

REAL-TIME MOTION CONTROL USING FIELD PROGRAMMABLE GATE
ARRAYS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BARIŞ RAGIP MUTLU

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

JUNE 2010

Approval of the thesis:

REAL‐TIME MOTION CONTROL USING FIELD PROGRAMMABLE

GATE ARRAYS

submitted by BARIŞ RAGIP MUTLU in partial fulfillment of the requirements for
the degree of Master of Science in Mechanical Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen _________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Suha Oral _________________
Head of Department, Mechanical Engineering

Assist. Prof. Dr. Melik Dölen _________________
Supervisor, Mechanical Engineering Dept., METU

Assist. Prof. Dr. A. Buğra Koku _________________
Co-Supervisor, Mechanical Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Mehmet Çalışkan _________________
Mechanical Engineering Dept., METU

Assist. Prof. Dr. Melik Dölen _________________
Mechanical Engineering Dept., METU

Assist. Prof. Dr. A. Buğra Koku _________________
Mechanical Engineering Dept., METU

Assist. Prof. Dr. E. İlhan Konukseven _________________
Mechanical Engineering Dept., METU

Assoc. Prof. Dr. Veysel Gazi _________________
Electrical and Electronics Engineering Dept., TOBB-ETU

 Date: 22.06.2010

 iii

I hereby declare that all information in this document has been

obtained and presented in accordance with academic rules and ethical

conduct. I also declare that, as required by these rules and conduct, I

have fully cited and referenced all material and results that are not

original to this work.

Name, Last Name : Barış Ragıp Mutlu

Signature :

 iv

ABSTRACT

REAL-TIME MOTION CONTROL USING FIELD PROGRAMMABLE

GATE ARRAYS

Mutlu, Barış Ragıp

M.Sc., Department of Mechanical Engineering

Supervisor: Assist. Prof. Dr. Melik Dölen

Co-Supervisor: Assist. Prof. Dr. A. Buğra Koku

June 2010, 160 pages

In this thesis, novel implementation methods for FPGA based real-time

motion control systems are investigated. These methods are examined

for conventional and modern controller topologies as well as peripheral

device interfaces which are mutually essential pieces of a motion

controller. The developed methods are initially tested one by one to

assess the performance of the individual design; and finally an

assembled solution is developed to test the overall design. Tests of the

overall design are realized via hardware-in-the-loop simulation of a real-

world control problem, selected as a CNC machining center. The

developed methods are discussed in terms of their success, resource

consumptions and attainable sampling rates.

Keywords: FPGA, Motion control

 v

ÖZ

ALAN PROGRAMLANABİLİR KAPI DİZİNİ KULLANILARAK

GERÇEK ZAMANLI HAREKET DENETİMİ

Mutlu, Barış Ragıp

Yüksek Lisans. Makina Mühendisliği Bölümü

Tez Yöneticisi: Yard. Doç. Dr. Melik Dölen

Ortak Tez Yöneticisi: Yard. Doç. Dr. A. Buğra Koku

Haziran 2010, 160 sayfa

Bu çalışmada, alan programlanabilir mantık kapısı dizini (Field

programmable gate array - FPGA) tabanlı gerçek zamanlı hareket

denetim sistemleri için yeni uygulama yöntemleri araştırılmıştır. Bu

yöntemler, bütün bir hareket denetim sisteminin alt parçalarını

oluşturan, geleneksel ve modern denetim topolojileri ile çevresel birim

arayüzleri için incelenmiştir. Geliştirilen yöntemler başlangıçta tek tek

sınanarak bireysel başarımları ölçülmüş, sonunda ise parçalar biraraya

getirilerek oluşturulan tasarım sınanmıştır. Bütün tasarımın sınanımları,

bir CNC işleme merkezinin çevrimiçi donanım benzetimi kullanılarak

gerçekleştirilmiştir. Geliştirilen yöntemler, başarımları, kaynak

tüketimler ve erişilebilir örnekleme hızları bazında tartışılmıştır.

Anahtar kelimeler: Alan programlanabilir kapı dizini, Hareket denetimi

 vi

To My Parents

DON’T PANIC

 vii

ACKNOWLEDGEMENTS

I would like to thank to my supervisor Assist. Prof. Dr. Melik Dölen and

co-supervisor Assist. Prof. Dr. A. Buğra Koku for giving me this research

opportunity. I have been privileged to have mentors with a great deal of

knowledge and I sincerely appreciate their guidance and support during

this study.

I would also like to thank to The Scientific & Technological Research

Council of Turkey, for financial support under project contract 108E048.

I would like to thank to my parents, Selma and Mehmet Mutlu, for

always supporting me with their love and care. It is a blessing to know

that regardless of the path I choose to take, they will be there for me.

I would like to thank to my colleagues, Ulaş Yaman, Serdar Üşenmez

and Rasim Aşkın Dilan, for all the support and fun they have provided

during prolonged hours of study in the laboratory.

I would like to thank to my bıdık Müge, for her love, understanding and

patience, especially during the final period of this thesis. I have been

lucky to have her by my side.

Finally, I would like to thank to Tuna Soncul, Can Özer, Sinan Değer,

Can Özgiresun and all the others who cared enough for me to make this

path significantly harder. If it wasn’t for them, I would probably have

ended up in the same place, but for all the wrong reasons.

 viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... v

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS ... viii

LIST OF FIGURES .. xii

LIST OF TABLES ... xvi

CHAPTERS

1 INTRODUCTION .. 1

1.1 Motivation.. 1

1.2 Scope of the thesis ... 4

1.3 Organization .. 5

2 LITERATURE SURVEY .. 6

2.1 Hybrid control systems .. 10

2.1.1 Control systems utilizing FPGA as an interface 10

2.1.2 Control systems utilizing FPGA as a secondary processor 14

2.2 FPGA-based control systems .. 15

2.2.1 Control systems using softcore processors 16

2.2.2 Hardware implementation of control systems 19

2.3 Closure ... 23

3 PERIPHERAL DEVICE INTERFACING FOR MOTION

CONTROLLERS ... 25

3.1 Encoder Interface .. 26

3.1.1 Incremental encoder decoding module .. 28

 ix

3.2 Pulse width modulation (PWM) .. 33

3.2.1 PWM generator module .. 34

3.2.2 PWM transmitter module ... 36

3.2.3 PWM receiver module .. 37

3.3 Finite pulse generation ... 37

3.3.1 Pulse generator module .. 38

3.4 Serial Peripheral Interface Bus (SPI) .. 42

3.4.1 SPI module .. 43

3.5 Other Interfaces ... 46

3.5.1 Custom parallel data receive .. 46

3.5.2 Pulse frequency modulation .. 47

3.5.3 RS-232 controller .. 47

3.5.4 SRAM controller ... 48

3.6 Closure ... 48

4 STATE-SPACE CONTROLLER AND OBSERVER DESIGN AND

IMPLEMENTATION ... 50

4.1 Full-state feedback controller .. 51

4.2 Implementation ... 53

4.2.1 Method I: Matrix multiplier module ... 54

4.2.1.1 Customized multiplication modules 54

4.2.1.2 Method I-a: Integer multiplication (IMUL module) 57

4.2.1.3 Method I-b: Fixed point multiplication (FMUL module) 58

4.2.1.4 Method I-c : Floating point multiplication (FPU module) .. 58

4.2.1.5 Overall Architecture ... 60

4.2.2 Method II: Softcore processor IP module 62

4.2.2.1 Method II-a: Softcore processor with integer arithmetic 63

 x

4.2.2.2 Method II-b: Softcore processor with fixed point

arithmetic .. 64

4.2.2.3 Method II-c: Softcore processor with floating point

arithmetic .. 64

4.3 Test case ... 65

4.4 Hardware-in-the-loop simulation results ... 68

4.5 Comparison and discussion .. 73

4.6 Closure ... 79

5 IMPLEMENTATION OF DIGITAL FILTERS ... 80

5.1 Digital Filters ... 80

5.2 Implementation ... 82

5.2.1 Method I: Generic filter module .. 82

5.2.2 Method II: Softcore processor .. 84

5.3 Hardware-in-the-loop simulation results ... 85

5.4 Comparison and discussion .. 89

5.5 Closure ... 94

6 ADVANCED CONTROLLERS ... 95

6.1 Controller Topologies .. 96

6.1.1 Fuzzy Controller .. 96

6.1.2 Sliding Mode Controller ... 98

6.2 Test Setup ... 100

6.3 Results .. 102

6.4 Closure ... 105

7 HARDWARE-IN-THE-LOOP SIMULATION & RESULTS 106

7.1 Real system .. 107

7.1.1 CNC machining center .. 107

7.1.2 MATLAB/Simulink model ... 113

 xi

7.2 Controller design .. 116

7.2.1 Controller selection .. 116

7.2.2 Linearized system model .. 117

7.2.3 Design via root locus technique ... 118

7.2.4 Simulink simulation results .. 123

7.3 Implementation of the system .. 128

7.3.1 Implementation of the control system on the FPGA 129

7.3.2 Realization of the plant via hardware in the loop simulation . 131

7.4 HILS Results .. 133

7.5 Closure ... 143

8 CONCLUSIONS AND FUTURE WORK ... 144

8.1 Conclusion ... 144

8.2 Future work ... 147

REFERENCES ... 148

APPENDICES

A LIST OF VERILOG HDL FILES ... 152

B LIST OF C CODES FOR NIOS II IMPLEMENTATION 153

C SAMPLE C CODE FOR NIOS II IMPLEMENTATION 154

D LIST OF MATLAB M-FILES .. 157

E SAMPLE MATLAB M-FILE FOR HILS .. 158

 xii

LIST OF FIGURES

FIGURES

Figure 1.1 – Schematic of a typical motion controller 2

Figure 1.2 – Increase in number of logic cells of Xilinx and Altera FPGA

chips over years ... 3

Figure 2.1 – Generic schematic for FPGA implementation of a motion

controller ... 8

Figure 3.1 – Ideal output of an incremental encoder 27

Figure 3.2 – Encoder signal generated by the FPGA (6.25 kHz) 31

Figure 3.3 – Encoder signal generated by the FPGA (625 kHz) 31

Figure 3.4 – Frequency vs. decoding error ... 32

Figure 3.5 – Output of the PWM module with 25% duty cycle 35

Figure 3.6 – Output of the PWM transmit module 36

Figure 3.7 – Sequence of 5 pulses generated at 5 kHz 41

Figure 3.8 – Sequence of 26 pulses generated at 6.25 kHz 41

Figure 3.9 – SPI bus between a master and two slave chips 42

Figure 3.10 – Transmission of an 8-bit data via SPI bus 45

Figure 3.11 – Transmission of an 16-bit data via SPI bus 45

Figure 3.12 – Schematic representations of the developed modules

obtained via Quartus II schematic tool .. 49

Figure 4.1 – Block diagram of the control system 52

Figure 4.2 – Floating point unit ... 59

Figure 4.3 – Matrix multiplier module ... 61

Figure 4.4 – Controller/Observer module .. 62

 xiii

Figure 4.5 – Generic model for pendulum drive system 65

Figure 4.6 – HILS result of method I-a ... 70

Figure 4.7 – HILS result of method II-a .. 70

Figure 4.8 – HILS result of method I-b ... 71

Figure 4.9 – HILS result of method II-b .. 71

Figure 4.10 – HILS result of method I-c ... 72

Figure 4.11 – HILS result of method II-c .. 72

Figure 4.12 – Resource utilization of Method I-a on Cyclone II FPGA.... 74

Figure 4.13– Resource utilization of Method I-b on Cyclone II FPGA 74

Figure 4.14 – Resource utilization of Method I-c on Cyclone II FPGA 75

Figure 4.15 – Resource utilization of Methods II-a & II-b on Cyclone II

FPGA ... 75

Figure 4.16 – Resource utilization of Method II-c on Cyclone II FPGA .. 76

Figure 5.1 – Generic filter module ... 83

Figure 5.2 – Cascaded control system .. 86

Figure 5.3 – HILS result of method I with IMUL .. 87

Figure 5.4 – HILS result of method I with FPU ... 88

Figure 5.5 – HILS result of method II with IMUL 88

Figure 5.6 – HILS result of method II with FPU ... 89

Figure 5.7 – Resource consumption of Method I with IMUL 90

Figure 5.8 – Resource consumption of Method I with FPU 90

Figure 5.9 – Resource consumption of Method II with integer

arithmetic .. 91

Figure 5.10 – Resource consumption of Method II with FPU 91

Figure 6.1 – Fuzzy controller implementation .. 97

Figure 6.2 – Membership functions of the fuzzy controller 97

Figure 6.3 – Sliding mode controller implementation 99

 xiv

Figure 6.4 – Simplified model of a typical turning center 100

Figure 6.5 – Simplified model of the system ... 101

Figure 6.6 – Test setup .. 101

Figure 6.7 – Controller performances under disturbance input 103

Figure 6.8 – Zoomed controller performances to highlight disturbance

rejection ... 104

Figure 7.1 – First MCV-1100 3-Axis CNC Machining center 108

Figure 7.2 – X-axis feed drive for CNC machining center 108

Figure 7.3 – Z-axis feed drive for CNC machining center 109

Figure 7.4 – Torque capability curve for CNC machining center axis

motors ... 112

Figure 7.5 – MATLAB/Simulink model of a single axis of the CNC

machining center ... 115

Figure 7.6 – Root locus plot of the uncompensated system 119

Figure 7.7 – Root locus plot of the system after addition of a pole and a

zero .. 120

Figure 7.8 – Closed-loop Bode plot of the system 122

Figure 7.9 – Simulink model of the overall system 124

Figure 7.10 – Reference trajectory for the X-axis 125

Figure 7.11 – Disturbance inputs for light and heavy machining

conditions ... 126

Figure 7.12 – Simulink results of the designed controller in terms of

encoder counts ... 126

Figure 7.13 – Resource utilization of the single axis solution 130

Figure 7.14 – Resource utilization of the implemented 3-axis solution . 131

Figure 7.15 – Schematic of the hardware in the loop simulation

system .. 132

 xv

Figure 7.16 – Reference trajectories for a plastic bottle injection mold

(selected portions indicated with red color) .. 133

Figure 7.17 – Reference trajectories for X,Y and Z axes (t = 0-20s) 134

Figure 7.18 – Reference trajectories for X,Y and Z axes (t = 201-241s) ... 134

Figure 7.19 – First trajectory motor position error in X-axis (t = 0-20s) . 136

Figure 7.20 – First trajectory motor position error in Y-axis (t = 0-20s) . 136

Figure 7.21 – First trajectory motor position error in Z-axis (t = 0-20s) . 137

Figure 7.22 – Second trajectory motor position error in X-axis (t = 201-

241s) ... 137

Figure 7.23 – Second trajectory motor position error in Y-axis (t = 201-

241s) ... 138

Figure 7.24 – Second trajectory motor position error in Z-axis (t = 201-

241s) ... 138

Figure 7.25 – Second trajectory cart position error in X-axis with backlash

(t = 201-241s) ... 139

Figure 7.26 – Second trajectory cart position error in Y-axis with backlash

(t = 201-241s) ... 139

Figure 7.27 – Second trajectory cart position error in Z-axis with backlash

(t = 201-241s) ... 140

 xvi

LIST OF TABLES

TABLES

Table 3.1 – Verilog HDL code segment for encoder channel buffering .. 29

Table 3.2 – Verilog HDL code segment for pulse and direction

detection .. 29

Table 3.3 – Verilog HDL code segment for encoder count calculation ... 30

Table 3.4 – Verilog HDL code segment for encoder count calculation ... 35

Table 3.5 – Verilog HDL code segment for init rising edge detection 39

Table 3.6 – Verilog HDL code segment for clock divider utilization.......... 39

Table 3.7 – Verilog HDL code segment for pulse generation 40

Table 3.8 – Verilog HDL code segment for SPI utilization 44

Table 4.1 – Terminology used in FPU ... 60

Table 4.2 – Inverted pendulum parameters ... 67

Table 4.3 – Resource/Time Costs of Proposed Methods on Altera Cyclone

II FPGA chip ... 77

Table 6.1 – Membership functions of the fuzzy controller 98

Table 6.2 – Resource costs of different controller topologies on the Xilinx

Virtex-5 FGPA .. 103

Table 6.3 – Minimum attainable sampling periods of controllers on the

Xilinx Virtex-5 FGPA .. 105

Table 7.1 – MATLAB/Simulink model of a single axis of the CNC

machining center ... 114

Table 7.2 – Controller design parameters for x, y and z axes 123

 xvii

Table 7.3 – Mean, max and standard deviation values of the Simulink

results (in counts) .. 127

Table 7.4 – Mean, max, and standard deviation values of the Simulink

results (in μm) .. 128

Table 7.5 – Root mean square and standard deviation values of the HILS

results for first trajectory (in encoder counts) ... 141

Table 7.6 – Root mean square and standard deviation values of the HILS

results for first trajectory (in μm) .. 141

Table 7.7 – Root mean square and standard deviation values of the HILS

results for second trajectory (in encoder counts) 142

Table 7.8 – Root mean square and standard deviation values of the HILS

results for second trajectory including backlash model under heavy

machining (in μm) ... 143

Table A.1 – List of Verilog HDL files employed in the thesis 152

Table B.1 – List of Nios II C files employed in the thesis 153

Table D.1 – List of MATLAB M-files employed in the thesis 157

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

In general terms, motion control can be described as the position and/or

velocity control of a machine part such as the end effector of a robotic arm,

cutting tool of a CNC machine, tip of an automated welding machine and

etc. Evidently, motion control plays a key role in industrial automation

systems and success of the motion control system directly affects the

production speed, quality and quantity. Considering that industrial

automation systems are used globally in production and assembly lines of

many industrial plants including automotive, aviation, packaging,

printing, textile and semiconductor production industries, better, faster

and more robust motion control systems are always desirable. Schematic

of a typical motion control system is shown in Figure 1.1.

Motion control systems are being developed by both academia and private

entities, in correlation with the technological advances in semiconductor

technology. As new semiconductor devices with faster processing speeds

and higher resources are available in the market, new motion controllers

are developed by these entities that fully utilize the features of these novel

chips.

 2

Figure 1.1 – Schematic of a typical motion controller

In the currently available motion control systems, the most commonly

employed chip is the digital signal processors (DSPs) which appear in

almost all of the recent products developed by both academia and private

manufacturers, including the most recent products of the two major

motion controller manufacturers, including the DMC-18x6 by Galil and

PMAC2 by Delta-Tau. The situation is similar in the academic literature

and many studies published in the last decade employ DSPs in motion

control systems, especially if the emphasis of the study is on the

controller’s theory rather than the implementation.

On the other hand, FPGAs are also suitable options for real-time motion

control applications, exhibiting some superior qualities over traditional

processors (micro-processors, micro-controllers and DSPs) such as parallel

processing capability, high sampling rates, flexibility in design, and

reliability. Therefore, in the academic end, field programmable gate arrays

(FPGAs) also start to take significant parts in motion controller designs. As

further discussed in the literature survey chapter, there are many recent

 3

studies that employ FPGAs in motion controller designs and obtain very

successful results. Especially after the FPGAs’ resources have increased

significantly in the first half of this decade, there has been a considerable

increase in these studies that utilize an FPGA in the motion control

system. Figure 1.2 shows the increase in resources (in terms of logic

cells/elements) of FPGAs that are produced by two major FPGA

manufacturers: Xilinx and Altera in the last 15 years.

As can be seen in Figure 1.2, resources of the FPGAs have increased

approximately 700% in the last decade, which resulted in the academia’s

increased level of interest in FPGAs for motion control applications.

Figure 1.2 – Increase in number of logic cells of Xilinx and Altera FPGA

chips over years

 4

It can be estimated that this interest will increase or at least stay at this

level, as FPGA manufacturers continue to increase the capabilities of their

FPGA chips and develop new and more advanced intellectual properties

(softcore processors, SoPC tools, etc.) for embedded designers. Therefore,

developing methods for an FPGA based motion control system is

desirable, as the FPGAs’ role in motion control applications increases.

1.2 Scope of the thesis

As presented in the previous section, the main objective of this study is to

develop an FPGA based motion controller and by FPGA based motion

controller, a “single chip” solution that handles all the necessary tasks of a

typical motion control system is implied. Requirements of a typical motion

control system are well-known and the developed system must be able to:

1. Provide a convenient interface for obtaining sensor data from

common sensors that are employed in motion control applications

and interpret this data as required.

2. Obtain reference inputs from an outside source via a suitable

interface and/or a communication protocol or generate the

reference commands for the controller itself.

3. Execute a controller algorithm that is able to provide the desired

performance that is comparable to the modern motion controllers in

the literature.

4. Provide means for transmitting the manipulated input computed

by the controller via a suitable interface or a communication

protocol to a driver, servo-amplifier or the actuator itself.

 5

Evidently, there are many device/design choices to be made for each item

and it is not possible to cover every aspect of FPGA based motion

controller design in a single study. However, it is possible to develop

methods for the most common choices in the academic studies and

industrial applications and if possible extrapolate the results to others. For

instance, in Chapter 3, a design method for an incremental encoder

interface is provided, leaving out the absolute encoders. However, even

though the interface required by an absolute encoder would be different,

the obtained result that is hardwired implementation by HDL design is

more efficient for the encoder interface is valid for both of the sensor

devices. Therefore, most of the results are applicable to similar devices or

design choices.

1.3 Organization

This thesis is divided into 8 chapters. The second chapter provides a

review on the studies relevant to the motion control applications, in a

limited context of FPGA employing designs. In the third chapter,

peripheral interfaces that are developed and implemented on the motion

controller design are introduced. In the fourth chapter, design and

implementation of a state-space controller with a Luenberger-type

observer on an FPGA is presented. In the fifth chapter, digital filters are

introduced and their implementation methods on FPGAs are discussed. In

the sixth chapter, a test case is provided where the developed FPGA

modules are tested on a hardware-in-the-loop simulation platform. In the

seventh chapter, a preliminary study on advanced controllers is presented.

In the last chapter, conclusions are drawn and future work is discussed.

 6

CHAPTER 2

LITERATURE SURVEY

Since the last decade, FPGAs are becoming gradually dominant in control

applications. In numerous studies, implementation methods for

embedded controller design and application results of different topologies

on FPGAs are presented. In this chapter, a general overview of the

relevant technical literature is provided.

Due to their flexible hardware, uses of FPGAs in control literature differ

significantly among different design topologies. For instance, while there

are implementations of an FPGA as an interface between the controller

chip and peripheral devices in some designs, there are also architectures in

which a complex motion controller is realized by only utilizing a single

FPGA chip. Therefore, it is necessary to classify FPGA employing

controller designs into two categories as: “Hybrid control systems” and

“FPGA-based control systems”.

In hybrid control systems, FPGA may be employed in two different

schemes. In the first scheme, FPGA is used for peripheral device

interfacing and it has minimal amount of computational tasks. On the

other hand, in the second scheme, FPGA is utilized as a secondary

processor, and a noteworthy computational load is handled by the FPGA,

in addition to its interfacing tasks. Nevertheless, it is obvious that in these

 7

hybrid designs there needs to be a central processor employed in the

design, which is usually selected as a digital signal processor (DSP) or a

microprocessor.

In a generic scheme of a hybrid design, peripheral device interfacing

(sensor interfacing, pulse-width modulation generation, SPI and etc.) is a

task assigned to the FPGA. This is due to the fact that FPGA

implementation of those modules is fast, relatively simple and requires a

small amount of resources. On the other hand, complex controller

algorithms such as intelligent (fuzzy, neural-network) or nonlinear

(sliding mode, variable structure and etc.) controllers are generally

implemented on the processor, as well as the memory management units

(SRAM, EEPROM and etc.) and communication controllers (UART, JTAG

and etc.). It can be seen that, as the complexity of the task increases and

the speed requirement decreases, the load shifts from the hardwired

FPGA implementation to the processor, as shown in Figure 2.1.

As can be seen from Figure 2.1, the conventional controllers find their

place in between this speed/complexity distinction, which means that

there are designs that both include or exclude a conventional controller

unit on the FPGA and both options are equally feasible. Hence, these

hybrid control systems are also classified according to the existence of a

controller load on the FPGA as it is further discussed in Section 2.1.

 8

Figure 2.1 – Generic schematic for FPGA implementation of a motion

controller

As a final remark for hybrid designs, the presented scheme is not a

universal approach and while it is a common approach to use FPGA for

interfacing and implementation of simpler controllers; complex controller

algorithms, memory management units and communication controllers

are also applicable by FPGA implementation and in some designs there

are topologies that do not correspond to the generic scheme provided in

Figure 2.1.

In the FPGA-based designs, there exist a single FPGA chip that is

responsible for the main computational task as well as the interfacing,

memory management and communication functions. However though, a

single chip implementation does not mean that every task is handled by a

custom hardwired FPGA module. Since there are many embedded

 9

processor IPs developed by FPGA manufacturers, it is possible to employ

an embedded processor in an FPGA based design. If an embedded

processor is employed on an FPGA-based design, it can be seen that the

embedded processor implementation along with the custom hardware

modules is very similar to the hybrid design approach. The difference

would be that the connecting wires between the custom modules and the

processor are external on the hybrid design and processor’s resources

don’t consume FPGA’s resources. Therefore, the generic scheme provided

in Figure 2.1 applies with a slight difference on the employed processor.

Nevertheless, it is also possible that the overall motion control system is

implemented on the FPGA chip with custom hardwired modules. It is a

significantly different approach than the processor-based designs;

therefore it is convenient to classify the FPGA-based designs into two by

the utilization of an embedded processor.

In FPGAs, there are different ways that computations can be handled. In

hardwired implementation via HDL design, it is possible to include or

develop custom arithmetic module IPs for fixed-point arithmetic.

Furthermore, it is also feasible to insert a floating point unit (FPU) in the

design to perform floating point calculations, such as the one devised by

R. Usselmann [1] [1] as an open-core IP. Nevertheless, it should be noted

that the development platform of hardware description languages such as

Verilog HDL or VHDL does not support fixed/floating point number

representations (and accompanying calculations) directly and therefore

the design paradigm is long and tedious. On the other hand, in the

embedded processor development environment, it is possible to use

 10

different number types conveniently by coding through a high-level

language like C.

A similar problem occurs when implementing a memory management

unit or a communication controller on the FPGA as a hardwired module.

In this hardware solution, it is the designer’s job to arrange and

synchronize the clock signals, read/clear buffers etc. On the other hand, if

a softcore processor is employed, it provides a system on programmable

chip (SoPC) solution for these tasks and it is significantly easier to

implement an SRAM controller or a UART controller when an embedded

processor is employed. As a matter of fact, the designer does not interact

at all with the memory management unit or the UART controller, after

including those units to the SoPC design interface and connecting them to

the selected embedded processor.

2.1 Hybrid control systems

In this section, designs are discussed in which FPGA is either employed as

a sole interface between a main processor and peripheral devices or

utilized as a secondary processor in addition to its interfacing task.

2.1.1 Control systems utilizing FPGA as an interface

In many previous studies, FPGAs are generally considered as an interface

between a processor unit that handles the controller (such as a DSP or a

microprocessor) and its peripheral units. This is due to the fact that FPGA

implementations of peripheral interfaces are particularly fast and efficient

 11

by design with hardware description languages (such as Verilog HDL and

VHDL) on FPGAs. For instance, a PWM generator is a very common and

necessary interface in motion controller designs and in a study conducted

by Arbit et al. [2] it has been shown that different shapes of waveforms of

PWM signals can be generated precisely on an Altera Spartan II FPGA and

even simpler FPGAs could handle the task quite efficiently. Therefore,

implementing an FPGA based input/output interface is a good option for

motion controllers, as further discussed in Chapter 3. In this section,

designs in which FPGA is employed as a peripheral device interface are

presented.

In such configurations, FPGAs do not share the computational burden of

the main processor. For instance, in the design proposed by Dong et al. [3],

the control system consists of a TMS320LF2407 DSP of Texas Instruments

accompanied by an EP1K30-144 FPGA of Altera. While this system is

presented as a dual-core system, there is a significant difference between

the computational loads of the cores. In this design, FPGA core deals with

the external circuitry (that are FPGA modules) to process position encoder

signals, some keyboard inputs and displays while also managing some I/O

functions as well as a data bus to the DSP core. On the other hand, the DSP

core handles all the computations of the PID controller. Therefore,

although the system is presented as a dual core system, the primary

computation load is on the DSP core.

A similar scheme appears in the study of Birou and Imecs [4] where the

FPGA is coupled to a TMS32OC50 DSP of Texas Instruments. In this

configuration, an FPGA module generates pulse width modulation

 12

(PWM) signals for the power converters and another FPGA module

decodes incremental encoder signals. Controller is again implemented on

the digital signal processor (DSP) and FPGA has no computational load.

In another study conducted by Lee et al [5], a DSP 2812 controller board

employing a TMS320F2812A DSP is utilized with a Altera Cyclone FPGA

chip in order to realize a RBF neural network controller for nonlinear

systems. Analogous to the previous studies, the scheme is topologically

the same as the previous studies and the FPGA is used for the sole

purpose of encoder interfacing/counting and PWM generation.

Another recently published study by Caporal and Pacas [6], presents

implementation of a direct mean torque controller that is realized on a

hybrid system consisting of an ADSP 21062 DSP by Analog Devices and a

Xilinx XC4010E FPGA. Nevertheless, FPGAs duty for interfacing remains

with no significant computational load.

On the other hand, the situation is analogous in industrial motion

controllers developed by private manufacturers. For instance, “DMC-

18x6” which is the most recent and highest performance motion controller

of Galil [7], utilizes a Xilinx FPGA chip for interpreting the encoder

signals, while PID compensation with velocity and acceleration

feedforward is realized by a 32-bit Motorola processor. Likewise, another

product “PMAC2” which is developed by Delta-Tau [8], employs an

Altera FPGA chip as an encoder interface and the central processor is

selected as a Freescale DSP563xx.

 13

These recent studies show that even the capabilities of the FPGAs are

significantly increased in the last two decades; they are still employed for

simply interfacing purposes regardless to their increasing capacity and

processing capabilities. Nevertheless, it is also important to note that even

if FPGAs do not carry heavy computational loads in the mentioned

designs, their role is crucial in demanding control applications where

sensor signals need to be decoded in a fast and efficient manner and

complex output signals need to be generated. Therefore in these examples,

the fact that FPGAs do not have a computational burden does not imply

that their role in the controller design is unimportant.

For instance, in the study conducted by Al-Ayasrah et al. [9], an N-Motor

speed controller for brushless DC motors is proposed by the

implementation of a ADSP-21992 DSP by Analog Devices that is employed

with a Xilinx Virtex-E FPGA chip. The key feature of this design is the N-

motor speed control, which is realizable by the PWM module

implemented on the FPGA chip.

Another study conducted by Toh et al. [10] presents implementation of

torque and flux controllers for direct torque control (DTC) of an induction

machine. In this study, complex torque/flux estimations are computed and

a P flux controller along with a PI torque controller are realized on a

DS1102 DSP board from dSPACE, which is based on a TMS320C31 DSP.

However the success of the control algorithm depends on the high speed

generation of the output signals and therefore it is vital that a faster

hardware circuit handles that operation, which is realized on an Altera

EPF10K20 FPGA device.

 14

2.1.2 Control systems utilizing FPGA as a secondary processor

As evidently shown by the presented studies in the previous section,

FPGAs are widely used for interfacing purposes in controller designs

coupled with a digital signal processor, having none or very limited

computation loads. However, there are also other hybrid control systems

in which FPGAs share more amount of computational load than just an

interfacing chip; deserving its role as a secondary processor.

In the design proposed by Jung and Kim [11], Texas Instrument’s

TMS320C6711 DSP is employed with Altera’s EP20K300EQC240 FPGA

chip, similar to the schemes in previous section. The controller topology is

composed of a neural network controller and a PID controller; however in

this case the PID controller is implemented on the FPGA; therefore

contrary to the previous designs, the computation load of the FPGA is

increased.

A study conducted by Yu et al. [12] proposes a novel multi-redundancy

electro-mechanical actuator (EMA) controller, implemented on a

TMS320VC33 DSP by Texas Instruments and Cyclone II FPGA by Altera.

In this design, DSPs functions include receiving instructions of position,

and carrying out calculations of the position loop and velocity loop;

whereas the FPGAs functions are to provide interface for position signals,

velocity signals and current signals, to carry out the calculation of the

current loop, and to generate the PWM signal that is required by the

multi-redundancy EMA. As can be seen, in this configuration FPGA

 15

handles the current controller as well as its typical interfacing tasks,

earning its title as a secondary processor.

It is obvious that in these hybrid designs, FPGAs computation load as a

secondary processor vary significantly from design to design. For instance,

in a novel AC servo system implementation proposed by Esmaeli et al.

[13], a Spartan FPGA of the Xilinx is employed with a TMS230LF2407 DSP

of Texas Instruments. In the system, DSP chip implemented a position

loop control which includes a PI regulator, velocity and acceleration

feedforward and a digital notch filter. On the other hand, FPGA chip

implemented the speed loop and current loop control, which also includes

a PI regulator as well as a vector transformation module. This design can

be considered as a truly hybrid design, because of the fact that the

computational loads of both chips are equivalent and demanding.

As demonstrated by the provided examples, FPGAs can be utilized in

many different controller topologies along with another processor, to

achieve tasks at a range of complexities from relatively simple to utterly

complex. However, there are also designs that employ a single FPGA chip

for the overall motion controller design, and they are presented in the

following section.

2.2 FPGA‐based control systems

Recent research studies tend to shift the computational load from the

primary processor to the FPGA, as the capabilities of FPGAs significantly

increased in time over the last two decades. Many examples of hybrid

 16

control systems are provided in the previous section, however in those

studies the FPGA has always been accompanied by a primary processor,

which has mostly been a digital signal processor or a microprocessor.

Nevertheless, it is also possible to realize a control system on a single

FPGA chip, and in this section, designs in which FPGA is solely employed

to realize the entire motion control system are presented.

2.2.1 Control systems using softcore processors

FPGAs require low-level (i.e. logic-level) circuit design through hardware

description languages (HDL) and such a design effort using HDLs is a

relatively long and tedious process. To overcome this difficulty, FPGA

manufacturers offer many intellectual properties (IPs) including

embedded processor IPs. Therefore, many motion controller designs that

facilitate a single FPGA makes good use of an embedded processor IPs.

While some designs use softcore processors only to implement controllers,

the others utilize the embedded processor for complex calculations along

with some “hardwired” custom modules for simpler tasks. As a matter of

fact, utilizing an embedded processor does not necessarily mean that the

whole implementation is realized on the processor. Therefore, it should be

noted that while the control systems presented in this section are classified

as systems with embedded processors, most of the designs in this section

also utilize custom hardwired modules developed by HDL design tools.

However, modules for complex arithmetic operations are not generally

included since the processor easily handles those operations.

 17

In a study conducted by Ni et al [14], an integrated motion control system

is realized on an Altera Cyclone FPGA with a Nios II processor. This

hardware design scheme realizes all sensor data acquisition, SPWM

generation, motor vector control, torque control and trajectory generation

in a single FPGA chip. Since a Nios II processor is employed, all the

calculations are performed with floating point arithmetic.

In another study, Li et al [15] developed an FPGA-based servo controller

for PMSM drives on an Altera Cyclone EP1C20 FPGA. In this design,

while a custom HDL designed module performs the current/speed loop

control for PMSM drives, which includes vector control strategy, the PI

regulator, coordinate transformation and the SVPWM generator; Nios II

processor performs the function of position control, based on the discrete-

time sliding mode variable structure control. Similar to the previous

study, the softcore processor allows floating point arithmetic for the

variable structure controller.

In a recent study, Kung et al [16] realized a motion control IC for an X-Y

table on a Altera Stratix II EP2S60F672C5ES FPGA chip. In this

implementation, two axes’ fuzzy position controllers and P speed

controllers, as well as a motion trajectory generator are implemented by

software using Nios II softcore processor. On the other hand, two axes’

current vector controllers, along with the SVPWM generators and the

encoder interfaces are realized by custom hardware (HDL design)

modules. It is noted that the Nios II processor has less than 1 kHz

sampling frequency, while the custom hardwired implementation works

 18

at 16 kHz. Therefore this study is a good example for demonstrating the

better speed characteristic of the custom hardware.

Das and Banerjee [17] developed a digital PID controller for precision

control of a brushed DC servo motor, employing a Spartan 3E FPGA chip

and utilizing a PicoBlaze softcore processor by Xilinx. As expected, the

PID control algorithm is realized on the softcore processor and the

supporting interface modules such as: RS232 controller and the PWM

generator is developed as custom hardware modules by VHDL. It is also

noted that since the PWM generation is a time critical job, it cannot be

handled by the processor along with the PID controller an therefore a

custom module is developed for PWM generation task.

Salem et al. [18] proposed a servo drive system in which the peripheral

interface and speed control is handled by hardware and position control

along with the networking functions are handled by softcore processor,

and implemented it on a Xilinx Virtex-II Pro XC2VP30 FPGA chip

available on a Xilinx ML310 board. Furthermore, two different RT kernels,

that are μC/OS-II and Xilkernel are investigated on the PowerPC 405

processor and their performances are tested on a test case of a PI

controlled DC motor emulator.

These examples demonstrate that using an embedded processor IP within

the FPGA is proven to be a successful approach. Furthermore, it is also

shown that using an embedded processor with custom hardware modules

further increases the efficiency and speed of the design, and it is proven

that oftentimes the softcore processor needs to be accompanied by custom

 19

hardware modules. Unsurprisingly, this remark raises the issue of the

performance of an FPGA-based design that is fully hardwired HDL

design. The following section presents studies that do not employ an

embedded processor and the whole motion controller design is based on

custom hardware modules.

2.2.2 Hardware implementation of control systems

While the current tendency is to use an embedded processor for complex

calculations required by controllers, it is also possible to eliminate the

embedded processor and develop a total hardware solution. This is a

desirable feature since the hardware modules are significantly faster than

the embedded processors and oftentimes more efficient in terms of

resources and power consumption rates. However, it is a long task to

develop custom hardwired modules and furthermore, in order to benefit

from the efficiency of the flexible hardware, modules need to be optimized

for a specific task to fully observe the improvement obtained by the

hardware implementation.

It is important to note that controller implementation on FPGA is often a

trade-off between resource and execution time of the controllers. The

reason for that is; while it is possible to benefit from the parallel

processing capability of the FPGA chip by calling many instances of a

certain module which would certainly require more resources, it is also

possible to use certain modules repeatedly in a sequential manner to

increase the time, rather than the resource cost. Therefore, it is possible to

 20

modify a design according to the resource/time requirements of the

controller.

In a very recent study, Cho et al [19] have proposed an FPGA-based

multiple axis motion control chip with no embedded processor employed.

The chip has all the essential features such as velocity profile generation,

interpolation, inverse kinematics calculation and a PID controller which

are required to control a multiple axis motion control system such as a

robotic manipulator. As discussed earlier, certain methods need to be

developed in order to avoid complex calculations and in this study, they

managed to avoid floating point calculations by multiplying coefficients

by constant integers. Using no embedded processor; they attained lower

resource costs and power consumption rates. The hardware modules are

developed by VHDL and implemented on a Xilinx XC2V6000 FPGA.

Chan et al [20] have conducted a study on PID controller implementation

on an FPGA and they managed to decrease the resources required by a

multiplier-based design significantly on the target platform that is a Xilinx

Spartan-II-E FPGA. They have proposed to replace the multipliers by a

distributed arithmetic based design utilizing look up tables and they

managed to decrease the resource requirement down to 4 to 13% of the

former design. However they increased the computation time from 1 cycle

to 13 to 26 cycles. The increase in efficiency of this design refers to the

resource cost of the controller in terms of slices and power consumption.

A very similar study by Tao et al [21] managed to decrease the logic

element requirement of a PID-based CNC position controller from 51.7%

to 0.8-1.5% in an Altera Cyclone II FPGA, increasing the computation cycle

 21

from 1 to 32-64 cycles, utilizing two different methods. The methods

provided in these studies are a mere result of trying to reduce the resource

requirements of the conventional PID controller and while these studies

offer good improvements for a PID controller, there exist many controller

algorithms including intelligent, nonlinear and hybrid topologies and

there is no single way to implement each of them more efficiently on an

FPGA. However, they are valuable to demonstrate that without the

embedded processor IPs, it is still possible to implement a conventional

controller as hardwired modules successfully via the HDL design tools on

an FPGA.

There are also some other studies where more complex controllers are

implemented on the FPGA via custom hardwired modules. Fuzzy

controller designed by Lanping et al [22] requires no embedded processor

or a floating point unit to perform fuzzy control. The selected platform for

development is EPF10KlOLC84-15 of FLEXlOK series from Altera. On the

other hand, the proposed method is similar to a rule based control

topology and the method is not generally applicable for different fuzzy

controller topologies. In another study by Kung et al. [23], an adaptive

fuzzy controller for AC motor drive is proposed and the speed control IP

is fully realized on the hardware platform of an Altera Cyclone EP1C20

FPGA. As a matter of fact, a Nios II processor is also included in this

design for SRAM and UART control, however since the controller is fully

implemented as hardwired, it is included as a hardware implementation.

In this design, the current loop sampling frequency is 16 kHz, while the

speed control loop’s sampling frequency is 2 kHz.

 22

An Elman neural network implementation is proposed by Lin et al [24] for

a linear ultrasonic motor, where a fixed point arithmetic unit is

implemented to perform the calculations. The proposed design is

implemented on a Xilinx XC2V1000 FPGA chip and 723 Hz sampling

frequency is attained for the controller. In the previous section, a study by

Kung et al. [16] is provided for realization of a motion control IC for a X-Y

table, in a more recent study by the same group [25], a self-tuning PID

controller is realized using RBF neural network and is applied to the X-Y

table. Different from the previous study, in this case the Nios II processor

is only employed for trajectory generation purposes and the rest of the

design is implemented as hardwired custom modules, including the

neural network. The same chip that is Altera Stratix II EP2S60, is

employed in the design and current loop can be closed at 16 kHz while the

position loop’s sampling frequency is 500 Hz. From these examples, it can

be noticed, as the complexity of the controller increases, the attainable

sampling frequency decreases.

These studies prove that it is possible to implement different controller

topologies on FPGAs utilizing arithmetic logic units or custom hardware

solutions. It is also seen that PID controllers are easier to implement by

custom hardware logic and in practice usually realized by hardware

modules. On the other hand it is also possible to implement more complex

topologies by custom hardwired modules.

 23

2.3 Closure

In this chapter, a literature review was provided for motion controller

topologies that employ an FPGA chip. A classification was made

according to the utilization of the FPGA in the design as a secondary chip

or a single chip; and a further classification was performed according to

the FPGA’s duty in the design for the secondary chip case and utilization

of an embedded processor in the FPGA for the single chip case. This

classification is non trivial and different categorizations are also possible;

nevertheless the studies in this review are provided according to this

classification, in order to better demonstrate the differences between the

design approaches.

In the provided studies, it has been shown that FPGAs can be successfully

used in tasks within a wide complexity range, from primitive interfacing

tasks to complex controller algorithms. It is shown that FPGAs can

perform tasks utilizing custom hardware IPs and/or embedded processors.

However, when an FPGA is accompanied by a secondary processor chip,

it is seen that FPGA is mostly utilized by custom hardwired modules.

As a general rule, in almost all of the studies the peripheral interfacing has

been implemented by hardwired FPGA modules, however, for

implementation of control algorithms, it is shown that both custom FPGA

modules and embedded processors are viable options. For the case of

memory management and communication control, embedded processor

IPs are generally selected for their simplicity in design; however it is

shown that, custom modules are also available for these tasks.

 24

In the presented studies, it was shown that the custom modules developed

by HDL design tools have less processing time and resource requirement

than the embedded processors. This is due to the fact that, custom

modules are developed and optimized according to the controllers’ needs.

On the other hand, while some parameters and configuration of the

embedded processor can be modified before implementation, it is still

much less flexible than a custom hardwired module. In this study, an

FPGA-based solution is proposed and evaluated.

 25

CHAPTER 3

PERIPHERAL DEVICE INTERFACING FOR MOTION

CONTROLLERS

A motion controller is always required to receive and transmit signals and

data from/to other devices employed within the control system; therefore

it is necessary for a motion controller design to include some means for

peripheral device interfacing. For instance, motion controllers need to

receive some sort of sensor information from a

mechanical/optical/magnetic sensor and produce a corresponding

manipulation signal that can be interpreted by a driver or can drive the

actuator itself. Furthermore, other peripheral units (such as a host PC for

setting the design parameters of the controller online) may also be

included in the control system, which would require a communication

protocol (such as RS-232) or a bus interface (such as SPI) in the controller

architecture.

Evidently, there exist various interface topologies employed in sensors,

actuators and other devices; and it is not practical to include numerous

interfacing modules in a single design. Therefore, it is necessary to limit

these modules by considering the most common interfaces used in

common practice and if possible taking the currently employed devices

into account.

 26

In this chapter, a number of interfacing modules are presented, which are

selected conveniently from the commonly used devices in motion control

applications.

All the modules are developed using a hardware description language

(mostly Verilog HDL), in order to increase the processing rate and

decrease the resource cost of the module, benefiting from the flexible

hardware of an FPGA.

On the other hand, it should also be noted that while implementing a

softcore processor is also a viable option, for primitive designs such as

sensor/actuator interfacing or communication protocol controller modules,

it is a more efficient design approach to develop customized modules via

HDL design. Further discussion on softcore processor implementation on

FPGAs is available in the following chapters.

3.1 Encoder Interface

In motion control applications, the most commonly employed sensors to

obtain positional feedback are encoders. Therefore an encoder decoding

module is the most critical sensor interface of a motion control system.

Encoders are electromechanical devices that generate an analog or digital

(commonly digital) signal, in order to provide linear or rotational position

feedback. Encoders that provide absolute position feedback are called

“absolute position encoders” and their output signals require no

interpretation; since they provide absolute position information in

proportion to their resolution. However, due to their limited resolution,

 27

absolute encoders do not succeed in high speeds and in industrial control

applications, incremental encoders are generally preferred.

Incremental encoders provide digital signals as square wave forms from

two channels, with a phase difference of 90°. Therefore, it is possible to

count every rising/falling edge of channels A and B (which is called

quadrature decoding method), and increase the resolution of the encoder

to 4 times its initial resolution. Ideal output of an incremental encoder is

shown in Figure 3.1.

Figure 3.1 – Ideal output of an incremental encoder

The main advantage of incremental encoders is that the resolution is not

correlated with the number of output channels, which is 2 for any

resolution, unlike absolute encoders, which need to have 2n output ports

to provide n-bit resolution. Therefore, if an incremental encoder is

employed, no hardware modification is required in the motion controller

interface if a different encoder with higher (or lower) resolution is

implemented.

 28

On the other hand, the output of incremental encoders needs to be

interpreted by the decoder chip, by means of counting the rising/falling

edges of the output signals A and B of the encoder. It is obvious that the

decoding process needs to be realized at a high sampling frequency since

missing a logic level change of a signal would mean misinterpretation of

the feedback.

FPGA is a suitable choice for high frequency decoding purposes, because

of its logic level design capability, as stated in the introduction of this

chapter. A perfectly optimized module is developed for the sole purpose

of encoder decoding; in order to utilize the available clock source with full

capacity (i.e. no computational delays). The developed encoder module is

presented in the next section.

3.1.1 Incremental encoder decoding module

Incremental encoder decoding module, or as commonly referred in this

text as the “encoder module” is developed using Verilog HDL and its

symbolic representation as generated by Quartus II (Altera’s

programmable logic device design software that is used throughout this

chapter) is presented in Figure 3.12.

As can be seen from Figure 3.12, the module takes two channels from the

incremental encoder as its input, as well as a clock and reset signal. The

output of the module is simply the result of the current pulse count,

obtained via quadrature decoding. Note that clk signal is the input clock of

the module and a sufficiently fast clock is necessary for successful

 29

decoding. In this implementation, the fastest clock on the Altera DE1 board

(50 MHz) is connected to this signal. For the implementation, first the

inputs from channels A and B are buffered in a 3-bit register in order not

to miss any logic level changes in the signal. Verilog HDL code of this

implementation is as shown in Table 3.1. Note that signal buffering is

realized with this approach throughout this design.

Table 3.1 – Verilog HDL code segment for encoder channel buffering

reg[2:0] inA_delayed, inB_delayed;

always @(posedge clk) inA_delayed <=
{inA_delayed[1:0], inA};

always @(posedge clk) inB_delayed <=
{inB_delayed[1:0], inB};

As can be observed, at the system clock frequency, input channels A and B

are sampled and buffered into registers called inA_delayed and

inB_delayed. Using these signals that are delayed 2 clock cycles

(corresponding to 40 ns for the 50 MHz clock), it is possible to detect a

pulse generated by the encoder, as well as determine its direction. Verilog

HDL code of this implementation is shown in Table 3.2.

Table 3.2 – Verilog HDL code segment for pulse and direction detection

wire count_enable = inA_delayed[1] ^
inA_delayed[2] ^ inB_delayed[1] ^
inB_delayed[2];

wire count_direction = inA_delayed[1] ^
inB_delayed[2];

 30

As can be seen, 3 XOR gates are implemented to detect the level change of

the pulse and 1 XOR gate is implemented to determine the direction. After

detecting a pulse from an encoder channel and determining its direction, it

is trivial that a count register needs to be increased/decreased according to

its input, as shown in Table 3.3.

Table 3.3 – Verilog HDL code segment for encoder count calculation

always @(posedge clk)

begin

 if(count_enable)

 begin

 if(count_direction) count<=count+1;

 else count<=count-1;

 end

end

At this point, comparing this design with a softcore processor design for

the same purpose would be helpful to demonstrate the suitability of the

customized module approach. Even if minimum specifications are

selected for the processor, it would still require a significant processing

time, where the design could also be implemented with a simple and

efficient HDL code. Note that the success of the module depends on a high

sampling clock and a simple design, which are fulfilled by this approach.

The generated module is tested by two means. In the first experiment, an

incremental encoder generating 2000 pulses/rev (which corresponds to

8000 pulses/rev with quadrature decoding) is employed and the encoder

 31

shaft is driven manually for a certain period of time. In the end, when the

encoder shaft is returned to its original position, a multiple of 8000 is read

on the PC via RS-232 connection. After this relatively simple experiment, a

more complex and convincing experiment is performed.

In the next experiment, an FPGA module to generate an encoder-like

signal is developed to test the decoding module. This module is capable of

generating encoder signals up to 6.25 MHz, which is limited by the fastest

clock available (50 MHz) on the FPGA board. The output of this module is

connected to the general purpose I/O ports of the FPGA board; which can

be treated as output signals of a real encoder. Therefore, using this

module, encoder signals in a wide range of frequencies could be generated

for testing purpose. Two signals generated by this module with 6.25 kHz

and 625 kHz frequencies are shown in Figure 3.2 and Figure 3.3.

Figure 3.2 – Encoder signal generated by the FPGA (6.25 kHz)

Figure 3.3 – Encoder signal generated by the FPGA (625 kHz)

 32

As seen in Figure 3.2 and Figure 3.3, the signals successfully represent the

ideal encoder signal, as shown in Figure 3.1. Using this module, an

experiment is performed with different frequencies ranging from 200 Hz

to 1 MHz, and the direction of rotation is changed numerously (between 5

to 20 times) via the on-off switches available on the FPGA board. The

result of this experiment is shown in Figure 3.4.

Figure 3.4 – Frequency vs. decoding error

As shown in Figure 3.4, in frequencies greater than 1 kHz (1000 rev/s),

count error is equal to only a few pulses when a sum more than 10 Million

pulses are generated by the encoder module. Those frequencies are

already extremely high for industrial applications and it can be deduced

that FPGA implementation of an incremental rotary decoder is sufficiently

successful for industrial motion control applications.

‐6

‐4

‐2

0

2

4

6

8

1 100 10000 1000000

Count error in
10M+ pulses

Frequency (Hz)

Frequency vs. Decoding Error

Pulse Error

 33

3.2 Pulse width modulation (PWM)

Pulse width modulation (PWM) is a technique to provide intermediate

electrical power by changing the duty cycle of a high frequency digital

signal. Therefore, it is a commonly employed method to represent an

equivalent analog signal with a digital signal. While it is possible to use

PWM signal to directly drive a motor (via a servoamplifier), it is also

possible to feed the PWM signal to a motor driver where PWM represents

a manipulated input command (such as torque). Furthermore, PWM can

also be used for serial communication, in a 2-wire scheme similar to SPI.

Essentially, frequency of the PWM signal is crucial and there are two

factors affecting the attainable frequency of the PWM signal: frequency of

the input clock and the desired resolution. The relationship between the

system clock, resolution and the attainable PWM frequency is obtained as

fpwm = fclk / 2R where fclk and R correspond to the system clock and the

resolution respectively. A calculation based on the fastest available clock

on Altera DE1 board (50 MHz) and a 10-bit resolution (which is a highly

sufficient value for industrial applications) can be performed as 50MHz /

210 = 48.8 kHz. This equation shows that an equivalent analog signal can be

represented with 10-bit accuracy at 48.8 kHz, when a 50 MHz clock is

available.

As discussed earlier, PWM can be employed in different schemes. It can be

used directly to drive a servo-motor via a servo-amplifier: its output can

represent a torque command for another controller or it can be used to

transmit serial data to another chip. However, the design differs between

 34

the two cases when PWM signal represents an analog signal and is used to

transmit data. Therefore, two modules called PWM generator (for

producing an equivalent analog signal) and PWM transmitter (for serial

communication) are developed and included in the motion controller

design.

3.2.1 PWM generator module

PWM generator module (or commonly referred in this text as PWM

module) is a simple module that can create a PWM signal that represents

its input data. PWM module is developed using Verilog HDL and its

symbolic representation as generated by Quartus II is presented in Figure

3.12. As can be seen in Figure 3.12, the module takes a 10-bit duty_in

signal as its input, as well as a clock and enable signal. The output of the

module is simply the generated PWM signal called pwm_out. Verilog

HDL code of this implementation is shown in Table 3.4.As can be

observed, as long as the clkctr is smaller than the duty_in signal, the

output of the PWM is equal to 1. As can be seen, PWM module is simple;

yet efficient in creating equivalent analog signals. Output of the PWM

module is shown in Figure 3.5.

 35

Table 3.4 – Verilog HDL code segment for encoder count calculation

always @(posedge clk)
begin
 clkctr <= clkctr+1;
 if(enable)
 begin
 if(clkctr < duty_in) pwm_out <= 1;
 else pwm_out <= 0;
 end
 else pwm_out <= 0;
end
endmodule

Figure 3.5 – Output of the PWM module with 25% duty cycle

Notice that the frequency value is 48.8 kHz, as calculated. Duty cycle is set

as 25%, which can be adjusted with a 10-bit resolution.

 36

3.2.2 PWM transmitter module

PWM transmitter module creates a PWM signal; however this signal is not

continuous as a regular PWM signal and is generated only when a data

needs to be transmitted. PWM transmitter module is developed using

Verilog HDL and its symbolic representation as generated by Quartus II is

presented in Figure 3.12.

As shown in Figure 3.12, PWM transmitter module has an extra input and

output different from the PWM module. This is due to the fact that, since

the PWM transmit module is used for serial communication, an initiate

transmission signal init_xmit is necessary for the transmission start.

Furthermore, a similar signal is required as the output, in order to inform

the receiver module that the transmission has started. Output of this

module is shown in Figure 3.6.

Figure 3.6 – Output of the PWM transmit module

 37

In Figure 3.6, pink line represents the xmit_clk and the yellow line

represents the PWM_data_out. As can be observed, falling edge of the

xmit_clk initiates the transmission and PWM_data_out is set to 1 with

the same method employed in the PWM module. Besides the xmit_clk,

another difference of this module is the frequency of this signal, which is

not equal to 48.8 kHz, since the module is initiated only when data

transmission is necessary. In a controller topology, frequency of this signal

would be equal to the sampling frequency of the controller.

3.2.3 PWM receiver module

PWM receiver module interprets the PWM signal created by the PWM

transmitter module. PWM receiver module is developed using Verilog

HDL and its symbolic representation as generated by Quartus II is

presented in Figure 3.12.

As can be seen in Figure 3.12, input of the module matches the output of

the transmitter module and outputs of the module are the interpreted data

that is PWM_recv_data and PWM_OK signal which generates a rising edge

when data transmission is complete.

3.3 Finite pulse generation

In motion control applications, oftentimes the controller needs to drive

multiple axes that have different control requirements. For instance, if a 3-

axes turning center is considered, position control of the cutting tool

requires a much simpler control approach than the speed control of the

 38

spindle motor. Therefore, in cases where a simple controller is sufficient, it

may be desirable to drive that axe via the “pulse control mode” of the

driver.

In order to drive a controller in “pulse control mode”, it is necessary to

produce a number of square pulses at a certain frequency that corresponds

to the speed of the motor shaft. Evidently, this frequency is limited by the

specifications of the driver/motor couple.

3.3.1 Pulse generator module

Pulse generator module gets a number of pulses and frequency as its input

and produces the specified number of pulses at the desired frequency.

Pulse generator module is developed using Verilog HDL and its symbolic

representation as generated by Quartus II is presented in Figure 3.12. As

can be seen in Figure 3.12, finite pulse generation has three inputs (other

than the system clock) called init, pulse_no and pulse_freq_div.

Init signal represents the initialize signal for the generator and rising

edge of this signal enables this module. Rising edge of this input is

detected by buffering the signal in a 3-bit register and checking the

consecutive bits, as shown in Table 3.5. Note that this Verilog HDL code

shown in Table 3.5 is commonly employed for rising/falling edge

detection of enable/initialize signals throughout this design.

 39

Table 3.5 – Verilog HDL code segment for init rising edge detection

reg[7:0] init_delayed;

always @(posedge clk) init_delayed <=
{init_delayed[6:0], init};

wire init_risingedge =
(init_delayed[2:1]==2'b01);

Pulse_freq_div is employed to set the frequency of the generated finite

pulse signal by utilizing another module called the clock divider module as

shown in Figure 3.12. This clock divider module is utilized in various

parts of the overall design, in order to generate clocks (infinite square

waveforms) at different frequencies. As can be seen, its inputs are the

system clock and a divider and its output is a clock with frequency fclk_out

that is equal to fclk_sys / divider. This clock divider module is utilized in the

pulse generator module as shown in Table 3.6.

Table 3.6 – Verilog HDL code segment for clock divider utilization

clk_divider clk_div1(.divider((pulse_freq_div >>
1)),
 .sys_clk(clk),
 .clk_out(clk_pulse));

As can be seen in Table 3.6, pulse_freq_div signal is directly connected

to the input of the divider module, with a bitshift to right, which would

double the output frequency of the divider. The reason for this shift is

revealed in the pulse generator segment of this code, shown in Table 3.7.

 40

Table 3.7 – Verilog HDL code segment for pulse generation

always @(posedge clk)
begin

 if(init_risingedge)
 begin
 PULSE_on <= 1;
 clkctr <= 0;
 end

 if(PULSE_on && clk_pulse_risingedge)
 begin
 clkctr <= clkctr + 1;

 if(clk_pulse_risingedge) pulse_out <= (1-
pulse_out);

 end

 if((clkctr >> 1) == pulse_no)
 begin
 PULSE_on <= 0;
 pulse_out <= 0;
 end

end

As can be seen in Table 3.7, a register called pulse_on is set to 1, when a

rising edge of the initialize signal is detected. As long as this registers

logical value is true and the clock pulse generated by the clock divider

module has a rising edge (which has an analogous code to the one

provided in Table 3.5) pulse_out signal changes its logical value. Since

this process halves the frequency, the output of the clock divider module

needs to be twice the desired output frequency, which explains the reason

why pulse_freq_div signal is shifted 1 bit to right.

 41

Using this module, different numbers of pulse sequences are generated at

different frequencies. Two of these sequences are provided in Figure 3.7

and Figure 3.8.

Figure 3.7 – Sequence of 5 pulses generated at 5 kHz

Figure 3.8 – Sequence of 26 pulses generated at 6.25 kHz

 42

3.4 Serial Peripheral Interface Bus (SPI)

Serial Peripheral Interface Bus (SPI) is a serial communication protocol

that is commonly used for data transmission between chips. SPI bus

operates in full duplex mode and communication is achieved in

master/slave mode where the master chip initiates the data transmission

by selecting the target chip via the slave select signal (SSEL), followed by

the serial clock signal (SCLK). During operation, data is exchanged from

master out slave in (MOSI) and master in slave out (MISO) ports in full

duplex mode. While the most common word size for transmission is 8-

bits, other sizes are also commonly implemented. A simple schematic

diagram of the SPI bus between a master and two slave chips is presented

in Figure 3.9.

SPI
MASTER

SPI
SLAVE

SPI
SLAVE

SCLK

MOSI

MISO

SSEL0

SSEL1

Figure 3.9 – SPI bus between a master and two slave chips

While there are different serial communication protocols such as I2C and

One-Wire that can also be implemented on an FPGA; in terms of data

 43

transmission speed and multiple chip support, SPI is a better choice for

development. For instance, in terms of transmission rates, the closest rival

of SPI is I2C with transmission speeds of 100-400 kbit/s, whereas SPI can

achieve 5-10 Mbit/s speed. Therefore, an SPI module is selected for

development for the motion controller design and the details are

presented in the next section.

3.4.1 SPI module

SPI module is developed using Verilog HDL and its symbolic

representation as generated by Quartus II is presented in Figure 3.12. As

can be seen in Figure 3.12, SPI module is configured for operating in slave

mode; however it is also possible to change the operation mode from slave

to master with a few modifications in the HDL code. Note that clk signal

is the input system clock of the module and not relevant with the SPI bus.

Verilog HDL code segment realizing the data transmission is provided in

Table 3.8.

As seen in Table 3.8, SPI module is working only when SSEL signals

logical value is 0. When a falling edge of the SCK signal is detected

(analogous to the method explained in Table 3.5), bitcnt register is

increased by 1 and byte_data_received is shifted left with the new bit

coming from MOSI. On the other hand, at the rising edge of the SCK

signal, MISO register is shifted 1 bit to left, in order to set the new bit for

transmission.

 44

Table 3.8 – Verilog HDL code segment for SPI utilization

always @(posedge clk)
begin
 if(SSEL)
 bitcnt <= 0;
 else
 begin
 if(SCK_fallingedge)
 begin
 bitcnt <= bitcnt + 1;
 byte_data_received <=
{byte_data_received[6:0], MOSI};
 end
 if(SCK_risingedge)
 MISO << 1;
 end
end

The developed SPI module is implemented on the FPGA board as the

slave chip, and the communication is tested via an 8-bit microcontroller

(PIC16F877A), operating as the master chip. Two instances obtained

during operation of the SPI bus via an oscilloscope are presented in Figure

3.10 and Figure 3.11. In Figure 3.10 and Figure 3.11, D0 represents the data

signal (MOSI), D1 represents the serial clock signal (SCLK) and D2

represents the slave select signal (SSEL). As can be observed, data

transmission starts with falling edge of the SSEL signal, and then SCLK

produces 8 pulses (since the word size for this application of SPI is

selected as 8-bits). During this process, logic level of the MOSI signal

changes according to the data that is to be transmitted at each rising edge

of the SCLK; and read by the slave chip at each falling edge of the SCLK.

As can be seen in Figure 3.11, before the next byte is transmitted, initial

 45

states of the SCK signal and the SSEL signal are identical while MOSI is

different, since it represents the data.

Transmission tests are performed between the FPGA board and PIC

16F877A microcontroller with this module and the module is proven to be

working successfully at speeds up to 250kbit/s, which is a highly sufficient

value for the motion controller design problem.

Figure 3.10 – Transmission of an 8-bit data via SPI bus

Figure 3.11 – Transmission of an 16-bit data via SPI bus

 46

3.5 Other Interfaces

Other than the aforementioned interfaces and modules, there are a few

more modules that are implemented in the design. These interfaces

include a custom parallel data receive module, a custom pulse frequency

modulation module as well as an RS‐232 controller. The reason why these

modules are not discussed in detail is that, even if these modules are

employed in some parts of the design, their applications are custom and

their design methodology is very similar to the explained cases; and

therefore further discussion would not provide significant information.

On the other hand, while RS-232 controller is a relatively important

design, it is adapted from an open core source as an intellectual property

and therefore, is not comprehensively discussed.

3.5.1 Custom parallel data receive

This interface is developed for fast and simple data transmission between

two FPGA chips. The transmission takes place in parallel with a 32-bit

width and a clock is generated by the receiver to change the input data at

the transmitter end. Symbolic presentation of this receive block is shown

in Figure 3.12. As can be seen, cmnd_in signal is the 32-bit parallel input

signal. Every time the clk_out produces a rising edge, the transmitter

block sets the cmnd_in signal and therefore the new data can be read in

parallel. This receive block buffers 9 set of 32-bit data and transmits this to

the main module with a CMND_recv_ok signal indicating that the

transmission is over. As can be seen, this is a custom module and is not

 47

applicable to industrial peripheral devices without modification in the

HDL design.

3.5.2 Pulse frequency modulation

Pulse frequency modulation (PFM) method is a very similar method to

pulse width frequency, however in this case the duty cycle of the signal is

constant where the frequency is varying. The PFM module is used for

transmitting data just as the PWM transmitter and receiver modules that

are explained in sections 3.2.2 and 3.2.3. Symbolic presentations are not

provided since they are analogous to PWM modules and Verilog HDL

codes are not discussed since a more complex design is explained in the

finite pulse generation module.

3.5.3 RS‐232 controller

RS-232 controller is an important module, and is excessively used in the

following chapters for realizing a hardware-in-the-loop simulation on a

PC. While it is possible to develop a controller, it is a long and tedious

design effort, especially when open core modules are available for

utilization. Therefore, an open core IP is utilized in the design and is used

throughout this study. The utilized module is “Simple Asynchronous Serial

Comm. Device” that is developed by R.Usselmann [1] and is available at

www.opencores.org. A symbolic presentation of the “Simple Asynchronous

Serial Comm. Device (SASC)” module is presented in Figure 3.12. It

should also be noted that this top level module utilizes three other

modules that are also developed by the same author.

 48

3.5.4 SRAM controller

SRAM controller is used for utilizing the SRAM available on the FPGA

board. An open core IP that is also developed by R.Usselmann [1] is

utilized in the design and is used throughout this study. A symbolic

presentation of the “SRAM controller” module is presented in Figure 3.12.

3.6 Closure

In this section, a hardwired design methodology is presented for

peripheral device interfaces which are used frequently in motion

controller designs. The designs are developed via Verilog HDL, however

it should be noted that any other hardware description language (such as

VHDL) is evenly applicable for these designs. A number of these

presented modules are also employed in Chapter 7 of this thesis.

 49

Incremental encoder
decoder

PWM generator

PWM transmitterPWM receiver

Finite pulse generator Clock divider SPI slave

Command receiver

RS-232 controller SRAM controller

Parallel data receiver

Figure 3.12 – Schematic representations of the developed modules

obtained via Quartus II schematic tool

 50

CHAPTER 4

STATE‐SPACE CONTROLLER AND OBSERVER

DESIGN AND IMPLEMENTATION

State-space controllers are convenient choices for multi-output systems,

since they provide means for controlling multiple states of the plant using

time-domain based design methodology. However, they exhibit a

challenge since all the available states are not generally available in a

control system. The general scheme of a motion control system is that the

angular/linear position feedbacks are obtained via encoders but the time

derivatives of these states are unavailable from sensor feedback; since

providing a second feedback (velocity/acceleration) is generally costly or

unfeasible. Therefore the controller is usually employed as coupled with a

state observer, in order to estimate these unavailable states that are

required by the controller.

The overall implementation of this controller and observer scheme can be

realized by employing a series of matrix multiplications (as will be

discussed in the following section); however the initial problem remains

as the realization of the basic multiplication of two elements of these

matrices and how these elements could be defined with different data

types to reduce the computation load from the multiplication unit.

 51

In this chapter, after a brief introduction of the controller/observer scheme

that is to be implemented, two diverse approaches are presented for

performing these calculations required by a full-state feedback controller

and a Luenberger-type state observer. However, as it will be revealed

later, applications of these methods are not limited to state-space

controllers and can be used for realization of other algorithms. For

instance, in Chapter 5, digital filter implementation on FPGAs is

thoroughly discussed and the same methods presented here are applied

for the digital filter design problem.

4.1 Full‐state feedback controller

State space controllers find their use in almost all industrial motion control

applications. The control law of a typical state-space controller can be

simply expressed as;

࢛ ൌ െ۹൫ܠොሺ݇ሻ െ ሺ݇ሻ൯ (4.1)ܚܠ

Here u is the manipulated input vector; ܠො is the estimated state vector; xr is

the reference state vector and K refers to the gain matrix. Once the system

equations governing the dynamics of the plant are obtained, the gains in

(4.1) can be adjusted to yield desired control characteristics using modern

control theory. Note that since all states of the plant are not measured for

all practical purposes, a full-state observer needs to accompany the design

in order to estimate the missing components of the state vector. For

instance, a Luenberger-type state observer takes the following form:

 52

ොሺ݇ܠ ൅ 1ሻ ൌ ሺ۴ െ ොሺ݇ሻܠ۶ሻۺ ൅ ۵࢛ሺ݇ሻ ൅ ሺ݇ሻ (4.2)࢟ۺ

Here F, G, H correspond to the system matrices formed by the estimated

parameters; y(k) is the controlled output vector while L denotes the gain

matrix of the observer. Figure 4.1 shows the block diagram of the state-

space control system with the Luenberger-type state observer.

Figure 4.1 – Block diagram of the control system

In industrial motion control, the states of the system are frequently

selected as angular position () and (instantaneous) angular velocity ().

Thus, the general approach is to estimate the velocity using the measured

position. There exist versatile estimator algorithms in the literature for

velocity estimation in digital systems employing encoders/resolvers.

 53

However, no single estimation algorithm exists to cover all applications

where dynamic operating conditions do vary considerably such as the one

considered in this study. Hence, when good estimates on system

parameters are available, it is more desirable to observe the unavailable

states, rather than to estimate them using higher-order differencing

methods. Implementation details of this controller/observer scheme are

presented in the proceeding sections.

4.2 Implementation

In Chapter 2, many recent studies employing an FPGA in controller

designs are presented and different architectures are discussed where

FPGAs are used coupled with a DSP/MCU or used exclusively as the

controller. Furthermore, for the FPGA based (non-hybrid) designs,

various alternatives are discussed to handle the computations required by

the controller algorithm; including embedded softcore processors and

hardwired solutions (including embedded multipliers, floating point

units, custom arithmetic modules and etc.)

Unlike embedded softcore processors, hardwired solutions require

relatively long and tedious design effort with hardware description

languages (HDLs) and therefore many studies in recent literature tend to

include an embedded processor in their FPGA based designs. However,

using an embedded processor may have disadvantages such as consuming

a bulk amount of the resources of the chip and decreasing the flexibility

and processing rate of the module. Therefore, in order to fully benefit from

 54

the flexible architecture of an FPGA, it is necessary to develop custom

FPGA modules for computation.

In this section, two different approaches are presented for realization of

the controller/observer scheme that is presented in the preceding section.

The first approach uses a matrix multiplier module, which is developed by

HDL design (with Verilog HDL) and incorporates other custom

multiplication modules called IMUL, FMUL and FPU. Evidently, custom

multiplier modules are the key features of this method and are discussed

thoroughly. The second method is a softcore processor solution which

utilizes the Nios II softcore processor developed by Altera and the design

approach is drastically different from the modular approach, since a

processor is involved in the design.

4.2.1 Method I: Matrix multiplier module

Matrix multiplier module utilizes a custom multiplication module (which

can be selected as IMUL, FMUL or FPU) and an adder, in order to realize a

matrix multiplication. However, before proceeding with the details of this

module, it is necessary to present the custom multiplication modules and

explain the methodology behind these modules as well as how these

modules are developed and customized for a motion control application.

4.2.1.1 Customized multiplication modules

Digital control systems have unique properties that relax the usage of

floating point arithmetic and thus there is a potential to develop

inexpensive yet high-performance solutions. In order to explore the

capabilities of a flexible hardware, all the IPs included in the design

 55

should be customized (and optimized) for a specific task at hand.

Consequently, it is necessary to adapt low level open source IPs within the

design or develop custom modules via HDL design methods for a specific

controller topology (i.e. a state-space controller) combined with a specific

control system (i.e. a motion control system with a motor drive and

encoder feedback).

Some of the advantageous attributes of digital motion control systems are

as follows:

 Outputs of all sensors used in controls technology are essentially

amplitude-quantized and can be conveniently represented as

(signed/unsigned) integers.

 Reference signals (i.e. the command vector), which are to be

compatible with the sensory data, are to be generated as integer

(number) sequences.

 Manipulated outputs of almost all control systems need to be

amplitude-quantized while sending them out to the output interface.

 With proper scaling, the controller gains might be cast as integers

without a significant change in the overall dynamics of the controlled

system dynamics.

As explained in Chapter 3, in many motion control applications,

incremental optical encoders (either linear or rotational) are exclusively

employed to measure position of which is commonly characterized as

integer counts of pulses being produced by these devices. Similarly, the

manipulated output (torque or velocity command to the motor driver) is

represented as a finite-length binary number to be latched onto a digital-

 56

to-analog converter. Note that within the context of this study, such

systems will be referred to as “quantized input/output” control systems.

Furthermore, if the control gains could be also cast as integers, the

resulting system will be called “fully quantized system.”

For a fully quantized system, a state-space controller can be a suitable

choice since the pole placement techniques offer a margin for

manipulation on the controller gains. Note that the casting of these gains

as integers is not a straightforward task as the input arguments of the gain

matrix must be pre-scaled which may in turn aggravate the quantization

noise. Hence, the overall problem requires a fine balance among

conflicting objectives.

It is critical to notice that if a system is fully quantized, one may employ

integer-arithmetic entirely in all calculations. On the other hand, for a

quantized input/output system, the decimal multiplication algorithms of

digital signal processing (such as shift-and-add algorithm) can be utilized.

These well-known algorithms are easy to implement on FPGAs with the

low-level design tools provided by FPGA manufacturers. Since many

industrial motion control applications employ the quantized input-output,

such methods can reduce resource costs significantly.

The implementation methods for the state-space controller/observer is to

be developed for a quantized input-output (hence including fully

quantized) system. In this system, representing the input, output, and

feedback states as floating-point numbers do not have an advantage in

terms of accuracy. Therefore, it is appropriate to cast and store these

 57

quantities as signed/unsigned integers. Note that the selection of the word

size is up to the designer and is to be chosen by considering both the

system properties (such as feedback resolution) as well as the features of

the implementation method. The methods elaborated in the following

section make good use of the special properties for control systems.

Two techniques are proposed for matrix calculations which are essential in

state-space controllers and observers. Using these techniques, two

modules called “IMUL” and “FMUL” are designed specifically to take

advantage of the aforementioned special characteristics of control systems.

Furthermore, a custom floating point unit (FPU) is also included, in order

to demonstrate the resource and time-wise pros and cons of the proposed

methods.

4.2.1.2 Method I‐a: Integer multiplication (IMUL module)

In FPGAs, it is possible to develop efficient integer multiplication/division

algorithms with the logic-level (i.e. combinational circuit and/or

embedded multipliers of the FPGA chip) design. Therefore, the first

method, which employs a special multiplier module called “IMUL”,

focuses on multiplication of controller gains with system states employing

integer arithmetic. To be specific, let us consider the following operation:

y = ⌊ax⌋ where a ( ) is the multiplicand; x and y ( ℤ) are the multiplier

and the result (product) respectively while ⌊ ⌋ refers to floor function. It is

obvious that one can represent the fractional number (a) in this operation

as the ratio of two integers (Na, Da): ݕ ؆ ேೌ௫
஽ೌ

. Hence, the overall problem is

reduced to multiplication and division by integers. Note that the success

 58

of this approximation is directly correlated to the bit-length of the

numerator and denominator.

4.2.1.3 Method I‐b: Fixed point multiplication (FMUL module)

Similar to the previous one, this method focuses on performing

multiplication/division where the multiplier is essentially an integer. In

fact, the proposed method facilitates a fixed-point multiplication unit

(called “FMUL”) where bit-shift/add operations are successively

employed to obtain the result. In this paradigm, the fractional number

(multiplicand) is separated into an integer- and a fractional portion. Two

instances of the multiplier module are used to multiply these portions in

parallel. When both calculations are complete, the partial products are

added to obtain the result.

4.2.1.4 Method I‐c : Floating point multiplication (FPU module)

In previous sections, custom multiplier modules “IMUL” and “FMUL” are

presented. Those modules are customized modules developed to perform

a specific sort of multiplication; and their main advantage is their low

amount of resource requirement. In turn, they may not be applicable to

other controller topologies; since they are developed to perform a certain

type of multiplication. Therefore, a floating point unit is a necessity, in

order to perform more complex arithmetic operations required by

advanced controllers. Furthermore, employing floating point unit in state

space controller design will be also helpful in demonstrating the resource

improvement provided by the custom multiplication modules “IMUL”

and “FMUL”. The implemented floating point unit is an open core IP,

developed by R. Usselmann [1]. A schematic of this unit with its

 59

input/output ports is shown in Figure 4.2 and the terminology is explained

in Table 4.1.

As can be seen in Table 4.1, the FPU performs single precision (32-bit)

floating point operations, as well as integer to float and float to integer

operations. The operation is performed in one-clock, however the output

is provided after a 4 cycle delay period. Therefore, while 2 unrelated

operations can be completed in 5 cycles, 2 consecutive operations need 8

clock cycles to be completed.

Figure 4.2 – Floating point unit

 60

This floating point unit is also adapted as a custom multiplication module,

and implemented in the overall architecture as explained in the next

section.

Table 4.1 – Terminology used in FPU

Signal name Length [Bits] Direction Explanation

clk 1 Input System clock
rmode 2 Input Rounding mode

fpu_op 3 Input Operation

opa-opb 32 Input Inputs a and b
out 32 Output Output
snan 1 Output Result is not a number
qnan 1 Output Result is not a number
inf 1 Output Result is infinity
ine 1 Output Result is indefinite
overflow 1 Output There is overflow
underflow 1 Output There is underflow
div_by_zero 1 Output Division by zero

zero 1 Output Result is zero

4.2.1.5 Overall Architecture

A matrix multiplier module can be designed, utilizing the afore-

mentioned multiplication modules (IMUL, FMUL and FPU). Proposed

module, which operates on (classical) multiply‐and‐accumulate principle, is

illustrated in Figure 4.3. Note that the matrices are stored in the SRAM

and thus the memory interface module sends out the relevant data to the

registers of the multiplier controller unit (a finite state machine) on

 61

demand. Hence, the architecture provides flexibility in the controller

design as the designers can change the data at will.

Figure 4.3 – Matrix multiplier module

Similarly, the overall design, which is built on these matrix multiplier

units, is presented in Figure 4.4. This unit performs the computations in

(4.2) sequentially to obtain ܠොሺ݇ሻ and then proceeds to calculate u(k) in

(4.1). Note that in the shown architecture all the computations are

performed in sequential fashion for the sake of reducing the hardware

cost. However, the parallel implementation can be easily realized by

eliminating the multiplexer /demultiplexer units in Figure 4.3 while using

the instances of custom multiplication modules.

 62

Figure 4.4 – Controller/Observer module

4.2.2 Method II: Softcore processor IP module

Softcore processors are embedded processor IPs developed by FPGA

manufacturers, in order to decrease the long and tedious design periods

required by low-level (i.e. logic-level) circuit design through hardware

description languages (HDL). While shorter and easier design periods are

favorable characteristics, the flexibility of the design inevitably decreases

due to the bulk implementation of the processor and it may not always be

a resource-wise and time-wise beneficial method.

The design approach of a softcore processor is significantly different from

the modular approach used in state-space controller implementation and

filter implementation via generic filter module. The difference is that, in

 63

modular design approach, all the modules are designed with HDLs or

schematic design tools and all the connections (data buses, clock signals,

enable/reset signals and etc.) between the modules are defined and

implemented by the designer. On the other hand, utilizing a softcore

processor is via a user-friendly GUI of the design tool provided by the

FPGA manufacturer and all the parameters of the processor can be

selected easily using this tool. Furthermore, all the peripheral controllers

(such as memory management units, serial controllers, GPIOs and etc.) are

also provided in this tool, making the overall design process a lot easier

and faster.

After implementing the embedded processor along with peripheral

controllers to the FPGA, it is possible to develop a C code to realize any

algorithm that is supported by the specifications of the implemented

processor. In this design method, FPGA implementation of the algorithm

is handled by the compiler and therefore the development process is much

faster than the modular design approach. Note that, this is one of the most

significant differences between the two methods.

4.2.2.1 Method II‐a: Softcore processor with integer arithmetic

Implementation details of the second method is as follows; first the

specifications of the processor is selected and peripheral controllers such

as SRAM and UART controller are added via SOPC (system on

programmable chip) builder tool of Altera Quartus II. Note that a floating

point unit is not added to the processor in order to reduce the amount of

resources to a minimum. After the embedded processor is implemented to

the FPGA, Nios II IDE is utilized to develop and implement the C code

 64

into the processor. Similar to methods I-a and I-b, all the parameters and

states are stored as 32-bit integers in the C code. A significant advantage of

employing a softcore processor is that the processor handles all the SRAM

and UART operations, as well as the timing constraints and therefore the

design process takes significantly less time than the HDL design case.

Note that the resource requirements of the design does not depend on the

algorithm but only the specifications of the processor and peripheral

control units. Therefore, only the execution time of the process inevitably

depends on the algorithm. As discussed earlier, bulk implementation of

the process drastically eases the design in cost of flexibility.

4.2.2.2 Method II‐b: Softcore processor with fixed point arithmetic

Implementation details of this module is exactly the same with Method

II-a, therefore the resource requirements of this method is also the same.

On the other hand, the C code significantly differs from the previous case

and multiplications are realized via the fixed point multiplication method

presented in Method I-b. The only difference is that in this implementation

the “FMUL” module is realized via a C function.

4.2.2.3 Method II‐c: Softcore processor with floating point arithmetic

The only difference of this method from the preceding one is the floating

point arithmetic unit employed in the design. Therefore, the only change

in the methodology is in the specifications of the processor selected. In this

method, an optional floating point arithmetic unit (which is not the same

unit employed in Method I-c) is added via the SOPC builder tool to the

processor and the C code is modified so that the parameters are stored as

32-bit floating point variables.

 65

In the next section, the test case (a nonlinear inverted pendulum system)

which is employed via hardware in the loop simulation is presented. In

the subsequent section, results of the simulation are provided for all of the

presented methods.

4.3 Test case

As a benchmark case, an inverted pendulum system shown in Figure 4.5 is

considered.

Figure 4.5 – Generic model for pendulum drive system

The system includes an AC servo-motor coupled directly to a timing belt.

In this configuration, the motor driver is in the torque regulation mode

where the motor along with its driver can be regarded as an ideal torque

modulator. Hence, the state-space controller can directly generate the

relevant (torque) commands through a digital-to-analog converter. Note

that two rotary encoders (which can produce 10000 pulses/rev) are to

supply feedback on the position of the carriage as well as the angular

position of the pendulum. This choice is also convenient since the system

 66

has four states; ൫ݔ, ሶݔ , ,ݔ) ሶ൯ and given that only two statesߠ ݀݊ܽ ߠ ሻ areߠ

available via encoder feedback in order to estimate ݔሶ ሶߠ ݀݊ܽ , an observer is

required to be implemented in the design that satisfies the testing

requirements for the developed methods.

Notice that this can be regarded as a “quantized input/output system”

since all the sensor feedback is coming from incremental encoders as

pulses and that the output of the FPGA is also an integer representing the

motor torque. However, the system cannot be considered as a “fully

quantized system” since there exist an observer in the design and while

the coefficients of the controller can be cast to close integers via pole

placement, it is not possible to implement an observer by using only

integers.

The force acting on the carriage is related to the motor torque as F = /r;

here  is the motor torque [Nm]; r is the pinion (pitch circle) radius [m]

and ߟ is the overall transmission efficiency. Equations of motion for this

system become

ሺܯ ൅݉ሻݔሷ ൅ ሶݔܾ ൅ ݉ ௗ

ଶ
ߠݏ݋ሷܿߠ െ ݉ ௗ

ଶ
ሶߠ ଶߠ݊݅ݏ ൌ 

௥
 (4.3) ߟ

ቀܫ ൅ ݉ ௗమ

ସ
ቁ ሷߠ ൅ ݉݃ ௗ

ଶ
ߠ݊݅ݏ ൌ െ݉ ௗ

ଶ
 (4.4) ߠݏ݋ሷܿݔ

Here, M is the mass of the carriage [kg]; b is its viscous damping [Nms]; m

is the mass of the pendulum, I is its mass moment of inertia [kgm2];  is the

manipulated input (i.e. motor torque). Numerical values for the system

parameters are provided in Table 4.2.

 67

Table 4.2 – Inverted pendulum parameters

Parameter M [kg] m [kg] I [kgm2] b [Nms] d [m] r [m]

Value 0.5 0.2 0.006 0.1 0.6 0.01

In order to design a controller and a state observer, the system is

linearized around an operating point ( = 0), since the goal of the control

system is to hold the pendulum in upright position. Using (4.3) and (4.4),

the state-space representation of the linearized system can be given as:

ௗ

ௗ௧
቎

ݔ
ሶݔ
ߠ
ሶߠ

቏ ൌ

ۏ
ێ
ێ
ێ
ۍ
0 1 0 0
0 ି ௕

஼మ
െ݉ ௗ

ଶ

஼భ
஼మ
݃ 0

0 0 0 1
0 ି஼భ

஼మ
ܾ ஼భ

஼మ
ሺܯ ൅݉ሻ݃ ے0

ۑ
ۑ
ۑ
ې

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
࡭

቎

ݔ
ሶݔ
ߠ
ሶߠ

቏ ൅

ۏ
ێ
ێ
ێ
ۍ
0
ఎ

௥஼మ
0
ఎ஼భ
௥஼మے
ۑ
ۑ
ۑ
ې

ถ
࡮

 (4.5a)

ܡ ൌ ൦

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

൪

ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
۱

቎

ݔ
ሶݔ
ߠ
ሶߠ

቏ (4.5b)

ଵܥ ൌ െ݉ ௗ

ଶ
ቀܫ ൅ ݉ ௗమ

ସ
ቁ
ିଵ
, ଶܥ ൌ ܯ ൅݉ ൅ ஼భௗ

ଶ
 (4.6)

Having obtained the continuous-time state space representation, the

discrete representations of (4.5) can be simply obtained as:

࢞ሺ݇ ൅ 1ሻ ൌ ۴࢞ሺ݇ሻ ൅ ሺ݇ሻ (4.7a)ݑ۵

࢟ሺ݇ሻ ൌ ۶࢞ሺ݇ሻ (4.7b)

where

۴ ൌ ;்ۯ݁ ۵ ൌ ቀ׬ ௧ۯ݁
T
૙ dݐቁ۰; ۶ ൌ ۱ (4.8)

 68

Here, A, B and C denote to the system matrices of (4.5) while T refers to

the sampling period of the controller [s]. With the discrete-time model at

hand, a state-space controller (along with an observer) can be designed

using modern control theory.

4.4 Hardware‐in‐the‐loop simulation results

In the simulation study, the controller topology presented is implemented

on the Altera Cyclone II FPGA chip using Verilog hardware definition

language. The nonlinear inverted pendulum system (as explained in the

previous section) is realized via (non-real-time) hardware-in-the-loop

simulation (HILS) in MATLAB environment.

The controller system (controller+observer) is implemented on the FPGA

using the presented techniques: Method I-a (integer arithmetic - IMUL),

Method I-b (fixed-point arithmetic – FMUL), Method I-c (floating-point

arithmetic – FPU), Method II-a (integer arithmetic with softcore

processor), Method II-b (fixed-point arithmetic with softcore processor),

and Method II-c (floating point arithmetic with softcore processor).

In this scheme, the manipulated torque input (u = ) generated by the

FPGA is transmitted to hardware-in-the-loop simulator running on

MATLAB platform. Once the new system states are computed using the

dynamic model of the controlled system, they are sent back to the FPGA

via RS-232 communication. As explained in preceding sections, the word

size allocated to the matrix elements is a major design parameter. In this

study, a 216-bit word size is selected for each element of the

 69

controller/observer matrices: 32-bit for numerator/ denominator pair for

IMUL multiplication module (Method I-a) or integer/ fractional portion

pair for FMUL module (Method I-b). On the other hand, the system states

are stored as 32-bit signed integers. However, this choice is also a design

choice and can be modified according to the needs of a particular

application.

Results of the HILS are presented in Figs. Figure 4.6 through Figure 4.11.

Note that the initial condition of the state vector is selected as [0 0 -0.05 0]T

to start out with a pendulum angle to create a challenge for the controller.

As can be seen in Figs. Figure 4.6 through Figure 4.11, all controllers react

fast and bring the carriage around 0.02m to prevent pendulum arm from

falling; and after the initial reaction, the implemented controllers can

successfully hold the inverted pendulum around ߠ ൌ 0 and the carriage’s

position are bounded around its initial position. Since the system is

nonlinear, small differences in calculation of the results between the

proposed methods: I-a (II-a), I-b (II-b), and I-c (II-c) cause a relatively

different path for the carriage after t = 2s; Nevertheless, all sub-methods of

method I yield acceptable performance.

 70

Figure 4.6 – HILS result of method I-a

Figure 4.7 – HILS result of method II-a

 71

Figure 4.8 – HILS result of method I-b

Figure 4.9 – HILS result of method II-b

 72

Figure 4.10 – HILS result of method I-c

Figure 4.11 – HILS result of method II-c

 73

As expected, result of the method II-a is exactly the same with method I-a,

because even if the approach is different, both of the implementations are

based on integer arithmetic and therefore this result is predicted. The case

is also the same with method II-b and I-b, since the fixed point arithmetic

algorithm is the same. On the other hand, as seen in Figure 4.11, result of

method II-c is not the same with method I-c, even if they both employ a

floating point unit for calculations. However, this is also expected since

the floating point units are not the same (method I-c employs an open

floating point by Usselmann [1] and method II-c employs a floating point

developed by Altera for Nios II processors) and a small computational

difference yields a different trajectory.

4.5 Comparison and discussion

In the previous section, it has been proven that both Method I and Method

II are feasible options for implementing a state space controller and an

observer on an FPGA. However, certain factors such as: total logic

elements used, number of clock cycles to complete loop, hardware

multipliers employed and etc. should also be taken into consideration,

when developing a design for FPGAs. An illustrative presentation of the

resource consumptions of these methods on the Altera Cyclone II FPGA

chip are obtained using the “Chip planner” tool of Quartus II software and

provided in Figs. Figure 4.12 through Figure 4.16.

 74

Figure 4.12 – Resource utilization of Method I-a on Cyclone II FPGA

Figure 4.13– Resource utilization of Method I-b on Cyclone II FPGA

 75

Figure 4.14 – Resource utilization of Method I-c on Cyclone II FPGA

Figure 4.15 – Resource utilization of Methods II-a & II-b on Cyclone II

FPGA

 76

Region I

Region I

Region II

Background
Selection
Highlight
Block Border
Connection
Path
Bundle

LAB

Logic Element
Memory

Pin Goup
DSP
Local Interconnect
Global Interconnect
Pin
Ports
Differential Pin
Pair Connections

Location Assignments
Registers
User Assigned LogicLock Regions
Fitter Placed LogicLock Regions
Low Power
High Speed
Virtual IO

Logic Element
Memory
Pin Goup
DSP

Region II

Figure 4.16 – Resource utilization of Method II-c on Cyclone II FPGA

Three illustrations that are provided for Method I-a, I-b and I-c include

three different modules employed for different types of computation,

which are IMUL, FMUL and FPU modules. On the other hand, in Method

II, since a softcore processor is employed, the difference between the

illustrations is the difference in the specifications of the processor, which is

the floating point arithmetic module. Note that a different module than

the FPU module which is used in method I-c. Similarly, resource

requirements of each method are summarized in Table 4.3. It is important

to notice that resource utilizations (i.e. resource requirements and floor

plans) may vary slightly due to the optimization performed by the fitter of

the IDE tool provided by the FPGA manufacturer.

 77

Table 4.3 – Resource/Time Costs of Proposed Methods on Altera Cyclone

II FPGA chip

Method

Type of

Comp.*

Total logic

elements

Embedded

multipliers

Total clocks

required

Max.

frequency

I-a INT 4449 (24%) 4 (8%) 432 cycles 400 kHz

I-b FIXED 3528 (19%) 0 (0%) 3232 cycles 50 kHz

I-c FP 7778 (41%) 7 (13%) 2032 cycles 80 kHz

II-a INT 4504 (24%) 4 (8%) 3907 12.8 kHz

II-b FIXED 4504 (24%) 4 (8%) 33185 1.5 kHz

II-c FP 10595 (54%) 11 (21%) 16051 3.1 kHz

 *abbreviations: INT= Integer, FIXED= Fixed point, FP= Floating Point

For method I, clock cycles necessary depend on not only the number of

states of the controlled system but also the multiplication algorithm

selected. The number of base cycles (Nc) can be expressed as follows:

 ௖ܰ ൌ ݊ሺ݊ ൅ 2݉ ൅ ݊௬ሻ (4.9)

Here, n is the number of states; ny is the number of measured states and m

is the number of manipulated inputs. In this case, since n = 4, ny = 2 and

m = 1; Nc becomes 32 (as indicated in Table 4.3). The duration of each base

cycle depends on the design of the multiplier unit.

As can be seen in Table 4.3, the proposed method I increases the attainable

sampling rate of the controller significantly. As discussed earlier, this is

due to the custom designed and application specific modules. It is also

 78

evident that the type of computation also has an effect on the attainable

sampling rate, however the slowest frequency attainable by method I is

still 3 times faster than the fastest frequency attainable by method II.

It is critical to note that since the speed of the serial communication (RS-

232) used in this study is not sufficient for real-time simulation, a non-real

time HILS is realized. For the simulation, a sampling frequency of 1 kHz is

selected and thus the discrete-time state space representations are

evaluated using Eqns. 4.7-4.8.

In terms of resource requirements, it is clear that when floating point

operations are involved, resource requirements of the design increase

drastically. This is proven by both of the methods with an increase of 3 to

6 thousands of logic elements and 3 to 11 embedded multipliers. While the

most resource-wise efficient method seems to be method I-b, all the

methods that are not employing floating point arithmetic (method I-a,

method II-a and method II-b) are also comparable. This shows that for

modules with high complexity, bulk implementation of the controller does

not increase the resource requirement significantly, since the customized

module would also require a significant amount of FPGA resources. In

conclusion, for a mediocre FPGA chip such as Altera Cyclone II, utilizing

floating point arithmetic is a costly method; especially when it is proven

that good control performances can be attained by exploiting certain

properties of motion control systems (such as quantized input/output

property) as explained in section 4.2, in order to reduce the resource

requirements of the design. It is also proven that customized HDL

modules are more advantageous in terms of speed, rather than resource

 79

utilization, especially in complex tasks. However, complexity of the task is

also a vague description and it is necessary to implement both methods to

see which one would be more resource-wise efficient.

4.6 Closure

In this chapter, a state space controller with a state observer is designed

and implemented for the inverted pendulum problem. In section 4.2, 5

different methods for computation of the necessary calculations are

explained thoroughly under 2 different design methods. The HILS results

suggest that while the modular approach presented as Method I offers a

slight increase in terms of resource requirements, it is definitely faster than

the softcore processor method that is presented as Method II.

 80

CHAPTER 5

IMPLEMENTATION OF DIGITAL FILTERS

Generally, one or more filters are usually employed in a typical motion

control system. In digital motion control applications, these filters are

realized by digital filtering algorithms and can be implemented on various

signal processing chips such as: DSPs, ASICs, FPGAs and etc. In this

chapter, after a brief overview of digital filters that are commonly used in

motion control applications, two different methods (one incorporating the

previously mentioned multiplication methods and the other utilizing the

Nios II softcore processor) for FPGA implementation of a general infinite

impulse response (IIR) filter is presented, along with hardware-in-the-loop

simulations (HILS) of a cascade control architecture realized by the two

alternative methods. The chapter is finalized by a quantitative comparison

between the two design methodologies.

5.1 Digital Filters

In this section, a brief overview of digital filters is presented, within a

limited scope of digital motion control applications. A digital filter is

commonly employed to modify certain aspects of a signal and can be

classified into two categories, based on its impulse response or in

particular, its feedback property. A finite impulse response (FIR) filter is a

digital filter that generates its output signal by using only current and past

 81

values of its input. Therefore, it has no internal feedback and the impulse

response dies out to zero, as the name implies. On the other hand, an

infinite impulse response (IIR) filter contains an internal feedback and

therefore its output depends on its past output values as well as past input

values. The constant coefficient difference equation of an IIR filter is

provided in (5.1).

It is more convenient to discuss the implementation of an IIR filter rather

than the FIR, since it is more general and can also be modified to obtain an

FIR, as can be observed in (5.1). Therefore, the subsequent discussions are

based on the IIR filter.

ሺ݇ሻݕ ൌ ∑ ܾ௜ݔሺ݇ െ ݅ሻ௡
௜ୀ଴ ൅ ∑ ܽ௜ݕሺ݇ െ ݆ሻ௠

௝ୀ଴ (5.1)

Using the generalized expression of IIR, it is possible to deduce that the

implementation requires multiplication of the filter coefficients with past

outputs and past inputs, followed by an addition operation, which is a

very similar case to the state-space controller implementation that is

presented in the previous chapter. Therefore, it is possible to realize an IIR

filter (hence also an FIR filter) on an FPGA, utilizing the previously

described methods.

Most of the filters such as: Notch filter, Low-pass filter and High-pass

filter and etc. that are commonly used in motion control systems are all IIR

filters and can be realized by a general IIR filter module. Furthermore,

difference equation of a PID controller, as can be seen in (5.2):

 82

݉ሺ݇ሻ ൌ ݉ሺ݇ െ 1ሻ ൅ ܾ଴݁ሺ݇ሻ ൅ ܾଵ݁ሺ݇ െ 1ሻ ൅ ܾଶ݁ሺ݇ െ 2ሻ (5.2)

where m is the manipulated input, e is the error and k is the time step, is

also a variation of (5.1) and can be implemented by the same module.

Therefore it is desirable to develop a generic IIR filter module for FPGAs,

in order to realize certain controller topologies, as well as digital filters.

Implementation details of digital filters are explained in the following

section.

5.2 Implementation

In this section, two alternative methods for implementation of digital

filters on FPGAs are presented. The first method is development of a

generic filter module utilizing a custom multiplication module, which is

presented in the previous chapter. The second method presents the

implementation of a softcore processor, Nios II and requires a significantly

different design approach for the problem, as explained in the previous

chapter.

5.2.1 Method I: Generic filter module

Generic filter module is analogous to the matrix multiplier module

presented in the previous chapter. Similar to the previous case, this

module utilizes a custom multiplication module (which is selected as

IMUL in this case) and an adder, in order to calculate the result of (5.1).

Figure 5.1 presents a schematic representation of the generic filter module.

Here x represents input at the current time step x(k), y represents the

 83

output at the current time step y(k), xn and ym represents the input at the

(k-n)th time step and output at the (k-m)th time step, that are x(k-n) and y(k-

m) respectively.

Figure 5.1 – Generic filter module

There are only two design parameters to be selected when utilizing this

generic filter module; that are n (the number of past input values) and m

(the number of past output values). While these parameters can be

selected as relatively large integers, in order to avoid further modifications

to the HDL code, it is also possible to select those parameters as required

minimum values as required for a certain filter, to minimize resource

requirements of the module.

 84

5.2.2 Method II: Softcore processor

Softcore processors are embedded processor IPs developed by FPGA

manufacturers, in order to decrease the long and tedious design periods

required by low-level (i.e. logic-level) circuit design through hardware

description languages (HDL). While shorter and easier design periods are

favorable characteristics, the flexibility of the design inevitably decreases

due to the bulk implementation of the processor and it may not always be

a resource-wise and time-wise beneficial method.

The design approach of a softcore processor is significantly different from

the modular approach used in state-space controller implementation and

filter implementation via generic filter module. The difference is that, in

modular design approach, all the modules are designed with HDLs or

schematic design tools and all the connections (data buses, clock signals,

enable/reset signals and etc.) between the modules are defined and

implemented by the designer. On the other hand, utilizing a softcore

processor is via a user-friendly GUI of the design tool provided by the

FPGA manufacturer and all the parameters of the processor can be

selected easily using this tool. Furthermore, all the peripheral controllers

(such as memory management units, serial controllers, GPIOs and etc.) are

also provided in this tool, making the overall design process a lot easier

and faster.

After implementing the embedded processor along with peripheral

controllers to the FPGA, it is possible to develop a C code to realize any

algorithm that is supported by the specifications of the implemented

 85

processor. In this design method, FPGA implementation of the algorithm

is handled by the compiler and therefore the development process is much

faster than the modular design approach. Note that, this is one of the most

significant differences between the two methods.

Implementation details of the second method is as follows; first the

specifications of the processor is selected and peripheral controllers such

as SRAM and UART controller are added via SOPC (system on

programmable chip) builder tool of Altera Quartus II. After the embedded

processor is implemented to the FPGA, Nios II IDE is utilized to develop

and implement the C code into the processor. Note that the resource

requirements of the design does not depend on the algorithm but only the

specifications of the processor and peripheral control units. However,

execution time of the process inevitably depends on the algorithm. Results

of the hardware-in-the-loop simulations are provided in the following

section.

5.3 Hardware‐in‐the‐loop simulation results

Hardware-in-the-loop simulation is realized by the inverted pendulum

system presented in the previous chapter. In order to demonstrate the

performance of the developed methods, a cascade controller utilizing PID

controllers as explained in section 5.1 is implemented. The cascade control

system consists of a PD controller in the outer loop for control of the

position of the cart and a PID controller in the inner loop for control of the

angular position of the pendulum.

 86

Figure 5.2 – Cascaded control system illustrates the control system.

Figure 5.2 – Cascaded control system

In Figure 5.2, r is the reference input, m is the manipulated input, θ is the

angular position of the pendulum and x is the linear position of the cart.

As can be seen in Figure 5.2, two “generic filter module” instances are

required to realize the cascade controller system. On the other hand,

resource requirement of the softcore processor doesn’t depend on the

number of instances required, just as it would be the case in a regular

microprocessor.

Results of the HILS using the generic filter module (Method I) with imul

and FPU are shown in Figure 5.3 and 5.4 respectively. Results of the HILS

using the Nios II softcore processor (Method II) are shown in Figure 5.5

and Figure 5.6 respectively. Note that the initial conditions for all

simulations are selected as x0 = 0 m and θ0 = -0.05 rad.

As can be observed from Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6,

the cascade control system is able to hold the inverted pendulum in an

 87

upward position while the position of the cart is bounded and settling to

zero. Furthermore, it can be seen that there is no significant difference

between the figures as expected, since the implemented controllers are the

same even if the methodologies are drastically different. Having obtained

these results, it is possible to evaluate and compare these methodologies in

terms of their resource requirement, execution time and ease of

implementation; which will be the subject of the following section.

Figure 5.3 – HILS result of method I with IMUL

 88

Figure 5.4 – HILS result of method I with FPU

Figure 5.5 – HILS result of method II with IMUL

 89

Figure 5.6 – HILS result of method II with FPU

5.4 Comparison and discussion

In the previous section, it has been shown that both method I and method

II are feasible options for implementing digital filters on an FPGA.

However, certain factors such as: total logic elements used, number of

clock cycles to complete loop, hardware multipliers employed and etc.

should also be taken into consideration, when developing a design for

FPGAs. An illustrative presentation of the resource consumptions of these

methods on the Altera Cyclone II FPGA chip are obtained using the “Chip

planner” tool of Quartus II software and provided in Figure 5.7, Figure 5.8,

Figure 5.9 and Figure 5.10.

 90

Figure 5.7 – Resource consumption of Method I with IMUL

Figure 5.8 – Resource consumption of Method I with FPU

 91

Region I

Region I

Region II

Background
Selection
Highlight
Block Border
Connection
Path
Bundle

LAB

Logic Element
Memory

Pin Goup
DSP
Local Interconnect
Global Interconnect
Pin
Ports
Differential Pin
Pair Connections

Location Assignments
Registers
User Assigned LogicLock Regions
Fitter Placed LogicLock Regions
Low Power
High Speed
Virtual IO

Logic Element
Memory
Pin Goup
DSP

Region II

Figure 5.9 – Resource consumption of Method II with integer arithmetic

Region I

Region I

Region II

Background
Selection
Highlight
Block Border
Connection
Path
Bundle

LAB

Logic Element
Memory

Pin Goup
DSP
Local Interconnect
Global Interconnect
Pin
Ports
Differential Pin
Pair Connections

Location Assignments
Registers
User Assigned LogicLock Regions
Fitter Placed LogicLock Regions
Low Power
High Speed
Virtual IO

Logic Element
Memory
Pin Goup
DSP

Region II

Figure 5.10 – Resource consumption of Method II with FPU

 92

Two illustrations provided for Method I include two different modules

employed for two different types of computation, which are IMUL and

FPU modules. On the other hand, in Method II, since a softcore processor

is employed, the difference between the illustrations is the difference in

the specifications of the processor, which is the floating point arithmetic

module. Note that this module is not the same module which is used in

the generic filter module. The resource/time costs of the proposed

methods are tabulated in Table 5.1.

TABLE 5.1 Resource/Time Costs of Proposed Methods on Altera Cyclone

II FPGA chip

Method

Type of

Comp.*

Total logic

elements

Embedded

multipliers

Total clock

cycles required

Max.

frequency

I INT 5012 (27%) 8 (15%) 44 cycles 3 MHz

I FP 11180 (60%) 14 (27%) 204 cycles 625 kHz

II INT 4504 (24%) 4 (8%) 400 125 kHz

II FP 10595 (54%) 11 (21%) 3270 15.3 kHz

 *abbreviations: INT= Integer, FP= Floating Point

As shown in Table 5.1, in terms of logic elements, resource requirements

of both methods are very close. On the other hand, embedded multiplier

requirement of the first method (modular approach) is double of the

second, owing to the fact that two instances of the generic filter module is

required to implement two filters (i.e. it is not possible to use same

instance twice for different filters), since past values need to be stored. On

 93

the other hand, softcore processor handles the design with 4 embedded

multipliers, which is an advantage on its part.

In terms of total clock cycles, method I has a significant advantage over

method II, due to the optimizable modular design approach, as expected.

It is not possible that this advantage arises due to the increased number of

embedded multipliers that are employed, because even if the total clock

cycles required by the first method is doubled, it is still significantly faster

than the embedded processor. The total clock cycles required can be

determined based on the number of multiplications in the filter. In this

case, since 4 multiplications are required, total clock cycles required is

obtained by multiplying the clock cycles needed by the custom

multiplication module by 4.

Observing the simulation results and the resource/time properties of two

methods, it can be seen that both methods are convenient options for

digital filter implementations on FPGAs. It should be noted that, when the

complexity of the design increases (i.e. the number of filters and etc.), the

significant increase will be in terms of resource requirements for Method I,

since new instances of the generic filter module will be required; on the

other hand, for Method II, the significant increase will be in terms of

required clock cycles, since the processor is already implemented and the

change will only be in the algorithm. Therefore, it can be concluded that

Method I -modular design approach- seems more suitable for demanding

real time designs where speed is more crucial and Method II -softcore

processor- seems more suitable if the design is very complex or a fast and

efficient development period is desired.

 94

5.5 Closure

In this chapter, different methodologies for digital filter implementation

on FPGAs are presented. These methods are utilized by realizing a

cascaded control system to solve a nonlinear inverted pendulum control

problem. Furthermore, resource utilization and speed performances are

also provided for these methodologies.

 95

CHAPTER 6

ADVANCED CONTROLLERS

This chapter presents a study for some advanced real-time motion

controller topologies implemented on the field programmable gate array

(FPGA); which are selected as a sliding mode controller and a fuzzy

controller. In this chapter, all the aforementioned methods are not

implemented and a single implementation method (Method I-c) presented

in Chapter 4 is adopted. In the context of Method I-c, controllers are

developed using Verilog HDL (i.e. modular hardwired approach is

adopted) and an open-core hardwired floating point unit is implemented

for the complex calculations.

Unlike other chapters of this study, in this chapter the controllers are

implemented on a ML505 development board with a Xilinx Virtex-5 FPGA

chip (in other chapters a DE1 board with an Altera Cyclone II FPGA is

employed). The tests are performed on a hardware-in-the-loop simulation

of a field-oriented induction motor system, which is a similar system to

the case provided in Chapter 7, however in this case speed control

problem of a CNC turning center is considered.

Finally, simulation results are provided for the test case and

implementation results are provided. The controller topologies are

 96

evaluated by certain criteria including resource cost (total memory space

and logic unit requirement), attainable sampling rate and the success of

the controller.

6.1 Controller Topologies

Controller topologies are selected from common advanced controller

topologies, considering the suitability of the topology for FPGA

implementation.

6.1.1 Fuzzy Controller

Fuzzy control is an intelligent control topology based on fuzzy set theory.

It has been applied to many control applications including the control of

drives [26]-[27]. Typical method for fuzzy control application in discrete-

time control is to calculate error and change in error in each sampling

time, then to define a linguistic representation of the error and change in

error based on membership functions. As a final step, these linguistic

representations having fuzzy memberships go through a defuzzification

process to generate a manipulation signal based on a fuzzy rule base. A

schematic for the implementation of the fuzzy controller on the FPGA is

presented in Figure 6.1.

Membership functions are presented in Figure 6.2. Here, NB, NS, Z, PB,

and PS correspond to “Negative big,” “Negative small,” “Zero,” “Positive

big,” and “Positive small” respectively. Notice that the functions are

formed by the pulse error per sampling time period. Therefore, the data

 97

from the encoder can be directly used without further calculations while

the fuzzy memberships can be represented as integers.

Figure 6.1 – Fuzzy controller implementation

Figure 6.2 – Membership functions of the fuzzy controller

The defuzzification process depends on the fuzzy rule base presented on

Table 6.1. It can be observed that the membership functions are formed

 98

based on pulse error per sampling time period. Therefore, the data from

the encoder can be directly used without further calculations and the

fuzzy memberships can be represented in integer forms. The

defuzzification process is based on the fuzzy rule base presented on Table

6.1. Fuzzy membership functions and the rule base are selected based on

the common experience in the literature and after a trial and error process.

Table 6.1 – Membership functions of the fuzzy controller

error
Δ error

NB NS Z PS PB

NB NB NB NS NS Z
NS NB NS NS Z PS
Z NS NS Z PS PS
PS NS Z PS PS PB
PB Z PS PS PB PB

6.1.2 Sliding Mode Controller

Sliding mode control is a robust control method developed to deal with

model uncertainties and unknown parameters in the expense of high

computational cost [28]. Its applications include position/speed control of

servo/induction motor drives [29]-[30]. Sliding mode controller is based on

a control law with varying control structures. The basic idea is to force the

trajectory of the system state to a sliding surface through switching of the

control structures. The most general form of the sliding surface is

ݏ ൌ ሶ݁ ൅ ݁ߣ ሺ6.1ሻ

 99

where ݏ is the sliding surface; ݁ is the error of the controlled state and ߣ is

a controller parameter. After calculating the sliding surface, an equivalent

control term needs to be calculated such that applying equivalent control

would make ݏሶ ൌ 0. Hence, the sliding mode control law takes the form:

ݑ ൌ ௘௤ݑ ൅ ሻ (6.2)ݏሺ݊݃ݏܭ

where ݑ௘௤ is the equivalent control and ݑ is control output. The

implementation of the sliding mode controller is presented in Figure 6.3

Figure 6.3 – Sliding mode controller implementation

The sliding mode controller parameters are selected as λ = 10000 and K =

15. These parameters are selected based on the disturbance rejection

characteristics of the controller and the maximum admissible torque based

on the rated torque of the motor.

 100

6.2 Test Setup

The control of CNC turning centers is considered for performance

evaluation of the above mentioned controller topologies. In CNC turning

centers, the spindle housing the workpiece is the key component of the

machine where a constant speed is required during most machining

operations. Therefore, to sustain constant speed, the controller must

effectively reject the disturbance torque observed in turning operations.

Figure 6.4 illustrates the simplified model of a typical turning center. In

this system, a field-oriented induction motor, which is further elaborated

in [31], is employed. Induction motor parameters are as follows: motor

power: 5.5kW; rated motor torque (Tr): 35Nm; rated speed (ωr): 1500rpm;

maximum speed (ωp): 8000 rpm. It is critical to note that the presented

system is realized via a hardware-in-the-loop simulation (HILS)

performed on the Altera DE1 FPGA development board. For the sake of

implementation, certain simplifications (ideal DTC motor drive, ideal

timing belt) are made on the system. Figure 6.5 shows the block diagram

of the resulting system.

Figure 6.4 – Simplified model of a typical turning center

 101

Figure 6.5 – Simplified model of the system

Figure 6.6 – Test setup

 102

As can be seen in Figure 6.5, the communication with the simulator is

accomplished via PWM signals. A 10-bit resolution is selected for the

PWM signal to represent torque command and position feedback. In order

to prevent problems that could arise from insufficient resolution of the

PWM signal, the position difference is transmitted from the HILS setup.

Note that the real setup, which is shown in Figure 6.6, consists of two

FPGA development boards. One of them is the Xilinx ML-505

development board on which the controller modules are implemented.

Likewise, an Altera DE1 development board performs the HILS. Boards

are connected through I/O pins, facilitating the PWM connection.

6.3 Results

In this study, different controller topologies are designed and

implemented on an FPGA chip. In this section, the results of the HILS are

presented and controller topologies are evaluated by their success

(tracking performance, disturbance rejection) and their resource cost on an

FPGA chip.

The reference input to the system is given as position difference between

time samples and a constant 10 Nm torque is applied at t = 1s to simulate

the interrupted machining operation. Responses of the system with

different controllers are presented in Figure 6.7 and Figure 6.8 highlights

the disturbance rejection characteristics of each controller. As can be

observed, the controllers achieve similar performances until the

disturbance kicks in at 1s. From this point on, the best performance is

achieved by the sliding mode controller and while the system under fuzzy

 103

control is affected slightly, the controller acts fast enough to compensate

the disturbance. Note that from the standpoint of performance, these

controllers are comparable.

Table 6.2 – Resource costs of different controller topologies on the Xilinx

Virtex-5 FGPA

 Slice LUTs Slice Registers

Fuzzy 12863 (44%) 2448 (8%)

Sliding mode 4192 (14%) 1675 (5%)

Figure 6.7 – Controller performances under disturbance input

 104

Figure 6.8 – Zoomed controller performances to highlight disturbance

rejection

On the other hand, resource costs of the controllers vary in a wide range.

These requirements are given in Table 6.2 in terms of slice look up tables

(LUTs) and slice registers followed by the percentage consumed out of the

available amount on the FPGA chip. At this point, it is critical to note that

the resource requirements provided here are not in the same terms with

the resource requirements provided in the previous chapters for Altera

FPGAs, since Xilinx uses a different terminology for different amount of

resources.

As can be seen from Table 6.2, the sliding mode controller is consuming

around 5% of the registers and 15% of the LUTs available in the FPGA

chip. If a multiple-axis solution is sought on the chip, these numbers are

sufficient enough for driving 5-axis simultaneously. On the other hand,

fuzzy controller requires high amount of resources as Slice LUTs and

 105

therefore does not seem applicable for multi-axis solutions.The complexity

in the design affects not only the resources but also the attainable

sampling period of the controller. In Table 6.3, maximum attainable

sampling rates by controllers are presented. As seen in Table 6.3, the

controllers can perform the required calculations around 85 cycles, which

corresponds to 1.7 μs on an FPGA with a 50 MHz clock.

Table 6.3 – Minimum attainable sampling periods of controllers on the

Xilinx Virtex-5 FGPA

Controller Type Cycles to complete loop Minimum period
Fuzzy 87 cycles 1.74 μs
SMC 84 cycles 1.68 μs

On the implementation end, sliding mode controller may be implemented

with a sufficiently high effort. However, fuzzy controller is complicated to

implement on an FPGA chip, especially when an embedded processor is

not employed in the design, as in this case.

6.4 Closure

In this chapter, two advanced controller topologies are implemented on a

Virtex5 FPGA. In order to take full advantage of the parallel processing

capability of the FPGA, a softcore processor (explained as Method II in

Chapter 4) is not employed; however as a preliminary study, only Method

I-c is utilized for computation. In the results part, control algorithms are

compared by their success and their resource cost on an FPGA chip.

Results are discussed and important features are highlighted.

 106

CHAPTER 7

HARDWARE‐IN‐THE‐LOOP SIMULATION &

RESULTS

The aim of this chapter is to demonstrate the utilization of the modules

and methods that are developed in this thesis. Therefore, aforementioned

pieces of a motion controller are put together to solve a real-world motion

control problem.

As a matter of fact, most of the modules and design methods are

investigated individually via different testing methods presented at each

chapter and they are proven to be successful at their own right. However,

it is critical to test the developed methods as a single motion controller

design and demonstrate that the proposed design is effectively capable of

dealing with real-world motion control problems. Furthermore, testing the

overall system would also demonstrate the capabilities and success of the

overall design paradigm, which would provide more meaningful results

than individual experiments.

As a test case, a CNC machining center is selected. This selection is

convenient since CNC machinery is one of the fundamental application

areas of motion control systems. Furthermore, it also requires a multi-axis

controller; which is also suitable for demonstrating the parallel processing

capabilities of the FPGA based design.

 107

The outline of this chapter is as follows: in the first section, the

mathematical model of the CNC machining center selected as the test case

is presented thoroughly. In the second section, the axis-controllers for this

system are designed and the MATLAB/Simulink simulation results are

provided. In the third section, the realization details of this problem via

hardware-in-the-loop simulation (HILS) are briefly presented. In the

fourth section, the HILS results are shown while some key results

conclusions on the implementation are discussed in the last section.

7.1 Real system

The real system selected as the test case is a CNC machining center, which

is a very important application area of a motion control system; since the

success of the controller directly affects the productivity of the machine, as

well as the quality of the product. Therefore, a CNC machining center is a

suitable candidate for testing the motion controller design. Thus, this

section starts with the details of the selected CNC center.

7.1.1 CNC machining center

The selected CNC vertical machining center shown in Figure 7.1 is located

at the Machine Shop of the Mechanical Engineering Department of METU.

It is a First MCV-1100 3-Axis CNC Machining center by Long Chang

Machinery, equipped with an automatic tool changer, coolant and chip

removal systems.

 108

Figure 7.1 – First MCV-1100 3-Axis CNC Machining center

The axes of the machine are all mounted on friction (hydrostatic)

guideways, and are driven by servomotors via ball screws. The x-axis

carrying the cart (a.k.a. “table”) on which the workpiece is mounted is

illustrated in Figure 7.2 and the y-axis (a.k.a. “saddle”) carries the entire x-

axis assembly. On the other hand, Z-axis assembly is housed on the

column and carries the entire headstock (main spindle shaft, motor, tool

changing mechanism) as shown in Figure 7.3.

Figure 7.2 – X-axis feed drive for CNC machining center

 109

Figure 7.3 – Z-axis feed drive for CNC machining center

With the given information, the equation of motion for the x-axis cart can

be written as

  , ,

1
sgn()s x x f x

x w

x F F F x
m m

 
    
  (7.1)

where mw stands for the mass of the workpiece, mx is the mass of the cart,

Fx is the cutting force on the axis, Ff,x is the friction force (dry) and Fs,x is the

force exerted on the table by the ball screw nut. The equation of motion for

the dynamic system (as reduced to the motor shaft) becomes

  
2

,3
, , 0,

,

1 1
sgn

2
s x

x x x x m x s x x
x x s x

h
b T F T

J J
  


     

               
   (7.2)

 110

where Jx is the total moment of inertia of the ball screw and rotor, Tm,x is

the torque applied by the motor, Tf,x is the total (dry and viscous) friction

torque on the ball screw and rotor, hs,x is the pitch of the ball-screw shaft

and ηs,x is the ball screw efficiency. When backlash exists in the ball-screw

assembly (which is a rare situation in precision parts), equations (7.1) and

(7.2) are coupled together with (7.3) as

 ,

,
2 2

0 ,
2

,
2 2

x x
x x x

x
s x x

x x
x x x

b b
k d d

b
F d

b b
k d d

      


 

       

 (7.3)

where

2x x x

h
d x


  (7.4)

If the ball screw is assumed to be backlash-free, these equations can be

reduced to a single equation of motion that uses an equivalent set of

parameters. That is, using (7.1) and (7.2) yields

  
2

, 3
, 0, ,

, ,

1
sgn

2
s x

x m x x x x eq x x
eq x s x

h
T F b T

J
  


    

             
   (7.5)

Here, the equivalent inertia Jeq,x is defined as

  
2

, 24
s

eq x x x w
s

h
J J m m

 
   (7.6)

 111

Since the table’s position is linearly dependent on the angular position of

the ball screw under no-backlash condition, it immediately follows that

the velocities are also linearly dependent and sgn() sgn()x   holds. Hence,

utilizing equations (7.1) and (7.2), the equivalent dry friction Tf,eq,x can be

simply written as

 ,
0, , , 0,

,2
s x

eq x f x x
s x

h
T F T


  (7.7)

The equations of motion regarding the y- and z-axes can be similarly

obtained as

 , ,

1
sgn()s y y f y

y x w

y F F F y
m m m

 
         

  (7.8)

  
2

, 3
, , 0,

,

1
sgn

2
s y

y m y s y y y y y
y s y

h
T F b T

J
  


                   

   (7.9)

 , ,

1
sgn()s z z f z

z

z F F F z W
m

 
       

 
  (7.10)

  
2

, 3
, , 0,

,

1
sgn

2
s z

z m z s z z z z z
z s z

h
T F b T

J
  


   

      
     

   (7.11)

Under no-backlash condition, these can be expressed in a simpler form

similar to (7.5) as

 112

  
2

, 3
, 0, ,

, ,

1
sgn

2
s y

y m y y y y eq y y
eq y s y

h
T F b T

J
  


                 

   (7.12)

    
2

, 3
, 0, ,

, ,

1
sgn

2
s z

z m z z z z eq z z
eq z s z

h
T F W b T

J
  


                   

   (7.13)

Note that the weight of the headstock assembly (W) is included to the

model of the z-axis drive. It is critical to notice that the feed-drive axes are

driven by Fanuc α Series AC Servo Motors while the spindle motor is a

Fanuc α Series AC Spindle (Induction) Motor. As specified in the user

manuals, the speed-torque characteristics of the servo motors have a

linearly decreasing tendency in the torque region up to the rated speed [1].

Beyond this point, the motor enters the constant power region as shown in

Figure 7.4.

Figure 7.4 – Torque capability curve for CNC machining center axis

motors

 113

The torque envelope of the motor, Tmax, (See Fig. 7.4) is then as follows

,

,

r T r

max r
r

T m

T P

  

 


  
  


 (7.14)

where Tr and ωr represent the rated torque and rated speed, respectively.

Tr´ is the torque produced by the motor and Pr is the power output, both at

the rated speed while mT = (Tr ‐ Tr´) / ωr and Pr = Tr´ωr. The numerical

values for the parameters defining the plant are provided in Table 7.1.

Finally, it should be noted that the motor position data is obtained from

the axes via an incremental encoder that generates 10000 ppr which would

yield a resolution of 40000 pulses per revolution with quadrature (4X)

decoding.

7.1.2 MATLAB/Simulink model

The system’s governing equations in terms of equivalent torque and

inertia are provided in the previous section in (7.5), (7.12), and (7.13) for x,

y and z axes respectively. Using these equations and the system

parameters provided in Table 7.1; it is possible to develop a Simulink

model for the overall system. Figure 7.5 shows the dynamic model of a

single axis (x-axis) of the system developed by the MATLAB/Simulink

package.

 114

Table 7.1 – MATLAB/Simulink model of a single axis of the CNC

machining center

Parameter Sym. Unit X Y Z

Mass m kg 130 331.97 260

Dry friction force Ff N 200 200 200

Moment of inertia J kg m2 7.994×10-3 16.484×10-3 19.745×10-3

Dry friction

torque
Tf N 1.1 1.5 2.1

Viscous friction

coefficient
B Nms/rad 0.0005 0.0005 0.0005

Equivalent

moment of inertia
Jeq kg m2 0.00834 0.01737 0.02044

Equivalent dry

friction
Tf,eq N m 1.435 1.835 2.435

Ball screw lead hs m 0.010 0.010 0.010

Ball screw

efficiency
ηs - 0.95 0.95 0.95

Rated torque Tr N m 12 22 30

Rated speed ωr rad/s 209.44 209.44 209.44

Rated power Pr W 2094.4 3769.9 4398.2

Torque-speed

slope
mT Nms/rad -0.00955 -0.01910 -0.04297

 115

Figure 7.5 – MATLAB/Simulink model of a single axis of the CNC

machining center

As can be seen in Figure 7.5, the Simulink model has a transfer function

that relates the input torque to the angular speed of the motor shaft. The

model includes two different friction models (dry and viscous) and the

disturbance input that are exactly represented in the governing equations

of the system. This model is employed in all of the three axes of the

machining center, with a change in the parameters: equivalent inertia

(J_eq), equivalent dry friction coefficient (T_eq), viscous friction coefficient

of screw (b_screw), screw efficiency (eff_scr) and pitch of the screw (h).

Note that these parameters can easily be changed by changing the index of

 116

the parameter (i.e. in J_eq(1) index 1 represents the parameter for the x

axis).

While testing/debugging the designed controller, the model in Figure 7.5

is utilized as the controlled plant in the MATLAB/Simulink simulations.

The next section explains the details of the controller design.

7.2 Controller design

In section 0, the CNC machining center that is considered as the test case

of the motion controller design is introduced and its governing equations,

Simulink model, and the relevant system parameters are provided. In this

section, a controller is developed based on the introduced model and the

simulation results obtained in MATLAB/Simulink are presented.

7.2.1 Controller selection

As discussed in Chapter 2, there are many motion controller topologies

that can be implemented on an FPGA, including both conventional and

novel/intelligent controllers. However, in order to demonstrate the

presented methods in the previous chapters, the choice for the test case

controller is to be made between the state-space controller (presented in

Chapter 4) and the filter implementation (discussed in Chapter 5). Even

though both of these controllers are equally applicable, the filter

implementation seems a more convenient choice since the classical SISO

controller topologies (like the industry-standard PID) can be easily

realized. Furthermore, it is a more efficient method (in terms of expended

 117

resources) on FPGA: As demonstrated in Chapters 4 and 5, two instances

of the filter can be realized with 27% of the logic cells (i.e. a single instance

consumes 13%) while a state-space controller can realized utilizing 24% of

the logic cells (via integer multiplication method). Therefore, filter

implementation is selected to build the controller topology for the test case

and thus its FPGA implementation is carried out by the method presented

in Chapter 5.

7.2.2 Linearized system model

Considering the system model provided in Figure 7.5, the transfer

function (Gpw) between the input torque and the output angular speed is

Gpw (s) = 1 / (Jeq s) when the nonlinear terms (friction) are discarded under

the assumption that they could be conveniently visualized as a part of the

disturbance. Since a position control is desired, the output of the transfer

function Gpw needs to be integrated, which would lead to the transfer

function between the input torque (manipulation) and the output position

of the motor shaft, that is Gp = 1 / (Jeq s2). This continuous time transfer

function of the plant is considered as the system model for the controller

design via root locus method.

Note that since the position feedback is obtained from an encoder, there is

an encoder gain of 40000/(2h) in the feedback loop. Therefore, the

reference trajectory may also obtained in terms of encoder pulses (hence

integers) as previously discussed in Chapter 4, while commenting on the

advantageous attributes of digital motion control systems. Therefore, the

 118

controller is designed according to an encoder gain applied to both the

reference and the position feedback.

As a final mark, it is important to note that there exist 3 different axes to be

controlled and hence 3 different plant models are obtained. However, the

following procedure is presented for a single axis (x), since the plants and

the design scheme are very similar for each axis.

7.2.3 Design via root locus technique

After the system model is obtained, the controller may be designed in

either continuous-time domain or discrete-time domain. While both

approaches are equally acceptable, in this study the latter approach is

adopted and therefore as a first step, the system model needs to be

converted to an equivalent discrete-time domain (i.e. z-domain)

representation.

As an initial step for discretization of the system, a convenient sampling

time (ts) should be selected. In modern real-time control systems, 1 kHz

sampling frequency is a highly sufficient for even demanding control

applications, thus ts = 0.001s is selected for the sampling period of the

controller. After the selection of ts, the system is discretized using zero-

order hold method to obtain the discrete time model of the system Gp(z)

via “c2d” function of MATLAB.

Once the discrete-time transfer function is obtained for the plant, the root-

locus design is performed via sisotool, which is a convenient tool provided

 119

by MATLAB for root locus design method. The interface allows the user to

select closed-loop pole locations by adjusting the controller gain. That is,

the user can modify the open-loop poles and zeros via an interactive root

locus plot. Using sisotool, the root locus plot of the uncontrolled system is

provided in Figure 7.6. Notice that the system is unstable since the closed-

loop poles are outside the unit circle and it is not possible to stabilize the

system by a simple proportional controller since one of the poles end up at

infinity as gain increases. Therefore, another controller needs to be

designed to obtain a stable system that yields desirable tracking- and

disturbance rejection performances.

Figure 7.6 – Root locus plot of the uncompensated system

As an initial step, a zero is added at 0.8 on the real axis in order to stabilize

the system. After the addition of the zero, the speed of the system is

 120

further increased by placing a pole at 0.1. Hence the root locus plot has

become as shown in Figure 7.7.

Figure 7.7 – Root locus plot of the system after addition of a pole and a

zero

As can be seen in Figure 7.7, the system may be still unstable since two of

the closed-loop poles could be outside the unit circle; however after the

addition of the pole/zero, now it is possible to stabilize the system by

simple gain adjustment. Note that the initial gain is selected as unity by

default in sisotool, therefore by decreasing the gain, the system can be

stabilized.

 121

By decreasing the gain gradually, it can be seen that the closed-loop poles

cross the unit circle when gain (K) = 0.492 and therefore values below this

value should yield a stable system response. Considering the actual plant,

it is known that during machining process, cutting forces act on the

system as a disturbance. Therefore, a sufficiently high K value is desired

for increasing the system’s dynamic stiffness (to disturbances). Hence, K =

0.4 is chosen conveniently for the gain value of the controller. The

resulting closed-loop poles are also shown in Figure 7.7

On the other hand, it is also necessary to check the closed-loop bode plot,

in order to obtain the bandwidth frequency of the controlled system

(which is also provided in the sisotool interface). Bode plot of the closed-

loop system is shown in Figure 7.8. As can be seen in Figure 7.8, the

bandwidth frequency of the system is around 300 Hz (< half the sampling

frequency = 500 Hz), which is deemed sufficient for the most CNC vertical

machining centers.

Proceeding with the designed controller, its discrete-time domain

expression can be obtained as follows:

ሻݖ௖ሺܩ ൌ

ଶ௭ିଵ.଺

ଵ.ଵ௭ି଴.ଵ
 (7.15)

Using (7.15) the developed controller may be tested via Simulink to

observe the performance of the controller with the desired trajectory of the

x axis.

 122

Figure 7.8 – Closed-loop Bode plot of the system

It is important to note that while this design method is explained for the x

axis of the CNC machining center, the design method for the other axes

are very similar to the x-axis; since the same plant with slightly different

parameters are considered. As a matter of fact, the same controller is

applied to the all of the axes with a slight change in the controller gains for

the y and z axes. The reason behind this choice is that, the root locus plots

of the other axes allow more increase in the controller gain, while keeping

the closed-loop poles within the unit circle. Therefore, the gain values for

y and z axes are selected as 0.6, while the other controller parameters are

essentially the same.

 123

Table 7.2 – Controller design parameters for x, y and z axes

Axis Gain Closed‐loop poles Bandwidth frequency [Hz]

X 0.4 0.771, 0.321±0.86i 296

Y 0.6 0.755, 0.425±0.69i 257

Z 0.6 0.741, 0.469±0.61i 236

The next section presents the Simulink results of the designed controller.

7.2.4 Simulink simulation results

In Figure 7.9, the overall system model in Simulink is shown. As can be

seen, the overall system incorporates the following systems: i) the feed-

drive (axis) model shown in Figure 7.5 (shown as x-Axis), ii) the controller

(the lead-lag compensator), iii) the feedforward dry friction compensator,

iv) the torque generation model for the motor. Note that an encoder gain

is placed behind the scope to convert the output position signal from

radians to encoder counts. To simulate the real encoder behavior, a floor

function is placed after the encoder gain. Since the axis model provides the

output in terms of angular speed, an integrator is added after the axis

model to obtain the angular position. The inputs, which are previously

defined reference trajectory and cutting force (disturbance), are obtained

from the Matlab workspace. Notice that the provided model represents

the x-axis of the machining center; however the model can be applied to

all axes with proper changes in the parameter indices.

 124

Figure 7.9 – Simulink model of the overall system

The reference trajectory, which has a duration of 20 seconds, is a portion

extracted from a real machining operation and is shown in Figure 7.10. As

can be seen in Figure 7.10, the reference is provided in terms of encoder

counts. On the other hand, the disturbance inputs in Figure 7.11 are not

exactly the same as the disturbance on the real system; since the real

disturbance (machining) process is relatively hard to model in Simulink

environment and is beyond the scope of this thesis. However, an

approximation of the actual case, which would provide sufficient

information about the disturbance resistance characteristics of the system,

can be implemented with ease. Therefore, similar results should be

expected from the real test in terms of tracking error. The disturbance

inputs corresponding to light- and heavy machining processes are

provided in Figure 7.11.

 125

Figure 7.10 – Reference trajectory for the X-axis

It is critical to note that for this particular application, the machining

accuracy of the center is designated as 10m. Hence, the maximum

tracking error of the controlled system under the worst case scenario is

expected to be less than 40 encoder counts.

Simulink results are obtained by using the reference trajectory (shown in

Figure 7.10), the disturbance input (in Figure 7.11), and the system model

provided in Figure 7.9. The results are obtained for both cases of

disturbance inputs. The tracking errors are shown in Figure 7.12 in terms

of encoder counts.

 126

Figure 7.11 – Disturbance inputs for light and heavy machining conditions

Figure 7.12 – Simulink results of the designed controller in terms of

encoder counts

 127

As can be seen in Figure 7.12, when no disturbance is acting on the system,

the control system is able to follow the trajectory within an error band of 1

encoder count. However, when a disturbance (i.e. machining force) is

present, the tracking error of the system becomes (roughly) 4 and 13

counts for light- and heavy machining (simulation) respectively. Table 7.3

shows the means and standard deviations of error obtained through the

simulation study.

Table 7.3 – Mean, max and standard deviation values of the Simulink

results (in counts)

Disturbance type Mean Max Standard deviation

No disturbance 0.005 20 0.804

Light disturbance 2.252 23 0.908

Heavy disturbance 9.005 30 1.874

Taking into account the resolution of the encoder (10000 ppr) as well as

the pitch of the ballscrew shaft (10 mm), one can determine that 10

encoder counts correspond to a table displacement of 2.5 μm. Thus, Table

7.4 illustrates these table/cart displacement errors.

As can be seen in Table 7.4, the results are quite successful in terms of

mean error and standard deviation of the error. The maximum error is

also sufficient for control purposes.

 128

Table 7.4 – Mean, max, and standard deviation values of the Simulink

results (in μm)

Disturbance type Mean Max Standard deviation

No disturbance 0.001 5 0.201

Light disturbance 0.563 5.75 0.227

Heavy disturbance 2.251 7.5 0.469

If Figure 7.12 is carefully observed, it can be seen that the maximum errors

are attained in the sharp transitions of Figure 7.10, which corresponds to

“rapid travel/motion” along the trajectory (the phase until t = 4s in Figure).

Notice that in CNC technology, rapid travel is a point-to-point motion and

position control along the trajectory lying between the initial- and target

position is not needed. Therefore, it can be concluded that the designed

controller can be applied to the real case.

7.3 Implementation of the system

In the preceding section, the controller design via classical root locus

technique is explained and simulation results demonstrating the

command tracking and disturbance rejection properties are given for the

designed controllers. The results have been proven to be successful and

therefore the controller is to be implemented on the FPGA along with

other necessary modules for encoder interfacing, PWM generation, etc. In

this section, the implementation of the control system and the hardware-

in-the-loop simulation (HILS) of the plant are presented.

 129

7.3.1 Implementation of the control system on the FPGA

The control system is implemented on the DE1 FPGA board with an

Altera Cyclone II FPGA chip by utilizing the methods and modules

provided in the previous chapters. The interface modules that are

employed are as follows:

 Incremental encoder decoding module: For gathering angular

position information from the axes of the CNC machining center. 3

instances are employed for 3 axes of the machining center.

 PWM transmitter module: For transmitting the calculated torque

command to the motor driver (in torque/current modulation

mode). 3 instances are employed for 3 axes of the machining center.

 RS-232 controller: For setting the controller parameters and

reference values via PC. Single instance is employed.

 SRAM controller: For storing the controller parameters and

reference values on the FPGA board. Single instance is employed.

Along with these modules, three controllers are implemented on the chip

by employing three instances of the generic filter module presented in

Chapter 5, using Method I-a (IMUL). Consequently, all the interface

modules and three controller modules are implemented on the FPGA

chip.

It is important to note that, for control of 3-axis, this design consumes 7550

logic elements (LE), corresponding to 40% of the FPGA’s LE resources,

along with 12 embedded 9-bit multipliers, corresponding to 23% of the

 130

FPGA’s available multiplier resources. On the other hand, if a single axis

solution is required, this requirement drops to 3027 logic elements (16%)

and 4 embedded 9-bit multipliers (8%). Considering that Altera Cyclone II

FPGA is a relatively aged chip (having 18752 total logic elements, 52

embedded 9-bit multipliers), these results prove that the proposed

solution is an extremely resource-wise efficient solution. Resource

utilization of a single- and 3-axes solution (i.e. synthesized digital

circuitry) are presented in Figure 7.13 and Figure 7.14

Figure 7.13 – Resource utilization of the single axis solution

 131

Region I

Region I

Region II

Background
Selection
Highlight
Block Border
Connection
Path
Bundle

LAB

Logic Element
Memory

Pin Goup
DSP
Local Interconnect
Global Interconnect
Pin
Ports
Differential Pin
Pair Connections

Location Assignments
Registers
User Assigned LogicLock Regions
Fitter Placed LogicLock Regions
Low Power
High Speed
Virtual IO

Logic Element
Memory
Pin Goup
DSP

Region II

Figure 7.14 – Resource utilization of the implemented 3-axis solution

7.3.2 Realization of the plant via hardware in the loop simulation

HILS of the real system is realized by a hybrid design which includes an

Altera FPGA and an Atmel processor. It can provide encoder signals and

receive PWM data, exactly the way that a regular CNC machining center

would provide and receive. Therefore, within the context of this study,

the HILS system is treated as a real plant since there is no difference from

the controller’s point of view. Figure 7.15 shows the controller system

coupled to the HIL simulator.

 132

Figure 7.15 – Schematic of the hardware in the loop simulation system

It is critical to notice that the modules within the HILS system is not

related to the modules presented in Chapter 3. The HILS system is a result

of another study [32], and is adopted in this study for the test case

simulation of the developed controller.

In chapter 5, the attainable sampling frequency of the digital filter is

presented as 385 kHz; therefore the selected sampling frequency (1 kHz) is

attainable on the controller end. On the other hand, the computations on

the HIL simulator take longer than the selected sampling frequency and

inevitably HIL simulation is realized non-real time at 100 Hz. However

though, the simulation results represent the real sampling frequency of the

 133

system and therefore applicable to a real-time control problem. The results

provided in the next section are obtained by utilizing the HILS system.

7.4 HILS Results

HILS results are obtained by using two different reference trajectories,

which are portions obtained from a CNC code generated to manufacture a

plastic bottle injection mold, as shown in Figure 7.16. The first trajectory is

shown in Figure 7.17 and the second one is shown in Figure 7.18.

Figure 7.16 – Reference trajectories for a plastic bottle injection mold

(selected portions indicated with red color)

 134

Figure 7.17 – Reference trajectories for X,Y and Z axes (t = 0-20s)

Figure 7.18 – Reference trajectories for X,Y and Z axes (t = 201-241s)

 135

As can be seen from Figure 7.17 and Figure 7.18, the trajectories are

portions from a real trajectory set for a CNC machine. The reason why

certain portions are selected is that the data to be stored in the SRAM

device is limited with 512 kb. However, when a suitable reference

command generator is coupled to the design, there is no limit in

prolonging the simulation times as the reference data can then be fed to

the controller in a continuous fashion. On the other hand, the

disturbances that are employed are already discussed in the preceding

section and therefore will not be further discussed here.

The results of the HILS are presented in the following order:

1. Figure 7.19 – First trajectory motor position error in X-axis (t = 0-20s)

2. Figure 7.20 – First trajectory motor position error in Y-axis (t = 0-20s)

3. Figure 7.21 – First trajectory motor position error in Z-axis (t = 0-20s)

4. Figure 7.22 – Second trajectory motor position error in X-axis (t = 201-

241s)

5. Figure 7.23 – Second trajectory motor position error in Y-axis (t = 201-

241s)

6. Figure 7.24 – Second trajectory motor position error in Z-axis (t = 201-

241s)

7. Figure 7.25 – Second trajectory cart position error in X-axis with

backlash (t = 201-241s)

8. Figure 7.26 – Second trajectory cart position error in Y-axis with

backlash (t = 201-241s)

9. Figure 7.27 – Second trajectory cart position error in Z-axis with

backlash (t = 201-241s)

 136

Figure 7.19 – First trajectory motor position error in X-axis (t = 0-20s)

Figure 7.20 – First trajectory motor position error in Y-axis (t = 0-20s)

 137

Figure 7.21 – First trajectory motor position error in Z-axis (t = 0-20s)

Figure 7.22 – Second trajectory motor position error in X-axis (t = 201-241s)

 138

Figure 7.23 – Second trajectory motor position error in Y-axis (t = 201-241s)

Figure 7.24 – Second trajectory motor position error in Z-axis (t = 201-241s)

 139

Figure 7.25 – Second trajectory cart position error in X-axis with backlash

(t = 201-241s)

Figure 7.26 – Second trajectory cart position error in Y-axis with backlash

(t = 201-241s)

 140

Figure 7.27 – Second trajectory cart position error in Z-axis with backlash

(t = 201-241s)

As could be observed from the results, the controller seems successful in

the trajectory tracking, as well as disturbance resistance. However, when

backlash model is present in the HILS, the error significantly increases in

the cart’s position. Statistical data provided in Table 7.5 to Table 7.8 would

be more useful in interpreting the results. Note that root mean square

(RMS) is defined as:

RMS = ටଵ

௄
∑ ሾݔሺ݇ሻ െ ሺ݇ሻሿଶ௄כݔ
௞ୀ଴ (7.16)

where K is the length of the data, x is the real value of the data and x* is

the reference value of the data.

 141

Table 7.5 – Root mean square and standard deviation values of the HILS

results for first trajectory (in encoder counts)

Axis X Y Z

Dist.

type
RMS STD* RMS STD RMS STD

No dist. 3.80 3.78 0.87 0.86 4.08 4.08

Light

dist.
6.01 5.98 2.12 0.74 4.21 4.21

Heavy

dist.
12.59 12.51 6.38 1.56 4.13 4.10

*STD: Standard deviation

Table 7.6 – Root mean square and standard deviation values of the HILS

results for first trajectory (in μm)

Axis X Y Z

Dist.

type
RMS STD RMS STD RMS STD

No

dist.
0.95 0.95 0.22 0.21 1.02 1.02

Light

dist.
1.50 1.49 0.53 0.19 1.05 1.05

Heavy

dist.
3.15 3.13 1.60 0.39 1.03 1.03

 142

Table 7.7 – Root mean square and standard deviation values of the HILS

results for second trajectory (in encoder counts)

Axis X Y Z

Dist.

type
RMS STD RMS STD RMS STD

No dist. 3.79 3.78 1.17 1.12 4.03 4.03

Light

dist.
6.02 6.01 2.43 1.13 4.17 4.17

Heavy

dist.
12.57 12.57 6.65 1.97 4.13 4.10

As can be seen from Table 7.5 to Table 7.8, the results are very successful

in terms of mean error and standard deviation of the errors. Even in the

heavy machining case, the maximum error appears in the X axis with an

RMS value around 12.6 counts (3.15 μm) and a standard deviation around

12.5 counts (3.14 μm), when the HILS has no backlash model. However,

when a backlash model between the ball screw and the cart is included in

the HIL simulation, it directly increases the error, both in terms of RMS

and STD, as can be seen in Table 7.8. This is an expected result since the

controller has no effect on backlash compensation.

When the figures are observed, even there exist large errors in rare

occasions; they are still within an acceptable range for the CNC machining

center control task. Therefore, it can be concluded that the designed

controller is successful in trajectory tracking, even under heavy machining

condition.

 143

Table 7.8 – Root mean square and standard deviation values of the HILS

results for second trajectory including backlash model under heavy

machining (in μm)

Axis X Y Z

Dist.

type
RMS STD RMS STD RMS STD

No dist. 0.948 0.95 0.29 0.28 1.01 1.01

Light

dist.
1.506 1.50 0.61 0.28 1.04 1.04

Heavy

dist.
3.14 3.14 1.66 0.49 1.03 1.03

Heavy

d.+ BL*
55.94 55.94 49.17 13.56 12.49 9.38

(* d. + BL = disturbance + backlash)

7.5 Closure

In this chapter, most of the aforementioned modules and methods are

utilized in an FPGA based motion controller and the results of the test case

have proven that the proposed solution is a successful design. The results

are comparable with industrial motion controllers in terms of performance

and significantly efficient in terms of resource requirements. Therefore, it

can be concluded that the proposed solution (FPGA based

implementation) have proven to be a useful for motion control (or CNC)

applications.

 144

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this chapter, an overall assessment of this thesis is presented, along

with a number of suggestions that can follow and contribute to this study.

8.1 Conclusion

In this thesis, methods for developing an FPGA based motion control

system are investigated. In this perspective, efficient and successful design

methods are developed for each element of a typical motion control

system, including peripheral interfaces and the controller parts. At certain

points, some methods are highlighted as the best design approach;

whereas at other points, methods have proven to be compatible with each

other. However though, it can be seen that in the majority of this study,

hardwired approach is adopted rather than the embedded processor

design method.

The reasoning behind this selection can be justified as to obtain the

maximum capability of the FPGA chip. Low-level design methodology

required by hardwired approach allows the designer to customize a

segment of the FPGA, to execute a specific task in an efficient manner.

Furthermore, many instances of the designed module can also be used in

parallel, as demonstrated in the previous chapters. However, utilizing an

 145

embedded processor for a certain task decreases the process time,

consumes abundant amount of resources and eliminates the chance of

parallel implementation.

On the other hand, employing an embedded processor has also certain

advantages such as faster development and easy to use interfaces.

Furthermore, when processing speed is not crucial and the design is

complex, the embedded processor implementation may be comparable to

hardwired design in terms of resource requirements. Therefore, in

Chapters 4 and 5 of this thesis, both design methodologies have been

evaluated and the results are presented for both approaches. Notice that in

those chapters, state-space controller (and observer) and filter designs are

presented, where processing speed is not crucial (clearly above a certain

limit) and the design is relatively complex. Results approve that the

resource consumptions are comparable and the process times significantly

differ.

It can be observed that in this thesis two different FPGAs are employed

from the two leading FPGA manufacturers; that are Altera (Cyclone II)

and Xilinx (Virtex-5). However though, in the majority of the thesis

(except Chapter 6) Altera’s DE1 board with the Cyclone II

(EP2C20F484C7N) chip is employed even though the Xilinx Virtex-5 is a

more recent and resourceful chip. The reason for this choice is that

development tools that are provided by Xilinx require significantly more

time to compile, are more error-prone and harder to debug.

 146

Certain advanced controller topologies are also investigated in this thesis,

however due to the shortcomings of the Xilinx FPGA chip and lack of

time, only a single method could be implemented to demonstrate the

utilization of advanced controllers on an FPGA. Furthermore, the test case

provided in Chapter 6 is also different from the test cases provided in

Chapter 4 and 5. Nevertheless, the results have been successful and

implementation of an advanced controller is demonstrated, even with a

single method.

An important aspect of this thesis is that, all the chapters that include a

design process contain a test case within itself, to demonstrate the success

of the method. However, a test case is also provided in Chapter 7 for the

assembled solution, which shows the success of the overall motion control

system, including the peripheral interfaces as well as the controller.

Therefore, the methods are both proven individually and as an assembled

product. Notice that HILS is employed for testing the assembled solution,

instead of a real test setup (a CNC machining center), however from the

control system’s point of view there is no difference between the two,

since the simulator provides encoder signals and accepts PWM signal, as it

would be in the real case. Although the HILS is not conducted real-time

(due to limitations of the simulator) the proposed system is proven to be

capable of real-time control, in the respective design chapters of the

control system’s elements. Therefore the results are evenly applicable to

the real-time control case.

 147

8.2 Future work

As addressed in the previous section, an important contribution to this

study would be to utilize this system to control a real-world system,

preferably a CNC machining center, in order to compare the results

obtained via HILS. Although the HIL simulator reflects the real-world

application in a very good manner, it is always desirable to utilize the

designed control system in a real-world control application.

In this study, it can be deduced that the conventional control

methodologies are covered quite thoroughly in Chapters 4 and 5.

However in Chapter 6, only a single method could be presented for the

advanced controller implementations. As a future study, other methods

provided in the previous Chapters could be implemented to obtain a more

detailed discussion between different designs. Furthermore, it would also

be more meaningful if the study is conducted on an Altera Cyclone II

FPGA, to provide a comparison between the conventional and intelligent

controllers’ implementation on the same chip.

As a final remark, it should also be noted that in Chapter 7, due to the

unavailability of a command generator, the reference commands are

written to SRAM before the simulation; which resulted in a limitation of

the simulation time. However, as a future work, the commands could be

received from an outside source to run the full-time simulation, utilizing

the developed modules that are presented in Chapter 3.

 148

REFERENCES

[1] R. Usselmann [1], Open Floating Point Unit Manual, www.opencores.org,

2000.

[2] Arbit, A.; Pritzker, D.; Kuperman, A.; Rabinovici, R.; , "A DSP-controlled
PWM generator using field programmable gate array," Electrical and
Electronics Engineers in Israel, 2004. Proceedings. 2004 23rd IEEE
Convention of , pp. 325- 328, 6-7 Sept. 2004

[3] Xu Dong; Wang Tianmiao; Wei Hongxing; Liu Jingmeng, "A new dual-
core Permanent Magnet Synchronous Motor Servo System," Industrial
Electronics and Applications, 2009. ICIEA 2009. 4th IEEE Conference on ,
pp.715-720, 25-27 May 2009.

[4] Birou, I.; Imecs, M., "Real-time robot drive control with PM-synchronous
motors using a DSP-based computer system," Power Electronics and
Motion Control Conference, Proceedings of the Third International IPEMC
2000., vol.3, pp.1290-1295 vol.3, 2000.

[5] Geun-Hyung Lee; Sung-Su Kim; Seul Jung; , "Hardware Implementation of
a RBF Neural Network Controller with a DSP 2812 and an FPGA for
Controlling Nonlinear Systems," Smart Manufacturing Application, 2008.
ICSMA 2008. International Conference on , pp.167-171, 9-11 April 2008

[6] Morales-Caporal, R.; Pacas, M.; , "Digital implementation of a direct mean
torque control for AC servo drives based on a hybrid DSP/FPGA controller
system," Power Electronics Congress, 2008. CIEP 2008. 11th IEEE
International , pp.77-83, 24-27 Aug. 2008

[7] DMC-18x6 reference manual, Galil Motion Control Co., 2010

[8] PMAC2 hardware reference manual, Delta-Tau Co., 2010

[9] Al-Ayasrah, O.; Alukaidey, T.; Pissanidis, G.; , "DSP Based N-Motor Speed

Control of Brushless DC Motors Using External FPGA Design," Industrial
Technology, 2006. ICIT 2006. IEEE International Conference on , pp.627-
631, 15-17 Dec. 2006

[10] Toh, C.L.; Idris, N.R.N.; Yatim, A.H.M.; Muhamad, N.D.; Elbuluk, M.; ,
"Implementation of a New Torque and Flux Controllers for Direct Torque
Control (DTC) of Induction Machine Utilizing Digital Signal Processor
(DSP) and Field Programmable Gate Arrays (FPGA)," Power Electronics

 149

Specialists Conference, 2005. PESC '05. IEEE 36th , pp.1594-1599, 16-16
June 2005

[11] Seul Jung; Sung su Kim, "Hardware Implementation of a Real-Time Neural
Network Controller With a DSP and an FPGA for Nonlinear Systems,"
IEEE Transactions on Industrial Electronics, vol.54, no.1, pp.265-271, Feb.
2007.

[12] Kaiping Yu,; Hong Guo,; Dayu Wang,; Lanfeng Li,; , "Design of multi-
redundancy electro-mechanical actuator controller with DSP and FPGA,"
Electrical Machines and Systems, 2007. ICEMS. International Conference
on , pp.584-587, 8-11 Oct. 2007

[13] Esmaeli, A.; Li Bo; Sun Li; , "A Novel AC Servo System Implementation,"
9th International Multitopic Conference, IEEE INMIC 2005 , pp.1-5, 24-25
Dec. 2005

[14] Ni, F.L.; Jin, M.H.; Xie, Z.W.; Shi, Sh.C.; Liu, Y.Ch.; Liu, H.; Hirzinger,
G., "A Highly Integrated Joint Servo System Based on FPGA with Nios II
Processor," Proceedings of the 2006 IEEE International Conference on
Mechatronics and Automation, pp.973-978, 25-28 June 2006.

[15] Li, Yan; Zhuang, Shengxian; Zhang, Luan, "Development of an FPGA-
Based Servo Controller for PMSM Drives,", 2007 IEEE International
Conference on Automation and Logistics, vol. 18, no. 21, pp.1398-1403,
Aug. 2007.

[16] Ying-Shieh Kung; Rong-Fong Fung; Ting-Yu Tai, "Realization of a Motion
Control IC for X-Y Table Based on Novel FPGA Technology," IEEE
Transactions on Industrial Electronics, vol.56, no.1, pp.43-53, Jan. 2009.

[17] Das, A.; Banerjee, K.; "Fast prototyping of a digital PID controller on a
FPGA based softcore microcontroller for precision control of a brushed DC
servo motor," Industrial Electronics, 2009. IECON '09. 35th Annual
Conference of IEEE , pp.2825-2830, 3-5 Nov. 2009

[18] Ben Salem, A.K.; Ben Othman, S.; Ben Saoud, S.; Litayem, N.; , "Servo
drive system based on programmable SoC architecture," Industrial
Electronics, 2009. IECON '09. 35th Annual Conference of IEEE , pp.2961-
2966, 3-5 Nov. 2009

[19] Jung Uk Cho; Quy Ngoc Le; Jae Wook Jeon, "An FPGA-Based Multiple-
Axis Motion Control Chip," IEEE Transactions on Industrial Electronics,
vol.56, no.3, pp.856-870, March 2009.

 150

[20] Chan, Y.F.; Moallem, M.; Wang, W., "Efficient implementation of PID
control algorithm using FPGA technology," 43rd IEEE Conference on
Decision and Control, vol.5, pp. 4885-4890 Vol.5, 14-17 Dec. 2004.

[21] Yao dong Tao; Hu Lin; Yi Hu; Xiaohui Zhang; Zhicheng Wang, "Efficient
implementation of CNC Position Controller using FPGA,".. 6th IEEE
International Conference on Industrial Informatics (INDIN 2008), pp.1177-
1182, 13-16 July 2008.

[22] Jia Lanping; Zhou Runjing; Liang Zhian, "Realization of position tracking
system based on FPGA," 2004. Proceedings. ICSP '04. 2004 7th
International Conference on Signal Processing, vol.3, pp. 2588-2591 vol.3,
31 Aug.-4 Sept. 2004.

[23] Ying-Shieh Kung; Ming-Shyan Wang; Chung-Chun Huang; , "Digital
Hardware Implementation of Adaptive Fuzzy Controller for AC Motor
Drive," Industrial Electronics Society, 2007. IECON 2007. 33rd Annual
Conference of the IEEE , pp.1208-1213, 5-8 Nov. 2007

[24] Faa-Jeng Lin; Ying-Chih Hung, "FPGA-based Elman Neural Network
Control System for Linear Ultrasonic Motor," IEEE Transactions on
Ultrasonics, Ferroelectrics and Frequency, vol.56, no.1, pp.101-113, January
2009.

[25] Ying-Shieh Kung; Ming-Shyan Wang; Tzu-Yao Chuang; , "FPGA-based
self-tuning PID controller using RBF neural network and its application in
X-Y table," Industrial Electronics, 2009. ISIE 2009. IEEE International
Symposium on , pp.694-699, 5-8 July 2009

[26] Liaw, C.-M.; Wang, J.-B., "Design and implementation of a fuzzy controller
for a high performance induction motor drive," Systems, Man and
Cybernetics, IEEE Transactions on , vol.21, no.4, pp.921-929, Jul/Aug
1991.Arbit, A.; Pritzker, D.; Kuperman, A.; Rabinovici, R.; , "A DSP-
controlled PWM generator using field programmable gate array," Electrical
and Electronics Engineers in Israel, 2004. Proceedings. 2004 23rd IEEE
Convention of , pp. 325- 328, 6-7 Sept. 2004

[27] Alexei, Z.; Sandor, H., "Robust speed fuzzy logic controller for DC drive,"
Intelligent Engineering Systems, 1997. INES '97. Proceedings., 1997 IEEE
International Conference on , pp.385-389, 15-17 Sep 1997.

[28] Sio, K.C.; Lee, C.K., "Identification of a nonlinear motor system with neural
networks," Advanced Motion Control, 1996. AMC '96-MIE. Proceedings.,
1996 4th International Workshop on , vol.1, pp.287-292 vol.1, 18-21 Mar
1996.

[29] Slotine, J.J.E., and Li, W., Applied Nonlinear Control, Prentice-Hall, 1991.

 151

[30] Brock, S.; Deskur, J.; Zawirski, K., "Modified sliding-mode speed controller
for servo drives," Industrial Electronics, 1999. ISIE '99. Proceedings of the
IEEE International Symposium on , vol.2, pp.635-640 vol.2, 1999.

[31] Usenmez, S.; Dilan R.A; Dolen M.; Koku A.B., “Real-Time Hardware-in-
the-Loop Simulation of Electrical Machine Systems Using FPGAs”, to
appear in the Proc. of the International Conference on Electrical Machines
and Systems (ICEMS), 2009.

[32] Usenmez, S. “Design of an integrated hardware-in-the-loop simulation
system”, Master of Science Thesis, Department of Mechanical Engineering,
Middle East Technical University, Graduate School of Natural and Applied
Sciences, 2010.

 152

APPENDIX A

LIST OF VERILOG HDL FILES

In this appendix, a list of Verilog HDL files that are employed in different

parts of this study is provided, along with their related chapters and

corresponding functions.

Table A.1 – List of Verilog HDL files employed in the thesis

Name Related chapter Function

encoder.v Chapter 3 Incremental encoder interface

pwm_gen_v2.v Chapter 3 PWM signal generator

pwm_transmit_v2.v Chapter 3 PWM data transmitter

pwm_receive_v2.v Chapter 3 PWM data receiver

clk_divider.v Chapter 3 Clock generator

pulse_gen_v2.v Chapter 3 Finite pulse generator

SPI.v Chapter 3 SPI slave module

command_recv.v Chapter 3 Custom parallel data receiver

sasc_top.v Chapter 3 RS-232 controller

sram_ctrl.v Chapter 3 SRAM controller

imul.v Chapter 4 Integer multiplication module

fmul.v Chapter 4 Fixed-point multiplication module

fpu.v Chapter 4 Floating point unit

mul_kx.v Chapter 4 Fractional / Quantized

multiplication module

filter_v2.v Chapter 5 Generic filter module

 153

APPENDIX B

LIST OF C CODES FOR NIOS II IMPLEMENTATION

In this appendix, a list of C codes developed for Nios II softcore processor

implementation of methods presented in Chapter 4 and Chapter 5 is

presented.

Table B.1 – List of Nios II C files employed in the thesis

Name Related chapter Function

nios_ss_imul.c Chapter 4 Method II-a implementation

nios_ss_fmul.c Chapter 4 Method II-b implementation

nios_ss_fpu.c Chapter 4 Method II-c implementation

nios_filter_imul.c Chapter 5 Method II-a implementation

nios_filter_fmul.c Chapter 5 Method II-b implementation

nios_filter_fpu.c Chapter 5 Method II-c implementation

 154

APPENDIX C

SAMPLE C CODE FOR NIOS II IMPLEMENTATION

In this appendix, a sample C code developed for Nios II softcore processor

implementation of method II-a presented in Chapter 4 is presented.

#include <stdio.h>
#include <unistd.h>
#include <math.h>
#include "altera_avalon_performance_counter.h"
#define perfctr_base (void*)0x00900020

short readshort();
unsigned short readshortu();
void writeshort(short val);
void writeint32(int val);
int fmul(short k_int, short k_frac, int x);

int main()
{
 signed int perfctr_count;
 unsigned int perfctr_rate = alt_get_cpu_freq();
 int i,j,k;

 short K_ni[4];
 short K_df[4];
 short F_ni[4][4];
 short F_df[4][4];
 short G_ni[4];
 short G_df[4];
 short L_ni[4][4];
 short L_df[4][2];
 short x_read[2];
 int x[4];
 int xkm1[4];

 int u = 0;
 int ukm1 = 0;

 for(k=0;k<4;k++){
 xkm1_f[k] = 0;
 xkm1[k] = 0;
 x_f[k] = 0;
 x[k] = 0;
 }

 while(1){

 155

 for(i=0;i<4;i++){
 K_ni[i] = readshort();
 K_df[i] = readshort();
 }

 for(i=0;i<4;i++){
 for(j=0;j<4;j++){
 F_ni[i][j] = readshort();
 F_df[i][j] = readshort();
 }
 }

 for(i=0;i<4;i++){
 G_ni[i] = readshort();
 G_df[i] = readshort();
 }

 for(i=0;i<4;i++){
 for(j=0;j<2;j++){
 L_ni[i][j] = readshort();
 L_df[i][j] = readshort();
 }
 }

 for(i=0;i<200;i++){

 x_read[0] = readshort();
 x_read[1] = readshort();

 PERF_RESET(perfctr_base);
 PERF_START_MEASURING(perfctr_base);

// SS with int

 for(k=0;k<4;k++){

 for(j=0;j<4;j++){
 x[k] = x[k] + (F_ni[k][j]*xkm1[j])/F_df[k][j];
 }

 x[k] = x[k] + (G_ni[k]*ukm1/G_df[k]);

 for(j=0;j<2;j++){
 if(j==0) x[k] = x[k] + (L_ni[k][j]*(x_read[j]-
xkm1[0])/L_df[k][j]);
 if(j==1) x[k] = x[k] + (L_ni[k][j]*(x_read[j]-
xkm1[2])/L_df[k][j]);
 }
 }

 for(k=0;k<4;k++){
 u = u + (K_ni[k]*xkm1[k]/K_df[k]);
 }

 PERF_STOP_MEASURING(perfctr_base);

 156

 perfctr_count = perf_get_total_time(perfctr_base);

 writeint32(u);
 writeint32(perfctr_count);

 ukm1 = u;
 u = 0;

 for(k=0;k<4;k++){
 xkm1_f[k] = x_f[k];
 xkm1[k] = x[k];
 x_f[k] = 0;
 x[k] = 0;
 }
 }
 } //End of while(1)
 return 0;
}

short readshort()
{
short val;
short temp;
val = getchar();
temp = getchar();
val = val | (temp << 8);
return val;
}

void writeshort(short val)
{
 putchar((char)val);
 usleep(2000);
 putchar((char)(val >> 8));
}

void writeint32(int val)
{
 putchar((char) val);
 usleep(2000);
 putchar((char)(val >> 8));
 usleep(2000);
 putchar((char)(val >> 16));
 usleep(2000);
 putchar((char)(val >> 24));
}

 157

APPENDIX D

LIST OF MATLAB M‐FILES

In this appendix, a list of MATLAB M-files developed for HILS employed

in Chapter 4 and Chapter 5 is presented.

Table D.1 – List of MATLAB M-files employed in the thesis

Name Related

chapter

Function

sim_ss_imul.m Ch. 4 Sending initial parameters to

FPGA and realizing HILS for

hardwired implementation

sim_ss_fmul.m Ch. 4

sim_ss_fpu.m Ch. 4

sim_ss_nios_imul.m Ch. 4 Sending initial parameters to

FPGA and realizing HILS for

softcore implementation

sim_ss_nios_fmul.m Ch. 4

sim_ss_nios_fpu.m Ch. 4

sim_filter_imul.m Ch. 5 Sending initial parameters to

FPGA and realizing HILS for

hardwired implementation

sim_filter_fmul.m Ch. 5

sim_filter_fpu.m Ch. 5

sim_filter_nios_imul.m Ch. 5 Sending initial parameters to

FPGA and realizing HILS for

softcore implementation

sim_filter_nios_fmul.m Ch. 5

sim_filter_nios_fpu.m Ch. 5

 158

APPENDIX E

SAMPLE MATLAB M‐FILE FOR HILS

In this appendix, a sample M-file (sim_ss_nios_imul.m)is presented.

clc;
clear;
s = serial('COM5');
set(s,'BaudRate', 57600, 'DataBits', 8, 'Parity',
'none','StopBits', 1, 'FlowControl', 'none');

state_no = 4; %Hence the total number of 16-bit packages to send
is equal to 8 (state_no*2(for K matrix)).
known_state_no = 2;
simulation_time = 20; %in seconds
t_sample = 0.001; %in seconds

state_history = simulation_time/t_sample;

ctr1=1;
T_new = zeros(state_history,1);
F_new = zeros(state_history,1);
F_read = zeros(state_history,1);
F_dene = zeros(state_history,1);
Y_new = zeros(state_history,4);
Y_new(1,1) = 0; %Set inital position of the cart
Y_new(1,3) = -0.05; %Set inital position of the pendulum
Y_send = zeros(state_history,2);
Y_read = zeros(state_history,3);
states = zeros(state_history,4);
X_current = zeros(4,1);

K = [-0.9975 -2.3195 29.0515 17.6788]; %define K Matrix

[K_n,K_d] = rat(K);

F_matrix = [1.0000 0.0010 0.0000 0.0000;
 0 0.9998 0.0027 0.0000;
 0 -0.0000 1.0000 0.0010;
 0 -0.0005 0.0312 1.0000];

[F_n,F_d] = rat(F_matrix);

G= [0.0000;
 0.0018;
 0.0000;
 0.0045];

 159

[G_n,G_d] = rat(G);

L= 1.0e+002 * [0.0026 -0.0000;
 1.7286 -0.0153;
 -0.0000 0.0026;
 -0.0110 1.7294];

[L_n,L_d] = rat(L);

F = 0;
u = 0.2;

Y_send(1,1) = round(Y_new(1,1)*10000); %x = cart position
Y_send(1,2) = round(Y_new(1,3)*10000); %theta = angular position
of pendulum

fopen(s);

%IMUL

for i1=1:1:state_no
 fwrite(s, K_n(i1), 'int16');
 fwrite(s, K_d(i1), 'int16');
end

pause(0.01);

for i1=1:1:state_no
 for i2=1:1:state_no
 fwrite(s, F_n(i1,i2), 'int16');
 fwrite(s, F_d(i1,i2), 'int16');
 end
end

pause(0.01);

for i1=1:1:state_no
 fwrite(s, G_n(i1,1), 'int16');
 fwrite(s, G_d(i1,1), 'int16');
end

pause(0.01);

for i1=1:1:state_no
 for i2=1:1:known_state_no
 fwrite(s, L_n(i1,i2), 'int16');
 fwrite(s, L_d(i1,i2), 'int16');
 end
end
pause(0.01);
%%%

 160

for i=t_sample:t_sample:simulation_time

fwrite(s, Y_send(ctr1,1), 'int16');
fwrite(s, Y_send(ctr1,2), 'int16');
Y_read(ctr1,1) = fread(s,1,'int32');
Y_read(ctr1,2) = fread(s,1,'int32');

F = (-Y_read(ctr1,1)/10000);

[T,Y] = ode45(@(t,y) myode(t,y,F),[i-t_sample i],[Y_new(ctr1,1)
Y_new(ctr1,2) Y_new(ctr1,3) Y_new(ctr1,4)]);

Y_new(ctr1+1,1) = Y(size(T,1),1);
Y_new(ctr1+1,2) = Y(size(T,1),2);
Y_new(ctr1+1,3) = Y(size(T,1),3);
Y_new(ctr1+1,4) = Y(size(T,1),4);

X_current(1,1) = Y_new(ctr1+1,1);
X_current(2,1) = Y_new(ctr1+1,2);
X_current(3,1) = Y_new(ctr1+1,3);
X_current(4,1) = Y_new(ctr1+1,4);

Y_send(ctr1+1,1) = round((Y_new(ctr1+1,1))*10000); %x = cart
position
Y_send(ctr1+1,2) = round((Y_new(ctr1+1,3))*10000); %theta =
angular position of pendulum

if(abs(Y_send(ctr1+1,1)) > 32765)
 Y_send(ctr1+1,1) = sign(Y_send(ctr1+1,1))*32765;
end

if(abs(Y_send(ctr1+1,2)) > 32765)
 Y_send(ctr1+1,2) = sign(Y_send(ctr1+1,2))*32765;
end
F_new(ctr1+1,1) = F;
T_new (ctr1,1) = i;
ctr1 = ctr1 + 1;
end
fclose(s);

Y_new = Y_new(1:state_history,1:4);
F_new = F_new(1:state_history,1);
Y_send = Y_send(1:state_history,1:2);

plot(T_new, Y_new(:,3));
hold on;
plot(T_new, Y_new(:,1),'r');
title('Plot of x as a function of time');
xlabel('Time'); ylabel('Y(t)');

