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ABSTRACT 

 

 

DISASSEMBLY LINE BALANCING PROBLEM WITH FIXED NUMBER 
OF WORKSTATIONS AND FINITE SUPPLY 

 

 

 

Göksoy, Eda 

 

    M.S., Department of Industrial Engineering 

Supervisor : Prof. Dr. Meral Azizoğlu 

Co-Supervisor : Prof. Dr. Sencer Yeralan 

 

June 2010, 76 pages 

 

In this thesis, we consider a Disassembly Line Balancing Problem (DLBP) with 

fixed number of workstations. We aim to maximize the total value of the 

recovered parts.  

 

We assume that there is a limited supply for the products to be disassembled. 

Different components can be obtained by disassembling different units of the 

product. Our aim is to assign the tasks to the workstations of the disassembly line 

so as to maximize the total value of the recovered parts. We present several upper 

and one lower bounding procedure. The results of our computational study have 

revealed the satisfactory behavior of our bounding mechanisms. 

 

 

Keywords: Disassembly Process, Line Balancing, Linear Programming 

Relaxation
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ÖZ 

 

 

SABĐT SAYIDA ĐSTASYON VE SONLU ARZ ĐÇEREN DEMONTAJ HAT 

DENGELEME PROBLEMĐ 

 

 

 

Göksoy, Eda 

 

                     Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi  : Prof. Dr. Meral Azizoğlu 

                     Ortak Tez Yöneticisi  : Prof. Dr. Sencer Yeralan 

 

Haziran 2010, 76 Sayfa 

 

Bu çalışmada, sabit sayıda istasyon içeren Demontaj Hattı Dengeleme 

Problemi ele alınmıştır. Amacımız, geri kazandırılan parçaların toplam 

değerini ençoklamaktır. 

 

Demonte edilecek ürünlerin arzının sınırlı olduğunu varsaydık. Ürünün 

değişik birimlerinin demonte edilmesiyle değişik parçalar elde 

edilebilmektedir. Amacımız, işleri demontaj hattındaki istasyonlara, geri 

kazandırılan parçaların toplam değerini ençoklayacak şekilde, atamaktır. 

Birçok üst ve bir alt sınır prosedürleri sunduk. Deneysel sonuçlarımız 

sınırlama mekanizmalarımızın tatmin edici davrandığını göstermiştir. 

 

 

Anahtar Kelimeler: Demontaj Süreci, Hat Dengeleme, Doğrusal Programlama 

Gevşetmesi
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CHAPTER 1 

CHAPTERS 

 

1. INTRODUCTION 

 

 

 

In recent years, the term “sustainability” has become quite a buzzword. Its 

meaning has been somewhat ambiguous, or perhaps, dependent on the context. 

The recent concerns regarding such global catastrophic phenomena as climate 

change or wide ranging financial insolvencies have given impetus to the “green 

push.” In some sense, sustainability is recognized to have three components: 

environmental, economic and social. However, from an engineering perspective, 

there seems to be two important aspects of sustainability. First, there is good 

reason to develop new disruptive technologies that would enable society to reduce 

its environmental footprint. This means that the same products and services may 

be provided with fewer demands on the environment. Such a reduction on the use 

of environmental resources is sought through advanced technologies. However, 

until such disruptive technologies take hold, one also considers conservation as an 

interim path to environmental footprint reduction. These measures usually  

revolve around reuse and recycling. Our study here is in line with conservation. 

Not only do we advocate reuse, but also facilitate the operationally most 

productive and profitable way to reuse. The latter emphasis is due to the 

recognition that industry will more easily embrace greener practices if it also 

provides reasonable rates of financial returns. In short, our work bodes well with 

contemporary urges to become greener, while maintaining the industrial 

sensitivities to financial concerns. 

 

The importance of environmental issues has been recognized by many 

manufacturers and product designers. This recognition is triggered by the new and
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more rigid environmental regulations and increased customer awareness towards 

environmental issues. Moreover the recent advances in technology have made it 

possible to manufacture the products that meet the environmental standards and 

are easy to reuse after consumed by the customer. 

 

The environmental regulations, customer awareness and recent advances in 

technology all together have shifted the product recovery process from the act of 

disposing to the act of reusing and recycling. 

 

Recycling preserves the material content of the discarded (used) products via 

some manufacturing and disassembly operations. Remanufacturing, on the other 

hand, keeps the functional content of the used products and improves their quality 

up to a desired usable level via some manufacturing and disassembly operations. 

 

Disassembly operations involve the separation of the reusable parts from the 

discarded products. Those parts are either subject to remanufacturing operations 

or sold to suppliers. 

 

The disassembly operations are usually performed on a disassembly line that 

consists of a number of serial workstations. The first workstation takes the 

product to be disassembled and the parts are disconnected on different 

workstations. A cycle terminates, that is the product leaves the line, whenever all 

its required parts are disassembled. 

 

A disassembly line balancing problem finds the set of tasks assigned to each 

workstation for each product to be disassembled. The problem is critical in 

minimizing the use of valuable resources (such as time and money) invested in 

disassembly, and maximizing the level of automation of the disassembly process 

and the quality of the parts or materials recovered (McGovern and Gupta, 2007). 

 

In this thesis, we consider a Disassembly Line Balancing Problem (DLBP) with a 

fixed number of workstations so as to maximize the value of recovered parts. We 
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assume there is a limited supply for the products to be disassembled. Different 

components can be obtained by disassembling different units of the product. Our 

aim is to assign the tasks to the workstations of the disassembly line so as to 

maximize the total value of the recovered parts. We assume each part has a unit 

profit defined and a specified demand, hence it may require many products to be 

disassembled. 

 

To the best of our knowledge, our study is the first attempt to tackle DLBP with 

profit maximization and with a finite supply and a fixed number of workstations. 

The rest of the thesis is organized as follows: In Chapter 2, we review the 

disassembly process and literature on disassembly lines. We define our problem 

in Chapter 3. The chapter includes two alternate mathematical formulations of the 

disassembly line balancing problem and settles the complexity of the problem. In 

Chapter 4, we discuss the linear programming (LP) relaxation together with the 

mechanisms to strengthen it. We present LP-based heuristic procedures in 

Chapter 5. Our computational experiment is discussed in Chapter 6. We conclude 

in Chapter 7, by stating our main findings and pointing out future research 

directions.
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CHAPTER 2 

 

 

2. THE DISASSEMBLY PROCESS AND RELATED 

LITERATURE  

 

 

 

In this chapter, we first define disassembly process, and then discuss assembly 

line balancing and disassembly line balancing problems. Finally we review the 

previous studies on the Disassembly Line Balancing Problems. 

 

2.1. Disassembly Process 

 

Güngör and Gupta (2001) define disassembly as a systematic process of 

separating a product into its constituent parts, components, subassemblies or other 

groupings.  

 

As mentioned by Brennan et al.(1994), disassembly covers both economic and 

environmental concerns such as discontinued products (leading excess inventory 

of undesirable assemblies), reduction in lead time (as disassembled products can 

satisfy some scarce products or some that are urgent  in demand), forced 

disassembly (disassembly is imposed by governments due to  recycling 

regulations). 

 

Lambert (2002) emphasizes that disassembly process does not imply reverse 

assembly process.  

 

In general, disassembly process is divided into two as partial disassembly and 

complete disassembly. In the first one, the product is not fully disassembled while
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the product is fully disassembled in the latter. Incomplete disassembly can be 

favored en route to minimizing excess materials by considering both economic 

and environmental aspects. 

 

Operations planning issues in assembly environments are much well known than 

the disassembly environments as disassembly systems are recognized later than 

the assembly systems. Brennan et al. (1994) state that even the assembly and 

disassembly systems have similarities, disassembly causes many problems in 

operations management. Some operational impacts of incorporating disassembly 

are as discussed below: 

• Impact on Product Cost: Labor, energy and overheads might be 

incurred more during disassembly rising the product costs. 

• Impact on Financial Decisions: Longer planning horizon is needed 

due to the increased uncertainties of disassembly process, thus 

capital budgeting process might be more difficult. 

• Impact on Capacity and Storage Requirements: Due to the 

uncertainties in product life cycles, forecasting the demand of 

disassembled products might be hard and lead to variations. 

Variation in demand forecasts might increase capacity and storage 

requirements. 

 

2.2. Assembly Lines versus Disassembly Lines 

 

Assembly lines are special flow-line production systems which are typical in the 

industrial production of high quantity standardized commodities. In the literature 

there exist several classification schemes for the assembly lines. According to the 

nature of the products, operation modes and nature of operation times, the 

following classifications are made: 

• Nature of Products 

� Single-Model Lines 

� Mixed-Model Lines 

� Multi-Model Lines 
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• Operation Mode 

� Paced Lines (Transfers between the workstations are 

synchronous) 

� Unpaced Lines (Transfers between the workstations are not 

synchronized) 

• Nature of Operation Times 

� Deterministic Operation Times (Known certainly) 

� Stochastic Operation Times (Known by probability 

function) 

� Dynamic Operation Times (Subject to change) 

� Static Operation Times (Not subject to change) 

 

There are two types of assembly line balancing problems: Type I and Type II.  

• Type I problems assume a fixed cycle time while minimizing number of 

stations.  

• Type II problems assume a fixed and given stations while minimizing the 

cycle time. 

 

For the details of the assembly lines and assembly line balancing problems, one 

may refer to the textbook by Scholl (1999) and a review paper by Baybars (1986). 

 

To have a better understanding of the disassembly lines, we discuss the 

similarities and differences between assembly lines and disassembly lines. 

Brennan et al. (1994) study the assembly lines and disassembly lines both from 

technical and operational points of view and present a comparison as shown in 

Table 2.1.  
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Table 2.1: The Comparison of the operational and technical considerations 

of the assembly and disassembly lines. 

Line Considerations Assembly Line Disassembly Line 

Demand Dependent Dependent 

Demand Sources Single Multiple 

Demanded Entity End Product 
Individual 

parts/subassemblies 

Precedence relationships Yes Yes 

Complexity related to 

precedence relationships 

High(includes physical and 

functional precedence constraints) 

Moderate (mostly 

physical constraints) 

Uncertainty related to quality 

of parts 
Low High 

Uncertainty related to 

quantity of parts 
Low High 

Uncertainty related to WSs 

and the material handling 

system 

Low to moderate High 

Reliability of the WSs and 

the material handling system 
High Low 

Multiple products Yes Yes 

Flow process Convergent Divergent 

Line flexibility Low to moderate High 

Layout alternatives Multiple Multiple 

Complexity of performance 

measures 
Moderate High 

Known performance 

measures 
Numerous N/A 

Required line robustness Moderate High 

Complexity of “between 

workstation inventory” 

handling 

Moderate High 

Known techniques for line 

optimization 
Numerous None 

Problem complexity NP-hard NP-hard 
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2.3. Literature on Disassembly Line Balancing Problems 

 

Güngör and Gupta (2002)’s study introduces the disassembly line balancing 

problem. They discuss the importance of disassembly lines in product recovery, 

various complications to create an efficient disassembly line. Some considerations 

discussed in the study are stated as below: 

• Product Considerations: Characteristic of a disassembly line depends on 

the products’ variety disassembled on the same line. Disassembly line 

may deal with only one type of product or may disassemble a product 

family. The line may also receive several types of products.  

• Line Considerations: Layouts inspired from the assembly lines and line 

speed are the most important considerations. The lines may be configured 

as serial, parallel, circular, U-shaped, cellular and two-sided lines. As 

operation mode, paced and unpaced transfers can be used. 

• Part Considerations: There exists a serious uncertainty in the quality of 

the products disassembled. Proper or improper usage of the parts 

determines the defective or non-defective parts. The quantity of products 

disassembled differs according to their upgrading or downgrading during 

their usage. 

• Operational Considerations: Disassembly task times may be considered 

as deterministic, stochastic and dynamic. These task times may vary 

depending on several factors that are related on the condition of the 

product and state of the disassembly workstation (worker). Furthermore, 

tasks may behave differently in environments having product-defects. The 

actions that are taken under such situations include; leaving the 

workstation early, skipping to the next workstation(s), disappearing from 

the line, revisiting to a preceding workstation or splitting into two or more 

(exploding). 

• Demand Considerations: Three demand types may exist: The demand 

may be for one part only (single-part disassembly), or for multiple parts 

(partial disassembly) or demand for all parts (complete disassembly).  
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• Assignment Considerations: There are some restrictions limiting the 

assignment of tasks to the workstations. Some of these restrictions include 

assigning to a specific workstation for minimizing distance traveled or 

grouping tasks requiring similar operating conditions, availability of 

special machining and tooling at certain workstations, minimizing the 

disassembly direction changes and number of tool changes. 

• Other Considerations: There are additional uncertainty factors related 

with the reliability of the workstations. Some parts may cause pollution or 

nuisance increasing the chance of breakdowns or downtimes of 

workstations. 

 

Altekin et al. (2008) study the Disassembly Line Balancing Problem (DLBP) 

under partial disassembly. Their objective is to maximize total profit obtained 

from disassembling a single product.  Their assumptions are as follows: 

• Single type of product is disassembled on a paced line. 

• There is an infinite supply of used product. 

• All parameters are deterministic and static. 

• A disassembly task cannot be split among two or more stations. 

• A disassembly task may result in removal of one or more parts. 

• A station cost is incurred for opening and operating a station per unit time. 

 

They formulate their problem as a mixed integer linear program. Their model 

determines; the parts whose demand is satisfied to generate revenue, the tasks that 

will release selected parts, the number of opened stations, cycle time and feasible 

assignment of selected tasks to the stations considering the precedence relations. 

Using the linear programming relaxation of this formulation, they find upper and 

lower bounds on the total profit value. The results of their computational analysis 

on ten basic problems show that their bounds provide near optimal solutions for 

small sized problems and are capable of handling larger sized problems with up to 

320 disassembly tasks in reasonable time. 
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McGovern and Gupta (2007) solve the DLBP using exhaustive search and a 

combinatorial optimization methodology. A new method for quantifying the level 

of balancing is proposed. Their method minimizes the number of workstations 

while balancing the idle times between the workstations. Exhaustive search works 

well enough in obtaining optimal solutions for small sized instances; however its 

exponential time complexity limits its application on the large sized instances. 

They also develop a genetic algorithm that involves a randomly generated initial 

population with cross-over, mutation and fitness competition performed over 

many generations.  The algorithm finds optimal or near-optimal solutions, for the 

large sized problem instances. 

 

Güngör and Gupta (2002) study the DLBP under complete disassembly. They 

consider the utilization of the resources efficiently while satisfying the demand. 

Their concerns are finding the minimum number of the disassembly workstations 

and improving the layout and material handling features of the disassembly line. 

They propose a heuristic to solve the DLBP under the following assumptions: 

• The disassembly line is paced. 

• One type of product is disassembled and each product have identical 

configuration. 

• The supply of products is infinite. 

• The complete disassembly is considered. 

• All parameters are deterministic and static. 

 

They use the disassembly of a PC consisting of eight tasks and eight parts, to 

illustrate their priority-rule-based and station oriented heuristic.  

 

Güngör and Gupta (2001) discuss the DLBP in the presence of task failures. They 

assume if a task fails, none of its successors can be performed and discuss the 

complications of such failures on the disassembly line. Their problem is to assign 

tasks to workstations such that the effect of the defective parts on the disassembly 

line is minimized. They state their basic assumptions as: 

• One type of product is disassembled. 
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• All parameters are deterministic and static. 

• Probabilities of parts being defective are constant and known. 

 

They propose a 5-steps solution approach. Firstly, an Incomplete State Network 

(ISN) representing all feasible states and their partial relationships are generated. 

Then all possible relationships are developed among the states of ISN, which 

results in complete ISN called State Network (SN). There are edges in SN which 

implies relations between the states of SN. In the third step, the idle times and 

weights of task assignments for each edge are calculated to generate the Weighted 

State Network (WSN). In the fourth step shortest directed paths (SDP) between 

the source and the final nodes of WSN are found by the Dijkstra’s shortest path 

algorithm. SDP is defined as a task assignment resulting in the minimum idle time 

on the line. In the final step, the cost of the complications for each alternative is 

calculated and the alternative with minimum complication cost is selected. 

 

Our disassembly line balancing problem differs from the previous ones in the 

sense that we consider fixed number of workstations and finite supply of used 

products.
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CHAPTER 3 

 

 

3. PROBLEM DEFINITION 

 

 

 

We consider a disassembly line balancing model so as to maximize the total net 

revenue. We assume the supply, i.e., the number of the product to be 

disassembled is known and each unit of the product will be disassembled in one 

period. 

 

The tasks that release parts are referred to as part releasing tasks. All tasks have 

costs, the part releasing tasks, simply called parts, have revenues as well. Our 

problem is to assign the tasks to the workstations of the disassembly line for each 

disassembled product, i.e., in each period. 

 

We make the following additional assumptions: 

• The workstations are already mounted and there are K workstations. 

• All workstations are equipped identically and can perform all tasks at the 

same pace. 

• There is a single disassembly product with finite supply rate, S. 

• All units of the product contain all disassembly parts with no 

differentiation. 

• All parameters, i.e., task times, part demands, costs are known with 

certainty, i.e., deterministic. 

• The parameters are not subject to any change, i.e., the system is static. 

• The cycle time, i.e., the time can be allocated to each workstation, is 

deterministic and static. 
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• Each task is specified by its cost and processing time. The part releasing 

tasks have additional parameter, i.e., revenues. 

• Each period is specified by a single unit disassembly, hence there are S 

periods. 

• S units of the product are sufficient for all demand, hence no shortages are 

allowed. We also refer to each period as a cycle. Hence there are S cycles. 

• The tasks are not indivisible, i.e., they should be assigned to exactly one 

workstation. 

• There is a partial disassembly, and there can be different disassembled 

parts in different periods. 

 

In Section 3.1 we explain the precedence relations that are used in disassembly 

systems, Section 3.2 defines our mathematical models. We set the complexity of 

the problem in Section 3.3. In Section 3.4 we provide an example problem to 

clarify our decisions. 

 

3.1. Precedence Relations 

 

There are basically 2 types of precedence relations in disassembly networks. 

These are “AND” type precedence relations and “OR” type precedence relations. 

 

i.  “AND” type precedence relations 

 

“AND” type precedence relations between two tasks imply that one task can not 

start before the other finishes. The following figure illustrates ‘AND’ type 

precedence relations: 
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Figure 3.1: “AND” type precedence relations 

 

According to the above figure, tasks a, b, c and d are predecessors of task e. 

These four tasks should be complete before task e starts. Task d is the immediate 

predecessor of task e as there is no task in between. 

 

If task i is predecessor/immediate predecessor of task j then task j is 

successor/immediate successor of task i. Accordingly task e is successor of all 

other tasks and immediate successor of task d. Task d is the immediate successor 

of tasks a, b and c. 

 

For example, in personal computer (PC) disassembly (Gupta, 2002) shown in 

Figure 3.5, both tasks 2, 3, 5 and 6 should be performed to start task 8. 

 

ii.  “OR” type precedence relations  

 

“OR” type relations are specific to the disassembly networks. There are two types 

of “OR” relations. 

 

� “OR” type predecessor precedence relations (POR) 

“POR” relations imply that at least one of the tasks in a specified set should be 

complete before another task begins. Figure 3.2 illustrates “POR” type 

precedence relations.  

 

 c 

a 

e  d b 
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Figure 3.2:  “POR” type precedence relations 

 

According to the above figure, at least one of the tasks in set {f, g, h}  should be 

complete before task i begins. 

 

For example, in radio disassembly (Lambert, 1997) shown in Figure 5.5, either 

Task 3 or Task 4 should be disassembled to perform Task 31. 

 

�  “OR” type successor precedence relations (SOR) 

“SOR” relations imply that at most one of the tasks in a specified set can be 

performed after one task completes. Figure 3 illustrates SOR type precedence 

relations. 

 

Figure 3.3:  “SOR” type precedence relations 

 

In figure 3, the tasks in set {k, l, m} are OR successors of task j. Accordingly after 

completing task j at most one of the tasks in the set can be performed.  

 

 h 

f 

 i g 
POR 

SOR 
j 

k 

l 

m 
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For example in ball-point pen disassembly (Lambert, 1997) with “SOR” 

relationships, shown in Figure 3.4, either Task 2 or Task 3 can be performed after 

Task 1. 

 

 

Figure 3.4:  Precedence diagram of the Lambert’s ball-point pen example (22 

tasks) with “SOR” type precedence relations 

 

In our model, we consider “AND” and “POR” type precedence relations. We 

assume our precedence network is deterministic and is not subject to any change 

(static). 

 

3.2. Mathematical Model 

 

In this section, we present our models that use the assumptions discussed and 

precedence network with “AND” and “POR” relations. We develop two models. 

Model I is a classical presentation whereas Model II is based on some optimality 

properties. Our initial experiments reveal that Model I is more efficient, hence 

used to find optimal solutions. 

 

For both models we use the following parameters to define the problem size. 

M: number of all tasks 

N: number of part releasing tasks 

K: number of disassembly products or periods 

S:  number of workstations 

 



  

17 
 

The task, period and workstation related indices are: 

i: index of tasks , i=1,2,…,M 

k index of workstations, k=1,2,…,K 

t: index of periods, t=1,2,…,S 

 

The following parameters and decision variables are valid for both models. 

 

Parameters: 

CT: maximum cycle time allowed for any of the workstations 

ti: processing time of task i  

di: demand of part that is released by task i 

K: maximum number of workstations that can be used 

Pi: net revenue of task i (“revenue obtained by releasing a part”-“cost of task”)  

     = ri-ci  where ri is the revenue due to task i and ci is the cost of task i ( ri = 0 if 

task i does not release a part). 

PANDi  : index set of AND predecessors of task i 

PORi     : index set of OR predecessors of task i 

 

Decision Variables: 

Our decisions are assignments of tasks to workstations in each period. These 

assignments are explained by the following decision variables: 





=
  otherwise0

 tperiodin k on  workstati toassigned is i task if 1,

 ,

 
iktx  

 

The following constraints are valid for both models. Model II uses some 

additional constraints. 

 

Constraints: 

The demand of the part releasing tasks should be satisfied. 

  i                        x Đ

K

1k

s

1t
ikt ∀≥∑∑

= =

d    (c1)  

The cycle time limit should not be exceeded. 
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       tk,                         CTxt  
m

1i
ikti ∀≤∑

=

           (c2)   

The “AND” precedence relations should be satisfied. This constraint allows 

assignment of task i to station k if and only if all its “AND” predecessors are 

assigned to stations 1 through k.  

    PAND(i)   l  t,k,i,                             xx
k

1k
lkt

k

1k
ikt ∈∀∑≤∑

==
   (c3) 

The “POR” precedence relations should be satisfied. This constraint allows the 

assignment of task i to station k if and only if at least one of “POR” predecessors 

of task i is assigned to stations 1 through k. 

      (c4) 

 

A task can be assigned to at most one station in each period. 

               ti,                          x
K

1k
ikt ∀≤∑

=

1                          (c5) 

Binary variables showing the assignment of each task to the workstations in each 

period should be nonnegative. 

    tk,i,                   0x ikt ∀≥ integer and  (c6) 

Note that      x ikt 1≤  is satisfied by (c5) 

 

The objective function tries to maximize the sum of net revenue obtained by each 

task done and is expressed as:  

∑ ∑∑
= = =

m

1i

K

1k

s

1t
iktiXPMax  

 

The Complete Disassembly Line Balancing model is: 

∑ ∑∑
= = =

m

1i

K

1k

s

1t
iktiXPMax  

Subject to (c1),(c2),(c3),(c4), (c5), (c6). 

 

            tk,i,                      xx
K

1h b
bhtikt ∀≤∑ ∑

= ∈ )(iPOR
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3.1.2 Model II 

 

If there was no specified demand for any part in an optimal solution the same 

parts are produced in all cycles, i.e. periods hence the problem reduces to a single 

period problem so as to maximize the total profit. 

 

We implement this idea, to produce our second model. We use two sub-models 

(Model A and Model B) to find an optimal solution. 

Model A: Finds the minimum number of periods to satisfy all ∑
i

id  units. 

Model B: Finds the maximum profit for a single period, zero demand problem. 

 

Formally Model A can be stated as follows: 

 

Decision Variables: 





=
  otherwise0

 tperiodin  production a is  thereif 1,

 ,

 
tY  

iktX  ’s are defined in the original model. 

 

Objective Function: 

∑∑∑∑
= = ==

−
m

1i

K

1k

s

1t
iktiP

s

1t
t XP Y  Min ε  

 

Constraints: 

  Y*      X t

m

1i

K

1k
ikt µ≤∑∑

= =

 

 

 µ  is a big number and equals to the multiplication of task numbers and 

workstation numbers i. e.   µ = M*K. Note  µ is an upper bound on the optimal 

 X
m

1i

K

1k
ikt∑∑

= =
 value. All other constraints are same with Model I.  
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The complete Model A is: 

 

∑∑∑∑
= = ==

−
m

1i

K

1k

s

1t
iktiP

s

1t
t XP Y  Min ε  

 

Subject to 

  i                        x Đ

K

1k

s

1t
ikt ∀≥∑∑

= =

d                   (c1)   

       tk,                         CTxt  
m

1i
ikti ∀≤∑

=

                         (c2)   

    PAND(i)   l  t,k,i,                            xx
k

1k
lkt

k

1k
ikt ∈∀≤∑∑

==

   (c3) 

              (c4) 

 

               ti,                          x
K

1k
ikt ∀≤∑

=

1                                       (c5) 

 

  Y*      X t

m

1i

K

1k
ikt µ≤∑∑

= =

           t∀                                              (c6) 

    tk,i,                   0x ikt ∀≥ integer and    (c7)         

 

The objective function primarily minimizes the number of periods. Among the 

minimum number of periods solutions, it selects the one with the maximum 

profit. Production excess of demand is desirable, if it does not increase the 

number of periods. 

 

The additional constraint activates Yt, hence sets it to 1, if there is at least once 

task assigned to any workstation in period t. Note that     X
m

1i

K

1k
ikt 1≥∑ ∑

= =
is upper 

bounded by  µ . If      X
m

1i

K

1k
ikt 1≥∑ ∑

= =
  then Yt=1 otherwise Yt will be zero as we are 

            tk,i,                      xx
K

1h b
bhtikt ∀≤∑ ∑

= ∈ )(iPOR
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minimizing ∑
t

tY . The total number of periods is ∑
t

tY , with at least one 

assignment. 

 

The magnitude of  Pε  is important in the sense that it should not increase the 

minimum ∑
t

tY  en route to increasing total profit.  Pε  should be set small enough 

such that; 

maxmin ** PT   -  1  Y    PT  Y P
1t

tP
1t

t εε +≤− ∑∑
==

     (1) 

Where minPT = minimum possible total profit value i.e., a lower bound on the 

total profit. maxPT = maximum possible total profit value. 

Hence, any solution with worse ∑
t

tY  value, like 1+∑
t

tY , should not be favored 

even if it leads to the maximum improvement in the total profit value. 

 

Expression (1) follows: 

   1    PT  PT PP ≤− minmax ** εε          (2) 

 

Hence,   
PT PT 

   P
minmax

1

−
≤ε  

 ∑≤
i

iidP  *   T PTmax   (When all products are produced in all periods with zero 

cost) 

  0 PT ≥min  (When nothing is produced) 

Hence,   

dP  *  T

   

i
ii

P

∑
=

1
ε to guarantee that among the minimum number of 

periods solutions we select the maximum profit solution. - 

 

We let the objective function of Model A be Z1, such that. 
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∑ ∑∑−=
= = =

m

1i

K

1k

s

1t
iktiP21 XP ZZ ε   where  ∑=

t
t2 YZ      . 

 

Model A guarantees to satisfy all demand in Z2 periods. In remaining (T- Z2) 

periods, the repetitive cycles will be observed. To find an optimal solution in any 

cycle we solve Model B. 

 

Model B 

 

We drop subscript t from our decision variable iktX , as we are considering a single 

period. Our decision variable is ikX where  





=
  otherwise0

k on   workstati toassigned is i task if 1,

 ,

 
ikx  

Our objective function is  ∑∑
= =

=
m

1i

K

1k
iki3 XPZ ax  M . We drop the demand constraint 

as we assume zero demand. 

 

To find an optimal solution, we solve Models A and B and use the following 

solution: 

First Z2  periods iktX  ‘s are found by Model A. In the last (T- Z2) periods, 

ikikt XX  =  are found by Model B. Hence, the optimal objective function value Z 

becomes; 

 

32P12 Z*)Z -(T     / )Z-ZZ += ε(  

 

where P12  / )Z-Z ε(  is the optimal solution of the first Z2  periods and Z3  is the 

optimal solution for a single period problem with zero demand. 

 

In case an upper bound on the number of periods to satisfy all demand is known, 

i.e., UB (T1) one may solve the original problem using UB (T1), in place of T. 
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Then a single period model can be used to find the schedule for the rest of the 

cycles. Formally, let 

 

ZA = maximum profit for the original problem with UB (T1) periods 

ZB = maximum profit for a single period problem with zero demand. 

 

Then Z= ZA+ ( T – UB(T1) )* ZB  is the optimal objective function value. 

 

If UB (T1) is small then ZA can be found much easier than solving the original 

problem. ZB is found very easy as it corresponds to a single period problem. 

 

3.3. Complexity 

 

Our DLBP is analogous to the multiple knapsack problems when there is a single 

period, the demands of the tasks are zero and there are no precedence relations. 

The analogy can be stated as follows: 

 

The multiple knapsack problem (our problem) selects the items (tasks) of known 

weights (task times) and values (revenues) and assigns them to the knapsacks 

(workstations) of known capacities (cycle times) so as to maximize total value 

(revenue). 

 

The multiple knapsack problem is NP-hard in the strong sense (Martello and 

Toth, 1990), so is our problem with additional complexity brought by multiple 

periods, part demands and precedence relations. 

 

3.4. An Example Problem 

 

Gupta (2002) presents a disassembly of a simple personal computer (PC) whose 

disassembly consists of eight tasks and eight parts. We use this example to 

illustrate the solutions of our models.   
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Tasks, related disassembled parts and parameters are shown in the table below: 

 

Table 3.1: Parts and related parameters of the Example Problem  

Task # Definition Times Demands Net Revenue 

1 Removal of the top cover of the PC  12 1 21 

2 Removal of the floppy drive 14 0 -15 

3 Removal of the hard drive 12 4 14 

4 Removal of the back plane 7 3 20 

5 Removal of PCI cards 10 1 13 

6 Removal of two RAM modules 2 2 3 

7 Removal of the power unit 15 1 10 

8 Removal of the motherboard 12 0 -14 

 

The parameters are generated by our data generation scheme discussed in Chapter 

5. We assume there are 4 workstations and 6 periods, i.e., disassembly products. 

We find cycle as CT= 1.5*  
 

t
 i











 ∑
K

. 

The precedence network is given below: 

 

1

8

5

2

6

3

7 4POR

1

8

5

2

6

3

7 4POR

 

Figure 3.5: Precedence diagram of the Gupta (2002) PC Example 

 

Table 3.2 tabulates the iktX  values of a feasible solution and assignments of tasks 

to the workstations in each period. The table only includes the iktX  values with 

value “1”. The other  iktX  values are “0”. 
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Table 3.2: Feasible solution for the Example Problem 

Periods/Stations 1 2 3 4 

1 1,2 5 3,6,8 4,7 

2     

3  1 2 2 

4 1,2,6  2,5,8 4,7 

5 1,2,6 5 2,7,8 4 

6     

 

The total net revenue of the above feasible solution is “176”. 

 

Table 3.3 reports the iktX  values (the ones at value “1”) of an optimal solution 

and their assignmnets. 

 

Table 3.3: Optimal solution for the Example Problem 

Periods/Stations 1 2 3 4 

1 1,3 2,5,6 8 4,7 

2 1,3 2,5,6 7,8 4 

3 1,3 2,5,6 7,8 4 

4 1,3 2,5,6 7,8 4 

5 1,3 2,5,6 7,8 4 

6 1,3 2,5,6 7,8 4 

 

The total net revenue of the optimal solution is “312”. The optimal solution is 

found by Model I. Note that the optimal solution has identical assignments for 

many periods. This is driving force for developing Model II. We now illustrate 

the solution with Model II. 

 

The Pε  value to be used by Model A is found as follows: 

  
dP  *  T

   

i
ii

P

∑
=

1
ε = 0.003 
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∑ ∑∑−=
= = =

m

1i

K

1k

s

1t
iktiP21 XP ZZ ε   where  ∑=

t
t2 YZ      . 

 

The optimal ∑
t

tY  value is found as “4” where the tasks are assigned to the 

workstations in periods 1, 3, 4 and 6. Periods 2 and 5 is not utilized due to 

minimization. Hence, Z2=4 , Z1=3.376 and ∑∑∑
= = =

m

1i

K

1k

s

1t
iktiP XPε =208. The optimal 

solution for Model A is given in Table 3.4. 

 

Table 3.4: Optimal solution for Model A for the Example Problem 

Periods/Stations 1 2 3 4 

1 1,2,6 3,5 8 4,7 

2     

3 1,3,6 2,5 8 4,7 

4 1,5 2,3 6,7,8 4 

5     

6 1,2,6 3 5,8 4,7 

 

Model B solves a single period with maximization profit and sets all demands to 

“0”. 

∑∑=
= =

m

1i

K

1k
iki3 XPZ ax  M  is found as “52”. 

Note that the optimal objective function value Z can be written as; 

32P12 Z*)Z -(T     / )Z-ZZ += ε(    

Thus, 

Z =  (4-3.376) / 0.003 + (6-4)*52 = 312 

Note that 312 is the objective function value obtained from from Model I with 

T=6.
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CHAPTER 4 

 

 

4. THE DLBP PROBLEM 

 

 

 

In this chapter we present our upper bounding procedures and the heuristic 

procedure that provides a lower bound. 

 

4.1. Upper Bounds 

 

We develop three upper bounds on the optimal value of the DLBP. These are 

namely Upper Bound 1 (UB1), Upper Bound 2 (UB2) and Upper Bound 3 (UB3). 

UB1 is obtained by relaxing the integrality constraints of Model I. UB2 improves 

UB1 through valid cuts. UB3 takes its motivation from Model II. 

 

4.1.1. Upper Bound 1 (UB1) 

 

An optimal solution to any relaxation provides an upper bound on the optimal 

objective function value of our maximization problem. 

 

Model I is solved to optimality by relaxing the integrality constraints on the 

binary iktX  variables. The resulting optimal objective function value provides an 

upper bound on the optimal total net revenue. 

 

The Linear Programming Relaxation (LPR) of the original problem is stated 

below: 
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∑∑∑
= = =

=
m

1i

K

1k

s

1t
iktiLP XPZ Max   

 

Subject to 

  i                        x Đ

K

1k

s

1t
ikt ∀≥∑∑

= =

d                   (c1)   

       tk,                         CTxt  
m

1i
ikti ∀≤∑

=

                         (c2)   

    PAND(i)   l  t,k,i,                            xx
K

1k
lkt

K

1k
ikt ∈∀≤∑∑

==

   (c3) 

              (c4) 

 

               ti,                          x
K

1k
ikt ∀≤∑

=

1                                       (c5) 

 

    tk,i,                           0x ikt ∀≥                                       (c6) 

 

Note that the only difference between the original model and its LP Relaxation is 

the integrality requirement on iktX  values. This follows, ZLP is an upper bound on 

the optimal objective function value Z*. 

 

Optimal solution to the LPR of the problem discussed in Chapter 3 (Gupta’s PC 

example) is as follows: 

X441= X442= X443= X444= X445= X446= X621= X624= X625= X626= X741= X742= X743= 

X744= X745= X746= 1 

X114= X214= X514= X633= X642=0.03, X332= X832 =0.14, X341= X841= X541=0.15, 

X331= X531=0.35, X342= X842=0.37, X124= X224= X524=0.47,  

X122= X123= X222= X223= X322= X323= X522= X523= X822= X823=0.48, 

X115=X116=X121=X131=X134=X135=X136=X215=X216=X221=X231=X234=X235=X236= 

            tk,i,                      xx
K

1h b
bhtikt ∀≤∑ ∑

= ∈ )(iPOR
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X315=X316=X321=X324= X334= X335= X336=X516=X521=X525=X534=X535=X536=X824= 

X825=X826 = X834= X835=X836= 0.50, X132= X133= X232= X233= X333= X532= X533= 

X833= 0.52, X831= 0.85, X622= X623= 0.97 

 

All other iktX  s are “0” and ZLP = 312. Note that, out of 87 variables, 16 of them 

is found as “1” and 71 of them is found fractional by the optimal LP Relaxation. 

 

4.1.2. Upper Bound 2 (UB2) 

 

UB2 is found by adding valid cuts to the LP relaxed problem, i.e., UB1. 

 

The valid cuts are found by investigating the properties of all or at least one of the 

optimal solutions that may not be satisfied by the optimal LP Relaxation. 

 

� Fixing the Demands (CUT1) 

 

Theorem 1: There exists an optimal solution in which dj units of part j is released 

in the first dj periods. 

Proof: Assume an optimal solution in which the first dj units are produced in 

period t1, t2, …., tdj. (ti is the period where ith unit of part j is released). If the task 

contents of any two periods are changed, i.e., Xikta is set to Xiktb and Xiktb is set to 

Xikta for all i and tk for any two periods ta and tb, then the optimal objective 

function value is not affected. Assume an optimal solution in which part j is 

released in periods ta+1, ta+2,….ta+dj. Setting Xjkr = Xjk(ta+r) for all j, r<= dj and 

Xjk(ta+r) = Xjkr does not change the objective function value. This follows, there is 

an optimal solution in which dj units of part j is released in the first dj periods. �  

 

By using the result of Theorem 1, one can fix a single task j to first dj periods. En 

route to maximizing the number of periods fixed to a particular task, we select the 

task having the maximum demand. Hence we fix part releasing task r such that dr 

=Max {dj} to the first dr periods. 
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The equation set that supports Theorem1 is stated as below: 

                    x r
1t

rkt
1k

d
drK

=∑∑
==

 

As rktx =0 or 1, there can be at most one release for task r in each period. By the 

above relation, we guarantee that there is exactly one release for task r in each 

period t, where 1 ≤  t ≤  dr. 

 

We add Cut1 to the relaxed problem and compare objective function value and 

number of fractional values with and without Cut1 (Pure LPR) 

 

Table 4.1: The comparison of Pure LPR and LPR with CUT1 

 # of fractions CPU Time 

Pure_LPR 73 0.06 

LPR(Cut1) 60 0.05 

 

As can be seen from the LPR solution, Task 3 is split into “14” among “4” 

workstations. X3kt variables have the following fractional values:  

X332=0.14, X341=0.15, X331=0.35, X342=0.37, X322= X323=0.48, X315=X316=X321 

X324= X334= X335= X336= 0.50, X333= 0.52. 

By adding Cut1, the following X3kt values are obtained: 

X311=0.91, X312=0.86, X313=0.64, X314=0.75, X321=0.09, X322=0.14, X333 = 0.36, 

X334 = 0.25, X325 = X336 = 1.  

X3kt variables have a total of 8 fractional values, and two variables at “1”. 

 

Fixing demand decreases the fractional values and decreases the CPU time, as it 

eliminates many alternate optimal solutions. 

 

� Lower Bound on workstation positions (CUT2) 

 

Cut2 provides a lower bound on the workstation number that can reside any 

defined task. 
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Theorem 2: In all optimal solutions, task j cannot be assigned to workstations 

1,2,..,EJ-1 where  
CT 

 t t  
Pj  i

Ji

J


















+

=
∑
∈

)(

E  and Pj is the set of “AND” predecessors. 

Proof: Task j cannot start before its predecessors hence should wait at least 

∑
∈Pj  i

i  t  units to start and ∑
∈

+
Pj  i

Ji t t   units to complete. When task splitting is 

allowed and all other tasks are ignored, ∑
∈

+
Pj  i

Ji t t   units require 

 CT  t t  
Pj  i

Ji 







+∑

∈

/)( workstations. When task splitting is not allowed and other 

tasks are considered  CT  t t  
Pj  i

Ji 







+∑

∈

/)( becomes a lower bound on the earliest 

workstation for task j.  �⁭  

 

The following constraint set is used to support Theorem 2. 

 

j                X
1 - Ej

 k   

s

  t  
jkt ∀=∑∑

= =

0
1 1

  

 

By the above equation, we guarantee that task j is not assigned to workstations 

1,2,..,EJ-1  in any period. 

 

The theorem gives a lower bound on the station number that resides task j. It 

ignores “POR” relations. We modify this lower bound to include the “POR” 

relations while preserving the validity of the bound. In doing so, starting from the 

source node we replace the “POR” relations with “AND” relations and take the 

minimum task time of a “POR” relation as the task time of the “AND” relation. 

As minimum times are used in place of exact times, the sum of the processing 
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time  t   t  
  i

i
PORj  i

i ∑∑
∈∈

≥
PORj

 where PORj  is the PORj relation replaced by AND 

relation using minimum task time. 

 

The modification of Theorem 2 with  PORj  inclusion replaces Ej by; 
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computations: 

 

 

 

 

 

 

 

 

Figure 4.1: An example illustrating Theorem 2 

 

PORb defined by {3, 4} is replaced by bPOR  with task time Min {t3, t4}.  

( t1 + t2 ) is the minimum total processing load to start task A (SA) and Min {t3,t4}+ 

t5  is the minimum total processing load to start task B (SB). This follows; 

Min {(t1 + t2+ tA), (min {t3, t4} + t5 + tB ) } is the minimum total processing load to 

start task j. Note that  
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We use the below network to illustrate Theorem 2. The tasks are given on the 

network. We use K=4, CT=63, T=80. Ej value is calculated as follows for task 

13; 

 

 

 

Figure 4.2: Precedence diagram of the Lambert’s ball-point pen example (22 

tasks) 
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Hence, task 13 can not be assigned to the first workstation in any period. 

 

The optimal LPR assigns task 13 to workstation “1” at 62 periods. There are 53, 

50 and 39 fractional variables for the assignment of task 13 to workstations “2”, 

“3”, and “4” respectively. Hence, there are a total of 142 fractional variables. 

 

After introducing Cut2 to the LPR, there is no assignment to workstation “1”. 

The number of fractional variables for workstations “2”, “3”, and “4” become 

28, 26 and 40 respectively. 
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Note that the number of fractional variables is reduced to “94” from “142” for 

task 13.  

 

The objective function value and number of fractional variables of LPR with Cut2 

and Pure_LPR are compared, and tabulated below. 

 

Table 4.2: The comparison of Pure LPR and LPR with CUT2 

 
Objective function 

value 
# of fractions CPU Time 

Pure_LPR 26.796 3.643 1.25 

LPR(Cut2) 26.076 1.702 1.04 

 

Note from the table that by Cut2, the number of fractional variables is almost 

hauled and the CPU time is reduced to 1.04 seconds from 1.25 seconds. 

 

� Projecting Demands (CUT3) 

 

The demand figures are related only to the part releasing tasks. The optimal 

solution guarantees that the total number of part releasing tasks assigned is never 

greater than the number of its predecessor tasks assigned. However the optimal 

LP relaxation may not satisfy this property due to the allowed partial assignments. 

Recognizing this fact, we project the demands of the part releasing tasks to all 

other tasks, and impose the following constraints. 

 

i. “AND” precedence reations 

 

Consider the following network in Figure 4.3: 
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Figure 4.3: Projecting Demands for “AND” precedence relations 

 

The total number of task 1 assigned should not be smaller than the total amount of 

task 2 and task 3 assigned. Hence the following relation should hold: 

     x , xx 
K

k

s

t
3kt

K

k

s

t
2kt

K

k

s

t
1kt









≥ ∑∑∑∑∑∑ max  

In general;     x x 
K

k

s

t
jkt

S(i)  j

K

k

s

t
ikt









≥ ∑∑∑∑
∈
max where S(i) is the set of immediate 
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The relation can be linearized as; S(i)  j       xx 
K
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ii. “POR” precedence reations 

 

Consider the following network: 

 

 

 

 

 

Figure 4.4: Projecting Demands for “POR” precedence relations 

 

Note that Task 3 requires the assignment of task 1 or task 2. This follows the total 

amount of task 1 and task 2 assigned should not be less than the number of task 3 

assigned. This relation is imposed by the following constraint: 

 

1 

3 

2 

3 

2 
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The following network explains more complex relations: 

 

 

 

 

 

 

 

Figure 4.5: Projecting Demands for complex relations 

 

Constraint sets used for this complex network are as follows: 
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We use the network given in Figure 4.2 with K=4, CT=63, T=80 to illustrate the 

demand projecting cuts. As it can be seen from the figure, Task 22 is the 

immediate predecessor of Tasks 5, 6 and 7. Hence, the constraints added to the 

model for Task 22 are:  

4 

2 

1 

POR 

3 

5 

6 POR 
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The optimal LP relaxation does not satisfy this property due to the allowed partial 

assignments. The solutions are  

20 =∑∑
K

k

s

t
22ktx  , 80 =∑∑
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t
5ktx , 80 =∑∑
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K
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s

t
7ktx  

and the added constraint sets are violated. 

 

The optimal LPR solution with Cut3 gives the following result; 

80 =∑∑
K

k

s

t
22ktx  , 80 =∑∑

K
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s

t
5ktx , 80 =∑∑

K

k

s

t
6ktx , 80 =∑∑

K

k

s

t
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satisfying the related constraints added and the precedence relationships. 

 

By using cut3, one can guarantee that the total amount of tasks assigned is never 

greater than the amount of its predecessor tasks assigned. The objective function 

value and number of fractional variables of LPR with cut3 and Pure_LPR are 

compared and tabulated below: 

 

Table 4.3: The comparison of Pure LPR and LPR with CUT3 

 
Objective function 

value 
# of fractions CPU Time 

Pure_LPR 26.796 3.643 1.25 

LPR(Cut3) 26.076 1.979 1.20 

 

Note from the table that, the number of fractional variables reduces to “1.979” 

from “8.643”. Moreover the CPU time reduces to 1.20 from 1.25 and there is a 

slight improvement in the objective function value. 
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� Existence of Feasible Solution-Ranking Heuristic (CUT4) 

 

Our last cut uses the results of the following two theorems. 

 

Theorem 3: If there exists a feasible schedule that processes all tasks that are not 

successors of task j and task j in r workstations then there exists an optimal 

schedule in which task j is processed in workstations “1” through “r”.  

 

Proof: Assume task j is assigned to workstation “k” such that k ≤  r, and 

workstations r+1 through K process the successors of task j. Taking task j from 

workstation k and placing to workstation “l” such that l ≥  r+1 cannot increase 

the total revenue as such a replacement cannot allow more task assignments. This 

is due to the fact that all tasks in workstations r+1 through K are successors of 

task j, hence cannot be processed in workstations 1 through r, once task j is 

processed later. This follows, there exists an optimal solution in which task j is 

processed in the first r workstations. � 

 

Theorem 4: If there exists a feasible schedule that processes all tasks that are not 

predecessors of task j and task j in the last r workstations, then there exists an 

optimal schedule in which task j is processed in workstations “K-r+1” through 

“K”. 

 

Proof: Assume task j is assigned to workstation “k” such that k ≥  K-r+1 and 

workstations 1 through K-r process the predecessors of task j. Taking task j from 

workstation k and placing it to workstation “l” such that  l ≤K- r cannot increase 

the total revenue as such a replacement cannot allow more task assignments. This 

is due to the fact that all tasks in workstations 1 through K-r are predecessors of 

task j, hence cannot be processed in workstations K-r+1  through K, once task j is 

processed earlier. This follows, there exists an optimal solution in which task j is 

processed in the last r workstations. � 
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To find feasible solutions to implement the theorems, we use the following 

heuristic procedure: 

 

Let S be the set of tasks that should be assigned to K workstations. Order the tasks 

in set S according to their nondecreasing order of task times. Take the tasks from 

the order starting from the first feasible task. A task is feasible if its inclusion to 

the current workstation does not violate the precedence relations and cycle time 

constraints. If no such task exists close the current workstation and open a new 

one. Stop when all jobs in set S is assigned. Let num(S) be the resulting number of 

workstations.  

 

To implement Theorem 3 we set S=S1 where S1 is the set of all tasks except the 

successors of task j. To implement Theorem 4 we set S=S2 where S2 is the set of 

all tasks except the predecessors of task j. After num(S1) and num(S2) are 

obtained, implementing the heuristic for sets S1 and S2, we include one of the 

following two cuts: 

 

i.               j                     0      X
t

K

1   num(s1)k
jkt ∀=∑ ∑

+=

 

This cut supports the result of Theorem 3. 

 

ii.               j                     0      X
t

num(s2)-K

1 k
jkt ∀=∑ ∑

=
 

This cut supports the result of Theorem 4. 

 

i. and ii. cannot be included to the LPR simultaneously as they may lead to 

infeasible solution. To obtain a feasible solution, we select one of them using the 

following rule: 

Rule: Use “i” if  K-num(S1) ≥  K-num(S2), else use “ii”. 

 

The idea behind the rule is to prevent assignments to more workstations, hence 

use stronger cut. 
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We illustrate the Cut4 through our previous network with same data. The tasks in 

the problem are ranked as in the table below: 

 

Table 4.4: Related data for CUT 4  

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Tasks 1 3 4 2 12 11 20 16 21 22 6 5 8 10 7 14 13 17 9 15 19 18 

Task times 13 1 6 7 12 14 18 18 16 19 5 7 8 3 15 4 17 15 17 11 4 19 

K-num(S1) 3 3 3 3 1 1 1 1 0 1 3 3 1 1 0 2 0 0 0 2 2 2 

K-num(S2) 0 0 0 0 2 2 2 2 3 2 0 0 2 2 3 1 2 3 3 0 1 1 

Num selected 3 3 3 3 2 2 2 2 3 2 3 3 2 2 3 2 2 3 3 2 2 2 

 

The tasks assigned to the workstations via first and second rules are shown in the 

table 4.5.  

 

Table 4.5: Assignment of tasks according to procedures 

Stations 1 2 3 4 

1st  rule_Tasks 1,2,3,4,11,12 16,20,21,22 5,6,7,8,10,13,14 9,15,17,18,19 

2nd  rule_Tasks 1,2,3,4,11,12,20 16,21,22 5,6,7,8,10,13,14,17 9,15,18,19 

 

Note that the information given in the table entails that;  

� Tasks cannot be assigned after workstation k in any period t where k is the 

workstation that task i is assigned by the 1st rule.  

� Tasks cannot be assigned before the workstation k in any period t where k 

is the workstation that task i is assigned by the 2nd rule.  

 

For example, task 19 cannot be assigned to workstations “1”, “2” and “3” with 

both rules (even the selected rule is the 2nd one). The resulting solution for task 19 

satisfies the constraint; 

                        0   X  
3

19_k_t =∑ ∑
=t k 1

 

and assigns task 19 to only workstation “4” such as; X19_4_49=X19_4_65=1. 

 

The solution of Pure LP gives the assignment of task 19 as; X19_1_1=0.75, 

X19_1_34=0.25, X19_4_73=1, hence the condition is not satisfied. 
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The optimal solution after adding Cut4 is shown in the table below: 

 

Table 4.6:The comparison of Pure LPR and LPR with CUT4 

 
Objective function 

value 
# of fractions CPU Time 

Pure_LPR 26.796 3.643 1.25 

LPR(Cut4) 26.076 326 0.50 

 

Note that the number of fractions and CPU time decrease drastically by Cut4.  

 

UB2 is the total revenue returned by LP after introducing all four cuts. 

 

4.1.3. Upper Bound 3 (UB3) 

 

To obtain UB3, we use the idea used to construct Model II. In Model A in place of 

minimizing number of periods, we obtain an estimate on the minimum number of 

periods to satisfy all demand. Our aim here is to get rid of the Yt binary variables. 

 

Firstly, a lower bound is found on the minimum number of periods (LB (T)) and it 

is used “as is” or increased iteratively till a feasible solution is reached. Model B 

is used without any change. 

 

We find (LB (T)) through the following theorem: 

 

Theorem 5: The demand cannot be satisfied in less than LB (T) periods where 
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 LB(T)  and Jd new  is the projected demand of task j. 

Proof:  The total processing requirement to produce all demand is 

 d p 
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Jj∑ new* where Jd new  is the projected demand of task j. In each period 
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there are K workstations and each workstation is available for CT time units, 

hence a total processing availability by a single period is K*CT time units. 





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  is the number of periods to satisfy all demand if task splitting 

between the periods and workstations are allowed. As no task splitting is allowed 
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  is a lower bound on the number of periods (LB (T)). �  

 

We use the network in Figure 4.2 with K=4 and CT=63 to illustrate the 

implementation of Theorem 3. LB (T) is found as “3” by the help of the 

Theorem3. We find dnew values as shown in the table below: 

 

Table 4.7: Projected demands of tasks (dnew) 

Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

dnew ( j) 4 4 4 4 4 4 4 3 4 4 4 4 4 3 2 1 0 4 2 1 0 4 

Task times 13 7 1 6 7 5 15 8 17 3 14 12 17 4 11 18 15 19 4 18 16 19 

 

We obtain LB (T) =  
63*4 

 4*19...4*74*13





 +++
 =3, using Theorem 3. 

Then model with cuts (cut1, cut2, cut3 and cut4) is solved by setting T to “3”. 

With T=3 we could not obtain a feasible solution, then we set T=4. With T=4 

there is no feasible solution as well. Hence with T=5 LP model with cuts is solved 

and a feasible solution is obtained. This means that the minimum number of 

periods to satisfy all demand is “5” periods (UB (T) = 5). 

Finally the maximizing revenue model with cuts is solved for a single period, i.e., 

T=1, and all zero demand. The resulting solutions are shown below: 
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Table 4.8: Optimal solutions with T=5 and T=1  

 
Objective function 

value 
CPU Time 

T=5 1.626 0.05 

T=1 326 0.03 

 

An upper bound on the number of periods to satisfy all demand is known, i.e., UB 

(T) =5 and the problem is solved using UB (T)=5, in place of T=80. Then a single 

period model can be used to find the schedule for all remaining T – UB (T) = 80-5 

= 75 periods. Let 

 

ZA = maximum revenue for the original LP problem with UB (T) =5 periods 

ZB = maximum revenue for a single period problem with zero demand. (T =1) 

 

Then UB3= ZA+ (T – UB (T))* ZB  is the optimal objective function value. This 

follows;  

UB3= 1.626 + (80 – 5)* 326 =26.076 

 

Note that UB2 = UB3. Since UB (T) =5 is small, ZA can be found much easier than 

solving the problem with T=80. ZB is found very easy as it considers a single 

period problem. Hence one should expect to obtain UB3 much quicker than UB2. 

We obtain UB2 and UB3 values for our example in 0.45 and 0.08 seconds 

respectively. 

 

4.2. Lower Bound 

 

The satisfactory behavior of UB3 in terms of its solution time and number of 

fractions it produces motivated us to produce a feasible solution around UB3 

solution. We use UB3 as a starting solution en route to finding a feasible solution 

to our problem. 

 

Our lower bound first solves UB3, then fixes its variables that are assigned to “1” 

and obtains a reduced problem. The reduced problem has only the partially 
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assigned or unassigned tasks of UB3 solution. As the partial assignments are quite 

low compared to the original variables, the reduced problem is very small in size. 

As our Mixed Integer Linear Programming (MILP) can handle small-sized 

problems very quickly, we prefer to use it to find an optimal solution for not 

completely assigned tasks. 

 

After fixing the variables to “1”, the resulting solution by MILP may be infeasible 

due to the following two reasons: 

 

i. The cycle time constraint cannot be satisfied 

ii. The precedence relations cannot be satisfied 

 

If the cycle time constraint cannot be satisfied, then by increasing the number of 

periods, a feasible assignment can be reached. However if the precedence 

relations cannot be satisfied, there is no way to reach to a feasible solution 

without changing the fixed tasks. 

 

If (i) holds then we increase the number of periods one by one until we obtain a 

feasible solution. If (ii) holds the tasks whose fixings lead to violation of the 

precedence relations, are set to zero, and the MILP is resolved. Below we give the 

stepwise description of our lower bounding procedure: 

 

Step1: Solve the LP Relaxation with cuts using minimum number of periods. Fix 

the variables that are assigned to “1” in the relaxed solution. 

 

Step2: Solve the MILP for the unassigned tasks considering the assignments 

made in Step1. If the solution is feasible, STOP. 

 

Step3: If the infeasibility is caused by the cycle time constraints, let T=T+1, go to 

Step1. If the infeasibility is caused by the precedence relations, unassign the 

related tasks, go to step2. 
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After finding the feasible solution with a feasible period number, namely UB(T), 

MILP is solved to maximize revenue with zero demand and a single period. Let, 

 

ZA = maximum revenue resulting by feasible solution of MILP with UB(T). 

ZB = maximum revenue with MILP for a single period problem with zero 

demand. (T =1) 

 

Then LB= ZA+ (T – UB (T))* ZB  is the optimal objective function value for lower 

bound problem. 

 

To illustrate our lower bound, we use a numerical example with 8 tasks and we 

assume K=4, CT=31 and T=6. The precedence network is given in Figure 3.5 

and related parameters are tabulated in Table 3.1. For UB3; LB (T) and UB (T) 

values are found as “2” and “5” respectively. Then the following steps of the 

lower bound are executed; 

 

Step1: LP Relaxation with cuts and T=UB (T) =5 is solved and the variables that 

receive value “1” in the solution are fixed. 

Step2: The MILP for the unassigned tasks considering the assignments made in 

Step1 is solved. Variables (tasks) that are assigned to “1” in the relaxed solution 

are shown in Table 4.9 and the loads of the workstations are shown in Table 4.10. 

The fractional variables are; X311= X312= X313= X314=0.64, X315=0.75, X321= 

X322= X323= X324=0.36, X325=0.25.  

 

Table 4.9: Tasks that are assigned to “1” in the relaxed problem (T=5) 

Periods/Stations 1 2 3 4 

1 1,5,6 2,8   4,7 

2 1,5,6 2,8   4,7 

3 1,5,6 2,8   4,7 

4 1,5,6 2,8   4,7 

5 1,5 2,6,8   4,7 
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Table 4.10: The loads of the workstations after full assignments (T=5) 

Periods/Stations 1 2 3 4 

1 24 26   22 

2 24 26   22 

3 24 26   22 

4 24 26   22 

5 22 28   22 

 

The resulting MILP solution for the unassigned tasks is infeasible due to the 

precedence relations. Note that the returned solution has an empty workstation 

and this implies that the infeasibility is caused by the precedence relations. Then 

we continued with step 3. Task 8 is fully assigned to workstation 2 in every period 

by the help of fractional assignments of its immediate predecessors 3 and 6. 

When these fractional assignments are ignored and only the variables that are 

assigned to “1” are considered for the MILP, the remaining cycle time for the 

predecessors of task 8 is inadequate. Lets consider first period; as CT=31 and 

remaining cycle time for workstation 1 = 31-24= 7, remaining cycle time for 

workstation 2 = 31-26= 5, task 3 having processing time “12” cannot be 

assigned to workstations 1 and 2. Therefore the infeasibility with these 

assignments is inevitable. 

 

Step3: Since the infeasibility is caused by the precedence relations, we ignore the 

assignment of task 8 to workstation 2 in each period and repeat step 2. 

Step2: The MILP is solved with the fractional tasks of Step1 and freed tasks of 

step 3. We obtain a feasible solution with T=5, and stop. The resulting 

assignments are shown in Table 4.11. 

 

 

 

 

 

 

 



  

47 
 

Table 4.11: MILP solution (T=5) 

Periods/Stations 1 2 3 4 

1 1,5 2,3,6 8 4,7 

2 1,5 2,6 3,8 4,7 

3 1,5 2,3,6 8 4,7 

4 1,5 2,6 3,8 4,7 

5 1,5 2,3,6 8 4,7 

 

The objective function value ZA, is found as 260 with UB(T)=5. Then we solve a 

single period MILP with zero demand for maximizing revenue. The objective 

function value ZB, is obtained as 52. To find LB, we use;  

LB= ZA+ ( T – UB(T) )* ZB    

LB= 260+ ( 6 – 5 )* 52 =312  

As a result, lower bound for the original problem is obtained as “312”. 

 

Another numerical example is used to illustrate the infeasibility due to the cycle 

time constraints. The example has 22 tasks with the parameters shown in Table 

4.12 and K=2, CT=115 and T=80. Firstly, LB (T) and UB (T) values are found as 

“3” and “5” respectively for UB3. Then the following steps are followed; 

 

Table 4.12: Data for the second example instance 

Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Times 14 1 6 5 8 18 14 14 18 8 8 18 6 8 11 7 14 15 14 15 3 4 

Demands 1 1 3 1 1 1 1 4 4 2 3 3 4 4 3 3 1 1 2 3 3 3 

Net Rev. 28 23 -1 27 22 30 13 5 19 -3 37 13 42 33 25 32 27 15 10 4 32 10 

 

Step1: The LP Relaxation with cuts and T=5. The variables that are assigned to 

“1” in the relaxed solution, are fixed. 

Step2: The MILP for the unassigned tasks considering the assignments made in 

Step1 is solved. Since the solution is infeasible, we proceed to step 3. 

Step3: The infeasibility is caused by the cycle time constraints. The solution of 

the relaxed problem with UB (T) =5 gives all full assignments, except Task 10. 

The fractional values for Task 10 are; X10_2_1= X10_2_5=0.88, X10_2_2=0.24. The 

loads of workstations with the fully assigned tasks are shown in Table 4.13.  
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Table 4.13: Loads of the with full assignments (T=5) 

Periods/Stations 1 2 

1 113 108 

2 113 108 

3 113 108 

4 113 108 

5 113 108 

 

Note that the remaining cycle times for Workstations 1 and 2 in each period is 

“115-113=2” and “115-108=7” respectively. The processing time of Task 10 is 

8 units; hence the workstations cannot process Task 10 with their remaining 

times. Therefore, to get a feasible solution, T has to be increased. We let T=T+1, 

go to Step1.   

 

The period number with a feasible solution is found as UB (T) =7 and ZA=3116. 

The assignments of Task 10 are; X10_1_6= X10_2_7= 1. Then we solve a single 

period MILP with zero demand for maximizing revenue. Objective function is 

obtained as ZB =446. To find LB, we use;  

LB= ZA+ (T – UB (T))* ZB    

LB= 3116+ (80 – 7)* 446 =35.674. 

Our lower bound for the original problem is “35.674”.
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CHAPTER 5 

 

 

5. COMPUTATIONAL EXPERIMENT 

 

 

 

In this chapter we present the results of our computational experiment. We first 

discuss our data generation scheme then state our performance measures. Finally 

we evaluate the computational results. 

 

5.1. Data Generation 

 

In this section, we present the network and parameter generation schemes. 

  

5.1.1. Network Generation 

 

We start with small networks and then form bigger networks. To generate big 

networks we take small networks from the literature, combine them and put 

additional arcs. 

 

1st Network (22tasks) 

 

Lambert (1997) illustrates a 10-part ball-point pen example with its assembly as 

shown in Figure 5.1.  
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Figure 5.1: 10 part ball-point pen example (Lambert, 1997) 

 

The disassembly operations  on a disassembly graph with 20 tasks are 

demonstrated in Figure 5.2. 

 

Figure 5.2: Disassembly graph of the 10 part ball-point pen example 

(Lambert, 1997) 

 

We transform this disassembly graph into a precedence diagram by adding a 

dummy task (task 22). The resulting diagram is shown in the figure below: 
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2nd Network (34 tasks) 

 

Lambert (1997) illustrates a 10-part radio example. The disassembly operations  

on a disassembly graph with 30 tasks are demonstrated in Figure 5.4. 

 

 

Figure 5.4: Disassembly graph of the 30 task 10 part radio example 

(Lambert, 1997) 

 

The precedence diagram is formed by adding three dummy tasks (tasks 

32_33_34) and is shown in the Figure 5.5. 
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3rd Network (47 tasks) 

 

Our third network is formed by combining the second network (34 tasks) and a 

part of the first network (22 tasks_ used part is righthandside of task 22). 

Moreover some arcs are added to generate this 47 task network. 

 

Precedence diagram of this network is shown in the Figure 5.6. 

 

4th Network (60 tasks) 

 

Our fourth network is formed by combining the third network (47 tasks) and a 

part of the first network (22 tasks_ used part is righthandside of task 22). More 

complicated arcs are added to generate this 60 task network. 

 

Precedence diagram of this network is shown in the Figure 5.7. 

 

5th Network (73 tasks) 

 

Our fifth network is formed by combining the fourth network (60 tasks) and a part 

of the first network (22 tasks_ used part is righthandside of task 22). Moreover, 

some arcs are added to generate this 73 task network. 

 

Precedence diagram of this network is shown in the Figure 5.8. 
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5.1.2. Parameter Generation 

 

For each network we generate the processing times from a discrete uniform 

distribution (1,20). After we generate the processing times, we use two sets for 

the cycle times. 

Set 1 (C1) : Cycle time of an instance is set to  
 

t
 i











 ∑
K

 where K is the number of 

workstations. 

Set 2 (C2) : Cycle time of an instance is set to  1,5 *  
 

t
 i











 ∑
K

. 

 

Our aim is to see the effect of the cycle times on the problem difficulty. 

 

We use two values for the number of workstations K, for each network (N) and 

cycle time. 

 

Set 1 (K1) : For small networks, N=20,34, 47  K is set to 2. 

         For large networks, N=60,73  K is set to 4.  

Set 2 (K2) : For small networks, K is set to 4. 

        For large networks, K is set to 8. 

 

A task receives a demand, hence called a part releasing task, according to a 

random process. We generate a random number between 0 and 1. If the generated 

number is below 0.3, we set its demand to zero. Hence we expect that about %70 

of all tasks are part releasing and attribute a demand and revenue for each part 

releasing task. We attribute a cost for all tasks. 

 

For each value of N, C, and K, we use two distributions to generate the demands 

of the part releasing tasks. 

 

Set 1 (D1) : Demand of a part releasing task is uniform between 1 and 5. 

Set 2 (D2) : Demand of a part releasing task is uniform between 5 and 10. 
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Note that D1 contains low demand and D2 contains high demand problem 

instances. 

 

For all instances, we set the number of used products, hence the number of 

periods, T to 80. 

 

For all tasks, we generate the costs from a discrete uniform distribution between 5 

and 20. For all part releasing tasks, we generate the revenues from a discrete 

uniform distribution between 10 and 50. We set the net revenue (profit) of each 

task as the difference between its revenue and cost. 

 

We have 5, 2, 2 and 2 alternatives for each N, K, C and D respectively. 

This leads to 3*2*2*2=24 combinations for small networks and 2*2*2*2=16 

combinations for big networks. Thus a total of 40 combinations are used. 

For each combination, we generate and solve 10 problem instances. Hence we use 

400 problem instances in our experiments. 

 

5.2. Performance Measures 

 

In this section, we discuss the performance measures we use to evaluate the 

efficiency of our Upper Bounds and Lower Bounds. 

 

We use the following performance measures for the Upper Bounds: 

1. Deviation from the optimal (or best known) solution (average, maximum) 

2. The solution time expressed as Central Processing Units (CPU)  in 

seconds (average, maximum) 

3. Total Number of fractional values (average, maximum) 

 

We use the following performance measures for the Lower Bound: 
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1.  Deviation from the optimal solution (for small networks) as a percentage 

of the optimal solution, Deviation from the Upper Bound (for large 

networks) (average, maximum) 

2. The Central Processing Unit (CPU)  time in seconds (average, maximum) 

 

The optimal solutions are found by CPLEX 10.1. CPLEX is run for 3600 seconds. 

All experimentations are done in Intel Core2 Duo 2.00 GHz, 2 GB RAM. All 

algorithms are coded with Microsoft Visual C++ 2008. 

 

5.3. Discussion on Experiments  

 

We first investigate the performance of our upper bounding procedures. We 

report the average and maximum deviations of the upper bounds in Tables 5.1, 

5.2 and 5.3, for networks 22, 34 and 47 tasks respectively. We calculate the 

deviation (DEV) as; 

100% ×






 −
=

OPT

OPTUBi
Dev   where 

OPT = Optimal objective function value, optimal total revenue 

UBi = Total revenue returned by upper bound i. 

 

We use the following abbreviations to state our problem combinations. 

 

K1_C1_D1: K1 is the small number of workstations in each network, C1 is the 

small cycle time and D1 is the small demand type. All of them stems from Set1 of 

their related category. 

K2_C2_D2: K2 is the high number of workstations in each network, C2 is the 

high cycle time (1,5*C1) and D2 is the high demand type. All of them stems from 

Set2 of their related category. 

 

A total of 8 abbreviations are used for 8 combinations which are; K1_C1_D1, 

K1_C1_D2, K1_C2_D1, K1_C2_D2, K2_C1_D1, K2_C1_D2, K2_C2_D1 and 

K2_C2_D2. 
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As can be observed from the tables the deviations are consistently low over all 

problem combinations. For UB1 the average deviations are below %1 when N=22, 

34 and 47 respectively. The maximum deviations are also shown in Tables 5.1, 

5.2 and 5.3 which are below %3 for all combinations. 

 

Note that the deviations do not deteriorate with an increase in N value. However 

the deviations increase by the increase in K value due to the inflation of the 

number of variables. When N and K values are fixed, demand (D) and cycle time 

(C) values do not effect deviations remarkably. 

 

UB2 produces slightly smaller deviations due to the power of our cuts. For 

example the maximum deviation for UB1 is %3, whereas it is nearly zero for UB2 

in the combination of K1_C1_D1 for N=22. 

 

We also give the number of fractional variables in Tables 5.1, 5.2 and 5.3. The 

numbers of the fractional variables produced by Pure LP Relaxation, UB1 s, are 

quite high. For example when N=22, for combination K2_C2_D2, i.e., 4 

workstations, high demand and high cycle time case, 3306 out of 7040 variables 

are found to be fractional, at worst case. This value reduces to 412 when cuts are 

incorporated. On average, the cuts reduce the number of fractional variables from 

1900.4 to 180.3. The number of fractional variables is generally affected by N 

values. For example, from Tables 5.1, 5.2, 5.3, 5.4 and 5.5, it can be seen that for 

combination K2_C2_D2, increasing N increases the number of fractional 

variables of UB1,on average. Note that average number of fractional variables are 

1900.4, 3102.6, 4654.9, 12307.1 and 15019.8 for N = 22, 34, 47, 60 and 73 

respectively.  

 

We also observe from Tables 5.1 through 5.5 that, for fixed N, an increase in the 

number of workstations increases the number of fractional variables. For example 

for N=22 and C1_D1 combination, the number of fractional variables is 722.4 

when K=2 (K1) and 2437.5 when K= 4 (K2), on average. This is due to the fact 
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that more workstations lead to higher number of splits, hence more fractional 

variables. 

 

For fixed N and K, we observe that increasing C reduces the number of fractional 

variables with a few exceptions. For example when N=47, K=2, and D1 is used 

for combination, the average number of fractional variables are 1184 and 584.2 

when C is low and high respectively. This is due to the fact that increasing C 

gives more room to the complete task assignments, hence reducing the number of 

fractional variables. 

 

In our experiments we do not observe a significant effect of the demand figures 

on the number of fractional variables. 

 

We measure the solution times in Central Processing Unit (CPU) seconds. The 

average and maximum CPU times for our three bounds and for the MILP are 

given in Tables 5.6 through 5.10. 

 

Table 5.6: CPU Times of Upper Bounds and MILP for N=22 

C1 C2 

D1 D2 D1 D2 

  
  

  

  
  

  
Avg Max Avg Max Avg Max Avg Max 

UB1 0.33 0.50 0.42 0.54 0.22 0.28 0.23 0.34 

UB2 0.09 0.10 0.11 0.14 0.07 0.09 0.07 0.08 

UB3 0.05 0.09 0.06 0.08 0.05 0.06 0.06 0.08 
K1 

MILP 3.83 10.67 10.65 73.21 1.76 2.00 1.77 2.15 

UB1 0.70 1.25 0.84 1.09 0.47 0.61 0.59 0.73 

UB2 0.41 0.67 0.40 0.65 0.23 0.35 0.25 0.36 

UB3 0.07 0.10 0.09 0.11 0.06 0.07 0.08 0.10 
K2 

MILP 1078.32 3599.85 796.07 3600.62 363.90 3599.87 365.29 3600.30 
* Tabulated data is obtained out of 10 optimal instances. 
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Table 5.7: CPU Times of Upper Bounds and MILP for N=34 

C1 C2 

D1 D2 D1 D2 
  
  

  

  
  

  
Avg Max Avg Max Avg Max Avg Max 

UB1 0.57 0.86 0.78 0.92 0.36 0.44 0.43 0.53 

UB2 0.11 0.12 0.11 0.13 0.09 0.11 0.08 0.11 

UB3 0.06 0.08 0.07 0.10 0.06 0.08 0.06 0.07 
K1 

MILP 4.37 6.04 5.93 8.15 3.22 4.32 3.41 4.44 

UB1 1.27 1.95 1.67 2.21 0.91 1.14 1.18 1.34 

UB2 0.44 0.53 0.46 0.58 0.32 0.39 0.31 0.38 

UB3 0.08 0.10 0.11 0.12 0.08 0.09 0.09 0.11 
K2 

MILP 1454.94 3600.34 939.75 3417.72 373.65 3599.81 19.76 27.86 
* Tabulated data is obtained out of 10 optimal instances. 

 

Table 5.8: CPU Times of Upper Bounds and MILP for N=47 

C1 C2 

D1 D2 D1 D2 

    Avg Max Avg Max Avg Max Avg Max 

UB1 1.05 1.36 1.42 1.63 0.48 0.69 0.65 0.87 

UB2 0.16 0.18 0.14 0.16 0.11 0.12 0.12 0.13 

UB3 0.07 0.11 0.08 0.12 0.06 0.07 0.07 0.09 
K1 

MILP 22.77 118.85 14.38 64.45 5.65 6.88 5.62 7.02 

UB1 2.46 3.59 2.94 3.51 1.52 1.90 2.17 2.86 

UB2 0.82 1.17 0.79 1.05 0.55 0.83 0.56 0.84 

UB3 0.09 0.11 0.16 0.20 0.09 0.10 0.12 0.17 
K2 

MILP 784.49 3600.90 759.57 3600.60 376.38 3601.31 385.74 3599.83 
* Tabulated data is obtained out of 10 optimal instances. 

 

Table 5.9: CPU Times of Upper Bounds for N=60 

C1 C2 

D1 D2 D1 D2 

    Avg Max Avg Max Avg Max Avg Max 

UB1 4.27 5.03 4.89 5.82 2.47 2.94 3.18 3.66 

UB2 1.21 1.69 1.26 1.98 0.72 1.12 0.72 1.21 K1 

UB3 0.10 0.12 0.16 0.23 0.08 0.10 0.11 0.15 

UB1 13.87 18.60 19.59 25.51 6.82 8.67 9.44 11.55 

UB2 5.36 6.79 4.97 6.76 2.52 3.13 2.67 3.44 K2 

UB3 0.17 0.21 0.38 0.54 0.15 0.18 0.24 0.33 
* Tabulated data is obtained out of 10 optimal instances. 
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Table 5.10: CPU Times of Upper Bounds for N=73 

C1 C2 
D1 D2 D1 D2 

    Avg Max Avg Max Avg Max Avg Max 
UB1 6.27 8.80 7.59 9.42 3.85 4.37 4.52 5.21 
UB2 1.57 2.23 1.49 2.51 0.79 1.13 0.83 1.14 K1 

UB3 0.11 0.14 0.17 0.22 0.11 0.15 0.13 0.16 
UB1 19.99 23.34 32.14 42.58 9.35 10.88 13.59 17.40 
UB2 5.83 8.80 6.92 10.83 3.63 5.06 3.31 4.16 K2 
UB3 0.21 0.31 0.56 0.99 0.15 0.17 0.29 0.45 

* Tabulated data is obtained out of 10 optimal instances. 

 

As can be observed from the tables, the upper bounds are produced in very small 

times. Compared to UB1, UB2 runs in smaller times due to the efficiency of the 

cuts, i.e., their power in reducing the solution space. Moreover, compared to UB2, 

UB3 runs in smaller times as relatively fewer periods, hence fewer variables are 

used by the LP Relaxations. For example for N=22 and K2_C2_D2 combination, 

the  CPU time decreases from 0.59 to 0.25 seconds by adding the cuts and the 

CPU time decreases from 0.25 to 0.08 seconds by using up to 10 periods instead 

of 80. 

 

The CPU times spent by the upper bounds, increase with an increase in problem 

size parameters, N and K. This is due to the increase in the dimensions of the 

linear programs. As N increases from 22 to 73 (with fixed K value), for example 

for K1_C2_D2 combination, the average CPU times increase from 0.23, 0.07, 

0.06 to 4.52, 0.83, 0.13 for UB1, UB2 and UB3 respectively. For N=34 and C2_D2 

combination, as K increases, the average CPU times increase from 0.43, 0.08, 

0.06 seconds to 1.18, 0.31, 0.09 seconds for UB1, UB2 and UB3 respectively. 

 

When N, K and D values are fixed, an increase in the C value (from C1 to C2) 

decreases the CPU time. This is due to the fact that for large C more tasks find 

place for any workstation, and hence assignment decisions are given easier by 

linear programs. For example for N=34 and K2_D2 combination, increasing C 

from C1 to C2, decreases the average CPU times from 1.67, 0.46, 0.11 seconds to 

1.18, 0.31, 0.09 seconds for UB1, UB2 and UB3, respectively. 
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When the other parameters are fixed, the increase in D value (from D1 to D2) 

increases the CPU times slightly. This is because when the D value increases, the 

number of periods with different assignments increases. For example for N=34 

and C1_K2 combination, increasing D from D1 to D2, increases the average CPU 

times from  1.27, 0.44, 0.08 seconds to 1.67, 0.46, 0.11 seconds for UB1, UB2 and 

UB3 respectively. 

 

The effects of K is much dominant for the MILP, due to the inflation of the binary 

decision variables. For fixed N, an increase in K value increases the CPU times 

increases remarkably. For example for N=22 and C1_D1 combination, an increase 

of K from K1 to K2 increases the CPU time from 3.83 seconds to 1078.32 

seconds. However the effect of N is not significant as that of K. For example, for 

K=2 when N increases from 22 to 34 for C1_D1 combination, the CPU time 

increases from 3.83 seconds to 4.37 seconds. 

 

As can be seen from Tables 5.6 through 5.10, when N and K values are fixed, an 

increase in the C value decreases the CPU times remarkably. This is due to the 

fact that a workstation has more to accommodate many tasks, thereby leading to 

easier decisions. However the D values do not have a consistent affect on the 

solution time of the MILP. 

 

As mentioned, the speed performance of UB3 can be attributed to the small 

number of periods it uses. We tabulate the number of periods that we start with, 

i.e., LB(T) and we find the first feasible solution , i.e., UB3(T) in Tables 5.11 

through 5.15 for N=22, 34, 47, 60 and 73, respectively. 
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Table 5.11: Number of Periods used by UB3 (out of 80) for N=22 

C1 C2 

D1 D2 D1 D2 

    Avg Max Avg Max Avg Max Avg Max 

UB3_T 4.30 5.00 10.00 11.00 4.50 5.00 10.20 11.00 
K1 

LB_(T) 2.30 3.00 6.00 7.00 1.50 2.00 4.20 5.00 

UB3_T 4.10 5.00 10.80 12.00 4.30 5.00 9.70 10.00 
K2 

LB_(T) 2.10 3.00 5.80 7.00 1.30 2.00 3.70 4.00 
* Tabulated data is obtained out of 10 optimal instances. 

 

Table 5.12: Number of Periods used by UB3 (out of 80) for N=34 

C1 C2 

D1 D2 D1 D2 

    Avg Max Avg Max Avg Max Avg Max 

UB3_T 4.10 5.00 9.00 9.00 4.90 5.00 9.00 9.00 
K1 

LB_(T) 2.10 3.00 6.00 6.00 1.90 2.00 4.00 4.00 

UB3_T 4.00 4.00 9.90 10.00 4.10 5.00 9.00 9.00 
K2 

LB_(T) 2.00 2.00 5.90 6.00 1.10 2.00 4.00 4.00 
* Tabulated data is obtained out of 10 optimal instances. 

 

Table 5.13: Number of Periods used by UB3 (out of 80) for N=47 

C1 C2 

D1 D2 D1 D2 

    Avg Max Avg Max Avg Max Avg Max 

UB3_T 4.50 5.00 10.30 11.00 4.80 5.00 10.20 11.00 
K1 

LB_(T) 2.50 3.00 6.30 7.00 1.80 2.00 4.20 5.00 

UB3_T 4.30 5.00 10.10 11.00 4.40 5.00 10.00 11.00 
K2 

LB_(T) 2.30 3.00 6.10 7.00 1.40 2.00 4.00 5.00 
* Tabulated data is obtained out of 10 optimal instances. 

 

Table 5.14: Number of Periods used by UB3 (out of 80) for N=60 

C1 C2 

D1 D2 D1 D2 

    Avg Max Avg Max Avg Max Avg Max 

UB3_T 4.20 5.00 9.30 10.00 4.40 5.00 9.00 9.00 
K1 

LB_(T) 2.20 3.00 6.30 7.00 1.40 2.00 4.00 4.00 

UB3_T 4.00 4.00 9.10 10.00 4.10 5.00 9.00 9.00 
K2 

LB_(T) 2.00 2.00 6.10 7.00 1.10 2.00 4.00 4.00 
* Tabulated data is obtained out of 10 optimal instances. 
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Table 5.15: Number of Periods used by UB3 (out of 80) for N=73 

C1 C2 

D1 D2 D1 D2 

    Avg Max Avg Max Avg Max Avg Max 

UB3_T 4.20 5.00 9.30 10.00 4.70 5.00 9.10 10.00 
K1 

LB_(T) 2.20 3.00 6.30 7.00 1.70 2.00 4.10 5.00 

UB3_T 4.10 5.00 9.20 10.00 4.20 5.00 9.10 10.00 
K2 

LB_(T) 2.10 3.00 6.20 7.00 1.20 2.00 4.10 5.00 
* Tabulated data is obtained out of 10 optimal instances. 

 

As can be observed from the tables, the LB(T) and UB3(T) values are close, hence 

LB(T) performs quite satisfactory. For example for N=22 and K1_C1_D1 

combination, the average LB(T) and UB3(T) values are 2.30 and 4.30 respectively. 

We also find that the UB3(T) values are small and are not sensitive to the problem 

size. For example for K1_C1_D1 combination, the average UB3(T) values are 

4.30 and 4.20 for N=22 and 73 respectively. 

 

As mentioned before, small numbers periods produces few decision variables, 

hence improves the speed performance of the upper bounds considerably. Note 

that we obtain the same objective function values from UB2 and UB3, however at 

considerably different speeds.  

 

We finally investigate the performances of our lower bound. We measure the 

deviations for the small-sized problems using the optimal solutions. For large-

sized problems, we use UB2, equivalently UB3, to find the deviation as the 

optimal solutions are not available. Particularly when N=22,34 and 47, we use;  

100% ×






 −
=

OPT

LBOPT
Dev  

When N=60 and 73, we do not have optimal solutions on hand. We use UB2 as an 

estimator for the optimal objective function value and find the deviation as; 

100%
2

2 ×






 −
=

UB

LBUB
Dev  

We report the average and maximum deviations of the lower bound in Tables 

5.16  through 5.20 for N=22,34,47,60 and 73, respectively. 
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Table 5.16: Deviation of LB from Optimal and CPU Times of LB for N=22 

C1 C2 

D1 D2 D1 D2 

  

# of 
Variables 

  Avg Max Avg Max Avg Max Avg Max 

DEV 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 
K1 3,520 

CPU 0.06 0.13 0.08 0.12 0.07 0.09 0.07 0.08 

DEV 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 
K2 7,040 

CPU 0.10 0.15 0.12 0.16 0.08 0.10 0.10 0.14 
          * Tabulated data is obtained out of 10 optimal instances. 

 

Table 5.17: Deviation of LB from Optimal and CPU Times of LB for N=34 

C1 C2 

D1 D2 D1 D2 

  

# of 
Variables 

  Avg Max Avg Max Avg Max Avg Max 

DEV 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 
K1 5,440 

CPU 0.05 0.08 0.08 0.08 0.09 0.11 0.08 0.11 

DEV 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 
K2 10,880 

CPU 0.03 0.04 0.13 0.15 0.10 0.12 0.11 0.14 
          * Tabulated data is obtained out of 10 optimal instances. 

 

Table 5.18: Deviation of LB from Optimal and CPU Times of LB for N=47 

C1 C2 

D1 D2 D1 D2 

  

# of 
Variables 

  Avg Max Avg Max Avg Max Avg Max 

DEV 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 
K1 7,520 

CPU 0.09 0.15 0.10 0.14 0.11 0.12 0.12 0.13 

DEV 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 
K2 15,040 

CPU 0.12 0.14 0.19 0.23 0.12 0.14 0.15 0.21 
          * Tabulated data is obtained out of 10 optimal instances. 

 

Table 5.19: Deviation of LB from UB2 and CPU Times of LB for N=60 

C1 C2 

D1 D2 D1 D2 

  

# of 
Variables 

  Avg Max Avg Max Avg Max Avg Max 

DEV 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 
K1 19,200 

CPU 0.12 0.14 0.18 0.25 0.10 0.13 0.13 0.18 

DEV 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.01 
K2 38,400 

CPU 0.20 0.24 0.41 0.59 0.18 0.23 0.28 0.38 
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Table 5.20: Deviation of LB from UB2 and CPU Times of LB for N=73 

C1 C2 

D1 D2 D1 D2 

  

# of 
Variables 

  Avg Max Avg Max Avg Max Avg Max 

DEV 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 
K1 23,360 

CPU 0.14 0.17 0.18 0.25 0.14 0.20 0.16 0.21 

DEV 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 
K2 46,720 

CPU 0.26 0.34 0.61 1.04 0.19 0.22 0.32 0.49 

 

Note from the tables that the lower bound solutions are quite satisfactory over all 

problem combinations. The solutions have small deviations and are obtained in 

negligible CPU times. The performances do not deteriorate with an increase in the 

problem size parameter N; however the deviations slightly increase by an increase 

in the K value. For example for N=60 and C1_D2 combination, the average 

deviations of K1 and K2 are %1; whereas the maximum deviations are %1 and 

%2 for K1 and K2, respectively. We could not observe notable effects of C and D 

values on the problem difficulty. 

 

The CPU times of the lower bounds increase with an increase in problem size 

parameters, N and K with a few exceptions. This is due to the fact that the linear 

programs and mixed integer linear programs have higher number of decision 

variables for higher values of N and K. For example for K1_C2_D2 combination, 

as N increases from 60 to 73,  the average CPU times increase from 0.13 seconds 

to 0.16 seconds. For N=47 and C2_D2 combination, increasing K from 2 to 4, 

increases the average CPU times from 0.12 seconds to 0.15 seconds. 

 

We could not observe any significant effect of C value on the CPU times. 

 

For fixed N, K and C values, increasing the D value increases the CPU times 

slightly. This increase can be attributed to the increase in the value of LB(T), 

hence the number of decision variables that explain the periods. For example for 

N=60 and C1_K2 combination, increasing D from D1 to D2 , increases the 

average CPU time from  0.20 seconds to 0.41 seconds. 
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CHAPTER 6 

 

 

6. CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS 

 

 

 

In this study, we consider disassembly systems that have gained significant 

importance in recent years. This heightened importance stems from the 

recognition of environmental issues and the advances in manufacturing 

technologies. In this study, we consider an operational level problem in 

disassembly systems, the so called disassembly line balancing problem. 

 

Our problem assumes that the line is already configured with defined 

workstations. The units of the product to be disassembled are identical and they 

deliver parts with defined demand and revenue. The tasks that release a part or are 

required for further releases have defined costs. Our aim is to assign the tasks to 

the workstations so that the net revenue is maximized. 

 

We develop a Mixed-Integer Linear Programming (MILP) model that could solve 

the problems with up to 50 tasks. For larger sized instances, we propose upper 

and lower bounds. The bounds are motivated by our findings from the highly 

satisfactory behavior of the Linear Programming Relaxations (LPR). We 

strengthen LPR by imposing the properties that are satisfied by the MILP but not 

LPR. Our lower bound fixes the integer variables of the optimal LPR solution and 

solves the remaining problem to optimality by MILP. 

 

Our experimental results have revealed that our bounding mechanisms produce 

high quality solutions very quickly. For our maximum trial size of 75 tasks there 

is a gap of less than 5 percent between our lower and upper bounds. 
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To the best of our knowledge, our study is the first attempt to solve the 

disassembly line balancing problem with a fixed number of workstations and a 

finite supply of disassembly products. The extensions of our study may include 

the following issues: 

 

•  Incorporation of SOR (Successor OR) type precedence relations 

• Considering nonidentical products, i.e., each unit of the disassembly 

product may include different parts 

• Incorporating the stochastic nature of the outcome, i.e., some parts may 

turn out to be defective, or be damaged during disassembly. 

• Treating the number of workstations as a decision variable, hence 

considering the design version of the disassembly line balancing problem.
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