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ABSTRACT 

 

 

AN IMPROVED ORGANIZATION METHOD FOR ASSOCIATION 
RULES AND A BASIS FOR COMPARISON OF METHODS 

 

Jabarnejad, Masood 

M.Sc., Department of Industrial Engineering 

Supervisor: Prof. Dr. Gülser Köksal 

Co-Supervisor: Assoc. Prof. Dr. Murat Caner Testik 

 

June 2010, 86 pages 

 

In large data, set of mined association rules are typically large in number and hard to 

interpret. Some grouping and pruning methods have been developed to make rules 

more understandable. In this study, one of these methods is modified to be more 

effective and more efficient in applications including low thresholds for support or 

confidence, such as association analysis of product/process quality improvement. 

Results of experiments on benchmark datasets show that the proposed method groups 

and prunes more rules. 

 

In the literature, many rule reduction methods, including grouping and pruning 

methods, have been proposed for different applications. The variety in methods 

makes it hard to select the right method for applications such those of quality 

improvement. In this study a novel performance comparison basis is introduced to 

address this problem. It is applied here to compare the improved method to the 

original one. The introduced basis is tailored for quality data, but is flexible and can 

be changed to be applicable in other application domains. 

 

Keywords: Data mining, Association rules, Grouping and pruning rules, Comparison 

of rule reduction methods 



  

V 
 

ÖZ 

 

 

BİRLİKTELİK KURALLARI İÇİN İYİLEŞTİRİLMİŞ BİR 
DÜZENLEME YÖNTEMİ VE YÖNTEMLERİN 

KARŞILAŞTIRILMASI İÇİN BİR TEMEL  
 

JABARNEJAD, Masood 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gülser Köksal 

Ortak Tez Yöneticisi: Doç. Dr. Murat Caner Testik 

 

Haziran 2010, 86 Sayfa 

 

Büyük veri tabanlarında, keşfedilmiş birliktelik kurallar kümesi genellikle geniştir ve 

yorumlaması güçtür. Bu birliktelik kurallarını daha anlaşılır bir hale getirmek için bir 

kaç gruplandırma ve budama yöntemi geliştirilmiştir. bu yöntemlerden bir tanesi, 

destek ya da güven ölçüleri için düşük alt sınırlar içeren uygulamalarda (örneğin, 

ürün/süreç kalitesinin iyileştirilmesi için birliktelik analizi) daha etkili ve daha 

verimli olacak şekilde iyileştirilmiştir. Kıyaslama veri tabanları üzerindeki deney 

sonuçları, iyileştirilmiş yöntemin daha fazla kuralı gruplandırdığını ve budadığını 

göstermektedir. 

 

Literatürde, kuralları gruplandırma ve budama içeren, çok sayıda kural indirgeme 

yöntemi önerilmiştir. Bu yöntemlerin fazlalığı, kalite iyileştirme gibi uygulamalar 

için doğru yöntem seçilmesini güçleştirmektedir. Bu problemin çözümü için yeni bir 

performans karşılaştırma temeli ortaya konulmuştur. Bu temel kullanılarak, 

iyileştirilmiş yöntemle orijinal yöntem karşılaştırılmıştır. Geliştirilen bu temel asıl 

olarak kalite verisi için oluşturulmuştur. Ancak, esnek yapısıyla diğer uygulama 

alanlarında kullanılmak için değiştirilebilir özelliğe sahiptir. 

 



  

VI 
 

 Anahtar kelimeler: Veri madenciliği, birliktelik kuralları, kural gruplandırma ve 

budama, kural indirgeme yöntemlerinin karşılaştırılması 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

 

In the recent decades, information technology has been advancing dramatically. The 

rapid improvements in hardware/software devices have enabled markets, business 

centers, and production units to collect and store relevant data easily and efficiently. 

Today, all conglomerates, large organizations, manufacturers and even small 

business companies possess plenty of data reflecting their transactions, operations, or 

business-relevant activities. Consequently, the complexity and volume of data 

increase day-to-day. The growth in data complexity requires managers and engineers 

to be equipped with sophisticated methods to be able to benefit from the valuable 

knowledge included within the data. On the other hand, the growth in data volume 

requires designed methods to be efficient and practical in real applications. 

 

Data mining and knowledge discovery involve methods and efforts to address both 

requirements of sophistication and efficiency [1]. They encompass a variety of 

techniques which mainly can be classified into four functions: classification, 

clustering, regression and association rule mining [2]. These functions are not 

necessarily mutually exclusive and one function can be combined with another to 

reveal a better quality of extracted knowledge. For example, classification is 

integrated with association rule mining to deliver more accurate classifiers [3] or 

clustering can be applied to quantitative data to improve the quality of data 

discretization, which is required by many standard association rule mining 

algorithms.   
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One of the most important data mining approaches is the association rule mining 

which is used to detect hidden affinity patterns in the datasets [4]. Association rules 

were initially used to study the purchase behaviors of customers in the market. One 

example for a discovered rule can be, "A customer buying the bread also buys eggs" 

or in rule format, {bread}→{eggs}. This and other discovered rules can help 

managers to improve their customer services and increase the profitability. However, 

applications of this approach are not limited to the market basket analysis and can be 

used by data analysts in different areas.  

 

Advances in sensing and computer technology have enabled companies and 

manufacturing systems to record many process and product variables. The 

progressions in collection and retrieval of data, makes most service or manufacturing 

processes a data-rich environment which is a suitable domain to apply and benefit 

from data mining techniques including association analysis. In recent decade, 

Association analysis has been benefited in many real-world applications. For 

example, Shahbaz et al. [5] apply association rule mining to unearth improvement 

knowledge for product design and manufacturing process. Another application is 

introduced by Buddhakulsomsiri et al. [6] where they develop an association rule-

generation algorithm to identify associations between product features and the 

occurrence of a particular warranty problem in automotive warranty data.  

 

Association rules can also be used to improve the quality of a product or a 

manufacturing process by detecting root causes of quality problems and eliminating 

them. Assume that a manufacturing dataset is comprised of some process variables 

and a failure variable. The process variables contain different production measures 

and settings determined and controlled by production engineers. The failure variable 

contains different kinds of defects in products that occur during production. In such a 

domain, association analysis can be used to mine interesting rules between the 

process and failure variables. Interesting rules are usually the rules that indicate 

hidden and unknown information such that the production engineers are unaware of. 

Such sort of information can be deployed by engineers to discover hidden root causes 

of some failures in the system so that the failures can be fixed or eliminated. This 
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will decrease the defect incidences and hence will increase the quality of 

manufacturing process or products. Hence, one of the suitable application areas for 

association rules is the quality domain for discovering the root causes of failures and 

defects in a manufacturing system.  

A successful application of association rules require appropriate initial analysis and 

settings for the rule mining process, such as appropriate data cleaning, selection of 

appropriate rule miners and threshold specifications for support and confidence. In 

general, setting low thresholds is necessary to mine all interesting rules and to 

prevent information loss. This is because interesting associations are usually 

observed less frequently. If an association is very prevalent in a system, then it is 

perceptible and known for human beings there. On the other hand, many important 

associations can have low confidence, e.g. failure associations in a manufacturing 

system. Failure associations are associations that probably will result in production 

failure. Let's explain this a little more. Assume there are two unknown failure 

associations in a production system. The first one has a 100% confidence. This 

means that whenever the first failure association occurs, then certainly it will cause a 

failure in the system. The second failure association has just a 50% confidence. This 

means that if the second failure association occurs many times, then in half of the 

times a failure will occur but in the other half it will not. On the other hand, let the 

frequency of second failure association be twice the frequency of first one, i.e. the 

second one is more frequent. Consequently, both associations can cause almost equal 

number of failures in the system. However, if a high threshold is specified for the 

confidence in the initial rule mining step, then the second failure association will not 

be detected. As a result, to conduct a multifarious failure-diagnosis research, it is 

necessary to specify a low confidence threshold for rule mining algorithms. 

 

There are many other applications and case studies in which the rules with a fairly 

low confidence are useful or even more interesting than stronger ones. Coenen et al. 

[7] discuss how setting the confidence threshold in association rules mining 

technique can affect the classification applications. They show that because of the 

nature of some datasets, a low confidence threshold in association analysis is 

required to reveal the necessary amount of rules to be used in classification process. 
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Shaw et al. [8] developed some interestingness measures to discover the rules from 

multi-level datasets. They showed how to discover many low confident but 

interesting rules and that if in association analysis a high confidence threshold is 

used, then such important rules will be lost. There are many other real-world 

problems and applications in which association rules with low confidences contain 

useful knowledge to be discovered. See for example, [9] for a medical application 

and [10] for a text mining application. As a matter of fact, efficient and effective 

organization of rules in such applications might be very beneficial. 

 

Besides various applications of the association rules, there exist some difficulties 

with association analysis that adversely affect its practical effectiveness in massive 

datasets. The most important problem with this approach is the overwhelming 

number of discovered rules [11]. This is because the classic measures of support and 

confidence generate many redundant rules, especially when low thresholds are set for 

them, and it is hard to interpret the huge number of mined rules.  

 

In general three kinds of approaches are introduced to reduce the set of mined 

association rules and make them more understandable. The first approach applies the 

concept of closed set of items [12]. The second approach applies more 

interestingness measures in addition to support and confidence [13, 14, 15, 16, 17, 

18, 19, 20, 21, 22, 23, 24, 25, 26]. Therefore, the set of mined association rules 

reduces to the set of interesting rules that satisfy support-confidence framework and 

also some additional interestingness measures. The third approach is based on 

"similarity" and/or "redundancy" among association rules [11, 17, 27, 28, 29, 30, 31, 

32, 33, 34] and it can be categorized into two; grouping and pruning the association 

rules. Grouping techniques try to summarize the set of discovered rules by clustering 

"similar" rules. Pruning techniques try to reduce the number of mined or to be mined 

association rules by detecting "redundant" rules and removing them. 

 

The first approach, mentioned for reducing the large set of discovered association 

rules, can cause information loss as it is looking for closed frequent itemsets. The 

second approach evaluates the rules with some pre-specified interestingness 
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measures. Defining a measure to catch exactly interesting associations can be a very 

difficult task as the underlying distributions of such associations are unknown. 

However, the grouping/pruning techniques in the third approach may be helpful as 

these techniques consider the regions of data and rules together in similarity or 

redundancy evaluation. Hence, after applying such techniques, the information loss is 

negligible and the final set of rules is smaller and suitable for later study of data 

analysts.  

 

The focus of this thesis is on developing an effective rule reduction method 

particularly for applications requiring low support-confidence thresholds. There are 

some pre-developed methodologies that try to organize the large sets of mined 

association rules into human-tractable rule sets. However, many of these approaches 

may not be appropriate for applications requiring low threshold settings. Berrado and 

Runger [28] have developed an approach for organizing rules in sparse data. They 

introduce metarules to group and prune association rules. A metarule is a rule 

between two association rules that are already discovered. In other words, a metarule 

is an association rule whose antecedent and consequent are two discovered 

association rules. For convenience throughout this study, this approach is referred to 

as the metarules method or the metarules approach. Metarules method may encounter 

some problems in applications including low threshold settings. In this study, we 

improve their approach to be more efficient in implementation and more effective in 

grouping and pruning rules especially mined with low threshold settings.  

 

In the literature, many rule reduction methods are proposed for different applications. 

The variety in methods makes it hard to wisely select the right method for new 

applications. Hence, developing a basis to evaluate and compare methods and to 

facilitate this decision is very beneficial. We introduce a novel performance 

comparison basis which enables data analysts to precisely evaluate the performance 

of different rule reduction methods and then to select the most suitable one. 

Additionally, we use the presented basis to compare the performance of Berrado and 

Runger's approach [28] with the one developed here in the quality data domain. 
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Although the introduced basis is tailored for quality data, it is flexible and can be 

changed to fit the other subjects and data types. 

 

The organization of the thesis is as follows: In Chapter 2, a background on 

association rule mining is provided. In Chapter 3, the approach introduced by 

Berrado and Runger [28] is reviewed in detail and then some concerns related to this 

approach are discussed with examples. We show how this approach can be more 

efficient in mining required metarules. Further, we show that this approach may 

underestimate some significant overlaps, which results in a less effective solution at 

the following grouping/pruning tasks. In Chapter 4, the overlap and containment of 

rules are analyzed with new concepts and definitions. Then an algorithm is 

developed to mine the overlaps in a more efficient way. Experiments on some 

benchmark datasets are conducted in Chapter 5, where the efficiency and 

effectiveness of the proposed approach are compared with those of Berrado and 

Runger [28]. In Chapter 6, we introduce a new basis which enables data analysts to 

precisely evaluate the performance of different grouping/pruning methods. Then the 

introduced basis is used to compare the performance of Berrado and Runger's 

approach [28] with the one proposed here for the quality problems domain. Finally, 

conclusions and suggestions for future work are presented in Chapter 7. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Association Rules Background 

 

Association rules are initially introduced in transactional data by Agrawal et al. [4], 

where each transaction includes some items that are purchased by a specific 

customer. Hence an association rule is an expression of the form X → Y where X and 

Y are subsets of purchased items with X ∩ Y = ∅. X is referred to as antecedent and 

Y as consequent of the association rule (or briefly rule). Furthermore, the union of X 

and Y is called the itemset of the rule. Interestingness of a rule is often measured by 

its support and confidence. Support measures the generality of the rule and is equal 

to the fraction of the transactions that include (or satisfy) both X and Y (rule itemset). 

Confidence measures the strength (or predictive ability) of the rule and is equal to the 

fraction of the transactions including X that further include Y. If support and 

confidence of a rule are above the minimum thresholds, then the rule is discovered 

(or mined). If the support of an itemset is above the minimum support threshold, then 

it is called a frequent itemset. 

 

In this thesis, some more definitions are considered. It is said that a transaction 

supports or includes a rule or that a transaction is supporter of a rule if it includes the 

itemset of that rule. Furthermore, if the itemset of one rule is a proper subset of the 

itemset of another rule, then the rule with smaller itemset is called the sub-rule and 

the rule with larger itemset is called the super-rule.  

 

 



 8

2.2 Rule Miners 

 

Agrawal et al. [4] introduce the initial algorithms to mine association rules. Based on 

that work, Agrawal et al. [35] develop the well-known Apriori algorithm which is 

more efficient. Han et al. [36] propose FP-growth algorithm to mine the frequent 

patterns. They further develop their algorithm in [37]. Zaki et al. [38] present the 

concept of closed frequent itemsets. An itemset X is called a closed frequent itemset 

if X is a frequent itemset and further X does not have a superset with as much support 

as X. They show that the set of closed frequent itemsets is much smaller than the set 

of frequent itemsets. Later Zaki et al. [39] introduce CHARM algorithm to mine all 

closed frequent itemsets with the vertical data format and then to generate only the 

non-redundant rules. Also a framework based on closed itemsets is proposed in [12] 

to drastically reduce the set of mined rules.  There are many other developed 

algorithms to mine association rules such as CLOSET algorithm [40], OPUS 

algorithm [26, 41]. The correctness and runtime performance of discussed rule 

miners are evaluated and compared in [42]. Another important rule miner is 

CARMA, introduced by [43], which compute large itemsets online and typically, it is 

by an order of magnitude more memory efficient than Apriori. There are other 

approaches that propose rule miners satisfying specific applications. However, 

conducting a complete survey on all developed rule miners is beyond the scope of 

this thesis. 

 

2.3 Interestingness Measures 

 

Various measures and metrics are introduced to evaluate the interestingness or 

importance of rules. Many of them are fundamentally objective, i.e. they are only 

based on properties of rules and the data used in mining process. Some other 

measures are subjective where they also consider the preferences of users who are 

interested in resulting rules. 

 

There are different objective measures in the literature such as support and 

confidence [4], gain [17], variance and chi-squared value [22, 23], entropy gain [21, 
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22], gini [21], laplace [15, 26], lift [14, 16, 18], and conviction [14]. Bayardo et al. 

[44] show that many of the objective interestingness measures favor the rules that 

have at least an advantage in support or confidence over other ones, which is called 

the sc-optimality. An important drawback of these measures is that they do not 

consider the differences in data-regions of rules and therefore direct application of 

these measures may cause information loss. To prevent this, the sc-optimality is 

extended to pc-optimality, where rules are evaluated with respect to their data-region 

and confidence. However, the resulting optimal rule set still needs to be grouped and 

summarized. 

 

Statistical methods are also used to evaluate the interestingness of rules. Brin et al. 

[13] use the chi-square test to discover correlations between items in a dataset. An 

algorithm is also developed to mine correlation rules. This approach may fail to 

detect the rare but interesting regularities in datasets as chi-square become an 

inaccurate interestingness measure when the support of interesting associations is 

low. For example, it may be ineffective in detecting rare root-causes of quality 

problems in quality data. Further, the final set of mined rules may contain many 

overfitting rules and still needs to be reduced. Many other statistical measures and 

methods are developed to evaluate the rules. In [45] association rules are reviewed 

from a statistical point of view.  

 

Subjective measures are developed to involve the extra knowledge into 

interestingness evaluation [19, 20, 24, 25]. Besides the developed measures, selecting 

the right interestingness measures for evaluation of association rules is addressed in 

[46]. For more information about different developed interestingness measures, 

either objective or subjective, readers are referred to [47].  

 

2.4 Quantitative Association Rules 

 

Apriori algorithm requires attributes to have discrete (or categorical) values and not 

quantitative (or continuous) values. To be able to mine association rules from data 

including quantitative attributes many discretization techniques are introduced in the 
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literature [48, 49, 50, 51, 52, 53, 54, 55]. Nevertheless, efforts have been 

concentrated to develop algorithms to directly mine the quantitative association rules. 

Srikant et al. [56] introduce a methodology to discover quantitative association rules. 

In this methodology, quantitative attributes are mapped into partitions and different 

measures are used to control the degree of partitioning and quality of output 

association rules. Aumann and Lindell [57] present a new definition of quantitative 

association rules based on statistical inference theory. This method is for the 

association rules involving a single discrete or quantitative attribute in the antecedent 

and a single quantitative attribute in consequent. 

 

2.5 Rule Reduction Methodologies 

 

The most well-known algorithm for association rule mining is the Apriori algorithm 

[35]. However, effectiveness of the approach may be a concern in some practical 

settings. The problem is that the number of mined rules is often large [11] and a 

noticeable amount of these discovered rules are redundant. Redundancy occurs 

because a large number of rules are overlapped or contained by other rules. 

Consequently, organizing the discovered rules is a reasonable approach to deal with 

this problem and it can be categorized into two; pruning and grouping the association 

rules. Pruning techniques try to reduce the number of mined or to be mined 

association rules by detecting the redundant rules and removing them. Some pruning 

techniques are applied during the mining process and are called constrained-based 

rule miners. Others are applied on the already discovered rules. On the other hand, 

grouping techniques try to summarize the set of discovered rules by clustering the 

rules, where each cluster consists of the rules arising from roughly or exactly the 

same regions of data. 

 

Several pruning methods are developed to reduce the redundancy between the rules. 

Klementin et al. [11] introduce rule templates to mine just the rules consistent with 

user interests or domain knowledge. They construct inheritance hierarchy for 

attributes and use templates to reduce the discovered rules. Ng et al. [32] give the 

user more control over association rules mining process and also exploit the user's 
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feedback to guide the mining process toward the interesting rules discovery. Srikant 

et al. [33] embed item constraints into association rule mining algorithms to discover 

rules that the user is interested in.  

 

Bayardo et al. [27] propose constrained-based rule miners to discover association 

rules satisfying some pre-specified constraints. The pre-specified constraints include 

support, confidence, and minimum improvement constraints. The minimum 

improvement constraint forces the undesirable super-rules to be pruned. For 

example, given a super-rule r, if confidence of r is not considerably more than the 

largest confidence among the sub-rules of r, then r is pruned. This constraint will 

make the rule miner more effective if the dataset is dense. Though, it is a concern 

when the dataset tends to be sparse. Furthermore, the approach does not group and 

summarize the discovered rules. Consequently, the overlaps/containments between 

the discovered rules are unknown and need to be discovered. 

 

An alternative approach is the one proposed in Toivonen et al. [34] where the set of 

discovered rules is mapped to rule covers. A rule cover is a subset of original set of 

discovered rules with the same consequent. The set of data rows that support the rule 

cover is equal to the set of data rows that support all discovered rules. Rule covers 

are obtained in two steps. In the first step, all super-rules are removed since their 

supporting data rows are subsets of the supporting data rows for their sub-rules. The 

remaining set is referred as the structural rule cover. In the second step, a greedy 

algorithm is used to reduce the size of structural rule covers further, and to find 

optimal rule covers. After applying these two steps respectively, the number of 

discovered rules might be decreased significantly. However, this approach assumes 

that the discovered association rules are very strong, i.e. all discovered rules have 

very high confidence values. Nevertheless, the used pruning technique may not be 

appropriate when the confidence improvement between the discovered rules is 

considerable since some rules with much higher confidence values will be removed 

for sake of finding optimal rule covers. 
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Chawla et al. [29] develop a method for adaptive local pruning of mined association 

rules using directed hypergraphs. Given a set of mined association rules, the method 

generates an Association Rules Network by a construction algorithm. Then the 

constructed association rule network provides a graphical method to prune rules by 

associating redundant rules with hypercycles and reverse hyperedges. The pruning 

technique is local because it is applied in the context of a goal node. In other words, a 

rule that is redundant according to a particular goal node may become non-redundant 

with respect to another goal node. Moreover, when the set of discovered association 

rules is comprised of the rules with the same consequent, the local pruning technique 

will not be effective as there will not be any hypercycles or reverse hyperedges in the 

constructed association rules network. Hence, a global organization of the discovered 

rules is required.  

 

Some methodologies are developed to find the optimal association rules for numeric 

attributes [17]. Lent et al. [31] propose an approach to cluster the rules with exactly 

two numeric attributes in antecedent. They call two rules adjacent if their items 

related to one of the attributes have adjacent values. The adjacent items are combined 

to form a more general rule. This method is limited to cluster the rules with 

quantitative items in antecedent and is not applicable when the rules involve 

categorical values in their left hand side (antecedent).    

 

Different grouping or clustering methods are also introduced. Toivonen et al. [34] 

use a distance-based clustering approach to group the pre-reduced rules. In this 

approach, the distance between two rules is defined as the number of data rows that 

the rules differ. This grouping approach organizes the rules more. However, as the 

rules get larger, that is their support increases, their relative distance with other rules 

will get larger as well. Consequently, the grouping task may be adversely affected by 

support value. Some approaches are also developed to resolve this problem [30]. 

However, these distance-based clustering methods are sensitive to the asymmetric 

relationship between the data regions of rules and this drawback is shown in [28].  
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On the other hand, Berrado et al. [28] develops an approach which is not based on 

distance-based clustering. In this approach, metarules are used to group and prune 

the overlap-involved rules. Metarules are the rules that imply associations between 

the discovered rules themselves. When all metarules are discovered, two rules are 

called equivalent rules if they satisfy the following two conditions: first, they appear 

with together in two metarules; second, they appear with other rules in other 

metarules in the same way. Clustering equivalent rules is the grouping technique 

used in this approach. This grouping technique summarizes the discovered rules 

noticeably. Furthermore, it is not sensitive to either the largeness of rules' region or 

the asymmetric relationship between the data regions of rules. However, when the 

data tend to be dense and the set of discovered rules include many rules with low 

confidence, the effectiveness of this technique may be reduced; i.e. it may not be able 

to group all eligible rules. This happens because many of the metarules remain 

undiscovered and therefore many eligible rules are not considered as equivalent. 

Further details about it are provided in Chapter 3. In addition to that, the approach 

will require overwhelming number of data scans to mine required metarules when 

the set of mined rules is large. Berrado et al. [28] uses metarules to prune equivalent 

rules. In this approach, after rules are grouped, the super-rules are pruned in the sets 

of equivalent rules. Clearly the pruning effectiveness of this approach depends on the 

results of the previous grouping step. There is not much work in the literature to 

address the association rules mining problem in applications including low threshold 

settings. In this thesis, we modify the metarules method to be more efficient and 

more effective in grouping/pruning rules mined with low support or confidence 

thresholds.  

 

2.6 Comparing Different Rule Reduction Methods 

 

Different approaches are developed for rule grouping/pruning tasks. However, their 

practicality may vary in different applications and for various data types. Some of 

them are more effective when the target data is dense [27] and some are more 

effective when the data is sparse [28]. Others may deal with the set of discovered 

rules better only when it includes strong rules i.e. the rules with high confidence [30, 
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34]. In addition to that, different pruning methods introduce different definitions for 

redundant rules [11, 29, 32, 33, 34]. This is expected as the definition of redundant 

rules can differ from one application to another. Because of the variety in methods 

and applications, it is necessary to select the right method for the right application. In 

[28] the groups formed using the metarules method is compared with the clusters 

formed using two different distance-based grouping techniques. The comparison is 

made group by group and case by case by analyzing illustrative figures. However, it 

is very hard for data analysts to use illustrative figures to compare many rule groups 

one by one. Further, there are other important criteria to be considered in methods 

evaluation such as information loss prevention and redundancy removal. We are 

unaware of any developed general model for evaluation of rule reduction methods. 

Hence, developing a basis to evaluate and compare the performance of various 

methods in a target application is very beneficial. We address this problem by 

introducing a new basis by which data analysts can evaluate the performance of 

different rule reduction methods and then select the best one. 
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CHAPTER 3 

 

 

METARULES METHOD 

 

 

 

 

3.1 Review of the Method 

 

Organizing association rules to a manageable size is an active research area since 

interpretation of many discovered rules is a difficult task. To group and prune 

association rules, Berrado and Runger [28] propose metarules method and show how 

the sparseness of data can cause redundancies among the discovered rules. Metarules 

method is based on overlaps/containments between the discovered rules having the 

same consequent.  

 

Let T = {t1, t2, …, tn} be a set of transactions and R = {r1, r2, …, rm} be a set of 

discovered rules with the same consequent mined from dataset T. First, the approach 

maps the set of transactions T to another set Q = {q1, q2, …, ql} where l ≤ n such that 

every element qj of Q is a subset of rules in R such that: 

qj = {ri∈R | tj includes antecedent of ri} 

In other words, every element q in Q includes the rules from R that their antecedents 

are supported by the corresponding transaction t in T. For convenience, in the next 

chapters, we will refer to Q as Q-set. The Apriori algorithm [35] is applied on the Q-

set to find the associations between the discovered rules. The approach confines 

Apriori algorithm to mine only the rules including exactly one item (here rule) in 

antecedent and one item (here rule) in consequent. The support threshold is 

suggested to be set to 0% and the confidence threshold to be set to a high value such 

as 90% or more. Note that this confidence threshold is for mining metarules. It 

measures the strength of metarules and is different from the confidence threshold 
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already used for mining initial rules. The resulting rules are referred to as the 

metarules, which represent the overlap/containment between the original discovered 

rules. To illustrate the approach consider the following sample dataset with 4 

transactions.  

 

 

t1 a, b, c, d 

t2 a, b, d 

t3 c, d 

t4 c, e 

 

 

Let us concentrate on the rules with a minimum support of 40% and a minimum 

confidence of 50%. Also assume that the consequent of rules is confined to the item 

{d}. Hence, rules r1:{a}→{d}, r2:{b}→{d}, r3:{c}→{d}, and r4:{a, b}→{d} are 

discovered. When rules are discovered, the approach maps the example dataset with 

4 transactions to the Q-set which is like the following: 

 

q1 r1, r2, r3, r4 

q2 r1, r2, r4 

q3 r3 

q4 r3 

 

Then the approach reapplies Apriori algorithm on this Q-set with a 0% support 

threshold value and a high confidence threshold value. Here, assume the threshold 

for confidence is set to 100%. Note that this confidence threshold (100%) is for 

mining metarules and is different from the confidence threshold of 50% which is 

already used for mining initial rules. Hence, the following steps are taken by Apriori 

algorithm: First, frequent itemsets with one item (or 1-itemsets [35]) are mined. 

Here, candidate 1-itemsets are {r1}, {r2}, {r3}, and {r4}. As the support threshold is 

set to zero, all of these candidate 1-itemsets are considered as frequent. Then 

candidate itemsets with 2 items (or 2-itemsets) are considered and their supports are 

calculated. Here, candidate 2-itemsets are {r1, r2}, {r1, r3}, {r1, r4}, {r2, r3}, {r2, r4}, 



 17

and {r3, r4}. Again for the same reason, all of these 2-itemsets are considered 

frequent. As the Apriori algorithm is confined to just mine association rules (here 

metarules) with exactly one item (here rule) in both antecedent and consequent, it 

does not go beyond 2-itemsets. Finally, the algorithm generates all strong association 

rules (here metarules) by considering frequent 2-itemsets. The process on the 

example Q-set is depicted in Figure 3.1. 

 

 

 

  4 × (4 - 1) / 2   

4  2-items  
Mined 

metarules 

1-items  {r1, r2}  r1→r2 

{r1}  {r1, r3}  r2→r1 

{r2} → {r1, r4} → r1→r4 

{r3}  {r2, r3}  r4→r1 

{r4}  {r2, r4}  r2→r4 

  {r3, r4}  r4→r2 

 

Figure 3.1 Process of mining metarules 

 

 

As illustrated in Figure 3.1, Apriori algorithm requires many scans to the Q-set to 

calculate the supports for 1-itemsets and 2-itemsets. For 1-itemsets, it requires 4 

scans, as there are 4 discovered rules, and for 2-itemsets it requires 4 × (4 - 1) / 2 = 6 

scans. Therefore, the data in Q-set is scanned 4 + 4 × (4 - 1) / 2 = 10 times in order to 

mine all metarules. Hence in general case, if there are m discovered rules, then the 

constructed Q-set will be scanned  m + m × (m - 1) / 2 times in order to mine all 

metarules. 

 

After discovering all metarules, two rules are called equivalent if they mutually 

contribute together in two metarules and further, their antecedent or consequent 

contributions in other metarules with other rules are the same. In the illustrated 
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example, the rules r1 and r2 are equivalent because: First, they mutually contribute 

together in two metarules of r1→r2 and r2→r1. Second, both rules contribute as 

antecedent in metarules r1→r4 and r2→r4 with r4 and again both rules contribute as 

consequent in metarules r4→r1 and r4→r2 with r4. Grouping these equivalent rules is 

the technique used in the grouping task. In the illustrated example the rules r1, r2, and 

r4 are grouped. For pruning, the super-rules in the sets of equivalent rules are pruned. 

The equivalent super-rules are named complex rules. In the example, r4 is a complex 

rule as it is an equivalent super-rule. Hence, this rule is pruned. 

 

 

3.2 Concerns about the Metarules Method 

 

In mining association rules, setting a low threshold for support can reveal almost all 

regularities in datasets. However, it will result in drastically increased number of 

discovered rules. In this case, the metarules method would be computationally 

demanding as it reapplies Apriori algorithm [35] to mine initial metarules. Just 

assume there are 1000 discovered rules. To mine all metarules, the Apriori algorithm 

will have to take 1000 + 1000 × (1000 - 1) / 2 = 500,500 references back to Q-set to 

calculate the confidence of all candidate metarules. This can be a challenge when the 

datasets are large such as the ones associated with manufacturing systems. Even in 

some very large datasets, the metarules method seems to be impossible to be 

implemented.  

 

Metarules method mines overlaps between already discovered association rules and 

then uses them to group or prune the rules. Its effectiveness in grouping and pruning 

seems to increase when the data distribution is sparse. However, there may be some 

concerns related to its effectiveness when data are not purely sparse or that the initial 

confidence thresholds in mining association rules are low. This is because the 

approach defines overlaps between rules as the intersections of antecedents of rules. 

When data are not sparse or that low confidence thresholds are set, then the method 

may underestimate some of the significant intersections of itemsets of rules and 

consequently not discover the corresponding metarules. Hence, some of the 
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candidate metarules can be neglected and not reported to the data analyst. This 

partial inaccuracy in metarules mining, would adversely affect the effectiveness of 

the approach in following grouping and pruning steps; particularly in the applications 

including many rules with low confidence. Association rules with low confidence are 

used in many real applications [7, 8, 9, 10]. Furthermore, as discussed in the 

introduction chapter, in mining association rules from quality data one needs to set 

low support-confidence thresholds to prevent information loss.  

 

The foregoing discussions about metarules method are explained and illustrated in an 

example tabular dataset in the following. Assume A, B, and C are three categorical 

attributes. The attribute A has two items A1 and A2, B has two items B1 and B2 and C 

has two items C1 and C2. The distribution of data is shown in Tables 3.1 and 3.2.  

 

Table 3.1 Distribution of data with C1 as the item of C 

 
 B1 B2 

A1 50 0           

A2 50 0 

 

 

Table 3.2 Distribution of data with C2 as the item of C 

 
 B1 B2 

A1 20 20 

A2 20 20 

 

 

In these tables, each cell number indicates the number of data rows that include the 

corresponding items. For example in Table 3.1, the number 50 in the cell related to 

items A1 and B1 means there are fifty data rows that include items A1, B1, and C1. In 

general a dataset can be dense, sparse, or dense in some regions while sparse in the 

others. For preserving this generality, we considered both dense and sparse data 

regions in the illustration. The data in Table 3.1 tend to represent a sample sparse 

region while the data in Table 3.2 tend to represent a sample dense region. Assume it 



 20

is required to mine the association rules that include items from the attributes A or B 

as antecedent and item C1 from the attribute C as consequent. Also assume that the 

thresholds for support and confidence are specified as 10% and 50%, respectively. 

Apriori algorithm is used to mine association rules which are summarized in Table 

3.3. 

 

 

Table 3.3 Discovered rules 

Rule ID Rule Sup. (%) Conf. (%) 

r1 {A1}→{C1} 27.8 55.6 

r2 {A2}→{C1} 27.8 55.6 

r3 {B1}→{C1} 55.6 71.4 

r4 {A1,B1}→{C1} 27.8 71.4 

r5 {A2,B1}→{C1} 27.8 71.4 

 

 

Now consider that the metarules method is applied to the data in Tables 3.1 and 3.2 

and to the rules in Table 3.3 for organizing the rules. After mapping data in Tables 

3.1 and 3.2 to the Q-set, Apriori algorithm is reapplied to discover the metarules. 

Hence, Apriori algorithm considers all pairs of rules as candidate metarules. 

However, noticeable amount of rules explain distinct regions of data and are neither 

contained nor overlapped by each other. To explain this more, assume candidate 

metarules r1→r2 and r2→r1 in the example above. A1 and A2 are the antecedents of 

the rules r1 and r2 respectively. We know that none of the data rows can include both 

items A1 and A2 at the same time because the data is in tabular format and these items 

belong to the same attribute A. Hence, the confidence of r1→r2 and r2→r1 is equal to 

zero. In a sample set of rules, there may be many of such redundant candidate 

metarules that can be removed at first without spending time on them. Therefore, the 

comparison task between them for overlap calculations can be relaxed. Now assume 

that during applying metarules method, the specified threshold for the confidence of 

metarules is set to 100% to reveal the containments between the rules. Again note 

that this confidence threshold (100%) is for mining metarules and is different from 

the confidence threshold of 50% which is already used in mining rules in Table 3.3. 
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After metarules is applied to the data in Tables 3.1 and 3.2 and to the rules in Table 

3.3, the mined metarules are illustrated in Table 3.4. 

 

Table 3.4 Discovered metarules 

Metarule ID Metarule Conf. (%) 

mr1 r4 → r1 100 

mr2 r4→ r3 100 

mr3 r5→ r2 100 

mr4 r5 → r3 100 

 

 

The discovered metarules in Table 3.4 do not reflect all containments between the 

rules in Table 3.3. Let us explain one of them. According to the data in Table 3.1, 

there are 50 data rows that support the rule r1. These data rows are the same data 

rows that support the rule r4. There are not other data rows that exclusively support 

one of rules r1 or r4. Hence both rules r1 and r4 are mutually contained in each other. 

In Table 3.4, the discovered metarule mr1: r4 → r1 reflects the containment of r4 in r1. 

However, none of discovered metarules in Table 3.4 reflect the containment of r1 in 

r4. The latter containment can be reflected by the metarule r1 → r4. However this 

metaulre is not discovered. This is because the confidence of metarule r1 → r4 is 

calculated as 77.8% which is below the threshold 100%. We conclude that the 

confidence of this metarule is underestimated. In this example, there are totally four 

metarules whose confidences are underestimated. They are listed in Table 3.5. All 

metarules in this table reflect containments between the rules that are not reflected by 

discovered metarules in Table 3.4. 
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Table 3.5 Undiscovered metarules 

 

Metarule ID Metarule Confidence (%) 

mr5 r1 → r4 77.8 

mr6 r1→ r3 77.8 

mr7 r2→ r5 77.8 

mr8 r 2→ r3 77.8 

 

 

Note that in this example, the underestimation happens when antecedent of metarules 

include rules with low confidences. The antecedents of all undiscovered metarules in 

Table 3.5 include one of the rules r1 or r2 which have the lowest confidence among 

all discovered rules in Table 3.3. The metarules method assumes that data is very 

sparse. It accepts a transaction as supporter of a rule if the transaction includes just 

the rule antecedent. However, when data is not very sparse, the antecedent-including 

transactions for a rule can differ from the itemset-including ones for that rule. Hence, 

some confidences for metarules can be underestimated and this may results in less 

discovered metarules. This can be addressed by slightly changing the definition of 

confidence for the metarule. To address the discussed concerns and problems, in the 

next chapter we modify the metarules method by introducing a new method. The 

proposed method requires less data scans in the process of discovering overlaps 

/containments between rules. Further, the proposed method prevents the 

underestimation of overlaps or containments. This prevention enables the proposed 

method to group and prune more rules.  
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CHAPTER 4 

 

 

THE PROPOSED METHOD 

 

 

 

 

4.1 Analysis of Overlap and Containment 

 

In this chapter, some basic concepts are defined and used to discuss and discover all 

possible overlap/containment cases that can occur between association rules. Assume 

A = {A1, A2, …, AN} is a set of N categorical attributes such that each attribute Ai 

includes some discrete values. Assume V(Ai) represents the set of all discrete values 

belonging to attribute Ai. Here, an item is defined as an attribute-value pair as (Ai,a) 

where a∈V(Ai). The set {Ai}×{V(Ai)} is the set of all items for attribute Ai and 

therefore the set I = N

1U {Ai}×{V(Ai)} is the set of all items for all attributes. Also 

assume a tabular dataset D = {d1, d2, …, dN} comprised of N data rows such that each 

data row includes exactly one item from each attribute. Let R = {r1, r2, …, rm} be the 

set of m discovered association rules from D. For simplicity we call a subset of data 

rows a region
1
. Then we conceive an association rule as a region of data rows, where 

the region consists of the supporter data rows of that association rule. A definition of 

a rule region is given below:  

 

Definition 4.1: Given an association rule r:{X}→{Y}, the region h of the 

rule r is the set of all  data rows  that  support the rule r. Equivalently,  

h = {d∈D | d include both antecedent and consequent of r}. 

 

                                                 
1 We have borrowed the term of region from [58]. 
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To make the concept of a rule region clear, an illustration is used in the following. 

Consider the sample dataset and also the regions for 4 discovered association rules of 

r1:{(A, a_1)}→{(C, c_1)}, r2:{(A, a_2)}→{(C, c_1)}, r3:{(B, b_2)}→{(C, c_1)}, 

and r4:{(A, a_1), (B, b_2)}→{(C, c_1)}, shown in Figures 4.1.  

 

 

 A B C                   

 a_1 b_1 c_1    a_1 b_1 c_1             

 a_1 b_2 c_1  →  a_1 b_2 c_1      a_1 b_2 c_1  a_1 b_2 c_1 

 a_1 b_2 c_1    a_1 b_2 c_1      a_1 b_2 c_1  a_1 b_2 c_1 

 a_2 b_2 c_1        a_2 b_2 c_1  a_2 b_2 c_1     

 a_2 b_2 c_1        a_2 b_2 c_1  a_2 b_2 c_1     

 a_2 b_2 c_2                   

 a_2 b_2 c_2                   

                      

a: A sample dataset   b: Region of 

r1 

 c: Region of 

r2 

 d:Region of 

r3 

 e: Region of 

r4 

 

Figure 4.1 Rules and their regions  

 

 

In Figure 4.1, regions of rules r1 and r2 are disjoint. The same relation is true about 

regions of rules r2 and r4. On the other hand, the regions of rules r1 and r3 are 

intersecting. Regions of rules r2 and r4 are subsets of the region of the rule r3. Also 

the region of the rule r4 is a subset of the region of the rule r1.  

 

Hence, regions of different association rules can be disjoint from, intersected by or 

be subsets of each other. Let r1 and r2 be two association rules with regions h1 and h2, 

respectively. If regions h1 and h2 are intersecting, then we say that there is an overlap 

between r1 and r2. We also call the intersection of regions h1 and h2 as the joint-

region. Hence, the joint-region is the set h1 ∩ h2. Assume α percent of data rows 

included in h1 are also included in h2. Here α is called the overlap degree in r1 and     

( n(h1 ∩ h2) / n(h1) ) × 100 is its value
1
. The containment among rules is a specific 

case of overlap in which the overlap degree is equal to 100%. To evaluate the 

                                                 
1
 Throughout this thesis, the notation n( • ) denotes number of elements in a set. For example if A is a 

set, then n(A) denotes number of elements in the set A. 
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significance of overlaps between rules, a minimum overlap threshold is set. Any 

overlap with the degree above minimum threshold is considered as significant.  

 

Definition 4.2: We say that the rule r1 is significantly overlapped by the 

rule r2 if the inequality (n(h1 ∩ h2) / n(h1)) × 100 ≥ mo is satisfied, where 

h1 and h2 are regions of rules r1 and r2, respectively and mo is a minimum 

threshold that belongs to [0, 100]. 

 

If rules r1 and r2 satisfy the Definition 4.2, then this relation is denoted by r1 → r2. 

This is the same notation used in metarules method [28]. If both r1 → r2 and r2 → r1 

are satisfied, then we say that the rules r1 and r2 are mutually and significantly 

overlapped. 

 

Let us analyze overlaps and containments between the example rules in Figure 4.1. 

Also assume that a minimum overlap threshold of 60% is considered. In this figure, 

there is an overlap between r1 and r3. The overlap degree in r1 is (2 / 3) × 100 = 

66.6% and in r3 is (2 / 4) × 100 = 50%. Hence, r1 is significantly overlapped by r3 

which can be denoted by r1 → r3, but r1 does not significantly overlap r3. There is not 

any overlap between r1 and r2. The same thing is true about rules r2 and r4. Further, 

r4 is contained in both rules of r1 and r3 (equivalently r4 → r1 and r4 → r3). The rule 

r2 is only contained in the rule r3 (or r2 → r3). To illustrate these concepts more, 

overlaps / containments between example rules of r1, r2, and r3 in Figure 4.1 are 

depicted in Figure 4.2. 
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Figure 4.2 Overlap /containment between rules 
 

 

In the metarules method, first the Q-set
1
 is constructed and then Apriori algorithm is 

reapplied on it to mine metarules. This idea is used here to mine the overlaps 

between the rules. Here, we construct Q-set in a slightly different way. We map the 

set of data rows D to the new set Q = {q1, q2, …, ql} where l ≤ n such that every 

element qj of Q is the set of rules data row dj supports, that is: 

qj = {ri∈R | dj includes antecedent and consequent of ri} 

In other words, every element q in Q includes the rules from R that their itemsets are 

supported by the corresponding data row d in D. To prevent confusion with the 

metarules constructed Q-set, let the new constructed set be denoted as NQ-set. After 

constructing the NQ-set, similarly we reapply the Apriori algorithm on it. This time 

Apriori would mine overlaps instead of metarules. Hence, the overlap 

underestimation of the metarules method is rectified. However, if the number of 

mined rules is large, then Apriori algorithm will scan NQ-set several times in the 

process of discovering significant overlaps. To address this disadvantage as well, an 

algorithm is developed, but before going through it, the overlap between rules is 

analyzed more in the following. 

 

                                                 
1 The set on which Apriori algorithm is applied to mine the metarules. For more details see Chapter 3. 

h1 

h2 

h1 

h3 

h2 

h3 

(b): overlap 

between r1 and r3 

 

(c): containment 

between r2 and r3 

 

(a): no overlap 

between r1 and r2 
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To calculate overlap degrees between rules r1 and r2, obviously the number of data 

rows in their joint-region (i.e. n(h1 ∩ h2)) is required. Note that in the constructed 

NQ-set, n(h1 ∩ h2) is equal to the number of elements in NQ-set that include both 

rules r1 and r2. However, counting these elements in NQ-set can be a time-

consuming task, especially when the NQ-set includes very large number of elements. 

Fortunately, there are two cases in which the value of n(h1 ∩ h2) does not have to be 

counted and can be calculated directly.  

 

The first case is when both rules have items from the same attributes. If there is one 

item in the antecedent of the first rule and another item in the antecedent of the 

second rule, where both items are from the same data attribute, then the joint-region 

of r1 and r2 has to be empty (i.e. h1 ∩ h2 = ∅). This is because the data is in tabular 

format and a data row cannot simultaneously include two items from an attribute.  

For example, consider the rules r1:{(A, a_1)}→{(C, c_1)} and r2:{(A, a_2)}→{(C, 

c_1)} in Figure 4.1. Both of these rules have an item from the attribute A. Obviously, 

there is not any data row in Figure 4.1 which include both items of (A, a_1) and (A, 

a_2). For simplicity, we refer to this case as the same-attribute case. Later in 

experiments in Chapter 5 we will show that many rule comparisons in overlap 

discovery process satisfy the same-attribute case; especially when the support 

threshold in initial rule mining step is set to a low value. 

 

The second case is when one of the rules is a super-rule of another one. In this case, 

the joint-region of rules is actually the region of the super-rule. Hence, the overlap 

degree in the super-rule is 100% i.e. the super-rule is contained in the sub-rule. 

Further, the overlap degree in the sub-rule is equal to the support of the super-rule 

divided by the support of the sub-rule. For example, consider the rules r3:{(B, 

b_2)}→{(C, c_1)}, and r4:{(A, a_1), (B, b_2)}→{(C, c_1)}, in Figure 4.1. The rule 

r4 is a super-rule of the rule r3. Hence, the overlap degree in r4 is 100%. Also the 

overlap degree in r3 is equal to (28.5 / 57.0) × 100 = 50%. For simplicity, we refer to 

this case as the super-rule case. This case is stated and proved in the following; 
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Lemma: If the rule r1 is a sub-rule of the rule r2, then the overlap degree 

in r1 is equal to [s(r2) / s(r1)] × 100, where s(r) denotes the support of the 

rule r. 

 

Proof: Assume that D denotes the original dataset and h1 and h2 are 

regions of rules r1 and r2, respectively. We know that s(r1) = n(h1) / n(D) 

and s(r2) = n(h2) / n(D). Hence, we have: [s(r2) / s(r1)] × 100 =        

[(n(h2) / n(D)) / (n(h1) / n(D))] × 100 = (n(h2) / n(h1)) × 100. As r2 is a 

super-rule of r1, therefore h2 = h1 ∩ h2 is satisfied. Hence, we have:  

(n(h2) / n(h1)) × 100 =  (n(h1 ∩ h2) / n(h1)) × 100, which is equal to the 

overlap degree in r1. ■ 

      

The lemma above implies that already discovered super-rules are another opportunity 

in directly calculation of overlap degrees in sub-rules. Based on the explained cases, 

an overlap discovery algorithm (ODA) is developed here, in which pair-wise 

comparison is used to discover all overlap/containment between the discovered rules. 

Hence, if there are m discovered rules then the algorithm considers m × (m - 1) / 2 

pairs of rules. For each rule pair, if the same-attribute case is satisfied, then overlap 

degrees in both rules are set to zero. Further, for each rule pair, if the super-rule case 

is satisfied and not the same-attribute case, then the overlap degree in the super-rule 

is set to 100% and the overlap degree in the sub-rule is directly calculated using the 

support of the super-rule. The developed algorithm is given in Figure 4.3. 

 

In Chapter 3, we explain that the metarules method reapplies Apriori algorithm on 

the Q-set. We have also showed that the Apriori algorithm scans the Q-set m times 

for 1-itemsets and m × (m - 1) / 2 times for 2-itemsets where m is the number of 

initially discovered rules. Note that an x-itemset means a set with x items. The set of 

all 2-itemsets in the Apriori algorithm is equal to the set of all rule pairs considered 

in the ODA algorithm. Here, an important point is that the ODA algorithm does not 

scan the NQ-set when the same attribute or the super-rule cases appears. If the 

difference in the largeness of the Q- and NQ- sets is negligible, then applying ODA 
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algorithm is more efficient than reapplying Apriori algorithm from the aspect of data 

scans number. If in an experiment there is not any same-attribute or super-rule cases, 

then still ODA algorithm scans data less than the Apriori algorithm, because the 

Apriori algorithm requires additional m scans for 1–itemsets which the ODA 

algorithm does not require. We do not calculate the computational complexities of 

the ODA algorithm and the approach of reapplying the Apriori algorithm used in the 

metarules method. It requires future work and here we just show how the ODA 

algorithm has the potential to mine the overlaps more efficiently. 

 

 

 

Overlap Discovery Algorithm (ODA) 

 
Input:    Discovered association rules R = {r1, r2, …, rm} 

               Dataset D = {d1, d2, …, dN} 

               NQ-set Q = {q1, q2, …, qL} 

               Itemsets I(r) of the rule r ∈ R 

               Supporter elements SE(rs) = {qj∈ Q | rs ⊆ qj} for the rule(s) rs ⊆ R  

               Overlap threshold min_ovlp  

Output:   Set of significant overlaps O 

Method: 
  while n(R) > 1 do 

       choose one rule from R and assign it to ri; 

       for all rj ∈ R − {ri} do 

              if same-attribute case is satisfied then do // check the same-attribute case 

                     overlap = 0; 

              else do 

                     A =: I(ri) ∪ I(rj);                        // A is the union of the itemsets of both rules 

                     if A = I(ri) or A = I(rj) then do  // check the super-rule case 

                            sk =: min{s(ri),s(rj)};   

                     else do 
                            sk =: n( SE({ri,ri}) ) / N;      

                     end; 
                     // sk is equal to the number of data rows in the joint-region divided by N 

                     di =: sk / s(ri);            // calculate the overlap degree in ri 

                     dj =: sk / s(rj);            // calculate the overlap degree in rj 

                     if di ≥ min_ovlp then do      // check the overlap significance 

                            O =: O ∪ {ri → rj}; // add the discovered significant overlap to the O set 

                     end; 
                     if dj ≥ min_ovlp then do      // check the overlap significance   

                            O =: O ∪ {rj → ri}; // add the discovered overlap to the O set 

                     end; 

              end; 

       end; 

       R = R − {ri};  // remove ri from R 

   end; 

 
 

Figure 4.3 An algorithm to discover the overlaps between mined rules 
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Here, there is another important point. In Chapter 3, it is shown that the metarules 

method may underestimate some significant overlaps between the discovered rules 

and hence, may not discover all of them. As the ODA algorithm mines overlaps 

instead of metarules, it also prevents the overlap underestimations.  

 

The ODA is applied on the rules in Table 3.3 in Chapter 3 with a threshold of 100% 

for minimum overlap. The discovered significant overlaps are reported in Table 4.1. 

The resulting overlaps include both discovered metarules in Table 3.4 and 

underestimated ones in Table 3.5 in Chapter 3. Therefore, the underestimation is 

prevented. In this example there are totally 10 pairs of rules to be considered for the 

NQ-set scanning and the overlap analysis. In 4 comparisons, the same-attribute case 

and in other 4 comparisons, the super-rule case is satisfied. In the remaining 2 

comparisons, the algorithm scans the NQ-set to count the number of data rows in 

related joint-regions. As a result, the ODA scans the NQ-set only 2 times. If the 

metarules method was applied, then it would scan the Q-set 10 times, which is 5 

times more than the number of data scans of the ODA algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 Significant overlaps 

discovered by the ODA algorithm 

 

Overlap 

ID 
Overlap 

Overlap 

Degree 

o1 r1 → r4 100 

o2 r4→ r1 100 

o3 r1→ r3 100 

o4 r4→ r3 100 

o5 r2 → r5 100 

o6 r5→ r2 100 

o7 r2→ r3 100 

o8 r 5→ r3 100 
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4.2 Grouping/Pruning Rules Discovered by Low Confidence Thresholds 

 

Grouping (or clustering) the association rules is an important technique to summarize 

the discovered rules into more interpretable clusters where each cluster comprises the 

interrelated rules. Different approaches are developed for the rule grouping task. 

However, their practicality may vary in different applications and various data types. 

Some of them are more effective when the data is dense and some are more effective 

when the data is sparse. Others may deal with the set of discovered rules better only 

when it includes strong rules (the rules with high confidence). Here, our intention is 

to effectively group the rules mined by low confidence threshold. We use the same 

rule-grouping idea used in Berrado et al. [28]. The only difference is that we group 

rules using the discovered overlaps between the rules rather than using metarules. In 

other words, we group two rules if they are mutually and significantly overlapped, 

and also they significantly overlap (or are significantly overlapped by) other rules in 

the same way. By doing that, the underestimation will be prevented and all large 

overlaps will be mined and as a result, all equivalency-deserving rules will be 

grouped. To show the advantage of our method we compare the grouping rules using 

metarules with the grouping rules using overlaps by the example introduced in 

Chapter 3. Both, metarules in Table 3.4 and overlaps in Table 4.1 are used to group 

the discovered rules in Table 3.3. The resulting rule-organizations by the metarules 

method and the proposed approach are depicted in Figures 4.4 and 4.5, respectively.  

 

 

 

 

 

 

 

Figure 4.4 Organized rules using metarules 

 

 

 

r4 r5 

r1 r2 

r3 
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Figure 4.5 Organized rules using overlaps 

 

 

In Figure 4.4, the illustration as considered in Berrado et al. [28] is used where a 

modification of that is presented in Figure 4.5. In Figure 4.5, besides the 

representation of overlaps among the rules, the confidences of sub- and super-rules 

are compared with each other and the results are reflected by the corresponding 

mathematical symbols. For example consider the rules r3 and r4 in Figure 4.5. The 

equality symbol ‘=’ on the directed overlap arc r4 → r3 means that confidence of 

super-rule r4 is equal to confidence of sub-rule r3. In the case of a higher /lower 

confidence, the plus /minus symbol is used. By doing this, the super-rules, having 

predictive strength not more than the sub-rules, can be distinguished easily and then 

can be pruned in the case of requirement. Similarly, the super-rules with more 

confidence can be preserved from pruning. In Figure 4.4, there is not any 

equivalency between rules. Therefore, rules are not grouped together. Nevertheless, 

in Figure 4.5 there are 2 pairs of equivalent rules. The rules r1 and r4 are equivalent. 

The same is true about rules r2 and r5. As a result, the rules in Figure 4.5 are 

summarized more in Figure 4.6. Furthermore, the rules r4 and r5 are equivalent super-

rules with no confidence advantage over sub-rule r3 and can be pruned. Hence, in 

this example, 5 mined rules are reduced to 3 rules by using overlaps. The considered 

example is just for the illustration purpose. In the next section, we will compare the 

effectiveness of metarules method and our method in grouping /pruning rules when 

they are applied on real benchmark datasets.  

 

 

 

 

Figure 4.6 Organized and grouped rules after using overlaps 
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CHAPTER 5 

 

 

EXPERIMENTS ON BENCHMARK DATASETS 

 

 

 

 

In this chapter some experiments are conducted to compare the efficiency, accuracy 

and effectiveness of the proposed method with the metarules method. In the 

experiments, some benchmark datasets are considered which are obtained from the 

UC Irvine machine learning repository [59] and are listed below; 

 

- Iris Plants Database (Iris) 

- Johns Hopkins University Ionosphere Data (Ion) 

- Statlog Project Heart Disease Data (Heart) 

- Mushroom Data (Mush) 

- Thyroid Disease Data (Thyroid), 

- Hayes-Roth Data Set (Hayes) 

- Nursery Database (Nursery) 

 

The characteristics of datasets are summarized in Table 5.1. Each dataset includes a 

number of data rows (or records). In these datasets, each data row consists of some 

discrete or continuous items allowed to be considered as rule antecedents. 

Furthermore, the datasets include a few class labels to be considered as rules 

consequent. 
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Table 5.1 Datasets used in the experiments 

 

Dataset Data rows Attributes Numeric Attributes Classes 

Iris 150 4 4 3 

Ion 351 34 32 2 

Heart 270 13 6 2 

Mush 8,124 22 0 2 

Thyroid 7,200 21 6 3 

Hayes 132 5 0 3 

Nursery 12,960 8 0 5 

 

 

Apriori algorithm implemented by Christian Borgelt [60, 61] is used to mine class 

association rules. Note that the Apriori algorithm requires all itemsets to be 

categorical. On the other hand, the discretization of the continuous items may 

adversely affect the quality of discovered association rules. However, we do not 

explore this issue here and use the naïve equal frequency discretization method with 

four bins. To discretize the continuous attributes, the tools in SPSS Clementine 11.1 

[62, 63, 64] are used. In mining the initial association rules, Apriori algorithm is 

confined to consider at most four items for antecedent of rules except for 

experiments including recommend and very_recom classes of Nursery data. The item 

number constraint for these two classes is relaxed because a few rules or no rules are 

mined if the item number constraint is applied. 

 

Our intention is to compare the two approaches at applications involving low-

threshold settings for support or confidence. Hence, we run two different sets of 

experiments each one with different intentions. The first set of experiments is related 

to method efficiency investigation when the support threshold decreases. The 

criterion for the method efficiency is the percentage of overlaps whose degrees are 

calculated without scanning the data. Note that here the computational complexity of 

the data scanning is assumed to be high. Hence here, the less a method scans the data 

in the process of overlap /containment discovery, the more efficient it is. In Chapter 

3, it is shown that the Apriori algorithm, reapplied in the metarules method, scans the 

data for all possible overlap /containment cases. On the other hand, in Chapter 4 it is 

explained that our developed ODA algorithm is able to directly calculate overlap 
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degrees without data scanning when one of the following two cases occurs. One case 

is the same-attribute case and it occurs when the two rules, in a rule pair, have items 

from same attributes. Another case is the super-rule case and it occurs when one of 

the rules, in the rule pair under comparison, is a super-rule of another rule. Hence, we 

would like to see how many times the same-attribute case and the super-rule case 

occurs. The more these two cases are faced, the less the ODA algorithm scans the 

data and therefore, the more efficient it is in comparison to the Apriori algorithm 

reapplied in the metarules method. As a result, we just apply our approach in the first 

set of experiments and then reckon the percents of overlap degrees calculated with 

and without data scanning.   

 

The second set of experiments has two intentions. The first intention is related to 

investigating the overlap underestimation when the confidence threshold in rule 

mining process decreases. In Chapter 3, it is shown that the metarules method may 

underestimate some confidences of candidate metarules and do not reflect the related 

overlaps or containments. In these experiments, we aim to compare both the 

metarules and our methods in mining significant overlaps. The criterion in 

comparing the methods is the number of underestimated significant overlaps which is 

equal to the difference between the number of mined metarules and the number of 

mined significant overlaps. Hence, the more this difference is, the more organization 

the proposed method do on rules than do the metarules method. The second intention 

in these experiments is to investigate the effectiveness of both approaches in 

grouping /pruning of the rules. The criterion for the method effectiveness is the 

number of constructed rule clusters after grouping equivalent rules and also the 

number of remaining rules after pruning the complex rules. The definitions of 

equivalent and complex rules are reviewed in Chapter 3. Therefore, in the second set 

of experiments both approaches are applied.  

 

5.1 Experiments to Investigate the Volume of Data Scanning 

 

In the first set of experiments at the beginning, Apriori algorithm is applied twice on 

each dataset to mine two sets of association rules. For the first one, a fairly low 
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support threshold or briefly FLST is set. For the second one, a lower support 

threshold or briefly LST is used. Please note that different thresholds are used for 

different class labels and data sets since the class labels are not distributed evenly on 

the data cases. After applying Apriori algorithm, the NQ-set for each set of rules is 

constructed. Then the ODA algorithm is applied on two sets of discovered rules and 

NQ-sets. In all applications of ODA algorithm, a minimum overlap threshold of 

100% is set. The results for the experiments involving FLST settings are summarized 

in Table 5.2. Also the results for the experiments involving LST settings are 

summarized in Table 5.3. First two columns in Tables 5.2 and 5.3 are related to 

datasets' name and the target class labels. The third column shows the threshold 

adjustments for support and confidence. The fourth column indicates the number of 

mined association rules. The fifth column shows the number of all rule pairs under 

comparison. Actually, the values in the fifth column are calculated by the values in 

the fourth column. For example, assume the first experiment in Table 5.2 for the 

setosa class in the Iris dataset. The value of fourth column is 51. The value of fifth 

column is 1,275 which is calculated by 51 × (51 – 1) / 2. It means that 1,275 rule 

pairs will be compared and analyzed for the overlap discovery. The sixth column 

shows the percent of rule pairs whose rules satisfy the same attribute case and hence, 

the data scanning is prevented. Note that for simplicity the same attribute case is 

briefly referred to as Case 1. Similarly, the seventh column shows the percent of rule 

pairs whose rules satisfy the super-rule case and therefore, the data scanning is 

prevented. For simplicity, the super-rule case is briefly referred to as Case 2. The 

eighth column is actually the sum of percentages in the sixth and seventh columns. 

The percentages in this column indicate the total percent of rule pairs in which 

overlap degrees are calculated without any data scanning. The last column reflects 

the percent of rule pairs in which overlap degrees are actually minied by scanning the 

data. This is briefly referred to as Mined in the head of ninth column in Tables 5.2 

and 5.3 

 

In Table 5.2 in dataset Iris for the class setosa, 80% of overlap degrees are directly 

calculated and only 20% of overlap degrees are calculated by data scanning. In Table 

5.2, the best result is obtained from the dataset Nursery for the class priority in which 
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in all comparisons, Case 1 occurs. Therefore, the data is never scanned for this data 

class. The worst result belongs to dataset Hayes for class (3) in which the data is 

scanned for calculations of all overlap degrees.  

 

 

Table 5.2 Results for the efficiency of the proposed method in data scanning 

(fairly low support thresholds) 

 

Dataset Class Sup./Conf. Rules Comparison Case 1 Case 2 Cases 1,2 Mined 

  (%) (#) (#) (%) (%) (%) (%) 

Iris Setosa 1/95 51 1,275 65.3 14.7 80.0 20.0 

 Versicolor 1/95 52 1,326 81.4 6.7 88.1 11.9 

 Virginica 1/95 45 990 65.1 15.8 80.9 19.1 

Ion Good 10/95 1,153 664,128 32.4 0.4 32.8 67.2 

 Bad 10/95 30 435 8.7 5.5 14.2 85.8 

Heart Absence 10/80 346 59,685 22.3 2.0 24.3 75.7 

 Presence 10/90 73 2,628 1.0 3.9 4.9 95.1 

Mush Edible 20/95 528 139,128 0.0 1.9 1.9 98.1 

 Poisonous 20/95 846 357,435 0.0 1.0 1.0 99.0 

Thyroid Class (1) 0.01/95 174 15,051 36.2 0.9 37.1 62.9 

 Class (2) 0.01/95 704 247,456 53.5 0.2 53.7 46.3 

 Class (3) 25/95 533 141,778 1.2 2.0 3.2 96.8 

Hayes Class (1) 5/85 6 15 60.0 20.0 80.0 20.0 

 Class (2) 5/85 6 15 60.0 20.0 80.0 20.0 

 Class (3) 5/85 3 3 0.0 0.0 0.0 100 

Nursery not_recom 10/85 12 66 15.1 16.7 31.8 68.2 

 recommend 0.007/50 5 10 40.0 40.0 80.0 20.0 

 very_recom 0.2/50 11 55 67.3 0..0 67.3 32.7 

 priority 2/85 5 10 100.0 0.0 100.0 0.0 

 spec_prior 5/85 4 6 16.6 16.7 33.3 66.7 

 

 

In Table 5.3, the support thresholds are set to lower values and the same experiments 

are conducted for second time. In the experiments illustrated in Table 5.3, the best 

result is obtained from Iris dataset for class versicolor in which at near 91% of 

comparisons, one of the cases 1 or 2 occurs. The worst result belongs to dataset 

Thyroid for class (3) in which 85% of overlap degrees are calculated by data 

scanning. 
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Table 5.3 Results for the efficiency of the proposed method in data scanning 

(lower support thresholds) 

 

Dataset Class Sup./Conf. Rules Comparison Case 1 Case 2 Cases 1,2 Mined 

  (%) (#) (#) (%) (%) (%) (%) 

Iris Setosa 0.1/95 71 2485 72.7 10.7 83.4 16.6 

 Versicolor 0.1/95 72 2556 85.3 5.6 90.9 9.1 

 Virginica 0.1/95 63 1953 76.5 10.9 87.4 12.6 

Ion Good 6/95 11,212 62,848,866 34.0 0.1 34.1 65.9 

 Bad 6/95 887 392,941 16.1 0.5 16.6 83.4 

Heart Absence 1/95 4,452 9,907,926 63.1 0.1 63.2 36.8 

 Presence 1/95 3,588 6,435,078 59.4 0.1 59.5 40.5 

Mush Edible 10/95 2,752 3,785,376 19.0 0.3 19.3 80.7 

 Poisonous 10/95 5,083 12,915,903 18.6 0.2 18.8 81.2 

Thyroid Class (1) 0.001/95 174 15,051 36.2 0.9 37.1 62.9 

 Class (2) 0.001/95 704 247,456 53.5 0.2 53.7 46.3 

 Class (3) 20/95 3,997 7,986,006 14.7 0.3 15.0 85.0 

Hayes Class (1) 1/85 65 2,080 78.9 4.7 83.6 16.4 

 Class (2) 1/85 60 1,770 77.6 5.5 83.1 16.9 

 Class (3) 1/85 85 3,570 58.7 5.2 63.9 36.0 

Nursery not_recom 1/85 616 189,420 50.6 1.9 52.5 47.5 

 recommend 0.0007/50 5 10 40.0 40.0 80 20.0 

 very_recom 0.1/50 53 1,378 79.5 2.5 82 18.0 

 priority 1/85 23 253 81.0 4.8 85.8 14.2 

 spec_prior 1/85 114 6,441 58.9 3.2 62.1 37.9 

 

 

The results for directly calculated overlap degrees for all datasets classes are 

summarized in Figure 5.1. For each dataset class and each FLST and LST setting, the 

percent of candidate overlaps whose degrees are directly calculated by Case 1 or 

Case 2 are provided. In 9 out of 20 experiments involving FLST setting, more than 

half of overlap degrees are directly calculated by just considering Cases 1 or 2. On 

the other hand, in 14 out of 20 experiments with LST setting, more than half of 

overlap degrees are directly calculated by just considering cases 1 or 2. This means 

that in 14 experiments, the ODA algorithm scans data less than the Apriori algorithm 

reapplied in the metarules method. This implies that the efficiency of ODA algorithm 

increases when the support threshold decreases. For example, in dataset Nursery for 

the class spec_prior, 33.3% of candidate overlaps belong to case 1 or 2 when rules 

are mined with 5% support threshold. For the same class, percentage of candidate 

overlaps belonging to case 1 or 2 increases to 62.1% when rules are mined with a 

lower 1% support threshold. 
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Figure 5.1 Percentages of Overlap Degrees Calculated Without Data Scanning 

 

 

5.2 Experiments to Investigate the Overlap Underestimation and To Compare 

the Effectiveness in Grouping /Pruning the Rules  

 

As discussed before in Chapter 3, the metarules method may underestimate some 

significant overlaps, especially when the set of rules include many rules with low 

confidence. In the second set of experiments, we explore this more. Afterwards, we 

use the mined metarules and overlaps to show how the metarules and proposed 

methods group /prune rules and then compare the effectiveness of the methods. In 

these experiments, Apriori algorithm is applied two times on each dataset. For the 

first time, a high confidence threshold is set which we refer to as HCT setting. For 

the second time, a lower confidence threshold is used which we refer to as LCT 

setting. Please note that different thresholds are used for different class labels and 

data sets since the class labels are not distributed evenly on the data cases. After 

applying the Apriori algorithm and constructing the Q-sets and the NQ-sets, both the 

ODA algorithm and the metarules method are applied on all discovered rules. For the 

ODA algorithm a minimum overlap threshold of 100% is set and for the Apriori 

algorithm reapplied in the metarules method, a minimum confidence threshold of 
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100% and a minimum support threshold of 0% are set. Note that this 100% 

confidence threshold setting in the metarules discovery is different from the HCT 

and LCT settings used in mining the initial association rules. The results for the 

experiments involving HCT settings are summarized in Table 5.4. Also the results 

for the experiments involving LCT settings are summarized in Table 5.5.  

 

In 5 out of 20 experiments shown in Table 5.4, the numbers of discovered overlaps 

and metarules are different from each other. In the Mush dataset, there are 6,262 

underestimated overlaps for the class Edible, and 24,513 underestimated overlaps for 

the class Poisonous. Also in the Ion dataset with the class Good, discovered overlaps 

are 25% more than discovered metarules, and in the Nursery dataset for class 

recommend, mined overlaps are twice the mined metarules 

 

 

Table 5.4 Results for Overlap Underestimation (high confidence thresholds) 

 

Dataset Class sup/conf Rules Metarules Overlaps 

  (%) (#) (#) (#) 

Iris Setosa 1/95 51 241 241 

 Versicolor 1/95 52 164 164 

 Virginica 1/95 45 261 261 

Ion Good 10/95 1,153 11,248 14,153 

 Bad 10/95 30 42 42 

Heart Absence 10/80 346 1,246 1,246 

 Presence 10/90 73 107 110 

Mush Edible 20/95 528 85,273 91,535 

 Poisonous 20/95 846 364,522 389,035 

Thyroid Class (1) 0.01/95 174 8,914 8,914 

 Class (2) 0.01/95 704 44,676 44,676 

 Class (3) 25/95 533 5,170 5,170 

Hayes Class (1) 1/85 65 185 185 

 Class (2) 1/85 60 170 170 

 Class (3) 1/85 85 230 230 

Nursery not_recom 1/85 616 3,185 3,185 

 recommend 0.007/50 5 4 8 

 very_recom 0.1/50 53 34 34 

 priority 1/85 23 12 12 

 spec_prior 1/85 114 204 204 
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Table 5.5 Results for Overlap Underestimation (low confidence thresholds) 

 

Dataset Class sup/conf Rules Metarules Overlaps 

  (%) (#) (#) (#) 

Iris Setosa 1/30 65 398 442 

 Versicolor 1/30 98 589 685 

 Virginica 1/30 74 444 490 

Ion Good 10/50 3,215 68,741 107,486 

 Bad 10/50 174 790 790 

Heart Absence 10/50 514 3,555 3,561 

 Presence 10/50 226 1,282 1,317 

Mush Edible 20/85 998 175,102 273,786 

 Poisonous 20/85 1,035 462,530 536,501 

Thyroid Class (1) 0.01/50 538 39,999 60,746 

 Class (2) 0.01/55 1,041 80,936 88,016 

 Class (3) 25/50 2,928 53,000 53,000 

Hayes Class (1) 1/30 283 2,245 3,203 

 Class (2) 1/30 285 2,262 3,443 

 Class (3) 1/30 97 250 255 

Nursery not_recom 1/30 1,231 8,940 12,740 

 recommend 0.007/30 12 15 62 

 very_recom 0.1/30 245 415 567 

 priority 1/30 1,086 5,709 5,709 

 spec_prior 1/30 960 4,865 4,865 

 

 

In Table 5.5, the differences have increased. This time, in 16 out of 20 conducted 

experiments shown in Table 5.5, the numbers of discovered overlaps and metarules 

are different from each other. This implies that the overlap underestimation in 

experiments with LCT settings is more than the one in experiments with HCT 

settings. This time in the Mush dataset, there are 98,684 underestimated significant 

overlaps for the class Edible, and 73,971 underestimated significant overlaps for the 

class Poisonous. In dataset Nursery in the class recommend, the number of mined 

significant overlaps is more than 4 times bigger than the number of mined metarules. 

There are other observed large differences. For example, in Ion dataset for the class 

Good, in Thyroid dataset for the class (1) and in Hayes dataset for the class (2), the 

numbers of mined significant overlaps are more than 1.5 times larger than the 

numbers of mined metarules. As a result, in more than half of the conducted 

experiments with LCT settings, the metarules method underestimates many 

significant overlaps. These significant overlaps are preserved in the proposed 
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approach. This inaccuracy in the metarules method results in less effectiveness in the 

succeeding steps of the method, i.e. in grouping and pruning the rules. On the other 

hand, as our method preserves all significant overlaps, it is capable to group or prune 

all deserved rules. Now, we are going to show this by using both methods to group 

and prune the discovered rules. Let's first start with the grouping task. The results for 

grouping the rules in Table 5.4 are illustrated in Table 5.6 and the results for 

grouping the rules in Table 5.5 are summarized in Table 5.7. 

 

 

Table 5.6 Grouping rules using the metarules and the proposed methods 

(high confidence thresholds) 

 

Dataset Class sup/conf Rules 
Simplified Rules 

(#) 

Simplified Rules 

 (#) 

  (%) (#) 
(Metarules 

Approach) 

(Proposed 

Approach) 

Iris Setosa 1/95 51 41 41 

 Versicolor 1/95 52 34 34 

 Virginica 1/95 45 30 30 

Ion Good 10/95 1,153 504 424 

 Bad 10/95 30 15 15 

Heart Absence 10/80 346 340 340 

 Presence 10/90 73 72 70 

Mush Edible 20/95 528 93 82 

 Poisonous 20/95 846 27 21 

Thyroid Class (1) 0.01/95 174 20 20 

 Class (2) 0.01/95 704 62 62 

 Class (3) 25/95 533 409 409 

Hayes Class (1) 1/85 65 46 46 

 Class (2) 1/85 60 31 31 

 Class (3) 1/85 85 73 73 

Nursery not_recom 1/85 616 616 616 

 recommend 0.007/50 5 5 3 

 very_recom 0.1/50 53 53 53 

 priority 1/85 23 23 23 

 spec_prior 1/85 114 114 114 

 

 

 

 

 

 



 43

Table 5.7 Grouping rules using the metarules and the proposed methods 

(low confidence thresholds) 

 

Dataset Class sup/conf Rules 
Simplified Rules 

 (#) 

Simplified Rules 

 (#) 

  (%) (#) 
(Metarules 

Approach) 

(Proposed 

Approach) 

Iris Setosa 1/30 65 55 47 

 Versicolor 1/30 98 80 69 

 Virginica 1/30 74 58 51 

Ion Good 10/50 3,215 1,414 841 

 Bad 10/50 174 87 87 

Heart Absence 10/50 514 508 506 

 Presence 10/50 226 225 222 

Mush Edible 20/85 998 181 132 

 Poisonous 20/85 1,035 52 29 

Thyroid Class (1) 0.01/50 538 144 70 

 Class (2) 0.01/55 1,041 225 161 

 Class (3) 25/50 2,928 2,532 2,532 

Hayes Class (1) 1/30 283 242 155 

 Class (2) 1/30 285 252 150 

 Class (3) 1/30 97 85 83 

Nursery not_recom 1/30 1,231 1,231 616 

 recommend 0.007/30 12 12 3 

 very_recom 0.1/30 245 245 233 

 priority 1/30 1,086 1,086 1,086 

 spec_prior 1/30 960 960 960 

 

 

The first four columns in Tables 5.6 and 5.7 are the same as previous tables. The fifth 

column indicates the number of simplified rules using discovered metarules. Number 

of simplified rules is equal to the number of rule groups and the number of 

ungrouped rules. The sixth column shows the number of simplified rules using 

discovered overlaps. In Table 5.6, in 15 experiments, out of 20, both approaches 

group rules equally. However, in the other 5 experiments the proposed approach 

groups more rules. The strength of our approach in rule grouping task significantly 

increases when the initial confidence thresholds for mining the rules decrease. This is 

reflected in the results summarized in Table 5.7 which include experiments with LCT 

settings. In majority of experiments in Table 5.7, proposed approach simplifies the 

rules more. For example in the Iris dataset for the class setosa, the number of 

simplified rules by using metarules reduces to 55 rules. In the proposed approach 8 

more rules are grouped and the number of simplified rules reduces to 47. For classes 
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of priority and spec_prior in the dataset Nursery, for the class Bad in Ion dataset and 

for the class (3) in the Thyroid dataset, the proposed approach does not simplify 

more effectively. However for other classes and datasets, it does. For example, the 

simplified rules in not_recom and recommend classes, when the proposed approach 

is applied, are respectively half and one fourth of the simplified rules when the 

metarules is applied.  

 

After grouping rules, the pruning step is applied by both methods to reduce the 

discovered rules in Tables 5.4 and 5.5. Complex rules are pruned between equivalent 

rules, resulting from the metarules method and the proposed approach. The results 

after pruning the complex rules in Table 5.6 are illustrated in Table 5.8 and the 

results after pruning the complex rules in Table 5.7 are summarized in Table 5.9. 

 

 

Table 5.8 Pruning rules using the metarules and the proposed methods 

(high confidence thresholds) 

 

Dataset Class sup/conf Rules 
Remaining Rules 

(#) 

Remaining Rules 

(#) 

  (%) (#) 
(Metarules 

Approach) 

(Proposed 

Approach) 

Iris Setosa 1/95 51 42 42 

 Versicolor 1/95 52 38 38 

 Virginica 1/95 45 33 33 

Ion Good 10/95 1,153 544 486 

 Bad 10/95 30 15 15 

Heart Absence 10/80 346 340 340 

 Presence 10/90 73 72 70 

Mush Edible 20/95 528 162 152 

 Poisonous 20/95 846 75 62 

Thyroid Class (1) 0.01/95 174 60 60 

 Class (2) 0.01/95 704 284 284 

 Class (3) 25/95 533 409 409 

Hayes Class (1) 1/85 65 52 52 

 Class (2) 1/85 60 48 48 

 Class (3) 1/85 85 78 78 

Nursery not_recom 1/85 616 616 616 

 recommend 0.007/50 5 5 3 

 very_recom 0.1/50 53 53 53 

 priority 1/85 23 23 23 

 spec_prior 1/85 114 114 114 
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Just like the previous results, in Table 5.8, in 15 experiments out of 20, both 

approaches prune rules equally. However, in the other 5 experiments, the proposed 

approach prunes more rules. As was the case in rule grouping, the strength of our 

approach in rule reduction significantly increases when the initial confidence 

thresholds for mining the rules decrease. It is shown in Table 5.9, where in 16 out of 

20 experiments, the proposed approach prunes more rules. For example, in the 

Mushroom dataset for the class Poisonous and in the Nursery dataset for the class 

not_recommend, our method prunes, respectively around 50% and 55% more rules. 

Another interesting observation belongs to Ion dataset for the class Good. For this 

data class, the metarules method reduces the discovered rules from 3,215 rules into 

1,461 rules. For the same data class, our method reduces the initial discovered rules 

into just 856 rules. 

 

 

Table 5.9 Pruning rules using the metarules and the proposed methods 

(low confidence thresholds) 

 

Dataset Class sup/conf Rules 
Remaining Rules 

(#) 

Remaining Rules 

(#) 

  (%) (#) 
(Metarules 

Approach) 

(Proposed 

Approach) 

Iris Setosa 1/30 65 56 47 

 Versicolor 1/30 98 84 78 

 Virginica 1/30 74 61 54 

Ion Good 10/50 3,215 1,461 856 

 Bad 10/50 174 87 87 

Heart Absence 10/50 514 508 506 

 Presence 10/50 226 225 222 

Mush Edible 20/85 998 306 255 

 Poisonous 20/85 1,035 104 58 

Thyroid Class (1) 0.01/50 538 219 180 

 Class (2) 0.01/55 1,041 456 424 

 Class (3) 25/50 2,928 2,532 2,532 

Hayes Class (1) 1/30 283 252 180 

 Class (2) 1/30 285 259 185 

 Class (3) 1/30 97 90 88 

Nursery not_recom 1/30 1,231 1,231 620 

 recommend 0.007/30 12 12 9 

 very_recom 0.1/30 245 245 235 

 priority 1/30 1,086 1,086 1,086 

 spec_prior 1/30 960 960 960 
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The results in Table 5.9 show that the proposed approach prunes more rules. 

However, we have not checked what the remaining rules are. For each data class in 

Table 5.9, there are two sets of remaining rules. One set is obtained by the metarules 

method and the other one is obtained by our approach. Here, one can ask how much 

these two sets of the remaining rules are consistent with each other. Assume P1 

denotes the set of pruned rules after applying the metarules method and P2 denotes 

the set of pruned rules after applying our approach. Then, the question is which of 

the situations in Figure 5.2 occur for each dataset experiment. 

 

 

 

 

 

 

 

 

 

 
                                  Situation 1                                                                        situation 2 

 
Figure 5.2 Possible situations between sets of pruned rules 

 

 

In situation 1, we have P1 ∩ P2 ≠ ∅. If situation 1 is the case, then it means that we 

have pruned some rules that the metarules method have not and vice versa. In 

situation 2, we have P1 ⊂ P2. If situation 2 is the case, then it means that we have 

pruned all rules that the metarules method has done and furthermore, we have pruned 

exclusively some more rules that the metarules method has not. Situation 2 may be 

acceptable in many applications, but the same inference cannot be easily reached 

when situation 1 happens. To address this concern, two studies are undertaken. The 

first one is to collect the set of remaining rules in all experiments in Table 5.9, 

investigate them and see which of the situations occurs for which datasets. The 

second study is to conduct a Controlled Experiment to compare the performance of 

both approaches in a systematical way. The last study is the subject of the next 

chapter and we explain it there.  

 

 

P1 

P2 

 

  
P2 

 

P1 
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Regarding the first study, we consider all pruned rules in experiments of Table 5.9, 

and then investigate the similarities and differences between the set of pruned rules 

by our method and that by the metarules method. The results are illustrated in Table 

5.10. 

 

 

Table 5.10 Similarities and differences between sets of pruned rules 

(low confidence thresholds) 

 

Dataset Class Common 

Exclusively 

Pruned 

(#) 

Exclusively 

Pruned 

(#) 

   
(Metarules 

Approach) 

(Proposed 

Approach) 

Iris Setosa 9 0 9 

 Versicolor 14 0 6 

 Virginica 13 0 7 

Ion Good 1,754 0 605 

 Bad 87 0 0 

Heart Absence 6 0 2 

 Presence 1 0 3 

Mush Edible 692 0 51 

 Poisonous 931 0 46 

Thyroid Class (1) 319 0 39 

 Class (2) 585 0 32 

 Class (3) 396 0 0 

Hayes Class (1) 31 0 72 

 Class (2) 26 0 74 

 Class (3) 7 0 2 

Nursery not_recom 0 0 611 

 recommend 0 0 3 

 very_recom 0 0 10 

 priority 0 0 0 

 spec_prior 0 0 0 

 

 

Again the first two columns in Table 5.10 are the dataset description where the other 

columns are related to the pruned rules. The third column represents the number of 

rules, which are pruned by both methods. The fourth column represents the number 

of rules exclusively pruned just by the metarules method and the fifth column 

indicates the number of rules exclusively pruned just by our method. Hence, in Table 

5.10, the sum of the third and the fourth columns is equal to the number of rules 
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pruned by the metarules method for that experiment. Similarly, in each experiment 

the sum of the third and the fifth columns is equal to the number of rules pruned by 

our method for that experiment. Fortunately in all experiments, Situation 2 is the 

case. Hence, we conclude that in all conducted experiments the proposed method 

was able to prune all rules that did the metarules method and in addition to that, it 

was able to exclusively prune more rules. 

 

In summary, we have applied both the metarules method and our method on some 

benchmark datasets to summarize and reduce the amount of initially discovered 

rules. First, the efficiency of the methods is investigated from the aspect of data 

scanning volume. Results show that when the initial support threshold in the rule 

mining process is set to a low value, then the proposed method scans the data less 

than the metarules method. Second, the accuracy of the metarules method in the 

overlap mining process is investigated. It is shown that when the initial confidence 

threshold in the rule mining process is set to a low value, the metarules method 

underestimates many significant overlaps. These significant overlaps are preserved in 

the proposed approach and this makes the proposed method capable to group or 

prune more rules. At the last, the set of pruned rules by both methods are analyzed to 

check the consistence between them. Fortunately, in all experiments the proposed 

method is able to prune all rules that did the metarules method and in addition to that, 

it is able to exclusively prune more rules. 
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CHAPTER 6 

 

 

A NOVEL BASIS TO COMPARE RULE REDUCTION 

METHODS 
 

 

 

 

The results of experiments on some benchmark data (Chapter 5) shows that in almost 

all datasets the proposed approach groups and prunes more rules. However, pruning 

more rules by an approach does not necessarily indicate its better performance. To 

explain this, let A and B be two different methods to group and prune association 

rules. Also assume the method A prunes more rules than B method. Here, it is not 

clear that the exclusively pruned rules by method A are all redundant rules, i.e. A 

method may prune some non-redundant rules and cause information loss. On the 

other hand, it is also possible that B method exclusively prunes some redundant rules 

that A method is not able to prune. As a result, these issues should be considered 

when the performances of different methods are compared. In general, we can 

consider four criteria in evaluating performance of grouping/pruning methods: 

grouping (or clustering) strength, pruning strength, information loss and 

computational complexity. The general intention of the methodologies is to 

maximize the first and second criteria and simultaneously minimize the third and 

fourth ones. In this chapter, we introduce a novel comparison basis, which enables 

data analysts to precisely evaluate the performance of different rule reduction 

methods. In the introduced basis, first, second and third method-evaluation criteria 

are considered. Although the introduced basis is tailored for quality data, it is flexible 

and can be changed to fit other contexts and data types. For convenience, we will call 

association rules grouping and pruning methods briefly the GP methods. We will 

also use the terms of rule reduction methods and GP methods with the same 

meaning.  
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6.1 CONTROLLED EXPERIMENT 

 

The intention of this chapter is to design and conduct a new series of experiments by 

which the performance of different GP methods can be measured and compared. We 

call this new series of experiments the controlled experiment as it is a set of 

somehow controlled experiments to measure the performance of different methods. 

The idea is to intentionally generate some data with known rules and then apply 

different rule reduction methods on the rules mined from the generated data. First, 

we explain the way the datasets are generated. The inspiration of this work is rule 

mining for quality improvement. Hence, we generate an artificial data within this 

context and call it the quality data. To this end, data are supposed to include some 

independent and random variables x1, x2, x3, …, xk representing manufacturing 

process variables and one binary variable, z representing process/product failure 

status. Here, we use the well-known logistic regression model [65] to predict the 

probability of not observing the failure event. In logistic regression, a measure of the 

total contribution of all independent predictors x1, x2, x3, …, xk and error used in the 

model is defined as the following: 

 

εβββββ ++⋅⋅⋅++++=
kk

xxxxy
3322110

          (6.1) 

 

and it is known as the logit. Here, the predictors are assumed to be k effective 

process variables on the failure event in the system. The term ε in (6.1) denotes the 

error that cannot be accounted for by the effective process variables. It can be 

considered as the effect of uncontrollable factors such as environmental conditions, 

limitations in human carefulness and etc. The error is assumed to have normal 

distribution and the model is assumed to simulate the failure incidence of a 

manufacturing system. According to the type of the simulated system, predictors can 

be assigned suitable probability distributions. The parameter β0 is the intercept, 

which here represents the initial effect of system on potential failures. Here, it can be 

interpreted as the effect of initial setups required before production. The parameters 
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β1, β2, β3, …, βk are regression coefficients of process variables x1, x2, x3, …, xk, 

respectively. Given the logit, the logistic function is defined as the following: 

 

1
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+
=

y

y

e

e
yf           (6.2) 

 

Therefore, the output f(y) is confined to values between 0 and 1. Here, this output can 

be interpreted as the probability of not observing a failure. The failure status can be 

determined by the output values of the logistic function as follows: 
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z           (6.3) 

 

Hence, if the total contribution of all process variables, i.e. the logit equation in (6.1) 

results in an output probability of 0.5 or less in the logistic function (6.2), then we 

conclude that a failure occurs in the manufacturing system and the failure status 

variable takes a value of 1 or z = 1. On the other hand, if that probability is greater 

than 0.5, then we conclude that no failure occurs (success occurs) and z = 0.  

 

Here, we assume there are three process variables which have significant effects on 

the failure event. Let us call them effective process variables. They are represented by 

predictors x1, x2 and x3. The predictors are independent of each other and have the 

underlying discrete uniform distribution with possible values of 0 and 1. When xi = 1, 

it indicates that the i
th

 effective process variable is active in the system and when xi = 

0 it indicates that the i
th

 effective process variable is inactive in the system. They are 

also assumed to have equally negative effects on logit y and consequently positive 

effects on failure status z. Therefore, coefficients β1, β2 and β3 are set to −1. The 

initial effect of setup β0 on logit y is set to +1.999. The term ε in the logit function 

(6.4) denotes the error that cannot be accounted for by the process variables. It can be 

considered as the effect of uncontrollable factors such as environmental conditions, 

limitations in human carefulness and etc. The error is assumed to have normal 
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distribution with 0 mean and 0.1 variance; in other words, �~��0,0.1	. Therefore, 

the logit equation in (6.1) becomes:  

 

ε+−−−=
321

999.1 xxxy           (6.4) 

 

In summary, the process of quality data generation is as following. First the variables 

x1, x2 and x3 are randomly assigned values. Then the value of logit is calculated by 

(6.4). Next, the obtained logit value is put in (6.2) and the probability of not 

observing a failure is calculated. Finally, the failure status variable z is determined by 

(6.3). A sample generated quality data with four runs is illustrated as the following: 

 

 

 

 

 

Now let us analyze the generated data more. Assume all process variables x1, x2 and 

x3 take a value of 1. Then, the conditional expected value of the logit (6.4) is 
��|
�	 

= 1.999 – 1 – 1 – 1 = −1.001 and by logistic function (6.2), we have f(y) = 0.27 

which ends up with a failure event or z = 1. Conversely, if all process variables take 

the 0 value, then the conditional expected value of the logit y is equal to the positive 

value +1.999 and by logistic function (6.2) we have f(y) = 0.88 which ends up with a 

success status or z = 0. Obviously, there are totally 8 different combinations of 

effective process variables. The resulting expected logistic function values for all 

possible combinations of effective process variables are listed in Table 6.1. 

 

 

 

 

x1 x2 x3 z 

1 0 1 0 

1 1 1 1 

0 0 0 0 

0 1 0 0 
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Table 6.1 Expected Logistic function for all combinations of effective process variables 

 

x1 x2 x3 ���|����	 f(y) f ′(y) 

0 0 0 1.999 0.88 0.12 

1 0 0 0.999 0.73 0.27 

0 1 0 0.999 0.73 0.27 

0 0 1 0.999 0.73 0.27 

1 1 0 − 0.001 0.49 0.50 

1 0 1 − 0.001 0.49 0.50 

0 1 1 − 0.001 0.49 0.50 

1 1 1 − 1.001 0.27 0.73 

 

 

In Table 6.1, f(y) donates the probability of not observing a failure and f ′(y) donates 

the probability of observing a failure. Obviously, f ′(y) = 1 – f(y) is satisfied. Assume 

the logit (6.4) and related formulas are frequently used to generate a large quality 

data. In this case, different combinations of effective process variables regularly end 

up with failure or success events with the probabilities illustrated in Table 6.1. When 

the Apriori algorithm is applied on this generated data such that the consequent of 

rules is constrained to the failure /success events, then these regularities will be 

mined in the form of 16 association rules if their support and confidence are above 

the specified thresholds. The confidences of rules, with the success event as 

consequent, are consistent with the probabilities of not observing a failure event or 

f(y) illustrated in Table 6.1. Similarly, the confidences of rules, with the failure event 

as consequent, are consistent with the probabilities of observing a failure event or       

f ′(y) illustrated in Table 6.1. The complete list of these 16 association rules is 

provided in Appendix A. Here, we assume that the data analyst is interested in just 

failure associations with a minimum confidence of 50%. Eight association rules out 

of 16 association rules listed in Appendix B include failure event as the consequent. 

However, only four of these failure association rules have a confidence satisfying the 

50% threshold. Hence, these four rules are considered here as the important failure 

association rules and are listed in Figure 6.1 in the following. 

 

 

 

 



 54

 

{{x1 = 1},{x2 = 1},{x3 = 0}} → {z = 1} < confidence ≅ 50% > 

{{x1 = 1},{x2 = 0},{x3 = 1}} → {z = 1} < confidence ≅ 50% >  

{{x1 = 0},{x2 = 1},{x3 = 1}} → {z = 1} < confidence ≅ 50% > 

{{x1 = 1},{x2 = 1},{x3 = 1}} → {z = 1} < confidence ≅ 73% > 

 

 

Figure 6.1 Important failure association rules in sufficiently large generated data 

 

 

These four associations in Figure 6.1 are meaningful and are not redundant as they 

show strong cause and effect rules between process variables and the failure events. 

Here, the only difference with reality is that we already know about these rules. 

Hence, if one GP method prunes some of the discovered important failure rules, it 

will result in information loss as some of the mined root causes of failure incidences 

in the system are removed and are not presented to data analyst. As a result, 

important failure rules in the Figure 6.1 can be used to measure the performance of 

rule reduction methods from the view of information loss. The more a GP method 

preserve mined important failure rules, the better it is in information preservation 

issue. 

 

The data in reality would be complicated and consequently association rules mined 

from them would contain many trivial or redundant rules. To make our artificial 

quality data reflect this reality as well, we can add some subject-irrelevant input 

variables into the data. Here, we add two additional process variables x4 and x5 to our 

case, which have nothing to do with the failure /success status. We call them 

ineffective process variables. They are explained in the following.  

 

The fourth ineffective process variable is x4, which does not have any effect on 

failure /success event. Rather, it is completely dependent on the effective process 

variables. When at least two effective process variables are active, i.e. they take a 

value of 1, then x4 is equal to 1. On the contrary, when at most one of the effective 
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process variables are active, then x4 is equal to 0. This relation can be summarized as 

follows: if x1 + x2 + x3 ≥ 2 then x4 = 1 otherwise x4 = 0. 

 

In real quality data, such failure-irrelevant relations are prevalent. One example 

relation could be , 'if the job is done by the machine A (equivalently x1 = 1) and the 

used raw material is supplied by the company B (x2 = 1) then the package C is to be 

used (x4 = 1). When we mine failure rules from a dataset including the variable x4, 

some redundant associations may turn out such as the following rule: 

 

{{x1 = 1},{x2 = 1},{x3 = 0},{x4 = 1}} → {z = 1} 

 

The rule above is a more complex form of the first failure rule illustrated in Figure 

6.2. The extra condition {x4 = 1} in the antecedent adds no more information and just 

makes the rule more complex. Hence, this rule is redundant and we expect rule 

reduction methods to prune such rules as much as possible.  

 

The fifth ineffective process variable x5 neither has any effect on failure/success 

event nor depends on some effective process variables. This variable just randomly 

gets some values but is included in quality data. In real quality data and any other 

types of data, there may be many data attributes that are part of data but do not have 

any association or correlation with others. They are just recorded and stored with 

other data attributes. Although they may be attributes that carry important 

information, they are irrelevant with the attributes under specific association study. 

Similarly, the variable x5 is unrelated to failure event but it can be an important factor 

in other events. We consider the discrete uniform distribution with possible values of 

1, 2, and 3 for the variable x5. Clearly, any rule with an antecedent condition 

involving the process variable x5 is redundant. The general definition for redundant 

rules is provided below; 

 

Definition 6.1: A rule is called a redundant rule if at least one of its 

conditions in the antecedent involves one of the ineffective process 

variables x4 or x5. 
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Finally, a sample generated dataset including all considered variables and with five 

runs would be as following: 

 

 

 

  

 

If we have N runs, then we will have a dataset with N data rows. If we generate m 

datasets each one with N data rows, we will have m different datasets of D1, D2, …, 

Dm. Then, we can apply Apriori on each dataset and have m different rule sets of R1, 

R2, …, Rm. After that, we can apply different rule reduction method on obtained rule 

sets to see the performance of them. Finally, we can use some measures to evaluate 

the performance of applied GP methods on different rule and data sets. The whole 

performance evaluation process for GP methods is depicted in Figure 6.2. 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Performance evaluation process for GP methods 

 

 

x1 x2 x3 x4 x5 z 

1 1 0 1 1 0 
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However, the performance evaluation process can also be done more efficiently by 

using experimental design. For example, we can consider two factors of N and AT. 

The factor N denotes the row size of datasets to be generated. If we would like to 

generate datasets with 100 and 10,000 rows, then N will have two levels as 100 and 

10,000. The factor AT denotes the approach type (GP method) applied on rule sets. 

The number of levels of factor AT is equal to the number of rule reduction methods 

under comparison. If two GP methods of A and B are to be compared, then the factor 

AT will have two levels, first level indicating A method and second one indicating B 

method. 

 

When the factors and their levels are determined, an experimental design can be 

selected. Assume the considered factors are N and AT each one with two levels as 

discussed earlier. The 2
2
 full factorial design (See Table 6.2) can be selected for this 

case as it can accommodate two factors each with two levels. 

 

 

Table 6.2 The used design for controlled experiment with two 2-level factors 

 

N AT RN FRN SRN RRN RFRN 

1 1      

1 2      

2 1      

2 2      

 

 

In the experimental design in Table 6.2, the first run indicates an experiment by 

which a dataset with 100 data rows will be generated. Then on the generated dataset 

A method will be applied. The second run indicates that B method will be applied on 

the same dataset already generated and used in the first run. The third run means a 

new dataset with 10,000 data rows will be generated and then A method will be 

applied on it. Finally, the fourth run indicates that B method will be applied on the 

same dataset generated and used in the third run. Hence, in the four runs above two 
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datasets, respectively with 100 and 10,000 rows, will be generated and then on each 

generated dataset both methods of A and B will be applied.  

 

In Table 6.2, RN is the number of mined rules in each experiment. Apparently, the 

approach type AT will not affect RN. Also FRN is the number of mined failure rules 

between all mined rules. Clearly FRN ≤ RN is always satisfied. The characteristics 

RN and FRN are determined after Apriori is applied and the rules are mined and 

these are not affected by the GP methods. However, it is not true for the other 

characteristics, i.e. SRN, RRN, and RFRN. Here, SRN is the number of simplified 

rules, i.e. number of constructed clusters (or group of rules) and number of 

unclustered rules. SRN is determined when the grouping step is applied by GP 

methods. RRN is the number of remained rules after the pruning step. Clearly RRN ≤ 

RN is always satisfied. Finally, RFRN is the number of remained true rules after the 

pruning step. Obviously, RFRN ≤ FRN ≤ RN is always satisfied. The summary of all 

characteristics and the relations between them are given in the following table.  

 

 

Table 6.3 Summary of characteristics and their relations with each other 

 

Characteristics: Relations: 

 

RN = # of mined rules after Apriori (after mining) 

FRN = # of failure rules after Apriori (after mining)  

SRN = # of simplified rules after grouping step 

RRN = # of remained rules after pruning  

RFRN = # of remained failure rules after pruning  

 

 

FRN ≤ RN 

SRN ≤ RRN ≤ RN 

RRN ≤ RN 

RFRN ≤ FRN ≤ RN 

 

 

Example: To clarify how different characteristics are calculated, consider the 

following example. Assume the set of all mined rules is R = {r1, r2, r3, r4, r5}, where 

the rules r1 and r5 are two different failure rules from Figure 6.1 and the other rules 

are not failure rules. Here we have, RN = 5 and FRN = 2. Now assume we select the 

first GP method (AT = 1) to group and prune the mined rules. We apply the grouping 

step of first GP method on R and it results in the set of grouped rules G = {{r1, r2}, 

{r3, r4}}. In other words, the rules r1 and r2 are grouped together. The same thing 
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occurs for r3 and r4. But r5 remains ungrouped. Here, SRN = 3 because we have 2 

clusters of rules and 1 unclustered rule. Now assume we apply the pruning step of the 

first GP method and it results in removal of r1 and r4. Therefore, we have RRN = 5 – 

2 = 3 as two rules are removed and RFRN = 2 – 1 = 1 as one of the failure rules (r1) 

is removed. ■ 

 

So far, we explained how different datasets are collected and the rule reduction 

methods are applied on them. When all experiments are done we will have different 

calculated values for all characteristics in hand. Now let us measure the performance 

of the applied GP methods and to evaluate their strength from the different criteria. 

To this end, we have developed five evaluation measures each one trying to measure 

the performance of methods from a specific point of view, as listed in Table 6.4. 

 

 

Table 6.4 Summary of the evaluation measures for GP methods 

 

Measures Range Best 

case 

Worst 

case 

 

M1 = 
FRN

RFRN
 0 ≤ M1 ≤ 1 1 0 

M2 = 
RN

SRN
 

RN

1
 ≤ M2 ≤ 1 

RN

1
 1 

M3 = 
FRNRN

RFRNRRN

rulesredundantof

rulesredundantprunedof

−

−
−=  1

   #

    #
 0 ≤ M3 ≤ 1 1 0 

M4 = 
RRN

RFRN
 0 ≤ M4 ≤ 1 1 0 

M5 = 

21

3211

ww

MwMw

+

+
 0 ≤ M5 ≤ 1 1 0 

 

 

The first measure (M1) measures how much a GP method preserves failure rules. The 

best case is when all failure rules are preserved and not pruned i.e. M1 = 1, and the 
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worst case is when all failure rules are pruned i.e. M1 = 0. The second measure 

measures the smallness of clustered and summarized rules by a GP method. The best 

case is when all rules are grouped under one cluster i.e. M2 = 1 / RN and the worst 

case is when none of rules are grouped i.e. M2 = 1. The third measure measures how 

much a GP method prunes redundant rules. The best case is when all redundant rules 

are pruned. In this case M3 = 1. The worst case is when none of redundant rules are 

pruned. In this case M3 = 0. The fourth measure M4 tries to measure the ratio of 

remained failure rules over all remained rules. The best case is when all failure rules 

are kept and all redundant rules are removed. In this case M4 = 1. The worst case is 

when all failure rules are removed. In this case M4 = 0. However, this measure can be 

tricky. Consider the case in which just one failure rule is kept and the rest of failure 

and redundant rules are all removed. In such a case, this measure still gives us a 

value of 1 but this is not the best case as just one failure rule is preserved. The last 

measure M5 is developed to solve this deficiency. The fifth measure is a combined 

one and simultaneously tries to measure the performance of a GP method from the 

two criteria; information preservation degree and pruning strength. The best case is 

when all failure rules are preserved and furthermore all redundant rules are pruned. 

In this case M5 = 1. The worst case is when all failure rules are pruned and 

furthermore none of redundant rules are pruned. In this case M5 = 0. 

 

The next step is to run the designed experiments and collect data. When data are 

collected, the described measures in Table 6.4 can be calculated. Then the collected 

data can be analyzed to see which factors significantly affect which measures. Here, 

the analysis of variance and non-parametric tests can be useful. By the results of 

these tests we can evaluate the performance of rule reduction methods over different 

measures. To illustrate the whole process of performance evaluation, we conduct a 

controlled experiment in the following section to evaluate the performance of the 

metarules method and the proposed method on the generated data.  
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 6.2 Application 

 

We developed a new comparison basis for evaluation of different approaches in 

grouping and pruning discovered association rules. In Chapter 5, we showed that on 

some benchmark datasets our proposed approach groups and prunes the discovered 

rules better than the metarules method, especially when low thresholds are specified 

in the rule mining step. Now we will use the presented comparison basis in this 

chapter to analyze the grouping /pruning performance of both approaches more in the 

quality data domain.  

 

The initial data are generated by the explained logistic regression model including 

the logit in equation (6.4), the logistic function in equation (6.2) and the failure status 

(6.3). The explained ineffective process variables x4 and x5 are used as well. 

Therefore, in our simulation model, we have five random variables. To vary the 

sequence of random numbers, we vary the initial seeds on which the sequence of 

random numbers is based. Hence, in generating each dataset, a different seed is used. 

When data are generated, the Apriori algorithm with minimum support of 1% and 

minimum confidence of 50% is applied. The antecedents of rules are confined to 

have at most four conditions. The consequent of rules is confined to the failure event 

or z = 1. The 2
2
 full factorial design, which is illustrated in Table 6.2, is selected but 

this time four replicates are considered. The first level of AT is assumed to be the 

metarules method and the second level of AT is assumed to be the proposed 

approach. Briefly: 

 

N = data row number (level 1 = 100; level 2 = 10,000) 

AT = Approach Type (level 1 = the metarules method; level 2 = proposed method) 

 

For any response variable (here characteristics in Table 6.3) totally 16 values are 

collected. Then the values of all five measures illustrated in Table 6.4 are calculated. 

For the 5
th

 measure both weights w1 and w2 are set to 1. The collected characteristic 

values as well as calculated measures for all runs are summarized in Table 6.5 below. 
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Table 6.5 Collected characteristics and measures values 

 

N AT RN SRN RRN FRN RFRN M1 M2 M3 M4 M5 

1 1 97 52 62 3 3 1 0.536 0.366 0.048 0.683 

1 2 97 42 52 3 3 1 0.433 0.473 0.058 0.737 

1 1 78 49 54 2 2 1 0.628 0.297 0.037 0.649 

1 2 78 33 43 2 2 1 0.423 0.446 0.047 0.723 

1 1 79 39 47 3 3 1 0.494 0.413 0.064 0.707 

1 2 79 29 38 3 3 1 0.367 0.533 0.079 0.767 

1 1 88 52 59 3 3 1 0.591 0.333 0.051 0.667 

1 2 88 33 44 3 3 1 0.375 0.512 0.068 0.756 

2 1 71 42 47 2 2 1 0.592 0.328 0.043 0.664 

2 2 71 37 42 2 2 1 0.521 0.403 0.048 0.702 

2 1 96 53 62 4 4 1 0.552 0.370 0.065 0.685 

2 2 96 41 50 4 4 1 0.427 0.500 0.080 0.750 

2 1 82 46 53 3 3 1 0.561 0.359 0.057 0.680 

2 2 82 39 46 3 3 1 0.476 0.449 0.065 0.725 

2 1 76 47 52 2 2 1 0.618 0.306 0.039 0.653 

2 2 76 37 42 2 2 1 0.487 0.444 0.048 0.722 

 

 

In Table 6.5, the measure M1 always is equal to 1 and its value never changes. This 

means that in the set of conducted experiments above, both GP methods (the 

metarules and the proposed approaches) preserve all mined important failure rules. 

Hence, none of the applied GP methods has any advantage over the other one from 

the aspect of information loss. We continue with other four measures of M2, M3, M4 

and M5. Given the collected experiment data, we can apply analysis of variance or 

briefly ANOVA on the data in Table 6.5 to analyze the effect of factors N and AT on 

different measures and to find significant ones. Before going through that, we should 

check the normality assumption required by ANOVA. This analysis method requires 

the errors to be normally and independently distributed with mean zero and constant 

but unknown variance σ2
. To this end, analyses and standard charts for residuals, 

provided by Minitab software, are used to investigate normality assumption of the 

model. These plots are provided in Appendix (B).  

 

The charts and analysis results in Appendix (B) imply that the normality assumption 

is roughly satisfied for the measures M2, M3, and M5. As measures M2, M3, and M5 

seem to comply with normality assumption, we used just ANOVA test to analyze 
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them. However, the measure M4 does not seem to conform to the normality 

assumption. To solve this, we used two data transformation techniques for measure 

M4 and named the resulting measures TM4 and LM4. Then we investigated the 

residuals plots for them. The charts for TM4 and LM4 are also in the Appendix (B). 

The results for transformed data still do not assure the normality. Hence, for measure 

M4 we applied ANOVA and further the non-parametric test of Kruskal-Wallis. We 

again used Minitab to run the tests. The results of all tests are provided in Appendix 

(B). According to the results, the approach type factor AT has a significant effect on 

measures M2, M3, and M5. But data size factor N seems to be insignificant. In the 

next step, four measures of M2, M3, M4 and M5 versus the levels of factor AT are 

analyzed by one-way ANOVA analysis.  

 

 

 

 

Figure 6.3 Results of one-way ANOVA on measure M2 

One-way ANOVA: M2 versus AT  
Source  DF       SS       MS      F      P 

AT       1  0.07062  0.07062  29.06  0.000 

Error   14  0.03402  0.00243 

Total   15  0.10465 

 

S = 0.04930   R-Sq = 67.49%   R-Sq(adj) = 65.16% 

 

                            Individual 95% CIs For Mean Based on 

                            Pooled StDev 

Level  N     Mean    StDev  ---+---------+---------+---------+------ 

1      8  0.57150  0.04458                        (-----*-----) 

2      8  0.43863  0.05360  (-----*-----) 

                            ---+---------+---------+---------+------ 

                             0.420     0.480     0.540     0.600 

 

Pooled StDev = 0.04930 

 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of AT 

 

Individual confidence level = 95.00% 

 

AT = 1 subtracted from: 

 

AT     Lower    Center     Upper    -+---------+---------+---------+-- 

2   -0.18574  -0.13288  -0.08001    (--------*--------) 

                                    -+---------+---------+---------+-- 

                                  -0.180    -0.120    -0.060     0.000 
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Figure 6.3 presents the output of the Minitab software for the measure M2 versus two 

levels of the factor AT, i.e. the metarules approach and the proposed approach. The 

confidence intervals on each individual approach mean are provided and the means 

are compared using Tukey's method. Note that the Tukey method is presented using 

the confidence interval format. Apparently for this measure the Tukey confidence 

interval does not include zero and therefore we conclude that the means of 

approaches are different. Remember that the second measure measures the smallness 

of summarized rules and the lesser this measure is the better the approach groups 

rules. Here, the mean of proposed approach is less than the mean of the metarules 

approach. Hence, we conclude that our approach groups more rules.  

 

 

 

 

Figure 6.4 Results of one-way ANOVA on measure M3 

One-way ANOVA: M3 versus AT  
Source  DF       SS       MS      F      P 

AT       1  0.06101  0.06101  37.22  0.000 

Error   14  0.02295  0.00164 

Total   15  0.08396 

 

S = 0.04049   R-Sq = 72.67%   R-Sq(adj) = 70.71% 

 

                            Individual 95% CIs For Mean Based on 

                            Pooled StDev 

Level  N     Mean    StDev  -------+---------+---------+---------+-- 

1      8  0.34650  0.03803  (-----*-----) 

2      8  0.47000  0.04280                           (-----*-----) 

                            -------+---------+---------+---------+-- 

                                 0.350     0.400     0.450     0.500 

 

Pooled StDev = 0.04049 

 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of AT 

 

Individual confidence level = 95.00% 

 

AT = 1 subtracted from: 

 

AT    Lower   Center    Upper  ----+---------+---------+---------+-- 

2   0.08008  0.12350  0.16692                   (-------*------) 

                               ----+---------+---------+---------+-- 

                                    0.000     0.060     0.120     0.180 
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Now let's consider the third measure. Figure 6.4 presents the output from Minitab for 

the third measure M3 for the metarules and the proposed approach. Clearly, the 

Tukey confidence interval also in this case does not include zero and therefore, we 

conclude that the means of approaches are different. As already explained, the third 

measure measures how much a GP method prunes redundant rules and the closer this 

measure is to 1 the more the approach prunes redundant rules. Here, the mean of 

proposed approach is closer to 1 than the mean of the metarules approach. Hence, we 

conclude that our method prunes the redundant rules more as well.  

 

 

 

 

Figure 6.5 Results of one-way ANOVA on measure M4 

 

 

One-way ANOVA: M4 versus AT  
Source  DF        SS        MS     F      P 

AT       1  0.000495  0.000495  3.30  0.091 

Error   14  0.002102  0.000150 

Total   15  0.002597 

 

S = 0.01225   R-Sq = 19.06%   R-Sq(adj) = 13.28% 

 

 

                            Individual 95% CIs For Mean Based on 

                            Pooled StDev 

Level  N     Mean    StDev  --------+---------+---------+---------+- 

1      8  0.05050  0.01077  (----------*-----------) 

2      8  0.06163  0.01357               (-----------*-----------) 

                            --------+---------+---------+---------+- 

                                  0.0480    0.0560    0.0640    0.0720 

 

Pooled StDev = 0.01225 

 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of AT 

 

Individual confidence level = 95.00% 

 

 

AT = 1 subtracted from: 

 

AT     Lower   Center    Upper  ---+---------+---------+---------+------ 

2   -0.00201  0.01113  0.02426             (------------*------------) 

                                ---+---------+---------+---------+------ 

                                -0.010     0.000     0.010     0.020 
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The next measure is the M4. The ANOVA and other analysis results for this measure 

are provided in Appendix (B). The results indicate that neither N nor AT have a 

significant effect on this measure. We also applied the one-way ANOVA test for this 

measure for the two GP methods and the results are provided in Figure 6.5. The 

factor AT seems to have a moderate effect on this measure. Its p-value is equal to 

0.091 which is not far from the considered level of significance 0.05. The Tukey 

confidence interval in this case hardly includes zero and is not surrounding it. To 

analyze the effect of approach types on the measure M4, the main effect and 

interaction plots are drawn and are available in Appendix (B). These charts also 

indicate that the mean of proposed approach for this measure is higher than the mean 

of the metarules method. 

 

 

 

 

Figure 6.6 Results of one-way ANOVA on measure M5 

One-way ANOVA: M5 versus AT  
Source  DF        SS        MS      F      P 

AT       1  0.015252  0.015252  37.23  0.000 

Error   14  0.005735  0.000410 

Total   15  0.020988 

 

S = 0.02024   R-Sq = 72.67%   R-Sq(adj) = 70.72% 

 

                            Individual 95% CIs For Mean Based on 

                            Pooled StDev 

Level  N     Mean    StDev  -------+---------+---------+---------+-- 

1      8  0.67350  0.01905  (-----*------) 

2      8  0.73525  0.02137                           (-----*-----) 

                            -------+---------+---------+---------+-- 

                                 0.675     0.700     0.725     0.750 

 

Pooled StDev = 0.02024 

 

 

Tukey 95% Simultaneous Confidence Intervals 

All Pairwise Comparisons among Levels of AT 

 

Individual confidence level = 95.00% 

 

AT = 1 subtracted from: 

 

AT    Lower   Center    Upper  -------+---------+---------+---------+-- 

2   0.04004  0.06175  0.08346                      (-------*------) 

                               -------+---------+---------+---------+-- 

                                    0.000     0.030     0.060     0.090 
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The last measure is the M5. Figure 6.6 presents the output from Minitab for this 

measure. Here again, the Tukey confidence interval does not include zero and 

therefore we conclude that the means of methodes are different. The measure M5 

simultaneously measures success in information preservation and success in 

redundancy removal. The more a GP method preserves failure rules and prune 

redundant ones, the closer this measure is to 1. Here, the means of the proposed and 

the metarules approaches are 0.73525 and 0.67350, respectively. Therefore, the mean 

of the proposed method is closer to 1 than the mean of the metarules method. In this 

application, both methods keep all mined important failure rules. For this measure, 

the mean of our proposed method is larger because our method prunes more 

redundant rules.  

 

In this chapter, a new basis is introduced to compare the performance of methods in 

grouping and pruning discovered association rules. Different measures are proposed 

to evaluate methods with respect to three criteria of information loss, grouping 

strength and pruning strength. The introduced basis is used to compare the proposed 

method in Chapter 4 with the metarules method. Based on the analysis results, three 

conclusions are achieved: both methods preserve the defined important information 

in the same level, the proposed method groups more rules, and the proposed method 

prunes more redundant rules. This method comparison basis is designed to be 

applicable in the quality data. However, it can be developed to be applicable in the 

classification data in general or in other types of categorical data. If continuous 

probability distributions are considered for input variables, then the application 

domain maybe extended to continuous data as well. 
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CHAPTER 7 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

 

A successful application of association rules require appropriate initial analysis and 

threshold settings for support and confidence in the rule mining process. In general, 

setting low thresholds is necessary to mine all interesting rules and to prevent 

information loss. However, the classic measures of support and confidence generate 

many redundant rules, especially when low thresholds are set for them. Hence, it is 

hard to interpret the huge number of mined rules.  

 

Many approaches are introduced to reduce the set of mined association rules and 

make them more understandable. The approaches, based on "similarity" or 

"redundancy" among association rules, are very successful for rule reduction 

purposes. They can be categorized into two; grouping and pruning the association 

rules. Grouping techniques try to summarize the set of discovered rules by clustering 

the "similar" rules. Pruning techniques try to reduce the number of mined or to be 

mined association rules by detecting the "redundant" rules and removing them. 

 

The focus of this thesis is on developing an effective rule reduction method 

particularly for applications requiring low support-confidence thresholds. There are 

some pre-developed methodologies that try to organize the large sets of mined 

association rules into human-tractable rule sets. However, many of these approaches 

may not be appropriate for applications requiring low threshold settings. Berrado and 

Runger [28] have developed the metarules method for organizing rules in sparse 

data. This method may encounter some problems in applications including low 

confident rules. We showed how this method can underestimate part of significant 
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overlaps which may cause effectiveness reduction in later grouping /pruning steps. In 

this study, the metarules method is improved to be more efficient in implementation 

and more effective in grouping and pruning rules particularly mined with low 

threshold settings.  In our proposed method, the overlap and containment of rules are 

analyzed with new concepts and definitions. Then an algorithm is developed to mine 

overlaps /containments in a more efficient way. Experiments on some benchmarks 

datasets are conducted where the efficiency and effectiveness of proposed approach 

is compared with the metarules method. Results of experiments show that the 

proposed method scans the data less and also group and prune more rules. 

 

Another important issue addressed in this thesis is how to evaluate the performance 

of different grouping and pruning methods. To this end, three general criteria are 

considered in evaluating and comparing the performance of such methods: 

information loss, grouping performance and pruning performance. A new 

performance comparison basis is introduced which enables data analysts to precisely 

evaluate the performance of different rule reduction methods. We used the presented 

basis to compare the performance of the metarules method with our method in the 

quality data. The results are consistent with the results of experiments on real 

benchmark datasets. 

 

For the future work, we would like to combine the developed ODA algorithm with 

Apriori algorithm. Our intention is to have a modified Apriori algorithm, which can 

be reapplied on constructed NQ-set and that its computational complexity is 

improved. Another interesting research work would be to modify the Apriori 

algorithm as if it could mine association rules that are not overlapped by each other. 

In other words, we would like to embed grouping /pruning techniques inside initial 

rule mining steps such that the discovered association rules are already grouped and 

there is not any redundant rule between them. By doing that, the post-processing 

steps such as grouping and pruning discovered rules will be relaxed. 

 

We developed a new basis which enables different rule reduction methods to be 

compared. In the future, we would like to conduct a larger series of experiments that 
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include variety of rule reduction methods and also many domain data. By doing this 

survey, we can find out which method is doing great on what kind of data and 

applications. Such information is very important and can save a lot of time for data 

analysts and help them to systematically and easily find the most suitable and 

effective method for their specific application. 
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APPENDIX A 

 

 

ASSOCIATION RULES IN THE GENERATED QUALITY DATA 

 

 

 

 

{{x1 = 0},{x2 = 0},{x3 = 0}} → {z = 0} < confidence ≅ 88% >  

{{x1 = 0},{x2 = 0},{x3 = 0}} → {z = 1} < confidence ≅ 12% > 

 

{{x1 = 1},{x2 = 0},{x3 = 0}} → {z = 0} < confidence ≅ 73% > 

{{x1 = 1},{x2 = 0},{x3 = 0}} → {z = 1} < confidence ≅ 27% > 

 

{{x1 = 0},{x2 = 1},{x3 = 0}} → {z = 0} < confidence ≅ 73% >  

{{x1 = 0},{x2 = 1},{x3 = 0}} → {z = 1} < confidence ≅ 27% > 

 

{{x1 = 0},{x2 = 0},{x3 = 1}} → {z = 0} < confidence ≅ 73% > 

{{x1 = 0},{x2 = 0},{x3 = 1}} → {z = 1} < confidence ≅ 27% > 

 

{{x1 = 1},{x2 = 1},{x3 = 0}} → {z = 0} < confidence ≅ 50% >  

{{x1 = 1},{x2 = 1},{x3 = 0}} → {z = 1} < confidence ≅ 50% > 

 

{{x1 = 1},{x2 = 0},{x3 = 1}} → {z = 0} < confidence ≅ 50% > 

{{x1 = 1},{x2 = 0},{x3 = 1}} → {z = 1} < confidence ≅ 50% >  

 

{{x1 = 0},{x2 = 1},{x3 = 1}} → {z = 0} < confidence ≅ 50% > 

{{x1 = 0},{x2 = 1},{x3 = 1}} → {z = 1} < confidence ≅ 50% > 

 

{{x1 = 1},{x2 = 1},{x3 = 1}} → {z = 0} < confidence ≅ 27% > 

{{x1 = 1},{x2 = 1},{x3 = 1}} → {z = 1} < confidence ≅ 73% > 
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APPENDIX B 

 

 

CHARTS & ANALYSIS RESULTS FOR EVALUATION 

MEASURES 
 

 

 

 

 

 

Figure B.1 Charts & analysis results for measure M2 
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General Linear Model: M2 versus N, AT  
Factor  Type   Levels  Values 

N       fixed       2  1, 2 

AT      fixed       2  1, 2 

 

Analysis of Variance for M2, using Adjusted SS for Tests 

Source  DF    Seq SS    Adj SS    Adj MS      F      P 

N        1  0.009361  0.009361  0.009361   4.93  0.045 

AT       1  0.070623  0.070623  0.070623  37.23  0.000 

Error   13  0.024663  0.024663  0.001897 

Total   15  0.104647 

 

S = 0.0435566   R-Sq = 76.43%   R-Sq(adj) = 72.81% 

 

Unusual Observations for M2 

Obs        M2       Fit    SE Fit  Residual  St Resid 

  3  0.628000  0.547313  0.018861  0.080688      2.06 R 

 

R denotes an observation with a large standardized residual. 
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Figure B.2 Charts & analysis results for measure M3 
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General Linear Model: M3 versus N, AT  
 
Factor  Type   Levels  Values 

N       fixed       2  1, 2 

AT      fixed       2  1, 2 

 

 

Analysis of Variance for M3, using Adjusted SS for Tests 

 

Source  DF    Seq SS    Adj SS    Adj MS      F      P 

N        1  0.002862  0.002862  0.002862   1.85  0.197 

AT       1  0.061009  0.061009  0.061009  39.48  0.000 

Error   13  0.020088  0.020088  0.001545 

Total   15  0.083959 

 

 

S = 0.0393092   R-Sq = 76.07%   R-Sq(adj) = 72.39% 
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Figure B.3 Charts & analysis results for measure M4 
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General Linear Model: M4 versus N, AT  
 
Factor  Type   Levels  Values 

N       fixed       2  1, 2 

AT      fixed       2  1, 2 

 

 

Analysis of Variance for M4, using Adjusted SS for Tests 

 

Source  DF     Seq SS     Adj SS     Adj MS     F      P 

N        1  0.0000031  0.0000031  0.0000031  0.02  0.893 

AT       1  0.0004951  0.0004951  0.0004951  3.07  0.103 

Error   13  0.0020988  0.0020988  0.0001614 

Total   15  0.0025969 

 

 

S = 0.0127062   R-Sq = 19.18%   R-Sq(adj) = 6.75% 
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Figure B.4 Charts & analysis results for measure TM4 
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General Linear Model: TM4 versus N, AT  
 
Factor  Type   Levels  Values 

N       fixed       2  1, 2 

AT      fixed       2  1, 2 

 

 

Analysis of Variance for TM4, using Adjusted SS for Tests 

 

Source  DF  Seq SS  Adj SS  Adj MS     F      P 

N        1   0.050   0.050   0.050  0.02  0.889 

AT       1   7.584   7.584   7.584  3.07  0.103 

Error   13  32.090  32.090   2.468 

Total   15  39.724 

 

 

S = 1.57113   R-Sq = 19.22%   R-Sq(adj) = 6.79% 

 

 

TM4 = )sin( 4MArc  
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Figure B.5 Charts & analysis results for measure LM4 
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General Linear Model: LM4 versus N, AT  
 
Factor  Type   Levels  Values 

N       fixed       2  1, 2 

AT      fixed       2  1, 2 

 

 

Analysis of Variance for LM4, using Adjusted SS for Tests 

 

Source  DF   Seq SS   Adj SS   Adj MS     F      P 

N        1  0.00023  0.00023  0.00023  0.02  0.887 

AT       1  0.03319  0.03319  0.03319  3.08  0.103 

Error   13  0.14029  0.14029  0.01079 

Total   15  0.17371 

 

 

S = 0.103882   R-Sq = 19.24%   R-Sq(adj) = 6.81% 
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Figure B.6 Results of Kruskal-Wallis Test on measure M4 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kruskal-Wallis Test: M4 versus AT  
 
Kruskal-Wallis Test on M4 

 

AT        N   Median  Ave Rank      Z 

1         8  0.04950       6.6  -1.63 

2         8  0.06150      10.4   1.63 

Overall  16                8.5 

 

H = 2.65  DF = 1  P = 0.104 

H = 2.67  DF = 1  P = 0.102  (adjusted for ties) 
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Figure B.7 Main effects and ANOVA results for measure M4 
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Factorial Fit: M4 versus N, AT  
 
Estimated Effects and Coefficients for M4 (coded units) 

 

Term         Effect       Coef   SE Coef      T      P 

Constant              0.056063  0.003295  17.01  0.000 

N         -0.000875  -0.000437  0.003295  -0.13  0.897 

AT         0.011125   0.005563  0.003295   1.69  0.117 

N*AT      -0.001875  -0.000937  0.003295  -0.28  0.781 

 

 

S = 0.0131806   R-Sq = 19.72%   R-Sq(adj) = 0.00% 

 

 

Analysis of Variance for M4 (coded units) 

 

Source              DF      Seq SS      Adj SS      Adj MS     F      P 

Main Effects         2  0.00049813  0.00049813  0.00024906  1.43  0.277 

2-Way Interactions   1  0.00001406  0.00001406  0.00001406  0.08  0.781 

Residual Error      12  0.00208475  0.00208475  0.00017373 

  Pure Error        12  0.00208475  0.00208475  0.00017373 

Total               15  0.00259694 

 

 

Estimated Coefficients for M4 using data in uncoded units 

 

Term            Coef 

Constant   0.0322500 

N          0.0047500 

AT         0.0167500 

N*AT      -0.0037500 

 

 

Alias Structure 

I 

N 

AT 

N*AT 
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Figure B.8 Charts & analysis results for measure M5 
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General Linear Model: M5 versus N, AT  
 
Factor  Type   Levels  Values 

N       fixed       2  1, 2 

AT      fixed       2  1, 2 

 

 

Analysis of Variance for M5, using Adjusted SS for Tests 

 

Source  DF     Seq SS     Adj SS     Adj MS      F      P 

N        1  0.0007290  0.0007290  0.0007290   1.89  0.192 

AT       1  0.0152522  0.0152522  0.0152522  39.60  0.000 

Error   13  0.0050065  0.0050065  0.0003851 

Total   15  0.0209877 

 

 

S = 0.0196244   R-Sq = 76.15%   R-Sq(adj) = 72.48% 

 


