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Department of Mathematics, METU

Assist. Prof. Dr. Zülfükar Saygı
Department of Mathematics, TOBB ETU

Dr. Muhiddin Uğuz
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Signature :

iii



ABSTRACT

SPACE-TIME CODES

Karaçayır, Murat

M.S., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

May 2010, 72 pages

The phenomenon of fading constitutes a fundamental problem in wireless commu-

nications. Researchers have proposed many methods to improve the reliability of

communication over wireless channels in the presence of fading. Many studies on this

topic have focused on diversity techniques. Transmit diversity is a common diversity

type in which multiple antennas are employed at the transmitter. Space-time coding

is a technique based on transmit diversity introduced by Tarokh et alii in 1998.

In this thesis, various types of space-time codes are examined. Since they were orig-

inally introduced in the form of trellis codes, a major part is devoted to space-time

trellis codes where the fundamental design criteria are established. Then, space-time

block coding, which presents a different approach, is introduced and orthogonal space-

time block codes are analyzed in some detail. Lastly, rank codes from coding theory

are studied and their relation to space-time coding are investigated.

Keywords: Wireless Communications, Diversity, Space-Time Trellis Codes, Orthogo-

nal Designs, MRD Codes
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ÖZ

UZAY-ZAMAN KODLARI

Karaçayır, Murat

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Mayıs 2010, 72 sayfa

Sönümleme kavramı kablosuz haberleşmede temel bir sorun teşkil etmektedir. Araştır-

macılar sönümlemenin varlığında kablosuz kanallar üzerinden iletişimin güvenilirliğini

artırmak için çeşitli yöntemler önermişlerdir. Bu konu üzerindeki birçok çalışma,

çeşitleme tekniklerine odaklanmıştır. İletim çeşitlemesi, ileticide birden çok sayıda an-

tenin kullanıldığı yaygın bir çeşitleme türüdür. Uzay-zaman kodlama, 1998’de Tarokh

ve diğerleri tarafından ortaya atılan, iletim çeşitlemesini temel alan bir tekniktir.

Bu tezde, uzay-zaman kodlarının çeşitli türleri incelenmiştir. Bu kodlar orijinal olarak

kafes kodları olarak ortaya çıktığından, önemli bir bölüm uzay-zaman kafes kodlarına

ayrılmış ve burada ayrıca temel tasarım ölçütleri ortaya konmuştur. Daha sonra, farklı

bir yaklaşım sunan uzay-zaman blok kodlama tanıtılmış ve ortogonal uzay-zaman blok

kodları belli bir detayla ele alınmıştır. Son olarak, kodlama kuramından rank kodları

çalışılmış ve uzay-zaman kodlarıyla ilişkileri araştırılmıştır.

Anahtar Kelimeler: Kablosuz Haberleşme, Çeşitleme, Uzay-Zaman Kafes Kodları,

Ortogonal Tasarımlar, MRD Kodları
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CHAPTER 1

INTRODUCTION

Wireless communication has always been a part of life since the invention of radio. The

reasons of the excitement caused by the idea of communicating over long distances

through air are rather understandable. Today, recent developments on the topic,

especially the acclaimed 3G technology, have given rise to an enthusiasm wave which

is influencing increasingly more people. The issue should not be interpreted solely as

entertainment; on the contrary, hundreds of millions of people are relying on wireless

communications for serious tasks. To name a few, communication via cell phones,

TV broadcasting, monetary transactions, registration to courses and taking exams

are wireless applications which are already perceived as “ordinary”. These examples

give enough evidence that in the near future, the matter will reach, if it has not yet,

such extents that it will not be a matter of choice for most people to design their lives

according to wireless applications. Even if we put all these aside, the reality today

is that the demand for wireless applications does not seem to have any prospect of

diminishing.

Since wireless communications is such an important topic, the works of many authors

for several decades have produced a giant literature on this field. This literature shows

that wireless communications is a highly interdisciplinary area of research. Results

from information theory, coding theory, mathematics, statistics and computer science

have been used thoroughly by researchers both to draw conclusions related to the

subject and to devise new techniques improving the quality of communication greatly.
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1.1 Problem Definition

In wireless channels, a signal sent from a transmitter does not follow a single path

before it reaches its destination. Instead, objects present in the environment cause it

to traverse many different paths by means of physical effects such as reflection and

refraction. Thus, multiple versions of the transmitted signal reach the receiver. The

observed signal at the receiver is a sum of these multiple signals, and it is typically

different from the originally transmitted one. Furthermore, in real applications, the

relative positioning of transmitter-receiver pairs and the overall state of the objects

between them may vary frequently in time, causing a change in the multiple paths that

signals follow. As a result, it is not rare that the signal observed by a receiver does not

suffice to recover the actually transmitted signal. This factor, known as “multipath

fading” or simply as “fading”, is a fundamental problem in wireless communication.

Space-time coding was first described in [1] by Tarokh, Seshadri and Calderbank as a

solution to this problem. It claims to increase the reliability of data transmission in

wireless communication systems. Like many other wireless communication schemes,

it is based on a technique known as diversity. We proceed with a brief description of

this technique.

1.2 Diversity

As expressed before, the paradigm of fading and its time-varying nature constitute

a fundamental problem when communicating over wireless channels. During some

time periods, the transmitted symbol can well be recovered by the receiver despite

the presence of fading; while during other time periods, fading may reach extents that

make faultless transmission of data impossible. This latter case is referred to as deep

fading. Therefore, it is reasonable to assert that a communication scheme is likely to

suffer from errors if it depends on the strength of a single signal path. One way to

remove this dependency is to ensure that each individual symbol is sent over several

paths which undergo independent fading. By this way, correct transmission of an

information symbol is achieved as long as one of its paths is strong. This resource is

known as diversity.
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Diversity has several types, but only two of them are relevant in our discussion of

space-time codes. These are time diversity and space diversity.

Time Diversity

The fading characteristics of a wireless communication channel can be viewed as a

function of time. Intuitively, information symbols transmitted with a small time

difference will undergo similar amounts of fades. In other words, as two signals are

transmitted further apart in time, the fades acting on them tend to behave more

independently from one another. Both for theoretical discussions and real applications,

a more precise explanation is provided by the so called coherence time. Roughly

speaking, coherence time can be defined as the time duration over which the state of a

channel remains predictable. Therefore, two signals are assumed to undergo dependent

fades if they are transmitted within a time period shorter than the coherence time;

otherwise they are assumed to experience independent fades.

Time diversity (also called temporal diversity) combats fading by making proper use

of coding and interleaving. Information is encoded using an error-correcting code,

each codeword is divided into L parts and consecutive parts are transmitted inside

different coherence periods. More explicitly, if x = (x1, x2, . . . , xL) is a codeword and

xi and xj are any two parts of x transmitted at times ti and tj respectively, then the

difference |ti − tj | should be greater than Tc, coherence time of the channel. Then,

the definition of coherence time implies that all parts of x undergo independent fades.

Even if some of them get lost due to presence of deep fade, depending on the error

correcting capability of the code, others may suffice to correctly recover the original

information. In this context, L is called the number of diversity branches. The simplest

realization of a time diversity scheme occurs when one uses the repetition code as the

error-correcting code. In this case, each codeword consists of L repeated copies of an

information symbol. The same symbol is simply transmitted L times from the same

antenna, each transmission being inside a different coherence period.

Although it increases the reliability of data transmission significantly, time diversity

is easily seen to have major drawbacks. First of all, its data rate is low: it takes L

symbol times to transmit one symbol. In addition, due to the necessity of spreading
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a codeword over different coherence periods, decoding at the receiver cannot start

without a certain amount of delay. This is clearly a problem in applications where

long decoding delays are not tolerable (e.g. in voice transmission over mobile phones).

This means further that employing solely time diversity is not a good option when

the channel fading varies too slowly with time. All these drawbacks motivate the use

of space diversity together with time diversity.

Space Diversity

Time variation of multipath fading mainly comes from the fact that receivers in real

applications are mobile objects. Time diversity makes use of this fact to ensure that

signals representing the same information is sent over independently fading paths.

Clearly, a receiver’s mobility is not the only way to achieve this effect. It is known

that sufficiently separated antennas cause multipaths which fade more or less inde-

pendently. This resource is referred to as space diversity (or spatial diversity) and is

a special case of the more general antenna diversity. Space diversity is called trans-

mit diversity if multiple transmit antennas are used and receive diversity if multiple

receive antennas are used. In this thesis we will primarily be dealing with schemes

employing transmit diversity, while receive diversity will only be optional.

A simple scheme which combines time diversity and space diversity can be as follows:

Suppose we want to transmit a symbol x. Again, we encode x with an error correcting

code and obtain x = (x1, x2, . . . , xL). Then we use L different transmit antennas to

transmit x. At symbol time t = i, xi is transmitted by transmit antenna i and the

other antennas are silent. If the error correcting code is the repetition code, then this

scheme amounts to transmitting the same information symbol through L transmit

antennas over L symbol times. Note that this time we do not have to wait between

consecutive symbols since variation in fading results from the use of different transmit

antennas. Therefore, this scheme is better suited in cases where there is a strict delay

requirement.

Diversity is an important resource in wireless communications. For that reason, many

schemes combine several types of diversity. As the name suggests, space-time codes
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employ space and time diversity to increase the reliability of wireless communication.

A more thorough treatment of these and other diversity techniques can be found in

[6, Chapter 3]. A reader who is particularly interested in transmit diversity may also

consult [7].

1.3 Parameters Related to Wireless Communications

What do we mean when we talk about improving the performance of a wireless com-

munication system? Is performance something measurable, and if it is, what are the

measures of performance? These fundamental questions have been the subject of

many studies so far. The results of these have produced a good deal of theory on the

field, which provides quite satisfactory explanations on the aspects that can be used

to evaluate the performance of a wireless communication system. In this part, we give

brief information on some of these aspects. Our presentation will mainly be based on

heuristic explanations rather than mathematical ones.

Data Rate, Error Rate

The emergence of a communication theory was prompted by the fact that the na-

ture is not fully controllable. Regardless of which medium one conveys information

through, there is always some unpredictable element which may prevent the intended

receiver from receiving the information exactly in the form it was sent. This brings

about a positive probability of communication error and the main purpose of any

communication scheme is to reduce this probability as much as possible. Neverthe-

less, no communication scheme is error free and thus, errors are expected to occur

with some rate depending on which scheme we are using. This is called error rate.

The most obvious performance measure of any communication scheme-wireless or not-

is the error rate. Of course, the relation is inverse; the smaller the error rate, a higher

performance the communication scheme has.

In wireless communications, information is carried by electromagnetic signals. The

receiver may not observe this signal exactly as it was sent, partly due to the unpre-

dictable element mentioned in the previous paragraph, which is called noise. Whether
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or not the receiver will be able to obtain the sent information depends on the relative

strength of the received signal and the noise. Therefore, the ratio

Psignal

Pnoise
,

where Psignal and Pnoise are the average powers of the signal and the noise respectively,

is very important and is termed signal-to noise ratio(SNR). SNR is usually defined in

a logarithmic scale given by

SNRdB = 10 log10

Psignal

Pnoise
,

where dB stands for “decibels”. Intuitively, as SNR increases, the error rate decreases.

Therefore, many communication schemes aim at increasing the SNR. There are two

straightforward means to achieve this: decreasing the noise power and increasing the

signal power. The first option is not likely to work because the part of noise which is

controllable in a communication device is generally idealized in advance and the rest

is out of human control. The second option is also flawed. Most wireless devices are

not able to increase the power. For instance, cell phones rely on a battery to function,

whose power is very limited. Even if power is increased, both the signal and the noise

grows in strength in certain cases. This can be felt when one increases the volume of

a radio. Since the two most obvious ways of increasing SNR do not work in general,

one needs more elaborated techniques instead, of which diversity is one.

The idea that information is a measurable phenomenon was realized by the ground-

breaking work of Claude E. Shannon in the late 1940s. In [2], he introduced the so

called Shannon capacity, which draws a limit to the amount of information that can

be sent over a channel in unit time with arbitrarily low error rate. The amount of in-

formation sent in unit time is called data rate. According to Shannon’s Noisy-channel

Coding Theorem, the typical way of achieving data rates close to channel capacity

without sacrificing the reliability of communication is to increase the amount of in-

formation sent at a time. On wireless channels, however, this cannot be done due

to delay limitations. Furthermore, the element of fading implies that the capacity of

certain wireless channels is practically zero(see the note in [6, page 218]). Therefore,

for wireless channels, a more accurate performance measure is provided by outage ca-

pacity. Outage capacity is the maximum rate for which the probability of error is less
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than a given threshold. Limits of wireless communication in terms of outage capacity

have been investigated by several authors. Interested reader may see [3, 4].

Diversity Gain, Coding Gain

We have made a conceptual description of diversity but we have not yet provided

mathematical means to define it. Diversity is indeed measurable and is closely related

to the error rate of a channel. We can use several diversity techniques in a wireless

communication scheme but how much performance is improved by doing so is subject

to mathematical analysis. In other words, how much we gain by introducing diversity

to a system can be expressed mathematically and is called diversity gain. A definition

of diversity gain commonly used in the literature is given by

− lim
SNR→∞

log(PEP)

log(SNR)
,

where PEP is the pairwise error probability, i.e. the probability that the receiver

decodes the transmitted information erroneously. This probability is bounded from

above by an expression whose leading term is a multiple of
( 1

SNR

)L
where L is the

diversity gain(see [6, page 76]).

A similar performance measure is coding gain. Coding gain is an approximate mea-

sure of the advantage provided by a coded system over an uncoded one having the

same diversity gain[1, page 6]. Coding adds redundancy to information by mapping

information sequences to longer(when expressed as a binary vector) code sequences or

codewords. Then the distance(in a predefined sense) of two codewords is larger than

the distance of the information sequences to which they correspond. This reduces the

probability of confusing different information pieces, which is the reward of adding

redundancy. Coding gain is a quantization of this and closely related to the minimum

distance of distinct codeword pairs. Like diversity gain, coding gain also shows itself

in an upper bound on PEP. Coding gain also has a nice geometric interpretation.

Performance of a wireless system is often illustrated by a PEP versus SNRdB graph.

Coding gain of a system is the horizontal shift of its performance graph compared to

that of an uncoded system and hence measured in decibels.

All of the performance measures mentioned in this section can be found in much
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greater detail in many textbooks on wireless communications. The reader who would

like to develop insight into these fundamental concepts is referred to [5, 6].

1.4 Thesis Outline

The rest of these thesis is about three different types of space-time codes. In Chapter

2, we first describe the channel model which will be valid for the other chapters as well.

We then describe the encoding process of space-time trellis codes in detail and discuss

their decoding briefly. Performance criteria for space-time codes are also established

in this chapter. Among these criteria, the rank criterion applies to all the codes in

the thesis.

Next two chapters are about space-time block codes, where each of them focuses on a

different type of construction. In Chapter 3, orthogonal space-time block codes are in-

troduced, which are constructed by making use of some results from orthogonal design

theory. The subject of Chapter 4 is how maximal rank distance codes from coding

theory can be used to construct “good” space-time block-codes. In both chapters,

codes under discussion are examined according to the rank criterion.

8



CHAPTER 2

SPACE-TIME TRELLIS CODES

Space-time coding was first proposed in [1] by Tarokh, Seshadri and Calderbank as

a method in wireless communications. It claims to increase the reliability of com-

munication by using several antennas at the transmitter. Therefore, it is a transmit

diversity scheme. Since the codes given in [1] is based on trellis codes, these are called

space-time trellis codes.

In Section 2.1, we define some terms related to wireless channels and describe the

channel assumptions which will be valid throughout the rest of the thesis. A detailed

description of space-time trellis codes is the topic of Section 2.2. In Section 2.3, three

performance criteria about space-time codes are established. How different parameters

about space-time codes are linked is covered in Section 2.4. A simple example of space-

time trellis codes is given in Section 2.5.

2.1 Channel Model

When communicating over wireless channels, the numerosity and complexity of the

physical mechanisms behind multipath fading make it certain that having control over

all the channel parameters is practically impossible. Although base stations and large-

scale objects such as buildings remain stationary in very long time durations, receivers

and relatively small objects present in the environment move in an unpredictable

manner. Therefore, it is more or less necessary to deal with the channel as a whole

and describe it using an appropriate statistical model. Still, models which characterize

cases where the number, location and geometry of all the reflectors are known have
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also been analyzed in the literature. Interested reader is referred to [8, Section 2.2.1]

for a description of these models.

Suppose we want to send information using a transmit antenna. The baseband rep-

resentation xb(t) of the information at time t and its corresponding modulated signal

x(t) are related by

x(t) = xb(t)e
i2πfct, (2.1)

where i =
√
−1 and fc is the frequency of the carrier wave. Since the signal takes

some time to reach the receiver, each path introduces a delay as well as an attenuation

factor. More explicitly, if M(t) is the set of all multipaths at time t, then the received

signal at time t is expressed by

y(t) = η(t) +
∑

p∈M(t)

apx(t− τp), (2.2)

where ap and τp are respectively the strength and delay of the signal path p from the

transmit antenna to the receive antenna. η(t) is a sample of additive white Gaussian

noise (AWGN) affecting the received signal at time t, which we ignore for now. Rather

than having to contend with the effect of each individual path separately, we are

interested in the aggregate effect of the channel on the transmitted signals and we

denote this effect by α(t), called the path gain. Then (2.2) can be written simply as

y(t) = α(t)x(t) + η(t). (2.3)

Note that we are not using any delay term since we assume that the strength and

delay associated with all signal paths are already considered in the calculation of α(t).

For a more complete description of path gain, one can see [6, Chapter 2].

One important point about schemes employing space-time codes is that they do not

treat time as a continuous concept. Transmissions in these schemes occur inside

separate time slots. For that reason, (2.3) should not be interpreted as a continuous

function of time in our context. Rather, it should be interpreted as a function of the

set {1, 2, . . . , T} where T is the number of time slots in which transmission will occur.

To emphasize this nuance, instead of (2.3),

yt = αtxt + ηt (2.4)

will be used from now on.
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Since a wireless channel is effectively described by its path gains, it is important to de-

scribe the behaviour of these fade coefficients statistically. Among all such models the

most commonly used is the Rayleigh fading, which assumes that there are many small

reflectors in the environment. In such a case, the fade coefficients can be modeled as

a zero-mean complex Gaussian random variable with the same variance for both (real

and imaginary) dimensions[6, Section 2.4.2]. An important assumption of Rayleigh

fading is that none of the signal paths is dominant over the others. This means in

particular that there is no line of sight between the transmitter and the receiver since

this path would dominate the propagation medium. These explanations make it clear

that it is reasonable to use a Rayleigh fading model for heavily built-up urban areas.

If one wishes to model cases where there is a line of sight between the transmitter and

the receiver, Rician fading should be used instead. We will assume a scenario which

is well approximated by Rayleigh fading throughout this thesis.

Another important aspect of a wireless channel is how fast it varies. More precisely,

we are interested in the coherence time and its relation to the delay constraint of the

application. If coherence time is large relative to the delay constraint, the resulting

situation is called slow fading. In slow fading, the fade coefficients within a coherence

period are dependent, possibly equal. If they are equal and vary from one coherence

period to another, quasistatic fading occurs. The opposite case occurs when the

coherence time is smaller than the delay constraint of the channel and it is known

as fast fading. Slow fading corresponds to situations where fading is mainly due to

shadowing caused by large-scale stationary objects such as buildings and mountains.

In mobile applications such as GPRS, however, the presence of many mobile users

causes a fast variation in the channel and hence such channels exemplify fast fading.

Although fast fading applies to such a wide class of cases, we will mainly be interested

in quasistatic fading for simplicity.

A confusion might arise about the relation between the time variation of a channel and

the statistical model we use for the fade coefficients. In our context, time variation of a

channel refers to a change in the actual values of its path gains, whereas the statistical

model is just a probabilistic distribution of these path gains. As the overall state of

the channel varies with time, the actual fade coefficients vary; but their probabilistic

description may tend to become further from or closer to a given model, say, Rayleigh
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fading, independently of the changes in these coefficients. This distinction will become

more evident in the next section, where multiple path gains will be in question due to

the presence of multiple transmit antennas.

The last classification of wireless channels related to our discussion is about frequency

selectivity. It is a known fact that any waveform is a sum of periodic signals of

different frequencies. As far as wireless communication is concerned, any signal sent

over a wireless channel is composed of components having different frequencies. If

these components are affected differently by the channel, the fading is said to be

frequency selective. Otherwise all frequency components of a signal undergo the same

amount of fading and the channel is called a flat fading channel. Our interest will be

in flat fading channels.

To summarize, whenever the channel characteristics will be important for us, we will

be using a channel model where the fading is quasistatic, flat and path gains are

selected according to a Rayleigh distribution. It should be stressed that these details

will not be mentioned much in what follows. They are nevertheless important in order

to prevent misguidance because what is true for a particular type of channel may not

hold for other channels. We continue with a description of space-time trellis codes.

2.2 Space-Time Trellis Codes

In this section we briefly describe space-time trellis codes as they were originally

introduced in [1]. First, the underlying system model will be explained. Secondly, a

description of the scheme will be made. Then, the structure of the encoder will be

explained in detail. Lastly, decoding of space-time trellis codes will be discussed.

2.2.1 System Model

In a mobile communication system with many users, it is most cost effective to equip

the base station with multiple antennas and having a small number(possibly one) of

antennas in mobile units[9]. Let us consider such a system where the base station

is equipped with nT > 1 antennas and each mobile has nR ≥ 1 antennas. Data
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transmission can be either from the base station to the mobile unit or from the mobile

unit to the base station. However, we are only interested in the former case. Therefore,

this is a transmit diversity scheme where receive diversity is only optional.

Suppose we want to make data transmission over such a system during l symbol times.

l is called the frame length, meaning that there will be l different time slots in which

data transmission will be made. At time slot t, the transmitted signal from transmit

antenna i for i = 1, 2, . . . , nT is xit and the signal received by receive antenna j is

yjt = ηjt +

nT∑
i=1

αi,jx
i
t

√
Es (2.5)

for j = 1, 2, . . . , nR. Here
√
Es is a real scaling factor to ensure that the average

energy per signal is 1. ηjt is the noise at time t associated with receive antenna j and

it is selected from independent samples of a complex Gaussian random variable with

mean zero and variance equal to N0/2 for both (real and imaginary) dimensions. αi,j

is the path gain from the transmit antenna i to the receive antenna j and it is assumed

to be quasistatic, flat and Rayleigh distributed with variance 0.5 for both dimensions.

In addition, these path gains are assumed to be independent for different (i, j) pairs.

This corresponds to the assumption that signals transmitted from different transmit

antennas as well as signals received by different receive antennas undergo independent

fades.

The last assumption we make about the channel is the availability of complete channel

state information at the receiver. In reality, path gains at a particular time can be

known only with an error due to the time variation of the channel. In our model,

since the channel fade coefficients are assumed to be constant during a data frame, it

is reasonable to assume that these coefficients are known by the receiver during that

frame. For the methods of obtaining channel state information at the receiver, one

can see [6, page 65]. The effects of not knowing the channel has also been established

in the literature. The reader is referred to [10] for details on this issue.

2.2.2 Description of the Scheme

Now we turn our attention from the channel properties to the transmitter. Given

binary data, the problem as to how this data will be converted to signals needs to
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Figure 2.1: Block diagram of the transmitter.

be addressed. This is achieved through coding followed by modulation. First, binary

data is encoded by a convolutional encoder. Then, the encoded data is split into nT

parts of fixed size by a serial to parallel converter. After that, each part is converted

to a digital signal by means of a pulse shaper. The outputs of the pulse shaper

are then modulated and modulated signal i is transmitted by transmit antenna i for

i = 1, 2, . . . , nT . Since a convolutional code can be represented by a trellis diagram,

the class of codes defined by this scheme is known as space-time trellis codes. Figure

2.1 illustrates the block diagram of a transmitter with nT = 2 antennas.

Although the above description of the scheme is valid for any modulation, it will be

useful to fix a modulation type for the understandability of the discussion. For this

purpose we choose M -PSK modulation since the examples given in [1] are mostly for

M -PSK modulation. The constellation size of M -PSK modulation is equal to M = 2p

where p is a positive integer, and its elements are the M th roots of unity scaled by a

factor. More explicitly, the constellation for M -PSK modulation is given by the set

{aei2π
k
M : a ∈ R, k = 0, 1, . . . ,M − 1}. (2.6)

The commonly used 4-PSK and 8-PSK constellations are shown in Figure 2.2, where

the complex elements are mapped to integers modulo 4 and 8, respectively, as in

the figure. Other mappings are also possible, but we will use this one. From now

on, elements of M -PSK constellation will be represented by integers specified by the

mapping aei2π
k
M −→ k.
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Figure 2.2: 4-PSK and 8-PSK constellations.

One point which is still ambiguous about the scheme is the frame length. In fact,

Figure 2.1 does not impose any restriction on the frame length. At any time slot,

a number, say b, of bits arrive at the encoder. Using these bits and the bits in its

memory, the encoder produces pnT bits and these bits are divided into nT data streams

d1, d2, . . . , dnT , each having p bits. Then the di’s are modulated and sent from different

transmit antennas simultaneously. As long as b new bits arrive at the encoder, the

transmitter will continue to transmit data. Therefore, this scheme can be used with

as large a frame length as possible and so we will not impose any restriction on the

frame length. It should be noted, however, that our assumption of quasistatic fading

comes from the fact that mobile applications are generally low-delay applications.

Since using long data frames causes long decoding delays, such an action would not

be consistent with our assumptions.

Next, we describe the convolutional encoder in more detail.

2.2.3 Structure of the Encoder

Figure 2.1 illustrates all the required elements in a space-time trellis encoder. However,

the details of the pulse shaper and the modulator will not be of interest for us. Rather,

we are interested in the mathematical relation between the input data bits and the

output symbols belonging to the constellation alphabet of the selected modulation.

For this reason, we consider the space-time trellis encoder as consisting of a single

element which takes as input binary data and outputs constellation symbols. We

illustrate this in Figure 2.3.
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Figure 2.3: An input-output model of the space-time trellis encoder.

Before moving into details about the inner structure of the encoder, let us describe the

input and the output explicitly. The input consists of m binary sequences of length l

where l is the frame length. We write this as

bi = (bi1, b
i
2, . . . , b

i
l) (2.7)

for i = 1, 2, . . . ,m. Thus, the input can be viewed as consisting of m branches of

data each of which moves through a unique part of the encoder. In this context m is

called the (transmission) rate of the space-time trellis code. As for the output, it is

composed of nT sequences of constellation symbols, which are

xi = (xi1, x
i
2, . . . , x

i
l) (2.8)

for i = 1, 2, . . . , nT . The sequence xi contains the symbols to be transmitted from

transmit antenna i over l successive time slots. The following description holds for

any modulation whose elements are suitably labeled, still we will assume M -PSK

modulation whose elements are represented with the integer labeling as explained in

the previous subsection.

We are now ready to describe the structure of the encoder. The encoder contains m

shift registers. Let us denote the number of memory elements in shift register i by vi.

These have the property that vi ≤ vj for i < j and vm−v1 ≤ 1. By the state of a shift

register at time slot t we mean the bits contained by its memory elements written

in an ordered manner. Explicitly, if we denote the respective bits contained by the

memory elements of shift register i at time slot t by ci1, c
i
2, . . . , c

i
vi , then the state of

shift register i at time slot t is given by sit = (ci1, c
i
2, . . . , c

i
vi). At the end of each time

slot, the bit in the rightmost memory element is discarded from the encoder, bits in

the other memory elements are shifted one unit to the right and the incoming bit is

fed into the leftmost memory element. Thus, if we denote by bit the incoming bit from
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data subsequence bi at time t, then the state of the encoder at time slot t+ 1 will be

sit+1 = (bit, c
i
1, . . . , c

i
vi−1). Using this recursive definition for the state of a shift register

and the description of the data subsequences bi given in the previous paragraph, we

can represent the state of the shift register i at time slot t in terms of the elements of

bi by

sit = (bit−1, b
i
t−2, . . . , b

i
t−vi). (2.9)

One restriction we impose is that the shift registers of the encoder should be in the

all-zero state at the beginning and at the end of each frame. For this reason, for

i = 1, 2, . . . ,m we define bi0 = bi−1 = . . . = bi1−vi = 0 and it turns out that bil−vi+1 =

bil−vi+2 = . . . = bil = 0.

Let us now describe the output of the encoder at time slot t, given the input bits

bt = (b1t , b
2
t , . . . , b

m
t ) and the states of the shift registers at time t. Each input bit bit

and the content of each memory element can have an effect on each output symbol xjt

for i = 1, 2, . . . ,m and j = 1, 2, . . . , nT . Let us define

I∗ =
m⋃
i=1

vi⋃
j=0

{(i, j)}, N = {1, 2, . . . , nT }. (2.10)

Here I∗ is an index set consisting of integer pairs. The first coordinates of these pairs

correspond to shift registers and the second correspond to positions within them,

where the newcoming bits are given index 0. The relation between these encoder

positions and the output symbols can be specified by a function of the form

g : I∗ ×N −→ {0, 1, . . . ,M − 1}. (2.11)

To make it more clear, let us define gij,k := g((i, j), k) to be the multiplying factor

associated with the encoder position (i, j) as explained above, which will be used to

compute the value of output symbol xkt . Since the information bit contained in the

encoder position (i, j) at time t is bit−j , this means that the contribution of bit−j to the

value of xkt is equal to gij,kb
i
t−j . Using the integer notation for the output symbols, we

can write this shortly as

xkt =

m∑
i=1

vi∑
j=0

gij,kb
i
t−j (mod M) (2.12)

for k = 1, 2, . . . , nT . Alternatively, we can express (2.12) as the multiplication of

certain matrices. Let v =
∑m

i=1 vi be the total number of memory elements in the
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encoder. For i = 1, 2, . . . ,m we define

uit = (bit, b
i
t−1, . . . , b

i
t−vi) (2.13)

to be the vector of length 1 + vi consisting of the input bits from the ith information

branch which have an effect on the output at time t. Then we simply concatenate the

elements of these vectors to obtain

ut =
[

u1
t u2

t . . . umt

]
, (2.14)

which is a 1 × (v+m) row matrix consisting of all the input bits that affect the output

at time t. Similarly we can gather all the multiplying factors in a single matrix as

follows: In ut, we replace every entry by its multiplying factor corresponding to the

output symbol xkt , i.e. we replace bit−j by g((i, j), k). Doing this for all k = 1, 2, . . . , nT ,

we obtain nT row matrices of size 1 × (v + m). Taking transpose of these gives us

nT column matrices g1,g2, . . . ,gnT of size (v + m) × 1, where gi consists of all

the multiplying factors contributing to the value of xit, written in an ordered manner.

Then, like we did in the construction of ut, we simply concatenate the column matrices

gi to obtain a (v +m) × nT matrix

G =
[

g1 | g2 | . . . | gnT

]
. (2.15)

In this setting, (2.12) together with the constructions (2.14) and (2.15) imply that

Xt = utG, (2.16)

where

Xt =
[
x1
t x2

t . . . xnT
t

]
(2.17)

is the 1 × nT row matrix consisting of the output symbols at time t. G is called the

generator matrix and it describes the space-time trellis code uniquely.

Figure 2.4 depicts the relation between the input bits and the output symbols in a

space-time trellis encoder. The fact that each encoder position has nT multiplying

factors associated with it is indicated by labeling the multipliers with a vector having

nT entries. In fact, each multiplier should be thought of as nT different multipliers,

each having only one multiplying factor corresponding to a unique output symbol.

The same is true for the adder(located to the right), which should be viewed as nT
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Figure 2.4: A schematic description of a space-time trellis encoder.

separate adders each of which corresponds to a unique output symbol. Then adder

i only accepts the terms containing multiplying factors that correspond to the ith

output symbol. This can be better understood by looking at (2.12).

Although (2.16) gives a concise description of a space-time trellis encoder, it does not

enable us to observe at a glance the transitions between different states of the shift

registers. Given a space-time trellis code and its memory content at a certain time

t, the set of output symbols can be viewed as a function of the set (F2)m of all the

binary vectors of size m, or equivalently, the set of all possible values for the input bt

at time t. A visual representation of this aspect of space-time trellis codes is provided

by trellis diagrams. Starting from t = 1, a trellis diagram combines each possible state

of a convolutional encoder at time t to those ones which can immediately arise from

that state. By this way, a trellis diagram explicitly shows the passage of time.

In order to proceed further, we have to make a precise definiton of the state of an

encoder. Just like the state of a shift register consists of the memory elements of that

shift register, the state St of an encoder consists of its memory content at time t.

The difference comes from the order in which we write the memory elements, which

we defined as being from left to right in (2.9). This time we define the ordering of
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10111

11101

32

Figure 2.5: A sample transition taken from the trellis diagram of a space-time trellis
encoder with 32 states and 2 transmit antennas where the modulation is the 4-PSK
modulation.

the elements from right to left and then from top to bottom. To express this more

precisely, we recall that

Bt =
m⋃
i=1

vi⋃
j=1

{bit−j} (2.18)

is the set of all memory contents of the encoder at time t. Let bi1t−j1 and bi2t−j2 be two

elements of Bt. Then if j2 > j1, bi2t−j2 appears before bi1t−j1 in St; while if j2 < j1,

bi1t−j1 comes before bi2t−j2 in St. If j1 = j2, then again there are two possibilities. If

i2 > i1, bi1t−j1 comes before bi2t−j2 in St; while if i2 < i1, bi2t−j2 appears before bi1t−j1 in

St. This explanation defines St uniquely. Given St, each possible value of the input

bits bt at time t results in a different value for the next state St+1 of the encoder.

Since there are a total of 2m possibilities for bt, this means that the number of possible

next states St+1 is equal to 2m. In a trellis diagram, states are represented by dots

and possible transitions between states are represented by line segments joining them.

Each transition has a label associated with it, namely the output produced by the

encoder during that transition. Since the input causing a specific transition can be

read of from the last m entries of the new state, there is no need to specify it on the

diagram. The reader is referred to [17] for a more mathematical discussion of states.

Figure 2.5 illustrates a sample transition taken from a space-time trellis code with

v1 = 2 and v2 = 3. The number of states is equal to 2v = 32. For ease of illustration,

states of this encoder are represented by binary streams of length 5 instead of binary

vectors of the same length. In the figure, the encoder moves from state 10111 to

state 11101 and outputs the 4-PSK symbol 3 for the first transmit antenna, and 2 for

the second transmit antenna. This is indicated by placing “32” just under the line

segment joining the two states, although a different approach may be required for a

complete trellis diagram. The input bits causing this transition can be understood by
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looking at the last two bits of the new state, namely “01”. Thus, the input bit from

the first information branch is 0 and the one from the second is 1. We will talk about

trellis diagrams in more detail in Section 2.5.

2.2.4 Decoding of Space-Time Trellis Codes

Let us assume that the output of a space-time trellis encoder is the codeword

c = (c1
1, c

2
1, . . . , c

nT
1 , c1

2, c
2
2, . . . , c

nT
2 , . . . , c1

l , c
2
l , . . . , c

nT
l ) (2.19)

where cit is the symbol transmitted by transmit antenna i at time t. Then the symbol

received by receive antenna j at time t is

rjt = ηjt +

nT∑
i=1

αi,jc
i
t

√
Es (2.20)

for j = 1, 2, . . . , nR. In our model, the channel gains αi,j from transmit antenna i to

receive antenna j are assumed to be known by the receiving party. Another assumption

is that the noise values ηjt are independent from each other. Under this scenario, the

decoding problem of a space-time trellis code is to determine the transmitted codeword

c from the received symbols rjt .

Since the noise variables are selected from a zero-mean normal distribution, noise

values with small magnitudes are more likely to appear than those with large magni-

tudes. Furthermore, since noise variables are independent over time, it may appear

logical to determine the output symbols c1
t , c

2
t , . . . , c

nT
t in a particular time slot t by

just looking at the symbols r1
t , r

2
t , . . . , r

nR
t received in the same time slot, and to de-

termine c by combining the results for all time slots t = 1, 2, . . . , l. This goes as

follows: If we denote byM the constellation alphabet with M elements, then for each

q = (q1, q2, . . . , qnT ) ∈MnT and for each j = 1, 2, . . . , nR we calculate

q[j] =

nT∑
i=1

αi,jqi, (2.21)

the symbol that would be received by receive antenna j in the absence of noise, in

case q is the encoder’s output at time t. Here we ignore the scaling factor
√
Es, which

is common to all received symbols. Then, at a particular time t, the noise associated

with receive antenna j corresponding to an estimation q for the output is equal to

ηjt (q) = rjt − q[j] (2.22)
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for j = 1, 2, . . . , nR. In view of this observation, it is not plausible to try to minimize

the magnitude ηjt (q) for all j’s because the independence of the path gains corre-

sponding to different receive antennas does not allow simultaneous minimization of

them. Therefore, we may instead attempt to minimize the sum of these magnitudes,

namely
nR∑
j=1

rjt −
nT∑
i=1

αi,jqi (2.23)

over all possible outputs q = (q1, q2, . . . , qnT ) ∈ MnT and decide in favour of the

output vector minimizing this sum for each time slot t = 1, 2, . . . , l. This approach

fails for the following reason: Suppose that we have decoded all the received symbols

up to a particular time slot t1 according to this rule. At the beginning of t1, the encoder

is in a particular state St1 . Suppose now that our decoding rule decides in favour of a

specific output qt1 for time slot t1, from the received symbols r1
t1 , r

2
t1 , . . . , r

nR
t1

. In the

trellis diagram of the code, none of the 2m transitions leaving the encoder’s state St1

in time slot t1 may correspond to qt1 . In such a case, our decoding rule fails because

its result is not a valid codeword. Therefore, our approach of treating each time slot

independently and combining the results of all time slots does not work.

The solution of the decoding problem lies in recognition of the fact that the outputs of

the encoder corresponding to different time slots are not independent entities. There-

fore, rather than trying to minimize the sum of magnitudes of noise vectors for each

time slot separately, we treat this quantity as a branch metric and try to minimize the

sum of this branch metric. More explicitly, corresponding to each transition labeled

c1
t c

2
t . . . c

nT
t we associate the quantity

nR∑
i=j

rjt −
nT∑
i=1

αi,jc
i
t

2

, (2.24)

where the Euclidean distance is squared this time. Since codewords of a code are in

a one-to-one correspondence with the paths in the trellis diagram, the path with the

smallest accumulated metric with respect to (2.24) gives the decision of the decoder.

In other words, we accept the codeword which minimizes the sum

l∑
t=1

nR∑
j=1

rjt −
nT∑
i=1

αi,jc
i
t

2

(2.25)

over all possible values of c, as the transmitted codeword. The determination of the
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path with the smallest accumulated metric is achieved by use of the Viterbi algorithm.

For details on the Viterbi decoding algorithm see [11, 12].

Lastly, we note that the original information bits can be recovered from the transmit-

ted codeword in a straightforward manner: Each transition in the final codeword’s

path has a corresponding new state. Last m bits of the new state at the end of each

transition gives the information bits which caused that transition. Doing this for all

the transitions and combining the results, we can obtain the original information bits.

We end our discussion on the decoding of space-time trellis codes here.

2.3 Design Criteria for Space-Time Trellis Codes

In the previous section, we described the structure of a space-time trellis code. How-

ever, we have not yet provided any criteria with respect to which different codes can

be compared to each other. Therefore, currently we do not have any means to classify

some codes as “good” codes. In this section, this issue will be addressed. We exhibit

three design criteria for space-time trellis codes, two of which were first derived in [1].

Let us begin by recalling the channel parameters which are of import for us. The

channel fading is modeled as Rayleigh fading in which the path gains αi,j are inde-

pendent for different (i, j) pairs and assumed to be constant during a frame of length

l. The noise values ηjt associated with receive antenna j at time t are assumed to be

independent samples of a complex Gaussian random variable with mean equal to 0

and variance equal to N0/2 for both dimensions.

Suppose that, under this scenario, we are making data transmission using a space-time

trellis encoder with nT transmit and nR receive antennas, where the path gains are

known by the receiver. Suppose further that the data at the receiver is being decoded

with a maximum-likelihood decoder. There is a positive probability that the decoder

erroneously decides in favour of a codeword

e = e1
1e

2
1 . . . e

nT
1 e1

2e
2
2 . . . e

nT
2 . . . e1

l e
2
l . . . e

nT
l (2.26)

when the actually transmitted codeword is

c = c1
1c

2
1 . . . c

nT
1 c1

2c
2
2 . . . c

nT
2 . . . c1

l c
2
l . . . c

nT
l , (2.27)
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where we denote the codewords as a sequence of code symbols for ease of illustration.

In [1], this probability is upper bounded as

P (c→ e) ≤ exp(−d2(c, e)Es/4N0), (2.28)

where
√
Es is the scaling factor in (2.5) and

d2(c, e) =

l∑
t=1

nR∑
j=1

nT∑
i=1

αi,j(c
i
t − eit)

2

. (2.29)

If we denote by ηjt (x) the noise value associated with receive antenna j at time t

corresponding to a codeword estimate x, then in view of (2.21) and (2.22) we can

write (2.29) as

d2(c, e) =
l∑

t=1

nR∑
j=1

ηjt (e)− ηjt (c)
2
. (2.30)

The description of the decoder made in Section 2.2.4 implies that

l∑
t=1

nR∑
j=1

ηjt (e)
2 ≤

l∑
t=1

nR∑
j=1

ηjt (c)
2
. (2.31)

In other words, the actually transmitted codeword c is not the codeword that cor-

responds to the path with the smallest accumulated metric. As d2(c, e) becomes

large, the decoder’s decision of e instead of c becomes more unlikely. This gives an

intuitional explanation of the upper bound (2.28).

In order to derive design criteria from the upper bound (2.28), an analysis is carried

out in [1]. Especially important in this analysis are the nT × l matrix

B(c, e) =


c1

1 − e1
1 c1

2 − e1
2 . . . c1

l − e1
l

c2
1 − e2

1 c2
2 − e2

2 . . . c2
l − e2

l
...

...
. . .

...

cnT
1 − e

nT
1 cnT

2 − e
nT
2 . . . cnT

l − e
nT
l

 (2.32)

and the nT × nT square matrix A(c, e) = B(c, e)B∗(c, e), where * denotes the trans-

pose conjugate. Let us now stop for a moment and present some properties of these

matrices which are relevant to our analysis.

First, we introduce some new notation to simplify matters. By dit we mean cit − eit,

the (i, t) entry of B(c, e) = B. di denotes the 1 × l row matrix containing elements

in the ith row of B and dj denotes the column matrix containing elements in the jth
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column of B. Similarly ai denotes the 1× nT row matrix containing elements in the

ith row of A(c, e) = A. From its definition, the (i, j) entry of A is equal to

Aij = di(dj)∗. (2.33)

Now, we observe that B and A have equal rank. To show this let us assume

k∑
j=1

βij (d
ij
1 , d

ij
2 , . . . , d

ij
l ) = 0 (2.34)

is a nontrivial linear relation satisfied by k rows of B(c, e) having indices in the set

I = {i1, i2, . . . , ik} and 0 is the zero vector of length l. We denote by dj→I the k × 1

column matrix formed by taking only those entries of dj which are also in di for some

i ∈ I. If we collect the (complex) scalars in a single 1× k row matrix β, then we can

express this relation by l different equalities as

β d1→I = 0,β d2→I = 0, . . . ,β dl→I = 0. (2.35)

Let us now consider the linear combination of k rows of A given by

aI = βi1a
i1 + βi2a

i2 + . . .+ βika
ik , (2.36)

which is a vector of size nT . Then using (2.33) and the distributive property of matrix

multiplication over addition we can express the jth entry of aI = (aI1, a
I
2, . . . , a

I
nT

) as

follows:

aIj = βi1Ai1j + βi2Ai2j + . . .+ βikAikj

= βi1d
i1(dj)∗ + βi2d

i2(dj)∗ + . . .+ βikd
ik(dj)∗

= (βi1d
i1 + βi2d

i2 + . . .+ βikd
ik)(dj)∗. (2.37)

Here the term βi1d
i1 + βi2d

i2 + . . . + βikd
ik in the last expression is a row matrix

dI = [dI1 d
I
2 . . . dIl ] having dimension 1× l whose jth entry is equal to

dIj = βi1d
i1
j + βi2d

i2
j + . . .+ βikd

ik
j

= β dj→I

= 0 (2.38)

in view of (2.35). Thus, dI is the zero matrix of size 1× l. Substituting in (2.37) gives

aIj = 0(dj)∗ = 0 (2.39)
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for all j = 1, 2, . . . , nT . Since all its entries are zero, aI is the zero vector of size

nT . Therefore, (2.36) defines a linear dependence of k rows of A. This means that

rank(B) ≥ rank(A). In a similar manner we can show that rank(B) ≤ rank(A). This

proves that the ranks of B and A are equal, say r.

Next, we establish some observations related to the eigenvalues of A. Since A = A∗

and A has a square root –which is B–, a result from linear algebra (see e.g. [13,

Chapter 4]) states that A has exactly r nonzero eigenvalues, which are all positive

real numbers, say λ1, λ2, . . . , λr. Also related to our discussion are the principal r× r

submatrices of A, which are the r× r matrices consisting of the elements lying in the

intersection of a set of r rows with a set of r columns having the same indices. Since

r rows can be selected out of nT rows in
(
nT
r

)
different ways, there are

(
nT
r

)
principal

submatrices of A. The determinant of a principal submatrix is called a principal

minor. The sum of the r × r principal minors of A is denoted by Er(A). According

to another result in linear algebra (see [13, page 42]), the eigenvalues of a matrix are

related to Er(A). In our context, λ1λ2 . . . λr = Er(A). We continue to summarize

the analysis in [1].

After a series of mathematical manipulations (see [1, pages 5-6] for details) the upper

bound (2.28) can be expressed as

P (c→ e) ≤

(
r∏
i=1

λi

)−nR

(Es/4N0)−rnR . (2.40)

It should be pointed out that this is just the probability that the received symbols are

wrongly decoded as e given that c is transmitted. The total probability of decoding

error in case c is transmitted is equal to

Pe(c) =
∑

x∈C,x6=c

P (c→ x) (2.41)

where C is the set of all possible codewords. If P (x) is the probability that x is

transmitted, then

Pe(C) =
∑
x∈C

P (x)Pe(x) (2.42)

is the overall probability of decoding error. Note that if all codewords are equally

likely, then Pe(C) = Pe(x) for any x ∈ C. In the light of these observations, assuming

nT ≤ l, (2.40) we are left with the following two design criteria[1]:
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• Rank Criterion: In order to achieve the maximum possible diversity advantage

of nTnR, the matrices B(c, e) has to be full rank for all distinct codeword pairs

c and e. If min(c,e)∈C2,c 6=e {rank[B(c, e)]} is r, then a diversity advantage of

rnR is achieved. This minimum rank is referred to as the rank of the code and

the code is said to be an r-space-time trellis code. This criterion is also known

as the diversity criterion.

• Determinant Criterion: If the rank of the code is equal to r, the quantity

min(c,e)∈C2,c6=eEr(A(c, e)) should be maximized. If the minimum rank is the

maximum possible nT , then this corresponds to minimizing the determinant of

A(c, e) over all pairs of distinct codewords c and e.

It should be noted that these two design criteria are valid under the assumption of

quasistatic, flat Rayleigh fading where the fade coefficients αi,j are independent from

each other. Other fading scenarios yield possibly different design criteria. See [1,

pages 6-8] for details.

It was shown in [14] that as the number nR of receive antennas approaches infinity, the

impact of fading on the performance tends to disappear. Following this observation,

for codes satisfying rnR > 31, the following design criterion was derived[14]:

• Trace Criterion: In order to have a maximum coding advantage, the sum of

eigenvalues of the matrices A(c, e) should be maximized over all pairs of distinct

codewords c and e. But the sum of eigenvalues of a matrix is equal to its trace.

Thus, the sum

tr(A) =

nT∑
i=1

Aii

=

nT∑
i=1

l∑
t=1

|cit − eit|2 (2.43)

should be maximized over all pairs of distinct codewords c and e.

Note that (2.43) is just the squared Euclidean distance of the codewords c and e.

When compared to (2.29), it is seen that the path gains no longer have an effect

1 The condition that rnR > 3 is not based solely on a mathematical analysis. Simulation results
show that, as long as rnR > 3, best codes based on the trace criterion outperform those based on the
determinant criterion. Therefore 3 is commonly accepted as the boundary value in the literature.
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on the probability of decoding error. In other words, it is now the distance between

transmitted codewords that affect the probability of decoding error, not the distance

between received symbols. When the product of the rank r of a code and the number

nR of receive antennas exceeds 3, the trace criterion is used instead of the determinant

criterion.

2.4 Some Bounds on Code Parameters

Given a space-time trellis code, we would like its performance specified by some pa-

rameters to be as high as possible. For example, it is desirable to have a high data rate

so that we can encode as many information bits as possible in a fixed time duration.

Furthermore, in order to limit the probability of decoding error, in view of the rank

criterion presented in Section 2.3, we would like the rank of the code to be as large

as possible. We would also like the encoder to be simple so that decoding process

is computationally efficient. It is not surprising that there exist tradeoffs between

various aspects of a space-time trellis code. Some of these which were first established

in [1] are the subject of this section.

We begin by presenting a bound that relates the rate of a space-time code to the size

of the constellation alphabet. Let us assume that the size of the constellation alphabet

M is equal to M = 2p for some positive integer p.

Theorem 2.4.1 ([1]). Consider an r-space-time trellis code with nT transmit anten-

nas. Let l be the number of data frames. Then, the rate R of the code is upper bounded

as

R ≤ log[AM l(nT , r)]

l
(2.44)

in bits per second per Hertz, where AM l(nT , r) is the maximum possible size of a code

defined over an alphabet of size M l and having block length equal to nT and minimum

Hamming distance equal to r.

Proof. The output of the encoder (c1
t , c

2
t , . . . , c

nT
t ) at time t has on average at most 2R

differrent values over a data frame of length l. Therefore, the set C of all codewords

contains at most (2R)l = 2lR elements. The function f from MlnT to (Ml)nT which
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maps the codeword

(c1
1, c

2
1, . . . , c

nT
1 , c1

2, c
2
2, . . . , c

nT
2 , . . . , c1

l , c
2
l , . . . , c

nT
l ) (2.45)

to

((c1
1, c

1
2, . . . , c

1
l ), (c

2
1, c

2
2, . . . , c

2
l ), . . . , (c

nT
1 , cnT

2 , . . . , cnT
l )) (2.46)

is clearly one-to-one so f(C) also has at most 2lR elements. f(C) can be viewed as

a code over an alphabet of size M l having block length equal to nT . Furthermore,

we observe that for two distinct codewords c and e, the rows of B(c, e) are exactly

the entries of f(c) − f(e) written as a vector of length l. Thus, the assumption

rank(B) ≥ r implies that f(c) − f(e) has at least r nonzero entries. In other words,

the Hamming distance between f(c) and f(e) is not less than r. This shows that the

minimum Hamming distance of the code f(C) is r. Therefore, the size of f(C) cannot

exceed AM l(nT , r). Thus we have

2lR ≤ AM l(nT , r).

Taking logarithm and dividing by l yields (2.44).

The proof reveals the existence of a rather simple tradeoff between the rank and the

size of a space-time trellis code. The bound given in (2.44) becomes even simpler

when the code is of full rank nT . We just observe that, over an alphabet of size M l,

the repetition code of length nT has minimum Hamming distance equal to nT and

size equal to M l. Furthermore, if we consider any M l + 1 codewords over the same

alphabet, for any fixed coordinate, some two of them have to agree in that coordinate

by the pigeonhole principle. This shows that AMl
(nT , nT ) ≤ M l. But since the

repetition code achieves this bound we have AMl
(nT , nT ) = M l. Thus we have proved

the following:

Corollary 2.4.2 ([1]). Consider a full rank space-time trellis code employing a con-

stellationM of size M = 2p. Its rate R satisfies R ≤ p.

This shows that the maximum achievable rate of a full rank space-time trellis code is

determined by its constellation size. For example, if 8-PSK constellation is used, the

maximum possible rate of a full rank code is 3 bits/s/Hz.
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We have seen that the constellation size, the rank and the rate of a space-time trellis

code are related by a tradeoff. On the other hand, we have not yet related this tradeoff

to the parameters of the encoder. One important parameter of a convolutional encoder

is its constraint length K. Constraint length has several definitions in the literature,

but we take it to be the length of the longest shift register. In terms of the notation

introduced in Section 2.2.3, K := maxi{vi}. The following relates the rank of a

space-time trellis code to its constraint length.

Lemma 2.4.3 ([1]). The constraint length K of an r-space-time trellis code satisfies

K ≥ r − 1.

Proof. Consider the two information sequences I = (1, 0, 0, . . . , 0) and 0lm, the all-

zero sequence of length lm. In case I is the input of the encoder, the bit 1, which is

the first bit of the first information subsequence, enters the encoder at t = 2 and stays

in the encoder for at most K time intervals. This means that it is no longer in the

encoder’s memory at t = K + 2. Therefore, the encoder will always be in the all-zero

state starting from t = K + 2. At any time t, if the encoder is in the zero state and

the input is the all-zero input, it is clear from (2.12) that the output at time t is the

all-zero output. Therefore, the output c corresponding to the input I is of the form

c1
1c

2
1 . . . c

nT
1 c1

2c
2
2 . . . c

nT
2 . . . c1

K+1c
2
K+1 . . . c

nT
K+100 . . . 0. For the same reason, the output

e corresponding to the all-zero input sequence 0lm is the all-zero output sequence 0lnT

of length lnT . Thus we see that nT − (K+1) rows of the nT ×nT matrix B(c, e) have

all of their entries equal to 0. Hence, the rank of B(c, e) is at most K + 1. Since r is

the minimum of ranks of these matrices, we have r ≤ K + 1.

The above lemma is important because the complexity of most known algorithms,

including the Viterbi algorithm, is known to be growing too rapidly with the constraint

length. Thus, minimizing the decoding error probability turns out to be in the cost of

increasing the complexity of the decoder. The following is a more precise statement

of this fact:

Lemma 2.4.4 ([1]). Let C be an r-space-time trellis code having transmission rate m.

The number of states of C is at least 2m(r−1).

Proof. First of all, we note that the number of states of the code is just 2v, where
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v is the total number of memory elements. If all the shift registers are of the same

length, then v = mK since we have m information branches. Thus the number of

states is equal to 2mK , which is at least 2m(r−1) in view of Lemma 2.4.3. If the shift

registers are not of the same length, we argue differently. At any time t, there are a

total of 2m possible binary vectors which can be the input to the encoder at time t.

Therefore, in the trellis diagram of the code, the number of trellis branches leaving

each state is equal to 2m. Furthermore, the argument used in the proof of Lemma

2.4.3 makes it clear that two paths leaving the zero state in time slot 1 cannot meet

at the same state until time slot r. In other words, no two of the paths can intersect

during the first r − 1 time slots. This means that, just before time slot r, each path

in the trellis is in a unique state. A simple counting argument shows that the number

of these states is 2m(r−1). Therefore, the number of states of C cannot be less than

this number.

The number of states is closely related to the trellis complexity of an encoder. Indeed,

we take it here as the definition of trellis complexity. The above lemma shows that

trellis complexity grows exponentially with the rank and rate of a space-time trellis

code. Considering this lemma with (2.44), we see that there is a fundamental tradeoff

between transmission rate, rank, constellation size and trellis complexity.

One natural question might be as to whether the bounds presented above are tight.

Codes satisfying all the above with equality are called optimal with respect to the

fundamental tradeoffs between transmission rate, rank, constellation size and trellis

complexity. The answer is affirmative for codes with two transmit antennas. Exami-

nation of such a code will be the topic of next section.

2.5 A Code for Two Transmit Antennas

In this section we analyze in some detail a space-time trellis code for two transmit

antennas, which was constructed in [1]. The constellation is the 4-PSK constellation,

where the elements of Z4 are used to label the signal points as shown in Figure 2.2.

The encoder consists of two shift registers each having a single memory element. Thus

we have m = v = 2. Under this setting, we can describe the encoder by four pairs of
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multiplying factors given by

(g1
0,1, g

1
0,2) = (0, 1), (g2

0,1, g
2
0,2) = (0, 2), (g1

1,1, g
1
1,2) = (1, 0), (g2

1,1, g
2
1,2) = (2, 0).

At time t, the incoming bit from the first information branch is b1t and from the

second information branch is b2t . Hence the content of the first shift register is b1t−1

and the content of the second one is b2t−1. Using (2.12), we can express the symbols

transmitted from the two transmit antennas at time t by

x1
t = b1t−1 + 2b2t−1 (mod 4), x2

t = b1t + 2b2t (mod 4) (2.47)

or in a more compact form by

(x1
t , x

2
t ) = b1t (0, 1) + b2t (0, 2) + b1t−1(1, 0) + b2t−1(2, 0). (2.48)

Thus, at any time t, the symbol transmitted from the first transmit antenna is affected

only by the information bits which were input to the encoder at time t− 1, while the

symbol transmitted from the second antenna is affected only by the input at time t.

Let us now consider the trellis diagram of the code. The trellis diagram of a con-

volutional code is a network of branches showing the passage of time by visualizing

all possible transitions between states of the encoder. In our case, we have the extra

condition that the initial and the final states of the diagram are the all-zero state. In

the first time stage of the trellis diagram, all paths in the trellis diverge from the zero

state. Likewise, all paths merge in the zero state at the end of the last time stage.

Therefore, the trellis diagram of a space-time trellis code consists of l stages, where

at the beginning of the first and at the end of the last stage the only possible state is

the all-zero state. Our aim is to find a way to visualize the code in a simpler manner.

Lemma 2.5.1. Consider a space-time trellis code C with constraint length K and total

number of memory elements equal to v. If the frame length l is not less than 2K, the

following holds: At the end of the Kth stage, all possible 2v states appear in the trellis

diagram of C.

Proof. An equivalent formulation of the final statement in the lemma is as follows:

Starting from the zero state, after K transitions, the encoder can be in any state. Let

m denote the number of information branches. To prove the assertion, for any initial
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state at time t and any given objective state S, we will construct an information

sequence of mK elements, which causes the encoder to be in state S at time t + K.

The state of an encoder at time t defined in Section 2.2.3 contains vi elements for shift

register i. Its content is given by (2.18). According to this, the elements corresponding

to shift register i are bit−vi , b
i
t−vi+1, . . . , b

i
t−1. The state of shift register i is equal to

sit = (bit−1, b
i
t−2, . . . , b

i
t−vi). (2.49)

Suppose now that we are at time t. Keeping this observation in mind, in order to

construct an information sequence which will result in the encoder’s being in state S

at time t+K, we consider the corresponding states of the shift registers

sit+K = (bit+K−1, b
i
t+K−2, . . . , b

i
t+K−vi) (2.50)

for i = 1, 2, . . . ,m. We form m information sequences of length K by first reversing

each of these and then preceding the reversed vector with any K − vi bits. To be

deterministic, we choose all these bits to be 0. Thus,

(bS)i = (

K−vitimes︷ ︸︸ ︷
0, 0, . . . , 0, bit+K−vi , b

i
t+K−vi+1, . . . , b

i
t+K−1) (2.51)

for i = 1, 2, . . . ,m. It is clear that feeding the shift register i with (bS)i causes the

shift register i to be in state sit+K given by (2.50) at time t+K. Since the state of an

encoder is uniquely determined by the states of all the shift registers, the information

sequence of mK elements given by

(bS) = ((bS)1
1, (bS)2

1, . . . , (bS)m1 , . . . , (bS)1
K , (bS)2

K , . . . , (bS)mK), (2.52)

where (bS)ij denotes the jth element of (bS)i, causes the encoder to be in state S at

time t + K. Thus, we have proved that, given any initial state at time t and any

objective state S , there is an information sequence of length mK which, when input

to the encoder, causes the encoder to be in state S at time t+K.

The requirement l ≥ 2K is necessary for the following: Although an information

sequence causing a specific state can be found, due to the fact that last few bits of

each information subsequence is forced to be zero(see the explanation after (2.9)), it

is not certain that the encoder can be fed with this information sequence. If l ≥ 2K,

however, the encoder can be fed with any of the possible 2mK information sequences,

starting from the initial all-zero state. Thus, the encoder can be in any state at the

end of the Kth stage of the trellis diagram.
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Lemma 2.5.2. Suppose that a space-time trellis encoder with v memory elements can

be in any of the 2v states at time t. If the input at time t can have all possible values,

then the encoder can also be in any of the states at time t+ 1.

Proof. As always, let m and K denote the number of information branches and the

constraint length, respectively. First, we note that the input bits feeding the encoder

at a given time can be identified with elements of Z2m . We then consider the states

in which the rightmost memory content of all the m shift registers is 0. Since the

number of remaining memory elements is v−m, there are a total of 2v−m such states.

Let us denote these states by S1,S2, . . . ,S2v−m .

Let Sj(i) denote the state of the encoder after the state Sj is fed by the input i.

Then, if

S =

2v⋃
i=1

{Si} (2.53)

is the set of all possible states, to prove the lemma it is enough to show

S =
2v−m⋃
j=1

2m−1⋃
i=0

{Sj(i)}. (2.54)

To prove this, first we note that for any j, Sj(i) are all different for i = 1, 2, . . . , 2m.

This follows from the fact that i can be read of from the last m entries of the next

state. Thus, if Sj is the set of all states that can arise from Sj , the number |Sj | of

elements of Sj is equal to 2m. It remains to show Sj are all disjoint, i.e. for i 6= j

Si ∩ Sj = ∅. (2.55)

Let 1 ≤ j < j′ ≤ 2v−m. Sj and Sj′ are different states by definition. Both have the

property that the rightmost memory content of every shift register is 0. Therefore,

their difference comes from other memory elements. Since only the rightmost bits

leave the memory during a transition, all other memory content continues to remain

in the memory. Therefore, Sj and Sj′ cannot move to a common state after a single

transition, meaning that there does not exist a pair (i, i′) ∈ (Z2m)2 such that Sj(i) =

Sj′(i
′). This shows that (2.55) holds. Thus, the union

2v−m⋃
j=1

Sj (2.56)
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00,01,02,03

10,11,12,13

20,21,22,23

30,31,32,33

Figure 2.6: The trellis module of our code for two transmit antennas.

is disjoint and its cardinality is equal to 2v−m2m = 2v, the number of all possible

states. Since the two sides of (2.54) have the same cardinality and the right-hand side

is a subset of the left-hand side, (2.54) holds and the lemma is proved.

The following is what these two lemmas are for:

Corollary 2.5.3. Given a space-time trellis code with constraint length K and frame

length l such that l ≥ 2K. The portion of the trellis diagram between times K and

l −K consists of a regular pattern which repeats itself.

Following [15], we call the repeated pattern mentioned in the corollary the trellis

module of the code. The trellis module of a code shows all possible states on its left

and right sides, and links the states on the left with the ones which can arise from

them after a single transition. Although the trellis diagram of a code can be arbitrarily

long, its structure can be described by a single trellis module except for a number of

stages at the beginning and at the end of the trellis. Figure 2.6 depicts the trellis

module of our code given in (2.48).

At first glance, one may not find the figure informative enough. We begin our ex-

planation by the labeling of states, which are indicated by medium sized dots in the

trellis module. Since states are just binary vectors of length v, they can naturally be

mapped to binary integers from 0 up to 2v − 1. In the module, they appear from top

to bottom in increasing order according to this integer mapping. Thus, for our case

the topmost state is 00, the second state is 01, the third is 10, and the bottommost
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state is 11, though not shown on the figure explicitly. In general, if the encoder is

in state s1s2 . . . sv and i1i2 is the input, the next state is s3s4 . . . svi1i2. By this way,

it is ensured that next states corresponding to a fixed initial state are kept together

on the right side of the module. This fact cannot be directly observed for this code,

where every state can be the next to any given state, due to the equality 2m = 2v;

or in words, the number of branches leaving each state is equal to the number of all

possible states. For trellis modules of graphs satisfying m < v, one can see [1].

Next, we explain how the output corresponding to a transition is indicated in the trellis

module. As explained in Section 2.2.3, the label x1x2 corresponds to transmission of

x1 from transmit antenna 1 and transmission of x2 from transmit antenna 2. Due

to the numerosity of transition branches in the module, this time we do not label

transitions as in Figure 2.5. Instead, to the left of each state on the left side, we

keep a list of output labels. Each of these labels corresponds to a unique transition

branch departing from that state. More precisely, the kth output label from the left

is the output corresponding to the kth transition branch from the top. For example,

if the initial state is 01, the transition corresponding to the input 10 is labeled 12.

This means that, the input 10 causes the first and the second transmit antennas to

transmit the 4-PSK symbols 1 and 2, respectively. The next state is 10. These can

be verified by using the algebraic description (2.48) of the code.

We claim that this code is optimal with respect to the fundamental tradeoff between

transmission rate, rank, constellation size and trellis complexity given in Section 2.4.

The constraint length K of the code is equal to 1, total memory order v is 2 and

the number of states equals 2v = 4. The transmission rate is 2 bits/s/Hz. The

constellation consists of 4 = 22 elements. The only unknown parameter is the rank

r of the code. The value of r which would cause all the bounds of Section 2.4 to be

satisfied with equality is easily seen to be 2. Thus, our claim is equivalent to the claim

that the code is of full rank.

In order to show that the rank of the code is 2, we consider the 2× l matrix

B(c, e) =

 c1
1 − e1

1 c1
2 − e1

2 . . . c1
l − e1

l

c2
1 − e2

1 c2
2 − e2

2 . . . c2
l − e2

l

 (2.57)

for distinct codewords c and e. This matrix should have rank 2 for every such code-
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word pairs. This can be proved by finding two columns which are linearly independent.

We start the search for two such columns by noting that the paths corresponding to c

and e are distinct since c and e are distinct. Both of these paths start and terminate

with the all-zero state. Therefore, there must exist times t1 and t2 such that these

two paths diverge at time t1 and merge at time t2. This means that the paths cor-

responding to these two codewords are in the same state at time t1, and in different

states at time t1 + 1. Similarly, they are in different states at time t2 − 1, and in

the same state at time t2. By the vector xt = (x1
t , x

2
t ) we denote the portion of a

codeword x output at time t. From Figure 2.6, we see that outputs corresponding to

paths diverging from the same state differ only in the second coordinate and outputs

corresponding to paths merging at the same state differ only in the first coordinate.

Thus we have c1
t1 = e1

t1 , c
2
t1 6= e2

t1 and c1
t2 6= e1

t2 , c
2
t2 = e2

t2 . Therefore, the linear relation

β1(ct1 − et1) + β2(ct2 − et2) = 0 (2.58)

does not have any nontrivial solutions. This shows that t1
th and t2

th columns of B(c, e)

are linearly independent, completing the proof of our claim that the code given by

(2.48) is optimal with respect to the fundamental tradeoff between transmission rate,

rank, constellation size and trellis complexity.

In Section 2.3, we established design criteria for space-time codes which serve as a

guide in designing codes which achieve high performance. Since our code is having

the maximum possible rank, which is 2, it satisfies the rank criterion. Now, we will

compute the coding advantage. In our case, since the maximum possible diversity gain

is achieved, the coding advantage corresponds to the minimum determinant among

all the matrices A(c, e) corresponding to distinct codewords c and e. A(c, e) can be

expressed as

A(c, e) =
l∑

t=1

 |c1
t − e1

t |2 (c1
t − e1

t )(c
2
t − e2

t )

(c2
t − e2

t )(c
1
t − e1

t ) |c2
t − e2

t |2

 , (2.59)

where the horizontal bar over a symbol denotes the complex conjugate of that symbol.

It is shown in [1, page 13] that the code is geometrically uniform. This means that

the performance of the code is independent of the transmitted codeword and hence

we can safely assume that one of the codewords, say c, in A(c, e) is the codeword

corresponding to the all-zero information sequence. Thus, if expressed with the integer
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labeling in Figure 2.2, c is the all-zero codeword. On the other hand, since we are

interested in computing determinants, we take as codewords their actual complex

values. Thus c is equal to 11 . . . 1, the all-one sequence of length lnT . Substituting

this in (2.59) gives

A(c, e) =

l∑
t=1

 |1− e1
t |2 (1− e1

t )(1− e2
t )

(1− e2
t )(1− e1

t ) |1− e2
t |2

 . (2.60)

Each term of this sum corresponds to a stage of the trellis diagram. Let us denote

the 2 × 2 matrix corresponding to time t by Θt. If the portion (e1
t , e

2
t ) of e which is

output at time t is equal to the complex vector (1, 1), then Θt is the zero matrix of

size 2 × 2. Otherwise Θt is not the zero matrix and contributes to the above sum.

Let It = {t1, t2, . . . , td} ⊆ {1, 2, . . . , l} be the set of time instants in which the output

corresponding to e is different from (1, 1) such that ti < tj for i < j. Since c and e

are distinct, e has to diverge from the zero state at time t1 and remerge to the zero

state at time td. Therefore, it is true that

Θt1 =

 0 0

0 f

 , Θtd =

 s 0

0 0

 , (2.61)

where f and s are both equal to either 2 or 4. The time stages in which the trellis

path corresponding to e leaves or moves to the zero state contribute to the sum (2.60)

by matrices of this form. Let us denote the set of such time stages by I0. The time

stages t in which the trellis path corresponding to e neither leaves nor moves to the

zero state, which we denote by I+, contribute with a matrix of the form at bt

bt dt

 , (2.62)

where at, dt are nonnegative real numbers and bb = |b|2 ≤ atdt. This can be verified by

looking at (2.60) and recalling that each symbol in e is a 4-PSK symbol as illustrated

in Figure 2.2. After these observations, we can write (2.60) as

A(c, e) =
∑
t∈I0

Θt +
∑
t∈I+

Θt

=
∑
t∈I0

 st 0

0 ft

+
∑
t∈I+

 at bt

bt dt

 . (2.63)

Adding the terms in the summation on the left side is easily seen to yield a matrix

of the same form. Similarly, using the identity z1 + z2 = z1 + z2 for any two complex
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numbers z1 and z2, and with some extra effort, the terms in the summation on the

right side can be seen to preserve their structure after addition. This leaves us with

A(c, e) =

 S 0

0 F

+

 A B

B D

 , (2.64)

where A,S, F,D are nonnegative real numbers and |B|2 ≤ AD. Further, since t1 and

td are in I0, S and F are positive even integers. Hence, the coding advantage is given

by

min

{
det

 S 0

0 F

+

 A B

B D

} (2.65)

taken over all numbers as explained above. This determinant is equal to

det

 S +A B

B F +D

 = (S +A)(F +D)− |B|2

= SF + SD +AF +AD − |B|2, (2.66)

which is greater than SF since |B|2 ≤ AD and F, S,A,D are nonnegative real num-

bers. Thus we can write

min

{
det

 S 0

0 F

+

 A B

B D

} = min

{
det

 S 0

0 F

}. (2.67)

This minimal value is clearly achieved when S = F = 2. Thus, the coding advantage

of our code is equal to 4.

Although we have established design criteria for space-time trellis codes, we have not

yet touched the matter of actually designing a code. The codes introduced in [1],

including the example we gave here, are constructed by hand. On the other hand, the

matrix representation (2.16) we derived in Section 2.2.3 gives a ground for systematic

code search. Such an approach was adopted in [16]. There, for two transmit antennas,

a computer search was performed over all possible generator matrices. In this case,

among those yielding a code of full rank–which is 2 in this case–, the one giving the

maximum coding advantage is chosen as the generator matrix of the code. By this

method, codes outperforming the ones in [1] in terms of coding gain was found. See

[16] for details.
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CHAPTER 3

SPACE-TIME BLOCK CODES FROM ORTHOGONAL

DESIGNS

The topic of the previous chapter was space-time trellis codes, a trellis coded modu-

lation scheme over wireless channels which provides coding gain as well as diversity

gain. Although they achieve high performance, space-time trellis codes have the draw-

back that, for a fixed number of transmit antennas, their decoding complexity grows

exponentially with the transmission rate. One approach which addresses this issue is

provided by space-time block coding. The first known examples of space-time block

codes(STBC’s) were introduced by Alamouti in [18] although the term was coined

later in [19]. There, orthogonal designs were used to construct space-time block codes

for both real and complex constellations.

Space-time block codes from orthogonal designs will constitute the subject of this

chapter. Our treatment will run in parallel to the framework provided in [19]. Thus,

the description of the scheme based on square orthogonal designs for real signal con-

stellations are explained in Section 3.1. Derivation of basic results and the decoding

process are also described in this section. Then, in Section 3.2, the scheme for real

constellations are generalized to nonsquare case and fundamental questions related to

this generalization and their answers are presented. Lastly, in Section 3.3, what has

been covered in the first two sections are generalized to complex signal constellations.
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3.1 STBC’s from Real Orthogonal Designs

We begin our discussion on space-time block codes from orthogonal designs with a

description of real orthogonal designs. First, we review the underlying system model

which we are familiar to from the previous chapter. Secondly, we define real orthogonal

designs and describe how they are used to construct space-time block codes. Lastly,

we shortly explain the decoding of these codes.

3.1.1 System Model

Once again, nT > 1 will denote the number of transmit antennas and nR ≥ 1 will

denote the number of receive antennas. The number of data frames is l. If the symbol

transmitted from transmit antenna i at time t is cit, the symbol received by receive

antenna j at time t equals

rjt = ηjt +

nT∑
i=1

αi,jc
i
t

√
Es, (3.1)

where this time the scaling factor
√
Es is chosen such that average energy of the

transmitted symbols is 1/nT . As explained in the previous chapter, the noise variables

ηjt are modeled as independent samples of a Gaussian distribution and the path gains

αi,j are described by a model assuming quasistatic, flat Rayleigh fading. The channel

state information, i.e. the value of all the αi,j ’s are assumed to be known by the

receiver. This description of the channel will be valid throughout the chapter.

The decoding scheme is the same as described in Section 2.2.4. The decoder decides

in favour of the codeword which minimizes the metric

l∑
t=1

nR∑
j=1

rjt −
nT∑
i=1

αi,jc
i
t

2

(3.2)

over all codewords c = c1
1c

2
1 . . . c

nT
1 c1

2c
2
2 . . . c

nT
2 . . . c1

l c
2
l . . . c

nT
l .

Our objective in space-time code design will again be to minimize the probability of

erroneous decoding. This means that the analysis summarized in Section 2.3 and the

diversity criterion are valid in constructing space-time block codes from orthogonal

designs. Therefore, in order to achieve the maximum possible diversity advantage
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nTnR, the matrix

B(c, e) =


c1

1 − e1
1 c1

2 − e1
2 . . . c1

l − e1
l

c2
1 − e2

1 c2
2 − e2

2 . . . c2
l − e2

l
...

...
. . .

...

cnT
1 − e

nT
1 cnT

2 − e
nT
2 . . . cnT

l − e
nT
l

 (3.3)

has to be full rank for any pair of distinct codewords c and e. Since no coding will be

included this time, no criterion related to the coding advantage is taken into account.

3.1.2 Real Orthogonal Designs and the Coding Scheme

A real orthogonal design of size n is an n× n orthogonal matrix having as entries the

indeterminates ±x1,±x2, . . . ,±xn. Thus, a real orthogonal design O of size n satisfies

OOT = OTO =
[∑n

i=1(xi)
2
]
In where In is the identity matrix of size n. Given a real

orthogonal design, it is clear that negating a number of columns results in another

real orthogonal design. Similarly, permuting the columns of a real orthogonal design

does not affect orthogonality. Therefore, from any real orthogonal design of size n,

by permuting columns and changing signs of certain columns where necessary, we can

obtain an orthogonal design with first row x1, x2, . . . , xn, which we call a normalized

orthogonal design. The following is an example of a normalized real orthogonal design

of size 4: 
x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1

 . (3.4)

Now we explain how real orthogonal designs are used to construct space-time codes.

Let us assume that a real constellation A of 2b elements is used. We decide on a

one-to-one mapping f from the set (F2)b of all binary vectors of length b to the

real constellation alphabet A. Then, we fix a normalized real orthogonal design O

of size nT and use it as a template for our coding scheme as follows: At time slot

1, bnT bits arrive at the encoder. nT groups u1, u2, . . . , unT are formed from these

information bits, each consisting of b bits. Then, each ui is mapped to the constellation

symbol si = f(ui) for i = 1, 2, . . . , nT . In O, we replace the entries xi by si for
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i = 1, 2, . . . , nT and arrive at an orthogonal matrix S = O(s1, s2, . . . , snT ) having as

entries ±s1,±s2, . . . ,±snT . At time slot t, the (t, i) entry Sti is transmitted from

transmit antenna i for i = 1, 2, . . . , nT and t = 1, 2, . . . , nT . Thus the frame length l is

equal to nT , the number of transmit antennas. Since it takes nT time slots to transmit

bnT information bits, the transmission rate of this coding scheme is b bits/s/Hz.

Theorem 3.1.1 ([19]). The above coding scheme attains the maximum possible di-

versity order nTnR.

Proof. Let us call the matrices formed by replacing xi by the constellation symbols si

the coding matrices of the space-time block code. It is clear from the above description

that all coding matrices are completely determined by their first rows. Thus, all coding

matrices of the code can be uniquely represented by O(s1, s2, . . . , snT ) where the si

are elements of the signal constellation A.

In order to prove the assertion, we have to show that the difference of any two dis-

tinct code matrices has full rank nT . Let O(s1, s2, . . . , snT ) and O(s̃1, s̃2, . . . , s̃nT ) be

two coding matrices corresponding to distinct information sequences so that si 6= s̃i

for at least one i. Then their difference is easily seen to be equal to B = O(s1 −

s̃1, s2− s̃2, . . . , snT − s̃nT ), the matrix constructed from the original orthogonal design

O(x1, x2, . . . , xnT ) by replacing xi by si− s̃i. Therefore B is an orthogonal matrix and

hence the equality

BBT =
[ nT∑
i=1

(si − s̃i)2
]
In (3.5)

holds. Taking the determinant we see that

det(BBT ) = det(B)det(BT ) =
[ nT∑
i=1

(si − s̃i)2
]nT

. (3.6)

Since any matrix has the same determinant as its transpose, we have

det(B) =
[ nT∑
i=1

(si − s̃i)2
]nT /2

. (3.7)

Since si − s̃i is nonzero for at least one i, this determinant is nonzero and hence B is

of full rank nT . It follows that orthogonal space-time block codes satisfy the diversity

criterion.
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The above shows that orthogonal space-time block codes achieve the highest possible

diversity advantage. Furthermore, in view of Corollary 2.4.2 from the previous chap-

ter, their transmission rate is also maximal. However, they have a major drawback

expressed by the following:

Theorem 3.1.2. A real orthogonal design of size n exists if and only if n = 2, 4 or 8.

For a proof see [19, page 5]. We continue with the decoding of orthogonal space-time

block codes.

3.1.3 Decoding of Orthogonal STBC’s

The decoding rule of orthogonal space-time block codes are the same as the one

given for space time trellis codes in Section 2.2.4. Assuming perfect channel state

information, the receiver decides in favour of the codeword which minimizes the metric

l∑
t=1

nR∑
j=1

rjt −
nT∑
i=1

αi,jc
i
t

2

(3.8)

over all possible codewords c1
1c

2
1 . . . c

nT
1 c1

2c
2
2 . . . c

nT
2 . . . c1

l c
2
l . . . c

nT
l , where the frame length

l is known to be equal to nT from the previous section. We have seen that any code-

word is completely determined by its first nT symbols. Since each symbol is taken

from a constellation of size 2b, the number of total codewords is equal to 2bnT . There-

fore, unless any shortcut method is used the above metric should be calculated for this

many codewords. As b and nT gets larger, this process may become computationally

infeasible.

Fortunately, orthogonality of the coding matrices allows us to carry out the minimiza-

tion process with relative ease. We observe that, the original orthogonal design O

which we use as template for the code has the property that each xi appears exactly

once in each row. Therefore, if we ignore the minus signs, each row of O corresponds

to a permutation of the set {1, 2, . . . , nT }. Let us denote the permutation associated

with row i by εi for i = 1, 2, . . . , nT . Thus, εt(i) = j means that the constellation

symbol corresponding to xi is transmitted from transmit antenna j at time t. Let
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δj(i) denote the sign of xi in the jth row of O. Then (3.8) can be written as

nT∑
t=1

nR∑
j=1

rjt −
nT∑
i=1

αεt(i),jδt(i)si

2

. (3.9)

According to [19], using the orthogonality of columns of O, minimizing this amounts

to minimizing
nT∑
i=1

Si (3.10)

where

Si =

[
nT∑
t=1

nR∑
j=1

rjtα
∗
εt(i),j

δt(i)

]
− si

2

+

(
− 1 +

nT∑
i=1

nR∑
j=1

|αi,j |2
)
|si|2 (3.11)

and where * denotes the complex conjugate. Now, since O has been fixed, the value

of εt(i) and δt(i) is unique for each (t, i) pair. For that reason, the above expression

for Si makes it clear that each Si can be minimized individually. Thus, the receiver

computes the decision metrics

Ri =

nT∑
t=1

nR∑
j=1

rjtα
∗
εt(i),j

δt(i) (3.12)

for i = 1, 2, . . . , nT and si is decided to be the constellation symbol which minimizes

(3.11). This is written more explicitly as

si = arg min
s∈A

[
|Ri − s|2 +

(
− 1 +

nT∑
i=1

nR∑
j=1

|αi,j |2
)
|s|2
]
. (3.13)

By this way, all the transmitted symbols s1, s2, . . . , snT can be found. Since the

transmitted codeword is completely determined by these nT code symbols, decoding

is thus completed. This calculation is significantly easier than (3.9). In addition, since

the symbols si are computed independently, at most nT 2b calculations are required

this time. Still, there have been several improvements over this decoding scheme in

the literature. Interested reader may refer to [20, 21].

3.2 STBC’s from Generalized Real Orthogonal Designs

Real orthogonal designs can be used to construct a coding scheme which provides

full diversity gain, maximum possible transmission rate and has a simple decoding

algorithm. However, they are only available for 2, 4 or 8 transmit antennas. In order
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to design orthogonal space-time block codes for other number of transmit antennas,

the notion of real orthogonal designs needs to be generalized. In the present section,

we make this generalization and establish some properties of these generalized designs.

3.2.1 Generalized Real Orthogonal Designs

We define a generalized real orthogonal design of size n to be a p × n matrix G with

entries 0,±x1,±x2, . . . ,±xk such that GTG = ((x1)2 +(x2)2 + . . .+(xk)
2)In. The rate

of G is defined to be equal to k/p.

It would be useful to draw attention to the differences between real orthogonal de-

signs and generalized real orthogonal designs. In real orthogonal designs, the number

of indeterminates is equal to the number of columns(and rows) and hence each inde-

terminate appears exactly once in each row. In generalized real orthogonal designs,

on the other hand, the number k of indeterminates is not equal to n, the number

of columns. In addition, 0 is allowed as an entry. The definition makes it clear

that columns of generalized real orthogonal designs are still orthogonal to each other.

Therefore, the simple decoding scheme introduced in Section 3.1.3 will be valid for

space-time block codes constructed from them.

Given a p× nT generalized real orthogonal design G, it can be used as a template for

a space-time block code as follows: kb bits arrive at the encoder and these bits are

divided into k blocks of the same size b. Then using a fixed mapping, these blocks

are mapped to symbols s1, s2, . . . , sk from the constellation alphabet A. Then for all

i = 1, 2, . . . , k, the entries xi of G are replaced by si to form a new p × nT matrix C.

As before, the entry Cti is transmitted from transmit antenna i at time t. If Cti = 0,

nothing is transmitted from transmit antenna i at time t. The proof of Theorem 3.1.1

holds also for generalized real orthogonal designs. Thus, this coding scheme achieves

the maximum possible diversity advantage nTnR.

To prevent confusion, we find it useful to motivate the definiton of rate R for general-

ized real orthogonal designs. Since it takes p time slots to transmit kb bits, transmis-

sion rate of the above scheme is equal to kb/p. On the other hand, we know that for

a space-time code having full diversity order nTnR, the highest possible transmission
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rate is b bits/s/Hz. This means that at most pb bits can be transmitted in p time slots.

For that reason, we define R to be equal to kb/pb = k/p. Note that the maximum

achievable rate is 1 under this definition.

We have seen that generalized real orthogonal designs can be used in a straightforward

manner to construct space-time block codes. Therefore, the problem of constructing

generalized real orthogonal designs having desired properties becomes crucial. One

of these desired properties is the maximization of R since we would like to be able

to transmit as many information bits as possible. In addition to this, memory re-

quirements should also be taken into account. Thus, given R and the number nT of

transmit antennas, p should be minimized. In fact, the minimum number p such that

there exists a p×n orthogonal design of rate R is denoted by A(R,n) and it is known

as the fundamental question of generalized orthogonal design theory.

We continue with a short subsection on what is known in the mathematics literature

as the Hurwitz-Radon Theory.

3.2.2 Hurwitz-Radon Theory

Related to our discussion on orthogonal designs is the Hurwitz-Radon Theory and so

we reserve this section for a short introduction to the results from this theory which

will be of interest to us.

We begin by defining a set of matrices which will turn out to be relevant to orthogonal

designs. A Hurwitz-Radon family of matrices of size k is a set {B1, B2, . . . , Bk} of n×n

matrices satisfying the following properties:

BT
i Bi = In for i = 1, 2, . . . , k

BT
i = −Bi for i = 1, 2, . . . , k

BiBj = −BjBi for 1 ≤ i < j ≤ k. (3.14)

The above definition was first made in [22]. The following collects several results about

Hurwitz-Radon families which were obtained in the same paper. We state them in

the form given in [19].
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Theorem 3.2.1. Let n = 2ab be a positive integer, where b is odd and a = 4c + d

with 0 ≤ d < 4. Any Hurwitz-Radon family of n × n matrices contains less than

ρ(n) = 8c+2d matrices. Furthermore ρ(n) ≤ n. A Hurwitz-Radon family of size n−1

containing n× n matrices exists if and only if n = 2, 4 or 8.

The following shows that ρ(n) given above can be defined as the smallest number k

for which a Hurwitz-Radon family of size k containing n× n matrices does not exist.

Theorem 3.2.2. For any positive integer n, there exists a Hurwitz-Radon family of

size ρ(n)− 1 containing n× n integer matrices; i.e. matrices having all their entries

from the set {−1, 0, 1}.

The proof is constructive and interested reader may see [19, page 5] for it.

3.2.3 Construction and Some Results

In this subsection, we first tackle the issue of constructing generalized real orthogonal

designs having full rate. The following construction is taken from [19].

Let X = (x1, x2, . . . , xp)
T be the p × 1 column vector consisting of p indeterminates.

From Theorem 3.2.2 we know that there exists a Hurwitz-Radon family of size ρ(p)−1

whose members are p× p integer matrices. Let us assume that {A1, A2, . . . , Aρ(p)−1}

be such a family of matrices. Letting A0 = Ip and nT ≤ ρ(p), we construct a p× nT

matrix G by setting its ith column to be equal to Ai−1X for i = 1, 2, . . . , nT .

Lemma 3.2.3. The p×nT matrix G constructed above is a generalized real orthogonal

design with rate 1.

Proof. Let gi denote the ith column of G. Then we can express the (i, j) element of

GTG by

(GTG)ij = gTi gj

= (Ai−1X)TAj−1X

= (XTATi−1)Aj−1X

= XT (ATi−1Aj−1)X (3.15)
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For i = j, by the first Hurwitz-Radon condition given in (3.14), it is seen that

(GTG)ij = XT IpX = XTX = (x1)2 + (x2)2 + . . .+ (xp)
2. (3.16)

As for i 6= j, since (GTG)ij is a number, we can view it as a 1 × 1 matrix. Then its

transpose is equal to itself. This goes as:

(GTG)ij = [(GTG)ij ]
T = [(XTATi−1)(Aj−1X)]T

= (Aj−1X)T (XTATi−1)T = XTATj−1Ai−1X (3.17)

On the other hand, using the second and the third of the Hurwitz-Radon conditions

given by (3.14), we obtain

ATj−1Ai−1 = −Aj−1Ai−1 = Ai−1Aj−1 = −ATi−1Aj−1 (3.18)

Substituting this in (3.17) and using (3.15) yields

(GTG)ij = XT (−ATi−1Aj−1)X = −(XTATi−1Aj−1X) = −(GTG)ij . (3.19)

Therefore we have (GTG)ij = 0 for i 6= j. Together with (3.16), this shows that G is

a generalized real orthogonal design. Furthermore, the number of indeterminates and

the number of rows of G are both equal to p by construction. Thus, G is a p × nT

generalized real orthogonal design having full rate.

In Section 3.2.1 we posed the fundamental question of generalized orthogonal design

theory. Since our objective is constructing codes having full rate, we are especially

interested in the answer to this question for the case R = 1. In the above construction,

the only relation between the number nT of transmit antennas and the number p of

time slots was nT ≤ ρ(p). Thus, the lemma makes it clear that A(1, n) ≤ p for any p

with ρ(p) ≥ n. In other words, A(1, n) ≤ minρ(p)≥n(p). The following shows that this

is indeed an equality.

Theorem 3.2.4 ([19]). The value of A(1, n) is the smallest number p such that ρ(p) ≥

n. In other words, A(1, n) = minρ(p)≥n(p).

Proof. We have already seen that A(1, n) ≤ minρ(p)≥n(p). All we now need to show

is A(1, n) ≥ minρ(p)≥n(p). Let X = (x1, x2, . . . , xp)
T as before and let G be a full rate

p × n generalized real orthogonal design with minimal size, i.e. p = A(1, n). The ith
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column of G can be expressed as BiX for i = 1, 2, . . . , n where Bi is a p × p matrix.

Then the orthogonality of G implies

gTi gi = (BiX)TBiX = XTBT
i BiX =

p∑
k=1

(xk)
2 = XTX (3.20)

for i = 1, 2, . . . , n and

gTi gj = (BiX)TBjX = XTBT
i BjX = 0 = −(XTBT

i BjX)T

= −XT (XTBT
i Bj)

T = −XT [(BiX)TBj ]
T = −XTBT

j BiX (3.21)

for i 6= j, where gi denotes the ith column of G as before. These identities imply that

BT
i Bi = Ip for i = 1, 2, . . . , n and BT

i Bj = −BT
j Bi for 1 ≤ i < j ≤ n. Let us now

consider the set {A2, A3, . . . , An} of p×p matrices where Ai = BT
1 Bi for i = 2, 3, . . . , n.

Then these matrices satisfy

(i) for i = 2, 3, . . . , n

ATi Ai = (BT
1 Bi)

TBT
1 Bi = (BT

i B1)BT
1 Bi = (−BT

1 Bi)B
T
1 Bi

= −BT
1 (BiB

T
1 )Bi = −BT

1 (−B1B
T
i )Bi

= (BT
1 B1)(BT

i Bi) = IpIp = Ip, (3.22)

(ii) for i = 2, 3, . . . , n

ATi = (BT
1 Bi)

T = BT
i B1 = −BT

1 Bi = −Ai, (3.23)

(iii) for 2 ≤ i < j ≤ n

AiAj = BT
1 BiB

T
1 Bj = BT

1 (BiB
T
1 )Bj = BT

1 (−B1B
T
i )Bj

= −(BT
1 B1)BT

i Bj = −IpBT
i Bj = −BT

i Bj

= BT
j Bi = −AjAi. (3.24)

Therefore, the set {A2, A3, . . . , An} is a Hurwitz-Radon family of size n−1. Since any

Hurwitz-Radon family of p× p matrices cannot have more than ρ(p)− 1 members, it

is true that n − 1 ≤ ρ(p) − 1 and consequently n ≤ ρ(p). Thus, p = A(1, n) cannot

be less than the smallest integer p′ having the property ρ(p′) ≥ n. In other words,

A(1, n) ≥ minρ(p)≥n(p). Since we had previously seen that A(1, n) ≤ minρ(p)≥n(p), it

follows that A(1, n) = minρ(p)≥n(p).
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Corollary 3.2.5 ([19]). If we define Mn = {(c, d) : 0 ≤ c, 0 ≤ d < 4, 8c + 2d ≥ n},

then A(1, n) = min(c,d)∈Mn
(24c+d).

Proof. First we show that A(1, n) = p is a power of 2. Let p = 2ab where b is an odd

integer. From the definition of ρ given in Theorem 3.2.1 it is clear that ρ(2a) = ρ(p).

Since ρ(p) ≥ n by Lemma 3.2.3, we have ρ(2a) ≥ n. Since Theorem 3.2.4 says that p

is the smallest number having this property, we must have p ≤ 2a = p/b. It follows

that b = 1 and hence A(1, n) is a power of 2. The result follows from the explicit

formula given for ρ in Theorem 3.2.1.

The above results are about how many time slots are required in a full rate orthogonal

space-time block code using a fixed number of transmit antennas. In general, p × n

generalized real orthogonal designs with rate R satisfying p = A(R,n) are called

delay-optimal. Since we are interested in designing full rate space-time block codes,

of special interest for us is the designs attaining the value A(1, n) for their number of

rows. If one desires to use six transmit antennas, for instance, the number of time slots

required is A(1, 6) = 8. One can apply the construction described in the paragraph

preceding Lemma 3.2.3 to realize such a design. The design taken from [19]

G6 =



x1 x2 x3 x4 x5 x6

−x2 x1 x4 −x3 x6 −x5

−x3 −x4 x1 x2 x7 x8

−x4 x3 −x2 x1 x8 −x7

−x5 −x6 −x7 −x8 x1 x2

−x6 x5 −x8 x7 −x2 x1

−x7 x8 x5 −x6 −x3 x4

−x8 −x7 x6 x5 −x4 −x3



(3.25)

is a delay-optimal 8× 6 design with rate 1. For other examples see [19, 23].

3.3 Orthogonal STBC’s for Complex Constellations

So far in this chapter we have investigated orthogonal space-time coding schemes to

be used over real signal constellations. In reality, however, most applications assume
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complex signal constellations. Therefore, it is natural to generalize real orthogonal

designs to complex orthogonal designs. As will be seen, this generalization can be made

in a rather straightforward manner. First we define complex orthogonal designs, which

are analogous to real orthogonal designs defined in Section 3.1.2. Then, we generalize

complex orthogonal designs to nonsquare matrices and establish some results related

to them. We end the section with a short description of Alamouti’s code.

3.3.1 Complex Orthogonal Designs

A complex orthogonal design of size n where n > 1 is an n × n orthogonal matrix

Oc with entries the indeterminates ±x1,±x2, . . . ,±xn, complex conjugates of these

indeterminates ±x∗1,±x∗2, . . . ,±x∗n, and multiples of these indeterminates by i =
√
−1.

As before, without loss of generality we may assume that Oc is normalized, i.e. the

ith entry (Oc)1i in the first row of Oc is equal to xi for all i = 1, 2, . . . , n.

The encoding method introduced in Section 3.1.2 can be applied to complex orthogonal

designs to obtain a space-time coding scheme over any complex signal constellation.

As before, the resulting transmit diversity scheme achieves the maximum possible

rate and the maximum diversity advantage nTnR. The decoding method presented in

Section 3.1.3 can be applied to decode complex orthogonal space-time block codes.

We have seen that real orthogonal designs exist only for 2, 4 or 8 dimensions. There-

fore, it is reasonable to suspect that complex orthogonal designs also exist for a limited

set of dimensions. A construction described in [19] proves useful for the examination

of this existence problem. This construction goes as follows: Suppose that we have

a complex orthogonal design Oc of size n. In view of the encoding scheme we have

described, each indeterminate in Oc is replaced by a complex constellation symbol be-

fore data transmission. Thus, we can view the indeterminate xi as a complex number

of the form x1
i + ix2

i . In other words, to each complex indeterminate xi we associate

two real indeterminates x1
i and x2

i . Based on this explanation, if the pair of real inde-

terminates associated with any entry of Oc is (x, y), we replace that entry of Oc with

the 2× 2 matrix  x y

−y x

 . (3.26)
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More explicitly, the entries ±xi,±x∗i ,±ixi are replaced by

±

 x1
i x2

i

−x2
i x1

i

 ,±
 x1

i −x2
i

x2
i x1

i

 ,±
 −x2

i x1
i

−x1
i −x2

i

 (3.27)

respectively. Let us denote by O the resulting 2n× 2n matrix.

Lemma 3.3.1. The matrix O constructed above is a real orthogonal design.

Proof. Let us first introduce the notation that will be used throughout the proof. We

can view O as an n× n matrix whose entries are 2× 2 matrices. Let Rij denote the

matrix in the (i, j) position of O. Thus, if Oij denotes the (i, j) entry of O as usual,

we have

Rij =

 O2i−1,2j−1 O2i−1,2j

O2i,2j−1 O2i,2j

 . (3.28)

In addition, let Oi denote the ith column of O for i = 1, 2, . . . , 2n and let Rij1 and Rij2
denote the first and the second column of Rij , respectively.

We now examine the conditions imposed by the orthogonality of columns of Oc. Since

Oc is a complex orthogonal design, for 1 ≤ i < j ≤ n we have

(Oc)∗i (Oc)j =
n∑
k=1

(Oc)∗ki(Oc)kj = 0, (3.29)

where (Oc)∗i is the 1 × n matrix obtained by taking the transpose conjugate of the

ith column of Oc and (Oc)∗ki is the complex conjugate of the (k, i) entry of Oc. The

definition of a complex orthogonal design implies that each indeterminate appears

exactly once in each column and each row of Oc. Thus, the above summation is a

sum of product of terms corresponding to different indeterminates. Furthermore, the

product (Oc)∗ki(Oc)kj corresponding to the entries in the kth row has to be eliminated

by the product (Oc)∗li(Oc)lj corresponding to the entries in the lth row for exactly one

l 6= k. Let us denote this relation by εij(k) = l. Thus, for all distinct pairs i and j,

εij is a permutation of the set N = {1, 2, . . . , n} such that εij(k) 6= k and ε2ij(k) = k

for all k ∈ N .

We can now check if any two distinct columns of O are orthogonal. Let Oi and Oj be

two such columns with i < j. The inner product of Oi and Oj can be expressed as

(Oi)TOj =

2n∑
k=1

OkiOkj . (3.30)
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If i is odd and j = i+ 1, then this sum can be written as

(Oi)TOj =
n∑
k=1

(
O2k−1,iO2k−1,j +O2k,iO2k,j

)
=

n∑
k=1

(Rk,j/21 )TRk,j/22 . (3.31)

In this case, the description of the Rij ’s given by (3.26) shows that (Rij1 )TRij2 = 0 for

all i and j. So (Oi)TOj = 0 in this case.

Suppose that either i is even or j > i + 1 so that the elements of Oi and Oj lie in a

disjoint set of 2×2 submatrices. More explicitly, the entries in Oi lie in the submatrices

Rk,b
i+1
2
c and the entries in Oj lie in the submatrices Rk,b

j+1
2
c for k = 1, 2, . . . , n. The

condition we imposed on i and j guarantees that p = b i+1
2 c and q = b j+1

2 c are distinct

integers. The orthogonality of Oc means that

(Oc)∗p(Oc)q =
n∑
k=1

(Oc)∗kp(Oc)kq = 2
n∑
k=1

(Oc)∗kp(Oc)kq

=
n∑
k=1

[
(Oc)∗kp(Oc)kq + (Oc)∗εpq(k),p(Oc)εpq(k),q

]
= 0. (3.32)

Now, for an arbitrary l ∈ {1, 2, . . . , n} there are four possibilities which makes the

equality

(Oc)∗lp(Oc)lq + (Oc)∗εpq(l),p(Oc)εpq(l),q = 0 (3.33)

true. These are

(i) (Oc)εpq(l),p = (Oc)∗lq and (Oc)εpq(l),q = −(Oc)∗lp.

(ii) (Oc)εpq(l),p = −(Oc)∗lq and (Oc)εpq(l),q = (Oc)∗lp.

(iii) (Oc)εpq(l),p = i(Oc)∗lq and (Oc)εpq(l),q = i(Oc)∗lp.

(iv) (Oc)εpq(l),p = −i(Oc)∗lq and (Oc)εpq(l),q = −i(Oc)∗lp.

In every case, from the definition of the submatrices made in (3.26) and (3.27) we see

that

(Rkp1 )TRkq1 + (Rεpq(k),p
1 )TRεpq(k),q

1 = 0, (Rkp1 )TRkq2 + (Rεpq(k),p
1 )TRεpq(k),q

2 = 0,

(Rkp2 )TRkq1 + (Rεpq(k),p
2 )TRεpq(k),q

1 = 0, (Rkp2 )TRkq2 + (Rεpq(k),p
2 )TRεpq(k),q

2 = 0.

for all k = 1, 2, . . . , n. One of these four corresponds to the sum

O2k−1,iO2k−1,j +O2k,iO2k,j +O2εpq(k)−1,iO2εpq(k)−1,j +O2εpq(k),iO2εpq(k),j . (3.34)

54



Therefore, if we denote this sum by Sijk , we have

2OTi Oj =
n∑
k=1

Sijk = 0 = OTi Oj . (3.35)

Thus, we have shown that any two distinct columns of O are orthogonal. This com-

pletes the proof that O is a real orthogonal design of size 2n.

Since constructing complex orthogonal designs is not easier than constructing real

ones, it is not profitable to use the above for construction purposes. Instead, it is

useful in limiting the set of values for which a complex orthogonal design can exist.

Since the above construction guarantees the existence of a real orthogonal design of

size 2n corresponding to every complex orthogonal design of size n, from Theorem

3.1.2 we see that a complex orthogonal design of size n cannot exist unless n = 2 or

4. But, it is proved in [19] that a complex orthogonal design of size 4 does not exist.

As for n = 2, Alamouti’s scheme, which we will later discuss shortly, gives a complex

orthogonal design of size 2. Thus, we have the following:

Theorem 3.3.2 ([19]). A complex orthogonal design of size n exists if and only if

n = 2.

3.3.2 Generalized Complex Orthogonal Designs

We have seen that complex orthogonal designs exist only for two dimensions. There-

fore, they can only be used to construct space-time block codes for two transmit

antennas. For other number of antennas, as before, one needs to make generalization

to nonsquare matrices. We define a generalized complex orthogonal design of size n

to be a p × n matrix Gc with entries ±x1,±x∗1, . . . ,±xk,±x∗k and their product with

i such that G∗cGc = Dc, where G∗c denotes the transpose conjugate of Gc and Dc is a

diagonal matrix with entries

Dii = li1|x1|2 + li2|x2|2 + . . .+ lik|xk|2 (3.36)

for all i = 1, 2, . . . , n. It can be shown that(see [19]) there exists a generalized complex

orthogonal design of the same size as Gc whose diagonal entries are equal to |x1|2 +

|x2|2 + . . .+ |xk|2. Thus, without loss of generality we can assume Gc has this property.

As before, k/p is the rate of Gc.
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Given a generalized complex orthogonal design, the encoding method described before

can be used to obtain a transmit diversity scheme achieving the maximum possible

diversity advantage. Decoding is made by the method explained in Section 3.1.3.

As for the rate, analogous to A(R,n) defined in Section 3.2.1, we define Ac(R,n)

to be the minimum number p such that there exists a p × n generalized complex

orthogonal design with rate R. Our main focus in this subsection will be to establish

the limitations on Ac(R,n).

Theorem 3.3.3 ([19]). The following inequalities hold:

(i) For any R, Ac(R,n) ≥ A(R, 2n)

2
.

(ii) For R ≤ 1

2
, Ac(R,n) ≤ 2A(2R,n).

Proof. For part i), note first that there is nothing to prove if Ac(R,n) =∞, i.e. if there

does not exist a p×n orthogonal design for some given R and n. If Ac(R,n) <∞, we

consider an Ac(R,n)× n generalized complex orthogonal design Gc with rate at least

R. From Gc we can obtain a 2Ac(R,n) × 2n generalized real orthogonal design G by

applying the construction proved in Lemma 3.3.1. Furthermore G has the same rate

as Gc. This shows that A(R, 2n) ≤ 2Ac(R,n).

For the second part, assume that we have a p× n generalized real orthogonal design

G of rate at least 2R where p = A(2R,n). Since 2R ≤ 1, such a design always exists.

From G we form another matrix G̃ by replacing each entry xi by the symbolic conjugate

x∗i . Then we define a 2p × n matrix Gc by appending G̃ below G, i.e. the ith row of

Gc is the ith row of G and the (p + i)th row of Gc is the ith row of G̃ for 1 ≤ i ≤ p.

Our claim is that Gc is a generalized complex orthogonal design. To show this first we

note that for all i = 1, 2, . . . , n

(G∗cGc)ii = (Gc)∗i (Gc)i =

2p∑
j=1

(Gc)∗ji(Gc)ji =

p∑
j=1

|Gji|2 +

p∑
j=1

|(Gji)∗|2

= (|x1|2 + |x2|2 + . . .+ |xk|2) + (|x∗1|2 + |x∗2|2 + . . .+ |x∗k|2)

= 2(|x1|2 + |x2|2 + . . .+ |xk|2). (3.37)

where k is the number of indeterminates in G and single subscripts denote the columns

of matrices as usual. Now let us assume i 6= j. We will use the notation introduced
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in the proof of Lemma 3.3.1. Again ε2 is the identity permutation and εij(r) = s will

mean

GriGrj + GsiGsj = 0. (3.38)

Since the (p + l)th row of Gc is equal to the matrix conjugate of the lth row of G, we

have (Gc)l+p,q = (Glq)∗ for all q = 1, 2, . . . , n. It follows that

(Sc)ijr = (G∗c )ir(Gc)rj + (G∗c )is(Gc)sj + (G∗c )i,r+p(Gc)r+p,j + (G∗c )j,s+p(Gc)s+p,j

= (Gri)∗Grj + (Gsi)∗Gsj + Gri(Grj)∗ + Gsi(Gsj)∗

=
[
(Gri)∗Grj + Gsi(Gsj)∗

]
+
[
Gri(Grj)∗ + (Gsi)∗Gsj

]
= 0 + 0 = 0 (3.39)

in view of (3.38), taking into account that all the involved terms are indeterminates.

We can now compute the inner product of ith and jth columns of Gc. This is just equal

to

(G∗cGc)ij =

2p∑
l=1

(G∗c )il(Gc)lj

=
1

2

p∑
r=1

(Sc)ijr = 0. (3.40)

From (3.37) and (3.40), it follows that Gc is a 2p× n generalized complex orthogonal

design with rate at least R. Therefore, we have Ac(R,n) ≤ 2p = 2A(2R,n).

Part ii) of the above theorem yields an explicit construction of generalized complex

orthogonal design up to rates
1

2
. One example for three transmit antennas, which was

constructed in [19], is the following:

G3
c =



x1 x2 x3

−x2 x1 −x4

−x3 x4 x1

−x4 −x3 x2

x∗1 x∗2 x∗3

−x∗2 x∗1 −x∗4
−x∗3 x∗4 x∗1

−x∗4 −x∗3 x∗2



. (3.41)
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The space-time block code constructed from this design takes 8 time slots to transmit

4 complex symbols. Therefore, its rate is equal to R =
4

8
=

1

2
. In fact, this is not the

best that can be achieved for three transmit antennas. The following design

G3,3/4
c =


x1 x2 x3

−x∗2 x∗1 0

−x∗3 0 x1

0 −x∗3 x∗2

 , (3.42)

which was derived in [24], achieves rate
3

4
for three transmit antennas. For two

designs of the same rate which have the additional property that linear combination

of indeterminates are allowed as the entries, one can see [19]. These two designs are

for three and four transmit antennas. The following shows in particular that this is

the best possible for these many antennas.

Theorem 3.3.4 ([25]). Let nT be an integer greater than 1. Then for R greater than
1

2
+

1

2
⌊nT + 1

2

⌋ , we have Ac(R,nT ) =∞.

The nonexistence of a full rate complex orthogonal space-time block code for more

than two transmit antennas can be inferred from this theorem. As the expression

suggests, the difference of the maximum possible rate from 1/2 loses its significance

as the number of transmit antennas becomes large. Furthermore, codes achieving

the maximum possible rate for large number of transmit antennas have very long

decoding delays when compared to codes having their rate equal to 1/2. For example,

for nT = 16, the maximum possible rate is 9/16 and such a design constructed in [26]

has p = 22880, i.e. takes 22880 time slots to transmit the information symbols. On

the other hand, since A(1, 16) = 128 by Corollary 3.2.5, the construction described in

the proof of the second part of Theorem 3.3.3 yields a 256× 16 design with rate 1/2.

This suggests that, in terms of decoding delay, it is not advisable to employ codes

with the highest possible rate for large number of transmit antennas.

3.3.3 An Example: Alamouti’s Code

Alamouti’s code, which was first proposed in [18], is of special importance since it is

the only complex orthogonal space-time block code which achieves full rate. Despite
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its simplicity, its uniqueness has earned it the distinction of being the code which has

been proposed in several third-generation cellular standards.

Alamouti’s scheme is based on the 2× 2 complex design

O2
c =

 x1 x2

−x∗2 x∗1

 , (3.43)

which is orthogonal since (O2
c )
∗O2

c = (|x1|2+|x2|2)I2. The encoding scheme is obvious.

Suppose that the complex signal constellation S to be used has 2b elements. Then,

2b bits are transmitted in each data frame. Namely, if a binary data sequence of 2b

bits arrives at the encoder, this block is divided into two parts of the same length

and these parts select complex symbols s1 and s2 from S. At the first time slot, s1

is transmitted from the first transmit antenna and s2 is transmitted from the second

transmit antenna. At the second time slot, −s∗2 is transmitted from the first transmit

antenna and s∗1 is transmitted from the second transmit antenna. By this way, the

encoder takes two time slots to transmit 2b bits. Thus, the transmission rate is b

bits/s/Hz, which shows that the code is optimal in terms of rate.

Although the above coding scheme can be used with any number of receive antennas,

for simplicity we will take nR = 1. The path gains from transmit antennas 1 and 2

to the receive antenna are α1 and α2 respectively. The received signals at time slot 1

and 2 are given by

r1 = α1s1 + α2s2 + η1, r2 = −α1s
∗
2 + α2s

∗
1 + η2 (3.44)

respectively, where η1 and η2 are the noise values associated with the receive antenna

at time slots 1 and 2 respectively. Decoding is carried out by the method described

in Section 3.1.3. Applying (3.9) to the present scheme, we see that the metric

|r1 − α1s1 − α2s2|2 + |r2 + α1s
∗
2 − α2s

∗
1|2 (3.45)

should be minimized over all possible values of s1 and s2. As before, some simplification

can be made over this and it turns out that we should minimize

S1 = |α∗1r1 + α2r
∗
2 − s|2 + (|α1|2 + |α2|2 − 1)|s|2 (3.46)

over all s ∈ S to find s1 and

S2 = |α∗2r1 − α1r
∗
2 − s|2 + (|α1|2 + |α2|2 − 1)|s|2 (3.47)
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over all s ∈ S to find s2. This process can be further simplified if all the constellation

symbols have equal energies, i.e. if |s| is constant for all s ∈ S. If this is the case,

the right-hand sides of (3.46) and (3.47) are constant. Then we form two decision

variables, which are

s̃1 = α∗1r1 + α2r
∗
2, s̃2 = α∗2r1 − α1r

∗
2. (3.48)

In this case, s1 is equal to arg mins∈S |s− s̃1|, the constellation symbol which is closest

to s̃1. Likewise, s2 is the constellation symbol closest to s̃2. This is a simple decoding

scheme which requires only linear processing at the receiver.

Alamouti’s scheme can be analyzed in terms of various aspects some of which we have

not touched so far. For instance, the change in the error rate performance of the code

with the energy of the constellation symbols can be considered. For this and other

details, the reader is referred to [18] and [23, Section 4.2].
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CHAPTER 4

SPACE-TIME BLOCK CODES FROM RANK

DISTANCE CODES

We have seen that the performance of a space-time code in terms of pairwise error

probability is quantified by the diversity criterion. Namely, in order to achieve the

maximum possible diversity advantage, all of the difference matrices constructed from

distinct pairs of codewords should have full rank. In view of this criterion, it is very

natural to treat the codewords of a space-time code as matrices whose distance is

equal to the rank of their difference. Such a view connotes rank distance codes, a

class of matricial codes from coding theory with the rank metric as their associated

distance metric.

Rank distance codes were introduced by E. M. Gabidulin in [27]. Their original pur-

pose was to correct rank errors occurring in information transmission. Apart from

being used as error-correcting codes, they serve as building blocks of several cryp-

tosystems(see eg. [28]). More recently, several authors have focused on the possibility

of utilizing rank distance codes to construct space-time codes. Among such studies

we can count [29, 30].

The focus of this chapter is on rank distance codes and how they are used to construct

space-time block codes. In Section 4.1, we introduce rank distance codes and distin-

guish a special class of codes among all rank distance codes, called the MRD codes. A

specific subclass of MRD codes is given in the same section. Then, in Section 4.2, how

MRD codes can be used to construct full rank space-time block codes is described in

some detail.
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4.1 Rank Distance Codes

This section will present a brief introduction to rank distance codes. In the first part,

basic definitions and notations about rank distance codes are introduced and maximal

rank distance codes are defined. Secondly, a specific class of maximal rank distance

codes are introduced.

4.1.1 Basic Definitions and Properties

Let GF (q) denote the field with q elements and let GF (qm) be its extension field with

qm elements where m ≥ 1. Note that GF (qm) can be viewed as a vector space of

dimension m over GF (q). We begin by defining the rank norm.

Definition 4.1.1 (Rank of a vector, [27]). Let x = (x1, x2, . . . , xn) ∈ GF (qm)n and

let b = {β1, β2, . . . , βm} be a basis of GF (qm) over GF (q). The rank of x over GF (q),

denoted by Rk(x|GF (q)), or simply by Rk(x) where there is no ambiguity, is defined

as the rank of the m× n matrix (xij) where xj =
∑m

i=1 βixij for j = 1, 2, . . . , n.

Thus, in order to find the rank of a vector x ∈ GF (qm)n over GF (q), we express

each of its coordinates with respect to a fixed basis of GF (qm)/GF (q). By this way

each coordinate is mapped to an m× 1 column matrix, resulting in an m× n matrix

having entries in GF (q). The reader may easily verify that the rank of this matrix is

independent of the choice of the basis. This shows that the rank of x is well defined.

Rank norm induces a metric over GF (qm)n as follows:

Definition 4.1.2 (Rank norm). Let e1, e2 ∈ GF (qm)n. The rank distance of e1 and

e2 is defined by

dR(e1, e2) = Rk(e1 − e2). (4.1)

The following can be considered as the analog of minimum Hamming distance from

the theory of block codes:

Definition 4.1.3. Let C ⊆ GF (qm)n be a code of block length n. The minimum rank

distance of C is defined by

dR(C) = min
c1 6=c2∈C

dR(c1, c2). (4.2)
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Given a code C ⊆ GF (qm)n with |C| = M , we call it a (n,M, d)r−code if its minimum

rank distance is equal to d. If, in addition, it is linear with dimension k, it is called a

[n, k, d]r − code.

The following reveals the existence of a Singleton-like bound between the parameters

of a rank distance code:

Theorem 4.1.4 ([27]). Let C ⊆ GF (qm)n be a rank distance code with |C| = M and

dR(C) = d. Then the following inequality holds:

M ≤ qmin{m(n−d+1),n(m−d+1)}. (4.3)

Proof. Suppose that there exist two codewords c1 and c2 which have all their first

n− d+ 1 coordinates the same. In this case, the first n− d+ 1 coordinates of c1− c2

becomes 0 and consequently dR(c1, c2) < d, which contradicts the assumption that C

has minimum rank distance d. This shows that no two codewords from C can agree

in all of the first n− d+ 1 coordinates. Therefore, the size of C is upper bounded by

the number of all (n− d+ 1)-tuples over GF (qm). This shows that

M ≤ |GF (qm)n−d+1| = qm(n−d+1). (4.4)

To complete the proof, we fix any basis b of GF (qm) over GF (q) and replace all

coordinates of each codeword in C by their representation with respect to b, as ex-

plained in Definition 4.1.1. By this way each codeword c is mapped to an m × n

matrix having entries in GF (q), which we denote by B(c). It can easily be verified

that, for any two codewords c1 and c2, Rk(c1, c2) is equal to the rank of the matrix

B(c1)−B(c2). Since rank of a matrix is equal to its row rank, no two matrices from

the set B(C) = {B(c) : c ∈ C} can agree in all of the first m− d+ 1 rows. Thus, the

number of elements in B(C) cannot exceed the size of the set of all (m − d + 1) × n

matrices over GF (q), which is qn(m−d+1). But since the mapping from C to B(C)

is one-to-one, we have M ≤ qn(m−d+1). Combining this with (4.4) completes the

proof.

Corollary 4.1.5. Let C ⊆ GF (qm)n be an [n, k, d]r-code. Then

mk ≤ min{m(n− d+ 1), n(m− d+ 1)}. (4.5)
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Given a rank distance code C ⊆ GF (qm)n, (4.3) can also be expressed as a tradeoff

between the rate and the minimum rank distance of C. The rate R of C is defined in

the same fashion as for the codes in Hamming metric. Namely, R = (logqm |C|)/n =

logq |C| / mn. Then, taking logarithm of both sides and dividing by q in (4.3) gives

R ≤ 1− d− 1

min{m,n}
. (4.6)

Definition 4.1.6. A code C ⊆ GF (qm)n is called a maximal rank distance(MRD)

code if it satisfies

|C| = qmin{m(n−d+1),n(m−d+1)}. (4.7)

Thus, MRD-codes constitute the class of codes whose ranks and rates achieve the

tradeoff specified by the Singleton-like bound.

4.1.2 Gabidulin Codes

The proof of Theorem 4.1.4 gives no clue as to whether MRD-codes exist. In this

section we summarize an explicit construction which was first given by Gabidulin in

[27].

Let n ≤ m and g1, g2, . . . , gn be n elements from GF (qm) which are linearly indepen-

dent over GF (q). We define the vector

g[i] = (gq
i

1 , g
qi

2 , . . . , g
qi

n ) (4.8)

and consider the k×n matrix whose rows are g[i] for i = 0, 1, . . . , k−1. More explicitly,

we consider the matrix

G =


g1 g2 . . . gn

gq1 gq2 . . . gqn
...

...
. . .

...

gq
k−1

1 gq
k−1

2 . . . gq
k−1

n

 . (4.9)

The subspace of GF (qm)n which is spanned by rows of G is called a Gabidulin code.

In other words, a Gabidulin code is a rank distance code C ⊆ GF (qm)n which has a

generator matrix of the above form. Thus, an arbitrary codeword from a Gabidulin

code has the form

c = (a1g1 + a2g
q
1 + . . .+ akg

qk−1

1 , . . . , a1gn + a2g
q
n + . . .+ akg

qk−1

n ) (4.10)
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where a1, a2, . . . , ak ∈ GF (qm) and g1, g2, . . . , gn are linearly independent. A proof of

the following can be found in [27]:

Proposition 4.1.7. Gabidulin codes as described above are MRD-codes. Thus, they

have minimum rank distance n− k + 1.

Here we put an end to our discussion of rank distance codes. More detail can be

found in [27, 31, 32, 33]. We proceed with how to use what we have seen to construct

space-time block codes.

4.2 MRD-Codes as Space-Time Block Codes

We saw earlier that there is a tradeoff between the rate and diversity advantage of a

space-time code. This tradeoff can be viewed as an analog of the Singleton-like bound

between the parameters of a rank distance code, which we introduced in the previous

section. Therefore, it is natural to suspect that rank distance codes can be used to

construct good space-time codes. In the present section, this issue will be addressed.

4.2.1 Interpretation of Space-Time Codes as Rank Distance Codes

Let us recall the space-time coding scheme which we introduced in Section 2.2.1.

Again, nT and nR are the number of transmit and receive antennas respectively. T is

the frame length which we assume to satisfy T ≥ nT . Equation (2.5) can be expressed

in the form of a matrix equation as

Y = ρSH +W. (4.11)

Here Y is the T×nR received signal matrix where the (t, i) entry is the symbol received

by receive antenna i at time slot t. H is the nT × nR channel matrix consisting of

the path gains from transmit antennas to receive antennas. ρ is just a scaling factor

and W is the T × nR noise matrix. Finally, S is the T × nT space-time code matrix

where the (t, i) entry is the symbol transmitted by transmit antenna i at time slot t.

To avoid confusion, we note that this time rows of S correspond to time slots whereas

its columns correspond to transmit antennas, contrary to the convention we adopted

in previous chapters. The reason will be clarified soon.
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In this setting, let S be a space-time block code defined over a finite complex signal

constellation A ⊂ C of q elements where q is a power of some prime. Each codeword

s = (s1
1, s

2
1, . . . , s

nT
1 , s1

2, s
2
2, . . . , s

nT
2 , . . . , s1

T , s
2
T , . . . , s

nT
T ) (4.12)

from S has a corresponding matrix representation as described above. Therefore, S

can be considered as a matricial code which is a subset of MatT×nT
(A), the set of all

T × nT matrices having entries in A. The distance of two code matrices S1, S2 ∈ S is

defined to be equal to Rk(S1 − S2). Then the minimum distance of S is seen to be

equal to its diversity d.

In order to relate S to rank distance codes, we define the mapping P : MatT×nT
(A)→

(AT )nT where the ith coordinate of P (S) is the ith row of S. P is clearly a bijection.

This shows that each element of S can be represented by a unique element of (AT )nT .

Since C does not have any finite subfield, A cannot be a field and hence space-time

codes over complex signal constellations are not rank distance codes. On the other

hand, the above explanations and the mapping P ensure that each space-time block

code is in a one-to-one relation with a rank distance code. Furthermore, since we did

not use the fact that the underlying code alphabet is a field in the proof of Theorem

4.1.4, it holds without any change for space-time block codes. Thus we have

|S| ≤ qT (nT−d+1). (4.13)

In the same manner as we expressed the Singleton-like bound for rank distance codes,

we can express (4.13) in terms of the rate of S. We previously defined the rate of a

space-time code to be the number of constellation symbols transmitted per time slot.

Therefore, the rate R of S is equal to
1

T
log|A| |S|. Since |A| = q, taking logarithm of

(4.13) and dividing by T yields

R ≤ nt − d+ 1. (4.14)

This is called the rate-diversity tradeoff. Notice that full rank codes have d = nT

and the above implies R ≤ 1 in this case. In a bit-rate sense we have R ≤ log |A|

bits/s/Hz, which we had already proved in Corollary 2.4.2.
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4.2.2 Space-Time Code Construction from Rank Distance Codes

As we have explained, rank distance codes cannot be used directly as space-time codes

because wireless applications typically employs complex baseband symbols. The di-

versity criterion describes a rather simple relation between coding matrices consisting

of complex constellation symbols; however, it is not clear what conditions it imposes

on the unprocessed binary data before transmission. Several attempts have been

made to settle this issue. In [34], the mapping from GF (2) to the BPSK constellation

was shown to preserve the rank distribution, which shows MRD-codes can be used

in a straightforward manner to construct full rank space-time block codes for BPSK-

modulation. Extension to PSK-modulation in general was also partially achieved by

further results. A similar study was conducted for QAM-modulation in [35].

In this part, we summarize a space-time code construction method which first ap-

peared in [29]. The underlying rank distance code is chosen to be a Gabidulin code

of dimension 1. For this purpose, a primitive element α of GF (qnT ) is chosen. Then

1, α, α2, . . . , αnT−1 are linearly independent elements of GF (qnT ). If we set

c = (1, α, . . . , αnT−1), (4.15)

then the one dimensional subspace C of GF (qnT )nT spanned by c is a Gabidulin code

and hence a MRD-code of minimum rank distance nT . This code has a more explicit

representation. We begin with

C = {a· c : a ∈ GF (qnT )} (4.16)

where “·” denotes the scalar product and note that each nonzero element of GF (qnT )

is equal to some power of α since α is primitive. In view of this, an even simpler

description of C is given by

C = {0} ∪ {αi· (1, α, . . . , αnT−1) : i = 0, 1, . . . , qnT − 2}. (4.17)

As explained before, codewords from C can be represented in the form of nT × nT

matrices over GF (q) through a map Q : C → MatnT×nT (GF (q)). For this purpose we

consider the set b = {1, α, . . . , αnT−1}, which is linearly independent and hence forms

a basis of GF (qnT ) over GF (q). Then coordinates of a codeword can be expanded
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columnwise with respect to b to arrive at a matrix representation. For instance, the

representation of the codeword (α, α2, . . . , αnT ) is equal to

C =



0 0 . . . 0 −b0

1 0 . . . 0 −b1

0 1 . . . 0 −b2
...

...
. . .

...
...

0 0 . . . 1 −bnT−1


, (4.18)

where the coefficients bi come from f(x) = xnT + bnT−1x
nT−1 + . . . + b1x + b0, the

irreducible polynomial of α. In the theory of finite fields, C is known as the companion

matrix of f and is a representation of the field GF (qnT )(for more explanation see [36,

page 106]). Furthermore the mapping Q satisfies Q(αi· c) = Ci. Therefore, in view of

(4.17), our original codeword C is mapped to

Q(C) = C = {0nT×nT , C, C
2, . . . , Cq

nT−1}, (4.19)

a matricial MRD code with cardinality qnT and minimum rank distance nT . C cannot

be used directly as a space-time code since the transmitted symbols lie in a constella-

tion A which consists of complex numbers. Instead, a one-to-one mapping from GF (q)

to A is used to replace code matrices from C with space-time code matrices over A.

By this way we obtain a space-time block code of cardinality GF (qnT ). If the mapping

from GF (q) to A preserves the rank distribution of matrices, the resulting space-time

code is of full rank and hence satisfies the rank criterion. In general, there is no known

method to construct a mapping which guarantees full rank over an arbitrary complex

signal constellation. On the other hand, several methods which apply to a specific

set of constellation alphabets has been developed in the literature. One such example

from [29] follows from a result proved in [37]. Now we explain it shortly.

A Gaussian integer is a complex number with integer real and imaginary parts. A

special type of Gaussian integer is when we consider a prime number p ≡ 1 (mod 4).

In this case, it is a known fact from number theory that p can be expressed as the

sum of squares of two integers; i.e. p = u2 + v2 for integers u and v. In this case,

the complex number Π = u + iv is known as a Gaussian prime. Let us consider the

mapping from GF (p) given by

ξ(k) = ζk = k mod Π = k −

[
kΠ∗

u2 + v2

]
Π (4.20)
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where * is complex conjugation as usual and [.] denotes the operation of rounding to

the nearest Gaussian integer. It was shown in [37] that matrices over GF (p) preserve

their ranks after mapping them through ξ to matrices over Gaussian integers. More

explicitly, if A is a matrix over GF (p) and ξ(A) denotes the matrix formed by replacing

the (i, j) entry Aij of A by ξ(Aij), then A and ξ(A) have the same rank. Therefore,

ξ can be used to map any MRD-code to a space-time block code which is optimal

with respect to the rate-diversity tradeoff. In particular, for the matricial code C

constructed above, ξ(C) = {0nT×nT , ξ(C), ξ(C2), . . . , ξ(Cq
nT−1)} is a space-time block

code of full rank over the constellation A = GΠ(p) = {0, ζ1, ζ2, . . . , ζp−1}.

As an example, let us construct a full rank space-time block code for two transmit

antennas. For this purpose we first construct the matricial counterpart of a [2, 1, 2]r

MRD code over GF (25) by the method explained above. We consider the primitive

polynomial f(x) = x2 + 4x+ 2 over GF (5). Its companion matrix is given by

C =

 0 3

1 1

 . (4.21)

Thus,the matricial code over GF (5) defined by C = {02×2, C, C
2, . . . , C24} is MRD

with minimum rank distance 2. In fact, there is a more explicit way of defining C. If

α is a root of f , just like {1, α} forms a basis of GF (25) over GF (5), C is spanned by

I2 and C, where I2 is the 2× 2 identity matrix. Therefore,

C =

{
i0

[
1 0

0 1

]
+i1

[
0 3

1 1

]
: i0, i1 ∈ GF (5)

}
=

{[
i0 3i1

i1 i0 + i1

]
: i0, i1 ∈ GF (5)

}
gives a more explicit description of C. It remains to map the elements of GF (5) to

Gaussian integers using the map ξ given in (4.20). Since 5 = 22 + 12, Π = 2 + i is

the Gaussian prime which defines ξ. Straightforward calculation shows that ξ(0) = 0,

ξ(1) = 1, ξ(2) = −i, ξ(3) = i, ξ(4) = −1. Making these substitutions, we obtain a

new set ξ(C) of 2×2 matrices over the signal constellation A = {0, 1,−1, i,−i}. Since

ξ preserves the ranks of matrices, ξ(C) is a full rank space-time block code for two

transmit antennas having rate R = 1.

Construction of space-time codes that are optimal with respect to the rate-diversity

tradeoff was studied more extensively in [30]. There, binary MRD codes was used to

construct optimal space-time codes which applies to a wide set of signal constellations

including QAM, PAM and PSK modulations. The reader is referred to [30] for details.
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