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ABSTRACT 

 
REAL-TIME MOTION CONTROL USING FIELD PROGRAMMABLE 

GATE ARRAYS 
 

 

Mutlu, Barış Ragıp 

M.Sc., Department of Mechanical Engineering 

Supervisor: Assist. Prof. Dr. Melik Dölen 

Co-Supervisor: Assist. Prof. Dr. A. Buğra Koku 

 

June 2010, 160 pages 

 

In this thesis, novel implementation methods for FPGA based real-time 

motion control systems are investigated. These methods are examined 

for conventional and modern controller topologies as well as peripheral 

device interfaces which are mutually essential pieces of a motion 

controller. The developed methods are initially tested one by one to 

assess the performance of the individual design; and finally an 

assembled solution is developed to test the overall design. Tests of the 

overall design are realized via hardware-in-the-loop simulation of a real-

world control problem, selected as a CNC machining center. The 

developed methods are discussed in terms of their success, resource 

consumptions and attainable sampling rates.   

 

Keywords: FPGA, Motion control  
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ÖZ 

 
ALAN PROGRAMLANABİLİR KAPI DİZİNİ KULLANILARAK 

GERÇEK ZAMANLI HAREKET DENETİMİ 
 

 

Mutlu, Barış Ragıp 

Yüksek Lisans. Makina Mühendisliği Bölümü 

Tez Yöneticisi: Yard. Doç. Dr. Melik Dölen 

Ortak Tez Yöneticisi: Yard. Doç. Dr. A. Buğra Koku 

 

Haziran 2010, 160 sayfa 

 

Bu çalışmada, alan programlanabilir mantık kapısı dizini (Field 

programmable gate array - FPGA) tabanlı gerçek zamanlı hareket 

denetim sistemleri için yeni uygulama yöntemleri araştırılmıştır. Bu 

yöntemler, bütün bir hareket denetim sisteminin alt parçalarını 

oluşturan, geleneksel ve modern denetim topolojileri ile çevresel birim 

arayüzleri için incelenmiştir. Geliştirilen yöntemler başlangıçta tek tek 

sınanarak bireysel başarımları ölçülmüş, sonunda ise parçalar biraraya 

getirilerek oluşturulan tasarım sınanmıştır. Bütün tasarımın sınanımları, 

bir CNC işleme merkezinin çevrimiçi donanım benzetimi kullanılarak 

gerçekleştirilmiştir. Geliştirilen yöntemler, başarımları, kaynak 

tüketimler ve erişilebilir örnekleme hızları bazında tartışılmıştır. 

 

Anahtar kelimeler: Alan programlanabilir kapı dizini, Hareket denetimi 
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CHAPTER 1  
 

 

INTRODUCTION 

 

1.1 Motivation 

In general terms, motion control can be described as the position and/or 

velocity control of a machine part such as the end effector of a robotic arm, 

cutting tool of a CNC machine, tip of an automated welding machine and 

etc. Evidently, motion control plays a key role in industrial automation 

systems and success of the motion control system directly affects the 

production speed, quality and quantity. Considering that industrial 

automation systems are used globally in production and assembly lines of 

many industrial plants including automotive, aviation, packaging, 

printing, textile and semiconductor production industries, better, faster 

and more robust motion control systems are always desirable. Schematic 

of a typical motion control system is shown in Figure 1.1.  

 

Motion control systems are being developed by both academia and private 

entities, in correlation with the technological advances in semiconductor 

technology. As new semiconductor devices with faster processing speeds 

and higher resources are available in the market, new motion controllers 

are developed by these entities that fully utilize the features of these novel 

chips.  
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Figure 1.1 – Schematic of a typical motion controller 

 

In the currently available motion control systems, the most commonly 

employed chip is the digital signal processors (DSPs) which appear in 

almost all of the recent products developed by both academia and private 

manufacturers, including the most recent products of the two major 

motion controller manufacturers, including the DMC-18x6 by Galil and 

PMAC2 by Delta-Tau. The situation is similar in the academic literature 

and many studies published in the last decade employ DSPs in motion 

control systems, especially if the emphasis of the study is on the 

controller’s theory rather than the implementation. 

 

On the other hand, FPGAs are also suitable options for real-time motion 

control applications, exhibiting some superior qualities over traditional 

processors (micro-processors, micro-controllers and DSPs) such as parallel 

processing capability, high sampling rates, flexibility in design, and 

reliability. Therefore, in the academic end, field programmable gate arrays 

(FPGAs) also start to take significant parts in motion controller designs. As 

further discussed in the literature survey chapter, there are many recent 
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studies that employ FPGAs in motion controller designs and obtain very 

successful results. Especially after the FPGAs’ resources have increased 

significantly in the first half of this decade, there has been a considerable 

increase in these studies that utilize an FPGA in the motion control 

system. Figure 1.2 shows the increase in resources (in terms of logic 

cells/elements) of FPGAs that are produced by two major FPGA 

manufacturers: Xilinx and Altera in the last 15 years. 

 

As can be seen in Figure 1.2, resources of the FPGAs have increased 

approximately 700% in the last decade, which resulted in the academia’s 

increased level of interest in FPGAs for motion control applications. 

 
 
 

 

Figure 1.2 – Increase in number of logic cells of Xilinx and Altera FPGA 

chips over years 
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It can be estimated that this interest will increase or at least stay at this 

level, as FPGA manufacturers continue to increase the capabilities of their 

FPGA chips and develop new and more advanced intellectual properties 

(softcore processors, SoPC tools, etc.) for embedded designers. Therefore, 

developing methods for an FPGA based motion control system is 

desirable, as the FPGAs’ role in motion control applications increases.  

1.2 Scope of the thesis 

As presented in the previous section, the main objective of this study is to 

develop an FPGA based motion controller and by FPGA based motion 

controller, a “single chip” solution that handles all the necessary tasks of a 

typical motion control system is implied. Requirements of a typical motion 

control system are well-known and the developed system must be able to: 

1. Provide a convenient interface for obtaining sensor data from 

common sensors that are employed in motion control applications 

and interpret this data as required. 

2. Obtain reference inputs from an outside source via a suitable 

interface and/or a communication protocol or generate the 

reference commands for the controller itself. 

3. Execute a controller algorithm that is able to provide the desired 

performance that is comparable to the modern motion controllers in 

the literature. 

4. Provide means for transmitting the manipulated input computed 

by the controller via a suitable interface or a communication 

protocol to a driver, servo-amplifier or the actuator itself. 
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Evidently, there are many device/design choices to be made for each item 

and it is not possible to cover every aspect of FPGA based motion 

controller design in a single study. However, it is possible to develop 

methods for the most common choices in the academic studies and 

industrial applications and if possible extrapolate the results to others. For 

instance, in Chapter 3, a design method for an incremental encoder 

interface is provided, leaving out the absolute encoders. However, even 

though the interface required by an absolute encoder would be different, 

the obtained result that is hardwired implementation by HDL design is 

more efficient for the encoder interface is valid for both of the sensor 

devices. Therefore, most of the results are applicable to similar devices or 

design choices. 

1.3 Organization 

This thesis is divided into 8 chapters. The second chapter provides a 

review on the studies relevant to the motion control applications, in a 

limited context of FPGA employing designs. In the third chapter, 

peripheral interfaces that are developed and implemented on the motion 

controller design are introduced. In the fourth chapter, design and 

implementation of a state-space controller with a Luenberger-type 

observer on an FPGA is presented. In the fifth chapter, digital filters are 

introduced and their implementation methods on FPGAs are discussed. In 

the sixth chapter, a test case is provided where the developed FPGA 

modules are tested on a hardware-in-the-loop simulation platform. In the 

seventh chapter, a preliminary study on advanced controllers is presented. 

In the last chapter, conclusions are drawn and future work is discussed. 

 



 6

 
CHAPTER 2  

 

 

LITERATURE SURVEY 
 

 

Since the last decade, FPGAs are becoming gradually dominant in control 

applications. In numerous studies, implementation methods for 

embedded controller design and application results of different topologies 

on FPGAs are presented. In this chapter, a general overview of the 

relevant technical literature is provided. 

 

Due to their flexible hardware, uses of FPGAs in control literature differ 

significantly among different design topologies. For instance, while there 

are implementations of an FPGA as an interface between the controller 

chip and peripheral devices in some designs, there are also architectures in 

which a complex motion controller is realized by only utilizing a single 

FPGA chip. Therefore, it is necessary to classify FPGA employing 

controller designs into two categories as: “Hybrid control systems” and 

“FPGA-based control systems”. 

 

In hybrid control systems, FPGA may be employed in two different 

schemes. In the first scheme, FPGA is used for peripheral device 

interfacing and it has minimal amount of computational tasks. On the 

other hand, in the second scheme, FPGA is utilized as a secondary 

processor, and a noteworthy computational load is handled by the FPGA, 

in addition to its interfacing tasks. Nevertheless, it is obvious that in these 
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hybrid designs there needs to be a central processor employed in the 

design, which is usually selected as a digital signal processor (DSP) or a 

microprocessor. 

 

In a generic scheme of a hybrid design, peripheral device interfacing 

(sensor interfacing, pulse-width modulation generation, SPI and etc.) is a 

task assigned to the FPGA. This is due to the fact that FPGA 

implementation of those modules is fast, relatively simple and requires a 

small amount of resources. On the other hand, complex controller 

algorithms such as intelligent (fuzzy, neural-network) or nonlinear 

(sliding mode, variable structure and etc.) controllers are generally 

implemented on the processor, as well as the memory management units 

(SRAM, EEPROM and etc.) and communication controllers (UART, JTAG 

and etc.). It can be seen that, as the complexity of the task increases and 

the speed requirement decreases, the load shifts from the hardwired 

FPGA implementation to the processor, as shown in Figure 2.1.  

 
As can be seen from Figure 2.1, the conventional controllers find their 

place in between this speed/complexity distinction, which means that 

there are designs that both include or exclude a conventional controller 

unit on the FPGA and both options are equally feasible. Hence, these 

hybrid control systems are also classified according to the existence of a 

controller load on the FPGA as it is further discussed in Section 2.1. 
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Figure 2.1 – Generic schematic for FPGA implementation of a motion 

controller 

 

As a final remark for hybrid designs, the presented scheme is not a 

universal approach and while it is a common approach to use FPGA for 

interfacing and implementation of simpler controllers; complex controller 

algorithms, memory management units and communication controllers 

are also applicable by FPGA implementation and in some designs there 

are topologies that do not correspond to the generic scheme provided in 

Figure 2.1. 

 

In the FPGA-based designs, there exist a single FPGA chip that is 

responsible for the main computational task as well as the interfacing, 

memory management and communication functions. However though, a 

single chip implementation does not mean that every task is handled by a 

custom hardwired FPGA module. Since there are many embedded 
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processor IPs developed by FPGA manufacturers, it is possible to employ 

an embedded processor in an FPGA based design. If an embedded 

processor is employed on an FPGA-based design, it can be seen that the 

embedded processor implementation along with the custom hardware 

modules is very similar to the hybrid design approach. The difference 

would be that the connecting wires between the custom modules and the 

processor are external on the hybrid design and processor’s resources 

don’t consume FPGA’s resources. Therefore, the generic scheme provided 

in Figure 2.1 applies with a slight difference on the employed processor. 

 

Nevertheless, it is also possible that the overall motion control system is 

implemented on the FPGA chip with custom hardwired modules. It is a 

significantly different approach than the processor-based designs; 

therefore it is convenient to classify the FPGA-based designs into two by 

the utilization of an embedded processor.  

 

In FPGAs, there are different ways that computations can be handled. In 

hardwired implementation via HDL design, it is possible to include or 

develop custom arithmetic module IPs for fixed-point arithmetic. 

Furthermore, it is also feasible to insert a floating point unit (FPU) in the 

design to perform floating point calculations, such as the one devised by 

R. Usselmann [1] [1] as an open-core IP. Nevertheless, it should be noted 

that the development platform of hardware description languages such as 

Verilog HDL or VHDL does not support fixed/floating point number 

representations (and accompanying calculations) directly and therefore 

the design paradigm is long and tedious. On the other hand, in the 

embedded processor development environment, it is possible to use 
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different number types conveniently by coding through a high-level 

language like C. 

 

A similar problem occurs when implementing a memory management 

unit or a communication controller on the FPGA as a hardwired module. 

In this hardware solution, it is the designer’s job to arrange and 

synchronize the clock signals, read/clear buffers etc. On the other hand, if 

a softcore processor is employed, it provides a system on programmable 

chip (SoPC) solution for these tasks and it is significantly easier to 

implement an SRAM controller or a UART controller when an embedded 

processor is employed. As a matter of fact, the designer does not interact 

at all with the memory management unit or the UART controller, after 

including those units to the SoPC design interface and connecting them to 

the selected embedded processor. 

2.1 Hybrid control systems 

In this section, designs are discussed in which FPGA is either employed as 

a sole interface between a main processor and peripheral devices or 

utilized as a secondary processor in addition to its interfacing task. 

2.1.1 Control systems utilizing FPGA as an interface 

In many previous studies, FPGAs are generally considered as an interface 

between a processor unit that handles the controller (such as a DSP or a 

microprocessor) and its peripheral units. This is due to the fact that FPGA 

implementations of peripheral interfaces are particularly fast and efficient 
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by design with hardware description languages (such as Verilog HDL and 

VHDL) on FPGAs. For instance, a PWM generator is a very common and 

necessary interface in motion controller designs and in a study conducted 

by Arbit et al. [2] it has been shown that different shapes of waveforms of 

PWM signals can be generated precisely on an Altera Spartan II FPGA and 

even simpler FPGAs could handle the task quite efficiently. Therefore, 

implementing an FPGA based input/output interface is a good option for 

motion controllers, as further discussed in Chapter 3. In this section, 

designs in which FPGA is employed as a peripheral device interface are 

presented. 

 

In such configurations, FPGAs do not share the computational burden of 

the main processor. For instance, in the design proposed by Dong et al. [3], 

the control system consists of a TMS320LF2407 DSP of Texas Instruments 

accompanied by an EP1K30-144 FPGA of Altera. While this system is 

presented as a dual-core system, there is a significant difference between 

the computational loads of the cores. In this design, FPGA core deals with 

the external circuitry (that are FPGA modules) to process position encoder 

signals, some keyboard inputs and displays while also managing some I/O 

functions as well as a data bus to the DSP core. On the other hand, the DSP 

core handles all the computations of the PID controller. Therefore, 

although the system is presented as a dual core system, the primary 

computation load is on the DSP core. 

 

A similar scheme appears in the study of Birou and Imecs [4] where the 

FPGA is coupled to a TMS32OC50 DSP of Texas Instruments. In this 

configuration, an FPGA module generates pulse width modulation 
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(PWM) signals for the power converters and another FPGA module 

decodes incremental encoder signals. Controller is again implemented on 

the digital signal processor (DSP) and FPGA has no computational load. 

 

In another study conducted by Lee et al [5], a DSP 2812 controller board 

employing a TMS320F2812A DSP is utilized with a Altera Cyclone FPGA 

chip in order to realize a RBF neural network controller for nonlinear 

systems. Analogous to the previous studies, the scheme is topologically  

the same as the previous studies and the FPGA is used for the sole 

purpose of encoder interfacing/counting and PWM generation. 

 

Another recently published study by Caporal and Pacas [6], presents 

implementation of a direct mean torque controller that is realized on a 

hybrid system consisting of an ADSP 21062 DSP by Analog Devices and a 

Xilinx XC4010E FPGA. Nevertheless, FPGAs duty for interfacing remains 

with no significant computational load.  

 

On the other hand, the situation is analogous in industrial motion 

controllers developed by private manufacturers. For instance, “DMC-

18x6” which is the most recent and highest performance motion controller 

of Galil [7], utilizes a Xilinx FPGA chip for interpreting the encoder 

signals, while PID compensation with velocity and acceleration 

feedforward is realized by a 32-bit Motorola processor. Likewise, another 

product “PMAC2” which is developed by Delta-Tau [8], employs an 

Altera FPGA chip as an encoder interface and the central processor is 

selected as a Freescale DSP563xx. 
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These recent studies show that even the capabilities of the FPGAs are 

significantly increased in the last two decades; they are still employed for 

simply interfacing purposes regardless to their increasing capacity and 

processing capabilities. Nevertheless, it is also important to note that even 

if FPGAs do not carry heavy computational loads in the mentioned 

designs, their role is crucial in demanding control applications where 

sensor signals need to be decoded in a fast and efficient manner and 

complex output signals need to be generated. Therefore in these examples, 

the fact that FPGAs do not have a computational burden does not imply 

that their role in the controller design is unimportant. 

 

For instance, in the study conducted by Al-Ayasrah et al. [9], an N-Motor 

speed controller for brushless DC motors is proposed by the 

implementation of a ADSP-21992 DSP by Analog Devices that is employed 

with a Xilinx Virtex-E FPGA chip. The key feature of this design is the N-

motor speed control, which is realizable by the PWM module 

implemented on the FPGA chip. 

 

Another study conducted by Toh et al. [10] presents implementation of 

torque and flux controllers for direct torque control (DTC) of an induction 

machine. In this study, complex torque/flux estimations are computed and 

a P flux controller along with a PI torque controller are realized on a 

DS1102 DSP board from dSPACE, which is based on a TMS320C31 DSP. 

However the success of the control algorithm depends on the high speed 

generation of the output signals and therefore it is vital that a faster 

hardware circuit handles that operation, which is realized on an Altera 

EPF10K20 FPGA device. 
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2.1.2 Control systems utilizing FPGA as a secondary processor 

As evidently shown by the presented studies in the previous section, 

FPGAs are widely used for interfacing purposes in controller designs 

coupled with a digital signal processor, having none or very limited 

computation loads. However, there are also other hybrid control systems 

in which FPGAs share more amount of computational load than just an 

interfacing chip; deserving its role as a secondary processor. 

 

In the design proposed by Jung and Kim [11], Texas Instrument’s 

TMS320C6711 DSP is employed with Altera’s EP20K300EQC240 FPGA 

chip, similar to the schemes in previous section. The controller topology is 

composed of a neural network controller and a PID controller; however in 

this case the PID controller is implemented on the FPGA; therefore 

contrary to the previous designs, the computation load of the FPGA is 

increased. 

 

A study conducted by Yu et al. [12] proposes a novel multi-redundancy 

electro-mechanical actuator (EMA) controller, implemented on a 

TMS320VC33 DSP by Texas Instruments and Cyclone II FPGA by Altera. 

In this design, DSPs functions include receiving instructions of position, 

and carrying out calculations of the position loop and velocity loop; 

whereas the FPGAs functions are to provide interface for position signals, 

velocity signals and current signals, to carry out the calculation of the 

current loop, and to generate the PWM signal that is required by the 

multi-redundancy EMA. As can be seen, in this configuration FPGA 
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handles the current controller as well as its typical interfacing tasks, 

earning its title as a secondary processor. 

 

It is obvious that in these hybrid designs, FPGAs computation load as a 

secondary processor vary significantly from design to design. For instance, 

in a novel AC servo system implementation proposed by Esmaeli et al. 

[13], a Spartan FPGA of the Xilinx is employed with a TMS230LF2407 DSP 

of Texas Instruments. In the system, DSP chip implemented a position 

loop control which includes a PI regulator, velocity and acceleration 

feedforward and a digital notch filter. On the other hand, FPGA chip 

implemented the speed loop and current loop control, which also includes 

a PI regulator as well as a vector transformation module. This design can 

be considered as a truly hybrid design, because of the fact that the 

computational loads of both chips are equivalent and demanding. 

 

As demonstrated by the provided examples, FPGAs can be utilized in 

many different controller topologies along with another processor, to 

achieve tasks at a range of complexities from relatively simple to utterly 

complex. However, there are also designs that employ a single FPGA chip 

for the overall motion controller design, and they are presented in the 

following section. 

2.2 FPGA‐based control systems 

Recent research studies tend to shift the computational load from the 

primary processor to the FPGA, as the capabilities of FPGAs significantly 

increased in time over the last two decades. Many examples of hybrid 
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control systems are provided in the previous section, however in those 

studies the FPGA has always been accompanied by a primary processor, 

which has mostly been a digital signal processor or a microprocessor.  

 

Nevertheless, it is also possible to realize a control system on a single 

FPGA chip, and in this section, designs in which FPGA is solely employed 

to realize the entire motion control system are presented. 

2.2.1 Control systems using softcore processors 

FPGAs require low-level (i.e. logic-level) circuit design through hardware 

description languages (HDL) and such a design effort using HDLs is a 

relatively long and tedious process. To overcome this difficulty, FPGA 

manufacturers offer many intellectual properties (IPs) including 

embedded processor IPs. Therefore, many motion controller designs that 

facilitate a single FPGA makes good use of an embedded processor IPs. 

 

While some designs use softcore processors only to implement controllers, 

the others utilize the embedded processor for complex calculations along 

with some “hardwired” custom modules for simpler tasks. As a matter of 

fact, utilizing an embedded processor does not necessarily mean that the 

whole implementation is realized on the processor. Therefore, it should be 

noted that while the control systems presented in this section are classified 

as systems with embedded processors, most of the designs in this section 

also utilize custom hardwired modules developed by HDL design tools. 

However, modules for complex arithmetic operations are not generally 

included since the processor easily handles those operations. 
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In a study conducted by Ni et al [14], an integrated motion control system 

is realized on an Altera Cyclone FPGA with a Nios II processor. This 

hardware design scheme realizes all sensor data acquisition, SPWM 

generation, motor vector control, torque control and trajectory generation 

in a single FPGA chip. Since a Nios II processor is employed, all the 

calculations are performed with floating point arithmetic. 

 

In another study, Li et al [15] developed an FPGA-based servo controller 

for PMSM drives on an Altera Cyclone EP1C20 FPGA. In this design, 

while a custom HDL designed module performs the current/speed loop 

control for PMSM drives, which includes vector control strategy, the PI 

regulator, coordinate transformation and the SVPWM generator; Nios II 

processor performs the function of position control, based on the discrete-

time sliding mode variable structure control. Similar to the previous 

study, the softcore processor allows floating point arithmetic for the 

variable structure controller. 

 

In a recent study, Kung et al [16] realized a motion control IC for an X-Y 

table on a Altera Stratix II EP2S60F672C5ES FPGA chip. In this 

implementation, two axes’ fuzzy position controllers and P speed 

controllers, as well as a motion trajectory generator are implemented by 

software using Nios II softcore processor. On the other hand, two axes’ 

current vector controllers, along with the SVPWM generators and the 

encoder interfaces are realized by custom hardware (HDL design) 

modules. It is noted that the Nios II processor has less than 1 kHz 

sampling frequency, while the custom hardwired implementation works 
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at 16 kHz. Therefore this study is a good example for demonstrating the 

better speed characteristic of the custom hardware. 

 

Das and Banerjee [17] developed a digital PID controller for precision 

control of a brushed DC servo motor, employing a Spartan 3E FPGA chip 

and utilizing a PicoBlaze softcore processor by Xilinx. As expected, the 

PID control algorithm is realized on the softcore processor and the 

supporting interface modules such as: RS232 controller and the PWM 

generator is developed as custom hardware modules by VHDL. It is also 

noted that since the PWM generation is a time critical job, it cannot be 

handled by the processor along with the PID controller an therefore a 

custom module is developed for PWM generation task. 

 

Salem et al. [18] proposed a servo drive system in which the peripheral 

interface and speed control is handled by hardware and position control 

along with the networking functions are handled by softcore processor, 

and implemented it on a Xilinx Virtex-II Pro XC2VP30 FPGA chip 

available on a Xilinx ML310 board. Furthermore, two different RT kernels, 

that are μC/OS-II and Xilkernel are investigated on the PowerPC 405 

processor and their performances are tested on a test case of a PI 

controlled DC motor emulator. 

 

These examples demonstrate that using an embedded processor IP within 

the FPGA is proven to be a successful approach. Furthermore, it is also 

shown that using an embedded processor with custom hardware modules 

further increases the efficiency and speed of the design, and it is proven 

that oftentimes the softcore processor needs to be accompanied by custom 
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hardware modules. Unsurprisingly, this remark raises the issue of the 

performance of an FPGA-based design that is fully hardwired HDL 

design. The following section presents studies that do not employ an 

embedded processor and the whole motion controller design is based on 

custom hardware modules. 

2.2.2 Hardware implementation of control systems  

While the current tendency is to use an embedded processor for complex 

calculations required by controllers, it is also possible to eliminate the 

embedded processor and develop a total hardware solution. This is a 

desirable feature since the hardware modules are significantly faster than 

the embedded processors and oftentimes more efficient in terms of 

resources and power consumption rates. However, it is a long task to 

develop custom hardwired modules and furthermore, in order to benefit 

from the efficiency of the flexible hardware, modules need to be optimized 

for a specific task to fully observe the improvement obtained by the 

hardware implementation. 

 

It is important to note that controller implementation on FPGA is often a 

trade-off between resource and execution time of the controllers. The 

reason for that is; while it is possible to benefit from the parallel 

processing capability of the FPGA chip by calling many instances of a 

certain module which would certainly require more resources, it is also 

possible to use certain modules repeatedly in a sequential manner to 

increase the time, rather than the resource cost. Therefore, it is possible to 
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modify a design according to the resource/time requirements of the 

controller. 

 

In a very recent study, Cho et al [19] have proposed an FPGA-based 

multiple axis motion control chip with no embedded processor employed. 

The chip has all the essential features such as velocity profile generation, 

interpolation, inverse kinematics calculation and a PID controller which 

are required to control a multiple axis motion control system such as a 

robotic manipulator. As discussed earlier, certain methods need to be 

developed in order to avoid complex calculations and in this study, they 

managed to avoid floating point calculations by multiplying coefficients 

by constant integers. Using no embedded processor; they attained lower 

resource costs and power consumption rates. The hardware modules are 

developed by VHDL and implemented on a Xilinx XC2V6000 FPGA.  

 

Chan et al [20] have conducted a study on PID controller implementation 

on an FPGA and they managed to decrease the resources required by a 

multiplier-based design significantly on the target platform that is a Xilinx 

Spartan-II-E FPGA. They have proposed to replace the multipliers by a 

distributed arithmetic based design utilizing look up tables and they 

managed to decrease the resource requirement down to 4 to 13% of the 

former design. However they increased the computation time from 1 cycle 

to 13 to 26 cycles. The increase in efficiency of this design refers to the 

resource cost of the controller in terms of slices and power consumption. 

A very similar study by Tao et al [21] managed to decrease the logic 

element requirement of a PID-based CNC position controller from 51.7% 

to 0.8-1.5% in an Altera Cyclone II FPGA, increasing the computation cycle 
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from 1 to 32-64 cycles, utilizing two different methods. The methods 

provided in these studies are a mere result of trying to reduce the resource 

requirements of the conventional PID controller and while these studies 

offer good improvements for a PID controller, there exist many controller 

algorithms including intelligent, nonlinear and hybrid topologies and 

there is no single way to implement each of them more efficiently on an 

FPGA. However, they are valuable to demonstrate that without the 

embedded processor IPs, it is still possible to implement a conventional 

controller as hardwired modules successfully via the HDL design tools on 

an FPGA. 

 

There are also some other studies where more complex controllers are 

implemented on the FPGA via custom hardwired modules. Fuzzy 

controller designed by Lanping et al [22] requires no embedded processor 

or a floating point unit to perform fuzzy control. The selected platform for 

development is EPF10KlOLC84-15 of FLEXlOK series from Altera. On the 

other hand, the proposed method is similar to a rule based control 

topology and the method is not generally applicable for different fuzzy 

controller topologies. In another study by Kung et al. [23], an adaptive 

fuzzy controller for AC motor drive is proposed and the speed control IP 

is fully realized on the hardware platform of an Altera Cyclone EP1C20 

FPGA. As a matter of fact, a Nios II processor is also included in this 

design for SRAM and UART control, however since the controller is fully 

implemented as hardwired, it is included as a hardware implementation. 

In this design, the current loop sampling frequency is 16 kHz, while the 

speed control loop’s sampling frequency is 2 kHz.  
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An Elman neural network implementation is proposed by Lin et al [24] for 

a linear ultrasonic motor, where a fixed point arithmetic unit is 

implemented to perform the calculations. The proposed design is 

implemented on a Xilinx XC2V1000 FPGA chip and 723 Hz sampling 

frequency is attained for the controller. In the previous section, a study by 

Kung et al. [16] is provided for realization of a motion control IC for a X-Y 

table, in a more recent study by the same group [25], a self-tuning PID 

controller is realized using RBF neural network and is applied to the X-Y 

table. Different from the previous study, in this case the Nios II processor 

is only employed for trajectory generation purposes and the rest of the 

design is implemented as hardwired custom modules, including the 

neural network. The same chip that is Altera Stratix II EP2S60, is 

employed in the design and current loop can be closed at 16 kHz while the 

position loop’s sampling frequency is 500 Hz. From these examples, it can 

be noticed, as the complexity of the controller increases, the attainable 

sampling frequency decreases. 

 

These studies prove that it is possible to implement different controller 

topologies on FPGAs utilizing arithmetic logic units or custom hardware 

solutions. It is also seen that PID controllers are easier to implement by 

custom hardware logic and in practice usually realized by hardware 

modules. On the other hand it is also possible to implement more complex 

topologies by custom hardwired modules. 
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2.3 Closure 

In this chapter, a literature review was provided for motion controller 

topologies that employ an FPGA chip. A classification was made 

according to the utilization of the FPGA in the design as a secondary chip 

or a single chip; and a further classification was performed according to 

the FPGA’s duty in the design for the secondary chip case and utilization 

of an embedded processor in the FPGA for the single chip case. This 

classification is non trivial and different categorizations are also possible; 

nevertheless the studies in this review are provided according to this 

classification, in order to better demonstrate the differences between the 

design approaches. 

 

In the provided studies, it has been shown that FPGAs can be successfully 

used in tasks within a wide complexity range, from primitive interfacing 

tasks to complex controller algorithms. It is shown that FPGAs can 

perform tasks utilizing custom hardware IPs and/or embedded processors. 

However, when an FPGA is accompanied by a secondary processor chip, 

it is seen that FPGA is mostly utilized by custom hardwired modules. 

 

As a general rule, in almost all of the studies the peripheral interfacing has 

been implemented by hardwired FPGA modules, however, for 

implementation of control algorithms, it is shown that both custom FPGA 

modules and embedded processors are viable options. For the case of 

memory management and communication control, embedded processor 

IPs are generally selected for their simplicity in design; however it is 

shown that, custom modules are also available for these tasks. 
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In the presented studies, it was shown that the custom modules developed 

by HDL design tools have less processing time and resource requirement 

than the embedded processors. This is due to the fact that, custom 

modules are developed and optimized according to the controllers’ needs. 

On the other hand, while some parameters and configuration of the 

embedded processor can be modified before implementation, it is still 

much less flexible than a custom hardwired module. In this study, an 

FPGA-based solution is proposed and evaluated.  
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CHAPTER 3  
 

 

PERIPHERAL DEVICE INTERFACING FOR MOTION 

CONTROLLERS 
 

 

A motion controller is always required to receive and transmit signals and 

data from/to other devices employed within the control system; therefore 

it is necessary for a motion controller design to include some means for 

peripheral device interfacing. For instance, motion controllers need to 

receive some sort of sensor information from a 

mechanical/optical/magnetic sensor and produce a corresponding 

manipulation signal that can be interpreted by a driver or can drive the 

actuator itself. Furthermore, other peripheral units (such as a host PC for 

setting the design parameters of the controller online) may also be 

included in the control system, which would require a communication 

protocol (such as RS-232) or a bus interface (such as SPI) in the controller 

architecture.  

 

Evidently, there exist various interface topologies employed in sensors, 

actuators and other devices; and it is not practical to include numerous 

interfacing modules in a single design. Therefore, it is necessary to limit 

these modules by considering the most common interfaces used in 

common practice and if possible taking the currently employed devices 

into account.  
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In this chapter, a number of interfacing modules are presented, which are 

selected conveniently from the commonly used devices in motion control 

applications.  

 

All the modules are developed using a hardware description language 

(mostly Verilog HDL), in order to increase the processing rate and 

decrease the resource cost of the module, benefiting from the flexible 

hardware of an FPGA.  

 

On the other hand, it should also be noted that while implementing a 

softcore processor is also a viable option, for primitive designs such as 

sensor/actuator interfacing or communication protocol controller modules, 

it is a more efficient design approach to develop customized modules via 

HDL design. Further discussion on softcore processor implementation on 

FPGAs is available in the following chapters. 

3.1 Encoder Interface 

In motion control applications, the most commonly employed sensors to 

obtain positional feedback are encoders. Therefore an encoder decoding 

module is the most critical sensor interface of a motion control system. 

Encoders are electromechanical devices that generate an analog or digital 

(commonly digital) signal, in order to provide linear or rotational position 

feedback. Encoders that provide absolute position feedback are called 

“absolute position encoders” and their output signals require no 

interpretation; since they provide absolute position information in 

proportion to their resolution. However, due to their limited resolution, 
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absolute encoders do not succeed in high speeds and in industrial control 

applications, incremental encoders are generally preferred. 

 

Incremental encoders provide digital signals as square wave forms from 

two channels, with a phase difference of 90°. Therefore, it is possible to 

count every rising/falling edge of channels A and B (which is called 

quadrature decoding method), and increase the resolution of the encoder 

to 4 times its initial resolution. Ideal output of an incremental encoder is 

shown in Figure 3.1. 

 

Figure 3.1 – Ideal output of an incremental encoder 

The main advantage of incremental encoders is that the resolution is not 

correlated with the number of output channels, which is 2 for any 

resolution, unlike absolute encoders, which need to have 2n output ports 

to provide n-bit resolution. Therefore, if an incremental encoder is 

employed, no hardware modification is required in the motion controller 

interface if a different encoder with higher (or lower) resolution is 

implemented. 
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On the other hand, the output of incremental encoders needs to be 

interpreted by the decoder chip, by means of counting the rising/falling 

edges of the output signals A and B of the encoder. It is obvious that the 

decoding process needs to be realized at a high sampling frequency since 

missing a logic level change of a signal would mean misinterpretation of 

the feedback. 

 

FPGA is a suitable choice for high frequency decoding purposes, because 

of its logic level design capability, as stated in the introduction of this 

chapter. A perfectly optimized module is developed for the sole purpose 

of encoder decoding; in order to utilize the available clock source with full 

capacity (i.e. no computational delays). The developed encoder module is 

presented in the next section. 

3.1.1 Incremental encoder decoding module 

Incremental encoder decoding module, or as commonly referred in this 

text as the “encoder module” is developed using Verilog HDL and its 

symbolic representation as generated by Quartus II (Altera’s 

programmable logic device design software that is used throughout this 

chapter) is presented in Figure 3.12. 

 
As can be seen from Figure 3.12, the module takes two channels from the 

incremental encoder as its input, as well as a clock and reset signal. The 

output of the module is simply the result of the current pulse count, 

obtained via quadrature decoding. Note that clk signal is the input clock of 

the module and a sufficiently fast clock is necessary for successful 
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decoding. In this implementation, the fastest clock on the Altera DE1 board 

(50 MHz) is connected to this signal. For the implementation, first the 

inputs from channels A and B are buffered in a 3-bit register in order not 

to miss any logic level changes in the signal. Verilog HDL code of this 

implementation is as shown in Table 3.1. Note that signal buffering is 

realized with this approach throughout this design. 

Table 3.1 – Verilog HDL code segment for encoder channel buffering 

reg[2:0] inA_delayed, inB_delayed; 

always @(posedge clk) inA_delayed <= 
{inA_delayed[1:0], inA}; 

always @(posedge clk) inB_delayed <= 
{inB_delayed[1:0], inB}; 

 

 

 

As can be observed, at the system clock frequency, input channels A and B 

are sampled and buffered into registers called inA_delayed and 

inB_delayed. Using these signals that are delayed 2 clock cycles 

(corresponding to 40 ns for the 50 MHz clock), it is possible to detect a 

pulse generated by the encoder, as well as determine its direction. Verilog 

HDL code of this implementation is shown in Table 3.2. 

Table 3.2 – Verilog HDL code segment for pulse and direction detection 

wire count_enable = inA_delayed[1] ^ 
inA_delayed[2] ^ inB_delayed[1] ^ 
inB_delayed[2]; 

wire count_direction = inA_delayed[1] ^ 
inB_delayed[2]; 
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As can be seen, 3 XOR gates are implemented to detect the level change of 

the pulse and 1 XOR gate is implemented to determine the direction. After 

detecting a pulse from an encoder channel and determining its direction, it 

is trivial that a count register needs to be increased/decreased according to 

its input, as shown in Table 3.3. 

Table 3.3 – Verilog HDL code segment for encoder count calculation 

always @(posedge clk) 

begin 

  if(count_enable) 

  begin 

    if(count_direction) count<=count+1;  

  else count<=count-1; 

  end 

end 

 
 
 
At this point, comparing this design with a softcore processor design for 

the same purpose would be helpful to demonstrate the suitability of the 

customized module approach. Even if minimum specifications are 

selected for the processor, it would still require a significant processing 

time, where the design could also be implemented with a simple and 

efficient HDL code. Note that the success of the module depends on a high 

sampling clock and a simple design, which are fulfilled by this approach. 

 

The generated module is tested by two means. In the first experiment, an 

incremental encoder generating 2000 pulses/rev (which corresponds to 

8000 pulses/rev with quadrature decoding) is employed and the encoder 
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shaft is driven manually for a certain period of time. In the end, when the 

encoder shaft is returned to its original position, a multiple of 8000 is read 

on the PC via RS-232 connection. After this relatively simple experiment, a 

more complex and convincing experiment is performed. 

 

In the next experiment, an FPGA module to generate an encoder-like 

signal is developed to test the decoding module. This module is capable of 

generating encoder signals up to 6.25 MHz, which is limited by the fastest 

clock available (50 MHz) on the FPGA board. The output of this module is 

connected to the general purpose I/O ports of the FPGA board; which can 

be treated as output signals of a real encoder. Therefore, using this 

module, encoder signals in a wide range of frequencies could be generated 

for testing purpose. Two signals generated by this module with 6.25 kHz 

and 625 kHz frequencies are shown in Figure 3.2 and Figure 3.3. 

 

 

Figure 3.2 – Encoder signal generated by the FPGA (6.25 kHz) 

 

Figure 3.3 – Encoder signal generated by the FPGA (625 kHz) 
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As seen in Figure 3.2 and Figure 3.3, the signals successfully represent the 

ideal encoder signal, as shown in Figure 3.1. Using this module, an 

experiment is performed with different frequencies ranging from 200 Hz 

to 1 MHz, and the direction of rotation is changed numerously (between 5 

to 20 times) via the on-off switches available on the FPGA board. The 

result of this experiment is shown in Figure 3.4. 

 

 

Figure 3.4 – Frequency vs. decoding error 

As shown in Figure 3.4, in frequencies greater than 1 kHz (1000 rev/s), 

count error is equal to only a few pulses when a sum more than 10 Million 

pulses are generated by the encoder module. Those frequencies are 

already extremely high for industrial applications and it can be deduced 

that FPGA implementation of an incremental rotary decoder is sufficiently 

successful for industrial motion control applications. 
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3.2 Pulse width modulation (PWM) 

Pulse width modulation (PWM) is a technique to provide intermediate 

electrical power by changing the duty cycle of a high frequency digital 

signal. Therefore, it is a commonly employed method to represent an 

equivalent analog signal with a digital signal. While it is possible to use 

PWM signal to directly drive a motor (via a servoamplifier), it is also 

possible to feed the PWM signal to a motor driver where PWM represents 

a manipulated input command (such as torque). Furthermore, PWM can 

also be used for serial communication, in a 2-wire scheme similar to SPI. 

 

Essentially, frequency of the PWM signal is crucial and there are two 

factors affecting the attainable frequency of the PWM signal: frequency of 

the input clock and the desired resolution. The relationship between the 

system clock, resolution and the attainable PWM frequency is obtained as 

fpwm = fclk / 2R where fclk and R correspond to the system clock and the 

resolution respectively. A calculation based on the fastest available clock 

on Altera DE1 board (50 MHz) and a 10-bit resolution (which is a highly 

sufficient value for industrial applications) can be performed as 50MHz / 

210 = 48.8 kHz. This equation shows that an equivalent analog signal can be 

represented with 10-bit accuracy at 48.8 kHz, when a 50 MHz clock is 

available. 

 

As discussed earlier, PWM can be employed in different schemes. It can be 

used directly to drive a servo-motor via a servo-amplifier: its output can 

represent a torque command for another controller or it can be used to 

transmit serial data to another chip. However, the design differs between 
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the two cases when PWM signal represents an analog signal and is used to 

transmit data. Therefore, two modules called PWM generator (for 

producing an equivalent analog signal) and PWM transmitter (for serial 

communication) are developed and included in the motion controller 

design. 

3.2.1 PWM generator module 

PWM generator module (or commonly referred in this text as PWM 

module) is a simple module that can create a PWM signal that represents 

its input data. PWM module is developed using Verilog HDL and its 

symbolic representation as generated by Quartus II is presented in Figure 

3.12. As can be seen in Figure 3.12, the module takes a 10-bit duty_in 

signal as its input, as well as a clock and enable signal. The output of the 

module is simply the generated PWM signal called pwm_out. Verilog 

HDL code of this implementation is shown in Table 3.4.As can be 

observed, as long as the clkctr is smaller than the duty_in signal, the 

output of the PWM is equal to 1. As can be seen, PWM module is simple; 

yet efficient in creating equivalent analog signals. Output of the PWM 

module is shown in Figure 3.5. 
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Table 3.4 – Verilog HDL code segment for encoder count calculation 

always @(posedge clk) 
begin 
   clkctr <= clkctr+1;  
   if(enable) 
   begin 
      if(clkctr < duty_in) pwm_out <= 1; 
      else pwm_out <= 0; 
   end 
   else pwm_out <= 0; 
end 
endmodule 

 

 

 

Figure 3.5 – Output of the PWM module with 25% duty cycle 

Notice that the frequency value is 48.8 kHz, as calculated. Duty cycle is set 

as 25%, which can be adjusted with a 10-bit resolution. 
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3.2.2 PWM transmitter module 

PWM transmitter module creates a PWM signal; however this signal is not 

continuous as a regular PWM signal and is generated only when a data 

needs to be transmitted. PWM transmitter module is developed using 

Verilog HDL and its symbolic representation as generated by Quartus II is 

presented in Figure 3.12. 

 

As shown in Figure 3.12, PWM transmitter module has an extra input and 

output different from the PWM module. This is due to the fact that, since 

the PWM transmit module is used for serial communication, an initiate 

transmission signal init_xmit  is necessary for the transmission start. 

Furthermore, a similar signal is required as the output, in order to inform 

the receiver module that the transmission has started. Output of this 

module is shown in Figure 3.6. 

 

 

Figure 3.6 – Output of the PWM transmit module 
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In Figure 3.6, pink line represents the xmit_clk  and the yellow line 

represents the PWM_data_out. As can be observed, falling edge of the 

xmit_clk  initiates the transmission and PWM_data_out  is set to 1 with 

the same method employed in the PWM module. Besides the xmit_clk, 

another difference of this module is the frequency of this signal, which is 

not  equal to 48.8 kHz, since the module is initiated only when data 

transmission is necessary. In a controller topology, frequency of this signal 

would be equal to the sampling frequency of the controller. 

3.2.3 PWM receiver module 

PWM receiver module interprets the PWM signal created by the PWM 

transmitter module. PWM receiver module is developed using Verilog 

HDL and its symbolic representation as generated by Quartus  II is 

presented in Figure 3.12. 

 

As can be seen in Figure 3.12, input of the module matches the output of 

the transmitter module and outputs of the module are the interpreted data 

that is PWM_recv_data and PWM_OK signal which generates a rising edge 

when data transmission is complete. 

3.3 Finite pulse generation 

In motion control applications, oftentimes the controller needs to drive 

multiple axes that have different control requirements. For instance, if a 3-

axes turning center is considered, position control of the cutting tool 

requires a much simpler control approach than the speed control of the 
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spindle motor. Therefore, in cases where a simple controller is sufficient, it 

may be desirable to drive that axe via the “pulse control mode” of the 

driver. 

 

In order to drive a controller in “pulse control mode”, it is necessary to 

produce a number of square pulses at a certain frequency that corresponds 

to the speed of the motor shaft. Evidently, this frequency is limited by the 

specifications of the driver/motor couple. 

3.3.1 Pulse generator module 

Pulse generator module gets a number of pulses and frequency as its input 

and produces the specified number of pulses at the desired frequency. 

Pulse generator module is developed using Verilog HDL and its symbolic 

representation as generated by Quartus  II is presented in Figure 3.12. As 

can be seen in Figure 3.12, finite pulse generation has three inputs (other 

than the system clock) called init, pulse_no and pulse_freq_div. 

Init signal represents the initialize signal for the generator and rising 

edge of this signal enables this module. Rising edge of this input is 

detected by buffering the signal in a 3-bit register and checking the 

consecutive bits, as shown in Table 3.5. Note that this Verilog HDL code 

shown in Table 3.5 is commonly employed for rising/falling edge 

detection of enable/initialize signals throughout this design. 
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Table 3.5 – Verilog HDL code segment for init rising edge detection 

reg[7:0] init_delayed; 
 
always @(posedge clk) init_delayed <= 
{init_delayed[6:0], init}; 
 
wire init_risingedge = 
(init_delayed[2:1]==2'b01); 

 
 
 
Pulse_freq_div is employed to set the frequency of the generated finite 

pulse signal by utilizing another module called the clock divider module as 

shown in Figure 3.12. This clock divider module is utilized in various 

parts of the overall design, in order to generate clocks (infinite square 

waveforms) at different frequencies. As can be seen, its inputs are the 

system clock and a divider and its output is a clock with frequency fclk_out 

that is equal to fclk_sys / divider. This clock divider module is utilized in the 

pulse generator module as shown in Table 3.6. 

Table 3.6 – Verilog HDL code segment for clock divider utilization 

clk_divider clk_div1(.divider((pulse_freq_div >> 
1)), 
      .sys_clk(clk), 
      .clk_out(clk_pulse)); 

 

 

As can be seen in Table 3.6, pulse_freq_div signal is directly connected 

to the input of the divider module, with a bitshift to right, which would 

double the output frequency of the divider. The reason for this shift is 

revealed in the pulse generator segment of this code, shown in Table 3.7. 
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Table 3.7 – Verilog HDL code segment for pulse generation 

always @(posedge clk)  
begin 
 
   if(init_risingedge)  
   begin 
   PULSE_on <= 1; 
   clkctr <= 0; 
   end 
 
   if(PULSE_on && clk_pulse_risingedge) 
   begin 
   clkctr <= clkctr + 1; 
 
   if(clk_pulse_risingedge) pulse_out <= (1-    
pulse_out); 
 
   end 
 
   if((clkctr >> 1) == pulse_no)  
   begin 
   PULSE_on <= 0; 
   pulse_out <= 0; 
   end 
 
end 

 
 
 
As can be seen in Table 3.7, a register called pulse_on is set to 1, when a 

rising edge of the initialize signal is detected. As long as this registers 

logical value is true and the clock pulse generated by the clock divider 

module has a rising edge (which has an analogous code to the one 

provided in Table 3.5) pulse_out signal changes its logical value. Since 

this process halves the frequency, the output of the clock divider module 

needs to be twice the desired output frequency, which explains the reason 

why pulse_freq_div signal is shifted 1 bit to right.  
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Using this module, different numbers of pulse sequences are generated at 

different frequencies. Two of these sequences are provided in Figure 3.7 

and Figure 3.8. 

 
 

 

Figure 3.7 – Sequence of 5 pulses generated at 5 kHz 

 

 

Figure 3.8 – Sequence of 26 pulses generated at 6.25 kHz 
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3.4 Serial Peripheral Interface Bus (SPI) 

Serial Peripheral Interface Bus (SPI) is a serial communication protocol 

that is commonly used for data transmission between chips. SPI bus 

operates in full duplex mode and communication is achieved in 

master/slave mode where the master chip initiates the data transmission 

by selecting the target chip via the slave select signal (SSEL), followed by 

the serial clock signal (SCLK). During operation, data is exchanged from 

master out slave in (MOSI) and master in slave out (MISO) ports in full 

duplex mode. While the most common word size for transmission is 8-

bits, other sizes are also commonly implemented. A simple schematic 

diagram of the SPI bus between a master and two slave chips is presented 

in Figure 3.9.  

 

SPI
MASTER

SPI
SLAVE

SPI
SLAVE

SCLK

MOSI

MISO

SSEL0

SSEL1

 

Figure 3.9 – SPI bus between a master and two slave chips 

While there are different serial communication protocols such as I2C and 

One-Wire that can also be implemented on an FPGA; in terms of data 
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transmission speed and multiple chip support, SPI is a better choice for 

development. For instance, in terms of transmission rates, the closest rival 

of SPI is I2C with transmission speeds of 100-400 kbit/s, whereas SPI can 

achieve 5-10 Mbit/s speed. Therefore, an SPI module is selected for 

development for the motion controller design and the details are 

presented in the next section. 

3.4.1 SPI module 

SPI module is developed using Verilog HDL and its symbolic 

representation as generated by Quartus II is presented in Figure 3.12. As 

can be seen in Figure 3.12, SPI module is configured for operating in slave 

mode; however it is also possible to change the operation mode from slave 

to master with a few modifications in the HDL code. Note that clk signal 

is the input system clock of the module and not relevant with the SPI bus. 

Verilog HDL code segment realizing the data transmission is provided in 

Table 3.8. 

 

As seen in Table 3.8, SPI module is working only when SSEL  signals 

logical value is 0.  When a falling edge of the SCK  signal is detected 

(analogous to the method explained in Table 3.5), bitcnt  register is 

increased by 1 and byte_data_received is shifted left with the new bit 

coming from MOSI. On the other hand, at the rising edge of the SCK 

signal, MISO register is shifted 1 bit to left, in order to set the new bit for 

transmission. 
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Table 3.8 – Verilog HDL code segment for SPI utilization 

always @(posedge clk) 
begin 
  if(SSEL) 
    bitcnt <= 0; 
  else 
  begin 
  if(SCK_fallingedge) 
  begin 
    bitcnt <= bitcnt + 1; 
    byte_data_received <= 
{byte_data_received[6:0], MOSI};   
  end 
  if(SCK_risingedge) 
    MISO << 1; 
  end 
end 

 
 
 
The developed SPI module is implemented on the FPGA board as the 

slave chip, and the communication is tested via an 8-bit microcontroller 

(PIC16F877A), operating as the master chip. Two instances obtained 

during operation of the SPI bus via an oscilloscope are presented in Figure 

3.10 and Figure 3.11. In Figure 3.10 and Figure 3.11, D0 represents the data 

signal (MOSI), D1 represents the serial clock signal (SCLK) and D2 

represents the slave select signal (SSEL). As can be observed, data 

transmission starts with falling edge of the SSEL signal, and then SCLK 

produces 8 pulses (since the word size for this application of SPI is 

selected as 8-bits). During this process, logic level of the MOSI signal 

changes according to the data that is to be transmitted at each rising edge 

of the SCLK; and read by the slave chip at each falling edge of the SCLK. 

As can be seen in Figure 3.11, before the next byte is transmitted, initial 
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states of the SCK signal and the SSEL signal are identical while MOSI is 

different, since it represents the data. 

 

Transmission tests are performed between the FPGA board and PIC 

16F877A microcontroller with this module and the module is proven to be 

working successfully at speeds up to 250kbit/s, which is a highly sufficient 

value for the motion controller design problem. 

 
 
 

 

Figure 3.10 – Transmission of an 8-bit data via SPI bus 

 

 

Figure 3.11 – Transmission of an 16-bit data via SPI bus 
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3.5 Other Interfaces 

Other than the aforementioned interfaces and modules, there are a few 

more modules that are implemented in the design. These interfaces 

include a custom parallel data receive module, a custom pulse frequency 

modulation module as well as an RS‐232 controller. The reason why these 

modules are not discussed in detail is that, even if these modules are 

employed in some parts of the design, their applications are custom and 

their design methodology is very similar to the explained cases; and 

therefore further discussion would not provide significant information. 

On the other hand, while RS-232 controller is a relatively important 

design, it is adapted from an open core source as an intellectual property 

and therefore, is not comprehensively discussed. 

3.5.1 Custom parallel data receive 

This interface is developed for fast and simple data transmission between 

two FPGA chips. The transmission takes place in parallel with a 32-bit 

width and a clock is generated by the receiver to change the input data at 

the transmitter end. Symbolic presentation of this receive block is shown 

in Figure 3.12. As can be seen, cmnd_in signal is the 32-bit parallel input 

signal. Every time the clk_out produces a rising edge, the transmitter 

block sets the cmnd_in signal and therefore the new data can be read in 

parallel. This receive block buffers 9 set of 32-bit data and transmits this to 

the main module with a CMND_recv_ok signal indicating that the 

transmission is over. As can be seen, this is a custom module and is not 



 47

applicable to industrial peripheral devices without modification in the 

HDL design. 

3.5.2 Pulse frequency modulation 

Pulse frequency modulation (PFM) method is a very similar method to 

pulse width frequency, however in this case the duty cycle of the signal is 

constant where the frequency is varying. The PFM module is used for 

transmitting data just as the PWM transmitter and receiver modules that 

are explained in sections 3.2.2 and 3.2.3. Symbolic presentations are not 

provided since they are analogous to PWM modules and Verilog HDL 

codes are not discussed since a more complex design is explained in the 

finite pulse generation module. 

 

3.5.3 RS‐232 controller 

RS-232 controller is an important module, and is excessively used in the 

following chapters for realizing a hardware-in-the-loop simulation on a 

PC. While it is possible to develop a controller, it is a long and tedious 

design effort, especially when open core modules are available for 

utilization. Therefore, an open core IP is utilized in the design and is used 

throughout this study. The utilized module is “Simple Asynchronous Serial 

Comm. Device” that is developed by R.Usselmann  [1]  and is available at 

www.opencores.org. A symbolic presentation of the “Simple Asynchronous 

Serial Comm. Device (SASC)” module is presented in Figure 3.12. It 

should also be noted that this top level module utilizes three other 

modules that are also developed by the same author. 
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3.5.4 SRAM controller 

SRAM controller is used for utilizing the SRAM available on the FPGA 

board. An open core IP that is also developed by R.Usselmann  [1] is 

utilized in the design and is used throughout this study. A symbolic 

presentation of the “SRAM controller” module is presented in Figure 3.12. 

3.6 Closure 

In this section, a hardwired design methodology is presented for 

peripheral device interfaces which are used frequently in motion 

controller designs. The designs are developed via Verilog HDL, however 

it should be noted that any other hardware description language (such as 

VHDL) is evenly applicable for these designs. A number of these 

presented modules are also employed in Chapter 7 of this thesis. 
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Figure 3.12 – Schematic representations of the developed modules 

obtained via Quartus II schematic tool 
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CHAPTER 4  
 

 

STATE‐SPACE CONTROLLER AND OBSERVER 

DESIGN AND IMPLEMENTATION 
 

 

State-space controllers are convenient choices for multi-output systems, 

since they provide means for controlling multiple states of the plant using 

time-domain based design methodology. However, they exhibit a 

challenge since all the available states are not generally available in a 

control system. The general scheme of a motion control system is that the 

angular/linear position feedbacks are obtained via encoders but the time 

derivatives of these states are unavailable from sensor feedback; since 

providing a second feedback (velocity/acceleration) is generally costly or 

unfeasible. Therefore the controller is usually employed as coupled with a 

state observer, in order to estimate these unavailable states that are 

required by the controller.  

 

The overall implementation of this controller and observer scheme can be 

realized by employing a series of matrix multiplications (as will be 

discussed in the following section); however the initial problem remains 

as the realization of the basic multiplication of two elements of these 

matrices and how these elements could be defined with different data 

types to reduce the computation load from the multiplication unit. 
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In this chapter, after a brief introduction of the controller/observer scheme 

that is to be implemented, two diverse approaches are presented for 

performing these calculations required by a full-state feedback controller 

and a Luenberger-type state observer. However, as it will be revealed 

later, applications of these methods are not limited to state-space 

controllers and can be used for realization of other algorithms. For 

instance, in Chapter 5, digital filter implementation on FPGAs is 

thoroughly discussed and the same methods presented here are applied 

for the digital filter design problem. 

4.1 Full‐state feedback controller 

State space controllers find their use in almost all industrial motion control 

applications. The control law of a typical state-space controller can be 

simply expressed as; 

 
࢛ ൌ െ۹൫ܠොሺ݇ሻ െ  ሺ݇ሻ൯            (4.1)ܚܠ

 
Here u is the manipulated input vector; ܠො is the estimated state vector; xr is 

the reference state vector and K refers to the gain matrix. Once the system 

equations governing the dynamics of the plant are obtained, the gains in 

(4.1) can be adjusted to yield desired control characteristics using modern 

control theory. Note that since all states of the plant are not measured for 

all practical purposes, a full-state observer needs to accompany the design 

in order to estimate the missing components of the state vector. For 

instance, a Luenberger-type state observer takes the following form: 
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ොሺ݇ܠ ൅ 1ሻ ൌ ሺ۴ െ ොሺ݇ሻܠ۶ሻۺ ൅ ۵࢛ሺ݇ሻ ൅  ሺ݇ሻ        (4.2)࢟ۺ 

Here F, G, H correspond to the system matrices formed by the estimated 

parameters; y(k) is the controlled output vector while L denotes the gain 

matrix of the observer. Figure 4.1 shows the block diagram of the state-

space control system with the Luenberger-type state observer. 

 
 
 

 

Figure 4.1 – Block diagram of the control system 

In industrial motion control, the states of the system are frequently 

selected as angular position () and (instantaneous) angular velocity (). 

Thus, the general approach is to estimate the velocity using the measured 

position. There exist versatile estimator algorithms in the literature for 

velocity estimation in digital systems employing encoders/resolvers. 
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However, no single estimation algorithm exists to cover all applications 

where dynamic operating conditions do vary considerably such as the one 

considered in this study. Hence, when good estimates on system 

parameters are available, it is more desirable to observe the unavailable 

states, rather than to estimate them using higher-order differencing 

methods. Implementation details of this controller/observer scheme are 

presented in the proceeding sections. 

 

4.2 Implementation 

In Chapter 2, many recent studies employing an FPGA in controller 

designs are presented and different architectures are discussed where 

FPGAs are used coupled with a DSP/MCU or used exclusively as the 

controller.  Furthermore, for the FPGA based (non-hybrid) designs, 

various alternatives are discussed to handle the computations required by 

the controller algorithm; including embedded softcore processors and 

hardwired solutions (including embedded multipliers, floating point 

units, custom arithmetic modules and etc.) 

 

Unlike embedded softcore processors, hardwired solutions require 

relatively long and tedious design effort with hardware description 

languages (HDLs) and therefore many studies in recent literature tend to 

include an embedded processor in their FPGA based designs. However, 

using an embedded processor may have disadvantages such as consuming 

a bulk amount of the resources of the chip and decreasing the flexibility 

and processing rate of the module. Therefore, in order to fully benefit from 
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the flexible architecture of an FPGA, it is necessary to develop custom 

FPGA modules for computation.  

In this section, two different approaches are presented for realization of 

the controller/observer scheme that is presented in the preceding section. 

The first approach uses a matrix multiplier module, which is developed by 

HDL design (with Verilog HDL) and incorporates other custom 

multiplication modules called IMUL, FMUL and FPU. Evidently, custom 

multiplier modules are the key features of this method and are discussed 

thoroughly. The second method is a softcore processor solution which 

utilizes the Nios  II softcore processor developed by Altera and the design 

approach is drastically different from the modular approach, since a 

processor is involved in the design. 

4.2.1 Method I: Matrix multiplier module 

Matrix multiplier module utilizes a custom multiplication module (which 

can be selected as IMUL, FMUL or FPU) and an adder, in order to realize a 

matrix multiplication. However, before proceeding with the details of this 

module, it is necessary to present the custom multiplication modules and 

explain the methodology behind these modules as well as how these 

modules are developed and customized for a motion control application. 

4.2.1.1 Customized multiplication modules 

Digital control systems have unique properties that relax the usage of 

floating point arithmetic and thus there is a potential to develop 

inexpensive yet high-performance solutions. In order to explore the 

capabilities of a flexible hardware, all the IPs included in the design 
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should be customized (and optimized) for a specific task at hand. 

Consequently, it is necessary to adapt low level open source IPs within the 

design or develop custom modules via HDL design methods for a specific 

controller topology (i.e. a state-space controller) combined with a specific 

control system (i.e. a motion control system with a motor drive and 

encoder feedback). 

 

Some of the advantageous attributes of digital motion control systems are 

as follows: 

 Outputs of all sensors used in controls technology are essentially 

amplitude-quantized and can be conveniently represented as 

(signed/unsigned) integers. 

 Reference signals (i.e. the command vector), which are to be 

compatible with the sensory data, are to be generated as integer 

(number) sequences.  

 Manipulated outputs of almost all control systems need to be 

amplitude-quantized while sending them out to the output interface.  

 With proper scaling, the controller gains might be cast as integers 

without a significant change in the overall dynamics of the controlled 

system dynamics. 

As explained in Chapter 3, in many motion control applications, 

incremental optical encoders (either linear or rotational) are exclusively 

employed to measure position of which is commonly characterized as 

integer counts of pulses being produced by these devices. Similarly, the 

manipulated output (torque or velocity command to the motor driver) is 

represented as a finite-length binary number to be latched onto a digital-
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to-analog converter.  Note that within the context of this study, such 

systems will be referred to as “quantized input/output” control systems. 

Furthermore, if the control gains could be also cast as integers, the 

resulting system will be called “fully quantized system.”  

 

For a fully quantized system, a state-space controller can be a suitable 

choice since the pole placement techniques offer a margin for 

manipulation on the controller gains. Note that the casting of these gains 

as integers is not a straightforward task as the input arguments of the gain 

matrix must be pre-scaled which may in turn aggravate the quantization 

noise. Hence, the overall problem requires a fine balance among 

conflicting objectives.  

 

It is critical to notice that if a system is fully quantized, one may employ 

integer-arithmetic entirely in all calculations. On the other hand, for a 

quantized input/output system, the decimal multiplication algorithms of 

digital signal processing (such as shift-and-add algorithm) can be utilized. 

These well-known algorithms are easy to implement on FPGAs with the 

low-level design tools provided by FPGA manufacturers. Since many 

industrial motion control applications employ the quantized input-output, 

such methods can reduce resource costs significantly.  

 

The implementation methods for the state-space controller/observer is to 

be developed for a quantized input-output (hence including fully 

quantized) system. In this system, representing the input, output, and 

feedback states as floating-point numbers do not have an advantage in 

terms of accuracy. Therefore, it is appropriate to cast and store these 
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quantities as signed/unsigned integers. Note that the selection of the word 

size is up to the designer and is to be chosen by considering both the 

system properties (such as feedback resolution) as well as the features of 

the implementation method. The methods elaborated in the following 

section make good use of the special properties for control systems.  

  

Two techniques are proposed for matrix calculations which are essential in 

state-space controllers and observers. Using these techniques, two 

modules called “IMUL” and “FMUL” are designed specifically to take 

advantage of the aforementioned special characteristics of control systems. 

Furthermore, a custom floating point unit (FPU) is also included, in order 

to demonstrate the resource and time-wise pros and cons of the proposed 

methods.  

4.2.1.2 Method I‐a: Integer multiplication (IMUL module) 

In FPGAs, it is possible to develop efficient integer multiplication/division 

algorithms with the logic-level (i.e. combinational circuit and/or 

embedded multipliers of the FPGA chip) design. Therefore, the first 

method, which employs a special multiplier module called “IMUL”, 

focuses on multiplication of controller gains with system states employing 

integer arithmetic. To be specific, let us consider the following operation:  

y = ⌊ax⌋ where a ( ) is the multiplicand; x and y ( ℤ) are the multiplier 

and the result (product) respectively while ⌊ ⌋ refers to floor function.  It is 

obvious that one can represent the fractional number (a) in this operation 

as the ratio of two integers (Na, Da): ݕ ؆  ேೌ௫
஽ೌ

.  Hence, the overall problem is 

reduced to multiplication and division by integers. Note that the success 
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of this approximation is directly correlated to the bit-length of the 

numerator and denominator.   

4.2.1.3 Method I‐b: Fixed point multiplication (FMUL module) 

Similar to the previous one, this method focuses on performing 

multiplication/division where the multiplier is essentially an integer. In 

fact, the proposed method facilitates a fixed-point multiplication unit 

(called “FMUL”) where bit-shift/add operations are successively 

employed to obtain the result. In this paradigm, the fractional number 

(multiplicand) is separated into an integer- and a fractional portion. Two 

instances of the multiplier module are used to multiply these portions in 

parallel. When both calculations are complete, the partial products are 

added to obtain the result.  

4.2.1.4 Method I‐c : Floating point multiplication (FPU module) 

In previous sections, custom multiplier modules “IMUL” and “FMUL” are 

presented. Those modules are customized modules developed to perform 

a specific sort of multiplication; and their main advantage is their low 

amount of resource requirement. In turn, they may not be applicable to 

other controller topologies; since they are developed to perform a certain 

type of multiplication. Therefore, a floating point unit is a necessity, in 

order to perform more complex arithmetic operations required by 

advanced controllers. Furthermore, employing floating point unit in state 

space controller design will be also helpful in demonstrating the resource 

improvement provided by the custom multiplication modules “IMUL” 

and “FMUL”. The implemented floating point unit is an open core IP, 

developed by R.  Usselmann  [1]. A schematic of this unit with its 
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input/output ports is shown in Figure 4.2 and the terminology is explained 

in Table 4.1. 

 
As can be seen in Table 4.1, the FPU performs single precision (32-bit) 

floating point operations, as well as integer to float and float to integer 

operations. The operation is performed in one-clock, however the output 

is provided after a 4 cycle delay period. Therefore, while 2 unrelated 

operations can be completed in 5 cycles, 2 consecutive operations need 8 

clock cycles to be completed.  

 

 

Figure 4.2 – Floating point unit 



 60

This floating point unit is also adapted as a custom multiplication module, 

and implemented in the overall architecture as explained in the next 

section. 

Table 4.1 – Terminology used in FPU 

Signal name  Length [Bits] Direction Explanation 

clk  1  Input  System clock 
rmode  2  Input  Rounding mode 

fpu_op  3  Input  Operation 

opa-opb  32  Input  Inputs a and b 
out  32  Output  Output 
snan  1   Output  Result is not a number 
qnan  1   Output  Result is not a number 
inf  1  Output  Result is infinity 
ine  1  Output  Result is indefinite 
overflow  1  Output  There is overflow 
underflow  1  Output  There is underflow 
div_by_zero  1  Output  Division by zero 

zero  1  Output  Result is zero 

 

4.2.1.5 Overall Architecture 

A matrix multiplier module can be designed, utilizing the afore-

mentioned multiplication modules (IMUL, FMUL and FPU).  Proposed 

module, which operates on (classical) multiply‐and‐accumulate principle, is 

illustrated in Figure 4.3. Note that the matrices are stored in the SRAM 

and thus the memory interface module sends out the relevant data to the 

registers of the multiplier controller unit (a finite state machine) on 
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demand. Hence, the architecture provides flexibility in the controller 

design as the designers can change the data at will. 

 

 

Figure 4.3 – Matrix multiplier module 

Similarly, the overall design, which is built on these matrix multiplier 

units, is presented in Figure 4.4. This unit performs the computations in 

(4.2) sequentially to obtain ܠොሺ݇ሻ and then proceeds to calculate u(k) in 

(4.1).  Note that in the shown architecture all the computations are 

performed in sequential fashion for the sake of reducing the hardware 

cost. However, the parallel implementation can be easily realized by 

eliminating the multiplexer /demultiplexer units in Figure 4.3 while using 

the instances of custom multiplication modules. 

 



 62

 

Figure 4.4 – Controller/Observer module 

4.2.2 Method II: Softcore processor IP module 

Softcore processors are embedded processor IPs developed by FPGA 

manufacturers, in order to decrease the long and tedious design periods 

required by low-level (i.e. logic-level) circuit design through hardware 

description languages (HDL). While shorter and easier design periods are 

favorable characteristics, the flexibility of the design inevitably decreases 

due to the bulk implementation of the processor and it may not always be 

a resource-wise and time-wise beneficial method. 

 

The design approach of a softcore processor is significantly different from 

the modular approach used in state-space controller implementation and 

filter implementation via generic filter module. The difference is that, in 
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modular design approach, all the modules are designed with HDLs or 

schematic design tools and all the connections (data buses, clock signals, 

enable/reset signals and etc.) between the modules are defined and 

implemented by the designer. On the other hand, utilizing a softcore 

processor is via a user-friendly GUI of the design tool provided by the 

FPGA manufacturer and all the parameters of the processor can be 

selected easily using this tool. Furthermore, all the peripheral controllers 

(such as memory management units, serial controllers, GPIOs and etc.) are 

also provided in this tool, making the overall design process a lot easier 

and faster. 

 

After implementing the embedded processor along with peripheral 

controllers to the FPGA, it is possible to develop a C code to realize any 

algorithm that is supported by the specifications of the implemented 

processor. In this design method, FPGA implementation of the algorithm 

is handled by the compiler and therefore the development process is much 

faster than the modular design approach. Note that, this is one of the most 

significant differences between the two methods. 

4.2.2.1 Method II‐a: Softcore processor with integer arithmetic 

Implementation details of the second method is as follows; first the 

specifications of the processor is selected and peripheral controllers such 

as SRAM and UART controller are added via SOPC (system on 

programmable chip) builder tool of Altera Quartus II. Note that a floating 

point unit is not added to the processor in order to reduce the amount of 

resources to a minimum. After the embedded processor is implemented to 

the FPGA, Nios II IDE is utilized to develop and implement the C code 
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into the processor. Similar to methods I-a and I-b, all the parameters and 

states are stored as 32-bit integers in the C code. A significant advantage of 

employing a softcore processor is that the processor handles all the SRAM 

and UART operations, as well as the timing constraints and therefore the 

design process takes significantly less time than the HDL design case. 

Note that the resource requirements of the design does not depend on the 

algorithm but only the specifications of the processor and peripheral 

control units. Therefore, only the execution time of the process inevitably 

depends on the algorithm. As discussed earlier, bulk implementation of 

the process drastically eases the design in cost of flexibility. 

4.2.2.2 Method II‐b: Softcore processor with fixed point arithmetic 

Implementation details of this module is exactly the same with Method   

II-a, therefore the resource requirements of this method is also the same. 

On the other hand, the C code significantly differs from the previous case 

and multiplications are realized via the fixed point multiplication method 

presented in Method I-b. The only difference is that in this implementation 

the “FMUL” module is realized via a C function. 

4.2.2.3 Method II‐c: Softcore processor with floating point arithmetic 

The only difference of this method from the preceding one is the floating 

point arithmetic unit employed in the design. Therefore, the only change 

in the methodology is in the specifications of the processor selected. In this 

method, an optional floating point arithmetic unit (which is not the same 

unit employed in Method I-c) is added via the SOPC builder tool to the 

processor and the C code is modified so that the parameters are stored as 

32-bit floating point variables.  
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In the next section, the test case (a nonlinear inverted pendulum system) 

which is employed via hardware in the loop simulation is presented. In 

the subsequent section, results of the simulation are provided for all of the 

presented methods. 

4.3 Test case 

As a benchmark case, an inverted pendulum system shown in Figure 4.5 is 

considered.  

 

Figure 4.5 – Generic model for pendulum drive system 

The system includes an AC servo-motor coupled directly to a timing belt. 

In this configuration, the motor driver is in the torque regulation mode 

where the motor along with its driver can be regarded as an ideal torque 

modulator. Hence, the state-space controller can directly generate the 

relevant (torque) commands through a digital-to-analog converter.  Note 

that two rotary encoders (which can produce 10000 pulses/rev) are to 

supply feedback on the position of the carriage as well as the angular 

position of the pendulum. This choice is also convenient since the system 



 66

has four states; ൫ݔ, ሶݔ , ,ݔ) ሶ൯ and given that only two statesߠ ݀݊ܽ ߠ  ሻ areߠ

available via encoder feedback in order to estimate ݔሶ ሶߠ ݀݊ܽ  , an observer is 

required to be implemented in the design that satisfies the testing 

requirements for the developed methods. 

 

Notice that this can be regarded as a “quantized input/output system” 

since all the sensor feedback is coming from incremental encoders as 

pulses and that the output of the FPGA is also an integer representing the 

motor torque. However, the system cannot be considered as a “fully 

quantized system” since there exist an observer in the design and while 

the coefficients of the controller can be cast to close integers via pole 

placement, it is not possible to implement an observer by using only 

integers. 

 

The force acting on the carriage is related to the motor torque as F = /r; 

here   is the motor torque [Nm]; r is the pinion (pitch circle) radius [m] 

and ߟ is the overall transmission efficiency.  Equations of motion for this 

system become 

 
ሺܯ ൅݉ሻݔሷ ൅ ሶݔܾ ൅ ݉ ௗ

ଶ
ߠݏ݋ሷܿߠ െ ݉ ௗ

ଶ
ሶߠ ଶߠ݊݅ݏ ൌ 

௥
 (4.3)      ߟ
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ቁ ሷߠ ൅ ݉݃ ௗ

ଶ
ߠ݊݅ݏ ൌ െ݉ ௗ

ଶ
 (4.4)            ߠݏ݋ሷܿݔ

 

Here, M is the mass of the carriage [kg]; b is its viscous damping [Nms]; m 

is the mass of the pendulum, I is its mass moment of inertia [kgm2];  is the 

manipulated input (i.e. motor torque). Numerical values for the system 

parameters are provided in Table 4.2.  
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Table 4.2 – Inverted pendulum parameters 

Parameter M [kg] m [kg] I [kgm2] b [Nms] d [m] r [m] 

Value 0.5 0.2 0.006 0.1 0.6 0.01 

 
 
 
In order to design a controller and a state observer, the system is 

linearized around an operating point ( = 0), since the goal of the control 

system is to hold the pendulum in upright position. Using (4.3) and (4.4), 

the state-space representation of the linearized system can be given as:  
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Having obtained the continuous-time state space representation, the 

discrete representations of (4.5) can be simply obtained as: 

 

࢞ሺ݇ ൅ 1ሻ ൌ ۴࢞ሺ݇ሻ ൅  ሺ݇ሻ                 (4.7a)ݑ۵

࢟ሺ݇ሻ ൌ ۶࢞ሺ݇ሻ      (4.7b) 

where 

۴ ൌ ;்ۯ݁      ۵ ൌ ቀ׬ ௧ۯ݁
T
૙ dݐቁ۰;        ۶ ൌ ۱            (4.8) 
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Here, A, B and C denote to the system matrices of (4.5) while T refers to 

the sampling period of the controller [s]. With the discrete-time model at 

hand, a state-space controller (along with an observer) can be designed 

using modern control theory. 

4.4 Hardware‐in‐the‐loop simulation results 

In the simulation study, the controller topology presented is implemented 

on the Altera Cyclone II FPGA chip using Verilog hardware definition 

language. The nonlinear inverted pendulum system (as explained in the 

previous section) is realized via (non-real-time) hardware-in-the-loop 

simulation (HILS) in MATLAB environment.  

 

The controller system (controller+observer) is implemented on the FPGA 

using the presented techniques: Method I-a (integer arithmetic - IMUL), 

Method I-b (fixed-point arithmetic – FMUL), Method I-c (floating-point 

arithmetic – FPU), Method II-a (integer arithmetic with softcore 

processor), Method II-b (fixed-point arithmetic with softcore processor), 

and Method II-c (floating point arithmetic with softcore processor).  

 

In this scheme, the manipulated torque input (u = ) generated by the 

FPGA is transmitted to hardware-in-the-loop simulator running on 

MATLAB platform. Once the new system states are computed using the 

dynamic model of the controlled system, they are sent back to the FPGA 

via RS-232 communication. As explained in preceding sections, the word 

size allocated to the matrix elements is a major design parameter. In this 

study, a 216-bit word size is selected for each element of the 
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controller/observer matrices: 32-bit for numerator/ denominator pair for 

IMUL multiplication module (Method I-a) or integer/ fractional portion 

pair for FMUL module (Method I-b). On the other hand, the system states 

are stored as 32-bit signed integers. However, this choice is also a design 

choice and can be modified according to the needs of a particular 

application.  

 

Results of the HILS are presented in Figs. Figure 4.6 through Figure 4.11. 

Note that the initial condition of the state vector is selected as [0 0 -0.05 0]T 

to start out with a pendulum angle to create a challenge for the controller. 

As can be seen in Figs. Figure 4.6 through Figure 4.11, all controllers react 

fast and bring the carriage around 0.02m to prevent pendulum arm from 

falling; and after the initial reaction, the implemented controllers can 

successfully hold the inverted pendulum around ߠ ൌ 0 and the carriage’s 

position are bounded around its initial position. Since the system is 

nonlinear, small differences in calculation of the results between the 

proposed methods: I-a (II-a), I-b (II-b), and I-c (II-c) cause a relatively 

different path for the carriage after t = 2s; Nevertheless, all sub-methods of 

method I yield acceptable performance. 
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Figure 4.6 – HILS result of method I-a 

 

Figure 4.7 – HILS result of method II-a 
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Figure 4.8 – HILS result of method I-b 

 

 

Figure 4.9 – HILS result of method II-b 
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Figure 4.10 – HILS result of method I-c 

 

 

Figure 4.11 – HILS result of method II-c 
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As expected, result of the method II-a is exactly the same with method I-a, 

because even if the approach is different, both of the implementations are 

based on integer arithmetic and therefore this result is predicted. The case 

is also the same with method II-b and I-b, since the fixed point arithmetic 

algorithm is the same. On the other hand, as seen in Figure 4.11, result of 

method II-c is not the same with method I-c, even if they both employ a 

floating point unit for calculations. However, this is also expected since 

the floating point units are not the same (method I-c employs an open 

floating point by Usselmann  [1] and method II-c employs a floating point 

developed by Altera  for Nios  II processors) and a small computational 

difference yields a different trajectory. 

4.5 Comparison and discussion 

In the previous section, it has been proven that both Method I and Method 

II are feasible options for implementing a state space controller and an 

observer on an FPGA. However, certain factors such as: total logic 

elements used, number of clock cycles to complete loop, hardware 

multipliers employed and etc. should also be taken into consideration, 

when developing a design for FPGAs. An illustrative presentation of the 

resource consumptions of these methods on the Altera Cyclone II FPGA 

chip are obtained using the “Chip planner” tool of Quartus II software and 

provided in Figs. Figure 4.12 through Figure 4.16. 
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Figure 4.12 – Resource utilization of Method I-a on Cyclone II FPGA 

 

Figure 4.13– Resource utilization of Method I-b on Cyclone II FPGA 
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Figure 4.14 – Resource utilization of Method I-c on Cyclone II FPGA 

 

Figure 4.15 – Resource utilization of Methods II-a & II-b on Cyclone II 

FPGA 
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Figure 4.16 – Resource utilization of Method II-c on Cyclone II FPGA 

 

Three illustrations that are provided for Method I-a, I-b and I-c include 

three different modules employed for different types of computation, 

which are IMUL, FMUL and FPU modules. On the other hand, in Method 

II, since a softcore processor is employed, the difference between the 

illustrations is the difference in the specifications of the processor, which is 

the floating point arithmetic module. Note that a different module than 

the FPU module which is used in method I-c. Similarly, resource 

requirements of each method are summarized in Table 4.3. It is important 

to notice that resource utilizations (i.e. resource requirements and floor 

plans) may vary slightly due to the optimization performed by the fitter of 

the IDE tool provided by the FPGA manufacturer. 
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Table 4.3 – Resource/Time Costs of Proposed Methods on Altera Cyclone 

II FPGA chip  

 
 

Method 

Type of 

Comp.* 

Total logic 

elements 

Embedded 

multipliers 

Total clocks 

required 

Max. 

frequency 

I-a INT 4449 (24%) 4 (8%) 432 cycles 400 kHz 

I-b FIXED 3528 (19%) 0 (0%) 3232 cycles 50 kHz 

I-c FP 7778 (41%) 7 (13%) 2032 cycles 80 kHz 

II-a INT 4504 (24%) 4 (8%) 3907 12.8 kHz 

II-b FIXED 4504 (24%) 4 (8%) 33185 1.5 kHz 

II-c FP 10595 (54%) 11 (21%) 16051 3.1 kHz 

 *abbreviations: INT= Integer, FIXED= Fixed point, FP= Floating Point 
 
 
For method I, clock cycles necessary depend on not only the number of 

states of the controlled system but also the multiplication algorithm 

selected. The number of base cycles (Nc) can be expressed as follows: 

 

    ௖ܰ ൌ ݊ሺ݊ ൅ 2݉ ൅ ݊௬ሻ                       (4.9) 

 

Here, n is the number of states; ny is the number of measured states and m 

is the number of manipulated inputs. In this case, since n = 4, ny = 2 and 

m = 1; Nc becomes 32 (as indicated in Table 4.3). The duration of each base 

cycle depends on the design of the multiplier unit.  

 

As can be seen in Table 4.3, the proposed method I increases the attainable 

sampling rate of the controller significantly. As discussed earlier, this is 

due to the custom designed and application specific modules. It is also 
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evident that the type of computation also has an effect on the attainable 

sampling rate, however the slowest frequency attainable by method I is 

still 3 times faster than the fastest frequency attainable by method II.  

 

It is critical to note that since the speed of the serial communication (RS-

232) used in this study is not sufficient for real-time simulation, a non-real 

time HILS is realized. For the simulation, a sampling frequency of 1 kHz is 

selected and thus the discrete-time state space representations are 

evaluated using Eqns. 4.7-4.8.  

 

In terms of resource requirements, it is clear that when floating point 

operations are involved, resource requirements of the design increase 

drastically. This is proven by both of the methods with an increase of 3 to 

6 thousands of logic elements and 3 to 11 embedded multipliers. While the 

most resource-wise efficient method seems to be method I-b, all the 

methods that are not employing floating point arithmetic (method I-a, 

method II-a and method II-b) are also comparable. This shows that for 

modules with high complexity, bulk implementation of the controller does 

not increase the resource requirement significantly, since the customized 

module would also require a significant amount of FPGA resources. In 

conclusion, for a mediocre FPGA chip such as Altera Cyclone  II, utilizing 

floating point arithmetic is a costly method; especially when it is proven 

that good control performances can be attained by exploiting certain 

properties of motion control systems (such as quantized input/output 

property) as explained in section 4.2, in order to reduce the resource 

requirements of the design. It is also proven that customized HDL 

modules are more advantageous in terms of speed, rather than resource 
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utilization, especially in complex tasks. However, complexity of the task is 

also a vague description and it is necessary to implement both methods to 

see which one would be more resource-wise efficient. 

4.6 Closure 

In this chapter, a state space controller with a state observer is designed 

and implemented for the inverted pendulum problem. In section 4.2, 5 

different methods for computation of the necessary calculations are 

explained thoroughly under 2 different design methods. The HILS results 

suggest that while the modular approach presented as Method I offers a 

slight increase in terms of resource requirements, it is definitely faster than 

the softcore processor method that is presented as Method II. 
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CHAPTER 5  
 

 

IMPLEMENTATION OF DIGITAL FILTERS 
 

 

Generally, one or more filters are usually employed in a typical motion 

control system. In digital motion control applications, these filters are 

realized by digital filtering algorithms and can be implemented on various 

signal processing chips such as: DSPs, ASICs, FPGAs and etc.  In this 

chapter, after a brief overview of digital filters that are commonly used in 

motion control applications, two different methods (one incorporating the 

previously mentioned multiplication methods and the other utilizing the 

Nios  II softcore processor) for FPGA implementation of a general infinite 

impulse response (IIR) filter is presented, along with hardware-in-the-loop 

simulations (HILS) of a cascade control architecture realized by the two 

alternative methods. The chapter is finalized by a quantitative comparison 

between the two design methodologies. 

5.1 Digital Filters 

In this section, a brief overview of digital filters is presented, within a 

limited scope of digital motion control applications. A digital filter is 

commonly employed to modify certain aspects of a signal and can be 

classified into two categories, based on its impulse response or in 

particular, its feedback property. A finite impulse response (FIR) filter is a 

digital filter that generates its output signal by using only current and past 
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values of its input. Therefore, it has no internal feedback and the impulse 

response dies out to zero, as the name implies. On the other hand, an 

infinite impulse response (IIR) filter contains an internal feedback and 

therefore its output depends on its past output values as well as past input 

values. The constant coefficient difference equation of an IIR filter is 

provided in (5.1). 

 

It is more convenient to discuss the implementation of an IIR filter rather 

than the FIR, since it is more general and can also be modified to obtain an 

FIR, as can be observed in (5.1). Therefore, the subsequent discussions are 

based on the IIR filter. 

 

ሺ݇ሻݕ  ൌ ∑ ܾ௜ݔሺ݇ െ ݅ሻ௡
௜ୀ଴ ൅ ∑ ܽ௜ݕሺ݇ െ ݆ሻ௠

௝ୀ଴    (5.1) 

 

Using the generalized expression of IIR, it is possible to deduce that the 

implementation requires multiplication of the filter coefficients with past 

outputs and past inputs, followed by an addition operation, which is a 

very similar case to the state-space controller implementation that is 

presented in the previous chapter. Therefore, it is possible to realize an IIR 

filter (hence also an FIR filter) on an FPGA, utilizing the previously 

described methods.  

 

Most of the filters such as: Notch filter, Low-pass filter and High-pass 

filter and etc. that are commonly used in motion control systems are all IIR 

filters and can be realized by a general IIR filter module. Furthermore, 

difference equation of a PID controller, as can be seen in (5.2): 
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݉ሺ݇ሻ ൌ ݉ሺ݇ െ 1ሻ ൅ ܾ଴݁ሺ݇ሻ ൅ ܾଵ݁ሺ݇ െ 1ሻ ൅ ܾଶ݁ሺ݇ െ 2ሻ         (5.2) 

where m is the manipulated input, e is the error and k is the time step, is 

also a variation of (5.1) and can be implemented by the same module. 

Therefore it is desirable to develop a generic IIR filter module for FPGAs, 

in order to realize certain controller topologies, as well as digital filters. 

Implementation details of digital filters are explained in the following 

section. 

5.2 Implementation 

In this section, two alternative methods for implementation of digital 

filters on FPGAs are presented. The first method is development of a 

generic filter module utilizing a custom multiplication module, which is 

presented in the previous chapter. The second method presents the 

implementation of a softcore processor, Nios II and requires a significantly 

different design approach for the problem, as explained in the previous 

chapter. 

5.2.1 Method I: Generic filter module 

Generic filter module is analogous to the matrix multiplier module 

presented in the previous chapter. Similar to the previous case, this 

module utilizes a custom multiplication module (which is selected as 

IMUL in this case) and an adder, in order to calculate the result of (5.1). 

Figure 5.1 presents a schematic representation of the generic filter module. 

Here x represents input at the current time step x(k), y represents the 
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output at the current time step y(k), xn and ym represents the input at the 

(k-n)th time step and output at the (k-m)th time step, that are x(k-n) and y(k-

m) respectively.  

 

 

Figure 5.1 – Generic filter module 

 

There are only two design parameters to be selected when utilizing this 

generic filter module; that are n (the number of past input values) and m 

(the number of past output values). While these parameters can be 

selected as relatively large integers, in order to avoid further modifications 

to the HDL code, it is also possible to select those parameters as required 

minimum values as required for a certain filter, to minimize resource 

requirements of the module. 
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5.2.2 Method II: Softcore processor 

Softcore processors are embedded processor IPs developed by FPGA 

manufacturers, in order to decrease the long and tedious design periods 

required by low-level (i.e. logic-level) circuit design through hardware 

description languages (HDL). While shorter and easier design periods are 

favorable characteristics, the flexibility of the design inevitably decreases 

due to the bulk implementation of the processor and it may not always be 

a resource-wise and time-wise beneficial method.  

 

The design approach of a softcore processor is significantly different from 

the modular approach used in state-space controller implementation and 

filter implementation via generic filter module. The difference is that, in 

modular design approach, all the modules are designed with HDLs or 

schematic design tools and all the connections (data buses, clock signals, 

enable/reset signals and etc.) between the modules are defined and 

implemented by the designer. On the other hand, utilizing a softcore 

processor is via a user-friendly GUI of the design tool provided by the 

FPGA manufacturer and all the parameters of the processor can be 

selected easily using this tool. Furthermore, all the peripheral controllers 

(such as memory management units, serial controllers, GPIOs and etc.) are 

also provided in this tool, making the overall design process a lot easier 

and faster. 

 

After implementing the embedded processor along with peripheral 

controllers to the FPGA, it is possible to develop a C code to realize any 

algorithm that is supported by the specifications of the implemented 
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processor. In this design method, FPGA implementation of the algorithm 

is handled by the compiler and therefore the development process is much 

faster than the modular design approach. Note that, this is one of the most 

significant differences between the two methods. 

 

Implementation details of the second method is as follows; first the 

specifications of the processor is selected and peripheral controllers such 

as SRAM and UART controller are added via SOPC (system on 

programmable chip) builder tool of Altera Quartus II. After the embedded 

processor is implemented to the FPGA, Nios II IDE is utilized to develop 

and implement the C code into the processor. Note that the resource 

requirements of the design does not depend on the algorithm but only the 

specifications of the processor and peripheral control units. However, 

execution time of the process inevitably depends on the algorithm. Results 

of the hardware-in-the-loop simulations are provided in the following 

section.  

5.3 Hardware‐in‐the‐loop simulation results 

Hardware-in-the-loop simulation is realized by the inverted pendulum 

system presented in the previous chapter. In order to demonstrate the 

performance of the developed methods, a cascade controller utilizing PID 

controllers as explained in section 5.1 is implemented. The cascade control 

system consists of a PD controller in the outer loop for control of the 

position of the cart and a PID controller in the inner loop for control of the 

angular position of the pendulum.  
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Figure 5.2 – Cascaded control system illustrates the control system. 

 

Figure 5.2 – Cascaded control system 

 

In Figure 5.2, r is the reference input, m is the manipulated input, θ is the 

angular position of the pendulum and x is the linear position of the cart. 

As can be seen in Figure 5.2, two “generic filter module” instances are 

required to realize the cascade controller system. On the other hand, 

resource requirement of the softcore processor doesn’t depend on the 

number of instances required, just as it would be the case in a regular 

microprocessor.  

Results of the HILS using the generic filter module (Method I) with imul 

and FPU are shown in Figure 5.3 and 5.4 respectively. Results of the HILS 

using the Nios II softcore processor (Method II) are shown in Figure 5.5 

and Figure 5.6 respectively. Note that the initial conditions for all 

simulations are selected as x0 = 0 m and θ0 = -0.05 rad. 

 

As can be observed from Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6, 

the cascade control system is able to hold the inverted pendulum in an 
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upward position while the position of the cart is bounded and settling to 

zero. Furthermore, it can be seen that there is no significant difference 

between the figures as expected, since the implemented controllers are the 

same even if the methodologies are drastically different. Having obtained 

these results, it is possible to evaluate and compare these methodologies in 

terms of their resource requirement, execution time and ease of 

implementation; which will be the subject of the following section.  

 

Figure 5.3 – HILS result of method I with IMUL 
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Figure 5.4 – HILS result of method I with FPU 

 

 

Figure 5.5 – HILS result of method II with IMUL 
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Figure 5.6 – HILS result of method II with FPU 

5.4 Comparison and discussion 

In the previous section, it has been shown that both method I and method 

II are feasible options for implementing digital filters on an FPGA. 

However, certain factors such as: total logic elements used, number of 

clock cycles to complete loop, hardware multipliers employed and etc. 

should also be taken into consideration, when developing a design for 

FPGAs. An illustrative presentation of the resource consumptions of these 

methods on the Altera Cyclone II FPGA chip are obtained using the “Chip 

planner” tool of Quartus II software and provided in Figure 5.7, Figure 5.8, 

Figure 5.9 and Figure 5.10. 
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Figure 5.7 – Resource consumption of Method I with IMUL 

 

 

Figure 5.8 – Resource consumption of Method I with FPU 
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Figure 5.9 – Resource consumption of Method II with integer arithmetic 
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Figure 5.10 – Resource consumption of Method II with FPU 
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Two illustrations provided for Method I include two different modules 

employed for two different types of computation, which are IMUL and 

FPU modules. On the other hand, in Method II, since a softcore processor 

is employed, the difference between the illustrations is the difference in 

the specifications of the processor, which is the floating point arithmetic 

module. Note that this module is not the same module which is used in 

the generic filter module. The resource/time costs of the proposed 

methods are tabulated in Table 5.1. 

  
 
 
TABLE 5.1 Resource/Time Costs of Proposed Methods on Altera Cyclone 

II FPGA chip 

 

Method 

Type of 

Comp.* 

Total logic 

elements 

Embedded 

multipliers 

Total clock 

cycles required 

Max. 

frequency 

I INT 5012 (27%) 8 (15%) 44 cycles 3 MHz

I FP 11180 (60%) 14 (27%) 204 cycles 625 kHz

II INT 4504 (24%) 4 (8%) 400 125 kHz

II FP 10595 (54%) 11 (21%) 3270 15.3 kHz

 *abbreviations: INT= Integer, FP= Floating Point 
 
 
 
As shown in Table 5.1, in terms of logic elements, resource requirements 

of both methods are very close. On the other hand, embedded multiplier 

requirement of the first method (modular approach) is double of the 

second, owing to the fact that two instances of the generic filter module is 

required to implement two filters (i.e. it is not possible to use same 

instance twice for different filters), since past values need to be stored.  On 
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the other hand, softcore processor handles the design with 4 embedded 

multipliers, which is an advantage on its part.  

 

In terms of total clock cycles, method I has a significant advantage over 

method II, due to the optimizable modular design approach, as expected. 

It is not possible that this advantage arises due to the increased number of 

embedded multipliers that are employed, because even if the total clock 

cycles required by the first method is doubled, it is still significantly faster 

than the embedded processor. The total clock cycles required can be 

determined based on the number of multiplications in the filter. In this 

case, since 4 multiplications are required, total clock cycles required is 

obtained by multiplying the clock cycles needed by the custom 

multiplication module by 4. 

 

Observing the simulation results and the resource/time properties of two 

methods, it can be seen that both methods are convenient options for 

digital filter implementations on FPGAs. It should be noted that, when the 

complexity of the design increases (i.e. the number of filters and etc.), the 

significant increase will be in terms of resource requirements for Method I, 

since new instances of the generic filter module will be required; on the 

other hand, for Method II, the significant increase will be in terms of 

required clock cycles, since the processor is already implemented and the 

change will only be in the algorithm. Therefore, it can be concluded that 

Method I -modular design approach- seems more suitable for demanding 

real time designs where speed is more crucial and Method II -softcore 

processor- seems more suitable if the design is very complex or a fast and 

efficient development period is desired.        
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5.5 Closure 

In this chapter, different methodologies for digital filter implementation 

on FPGAs are presented. These methods are utilized by realizing a 

cascaded control system to solve a nonlinear inverted pendulum control 

problem. Furthermore, resource utilization and speed performances are 

also provided for these methodologies.   



 95

 

CHAPTER 6  
 

 

ADVANCED CONTROLLERS 
 

 

This chapter presents a study for some advanced real-time motion 

controller topologies implemented on the field programmable gate array 

(FPGA); which are selected as a sliding mode controller and a fuzzy 

controller. In this chapter, all the aforementioned methods are not 

implemented and a single implementation method (Method I-c) presented 

in Chapter 4 is adopted. In the context of Method I-c, controllers are 

developed using Verilog HDL (i.e. modular hardwired approach is 

adopted) and an open-core hardwired floating point unit is implemented 

for the complex calculations. 

 

Unlike other chapters of this study, in this chapter the controllers are 

implemented on a ML505 development board with a Xilinx Virtex-5 FPGA 

chip (in other chapters a DE1 board with an Altera Cyclone II FPGA is 

employed). The tests are performed on a hardware-in-the-loop simulation 

of a field-oriented induction motor system, which is a similar system to 

the case provided in Chapter 7, however in this case speed control 

problem of a CNC turning center is considered. 

 

Finally, simulation results are provided for the test case and 

implementation results are provided. The controller topologies are 
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evaluated by certain criteria including resource cost (total memory space 

and logic unit requirement), attainable sampling rate and the success of 

the controller. 

6.1 Controller Topologies 

Controller topologies are selected from common advanced controller 

topologies, considering the suitability of the topology for FPGA 

implementation. 

6.1.1 Fuzzy Controller 

Fuzzy control is an intelligent control topology based on fuzzy set theory. 

It has been applied to many control applications including the control of 

drives [26]-[27]. Typical method for fuzzy control application in discrete-

time control is to calculate error and change in error in each sampling 

time, then to define a linguistic representation of the error and change in 

error based on membership functions. As a final step, these linguistic 

representations having fuzzy memberships go through a defuzzification 

process to generate a manipulation signal based on a fuzzy rule base. A 

schematic for the implementation of the fuzzy controller on the FPGA is 

presented in Figure 6.1. 

 

Membership functions are presented in Figure 6.2. Here, NB, NS, Z, PB, 

and PS correspond to “Negative big,” “Negative small,” “Zero,” “Positive 

big,” and “Positive small” respectively. Notice that the functions are 

formed by the pulse error per sampling time period. Therefore, the data 
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from the encoder can be directly used without further calculations while 

the fuzzy memberships can be represented as integers.  

 

Figure 6.1 – Fuzzy controller implementation 

 

 

Figure 6.2 – Membership functions of the fuzzy controller 

The defuzzification process depends on the fuzzy rule base presented on 

Table 6.1. It can be observed that the membership functions are formed 
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based on pulse error per sampling time period. Therefore, the data from 

the encoder can be directly used without further calculations and the 

fuzzy memberships can be represented in integer forms. The 

defuzzification process is based on the fuzzy rule base presented on Table 

6.1. Fuzzy membership functions and the rule base are selected based on 

the common experience in the literature and after a trial and error process. 

Table 6.1 – Membership functions of the fuzzy controller 

error 
Δ error 

NB NS Z PS PB 

NB NB NB NS NS Z 
NS NB NS NS Z PS 
Z NS NS Z PS PS 
PS NS Z PS PS PB 
PB Z PS PS PB PB 

 

6.1.2 Sliding Mode Controller 

Sliding mode control is a robust control method developed to deal with 

model uncertainties and unknown parameters in the expense of high 

computational cost [28]. Its applications include position/speed control of 

servo/induction motor drives [29]-[30]. Sliding mode controller is based on 

a control law with varying control structures. The basic idea is to force the 

trajectory of the system state to a sliding surface through switching of the 

control structures. The most general form of the sliding surface is 

 
ݏ ൌ ሶ݁ ൅  ݁ߣ         ሺ6.1ሻ 
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where ݏ is the sliding surface; ݁ is the error of the controlled state and ߣ is 

a controller parameter. After calculating the sliding surface, an equivalent 

control term needs to be calculated such that applying equivalent control 

would make ݏሶ ൌ 0. Hence, the sliding mode control law takes the form: 

 
ݑ ൌ ௘௤ݑ ൅  ሻ           (6.2)ݏሺ݊݃ݏܭ

 
where ݑ௘௤ is the equivalent control and  ݑ is control output. The 

implementation of the sliding mode controller is presented in Figure 6.3 

 

Figure 6.3 – Sliding mode controller implementation 

 

The sliding mode controller parameters are selected as λ = 10000 and K = 

15. These parameters are selected based on the disturbance rejection 

characteristics of the controller and the maximum admissible torque based 

on the rated torque of the motor. 
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6.2 Test Setup 

The control of CNC turning centers is considered for performance 

evaluation of the above mentioned controller topologies. In CNC turning 

centers, the spindle housing the workpiece is the key component of the 

machine where a constant speed is required during most machining 

operations. Therefore, to sustain constant speed, the controller must 

effectively reject the disturbance torque observed in turning operations. 

Figure 6.4 illustrates the simplified model of a typical turning center. In 

this system, a field-oriented induction motor, which is further elaborated 

in [31], is employed. Induction motor parameters are as follows: motor 

power: 5.5kW; rated motor torque (Tr): 35Nm; rated speed (ωr): 1500rpm; 

maximum speed (ωp): 8000 rpm. It is critical to note that the presented 

system is realized via a hardware-in-the-loop simulation (HILS) 

performed on the Altera DE1 FPGA development board. For the sake of 

implementation, certain simplifications (ideal DTC motor drive, ideal 

timing belt) are made on the system. Figure 6.5 shows the block diagram 

of the resulting system. 

 

Figure 6.4 – Simplified model of a typical turning center 



 101

 

Figure 6.5 – Simplified model of the system 

 

 

Figure 6.6 – Test setup 
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As can be seen in Figure 6.5, the communication with the simulator is 

accomplished via PWM signals. A 10-bit resolution is selected for the 

PWM signal to represent torque command and position feedback. In order 

to prevent problems that could arise from insufficient resolution of the 

PWM signal, the position difference is transmitted from the HILS setup. 

Note that the real setup, which is shown in Figure 6.6, consists of two 

FPGA development boards. One of them is the Xilinx ML-505 

development board on which the controller modules are implemented. 

Likewise, an Altera DE1 development board performs the HILS. Boards 

are connected through I/O pins, facilitating the PWM connection.  

6.3 Results 

In this study, different controller topologies are designed and 

implemented on an FPGA chip. In this section, the results of the HILS are 

presented and controller topologies are evaluated by their success 

(tracking performance, disturbance rejection) and their resource cost on an 

FPGA chip.  

 

The reference input to the system is given as position difference between 

time samples and a constant 10 Nm torque is applied at t = 1s to simulate 

the interrupted machining operation. Responses of the system with 

different controllers are presented in Figure 6.7 and Figure 6.8 highlights 

the disturbance rejection characteristics of each controller. As can be 

observed, the controllers achieve similar performances until the 

disturbance kicks in at 1s. From this point on, the best performance is 

achieved by the sliding mode controller and while the system under fuzzy 
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control is affected slightly, the controller acts fast enough to compensate 

the disturbance. Note that from the standpoint of performance, these 

controllers are comparable. 

Table 6.2 – Resource costs of different controller topologies on the Xilinx 

Virtex-5 FGPA 

 Slice LUTs Slice Registers 

Fuzzy 12863 (44%) 2448 (8%) 

Sliding mode 4192 (14%) 1675 (5%) 

 
 
 

 

Figure 6.7 – Controller performances under disturbance input 
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Figure 6.8 – Zoomed controller performances to highlight disturbance 

rejection 

On the other hand, resource costs of the controllers vary in a wide range. 

These requirements are given in Table 6.2 in terms of slice look up tables 

(LUTs) and slice registers followed by the percentage consumed out of the 

available amount on the FPGA chip. At this point, it is critical to note that 

the resource requirements provided here are not in the same terms with 

the resource requirements provided in the previous chapters for Altera 

FPGAs, since Xilinx uses a different terminology for different amount of 

resources.  

 

As can be seen from Table 6.2, the sliding mode controller is consuming 

around 5% of the registers and 15% of the LUTs available in the FPGA 

chip. If a multiple-axis solution is sought on the chip, these numbers are 

sufficient enough for driving 5-axis simultaneously. On the other hand, 

fuzzy controller requires high amount of resources as Slice LUTs and 
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therefore does not seem applicable for multi-axis solutions.The complexity 

in the design affects not only the resources but also the attainable 

sampling period of the controller. In Table 6.3, maximum attainable 

sampling rates by controllers are presented. As seen in Table 6.3, the 

controllers can perform the required calculations around 85 cycles, which 

corresponds to 1.7 μs on an FPGA with a 50 MHz clock. 

Table 6.3 – Minimum attainable sampling periods of controllers on the 

Xilinx Virtex-5 FGPA 

Controller Type Cycles to complete loop Minimum period 
Fuzzy 87 cycles 1.74 μs 
SMC 84 cycles 1.68 μs 

On the implementation end, sliding mode controller may be implemented 

with a sufficiently high effort. However, fuzzy controller is complicated to 

implement on an FPGA chip, especially when an embedded processor is 

not employed in the design, as in this case.  

6.4 Closure 

In this chapter, two advanced controller topologies are implemented on a 

Virtex5 FPGA. In order to take full advantage of the parallel processing 

capability of the FPGA, a softcore processor (explained as Method II in 

Chapter 4) is not employed; however as a preliminary study, only Method 

I-c is utilized for computation. In the results part, control algorithms are 

compared by their success and their resource cost on an FPGA chip. 

Results are discussed and important features are highlighted. 
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CHAPTER 7  
 

 

HARDWARE‐IN‐THE‐LOOP SIMULATION & 

RESULTS 
 

 

The aim of this chapter is to demonstrate the utilization of the modules 

and methods that are developed in this thesis. Therefore, aforementioned 

pieces of a motion controller are put together to solve a real-world motion 

control problem.  

 

As a matter of fact, most of the modules and design methods are 

investigated individually via different testing methods presented at each 

chapter and they are proven to be successful at their own right. However, 

it is critical to test the developed methods as a single motion controller 

design and demonstrate that the proposed design is effectively capable of 

dealing with real-world motion control problems. Furthermore, testing the 

overall system would also demonstrate the capabilities and success of the 

overall design paradigm, which would provide more meaningful results 

than individual experiments.  

 

As a test case, a CNC machining center is selected. This selection is 

convenient since CNC machinery is one of the fundamental application 

areas of motion control systems. Furthermore, it also requires a multi-axis 

controller; which is also suitable for demonstrating the parallel processing 

capabilities of the FPGA based design. 
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The outline of this chapter is as follows: in the first section, the 

mathematical model of the CNC machining center selected as the test case 

is presented thoroughly. In the second section, the axis-controllers for this 

system are designed and the MATLAB/Simulink simulation results are 

provided. In the third section, the realization details of this problem via 

hardware-in-the-loop simulation (HILS) are briefly presented. In the 

fourth section, the HILS results are shown while some key results 

conclusions on the implementation are discussed in the last section. 

7.1 Real system 

The real system selected as the test case is a CNC machining center, which 

is a very important application area of a motion control system; since the 

success of the controller directly affects the productivity of the machine, as 

well as the quality of the product. Therefore, a CNC machining center is a 

suitable candidate for testing the motion controller design. Thus, this 

section starts with the details of the selected CNC center. 

7.1.1 CNC machining center 

The selected CNC vertical machining center shown in Figure 7.1 is located 

at the Machine Shop of the Mechanical Engineering Department of METU.  

It is a First MCV-1100 3-Axis CNC Machining center by Long Chang 

Machinery, equipped with an automatic tool changer, coolant and chip 

removal systems. 
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Figure 7.1 – First MCV-1100 3-Axis CNC Machining center 

The axes of the machine are all mounted on friction (hydrostatic) 

guideways, and are driven by servomotors via ball screws. The x-axis 

carrying the cart (a.k.a. “table”) on which the workpiece is mounted is 

illustrated in Figure 7.2 and the y-axis (a.k.a. “saddle”) carries the entire x-

axis assembly. On the other hand, Z-axis assembly is housed on the 

column  and  carries the entire headstock (main spindle shaft, motor, tool 

changing mechanism) as shown in Figure 7.3. 

 

Figure 7.2 – X-axis feed drive for CNC machining center 
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Figure 7.3 – Z-axis feed drive for CNC machining center 

 

With the given information, the equation of motion for the x-axis cart can 

be written as 

  , ,

1
sgn( )s x x f x

x w

x F F F x
m m

 
    
   (7.1) 

 

where mw stands for the mass of the workpiece, mx is the mass of the cart, 

Fx is the cutting force on the axis, Ff,x is the friction force (dry) and Fs,x is the 

force exerted on the table by the ball screw nut. The equation of motion for 

the dynamic system (as reduced to the motor shaft) becomes 
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where Jx is the total moment of inertia of the ball screw and rotor, Tm,x is 

the torque applied by the motor, Tf,x is the total (dry and viscous) friction 

torque on the ball screw and rotor, hs,x is the pitch of the ball-screw shaft 

and ηs,x is the ball screw efficiency. When backlash exists in the ball-screw 

assembly (which is a rare situation in precision parts), equations (7.1) and 

(7.2) are coupled together with (7.3) as 
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 (7.3) 

where 

 
2x x x

h
d x


   (7.4) 

 

If the ball screw is assumed to be backlash-free, these equations can be 

reduced to a single equation of motion that uses an equivalent set of 

parameters. That is, using (7.1) and (7.2) yields 
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Here, the equivalent inertia Jeq,x is defined as 
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Since the table’s position is linearly dependent on the angular position of 

the ball screw under no-backlash condition, it immediately follows that 

the velocities are also linearly dependent and sgn( ) sgn( )x    holds. Hence, 

utilizing equations (7.1) and (7.2), the equivalent dry friction Tf,eq,x can be 

simply written as 
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s x
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The equations of motion regarding the y- and z-axes can be similarly 

obtained as 
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Under no-backlash condition, these can be expressed in a simpler form 

similar to (7.5) as  
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Note that the weight of the headstock assembly (W) is included to the 

model of the z-axis drive.  It is critical to notice that the feed-drive axes are 

driven by Fanuc α Series AC Servo Motors while the spindle motor is a 

Fanuc α Series AC Spindle (Induction) Motor. As specified in the user 

manuals, the speed-torque characteristics of the servo motors have a 

linearly decreasing tendency in the torque region up to the rated speed [1]. 

Beyond this point, the motor enters the constant power region as shown in 

Figure 7.4. 

 

 

Figure 7.4 – Torque capability curve for CNC machining center axis 

motors 
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The torque envelope of the motor, Tmax, (See Fig. 7.4) is then as follows 

 

 
,

,

r T r

max r
r
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T P

  

 


  
  


 (7.14) 

 

where Tr and ωr represent the rated torque and rated speed, respectively. 

Tr´ is the torque produced by the motor and Pr is the power output, both at 

the rated speed while mT  =  (Tr  ‐ Tr´)  /  ωr and Pr  = Tr´ωr. The numerical 

values for the parameters defining the plant are provided in Table 7.1. 

 

Finally, it should be noted that the motor position data is obtained from 

the axes via an incremental encoder that generates 10000 ppr which would 

yield a resolution of 40000 pulses per revolution with quadrature (4X) 

decoding. 

7.1.2 MATLAB/Simulink model 

The system’s governing equations in terms of equivalent torque and 

inertia are provided in the previous section in (7.5), (7.12), and (7.13) for x, 

y and z axes respectively. Using these equations and the system 

parameters provided in Table 7.1; it is possible to develop a Simulink 

model for the overall system. Figure 7.5 shows the dynamic model of a 

single axis (x-axis) of the system developed by the MATLAB/Simulink 

package. 
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Table 7.1 – MATLAB/Simulink model of a single axis of the CNC 

machining center 

Parameter  Sym.  Unit  X  Y  Z 

Mass m  kg 130 331.97 260 

Dry friction force Ff  N 200 200 200 

Moment of inertia J  kg m2 7.994×10-3 16.484×10-3 19.745×10-3 

Dry friction 

torque 
Tf  N 1.1 1.5 2.1 

Viscous friction 

coefficient 
B  Nms/rad 0.0005 0.0005 0.0005 

Equivalent 

moment of inertia 
Jeq  kg m2 0.00834 0.01737 0.02044 

Equivalent dry 

friction 
Tf,eq  N m 1.435 1.835 2.435 

Ball screw lead hs  m 0.010 0.010 0.010 

Ball screw 

efficiency 
ηs  - 0.95 0.95 0.95 

Rated torque Tr  N m 12 22 30 

Rated speed ωr  rad/s 209.44 209.44 209.44 

Rated power Pr  W 2094.4 3769.9 4398.2 

Torque-speed 

slope 
mT  Nms/rad -0.00955 -0.01910 -0.04297 
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Figure 7.5 – MATLAB/Simulink model of a single axis of the CNC 

machining center 

 

As can be seen in Figure 7.5, the Simulink model has a transfer function 

that relates the input torque to the angular speed of the motor shaft. The 

model includes two different friction models (dry and viscous) and the 

disturbance input that are exactly represented in the governing equations 

of the system. This model is employed in all of the three axes of the 

machining center, with a change in the parameters: equivalent inertia 

(J_eq), equivalent dry friction coefficient (T_eq), viscous friction coefficient 

of screw (b_screw), screw efficiency (eff_scr) and pitch of the screw (h). 

Note that these parameters can easily be changed by changing the index of 
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the parameter (i.e. in J_eq(1) index 1 represents the parameter for the x 

axis).  

 

While testing/debugging the designed controller, the model in Figure 7.5 

is utilized as the controlled plant in the MATLAB/Simulink simulations. 

The next section explains the details of the controller design. 

7.2 Controller design 

In section 0, the CNC machining center that is considered as the test case 

of the motion controller design is introduced and its governing equations, 

Simulink model, and the relevant system parameters are provided. In this 

section, a controller is developed based on the introduced model and the 

simulation results obtained in MATLAB/Simulink are presented.  

7.2.1 Controller selection 

As discussed in Chapter 2, there are many motion controller topologies 

that can be implemented on an FPGA, including both conventional and 

novel/intelligent controllers. However, in order to demonstrate the 

presented methods in the previous chapters, the choice for the test case 

controller is to be made between the state-space controller (presented in 

Chapter 4) and the filter implementation (discussed in Chapter 5). Even 

though both of these controllers are equally applicable, the filter 

implementation seems a more convenient choice since the classical SISO 

controller topologies (like the industry-standard PID) can be easily 

realized. Furthermore,  it is a more efficient method (in terms of expended 
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resources) on FPGA: As demonstrated  in Chapters 4 and 5,  two instances 

of the filter can be realized with 27% of the logic cells  (i.e. a single instance 

consumes 13%)  while a state-space controller can realized utilizing 24% of 

the logic cells (via integer multiplication method). Therefore, filter 

implementation is selected to build the controller topology for the test case 

and thus its FPGA implementation is carried out by the method presented 

in Chapter 5. 

7.2.2 Linearized system model 

Considering the system model provided in Figure 7.5, the transfer 

function (Gpw) between the input torque and the output angular speed is 

Gpw (s) = 1 / (Jeq s) when the nonlinear terms (friction) are discarded under 

the assumption that they could be conveniently visualized as a part of the 

disturbance.  Since a position control is desired, the output of the transfer 

function Gpw needs to be integrated, which would lead to the transfer 

function between the input torque (manipulation) and the output position 

of the motor shaft, that is Gp = 1 / (Jeq s2). This continuous time transfer 

function of the plant is considered as the system model for the controller 

design via root locus method.  

 

Note that since the position feedback is obtained from an encoder, there is 

an encoder gain of 40000/(2h) in the feedback loop. Therefore, the 

reference trajectory may also obtained in terms of encoder pulses (hence 

integers) as previously discussed in Chapter 4, while commenting on the 

advantageous attributes of digital motion control systems. Therefore, the 
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controller is designed according to an encoder gain applied to both the 

reference and the position feedback. 

 

As a final mark, it is important to note that there exist 3 different axes to be 

controlled and hence 3 different plant models are obtained. However, the 

following procedure is presented for a single axis (x), since the plants and 

the design scheme are very similar for each axis. 

7.2.3 Design via root locus technique 

After the system model is obtained, the controller may be designed in 

either continuous-time domain or discrete-time domain. While both 

approaches are equally acceptable, in this study the latter approach is 

adopted and therefore as a first step, the system model needs to be 

converted to an equivalent discrete-time domain (i.e. z-domain) 

representation. 

 

As an initial step for discretization of the system, a convenient sampling 

time (ts) should be selected. In modern real-time control systems, 1 kHz 

sampling frequency is a highly sufficient for even demanding control 

applications, thus   ts = 0.001s is selected for the sampling period of the 

controller. After the selection of ts, the system is discretized using zero-

order hold method to obtain the discrete time model of the system Gp(z) 

via “c2d” function of MATLAB.  

 

Once the discrete-time transfer function is obtained for the plant, the root-

locus design is performed via sisotool, which is a convenient tool provided 
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by MATLAB for root locus design method. The interface allows the user to 

select closed-loop pole locations by adjusting the controller gain. That is,  

the user can modify the open-loop poles and zeros via an interactive root 

locus plot. Using sisotool, the root locus plot of the uncontrolled system is 

provided in Figure 7.6. Notice that the system is unstable since the closed-

loop poles are outside the unit circle and it is not possible to stabilize the 

system by a simple proportional controller since one of the poles end up at 

infinity as gain increases. Therefore, another controller needs to be 

designed to obtain a stable system that yields desirable tracking- and 

disturbance rejection performances. 

 
 

 

Figure 7.6 – Root locus plot of the uncompensated system 

 

As an initial step, a zero is added at 0.8 on the real axis in order to stabilize 

the system. After the addition of the zero, the speed of the system is 
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further increased by placing a pole at 0.1. Hence the root locus plot has 

become as shown in Figure 7.7. 

 
 

 

Figure 7.7 – Root locus plot of the system after addition of a pole and a 

zero 

 

As can be seen in Figure 7.7, the system may be still unstable since two of 

the closed-loop poles could be outside the unit circle; however after the 

addition of the pole/zero, now it is possible to stabilize the system by 

simple gain adjustment.  Note that the initial gain is selected as unity by 

default in sisotool, therefore by decreasing the gain, the system can be 

stabilized.  
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By decreasing the gain gradually, it can be seen that the closed-loop poles 

cross the unit circle when gain (K) = 0.492 and therefore values below this 

value should yield a stable system response. Considering the actual plant, 

it is known that during machining process, cutting forces act on the 

system as a disturbance. Therefore, a sufficiently high K value is desired 

for increasing the system’s dynamic stiffness (to disturbances). Hence, K = 

0.4 is chosen conveniently for the gain value of the controller. The 

resulting closed-loop poles are also shown in Figure 7.7 

 
On the other hand, it is also necessary to check the closed-loop bode plot, 

in order to obtain the bandwidth frequency of the controlled system 

(which is also provided in the sisotool interface). Bode plot of the closed-

loop system is shown in Figure 7.8. As can be seen in Figure 7.8, the 

bandwidth frequency of the system is around 300 Hz (< half the sampling 

frequency = 500 Hz), which is deemed sufficient for the most CNC vertical 

machining centers.  

 

Proceeding with the designed controller, its discrete-time domain 

expression can be obtained as follows: 

 
ሻݖ௖ሺܩ ൌ

ଶ௭ିଵ.଺

ଵ.ଵ௭ି଴.ଵ
           (7.15) 

 

Using (7.15) the developed controller may be tested via Simulink to 

observe the performance of the controller with the desired trajectory of the 

x axis.  
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Figure 7.8 – Closed-loop Bode plot of the system 

 

It is important to note that while this design method is explained for the x 

axis of the CNC machining center, the design method for the other axes 

are very similar to the x-axis; since the same plant with slightly different 

parameters are considered. As a matter of fact, the same controller is 

applied to the all of the axes with a slight change in the controller gains for 

the y and z axes. The reason behind this choice is that, the root locus plots 

of the other axes allow more increase in the controller gain, while keeping 

the closed-loop poles within the unit circle. Therefore, the gain values for 

y and z axes are selected as 0.6, while the other controller parameters are 

essentially the same. 
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Table 7.2 – Controller design parameters for x, y and z axes 

Axis  Gain  Closed‐loop poles Bandwidth frequency [Hz]

X 0.4 0.771, 0.321±0.86i 296 

Y 0.6 0.755, 0.425±0.69i 257 

Z 0.6 0.741, 0.469±0.61i 236 

 

 

The next section presents the Simulink results of the designed controller. 

7.2.4 Simulink simulation results 

In Figure 7.9, the overall system model in Simulink is shown. As can be 

seen, the overall system incorporates  the following systems: i) the feed-

drive (axis) model shown in Figure 7.5 (shown as x-Axis), ii) the controller 

(the lead-lag compensator), iii) the feedforward dry friction compensator, 

iv) the torque generation model for the motor.  Note that an encoder gain 

is placed behind the scope to convert the output position signal from 

radians to encoder counts. To simulate the real encoder behavior, a floor 

function is placed after the encoder gain. Since the axis model provides the 

output in terms of angular speed, an integrator is added after the axis 

model to obtain the angular position. The inputs, which are previously 

defined reference trajectory and cutting force (disturbance), are obtained 

from the Matlab workspace.  Notice that the provided model represents 

the x-axis of the machining center; however the model can be applied to 

all axes with proper changes in the parameter indices. 
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Figure 7.9 – Simulink model of the overall system 

 

The reference trajectory, which has a duration of 20 seconds, is a portion 

extracted from a real machining operation and is shown in Figure 7.10. As 

can be seen in Figure 7.10, the reference is provided in terms of encoder 

counts. On the other hand, the disturbance inputs in Figure 7.11 are not 

exactly the same as the disturbance on the real system; since the real 

disturbance (machining) process is relatively hard to model in Simulink 

environment and is beyond the scope of this thesis. However, an 

approximation of the actual case, which would provide sufficient 

information about the disturbance resistance characteristics of the system, 

can be implemented with ease. Therefore, similar results should be 

expected from the real test in terms of tracking error. The disturbance 

inputs corresponding to light- and heavy machining processes are 

provided in Figure 7.11. 
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Figure 7.10 – Reference trajectory for the X-axis 

 

It is critical to note that for this particular application, the machining 

accuracy of the center is designated as 10m. Hence, the maximum 

tracking error of the controlled system under the worst case scenario is 

expected to be less than 40 encoder counts.  

 

Simulink results are obtained by using the reference trajectory (shown in 

Figure 7.10), the disturbance input (in Figure 7.11), and the system model 

provided in Figure 7.9. The results are obtained for both cases of 

disturbance inputs. The tracking errors are shown in Figure 7.12 in terms 

of encoder counts. 

 



 126

 

Figure 7.11 – Disturbance inputs for light and heavy machining conditions 

 

Figure 7.12 – Simulink results of the designed controller in terms of 

encoder counts 
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As can be seen in Figure 7.12, when no disturbance is acting on the system, 

the control system is able to follow the trajectory within an error band of 1 

encoder count. However, when a disturbance (i.e. machining force) is 

present, the tracking error of the system becomes (roughly) 4 and 13 

counts for light- and heavy machining (simulation) respectively.  Table 7.3 

shows the means and standard deviations of error obtained through the 

simulation study. 

Table 7.3 – Mean, max and standard deviation values of the Simulink 

results (in counts) 

Disturbance type Mean Max Standard deviation

No disturbance 0.005 20 0.804 

Light disturbance 2.252 23 0.908 

Heavy disturbance 9.005 30 1.874 

 

 

Taking into account the resolution of the encoder (10000 ppr) as well as 

the pitch of the ballscrew shaft (10 mm), one can determine that 10 

encoder counts correspond to a table displacement of 2.5 μm. Thus, Table 

7.4 illustrates these table/cart displacement errors. 

 

As can be seen in Table 7.4, the results are quite successful in terms of 

mean error and standard deviation of the error. The maximum error is 

also sufficient for control purposes. 
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Table 7.4 – Mean, max, and standard deviation values of the Simulink 

results (in μm) 

Disturbance type Mean Max Standard deviation

No disturbance 0.001 5 0.201 

Light disturbance 0.563 5.75 0.227 

Heavy disturbance 2.251 7.5 0.469 

 

 

If Figure 7.12 is carefully observed, it can be seen that the maximum errors 

are attained in the sharp transitions of Figure 7.10, which corresponds to 

“rapid travel/motion” along the trajectory (the phase until t = 4s in Figure). 

Notice that in CNC technology, rapid travel is a point-to-point motion and 

position control along the trajectory lying between the initial- and target 

position is not needed. Therefore, it can be concluded that the designed 

controller can be applied to the real case. 

7.3 Implementation of the system 

In the preceding section, the controller design via classical root locus 

technique is explained and simulation results demonstrating the 

command tracking and disturbance rejection properties are given for the 

designed controllers. The results have been proven to be successful and 

therefore the controller is to be implemented on the FPGA along with 

other necessary modules for encoder interfacing, PWM generation, etc.  In 

this section, the implementation of the control system and the hardware-

in-the-loop simulation (HILS) of the plant are presented. 
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7.3.1 Implementation of the control system on the FPGA 

The control system is implemented on the DE1 FPGA board with an 

Altera Cyclone II FPGA chip by utilizing the methods and modules 

provided in the previous chapters. The interface modules that are 

employed are as follows: 

 

 Incremental encoder decoding module: For gathering angular 

position information from the axes of the CNC machining center. 3 

instances are employed for 3 axes of the machining center. 

 PWM transmitter module: For transmitting the calculated torque 

command to the motor driver (in torque/current modulation 

mode). 3 instances are employed for 3 axes of the machining center. 

 RS-232 controller: For setting the controller parameters and 

reference values via PC. Single instance is employed. 

 SRAM controller: For storing the controller parameters and 

reference values on the FPGA board. Single instance is employed. 

 

Along with these modules, three controllers are implemented on the chip 

by employing three instances of the generic  filter  module presented in 

Chapter 5, using Method I-a (IMUL). Consequently, all the interface 

modules and three controller modules are implemented on the FPGA 

chip. 

 

It is important to note that, for control of 3-axis, this design consumes 7550 

logic elements (LE), corresponding to 40% of the FPGA’s LE resources, 

along with 12 embedded 9-bit multipliers, corresponding to 23% of the 
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FPGA’s available multiplier resources. On the other hand, if a single axis 

solution is required, this requirement drops to 3027 logic elements (16%) 

and 4 embedded 9-bit multipliers (8%). Considering that Altera Cyclone II 

FPGA is a relatively aged chip (having 18752 total logic elements, 52 

embedded 9-bit multipliers), these results prove that the proposed 

solution is an extremely resource-wise efficient solution. Resource 

utilization of a single- and 3-axes solution (i.e. synthesized digital 

circuitry) are presented in Figure 7.13 and Figure 7.14 

 

Figure 7.13 – Resource utilization of the single axis solution 



 131

Region I

Region I

Region II

Background
Selection
Highlight
Block Border
Connection
Path
Bundle

LAB

Logic Element
Memory

Pin Goup
DSP
Local Interconnect
Global Interconnect
Pin
Ports
Differential Pin 
Pair Connections

Location Assignments
Registers
User Assigned LogicLock Regions
Fitter Placed LogicLock Regions
Low Power
High Speed
Virtual IO

Logic Element
Memory
Pin Goup
DSP

Region II

 

Figure 7.14 – Resource utilization of the implemented 3-axis solution 

7.3.2 Realization of the plant via hardware in the loop simulation 

HILS of the real system is realized by a hybrid design which includes an 

Altera FPGA and an Atmel processor. It can provide encoder signals and 

receive PWM data, exactly the way that a regular CNC machining center 

would provide and receive.  Therefore, within the context of this study, 

the HILS system is treated as a real plant since there is no difference from 

the controller’s point of view.  Figure 7.15 shows the controller system 

coupled to the HIL simulator. 

 
 



 132

 

Figure 7.15 – Schematic of the hardware in the loop simulation system 

 

It is critical to notice that the modules within the HILS system is not 

related to the modules presented in Chapter 3. The HILS system is a result 

of another study [32], and is adopted in this study for the test case 

simulation of the developed controller.  

 

In chapter 5, the attainable sampling frequency of the digital filter is 

presented as 385 kHz; therefore the selected sampling frequency (1 kHz) is 

attainable on the controller end. On the other hand, the computations on 

the HIL simulator take longer than the selected sampling frequency and 

inevitably HIL simulation is realized non-real time at 100 Hz. However 

though, the simulation results represent the real sampling frequency of the 
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system and therefore applicable to a real-time control problem. The results 

provided in the next section are obtained by utilizing the HILS system. 

7.4 HILS Results 

HILS results are obtained by using two different reference trajectories, 

which are portions obtained from a CNC code generated to manufacture a 

plastic bottle injection mold, as shown in Figure 7.16. The first trajectory is 

shown in Figure 7.17 and the second one is shown in Figure 7.18. 

 

Figure 7.16 – Reference trajectories for a plastic bottle injection mold 

(selected portions indicated with red color) 
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Figure 7.17 – Reference trajectories for X,Y and Z axes (t = 0-20s) 

 

Figure 7.18 – Reference trajectories for X,Y and Z axes (t = 201-241s) 
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As can be seen from Figure 7.17 and Figure 7.18, the trajectories are 

portions from a real trajectory set for a CNC machine. The reason why 

certain portions are selected is that the data to be stored in the SRAM 

device is limited with 512 kb. However, when a suitable reference 

command generator is coupled to the design, there is no limit in 

prolonging the simulation times as the reference data can then be fed to 

the controller in a continuous fashion.  On the other hand, the 

disturbances that are employed are already discussed in the preceding 

section and therefore will not be further discussed here.  

 

The results of the HILS are presented in the following order: 

1. Figure 7.19 – First trajectory motor position error in X-axis (t = 0-20s) 

2. Figure 7.20 – First trajectory motor position error in Y-axis (t = 0-20s) 

3. Figure 7.21 – First trajectory motor position error in Z-axis (t = 0-20s) 

4. Figure 7.22 – Second trajectory motor position error in X-axis (t = 201-

241s) 

5. Figure 7.23 – Second trajectory motor position error in Y-axis (t = 201-

241s) 

6. Figure 7.24 – Second trajectory motor position error in Z-axis (t = 201-

241s) 

7. Figure 7.25 – Second trajectory cart position error in X-axis with 

backlash (t = 201-241s) 

8. Figure 7.26 – Second trajectory cart position error in Y-axis with 

backlash (t = 201-241s) 

9. Figure 7.27 – Second trajectory cart position error in Z-axis with 

backlash (t = 201-241s) 
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Figure 7.19 – First trajectory motor position error in X-axis (t = 0-20s) 

 

Figure 7.20 – First trajectory motor position error in Y-axis (t = 0-20s) 
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Figure 7.21 – First trajectory motor position error in Z-axis (t = 0-20s) 

 

Figure 7.22 – Second trajectory motor position error in X-axis (t = 201-241s)  
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Figure 7.23 – Second trajectory motor position error in Y-axis (t = 201-241s) 

 

Figure 7.24 – Second trajectory motor position error in Z-axis (t = 201-241s) 
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Figure 7.25 – Second trajectory cart position error in X-axis with backlash 

(t = 201-241s)  

 

Figure 7.26 – Second trajectory cart position error in Y-axis with backlash 

(t = 201-241s) 
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Figure 7.27 – Second trajectory cart position error in Z-axis with backlash 

(t = 201-241s) 

 

As could be observed from the results, the controller seems successful in 

the trajectory tracking, as well as disturbance resistance. However, when 

backlash model is present in the HILS, the error significantly increases in 

the cart’s position. Statistical data provided in Table 7.5 to Table 7.8 would 

be more useful in interpreting the results. Note that root mean square 

(RMS) is defined as:  

 

RMS = ටଵ

௄
∑ ሾݔሺ݇ሻ െ ሺ݇ሻሿଶ௄כݔ
௞ୀ଴     (7.16) 

 

where K is the length of the data, x is the real value of the data and x* is 

the reference value of the data. 
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Table 7.5 – Root mean square and standard deviation values of the HILS 

results for first trajectory (in encoder counts) 

Axis  X  Y  Z 

Dist. 

type 
RMS  STD*  RMS  STD  RMS  STD 

No dist. 3.80 3.78 0.87 0.86 4.08 4.08 

Light 

dist. 
6.01 5.98 2.12 0.74 4.21 4.21 

Heavy 

dist. 
12.59 12.51 6.38 1.56 4.13 4.10 

*STD: Standard deviation 

 

Table 7.6 – Root mean square and standard deviation values of the HILS 

results for first trajectory (in μm) 

Axis  X  Y Z 

Dist. 

type 
RMS  STD  RMS  STD  RMS  STD 

No 

dist. 
0.95 0.95 0.22 0.21 1.02 1.02 

Light 

dist. 
1.50 1.49 0.53 0.19 1.05 1.05 

Heavy 

dist. 
3.15 3.13 1.60 0.39 1.03 1.03 
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Table 7.7 – Root mean square and standard deviation values of the HILS 

results for second trajectory (in encoder counts) 

Axis  X  Y  Z 

Dist. 

type 
RMS  STD  RMS  STD  RMS  STD 

No dist. 3.79 3.78 1.17 1.12 4.03 4.03 

Light 

dist. 
6.02 6.01 2.43 1.13 4.17 4.17 

Heavy 

dist. 
12.57 12.57 6.65 1.97 4.13 4.10 

 

 

As can be seen from Table 7.5 to Table 7.8, the results are very successful 

in terms of mean error and standard deviation of the errors. Even in the 

heavy machining case, the maximum error appears in the X axis with an 

RMS value around 12.6 counts (3.15 μm) and a standard deviation around 

12.5 counts   (3.14 μm), when the HILS has no backlash model. However, 

when a backlash model between the ball screw and the cart is included in 

the HIL simulation, it directly increases the error, both in terms of RMS 

and STD, as can be seen in Table 7.8. This is an expected result since the 

controller has no effect on backlash compensation. 

 

When the figures are observed, even there exist large errors in rare 

occasions; they are still within an acceptable range for the CNC machining 

center control task. Therefore, it can be concluded that the designed 

controller is successful in trajectory tracking, even under heavy machining 

condition. 
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Table 7.8 – Root mean square and standard deviation values of the HILS 

results for second trajectory including backlash model under heavy 

machining (in μm)  

 

Axis  X  Y  Z 

Dist. 

type 
RMS  STD  RMS  STD  RMS  STD 

No dist. 0.948 0.95 0.29 0.28 1.01 1.01 

Light 

dist. 
1.506 1.50 0.61 0.28 1.04 1.04 

Heavy 

dist. 
3.14 3.14 1.66 0.49 1.03 1.03 

Heavy 

d.+ BL* 
55.94 55.94 49.17 13.56 12.49 9.38 

(* d. + BL = disturbance + backlash) 

 

7.5 Closure 

In this chapter, most of the aforementioned modules and methods are 

utilized in an FPGA based motion controller and the results of the test case 

have proven that the proposed solution is a successful design. The results 

are comparable with industrial motion controllers in terms of performance 

and significantly efficient in terms of resource requirements. Therefore, it 

can be concluded that the proposed solution (FPGA based 

implementation) have proven to be a useful for motion control (or CNC) 

applications. 
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CHAPTER 8  
 

 

CONCLUSIONS AND FUTURE WORK 
 

 

In this chapter, an overall assessment of this thesis is presented, along 

with a number of suggestions that can follow and contribute to this study. 

8.1 Conclusion 

In this thesis, methods for developing an FPGA based motion control 

system are investigated. In this perspective, efficient and successful design 

methods are developed for each element of a typical motion control 

system, including peripheral interfaces and the controller parts. At certain 

points, some methods are highlighted as the best design approach; 

whereas at other points, methods have proven to be compatible with each 

other. However though, it can be seen that in the majority of this study, 

hardwired approach is adopted rather than the embedded processor 

design method. 

 

The reasoning behind this selection can be justified as to obtain the 

maximum capability of the FPGA chip. Low-level design methodology 

required by hardwired approach allows the designer to customize a 

segment of the FPGA, to execute a specific task in an efficient manner. 

Furthermore, many instances of the designed module can also be used in 

parallel, as demonstrated in the previous chapters. However, utilizing an 
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embedded processor for a certain task decreases the process time, 

consumes abundant amount of resources and eliminates the chance of 

parallel implementation. 

 

On the other hand, employing an embedded processor has also certain 

advantages such as faster development and easy to use interfaces. 

Furthermore, when processing speed is not crucial and the design is 

complex, the embedded processor implementation may be comparable to 

hardwired design in terms of resource requirements. Therefore, in 

Chapters 4 and 5 of this thesis, both design methodologies have been 

evaluated and the results are presented for both approaches. Notice that in 

those chapters, state-space controller (and observer) and filter designs are 

presented, where processing speed is not crucial (clearly above a certain 

limit) and the design is relatively complex. Results approve that the 

resource consumptions are comparable and the process times significantly 

differ. 

 

It can be observed that in this thesis two different FPGAs are employed 

from the two leading FPGA manufacturers; that are Altera (Cyclone II) 

and Xilinx (Virtex-5). However though, in the majority of the thesis 

(except Chapter 6) Altera’s DE1 board with the Cyclone II 

(EP2C20F484C7N) chip is employed even though the Xilinx Virtex-5 is a 

more recent and resourceful chip. The reason for this choice is that 

development tools that are provided by Xilinx require significantly more 

time to compile, are more error-prone and harder to debug. 
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Certain advanced controller topologies are also investigated in this thesis, 

however due to the shortcomings of the Xilinx FPGA chip and lack of 

time, only a single method could be implemented to demonstrate the 

utilization of advanced controllers on an FPGA. Furthermore, the test case 

provided in Chapter 6 is also different from the test cases provided in 

Chapter 4 and 5. Nevertheless, the results have been successful and 

implementation of an advanced controller is demonstrated, even with a 

single method. 

 

An important aspect of this thesis is that, all the chapters that include a 

design process contain a test case within itself, to demonstrate the success 

of the method. However, a test case is also provided in Chapter 7 for the 

assembled solution, which shows the success of the overall motion control 

system, including the peripheral interfaces as well as the controller. 

Therefore, the methods are both proven individually and as an assembled 

product. Notice that HILS is employed for testing the assembled solution, 

instead of a real test setup (a CNC machining center), however from the 

control system’s point of view there is no difference between the two, 

since the simulator provides encoder signals and accepts PWM signal, as it 

would be in the real case. Although the HILS is not conducted real-time 

(due to limitations of the simulator) the proposed system is proven to be 

capable of real-time control, in the respective design chapters of the 

control system’s elements. Therefore the results are evenly applicable to 

the real-time control case. 
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8.2 Future work 

As addressed in the previous section, an important contribution to this 

study would be to utilize this system to control a real-world system, 

preferably a CNC machining center, in order to compare the results 

obtained via HILS. Although the HIL simulator reflects the real-world 

application in a very good manner, it is always desirable to utilize the 

designed control system in a real-world control application. 

 

In this study, it can be deduced that the conventional control 

methodologies are covered quite thoroughly in Chapters 4 and 5. 

However in Chapter 6, only a single method could be presented for the 

advanced controller implementations. As a future study, other methods 

provided in the previous Chapters could be implemented to obtain a more 

detailed discussion between different designs. Furthermore, it would also 

be more meaningful if the study is conducted on an Altera Cyclone II 

FPGA, to provide a comparison between the conventional and intelligent 

controllers’ implementation on the same chip. 

 

As a final remark, it should also be noted that in Chapter 7, due to the 

unavailability of a command generator, the reference commands are 

written to SRAM before the simulation; which resulted in a limitation of 

the simulation time.  However, as a future work, the commands could be 

received from an outside source to run the full-time simulation, utilizing 

the developed modules that are presented in Chapter 3. 
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APPENDIX A 

 

LIST OF VERILOG HDL FILES 

 
In this appendix, a list of Verilog HDL files that are employed in different 

parts of this study is provided, along with their related chapters and 

corresponding functions. 

 

Table A.1 – List of Verilog HDL files employed in the thesis 

Name  Related chapter  Function 

encoder.v Chapter 3 Incremental encoder interface 

pwm_gen_v2.v Chapter 3 PWM signal generator 

pwm_transmit_v2.v Chapter 3 PWM data transmitter 

pwm_receive_v2.v Chapter 3 PWM data receiver 

clk_divider.v Chapter 3 Clock generator 

pulse_gen_v2.v Chapter 3 Finite pulse generator 

SPI.v Chapter 3 SPI slave module 

command_recv.v Chapter 3 Custom parallel data receiver 

sasc_top.v Chapter 3 RS-232 controller 

sram_ctrl.v Chapter 3 SRAM controller 

imul.v Chapter 4 Integer multiplication module 

fmul.v Chapter 4 Fixed-point multiplication module 

fpu.v Chapter 4 Floating point unit 

mul_kx.v Chapter 4 Fractional / Quantized 

multiplication module 

filter_v2.v Chapter 5 Generic filter module 
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APPENDIX B 

 

LIST OF C CODES FOR NIOS II IMPLEMENTATION 

 

In this appendix, a list of C codes developed for Nios II softcore processor 

implementation of methods presented in Chapter 4 and Chapter 5 is 

presented.  

 

Table B.1 – List of Nios II C files employed in the thesis 

Name  Related chapter  Function 

nios_ss_imul.c Chapter 4 Method II-a implementation  

nios_ss_fmul.c Chapter 4 Method II-b implementation 

nios_ss_fpu.c Chapter 4 Method II-c implementation 

nios_filter_imul.c Chapter 5 Method II-a implementation 

nios_filter_fmul.c Chapter 5 Method II-b implementation 

nios_filter_fpu.c Chapter 5 Method II-c implementation 
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APPENDIX C 

 

SAMPLE C CODE FOR NIOS II IMPLEMENTATION 

 
In this appendix, a sample C code developed for Nios II softcore processor 

implementation of method II-a presented in Chapter 4 is presented.  

 
#include <stdio.h> 
#include <unistd.h> 
#include <math.h> 
#include "altera_avalon_performance_counter.h" 
#define perfctr_base (void*)0x00900020 
 
short readshort(); 
unsigned short readshortu(); 
void writeshort(short val); 
void writeint32(int val); 
int fmul(short k_int, short k_frac, int x); 
 
int main() 
{ 
  signed int perfctr_count; 
  unsigned int perfctr_rate = alt_get_cpu_freq(); 
  int i,j,k;   
     
  short K_ni[4]; 
  short K_df[4]; 
  short F_ni[4][4]; 
  short F_df[4][4]; 
  short G_ni[4]; 
  short G_df[4]; 
  short L_ni[4][4]; 
  short L_df[4][2]; 
  short x_read[2];   
  int x[4]; 
  int xkm1[4]; 
     
  int u = 0; 
  int ukm1 = 0; 
   
      for(k=0;k<4;k++){  
        xkm1_f[k] = 0; 
        xkm1[k] = 0; 
        x_f[k] = 0; 
        x[k] = 0; 
    } 
   
     
  while(1){  
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  for(i=0;i<4;i++){  
  K_ni[i] = readshort(); 
  K_df[i] = readshort(); 
  } 
   
   
  for(i=0;i<4;i++){  
      for(j=0;j<4;j++){  
        F_ni[i][j] = readshort(); 
        F_df[i][j] = readshort(); 
      } 
  } 
     
  for(i=0;i<4;i++){  
  G_ni[i] = readshort(); 
  G_df[i] = readshort(); 
  } 
   
  for(i=0;i<4;i++){  
      for(j=0;j<2;j++){  
        L_ni[i][j] = readshort(); 
        L_df[i][j] = readshort(); 
      } 
  } 
     
  for(i=0;i<200;i++){  
         
  x_read[0] = readshort(); 
  x_read[1] = readshort(); 
 
  PERF_RESET(perfctr_base);      
  PERF_START_MEASURING(perfctr_base);   
   
// SS with int 
 
  for(k=0;k<4;k++){  
     
      for(j=0;j<4;j++){  
      x[k] = x[k] + (F_ni[k][j]*xkm1[j])/F_df[k][j]; 
      } 
       
      x[k] = x[k] + (G_ni[k]*ukm1/G_df[k]); 
       
      for(j=0;j<2;j++){  
      if(j==0) x[k] = x[k] + (L_ni[k][j]*(x_read[j]-
xkm1[0])/L_df[k][j]); 
      if(j==1) x[k] = x[k] + (L_ni[k][j]*(x_read[j]-
xkm1[2])/L_df[k][j]); 
      } 
  }     
   
  for(k=0;k<4;k++){  
  u = u + (K_ni[k]*xkm1[k]/K_df[k]); 
  } 
 
  PERF_STOP_MEASURING(perfctr_base); 
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  perfctr_count = perf_get_total_time(perfctr_base); 
         
  writeint32(u); 
  writeint32(perfctr_count); 
 
    ukm1 = u; 
    u = 0; 
     
    for(k=0;k<4;k++){  
        xkm1_f[k] = x_f[k]; 
        xkm1[k] = x[k]; 
        x_f[k] = 0; 
        x[k] = 0; 
    } 
  } 
  } //End of while(1) 
  return 0; 
} 
 
short readshort() 
{ 
short val; 
short temp; 
val = getchar(); 
temp = getchar(); 
val = val | (temp << 8); 
return val; 
} 
 
void writeshort(short val) 
{ 
    putchar((char)val);     
    usleep(2000); 
    putchar((char)(val >> 8)); 
} 
 
void writeint32(int val) 
{ 
    putchar((char) val); 
    usleep(2000); 
    putchar((char)(val >> 8)); 
    usleep(2000); 
    putchar((char)(val >> 16)); 
    usleep(2000); 
    putchar((char)(val >> 24)); 
}  
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APPENDIX D 

 

LIST OF MATLAB M‐FILES 
 

In this appendix, a list of MATLAB M-files developed for HILS employed 

in Chapter 4 and Chapter 5 is presented. 

 

Table D.1 – List of MATLAB M-files employed in the thesis 

Name  Related 

chapter 

Function 

sim_ss_imul.m Ch. 4 Sending initial parameters to 

FPGA and realizing HILS for 

hardwired implementation 

sim_ss_fmul.m Ch. 4 

sim_ss_fpu.m Ch. 4 

sim_ss_nios_imul.m Ch. 4 Sending initial parameters to 

FPGA and realizing HILS for 

softcore implementation 

sim_ss_nios_fmul.m Ch. 4 

sim_ss_nios_fpu.m Ch. 4 

sim_filter_imul.m Ch. 5 Sending initial parameters to 

FPGA and realizing HILS for 

hardwired implementation 

sim_filter_fmul.m Ch. 5 

sim_filter_fpu.m Ch. 5 

sim_filter_nios_imul.m Ch. 5 Sending initial parameters to 

FPGA and realizing HILS for 

softcore implementation 

sim_filter_nios_fmul.m Ch. 5 

sim_filter_nios_fpu.m Ch. 5 
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APPENDIX E 

 

SAMPLE MATLAB M‐FILE FOR HILS 

 

In this appendix, a sample M-file (sim_ss_nios_imul.m)is presented.  

 
clc; 
clear; 
s = serial('COM5'); 
set(s,'BaudRate', 57600, 'DataBits', 8, 'Parity', 
'none','StopBits', 1, 'FlowControl', 'none');               
  
state_no = 4; %Hence the total number of 16-bit packages to send 
is equal to 8 (state_no*2(for K matrix)). 
known_state_no = 2; 
simulation_time = 20; %in seconds 
t_sample = 0.001; %in seconds 
  
state_history = simulation_time/t_sample; 
  
ctr1=1; 
T_new = zeros(state_history,1); 
F_new = zeros(state_history,1); 
F_read = zeros(state_history,1); 
F_dene = zeros(state_history,1); 
Y_new = zeros(state_history,4); 
Y_new(1,1) = 0; %Set inital position of the cart 
Y_new(1,3) = -0.05; %Set inital position of the pendulum 
Y_send = zeros(state_history,2); 
Y_read = zeros(state_history,3); 
states = zeros(state_history,4); 
X_current = zeros(4,1); 
  
K = [-0.9975   -2.3195   29.0515   17.6788]; %define K Matrix 
 
[K_n,K_d] = rat(K); 
 
F_matrix = [1.0000    0.0010    0.0000    0.0000; 
         0    0.9998    0.0027    0.0000; 
         0   -0.0000    1.0000    0.0010; 
         0   -0.0005    0.0312    1.0000]; 
 
[F_n,F_d] = rat(F_matrix);      
 
G= [0.0000; 
     0.0018; 
     0.0000; 
     0.0045]; 
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[G_n,G_d] = rat(G); 
 
 
 
L=     1.0e+002 * [0.0026   -0.0000; 
    1.7286   -0.0153; 
   -0.0000    0.0026; 
   -0.0110    1.7294]; 
  
[L_n,L_d] = rat(L); 
     
F = 0; 
u = 0.2; 
  
Y_send(1,1) = round(Y_new(1,1)*10000); %x = cart position 
Y_send(1,2) = round(Y_new(1,3)*10000); %theta = angular position 
of pendulum 
  
fopen(s); 
 
%IMUL 
  
for i1=1:1:state_no 
   fwrite(s, K_n(i1), 'int16'); 
   fwrite(s, K_d(i1), 'int16'); 
end 
  
pause(0.01); 
  
for i1=1:1:state_no     
   for i2=1:1:state_no 
   fwrite(s, F_n(i1,i2), 'int16'); 
   fwrite(s, F_d(i1,i2), 'int16'); 
   end 
end 
  
pause(0.01); 
  
for i1=1:1:state_no 
   fwrite(s, G_n(i1,1), 'int16'); 
   fwrite(s, G_d(i1,1), 'int16'); 
end 
  
pause(0.01); 
    
for i1=1:1:state_no  
    for i2=1:1:known_state_no 
    fwrite(s, L_n(i1,i2), 'int16'); 
    fwrite(s, L_d(i1,i2), 'int16'); 
    end 
end 
pause(0.01); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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for i=t_sample:t_sample:simulation_time 
    
fwrite(s, Y_send(ctr1,1), 'int16'); 
fwrite(s, Y_send(ctr1,2), 'int16'); 
Y_read(ctr1,1) = fread(s,1,'int32');    
Y_read(ctr1,2) = fread(s,1,'int32');   
  
F = (-Y_read(ctr1,1)/10000); 
  
[T,Y] = ode45(@(t,y) myode(t,y,F),[i-t_sample i],[Y_new(ctr1,1) 
Y_new(ctr1,2) Y_new(ctr1,3) Y_new(ctr1,4)]); 
  
Y_new(ctr1+1,1) = Y(size(T,1),1); 
Y_new(ctr1+1,2) = Y(size(T,1),2); 
Y_new(ctr1+1,3) = Y(size(T,1),3); 
Y_new(ctr1+1,4) = Y(size(T,1),4); 
  
X_current(1,1) = Y_new(ctr1+1,1); 
X_current(2,1) = Y_new(ctr1+1,2); 
X_current(3,1) = Y_new(ctr1+1,3); 
X_current(4,1) = Y_new(ctr1+1,4); 
  
Y_send(ctr1+1,1) = round((Y_new(ctr1+1,1))*10000); %x = cart 
position 
Y_send(ctr1+1,2) = round((Y_new(ctr1+1,3))*10000); %theta = 
angular position of pendulum 
  
if(abs(Y_send(ctr1+1,1)) > 32765)  
    Y_send(ctr1+1,1) = sign(Y_send(ctr1+1,1))*32765; 
end 
  
if(abs(Y_send(ctr1+1,2)) > 32765)  
    Y_send(ctr1+1,2) = sign(Y_send(ctr1+1,2))*32765; 
end  
F_new(ctr1+1,1) = F; 
T_new (ctr1,1) = i; 
ctr1 = ctr1 + 1; 
end 
fclose(s); 
  
Y_new = Y_new(1:state_history,1:4); 
F_new = F_new(1:state_history,1); 
Y_send = Y_send(1:state_history,1:2); 
  
plot(T_new, Y_new(:,3)); 
hold on; 
plot(T_new, Y_new(:,1),'r'); 
title('Plot of x as a function of time'); 
xlabel('Time'); ylabel('Y(t)'); 




