

DISASSEMBLY LINE BALANCING PROBLEM WITH FIXED NUMBER OF

WORKSTATIONS AND FINITE SUPPLY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EDA GÖKSOY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

JUNE 2010

ii

Approval of the thesis:

DISASSEMBLY LINE BALANCING PROBLEM WITH FIXED NUMBER
OF WORKSTATIONS AND FINITE SUPPLY

submitted by EDA GÖKSOY in partial fulfillment of the requirement for the
degree of Master of Science in Industrial Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Nur Evin Özdemirel
Head of Department, Industrial Engineering

Prof. Dr. Meral Azizoğlu
Supervisor, Industrial Engineering Dept., METU

Prof. Dr. Sencer Yeralan
Co-Supervisor,Agricultural and Biological Engineering Dept.,
University of Florida, USA

Examining Committee Members

Assoc. Prof. Dr. Tayyar Şen
Industrial Engineering Dept., METU

Prof. Dr. Meral Azizoğlu
Industrial Engineering Dept., METU

Prof. Dr. Sencer Yeralan
Agricultural and Biological Engineering Dept.,
University of Florida, USA

Asst. Prof. Dr. Cem Đyigün
Industrial Engineering Dept., METU

Dr. Ünal KOYAZ
ASELSAN A.Ş.

 Date: 21.06.2010

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name: Eda GÖKSOY

Signature :

iv

ABSTRACT

DISASSEMBLY LINE BALANCING PROBLEM WITH FIXED NUMBER
OF WORKSTATIONS AND FINITE SUPPLY

Göksoy, Eda

 M.S., Department of Industrial Engineering

Supervisor : Prof. Dr. Meral Azizoğlu

Co-Supervisor : Prof. Dr. Sencer Yeralan

June 2010, 76 pages

In this thesis, we consider a Disassembly Line Balancing Problem (DLBP) with

fixed number of workstations. We aim to maximize the total value of the

recovered parts.

We assume that there is a limited supply for the products to be disassembled.

Different components can be obtained by disassembling different units of the

product. Our aim is to assign the tasks to the workstations of the disassembly line

so as to maximize the total value of the recovered parts. We present several upper

and one lower bounding procedure. The results of our computational study have

revealed the satisfactory behavior of our bounding mechanisms.

Keywords: Disassembly Process, Line Balancing, Linear Programming

Relaxation

v

ÖZ

SABĐT SAYIDA ĐSTASYON VE SONLU ARZ ĐÇEREN DEMONTAJ HAT

DENGELEME PROBLEMĐ

Göksoy, Eda

 Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Meral Azizoğlu

 Ortak Tez Yöneticisi : Prof. Dr. Sencer Yeralan

Haziran 2010, 76 Sayfa

Bu çalışmada, sabit sayıda istasyon içeren Demontaj Hattı Dengeleme

Problemi ele alınmıştır. Amacımız, geri kazandırılan parçaların toplam

değerini ençoklamaktır.

Demonte edilecek ürünlerin arzının sınırlı olduğunu varsaydık. Ürünün

değişik birimlerinin demonte edilmesiyle değişik parçalar elde

edilebilmektedir. Amacımız, işleri demontaj hattındaki istasyonlara, geri

kazandırılan parçaların toplam değerini ençoklayacak şekilde, atamaktır.

Birçok üst ve bir alt sınır prosedürleri sunduk. Deneysel sonuçlarımız

sınırlama mekanizmalarımızın tatmin edici davrandığını göstermiştir.

Anahtar Kelimeler: Demontaj Süreci, Hat Dengeleme, Doğrusal Programlama

Gevşetmesi

vi

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisors, Prof. Dr. Meral

Azizoğlu and Prof. Dr. Sencer Yeralan for their supervision, patience and

understanding. Studying with them is not only instructive, but also a very pleasant

experience. Without their support and encouragement, this study would be harder

to complete and succeed.

I would like to thank jury members for their valuable contributions on the thesis.

I owe my deepest gratitude to my family members: Emine Göksoy Pektaş, Kamil

Göksoy and Hacer Göksoy for their unconditional support and love.

I would like to thank my company, ASELSAN, for the support about thesis study

permissions. I would like to thank my manager Ünal Koyaz and Arzu

Konukseven for allowing me to go for thesis study whenever I needed and Leyla

Demirel for her support and covering my vacancy.

This thesis could not be realized without the support of Murat Kalaycılar who

enriched my life and made me smile during every single step of this study. I thank

with all my heart to him and there is not a way to express my appreciation.

I would like to thank my dear friends Yasin Gökpınar, Özgün Töreyen, Başak

Dilber, Oğuz Yağcı, Esra Eroğlu and Çağla Ateşalp for their cheerful company

and invaluable frienship; Çiğdem Cihangir for her cheer and being an excellent

homemate; Diclehan Tezcaner, Gülşah Karakaya, Murat Aslan and Özgür Gürses

for their insight, wisdom and invaluable support.

I would like to thank TÜBĐTAK for the funding they have provided during my

M.S. study.

vii

TABLE OF CONTENTS

ABSTRACT ...iv

ÖZ..v

ACKNOWLEDGEMENTS ...vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES..ix

LIST OF TABLES ..x

CHAPTERS...1

1. INTRODUCTION..1

2. THE DISASSEMBLY PROCESS AND RELATED LITERATURE...........4

2.1. Disassembly Process ..4

2.2. Assembly Lines versus Disassembly Lines..5

2.3. Literature on Disassembly Line Balancing Problems8

3. PROBLEM DEFINITION ...12

3.1. Precedence Relations..13

3.2. Mathematical Model...16

3.1.2 Model II ...19

3.3. Complexity ...23

3.4. An Example Problem ...23

4. THE DLBP PROBLEM ...27

4.1. Upper Bounds...27

4.1.1. Upper Bound 1 (UB1) ..27

4.1.2. Upper Bound 2 (UB2) ..29

4.1.3. Upper Bound 3 (UB3) ..41

4.2. Lower Bound..43

5. COMPUTATIONAL EXPERIMENT ...49

5.1. Data Generation..49

5.1.1. Network Generation ...49

5.1.2. Parameter Generation ...58

viii

5.2. Performance Measures ...59

5.3. Discussion on Experiments ..60

6. CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS73

REFERENCES..75

ix

LIST OF FIGURES

FIGURES

Figure 3.1: “AND” type precedence relations ..14

Figure 3.2: “POR” type precedence relations ..15

Figure 3.3: “SOR” type precedence relations ..15

Figure 3.4: Precedence diagram of the Lambert’s ball-point pen example (22

tasks) with “SOR” type precedence relations..16

Figure 3.5: Precedence diagram of the Gupta (2002) PC Example24

Figure 4.1: An example illustrating Theorem 2 ..32

Figure 4.2: Precedence diagram of the Lambert’s ball-point pen example (22

tasks)..33

Figure 4.3: Projecting Demands for “AND” precedence relations35

Figure 4.4: Projecting Demands for “POR” precedence relations........................35

Figure 4.5: Projecting Demands for complex relations ..36

Figure 5.1: 10 part ball-point pen example (Lambert, 1997)................................50

Figure 5.2: Disassembly graph of the 10 part ball-point pen example (Lambert,

1997)..50

Figure 5.3: Precedence diagram of the Lambert’s ball-point pen example (22

tasks)..51

Figure 5.4: Disassembly graph of the 30 task 10 part radio example (Lambert,

1997)..52

Figure 5.5: Precedence diagram of the Lambert’s radio example (34 tasks)........53

Figure 5.6: Precedence diagram of 47_task_Network ..55

Figure 5.7: Precedence diagram of 60_task_Network ..56

Figure 5.8: Precedence diagram of 73_task_Network ..57

x

LIST OF TABLES

TABLES

Table 2.1: The Comparison of the operational and technical considerations of the

assembly and disassembly lines. ...7

Table 3.1: Parts and related parameters of the Example Problem.........................24

Table 3.2: Feasible solution for the Example Problem ...25

Table 3.3: Optimal solution for the Example Problem..25

Table 3.4: Optimal solution for Model A for the Example Problem.....................26

Table 4.1: The comparison of Pure LPR and LPR with CUT1.............................30

Table 4.2: The comparison of Pure LPR and LPR with CUT2.............................34

Table 4.3: The comparison of Pure LPR and LPR with CUT3.............................37

Table 4.4: Related data for CUT 4 ..40

Table 4.5: Assignment of tasks according to procedures40

Table 4.6:The comparison of Pure LPR and LPR with CUT4..............................41

Table 4.7: Projected demands of tasks (dnew) ..42

Table 4.8: Optimal solutions with T=5 and T=1 ...43

Table 4.9: Tasks that are assigned to “1” in the relaxed problem (T=5)45

Table 4.10: The loads of the workstations after full assignments (T=5)...............46

Table 4.11: MILP solution (T=5) ..47

Table 4.12: Data for the second example instance ..47

Table 4.13: Loads of the with full assignments (T=5) ..48

Table 5.1: Deviation of UB1 and UB2 from optimal and Number of fractions of

UB1 and UB2 for N=22 ..61

 Table 5.2: Deviation of UB1 and UB2 from optimal and Number of fractions of

UB1 and UB2 for N=34 ..61

Table 5.3: Deviation of UB1 and UB2 from optimal and Number of fractions of

UB1 and UB2 for N=47 ..62

Table 5.4: Number of fractions of UB1 and UB2 for N=60..................................62

xi

Table 5.5: Number of fractions of UB1 and UB2 for N=73..................................63

Table 5.6: CPU Times of Upper Bounds and MILP for N=22..............................65

Table 5.7: CPU Times of Upper Bounds and MILP for N=34..............................66

Table 5.8: CPU Times of Upper Bounds and MILP for N=47..............................66

Table 5.9: CPU Times of Upper Bounds for N=60...66

Table 5.10: CPU Times of Upper Bounds for N=73...67

Table 5.11: Number of Periods used by UB3 (out of 80) for N=22......................69

Table 5.12: Number of Periods used by UB3 (out of 80) for N=34......................69

Table 5.13: Number of Periods used by UB3 (out of 80) for N=47......................69

Table 5.14: Number of Periods used by UB3 (out of 80) for N=60......................69

Table 5.15: Number of Periods used by UB3 (out of 80) for N=73......................70

Table 5.16: Deviation of LB from Optimal and CPU Times of LB for N=2271

Table 5.17: Deviation of LB from Optimal and CPU Times of LB for N=3471

Table 5.18: Deviation of LB from Optimal and CPU Times of LB for N=4771

Table 5.19: Deviation of LB from UB2 and CPU Times of LB for N=60............71

Table 5.20: Deviation of LB from UB2 and CPU Times of LB for N=73............72

1

CHAPTER 1

CHAPTERS

1. INTRODUCTION

In recent years, the term “sustainability” has become quite a buzzword. Its

meaning has been somewhat ambiguous, or perhaps, dependent on the context.

The recent concerns regarding such global catastrophic phenomena as climate

change or wide ranging financial insolvencies have given impetus to the “green

push.” In some sense, sustainability is recognized to have three components:

environmental, economic and social. However, from an engineering perspective,

there seems to be two important aspects of sustainability. First, there is good

reason to develop new disruptive technologies that would enable society to reduce

its environmental footprint. This means that the same products and services may

be provided with fewer demands on the environment. Such a reduction on the use

of environmental resources is sought through advanced technologies. However,

until such disruptive technologies take hold, one also considers conservation as an

interim path to environmental footprint reduction. These measures usually

revolve around reuse and recycling. Our study here is in line with conservation.

Not only do we advocate reuse, but also facilitate the operationally most

productive and profitable way to reuse. The latter emphasis is due to the

recognition that industry will more easily embrace greener practices if it also

provides reasonable rates of financial returns. In short, our work bodes well with

contemporary urges to become greener, while maintaining the industrial

sensitivities to financial concerns.

The importance of environmental issues has been recognized by many

manufacturers and product designers. This recognition is triggered by the new and

2

more rigid environmental regulations and increased customer awareness towards

environmental issues. Moreover the recent advances in technology have made it

possible to manufacture the products that meet the environmental standards and

are easy to reuse after consumed by the customer.

The environmental regulations, customer awareness and recent advances in

technology all together have shifted the product recovery process from the act of

disposing to the act of reusing and recycling.

Recycling preserves the material content of the discarded (used) products via

some manufacturing and disassembly operations. Remanufacturing, on the other

hand, keeps the functional content of the used products and improves their quality

up to a desired usable level via some manufacturing and disassembly operations.

Disassembly operations involve the separation of the reusable parts from the

discarded products. Those parts are either subject to remanufacturing operations

or sold to suppliers.

The disassembly operations are usually performed on a disassembly line that

consists of a number of serial workstations. The first workstation takes the

product to be disassembled and the parts are disconnected on different

workstations. A cycle terminates, that is the product leaves the line, whenever all

its required parts are disassembled.

A disassembly line balancing problem finds the set of tasks assigned to each

workstation for each product to be disassembled. The problem is critical in

minimizing the use of valuable resources (such as time and money) invested in

disassembly, and maximizing the level of automation of the disassembly process

and the quality of the parts or materials recovered (McGovern and Gupta, 2007).

In this thesis, we consider a Disassembly Line Balancing Problem (DLBP) with a

fixed number of workstations so as to maximize the value of recovered parts. We

3

assume there is a limited supply for the products to be disassembled. Different

components can be obtained by disassembling different units of the product. Our

aim is to assign the tasks to the workstations of the disassembly line so as to

maximize the total value of the recovered parts. We assume each part has a unit

profit defined and a specified demand, hence it may require many products to be

disassembled.

To the best of our knowledge, our study is the first attempt to tackle DLBP with

profit maximization and with a finite supply and a fixed number of workstations.

The rest of the thesis is organized as follows: In Chapter 2, we review the

disassembly process and literature on disassembly lines. We define our problem

in Chapter 3. The chapter includes two alternate mathematical formulations of the

disassembly line balancing problem and settles the complexity of the problem. In

Chapter 4, we discuss the linear programming (LP) relaxation together with the

mechanisms to strengthen it. We present LP-based heuristic procedures in

Chapter 5. Our computational experiment is discussed in Chapter 6. We conclude

in Chapter 7, by stating our main findings and pointing out future research

directions.

4

CHAPTER 2

2. THE DISASSEMBLY PROCESS AND RELATED

LITERATURE

In this chapter, we first define disassembly process, and then discuss assembly

line balancing and disassembly line balancing problems. Finally we review the

previous studies on the Disassembly Line Balancing Problems.

2.1. Disassembly Process

Güngör and Gupta (2001) define disassembly as a systematic process of

separating a product into its constituent parts, components, subassemblies or other

groupings.

As mentioned by Brennan et al.(1994), disassembly covers both economic and

environmental concerns such as discontinued products (leading excess inventory

of undesirable assemblies), reduction in lead time (as disassembled products can

satisfy some scarce products or some that are urgent in demand), forced

disassembly (disassembly is imposed by governments due to recycling

regulations).

Lambert (2002) emphasizes that disassembly process does not imply reverse

assembly process.

In general, disassembly process is divided into two as partial disassembly and

complete disassembly. In the first one, the product is not fully disassembled while

5

the product is fully disassembled in the latter. Incomplete disassembly can be

favored en route to minimizing excess materials by considering both economic

and environmental aspects.

Operations planning issues in assembly environments are much well known than

the disassembly environments as disassembly systems are recognized later than

the assembly systems. Brennan et al. (1994) state that even the assembly and

disassembly systems have similarities, disassembly causes many problems in

operations management. Some operational impacts of incorporating disassembly

are as discussed below:

• Impact on Product Cost: Labor, energy and overheads might be

incurred more during disassembly rising the product costs.

• Impact on Financial Decisions: Longer planning horizon is needed

due to the increased uncertainties of disassembly process, thus

capital budgeting process might be more difficult.

• Impact on Capacity and Storage Requirements: Due to the

uncertainties in product life cycles, forecasting the demand of

disassembled products might be hard and lead to variations.

Variation in demand forecasts might increase capacity and storage

requirements.

2.2. Assembly Lines versus Disassembly Lines

Assembly lines are special flow-line production systems which are typical in the

industrial production of high quantity standardized commodities. In the literature

there exist several classification schemes for the assembly lines. According to the

nature of the products, operation modes and nature of operation times, the

following classifications are made:

• Nature of Products

� Single-Model Lines

� Mixed-Model Lines

� Multi-Model Lines

6

• Operation Mode

� Paced Lines (Transfers between the workstations are

synchronous)

� Unpaced Lines (Transfers between the workstations are not

synchronized)

• Nature of Operation Times

� Deterministic Operation Times (Known certainly)

� Stochastic Operation Times (Known by probability

function)

� Dynamic Operation Times (Subject to change)

� Static Operation Times (Not subject to change)

There are two types of assembly line balancing problems: Type I and Type II.

• Type I problems assume a fixed cycle time while minimizing number of

stations.

• Type II problems assume a fixed and given stations while minimizing the

cycle time.

For the details of the assembly lines and assembly line balancing problems, one

may refer to the textbook by Scholl (1999) and a review paper by Baybars (1986).

To have a better understanding of the disassembly lines, we discuss the

similarities and differences between assembly lines and disassembly lines.

Brennan et al. (1994) study the assembly lines and disassembly lines both from

technical and operational points of view and present a comparison as shown in

Table 2.1.

7

Table 2.1: The Comparison of the operational and technical considerations

of the assembly and disassembly lines.

Line Considerations Assembly Line Disassembly Line

Demand Dependent Dependent

Demand Sources Single Multiple

Demanded Entity End Product
Individual

parts/subassemblies

Precedence relationships Yes Yes

Complexity related to

precedence relationships

High(includes physical and

functional precedence constraints)

Moderate (mostly

physical constraints)

Uncertainty related to quality

of parts
Low High

Uncertainty related to

quantity of parts
Low High

Uncertainty related to WSs

and the material handling

system

Low to moderate High

Reliability of the WSs and

the material handling system
High Low

Multiple products Yes Yes

Flow process Convergent Divergent

Line flexibility Low to moderate High

Layout alternatives Multiple Multiple

Complexity of performance

measures
Moderate High

Known performance

measures
Numerous N/A

Required line robustness Moderate High

Complexity of “between

workstation inventory”

handling

Moderate High

Known techniques for line

optimization
Numerous None

Problem complexity NP-hard NP-hard

8

2.3. Literature on Disassembly Line Balancing Problems

Güngör and Gupta (2002)’s study introduces the disassembly line balancing

problem. They discuss the importance of disassembly lines in product recovery,

various complications to create an efficient disassembly line. Some considerations

discussed in the study are stated as below:

• Product Considerations: Characteristic of a disassembly line depends on

the products’ variety disassembled on the same line. Disassembly line

may deal with only one type of product or may disassemble a product

family. The line may also receive several types of products.

• Line Considerations: Layouts inspired from the assembly lines and line

speed are the most important considerations. The lines may be configured

as serial, parallel, circular, U-shaped, cellular and two-sided lines. As

operation mode, paced and unpaced transfers can be used.

• Part Considerations: There exists a serious uncertainty in the quality of

the products disassembled. Proper or improper usage of the parts

determines the defective or non-defective parts. The quantity of products

disassembled differs according to their upgrading or downgrading during

their usage.

• Operational Considerations: Disassembly task times may be considered

as deterministic, stochastic and dynamic. These task times may vary

depending on several factors that are related on the condition of the

product and state of the disassembly workstation (worker). Furthermore,

tasks may behave differently in environments having product-defects. The

actions that are taken under such situations include; leaving the

workstation early, skipping to the next workstation(s), disappearing from

the line, revisiting to a preceding workstation or splitting into two or more

(exploding).

• Demand Considerations: Three demand types may exist: The demand

may be for one part only (single-part disassembly), or for multiple parts

(partial disassembly) or demand for all parts (complete disassembly).

9

• Assignment Considerations: There are some restrictions limiting the

assignment of tasks to the workstations. Some of these restrictions include

assigning to a specific workstation for minimizing distance traveled or

grouping tasks requiring similar operating conditions, availability of

special machining and tooling at certain workstations, minimizing the

disassembly direction changes and number of tool changes.

• Other Considerations: There are additional uncertainty factors related

with the reliability of the workstations. Some parts may cause pollution or

nuisance increasing the chance of breakdowns or downtimes of

workstations.

Altekin et al. (2008) study the Disassembly Line Balancing Problem (DLBP)

under partial disassembly. Their objective is to maximize total profit obtained

from disassembling a single product. Their assumptions are as follows:

• Single type of product is disassembled on a paced line.

• There is an infinite supply of used product.

• All parameters are deterministic and static.

• A disassembly task cannot be split among two or more stations.

• A disassembly task may result in removal of one or more parts.

• A station cost is incurred for opening and operating a station per unit time.

They formulate their problem as a mixed integer linear program. Their model

determines; the parts whose demand is satisfied to generate revenue, the tasks that

will release selected parts, the number of opened stations, cycle time and feasible

assignment of selected tasks to the stations considering the precedence relations.

Using the linear programming relaxation of this formulation, they find upper and

lower bounds on the total profit value. The results of their computational analysis

on ten basic problems show that their bounds provide near optimal solutions for

small sized problems and are capable of handling larger sized problems with up to

320 disassembly tasks in reasonable time.

10

McGovern and Gupta (2007) solve the DLBP using exhaustive search and a

combinatorial optimization methodology. A new method for quantifying the level

of balancing is proposed. Their method minimizes the number of workstations

while balancing the idle times between the workstations. Exhaustive search works

well enough in obtaining optimal solutions for small sized instances; however its

exponential time complexity limits its application on the large sized instances.

They also develop a genetic algorithm that involves a randomly generated initial

population with cross-over, mutation and fitness competition performed over

many generations. The algorithm finds optimal or near-optimal solutions, for the

large sized problem instances.

Güngör and Gupta (2002) study the DLBP under complete disassembly. They

consider the utilization of the resources efficiently while satisfying the demand.

Their concerns are finding the minimum number of the disassembly workstations

and improving the layout and material handling features of the disassembly line.

They propose a heuristic to solve the DLBP under the following assumptions:

• The disassembly line is paced.

• One type of product is disassembled and each product have identical

configuration.

• The supply of products is infinite.

• The complete disassembly is considered.

• All parameters are deterministic and static.

They use the disassembly of a PC consisting of eight tasks and eight parts, to

illustrate their priority-rule-based and station oriented heuristic.

Güngör and Gupta (2001) discuss the DLBP in the presence of task failures. They

assume if a task fails, none of its successors can be performed and discuss the

complications of such failures on the disassembly line. Their problem is to assign

tasks to workstations such that the effect of the defective parts on the disassembly

line is minimized. They state their basic assumptions as:

• One type of product is disassembled.

11

• All parameters are deterministic and static.

• Probabilities of parts being defective are constant and known.

They propose a 5-steps solution approach. Firstly, an Incomplete State Network

(ISN) representing all feasible states and their partial relationships are generated.

Then all possible relationships are developed among the states of ISN, which

results in complete ISN called State Network (SN). There are edges in SN which

implies relations between the states of SN. In the third step, the idle times and

weights of task assignments for each edge are calculated to generate the Weighted

State Network (WSN). In the fourth step shortest directed paths (SDP) between

the source and the final nodes of WSN are found by the Dijkstra’s shortest path

algorithm. SDP is defined as a task assignment resulting in the minimum idle time

on the line. In the final step, the cost of the complications for each alternative is

calculated and the alternative with minimum complication cost is selected.

Our disassembly line balancing problem differs from the previous ones in the

sense that we consider fixed number of workstations and finite supply of used

products.

12

CHAPTER 3

3. PROBLEM DEFINITION

We consider a disassembly line balancing model so as to maximize the total net

revenue. We assume the supply, i.e., the number of the product to be

disassembled is known and each unit of the product will be disassembled in one

period.

The tasks that release parts are referred to as part releasing tasks. All tasks have

costs, the part releasing tasks, simply called parts, have revenues as well. Our

problem is to assign the tasks to the workstations of the disassembly line for each

disassembled product, i.e., in each period.

We make the following additional assumptions:

• The workstations are already mounted and there are K workstations.

• All workstations are equipped identically and can perform all tasks at the

same pace.

• There is a single disassembly product with finite supply rate, S.

• All units of the product contain all disassembly parts with no

differentiation.

• All parameters, i.e., task times, part demands, costs are known with

certainty, i.e., deterministic.

• The parameters are not subject to any change, i.e., the system is static.

• The cycle time, i.e., the time can be allocated to each workstation, is

deterministic and static.

13

• Each task is specified by its cost and processing time. The part releasing

tasks have additional parameter, i.e., revenues.

• Each period is specified by a single unit disassembly, hence there are S

periods.

• S units of the product are sufficient for all demand, hence no shortages are

allowed. We also refer to each period as a cycle. Hence there are S cycles.

• The tasks are not indivisible, i.e., they should be assigned to exactly one

workstation.

• There is a partial disassembly, and there can be different disassembled

parts in different periods.

In Section 3.1 we explain the precedence relations that are used in disassembly

systems, Section 3.2 defines our mathematical models. We set the complexity of

the problem in Section 3.3. In Section 3.4 we provide an example problem to

clarify our decisions.

3.1. Precedence Relations

There are basically 2 types of precedence relations in disassembly networks.

These are “AND” type precedence relations and “OR” type precedence relations.

i. “AND” type precedence relations

“AND” type precedence relations between two tasks imply that one task can not

start before the other finishes. The following figure illustrates ‘AND’ type

precedence relations:

14

Figure 3.1: “AND” type precedence relations

According to the above figure, tasks a, b, c and d are predecessors of task e.

These four tasks should be complete before task e starts. Task d is the immediate

predecessor of task e as there is no task in between.

If task i is predecessor/immediate predecessor of task j then task j is

successor/immediate successor of task i. Accordingly task e is successor of all

other tasks and immediate successor of task d. Task d is the immediate successor

of tasks a, b and c.

For example, in personal computer (PC) disassembly (Gupta, 2002) shown in

Figure 3.5, both tasks 2, 3, 5 and 6 should be performed to start task 8.

ii. “OR” type precedence relations

“OR” type relations are specific to the disassembly networks. There are two types

of “OR” relations.

� “OR” type predecessor precedence relations (POR)

“POR” relations imply that at least one of the tasks in a specified set should be

complete before another task begins. Figure 3.2 illustrates “POR” type

precedence relations.

 c

a

e d b

15

Figure 3.2: “POR” type precedence relations

According to the above figure, at least one of the tasks in set {f, g, h} should be

complete before task i begins.

For example, in radio disassembly (Lambert, 1997) shown in Figure 5.5, either

Task 3 or Task 4 should be disassembled to perform Task 31.

� “OR” type successor precedence relations (SOR)

“SOR” relations imply that at most one of the tasks in a specified set can be

performed after one task completes. Figure 3 illustrates SOR type precedence

relations.

Figure 3.3: “SOR” type precedence relations

In figure 3, the tasks in set {k, l, m} are OR successors of task j. Accordingly after

completing task j at most one of the tasks in the set can be performed.

 h

f

 i g
POR

SOR
j

k

l

m

16

For example in ball-point pen disassembly (Lambert, 1997) with “SOR”

relationships, shown in Figure 3.4, either Task 2 or Task 3 can be performed after

Task 1.

Figure 3.4: Precedence diagram of the Lambert’s ball-point pen example (22

tasks) with “SOR” type precedence relations

In our model, we consider “AND” and “POR” type precedence relations. We

assume our precedence network is deterministic and is not subject to any change

(static).

3.2. Mathematical Model

In this section, we present our models that use the assumptions discussed and

precedence network with “AND” and “POR” relations. We develop two models.

Model I is a classical presentation whereas Model II is based on some optimality

properties. Our initial experiments reveal that Model I is more efficient, hence

used to find optimal solutions.

For both models we use the following parameters to define the problem size.

M: number of all tasks

N: number of part releasing tasks

K: number of disassembly products or periods

S: number of workstations

17

The task, period and workstation related indices are:

i: index of tasks , i=1,2,…,M

k index of workstations, k=1,2,…,K

t: index of periods, t=1,2,…,S

The following parameters and decision variables are valid for both models.

Parameters:

CT: maximum cycle time allowed for any of the workstations

ti: processing time of task i

di: demand of part that is released by task i

K: maximum number of workstations that can be used

Pi: net revenue of task i (“revenue obtained by releasing a part”-“cost of task”)

 = ri-ci where ri is the revenue due to task i and ci is the cost of task i (ri = 0 if

task i does not release a part).

PANDi : index set of AND predecessors of task i

PORi : index set of OR predecessors of task i

Decision Variables:

Our decisions are assignments of tasks to workstations in each period. These

assignments are explained by the following decision variables:





=
 otherwise0

 tperiodin k on workstati toassigned is i task if 1,

 ,

iktx

The following constraints are valid for both models. Model II uses some

additional constraints.

Constraints:

The demand of the part releasing tasks should be satisfied.

 i x Đ

K

1k

s

1t
ikt ∀≥∑∑

= =

d (c1)

The cycle time limit should not be exceeded.

18

 tk, CTxt
m

1i
ikti ∀≤∑

=

 (c2)

The “AND” precedence relations should be satisfied. This constraint allows

assignment of task i to station k if and only if all its “AND” predecessors are

assigned to stations 1 through k.

 PAND(i) l t,k,i, xx
k

1k
lkt

k

1k
ikt ∈∀∑≤∑

==
 (c3)

The “POR” precedence relations should be satisfied. This constraint allows the

assignment of task i to station k if and only if at least one of “POR” predecessors

of task i is assigned to stations 1 through k.

 (c4)

A task can be assigned to at most one station in each period.

 ti, x
K

1k
ikt ∀≤∑

=

1 (c5)

Binary variables showing the assignment of each task to the workstations in each

period should be nonnegative.

 tk,i, 0x ikt ∀≥ integer and (c6)

Note that x ikt 1≤ is satisfied by (c5)

The objective function tries to maximize the sum of net revenue obtained by each

task done and is expressed as:

∑ ∑∑
= = =

m

1i

K

1k

s

1t
iktiXPMax

The Complete Disassembly Line Balancing model is:

∑ ∑∑
= = =

m

1i

K

1k

s

1t
iktiXPMax

Subject to (c1),(c2),(c3),(c4), (c5), (c6).

 tk,i, xx
K

1h b
bhtikt ∀≤∑ ∑

= ∈)(iPOR

19

3.1.2 Model II

If there was no specified demand for any part in an optimal solution the same

parts are produced in all cycles, i.e. periods hence the problem reduces to a single

period problem so as to maximize the total profit.

We implement this idea, to produce our second model. We use two sub-models

(Model A and Model B) to find an optimal solution.

Model A: Finds the minimum number of periods to satisfy all ∑
i

id units.

Model B: Finds the maximum profit for a single period, zero demand problem.

Formally Model A can be stated as follows:

Decision Variables:





=
 otherwise0

 tperiodin production a is thereif 1,

 ,

tY

iktX ’s are defined in the original model.

Objective Function:

∑∑∑∑
= = ==

−
m

1i

K

1k

s

1t
iktiP

s

1t
t XP Y Min ε

Constraints:

 Y* X t

m

1i

K

1k
ikt µ≤∑∑

= =

 µ is a big number and equals to the multiplication of task numbers and

workstation numbers i. e. µ = M*K. Note µ is an upper bound on the optimal

 X
m

1i

K

1k
ikt∑∑

= =
 value. All other constraints are same with Model I.

20

The complete Model A is:

∑∑∑∑
= = ==

−
m

1i

K

1k

s

1t
iktiP

s

1t
t XP Y Min ε

Subject to

 i x Đ

K

1k

s

1t
ikt ∀≥∑∑

= =

d (c1)

 tk, CTxt
m

1i
ikti ∀≤∑

=

 (c2)

 PAND(i) l t,k,i, xx
k

1k
lkt

k

1k
ikt ∈∀≤∑∑

==

 (c3)

 (c4)

 ti, x
K

1k
ikt ∀≤∑

=

1 (c5)

 Y* X t

m

1i

K

1k
ikt µ≤∑∑

= =

 t∀ (c6)

 tk,i, 0x ikt ∀≥ integer and (c7)

The objective function primarily minimizes the number of periods. Among the

minimum number of periods solutions, it selects the one with the maximum

profit. Production excess of demand is desirable, if it does not increase the

number of periods.

The additional constraint activates Yt, hence sets it to 1, if there is at least once

task assigned to any workstation in period t. Note that X
m

1i

K

1k
ikt 1≥∑ ∑

= =
is upper

bounded by µ . If X
m

1i

K

1k
ikt 1≥∑ ∑

= =
 then Yt=1 otherwise Yt will be zero as we are

 tk,i, xx
K

1h b
bhtikt ∀≤∑ ∑

= ∈)(iPOR

21

minimizing ∑
t

tY . The total number of periods is ∑
t

tY , with at least one

assignment.

The magnitude of Pε is important in the sense that it should not increase the

minimum ∑
t

tY en route to increasing total profit. Pε should be set small enough

such that;

maxmin ** PT - 1 Y PT Y P
1t

tP
1t

t εε +≤− ∑∑
==

 (1)

Where minPT = minimum possible total profit value i.e., a lower bound on the

total profit. maxPT = maximum possible total profit value.

Hence, any solution with worse ∑
t

tY value, like 1+∑
t

tY , should not be favored

even if it leads to the maximum improvement in the total profit value.

Expression (1) follows:

 1 PT PT PP ≤− minmax ** εε (2)

Hence,
PT PT

 P
minmax

1

−
≤ε

 ∑≤
i

iidP * T PTmax (When all products are produced in all periods with zero

cost)

 0 PT ≥min (When nothing is produced)

Hence,

dP * T

i
ii

P

∑
=

1
ε to guarantee that among the minimum number of

periods solutions we select the maximum profit solution. -

We let the objective function of Model A be Z1, such that.

22

∑ ∑∑−=
= = =

m

1i

K

1k

s

1t
iktiP21 XP ZZ ε where ∑=

t
t2 YZ .

Model A guarantees to satisfy all demand in Z2 periods. In remaining (T- Z2)

periods, the repetitive cycles will be observed. To find an optimal solution in any

cycle we solve Model B.

Model B

We drop subscript t from our decision variable iktX , as we are considering a single

period. Our decision variable is ikX where





=
 otherwise0

k on workstati toassigned is i task if 1,

 ,

ikx

Our objective function is ∑∑
= =

=
m

1i

K

1k
iki3 XPZ ax M . We drop the demand constraint

as we assume zero demand.

To find an optimal solution, we solve Models A and B and use the following

solution:

First Z2 periods iktX ‘s are found by Model A. In the last (T- Z2) periods,

ikikt XX = are found by Model B. Hence, the optimal objective function value Z

becomes;

32P12 Z*)Z -(T /)Z-ZZ += ε(

where P12 /)Z-Z ε(is the optimal solution of the first Z2 periods and Z3 is the

optimal solution for a single period problem with zero demand.

In case an upper bound on the number of periods to satisfy all demand is known,

i.e., UB (T1) one may solve the original problem using UB (T1), in place of T.

23

Then a single period model can be used to find the schedule for the rest of the

cycles. Formally, let

ZA = maximum profit for the original problem with UB (T1) periods

ZB = maximum profit for a single period problem with zero demand.

Then Z= ZA+ (T – UB(T1))* ZB is the optimal objective function value.

If UB (T1) is small then ZA can be found much easier than solving the original

problem. ZB is found very easy as it corresponds to a single period problem.

3.3. Complexity

Our DLBP is analogous to the multiple knapsack problems when there is a single

period, the demands of the tasks are zero and there are no precedence relations.

The analogy can be stated as follows:

The multiple knapsack problem (our problem) selects the items (tasks) of known

weights (task times) and values (revenues) and assigns them to the knapsacks

(workstations) of known capacities (cycle times) so as to maximize total value

(revenue).

The multiple knapsack problem is NP-hard in the strong sense (Martello and

Toth, 1990), so is our problem with additional complexity brought by multiple

periods, part demands and precedence relations.

3.4. An Example Problem

Gupta (2002) presents a disassembly of a simple personal computer (PC) whose

disassembly consists of eight tasks and eight parts. We use this example to

illustrate the solutions of our models.

24

Tasks, related disassembled parts and parameters are shown in the table below:

Table 3.1: Parts and related parameters of the Example Problem

Task # Definition Times Demands Net Revenue

1 Removal of the top cover of the PC 12 1 21

2 Removal of the floppy drive 14 0 -15

3 Removal of the hard drive 12 4 14

4 Removal of the back plane 7 3 20

5 Removal of PCI cards 10 1 13

6 Removal of two RAM modules 2 2 3

7 Removal of the power unit 15 1 10

8 Removal of the motherboard 12 0 -14

The parameters are generated by our data generation scheme discussed in Chapter

5. We assume there are 4 workstations and 6 periods, i.e., disassembly products.

We find cycle as CT= 1.5*

t
 i











 ∑
K

.

The precedence network is given below:

1

8

5

2

6

3

7 4POR

1

8

5

2

6

3

7 4POR

Figure 3.5: Precedence diagram of the Gupta (2002) PC Example

Table 3.2 tabulates the iktX values of a feasible solution and assignments of tasks

to the workstations in each period. The table only includes the iktX values with

value “1”. The other iktX values are “0”.

25

Table 3.2: Feasible solution for the Example Problem

Periods/Stations 1 2 3 4

1 1,2 5 3,6,8 4,7

2

3 1 2 2

4 1,2,6 2,5,8 4,7

5 1,2,6 5 2,7,8 4

6

The total net revenue of the above feasible solution is “176”.

Table 3.3 reports the iktX values (the ones at value “1”) of an optimal solution

and their assignmnets.

Table 3.3: Optimal solution for the Example Problem

Periods/Stations 1 2 3 4

1 1,3 2,5,6 8 4,7

2 1,3 2,5,6 7,8 4

3 1,3 2,5,6 7,8 4

4 1,3 2,5,6 7,8 4

5 1,3 2,5,6 7,8 4

6 1,3 2,5,6 7,8 4

The total net revenue of the optimal solution is “312”. The optimal solution is

found by Model I. Note that the optimal solution has identical assignments for

many periods. This is driving force for developing Model II. We now illustrate

the solution with Model II.

The Pε value to be used by Model A is found as follows:

dP * T

i
ii

P

∑
=

1
ε = 0.003

26

∑ ∑∑−=
= = =

m

1i

K

1k

s

1t
iktiP21 XP ZZ ε where ∑=

t
t2 YZ .

The optimal ∑
t

tY value is found as “4” where the tasks are assigned to the

workstations in periods 1, 3, 4 and 6. Periods 2 and 5 is not utilized due to

minimization. Hence, Z2=4 , Z1=3.376 and ∑∑∑
= = =

m

1i

K

1k

s

1t
iktiP XPε =208. The optimal

solution for Model A is given in Table 3.4.

Table 3.4: Optimal solution for Model A for the Example Problem

Periods/Stations 1 2 3 4

1 1,2,6 3,5 8 4,7

2

3 1,3,6 2,5 8 4,7

4 1,5 2,3 6,7,8 4

5

6 1,2,6 3 5,8 4,7

Model B solves a single period with maximization profit and sets all demands to

“0”.

∑∑=
= =

m

1i

K

1k
iki3 XPZ ax M is found as “52”.

Note that the optimal objective function value Z can be written as;

32P12 Z*)Z -(T /)Z-ZZ += ε(

Thus,

Z = (4-3.376) / 0.003 + (6-4)*52 = 312

Note that 312 is the objective function value obtained from from Model I with

T=6.

27

CHAPTER 4

4. THE DLBP PROBLEM

In this chapter we present our upper bounding procedures and the heuristic

procedure that provides a lower bound.

4.1. Upper Bounds

We develop three upper bounds on the optimal value of the DLBP. These are

namely Upper Bound 1 (UB1), Upper Bound 2 (UB2) and Upper Bound 3 (UB3).

UB1 is obtained by relaxing the integrality constraints of Model I. UB2 improves

UB1 through valid cuts. UB3 takes its motivation from Model II.

4.1.1. Upper Bound 1 (UB1)

An optimal solution to any relaxation provides an upper bound on the optimal

objective function value of our maximization problem.

Model I is solved to optimality by relaxing the integrality constraints on the

binary iktX variables. The resulting optimal objective function value provides an

upper bound on the optimal total net revenue.

The Linear Programming Relaxation (LPR) of the original problem is stated

below:

28

∑∑∑
= = =

=
m

1i

K

1k

s

1t
iktiLP XPZ Max

Subject to

 i x Đ

K

1k

s

1t
ikt ∀≥∑∑

= =

d (c1)

 tk, CTxt
m

1i
ikti ∀≤∑

=

 (c2)

 PAND(i) l t,k,i, xx
K

1k
lkt

K

1k
ikt ∈∀≤∑∑

==

 (c3)

 (c4)

 ti, x
K

1k
ikt ∀≤∑

=

1 (c5)

 tk,i, 0x ikt ∀≥ (c6)

Note that the only difference between the original model and its LP Relaxation is

the integrality requirement on iktX values. This follows, ZLP is an upper bound on

the optimal objective function value Z*.

Optimal solution to the LPR of the problem discussed in Chapter 3 (Gupta’s PC

example) is as follows:

X441= X442= X443= X444= X445= X446= X621= X624= X625= X626= X741= X742= X743=

X744= X745= X746= 1

X114= X214= X514= X633= X642=0.03, X332= X832 =0.14, X341= X841= X541=0.15,

X331= X531=0.35, X342= X842=0.37, X124= X224= X524=0.47,

X122= X123= X222= X223= X322= X323= X522= X523= X822= X823=0.48,

X115=X116=X121=X131=X134=X135=X136=X215=X216=X221=X231=X234=X235=X236=

 tk,i, xx
K

1h b
bhtikt ∀≤∑ ∑

= ∈)(iPOR

29

X315=X316=X321=X324= X334= X335= X336=X516=X521=X525=X534=X535=X536=X824=

X825=X826 = X834= X835=X836= 0.50, X132= X133= X232= X233= X333= X532= X533=

X833= 0.52, X831= 0.85, X622= X623= 0.97

All other iktX s are “0” and ZLP = 312. Note that, out of 87 variables, 16 of them

is found as “1” and 71 of them is found fractional by the optimal LP Relaxation.

4.1.2. Upper Bound 2 (UB2)

UB2 is found by adding valid cuts to the LP relaxed problem, i.e., UB1.

The valid cuts are found by investigating the properties of all or at least one of the

optimal solutions that may not be satisfied by the optimal LP Relaxation.

� Fixing the Demands (CUT1)

Theorem 1: There exists an optimal solution in which dj units of part j is released

in the first dj periods.

Proof: Assume an optimal solution in which the first dj units are produced in

period t1, t2, …., tdj. (ti is the period where ith unit of part j is released). If the task

contents of any two periods are changed, i.e., Xikta is set to Xiktb and Xiktb is set to

Xikta for all i and tk for any two periods ta and tb, then the optimal objective

function value is not affected. Assume an optimal solution in which part j is

released in periods ta+1, ta+2,….ta+dj. Setting Xjkr = Xjk(ta+r) for all j, r<= dj and

Xjk(ta+r) = Xjkr does not change the objective function value. This follows, there is

an optimal solution in which dj units of part j is released in the first dj periods. �

By using the result of Theorem 1, one can fix a single task j to first dj periods. En

route to maximizing the number of periods fixed to a particular task, we select the

task having the maximum demand. Hence we fix part releasing task r such that dr

=Max {dj} to the first dr periods.

30

The equation set that supports Theorem1 is stated as below:

 x r
1t

rkt
1k

d
drK

=∑∑
==

As rktx =0 or 1, there can be at most one release for task r in each period. By the

above relation, we guarantee that there is exactly one release for task r in each

period t, where 1 ≤ t ≤ dr.

We add Cut1 to the relaxed problem and compare objective function value and

number of fractional values with and without Cut1 (Pure LPR)

Table 4.1: The comparison of Pure LPR and LPR with CUT1

 # of fractions CPU Time

Pure_LPR 73 0.06

LPR(Cut1) 60 0.05

As can be seen from the LPR solution, Task 3 is split into “14” among “4”

workstations. X3kt variables have the following fractional values:

X332=0.14, X341=0.15, X331=0.35, X342=0.37, X322= X323=0.48, X315=X316=X321

X324= X334= X335= X336= 0.50, X333= 0.52.

By adding Cut1, the following X3kt values are obtained:

X311=0.91, X312=0.86, X313=0.64, X314=0.75, X321=0.09, X322=0.14, X333 = 0.36,

X334 = 0.25, X325 = X336 = 1.

X3kt variables have a total of 8 fractional values, and two variables at “1”.

Fixing demand decreases the fractional values and decreases the CPU time, as it

eliminates many alternate optimal solutions.

� Lower Bound on workstation positions (CUT2)

Cut2 provides a lower bound on the workstation number that can reside any

defined task.

31

Theorem 2: In all optimal solutions, task j cannot be assigned to workstations

1,2,..,EJ-1 where
CT

 t t
Pj i

Ji

J


















+

=
∑
∈

)(

E and Pj is the set of “AND” predecessors.

Proof: Task j cannot start before its predecessors hence should wait at least

∑
∈Pj i

i t units to start and ∑
∈

+
Pj i

Ji t t units to complete. When task splitting is

allowed and all other tasks are ignored, ∑
∈

+
Pj i

Ji t t units require

 CT t t
Pj i

Ji 







+∑

∈

/)(workstations. When task splitting is not allowed and other

tasks are considered CT t t
Pj i

Ji 







+∑

∈

/)(becomes a lower bound on the earliest

workstation for task j. �⁭

The following constraint set is used to support Theorem 2.

j X
1 - Ej

 k

s

 t
jkt ∀=∑∑

= =

0
1 1

By the above equation, we guarantee that task j is not assigned to workstations

1,2,..,EJ-1 in any period.

The theorem gives a lower bound on the station number that resides task j. It

ignores “POR” relations. We modify this lower bound to include the “POR”

relations while preserving the validity of the bound. In doing so, starting from the

source node we replace the “POR” relations with “AND” relations and take the

minimum task time of a “POR” relation as the task time of the “AND” relation.

As minimum times are used in place of exact times, the sum of the processing

32

time t t
 i

i
PORj i

i ∑∑
∈∈

≥
PORj

 where PORj is the PORj relation replaced by AND

relation using minimum task time.

The modification of Theorem 2 with PORj inclusion replaces Ej by;

CT

 t t
 U (Pj i

Ji

J




















+

=
∑

∈

)(
PORj)

E

The following example illustrates t
 i

i∑
∈PORj

computations:

Figure 4.1: An example illustrating Theorem 2

PORb defined by {3, 4} is replaced by bPOR with task time Min {t3, t4}.

(t1 + t2) is the minimum total processing load to start task A (SA) and Min {t3,t4}+

t5 is the minimum total processing load to start task B (SB). This follows;

Min {(t1 + t2+ tA), (min {t3, t4} + t5 + tB) } is the minimum total processing load to

start task j. Note that
CT

 t j
J 







 +
=

j start task toload processing totalMinimum
E .

Hence, in this example

CT

 t ttttttt jB543A21
J 







 +++++
=

 }) } ,{(min), {(Min
E .

POR

POR

Min {SA+tA , SB+tB } = Sj

t1 + t2 = SA

Min {t3 , t4 } + t5 = SB

A

j

B

1

2

3

4

5

33

We use the below network to illustrate Theorem 2. The tasks are given on the

network. We use K=4, CT=63, T=80. Ej value is calculated as follows for task

13;

Figure 4.2: Precedence diagram of the Lambert’s ball-point pen example (22

tasks)

CT

t t t t tt t t 1372221431
13 







 ++++++
=

 }) (),{(Min
E

63

17 15 19 7 16 1 13
13 




 ++++++
=

 }) 3(),{(Min
E

2
63 13 =




=
71

E

Hence, task 13 can not be assigned to the first workstation in any period.

The optimal LPR assigns task 13 to workstation “1” at 62 periods. There are 53,

50 and 39 fractional variables for the assignment of task 13 to workstations “2”,

“3”, and “4” respectively. Hence, there are a total of 142 fractional variables.

After introducing Cut2 to the LPR, there is no assignment to workstation “1”.

The number of fractional variables for workstations “2”, “3”, and “4” become

28, 26 and 40 respectively.

34

Note that the number of fractional variables is reduced to “94” from “142” for

task 13.

The objective function value and number of fractional variables of LPR with Cut2

and Pure_LPR are compared, and tabulated below.

Table 4.2: The comparison of Pure LPR and LPR with CUT2

Objective function

value
of fractions CPU Time

Pure_LPR 26.796 3.643 1.25

LPR(Cut2) 26.076 1.702 1.04

Note from the table that by Cut2, the number of fractional variables is almost

hauled and the CPU time is reduced to 1.04 seconds from 1.25 seconds.

� Projecting Demands (CUT3)

The demand figures are related only to the part releasing tasks. The optimal

solution guarantees that the total number of part releasing tasks assigned is never

greater than the number of its predecessor tasks assigned. However the optimal

LP relaxation may not satisfy this property due to the allowed partial assignments.

Recognizing this fact, we project the demands of the part releasing tasks to all

other tasks, and impose the following constraints.

i. “AND” precedence reations

Consider the following network in Figure 4.3:

35

Figure 4.3: Projecting Demands for “AND” precedence relations

The total number of task 1 assigned should not be smaller than the total amount of

task 2 and task 3 assigned. Hence the following relation should hold:

 x , xx
K

k

s

t
3kt

K

k

s

t
2kt

K

k

s

t
1kt









≥ ∑∑∑∑∑∑ max

In general; x x
K

k

s

t
jkt

S(i) j

K

k

s

t
ikt









≥ ∑∑∑∑
∈
max where S(i) is the set of immediate

successors of task i.

The relation can be linearized as; S(i) j xx
K

k

s

t
jkt

K

k

s

t
ikt ∈∀≥∑∑∑∑

ii. “POR” precedence reations

Consider the following network:

Figure 4.4: Projecting Demands for “POR” precedence relations

Note that Task 3 requires the assignment of task 1 or task 2. This follows the total

amount of task 1 and task 2 assigned should not be less than the number of task 3

assigned. This relation is imposed by the following constraint:

1

3

2

3

2

1

POR

36

∑∑∑∑∑∑ ≥+
K

k

s

t
3kt

K

k

s

t
2kt

K

k

s

t
1kt x xx

In general; ∑∑∑ ∑∑ ≥
∈

K

k

s

t
ikt

 j

K

k

s

t
jkt x x

)(iPOR

The following network explains more complex relations:

Figure 4.5: Projecting Demands for complex relations

Constraint sets used for this complex network are as follows:

 x , xx
K

k

s

t
5kt

K

k

s

t
4kt

K

k

s

t
1kt









≥ ∑∑∑∑∑∑ max

∑∑∑∑ ≥
K

k

s

t
5kt

K

k

s

t
3kt xx

∑∑∑∑∑∑ ≥+
K

k

s

t
4kt

K

k

s

t
3kt

K

k

s

t
2kt x xx

∑∑∑∑∑∑ ≥+
K

k

s

t
6kt

K

k

s

t
3kt

K

k

s

t
2kt x xx

We use the network given in Figure 4.2 with K=4, CT=63, T=80 to illustrate the

demand projecting cuts. As it can be seen from the figure, Task 22 is the

immediate predecessor of Tasks 5, 6 and 7. Hence, the constraints added to the

model for Task 22 are:

4

2

1

POR

3

5

6 POR

37

∑∑∑∑ ≥
K

k

s

t
5kt

K

k

s

t
22kt xx

∑∑∑∑ ≥
K

k

s

t
6kt

K

k

s

t
22kt xx

∑∑∑∑ ≥
K

k

s

t
7kt

K

k

s

t
22kt xx

The optimal LP relaxation does not satisfy this property due to the allowed partial

assignments. The solutions are

20 =∑∑
K

k

s

t
22ktx , 80 =∑∑

K

k

s

t
5ktx , 80 =∑∑

K

k

s

t
6ktx , 80 =∑∑

K

k

s

t
7ktx

and the added constraint sets are violated.

The optimal LPR solution with Cut3 gives the following result;

80 =∑∑
K

k

s

t
22ktx , 80 =∑∑

K

k

s

t
5ktx , 80 =∑∑

K

k

s

t
6ktx , 80 =∑∑

K

k

s

t
7ktx

satisfying the related constraints added and the precedence relationships.

By using cut3, one can guarantee that the total amount of tasks assigned is never

greater than the amount of its predecessor tasks assigned. The objective function

value and number of fractional variables of LPR with cut3 and Pure_LPR are

compared and tabulated below:

Table 4.3: The comparison of Pure LPR and LPR with CUT3

Objective function

value
of fractions CPU Time

Pure_LPR 26.796 3.643 1.25

LPR(Cut3) 26.076 1.979 1.20

Note from the table that, the number of fractional variables reduces to “1.979”

from “8.643”. Moreover the CPU time reduces to 1.20 from 1.25 and there is a

slight improvement in the objective function value.

38

� Existence of Feasible Solution-Ranking Heuristic (CUT4)

Our last cut uses the results of the following two theorems.

Theorem 3: If there exists a feasible schedule that processes all tasks that are not

successors of task j and task j in r workstations then there exists an optimal

schedule in which task j is processed in workstations “1” through “r”.

Proof: Assume task j is assigned to workstation “k” such that k ≤ r, and

workstations r+1 through K process the successors of task j. Taking task j from

workstation k and placing to workstation “l” such that l ≥ r+1 cannot increase

the total revenue as such a replacement cannot allow more task assignments. This

is due to the fact that all tasks in workstations r+1 through K are successors of

task j, hence cannot be processed in workstations 1 through r, once task j is

processed later. This follows, there exists an optimal solution in which task j is

processed in the first r workstations. �

Theorem 4: If there exists a feasible schedule that processes all tasks that are not

predecessors of task j and task j in the last r workstations, then there exists an

optimal schedule in which task j is processed in workstations “K-r+1” through

“K”.

Proof: Assume task j is assigned to workstation “k” such that k ≥ K-r+1 and

workstations 1 through K-r process the predecessors of task j. Taking task j from

workstation k and placing it to workstation “l” such that l ≤K- r cannot increase

the total revenue as such a replacement cannot allow more task assignments. This

is due to the fact that all tasks in workstations 1 through K-r are predecessors of

task j, hence cannot be processed in workstations K-r+1 through K, once task j is

processed earlier. This follows, there exists an optimal solution in which task j is

processed in the last r workstations. �

39

To find feasible solutions to implement the theorems, we use the following

heuristic procedure:

Let S be the set of tasks that should be assigned to K workstations. Order the tasks

in set S according to their nondecreasing order of task times. Take the tasks from

the order starting from the first feasible task. A task is feasible if its inclusion to

the current workstation does not violate the precedence relations and cycle time

constraints. If no such task exists close the current workstation and open a new

one. Stop when all jobs in set S is assigned. Let num(S) be the resulting number of

workstations.

To implement Theorem 3 we set S=S1 where S1 is the set of all tasks except the

successors of task j. To implement Theorem 4 we set S=S2 where S2 is the set of

all tasks except the predecessors of task j. After num(S1) and num(S2) are

obtained, implementing the heuristic for sets S1 and S2, we include one of the

following two cuts:

i. j 0 X
t

K

1 num(s1)k
jkt ∀=∑ ∑

+=

This cut supports the result of Theorem 3.

ii. j 0 X
t

num(s2)-K

1 k
jkt ∀=∑ ∑

=

This cut supports the result of Theorem 4.

i. and ii. cannot be included to the LPR simultaneously as they may lead to

infeasible solution. To obtain a feasible solution, we select one of them using the

following rule:

Rule: Use “i” if K-num(S1) ≥ K-num(S2), else use “ii”.

The idea behind the rule is to prevent assignments to more workstations, hence

use stronger cut.

40

We illustrate the Cut4 through our previous network with same data. The tasks in

the problem are ranked as in the table below:

Table 4.4: Related data for CUT 4

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Tasks 1 3 4 2 12 11 20 16 21 22 6 5 8 10 7 14 13 17 9 15 19 18

Task times 13 1 6 7 12 14 18 18 16 19 5 7 8 3 15 4 17 15 17 11 4 19

K-num(S1) 3 3 3 3 1 1 1 1 0 1 3 3 1 1 0 2 0 0 0 2 2 2

K-num(S2) 0 0 0 0 2 2 2 2 3 2 0 0 2 2 3 1 2 3 3 0 1 1

Num selected 3 3 3 3 2 2 2 2 3 2 3 3 2 2 3 2 2 3 3 2 2 2

The tasks assigned to the workstations via first and second rules are shown in the

table 4.5.

Table 4.5: Assignment of tasks according to procedures

Stations 1 2 3 4

1st rule_Tasks 1,2,3,4,11,12 16,20,21,22 5,6,7,8,10,13,14 9,15,17,18,19

2nd rule_Tasks 1,2,3,4,11,12,20 16,21,22 5,6,7,8,10,13,14,17 9,15,18,19

Note that the information given in the table entails that;

� Tasks cannot be assigned after workstation k in any period t where k is the

workstation that task i is assigned by the 1st rule.

� Tasks cannot be assigned before the workstation k in any period t where k

is the workstation that task i is assigned by the 2nd rule.

For example, task 19 cannot be assigned to workstations “1”, “2” and “3” with

both rules (even the selected rule is the 2nd one). The resulting solution for task 19

satisfies the constraint;

 0 X
3

19_k_t =∑ ∑
=t k 1

and assigns task 19 to only workstation “4” such as; X19_4_49=X19_4_65=1.

The solution of Pure LP gives the assignment of task 19 as; X19_1_1=0.75,

X19_1_34=0.25, X19_4_73=1, hence the condition is not satisfied.

41

The optimal solution after adding Cut4 is shown in the table below:

Table 4.6:The comparison of Pure LPR and LPR with CUT4

Objective function

value
of fractions CPU Time

Pure_LPR 26.796 3.643 1.25

LPR(Cut4) 26.076 326 0.50

Note that the number of fractions and CPU time decrease drastically by Cut4.

UB2 is the total revenue returned by LP after introducing all four cuts.

4.1.3. Upper Bound 3 (UB3)

To obtain UB3, we use the idea used to construct Model II. In Model A in place of

minimizing number of periods, we obtain an estimate on the minimum number of

periods to satisfy all demand. Our aim here is to get rid of the Yt binary variables.

Firstly, a lower bound is found on the minimum number of periods (LB (T)) and it

is used “as is” or increased iteratively till a feasible solution is reached. Model B

is used without any change.

We find (LB (T)) through the following theorem:

Theorem 5: The demand cannot be satisfied in less than LB (T) periods where

CT*K

 d p
j

Jj



















=
∑ new*

 LB(T) and Jd new is the projected demand of task j.

Proof: The total processing requirement to produce all demand is

 d p
j

Jj∑ new* where Jd new is the projected demand of task j. In each period

42

there are K workstations and each workstation is available for CT time units,

hence a total processing availability by a single period is K*CT time units.


















∑

CT*K

 d p
j

Jj new*

 is the number of periods to satisfy all demand if task splitting

between the periods and workstations are allowed. As no task splitting is allowed

CT*K

 d p
j

Jj


















∑ new*

 is a lower bound on the number of periods (LB (T)). �

We use the network in Figure 4.2 with K=4 and CT=63 to illustrate the

implementation of Theorem 3. LB (T) is found as “3” by the help of the

Theorem3. We find dnew values as shown in the table below:

Table 4.7: Projected demands of tasks (dnew)

Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

dnew (j) 4 4 4 4 4 4 4 3 4 4 4 4 4 3 2 1 0 4 2 1 0 4

Task times 13 7 1 6 7 5 15 8 17 3 14 12 17 4 11 18 15 19 4 18 16 19

We obtain LB (T) =
63*4

 4*19...4*74*13





 +++
 =3, using Theorem 3.

Then model with cuts (cut1, cut2, cut3 and cut4) is solved by setting T to “3”.

With T=3 we could not obtain a feasible solution, then we set T=4. With T=4

there is no feasible solution as well. Hence with T=5 LP model with cuts is solved

and a feasible solution is obtained. This means that the minimum number of

periods to satisfy all demand is “5” periods (UB (T) = 5).

Finally the maximizing revenue model with cuts is solved for a single period, i.e.,

T=1, and all zero demand. The resulting solutions are shown below:

43

Table 4.8: Optimal solutions with T=5 and T=1

Objective function

value
CPU Time

T=5 1.626 0.05

T=1 326 0.03

An upper bound on the number of periods to satisfy all demand is known, i.e., UB

(T) =5 and the problem is solved using UB (T)=5, in place of T=80. Then a single

period model can be used to find the schedule for all remaining T – UB (T) = 80-5

= 75 periods. Let

ZA = maximum revenue for the original LP problem with UB (T) =5 periods

ZB = maximum revenue for a single period problem with zero demand. (T =1)

Then UB3= ZA+ (T – UB (T))* ZB is the optimal objective function value. This

follows;

UB3= 1.626 + (80 – 5)* 326 =26.076

Note that UB2 = UB3. Since UB (T) =5 is small, ZA can be found much easier than

solving the problem with T=80. ZB is found very easy as it considers a single

period problem. Hence one should expect to obtain UB3 much quicker than UB2.

We obtain UB2 and UB3 values for our example in 0.45 and 0.08 seconds

respectively.

4.2. Lower Bound

The satisfactory behavior of UB3 in terms of its solution time and number of

fractions it produces motivated us to produce a feasible solution around UB3

solution. We use UB3 as a starting solution en route to finding a feasible solution

to our problem.

Our lower bound first solves UB3, then fixes its variables that are assigned to “1”

and obtains a reduced problem. The reduced problem has only the partially

44

assigned or unassigned tasks of UB3 solution. As the partial assignments are quite

low compared to the original variables, the reduced problem is very small in size.

As our Mixed Integer Linear Programming (MILP) can handle small-sized

problems very quickly, we prefer to use it to find an optimal solution for not

completely assigned tasks.

After fixing the variables to “1”, the resulting solution by MILP may be infeasible

due to the following two reasons:

i. The cycle time constraint cannot be satisfied

ii. The precedence relations cannot be satisfied

If the cycle time constraint cannot be satisfied, then by increasing the number of

periods, a feasible assignment can be reached. However if the precedence

relations cannot be satisfied, there is no way to reach to a feasible solution

without changing the fixed tasks.

If (i) holds then we increase the number of periods one by one until we obtain a

feasible solution. If (ii) holds the tasks whose fixings lead to violation of the

precedence relations, are set to zero, and the MILP is resolved. Below we give the

stepwise description of our lower bounding procedure:

Step1: Solve the LP Relaxation with cuts using minimum number of periods. Fix

the variables that are assigned to “1” in the relaxed solution.

Step2: Solve the MILP for the unassigned tasks considering the assignments

made in Step1. If the solution is feasible, STOP.

Step3: If the infeasibility is caused by the cycle time constraints, let T=T+1, go to

Step1. If the infeasibility is caused by the precedence relations, unassign the

related tasks, go to step2.

45

After finding the feasible solution with a feasible period number, namely UB(T),

MILP is solved to maximize revenue with zero demand and a single period. Let,

ZA = maximum revenue resulting by feasible solution of MILP with UB(T).

ZB = maximum revenue with MILP for a single period problem with zero

demand. (T =1)

Then LB= ZA+ (T – UB (T))* ZB is the optimal objective function value for lower

bound problem.

To illustrate our lower bound, we use a numerical example with 8 tasks and we

assume K=4, CT=31 and T=6. The precedence network is given in Figure 3.5

and related parameters are tabulated in Table 3.1. For UB3; LB (T) and UB (T)

values are found as “2” and “5” respectively. Then the following steps of the

lower bound are executed;

Step1: LP Relaxation with cuts and T=UB (T) =5 is solved and the variables that

receive value “1” in the solution are fixed.

Step2: The MILP for the unassigned tasks considering the assignments made in

Step1 is solved. Variables (tasks) that are assigned to “1” in the relaxed solution

are shown in Table 4.9 and the loads of the workstations are shown in Table 4.10.

The fractional variables are; X311= X312= X313= X314=0.64, X315=0.75, X321=

X322= X323= X324=0.36, X325=0.25.

Table 4.9: Tasks that are assigned to “1” in the relaxed problem (T=5)

Periods/Stations 1 2 3 4

1 1,5,6 2,8 4,7

2 1,5,6 2,8 4,7

3 1,5,6 2,8 4,7

4 1,5,6 2,8 4,7

5 1,5 2,6,8 4,7

46

Table 4.10: The loads of the workstations after full assignments (T=5)

Periods/Stations 1 2 3 4

1 24 26 22

2 24 26 22

3 24 26 22

4 24 26 22

5 22 28 22

The resulting MILP solution for the unassigned tasks is infeasible due to the

precedence relations. Note that the returned solution has an empty workstation

and this implies that the infeasibility is caused by the precedence relations. Then

we continued with step 3. Task 8 is fully assigned to workstation 2 in every period

by the help of fractional assignments of its immediate predecessors 3 and 6.

When these fractional assignments are ignored and only the variables that are

assigned to “1” are considered for the MILP, the remaining cycle time for the

predecessors of task 8 is inadequate. Lets consider first period; as CT=31 and

remaining cycle time for workstation 1 = 31-24= 7, remaining cycle time for

workstation 2 = 31-26= 5, task 3 having processing time “12” cannot be

assigned to workstations 1 and 2. Therefore the infeasibility with these

assignments is inevitable.

Step3: Since the infeasibility is caused by the precedence relations, we ignore the

assignment of task 8 to workstation 2 in each period and repeat step 2.

Step2: The MILP is solved with the fractional tasks of Step1 and freed tasks of

step 3. We obtain a feasible solution with T=5, and stop. The resulting

assignments are shown in Table 4.11.

47

Table 4.11: MILP solution (T=5)

Periods/Stations 1 2 3 4

1 1,5 2,3,6 8 4,7

2 1,5 2,6 3,8 4,7

3 1,5 2,3,6 8 4,7

4 1,5 2,6 3,8 4,7

5 1,5 2,3,6 8 4,7

The objective function value ZA, is found as 260 with UB(T)=5. Then we solve a

single period MILP with zero demand for maximizing revenue. The objective

function value ZB, is obtained as 52. To find LB, we use;

LB= ZA+ (T – UB(T))* ZB

LB= 260+ (6 – 5)* 52 =312

As a result, lower bound for the original problem is obtained as “312”.

Another numerical example is used to illustrate the infeasibility due to the cycle

time constraints. The example has 22 tasks with the parameters shown in Table

4.12 and K=2, CT=115 and T=80. Firstly, LB (T) and UB (T) values are found as

“3” and “5” respectively for UB3. Then the following steps are followed;

Table 4.12: Data for the second example instance

Tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Times 14 1 6 5 8 18 14 14 18 8 8 18 6 8 11 7 14 15 14 15 3 4

Demands 1 1 3 1 1 1 1 4 4 2 3 3 4 4 3 3 1 1 2 3 3 3

Net Rev. 28 23 -1 27 22 30 13 5 19 -3 37 13 42 33 25 32 27 15 10 4 32 10

Step1: The LP Relaxation with cuts and T=5. The variables that are assigned to

“1” in the relaxed solution, are fixed.

Step2: The MILP for the unassigned tasks considering the assignments made in

Step1 is solved. Since the solution is infeasible, we proceed to step 3.

Step3: The infeasibility is caused by the cycle time constraints. The solution of

the relaxed problem with UB (T) =5 gives all full assignments, except Task 10.

The fractional values for Task 10 are; X10_2_1= X10_2_5=0.88, X10_2_2=0.24. The

loads of workstations with the fully assigned tasks are shown in Table 4.13.

48

Table 4.13: Loads of the with full assignments (T=5)

Periods/Stations 1 2

1 113 108

2 113 108

3 113 108

4 113 108

5 113 108

Note that the remaining cycle times for Workstations 1 and 2 in each period is

“115-113=2” and “115-108=7” respectively. The processing time of Task 10 is

8 units; hence the workstations cannot process Task 10 with their remaining

times. Therefore, to get a feasible solution, T has to be increased. We let T=T+1,

go to Step1.

The period number with a feasible solution is found as UB (T) =7 and ZA=3116.

The assignments of Task 10 are; X10_1_6= X10_2_7= 1. Then we solve a single

period MILP with zero demand for maximizing revenue. Objective function is

obtained as ZB =446. To find LB, we use;

LB= ZA+ (T – UB (T))* ZB

LB= 3116+ (80 – 7)* 446 =35.674.

Our lower bound for the original problem is “35.674”.

49

CHAPTER 5

5. COMPUTATIONAL EXPERIMENT

In this chapter we present the results of our computational experiment. We first

discuss our data generation scheme then state our performance measures. Finally

we evaluate the computational results.

5.1. Data Generation

In this section, we present the network and parameter generation schemes.

5.1.1. Network Generation

We start with small networks and then form bigger networks. To generate big

networks we take small networks from the literature, combine them and put

additional arcs.

1st Network (22tasks)

Lambert (1997) illustrates a 10-part ball-point pen example with its assembly as

shown in Figure 5.1.

50

Figure 5.1: 10 part ball-point pen example (Lambert, 1997)

The disassembly operations on a disassembly graph with 20 tasks are

demonstrated in Figure 5.2.

Figure 5.2: Disassembly graph of the 10 part ball-point pen example

(Lambert, 1997)

We transform this disassembly graph into a precedence diagram by adding a

dummy task (task 22). The resulting diagram is shown in the figure below:

F
ig
u
re
 5
.3
:
P
re

ce
d
en

ce
 d
ia
gr

am
 o
f
th

e
L
am

b
er

t’
s
b
al
l-
p
oi
n
t
p
en

 e
xa

m
p
le
 (
22

 t
as

k
s)

51

52

2nd Network (34 tasks)

Lambert (1997) illustrates a 10-part radio example. The disassembly operations

on a disassembly graph with 30 tasks are demonstrated in Figure 5.4.

Figure 5.4: Disassembly graph of the 30 task 10 part radio example

(Lambert, 1997)

The precedence diagram is formed by adding three dummy tasks (tasks

32_33_34) and is shown in the Figure 5.5.

F
ig
u
re
 5
.5
:
P
re

ce
d
en

ce
 d
ia
gr

am
 o
f
th

e
L
am

b
er

t’
s
ra

d
io
 e
xa

m
p
le
 (
34

 t
as

k
s)

53

54

3rd Network (47 tasks)

Our third network is formed by combining the second network (34 tasks) and a

part of the first network (22 tasks_ used part is righthandside of task 22).

Moreover some arcs are added to generate this 47 task network.

Precedence diagram of this network is shown in the Figure 5.6.

4th Network (60 tasks)

Our fourth network is formed by combining the third network (47 tasks) and a

part of the first network (22 tasks_ used part is righthandside of task 22). More

complicated arcs are added to generate this 60 task network.

Precedence diagram of this network is shown in the Figure 5.7.

5th Network (73 tasks)

Our fifth network is formed by combining the fourth network (60 tasks) and a part

of the first network (22 tasks_ used part is righthandside of task 22). Moreover,

some arcs are added to generate this 73 task network.

Precedence diagram of this network is shown in the Figure 5.8.

F
ig
u
re
 5
.6
:
P
re

ce
d
en

ce
 d
ia
gr

am
 o
f
47

_t
as

k
_N

et
w
or

k

55

F
ig
u
re
 5
.7
:
P
re

ce
d
en

ce
 d
ia
gr

am
 o
f
60

_t
as

k
_N

et
w
or

k

56

F
ig
u
re
 5
.8
:
P
re

ce
d
en

ce
 d
ia
gr

am
 o
f
73

_t
as

k
_N

et
w
or

k

57

58

5.1.2. Parameter Generation

For each network we generate the processing times from a discrete uniform

distribution (1,20). After we generate the processing times, we use two sets for

the cycle times.

Set 1 (C1) : Cycle time of an instance is set to

t
 i











 ∑
K

 where K is the number of

workstations.

Set 2 (C2) : Cycle time of an instance is set to 1,5 *

t
 i











 ∑
K

.

Our aim is to see the effect of the cycle times on the problem difficulty.

We use two values for the number of workstations K, for each network (N) and

cycle time.

Set 1 (K1) : For small networks, N=20,34, 47 K is set to 2.

 For large networks, N=60,73 K is set to 4.

Set 2 (K2) : For small networks, K is set to 4.

 For large networks, K is set to 8.

A task receives a demand, hence called a part releasing task, according to a

random process. We generate a random number between 0 and 1. If the generated

number is below 0.3, we set its demand to zero. Hence we expect that about %70

of all tasks are part releasing and attribute a demand and revenue for each part

releasing task. We attribute a cost for all tasks.

For each value of N, C, and K, we use two distributions to generate the demands

of the part releasing tasks.

Set 1 (D1) : Demand of a part releasing task is uniform between 1 and 5.

Set 2 (D2) : Demand of a part releasing task is uniform between 5 and 10.

59

Note that D1 contains low demand and D2 contains high demand problem

instances.

For all instances, we set the number of used products, hence the number of

periods, T to 80.

For all tasks, we generate the costs from a discrete uniform distribution between 5

and 20. For all part releasing tasks, we generate the revenues from a discrete

uniform distribution between 10 and 50. We set the net revenue (profit) of each

task as the difference between its revenue and cost.

We have 5, 2, 2 and 2 alternatives for each N, K, C and D respectively.

This leads to 3*2*2*2=24 combinations for small networks and 2*2*2*2=16

combinations for big networks. Thus a total of 40 combinations are used.

For each combination, we generate and solve 10 problem instances. Hence we use

400 problem instances in our experiments.

5.2. Performance Measures

In this section, we discuss the performance measures we use to evaluate the

efficiency of our Upper Bounds and Lower Bounds.

We use the following performance measures for the Upper Bounds:

1. Deviation from the optimal (or best known) solution (average, maximum)

2. The solution time expressed as Central Processing Units (CPU) in

seconds (average, maximum)

3. Total Number of fractional values (average, maximum)

We use the following performance measures for the Lower Bound:

60

1. Deviation from the optimal solution (for small networks) as a percentage

of the optimal solution, Deviation from the Upper Bound (for large

networks) (average, maximum)

2. The Central Processing Unit (CPU) time in seconds (average, maximum)

The optimal solutions are found by CPLEX 10.1. CPLEX is run for 3600 seconds.

All experimentations are done in Intel Core2 Duo 2.00 GHz, 2 GB RAM. All

algorithms are coded with Microsoft Visual C++ 2008.

5.3. Discussion on Experiments

We first investigate the performance of our upper bounding procedures. We

report the average and maximum deviations of the upper bounds in Tables 5.1,

5.2 and 5.3, for networks 22, 34 and 47 tasks respectively. We calculate the

deviation (DEV) as;

100% ×






 −
=

OPT

OPTUBi
Dev where

OPT = Optimal objective function value, optimal total revenue

UBi = Total revenue returned by upper bound i.

We use the following abbreviations to state our problem combinations.

K1_C1_D1: K1 is the small number of workstations in each network, C1 is the

small cycle time and D1 is the small demand type. All of them stems from Set1 of

their related category.

K2_C2_D2: K2 is the high number of workstations in each network, C2 is the

high cycle time (1,5*C1) and D2 is the high demand type. All of them stems from

Set2 of their related category.

A total of 8 abbreviations are used for 8 combinations which are; K1_C1_D1,

K1_C1_D2, K1_C2_D1, K1_C2_D2, K2_C1_D1, K2_C1_D2, K2_C2_D1 and

K2_C2_D2.

T
ab

le
 5
.1
:
D
ev

ia
ti
on

 o
f
U
B
1
an

d
 U

B
2
fr
om

 o
p
ti
m
al
 a
n
d
 N

u
m
b
er
 o
f
fr
ac

ti
on

s
of
 U

B
1
an

d
 U

B
2
fo
r
N
=
22

 T
ab

le
 5
.2
:
D
ev

ia
ti
on

 o
f
U
B
1
an

d
 U

B
2
fr
om

 o
p
ti
m
al
 a
n
d
 N

u
m
b
er
 o
f
fr
ac

ti
on

s
of
 U

B
1
an

d
 U

B
2
fo
r
N
=
34

C
1

C
2

D
1

D
2

D
1

D
2

of
 V
ar
ia
bl
es

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

of
 O
pt
im

al

S
ol
ut
io
ns

D
E
V

0.
00

0.
01

0.
00

0.
01

0.
00

0.
01

0.
00

0.
01

10

U
B
1
_
K
1

5,
44

0

of
 f
ra
c.

71
5.
90

19
50

.0
0

11
50

.8
0

22
51

.0
0

78
6.
00

23
67

.0
0

74
1.
00

22
10

.0
0

10

D
E
V

0.
00

0.
01

0.
00

0.
01

0.
00

0.
01

0.
00

0.
01

10

U
B
1
_
K
2

10
,8
80

of
 f
ra
c.

38
03

.1
0

48
64

.0
0

42
38

.7
0

51
36

.0
0

30
04

.1
0

43
07

.0
0

31
02

.6
0

43
86

.0
0

10

D
E
V

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

10

U
B
2
_
K
1

5,
44

0

of
 f
ra
c.

19
.0
0

16
0.
00

22
.9
0

15
8.
00

0.
00

0.
00

0.
00

0.
00

10

D
E
V

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

10

U
B
2
_
K
2

10
,8
80

of
 f
ra
c.

52
5.
20

87
0.
00

51
7.
70

85
5.
00

27
1.
10

43
8.
00

25
9.
10

44
6.
00

10

C
1

C
2

D
1

D
2

D
1

D
2

of
 V
ar
ia
bl
es

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

of
 O
pt
im

al

S
ol
ut
io
ns

D
E
V

0.
01

0.
02

0.
01

0.
02

0.
01

0.
02

0.
01

0.
02

10

U
B
1
_
K
1

3,
52

0

of
 f
ra
c.

72
2.
40

16
36

.0
0

11
20

.7
0

17
78

.0
0

48
7.
10

13
56

.0
0

47
0.
60

16
84

.0
0

10

D
E
V

0.
01

0.
03

0.
01

0.
03

0.
01

0.
03

0.
01

0.
03

10

U
B
1
_
K
2

7,
04

0

of
 f
ra
c.

24
37

.5
0

36
43

.0
0

24
97

.4
0

35
92

.0
0

16
28

.1
0

30
17

.0
0

19
00

.4
0

33
06

.0
0

10

D
E
V

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

10

U
B
2
_
K
1

3,
52

0

of
 f
ra
c.

65
.3
0

16
0.
00

67
.0
0

16
0.
00

0.
00

0.
00

0.
00

0.
00

10

D
E
V

0.
00

0.
00

0.
00

0.
01

0.
00

0.
00

0.
00

0.
00

10

U
B
2
_
K
2

7,
04

0

of
 f
ra
c.

36
8.
40

57
0.
00

37
6.
00

59
6.
00

19
7.
80

43
2.
00

18
0.
30

41
2.
00

10

61

T
ab

le
 5
.3
:
D
ev

ia
ti
on

 o
f
U
B
1
an

d
 U

B
2
fr
om

 o
p
ti
m
al
 a
n
d
 N

u
m
b
er
 o
f
fr
ac

ti
on

s
of
 U

B
1
an

d
 U

B
2
fo
r
N
=
47

C
1

C
2

D
1

D
2

D
1

D
2

of
 V
ar
ia
bl
es

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

of
 O
pt
im

al

S
ol
ut
io
ns

D
E
V

0.
00

0.
01

0.
00

0.
01

0.
00

0.
01

0.
00

0.
01

10

U
B
1
_
K
1

7,
52

0

of
 f
ra
c.

11
84

.0
0

40
11

.0
0

25
09

.4
0

39
24

.0
0

58
4.
20

24
03

.0
0

11
52

.4
0

33
91

.0
0

10

D
E
V

0.
00

0.
01

0.
00

0.
01

0.
00

0.
01

0.
00

0.
01

10

U
B
1
_
K
2

15
,0
40

of
 f
ra
c.

54
92

.4
0

68
65

.0
0

59
10

.8
0

69
66

.0
0

40
41

.1
0

58
88

.0
0

46
54

.9
0

59
46

.0
0

10

D
E
V

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

10

U
B
2
_
K
1

7,
52

0

of
 f
ra
c.

49
.0
0

16
0.
00

50
.0
0

16
0.
00

0.
00

0.
00

0.
00

0.
00

10

D
E
V

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

10

U
B
2
_
K
2

15
,0
40

of
 f
ra
c.

57
0.
30

97
0.
00

59
2.
00

98
2.
00

37
0.
40

80
0.
00

36
2.
20

81
5.
00

10

T
ab

le
 5
.4
:
N
u
m
b
er
 o
f
fr
ac

ti
on

s
of
 U

B
1
an

d
 U

B
2
fo
r
N
=
60

C
1

C
2

D
1

D
2

D
1

D
2

of

V
ar
ia
bl
es

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

of
 O
pt
im

al

S
ol
ut
io
ns

D
E
V

-
-

-
-

-
-

-
-

10

U
B
1
_
K
1

19
,2
00

of
 f
ra
c.

87
49

.8
0

95
79

.0
0

89
99

.5
0

97
91

.0
0

68
87

.3
0

83
44

.0
0

77
51

.1
0

89
35

.0
0

10

D
E
V

-
-

-
-

-
-

-
-

10

U
B
1
_
K
2

38
,4
00

of
 f
ra
c.

13

51
5.
30

14

74
2.
00

13

85
3.
10

15

15
3.
00

11

39
9.
30

13

26
8.
00

12

30
7.
10

14

28
0.
00

10

D
E
V

-
-

-
-

-
-

-
-

10

U
B
2
_
K
1

19
,2
00

of
 f
ra
c.

74
6.
00

15
24

.0
0

76
5.
70

15
46

.0
0

41
8.
30

10
68

.0
0

42
4.
80

10
68

.0
0

10

D
E
V

-
-

-
-

-
-

-
-

10

U
B
2
_
K
2

38
,4
00

of
 f
ra
c.

17
78

.7
0

22
03

.0
0

17
25

.2
0

21
16

.0
0

11
92

.1
0

15
23

.0
0

11
79

.2
0

14
34

.0
0

10

62

T
ab

le
 5
.5
:
N
u
m
b
er
 o
f
fr
ac

ti
on

s
of
 U

B
1
an

d
 U

B
2
fo
r
N
=
73

C
1

C
2

D
1

D
2

D
1

D
2

of
 V
ar
ia
bl
es

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

A
vg

M
ax

of
 O
pt
im

al

S
ol
ut
io
ns

D
E
V

-
-

-
-

-
-

-
-

10

U
B
1
_
K
1

23
,3
60

of
 f
ra
c.

10
87
6.
30

11

80
4.
00

11

24
9.
80

11

97
4.
00

91

37
.3
0

10
46
2.
00

97

16
.3
0

10
63
3.
00

10

D
E
V

-
-

-
-

-
-

-
-

10

U
B
1
_
K
2

46
,7
20

of
 f
ra
c.

16
73
0.
70

18

44
0.
00

17

29
1.
30

18

65
4.
00

14

04
5.
50

15

68
9.
00

15

01
9.
80

16

14
7.
00

10

D
E
V

-
-

-
-

-
-

-
-

10

U
B
2
_
K
1

23
,3
60

of
 f
ra
c.

65
7.
50

92
2.
00

64
9.
90

85
9.
00

46
0.
80

10
27

.0
0

46
2.
40

10
45

.0
0

10

D
E
V

-
-

-
-

-
-

-
-

10

U
B
2
_
K
2

46
,7
20

of
 f
ra
c.

17
89

.1
0

23
26

.0
0

17
69

.0
0

22
44

.0
0

11
97

.1
0

19
31

.0
0

12
01

.8
0

20
08

.0
0

10

63

64

As can be observed from the tables the deviations are consistently low over all

problem combinations. For UB1 the average deviations are below %1 when N=22,

34 and 47 respectively. The maximum deviations are also shown in Tables 5.1,

5.2 and 5.3 which are below %3 for all combinations.

Note that the deviations do not deteriorate with an increase in N value. However

the deviations increase by the increase in K value due to the inflation of the

number of variables. When N and K values are fixed, demand (D) and cycle time

(C) values do not effect deviations remarkably.

UB2 produces slightly smaller deviations due to the power of our cuts. For

example the maximum deviation for UB1 is %3, whereas it is nearly zero for UB2

in the combination of K1_C1_D1 for N=22.

We also give the number of fractional variables in Tables 5.1, 5.2 and 5.3. The

numbers of the fractional variables produced by Pure LP Relaxation, UB1 s, are

quite high. For example when N=22, for combination K2_C2_D2, i.e., 4

workstations, high demand and high cycle time case, 3306 out of 7040 variables

are found to be fractional, at worst case. This value reduces to 412 when cuts are

incorporated. On average, the cuts reduce the number of fractional variables from

1900.4 to 180.3. The number of fractional variables is generally affected by N

values. For example, from Tables 5.1, 5.2, 5.3, 5.4 and 5.5, it can be seen that for

combination K2_C2_D2, increasing N increases the number of fractional

variables of UB1,on average. Note that average number of fractional variables are

1900.4, 3102.6, 4654.9, 12307.1 and 15019.8 for N = 22, 34, 47, 60 and 73

respectively.

We also observe from Tables 5.1 through 5.5 that, for fixed N, an increase in the

number of workstations increases the number of fractional variables. For example

for N=22 and C1_D1 combination, the number of fractional variables is 722.4

when K=2 (K1) and 2437.5 when K= 4 (K2), on average. This is due to the fact

65

that more workstations lead to higher number of splits, hence more fractional

variables.

For fixed N and K, we observe that increasing C reduces the number of fractional

variables with a few exceptions. For example when N=47, K=2, and D1 is used

for combination, the average number of fractional variables are 1184 and 584.2

when C is low and high respectively. This is due to the fact that increasing C

gives more room to the complete task assignments, hence reducing the number of

fractional variables.

In our experiments we do not observe a significant effect of the demand figures

on the number of fractional variables.

We measure the solution times in Central Processing Unit (CPU) seconds. The

average and maximum CPU times for our three bounds and for the MILP are

given in Tables 5.6 through 5.10.

Table 5.6: CPU Times of Upper Bounds and MILP for N=22

C1 C2

D1 D2 D1 D2

Avg Max Avg Max Avg Max Avg Max

UB1 0.33 0.50 0.42 0.54 0.22 0.28 0.23 0.34

UB2 0.09 0.10 0.11 0.14 0.07 0.09 0.07 0.08

UB3 0.05 0.09 0.06 0.08 0.05 0.06 0.06 0.08
K1

MILP 3.83 10.67 10.65 73.21 1.76 2.00 1.77 2.15

UB1 0.70 1.25 0.84 1.09 0.47 0.61 0.59 0.73

UB2 0.41 0.67 0.40 0.65 0.23 0.35 0.25 0.36

UB3 0.07 0.10 0.09 0.11 0.06 0.07 0.08 0.10
K2

MILP 1078.32 3599.85 796.07 3600.62 363.90 3599.87 365.29 3600.30
* Tabulated data is obtained out of 10 optimal instances.

66

Table 5.7: CPU Times of Upper Bounds and MILP for N=34

C1 C2

D1 D2 D1 D2

Avg Max Avg Max Avg Max Avg Max

UB1 0.57 0.86 0.78 0.92 0.36 0.44 0.43 0.53

UB2 0.11 0.12 0.11 0.13 0.09 0.11 0.08 0.11

UB3 0.06 0.08 0.07 0.10 0.06 0.08 0.06 0.07
K1

MILP 4.37 6.04 5.93 8.15 3.22 4.32 3.41 4.44

UB1 1.27 1.95 1.67 2.21 0.91 1.14 1.18 1.34

UB2 0.44 0.53 0.46 0.58 0.32 0.39 0.31 0.38

UB3 0.08 0.10 0.11 0.12 0.08 0.09 0.09 0.11
K2

MILP 1454.94 3600.34 939.75 3417.72 373.65 3599.81 19.76 27.86
* Tabulated data is obtained out of 10 optimal instances.

Table 5.8: CPU Times of Upper Bounds and MILP for N=47

C1 C2

D1 D2 D1 D2

 Avg Max Avg Max Avg Max Avg Max

UB1 1.05 1.36 1.42 1.63 0.48 0.69 0.65 0.87

UB2 0.16 0.18 0.14 0.16 0.11 0.12 0.12 0.13

UB3 0.07 0.11 0.08 0.12 0.06 0.07 0.07 0.09
K1

MILP 22.77 118.85 14.38 64.45 5.65 6.88 5.62 7.02

UB1 2.46 3.59 2.94 3.51 1.52 1.90 2.17 2.86

UB2 0.82 1.17 0.79 1.05 0.55 0.83 0.56 0.84

UB3 0.09 0.11 0.16 0.20 0.09 0.10 0.12 0.17
K2

MILP 784.49 3600.90 759.57 3600.60 376.38 3601.31 385.74 3599.83
* Tabulated data is obtained out of 10 optimal instances.

Table 5.9: CPU Times of Upper Bounds for N=60

C1 C2

D1 D2 D1 D2

 Avg Max Avg Max Avg Max Avg Max

UB1 4.27 5.03 4.89 5.82 2.47 2.94 3.18 3.66

UB2 1.21 1.69 1.26 1.98 0.72 1.12 0.72 1.21 K1

UB3 0.10 0.12 0.16 0.23 0.08 0.10 0.11 0.15

UB1 13.87 18.60 19.59 25.51 6.82 8.67 9.44 11.55

UB2 5.36 6.79 4.97 6.76 2.52 3.13 2.67 3.44 K2

UB3 0.17 0.21 0.38 0.54 0.15 0.18 0.24 0.33
* Tabulated data is obtained out of 10 optimal instances.

67

Table 5.10: CPU Times of Upper Bounds for N=73

C1 C2
D1 D2 D1 D2

 Avg Max Avg Max Avg Max Avg Max
UB1 6.27 8.80 7.59 9.42 3.85 4.37 4.52 5.21
UB2 1.57 2.23 1.49 2.51 0.79 1.13 0.83 1.14 K1

UB3 0.11 0.14 0.17 0.22 0.11 0.15 0.13 0.16
UB1 19.99 23.34 32.14 42.58 9.35 10.88 13.59 17.40
UB2 5.83 8.80 6.92 10.83 3.63 5.06 3.31 4.16 K2
UB3 0.21 0.31 0.56 0.99 0.15 0.17 0.29 0.45

* Tabulated data is obtained out of 10 optimal instances.

As can be observed from the tables, the upper bounds are produced in very small

times. Compared to UB1, UB2 runs in smaller times due to the efficiency of the

cuts, i.e., their power in reducing the solution space. Moreover, compared to UB2,

UB3 runs in smaller times as relatively fewer periods, hence fewer variables are

used by the LP Relaxations. For example for N=22 and K2_C2_D2 combination,

the CPU time decreases from 0.59 to 0.25 seconds by adding the cuts and the

CPU time decreases from 0.25 to 0.08 seconds by using up to 10 periods instead

of 80.

The CPU times spent by the upper bounds, increase with an increase in problem

size parameters, N and K. This is due to the increase in the dimensions of the

linear programs. As N increases from 22 to 73 (with fixed K value), for example

for K1_C2_D2 combination, the average CPU times increase from 0.23, 0.07,

0.06 to 4.52, 0.83, 0.13 for UB1, UB2 and UB3 respectively. For N=34 and C2_D2

combination, as K increases, the average CPU times increase from 0.43, 0.08,

0.06 seconds to 1.18, 0.31, 0.09 seconds for UB1, UB2 and UB3 respectively.

When N, K and D values are fixed, an increase in the C value (from C1 to C2)

decreases the CPU time. This is due to the fact that for large C more tasks find

place for any workstation, and hence assignment decisions are given easier by

linear programs. For example for N=34 and K2_D2 combination, increasing C

from C1 to C2, decreases the average CPU times from 1.67, 0.46, 0.11 seconds to

1.18, 0.31, 0.09 seconds for UB1, UB2 and UB3, respectively.

68

When the other parameters are fixed, the increase in D value (from D1 to D2)

increases the CPU times slightly. This is because when the D value increases, the

number of periods with different assignments increases. For example for N=34

and C1_K2 combination, increasing D from D1 to D2, increases the average CPU

times from 1.27, 0.44, 0.08 seconds to 1.67, 0.46, 0.11 seconds for UB1, UB2 and

UB3 respectively.

The effects of K is much dominant for the MILP, due to the inflation of the binary

decision variables. For fixed N, an increase in K value increases the CPU times

increases remarkably. For example for N=22 and C1_D1 combination, an increase

of K from K1 to K2 increases the CPU time from 3.83 seconds to 1078.32

seconds. However the effect of N is not significant as that of K. For example, for

K=2 when N increases from 22 to 34 for C1_D1 combination, the CPU time

increases from 3.83 seconds to 4.37 seconds.

As can be seen from Tables 5.6 through 5.10, when N and K values are fixed, an

increase in the C value decreases the CPU times remarkably. This is due to the

fact that a workstation has more to accommodate many tasks, thereby leading to

easier decisions. However the D values do not have a consistent affect on the

solution time of the MILP.

As mentioned, the speed performance of UB3 can be attributed to the small

number of periods it uses. We tabulate the number of periods that we start with,

i.e., LB(T) and we find the first feasible solution , i.e., UB3(T) in Tables 5.11

through 5.15 for N=22, 34, 47, 60 and 73, respectively.

69

Table 5.11: Number of Periods used by UB3 (out of 80) for N=22

C1 C2

D1 D2 D1 D2

 Avg Max Avg Max Avg Max Avg Max

UB3_T 4.30 5.00 10.00 11.00 4.50 5.00 10.20 11.00
K1

LB_(T) 2.30 3.00 6.00 7.00 1.50 2.00 4.20 5.00

UB3_T 4.10 5.00 10.80 12.00 4.30 5.00 9.70 10.00
K2

LB_(T) 2.10 3.00 5.80 7.00 1.30 2.00 3.70 4.00
* Tabulated data is obtained out of 10 optimal instances.

Table 5.12: Number of Periods used by UB3 (out of 80) for N=34

C1 C2

D1 D2 D1 D2

 Avg Max Avg Max Avg Max Avg Max

UB3_T 4.10 5.00 9.00 9.00 4.90 5.00 9.00 9.00
K1

LB_(T) 2.10 3.00 6.00 6.00 1.90 2.00 4.00 4.00

UB3_T 4.00 4.00 9.90 10.00 4.10 5.00 9.00 9.00
K2

LB_(T) 2.00 2.00 5.90 6.00 1.10 2.00 4.00 4.00
* Tabulated data is obtained out of 10 optimal instances.

Table 5.13: Number of Periods used by UB3 (out of 80) for N=47

C1 C2

D1 D2 D1 D2

 Avg Max Avg Max Avg Max Avg Max

UB3_T 4.50 5.00 10.30 11.00 4.80 5.00 10.20 11.00
K1

LB_(T) 2.50 3.00 6.30 7.00 1.80 2.00 4.20 5.00

UB3_T 4.30 5.00 10.10 11.00 4.40 5.00 10.00 11.00
K2

LB_(T) 2.30 3.00 6.10 7.00 1.40 2.00 4.00 5.00
* Tabulated data is obtained out of 10 optimal instances.

Table 5.14: Number of Periods used by UB3 (out of 80) for N=60

C1 C2

D1 D2 D1 D2

 Avg Max Avg Max Avg Max Avg Max

UB3_T 4.20 5.00 9.30 10.00 4.40 5.00 9.00 9.00
K1

LB_(T) 2.20 3.00 6.30 7.00 1.40 2.00 4.00 4.00

UB3_T 4.00 4.00 9.10 10.00 4.10 5.00 9.00 9.00
K2

LB_(T) 2.00 2.00 6.10 7.00 1.10 2.00 4.00 4.00
* Tabulated data is obtained out of 10 optimal instances.

70

Table 5.15: Number of Periods used by UB3 (out of 80) for N=73

C1 C2

D1 D2 D1 D2

 Avg Max Avg Max Avg Max Avg Max

UB3_T 4.20 5.00 9.30 10.00 4.70 5.00 9.10 10.00
K1

LB_(T) 2.20 3.00 6.30 7.00 1.70 2.00 4.10 5.00

UB3_T 4.10 5.00 9.20 10.00 4.20 5.00 9.10 10.00
K2

LB_(T) 2.10 3.00 6.20 7.00 1.20 2.00 4.10 5.00
* Tabulated data is obtained out of 10 optimal instances.

As can be observed from the tables, the LB(T) and UB3(T) values are close, hence

LB(T) performs quite satisfactory. For example for N=22 and K1_C1_D1

combination, the average LB(T) and UB3(T) values are 2.30 and 4.30 respectively.

We also find that the UB3(T) values are small and are not sensitive to the problem

size. For example for K1_C1_D1 combination, the average UB3(T) values are

4.30 and 4.20 for N=22 and 73 respectively.

As mentioned before, small numbers periods produces few decision variables,

hence improves the speed performance of the upper bounds considerably. Note

that we obtain the same objective function values from UB2 and UB3, however at

considerably different speeds.

We finally investigate the performances of our lower bound. We measure the

deviations for the small-sized problems using the optimal solutions. For large-

sized problems, we use UB2, equivalently UB3, to find the deviation as the

optimal solutions are not available. Particularly when N=22,34 and 47, we use;

100% ×






 −
=

OPT

LBOPT
Dev

When N=60 and 73, we do not have optimal solutions on hand. We use UB2 as an

estimator for the optimal objective function value and find the deviation as;

100%
2

2 ×






 −
=

UB

LBUB
Dev

We report the average and maximum deviations of the lower bound in Tables

5.16 through 5.20 for N=22,34,47,60 and 73, respectively.

71

Table 5.16: Deviation of LB from Optimal and CPU Times of LB for N=22

C1 C2

D1 D2 D1 D2

of
Variables

 Avg Max Avg Max Avg Max Avg Max

DEV 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
K1 3,520

CPU 0.06 0.13 0.08 0.12 0.07 0.09 0.07 0.08

DEV 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00
K2 7,040

CPU 0.10 0.15 0.12 0.16 0.08 0.10 0.10 0.14
 * Tabulated data is obtained out of 10 optimal instances.

Table 5.17: Deviation of LB from Optimal and CPU Times of LB for N=34

C1 C2

D1 D2 D1 D2

of
Variables

 Avg Max Avg Max Avg Max Avg Max

DEV 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00
K1 5,440

CPU 0.05 0.08 0.08 0.08 0.09 0.11 0.08 0.11

DEV 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01
K2 10,880

CPU 0.03 0.04 0.13 0.15 0.10 0.12 0.11 0.14
 * Tabulated data is obtained out of 10 optimal instances.

Table 5.18: Deviation of LB from Optimal and CPU Times of LB for N=47

C1 C2

D1 D2 D1 D2

of
Variables

 Avg Max Avg Max Avg Max Avg Max

DEV 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
K1 7,520

CPU 0.09 0.15 0.10 0.14 0.11 0.12 0.12 0.13

DEV 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01
K2 15,040

CPU 0.12 0.14 0.19 0.23 0.12 0.14 0.15 0.21
 * Tabulated data is obtained out of 10 optimal instances.

Table 5.19: Deviation of LB from UB2 and CPU Times of LB for N=60

C1 C2

D1 D2 D1 D2

of
Variables

 Avg Max Avg Max Avg Max Avg Max

DEV 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01
K1 19,200

CPU 0.12 0.14 0.18 0.25 0.10 0.13 0.13 0.18

DEV 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.01
K2 38,400

CPU 0.20 0.24 0.41 0.59 0.18 0.23 0.28 0.38

72

Table 5.20: Deviation of LB from UB2 and CPU Times of LB for N=73

C1 C2

D1 D2 D1 D2

of
Variables

 Avg Max Avg Max Avg Max Avg Max

DEV 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01
K1 23,360

CPU 0.14 0.17 0.18 0.25 0.14 0.20 0.16 0.21

DEV 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02
K2 46,720

CPU 0.26 0.34 0.61 1.04 0.19 0.22 0.32 0.49

Note from the tables that the lower bound solutions are quite satisfactory over all

problem combinations. The solutions have small deviations and are obtained in

negligible CPU times. The performances do not deteriorate with an increase in the

problem size parameter N; however the deviations slightly increase by an increase

in the K value. For example for N=60 and C1_D2 combination, the average

deviations of K1 and K2 are %1; whereas the maximum deviations are %1 and

%2 for K1 and K2, respectively. We could not observe notable effects of C and D

values on the problem difficulty.

The CPU times of the lower bounds increase with an increase in problem size

parameters, N and K with a few exceptions. This is due to the fact that the linear

programs and mixed integer linear programs have higher number of decision

variables for higher values of N and K. For example for K1_C2_D2 combination,

as N increases from 60 to 73, the average CPU times increase from 0.13 seconds

to 0.16 seconds. For N=47 and C2_D2 combination, increasing K from 2 to 4,

increases the average CPU times from 0.12 seconds to 0.15 seconds.

We could not observe any significant effect of C value on the CPU times.

For fixed N, K and C values, increasing the D value increases the CPU times

slightly. This increase can be attributed to the increase in the value of LB(T),

hence the number of decision variables that explain the periods. For example for

N=60 and C1_K2 combination, increasing D from D1 to D2 , increases the

average CPU time from 0.20 seconds to 0.41 seconds.

73

CHAPTER 6

6. CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS

In this study, we consider disassembly systems that have gained significant

importance in recent years. This heightened importance stems from the

recognition of environmental issues and the advances in manufacturing

technologies. In this study, we consider an operational level problem in

disassembly systems, the so called disassembly line balancing problem.

Our problem assumes that the line is already configured with defined

workstations. The units of the product to be disassembled are identical and they

deliver parts with defined demand and revenue. The tasks that release a part or are

required for further releases have defined costs. Our aim is to assign the tasks to

the workstations so that the net revenue is maximized.

We develop a Mixed-Integer Linear Programming (MILP) model that could solve

the problems with up to 50 tasks. For larger sized instances, we propose upper

and lower bounds. The bounds are motivated by our findings from the highly

satisfactory behavior of the Linear Programming Relaxations (LPR). We

strengthen LPR by imposing the properties that are satisfied by the MILP but not

LPR. Our lower bound fixes the integer variables of the optimal LPR solution and

solves the remaining problem to optimality by MILP.

Our experimental results have revealed that our bounding mechanisms produce

high quality solutions very quickly. For our maximum trial size of 75 tasks there

is a gap of less than 5 percent between our lower and upper bounds.

74

To the best of our knowledge, our study is the first attempt to solve the

disassembly line balancing problem with a fixed number of workstations and a

finite supply of disassembly products. The extensions of our study may include

the following issues:

• Incorporation of SOR (Successor OR) type precedence relations

• Considering nonidentical products, i.e., each unit of the disassembly

product may include different parts

• Incorporating the stochastic nature of the outcome, i.e., some parts may

turn out to be defective, or be damaged during disassembly.

• Treating the number of workstations as a decision variable, hence

considering the design version of the disassembly line balancing problem.

75

REFERENCES

Altekin, F.T., Kandiller L. and Özdemirel N.E., (2008), “Profit Oriented

Disassembly Line Balancing”, Journal of Production Research, 46, 2675-2693.

Baybars, I. (1986), “A Survey of Exact Algoritms for the Simple Assembly Line

Balancing Problem”, Management Science 32, 909-932.

Brennan, L., Gupta, S.M., and Taleb, K.N., (1994), “Operations Planning Issues

in an Assembly/Disassembly Environment”, International Journal of Operations

and Production Management, 14, 57-67.

Güngör, A., and Gupta, S.M., (2001), “A solution approach to the disassembly

line balancing problem in the presence of task failures”, International Journal of

Production Research, 39, 1427-1467.

Güngör, A., and Gupta, S.M., (2002), “Disassembly line in product recovery”,

International Journal of Production Research, 40, 2569-2589.

Lambert, A. J. D., (1997), “Optimal Disassembly of Complex Products”,

International Journal of Production Research, 35, 2509-2523.

Lambert, A. J. D., (1999), “Linear programming in disassembly/clustering

sequence generation”, Computers and Industrial Engineering, 36, 723-738.

Lambert, A. J. D., (2002), “Determining optimum disassembly sequences in

electronic equipment”, Computers and Industrial Engineering, 43, 553-575.

76

Martello, S., and Toth, P., (1990). “Knapsack Problems: Algorithms and

Computer Implementations”, John Wiley & Sons, ISBN: 0-471-92420-2.

McGovern, S.M., and Gupta, S.M., (2007), “A balancing method and genetic

algorithm for disassembly line balancing”, European Journal of Operational

Research, 179, 692-708.

Scholl, A., (1999), “Balancing and sequencing of disassembly lines”, 2nd ed.,

Physica Heidelberg.

