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ABSTRACT 

 

ONLINE AND SEMI-AUTOMATIC ANNOTATION OF FACES IN 
PERSONAL VIDEOS 

 

Yılmaztürk, Mehmet Celaleddin 

M.Sc., Department of Electrical and Electronics Engineering 

     Supervisor : Asst. Prof. Dr. İlkay Ulusoy 

 

 

May 2010, 60 Pages 

 

 

Video annotation has become an important issue due to the rapidly increasing amount of 

video available. For efficient video content searches, annotation has to be done 

beforehand, which is a time-consuming process if done manually. Automatic annotation 

of faces for person identification is a major challenge in the context of content-based 

video retrieval. This thesis work focuses on the development of a semi-automatic face 

annotation system which benefits from online learning methods. The system creates a 

face database by using face detection and tracking algorithms to collect samples of the 

encountered faces in the video and by receiving labels from the user. Using this database 

a learner model is trained. While the training session continues, the system starts offering 

labels for the newly encountered faces and lets the user acknowledge or correct the 

suggested labels hence a learner is updated online throughout the video. The user is free 

to train the learner until satisfactory results are obtained. In order to create a face 

database, a shot boundary algorithm is implemented to partition the video into 

semantically meaningful segments and the user browses through the video from one shot  
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boundary to the next. A face detector followed by a face tracker is implemented to 

collect face samples within two shot boundary frames. For online learning, feature 

extraction and classification methods which are computationally efficient are 

investigated and evaluated. Sequential variants of some robust batch classification 

algorithms are implemented. Combinations of feature extraction and classification 

methods have been tested and compared according to their face recognition accuracy and 

computational performances. 

Keywords: Online Learning, Facial Feature Extraction, Face Recognition.  
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ÖZ 

 

KİŞİSEL VİDEOLARDAKİ YÜZLERİN ÇEVRİMİÇİ VE YARI 

OTOMATİK İSİMLENDİRİLMESİ 

Yılmaztürk, Mehmet Celaleddin 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

        Tez Yöneticisi : Yard. Doç. Dr. İlkay Ulusoy 

 

Mayıs 2010, 60 Sayfa 

 

 

Görsel malzemenin miktar ve erişilebilirliğinin hızla artması sonucu, video isimlendirme 

uygulamalarının önemi de arttı. Görsel içerik aramayı verimli bir şekilde 

gerçekleştirebilmek için, etiketleme işinin önceden yapılması gerekir ve bu oldukça 

zaman alıcı bir uğraştır. İnsan yüzlerinin, videodaki kişileri tanımak için otomatik olarak 

etiketlendirilmesi, içerik-tabanlı videodan bilgi çıkarma yöntemleri için  büyük bir 

zorlayıcı etkendir. Bu tez, etkin öğrenme yöntemlerinden yararlanılarak, yarı otomatik 

yüz etiketlendiren bir sistem gelişitirilmesine odaklanmıştır. Sistem yüz tespit ve takip 

yöntemleri kullanarak videodaki yüzlerden oluşan bir veritabanı oluşturur ve 

kullanıcıdan aldığı isimlerle etiketleme yapar. Bu veritabanı kullanılarak bir öğrenme 

modeli eğitilir. Eğitim süreci boyunca da, sistem yeni karşılaşılan yüzler için kullanıcıya 

isim önerileri yapar, kullanıcı ise bu isimleri onaylar ya da doğru isimleri girerek 

düzeltir, böylece sistem sürekli olarak eğitim bilgileriyle güncellenir. Kullanıcı sistemden 

tatmin edici sonuçlar alana kadar eğitimi sürdürebilir. Yüz veritabanını oluşturmak için, 

videoyu anlamsal bağlamda bütünlük içeren parçalara bölmek adına , sahne sınırlarını 

tespit eden bir işlemsel süreç uygulanır ve kullanıcı videodaki sahne sınırlarını belirleyen  
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film kareleri arasında gezer. Yüz tespit ve takip yöntemleriye sahne sınırında bulunan 

yüzleri bir sonraki sahne sınırına kadar takip ederek veri toplayan bir işlemsel süreç 

uygulanmıştır. Etkin öğrenme için, işlem yükü açısından verimli öznitelik çıkarma ve 

sınıflandırma   yöntemleri incelenmiş ve değerlendirilmiştir. Güvenilir sonuçlar veren ve 

verileri toplu işleyen bazı sınıflandırma yöntemlerinin ardışık veri işleyen türevleri 

uygulanmıştır. Öznitelik çıkarma ve sınıflandırma yöntemlerinin bileşimleri denenmiş ve 

yüzleri tanımadaki başarılarıyla işlem yükleri göz önünde bulundurularak kıyaslanmıştır. 

Anahtar Sözcükler: Çevrimiçi Öğrenme, Yüz Özniteliklerinin Çıkarımı , Yüz Tanıma.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Due to the development of high-speed internet as well as the increase in the number and 

variety of high-quality digital platforms, access to huge amounts of multimedia content 

has become as easy as has never been. People can acquire video clips, movies and all 

sorts of audio/video content with a click of the mouse, as they share the content they 

have produced with the community in return. This led to the accumulation of multimedia 

content in all sorts of different media platforms including cyberspace, personal archives, 

DVD’s etc. But huge amounts of data demands an effective search method to access the 

desired content. Semantic annotation is one solution to group and label content 

efficiently. In this work the focus is on the visual cues extracted from the multimedia 

data. If visual content can be annotated semantically within the context of an ontological 

structure, i.e., if keywords and textual descriptions are entered by the user as the 

metadata, queries could be much more specific and target oriented. Instead of receiving 

vague results, precise information can be obtained through data retrieval techniques. 

One major branch of semantic annotation involves the labeling of people in videos with 

metadata. This is a broad subject covering annotation of people including faces, upper 

bodies, pedestrians, etc. Each type of target definition brings its own challenges and 

application requirements within its context. Although fruitful, annotation is a time-

consuming and exhaustive process if manually performed. For example, in order to 

annotate occurrences of an actor/actress in a TV-series, dozens of episodes have to be 

hand-labeled one by one, where each of the episodes has tens or even hundreds of scenes. 

And, for example, if the location of the actor’s face is to be recorded, then most probably 
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the effort would be limited to recording one sample location per scene, unless the 

annotator is willing to hand label each frame of the scene, one by one. It is 

understandable that users are resistant to the task of data entry [31]. An alternative 

approach is content-based indexing and retrieval which provides some degree of 

automation for this process by automatically extracting features directly from the data. 

For personal photo and video archives, no additional information such as text or voice is 

assumed to be available. Thus, the only information comes from the visual data. By using 

the intrinsic visual attributes of images, such as color, structure, texture, and 

composition, users can search collections by instructing the system to retrieve images 

that are visually similar to the sample image. The disadvantage of this approach is that 

these systems only extract low-level syntactic features, which are not semantically useful 

to consumers as keyword-based annotations would be. In this study emphasis was put on 

semi-automatic annotation methods where some annotation is requested from the user for 

the purposes of training the system. The image and video contents are analyzed 

automatically and the user provides the annotation for the analyzed data only. The 

learning effort from this limited information and the annotation of the rest of the video 

are performed automatically.  

For personal multimedia archives, the most interesting contents are human faces in the 

photos and videos. Thus, in general, face annotation can be regarded as an extended face 

detection and recognition problem if one considers only the visual information. 

Fortunately face identification is one of the most promising sub-branches of automatic 

annotation of people since faces are, unlike others, unique in the sense that recognition 

can be performed using discriminative features extracted from faces. A person on the 

video may change  his/her clothing, hairstyle etc. but faces have to remain more or less 

the same thus faces can be thought of as samples from a higher dimensional face-

manifold which covers a continuum of face image representations along size, expression, 

illumination, resolution and pose axes. These parameters can yield quite distorted face 

representations which make face recognition yet quite challenging. 

1.2 Background 

There is a large amount of work for face recognition in photos [32].  Also, face 

annotation for personal photo archives has been studied extensively [13, 14, 15, 16, 35, 

36, 37]. However, the recognition of faces in videos is more challenging because of the 
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much more dynamic nature of the videos involving bizarre conditions which distort the 

faces. The face annotation in video requires not only precise face detection on frames but 

also precise face tracking through frames. The state of the art methods for face detection, 

tracking and recognition in video [16, 19] usually include a single face moving in front 

of the camera.  

Thus, semi-automatic annotation methods based on faces are also possible. First of all, 

methods use the state of the art face detectors to detect frontal or close to frontal faces in 

videos, especially at shot boundaries. Then, face trackers are employed to attach images 

of the same face and to extract the sequence of face within a shot although the face has 

various poses and expressions throughout this sequence. Some of the tracks are labeled 

manually and used as the training set. Finally, the rest of the tracks are labeled 

automatically based on the manually labeled set [9].   

The proposed methods are tested on the videos of movies, news and TV series which 

include many characters and scenes. In this way, the proposed methods are used for 

automatic naming of characters [8, 29, 38, 39, 43, 44]. As the related work, we consider 

methods that provide annotations based on only the facial region and exclude methods 

considering hair, body and clothing [38, 39, 43] because these may show many more 

variations than the appearance of the face. In [33], a neural network based face detector 

and skin color based face tracker are used. Each detected face is normalized to 64 x 64 

pixels and the face sequence matching is done by the appearance based face matching.  

Automatic labeling is done by finding the pair of query and gallery samples which are 

closest to each other where the entire query track is labeled with the class label of the 

gallery sample. Four methods (Eigenface, Fisher’s Linear Discriminant, subspace and 

kernel methods) are tested for the performance of face recognition and Fisher’s Linear 

Discriminant is found to perform the best [23]. In [38], Viola-Jones face detector [1] and 

Kanade-Lucas-Tomasi face tracker [20] are used. Hundreds of faces are labeled for 

learning facial features   using Adaboost where Haar-like features are used [1]. The facial 

appearance is represented by the descriptions obtained around the facial features. The 

pixel values or SIFT features [39] are extracted as the descriptions. The automatic 

labeling is done in the same way as [18]. In [39] Viola-Jones face detector [1] and color 

based face tracker are used. The tracks are clustered and the automatic labeling is 

performed in the same way as [18]. Viola-Jones face detector [1] and particle filter face 
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tracker are used in [9]. Discrete Cosine Transform (DCT) coefficients are extracted from 

the faces [3] and nearest neighbor classifier is used for automatic labeling. 

Each study in the literature performs different tests on different data sets and presents its 

results in a different way. The common method of testing is that some part (nearly one 

quarter) of the video is manually annotated (i.e. the tracks are labeled) and the rest of the 

video is automatically labeled and the performance of the method is presented based on 

correct labeling [8, 9, 38, 39, 43, 44]. This method is also suitable for personal video 

annotation. Some studies working on TV series episodes use an episode for training and 

use other episode or episodes for testing [18,39].  

Various performance measurements are used in different studies.  For example, in [38, 

43, 44] precision-recall curves are used where recall is defined as the proportion of tracks 

which are assigned a name after applying the “refusal to predict” mechanism and the 

precision is defined as the proportion of correctly labeled tracks out of all labeled tracks. 

If all of the test tracks are labeled (i.e. recall is %100) then the precision is between %63 

and %69 for various episodes of “Buffy the Vampire Slayer”. Similarly, in [39], 

precision less than %60 is achieved for %100 recall for various episodes of “Friends”. In 

[18, 34] the accuracy of labeling is plotted against the number of training sequences. The 

highest accuracy reached for various episodes of “Oshigoto-desu!” is %60 in [18]. In [9] 

TV series “Coupling” is used for testing and precisions less than %40 is achieved for 

each character at %100 recall. 

The systems proposed in the literature are all off-line [5, 8, 9, 18, 34, 38, 39, 43, 44], i.e. 

the annotation is performed off-line and then the results are provided to the user at a 

speed close to real time. Usually, many post processing steps are applied for accurate 

tracking and face clustering. Besides, batch learning of labeled data is performed first 

and then the rest of the data is labeled automatically. Nearly none of the studies presents 

a performance for the computational time of the training and testing steps, except in [18] 

where four methods are compared both in terms of accuracy and CPU time of the 

training sessions.  

In this study, a semi- automatic video annotation tool based on faces is developed for 

personal videos where the annotation is done online with very minor user interaction. 

This application scenario is different from the previous studies. The goal is to develop an 
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automatic face annotation tool with an online learning stage. The system interacts with 

the user to get annotations for the unknown faces in the beginning of the video. These 

initial annotations are used for the training of the system. After a period of training time, 

the system automatically recognizes the learned faces in the remaining part of the video.  

The system also allows the user to correct any of the automatic annotations, if necessary, 

and these corrections are added to the training set to improve the success of the system. 

Instead of batch classification or learning, which are used in the literature for off-line 

applications, sequential methods are used in this study, since learning continues 

throughout the annotation process in the form of either user labeling or user feedback. In 

order to build a real-time learning system, the parts of the system have to be fast and 

robust. The timing constraint limits the use of some algorithms such as classification 

based on facial features using gabor wavelets [28] since they are found to be 

computationally expensive according to the preliminary tests. Thus, each stage of the 

system (shot detection, face detection at shot boundaries, face tracking throughout the 

shot, learning of the manually labeled face tracks, labeling of faces on the other tracks) is 

optimized in terms of both accuracy and time.  

The work is organized as follows: Chapter 2 presents an overview of the proposed 

system and the main steps of the method are discussed. Chapter 3 involves the 

description of the algorithms used for face recognition and comparative performance 

evaluation for each method is presented in terms of execution times and recognition 

accuracies. In Chapter 4, the online automatic annotation tool is tested for video 

annotation using an episode of a TV series. Extensive tests are made to compare the 

performances of the considered algorithms for online annotation application. Chapter 5 

presents the concluding remarks and possible future work. 
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CHAPTER 2 

PRELIMINARY METHODS 

2.1 Overview 

 
The main steps of the proposed system are shown in Figure 2.1. The shot boundaries in 

the video are automatically detected and presented to the user one at a time. For a real-

time application, the shot boundary detector should have a reasonable performance. In 

this study, after investigating various methods [27], the digitized color histogram 

difference method has been implemented. Adoption of complex features like edges for 

shot boundary detection has been shown to be inadequate to outperform the performance 

of the simpler algorithms, yet complex features require much more computational power 

[27]. Histogram-based methods are used frequently in many similar video face 

identification systems [8, 17, 43]. 

 

 

 

Figure 2.1. The Flowchart of the Overall System 
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The faces on the shot boundary frames are detected automatically by a state of the art 

face detector [1] which is proved to perform well in previous applications [9, 38, 39]. In 

order to improve the performance of the system, the face detector is applied to edge 

enhanced images. Only frontal faces or faces very close to frontal pose are detected. We 

do not use additional cues such as hair or clothing [38, 39] because hair or clothing may 

change a lot in a personal archive.    

The user is asked to label the detected faces at the shot boundaries through a user 

interface. Then the faces are tracked through the frames within the shot. In our method, 

human faces are tracked in order to populate a database of target faces which we want to 

recognize. So it is essential to have high quality face tracks. A good track must contain 

only the face and the least amount of background clutter. Also the facial features (eyes, 

mouth, etc.) which are crucial for the consequent recognition step must be contained in 

the spatial boundary of the track, if they are already visible in the scene. Methods like 

Continuously Adaptive Mean Shift [6] and Particle Filtering [25] may be used for face 

tracking; however there are some problems in using them for our purposes. They are not 

suitable for real-time applications. They may result with tracks including noisy 

background beside faces. Also, they may depend on manually set parameters. Therefore, 

in this study a well-known face tracker, which is based on generic features such as 

corners [20, 21], is used with some modifications. In this way, faces are tracked faster 

and better.  

The tracks of the detected faces are saved to the database with the labels input by the 

user. After some time, which may also be defined by the user, the system learns the faces 

in the database. Then, other faces are automatically detected, tracked and recognized in 

the rest of the video. The recognized faces are presented to the user to receive feedback 

about the correctness of automatic labeling. Based on the user feedback, the database is 

revised. For example, if the recognized face is wrongly labeled by the system, the user 

will correct the label and the corresponding face tracking information will be added to 

the correct label class. The classification is performed once more with this new 

information.  

The face recognition methods which are highly popular for annotation applications are 

classification methods such as Nearest Neighbor (NN) [3] and Linear Discriminant 

Analysis (LDA) [23] and learning methods such as Support Vector Machine (SVM) [26]. 
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Although there is a consensus in the literature about the appropriate face detector and 

tracker for automatic annotation applications, a commonly agreed method doesn’t exist 

for face recognition. There are many recent studies which compare various face 

recognition methods used for annotation applications. For example, NN and SVM are 

compared in [43], the Eigenfaces [22], Fisher’s linear discriminant, subspace and kernel 

function subspace methods are compared in [18] and Single Kernel SVM and Multiple 

Kernel SVM are compared in [44] by using face sequences obtained from videos.  In this 

paper, NN, LDA, SVM and MK SVM are compared for our real-time annotation 

application. However, the sequential approaches are used, since the classification is done 

throughout the annotation process when user labeling or user feedback is received. The 

sequential learning is faster and more suitable for such a real-time application. Because, 

instead of re-training or re-classifying the whole database with the new information, 

training is done incrementally so that the previously learned model is updated with the 

new information. Thus, except for NN, sequential versions of LDA and SVM are 

implemented and compared for our application. The faces are not directly used in these 

methods, instead some informative features such as Discrete Cosine Transform (DCT) 

[3], Local Binary Patterns (LBP) [2] and Histogram of Gradients (HOG) [42] are 

extracted from face images and these are used with all classification and recognition 

methods and the performances are compared. 

2.2 Shot Boundary Detection 

A shot is a visually continuous collection of frames starting from a scene change in the 

video to the next scene change, or a switch of the cameras. A variety of shot boundary 

detection algorithms exist in the literature [10, 27]. The basic idea of shot boundary 

detection is to compare consecutive frames to detect a significant change in terms of a 

given metric. These include methods which compare consecutive frames by calculating 

direct pixel differences, digitized color histogram differences and others such as 

calculation of edge change ratios within frames.  

In our work we have chosen the digitized color histogram difference method because it is 

fast and performs well when compared to the other methods [27]. Additionally, most of 

the personal videos and TV shows include direct cuts as shot boundaries and 

implemented algorithm is found adequate for detection of the shot boundaries although 

some false shot boundaries may be declared. But, the accuracy of the shot boundary 
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detection algorithm is not essential for the performance of the overall system since the 

main point is that shot boundaries are used as beacon points for detection and tracking of 

faces. Extra shot boundaries would only mean an additional face detection-tracking step. 

And a missing shot boundary will be noticed by the facial feature tracker. The face 

tracker would stop at the shot boundary frame due to the abrupt change in the pixel 

values between consecutive frames. 

 Each color channel (R,G,B) is digitized to 8 values and the color histograms of the 

frames are extracted. The digitization step is a precaution to reduce susceptibility to 

noise. Next, the histograms of consecutive frames are compared via the histogram 

difference method as shown in Equation 2.1. 

 

 

,ࢎሺࢊ                                      ሻࢍ ൌ෍෍෍ሺࢎሺ࢘, ,ࢍ ሻ࢈ െ ,࢘ሺࢍ ,ࢍ ሻሻ࢈

୆ࡾࡳ

                             ሺ2.1ሻ 

 

    

Here h and g are the RGB color histograms of two consecutive frames. If the difference 

value d(h,g) exceeds a threshold then a shot boundary is declared. In order to cope with 

transient shot changes which may last for more than one frame, only a local maximum 

within a window is considered and the other results are discarded. The default value for 

this window is chosen to be five frames. 

2.3 Face Detection 

There are a number of robust face detection algorithms in the literature for near frontal 

faces. The most commonly used one is the Viola-Jones face detector [1] which is a 

cascade of Haar-like features boosted by adaboost tool. Viola-Jones face detector is run 

at each shot boundary frame. If the shot boundary frame does not return a detected face, 

the next frame is loaded and another face detection trial is made. This procedure is 

repeated until a face is detected. If a face cannot be detected within a certain number of 

frames (chosen as 10) following the shot boundary frame, the current shot boundary is 
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presented to the user as-is, namely without any marked face locations but the user may 

mark the missed faces manually or continue browsing through shot boundary frames by 

skipping that frame and the search is restarted from the next shot boundary frame. 

2.4 Face Tracking 

In our system, human faces are tracked in order to populate a database of target faces 

which we want to classify. So the quality of the face tracks is essential for the 

performance of face recognition. A good track must contain the minimum possible 

amount of background clutter. Also the facial features (eyes, mouth, etc.) which are 

crucial for the consequent recognition step must be contained in the spatial boundary of 

the track, if they are already visible in the scene. The speed of tracking is another 

important issue for a real-time annotation system. Therefore, we investigated possible 

trackers in detail in order to choose the right method. The most commonly used methods, 

such as Continuously Adaptive Mean Shift algorithm [6], Particle Filtering [25, 30] and 

Optical Flow Feature Tracking [20], are compared in terms of performance and speed. 

2.4.1 Continuously Adaptive Mean Shift (Camshift) 

Camshift [6] is a very fast algorithm however it requires its parameters to be tuned 

depending on the scene characteristics. This tracker makes use of the color histograms of 

the scene and the rectangular face region. A 2D (Hue x Saturation) model histogram is 

formed using the initial face rectangle. Camshift algorithm assigns probability scores to 

the pixels indicating their likelihood of belonging to a facial color. For each pixel in the 

search region, the number of occurrences of the given color is counted in the model 

histogram (which is extracted from the initial face rectangle) and this score is assigned to 

the pixels with the given color on a map which has the size of the search region. Then 

Mean Shift algorithm [7] is applied to determine the mode of the biggest blob in an 

iterative manner. The new size of the rectangular region is also determined from this map 

by summing up the total score under the designated center of the face. 

In order to differentiate the color distribution of the face region from the background 

region, some color values need to be trimmed and filtered. For example, hue values, 

which are very effective in differentiating human skin color, are quite unreliable given 

low saturation or low brightness values. The threshold values for these filters have to be 

determined for each scene.  
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Instead of manually determining the threshold values, an automatic approach may be 

used to determine the appropriate threshold values. For this purpose, histograms of hue, 

saturation and value (HSV) channels are extracted for the background scene excluding 

the face region and a separate set of histograms are similarly extracted for the detected 

face region. The background scene is chosen as the surrounding rectangle with an area 

four times larger and centering the face rectangle. Our aim was to decide the thresholds 

for HSV channels which would enable us to separate the face region colors from the 

background colors as much as possible. 1D Gaussian distributions are fit to the face color 

histograms independently for each channel. The threshold value for each channel is set 

where the Gaussian model for the face rectangle intersects the actual distribution for the 

background histogram. If this intersection occurs for a number of values, the one which 

is closest to the mean value of the Gaussian (and smaller than the mean value) is 

selected. But this method is found out to be susceptible to small deviations and the 

threshold could not be determined accurately enough.  

Another problem with the Camshift algorithm is that only color information is used 

throughout the whole tracking process. This may cause the tracker to engage to the neck 

(Figure 2.2), balding heads, or hands moving near or in front of the face in addition to the 

already problematic human skin-color resembling background.  

 

 

 

Figure 2.2. A problem with CamShift. The face rectangle grows rapidly due to skin colored pixels 

in the neck region. 
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Thus, the method is found to be inadequate for our application because a small change in 

the parameters may cause a drastic change in the behavior of the tracker and the tracker 

ends up capturing regions other than the faces easily. 

 

 

Figure 2.3. Output of the particle filter face tracker. Faces are not centered. There is a 

significant amount of background clutter. 

 

2.4.2 Color Based Particle Filter Face Tracker  

We have used a particle-filter color tracker implementation available in [30]. This 

method is not fast enough to be used in a real-time application. Also the success of this 

tracker is found to be inadequate and the tracker cannot compensate for its high 

computational demands. Although independent from parameter tuning, the face 

boundaries within the tracks often contain significant amounts of background clutter. The 

tracker is susceptible to noise, so intruder objects passing in front of the face cannot 

easily distract the tracker but the steady nature of the tracker is also a problem when the 

face itself is moving throughout the scene rapidly where the tracker does not change its 

state as fast as the face itself.  A sample output track can be observed in Figure 2.3. 

Some post processing was applied to improve the performance of the tracker. For 

example, a human-skin color recognizer based on a Support Vector Machine classifier 

was applied to each tracker output so that the background clutters could be trimmed from 

the central face region. But this led to a significant amount of decrease in the 

performance (in terms of speed) since each face image in the track needed to be 

processed by the skin color recognizer. Another reason for this approach not being 

satisfactory was that no significant trimming could be achieved if the background clutter 

resembled the human skin color. 
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2.4.3 Lucas-Kanade Pyramidal Optical Flow Feature Tracker 

The third face tracker algorithm that we have implemented is the Lucas-Kanade optical 

flow tracker [21]. In order to use the optical flow algorithm, certain features need to be 

selected.  These features have to be selected appropriately so as to increase the success of 

tracking. For this purpose, we select a number of feature points around the target facial 

feature areas according to [20]. The rectangular search regions around the eyes and 

mouth are selected according to the size of the face which is obtained from the face 

detector. In each of these three regions, a number of (chosen as 4) feature points are 

determined by detecting the corners. Having selected a total number of 12 corners, with 4 

corners for each region, the optical flow tracker algorithm finds the best matches for 

these 12 points in the following frame of the video. The mean value for each feature 

quadruple is claimed to be the location for the corresponding feature. The minimum 

bounding rectangle of the three feature centers is enlarged by a scale factor, which is 

chosen heuristically after inspecting several face images, and this rectangle is saved as 

the face rectangle. When there is an amount of optical flow error bigger than the 

designated threshold or if one or more of the feature points are lost, the tracking is 

completed.  

In optical flow tracking, the neck region, balding heads and background clutter 

resembling human skin color cannot affect the tracking quality since the color 

information is irrelevant. In addition, obstacles which may intervene by occluding the 

face, like moving hands, stop the tracking process. Otherwise such obstacles would have 

caused the accumulation of corrupt images in the database. Samples from the optical 

flow tracker can be observed in Figure 2.4. These results are unprocessed and direct 

outputs of the face tracker. It is clear that the optical flow tracker is robust under a wide 

variety of conditions such as low illumination (3rd and 4th rows), changes in facial 

expression (1st row and 6th row) and low resolution (bottom row).  

As a conclusion, the optical-flow facial feature tracker performs best for our application 

yielding the best face localization where the background clutter causes important 

degradation in the recognition performance. Also optical-flow feature tracker is not 

affected by the human-skin resembling colored backgrounds whereas color based 

trackers suffer a lot. There is a trade-off between the quality of the tracks and the length 

of the tracks, where selection of parameters for the termination criteria of the tracking 
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determines whether the tracking is to be terminated when the face goes through a big 

change. Long tracks may contain much more references of the target person and also the 

recognition could be started much earlier if the samples are collected in big steps, on the 

other hand if the termination criteria for the tracks are loose, the track may contain lots of 

different poses which may include poses that are not suitable to construct a model for the 

target face, such as profile faces or even some feature points may engage false corners 

outside the face region, resulting in taking samples which are erroneous. These may 

critically endanger the success of the recognition. 

 

 

Figure 2.4. Example face tracks from the TV series “How I Met Your Mother” 
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CHAPTER 3 

FACE RECOGNITION 

3.1 Overview 

In this chapter, the methods of face recognition which are used in this thesis will be 

evaluated. Each facial feature extraction algorithm and classification method is explained 

in detail. Results of extensive tests which investigate recognition accuracies and 

execution times are presented for offline testing sessions in order to compare the methods 

at the base level. We have implemented NN, LDA and SVM (with single and multiple 

kernels) as face recognition methods with features such as DCT, LBP and HOG.  

In order to compare execution times and recognition precisions, all feature extraction 

methods are tested with all classification methods. The execution times of all methods 

are plotted for both training and testing phases as the number of training and testing 

samples changes. In order to calculate the precision of face recognition algorithms, 

several tests have been made to compare the accuracies of the methods under different 

conditions. 

 

Accuracies are calculated as the number of target classes is changed. Similarly the 

variation of accuracy is plotted as the amount of training data is altered. All tests are 

made for two distinct face datasets. The first dataset is a collection of hand-labeled face 

detection outputs. Viola-Jones face detector [1] has been run for every single frame 

throughout an episode of “How I Met Your Mother” TV series and the detected faces of 

target people are manually clustered. The second dataset is created by using a face 

tracker algorithm on the same episode. OpenCV implementation of Camshift Color 

Based face tracker [6] is used in order to track faces throughout the video. The resulting 
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face tracks are also manually labeled and clustered. Samples from both datasets are fed to 

an illumination compensation algorithm before recognition is performed. 

 

The face detections database is composed of more-controlled and better-posed face 

images since the face detector detects frontal upright faces. The face tracks database on 

the other hand, captures a much more diverse set of face images as the tracker can collect 

rotated or otherwise distorted faces which may be missed by the face detector. But the 

higher diversity is expected to cause degradation in the precision. The face detections 

dataset gives us a prior judgment about the accuracies of the methods used. However, 

having the ultimate goal of designing an online system where encountered face tracks are 

to be classified, face tracks database gives a more valuable information about the 

performance of our methods in such severe conditions where face tracks may include 

heavily distorted faces via illumination conditions, rotations and facial expressions. 

 

In all tests, 5-fold cross validation technique is used. The database to be used is divided 

into 5 groups. One group is used as the test group while the remaining 4 are used as the 

training group. At each fold upon calculating the recognition precision, the test group is 

switched. The average of the five test results gives the final precision value. 

 

The rest of the chapter is as follows: First the illumination compensation algorithms used 

is described. Then the feature extraction and classification methods are explained. And 

finally the execution times and recognition accuracies of the methods for different 

conditions are presented. 

 

  

Figure 3.1. A sample for illumination compensation. (a) Original Image. (b) Resized Gray Image. 

(c) Illumination Compensated Image. 
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 3.2 Illumination Compensation 

Illumination compensation is performed in order to refine face images for a better 

recognition performance.  Since personal videos are recorded in uncontrolled 

environments, the illumination compensation is an essential step to deal with the 

diversity of illumination conditions which affect the pixel values. As the first step, 

sample face images are converted to gray-scale and resized to have a standard size of 64 

(height) x 48 (width) pixels. Then, a basic and fast algorithm of illumination 

compensation by homomorphic filtering [45] is applied (See Equation 3.1). Figure 3.1 

shows the process of the illumination compensation. When we take the logarithm of the 

raw image, by using a high pass filter we can amplify the reflectance field and suppress 

the luminance field. After taking back the exponential, the illumination compensation is 

achieved. 

 

,ݔ௖௢௠௣ሺܫ                                     ሻݕ ൌ ,ݔ௥௔௪ሺܫ൫݃݋൫݈݌ݔ݁ ሻ൯ݕ ∗ ,ݔ௛௣ሺܪ  ሻ ൯                  ሺ3.1ሻݕ

 

3.3  Feature Extraction 

Instead of using direct pixel values, which are sensitive to noise and localization errors, 

three alternative methods have been implemented and details of each method are 

presented. 

3.3.1 DCT Features 

DCT features are used for face recognition in the literature [3]. The resized images of 

size 64 x 48 pixels are divided into 8x8 pixel blocks. For each of these small blocks, two-

dimensional discrete cosine transform is applied. Ten of the resultant 8x8 transform 

coefficients are scanned in order to reduce the dimension of the 8x8 pixel block by 

representing the data block with 10 coefficients instead of 64. Coefficients which 

correspond to the higher frequency basis functions are less significant compared to the 

ones which correspond to the lower frequency basis functions; hence data compression 

can be attained by losing some high frequency information which can be affected more 
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easily by noise. Skipping the bias value, which is heavily dependent on illumination in 

the scene, first 10 DCT coefficients are scanned in a zigzag manner (Figure 3.2). 

Concatenating these 10 values for each block yields a vector of length 480. As the last 

step, this vector is normalized to have a unit norm. 

3.3.2 LBP Features 

Local Binary Patterns is originally used as a texture descriptor but in the literature its use 

as a facial feature extraction method has also been investigated [2]. Each pixel of the 

resized gray image is coded with an 8-bit string according to its 8 neighboring pixels. 

The value of the center pixel is compared to each of its 8 neighbors. If the value of the 

center pixel is greater than the neighbor, a 0 is assigned to the corresponding neighbor 

and a 1 is assigned otherwise. This pattern of 1’s and 0’s is unfolded to yield an 8 bit 

string. In Figure 3.3 the extraction of the 8-bit strings is shown. 

 

 

Figure 3.2. 2D DCT Basis Functions and the zigzag scanning method of the DCT 

Coefficients. 
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Figure 3.3. Demonstration for the extraction of 8-bit strings for Local Binary Patterns. 

 

For each pixel a string is assigned and number of occurrences for these strings is counted 

to create a histogram of 8-bit strings. This histogram with 256 bins is used as a feature 

vector of 256 dimensions. This vector is normalized to have a unit norm. 

3.3.3 HOG Features 

Histogram of oriented gradients is a feature extraction method commonly used for 

human detection [42]. But it is also proven to be a suitable feature extraction method for 

human faces [44]. A gray-scale face image of size 64x48 pixels is divided into 8x8 pixel 

cells. For each cell horizontal and vertical gradients are extracted by 1D derivatives with 

simplest kernels of length 3. ( [1 0 -1] for horizontal and [1 0 -1]T for vertical) then the  

magnitude and the angle of gradients are calculated at each pixel. 

 

 

 

Figure 3.4. Extraction of the Histogram of Oriented Gradients feature extraction. 

 

Orientation histogram is calculated for each cell where the scaled magnitudes are used as 

weights. 9 bins are used for [-π,π] interval. In order to do scaling for the weights, 2x2 
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cells are grouped together to yield one block of 16x16 pixels and a Gaussian mask is 

used to multiply the weights according to the spatial layout of the weights within the 

block. The center of the Gaussian mask is at the center of the blocks and the standard 

deviation is chosen as 8 pixels. 4 scaled histograms within the overall block are 

concatenated to give the overall descriptor for the particular region. This descriptor is 

also normalized by dividing it with its norm.  

Blocks are created in an overlapping fashion where adjacent two blocks have common 

cells but each time scaled according to a different block. This way an overall feature 

vector for the face is constructed by concatenating the local feature vectors for the 

overlapping blocks, 35 blocks with each having 4x9 (number of cells x number of bins) 

dimensions result in an overall feature vector of size 1260. Figure 3.4 shows an example 

of the extracted gradients. 

3.4 Classification 

In this section, three classification method, Nearest Neighbourhood, Linear Discriminant 

Analysis and Support Vector with Single or Multiple Kernels will be discussed. 

3.4.1 Nearest Neighbour (NN) 

NN method is widely used in annotation applications especially as a baseline method. A 

query track is composed of several face samples i.e., ܨொ={  ଵ݂
ொ,   ଶ݂

ொ,   ଷ݂
ொ, … ,   ெ݂

ொ}. 

Similarly the database contains the so-called “gallery” images, each of which is grouped 

according to its class label C, i.e., ܨ஼
ீ ൌ ሼ  ஼݂,ଵ

ீ,   ஼݂,ଶ
ீ,   ஼݂,ଷ

ீ, … ,   ஼݂,ே
ீሽ. A label is 

assigned to the query track by finding the highest similarity score among the competing 

gallery classes, using Equation 3.2. The similarity score is calculated using the 

normalized-correlation metric between query samples and the gallery samples of each 

class. The pair of samples which give the highest normalized-correlation value 

determines the overall score for the corresponding class (See Equation 3.3). 

 

݈ܾ݁ܽܮ                                      ൌ max ݃ݎܽ
஼

 ܵሺܨொ, ஼ܨ
ீሻ                                            ሺ3.2ሻ 

                                          
        

                 ܵ൫ܨொ, ஼ܨ
ீ൯ ൌ  max
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൰                         ሺ3.3ሻ     
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The prominent problem with one-to-one comparison of the feature vectors is that having 

a growing database results in an increasing comparison time. The second problem is the 

possible domination of the crowded class vectors. 

3.4.2 Linear Discriminant Analysis (LDA) 

LDA is actually a feature extraction method usually followed by a classifier (here 

Nearest Neighbourhood). A projection onto a lower dimensional space is determined 

according to the higher dimensional raw data. The projection procedure is also applied 

for the query vector and the projected query vector is classified according to the labeled 

data again with the Nearest Neighbourhood method. 

LDA yields the projection where the projected feature vectors are maximally separated 

between classes and minimally separated within their classes. To determine the 

projection matrix, Within-Class Scatter Matrix (See Equation 3.4) and Between-Class 

Scatter Matrix (See Equation 3.5) are constructed. 

 

࢝ࡿ                                                     ൌ ෍∑ࢉ

ெ

௖ୀଵ

ൌ෍ ෍ ሺ࢞ െ ࢞ሻሺࢉഥ࢞ െ ሻࢉഥ࢞
்

ሽࢉ࢞ሼ∋࢞

ெ

௖ୀଵ

                   ሺ3.4ሻ 

  

܊܁                                                      ൌ ෍݊௖ሺ࢞ഥࢉ െ ࢉഥ࢞ഥሻሺ࢞ െ ഥሻ்                                           ሺ3.5ሻ࢞

ெ

௖ୀଵ

 

 

Here M is the number of different classes, nc denotes the number of sample data 

belonging to class c, ࢞ഥࢉ denotes the mean of the vectors belonging to class c, ࢞ഥ denotes 

the mean vector of all sample data. The projection direction is found by calculating the 

eigenvectors of Equation 3.6. The number of selected eigenvectors corresponds to the 

dimension of the projected space. We retain the eigenvectors with the highest 

eigenvalues that capture the 95 % of the total energy where total energy is sum of all the 

eigenvalues.  
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ࡰ                                                                        ൌ ࢝ࡿ
ି૚࢈ࡿ                                                          ሺ3.6ሻ 

 

Since the within-class scatter matrix is a summation of outer-product of vectors, it is 

generally singular. In order to guarantee that the within-scatter matrix is non-singular, 

hence invertible, the number of training data must be greater than the summation of the 

number of input dimensions and the number of classes to be determined [4]. 

 3.4.3 Support Vector Machines with Single and Multiple Kernels 

Support Vector Machine is a binary classification method which tries to linearly separate 

samples from 2 classes according to some criteria. A separating hyperplane is defined to 

partition the sample space into two regions. The hyperplane is demanded to be as far 

from the nearest sample vectors as possible to provide a clear gap between the two 

classes. Although SVM is a linear classifier, using different Kernel functions the samples 

can be projected to different spaces. A sample set can be linearly separated on a 

transformed space even though it may not be in the original space. Instead of forcing the 

SVM to strictly discriminate all samples, a soft margin can be used. Using a soft margin 

value, the separating hyperplane can be fit to discriminate linearly inseparable data, 

although there is a penalty term for each of the data points which reside on the wrong 

side of the hyperplane.  

SVM is a binary classifier but it can be extended to make classification for multiple 

classes. There are a couple of methods for multi-class classification. The first one 

involves the solution of the optimization problem for all classes at once. But this method 

performs poorly. Another approach is the “one vs. one” where an SVM model is trained 

for each pair of classes. A query sample is tested with each SVM model and the class 

label is assigned according to the highest number of class labels presented. The problem 

with the method is the rapidly increasing number of SVM Models with increasing 

number of classes. For N classes, 
૚ሻିࡺሺࡺ

૛
 SVM models have to be trained. The last option 

is the “One vs. The Rest” method. For each class, an SVM model is trained. And the 

query samples are tested with each model. There may be some ambiguous situations with 

this method where the query vector ends up belonging to a number of classes more than 
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one or none at all. In order to decide the winner class, classification is done according to 

real decision values instead of the sign of the decision values. In this work we have 

adopted the “One vs. The Rest” method for multiclass classification. Gaussian RBF 

Kernel function (See Equation 3.7) is used for the single kernel SVM. Similarly for the 

Multiple Kernel SVM, Gaussian RBF kernels are used as base kernels.  

For the multiple kernel case, instead of using a single kernel, linear combinations of base 

kernels are considered (See Equation 3.8). Each base kernel corresponds to a different 

block of the feature vector. For the LBP, DCT and HOG features, these base kernels are 

applied for each of the data blocks created during the feature extraction stage. Hence the 

number of base kernels is 35 for HOG features and 48 for DCT features. For the LBP 

features with 256 dimensions, vectors are partitioned into 16 blocks of length 16 hence 

16 base kernels are used. ܭ௕’s are the base kernels and ߚ௕ are the weights corresponding 

to each base kernel. N is the total number of base kernels. Multiple Kernel Learning 

algorithm [28, 31] can be used to select the best ߚ௕ value over a training surplus, but it 

has been shown that assigning equal weights for each weight provides sufficient results 

[44]. 

We have selected the soft-margin coefficient C and ߛ parameter of the RBF Kernel by 

conducting a test across a rectangular grid of C and ߛ variables. For the Multiple Kernel 

SVM, for each base kernel ܭ௕,  ߛ௕ parameters are selected separately. Each base kernel 

corresponds to a distinct block in the feature vector. In order to define ߛ௕ parameter for 

each block, the average Euclidean distances (See Equation 3.9) between blocks are 

calculated separately over a training data. For two of the training feature vectors, namely 

u and v,  ݑ௕ and ݒ௕ are blocks of the feature vectors defined by the block number b  

ሺwhere parameters are selected as ߛ௕ ൌ
ௗ್

଼
for HOG features , ௕ߛ ൌ ݀௕ 32 ݔ for DCT 

features and  ߛ௕ = ݀௕/2 for LBP features. 

 

                                                             Kሺu, vሻ ൌ expሺെݑ|ߛ െ  ଶሻ                                        ሺ3.7ሻ|ݒ

 

,ݑሺܭ                       ሻݒ ൌ  ෍ߚ௕ܭ௕ሺu, vሻ

௕

        Kୠ ൌ expሺെߛ௕|ݑ െ ௕ߚ         ଶሻ|ݒ ൌ
1

ܰ
    ሺ3.8ሻ 
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                      ݀௕ = |ݑ௕ െ ܾ              |௕ݒ ∈ ቐ
    ሾ1,16ሿ     ݂ݏ݁ݎݑݐ݂ܽ݁ ܲܤܮ ݎ݋ 

  ሾ1, 48ሿ    ݂ݏ݁ݎݑݐ݂ܽ݁ ܶܥܦ ݎ݋

   ሾ1, 35ሿ   ݂ݏ݁ݎݑݐ݂ܽ݁ ܩܱܪ ݎ݋

        (3.9)                           

3.5 Experiments and Results 

3.5.1 Overview 

In order to compare execution times and recognition precisions, all feature extraction 

methods are tested with all classification methods. The execution times of all methods 

are plotted for both training and testing phases as the number of training and testing 

samples changes. In order to calculate the precision of face recognition algorithms, 

several tests have been made to compare the accuracies of the methods under different 

conditions. Accuracies are calculated as the number of target classes is varied. Similarly 

the accuracy is plotted as the amount of training data is varied. All tests are made for two 

distinct face datasets. The first dataset is a collection of hand-labeled face detection 

outputs. Viola-Jones face detector [1] has been run for every single frame throughout an 

episode of “How I Met Your Mother” TV series and the detected faces of target people 

are manually clustered. The second dataset is created by using a face tracker algorithm 

on the same episode. OpenCV implementation of Camshift Color Based face tracker [6] 

is used in order to track faces throughout the video.  The resulting face tracks are also 

manually labeled and clustered. Samples from both datasets are fed to an illumination 

compensation algorithm before recognition is performed. 

The face detections database is composed of more-controlled and better-posed face 

images since the face detector captures frontal upright faces. The face tracks database on 

the other hand, captures a much more diverse set of face images as the tracker can collect 

rotated or otherwise distorted faces which may be missed by the face detector. But the 

higher diversity is expected to cause degradation in the precision.  

The face detections dataset gives us a prior judgment about the accuracies of the methods 

used. However, having the ultimate goal of designing an online system where 

encountered face tracks are to be classified, face tracks database gives a more valuable 

information about the performance of our methods in such severe conditions where face 
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tracks may include heavily distorted faces via illumination conditions, rotations and 

facial expressions. 

 

In all tests, 5-fold cross validation technique is used. The database to be used is divided 

into 5 groups. One group is used as the test group while the remaining 4 are used as the 

training group. At each fold upon calculating the recognition precision, the test group is 

switched. The average of the five test results gives the final precision value.  

3.5.2 Execution Times 

All of the tests are performed on an Intel Core 2 Duo 2.20 GHz PC with 1 GB RAM. 

DCT and HOG feature extraction methods has been implemented in MATLAB. For LBP 

feature extraction, a MATLAB implementation available in [30] has been used. Nearest 

Neighborhood and LDA algorithms are implemented in MATLAB environment. For 

Single Kernel and Multiple Kernel SVM, a MATLAB interface for LIBSVM 

implementation [11] is used. Training and testing times of all methods are presented. For 

the calculation of the execution times, the number of classes is selected to be 6. The 

number of training samples is varied and the corresponding execution time for each 

method is calculated. 

 

  

Figure. 3.5. The graph of NN testing times vs. the number of gallery samples. 

 



 
 

26 
 

3.5.2.1 Nearest Neighborhood 

For NN, there is no training. The execution times are shown for different numbers of 

gallery samples (Figure 3.5). Gallery samples correspond to the number of training 

samples where each test sample is compared one by one before the nearest neighbor is 

found. For each method, three different graphs are plotted with different numbers of 

testing samples used. As expected, the execution times increase linearly with the number 

of gallery samples with a small bias value. Also given a fixed number of gallery samples, 

the execution times are observed to increase linearly with the number of testing samples. 

 

 
 

Figure 3.6. LDA Training/Testing times vs. the number of Training/Testing Samples 

 

3.5.2.2 LDA 

 For the LDA training, the graphs of execution times (See Figure 3.6) are considerably 

flat with respect to the number of training samples, on the other hand a major change is 

observed for different features. This is expected since most of the computation is due to 

the construction of the scatter matrices and calculation of the eigenvectors where the 

number of feature vector dimensions determines the size of the scatter matrices.  3000 

samples are used to construct an eigenspace model, and this model is used to conduct 

tests for the LDA execution times. The testing times, which have the smallest values 
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among all classification methods, increase linearly with the increasing number of test 

samples. 

3.5.2.3 SVM 

SVM training times are shown on Fig. 6. The execution times increase rapidly with the 

increased number of training samples. The execution times are for the training of 6 SVM 

models. Most of the computation is due to the kernel construction. For each test with the 

designated number of training samples, a single common kernel is constructed and the 

corresponding training labels are adjusted for the training of different SVM models. 

Hence SVM training times do not increase linearly with the “number of classes”. 6 SVM 

models are constructed using 3000 samples for each model. As in training, most of the 

computation is due to the construction of kernels; hence the number of returned support 

vectors is indicated for each method.  The linear behavior with respect to the number of 

testing samples can be seen from the graph (See Figure 3.7). Having returned a smaller 

number of support vectors, Multiple Kernel SVM models have smaller testing times 

compared to the SVM with DCT features. 

3.5.3 Recognition Precisions 

The number of samples per person is varied (with 6 people as target classes) and the 

corresponding classification performance is measured for both detection and tracking 

databases (Figures 3.8-3.10).  Similarly the number of target classes is varied (with 500 

samples for each class) and the resulting classification rate is measured for the detections 

and the tracks databases. The performance is measured by the precision at 100 % recall 

which means that all of the face tracks are labeled and the percentage of correct labeling 

is taken as the performance.  

The general trend of decreasing recognition precision in Figures 3.8-3.10 is due to the 

fact that while the number of samples per person increases, the diversity of the model 

also becomes more complex with different looking samples of the face. If the variety of 

the samples were kept constant, the addition of similar samples would increase the 

precision. 
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Figure 3.7. SVM Training/Testing times vs. the number of training/testing samples. 

 

In all tests, LDA classification is observed to degrade and perform poorly with the 

insufficient number of training samples. But when the number of samples is adequate, 

LDA classification also works properly. SVM performs as the best classification method, 

but SVM training is a heavy process compared to NN and LDA. Single Kernel SVM 

with DCT features works best for both detections and tracks datasets. But the testing time 

is higher than other SVM methods. This is due to the fact that the extracted support 

vectors are higher in number than any other SVM method. The highest recognition 

accuracies for each classification method are tabulated. The feature extraction method 

which yields the highest accuracy is indicated in parentheses. Also the training and 

testing times for these best methods are listed in Table 1 for comparison. 

3.5.4 Observations 

We have observed that single kernel SVM trained with DCT features gives the highest 

recognition accuracy (See Figure 3.8). On the other hand in this method, the number of 

Support Vectors found is great and this yields relatively long testing times. SVM with 

Multiple Kernels, on the other hand, have comparable recognition accuracy to the single 

kernel SVM, though training times are longer due to a more complex process of kernel 

construction. But tests show that in multiple Kernel SVM methods, fewer number of 

support vectors is sufficient to define the separating hyperplane which led to shorter 

testing times. 
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Figure 3.8. Recognition accuracies of  SVM methods for Face Detections and Face Tracks 

Datasets vs. Samples/Class and Number of Classes. 

 

Figure 3.9. Recognition accuracies of  LDA methods for Face Detections and Face Tracks 

Datasets vs. Samples/Class and Number of Classes. 
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LDA has the fastest testing times of all but the recognition accuracy is lower than the 

other methods (See Figures 3.8-3.10). Also depending on the feature extraction method 

used, a large volume of training data is necessary before proper LDA classification can 

be accomplished. Nearest Neighborhood has the problem of ever-growing database with 

addition of new samples and classes with higher number of samples may dominate the 

classification process.  

There is a tradeoff between testing times and training times when we consider the usage 

of SVM with single and Multiple Kernels. If long testing times are acceptable, Single 

Kernel SVM with DCT coefficients has the highest recognition accuracy. For the online 

automatic face annotation system where encountered face tacks are to be classified, the 

number of testing samples per query is not large, as we have determined this number as 

10 samples per query track. Training times can be considered more important for an 

online learning system as the newly encountered samples are sequentially learnt in data 

chunks, repetitive sessions of long trainings may discourage the user from working with 

the system. 

 

Figure 3.10. Recognition accuracies of  NN methods for Face Detections and Face Tracks 

Datasets vs. Samples/Class and Number of Classes. 
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It is observed that switching from face detections dataset to face tracks dataset results in 

a noticeable decrease in recognition accuracies (See Figures 3.8-3.10). This degradation 

for NN and LDA methods are larger than the degradation for the SVM methods with 

both single and multiple kernels. The results indicate that SVM methods can adapt to a 

wide variety of samples better than the LDA and NN methods. 

 

 

Table 3.1. Performance Summary. Best recognition accuracy for each classification 

method is presented with their corresponding training and testing times. 

 Accuracy 

(Detections 

Dataset) 

Accuracy 

(Tracks 

Dataset) 

Training Times Testing Times 

MKSVM 91 % (HOG) 84 % (HOG) 324 secs. (LBP) 3.48 secs. (LBP) 

SVM 96%  (DCT) 89 % (DCT) 326 secs. (DCT) 7.57 secs. (DCT) 

LDA 94 % (HOG) 76 % (HOG) 17.9 secs. (HOG) 0.12 secs. (HOG) 

NN 94 % (HOG) 77 % (HOG) - 5.06 secs. (HOG) 
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CHAPTER 4 

EXPERIMENTS AND RESULTS 

4.1 Overview 

Face recognition methods are tested for an online learning system where face 

identification is performed for video annotation. A user interface is designed for the 

system (Figure 4.1) where a minor user interaction is requested to teach the system as the 

samples of each target face are encountered. The user browses through the video from 

one shot boundary frame to the next and trains the learner with tracks of face images 

extracted at each shot boundary frames. Once the number of collected samples exceeds 

the selected threshold, the system starts making classification and predicted class labels 

are presented to the user. The training and classification steps occur simultaneously after 

this point. For online learning purposes, extensions to the offline learning algorithms 

have been developed in order to achieve effective learning which involves updating the 

learner model sequentially instead of redoing the whole learning process from scratch.  

In the rest of the chapter, the sequential variants of the considered classification 

algorithms will be explained then the user interface and learning methodology will be 

presented. Finally the results in terms of recognition accuracy will be presented and 

discussions be made. 

4.2 Implementation of the Sequential Classification Methods 

Extensions to the batch learning algorithms are discussed in this section. Sequential 

variants of LDA and SVM algorithms have been implemented along with the NN 

algorithm for the online video annotation application.  
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4.2.1 Nearest Neighbourhood 

The sequential version of the Nearest Neighbourhood classifier is identical to the offline 

version discussed in detail in Section 3.4.1. Tracks of faces are simply added to the 

database with their labels each time a new track of face is learnt. During classification 

query tracks are compared with the database samples to find the most similar pair of 

samples to produce a label. 

4.2.2 Chunk Incremental LDA 

In the training phase, an incremental method known as Chunk Incremental LDA is used 

to create a dynamic fisherspace model which gets updated whenever a new chunk of 

training data with L samples   ( ܮ ൒ 1) and a given class label is received. 

This method combines the fisherspace models of the existing data and the new chunk of 

training data. To find the parameters for the new eigenspace, within-class scatter matrix 

(Sw) and between-class scatter matrix (Sb) are to be updated. 

 

′ഥ࢞                                                                  ൌ
ഥ ൅࢞ܰ ഥ࢟ܮ

ܰ ൅ ܮ
                                                            ሺ4.1ሻ 

 

The overall mean is updated according to Equation 4.1 where ࢞ഥ is the mean of the 

existing data of N samples and ࢟ഥ is the mean of new coming L samples. 

 

If the new samples belong to class c, then the class-mean for class c is updated according 

to Equation 4.2. 

 

ࢉ′ഥ࢞                              ൌ ቐ
 

1

ሺ݊௖ ൅ ሻܮ
ሺ݊௖࢞ഥࢉ ൅ ݏݏ݈ܽܿ ݃݊݅ݐݏ݅ݔ݁ ݊ܽ ݏ݅ ܿ ݂݅    , ഥሻ࢟ܮ

ݏݏ݈ܽܿ ݓ݁݊ ܽ ݏ݅ ܿ ݂݅                            , ഥ࢟ 

               ሺ4.2ሻ 

         

 

where ݊௖ is the number of existing samples belonging to class c. 
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If new samples belong to an existing class, the within-class and between-class scatter 

matrices are updated according to Equation. 4.3 & 4.4. 

 

′࢈ࡿ                                       ൌ ෍݊௖
′ ሺ࢞ഥ′ࢉ െ ࢉ′ഥ࢞ഥ′ሻሺ࢞ െ ࢀഥ′ሻ࢞

ࡹ

஼ୀଵ

                                              ሺ4.3ሻ 
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૛
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ሺ࢟ഥ െ ഥ࢟ሻሺࢉഥ࢞ െ ሻࢉഥ࢞

ࢀ ൅
ࢉ࢔

૛

ሺࢉ࢔ ൅ ሻ૛ࡸ
 ෍ሺ࢐࢟ െ ࢐࢟ሻሺࢉഥ࢞ െ ሻࢉഥ࢞

ࢀ

ࡸ

ୀ૚࢐

൅ 
ሻࢉ࢔൅૛ࡸሺࡸ

ሺࢉ࢔ ൅ ሻ૛ࡸ
 ෍ሺ࢐࢟ െ ࢐࢟ഥሻሺ࢟ െ ࢀഥሻ࢟
ࡸ

ୀ૚࢐

                                                       ሺ4.4ሻ 

 

If the samples belong to a new class, then the within-class and between-class scatter 

matrices are updated according to eqn. 4.5 & 4.6, 

 

′࢈ࡿ                                             ൌ  ෍ ݊௖
′ ሺ࢞ഥ′ࢉ െ ࢉ′ഥ࢞ഥ′ሻሺ࢞ െ ࢀഥ′ሻ࢞

ା૚ࡹ

஼ୀଵ

                                       ሺ4.5ሻ 

       

′࢝ࡿ                                             ൌ ࢝ࡿ  ൅ ෍ሺ࢐࢟ െ ࢐࢟ഥሻሺ࢟ െ ࢀഥሻ࢟
ࡸ

ୀ૚࢐

                                         ሺ4.6ሻ 

 

Where M is the number of classes, ݊௖
′  is the updated number of samples belonging to 

class c, ࢞ഥ′  is the updated global mean value, ࢞ഥ′ࢉ is the updated class-mean for class c 

and ݕ௝ is one of L new samples. 

 

Once the updated within-class scatter matrix and between-class scatter matrices are 

computed, the projection direction is again found by calculating the eigenvectors of (3.6). 

As we stated earlier, we retain the eigenvectors with the highest eigenvalues that capture 

the 95% of the total energy. So the dimension of the projected space may change 

throughout the learning course after each new training phase. Number of the training 

tracks used for each class is recorded. All the samples used for the construction of the 

eigenspace is projected on the fisher-eigenvectors. Projected samples for each class are 

clustered using K-Means algoritm where K is chosen as the number of the training tracks 
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for the corresponding class. Therefore the projected space is represented by ܭ஼ ൌ

ሼܭଵ, ,ଶܭ … ,  ெሽ cluster centers for M classes. This clustering scheme is applied as aܭ

precaution against the possible domination of crowded classes over classes which have a 

fewer number of samples. But to maintain balance, higher number of representative 

cluster centers are donated for classes which have more tracks. 

 

In the classification phase, samples in the query track are projected and their similarity 

with the cluster centers of projected training data are measured according to the method 

of Nearest Neighborhood with normalized correlation metric. (See Equations 3.2 and 

3.3) Classification time for each query track is constant and independent of the size of 

the database. 

4.2.3 Sequential SVM 

For N different people in the database, namely N classes, N set of SVM’s are trained for 

“1 vs. the Rest” classification. Thus, the training process is very heavy. But the 

classification time for each query sample is constant and independent of the size of the 

database as in the case of LDA. However, since the training phase requires time, SVM is 

not appropriate for real-time applications. Instead sequential SVM (SSVM) is used in our 

application.  

There is more than one method to utilize Sequential SVM as presented in [12, 40]. The 

one preferred in this work is to retrain the previously found Support Vectors along with 

the newly added training data to give the final classifier for the final corpus of data. This 

method is known as “the fixed partition” method [12]. 

The training session is initiated upon collecting samples from two distinct classes and 

one SVM model is created for ‘Class 1 vs. Class 2’. This initial training stage is identical 

to the batch-SVM learning algorithm. After the initiation, whenever the user feeds a new 

track of faces to the learner, depending on the input class label, a sequential learning 

algorithm is called. If the new data belongs to a new class, an SVM-model is trained for 

‘Class 3 vs. The Rest’ classification from scratch by using the Support Vectors returned 

from the initial SVM model of ‘Class 1 vs. Class 2’. These support vectors are labeled 

with class labels of ‘0’ and added together with the new samples which are labeled with  

class labels of ‘1’. Also SVM model for ‘Class 1 vs. Class 2’ is replaced with two SVM 

models, namely ‘Class 1 vs. The Rest’ and ‘Class 2 vs. The Rest’ by adding ‘Class 3’ 
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data with class labels of ‘0’, together with the initially found Support Vectors and 

retraining. 

The sequential learning is performed in the same way for addition of other new classes or 

new samples for the existing classes. Using only the Support Vectors, the training times 

are reduced drastically compared to the case of retraining each SVM from scratch 

whenever a new group of data arrives. 

4.3 User Interface 

Any video can be loaded via this interface and there is a button which starts the shot 

boundary detection. The shots are detected automatically. The first frame of the shot is 

presented to the user on the interface and the face detection is run on it. The detected 

faces are marked with a rectangle on the screen (Figure 4.1). In order to make 

annotations for the training session, the user is allowed to either choose a name from the 

pool of available names or add a new label for the detected face. The user chooses a label 

for the detected face by clicking on the name and one of the detected faces. If an 

available face in the scene is missed by the face detector, the user can place a rectangular 

box and resize it in order to mark the undetected face. A tracker is instantly run upon 

clicking on the face to collect as many sample face images of the same person as 

possible. The tracking continues from one shot boundary frame to the next or until the 

tracking is stopped due to other causes like the face exiting the scene etc. The behavior of 

the tracker is shown on a separate window (Figure 4.2) after each track command. If the 

user is not satisfied with the current track, it can be discarded. Otherwise it is added to 

the database. 

After collecting sufficient number of data using the face tracker, the recognition 

procedure can be invoked by clicking a button on the interface. For Nearest 

Neighbourhood recognition is performed after two distinct characters are introduced to 

the system by the user. The addition of face samples to the database continues until 500 

samples are collected for each target class. On the other hand, the minimum number of 

samples needed for LDA is equal to the number of target classes plus the feature vector 

dimensionality (256 for LBP, 480 for DCT and 1260 for HOG) and sequential training of 

the model is performed until approximately 500 samples/class is reached.  
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For single and multiple kernel SVM methods, recognition is performed after 150 

samples/class becomes available. This number is chosen experimentally, considering a 

trade-off between long training times and good representation skill for the class. Face 

tracks are populated in a queue for each class separately and whenever 150 samples 

become available for each class, the first 150 of the samples per class in the queue are 

fed to the learner and sequential SVM training is done together with the existing support 

vectors for each class. The remaining samples in the queue are kept for the next phase of 

training which starts whenever 150 samples become available in the queue for each class 

again. 

Whenever a face is encountered, a face recognition algorithm is executed to make the 

classification according to the data collected so far. Each newly detected face is also 

tracked by the face tracker automatically for a number of frames (chosen as 10) and each 

sample of this short track is classified according to our face recognizer. The user may 

acknowledge these suggested labels or correct them with the actual names by again 

clicking on the faces and selecting names from the list. And the system is updated with 

the tracks of the correctly labeled faces.   

 

 

Figure 4.1. The Main Graphical User Interface 
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Figure 4.2. Demonstration of the Face Tracking along with the tracked face. 

4.4 Tests and Results for Video Annotation 

4.4.1 Performance Criteria 

In order to evaluate the precision of the video annotation tool, the episodes of TV series 

“How I Met Your Mother” have been used. Six of the most prominent characters are 

selected as targets whose faces are to be recognized by the system (See Figure 4.3). We 

have used Precision/Recall graphs to evaluate the overall recognition success where 

Precision and Recall are defined according to the Equation 4.7 & 4.8. 

 

                                 ܴ݈݈݁ܿܽ ൌ
ݏ݇ܿܽݎܶ ݁ܿܽܨ ݂݀݁݅݅ݏݏ݈ܽܥ ݂݋ ݎܾ݁݉ݑܰ

ݏ݇ܿܽݎܶ ݁ܿܽܨ ݈݈ܣ ݂݋ ݎܾ݁݉ݑܰ
                             ሺ4.7ሻ 

   

݊݋݅ݏ݅ܿ݁ݎܲ                       ൌ
ݏ݇ܿܽݎܶ ݁ܿܽܨ ݂݀݁݅݅ݏݏ݈ܽܥ ݕ݈ݐܿ݁ݎݎ݋ܥ ݂݋ ݎܾ݁݉ݑܰ

ݏ݇ܿܽݎܶ ݁ܿܽܨ ݂݀݁݅݅ݏݏ݈ܽܥ ݈݈ܣ ݂݋ ݎܾ݁݉ݑܰ
             ሺ4.8ሻ 
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Figure 4.3. Six main characters of the TV series “How I Met Your Mother” that are 

selected as the target classes for our face identification system. 

 

Recall parameter is varied according to a “refusal-to-classify” criterion. Whenever a 

query face track is classified, a similarity measure is also given with the suggested label. 

We reject classifications with similarity measures below a threshold. Refusal-to-classify 

method aims to reject intruders such as people who are not of interest or false face 

detections which does not contain a face. We expect to receive low similarity measures 

for these kinds of intruders so that they may be eliminated without receiving labels. 

Similarity measure for a query sample is chosen as the normalized correlation value 

according to Equation 3.3. if NN or LDA is used. For SVM classification, the distance to 

the decision hyperplane is selected as the similarity score where the query sample is 

assigned to the class which gives the greatest distance value. Here the distance values 

may be negative if a given query sample is classified as a false sample by all SVM 

models. Then the class which produces the greatest negative value (smallest absolute 

value) as the distance is chosen. 
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Face detections which do not produce successful face tracks are discarded and are 

omitted in the Precision/Recall evaluations. Those face detections, which may or may not 

include a face, that are too small or blurry may not produce successful face tracks as our 

Lucas-Kanade face tracker involves extraction of corners which represent the facial 

feature points to be tracked. If the detected face is too small or too blurry, then corners 

may not be extracted and face tracking fails. (See Figure 4.4) 

 

 

Figure 4.4. An example detected face which does not produce a face track. 

 

In the following Precision/Recall calculations for each method, classification results for 

successful face tracks that are extracted from the first 200 shot boundary scenes are 

evaluated and two Precision vs. Recall graphs are plotted for two different evaluation 

scenarios: “closed set identification” and “overall identification”. 

 “Overall Identification” graph considers all successful face tracks during precision and 

recall calculations, taking into account the tracks of false face detections and non-target 

faces whereas the “Closed Set Identification” plots consider only the precision scores 

attained after discarding the face tracks which do not belong to one of the target faces. As 

the name implies the “Closed Set Identification” is a face recognition application within 

the exclusive group of the target faces. 
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4.4.2 Discussions on the Performances of Online Learner Methods  

“Closed set identification” scores are expected to give higher precision scores than the 

“overall identification” precision scores as models are constructed considering the target 

faces alone, without taking intruders into account. Feature vectors of target faces are 

expected to lie in closer formations that may be separated from each other using some 

classification methods as models are fit to discriminate one target class from another. On 

the other hand, intruders include faces of people which are not of interest or false face 

detection windows which do not contain faces at all. Feature vectors of these intruder 

samples are scattered all around the feature space and cannot be simply modeled due to 

the huge diversity involved. In SVM learning with “1 vs. the rest” method, samples of 

different faces are discriminated from each other. But this discrimination is solely based 

on face images and discrimination of target faces from intruders may not be optimally 

performed. As a result a fall in precision scores is observed (See Figures 4.5-4.16) 

especially for SVM methods (See Figures 4.11-4.16) when closed set and overall 

identification results are compared. 

 

 

 

Figure 4.5. Precision vs. Recall Graph for Online HOG+NN learner. 
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Figure 4.6. Precision vs. Recall Graph for Online DCT+NN learner. 

 

 

 

 

Figure 4.7. Precision vs. Recall Graph for Online LBP+NN learner. 
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Figure 4.8. Precision vs. Recall Graph for Online HOG+LDA learner. 

 

 

 

 

Figure 4.9. Precision vs. Recall Graph for Online DCT+LDA learner. 
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Figure 4.10. Precision vs. Recall Graph for Online LBP+LDA learner. 

 

 

 

Figure 4.11. Precision vs. Recall Graph for Online HOG+SVM learner. 
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Figure 4.12. Precision vs. Recall Graph for Online DCT+SVM learner. 

 

 

 

Figure 4.13. Precision vs. Recall Graph for Online LBP+SVM learner. 
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Figure 4.14. Precision vs. Recall Graph for Online HOG+MK SVM learner. 

 

 

 

Figure 4.15. Precision vs. Recall Graph for Online DCT+MK SVM learner. 
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Ideally we expect a monotonic and sharp decrease with increasing recall values. The test 

results (See Figures 4.5-4.16) show an overall trend of decrease although monotonic  

 

 

Figure 4.16. Precision vs. Recall Graph for Online LBP+MK SVM learner. 
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target class and its competitors. Thus an intruder sample is not taken into account for the 

generation of the model. Hence rejection of intruders may not be performed optimally. 

This results in a major decrease in precisions when application scenario is switched from 

“closed set identification” to “overall identification”. (See Figures 4.11-4.16)  

Precision scores obtained from Multiple Kernel SVM methods (See Figures 4.14 - 4.16) 

are comparable to those obtained from single Kernel SVM methods (See Figures 4.11-

4.13). However the burden of the extra computations that are necessary to train the 

Multiple Kernel SVM models does not provide comparable improvement in precisions 

hence using an SVM method is favorable over the use of Multiple Kernel SVM for our 

online learning application. Using Multiple Kernel Learning algorithms may be preferred 

in order to select coefficients for the base kernels, instead of assigning equal weights for 

each. 

Among all features used, HOG features are the most successful in describing the 

discriminative facial features although its extraction is computationally heavier than the 

others. Also the number of feature vector dimensions is higher than the others. Greater 

dimensionality may cause degradation in classification performance for the Nearest 

Neighbourhood classifier, which is a phenomenon known as “the curse of 

dimensionality”, where the information in the feature vector is dispersed in so many 

dimensions. During nearest neighbor computations, irrelevant features in the many 

dimensions may suppress and overshadow the relevant features. But our test results show 

that 1260 dimensioned feature vectors of HOG features works robustly for Nearest 

Neighbour classification (See Figure 4.5). In Linear Discriminant Analysis, construction  

times of scatter matrices (See Equations 3.4 and 3.5) increase with the number of 

dimensions in the feature vector. Hence higher the number of feature dimensions, longer 

it takes to construct the eigenspace model. For the SVM methods, training times are 

increased with the increased number of feature vector dimensions but test results show 

that HOG features compensate for the longer training times with high precision values. 

(See Figures 4.11 and 4.14) 

Although the face track covers the eyes and mouth regions, due to the variation of poses, 

i.e., rotation of the head, still the aspect ratio of the face may change due to out-of-plane 

rotations, and when the image is resized to a standard size for processing, corresponding 
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DCT blocks of two different images may actually cover slightly or totally different facial 

regions. On the other hand this is expected to be as less of a problem for LBP since LBP 

is invariant to monotonic changes of gray levels as such in the case of resizing the image. 

HOG features use overlapping blocks to describe face which increases robustness against 

localization errors of facial features. 

For the “closed set identification” scenario HOG features used with single or multiple 

kernel SVM has the best precision/recall graphs (See Figures 4.11 and 4.14). But when 

the scenario is switched to “overall identification” where the annotation tool is used to 

automatically classify all encountered faces, the best precision/recall graphs are obtained 

for HOG features used along with Nearest Neighbourhood classifier (See Figures 4.5).  

Domination of crowded class samples is a problem with the nearest neighbourhood 

method but in our application we have limited the number of samples/class to a fixed 

value in order to deal with this problem. The threshold is selected as 500 samples/class. 

Nearest neighbor classification is a fast method compared to the other methods. Although 

the database grows larger and larger with addition of each new track, the query face track 

has constant length (selected as 10 samples), hence classification times increase linearly 

only with the number of training samples. Nearest Neighbourhood with HOG features 

performs the best overall score for our online face identification system (See Figure 4.5). 

It is observed that fitting discriminant functions for target classes in our “overall 

identification” application cannot give adequate results (See Figures 4.8-4.16).  

If we focus our attention only on the “closed set identification”, discriminant models like 

SVM achieves high precision values (See Figures 4.11-4.16). HOG features with 

Multiple Kernel SVM perform the best (See Figures 4.14). Single Kernel SVM with 

HOG features follows its Multiple Kernel counterpart with comparable precision scores 

(See Figure 4.11).   

4.4.3 Comparison of the Online and Offline Methods 

In order to compare the recognition accuracies for online and offline methods, offline 

“precision vs. recall” graphs have also been plotted. In the online learning scenario, 

classification with HOG features provided the best results. Therefore we have compared 

the offline HOG+SVM, HOG+LDA and HOG+NN methods with their online 

counterparts via the Precision vs. Recall metric. 
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For the offline methods, first 200 shot boundary scenes of the same “How I Met Your 

Mother” episode are used. For the NN and LDA sessions, 400 samples/class have been 

accumulated for 6 classes. After that point no more training is done and the testing is 

performed on the rest of the scenes. For the offline SVM method, 250 samples/class have 

been accumulated for 6 classes and similarly after a single training session, the rest of the 

scenes are used for testing alone. 

For the SVM learning, switching from the offline learner (See Figure 4.17) to the online 

version (See Figure 4.11) results in a decrease in the “overall identification” scenario 

whereas the performance in the “closed set identification” scenario stays similar. The 

decrease in the precision scores are expected as the precision scores of the online method 

includes the classification results in the early stages of the learning session whereas in 

the offline session, the model is trained once when all classes have a higher number of 

representative samples. In the offline training, the best decision hyperplane is determined 

according to a large surplus of training data. However in the online training, the decision 

hyperplane is constructed using partial information hence the recognition precision is 

expected to be lower than the offline version. Approximately 30 % of the training 

samples are returned as the support vectors from the trained SVM model. When the 

number of training samples is large, sequential SVM training provides considerably 

shorter training times. With addition of each new face track which is typically 20-200 

samples long, retraining thousands of samples would take as much as three times longer 

training time compared to the sequential SVM training with the expense of a fall in the 

recognition precision. 

For the LDA and NN learning, online and offline learners provide comparable precision 

scores (See Figures 4.5, 4.8, 4.18 and 4.19). But it should be noted that the similar 

precision scores have been recorded over a much larger set of query tracks for the online 

version, as the recognition starts at the initial stages of the training session whereas in the 

offline stage, only training is performed until the number of training samples exceeds a 

value. In our tests approximately 150 scenes are used to collect training data for the LDA 

and NN methods and the remaining 50 scenes are used for testing. On the other hand for 

the online learning session classification hence the precision calculations are initiated 

whenever two distinct classes receive samples for the NN case and whenever the total 

number of samples exceeds the number of feature vector dimensions for the LDA case. 
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Figure 4.17. Precision vs. Recall Graph for Online/Offline HOG+SVM learners. 

 

Online training is a useful tool for updating the model with new representative data or 

even adding totally new classes to the scheme. A model trained over a training surplus 

i.e., an episode of a TV series, may be easily extended to be used over a wider extent i.e., 

another episode of the TV series by incorporating the new information contained in the 

new environment. 

 

 

Figure 4.18. Precision vs. Recall Graph for Online/Offline HOG+LDA learners. 
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Figure 4.19. Precision vs. Recall Graph for Online/Offline HOG+NN learners. 

 

In order to evaluate the online learning performance in terms of precision and execution 

times, a final test is performed. Precision scores and training times are plotted along the 

learning session. We have evaluated the HOG + SVM learner for this test. Video is 

partitioned into intervals and at each time step, the data collected so far is used to 

perform training for the offline version. For the online version, the training is performed 

sequentially using the trained SVM model along with the training data collected in the 

previous interval. Testing is performed using all of the tracks in the rest of the video.  

For example, when percentage of the video is used for training is 10 %, all face tracks 

which reside in the first 10 % of the video is used for training a model for both online 

and offline versions and the training times are recorded. Then the precision scores are 

found by testing all of the face tracks which reside in the remaining part of the video. 
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collecting face tracks up to the point where we have considered first 20 % of the video, 

the training is performed again. For the online version, the data collected between 10 % 

and 20 % of the video is trained sequentially using the previously trained SVM model. 

But for the offline version, all of the data in the first 20 % of the video is used to retrain 

the SVM model from scratch. 
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Online and Offline precision scores are comparable according to Figure 4.20. For the 

online case training is done sequentially at each time step, the training times have a 

constant characteristic (See Figure 4.21). On the other hand for the offline learner, all of 

the previously collected training data has to be learnt which results in  linearly increasing 

training times as the user advances through the time steps. 

 

 

Figure 4.20. Precision Performance for Online and Offline HOG + SVM learners. 

 

 

 

Figure 4.21. Training times for the SVM models. 
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CHAPTER 5 

CONCLUSION 

In this thesis, an online face identification system is developed and suitable face 

recognition algorithms have been evaluated. Extensive tests have been done in order to 

compare different facial feature extraction and classification algorithms in terms of their 

recognition accuracies and execution times. Execution times are also crucial since our 

aim is to design an online learning system where constructed models are updated with 

each addition of new data instead of reconstructing the models over and over. 

Recognition accuracies of the considered algorithms have been evaluated by 

implementing an interface for the face identification system. Here videos are partitioned 

into meaningful segments using a shot boundary detection algorithm. Face detection and 

tracking algorithms have been implemented to collect tracks of face images. We have 

chosen Viola-Jones face detector [1] which is a very popular, fast and robust face 

detector with Lucas-Kanade Optical Flow feature tracker [21] as the best performing face 

tracker for our case. The success of our system depends on not only the overall tracking 

of the “face region” but also keeping the eyes and mouth well-located within the face 

while rejecting the background clutter as much as possible. That’s why a facial feature 

tracker is used. The face recognition under a variety of environmental conditions is 

already a challenging task so we have limited our attention to near-frontal poses. Hence 

our face tracker is a facial feature tracker which returns near frontal faces. But this 

limited our training and testing samples as faces are encountered throughout videos 

under a variety of poses like profile faces. In our method there is no heavy post-

processing steps in order to improve the quality of the extracted face tracks, since 

computationally expensive efforts prohibits a real time application scenario. 

Local Binary Patterns, which is originally a texture descriptor, shows a good recognition 

precision for the human face recognition process where faces are not constrained to be 
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controlled samples. Local Binary Patterns is a good alternative to Discrete Cosine 

Transform Features being invariant to resizing of images for processing, having nearly 

half the size of feature dimensions which decreases the computational cost and reduces 

the amount of memory necessary to store the feature vectors for the Nearest 

Neighborhood classification. But the test results show that Histogram of Oriented 

Gradients is the best performing facial feature extraction method although the high 

dimensionality of the feature vectors poses computational difficulties such as longer 

training times and higher memory requirements. 

According to our test results, Nearest Neighborhood classification method has a higher 

recognition rate than the other two learning algorithms. This is due to the fact that, 

recognition is performed for a collection of poses with high diversity which makes it 

difficult to fit a model for the distribution of the feature vectors. Nearest Neighborhood 

on the other hand does not fit a model for the data, hence different poses, different facial 

expressions and other visual challenges in the database do not yield as much a problem 

as they do for the case of LDA and SVM. The best performing combination includes the 

Histogram of Oriented Gradients used with Nearest Neighborhood for the overall face 

identification scenario. Nearest Neighbourhood is also a handy classification method as 

new data can be added to the training surplus directly, whereas for SVM methods, 

sequential training causes some decrease in the recognition precisions due to the splitting 

of the training data during different training phases. Also the training and testing times 

for Nearest Neighbourhood method are extremely short. If the number of training 

samples per class is kept balanced, domination of crowded class vectors no longer pose a 

threat to the recognition.  

 The results are expected to show much higher precision values if precision is calculated 

over a closed set for identification by considering only the suggested labels for the target 

faces. But counting all face tracks, which include intruders such as other faces or false 

face detections, reduces the overall accuracy. High precision values are expected for low 

recall values and vice versa but it has been shown that intruders may also receive 

relatively high similarity measures and intruder samples may not be eliminated by simply 

setting a threshold to reduce recall. 

Possible extensions for this work may include the improvement of the face tracker. 

Kalman filtering [24] may be used in order to improve the estimation of the future facial 
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feature positions. Another improvement can be the handling of non-frontal faces. A 

profile or half profile face detector may be used and collected face images may be 

clustered according to the pose of the face images. For the multiple Kernel SVM 

methods, Multiple Kernel Learning [41] algorithm can be applied in order to select 

coefficients for the base kernels. Selecting equal weights for each base kernel does not 

provide satisfactory improvements compared to the single kernel SVM, considering the 

extra computational burden involved.   
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