deformation is isomorphictXh f;1 ® Oxy/s,). In
particular, if Xg is étale over g, there exists a deformation X ofXver S, which is unique

up to a unique isomorphism.
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This theorem applied in case bf= m"/m"™*, wherem is the maximal ideal oR, together

with

Theorem 13 ([8], Corollary 8.5.6). Let X be a proper, flat adic locally noetherian formal
scheme ove$. Then :

a. If X/S is a proper scheme such th¥t= )?, X is flat over S. Moreover, ifHXo, Ox,) =0,
any line bundle b on X can be lifted to a line bundle L on X, which is unique (up to an
isomorphism) if H(Xo, Ox,) = 0.

b. If Xo is projective and an ample line bundlg &n X, can be lifted to a line bundl€ on X,
there exists a projective and flat schemgSXsuch thaiX = X and an ample line bundle L on

X such that_ = £.

leads to the following basic result

Theorem 14 ([8], Theorem 8.5.19 [SGAL, Ill 7.3]).Let A be a complete local noetherian
ring, with residue field k. Let & Sped, s= Spe&, and let ) be a projective and smooth

scheme over s satisfying

(i) H?(Xo, Oxy/s) = 0.

Then there exists a proper and smooth formal scheme (8%6.8)er S liting X. If, in

addition to (i), % satisfies
(it) H?(Xo, Ox,) = 0,

then there exists a projective and smooth scheme X over S suchsthaXpX

Example 2. (Ruled Surfaces)

The case of ruled surfaces, by the virtue of having a very simple gegneefisactically the
only class where we can answer completely all the questions posed in théduiction. We

will need the following results.

Theorem 15 ([8], Theorem 8.5.3).Suppose a smooth projective scheme X liftX tover
S pecR and lef be a locally free sheaf on X. We have :

i. If H2(X, End&)) = 0, thené lifts to a locally free sheaf oX.

ii. If furthermore H(X, End(&)) = 0, then this lifting is unique.

16



In particular,
Any locally free sheaf on a smooth proper curve /&, lifts to a locally free sheaf on any

given liftingC of C.

Lemma 1 ([13], Lemma 2).Let X be a lifting of X over a complete discrete valuation ring
and assume that the fibration: X — C satisfies one of the following conditions :

a. nr is the albanese fibration and I?gcs smooth or lifts with ramification index<e p — 1.

b. 7 is the n-th canonical fibration.

Thennr lifts to a fibrationX — C for a suitable liftingC of C.

Proof. a. We consider the dual of the reduced component of the Picard scR&Rg

containing the identity. Under the given hypothesis this is an abelian schehetha relative
albanese schenfdby,s of X/S. As the base scheme is Henselian, the poirX(ik) used in
defining the albanese map of the special fiber, lifts to a sectioX{$). Thus the relative

albanese ma — Alby/s is defined ovefs and gives the required cur¢

b. If the given fibration corresponds to the n-th canonical map, then cldalynage of the

mapX — IP’(:rs*(\/\/j?}’)S)) is a curveC; the result follows [

Proposition 1 ([13], Lemma 4). Letz : X = P(E) — C be a ruled surface over a smooth
projective curve C and let R be a complete discrete valuation ring with regieldek. Then :
a. r lifts to alP*-bundle over any curve/S lifting C.

b. Any lifting X of X over S= S pe¢R), is aP*-bundle over a suitable lifting of C.
Proof. a. Let X = IP(E) for a vector bundl& of rank 2 onC. For any lifting
C — S pe¢R)

of C, the obstruction to liftingS to some& on C vanishes. We lef be a lifting of& to C and
we take
X=PE) - C.

b. This follows from Lemma 1(a), becau¥e— C is the Albanese fibration aric = Jc is

smooth.[d

17



Other than this general obstruction theory, one has obstructions aniemgtie special ge-

ometry we are working in.

Itis well-known in characteristic zero thatifis a surface of general type, thef{X) < cx(X).
However, there are examples which show that this inequality does not holdmacteristic

p > 0. On the other hand, one has the following fact ([13], Lemma 1) :
Fact 1. If a surface X lifts to characteristic zero, then the Bogomolov inequality hotds.fo

Thus, by constructing fibered surfaces violating the Bogomolov-Miyaé@kainequality, one
can give examples of non-liftable surfaces. One such example was lgiv8zpiro in ([23],
p. 195). Starting with a non-isotrivial fibratioh : X — C with fiber genugy > 2, Szpiro
constructs a family of surfaces of general type with fixed positive se@irern class, and

with cf unbounded in the family. His construction is as follows.
Example 3. (Szpiro’s Example)

Let C be a curve of genug > 2, f : X — C be a smooth non-isotrivial fibration with fiber
genugg > 2. (Note : Such fibrations exist ([23], 3.1).)

Let F": C — C be then-th iteration of Frobenius o€, and letX(P) — C be the correspond-
ing pull back ofX — C.

Letd = ded f.Qx/c). (Note : It is known thatl is positive.)

Then one proves that

o (X)) = 4(g - 1)(q- 1) for eactn,

o (X)) = p'd +8(g-1)(- 1),

from which one concludes the% — o0, butc; is a fixed positive integef.]

Fact 2. If a surface X lifts to k) (even to W(K)), then X is free from certain pathologies,
e.g. Hodge-deRham spectral sequence degenerates. In partautagular forms on X are

closed.

W. Lang constructed examples of hyperelliptic surfaces which do not NMit(tg by verifying
that the corresponding Hodge-deRham spectral sequence dogsgeoierate ([14]). These

surfaces lift to characteristic zero if one permits (minimal) ramification,e.e.2.
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In cases where the lifting of the surface is possible only over ramified sxtenofW(K), it

is a challenging problem to show that the obstruction in
m
Hz(xa @X) ® W’

wherem is the maximal ideal oW(k), is non-zero, but is zero in

~

m
H?(X, 0x) ® —,
m

wherem is the maximal ideal ofN(Kk)[x]. (Note : The equation satisfied byover W(K)

determine®.)

Deformation theoretic approach to lifting fibrations on a surffoghich lifts as a surface,
is reduced to the problem of deforming the morphi¥m-~ Y inducing the fibration. In the

(rare) case of smooth fibratiogs X — Y the obstruction to a formal lifting is in

n

1 * m
H (X,g @Y)@W.

In this case too, as is illustrated in the following example, it is hard to deduceistergce of

liftings of fibrations by computing the obstructions.

Example 4. Letg : X — Y be a smooth geometrically connected fibration over an elliptic

curve. Therg*@y = g*Oy = Ox andH(X,0x) # 0;
dim(H1(X, Ox)) = dim(Lie(PicX)) > dim((PicX)req) = dim(Alby) > 1

since the bas¥ is an elliptic curve. Therefore, computing the obstruction to liftinig not

trivial even for ruled surfaces (by Proposition 1, we know that it Viaes3.(]

Example 5. One can write examples of abelian surfaces admitting fibrations over elliptic
curves, which lift as an abelian surface oWétk), but yet the fibration does not extend over
this lifting. To demonstrate this situation, we quot the following example giveniinvolsc.

Thesis ([13]).

Consider the fline “plane” curveC given by

y2 = x(x— 1)(x — 2)(x — 5)(x — 6) overS = S pe¢W(F7)).
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The complete nonsingular model is a curve of genus 2. We take the jacaibiemg7¢/s.
The generic fiber is a geometrically simple abelian surface (cf. [4], p), 18 the special

fiber is the jacobian of the curve birational to the plane curve

y2 = X(X— 1) (X — 2)(x + 2)(X + 1) (since 6= -1,5= -2 (mod 7))

which admits an elliptic fibration ([4], Thm. 14.1.1(iii)) over an elliptic culze[]

This result, clearly is in conformity with the obstruction theory for liftings. Thstouction
to infinitesimallifting of the fibration is in the cohomology group?(J, ®;/e) ® 7*(I) where
J is the special fiber off¢/s and®;/e is the relative tangent bundle. Sin®g,e = O; we
haveH?(J, @) = F7. Therefore, it is not surprising to find out that the obstruction does not

vanish.

Question. Can we write a non-isotrivismooth fibrationf : X — C of fiber genugy > 2

such thatX lifts, but f does not?

B. Non-smooth Fibrations

As a motivating example, we considéB-surfaces admitting fibrations; here we come across

an example of Problem 2 (in the Introduction) for non-smooth fibrations.
Example 6. (K3-Surfaces)

First step : Lifting X as a surface.

It is well known thatH?(X, @) = 0.

Therefore, X lifts as a formal scheme ([8], Theorem 8.5.19(a)). ButesH?(X,0x) =
HO(X,0x) = k, one can not deduce that the obstruction to lifting very ample bundles van-
ishes. However, it is true that lifts with no ramification ifchar(k) > 2 and toW(k)[ v/p] in

all cases ([6]).
Suppose the giveK 3-surface has a fibration

o X->Y
and letX — S pe¢R) be a lifting of X. Doesg lift?
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We first recall that any such fibration is elliptic with rational base curve :

Lemma 2 ([13], Lemma 5).A generically smooth fibration on a3surface X is necessarily

elliptic with baseP?.

Proof. SinceH?(X, Qx) = 0 in all characteristics, the baseBs. If F is the generic fiber, then

29(F) - 2= F.(Kx + F) = 0 sinceKx = 0. ThusF is an elliptic curve]

Restricting ourselves t& 3-surfaces which cover Enriques surfaces, we have the following
complete solution (given in our M. Sc. Thesis) to the lifting problem withoubntésy to

deformation theory.

Proposition 2. Assume that p- 2 and let X be an Enriques surface with the double étale

coveringy : Y — X. Then:

e The natural fibration X5 P! lifts to a fibrationX — PL.

e The induced elliptic fibratiom o ¢ : Y — P! on the K3-surface Y lifts to a fibration
Y - IP’%.

To prove Proposition 2, we will need the following fact describing the iedutbration on

the K3-surfacey.

Lemma 3. The fibrationz o ¢ : Y — P is not connected. After a suitable “Stein factoriza-

tion” we obtain a connected fibration ¥ P1,

Proof. We first verify thatr o ¢ is not connected, whege: Y — X is the “universal covering

map” andr : X — P! is the natural fibration :

y 5 X
l
]P)l

If 70y is connected, then we obtain an elliptic fibratiamy : Y — P! on theK3-surfaceY,
with precisely two double fibers, say ovpr andp,. Then by the canonical bundle formula
for elliptic fibrations, we getvy = (r0p)"(£) ® Ov(F; + F,) whereL is a line bundle oi* of
degreeded ) = x(Oy) — x(Op1) = 0, sincey(Oy) = 2. Thereforewy = OY(F'1 + F'2) # Ov;

contradiction sinc&y = 0. J
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Therefore, we need “Stein factorization” obtained from the doublerd®¥e— P, to get a
connected fibratioty — P (cf. [1], p.274, Remarks). (We note that this coveriig— P!
corresponds to the line bundi¥p; + p) = O(2) onPY).

Proof of Proposition 2.

First of all, it is known that an Enriques surfakeof classical type lifts to characteristic zero

if p> 2 ([5]), andY is the degree 2tale covering oK.

Now, let X be a lifting of X over a Henselian ring (for instand¥(k)). To prove that the
fibrationz : X — P! lifts to a fibrationX — Pé, we construci?(&E) over S for a suitable rank

2 locally free sheaf and the mapX' — P(E) lifting .

The mapX — P! corresponds to the linear system determined by the line bundie
7*(0Op1(1)) = O(2Fi'), where 2:; is one of the double fibers of lying over py, p» € P
SinceEnd(L) = Ox, H?(X, End(L)) = H2(X,0x) = 0 andH(X, End(L)) = H(X,0x) = 0,
becauseX is an Enriques surface. Therefore by ([8], Thm.8.%.3fts to a unique line bun-
dle £ on X. Taking& = ¢.(L£) we obtainX — P(&) (corresponding to the natural map
©*(p+(L)) = L — 0) which liftsz : X — P,

Then one checks that the induced fibration on the generic &hés connected and has pre-
cisely two double fibers; in fact these double fibers lie over the geneii¢spaf the sections

s : S — P(&) which lift the pointspy, p. € PY(K) in the special fiber (Henselian base!).

And to prove that the induced elliptic fibratidh— P! on theK 3-surfaceY lifts to a fibration

Y — PL, we first note that the covering — X lifts to give Y — X, because the base scheme
is Henselian. Then the composite mdp— X — P(E) induces an elliptic fibration which
we proved is not connected. The “Stein factorizatidgh™ P(E) obtained from the double
coverP(E) — P(&) which ramifies precisely oves; U s, lifts the elliptic fibration on the
K3-surfacey. O
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Next, still working with the fibrations oK 3-surfaces, we tak¥ to be a generalized Kummer
surface which is the minimal desingularizationEf x E,/G, the quotient by a finite group
of the product of the elliptic curveg;, E>. Katsura proves in ([11], Theorem 3.7) that if

char(k) # 2, 3,5, thenG is isomorphic to one of the following groups :

cyclic group of order 23,4,5,6,8,10,12,
binary dihedral groug: 2,2,n >, n = 2,3,4,5, 6,
G =1 binary tetrahedral group 2,3, 3 >,

binary octahedral groug 2,3,4 >,

binary icosahedral group 2,3,5 >.
Now, X admits a natural fibration
X - E1/G = PL.

And the corresponding lifting problem is solved if we can lift the actioiGain E; x E» to
an action or&; x &, and then resolve the singularities éf(x £,)/G. Thus the problem is

related to the following equivariant lifting problem.

Problem G. Does the pair4, G) whereZ is a variety ands is a group of automorphisms of

Zlift ?

Remark 3. Comparing the list given by Katsura with the list of groupgor (generalized)
Kummer surfaces ichar(k) = 0, and applying Deligne’s result on lifting 3-surfaces, one
can compile a list of examples for lifting Kummer surfaces to ob(egtative) Kummer sur-

faces

Example 7. (Hyperelliptic and Quasi-hyperelliptic Surfaces)

Fibrations on hyperelliptic surfaces and on quasi-hyperelliptic surfacesh the other two
examples of the equivariant lifting problem. The results concerning therbiliptic surfaces
is in fact a special case of the problem of lifting isotrivial fibrations. Wetfrecall the

definition of an isotrivial fibration.

Definition 8. A fibration X — Y is isotrivial if after a (finite) étale extensiory’ — Y, the

surfaceX’ = X xy Y’ is birational to a trivial fibratiorY” x F.
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In caseY’ — Y is Galois with groups, the following result of Green-Matignon ([9]), which
is a fundamental result in this direction, can be used to prove the existénigngs of

fibrations.

Theorem 16 ([9], Theorem 2) Let C/k be a smooth integral proper curve of genus g(C).
Let G be a finite subgroup @éfuty(C). Let f: C —» C/G := D be a G-Galois cover of smooth
integral proper curves over k. Assume that the inertia groups &eeqgyclic with a< 2 and
(e, p) = 1. Then f can be lifted over R W(K)[{(2)] as a G-Galois cover of smooth integral

proper R-curves, wheigy) is a primitive g-root of unity.
And applying this theorem, we obtain the following elementary result :
Proposition 3. Let X— Y be a smooth fibration of the form

(Y X F)/G,

where F is the fiber and’Y= Y is a Galois cover with group G which is of the form described

in the above theorem. Then-% Y lifts to a fibration
XY
over S peN(K)[{(2)])-
Proof. Action of G lifts to curvesY’, ¥ overS pe€¢W(K)[{(2)]) which gives a lifting
X=Y'"xF)G->Y'/GC
of X - Y.O

In particular, this result applies to certain hyperelliptic surfages (E1 x E»)/G ( see [2]
for all possible types and the action @fon E; andE,) and we obtain the following result

concerning the lifting of an hyperelliptic surface :

Corollary. Let X be a hyperelliptic surface. And assume that there is no wild ramification

the action of G on E Then the natural fibrations
X - Ei/G,
i =1,2lift over W(K) to give
X = (&1 x5 &)/G - &/G.
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Proof. Since there is no ramification in the action®bn E1, the pair €;, G) lifts over W(k)
([21]). The second pairH,, G) lifts over W(K) if there is no wild ramification in the action of

GonkEk ([21]). O
Remark 4.

a. For the corollary, we may replace the Theorem of Green-Matignon byaeveesult given
in ([20]).

b. In characteristics 2 and 3 we have quasi-hyperelliptic surfaces whicknew to lift
in certain cases (I, Corollary 2). On a quasi hyperelliptic surface we hao fibrations
X = Co/a(G) = Pt andX — E1/G = E whereE = Alb(X). It follows from Lemma 1(a) that

the second fibration lifts for surfaces indicated in (I, Corollary 2).

c. W. Lang’s example ([14]) is a hyperelliptic surface in characterigtic2 and withG = 7Z,

which acts on the second component with wild ramification. Lang provesxiutes not
lift over W(K), but lifts over an extension of degree 2\W{k). Thus, for lifting the fibrations
in this example we obtain the same conclusion as in the preceding paragnphfter we

allow ramification of degree 2 (minimum possible !).

We note that this example of W. Lang is related to non-smoothneB&gf Picx = ay is a
non-smooth group scheme which lifts over a discrete valuatiorRioigesidue characteristic

2ifandonlyif2¢ m?, wherem is the maximal ideal oR.

Next result on lifting smooth isotrivial fibrations, makes use of the conogptdinariness

for relative curves.

Let X — Y be a smooth family of curves over a field of characteriptand consideX(P) =

X xg Y whereF : Y — Y is the (absolute) Frobenius.

Definition 9. X — Y is ordinary (relative to Y)if the Y-group schemé\ := Ker(Jxm,y —

Jx,y) is locally isomorphic tm%, whereg is the fiber genus oK — .

Lemma4. Letyp : X — Y be a smooth family of ordinary curves of genus 8. Thengy lifts

to W(K).

Proof. We recall the proof of ([22], Theorem 5).
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Y = Isom_groups(N,y% xY) is a finiteétale covering an& xy Y = Y’ x F.

Lifting Y” andF to W(K), we obtainy” xw ¥ of Y” x F lifting the group actiorY” — Y. [J

Remark 5. It follows from the isotriviality of smooth families of ordinary curves ([2Z}e-

orem 5) that the fibrations on the surfaces in Szpiro’s example ([28p)@mn-ordinary.

Now we return to non-smooth fibrations.

In the case of non-smooth fibrations, one has to replace the tangene tynthe tangent

complex. In fact, one works with the cotangent complex and derives Hogfog result.

Theorem 17 ([8], Theorem 8.5.31). aLet X and Y be schemes over a scheme S, and let
j : Xo — X be a closed subscheme defined by an ideal J of square zero.: D&t & Y be

an S-morphism. There is an obstruction

0(g. j) € Ext'(g"Lys, J)

whose vanishing is necessary angisient for the existence of an S-morphism K — Y
extending g, i.e., such that Bj g. When €g, j) = 0O, the set of extensions h of g is affirme
space undeExt’(g*Lys, J) = Hom(g"2y o, J).

b. Leti: Sop — S be a thickening of ordel defined by an ideal | of square zero, and lgt X

be a flat $-scheme. There is an obstruction
0(Xo, 1) € EXt(Lxy/s0s T3 1)

(where § : Xg — Sg is the structural morphism) whose vanishing is necessary affidisat

for the existence of a deformation X of @ver S (8.5.7). When(¥o, i) = 0, the set of isomor-
phism classes of such deformations is gima space undegxt!(Ly, s, fi1), and the group of
automorphisms of a fixed deformation is isomorphiEX«?(on/SO, fg1) = Hom(QiO/SO, f31).
lllusie applies his theory to prove that singular curves which are completséations can

be lifted ([8]). However, if the singularities are restricted suitably, omeprave the existence

of liftings (to singularS-schemes) without applying the obstruction theory. We work out the

following example.
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Example 8. (Lifting by Rigidification)
Details and the relative version will appear elsewhere.

Let X be a smooth projective curve, add be its Jacobian.
Let Xsing be the curve obtained by glueings, .., pm} € X, andeSing be its Jacobian. Note
that this set-up corresponds to a rigidificationf®y [[]'S pe¢k); and we have the following

exact sequence

0 - G - Ixeng = Ix — 0 (%)

)
Pic®(X, R)

Let X be a lifting of X to W(k) and 7 x,w) be its Jacobian.

Note that
i. SinceR = || S peck); is reduced, is multiplicative, i.e., does not have unipotent part.

ii. R has a trivial lifingR = [[ S pe¢W(K));.

Now, let

be the set of sectiongS peck)i) = pi.

Since the base scheme is Henselian &ngl smooth over the basé lifts to
- f
R — X

N v
S pe¢W(K))

We glueX along f(R); the resulting non-smooth schemging is a lifting of Xsjng and Pic?(Sing

is the jacobian of the curv&sing overS pe¢W(K)). As a by-product one obtains a lifting
0-GL— PiC?\’sing - 9Jx—0
of (*). O
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Now we return to the application of lllusie’s theory to lifting non-smooth fibragjas given

in Szpiro’s article ([23]).

Theorem 18 ([23], Theorem 2.3).Let R be a complete discrete valuation ring, andzqdet
C —» S = Spe€R) be a smooth projective curve. Let ® C be a flat divisor over S. Let
fs : X = Cg be a non-isotrivial morphism from a smooth surface X over k, the residiae fi
of R into the special fiber £of 7.
Suppose that the generic fiber @fig projective, smooth, and geometrically connected curve
of genus ¢> 2. Suppose in addition that singular fibers gfafe semi-stable, and lie oversD
(the special fiber of D).
Then there exist at most one smooth surfcaver S, and a morphism:fX — C such that

a. on the special fiber over S, f ig, f

b. f is smooth outside D.

Theorem 19 ([23], Corollary 2, page 184)A non-isotrivialsmooth fibration X— C with

fiber genus @ 2 has at most one lifting — C over a given liftingC of C.

Finally, we consider fibrations on properly elliptic surfa¢gs.e., surfaces witlk(X) = 1. It
is known that the elliptic fibration on suchis unique and that it arises from theth canonical

map, for everyn > 14 (I, Theorem 8).

If X lifts to a surfaceX over a complete discrete valuation rilRy then then-th canonical
fibration lifts (Lemma 1(b)). This applies in particular to elliptic surfaces whiehcaiotients
by étale group actions on produ@sx E of curves (I). However, we do not know whether all

elliptic surfaces lift to characteristic zero.

An elliptic surfaceX may admit a fibration (necessarily non-elliptic) which does not arise
from then-th canonical map. We give an elementary example of a family of elliptic sigface

(with varying base curv& and fiberF) with liftable non-elliptic fibration.

Example 9. We work inchar(k) # 2, we take an elliptic curv&, and a smooth projective

curveF with g(F) > 2 which is a double covering of an elliptic curt® = F/Z,.

We consider a subgroup c E(k), G = Z, and we letX = (F x E)/Z,, where the action of

7 is defined componentwise.
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Then we have the following diagram :

FXxE — (FxE)/Zx=X -5 F/Z,=E,

lm

E/G=F

In this diagramy; : X — E’ is a smooth genus 2 fibration and : X — Ej is an elliptic
fibration with 2 double fibersFi, F2. Thereforewx = wx/e, = Ox(F1 + F2). And this

implies thatr; is the canonical map.
Now, F, E lift with Z»-action (sincep # 2). Therefore,
X =(F x&)/Zy — S pecR)

lifts X, and

X = Fll

&/ 7>

lift the fibrationsm, andmr,. O
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