

PROVIDING SCALABILITY FOR AN AUTOMATED WEB SERVICE
COMPOSITION FRAMEWORK

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERTAY KAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE 2010

Approval of the thesis:

PROVIDING SCALABILITY FOR AN AUTOMATED WEB SERVICE
COMPOSITION FRAMEWORK

submitted by ERTAY KAYA in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Canan Özgen _______________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı _______________
Head of Department, Computer Engineering

Assoc. Prof. Dr. Nihan Kesim Çiçekli
Supervisor, Computer Engineering Dept., METU _______________

Examining Committee Members:

Assoc. Prof. Dr. Ferda Nur Alpaslan
Computer Engineering Dept., METU _____________________

Assoc. Prof. Dr. Nihan Kesim Çiçekli
Computer Engineering Dept., METU _____________________

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Dept., METU _____________________

Assist. Prof. Aysu Betin Can
Informatics Institute, METU _____________________

Dr. Ayşenur Birtürk
Computer Engineering Dept., METU _____________________

Date: 07.06.2010

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

 Name, Last name : Ertay KAYA

 Signature :

iv

 ABSTRACT

PROVIDING SCALABILITY FOR AN AUTOMATED WEB
SERVICE COMPOSITION FRAMEWORK

Kaya, Ertay

M.Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Nihan Kesim Çiçekli

June 2010, 104 pages

In this thesis, some enhancements to an existing automatic web service composition

and execution system are described which provide a practical significance to the

existing framework with scalability, i.e. the ability to operate on large service sets in

reasonable time. In addition, the service storage mechanism utilized in the enhanced

system presents an effective method to maintain large service sets. The described

enhanced system provides scalability by implementing a pre-processing phase that

extracts service chains and problem initial and goal state dependencies from service

descriptions. The service storage mechanism is used to store this extracted

information and descriptions of available services. The extracted information is used

in a forward chaining algorithm which selects the potentially useful services for a

given composition problem and eliminates the irrelevant ones according to the given

problem initial and goal states. Only the selected services are used during the AI

planning and execution phases which generate the composition and execute the

services respectively.

v

Keywords: Automatic web service composition and execution, semantic web

services, AI planning, scalability, service filtering.

vi

ÖZ

BĐR OTOMATĐK WEB SERVĐS BĐLEŞĐM ÇATISINA
ÖLÇEKLENĐRLĐK SAĞLAMA

Kaya, Ertay

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Nihan Kesim Çiçekli

Haziran 2010, 104 sayfa

Bu tezde, var olan bir otomatik örün servis bileşim ve çalıştırma sistemine yapılan

bazı iyileştirmeler tarif edilmektedir. Bu iyileştirmeler, var olan sisteme ölçeklenirlik

(büyük servis kümeleri üzerinde makul zamanda çalışma yeteneği) sağlayarak

uygulama açısından önem kazandırmaktadır. Ayrıca, iyileştirilmiş sistemde

kullanılan servis depolama düzeneği, büyük servis kümelerini muhafaza etmek için

etkili bir yöntem sağlamaktadır. Tarif edilen iyileştirilmiş sistemde ölçeklenirlik,

servis zincirlerini ve servislerin verilen problemdeki başlangıç ve hedef durumlarına

bağımlılıklarını bulan bir ön işleme safhasıyla sağlanmaktadır. Đyileştirilmiş

sistemdeki servis depolama düzeneği, bu bulunan bilgileri ve var olan servislerin

tanımlarını depolamak için kullanılmaktadır. Bulunan bilgiler, verilen bir bileşim

problemi için, problemin başlangıç ve hedef durumlarına gore potansiyel olarak

kullanılabilir olan servisleri seçen ve ilgisiz olanları eleyen bir ileri yöne zincirleme

algoritmasında kullanılmaktadır. Sırasıyla servis bileşimini bulan ve çalıştıran,

yapay zeka planlama ve çalıştırma safhalarında sadece bu seçilmiş servisler

kullanılmaktadır.

vii

Anahtar kelimeler: Otomatik örün servis bileşimi ve çalıştırması, anlamsal örün

servisler, yapay zeka planlama, ölçeklenirlik, servis filtreleme.

viii

To my family…

ix

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to my supervisor

Assoc. Prof. Dr. Nihan Kesim Çiçekli for her any kind of support and

encouragement throughout this study. It was a complete privilege working with such

a friendly, considerate and intellectual supervisor.

I am deeply grateful to my dear friend Mehmet Kuzu for his invaluable support to

this work with his extensive knowledge and ideas. His contribution helped me to

overcome many difficulties easily.

I would also like to convey thanks to jury members for their valuable comments on

this thesis.

I would like to thank to my family for their never ending love and concern.

I am indebted to my precious friends Duygu Ceylan, Seda Çakıroğlu, Goncagül

Demirdizen, Hilal Karaman, Eda Kılıç, Cenk Özkan, Gizem Öztürk and Anıl Sınacı

for their encouragement and sharing experiences about their thesis studies.

As a final acknowledgement, I would like to thank to Peter Bartalos from Slovak

University of Technology in Bratislava for answering my questions with patience

and clarifying all the obscure points in my mind about his web service composition

system.

x

 TABLE OF CONTENTS

ABSTRACT... iv

ÖZ ..vi

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS.. x

LIST OF TABLES ...xiv

LIST OF FIGURES... xv

CHAPTERS

1 INTRODUCTION... 1

2 BACKGROUND INFORMATION AND RELATED WORK............................ 8

2.1 Background Information ... 8

2.1.1 Semantic Web Services and OWL-S ... 8

2.1.2 AI Planning and PDDL .. 12

2.1.3 Web Service Discovery.. 14

2.1.4 Web Service Composition.. 18

2.1.5 In-memory Databases (IMDBs) and Oracle TimesTen IMDB...... 21

2.2 Related Work... 24

xi

2.2.1 Semantic Web Service Composition Framework Based On Parallel

Processing.. 24

2.2.2 SEMAPLAN: Combining Planning with Semantic Matching to

Achieve Web Service Composition .. 26

2.2.3 A Planning Graph Based Algorithm for Semantic Web Service

Composition .. 26

2.2.4 Redundant-Free Web Services Composition Based on a Two-Phase

Algorithm .. 28

2.2.5 Dynamic Planning Approach to Automated Web Service

Composition .. 28

3 WEB SERVICE PREPROCESSING.. 32

3.1 OWL/OWL-S to PDDL Conversion of Services .. 34

3.2 Storing Service Information .. 39

3.2.1 PDDL Domain Generation... 39

3.2.2 Storing Service Composition Data... 40

3.2.3 Storing the Service Execution Data ... 48

3.3 Storing Action Chains and Dependencies ... 51

3.3.1 Storing Action Chains .. 51

3.3.2 Storing Action Dependencies... 54

4 CREATING THE WEB SERVICE COMPOSITION AND EXECUTION

DATA.. 60

4.1 OWL to PDDL Conversion of Composition Problem 61

xii

4.2 Selecting and Generating the Composition and Execution Data 63

4.2.1 PDDL Problem Generation .. 63

4.2.2 Action Pre-filtering .. 63

4.2.3 Generating Composition and Execution Data................................ 72

5 INTEGRATION WITH THE WEB SERVICE COMPOSITION AND

EXECUTION FRAMEWORK... 74

5.1 Preprocessing Phase of the Web Service Composition and Execution

Framework .. 75

5.2 Pre-filtering Integration to WSCE Framework ... 76

5.3 Interleaved Web Service Composition and Execution.................................. 79

5.4 Unexpected Event Handling and Service Repository Integration................. 81

6 EXPERIMENTAL EVALUATION ... 84

6.1 Experimental Data... 84

6.1.1 Domain Ontology... 85

6.1.2 Service Descriptions... 85

6.1.3 Problem Description... 87

6.2 Experimental Environment ... 89

6.3 Experiment Results ... 90

7 CONCLUSION AND FUTURE WORK.. 93

8 REFERENCES.. 97

xiii

9 PRE-FILTERING QUERIES.. 103

xiv

LIST OF TABLES

TABLES

Table 2.1: Comparison of AI planning techniques applied to WSC……………….. 20

Table 2.2: Comparision Criteria…………………………………………………….21

Table 6.1: Number of services and concepts in test sets of WS-Challenge’09……..89

Table 6.2: Experiment results……………………………………………………… 91

Table 6.3: Simplanner performance with Testset01 for different pre-filtering

levels………………………………………………………………………….. 92

xv

LIST OF FIGURES

FIGURES

Figure 2.1: OWL-S model... 11

Figure 2.2: PDDL Domain File Format .. 14

Figure 2.3: PDDL Problem File Format.. 14

Figure 2.4: Web service invocation model.. 15

Figure 2.5: Web service discovery categories... 17

Figure 2.6: Web service composition framework ... 18

Figure 2.7: Components of TimesTen... 23

Figure 2.8: Dynamic Planning Approach Architecture... 29

Figure 3.1: Overall architecture of Service Preprocessing system............................ 33

Figure 3.2: OWL class – PDDL type conversion.. 35

Figure 3.3: OWL property – PDDL predicate conversion .. 36

Figure 3.4: OWL individual – PDDL object conversion .. 36

Figure 3.5: OWL-S service – PDDL action conversion.. 37

Figure 3.6: precondition – PDDL precondition conversion...................................... 37

Figure 3.7: PDDXML effect – PDDL effect conversion .. 38

Figure 3.8: OWL-S parameter – PDDL parameter conversion................................. 38

xvi

Figure 3.9: ER diagram of Type and HasSupertype ... 40

Figure 3.10: SQL queries for creating Type and HasSupertype tables 41

Figure 3.11: Sample PDDL domain type definitions.. 41

Figure 3.12: Type and HasSupertype contents for “DepartureAirport”.................... 42

Figure 3.13: ER diagram of Pred and HasSuperpred .. 43

Figure 3.14: SQL queries for creating Pred, HasSuperpred tables 43

Figure 3.15: Sample PDDL domain predicate definitions .. 44

Figure 3.16: Pred and HasSuperpred contents for hasNearestAirport(Address,

Airport).. 44

Figure 3.17: ER diagram of Action, HasPrec and HasEffect.................................... 46

Figure 3.18: SQL queries for creating Actions, HasPrec, HasEffect tables.............. 47

Figure 3.19: Sample PDDL domain action definition... 48

Figure 3.20: Action, HasPrec and HasEffect contents for

CreateVehicleTransportAccountAtomicProcess... 48

Figure 3.21: Logical action – physical service mapping structure............................ 50

Figure 3.22: Example of chained actions ... 52

Figure 3.23: ER diagram of HasChain relation... 53

Figure 3.24: SQL query to create HasChain table .. 53

Figure 3.25: ER diagram of HasInitDependency, HasActionDependencyInit,

HasGoalDependency and HasActionDependencyGoal 57

xvii

Figure 3.26: SQL queries to create HasInitDependency and

HasActionDependencyInit .. 58

Figure 3.27: SQL queries to create HasGoalDependency,

HasActionDependencyGoal .. 58

Figure 4.1: Overall architecture of composition and execution data creation system

... 61

Figure 4.2: OWL and PDDL problem definitions... 62

Figure 4.3: Pre-filtering component .. 64

Figure 4.4: Pseudo code for Unusable Action Finding – Init.................................... 66

Figure 4.5: Pseudo code for Unusable Action Finding – Goal 67

Figure 4.6: Pseudo code for Forward Chaining .. 70

Figure 5.1: Preprocessing component of WSCE framework 75

Figure 5.2: Integration of composition and execution data creator with preprocessing

phase in WSCE Framework .. 78

Figure 5.3: Interleaved composition finding and service execution in WSCE

framework ... 80

Figure 5.4: Unexpected event handling and service repository integration.............. 82

Figure 6.1: Example service description from WS-Challenge'09 test sets 86

Figure 6.2: PDDL action that corresponds to the service description in figure 6.1 .. 87

Figure 6.3: Example problem description from WS-Challenge’09 test sets............. 88

Figure 6.4: PDDL problem that corresponds to the problem description in figure 6.3

... 88

1

CHAPTER 1

1 INTRODUCTION

With the improvements in web technologies and the growing scale of software

systems, the interoperability among the distributed software modules has become a

crucial concern. Interoperable distributed systems enable to benefit from ready-to-

use software modules and this provides cost and time effective software

development. To achieve interoperability, loose coupling among the software

modules should be assured. Web services are the most widely used way of

implementing distributed systems as they provide the required loose coupling among

distinct systems and interoperable distributed software environments. Web services

provide ready-to-use functionalities through fixed interfaces for other applications

by hiding the implementation details and they are commonly used in real world

applications.

With the increasing number of available web services, maintaining these services

and searching for the ones that satisfy a given requirement has become an important

problem. Moreover, in the cases where a single service cannot satisfy a requirement,

a composition of more than one service should be created and run to fulfil this

requirement. In the environments including many web services, as these services

cannot be searched manually, automation of the discovery and composition

processes is mandatory. The improvements in the semantic web and semantic web

service technologies help to automate these processes. Syntactic descriptions of web

services are done with WSDL [2] which presents the required physical execution

information such as service endpoint, network communication protocol and syntactic

service input and output message definitions. These descriptions are not sufficient to

2

find a service that fulfils a requirement or to create a composition from more than

one service. Semantic descriptions of services are required at this point which enable

the machine interpretation of the service data. These semantic descriptions are done

with OWL [3] and OWL-S [4] semantic web languages.

In addition to using semantic descriptions of web services for discovery and

composition, the similarity between web service composition and AI planning

problems enable the usage of AI planners in web service composition systems. The

semantic descriptions of web services can easily be converted to a planning domain

with some defined rules and this domain can be used to find a plan for a given

composition request.

In the literature, there exist many approaches that attempt to find solutions to the

web service composition problem. [8], [11] and [26] discuss some of these

approaches with their drawbacks and benefits. [10] and [11] identify the open

problems and desirable aspects of web service composition systems. [1] describes an

existing dynamic web service composition and execution (WSCE) framework which

provides a comprehensive solution to many of these problems and desirable aspects.

This framework interleaves web service composition and execution with the help of

an AI planner and this approach provides resiliency to dynamic execution

environments. For example, in case a service fails to execute, the framework revises

the created composition and tries to find other solutions for the problem. In addition,

in the scenarios that web services have some nondeterministic effects, they can be

observed after the real execution and state change is done by the planner [1].

Although this framework successfully addresses many open problems, it has two

important deficiencies, namely scalability and service data maintenance, which

decrease its practical significance and prevents it from being applicable for real

world environments and scenarios.

Firstly, the existing WSCE framework fails to be scalable, i.e. to be able to operate

on large service sets in reasonable time. Scalability is a critical issue for a web

service composition (WSC) system because it is quite common that real world

3

service domains include thousands of services to be composed and the WSC system

cannot achieve practical significance without being able to deal with such service

sets. The reason that prevents the existing WSCE framework from being scalable is

the fact that it utilizes a domain-independent AI planner for the composition

generation. Most domain independent planners fail to respond in reasonable time if

the search space becomes very large. Furthermore, AI planners are generally built

for classical planning problems. These problems mostly include small number of

actions which have large number of preconditions and effects. WSC problems do not

fit well into classical planning problems because they include a large number of

services (i.e. actions) which have small number of preconditions and effects.

Using domain-dependent planners may be considered as a solution to the scalability

problem. [26] compares different planning approaches for WSC problem and shows

that domain-dependent planners scale well with problems that have large domains.

However, as the domain of WSC problems cannot be specified when services in the

whole web are considered, using domain-dependent planners prevents the

applicability of WSC systems to real world problems.

Since the domain-independent planners fail to be scalable and domain-dependent

planners are not suitable for WSC problems, a promising solution emerges as

applying some extensions to domain-independent planners to provide scalability.

The most widely used mechanism for WSC systems is to implement some pre-

filtering on the service domain before invoking the planner to find the composition.

With the help of pre-filtering, the planner runs on a smaller set of candidate actions

and returns the plan quickly.

Pre-filtering process makes use of the input-output and precondition-effect matching

of services with each other and with the initial and goal states of the composition

problem. Thus, it is dependent on the initial and goal states of the composition

problem and begins after the user provides this information. As a result, the time

required for this process should also be kept as small as possible to enable a timely

response to user requests. A solution to this problem is to preprocess the service

4

domain and exploit the composition independent information that will help to

decrease the time required for pre-filtering as much as possible. An example of

problem independent information that can be found with preprocessing is the input-

output and precondition-effect matches between two services. As these matches are

independent of the given composition problem, the service domain can be analyzed

and such matches can be found and recorded before trying to solve a given problem.

As the purpose of the preprocessing is to exploit and record some additional

information about the service domain, the storage medium, information access-

update efficiency and space complexity become important issues that need to be

handled effectively. A well designed relational database (RDB) can help to keep

space complexity small. In addition RDBs provide a simple and clean interface for

information access-update with the help of the power of SQL. The problem of RDBs

is that they are located on disk which has a negative effect on the information

access-update performance. This directly affects the performance of the pre-filtering

process since it accesses the information very frequently while finding the candidate

services for the composition. Using an in-memory database (IMDB) [27] instead of

a disk database increases the performance of the system significantly as it enables

in-memory access and update of the information.

The second problem of the existing WSCE framework is its inability to maintain

service domains. Since the number of available web services is generally huge in

real world domains, a WSC system should also be able to maintain these huge

service sets in a service repository and select the candidate services from this

repository depending on some search criteria during composition. In [1], when the

user wants to run the framework for a composition problem, he/she needs to provide

the WSDL and OWL-S descriptions of all web services as well as the OWL

description of the problem to be solved. This approach brings some problems in

terms of system performance and ease-of-use.

Firstly, since the existing WSCE framework uses an AI planner that uses PDDL

domain and problem descriptions, a language conversion is required from

5

OWL/OWL-S to PDDL. Since the framework needs OWL/OWL-S description of

services for each problem, the conversion from OWL/OWL-S to PDDL takes place

each time the framework is invoked. This situation leads to unnecessary processing

because same OWL/OWL-S descriptions may be converted to PDDL for many

times. In addition, the conversion process in [1] is triggered after the user provides

the composition problem. This increases the time required to find a solution to the

problem. Maintaining a service repository can be a solution to these problems. If the

PDDL descriptions of web services are stored in this repository, no repeated

conversion will be done for a service. Furthermore, these PDDL descriptions can

directly be picked from the repository and used for the composition when a problem

is given, without requiring an additional time for the language conversion.

Secondly, the existing WSCE framework expects the semantic service descriptions

of all available services from the user as a single OWL-S file. The same is also valid

for syntactic service descriptions in which case the framework expects a single

WSDL file from the user. This is not a practically applicable solution because this

approach provides a very weak service domain maintenance mechanism when huge

numbers of services are considered in real world scenarios. When a service becomes

unavailable, it is quite complex and time consuming to find and remove the semantic

and syntactic descriptions of the service. The same problem also occurs when a new

service is wanted to be added to the service domain. This approach also decreases

the usability of the framework because the data that a user friendly WSC system

asks from the user should only be a problem description. Service descriptions should

be collected from the service providers and this collection process should be

independent of any composition request. Furthermore, in most cases the user may

not be able to access the whole set of services from different publishers and provide

this set to the framework to solve a composition problem. All these problems can be

handled by adding a service repository to the existing WSCE framework. A service

repository provides an internal storage system for services so that services can easily

be stored and updated anytime independent of any composition request. In addition,

6

the user does not need to provide any service description with the composition

problem.

This thesis aims to enhance the existing WSCE framework by providing practical

significance with service domain maintenance and scalability. The contributions of

this thesis can be briefly described as follows:

• This thesis supplements the existing WSCE framework with a service

repository. The repository stores the syntactic and semantic information

about the services. The stored service information is used while dealing with

the composition problem to find the services to be involved in the

composition. In addition to the service data, the service repository stores

some additional information about the services, namely chaining information

between services and problem state dependencies. This additional

information helps to decrease the time required for pre-filtering step of the

composition.

• The existing WSCE framework is also enhanced with a pre-processing

mechanism. This mechanism processes the service information retrieved

from the service providers and stores the required information in the service

repository. In addition, this mechanism extracts the service chains and the

problem state dependencies and stores this information as well. With the help

of this pre-processing mechanism, service information can be stored in the

service repository without requiring the user to provide it together with the

composition problem.

• The enhanced system in this thesis runs a pre-filtering process before

invoking the AI planner in [1]. This process quickly finds the reduced service

set that will be forwarded to the AI planner to find the composition. This

reduced set contains only the services that have the possibility to be involved

in the composition for the given problem. This reduction provides scalability

7

to the system and it is achieved by using the chaining and problem state

dependency information stored by the pre-processing mechanism.

• When a service is found to be unreachable during the service execution phase

in [1], the enhanced system removes the information related to this service

from service repository.

The organization of the thesis is as follows: Chapter 2 presents some background

information about the concepts and technologies used in this thesis. In addition,

some important related work is explained in Chapter 2 and they are compared with

this thesis in terms of their weaknesses and strengths. Chapter 3 explains how the

service information is preprocessed and stored in the service repository. In Chapter

4, the details of the pre-filtering mechanism are described and it is explained how it

provides scalability to the system. The integration of this pre-filtering mechanism

with the preprocessing phase of the existing WSCE framework is explained in

Chapter 5. Chapter 6 gives the experimental results that show the performance of the

pre-filtering mechanism and Chapter 7 concludes the thesis with a brief summary

and some future work.

8

CHAPTER 2

2 BACKGROUND INFORMATION AND RELATED WORK

This chapter consists of two parts. In the first part, some background information

regarding the terminology, standards and systems used in this thesis is presented. In

addition, definitions and general overview of the web service discovery and

composition concepts are explained in this section.

In the second part, some approaches that utilize service filtering algorithms to

eliminate redundant services are described and their comparison with this thesis

work is made. Furthermore, the existing WSCE framework is described with its

contributions to the WSC literature and its deficiencies.

2.1 Background Information

2.1.1 Semantic Web Services and OWL-S

In today’s software systems, achieving interoperability between distributed and

distinct entities which use different standards and platforms is quite important.

Service Oriented Architectures (SOAs) and their core components, web services, are

the widely used approaches to provide the required interoperability.

The term “web service” is formally defined by W3C as “a software system designed

to support interoperable machine-to-machine interaction over a network.” [14]. Web

services are created by service providers and consumed by client agents by

complying with some predefined rules. Web services allow the service providers to

create and publish a functional interface for the service consumers without

9

disclosing the implementation details of the provided functionality. This type of

communication assures loose coupling between different applications which means

clients can access and use the provided services independent of the hardware

platform, operating system, programming language etc.

SOAs conform to some standards in order to be able to assure the interoperability

between different entities. The most important standards are Web Service

Description Language (WSDL) [2] for service description, Simple Object Access

Protocol (SOAP) [15] for messaging format and Universal Description Discovery

and Integration (UDDI) [16] for publishing the services to clients.

The advantages of web services mentioned above allowed them to be used

commonly in the recent years. On the other hand, the increase in the number of

available services resulted in some other expectations from the real world that are

waiting to be satisfied. [13] lists these expectations as follows:

Automatic discovery of a web service: Finding a desired service can be difficult,

especially if the client does not know the existence of the service requested. Some

mechanisms should be provided to allow automatic discovery of the existing

services.

Automatic invocation of a web service: After finding the requested service, the

software agent should be able to invoke the service automatically. This is especially

important for providing efficiency to large-scale businesses.

Automatic composition of necessary web services: It is quite common that a

specific goal requires several web services to work together. A software agent

should be able to find all the necessary services and create a composition that

achieves the given goal.

Automatic monitoring of the execution process: If the preceding processes

become automatic, some mechanisms will be required to detect and report possible

failures.

10

Unfortunately, the standards mentioned above are not sufficient to achieve these

goals. SOAP is mainly for low-level data exchange and used only during service

execution. However, it does not help to the automation of service invocation. WSDL

descriptions are insufficient because they do not include any semantics about the

service. They only describe the interface and this interface can be common for many

services achieving different functionalities. Since UDDI entries also point to the

WSDL documents of the services, they also lack semantic annotation.

The required extensions to these standards are provided with the Semantic Web

Services (SWSs). The term semantic web service can simply be defined as “a web

service with explicit semantic annotation” [13]. The goals of automating service

discovery, invocation, composition and monitoring can be achieved with the

combination of semantic annotations provided by the SWSs and the standards

mentioned above.

Two different paths have been proposed for the SWSs. One of these paths is to add

semantic annotations to the current standards such as UDDI and WSDL. The main

advantage of this path is the ability to reuse these widely accepted standards. The

other path is to create stand-alone semantic descriptions and upper ontologies based

on some universally agreed ontologies. With the help of such descriptions, an

automatic agent will have sufficient information for discovery, invocation,

composition and monitoring [13]. The most widely accepted upper ontology is

OWL-S [4].

OWL-S:

OWL-S, which stands for “Web Ontology Language - Services” is currently the

standard for web service annotation. It is written using OWL and its goal is to

provide general terms and properties to describe web services [13]. This standard

consists of three parts: Service profile, service model and service grounding [4].

11

Figure 2.1: OWL-S model

Figure 2.1 which is adapted from [4] illustrates the OWL-S components and

relationships among them. According to OWL-S specification, these components are

used as follows [4]:

ServiceProfile: The profile of a service explains “what the service does” in a

suitable way for a service-seeking agent so that the agent can determine whether the

corresponding service meets its requirements. The ServiceProfile representation

covers a description of what is accomplished by the service, the limitations of the

service applicability, quality of service (QoS), and the preconditions that the agent

must satisfy to invoke the service successfully.

ServiceModel: The model of a service explains “how an agent uses the service”.

This is done by detailing the semantic content of requests, the conditions under

which some particular outcomes will occur, and the step by step processes leading to

those outcomes, where necessary. In other words, ServiceModel describes how to

ask for the service and what happens when the service is executed.

ServiceGrounding: The grounding of a service explains the details of how an agent

can access the service. Typically it specifies the communication protocol, message

12

formats and other service-specific details like port numbers used for contacting the

service. Furthermore, the grounding specifies an unambiguous way of exchanging

data elements of a type of input or output specified in the ServiceModel.

2.1.2 AI Planning and PDDL

Planning is defined in [19] as “the task of coming up with a sequence of actions that

will achieve a goal“. A search based, propositional or first order logic based

software agent can also be regarded as an AI planning agent, but they are very

primitive and cannot be used in large domains and real world applications. For

example, the invocation of a simple service that provides the path between two

different locations is infeasible for a particular problem in the case that the total

number of locations is high because the search space is proportional to the square of

the number of available locations. If there are 1000 locations, 1 million locations are

contained in the search space. Thus some heuristics are required for planning

problems as well as some useful domain knowledge to extract these heuristics.

AI planners use some sort of planning languages such as PDDL [5] to define the

domain and the problem itself. The representational power of these languages

enables to extract some heuristics that help to prune the search space. A planning

problem is generally described with state and action combinations. States are

conjunctions of positive and negative literals that describe the world and actions are

the operators that cause the state changes. Actions consist of preconditions and

effects. In order to execute an action, the current state should satisfy the

preconditions of the action. After the execution of the action, the current state

changes to a new state that includes the effects of the action.

There exist various paradigms for planning. The primitive ones are based on state

space search algorithms like forward chaining and backward chaining [19]. In

forward chaining, the direction of the search is from the initial state to the goal state

and vice versa for backward chaining. Generally speaking, backward chaining is a

better approach because it provides lower branching factor. Both approaches find

13

total order plans and do not use effective heuristics. Therefore, they are not

applicable for most of the real world problems because of their high computational

complexities. Partial order planners (POPs) use a more efficient approach. Instead of

considering the problem as a whole and finding total plans, POP divides the problem

into smaller parts which has a contribution to decreasing the computational

complexity [19]. A better approach is Graphplan which uses a data structure called

planning graph and benefits from the important heuristics like mutual exclusion

(mutex) relations among literals and actions which are extracted from the planning

graph [20]. The mentioned approaches are the basic underlying planning algorithms

of various planners that are used in the real world domains. The real world planners

generally consider time constraints, nondeterminism, partial observability and

scalability issues and make important additions to these basic algorithms. For

example, HTN planners [19] are very similar to POPs but they use task

decomposition which provides scalability by reducing the time complexity, but they

need some additional domain information to achieve this.

PDDL:

The Planning Domain Definition Language (PDDL) [5] is the de-facto standard as

the input language for most of the modern AI planners [19]. It has sublanguages for

STRIPS [21], ADL [22] and HTN domains. PDDL definitions consist of two

different parts: domain and problem definitions. The domain definition contains

available actions, predicates and types. The problem definition contains the initial

state, goal state and available objects. Figure 2.2 shows the format of PDDL domain

description as stated in [23].

14

(define (domain <domain name>)

<PDDL code for predicates>
<PDDL code for first action>
[...]
<PDDL code for last action>

)

Figure 2.2: PDDL Domain File Format

Predicates represent the object and data type properties that exist between objects.

Actions represent the semantic meaning of the operations and provide information

about the inputs and outputs of the operations as well as precondition and effect

specifications. Figure 2.3 shows the format of PDDL problem description.

(define (problem <problem name>)

(:domain <domain name>)
 <PDDL code for objects>
 <PDDL code for initial state>
 <PDDL code for goal specification>
)

Figure 2.3: PDDL Problem File Format

In this figure, objects represent the available physical and conceptual components.

Initial state represents the current state of the available objects and the goal state

represents the desired state of the available objects.

2.1.3 Web Service Discovery

With the rapid increase in the number of available web services in the past few

years, finding suitable web services that provide a requested operation has become

an important problem for service oriented systems. This problem has been addressed

by many web service discovery approaches. Web Service Discovery is broadly

15

described as “the act of locating a machine-processable description of a web service-

related resource that may have been previously unknown and that meets certain

functional criteria” [14]. This section explains the role of service discovery in the

web service model and summarizes the types of web service discovery systems with

their benefits and drawbacks.

Figure 2.4: Web service invocation model

Figure 2.4 which is adapted from [18] illustrates the web service invocation model.

In this figure, service providers are the entities that offer web services. These

services are described with Web Service Description Language (WSDL) [2]. The

service requester describes the required service to find the suitable providers. The

web service discovery system is a broker that provides the service registry and

search functions. The providers advertise the available services in this system. The

system is searched for the requests retrieved from the requester. As the registry

standard, Universal Description Discovery and Integration (UDDI) [16] is used in

the discovery system. The operations in Figure 2-4 are briefly described as follows

[18]:

16

Service Requester: The requester describes the required service

Publish: Service providers publish the available services for requesters via a

discovery system. With this operation, the description of the service available at

provider side is stored in the discovery system.

Discovery: The service requester retrieves the service provider information from the

discovery system. The discovery system uses the description of the requested service

provided by the requester and returns a list of suitable service providers.

Bind: After retrieving the list of service providers, the requester invokes these

providers and creates a binding at runtime. The requester and providers use Simple

Object Access Protocol (SOAP) [15] which is an XML-based protocol used for web

service-client communication.

The problems in the current web service discovery approaches are explained in[24].

It is stated that the main obstacle that affects the web service discovery mechanisms

is the heterogeneity among the services. The heterogeneities are classified as

technological heterogeneities which are caused by different platforms or data

formats, pragmatic heterogeneities that result from different development of domain-

specific processes, and ontological heterogeneities which are caused by domain-

specific terms and concepts, the description language used to describe the ontologies

and the coexistence of both semantic and non-semantic web services.

The web service discovery problem is divided into two categories as semantic web

service discovery and non-semantic web service discovery as illustrated in Figure

2.5 which is adopted from [18]. The semantic web service discovery is also divided

into two sub-categories which are explained as follows:

Discovery of semantic web services using the same ontology: This type of

discovery is used by most of the systems proposed. Some of these systems match the

request and service profiles directly, some divide the matching into several stages

and others make use of UDDI for matching. In direct matching systems, users are

17

not permitted to interfere with the matching process. These systems are accurate but

time consuming. In order to allow the user interference and time efficiency, some

systems divide the matching process into several stages. In these approaches, the

degree of the similarity between the request and the service can be specified and

constraints can be defined to enhance the result. The approaches that use UDDI for

matching make some enhancements to the standard by including semantic web

service profile because UDDI’s registry mechanism lacks semantics [18].

Discovery of semantic web services using different ontologies: This type of

discovery covers the cases where the web service requester and the provider use

different ontologies. As the web service requesters and providers operate

independently in the real world, each defines their own ontologies to describe their

services. A service provider can be providing a service required by a requester

although they use different ontologies. It is an open research topic to implement

discovery systems which find matches in different ontologies [18].

Figure 2.5: Web service discovery categories

18

2.1.4 Web Service Composition

There exists a huge number of web services that can handle particular requests.

When a complex request cannot be handled by a single service, a combination of

more than one service is required to handle this request. This process of combining

web services to achieve complex tasks is called Web Service Composition (WSC).

The resultant service is called a Composite Service which is defined as “a set of

atomic services together with the control and data flow among the services” [12].

WSC is a hot research topic and there exists a considerable amount of work in this

area.

Figure 2.6 which is adapted from [12] illustrates the overall architecture of WSC

frameworks. Most of the approaches proposed in this area conform to this abstract

framework. The steps that are followed in this framework are as follows [12]:

Figure 2.6: Web service composition framework

Presentation of a single service: In this phase, the signature of the service is

presented by the service providers. This signature includes the semantic descriptions

like preconditions, world altering and information providing effects are provided as

well as the input and output parameters. In addition, some non-functional properties

19

are also described such as transactional and quality of service (QoS) attributes. This

service information is generally contained in UDDI registries.

Translation of the languages: Generally, the languages that are used for problem

descriptions and semantic web service annotations are not directly interpretable by

workflow engines or AI planners which provide the solution. Thus, a translation

between languages is needed for solution providing engines to understand the

problem and the available service domain.

Generation of the composition process model: This phase is the most important

phase in the WSC framework where the AI planner or the workflow engine takes

place. This phase provides a solution to the given WSC problem. The main

difference between many approaches comes from the systems used in this phase.

Evaluation of the composite service: In some cases more than one possible

solution is provided by the previous phase. In this case an evaluation of the available

solutions is done to decide the best solution. This phase can be completed with

human intervention or software agents which make use of some heuristics.

Execution of the composite service: After a solution is found for the given

problem, the services can be invoked in the execution environment. After the

services are determined, the generated client stubs invoke the services via some RPC

calls.

There are two approaches commonly accepted for the WSC problem which are using

workflow engines and using AI techniques [12]. Although there are some

approaches that use workflow engines such as EFlow [25], they are not as successful

as the approaches using AI methodologies because these approaches require a

considerable amount of human intervention to find a composite service for the given

problem and they provide limited flexibility. For example, EFlow generates the

abstract service composition manually; the only automated process is to bind these

abstract service definitions to concrete services [25].

20

Different AI planning techniques have been proposed in many approaches to enable

automated WSC. The adequacy of the used planners is vital for the correctness of

the composite service. [26] discusses different approaches that use different AI

planning methodologies and compares these approaches in terms of different

criteria. Table 2.1 which is adapted from [26] shows the comparison of these

approaches in terms of domain dependence, domain complexity and scalability. The

reasons for choosing of these criteria are illustrated in Table 2.2 which is also

adapted from [26].

Table 2.1: Comparison of AI planning techniques applied to WSC

Criterion

Domain-
independent
Heuristic
(Optop)

HTN
Planning
(SHOP2)

Situation
Calculus
(Golog)

Planning as
model
checking
(ASTRO)

Planning
based on
Markov
Decision
processes

Domain-
independence

Domain-
independent

Domain-
specific or
domain-
configurable

Domain-
independent

Domain-
specific

Domain-
specific

Domain
complexity

Building the
regression-match
graph is too
expensive (no
proper
measurement
exists)

O((n/k)!·k)

Plan
generation
takes linear
time.
Combination
of complex
actions is
polynomial in
the number of
primitive
action
occurrences in
its definition

O(n!)

O(|S|2)

Scalability Not feasible

Scales well to
large domain
problems

Reasonable

Can deal
with large
scale
problems

Lack of
scalability

21

Table 2.2: Comparision Criteria

Criterion

Reason of choice

Domain-independence

Allows the solution of a broad range of problems.

Domain complexity

Measures the level of difficulty in solving composition
problem in terms of time and computation steps.

Scalability Provides the ability to solve large real world problems.

As it can be inferred from Table 2.1, it is still not possible to provide good

scalability by the systems using domain-independent planners because these

planners fail to respond if the search space becomes very large. The systems using

situation calculus show reasonable scalability but this is also not sufficient for real

world problems which may contain thousands of services in their domains. On the

other hand, some of the approaches using domain-dependent planners scale well

with the growing domain size. The problem in these approaches is that they are able

to run only on a particular domain. As the real domain of WSC problem is the whole

web in practice, there is only a limited knowledge available [26]. The best approach

to provide scalability and domain independency at the same time is to use a domain-

independent planner together with a pre-filtering approach that filters out the

irrelevant services according to the user request.

2.1.5 In-memory Databases (IMDBs) and Oracle TimesTen IMDB

An in-memory database (IMDB) is a database management system that primarily

relies on the main memory for data storage [27]. Whereas the conventional disk-

optimized database systems (DRDBs) are optimized for disk storage mechanisms,

IMDBs use different optimizations to structure and organize data in the physical

main memory. As the data reside in memory IMDBs provide much better response

times and transaction throughputs when compared to DRDBs. This is important

22

especially for real-time applications where transactions have some deadlines to

complete [28].

Most modern DRDBs make use of in-memory caches to allow rapid access and

update of the data that is frequently used. [28] describes the difference between

DRDBs with very large caches and IMDBs as follows: As the index structures of

DRDBs are designed for disk access (e.g. B-trees), DRDBs cannot take the full

advantage of memory, even if the data reside in memory. Furthermore, applications

using DRDBs may have to access data through a buffer manager which computes

the disk address of the data and then checks if the data is in memory. On the other

hand, IMDBs always use memory addresses to refer to data.

As the storage medium of IMDBs is volatile, the system loses all the stored

information in case of power failure or reset. Because of this problem, IMDBs can

be said to lack support for durability. The mechanisms used by IMDBs to provide

durability is as follows [27]:

• Snapshot files, that records the database state at a given time. These files are

normally generated on request or when IMDB does a controlled shut-down.

This mechanism can only provide partial durability as it is still possible to

lose data in case of a power failure or system crash.

• Transaction logging, which records the database changes in a journal file

and facilitates automatic recovery of an in-memory database.

• Non-volatile RAM, which is usually an electrically erasable programmable

ROM (EEPROM) or a static RAM backed up with battery power. With the

help of this storage, the data store can be recovered from its last consistent

state after reboot.

• High availability implementations, that makes use of database replication

for automatic failover to an identical stand-by database in case of primary

database failure. To prevent data loss in case of a complete system crash,

23

IMDB replication is generally used in conjunction with one or more of the

above mechanisms.

Oracle TimesTen IMDB:

Oracle TimesTen In-Memory Database (IMDB) is a memory-optimized relational

database that fits entirely in the physical memory. It is persistent and recoverable

and the access is provided via standard SQL interfaces. TimesTen IMDB is

maintained in the operating system’s shared memory segments and contains all user

data, indexes, system catalogs, log buffers, lock tables, and temp space. Figure 2.7

which is adapted from [30] shows the components of TimesTen IMDB.

Figure 2.7: Components of TimesTen

The components are briefly described as follows [30]:

Background Processes: Provide services for startup, shutdown and application

failure detection at the system level, and provide loading checkpointing and

deadlock handling at the database level.

24

Administrative Programs: Invoked by users to perform services like

backup/restore, database migration and system monitoring.

Checkpoint and log files: These files are stored on permanent disk and changes to

the database and transaction logs are written to these files periodically. In case a

recovery is required, TimesTen merges the database checkpoint on disk with the

completed transactions that are still in the log files.

TimesTen ensures full conformance to ACID properties. The techniques used in

TimesTen to provide durability are quite similar to the techniques used in

conventional databases. As in all transaction-oriented systems, TimesTen durability

is provided via a combination of change logging and periodic refreshes of a version

of the database residing on a disk [30].

2.2 Related Work

There exist some recent approaches that deal with the scalability problems in WSC

systems. Most of these approaches make use of some filtering mechanisms to

eliminate the unusable services. In the following part, the most important ones

approaches are briefly described and compared to this work. In addition, the WSC

framework to which the scalability is added in this thesis is described with its

strengths and weaknesses.

2.2.1 Semantic Web Service Composition Framework Based On Parallel

Processing

In [31] the authors present a WSC system that is based on three issues: Finding all

possible solutions, maximizing preprocessing and parallel processing. The system

finds all possible solutions for the given composition request and selects the one that

provides the best quality of service (QoS). In order to allow quick responses to user

queries, the system performs a huge amount of preprocessing. Furthermore, the

framework is designed to maximize the utilization of multi-processor environment.

25

In the preprocessing phase of the system, a relational repository is used to store

some data about the available services that can help to decrease the time required for

the composition. The stored data consists of service input-output information,

possible chains among the services as well as the list of services whose invocation

depends on the initial state provided by the user. A chain between two services

means the invocation of the first service provides a data which may be consumed by

the second. The services that depend on the initial state are the ones for which at

least one of the inputs cannot be provided by other services. Thus, the availability of

the inputs depends on the initial state provided by the user. If there are other services

that depend on these services for some of their inputs, these services are also stored

as depending on the initial state [31].

The composition algorithm of the system is divided into three different threads

which run in parallel on the same set of services: A forward chaining thread which

uses the pre-evaluated chaining information to reach the goal from the given initial

state, an unusable action finder thread which eliminates the initial state depending

services that cannot be invoked with the given initial state, and a backward chaining

thread which makes a similar execution to the forward chaining thread in the reverse

direction to find the possible compositions. The final composition is created by

considering the QoS parameters of the services [31].

In this thesis, a similar preprocessing approach is used with a similar forward

chaining and unusable action finder threads. This thesis implements an additional

unusable action finder thread which runs in the reverse direction and eliminates the

actions that cannot have contribution to the given goal. Our filtering approach

considers the precondition-effect predicates as well as the input-output types while

finding the chains among services. In addition, since we use an in-memory database

to store the preprocessed data, we achieve faster database update and query

processing. Another difference of this thesis is the method of finding the final

composition. [31] runs a backward chaining algorithm and considers the QoS

parameters of services; however we find the final plan via Simplanner which finds

the composition with minimum number of services.

26

2.2.2 SEMAPLAN: Combining Planning with Semantic Matching to Achieve

Web Service Composition

The approach in [32] is a hybrid approach which combines semantic matching and

AI planning algorithms to enable WSC in the presence of inexact terms. The system

utilizes a backward searching algorithm to filter the services that are composed via a

metric planner. This backward searching collects all services whose outputs match at

least one of the inputs of the services in the previous level. For fast discovery of the

matching services, the algorithm uses a semantic similarity map in each filtering

level. The semantic similarity map is created by a semantic matcher that uses some

domain-specific and domain-independent information in a pre-processing phase to

find the similarities between the services.

The main advantage of this approach is to be able to find service matches in the

presence of inexact terms. The related terms in domain-independent ontologies are

found via some tokenization techniques and a thesaurus. In domain-dependent

ontologies, these terms are found using a semantic network-based ontology

management system. Different from this approach, in the preprocessing phase of this

thesis, we find the input-output, precondition-effect matches of services and use this

information in the filtering phase. In addition, our system does not depend on any

domain knowledge for filtering.

2.2.3 A Planning Graph Based Algorithm for Semantic Web Service

Composition

In [33] a forward chaining algorithm is implemented which makes use of a leveled

graph called “simplified planning graph” and treats each service as a planning

action. The difference of the simplified planning graph is that actions in each action

pair are independent and no mutex relations exist between actions or propositions.

Each web service in the given problem is mapped to an action of a planning graph

by mapping the input parameters of each service to the action’s preconditions and

the output parameters to the action’s effects.

27

The algorithm in [33] constructs the planning graph as follows: The initial state of

the problem corresponds to level 0 of propositions. The following levels consist of

an action level and a proposition level. Action level 1 is the set of actions whose

preconditions are satisfied in level 0 and proposition level 1 is the union of

propositions in level 0 and the effects of actions in action level 1. This leveling

continues until it reaches the fixed point level of the graph where no new actions can

be added or it reaches a proposition level which includes all the required goal

parameters. Since the simplified planning graph does not include mutexes, a solution

can always be found for a solvable problem even if it may contain some redundant

services. Furthermore, the simplified planning graph is of polynomial size and can

be constructed in polynomial time [33]. While creating a new action level, the

authors employ three different strategies to prune the redundant services. It is

claimed in [33] that with these strategies, they find the composition as the graph is

being built and no additional processing is required to find the composition after

building the graph. The first of these three methods, which is eliminating the new

actions that produce a subset of already existing propositions, is observed to be the

most effective pruning strategy.

The forward chaining graph we use in this thesis is quite similar to the simplified

planning graph used in [33]. On the other hand, this approach does not do any pre-

processing which we use to store the chaining relations and problem dependency of

the services. The most important difference of our approach is that we use the graph

for filtering out the unusable services and employ Simplanner to find the final plan

which includes the minimum number of services possible. However, the plan is

found during the graph construction in [33]. This requires additional processing to

prune the redundant services. The found composition in [33] may still contain some

redundant services.

28

2.2.4 Redundant-Free Web Services Composition Based on a Two-Phase

Algorithm

The disadvantages of forward chaining and backward chaining approaches are

explained for web service composition and a two-phase algorithm that makes use of

both approaches is proposed to overcome the drawbacks of these approaches and

find redundant-free compositions in [34]. A pre-built data structure called Link

Index is used in forward-chaining phase to find the successors of services. The Link

Index is a hash table that is built according to the connectivity of services. The

definition of connectivity is same as the definition of chaining in [31]. Each key in

the hash table corresponds to a service available in the domain and the values of

each entry are the services that have connectivity with the key service. The forward

chaining graph and the algorithm are very similar to the one used in [33] and this

thesis. The algorithm makes use of Link Index while finding the services in each

level.

The backward chaining phase is executed after forward chaining phase to eliminate

the redundant services in the candidate composition. A data structure called token

manager is used in backward chaining phase to record the parameters that are

uniquely covered by each service [34]. In our approach we do not employ any

backward chaining as we use Simplanner to find the final composition from the

services filtered by the forward chaining algorithm.

2.2.5 Dynamic Planning Approach to Automated Web Service Composition

In [1], a comprehensive WSC framework which automates the composition task in

terms of time and adaptability to real world environments is described. The approach

is based on AI planning and the proposed framework utilizes Simplanner [6] which

is specially designed for highly dynamic and nondeterministic environments. One of

the main features of the frameworks is that it interleaves planning and execution.

With the help of this feature and the resiliency of Simplanner to dynamic

environments, when something unexpected happens like service unavailability, the

29

framework is able to initiate dynamic re-planning and handle the unexpected

situation. Dynamic re-planning is also initiated when the executed services have

some nondeterministic effects to change the current state and prevent such effects.

Furthermore, this framework makes use of WS-Business Activity Framework [7]

which enables the compensation of world altering effects in case of execution

failure. Figure 2.8 which is adapted from [1] shows the overall architecture of this

framework.

Figure 2.8: Dynamic Planning Approach Architecture

The system is composed of five phases which are briefly described as follows:

Preprocessing: In this phase the system retrieves the semantic and syntactic

descriptions of services as well as the user provided domain ontology and the initial

and goal states of the composition problem. OWL-S, WSDL and OWL languages

are used in these descriptions. This information is used to create PDDL descriptions

30

which are used in the planning phase and the required service client codes which

invoke the services during execution.

Planning: Almost all of the work in this phase is handled by Simplanner.

Simplanner uses the PDDL descriptions created in the preprocessing phase and finds

an initial plan and continues to refine the plan during the lifetime of the session. The

planner sends an action to action handling/execution module one at a time to be

executed. If some unexpected events occur during the execution phase, the planner is

notified for re-planning.

Action Handling: This phase handles the logical action provided by the planning

phase. Firstly, the real values of the logical parameters are found from the initial

information provided by the user. If a real value is missing, the user is prompted and

asked for it. If the user provides the asked parameter, the execution of the action

takes place. Otherwise a notification is sent to the unexpected event handler which

tries to resolve the problem.

Execution: The real service call is performed in this phase. If the invoked service is

an information gathering service, it is done as a simple service call. On the other

hand, if the service has some world altering effects, the service is called in a

conformant way to WS-Business Activity and WS-Coordination specifications. The

service client codes created in the preprocessing phase are used in this phase to

invoke the services.

Unexpected Event Handling: This phase handles the unexpected events that may

occur during service execution like network problems and missing required

information. In such cases, the planner is notified in this phase for re-planning. If re-

planning cannot produce a new solution the transactional operations are rolled back

to prevent the side effects of the unsuccessful attempts.

The framework in [1] addresses effectively many of the open problems for web

service composition mentioned in [11]. However, it lacks scalability which is a

crucial property to enable the usage of the framework in real world environments

31

where thousands of services exist. The reason for this is that this framework utilizes

a domain independent planner for the composition generation. The most suitable

way to provide scalability to the systems using domain independent planners is to

apply some pre-filtering to the action set before invoking the planner. In addition,

this framework lacks maintaining the available services. Each framework invocation

is dependent to providing the whole service set as well as the problem which

decreases the practical usability of the framework significantly. The most important

contributions of this thesis are to provide scalability to this framework with a

filtering system and to provide service maintenance with some service storage

mechanisms. These contributions are detailed in the following chapters.

32

CHAPTER 3

3 WEB SERVICE PREPROCESSING

There are two important problems in the existing WSCE framework which are its

inability to scale well with the growing service domains and inability to store and

maintain a large number of services. One of the main goals of this thesis is to

enhance the existing WSCE framework with an effective preprocessing system that

is responsible for service storage and maintenance. This preprocessing system also

stores chains and dependencies of services which help to decrease the time required

for the pre-filtering process that plays an important role in providing scalability to

the framework. For data storage, an in-memory relational database (IMDB), namely

Oracle’s TimesTen IMDB and a directory structure are used. The combination of

these two storage methods is called the service repository within the context of this

thesis. The reason for choosing an IMDB is that IMDBs have much smaller response

times to database queries when compared to disk relational databases. Database

query response time has a very significant effect on the performance of the overall

system because the pre-filtering process has a heavy data access and update traffic.

This chapter explains the structure of the service preprocessing system and the steps

followed while adding a new service data to the service repository. In addition, the

definitions of the terms action chain and action dependency are given in this chapter

and it is explained how this information is stored in the service repository and how it

decreases the time required for the pre-filtering process. Figure 3.1 illustrates the

overall architecture of the service preprocessing system in this thesis.

33

Figure 3.1: Overall architecture of Service Preprocessing system

The rest of the chapter is organized as follows: Section 1 describes the rules applied

to convert OWL and OWL-S service descriptions to PDDL format. Section 2 gives

details about the service information stored in the system which is used for service

pre-filtering, composition and execution. Finally, Section 3 explains the details of

action chains and dependencies which are used during the pre-filtering phase to

select the candidate actions for composition.

34

3.1 OWL/OWL-S to PDDL Conversion of Services

The web service composition approaches based on AI Planning require applying an

OWL/OWL-S to PDDL conversion on their input data. This is because most novel

AI planners use domains and problems described in the PDDL format. On the other

hand, semantic annotation of web services is mostly done with OWL and OWL-S

which are widely accepted formats for the semantic domain and service annotation

respectively. Since the existing WSCE framework uses an AI planner using the

PDDL format, the system in thesis applies a conversion mechanism from

OWL/OWL-S to PDDL.

OWL and OWL-S have many characteristics in common with PDDL which makes it

straightforward to convert from one format to the other. There exist some previous

works that define similar rules for this conversion [29], [39], [40]. They propose

some techniques for OWL/OWL-S to PDDL conversions that are very similar to

each other. The most important difference in [39] is the usage of KIF language for

service precondition and effect representation which is one of the recommended

languages in OWL-S 1.1 specification. In [29], a custom language namely

PDDXML [29] is used for precondition and effect representation. Custom languages

are also acceptable in OWL-S descriptions because the language used for

preconditions and effects is not explicitly determined in the OWL-S 1.1

specification. Another difference between the approaches is the way they represent

the service input-outputs with PDDL. [39] converts input and output parameters of

OWL-S services directly to PDDL action parameters. [29] also makes use of the

same conversion but it adds a new predicate to PDDL representation, namely

agentHasKnowledgeAbout(X) which is used to show the information availability.

The predicate agentHasKnowledgeAbout(X) is necessary for the WSC domain,

especially for the cases where the information is partially observable.

The existing WSCE framework applies a conversion mechanism similar to the one

in [29] including PDDXML language for the precondition and effect representation,

with some modifications that are required to handle nondeterministic cases such as

35

service failures. In [1], new predicates are generated for each web service that

represent their availability. This thesis implements exactly the same rules for

conversion from OWL/OWL-S to PDDL with [1] because the purpose of the

conversion in this thesis is to prepare PDDL descriptions of services which will be

used to invoke Simplanner in [1] after the pre-filtering process described in the next

chapter is completed. These conversion rules are as follows:

• OWL classes are converted to PDDL types. During this conversion the class-

subclass hierarchy in OWL classes is preserved.

OWL Definition PDDL Definition

<owl:Class rdf:ID="Region"/> (:types Region – object)

<owl:Class rdf:ID="ConsumableThing"/>

<owl:Class rdf:ID="PotableLiquid">
 <rdfs:subClassOf
rdf:resource="#ConsumableThing" />
 ...
</owl:Class>

(:types ConsumableThing – object

PotableLiquied - ConsumableThing)

Figure 3.2: OWL class – PDDL type conversion

• OWL properties (object, datatype and functional properties) are converted to

PDDL predicates.

36

OWL Definition PDDL Definition

<owl:Class rdf:ID="Wine”/>
<owl:Class rdf:ID="WineGrape”/>
<owl:ObjectProperty
rdf:ID="madeFromGrape">
 <rdfs:domain rdf:resource="#Wine"/>
 <rdfs:range
rdf:resource="#WineGrape"/>
</owl:ObjectProperty>

(:types Wine – object
WineGrape – object)
(:predicates (madeFromGrape
?WineParameter – Wine
?WineGrapeParameter – WineGrape))

Figure 3.3: OWL property – PDDL predicate conversion

• OWL individuals, i.e. instances of OWL classes, are converted to PDDL

objects.

OWL Definition PDDL Definition

<owl:Class rdf:ID="Region”/>

<Region rdf:ID="CentralCoastRegion" />

(:types Region – object)

(:objects CentralCoastRegion – Region)

Figure 3.4: OWL individual – PDDL object conversion

• OWL-S service descriptions are converted to PDDL actions. The predicate

valid<servicename> is added to the preconditions of each action.

37

OWL Definition PDDL Definition

<service:Service
rdf:ID="BookFinderService">

<service:presents
rdf:resource="#BookFinderProfile"/>

<service:describedBy
rdf:resource="#BookFinderProcess"/>

<service:supports
rdf:resource="#BookFinderGrounding"/>

</service:Service>

(:types Region – object)

(:predicates validBookFinderService)

(:action BookFinderService

(:precondition (validBookFinderService)))

Figure3.5: OWL-S service – PDDL action conversion

As mentioned before, service precondition and effects are presented with the

PDDXML format in OWL-S service descriptions. PDDXML [29] simply uses OWL

properties and OWL-S service parameters to describe the preconditions and effects

of the service.

• PDDXML service preconditions are converted to PDDL action

preconditions.

PDDXML Definition PDDL Definition

<precondition>
<and>
<pred name="validPersonalFlightAccount">
 <param>?Person</param>
 <param>?AccountData</param>
</pred>
</and>
</precondition>

(:action ServiceName
:parameters (?Person - Person
?AccountData - Account)
:precondition (validPersonalFlightAccount
?Person ?AccountData)
)

Figure 3.6: precondition – PDDL precondition conversion

38

• PDDXML service effects are converted to PDDL action effects.

PDDXML Definition PDDL Definition

<effect>
<and>
<pred name="isBookedFor">
 <param>?Flight</param>
 <param>?Customer</param>
</pred>
</and>
</effect>

(:action ServiceName
:parameters (?Flight - Flight ?Customer
- Person)
:effect (isBookedFor ?Flight ?Customer)
)

Figure 3.7: PDDXML effect – PDDL effect conversion

• OWL-S input and output parameters are converted to PDDL parameters.

agentHasKnowledgeAbout(X) predicate is added to action preconditions for

each input and to action effects for each output.

OWL-S Definition PDDL Definition

<profile:hasInput>
 <process:Input rdf:ID="Flight">
 <process:parameterType
rdf:datatype=TravelOntology.owl#Flight
</process:parameterType>
</process:Input>
</profile:hasInput>

(:action ServiceName
:parameters (?Flight - Flight)
:precondition
(agentHasKnowledgeAbout ?Flight
)
)

<profile:hasOutput>
 <process:Output rdf:ID="VehicleTransport">
 <process:parameterType
rdf:datatype=TravelOntology.owl#Transport
</process:parameterType>
</process:Output>
</profile:hasOutput>

(:action ServiceName
:parameters (?VehicleTransport
- Transport)
:precondition
(agentHasKnowledgeAbout
?VehicleTransport - Transport)
)

Figure 3.8: OWL-S parameter – PDDL parameter conversion

39

3.2 Storing Service Information

The service repository designed for this thesis consists of a domain database which

is a relational in-memory database (IMDB) and a directory structure. The stored

service data is divided into two different categories: composition data and execution

data. The composition data is the data required for finding the composite service and

it is completely stored in the domain database. This data is created by parsing the

PDDL descriptions of the services and these PDDL descriptions are obtained by

applying the OWL/OWL-S-to-PDDL conversion rules described in the previous

section. Execution data is the data required for executing the services involved in the

composition. This data consists of the WSDL description and the logical action –

physical service mapping information for each service. The WSDL descriptions are

stored as text files in the directory structure (WSDL Directory in Figure 3.1) and the

logical action – physical service mapping information is stored in the domain

database together with the composition data of the service. The rest of this section

explains the steps followed to add new service data to the repository and gives the

detailed content of the composition and execution data.

3.2.1 PDDL Domain Generation

Since OWL and OWL-S are most widely used languages for the semantic annotation

of web services, the preprocessing system in this thesis accepts the services

annotated with these languages as input. The first step in the preprocessing phase is

to convert the service information annotated with OWL/OWL-S to PDDL format.

There are two reasons for this: Firstly, the existing WSCE framework uses an AI

planner that requires PDDL data. Thus, PDDL action domain has to be created

somewhere before invoking the planner to find the composition. Doing this

conversion in the preprocessing phase prevents the time consumption during

composition. In addition, since PDDL is a simpler data format when compared with

OWL and OWL-S, storing PDDL information in a relational database is easier and

provides space efficiency. The conversion rules given in the previous section are

40

applied while converting OWL/OWL-S service annotations to PDDL domain

format.

3.2.2 Storing Service Composition Data

After converting the service data to PDDL domain format, this PDDL domain is

parsed and stored in the tables in the domain database. For parsing PDDL domain,

PDDL4J [35] is used which is an open source library implemented with Java and it

is generally used in AI planners which are based on PDDL. The purpose of storing

this parsed PDDL data is to use it in the pre-filtering and composition phases to find

the composition with the help of Simplanner. The parsed PDDL domain and the

relational model used for storage are explained in the following:

PDDL Types, Subtypes and Supertypes:

The PDDL domain format includes the types used in the domain with their

supertypes. This type-supertype relation is extracted from the ontological hierarchy

in OWL classes and is stored in the domain database to be used in creating the

subpredicates and superpredicates of the predicates available in the PDDL domain.

There are two tables in the domain database that are used for PDDL type storage:

Type and HasSupertype. Figure 3.9 shows the entity-relationship (ER) diagram of

these tables and Figure 3.10 shows the SQL queries used to create them.

Figure 3.9: ER diagram of Type and HasSupertype

41

CREATE TABLE Type (typeName CHAR(50),
 PRIMARY KEY (typeName)
);

CREATE TABLE HasSupertype (type CHAR(50),
 supertype CHAR(50),
 PRIMARY KEY (type, supertype),
 FOREIGN KEY (type) REFERENCES Type

(typeName) ON DELETE CASCADE,
 FOREIGN KEY (supertype) REFERENCES

Type (typeName) ON DELETE CASCADE
);

Figure 3.10: SQL queries for creating Type and HasSupertype tables

A part of the type definitions in a PDDL domain is shown in Figure 3.11. An

example can be given as follows to illustrate how type information is stored in the

database. In Figure 3.11, a supertype of type “DepartureAirport” is “Airport”. Since

there is transitivity among types and supertypes, “Location” and “object” types are

also supertypes of “DepartureAirport”. Similarly, “DepartureAirport” type is a

subtype of each one of these supertypes. In addition, each type is a supertype and a

subtype of itself. Figure 3.12 shows how type and supertype information are stored

for “DepartureAirport” in the two tables.

…
(:types Transport - object
Location - object
Hospital - Location
Airport - Location
ArrivalAirport - Airport
DepartureAirport - Airport
Address – object
Flight - Transport
ProvidedFlight - Flight
…
)
…

Figure 3.11: Sample PDDL domain type definitions

42

Type

object

Location

Airport

DepartureAirport

Type Supertype

DepartureAirport object

DepartureAirport Location

DepartureAirport Airport

DepartureAirport DepartureAirport

Figure 3.12: Type and HasSupertype contents for “DepartureAirport”

PDDL Predicates, Subpredicates and Superpredicates:

PDDL domains include the set of predicates used by the actions in the domain. The

predicates are extracted from OWL class properties and are stored in the domain

database. In addition to predicates, their subpredicates and superpredicates are also

generated and stored. The following example explains the definition of the terms

superpredicate and subpredicate: Assume the domain database contains two types as

typeA and typeB and their subtypes and supertypes as subtypeA, subtypeB,

supertypeA and supertypeB. Furthermore, assume it contains a predicate

pred(typeA, typeB). In this case, pred has four subpredicates including itself (i.e.

pred(typeA, typeB)) and pred(typeA, subtypeB), pred(subtypeA, typeB), pred

(subtypeA, subtypeB). In addition, it has four super-predicates as pred(typeA,

supertypeB), pred(supertypeA, typeB), pred(supertypeA, supertypeB) and itself. As

the example implies, each predicate is both a subpredicate and superpredicate of

itself. The stored subpredicates and superpredicates are used in the pre-filtering

phase which considers the predicate hierarchies during action selection.

There are two tables in the database that are used for the predicate information:

Preds and HasSuperpreds. Figure 3.13 shows the ER diagram of these tables and

Figure 3.14 shows the SQL queries used to create the tables.

43

Figure 3.13: ER diagram of Pred and HasSuperpred

CREATE TABLE Pred (pid int NOT NULL,

predicate CHAR(150) UNIQUE NOT NULL,
 PRIMARY KEY (pid)
);

CREATE TABLE HasSuperpred (pid int,
 superpid int,
 PRIMARY KEY (pid, superpid),
 FOREIGN KEY (pid) REFERENCES Pred

(pid) ON DELETE CASCADE,
 FOREIGN KEY (superpid) REFERENCES Pred

(pid) ON DELETE CASCADE
);

Figure 3.14: SQL queries for creating Pred, HasSuperpred tables

Figure 3.15 shows a part of the predicate definitions of a sample PDDL domain. An

example can be given as follows to illustrate how the predicate information is stored

in the domain database: In Figure 3.15, the predicate hasNearestAirport() has two

parameters of types Address and Airport. As can be seen from Figure 3.11, Address

has one supertype, object and it has no subtypes. Airport has two supertypes,

Location and object and two subtypes, DepartureAirport and ArrivalAirport.

Therefore, hasNearestAirport(Address, Airport) has six superpredicates as

hasNearestAirport (object, Airport), hasNearestAirport(object, Location),

hasNearestAirport(object, object), hasNearestAirport(Address, Location),

hasNearestAirport(Address, object) and hasNearestAirport(Address, Airport). In

44

addition, it has three subpredicates as hasNearestAirport(Address,

DepartureAirport), hasNearestAirport(Address, ArrivalAirport) and

hasNearestAirport(Address, Airport). Figure 3.16 shows how the predicate and

superpredicate information is stored for hasNearestAirport() for the two tables

mentioned above.

…
(:predicates
(personalProvidedTransport ?VehicleTransport_range_parameter - VehicleTransport)
(validPersonalTransportAccount ?Account_range_parameter - Account)
(validMedicalTransportAccount ?Account_range_parameter - Account)
(hasNearestAirport ?Address_domain_parameter - Address ?Airport_range_parameter -
Airport)
…
)
…

Figure 3.15: Sample PDDL domain predicate definitions

pid predicate

1 hasNearestAirport
(Address, Airport)

2 hasNearestAirport
(object,Airport)

3 hasNearestAirport
(object, Location)

4 hasNearestAirport
(object, object)

5 hasNearestAirport
(Address,Location)

6 hasNearestAirport
(Address, object)

7 hasNearestAirport
(Address, DepartureAirport)

8 hasNearestAirport
(Address, ArrivalAirport)

pid superpid

1 1

1 2

1 3

1 4

1 5

1 6

7 1

8 1

Figure 3.16: Pred and HasSuperpred contents for hasNearestAirport(Address,
Airport)

45

PDDL Actions, Effects and Preconditions:

The most important part of the PDDL domain description is the action definitions.

The action definitions are created from the OWL-S service descriptions and each

action definition contains all semantic information available in the corresponding

service. The preconditions of actions are extracted from the services’ inputs and

preconditions, and the effects of actions are extracted from the services’ outputs and

effects. The action creation is done according to the rules described in Section 3.1.

The stored actions are used in both the pre-filtering process and the planning phase

to find the composite service which is a plan of actions basically.

There are three tables in the database that are used to store te action information:

Action, HasPrec and HasEffect. The Action table stores the name and physical

mappings of the actions and HasPrec and HasEffect store the predicates that

correspond to the preconditions and effects of the actions, respectively. Figure 3.17

shows the ER diagram of these tables and Figure 3.18 shows the SQL queries used

to create them. The isInvokable attribute of the Action table is accessed and updated

during the pre-filtering process and its use will be explained in the next chapter. It

can normally take only two values, 0 and 1. When a new action is added to the

domain database, this attribute is set to 1 as default for the newly added action. The

mappingXml attribute of the Action table is set during the phase of storing the

execution data and its details are explained in Section 3.2.3.

46

Figure 3.17: ER diagram of Action, HasPrec and HasEffect

47

CREATE TABLE Action (aid int,
 action CHAR(50) UNIQUE NOT NULL,
 isinvokable int NOT NULL,
 mappingXml CHAR(200) NOT NULL,
 PRIMARY KEY (aid)
);

CREATE TABLE HasPrec (pid int NOT NULL,
 aid int NOT NULL,
 predid int NOT NULL,
 PRIMARY KEY (pid),
 FOREIGN KEY (aid) REFERENCES

Action(aid) ON DELETE CASCADE,
 FOREIGN KEY (predid) REFERENCES

Pred(pid) ON DELETE CASCADE
);

CREATE TABLE HasEffect (eid int NOT NULL,

aid int NOT NULL,
predid int NOT NULL,
PRIMARY KEY (eid),
FOREIGN KEY (aid) REFERENCES
Action(aid) ON DELETE CASCADE,

 FOREIGN KEY (predid) REFERENCES
 Pred(pid) ON DELETE CASCADE
);

Figure 3.18: SQL queries for creating Actions, HasPrec, HasEffect tables

Figure 3.19 shows the definition of an action from a sample PDDL domain. This

action is stored in the domain database as follows: Assume the three preconditions

of this action, which are agentHasKnowledgeAbout(Account),

agentHasKnowledgeAbout (Creditcard) and agentHasKnowledgeAbout(Person) are

stored in the Pred table with pids 10, 11 and 12 respectively. In addition, assume the

effect of the action, validPersonalTransportAccount(Account) is stored in the Pred

table with pid 13. With these assumptions, the contents of the related tables are

illustrated in Figure 3.20 when this action is stored in the domain database.

48

…
(:action CreateVehicleTransportAccountAtomicProcess

:parameters (?DesiredAccountData - Account ?CreditcardInformation - Creditcard
?UserData - Person)

:precondition (and (agentHasKnowledgeAbout ?DesiredAccountData)
(agentHasKnowledgeAbout ?CreditcardInformation)
(agentHasKnowledgeAbout ?UserData)
)

:effect (and (validPersonalTransportAccount ?DesiredAccountData)
))
…

Figure 3.19: Sample PDDL domain action definition

aid action IsInvokable
mapping

Xml

1
CreateVehicle
TransportAccount
AtomicProcess

1
<action>
…
</action>

pid aid predid

1 1 10

2 1 11

3 1 12

eid aid predid

1 1 13

Figure 3.20: Action, HasPrec and HasEffect contents for
CreateVehicleTransportAccountAtomicProcess

3.2.3 Storing the Service Execution Data

The existing WSCE framework enables automatic service execution as well as

service composition. In order to create the service execution environment, the

existing WSCE framework requires the syntactic descriptions of the services such as

syntactic types of operation arguments, service end point, used communication

protocol in addition to the semantic annotations. By using these syntactic

descriptions, [1] creates client stubs and logical action - physical service mappings

to execute the physical counterparts of the logical actions found by Simplanner

during composition generation. The client stubs are generated by the client stub

generator component [1] which uses the WSDL descriptions of the available

49

services and WSDL2JAVA tool of Apache Axis [41]. The logical action – physical

service mappings are generated by the grounding extractor component [1] which

uses the grounding sections of OWL-S descriptions of the available services. Since

this thesis includes the OWL-S description processing as a part of the enhancements

to the existing WSCE framework, the grounding extractor component is also

included in the scope of this thesis. With this change, the existing WSCE framework

is directly provided with the logical action – physical service mappings instead of

semantic service descriptions.

In this thesis, two types of service execution data are stored: The first one is the set

of WSDL descriptions of the services which are required by the existing WSCE

framework to create the client stubs. WSDL descriptions are stored in a directory

structure as separate WSDL files. The other type of service execution data is logical

action – physical service mappings mentioned above. The information included in

these mappings is completely extracted from the grounding sections of OWL-S

descriptions and the purpose of constructing these mappings is to make it easier for

the existing WSCE framework to process this information. The grounding extractor

component uses the following parts of OWL-S grounding section to create the

mappings:

• wsdlDocument: Represents the URI of service WSDL.

• wsdlOperation: Represents the URI of WSDL operation.

• wsdlInputMessage: Represents the URI of WDSL message definition that

carries the inputs of the process.

• wsdlInput: Represents the mapping between OWL-S input parameters and

WSDL counterparts.

• wsdlOutputMessage: Represents the URI of WSDL message definition that

carries the outputs of the process.

50

• wsdlOutput: Represents the mapping between OWL-S output parameters and

their WSDL counterparts.

<action name= “LogicalOperation” wsdlOperation=”PhysicalOperation” />
 <inputs>
 <input wsdlName = “PhysicalInput” owlsName = “LogicalInput” />

 </inputs>
 <outputs>
 <output wsdlName = “PhysicalOutput” owlsName = “LogicalOutput” />

…………….
 </outputs>
</action>

Figure 3.21: Logical action – physical service mapping structure

The format of the mappings created by the grounding extractor for each service is

shown in Figure 3.21. The xml structure illustrated in the figure is created for each

available service in the service repository and stored in the mappingXml attribute of

the Action table (Figures 3.18 and 3.19). When the pre-filtering phase finds the

candidate services to be included in the composition, WSDL descriptions of the

candidate services are selected from the WSDL directory and provided to the

existing WSCE framework. The client stub generator component [1] of the

framework uses these WSDL descriptions to generate the client codes for the

automatic service execution. In addition, an xml file named OWLS-

WSDLMapping.xml is created which includes the mapping strings of these

candidate services. This xml file is provided to the existing WSCE framework to be

used by the OWL-S action dynamic code mapper component [1] together with the

client codes generated by the client stub generator.

51

3.3 Storing Action Chains and Dependencies

In order to decrease the time required for the pre-filtering phase, it is required to

preprocess the service domain and find and store the problem-independent data that

will speed up the pre-filtering phase. This approach has a drawback that it uses

additional space to store the data which decreases the pre-filtering time. However,

since it has a significant contribution to the timely response of the overall system,

this drawback can be ignored. In this thesis, two types of problem-independent

information are extracted from the service domain, namely, action chains and action

dependencies. The idea of storing this chain and dependency information is adapted

from [31]. The main difference is that, in [31], this information is extracted from the

input-output parameters of the services. However, in this thesis, the preconditions

and effects of the PDDL actions are used. This change helps to cover the services

that have defined preconditions and effects as well as the services that have only

input and output descriptions. In addition, as well as storing the action dependencies

to the problem initial state as in [31], in this thesis, the dependencies of actions to the

problem goal state are also extracted from the PDDL domain and stored. The details

of the information stored are explained as follows:

3.3.1 Storing Action Chains

The available actions in the domain database are traversed to find the possible chains

between them. An effect predicate eA of an action ActionA and a precondition

predicate pB of an action ActionB are said to be chained if eA is a subpredicate of

pB, so ActionA’s eA effect can be used to satisfy ActionB’s pB precondition. In this

case, ActionA and ActionB are defined as chained actions. For example, considering

the type definitions in Figure 3.11, the two actions in Figure 3.22,

ProposeFlightAtomicProcess and BookFlightAtomicProcess are chained because

personalProvidedTransport(Flight) effect of ProposeFlightAtomicProcess is a

subpredicate of personalProvidedTransport (Transport) precondition of

BookFlightAtomicProcess.

52

(:action ProposeFlightAtomicProcess

:parameters (?DepartureAirport - DepartureAirport ?ArrivalAirport – ArrivalAirport
?RequestParameters - FlightParameters ?ProposedFlight - Flight)

:precondition (and (agentHasKnowledgeAbout ?DepartureAirport)
(agentHasKnowledgeAbout ?ArrivalAirport)
(agentHasKnowledgeAbout ?RequestParameters)
)

:effect (and (agentHasKnowledgeAbout ?ProposedFlight)
(hasDepartureLocation ?ProposedFlight ?DepartureAirport)
(hasDestinationLocation ?ProposedFlight ?ArrivalAirport)
(hasParameters ?ProposedFlight ?RequestParameters)
(personalProvidedTransport ?ProposedFlight)

))

(:action BookFlightAtomicProcess

:parameters (?Customer - Person ?AccountData - Account ?Transport - Transport)

:precondition (and (validBookFlightAtomicProcess)
(agentHasKnowledgeAbout ?Customer)
(agentHasKnowledgeAbout ?AccountData)
(agentHasKnowledgeAbout ?Flight)
(validPersonalFlightAccount ?AccountData)
(personalProvidedTransport ?Transport)

)

:effect (and (isBookedFor ?Flight ?Customer)
(medicalProvidedFlight ?Flight)
))

Figure 3.22: Example of chained actions

There is a table in the domain database that stores the chaining information between

services: HasChain. This table stores the precondition and effect ids that constitute a

chain for the corresponding actions. Figure 3.23 shows the ER diagram for

HasChain relation and Figure 3.24 shows the SQL query used to create HasChain

table in the domain database.

53

Figure 3.23: ER diagram of HasChain relation

CREATE TABLE HasChain (eid int,
 pid int,

PRIMARY KEY (eid, pid),
 FOREIGN KEY (eid) REFERENCES

HasEffect(eid) ON DELETE CASCADE,
 FOREIGN KEY (pid) REFERENCES

HasPrec(pid) ON DELETE CASCADE
);

Figure 3.24: SQL query to create HasChain table

When the PDDL action description of a new service is added to the domain

database, its preconditions and effects are added to Preds, HasPrec and HasEffect

tables. Then the preconditions of the new action are compared with the effects of

other actions in the HasEffect table. If one of the preconditions of the new action is a

superpredicate of an effect in HasEffect table, a new record is added to HasChain

table with the ids of the new action precondition and the chained effect. Similarly,

the effects of the new action are compared with the preconditions of other actions in

the HasPrec table. If one of the effects of the new action is a subpredicate of a

precondition in HasPrec table, a new record is added to the HasChain table with the

ids of the new action effect and the chained precondition.

54

The chaining information is quite important for decreasing the time required for the

pre-filtering phase. In the pre-filtering phase, HasChain table is frequently queried to

find the actions that can be chained with the set of available actions. If the domain

database was not preprocessed and chains were not stored in a table, all actions in

the domain database would have to be processed during the pre-filtering phase to

find a match for each effect of each action in the set of available actions. With the

help of HasChain table, the actions whose preconditions match to the effects of

actions in the set of available actions can be gathered with a single SQL query by

querying a single table quickly. The details of the pre-filtering phase are explained in

the next chapter.

3.3.2 Storing Action Dependencies

Another type of problem-independent information that contributes to decreasing the

time required for the pre-filtering process is action dependencies. In this thesis, the

actions stored in the domain database are classified into 5 different types. This

classification is done based on the chain availability for the actions’ preconditions

and effects. The action types are as follows:

• Initial state dependent actions (ISDAs): These actions are defined by

adapting the term “user-data dependent service” in [31] to the PDDL

terminology as follows: An action with a precondition predicate p, is called

an initial state dependent action if there is no action in the domain database

one of whose effects can be chained with p. In such a case this action can be

invoked if and only if the initial state of the problem provided by the user

satisfies the precondition p. As a result, if the initial state of the composition

problem does not include a match for p or one of its subpredicates, this

action cannot be selected as a candidate action by the pre-filtering process for

the composition.

• ISDA dependent actions: An action is an ISDA dependent action if an

ISDA is the only action that satisfies one of the preconditions of this action.

55

Furthermore, if some other action has the same dependency on an ISDA

dependent action, this action is also defined as ISDA dependent action and

this definition continues in a recursive manner. For example, assume three of

the actions available in the domain database are ActionA, ActionB, ActionC.

Assume that ActionA is an ISDA. In addition, a precondition pB of ActionB

can be chained with an effect of ActionA and there is no other action in the

domain database one of whose effects can be chained with pB. In this case

ActionB is defined as an ISDA dependent action depending on ActionA.

Furthermore, assume ActionC has a precondition pC that can be chained with

an effect of ActionB and there is no other action in the domain database one

of whose effects can be chained with pC. With this assumption, ActionC is

also defined as an ISDA dependent action depending on ActionA, because its

precedent action, ActionB, depends on ActionA. In this example, for a given

problem, the invocation of ActionC and ActionB is possible only if the

invocation of ActionA is possible and the invocation of ActionA is possible

only if the initial state of the composition problem satisfies all of its

preconditions.

• Goal state dependent actions (GSDAs): In this thesis, the definition of the

term “user-data dependent service” in [31] is extended to cover the

dependencies of actions to the composition problem goal state. An action in

the domain database is a goal state dependent action if none of its effects

predicates or their can be chained with any preconditions of the other actions

in domain database. In other words, an action is a goal state dependent action

if none of its effect predicates or their superpredicates is a precondition of

another action in domain database.

• GSDA dependent actions: The definition of ISDA dependent action is

adapted for the problem goal state as follows: An action is a GSDA

dependent action if all the actions whose preconditions can be chained with

the effects of this action are GSDAs or GSDA dependent actions. In addition,

56

if another action has the same dependency for a GSDA dependent action, this

action is also defined as GSDA dependent action and this definition

continues in a recursive manner. For example, assume three of the actions

existing in the domain database are ActionA, ActionB, ActionC; and

ActionC is a GSDA. If all of the effects of ActionB can be chained with the

preconditions of ActionC and there is no other action in the domain database

whose any precondition can be chained with any effect of ActionB, ActionB

is defined as a GSDA dependent action depending on ActionC. Furthermore,

assume all of the effects of ActionA can be chained with the preconditions of

ActionB and there is no other action in the domain database whose some

precondition can be chained with some effect of ActionA. With this

assumption, ActionA is also defined as a GSDA dependent action depending

on ActionC since its successor action, ActionB depends on ActionC. In this

example, for a given composition problem, the invocation of ActionA and

ActionB is possible only if the invocation of ActionC is possible and the

invocation of ActionC is possible only if the composition problem goal state

includes at least one of the effects of ActionC or their superpredicates.

• Problem state independent Actions (PSIA): The actions that cannot be

classified with the four types described above are defined as the problem

state independent actions. All of the preconditions of a problem state

independent action can be chained with at least one of the effects of other

actions in the domain database. Moreover, at least one of the effects of a

problem state independent action can be chained with at least one of the

other actions’ preconditions.

There are four tables in the domain database that are used to store the action

dependencies: HasInitDependency, HasActionDependencyInit,

HasGoalDependency, HasActionDependencyGoal. HasInitDependency table stores

information of ISDAs. The action id of an ISDA is stored in this table together with

the predicate id of its precondition that causes the dependency to the problem initial

state. HasActionDependencyInit stores the action ids of ISDA dependent actions

57

together with the action ids of ISDAs they are depended on. HasGoalDependency

table stores the action ids of GSDAs and HasActionDependencyGoal table stores

action ids of GSDA dependent actions together with the action ids of GSDAs they

depend on. Figure 3.25 shows the ER diagram of the tables and Figures 3.26 and

3.27 show the SQL queries used to create these tables.

Figure 3.25: ER diagram of HasInitDependency, HasActionDependencyInit,
HasGoalDependency and HasActionDependencyGoal

58

CREATE TABLE HasInitDependency (

aid int,
 pid int,
 PRIMARY KEY (aid, pid),
 FOREIGN KEY (aid) REFERENCES
 Action(aid) ON DELETE CASCADE,
 FOREIGN KEY (pid) REFERENCES
 HasPrec(pid) ON DELETE CASCADE
);

CREATE TABLE HasActionDependencyInit (

aid int,
daid int,

 PRIMARY KEY (aid, daid),
 FOREIGN KEY (aid) REFERENCES

Action(aid) ON DELETE CASCADE,
 FOREIGN KEY (daid) REFERENCES

Action(aid) ON DELETE CASCADE
);

Figure 3.26: SQL queries to create HasInitDependency and
HasActionDependencyInit

CREATE TABLE HasGoalDependency (

aid int,
 PRIMARY KEY (aid),
 FOREIGN KEY (aid) REFERENCES
 Action(aid) ON DELETE CASCADE
);

CREATE TABLE HasActionDependencyGoal (

aid int,
 daid int,
 PRIMARY KEY (aid, daid),
 FOREIGN KEY (aid) REFERENCES
 Action(aid) ON DELETE CASCADE,
 FOREIGN KEY (daid) REFERENCES
 Action(aid) ON DELETE CASCADE
);

Figure 3.27: SQL queries to create HasGoalDependency,
HasActionDependencyGoal

59

After the PDDL description of a new action is added to the domain database and the

chains of this new action are stored, the preconditions of the action are checked to

find out whether all of them are chained with the effects of some other actions. If at

least one of the predicates remains unchained, this action becomes an ISDA and the

id of this action is stored in the HasInitDependency table together with the predicate

id of the unchained precondition. Otherwise, HasInitDependency and

HasActionDependencyInit tables are checked to find out whether at least one of the

actions whose effects are chained with a precondition of this new action is an ISDA

or an ISDA dependent action and there is no other action whose effect can be

chained with this precondition. In such a case, the id of this new action is also stored

in HasActionDependencyInit table since it becomes an ISDA dependent action.

After the initial state dependency checking, the new action is examined for the goal

state dependencies. The effects of the new action are checked to find out whether

they are chained with the preconditions of some other actions. If it is found that none

of the effects are chained, this action becomes a GSDA and the id of this action is

stored in the HasGoalDependency table. Otherwise, HasGoalDependency and

HasActionDependencyGoal tables are checked to find out whether the actions whose

preconditions are chained with the effects of this new action are GSDA or GSDA

dependent action. If all of these actions are found to be GSDA or GSDA dependent

action, the new action is stored in the HasActionDependencyInit table because it

becomes a GSDA dependent action.

60

CHAPTER 4

4 CREATING THE WEB SERVICE COMPOSITION AND

EXECUTION DATA

When the user provides the composition problem to the existing WSCE framework,

the framework gives all available actions in the domain to a domain independent AI

planner together with the problem description. This approach fails to be applicable

when the number of actions in the domain is large because the domain independent

AI planners do not scale well with the increasing domain size. This thesis provides a

solution to this scalability problem by applying a pre-filtering mechanism and

selecting the candidate actions that can be used to find a composite service for the

provided problem. In addition to finding the candidate actions, the data required by

the existing WSCE framework for finding the composite service and executing it, is

prepared and provided to this framework.

This chapter explains the structure of the system that generates the service

composition and execution data and the steps followed to generate this data. In

addition, the rules to convert OWL composition problem to PDDL planning problem

are also defined in this chapter. Figure 4.1 shows the overall architecture of the

composition and execution data creation system. This system retrieves the problem

description from the user in OWL format and returns the PDDL problem

description, the domain description including only the filtered candidate actions, and

the service execution data of the candidate actions. The rest of this chapter is

organized as follows: Section 4.1 defines the rules applied for converting the OWL

problem description to PDDL problem format and Section 4.2 explains the steps

followed to select the candidate services and create the service composition and

execution data.

61

Figure 4.1: Overall architecture of composition and execution data creation system

4.1 OWL to PDDL Conversion of Composition Problem

In the existing WSCE framework the user provides the composition problem (i.e.

initial and goal states) in OWL format. Since the planner in [1] uses the PDDL

format for domain and problem description, the OWL problem should be converted

to the PDDL format. In [1], this conversion is done during the preprocessing phase

and the created problem PDDL description is provided to Simplanner together with

the domain PDDL description. Since a pre-filtering process takes place before the

invocation of the planner in this thesis, OWL-to-PDDL problem conversion is done

before this pre-filtering process. The conversion is adapted from [1] as follows.

62

When the user provides the problem, it is assumed that all the required information

can be provided by the user except for the information asked in the problem goal

that requires information gathering. In such a case, the user explicitly states that the

information asked in the problem goal is unknown and intends to learn that

information. For all the defined object instances excluding the ones for which the

user explicitly states unavailability, “agentHasKnowledgeAbout(obj)” predicate is

added to the PDDL problem initial state. In addition, it is assumed that all services

are able to operate initially and for all services, “valid<ServiceName>” predicates

are added to the problem initial state. Figure 4.2 shows an example OWL problem

definition and its PDDL counterpart.

OWL Definition PDDL Definition

Initial State:
<VehicleTransport rdf:ID =
“TransportToHospital”/>

<Patient rdf:ID = “Patient_0”/>

Goal State:
<VehicleTransport rdf:ID =
“TransportToHospital”/>

<Patient rdf:ID = “Patient_0”/>

 <VehicleTransport
rdf:resource="#TransportToHospital">
 <isBookedFor rdf:resource="#Patient_0"/>
</VehicleTransport>

(:types Region – object)
 (:objects TransportToHospital
– VehicleTransport
Patient_0 – Patient)

(:init (validService1)
(validService2)
…………………
(agentHasKnowledgeAbout
(TransportToHospital))
(agentHasKnowledgeAbout(Patient_0))
……………
)

(:goal (and (isBookedFor TransportToHospital
(Patient_0)))))

Figure 4.2: OWL and PDDL problem definitions

In this example, the user represents the problem in OWL by defining some logical

objects and the desired state about the logical objects. If the user requests

information but not a state change, a logical object “obj” is defined as in the example

above and “agentHasKnowledgeAbout(obj)” is added to the definition of goal state.

63

In this case “agentHasKnowledgeAbout(obj)” is removed from the initial state

definition.

4.2 Selecting and Generating the Composition and Execution Data

This section explains the three components illustrated in Figure 4.1 and the data flow

between them.

4.2.1 PDDL Problem Generation

In [1], OWL-to-PDDL problem conversion is done during the preprocessing phase

together with the conversion of OWL-S service descriptions. The rules described in

Section 4.1 are used for this conversion. In this thesis, the same rules are used for the

problem conversion. However, the problem conversion is now independent from the

domain conversion and the domain conversion is done in the service pre-processing

phase described in the previous chapter. The problem PDDL Generator component

is shown in Figure 4.1 which takes OWL problem description as input and produces

the PDDL counterpart of the same problem by applying the rules described in

Section 4.1.

4.2.2 Action Pre-filtering

After the problem PDDL description is created, this description is used for selecting

the PDDL actions from the domain database that can be used to find a composition

for the PDDL problem. The action selection process is called pre-filtering and it is

done by considering the problem initial and goal states. The actions selected from

the domain database are called candidate actions and this subset of domain actions

constitutes the new domain of the planning problem. Figure 4.1 shows the

interaction of the Pre-filtering component with the other components and the service

repository.

The algorithm used in this component consists of three different processes that run

concurrently and independent of each other. These processes are designed to get the

64

maximum utilization from hardware platforms involving multiple processors. This is

achieved by creating a multi-threaded system which creates and runs different Java

threads for these three processes and their subtasks. Since all of the recent Java

Virtual Machine (JVM) versions efficiently handle the work of assigning different

threads to different available processors, the created threads run on different

processors on a multi-processor environment. Figure 4.3 shows the three processes

running concurrently in the Pre-filtering component.

Figure 4.3: Pre-filtering component

Unusable Action Finding – Init:

This process retrieves the initial state from the problem PDDL description and

checks the initial state dependent actions (ISDAs) and ISDA dependent actions. This

process works in a similar way to the unusable action finder thread explained in

[31]. When the user submits the problem to the system, all ISDAs and ISDA

dependent actions are assumed to be usable for the submitted problem and their

isInvokable attributes in the Action table are set to 1 by default in the pre-processing

phase which shows that the actions can be used for a given problem and they do not

65

have any dependency to problem initial state or their dependencies to the initial state

are satisfied for this problem. This process firstly traverses the ISDAs stored in

HasInitDependency table in the domain database to check if their preconditions that

cause the dependency to the initial state are satisfied. This check is simply done by

comparing these preconditions with the predicates in the initial state of the problem.

During this comparison super/sub-predicate relations are also considered. If it is

found that the problem initial state does not include a subpredicate of an action’s

predicate that cause the action’s dependency, isInvokable attribute of the action in

Action table is set to 0 which shows that the action cannot be used to solve the given

problem. This updated isInvokable attribute is checked by the Forward Chaining

process which finds the candidate actions.

After ISDA handling finishes, ISDA dependent actions are checked. If an ISDA is

found to be unusable, the ISDA dependent actions depending on this ISDA are also

marked unusable by setting their isInvokable attributes to 0 in Action table. When

the handling of composition problem is finished, isInvokable attributes of all ISDAs

and ISDA dependent actions are set to the default value 1 again for the next

problem. The pseudo code in Figure 4.4 illustrates the algorithm used for this

process.

66

Process FindUnusableActions-Init()

for each action in HasInitDependency

dependencePredicate <- getDependencePredicate(action)

compare dependencePredicate with initial state predicates

if not satisfies(ProblemInitialStatePredicates,

dependencePredicate)

update the action information in domain database

setIsInvokable(action, 0)

dependentActionList<-getISDADependentActions(action)

for each dependent in dependentActionList

setIsInvokable(dependent, 0)

end for

end if

end for

end Process

Figure 4.4: Pseudo code for Unusable Action Finding – Init

Unusable Action Finding – Goal:

In a similar way to the previous process, this process retrieves the goal state from the

PDDL problem and checks the goal state dependent actions (GSDAs) and GSDA

dependent actions which are stored in the pre-processing phase as described in

Chapter 3. This process is an extension to the idea of pre-filtering described in [31]

which does not include an analysis of services’ problem goal state dependencies.

When the user submits the problem to the system, all GSDAs and GSDA dependent

actions are assumed to be usable for the submitted problem and their isInvokable

attributes in Action table are set to 1 by default during the pre-processing phase

which shows that the actions can be used for the given problem and they do not have

any dependency to the problem goal state or their dependencies to the goal state are

satisfied for this problem. This process firstly traverses the GSDAs in

HasGoalDependency table in the domain database to check if at least one effect of

each action in this table is a subpredicate of the predicates in the problem goal state.

This check is done by comparing each effect of each action with the predicates in the

goal state of the problem. If it is found that none of the effects of a GSDA satisfies at

least one predicate in the problem goal state, isInvokable attribute of the GSDA in

67

Action table is set to 0 which shows that the action cannot be used to solve the given

problem.

After handling GSDAs, GSDA dependent actions are checked. If a GSDA is found

to be unusable, the GSDA dependent actions depending on this GSDA are also

marked unusable by setting their isInvokable attributes to 0. When the handling of a

composition problem is finished, isInvokable attributes of all GSDAs and GSDA

dependent actions are set to default value 1 again for the next problem. The pseudo

code in Figure 4.5 illustrates the algorithm used for this process.

Process FindUnusableActions-Goal()

for each action in HasGoalDependency

actionEffects <- getEffects(action)

check if the effects of action satisfies at least one

predicate in problem goal state

if not satisfiesAtLeastOne(actionEffects,

ProblemGoalStatePredicates)

 # update the action information in domain database

setIsInvokable(action, 0)

dependentActionList<-getDependentActions(action)

for each dependent in dependentActionList

 setIsInvokable(action, 0)

end for

end if

end for

end Process

Figure 4.5: Pseudo code for Unusable Action Finding – Goal

Forward Chaining:

This process makes use of a forward chaining algorithm similar to the one in [31]

and selects the candidate actions that will be used to find the composite service for

the given problem. This algorithm uses the chaining information which is stored in

HasChain table during service preprocessing as described in Chapter 3. In addition,

the forward chaining algorithm considers isInvokable values of actions during

selection which are determined by the two unusable action finding processes

described above. The forward chaining process runs concurrently with these two

68

processes and checks the information updated by them. The forward chaining

algorithm uses two in-memory data structures called action pool and predicate pool

which are empty at the beginning. The action pool stores the selected candidate

actions. The predicate pool includes the predicates that are satisfied at an instant of

the algorithm execution. In other words, at an execution instant, the predicate pool

contains the union of the problem initial state predicates and the effects of candidate

actions selected until that instant.

The algorithm runs as follows: First, it retrieves the predicates provided in the

problem initial state and adds these predicates to the predicate pool. Then it executes

a database query called initialQuery which checks the Action and HasPrec tables and

finds the actions that can be invoked with the given initial state (i.e. the actions

whose all preconditions are satisfied by the predicates in the initial state). The found

actions are added to the action pool. After finding the candidate actions that can be

invoked with the predicates in the problem initial state, the algorithm continues level

by level. In each level a database query called levelQuery is executed. This query

considers the effects of the candidate actions added to the action pool in the previous

level and finds the actions whose at least one precondition can be chained with these

effects. These precondition-effect chains are directly extracted from the information

stored in HasChain table during service preprocessing. The resulting action set of

levelQuery is called the possible actions. Afterwards, for each action in the possible

actions, the predicate pool is checked to determine if all preconditions of the action

can be chained with some predicates in the pool. In such a case, the possible action

becomes a candidate action and it is added to the action pool. In addition, the effect

predicates of the action are added to the predicate pool to be checked in the next

level to find that level’s possible actions.

While selecting the possible actions in each level, levelQuery also checks the value

of isInvokable attribute for each action. This attribute is concurrently updated by the

two unusable action finding processes. If isInvokable value of an action is 0, the

action is discarded and is not considered as a possible action even if there is a

predicate in the predicate pool that can be chained with a precondition of this action.

69

The algorithm ceases when all of the predicates in the problem goal state or their

subpredicates become available in the predicate pool or when no more actions can be

added to the action pool after finishing a level (i.e. when the size of the action pool

remains same after two consecutive levels). The occurrence of the second condition

means there does not exist any possible composite service for the problem given by

the user because the actions in domain database cannot satisfy all of the predicates in

the problem goal state. The pseudo code in Figure 4.6 illustrates the algorithm used

for the forward chaining process.

70

Process ForwardChaining()

 # get initial and goal state from problem description

initialPredicates <- getProblemInitialStatePredicates()

goalPredicates <- getProblemGoalStatePredicates()

find the actions that can be invoked with predicates in

initial state and initialize predicatePool with initial state

predicates

actionPool <- findInitiallyInvokableActions(initialPredicates)

predicatePool <- initialPredicates

The effects that should be checked in first level are the

effects of the actions that can be invoked with initial

state predicates. These effects are then added to predicatePool

checkPredicates <- getEffectPredicates(actionPool)

 addToPredicatePool(checkPredicates)

loop for each level

while(true)

 # Find possible actions from checkPredicates

possibleActions <- findPossibleActions(checkPredicates)

delete(checkPredicates)

for each possibleAction in possibleActions

 # if all preconditions of action can be chained with

 # a predicate in predicatePool, add to actionPool

if allPreconditionsCanBeChained(predicatePool,

 possibleAction)

addToActionPool(possibleAction)

add effects to predicates to be checked in

next level and to predicatePool

addToCheckPredicates(getEffects(possibleAction

))

addToPredicatePool(getEffects(possibleAction))

end if

end for

If all predicates in goal state are satisfied, end process

if areIncludedIn(goalPredicates, predicatePool)

return actionPool

end if

If no actions added to actionPool, no composition exists

if noActionsAddedToActionPool()

return NoCompositionExistsError

 end if

end while

end Process

Figure 4.6: Pseudo code for Forward Chaining

In Figure 4.6, the predicatePool is stored as a hash table so that the search and

update operations can be done quickly. The method

allPreconditionsCanBeChained() considers the ontological relationships between

71

predicates while checking the predicate pool. In other words, the method returns true

if for each effect predicate of the possible action, there is at least one predicate in the

predicate pool which is a subpredicate of the effect. The methods

findInitiallyInvokableActions() and findPossibleActions() execute initialQuery and

levelQuery respectively. These queries are briefly explained as follows:

• initialQuery. Selects all actions from the domain database that satisfy both

of these conditions: All preconditions of the action can be satisfied by the

problem initial state predicates and the action is invokable.

• levelQuery. Selects all actions from the domain database that satisfy both of

these conditions: At least one precondition of the action can be chained with

the predicates in checkPredicates and the action is invokable.

Appendix A includes the actual SQL queries used in the implementation of

initialQuery and levelQuery. The implementation of the algorithm in Figure 4.6 is

done with Java programming language in a multi-threaded manner to allow effective

utilization of hardware platforms with multiple processors. In such platforms, each

created Java thread is assigned to one of the available processors by the Java Virtual

Machine (JVM). In this algorithm, multiple threads are created at each level (i.e. the

while loop in Figure 4.6) while checking whether the possible actions can be added

to the action pool (i.e. the for loop in Figure 4.6). A new thread is created for each

possible action in possibleActions list so that the checking process is done

concurrently for all actions. If there exist sufficient number of processors, each one

of these threads is assigned to a different processor, so

allPreconditionsCanBeChained() method can be executed in parallel for all actions.

This helps to decrease the time required for the ForwardChaining process and

increase the overall performance of the Pre-Filtering component.

When the forward chaining process terminates, the execution of the Pre-Filtering

component also terminates. If all of the predicates of the problem goal state are

satisfied by the predicates in the predicate pool, the component returns a list of the

72

ids of the candidate actions in action pool which is retrieved from the Action table.

This list is then delivered to the Composition/Execution Data Generator component.

If the forward chaining algorithm returns NoCompositionExistsError, the Pre-

Filtering component returns an error message to the user and terminates the whole

system. The composition finding and service execution processes do not take place

because during pre-filtering it is found that no composite service can be created to

solve the problem provided by the user.

4.2.3 Generating Composition and Execution Data

This component retrieves the problem PDDL description and the ids of candidate

actions if Pre-filtering component can find a set of candidate actions that satisfy the

goal state in composition problem. This list of ids are used to generate the data

required for finding a composite service that satisfies the user request and executing

the services that constitute this composite service. The composition data consists of

the problem PDDL description which is retrieved from the Pre-filtering component

and the domain PDDL description of candidate services. The domain PDDL

description is constructed as follows: First, for each action id, this component

retrieves the parts of the corresponding action from the Action, HasPrec, HasEffect

and Pred tables. The predicates used in the precondition and effect parts of the action

are added to predicates section of the PDDL domain by creating dummy values for

the predicate parameter names. After this step, the types used in these predicates are

added to the types section of the domain PDDL. Types are added together with their

supertypes that do not already exist in the types section. These supertypes are

retrieved from HasSupertype table using the types. After adding predicates and

types, the action itself is added to the PDDL domain. The parameters part of the

action is created depending on the types used in preconditions and effects of the

action. The dummy parameter names are created for each one of these types and

these names are also used in the predicates in the precondition and effect parts of the

action definition.

73

The service execution data consists of WSDL descriptions of the services that

correspond to candidate PDDL actions and logical action-physical service mappings

of the candidate actions which are stored during preprocessing phase. The service

execution data is constructed as follows: First, the WSDL descriptions of candidate

actions are extracted from the WSDL directory in the service repository and

collected in another directory (WSDL Files in Figure 4.1). After preparing the

WDSL descriptions, the logical action-physical service mapping of each candidate

action is retrieved from the mappingXml attribute of the Action table in the domain

database. These mappings are collected in a single xml file named OWLS-

WSDLMapping.xml.

After creating the composition and execution data for candidate services, this

component sends the PDDL domain description, PDDL problem description, WSDL

files of candidate actions and OWLS-WSDLMapping.xml file to the existing WSCE

framework to find the composite service and execute the services that constitute this

composite service.

74

CHAPTER 5

5 INTEGRATION WITH THE WEB SERVICE COMPOSITION

AND EXECUTION FRAMEWORK

The purpose of this thesis is to enhance the existing WSCE framework in [1] by

providing scalability and maintenance of large service sets. The previous two

chapters give the details of these enhancements: Chapter 3 explains the

preprocessing system and the service repository that are used to store newly added

service information and the details of how they help to maintain large service sets. In

chapter 4, the details of the pre-filtering mechanism are presented and it is explained

how this mechanism selects the candidate actions for a given problem and provides

scalability. After detailing these enhancements, this chapter gives the details of

integrating the preprocessing system and pre-filtering process to the existing WSCE

framework.

The rest of this chapter is organized as follows: Section 5.1 explains the architecture

of the preprocessing phase in [1] and Section 5.2 describes how this preprocessing

phase is changed to be integrated with the pre-filtering process described in this

thesis. Section 5.3 gives an overview of the interleaved composition and service

execution phases of the existing WSCE framework. Finally, section 5.4 explains the

unexpected event handling phase in [1] and how the information provided after this

phase is used to remove the unreachable services from the service repository.

75

5.1 Preprocessing Phase of the Web Service Composition and Execution

Framework

The preprocessing phase in [1] deals with the inputs from the service providers and

users. By using these inputs, this phase prepares the PDDL data for Simplanner to

find the composition and creates the service execution environment which is used

for real service execution. Figure 5.1 which is adapted from [1] shows the

architecture of the preprocessing phase.

Figure 5.1: Preprocessing component of WSCE framework

In this phase, the user provides the composition problem in OWL and the service

provider provides OWL-S and WSDL description of the services. Since [1] does not

use any efficient service storage and pre-filtering mechanism to store the available

76

services and select the ones relevant to the user problem, the provided service

descriptions include all available services.

The provided problem and service descriptions are used by the problem PDDL

generator and the domain PDDL generator components to create the problem and

domain PDDL descriptions for the planning phase. Since the domain PDDL

generation is done together with the problem PDDL generation in preprocessing

phase, this brings an overhead to the performance of the framework because the

same service descriptions are converted to PDDL domain repeatedly for each

composition problem. The service descriptions are also used by the grounding

extractor component to create mappings for the WSDL descriptions of the services.

This step is also repeated for each new problem even if the service set remains the

same. The resulting mappings created by the grounding extractor component are

provided to the OWL-S Action-Dynamic code mapper component together with the

dynamically created client information retrieved from the client stub generator

component. The OWL-S Action-Dynamic code mapper component uses this

information to add client code information to the provided mappings.

5.2 Pre-filtering Integration to WSCE Framework

The purpose of the composition and execution data creator system described in

Chapter 4 is to provide the information required by the existing WSCE framework.

With the help of this system, some of the information created by the preprocessing

phase in Figure 5.1 is directly provided to other phases of the WSCE framework.

Since the service information stored in domain database is in PDDL format in this

thesis, the problem PDDL and domain PDDL generator components in Figure 5.1

are not required and the problem PDDL and domain PDDL descriptions are directly

provided by the composition and execution data generator component to the

planning phase in [1]. Furthermore, as OWLS-WSDL mapping information for each

service is stored in the domain database, the grounding extractor component in

Figure 5.1 is not required either. The OWLS-WSDL mapping.xml file is directly

77

created by the composition and execution data generator component described in

Chapter 4.

The removal of these components from the preprocessing phase in [1] also helps to

decrease the time required to solve a composition problem because most of the

service data processing done in this phase is moved to other components of the

system and this processing is not repeated for every given composition problem. The

conversion of each service description to PDDL is done only once during the

preprocessing phase described in chapter 3 and this PDDL information is stored in

the domain database. Therefore no PDDL conversion is required for services after

the user gives the composition problem. Furthermore, since grounding extraction is

also done while storing the service information to the domain database, this

grounding information is not searched from OWL-S description while dealing with a

composition problem. Figure 5.2 illustrates the integration of composition and

execution data creator system to the preprocessing phase of [1] in Figure 5.1.

78

Figure 5.2: Integration of composition and execution data creator with preprocessing
phase in WSCE Framework

With the integration illustrated in Figure 5.2, the preprocessing phase in figure 5.1 is

replaced with an execution environment creation phase. This new phase retrieves the

service WSDL descriptions from the composition and execution data creator system

together with the created mappings and it creates the service client codes and

updated mappings which include the created client information.

The new integrated system in Figure 5.2 provides the same types of information with

the preprocessing phase of the existing WSCE framework. This information consists

of the problem PDDL, domain PDDL, service client codes and PDDL Action-

Physical Action Mapping.xml. The difference of the new integrated system is that

these four types of information are constructed based on the candidate actions found

by the pre-filtering component of the composition and execution data creator system.

On the other hand, the preprocessing phase in [1] uses all actions available in the

79

domain and creates these four types of information for all actions in the domain.

This is the main contribution of this thesis that provides scalability to the existing

WSCE framework. When the number of actions in domain is large, the created

PDDL domain by preprocessing phase in [1] also becomes large. This prevents

Simplanner to return timely responses during composition. However, since the pre-

filtering component in this thesis selects only the actions that can be involved in the

composite service for the given problem, the domain PDDL is created only from

these candidate actions and Simplanner uses only this small domain to find the

composition.

5.3 Interleaved Web Service Composition and Execution

After the integrated system in Figure 5.2 creates the PDDL descriptions and the

service execution data, this information is used by the planning and execution phases

of the existing WSCE framework. In the planning phase, all required work is

handled by Simplanner [6]. Initially, Simplanner uses the available PDDL problem

and domain descriptions and produces the possible logical action instances via

grounding. After grounding, Simplanner creates an initial plan and continues to plan

during the lifetime of the session. Being an any-time planner, Simplanner produces a

logical action in a short time and continues planning as time permits. The produced

action is delivered to the service executor for real execution. While the real service

execution takes place, Simplanner continues to construct and refine the current plan.

This property of Simplanner enables interleaving planning and service execution

phases. The existing WSCE framework also handles the problems that may appear

during service execution such as information unavailability and service execution

failures. Such cases are handled by the unexpected event handler of the WSCE

framework which examines the current state and informs Simplanner about the

problem. Since Simplanner is able to run on dynamic plan states, it produces a new

plan by considering the occurred problem and the current plan state. Figure 5.3

below shows the interleaved composition and execution phases of the existing

WSCE framework.

80

Figure 5.3: Interleaved composition finding and service execution in WSCE
framework

After a logical action is prepared by Simplanner for real execution, the parameters of

the action are examined by the action evaluator and their real values are retrieved

from logical-physical information mapping. If the information is unknown in the

mapping, the user is asked for the unknown information. If the user provides this

information, execution continues. Otherwise, the unexpected event handler is

notified to deal with the problem.

The service execution is done by the service executor in two ways according to the

service behavior. If the service being executed is an information gathering service, it

is done as a usual service call. On the other hand, if a world altering service is being

executed, the service call conforms to WS-Business Activity and WS-Coordination

specifications. During execution, the service client codes and the PDDL action-

81

Physical action mappings which are produced by the execution environment creator

in Figure 5.2 are used. The real values of service call arguments are collected from

the logical/physical information map. If the service provides information, the

provided information is stored in the logical/physical information map and the

consumed information is removed. If the service has world altering effects, its call is

done through the business activity coordinator which is generated at the beginning of

each session.

5.4 Unexpected Event Handling and Service Repository Integration

At run time, the service execution or information collection may fail unexpectedly

because of reasons like network problems, service unavailability, wrongly provided

arguments or the user may not know the information that is required by the service.

Such cases are handled in the unexpected event handling phase of the existing

WSCE framework. In this phase, initially it is assumed that all specified services can

be executed and all the information required by services can be provided by the user.

If a service execution fails, the corresponding service is made logically unavailable.

As a result, the logical action that corresponds to the failed service is not considered

by Simplanner at later steps. Simplanner tries to find alternative actions to achieve

the user goal. If alternative actions do not exist, no plans can be found to satisfy the

user goal.

When a web service requires some input information, if the required information

cannot be provided by the user, the logical state that assumes all the required

information can be provided by the user at runtime is modified. The logical

counterpart of the information which is not known by the user is removed from the

planning state. As a result, Simplanner tries to find an action that provides the

required information or an alternative path that does not require that particular

information. If the planner finds such an action, the execution continues; otherwise

the session is terminated. If re-planning cannot create new solutions to achieve the

user goals after some unexpected events, the transactional operations are rolled back

82

to prevent the side effects of the unsuccessful execution attempts. Figure 5.4 shows

the unexpected event handling phase in [1] and the service repository integration

(bold arrows and grey component in the figure) added to this phase in the scope of

this thesis.

Figure 5.4: Unexpected event handling and service repository integration

When it is observed that a service is unavailable, the information stored in the

service repository for that service is cleaned. This is done by the service cleaner

component as follows: When the service cleaner component retrieves the name of

the failed service, it first finds the action id, effect and precondition ids from Action,

HasEffect and HasPrec tables in the domain database for the corresponding action.

Using the effect and precondition ids, the service cleaner removes the chains from

HasChain table. While cleaning the chains, the actions chained with the failed action

are checked to see if the removal of the chain creates initial or goal state dependency

for these actions. If a dependency occurs for an action, this action is added to

83

HasInitDependency, HasGoalDepency, HasActionDependencyInit,

HasActionDependencyGoal according to the type of the occurred dependency. After

adding the occurred dependencies for the actions that have removed chains with the

failed action, these four tables are checked for the failed action. The rows that

include the failed action are removed from the tables. When the chain clean-up of

the failed action is finished, the action information is removed from HasEffect,

HasPrec and Action tables by using the ids of the action, its effects and

preconditions. Finally, the failed service is searched in the WSDL directory and the

corresponding WSDL description is removed from this directory.

84

CHAPTER 6

6 EXPERIMENTAL EVALUATION

This chapter explains the details of the experimental evaluation done in this thesis.

The performance of the pre-filtering mechanism that finds the candidate actions for a

composition problem should be reasonable to be able to provide scalability to the

existing WSCE framework. The purpose of the conducted experiments is to observe

the performance of the pre-filtering mechanism on data sets involving large domain

ontologies and large number of services. For this purpose, five different test sets

were executed which consist of a varying number of concepts in domain ontologies

and a varying number of services.

The rest of the chapter is organized as follows: First section describes the content of

the test data used in the experimental evaluation. Section 2 explains the platform

used for the experimental evaluation and Section 3 shows the results of the

experiments.

6.1 Experimental Data

In this thesis, the experiments are done with the test dataset of Web Services

Challenge’09 (WS-Challenge’09) [36]. In WS-Challenge’09 the data formats and

the contest data is based on OWL, WSDL and WS-BPEL schemas for ontologies,

services and service orchestrations. Furthermore, the annotation of each service

includes quality of service (QoS) information in terms of response time and

throughput of the service. The data set consist of five different test sets each of

85

which includes service descriptions and a composition problem description based on

a domain ontology. The task in the challenge is to find a composition of services that

produces a set of queried output parameters from a set of given input parameters and

a set of service descriptions. In addition, the found composition should be the one

with the least response time and the highest possible throughput.

The composition problem and the service descriptions in the test sets of WS-

Challenge’09 are adapted to the system in this thesis as follows: Since the non-

functional properties of services are out of the scope of this thesis, QoS information

available in the service descriptions is not used. Moreover, in this thesis, no WS-

BPEL description is created after finding the composition. Therefore, WS-BPEL

specifications in the test sets are also ignored. The rest of this section describes the

other contents of the information in the test sets and how they are used for the

evaluation of the system in this thesis.

6.1.1 Domain Ontology

In WS-Challenge’09, the domain ontology is expressed with OWL. The domain is

strictly limited to taxonomies consisting of sub and super class relationship between

semantic concepts. In addition to class definitions, domain ontology includes

definitions of some individuals which are instances of the classes. These individuals

are used to annotate input and output parameters of the services. Since the pre-

filtering mechanism in this thesis uses PDDL data, OWL class definitions in the test

sets are converted to PDDL type hierarchy. Furthermore, the individual definitions

are parsed and stored in an in-memory data structure to be used in finding the input-

output types of the services.

6.1.2 Service Descriptions

The service descriptions in WS-Challenge’09 test sets are prepared with an extended

version of WSDL which includes semantic annotation fields as well as syntactic

descriptions. The semantic annotation of services is done with Mediation Contract

Extension (MECE) [37] which is a simpler annotation format when compared with

86

OWL-S. In addition to extended WSDL descriptions, test sets include a much

simpler XML description of services which shows the inputs and outputs of services

in terms of the individuals defined in the domain ontology. Figure 6.1 illustrates an

example service description with this XML format.

<service name="serv1859188453">

<inputs>
 <instance name="inst1078434457"/>
 <instance name="inst817090775"/>
</inputs>
<outputs>
 <instance name="inst1979825120"/>
</outputs>

</service>

Figure 6.1: Example service description from WS-Challenge'09 test sets

In the test sets, semantic annotation is only used to describe the ontological

relationships of the input-output parameters of the services. The services in the test

sets do not include any precondition or effect description and also no OWL-S

annotation is available. Therefore, the OWL-S to PDDL conversion rules defined in

Chapter 3 cannot be applied to these test sets. The PDDL action descriptions are

created simply by creating agentHasKnowledgeAbout(x) predicates for the inputs

and outputs of the services. To illustrate, if we assume that the concept definitions in

the domain ontology that correspond to individuals inst1078434457, inst817090775,

inst1979825120 are con1, con2 and con3 respectively, the PDDL action counterpart

of the service in Figure 6.1 is as illustrated in Figure 6.2.

87

(:action serv1859188453

:parameters (?inst1078434457-con1 ?inst817090775–con2 ?inst1979825120–con3)

:precondition (and (agentHasKnowledgeAbout ?inst1078434457)
(agentHasKnowledgeAbout ?inst817090775))

:effect (and (agentHasKnowledgeAbout ?inst1979825120)
))

Figure 6.2: PDDL action that corresponds to the service description in figure 6.1

Since the services do not include any precondition or effect description, the only

available predicate in the PDDL domain is agentHasKnowledgeAbout(x) which is

used for input-output description of services. Therefore, the predicates part of the

PDDL domain descriptions consists of only this predicate.

6.1.3 Problem Description

In WS-Challenge’09 test sets, the composition problem is presented in an XML

format as illustrated in Figure 6.3. The individuals inside ‘provided’ part of the

descriptions are the instances of the concepts available in problem initial state. The

individuals inside ‘wanted’ part are the instances of the concepts required in goal

state. Figure 6.4 shows the PDDL counterpart of this problem description with the

assumption that the concepts that correspond to inst30807040, inst1625495672 and

inst1315200283 in the domain ontology are con1, con2 and con3 respectively.

88

<task>

<provided>
<instance name="inst30807040"/>

</provided>
<wanted>

<instance name="inst1625495672"/>
<instance name="inst1315200283"/>

</wanted>
</task>

Figure 6.3: Example problem description from WS-Challenge’09 test sets

(define (problem testsetXXproblem)

(:domain testsetXX)

(:objects inst30807040 - con1 inst1625495672 - con2 inst1315200283- con3)

(:init (agentHasKnowledgeAbout inst30807040)
)

(:goal (and (agentHasKnowledgeAbout inst1625495672)
(agentHasKnowledgeAbout inst1315200283)
))

)

Figure 6.4: PDDL problem that corresponds to the problem description in figure 6.3

After converting the domain ontology, service descriptions and problem description

of a test set to PDDL domain and problem descriptions, these descriptions are used

to perform tests to evaluate the performance of pre-filtering mechanism described in

Chapter 4. Table 6.1 illustrates the total service and concept numbers together with

the concept numbers in the initial and goal states of the composition problem for

each test set.

89

Table 6.1: Number of services and concepts in test sets of WS-Challenge’09

Test set Number of
services

Number of
total concepts

Number of
concepts in
initial state

Number of
concepts in
goal state

Testset01 572 1578 10 4

Testset02 4129 12388 9 3

Testset03 8138 18573 1 4

Testset04 8301 18673 7 3

Testset05 15211 31044 9 2

6.2 Experimental Environment

Since the pre-filtering mechanism described in Chapter 4 is designed to utilize

hardware platforms involving multiple CPUs, we performed our tests on High

Performance Computing (HPC) System of METU Computer Engineering

Department [38]. The hardware and software properties of this system that are

relevant to our tests are as follows:

• Hardware Properties: The system consists of 46 CPUs for processing, each

of which consists of 4 cores. There is also 46x16 GB RAM storage which

makes 736 GB memory. The total disk storage in the system is 6.5 TB.

• Software Properties: The operating system running on HPC system is

Scientific Linux 4.5 64-bit which is an open source Linux distribution

derived from Red Hat Enterprise Linux [42]. The used file system is Lustre

which is a parallel disk file system generally used for large scale cluster

computing [43]. The Java platform on the system consists of Java SE

Runtime Environment 1.6.0_20-b02 and javac 1.6.0_20.

90

6.3 Experiment Results

Before conducting the experiments, first the service data in test sets are converted to

PDDL action descriptions as described in Section 6.1. After this conversion,

preprocessing phase described in Chapter 3 is executed on the PDDL data and

service composition data (i.e. PDDL types, predicates, actions and the chains and

dependencies of actions) is stored in service repository.

The experiments start by converting the problem description to PDDL. Then the pre-

filtering system described in chapter 4 runs with the test set information stored in

service repository during preprocessing phase. Two types of experiments were done

which depend on the termination condition of pre-filtering algorithm:

• Termination right after satisfying the goals: In this type of experiment, the

pre-filtering algorithm terminates right after it finds the minimum set of

candidate actions that satisfy the goals of the composition problem. This

means that after termination of the algorithm, the selected candidate actions

in the action pool include at least one composition that satisfies the problem

goal but not necessarily all possible compositions.

• Termination when no actions can be added to action pool: In this type of

experiment, the pre-filtering algorithm continues to run until it is found that

the size of the action pool remains same after two consecutive iterations. In

this case no more actions can be added to the action pool and the set of

candidate actions remains the same. This means that the selected candidate

actions in the action pool include all possible compositions that satisfy the

problem goal.

Table 6.2 shows the results of the two types of the tests done for each test set in

Table 6.1. For each type, the first row shows the size of the action pool (i.e. the

number of selected candidate actions from the whole action set) after the pre-

91

filtering algorithm terminates. The second row shows the time passed for the

corresponding test.

Table 6.2: Experiment results

Termination
Condition Testset01 Testset02 Testset03 Testset04 Testset05

Single

Solution
47

12 ms

91

22 ms

63

19 ms

197

38 ms

214

46 ms

All

Solutions
79

19 ms

139

28 ms

152

33 ms

329

50 ms

236

49 ms

As it can be inferred from the Table 6.1 and 6.2, the pre-filtering algorithm provides

an important decrease in the number of actions in the domain and the time required

for this process is reasonable. In addition, the experiment results in Table 6.2 show

that the time required for pre-filtering increases proportionally with the size of the

concepts and actions in the domain. As expected, the tests that find all possible

solutions for the given problem create larger sets of candidate actions and pre-

filtering process takes more time when compared with the tests that terminate right

after finding a single solution.

In order to evaluate the increase in the performance of Simplanner with the filtered

domains, the service execution step in interleaved composition and execution phase

is disabled and the time required for Simplanner to achieve all the goals in the

problem description is calculated with three different experiments. First experiment

is done for the case that pre-filtering terminates right after satisfying the tha goals.

Second experiment covers the case where pre-filtering algorithm terminates when no

more actions can be added to action pool. Finally, third experiment is done for the

case that no pre-filtering algorithm is applied to the action domain. Table 6.3 shows

92

the time required by Simplanner to achieve all the problem goals with Testset01 in

Table 6.1 for the three different pre-filtering levels.

Table 6.3: Simplanner performance with Testset01 for different pre-filtering levels

Pre-filtering
level

of actions
and types

Time to achieve
all goals
(seconds)

Termination
after finding
single solution

47

466
132

Termination
after finding all
solutions

79

466 263

No pre-
filtering

572

1578
No response.

As Table 6.3 illustrates, the time required by Simplanner to achieve all the goals of

the problem increases with the size of domain. In the experiment where no pre-

filtering is applied, Simplanner returned out of memory error and could not run to

find a plan. As this experiment illustrates, in addition to significantly decreasing the

time required for planning, the pre-filtering algorithm helps Simplanner to run

successfully in the cases that it cannot run with non-filtered domains.

93

CHAPTER 7

7 CONCLUSION AND FUTURE WORK

In today’s web technology, web services and service oriented architectures (SOAs)

have a quite important role in achieving an effective interoperability among different

businesses. This is achieved with the platform independent standards used in web

service implementations. With this emerging role of web services and SOAs, the

requirement of automatically discovering, composing and executing web services

has begun to draw high attention, and today the approaches proposed to find

solutions to these automation problems constitute a hot research area of computer

science. Finding effective solutions to these problems is very important for the

future of web services because as the number of available services in the web

increases, the manual discovery of suitable web services from a huge service set and

composing and executing these services to provide a required functionality becomes

impractical.

Most of the approaches that address these problems benefit from semantic web and

semantic web service technologies. These technologies enable the representation of

semantic information of services and this information facilitates the automated

discovery and composition of services. The existing WSCE framework described in

[1] also makes use of semantic web services and provides interleaved composition

and execution of web services via a domain independent AI planner. This

framework proposes solutions for many open problems defined in the web service

composition literature. However, it does not provide solutions to two important

problems in WSC approaches: scalability and service domain maintenance.

Scalability is a common problem in the approaches using domain independent AI

94

planners. These approaches fail to scale well with the increasing number of services.

Since there are a huge number of services in real world scenarios, scalability has to

be achieved to provide practical significance for the proposed approach. In addition,

the existing WSCE framework does not enable storing and maintaining service

information in a service repository. It simply considers the services in the domain as

a single OWL-S description file provided by the user at the beginning of the

composition request. This approach is not practical because most of the time, the

user does not know the available services, so the service descriptions cannot be

provided by the user to the system. In addition, when the services in the whole web

are considered, collecting the service descriptions in a single file is practically

impossible.

This thesis proposes an extended WSCE approach that enhances the existing WSCE

framework by providing scalability and service domain maintenance. These

enhancements are provided as follows:

• Service Domain Maintenance: This thesis adds a service repository and a

pre-processing system to the existing WSCE framework which enables

storing service information permanently in the system. When a service

provider wants to add service information to service repository, this

information is processed by pre-processing system and service information

required for automated service composition and execution is added to service

repository. In addition, the pre-processing phase extracts some additional

information from service descriptions, namely chaining information and

problem state dependencies, and stores this information in service repository

as well. This additional information is used during problem handling to

decrease the time required to execute the pre-filtering algorithm which finds

the candidate services for the composition.

• Scalability: This thesis provides scalability to the existing WSCE framework

by adding a pre-filtering phase to the framework. When the user sends the

composition problem to the framework, the pre-filtering phase executes a

95

forward chaining algorithm and selects the candidate services from the

service repository that can be used in the composition. These selected

services are then sent to the AI planner to find the composite service and

execute the services that are used in the composite service. The conducted

experiments show that in a reasonable time, pre-filtering phase effectively

reduces the size of service set that is provided to AI planner for the

composition. This helps to prevent the exponential enlargement of planning

search space and AI planner finds the composition quickly by considering

only the reduced candidate service set.

In addition to these enhancements, this thesis explains how the added components

are integrated to the existing WSCE framework.

This thesis provides two important enhancements to the existing WSCE framework.

However some improvements still exist as future work. The most important future

work is to provide a parallel execution of pre-filtering and planning phases. In the

current framework, these two phases run sequentially. First, the pre-filtering phase

runs and selects the candidate services for the composition. Afterwards, Simplanner

runs and finds the composite service. If these two phases run in parallel, the services

found in each iteration of the pre-filtering phase can be dynamically provided to

Simplanner and Simplanner can use this dynamic set of services while building the

composite service. This functionality can be achieved by enhancing Simplanner with

the ability to run with a dynamic action set. Simplanner is able to run with dynamic

planning states but this property is not sufficient to provide parallel filtering and

planning.

Another future work is to consider services’ Quality of Service (QoS) parameters

during the pre-filtering phase. The QoS can be considered in the cases when more

than one service has similar IOPE values and these services are selected during pre-

filtering. In such a case, the service that provides the highest QoS can be selected

and the other services that have similar IOPE values can be discarded from the

composition.

96

Lastly, a future work can be to move the domain database in the service repository

from an in-memory database to a disk database and use an in-memory database as a

caching mechanism. This change will help to store huge service sets in the domain

database in the environments that do not have sufficient in-memory space while

keeping the performance of in-memory database querying and updating. To achieve

maximum caching performance, the required changes to the current database design

should be analyzed.

97

8 REFERENCES

[1] Kuzu, M. and N.K. Cicekli, Dynamic Planning Approach to Automated Web

Service Composition, accepted for publication in Applied Intelligence, 2010.

[2] Christensen E., Curbera F., Meredith G., Weerawarana S, "Web Services

Description Language (WSDL) 1.1", http://www.w3.org/TR/wsdl, last visited

on 20.05.2010.

[3] Smith M.K., Welty C., McGuinness D. L., "OWL Web Ontology Language

Guide", http://www.w3.org/TR/owl-guide, last visited on 20.05.2010.

[4] Martin D., Burstein M., Hobbs J., Lassila O., McDermott D., McIlraith D.,

Narayanan S., Paolucci M., Parsia B., Payne T., Sirin E., Srinivasan N., Sycara

K., "OWL-S: Semantic Markup for Web Services",

http://www.w3.org/Submission/OWL-S, last visited on 20.05.2010.

[5] Ghallab M., Howe A., Knoblock C., McDermott D., Ram A., Veloso M., Weld

D., Wilkins D., "PDDL: The Planning Domain Definition Language, AIPS-98

Planning Committee, 1998.

[6] Sapena O., Onaindia E., "Planning in Highy Dynamic Environments: An

Anytime Approach for Planning Under Time Constraints", Journal of Applied

Intelligence, Volume 29, Number 1, pages 90-109, 2007.

[7] OASIS Web Services Business Activity Specification, http://docs.oasis-

open.org/ws-tx/wsba/2006/06, last visited on 20.05.2010.

[8] Milanovic N., Malek M., "Current Solutions for Web Service Composition",

IEEE Transactions on Internet Computing, Volume: 8, Issue: 6, pages 51-59,

2004.

98

[9] Srivastava B., Koehler J., "Web Service Composition – Current Solutions and

Open Problems", ICAPS 2003 Workshop on Planning for Web Services, 2003.

[10] Polleres A, "AI Planning For Web Service Composition", Presentation, Ilog,

Paris, France, 2004. http://axel.deri.ie/~axepol/presentations/20040907-paris-

ilog-AIplanning4WSC.ppt, last visited on 20.05.2010.

[11] Agarwal V., Chafle G., Mittal S., Srivastava B., "Understanding Approaches

for Web Service Composition and Execution", IBM Research Report, 2007.

[12] Rao J., Su X., "A Survey of Automated Web Service Composition Methods",

Proceedings of 1sth International Workshop on Semantic Web Services and

Web Process Composition, pages 43-54, 2004.

[13] Yu L., "Introduction to Semantic Web and Semantic Web Services", CRC

Press (Boca Raton, FL), 2007.

[14] Haas H., Brown A., "Web Services Glossary", http://www.w3.org/TR/ws-

gloss/, last visited on 20.05.2010.

[15] Box D., Ehnebuske D., Kakivaya G., Layman A., Mendelsohn N., Nielsen H.

F., Thatte S., Winer D., "Simple Object Access Protocol (SOAP) 1.1",

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, last visited on

20.05.2010.

[16] Bellwood T., "UDDI Version 2.04 API Specification",

http://www.uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm,

last visited on 20.05.2010.

[17] Oh S., Lee J., Cheong S., Lim S., Kim M., Lee S., Park J., Noh S., Sohn M.,

"WSPR*: Web-Service Planner Augmented with A* Algorithm", IEEE

Conference on Commerce and Enterprise Computing, pp.515-518, 2009.

99

[18] Le D. N., Goh A. E., Cao T. H., "A survey of web service discovery systems"

International Journal of Information Technology and Web Engineering, vol. 2,

pp. 65-80, 2007.

[19] Russel S., Norvig P., "Artificial Intelligence: A Modern Approach", 3rd

edition, 2003.

[20] Blum A., Furst M., "Fast Planning Through Planning Graph Analysis",

Proceedings of 14th International Joint Conference on Artificial Intelligence,

pp. 1636-1642, 1995.

[21] STRIPS language, http://en.wikipedia.org/wiki/STRIPS, last visited on

20.05.2010.

[22] ADL language, http://en.wikipedia.org/wiki/Action_description_language, last

visited on 21.07.2009.

[23] Helmert M., "An Introduction To PDDL",

http://www.cs.toronto.edu/~sheila/2542/w09/A1/introtopddl2.pdf, last visited

on 20.05.2010.

[24] Garofalakis J., Panagis Y., Sakkopoulos E., Tsakalidis A., "Web Service

Discovery Mechanisms: Looking for a Needle in a Haystack?", International

Workshop on Web Engineering, in conjunction with ACM Hypertext, 2004.

[25] Casati F., Ilnicki S., Jin L., "Adaptive and Dynamic Service Composition in

EFlow", Proceedings of 12th International Conference on Advanced

Information Systems Engineering, 2000.

[26] Chan M., Bishop J., Baresi L., Survey and Comparison of Planning

Techniques for Web Services Composition, University of Pretoria Pretoria,

Technical Report, 2007.

[27] In-memory Database, http://en.wikipedia.org/wiki/In_memory_database, last

visited on 20.05.2010.

100

[28] Garcia-Molina H., Salem K., "Main Memory Database Systems: An

Overview," IEEE Transactions on Knowledge and Data Engineering, vol. 4,

no. 6, pp. 509-516, 1992.

[29] Klusch M., Gerber A., Schmidt M., "Semantic Web Service Composition

Planning with OWLS-XPlan", Proceedings of the AAAI Fall Symposium on

Semantic Web and Agents, AAAI Press, 2005.

[30] "Extreme Performance Using Oracle TimesTen In-Memory Database", An

Oracle White Paper, last visited on 20.05.2010.

[31] Bartalos P., Bielikova M., "Semantic Web Service Composition Framework

Based on Parallel Processing", 2009 IEEE Conference on Commerce and

Enterprise Computing, pp. 495-498, 2009.

[32] Akkiraju R., Srivastava B., Ivan A., Goodwin R., Syeda-Mahmood T.,

"SEMAPLAN: Combining Planning with Semantic Matching to Achieve Web

Service Composition", IEEE International Conference on Web Services

(ICWS’06), pp. 37-44, 2006.

[33] Yan Y., Zheng X., "A Planning Graph Based Algorithm for Semantic Web

Service Composition", 2008 10th IEEE Conference on E-Commerce

Technology and the Fifth IEEE Conference on Enterprise Computing, E-

Commerce and E-Services, 2008.

[34] Kwon J., Hyeonji K., Lee D., Lee S., "Redundant-Free Web Services

Composition Based on a Two-Phase Algorithm" , 2008 IEEE International

Conference on Web Services, E-Commerce and E-Services, pp.361-368, 2008.

[35] PDDL4J, http://sourceforge.net/projects/pdd4j, last visited on 20.05.2010.

[36] The Web Service Challenge Rules, http://ws-

challenge.georgetown.edu/wsc09/downloads/WSC2009Rules-1.1.pdf, last

visited on 20.05.2010.

101

[37] Bleul S., Comes D., Zapf M. "Self-Integration of Web Services in BPEL

Processes", Proceedings of SAKS Workshop, Verlag: University of Kassel,

2008.

[38] METU CENG High Performance Computing, http://hpc.ceng.metu.edu.tr, last

visited on 20.05.2010.

[39] Kim H., Kim I., "Mapping Semantic Web Service Descriptions to Planning

Domain Knowledge", Proceedings of IFMBE, Volume 14, pages 388-391

Springer Berlin Heidelberg, 2007.

[40] OWLS2PDDL tool, http://projects.semwebcentral.org/projects/owls2pddl/, last

visited on 20.05.2010.

[41] Axis, Apache Web Services Project, http://ws.apache.org/axis/, last visited on

20.05.2010.

[42] Scientific Linux, https://www.scientificlinux.org, last visited on 20.05.2010.

[43] The Lustre File System, http://wiki.lustre.org/index.php/Main_Page, last

visited on 20.05.2010.

[44] Peer J., "Semantic Service Markup with SESMA", Proceedings of

International World Wide Web Conference, 2005.

[45] Peer J., "Web Service Composition as AI Planning – a Survey", Technical

report, Univ. of St. Gallen, 2005.

[46] Digiampetri L., Alcazar J., Medeiros C. B., "AI Planning in Web Services

Composition: a review of current approaches and a new solution", 2007.

[47] Kona S., Bansal A., Gupta G., "Automatic Composition of Semantic Web

Services", Proc. of IEEE International Conference on Web Services (ICWS),

2007.

102

[48] Bartalos P., Bieliková M., "Fast and Scalable Semantic Web Service

Composition Approach Considering Complex Pre/Postconditions," services,

pp.414-421, Congress on Services - I, 2009.

[49] Nebel B., Dimopoulos Y., Koehler J., "Ignoring irrelevant facts and operators

in plan generation.", In: Proc. ECP-97, Toulouse, France, 1997.

103

APPENDIX A

9 PRE-FILTERING QUERIES

initialQuery:

SELECT aid

FROM Action

WHERE isinvokable = 1 AND

aid NOT IN (

 SELECT aid

 FROM HasPrec

 WHERE predid NOT IN (

 SELECT superpid

 FROM HasSuperpred

 WHERE pid IN (

 -- get the pids of predicates provided in

 -- initial state of the problem

 SELECT pid

 FROM Pred

 WHERE predicate = 'initPred1' OR

 Predicate = 'initPred2' OR

 Predicate = 'initPred3'

)

)

);

104

levelQuery:

SELECT act.aid, pred.predicate, prec.predid

FROM Action act, HasPrec prec, Pred pred

WHERE prec.predid = pred.pid AND

 act.aid = prec.aid AND

 act.isinvokable = 1 AND

 prec.aid IN (

 SELECT aid

 FROM HasPrec

 WHERE pid IN (

 SELECT pid

 FROM HasChain

 WHERE eid IN (

 SELECT eid

 FROM HasEffect

 WHERE predid IN (

 -- get the eids of predicates to be

 -- checked in this level

 SELECT pid

 FROM Pred

 WHERE predicate=’checkEffect1’ OR

 predicate=’checkEffect2’ OR

 predicate=’checkEffect3’

)

)

)

);

