
ONLINE AND SEMI-AUTOMATIC ANNOTATION OF FACES IN
PERSONAL VIDEOS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET CELALEDDİN YILMAZTÜRK

IN PARTIAL FULFILLMENTS OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

MAY 2010

Approval of the thesis:

ONLINE AND SEMI-AUTOMATIC ANNOTATION OF FACES IN PERSONAL
VIDEOS

submitted by MEHMET CELALEDDİN YILMAZTÜRK in partial fulfillment of the
requirements for the degree of Master of Science in Electrical and Electronics
Engineering, Middle East Technical University by:

Prof. Dr. Canan Özgen _______________
Dean, Graduate Schoolof Natural and Applied Sciences

Prof. Dr. İsmet Erkmen _______________
Head of Department, Electrical and Electronics Engineering

Assistant Professor İlkay Ulusoy _______________
Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Kemal Leblebicioğlu _______________
Electrical and Electronics Engineering Dept., METU

Asst. Prof. Dr. İlkay Ulusoy _______________
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Aydın Alatan _______________
Electrical and Electronics Engineering Dept., METU

Asst. Prof. Dr. Şenan Ece Güran Schmidt _______________
Electrical and Electronics Engineering Dept., METU

Instructor Dr. Ayşenur Birtürk _______________
Computer Engineering Dept., METU

 Date: 05.05.2010

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

 Name, Last name : Mehmet Celaleddin Yılmaztürk

 Signature :

iv

ABSTRACT

ONLINE AND SEMI-AUTOMATIC ANNOTATION OF FACES IN
PERSONAL VIDEOS

Yılmaztürk, Mehmet Celaleddin

M.Sc., Department of Electrical and Electronics Engineering

 Supervisor : Asst. Prof. Dr. İlkay Ulusoy

May 2010, 60 Pages

Video annotation has become an important issue due to the rapidly increasing amount of

video available. For efficient video content searches, annotation has to be done

beforehand, which is a time-consuming process if done manually. Automatic annotation

of faces for person identification is a major challenge in the context of content-based

video retrieval. This thesis work focuses on the development of a semi-automatic face

annotation system which benefits from online learning methods. The system creates a

face database by using face detection and tracking algorithms to collect samples of the

encountered faces in the video and by receiving labels from the user. Using this database

a learner model is trained. While the training session continues, the system starts offering

labels for the newly encountered faces and lets the user acknowledge or correct the

suggested labels hence a learner is updated online throughout the video. The user is free

to train the learner until satisfactory results are obtained. In order to create a face

database, a shot boundary algorithm is implemented to partition the video into

semantically meaningful segments and the user browses through the video from one shot

v

boundary to the next. A face detector followed by a face tracker is implemented to

collect face samples within two shot boundary frames. For online learning, feature

extraction and classification methods which are computationally efficient are

investigated and evaluated. Sequential variants of some robust batch classification

algorithms are implemented. Combinations of feature extraction and classification

methods have been tested and compared according to their face recognition accuracy and

computational performances.

Keywords: Online Learning, Facial Feature Extraction, Face Recognition.

vi

ÖZ

KİŞİSEL VİDEOLARDAKİ YÜZLERİN ÇEVRİMİÇİ VE YARI

OTOMATİK İSİMLENDİRİLMESİ

Yılmaztürk, Mehmet Celaleddin

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

 Tez Yöneticisi : Yard. Doç. Dr. İlkay Ulusoy

Mayıs 2010, 60 Sayfa

Görsel malzemenin miktar ve erişilebilirliğinin hızla artması sonucu, video isimlendirme

uygulamalarının önemi de arttı. Görsel içerik aramayı verimli bir şekilde

gerçekleştirebilmek için, etiketleme işinin önceden yapılması gerekir ve bu oldukça

zaman alıcı bir uğraştır. İnsan yüzlerinin, videodaki kişileri tanımak için otomatik olarak

etiketlendirilmesi, içerik-tabanlı videodan bilgi çıkarma yöntemleri için büyük bir

zorlayıcı etkendir. Bu tez, etkin öğrenme yöntemlerinden yararlanılarak, yarı otomatik

yüz etiketlendiren bir sistem gelişitirilmesine odaklanmıştır. Sistem yüz tespit ve takip

yöntemleri kullanarak videodaki yüzlerden oluşan bir veritabanı oluşturur ve

kullanıcıdan aldığı isimlerle etiketleme yapar. Bu veritabanı kullanılarak bir öğrenme

modeli eğitilir. Eğitim süreci boyunca da, sistem yeni karşılaşılan yüzler için kullanıcıya

isim önerileri yapar, kullanıcı ise bu isimleri onaylar ya da doğru isimleri girerek

düzeltir, böylece sistem sürekli olarak eğitim bilgileriyle güncellenir. Kullanıcı sistemden

tatmin edici sonuçlar alana kadar eğitimi sürdürebilir. Yüz veritabanını oluşturmak için,

videoyu anlamsal bağlamda bütünlük içeren parçalara bölmek adına , sahne sınırlarını

tespit eden bir işlemsel süreç uygulanır ve kullanıcı videodaki sahne sınırlarını belirleyen

vii

film kareleri arasında gezer. Yüz tespit ve takip yöntemleriye sahne sınırında bulunan

yüzleri bir sonraki sahne sınırına kadar takip ederek veri toplayan bir işlemsel süreç

uygulanmıştır. Etkin öğrenme için, işlem yükü açısından verimli öznitelik çıkarma ve

sınıflandırma yöntemleri incelenmiş ve değerlendirilmiştir. Güvenilir sonuçlar veren ve

verileri toplu işleyen bazı sınıflandırma yöntemlerinin ardışık veri işleyen türevleri

uygulanmıştır. Öznitelik çıkarma ve sınıflandırma yöntemlerinin bileşimleri denenmiş ve

yüzleri tanımadaki başarılarıyla işlem yükleri göz önünde bulundurularak kıyaslanmıştır.

Anahtar Sözcükler: Çevrimiçi Öğrenme, Yüz Özniteliklerinin Çıkarımı , Yüz Tanıma.

viii

To my family

ix

ACKNOWLEDGEMENTS

 I would like to express my sincere gratitude to my thesis supervisor Asst. Prof. Dr. İlkay
Ulusoy and my project supervisor Assoc. Prof. Dr. Nihan Kesim Çiçekli for their
guidance, assistance and encouragement.

I also would like to thank my family members for their support, encouragement and love
throughout my life.

I also would like to express my special thanks to my colleagues and friends in the
Computer Vision and Intelligent Systems Laboratory, Metin Burak Altınoklu, Örsan
Aytekin, Tülay Akbey, Erdem Akagündüz, Neslihan Özmen, Ömer Eskizara, Yasemin
Özkan Aydın, Okan Akalın, Gökhan Yaprakkaya and Rasim Aşkın Dilan for their
support and guidance.

I would like to express my deepest gratitude to Ege Saygıner for her support and
encouragement.

This work is partially supported by The Scientific and Technical Council of Turkey

Grant ‘‘TUBITAK EEEAG-107E234.

x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ .. vi

ACKNOWLEDGMENTS ... ix

TABLE OF CONTENTS .. x

CHAPTERS

1. INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Background ... 2

2. PRELIMINARY METHODS .. 6

2.1 Overview ... 6

2.2 Shot Boundary Detection .. 8

2.3 Face Detection .. 9

2.4 Face Tracking .. 10

2.4.1 Continuously Adaptive Mean Shift (Camshift) 10

2.4.2 Color Based Particle Filter Face Tracker ... 12

2.4.3 Lucas-Kanade Pyramidal Optical Flow Feature Tracker 13

3. FACE RECOGNITION .. 15

3.1 Overview ... 15

3.2 Illumination Compensation ... 17

3.3 Feature Extraction ... 17

3.3.1 DCT Features ... 17

3.3.2 LBP Features ... 18

3.3.3 HOG Features .. 19

3.4 Classification .. 20

3.4.1 Nearest Neighbour (NN) .. 20

xi

3.4.2 Linear Discriminant Analysis (LDA) ... 21

3.4.3 Support Vector Machines with Single and Multiple Kernels 22

3.5 Experiments and Results .. 24

3.5.1 Overview ... 24

3.5.2 Execution Times ... 25

3.5.2.1 Nearest Neighbourhood ... 26

3.5.2.2 LDA ... 26

3.5.2.3 SVM .. 27

3.5.3 Recognition Precisions .. 27

3.5.4 Observations .. 28

4. EXPERIMENTS AND RESULTS ... 32

4.1 Overview .. 32

4.2 Implementation of the Sequential Classification Methods 32

4.2.1 Nearest Neighbourhood ... 33

4.2.2 Chunk Incremental LDA ... 33

4.2.3 Sequential SVM ... 35

4.3 User Interface .. 36

4.4 Tests and Results for Video Annotation ... 38

4.4.1 Performance Criteria .. 38

4.4.2 Discussions on the Performances of Online Learner Methods 41

4.4.3 Comparison of the Online and Offline Methods 49

5. CONCLUSION ... 54

xii

LIST OF FIGURES

FIGURES

Figure 2.1 The Flowchart of the Overall System ... 6

Figure 2.2 A problem with Camshift ... 11

Figure 2.3 Output of the particle filter face tracker .. 12

Figure 2.4 Example face tracks from the TV series “How I Met Your Mother” 14

Figure 3.1 A sample for illumination compensation .. 16

Figure 3.2 2D DCT Basis Functions and the zigzag scanning method of the DCT

Coefficients .. 18

Figure 3.3 Demonstration for the extraction of 8-bit strings for Local Binary Patterns ... 19

Figure 3.4 Extraction of the Histogram of Oriented Gradients feature extraction 19

Figure 3.5 The graph of NN testing times vs. The number of gallery samples 25

Figure 3.6 LDA Training/Testing times vs. Number of Training/Testing Samples 26

Figure 3.7 SVM Training/Testing times vs. The number of Training/Testing Samples .. 28

Figure 3.8 Recognition accuracies of SVM methods for Face Detections and Face Tracks

Datasets vs. Samples/Class and Number of Classes ... 29

Figure 3.9 Recognition accuracies of LDA methods for Face Detections and Face Tracks

Datasets vs. Samples/Class and Number of Classes ... 29

Figure 3.10 Recognition accuracies of NN methods for Face Detections and Face Tracks

Datasets vs. Samples/Class and Number of Classes ... 30

Figure 4.1 The Main Graphical User Interface ... 37

Figure 4.2 Demonstration of the Face Tracking along with the tracked face 38

xiii

Figure 4.3 Six main characters of the TV series “How I Met Your Mother” that are

selected as the target classes for our face identification system 39

Figure 4.4. An example detected face which does not produce a face track 40

Figure 4.5. Precision vs. Recall Graph for Online HOG+NN learner 41

Figure 4.6. Precision vs. Recall Graph for Online DCT+NN learner............................... 42

Figure 4.7. Precision vs. Recall Graph for Online LBP+NN learner 42

Figure 4.8. Precision vs. Recall Graph for Online HOG+LDA learner 43

Figure 4.9. Precision vs. Recall Graph for Online DCT+LDA learner 43

Figure 4.10. Precision vs. Recall Graph for Online LBP+LDA learner 44

Figure 4.11. Precision vs. Recall Graph for Online HOG+SVM learner 44

Figure 4.12. Precision vs. Recall Graph for Online DCT+SVM learner 45

Figure 4.13. Precision vs. Recall Graph for Online LBP+SVM learner 45

Figure 4.14. Precision vs. Recall Graph for Online HOG+MK SVM learner.................. 46

Figure 4.15. Precision vs. Recall Graph for Online DCT+MK SVM learner 46

Figure 4.16. Precision vs. Recall Graph for Online LBP+MK SVM learner 47

Figure 4.17. Precision vs. Recall Graph for Online/Offline HOG+SVM learners 51

Figure 4.18. Precision vs. Recall Graph for Online/Offline HOG+LDA learners 51

Figure 4.19. Precision vs. Recall Graph for Online/Offline HOG+NN learners 52

Figure 4.20. Precision Performance for Online and Offline HOG+SVM learners 53

Figure 4.21. Training Times for the SVM models ... 53

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Due to the development of high-speed internet as well as the increase in the number and

variety of high-quality digital platforms, access to huge amounts of multimedia content

has become as easy as has never been. People can acquire video clips, movies and all

sorts of audio/video content with a click of the mouse, as they share the content they

have produced with the community in return. This led to the accumulation of multimedia

content in all sorts of different media platforms including cyberspace, personal archives,

DVD’s etc. But huge amounts of data demands an effective search method to access the

desired content. Semantic annotation is one solution to group and label content

efficiently. In this work the focus is on the visual cues extracted from the multimedia

data. If visual content can be annotated semantically within the context of an ontological

structure, i.e., if keywords and textual descriptions are entered by the user as the

metadata, queries could be much more specific and target oriented. Instead of receiving

vague results, precise information can be obtained through data retrieval techniques.

One major branch of semantic annotation involves the labeling of people in videos with

metadata. This is a broad subject covering annotation of people including faces, upper

bodies, pedestrians, etc. Each type of target definition brings its own challenges and

application requirements within its context. Although fruitful, annotation is a time-

consuming and exhaustive process if manually performed. For example, in order to

annotate occurrences of an actor/actress in a TV-series, dozens of episodes have to be

hand-labeled one by one, where each of the episodes has tens or even hundreds of scenes.

And, for example, if the location of the actor’s face is to be recorded, then most probably

2

the effort would be limited to recording one sample location per scene, unless the

annotator is willing to hand label each frame of the scene, one by one. It is

understandable that users are resistant to the task of data entry [31]. An alternative

approach is content-based indexing and retrieval which provides some degree of

automation for this process by automatically extracting features directly from the data.

For personal photo and video archives, no additional information such as text or voice is

assumed to be available. Thus, the only information comes from the visual data. By using

the intrinsic visual attributes of images, such as color, structure, texture, and

composition, users can search collections by instructing the system to retrieve images

that are visually similar to the sample image. The disadvantage of this approach is that

these systems only extract low-level syntactic features, which are not semantically useful

to consumers as keyword-based annotations would be. In this study emphasis was put on

semi-automatic annotation methods where some annotation is requested from the user for

the purposes of training the system. The image and video contents are analyzed

automatically and the user provides the annotation for the analyzed data only. The

learning effort from this limited information and the annotation of the rest of the video

are performed automatically.

For personal multimedia archives, the most interesting contents are human faces in the

photos and videos. Thus, in general, face annotation can be regarded as an extended face

detection and recognition problem if one considers only the visual information.

Fortunately face identification is one of the most promising sub-branches of automatic

annotation of people since faces are, unlike others, unique in the sense that recognition

can be performed using discriminative features extracted from faces. A person on the

video may change his/her clothing, hairstyle etc. but faces have to remain more or less

the same thus faces can be thought of as samples from a higher dimensional face-

manifold which covers a continuum of face image representations along size, expression,

illumination, resolution and pose axes. These parameters can yield quite distorted face

representations which make face recognition yet quite challenging.

1.2 Background

There is a large amount of work for face recognition in photos [32]. Also, face

annotation for personal photo archives has been studied extensively [13, 14, 15, 16, 35,

36, 37]. However, the recognition of faces in videos is more challenging because of the

3

much more dynamic nature of the videos involving bizarre conditions which distort the

faces. The face annotation in video requires not only precise face detection on frames but

also precise face tracking through frames. The state of the art methods for face detection,

tracking and recognition in video [16, 19] usually include a single face moving in front

of the camera.

Thus, semi-automatic annotation methods based on faces are also possible. First of all,

methods use the state of the art face detectors to detect frontal or close to frontal faces in

videos, especially at shot boundaries. Then, face trackers are employed to attach images

of the same face and to extract the sequence of face within a shot although the face has

various poses and expressions throughout this sequence. Some of the tracks are labeled

manually and used as the training set. Finally, the rest of the tracks are labeled

automatically based on the manually labeled set [9].

The proposed methods are tested on the videos of movies, news and TV series which

include many characters and scenes. In this way, the proposed methods are used for

automatic naming of characters [8, 29, 38, 39, 43, 44]. As the related work, we consider

methods that provide annotations based on only the facial region and exclude methods

considering hair, body and clothing [38, 39, 43] because these may show many more

variations than the appearance of the face. In [33], a neural network based face detector

and skin color based face tracker are used. Each detected face is normalized to 64 x 64

pixels and the face sequence matching is done by the appearance based face matching.

Automatic labeling is done by finding the pair of query and gallery samples which are

closest to each other where the entire query track is labeled with the class label of the

gallery sample. Four methods (Eigenface, Fisher’s Linear Discriminant, subspace and

kernel methods) are tested for the performance of face recognition and Fisher’s Linear

Discriminant is found to perform the best [23]. In [38], Viola-Jones face detector [1] and

Kanade-Lucas-Tomasi face tracker [20] are used. Hundreds of faces are labeled for

learning facial features using Adaboost where Haar-like features are used [1]. The facial

appearance is represented by the descriptions obtained around the facial features. The

pixel values or SIFT features [39] are extracted as the descriptions. The automatic

labeling is done in the same way as [18]. In [39] Viola-Jones face detector [1] and color

based face tracker are used. The tracks are clustered and the automatic labeling is

performed in the same way as [18]. Viola-Jones face detector [1] and particle filter face

4

tracker are used in [9]. Discrete Cosine Transform (DCT) coefficients are extracted from

the faces [3] and nearest neighbor classifier is used for automatic labeling.

Each study in the literature performs different tests on different data sets and presents its

results in a different way. The common method of testing is that some part (nearly one

quarter) of the video is manually annotated (i.e. the tracks are labeled) and the rest of the

video is automatically labeled and the performance of the method is presented based on

correct labeling [8, 9, 38, 39, 43, 44]. This method is also suitable for personal video

annotation. Some studies working on TV series episodes use an episode for training and

use other episode or episodes for testing [18,39].

Various performance measurements are used in different studies. For example, in [38,

43, 44] precision-recall curves are used where recall is defined as the proportion of tracks

which are assigned a name after applying the “refusal to predict” mechanism and the

precision is defined as the proportion of correctly labeled tracks out of all labeled tracks.

If all of the test tracks are labeled (i.e. recall is %100) then the precision is between %63

and %69 for various episodes of “Buffy the Vampire Slayer”. Similarly, in [39],

precision less than %60 is achieved for %100 recall for various episodes of “Friends”. In

[18, 34] the accuracy of labeling is plotted against the number of training sequences. The

highest accuracy reached for various episodes of “Oshigoto-desu!” is %60 in [18]. In [9]

TV series “Coupling” is used for testing and precisions less than %40 is achieved for

each character at %100 recall.

The systems proposed in the literature are all off-line [5, 8, 9, 18, 34, 38, 39, 43, 44], i.e.

the annotation is performed off-line and then the results are provided to the user at a

speed close to real time. Usually, many post processing steps are applied for accurate

tracking and face clustering. Besides, batch learning of labeled data is performed first

and then the rest of the data is labeled automatically. Nearly none of the studies presents

a performance for the computational time of the training and testing steps, except in [18]

where four methods are compared both in terms of accuracy and CPU time of the

training sessions.

In this study, a semi- automatic video annotation tool based on faces is developed for

personal videos where the annotation is done online with very minor user interaction.

This application scenario is different from the previous studies. The goal is to develop an

5

automatic face annotation tool with an online learning stage. The system interacts with

the user to get annotations for the unknown faces in the beginning of the video. These

initial annotations are used for the training of the system. After a period of training time,

the system automatically recognizes the learned faces in the remaining part of the video.

The system also allows the user to correct any of the automatic annotations, if necessary,

and these corrections are added to the training set to improve the success of the system.

Instead of batch classification or learning, which are used in the literature for off-line

applications, sequential methods are used in this study, since learning continues

throughout the annotation process in the form of either user labeling or user feedback. In

order to build a real-time learning system, the parts of the system have to be fast and

robust. The timing constraint limits the use of some algorithms such as classification

based on facial features using gabor wavelets [28] since they are found to be

computationally expensive according to the preliminary tests. Thus, each stage of the

system (shot detection, face detection at shot boundaries, face tracking throughout the

shot, learning of the manually labeled face tracks, labeling of faces on the other tracks) is

optimized in terms of both accuracy and time.

The work is organized as follows: Chapter 2 presents an overview of the proposed

system and the main steps of the method are discussed. Chapter 3 involves the

description of the algorithms used for face recognition and comparative performance

evaluation for each method is presented in terms of execution times and recognition

accuracies. In Chapter 4, the online automatic annotation tool is tested for video

annotation using an episode of a TV series. Extensive tests are made to compare the

performances of the considered algorithms for online annotation application. Chapter 5

presents the concluding remarks and possible future work.

6

CHAPTER 2

PRELIMINARY METHODS

2.1 Overview

The main steps of the proposed system are shown in Figure 2.1. The shot boundaries in

the video are automatically detected and presented to the user one at a time. For a real-

time application, the shot boundary detector should have a reasonable performance. In

this study, after investigating various methods [27], the digitized color histogram

difference method has been implemented. Adoption of complex features like edges for

shot boundary detection has been shown to be inadequate to outperform the performance

of the simpler algorithms, yet complex features require much more computational power

[27]. Histogram-based methods are used frequently in many similar video face

identification systems [8, 17, 43].

Figure 2.1. The Flowchart of the Overall System

7

The faces on the shot boundary frames are detected automatically by a state of the art

face detector [1] which is proved to perform well in previous applications [9, 38, 39]. In

order to improve the performance of the system, the face detector is applied to edge

enhanced images. Only frontal faces or faces very close to frontal pose are detected. We

do not use additional cues such as hair or clothing [38, 39] because hair or clothing may

change a lot in a personal archive.

The user is asked to label the detected faces at the shot boundaries through a user

interface. Then the faces are tracked through the frames within the shot. In our method,

human faces are tracked in order to populate a database of target faces which we want to

recognize. So it is essential to have high quality face tracks. A good track must contain

only the face and the least amount of background clutter. Also the facial features (eyes,

mouth, etc.) which are crucial for the consequent recognition step must be contained in

the spatial boundary of the track, if they are already visible in the scene. Methods like

Continuously Adaptive Mean Shift [6] and Particle Filtering [25] may be used for face

tracking; however there are some problems in using them for our purposes. They are not

suitable for real-time applications. They may result with tracks including noisy

background beside faces. Also, they may depend on manually set parameters. Therefore,

in this study a well-known face tracker, which is based on generic features such as

corners [20, 21], is used with some modifications. In this way, faces are tracked faster

and better.

The tracks of the detected faces are saved to the database with the labels input by the

user. After some time, which may also be defined by the user, the system learns the faces

in the database. Then, other faces are automatically detected, tracked and recognized in

the rest of the video. The recognized faces are presented to the user to receive feedback

about the correctness of automatic labeling. Based on the user feedback, the database is

revised. For example, if the recognized face is wrongly labeled by the system, the user

will correct the label and the corresponding face tracking information will be added to

the correct label class. The classification is performed once more with this new

information.

The face recognition methods which are highly popular for annotation applications are

classification methods such as Nearest Neighbor (NN) [3] and Linear Discriminant

Analysis (LDA) [23] and learning methods such as Support Vector Machine (SVM) [26].

8

Although there is a consensus in the literature about the appropriate face detector and

tracker for automatic annotation applications, a commonly agreed method doesn’t exist

for face recognition. There are many recent studies which compare various face

recognition methods used for annotation applications. For example, NN and SVM are

compared in [43], the Eigenfaces [22], Fisher’s linear discriminant, subspace and kernel

function subspace methods are compared in [18] and Single Kernel SVM and Multiple

Kernel SVM are compared in [44] by using face sequences obtained from videos. In this

paper, NN, LDA, SVM and MK SVM are compared for our real-time annotation

application. However, the sequential approaches are used, since the classification is done

throughout the annotation process when user labeling or user feedback is received. The

sequential learning is faster and more suitable for such a real-time application. Because,

instead of re-training or re-classifying the whole database with the new information,

training is done incrementally so that the previously learned model is updated with the

new information. Thus, except for NN, sequential versions of LDA and SVM are

implemented and compared for our application. The faces are not directly used in these

methods, instead some informative features such as Discrete Cosine Transform (DCT)

[3], Local Binary Patterns (LBP) [2] and Histogram of Gradients (HOG) [42] are

extracted from face images and these are used with all classification and recognition

methods and the performances are compared.

2.2 Shot Boundary Detection

A shot is a visually continuous collection of frames starting from a scene change in the

video to the next scene change, or a switch of the cameras. A variety of shot boundary

detection algorithms exist in the literature [10, 27]. The basic idea of shot boundary

detection is to compare consecutive frames to detect a significant change in terms of a

given metric. These include methods which compare consecutive frames by calculating

direct pixel differences, digitized color histogram differences and others such as

calculation of edge change ratios within frames.

In our work we have chosen the digitized color histogram difference method because it is

fast and performs well when compared to the other methods [27]. Additionally, most of

the personal videos and TV shows include direct cuts as shot boundaries and

implemented algorithm is found adequate for detection of the shot boundaries although

some false shot boundaries may be declared. But, the accuracy of the shot boundary

9

detection algorithm is not essential for the performance of the overall system since the

main point is that shot boundaries are used as beacon points for detection and tracking of

faces. Extra shot boundaries would only mean an additional face detection-tracking step.

And a missing shot boundary will be noticed by the facial feature tracker. The face

tracker would stop at the shot boundary frame due to the abrupt change in the pixel

values between consecutive frames.

 Each color channel (R,G,B) is digitized to 8 values and the color histograms of the

frames are extracted. The digitization step is a precaution to reduce susceptibility to

noise. Next, the histograms of consecutive frames are compared via the histogram

difference method as shown in Equation 2.1.

,ࢎሺࢊ ሻࢍ ൌ෍෍෍ሺࢎሺ࢘, ,ࢍ ሻ࢈ െ ,࢘ሺࢍ ,ࢍ ሻሻ࢈

୆ࡾࡳ

 ሺ2.1ሻ

Here h and g are the RGB color histograms of two consecutive frames. If the difference

value d(h,g) exceeds a threshold then a shot boundary is declared. In order to cope with

transient shot changes which may last for more than one frame, only a local maximum

within a window is considered and the other results are discarded. The default value for

this window is chosen to be five frames.

2.3 Face Detection

There are a number of robust face detection algorithms in the literature for near frontal

faces. The most commonly used one is the Viola-Jones face detector [1] which is a

cascade of Haar-like features boosted by adaboost tool. Viola-Jones face detector is run

at each shot boundary frame. If the shot boundary frame does not return a detected face,

the next frame is loaded and another face detection trial is made. This procedure is

repeated until a face is detected. If a face cannot be detected within a certain number of

frames (chosen as 10) following the shot boundary frame, the current shot boundary is

10

presented to the user as-is, namely without any marked face locations but the user may

mark the missed faces manually or continue browsing through shot boundary frames by

skipping that frame and the search is restarted from the next shot boundary frame.

2.4 Face Tracking

In our system, human faces are tracked in order to populate a database of target faces

which we want to classify. So the quality of the face tracks is essential for the

performance of face recognition. A good track must contain the minimum possible

amount of background clutter. Also the facial features (eyes, mouth, etc.) which are

crucial for the consequent recognition step must be contained in the spatial boundary of

the track, if they are already visible in the scene. The speed of tracking is another

important issue for a real-time annotation system. Therefore, we investigated possible

trackers in detail in order to choose the right method. The most commonly used methods,

such as Continuously Adaptive Mean Shift algorithm [6], Particle Filtering [25, 30] and

Optical Flow Feature Tracking [20], are compared in terms of performance and speed.

2.4.1 Continuously Adaptive Mean Shift (Camshift)

Camshift [6] is a very fast algorithm however it requires its parameters to be tuned

depending on the scene characteristics. This tracker makes use of the color histograms of

the scene and the rectangular face region. A 2D (Hue x Saturation) model histogram is

formed using the initial face rectangle. Camshift algorithm assigns probability scores to

the pixels indicating their likelihood of belonging to a facial color. For each pixel in the

search region, the number of occurrences of the given color is counted in the model

histogram (which is extracted from the initial face rectangle) and this score is assigned to

the pixels with the given color on a map which has the size of the search region. Then

Mean Shift algorithm [7] is applied to determine the mode of the biggest blob in an

iterative manner. The new size of the rectangular region is also determined from this map

by summing up the total score under the designated center of the face.

In order to differentiate the color distribution of the face region from the background

region, some color values need to be trimmed and filtered. For example, hue values,

which are very effective in differentiating human skin color, are quite unreliable given

low saturation or low brightness values. The threshold values for these filters have to be

determined for each scene.

11

Instead of manually determining the threshold values, an automatic approach may be

used to determine the appropriate threshold values. For this purpose, histograms of hue,

saturation and value (HSV) channels are extracted for the background scene excluding

the face region and a separate set of histograms are similarly extracted for the detected

face region. The background scene is chosen as the surrounding rectangle with an area

four times larger and centering the face rectangle. Our aim was to decide the thresholds

for HSV channels which would enable us to separate the face region colors from the

background colors as much as possible. 1D Gaussian distributions are fit to the face color

histograms independently for each channel. The threshold value for each channel is set

where the Gaussian model for the face rectangle intersects the actual distribution for the

background histogram. If this intersection occurs for a number of values, the one which

is closest to the mean value of the Gaussian (and smaller than the mean value) is

selected. But this method is found out to be susceptible to small deviations and the

threshold could not be determined accurately enough.

Another problem with the Camshift algorithm is that only color information is used

throughout the whole tracking process. This may cause the tracker to engage to the neck

(Figure 2.2), balding heads, or hands moving near or in front of the face in addition to the

already problematic human skin-color resembling background.

Figure 2.2. A problem with CamShift. The face rectangle grows rapidly due to skin colored pixels

in the neck region.

12

Thus, the method is found to be inadequate for our application because a small change in

the parameters may cause a drastic change in the behavior of the tracker and the tracker

ends up capturing regions other than the faces easily.

Figure 2.3. Output of the particle filter face tracker. Faces are not centered. There is a

significant amount of background clutter.

2.4.2 Color Based Particle Filter Face Tracker

We have used a particle-filter color tracker implementation available in [30]. This

method is not fast enough to be used in a real-time application. Also the success of this

tracker is found to be inadequate and the tracker cannot compensate for its high

computational demands. Although independent from parameter tuning, the face

boundaries within the tracks often contain significant amounts of background clutter. The

tracker is susceptible to noise, so intruder objects passing in front of the face cannot

easily distract the tracker but the steady nature of the tracker is also a problem when the

face itself is moving throughout the scene rapidly where the tracker does not change its

state as fast as the face itself. A sample output track can be observed in Figure 2.3.

Some post processing was applied to improve the performance of the tracker. For

example, a human-skin color recognizer based on a Support Vector Machine classifier

was applied to each tracker output so that the background clutters could be trimmed from

the central face region. But this led to a significant amount of decrease in the

performance (in terms of speed) since each face image in the track needed to be

processed by the skin color recognizer. Another reason for this approach not being

satisfactory was that no significant trimming could be achieved if the background clutter

resembled the human skin color.

13

2.4.3 Lucas-Kanade Pyramidal Optical Flow Feature Tracker

The third face tracker algorithm that we have implemented is the Lucas-Kanade optical

flow tracker [21]. In order to use the optical flow algorithm, certain features need to be

selected. These features have to be selected appropriately so as to increase the success of

tracking. For this purpose, we select a number of feature points around the target facial

feature areas according to [20]. The rectangular search regions around the eyes and

mouth are selected according to the size of the face which is obtained from the face

detector. In each of these three regions, a number of (chosen as 4) feature points are

determined by detecting the corners. Having selected a total number of 12 corners, with 4

corners for each region, the optical flow tracker algorithm finds the best matches for

these 12 points in the following frame of the video. The mean value for each feature

quadruple is claimed to be the location for the corresponding feature. The minimum

bounding rectangle of the three feature centers is enlarged by a scale factor, which is

chosen heuristically after inspecting several face images, and this rectangle is saved as

the face rectangle. When there is an amount of optical flow error bigger than the

designated threshold or if one or more of the feature points are lost, the tracking is

completed.

In optical flow tracking, the neck region, balding heads and background clutter

resembling human skin color cannot affect the tracking quality since the color

information is irrelevant. In addition, obstacles which may intervene by occluding the

face, like moving hands, stop the tracking process. Otherwise such obstacles would have

caused the accumulation of corrupt images in the database. Samples from the optical

flow tracker can be observed in Figure 2.4. These results are unprocessed and direct

outputs of the face tracker. It is clear that the optical flow tracker is robust under a wide

variety of conditions such as low illumination (3rd and 4th rows), changes in facial

expression (1st row and 6th row) and low resolution (bottom row).

As a conclusion, the optical-flow facial feature tracker performs best for our application

yielding the best face localization where the background clutter causes important

degradation in the recognition performance. Also optical-flow feature tracker is not

affected by the human-skin resembling colored backgrounds whereas color based

trackers suffer a lot. There is a trade-off between the quality of the tracks and the length

of the tracks, where selection of parameters for the termination criteria of the tracking

14

determines whether the tracking is to be terminated when the face goes through a big

change. Long tracks may contain much more references of the target person and also the

recognition could be started much earlier if the samples are collected in big steps, on the

other hand if the termination criteria for the tracks are loose, the track may contain lots of

different poses which may include poses that are not suitable to construct a model for the

target face, such as profile faces or even some feature points may engage false corners

outside the face region, resulting in taking samples which are erroneous. These may

critically endanger the success of the recognition.

Figure 2.4. Example face tracks from the TV series “How I Met Your Mother”

15

CHAPTER 3

FACE RECOGNITION

3.1 Overview

In this chapter, the methods of face recognition which are used in this thesis will be

evaluated. Each facial feature extraction algorithm and classification method is explained

in detail. Results of extensive tests which investigate recognition accuracies and

execution times are presented for offline testing sessions in order to compare the methods

at the base level. We have implemented NN, LDA and SVM (with single and multiple

kernels) as face recognition methods with features such as DCT, LBP and HOG.

In order to compare execution times and recognition precisions, all feature extraction

methods are tested with all classification methods. The execution times of all methods

are plotted for both training and testing phases as the number of training and testing

samples changes. In order to calculate the precision of face recognition algorithms,

several tests have been made to compare the accuracies of the methods under different

conditions.

Accuracies are calculated as the number of target classes is changed. Similarly the

variation of accuracy is plotted as the amount of training data is altered. All tests are

made for two distinct face datasets. The first dataset is a collection of hand-labeled face

detection outputs. Viola-Jones face detector [1] has been run for every single frame

throughout an episode of “How I Met Your Mother” TV series and the detected faces of

target people are manually clustered. The second dataset is created by using a face

tracker algorithm on the same episode. OpenCV implementation of Camshift Color

Based face tracker [6] is used in order to track faces throughout the video. The resulting

16

face tracks are also manually labeled and clustered. Samples from both datasets are fed to

an illumination compensation algorithm before recognition is performed.

The face detections database is composed of more-controlled and better-posed face

images since the face detector detects frontal upright faces. The face tracks database on

the other hand, captures a much more diverse set of face images as the tracker can collect

rotated or otherwise distorted faces which may be missed by the face detector. But the

higher diversity is expected to cause degradation in the precision. The face detections

dataset gives us a prior judgment about the accuracies of the methods used. However,

having the ultimate goal of designing an online system where encountered face tracks are

to be classified, face tracks database gives a more valuable information about the

performance of our methods in such severe conditions where face tracks may include

heavily distorted faces via illumination conditions, rotations and facial expressions.

In all tests, 5-fold cross validation technique is used. The database to be used is divided

into 5 groups. One group is used as the test group while the remaining 4 are used as the

training group. At each fold upon calculating the recognition precision, the test group is

switched. The average of the five test results gives the final precision value.

The rest of the chapter is as follows: First the illumination compensation algorithms used

is described. Then the feature extraction and classification methods are explained. And

finally the execution times and recognition accuracies of the methods for different

conditions are presented.

Figure 3.1. A sample for illumination compensation. (a) Original Image. (b) Resized Gray Image.

(c) Illumination Compensated Image.

17

 3.2 Illumination Compensation

Illumination compensation is performed in order to refine face images for a better

recognition performance. Since personal videos are recorded in uncontrolled

environments, the illumination compensation is an essential step to deal with the

diversity of illumination conditions which affect the pixel values. As the first step,

sample face images are converted to gray-scale and resized to have a standard size of 64

(height) x 48 (width) pixels. Then, a basic and fast algorithm of illumination

compensation by homomorphic filtering [45] is applied (See Equation 3.1). Figure 3.1

shows the process of the illumination compensation. When we take the logarithm of the

raw image, by using a high pass filter we can amplify the reflectance field and suppress

the luminance field. After taking back the exponential, the illumination compensation is

achieved.

,ݔ௖௢௠௣ሺܫ ሻݕ ൌ ,ݔ௥௔௪ሺܫ൫݃݋൫݈݌ݔ݁ ሻ൯ݕ ∗ ,ݔ௛௣ሺܪ ሻ ൯ ሺ3.1ሻݕ

3.3 Feature Extraction

Instead of using direct pixel values, which are sensitive to noise and localization errors,

three alternative methods have been implemented and details of each method are

presented.

3.3.1 DCT Features

DCT features are used for face recognition in the literature [3]. The resized images of

size 64 x 48 pixels are divided into 8x8 pixel blocks. For each of these small blocks, two-

dimensional discrete cosine transform is applied. Ten of the resultant 8x8 transform

coefficients are scanned in order to reduce the dimension of the 8x8 pixel block by

representing the data block with 10 coefficients instead of 64. Coefficients which

correspond to the higher frequency basis functions are less significant compared to the

ones which correspond to the lower frequency basis functions; hence data compression

can be attained by losing some high frequency information which can be affected more

18

easily by noise. Skipping the bias value, which is heavily dependent on illumination in

the scene, first 10 DCT coefficients are scanned in a zigzag manner (Figure 3.2).

Concatenating these 10 values for each block yields a vector of length 480. As the last

step, this vector is normalized to have a unit norm.

3.3.2 LBP Features

Local Binary Patterns is originally used as a texture descriptor but in the literature its use

as a facial feature extraction method has also been investigated [2]. Each pixel of the

resized gray image is coded with an 8-bit string according to its 8 neighboring pixels.

The value of the center pixel is compared to each of its 8 neighbors. If the value of the

center pixel is greater than the neighbor, a 0 is assigned to the corresponding neighbor

and a 1 is assigned otherwise. This pattern of 1’s and 0’s is unfolded to yield an 8 bit

string. In Figure 3.3 the extraction of the 8-bit strings is shown.

Figure 3.2. 2D DCT Basis Functions and the zigzag scanning method of the DCT

Coefficients.

19

Figure 3.3. Demonstration for the extraction of 8-bit strings for Local Binary Patterns.

For each pixel a string is assigned and number of occurrences for these strings is counted

to create a histogram of 8-bit strings. This histogram with 256 bins is used as a feature

vector of 256 dimensions. This vector is normalized to have a unit norm.

3.3.3 HOG Features

Histogram of oriented gradients is a feature extraction method commonly used for

human detection [42]. But it is also proven to be a suitable feature extraction method for

human faces [44]. A gray-scale face image of size 64x48 pixels is divided into 8x8 pixel

cells. For each cell horizontal and vertical gradients are extracted by 1D derivatives with

simplest kernels of length 3. ([1 0 -1] for horizontal and [1 0 -1]T for vertical) then the

magnitude and the angle of gradients are calculated at each pixel.

Figure 3.4. Extraction of the Histogram of Oriented Gradients feature extraction.

Orientation histogram is calculated for each cell where the scaled magnitudes are used as

weights. 9 bins are used for [-π,π] interval. In order to do scaling for the weights, 2x2

20

cells are grouped together to yield one block of 16x16 pixels and a Gaussian mask is

used to multiply the weights according to the spatial layout of the weights within the

block. The center of the Gaussian mask is at the center of the blocks and the standard

deviation is chosen as 8 pixels. 4 scaled histograms within the overall block are

concatenated to give the overall descriptor for the particular region. This descriptor is

also normalized by dividing it with its norm.

Blocks are created in an overlapping fashion where adjacent two blocks have common

cells but each time scaled according to a different block. This way an overall feature

vector for the face is constructed by concatenating the local feature vectors for the

overlapping blocks, 35 blocks with each having 4x9 (number of cells x number of bins)

dimensions result in an overall feature vector of size 1260. Figure 3.4 shows an example

of the extracted gradients.

3.4 Classification

In this section, three classification method, Nearest Neighbourhood, Linear Discriminant

Analysis and Support Vector with Single or Multiple Kernels will be discussed.

3.4.1 Nearest Neighbour (NN)

NN method is widely used in annotation applications especially as a baseline method. A

query track is composed of several face samples i.e., ܨொ={ ଵ݂
ொ, ଶ݂

ொ, ଷ݂
ொ, … , ெ݂

ொ}.

Similarly the database contains the so-called “gallery” images, each of which is grouped

according to its class label C, i.e., ܨ஼
ீ ൌ ሼ ஼݂,ଵ

ீ, ஼݂,ଶ
ீ, ஼݂,ଷ

ீ, … , ஼݂,ே
ீሽ. A label is

assigned to the query track by finding the highest similarity score among the competing

gallery classes, using Equation 3.2. The similarity score is calculated using the

normalized-correlation metric between query samples and the gallery samples of each

class. The pair of samples which give the highest normalized-correlation value

determines the overall score for the corresponding class (See Equation 3.3).

݈ܾ݁ܽܮ ൌ max ݃ݎܽ
஼

 ܵሺܨொ, ஼ܨ
ீሻ ሺ3.2ሻ

 ܵ൫ܨொ, ஼ܨ
ீ൯ ൌ max

௙೔
ೂ∈ ிೂ

max
௙ೕ

ಸ∈ ி಴
ಸ ൬

௙೔
ೂ.௙ೕ

ಸ

ฮ௙೔
ೂฮ.ฮ௙ೕ

ಸฮ
൰ ሺ3.3ሻ

21

The prominent problem with one-to-one comparison of the feature vectors is that having

a growing database results in an increasing comparison time. The second problem is the

possible domination of the crowded class vectors.

3.4.2 Linear Discriminant Analysis (LDA)

LDA is actually a feature extraction method usually followed by a classifier (here

Nearest Neighbourhood). A projection onto a lower dimensional space is determined

according to the higher dimensional raw data. The projection procedure is also applied

for the query vector and the projected query vector is classified according to the labeled

data again with the Nearest Neighbourhood method.

LDA yields the projection where the projected feature vectors are maximally separated

between classes and minimally separated within their classes. To determine the

projection matrix, Within-Class Scatter Matrix (See Equation 3.4) and Between-Class

Scatter Matrix (See Equation 3.5) are constructed.

࢝ࡿ ൌ ෍∑ࢉ

ெ

௖ୀଵ

ൌ෍ ෍ ሺ࢞ െ ࢞ሻሺࢉഥ࢞ െ ሻࢉഥ࢞
்

ሽࢉ࢞ሼ∋࢞

ெ

௖ୀଵ

 ሺ3.4ሻ

܊܁ ൌ ෍݊௖ሺ࢞ഥࢉ െ ࢉഥ࢞ഥሻሺ࢞ െ ഥሻ் ሺ3.5ሻ࢞

ெ

௖ୀଵ

Here M is the number of different classes, nc denotes the number of sample data

belonging to class c, ࢞ഥࢉ denotes the mean of the vectors belonging to class c, ࢞ഥ denotes

the mean vector of all sample data. The projection direction is found by calculating the

eigenvectors of Equation 3.6. The number of selected eigenvectors corresponds to the

dimension of the projected space. We retain the eigenvectors with the highest

eigenvalues that capture the 95 % of the total energy where total energy is sum of all the

eigenvalues.

22

ࡰ ൌ ࢝ࡿ
ି૚࢈ࡿ ሺ3.6ሻ

Since the within-class scatter matrix is a summation of outer-product of vectors, it is

generally singular. In order to guarantee that the within-scatter matrix is non-singular,

hence invertible, the number of training data must be greater than the summation of the

number of input dimensions and the number of classes to be determined [4].

 3.4.3 Support Vector Machines with Single and Multiple Kernels

Support Vector Machine is a binary classification method which tries to linearly separate

samples from 2 classes according to some criteria. A separating hyperplane is defined to

partition the sample space into two regions. The hyperplane is demanded to be as far

from the nearest sample vectors as possible to provide a clear gap between the two

classes. Although SVM is a linear classifier, using different Kernel functions the samples

can be projected to different spaces. A sample set can be linearly separated on a

transformed space even though it may not be in the original space. Instead of forcing the

SVM to strictly discriminate all samples, a soft margin can be used. Using a soft margin

value, the separating hyperplane can be fit to discriminate linearly inseparable data,

although there is a penalty term for each of the data points which reside on the wrong

side of the hyperplane.

SVM is a binary classifier but it can be extended to make classification for multiple

classes. There are a couple of methods for multi-class classification. The first one

involves the solution of the optimization problem for all classes at once. But this method

performs poorly. Another approach is the “one vs. one” where an SVM model is trained

for each pair of classes. A query sample is tested with each SVM model and the class

label is assigned according to the highest number of class labels presented. The problem

with the method is the rapidly increasing number of SVM Models with increasing

number of classes. For N classes,
૚ሻିࡺሺࡺ

૛
 SVM models have to be trained. The last option

is the “One vs. The Rest” method. For each class, an SVM model is trained. And the

query samples are tested with each model. There may be some ambiguous situations with

this method where the query vector ends up belonging to a number of classes more than

23

one or none at all. In order to decide the winner class, classification is done according to

real decision values instead of the sign of the decision values. In this work we have

adopted the “One vs. The Rest” method for multiclass classification. Gaussian RBF

Kernel function (See Equation 3.7) is used for the single kernel SVM. Similarly for the

Multiple Kernel SVM, Gaussian RBF kernels are used as base kernels.

For the multiple kernel case, instead of using a single kernel, linear combinations of base

kernels are considered (See Equation 3.8). Each base kernel corresponds to a different

block of the feature vector. For the LBP, DCT and HOG features, these base kernels are

applied for each of the data blocks created during the feature extraction stage. Hence the

number of base kernels is 35 for HOG features and 48 for DCT features. For the LBP

features with 256 dimensions, vectors are partitioned into 16 blocks of length 16 hence

16 base kernels are used. ܭ௕’s are the base kernels and ߚ௕ are the weights corresponding

to each base kernel. N is the total number of base kernels. Multiple Kernel Learning

algorithm [28, 31] can be used to select the best ߚ௕ value over a training surplus, but it

has been shown that assigning equal weights for each weight provides sufficient results

[44].

We have selected the soft-margin coefficient C and ߛ parameter of the RBF Kernel by

conducting a test across a rectangular grid of C and ߛ variables. For the Multiple Kernel

SVM, for each base kernel ܭ௕, ߛ௕ parameters are selected separately. Each base kernel

corresponds to a distinct block in the feature vector. In order to define ߛ௕ parameter for

each block, the average Euclidean distances (See Equation 3.9) between blocks are

calculated separately over a training data. For two of the training feature vectors, namely

u and v, ݑ௕ and ݒ௕ are blocks of the feature vectors defined by the block number b

ሺwhere parameters are selected as ߛ௕ ൌ
ௗ್

଼
for HOG features , ௕ߛ ൌ ݀௕ 32 ݔ for DCT

features and ߛ௕ = ݀௕/2 for LBP features.

 Kሺu, vሻ ൌ expሺെݑ|ߛ െ ଶሻ ሺ3.7ሻ|ݒ

,ݑሺܭ ሻݒ ൌ ෍ߚ௕ܭ௕ሺu, vሻ

௕

 Kୠ ൌ expሺെߛ௕|ݑ െ ௕ߚ ଶሻ|ݒ ൌ
1

ܰ
 ሺ3.8ሻ

24

 ݀௕ = |ݑ௕ െ ܾ |௕ݒ ∈ ቐ
 ሾ1,16ሿ ݂ݏ݁ݎݑݐ݂ܽ݁ ܲܤܮ ݎ݋

 ሾ1, 48ሿ ݂ݏ݁ݎݑݐ݂ܽ݁ ܶܥܦ ݎ݋

 ሾ1, 35ሿ ݂ݏ݁ݎݑݐ݂ܽ݁ ܩܱܪ ݎ݋

 (3.9)

3.5 Experiments and Results

3.5.1 Overview

In order to compare execution times and recognition precisions, all feature extraction

methods are tested with all classification methods. The execution times of all methods

are plotted for both training and testing phases as the number of training and testing

samples changes. In order to calculate the precision of face recognition algorithms,

several tests have been made to compare the accuracies of the methods under different

conditions. Accuracies are calculated as the number of target classes is varied. Similarly

the accuracy is plotted as the amount of training data is varied. All tests are made for two

distinct face datasets. The first dataset is a collection of hand-labeled face detection

outputs. Viola-Jones face detector [1] has been run for every single frame throughout an

episode of “How I Met Your Mother” TV series and the detected faces of target people

are manually clustered. The second dataset is created by using a face tracker algorithm

on the same episode. OpenCV implementation of Camshift Color Based face tracker [6]

is used in order to track faces throughout the video. The resulting face tracks are also

manually labeled and clustered. Samples from both datasets are fed to an illumination

compensation algorithm before recognition is performed.

The face detections database is composed of more-controlled and better-posed face

images since the face detector captures frontal upright faces. The face tracks database on

the other hand, captures a much more diverse set of face images as the tracker can collect

rotated or otherwise distorted faces which may be missed by the face detector. But the

higher diversity is expected to cause degradation in the precision.

The face detections dataset gives us a prior judgment about the accuracies of the methods

used. However, having the ultimate goal of designing an online system where

encountered face tracks are to be classified, face tracks database gives a more valuable

information about the performance of our methods in such severe conditions where face

25

tracks may include heavily distorted faces via illumination conditions, rotations and

facial expressions.

In all tests, 5-fold cross validation technique is used. The database to be used is divided

into 5 groups. One group is used as the test group while the remaining 4 are used as the

training group. At each fold upon calculating the recognition precision, the test group is

switched. The average of the five test results gives the final precision value.

3.5.2 Execution Times

All of the tests are performed on an Intel Core 2 Duo 2.20 GHz PC with 1 GB RAM.

DCT and HOG feature extraction methods has been implemented in MATLAB. For LBP

feature extraction, a MATLAB implementation available in [30] has been used. Nearest

Neighborhood and LDA algorithms are implemented in MATLAB environment. For

Single Kernel and Multiple Kernel SVM, a MATLAB interface for LIBSVM

implementation [11] is used. Training and testing times of all methods are presented. For

the calculation of the execution times, the number of classes is selected to be 6. The

number of training samples is varied and the corresponding execution time for each

method is calculated.

Figure. 3.5. The graph of NN testing times vs. the number of gallery samples.

26

3.5.2.1 Nearest Neighborhood

For NN, there is no training. The execution times are shown for different numbers of

gallery samples (Figure 3.5). Gallery samples correspond to the number of training

samples where each test sample is compared one by one before the nearest neighbor is

found. For each method, three different graphs are plotted with different numbers of

testing samples used. As expected, the execution times increase linearly with the number

of gallery samples with a small bias value. Also given a fixed number of gallery samples,

the execution times are observed to increase linearly with the number of testing samples.

Figure 3.6. LDA Training/Testing times vs. the number of Training/Testing Samples

3.5.2.2 LDA

 For the LDA training, the graphs of execution times (See Figure 3.6) are considerably

flat with respect to the number of training samples, on the other hand a major change is

observed for different features. This is expected since most of the computation is due to

the construction of the scatter matrices and calculation of the eigenvectors where the

number of feature vector dimensions determines the size of the scatter matrices. 3000

samples are used to construct an eigenspace model, and this model is used to conduct

tests for the LDA execution times. The testing times, which have the smallest values

27

among all classification methods, increase linearly with the increasing number of test

samples.

3.5.2.3 SVM

SVM training times are shown on Fig. 6. The execution times increase rapidly with the

increased number of training samples. The execution times are for the training of 6 SVM

models. Most of the computation is due to the kernel construction. For each test with the

designated number of training samples, a single common kernel is constructed and the

corresponding training labels are adjusted for the training of different SVM models.

Hence SVM training times do not increase linearly with the “number of classes”. 6 SVM

models are constructed using 3000 samples for each model. As in training, most of the

computation is due to the construction of kernels; hence the number of returned support

vectors is indicated for each method. The linear behavior with respect to the number of

testing samples can be seen from the graph (See Figure 3.7). Having returned a smaller

number of support vectors, Multiple Kernel SVM models have smaller testing times

compared to the SVM with DCT features.

3.5.3 Recognition Precisions

The number of samples per person is varied (with 6 people as target classes) and the

corresponding classification performance is measured for both detection and tracking

databases (Figures 3.8-3.10). Similarly the number of target classes is varied (with 500

samples for each class) and the resulting classification rate is measured for the detections

and the tracks databases. The performance is measured by the precision at 100 % recall

which means that all of the face tracks are labeled and the percentage of correct labeling

is taken as the performance.

The general trend of decreasing recognition precision in Figures 3.8-3.10 is due to the

fact that while the number of samples per person increases, the diversity of the model

also becomes more complex with different looking samples of the face. If the variety of

the samples were kept constant, the addition of similar samples would increase the

precision.

28

Figure 3.7. SVM Training/Testing times vs. the number of training/testing samples.

In all tests, LDA classification is observed to degrade and perform poorly with the

insufficient number of training samples. But when the number of samples is adequate,

LDA classification also works properly. SVM performs as the best classification method,

but SVM training is a heavy process compared to NN and LDA. Single Kernel SVM

with DCT features works best for both detections and tracks datasets. But the testing time

is higher than other SVM methods. This is due to the fact that the extracted support

vectors are higher in number than any other SVM method. The highest recognition

accuracies for each classification method are tabulated. The feature extraction method

which yields the highest accuracy is indicated in parentheses. Also the training and

testing times for these best methods are listed in Table 1 for comparison.

3.5.4 Observations

We have observed that single kernel SVM trained with DCT features gives the highest

recognition accuracy (See Figure 3.8). On the other hand in this method, the number of

Support Vectors found is great and this yields relatively long testing times. SVM with

Multiple Kernels, on the other hand, have comparable recognition accuracy to the single

kernel SVM, though training times are longer due to a more complex process of kernel

construction. But tests show that in multiple Kernel SVM methods, fewer number of

support vectors is sufficient to define the separating hyperplane which led to shorter

testing times.

29

Figure 3.8. Recognition accuracies of SVM methods for Face Detections and Face Tracks

Datasets vs. Samples/Class and Number of Classes.

Figure 3.9. Recognition accuracies of LDA methods for Face Detections and Face Tracks

Datasets vs. Samples/Class and Number of Classes.

30

LDA has the fastest testing times of all but the recognition accuracy is lower than the

other methods (See Figures 3.8-3.10). Also depending on the feature extraction method

used, a large volume of training data is necessary before proper LDA classification can

be accomplished. Nearest Neighborhood has the problem of ever-growing database with

addition of new samples and classes with higher number of samples may dominate the

classification process.

There is a tradeoff between testing times and training times when we consider the usage

of SVM with single and Multiple Kernels. If long testing times are acceptable, Single

Kernel SVM with DCT coefficients has the highest recognition accuracy. For the online

automatic face annotation system where encountered face tacks are to be classified, the

number of testing samples per query is not large, as we have determined this number as

10 samples per query track. Training times can be considered more important for an

online learning system as the newly encountered samples are sequentially learnt in data

chunks, repetitive sessions of long trainings may discourage the user from working with

the system.

Figure 3.10. Recognition accuracies of NN methods for Face Detections and Face Tracks

Datasets vs. Samples/Class and Number of Classes.

31

It is observed that switching from face detections dataset to face tracks dataset results in

a noticeable decrease in recognition accuracies (See Figures 3.8-3.10). This degradation

for NN and LDA methods are larger than the degradation for the SVM methods with

both single and multiple kernels. The results indicate that SVM methods can adapt to a

wide variety of samples better than the LDA and NN methods.

Table 3.1. Performance Summary. Best recognition accuracy for each classification

method is presented with their corresponding training and testing times.

 Accuracy

(Detections

Dataset)

Accuracy

(Tracks

Dataset)

Training Times Testing Times

MKSVM 91 % (HOG) 84 % (HOG) 324 secs. (LBP) 3.48 secs. (LBP)

SVM 96% (DCT) 89 % (DCT) 326 secs. (DCT) 7.57 secs. (DCT)

LDA 94 % (HOG) 76 % (HOG) 17.9 secs. (HOG) 0.12 secs. (HOG)

NN 94 % (HOG) 77 % (HOG) - 5.06 secs. (HOG)

32

CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Overview

Face recognition methods are tested for an online learning system where face

identification is performed for video annotation. A user interface is designed for the

system (Figure 4.1) where a minor user interaction is requested to teach the system as the

samples of each target face are encountered. The user browses through the video from

one shot boundary frame to the next and trains the learner with tracks of face images

extracted at each shot boundary frames. Once the number of collected samples exceeds

the selected threshold, the system starts making classification and predicted class labels

are presented to the user. The training and classification steps occur simultaneously after

this point. For online learning purposes, extensions to the offline learning algorithms

have been developed in order to achieve effective learning which involves updating the

learner model sequentially instead of redoing the whole learning process from scratch.

In the rest of the chapter, the sequential variants of the considered classification

algorithms will be explained then the user interface and learning methodology will be

presented. Finally the results in terms of recognition accuracy will be presented and

discussions be made.

4.2 Implementation of the Sequential Classification Methods

Extensions to the batch learning algorithms are discussed in this section. Sequential

variants of LDA and SVM algorithms have been implemented along with the NN

algorithm for the online video annotation application.

33

4.2.1 Nearest Neighbourhood

The sequential version of the Nearest Neighbourhood classifier is identical to the offline

version discussed in detail in Section 3.4.1. Tracks of faces are simply added to the

database with their labels each time a new track of face is learnt. During classification

query tracks are compared with the database samples to find the most similar pair of

samples to produce a label.

4.2.2 Chunk Incremental LDA

In the training phase, an incremental method known as Chunk Incremental LDA is used

to create a dynamic fisherspace model which gets updated whenever a new chunk of

training data with L samples (ܮ ൒ 1) and a given class label is received.

This method combines the fisherspace models of the existing data and the new chunk of

training data. To find the parameters for the new eigenspace, within-class scatter matrix

(Sw) and between-class scatter matrix (Sb) are to be updated.

′ഥ࢞ ൌ
ഥ ൅࢞ܰ ഥ࢟ܮ

ܰ ൅ ܮ
 ሺ4.1ሻ

The overall mean is updated according to Equation 4.1 where ࢞ഥ is the mean of the

existing data of N samples and ࢟ഥ is the mean of new coming L samples.

If the new samples belong to class c, then the class-mean for class c is updated according

to Equation 4.2.

ࢉ′ഥ࢞ ൌ ቐ

1

ሺ݊௖ ൅ ሻܮ
ሺ݊௖࢞ഥࢉ ൅ ݏݏ݈ܽܿ ݃݊݅ݐݏ݅ݔ݁ ݊ܽ ݏ݅ ܿ ݂݅ , ഥሻ࢟ܮ

ݏݏ݈ܽܿ ݓ݁݊ ܽ ݏ݅ ܿ ݂݅ , ഥ࢟

 ሺ4.2ሻ

where ݊௖ is the number of existing samples belonging to class c.

34

If new samples belong to an existing class, the within-class and between-class scatter

matrices are updated according to Equation. 4.3 & 4.4.

′࢈ࡿ ൌ ෍݊௖
′ ሺ࢞ഥ′ࢉ െ ࢉ′ഥ࢞ഥ′ሻሺ࢞ െ ࢀഥ′ሻ࢞

ࡹ

஼ୀଵ

 ሺ4.3ሻ

′࢝ࡿ ൌ ࢝ࡿ ൅
ࡸࢉ࢔

૛

ሺࢉ࢔ ൅ ሻ૛ࡸ
ሺ࢟ഥ െ ഥ࢟ሻሺࢉഥ࢞ െ ሻࢉഥ࢞

ࢀ ൅
ࢉ࢔

૛

ሺࢉ࢔ ൅ ሻ૛ࡸ
 ෍ሺ࢐࢟ െ ࢐࢟ሻሺࢉഥ࢞ െ ሻࢉഥ࢞

ࢀ

ࡸ

ୀ૚࢐

൅
ሻࢉ࢔൅૛ࡸሺࡸ

ሺࢉ࢔ ൅ ሻ૛ࡸ
 ෍ሺ࢐࢟ െ ࢐࢟ഥሻሺ࢟ െ ࢀഥሻ࢟
ࡸ

ୀ૚࢐

 ሺ4.4ሻ

If the samples belong to a new class, then the within-class and between-class scatter

matrices are updated according to eqn. 4.5 & 4.6,

′࢈ࡿ ൌ ෍ ݊௖
′ ሺ࢞ഥ′ࢉ െ ࢉ′ഥ࢞ഥ′ሻሺ࢞ െ ࢀഥ′ሻ࢞

ା૚ࡹ

஼ୀଵ

 ሺ4.5ሻ

′࢝ࡿ ൌ ࢝ࡿ ൅ ෍ሺ࢐࢟ െ ࢐࢟ഥሻሺ࢟ െ ࢀഥሻ࢟
ࡸ

ୀ૚࢐

 ሺ4.6ሻ

Where M is the number of classes, ݊௖
′ is the updated number of samples belonging to

class c, ࢞ഥ′ is the updated global mean value, ࢞ഥ′ࢉ is the updated class-mean for class c

and ݕ௝ is one of L new samples.

Once the updated within-class scatter matrix and between-class scatter matrices are

computed, the projection direction is again found by calculating the eigenvectors of (3.6).

As we stated earlier, we retain the eigenvectors with the highest eigenvalues that capture

the 95% of the total energy. So the dimension of the projected space may change

throughout the learning course after each new training phase. Number of the training

tracks used for each class is recorded. All the samples used for the construction of the

eigenspace is projected on the fisher-eigenvectors. Projected samples for each class are

clustered using K-Means algoritm where K is chosen as the number of the training tracks

35

for the corresponding class. Therefore the projected space is represented by ܭ஼ ൌ

ሼܭଵ, ,ଶܭ … , ெሽ cluster centers for M classes. This clustering scheme is applied as aܭ

precaution against the possible domination of crowded classes over classes which have a

fewer number of samples. But to maintain balance, higher number of representative

cluster centers are donated for classes which have more tracks.

In the classification phase, samples in the query track are projected and their similarity

with the cluster centers of projected training data are measured according to the method

of Nearest Neighborhood with normalized correlation metric. (See Equations 3.2 and

3.3) Classification time for each query track is constant and independent of the size of

the database.

4.2.3 Sequential SVM

For N different people in the database, namely N classes, N set of SVM’s are trained for

“1 vs. the Rest” classification. Thus, the training process is very heavy. But the

classification time for each query sample is constant and independent of the size of the

database as in the case of LDA. However, since the training phase requires time, SVM is

not appropriate for real-time applications. Instead sequential SVM (SSVM) is used in our

application.

There is more than one method to utilize Sequential SVM as presented in [12, 40]. The

one preferred in this work is to retrain the previously found Support Vectors along with

the newly added training data to give the final classifier for the final corpus of data. This

method is known as “the fixed partition” method [12].

The training session is initiated upon collecting samples from two distinct classes and

one SVM model is created for ‘Class 1 vs. Class 2’. This initial training stage is identical

to the batch-SVM learning algorithm. After the initiation, whenever the user feeds a new

track of faces to the learner, depending on the input class label, a sequential learning

algorithm is called. If the new data belongs to a new class, an SVM-model is trained for

‘Class 3 vs. The Rest’ classification from scratch by using the Support Vectors returned

from the initial SVM model of ‘Class 1 vs. Class 2’. These support vectors are labeled

with class labels of ‘0’ and added together with the new samples which are labeled with

class labels of ‘1’. Also SVM model for ‘Class 1 vs. Class 2’ is replaced with two SVM

models, namely ‘Class 1 vs. The Rest’ and ‘Class 2 vs. The Rest’ by adding ‘Class 3’

36

data with class labels of ‘0’, together with the initially found Support Vectors and

retraining.

The sequential learning is performed in the same way for addition of other new classes or

new samples for the existing classes. Using only the Support Vectors, the training times

are reduced drastically compared to the case of retraining each SVM from scratch

whenever a new group of data arrives.

4.3 User Interface

Any video can be loaded via this interface and there is a button which starts the shot

boundary detection. The shots are detected automatically. The first frame of the shot is

presented to the user on the interface and the face detection is run on it. The detected

faces are marked with a rectangle on the screen (Figure 4.1). In order to make

annotations for the training session, the user is allowed to either choose a name from the

pool of available names or add a new label for the detected face. The user chooses a label

for the detected face by clicking on the name and one of the detected faces. If an

available face in the scene is missed by the face detector, the user can place a rectangular

box and resize it in order to mark the undetected face. A tracker is instantly run upon

clicking on the face to collect as many sample face images of the same person as

possible. The tracking continues from one shot boundary frame to the next or until the

tracking is stopped due to other causes like the face exiting the scene etc. The behavior of

the tracker is shown on a separate window (Figure 4.2) after each track command. If the

user is not satisfied with the current track, it can be discarded. Otherwise it is added to

the database.

After collecting sufficient number of data using the face tracker, the recognition

procedure can be invoked by clicking a button on the interface. For Nearest

Neighbourhood recognition is performed after two distinct characters are introduced to

the system by the user. The addition of face samples to the database continues until 500

samples are collected for each target class. On the other hand, the minimum number of

samples needed for LDA is equal to the number of target classes plus the feature vector

dimensionality (256 for LBP, 480 for DCT and 1260 for HOG) and sequential training of

the model is performed until approximately 500 samples/class is reached.

37

For single and multiple kernel SVM methods, recognition is performed after 150

samples/class becomes available. This number is chosen experimentally, considering a

trade-off between long training times and good representation skill for the class. Face

tracks are populated in a queue for each class separately and whenever 150 samples

become available for each class, the first 150 of the samples per class in the queue are

fed to the learner and sequential SVM training is done together with the existing support

vectors for each class. The remaining samples in the queue are kept for the next phase of

training which starts whenever 150 samples become available in the queue for each class

again.

Whenever a face is encountered, a face recognition algorithm is executed to make the

classification according to the data collected so far. Each newly detected face is also

tracked by the face tracker automatically for a number of frames (chosen as 10) and each

sample of this short track is classified according to our face recognizer. The user may

acknowledge these suggested labels or correct them with the actual names by again

clicking on the faces and selecting names from the list. And the system is updated with

the tracks of the correctly labeled faces.

Figure 4.1. The Main Graphical User Interface

38

Figure 4.2. Demonstration of the Face Tracking along with the tracked face.

4.4 Tests and Results for Video Annotation

4.4.1 Performance Criteria

In order to evaluate the precision of the video annotation tool, the episodes of TV series

“How I Met Your Mother” have been used. Six of the most prominent characters are

selected as targets whose faces are to be recognized by the system (See Figure 4.3). We

have used Precision/Recall graphs to evaluate the overall recognition success where

Precision and Recall are defined according to the Equation 4.7 & 4.8.

 ܴ݈݈݁ܿܽ ൌ
ݏ݇ܿܽݎܶ ݁ܿܽܨ ݂݀݁݅݅ݏݏ݈ܽܥ ݂݋ ݎܾ݁݉ݑܰ

ݏ݇ܿܽݎܶ ݁ܿܽܨ ݈݈ܣ ݂݋ ݎܾ݁݉ݑܰ
 ሺ4.7ሻ

݊݋݅ݏ݅ܿ݁ݎܲ ൌ
ݏ݇ܿܽݎܶ ݁ܿܽܨ ݂݀݁݅݅ݏݏ݈ܽܥ ݕ݈ݐܿ݁ݎݎ݋ܥ ݂݋ ݎܾ݁݉ݑܰ

ݏ݇ܿܽݎܶ ݁ܿܽܨ ݂݀݁݅݅ݏݏ݈ܽܥ ݈݈ܣ ݂݋ ݎܾ݁݉ݑܰ
 ሺ4.8ሻ

39

Figure 4.3. Six main characters of the TV series “How I Met Your Mother” that are

selected as the target classes for our face identification system.

Recall parameter is varied according to a “refusal-to-classify” criterion. Whenever a

query face track is classified, a similarity measure is also given with the suggested label.

We reject classifications with similarity measures below a threshold. Refusal-to-classify

method aims to reject intruders such as people who are not of interest or false face

detections which does not contain a face. We expect to receive low similarity measures

for these kinds of intruders so that they may be eliminated without receiving labels.

Similarity measure for a query sample is chosen as the normalized correlation value

according to Equation 3.3. if NN or LDA is used. For SVM classification, the distance to

the decision hyperplane is selected as the similarity score where the query sample is

assigned to the class which gives the greatest distance value. Here the distance values

may be negative if a given query sample is classified as a false sample by all SVM

models. Then the class which produces the greatest negative value (smallest absolute

value) as the distance is chosen.

40

Face detections which do not produce successful face tracks are discarded and are

omitted in the Precision/Recall evaluations. Those face detections, which may or may not

include a face, that are too small or blurry may not produce successful face tracks as our

Lucas-Kanade face tracker involves extraction of corners which represent the facial

feature points to be tracked. If the detected face is too small or too blurry, then corners

may not be extracted and face tracking fails. (See Figure 4.4)

Figure 4.4. An example detected face which does not produce a face track.

In the following Precision/Recall calculations for each method, classification results for

successful face tracks that are extracted from the first 200 shot boundary scenes are

evaluated and two Precision vs. Recall graphs are plotted for two different evaluation

scenarios: “closed set identification” and “overall identification”.

 “Overall Identification” graph considers all successful face tracks during precision and

recall calculations, taking into account the tracks of false face detections and non-target

faces whereas the “Closed Set Identification” plots consider only the precision scores

attained after discarding the face tracks which do not belong to one of the target faces. As

the name implies the “Closed Set Identification” is a face recognition application within

the exclusive group of the target faces.

41

4.4.2 Discussions on the Performances of Online Learner Methods

“Closed set identification” scores are expected to give higher precision scores than the

“overall identification” precision scores as models are constructed considering the target

faces alone, without taking intruders into account. Feature vectors of target faces are

expected to lie in closer formations that may be separated from each other using some

classification methods as models are fit to discriminate one target class from another. On

the other hand, intruders include faces of people which are not of interest or false face

detection windows which do not contain faces at all. Feature vectors of these intruder

samples are scattered all around the feature space and cannot be simply modeled due to

the huge diversity involved. In SVM learning with “1 vs. the rest” method, samples of

different faces are discriminated from each other. But this discrimination is solely based

on face images and discrimination of target faces from intruders may not be optimally

performed. As a result a fall in precision scores is observed (See Figures 4.5-4.16)

especially for SVM methods (See Figures 4.11-4.16) when closed set and overall

identification results are compared.

Figure 4.5. Precision vs. Recall Graph for Online HOG+NN learner.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Online HOG+NN Learner

Closed Set

Overall

42

Figure 4.6. Precision vs. Recall Graph for Online DCT+NN learner.

Figure 4.7. Precision vs. Recall Graph for Online LBP+NN learner.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Online DCT+NN Learner

Closed Set

Overall

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Online LBP+NN Learner

Closed Set

Overall

43

Figure 4.8. Precision vs. Recall Graph for Online HOG+LDA learner.

Figure 4.9. Precision vs. Recall Graph for Online DCT+LDA learner.

0
10
20
30
40
50
60
70
80
90
100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Online HOG+LDA Learner

Closed Set

Overall

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Online DCT+LDA Learner

Closed Set

Overall

44

Figure 4.10. Precision vs. Recall Graph for Online LBP+LDA learner.

Figure 4.11. Precision vs. Recall Graph for Online HOG+SVM learner.

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Online LBP+LDA Learner

Closed Set

Overall

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Online HOG+SVM Learner

Closed Set

Overall

45

Figure 4.12. Precision vs. Recall Graph for Online DCT+SVM learner.

Figure 4.13. Precision vs. Recall Graph for Online LBP+SVM learner.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Online DCT+SVM Learner

Closed Set

Overall

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Online LBP+SVM Learner

Closed Set

Overall

46

Figure 4.14. Precision vs. Recall Graph for Online HOG+MK SVM learner.

Figure 4.15. Precision vs. Recall Graph for Online DCT+MK SVM learner.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Online HOG+MK SVM Learner

Closed Set

Overall

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Online DCT+MK SVM Learner

Closed Set

Overall

47

Ideally we expect a monotonic and sharp decrease with increasing recall values. The test

results (See Figures 4.5-4.16) show an overall trend of decrease although monotonic

Figure 4.16. Precision vs. Recall Graph for Online LBP+MK SVM learner.

behavior ceases at some points. Wrong face classifications may still occur with high

similarity scores, resulting in a fall of precisions at low recall values.

For the “overall classification” precisions, Nearest Neighbourhood methods (See Figures

4.5-4.7) outperform SVM (See Figures 4.11-4.16) and LDA (See Figures 4.8-4.10)

methods. This result shows that the target face samples and intruder samples cannot be

easily discriminated as the intruder samples get scattered around the feature space. This

entanglement of intruder and target samples makes it difficult to fit a model for the

feature space.

For the “closed set identification” precisions, SVM methods perform the best (See

Figures 4.11-4.16). Discarding the intruder samples boosts up the precision values

considerably for SVM methods. As it is stated before, this result is expected since SVM

is a discriminative model and instead of generating a model for each class, the aim is to

accomplish linear classification in terms of a separating hyperplane which considers the

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Online LBP+MK SVM Learner

Closed Set

Overall

48

target class and its competitors. Thus an intruder sample is not taken into account for the

generation of the model. Hence rejection of intruders may not be performed optimally.

This results in a major decrease in precisions when application scenario is switched from

“closed set identification” to “overall identification”. (See Figures 4.11-4.16)

Precision scores obtained from Multiple Kernel SVM methods (See Figures 4.14 - 4.16)

are comparable to those obtained from single Kernel SVM methods (See Figures 4.11-

4.13). However the burden of the extra computations that are necessary to train the

Multiple Kernel SVM models does not provide comparable improvement in precisions

hence using an SVM method is favorable over the use of Multiple Kernel SVM for our

online learning application. Using Multiple Kernel Learning algorithms may be preferred

in order to select coefficients for the base kernels, instead of assigning equal weights for

each.

Among all features used, HOG features are the most successful in describing the

discriminative facial features although its extraction is computationally heavier than the

others. Also the number of feature vector dimensions is higher than the others. Greater

dimensionality may cause degradation in classification performance for the Nearest

Neighbourhood classifier, which is a phenomenon known as “the curse of

dimensionality”, where the information in the feature vector is dispersed in so many

dimensions. During nearest neighbor computations, irrelevant features in the many

dimensions may suppress and overshadow the relevant features. But our test results show

that 1260 dimensioned feature vectors of HOG features works robustly for Nearest

Neighbour classification (See Figure 4.5). In Linear Discriminant Analysis, construction

times of scatter matrices (See Equations 3.4 and 3.5) increase with the number of

dimensions in the feature vector. Hence higher the number of feature dimensions, longer

it takes to construct the eigenspace model. For the SVM methods, training times are

increased with the increased number of feature vector dimensions but test results show

that HOG features compensate for the longer training times with high precision values.

(See Figures 4.11 and 4.14)

Although the face track covers the eyes and mouth regions, due to the variation of poses,

i.e., rotation of the head, still the aspect ratio of the face may change due to out-of-plane

rotations, and when the image is resized to a standard size for processing, corresponding

49

DCT blocks of two different images may actually cover slightly or totally different facial

regions. On the other hand this is expected to be as less of a problem for LBP since LBP

is invariant to monotonic changes of gray levels as such in the case of resizing the image.

HOG features use overlapping blocks to describe face which increases robustness against

localization errors of facial features.

For the “closed set identification” scenario HOG features used with single or multiple

kernel SVM has the best precision/recall graphs (See Figures 4.11 and 4.14). But when

the scenario is switched to “overall identification” where the annotation tool is used to

automatically classify all encountered faces, the best precision/recall graphs are obtained

for HOG features used along with Nearest Neighbourhood classifier (See Figures 4.5).

Domination of crowded class samples is a problem with the nearest neighbourhood

method but in our application we have limited the number of samples/class to a fixed

value in order to deal with this problem. The threshold is selected as 500 samples/class.

Nearest neighbor classification is a fast method compared to the other methods. Although

the database grows larger and larger with addition of each new track, the query face track

has constant length (selected as 10 samples), hence classification times increase linearly

only with the number of training samples. Nearest Neighbourhood with HOG features

performs the best overall score for our online face identification system (See Figure 4.5).

It is observed that fitting discriminant functions for target classes in our “overall

identification” application cannot give adequate results (See Figures 4.8-4.16).

If we focus our attention only on the “closed set identification”, discriminant models like

SVM achieves high precision values (See Figures 4.11-4.16). HOG features with

Multiple Kernel SVM perform the best (See Figures 4.14). Single Kernel SVM with

HOG features follows its Multiple Kernel counterpart with comparable precision scores

(See Figure 4.11).

4.4.3 Comparison of the Online and Offline Methods

In order to compare the recognition accuracies for online and offline methods, offline

“precision vs. recall” graphs have also been plotted. In the online learning scenario,

classification with HOG features provided the best results. Therefore we have compared

the offline HOG+SVM, HOG+LDA and HOG+NN methods with their online

counterparts via the Precision vs. Recall metric.

50

For the offline methods, first 200 shot boundary scenes of the same “How I Met Your

Mother” episode are used. For the NN and LDA sessions, 400 samples/class have been

accumulated for 6 classes. After that point no more training is done and the testing is

performed on the rest of the scenes. For the offline SVM method, 250 samples/class have

been accumulated for 6 classes and similarly after a single training session, the rest of the

scenes are used for testing alone.

For the SVM learning, switching from the offline learner (See Figure 4.17) to the online

version (See Figure 4.11) results in a decrease in the “overall identification” scenario

whereas the performance in the “closed set identification” scenario stays similar. The

decrease in the precision scores are expected as the precision scores of the online method

includes the classification results in the early stages of the learning session whereas in

the offline session, the model is trained once when all classes have a higher number of

representative samples. In the offline training, the best decision hyperplane is determined

according to a large surplus of training data. However in the online training, the decision

hyperplane is constructed using partial information hence the recognition precision is

expected to be lower than the offline version. Approximately 30 % of the training

samples are returned as the support vectors from the trained SVM model. When the

number of training samples is large, sequential SVM training provides considerably

shorter training times. With addition of each new face track which is typically 20-200

samples long, retraining thousands of samples would take as much as three times longer

training time compared to the sequential SVM training with the expense of a fall in the

recognition precision.

For the LDA and NN learning, online and offline learners provide comparable precision

scores (See Figures 4.5, 4.8, 4.18 and 4.19). But it should be noted that the similar

precision scores have been recorded over a much larger set of query tracks for the online

version, as the recognition starts at the initial stages of the training session whereas in the

offline stage, only training is performed until the number of training samples exceeds a

value. In our tests approximately 150 scenes are used to collect training data for the LDA

and NN methods and the remaining 50 scenes are used for testing. On the other hand for

the online learning session classification hence the precision calculations are initiated

whenever two distinct classes receive samples for the NN case and whenever the total

number of samples exceeds the number of feature vector dimensions for the LDA case.

51

Figure 4.17. Precision vs. Recall Graph for Online/Offline HOG+SVM learners.

Online training is a useful tool for updating the model with new representative data or

even adding totally new classes to the scheme. A model trained over a training surplus

i.e., an episode of a TV series, may be easily extended to be used over a wider extent i.e.,

another episode of the TV series by incorporating the new information contained in the

new environment.

Figure 4.18. Precision vs. Recall Graph for Online/Offline HOG+LDA learners.

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Offline HOG+SVM Learner

Closed Set (Offline)

Overall (Offline)

Closed Set (Online)

Overall (Online)

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Offline HOG+LDA Learner

Closed Set (Offline)

Overall (Offline)

Closed (Online)

Overall (Online)

52

Figure 4.19. Precision vs. Recall Graph for Online/Offline HOG+NN learners.

In order to evaluate the online learning performance in terms of precision and execution

times, a final test is performed. Precision scores and training times are plotted along the

learning session. We have evaluated the HOG + SVM learner for this test. Video is

partitioned into intervals and at each time step, the data collected so far is used to

perform training for the offline version. For the online version, the training is performed

sequentially using the trained SVM model along with the training data collected in the

previous interval. Testing is performed using all of the tracks in the rest of the video.

For example, when percentage of the video is used for training is 10 %, all face tracks

which reside in the first 10 % of the video is used for training a model for both online

and offline versions and the training times are recorded. Then the precision scores are

found by testing all of the face tracks which reside in the remaining part of the video.

Intervals which correspond to sections with 10 % of the video are considered. We

collecting face tracks up to the point where we have considered first 20 % of the video,

the training is performed again. For the online version, the data collected between 10 %

and 20 % of the video is trained sequentially using the previously trained SVM model.

But for the offline version, all of the data in the first 20 % of the video is used to retrain

the SVM model from scratch.

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Precision (%)

Recall (%)

Recognition Accuracy for Online/Offline HOG+NN Learner

Closed Set (Offline)

Overal (Offline)

Closed Set (Online)

Overall (Online)

53

Online and Offline precision scores are comparable according to Figure 4.20. For the

online case training is done sequentially at each time step, the training times have a

constant characteristic (See Figure 4.21). On the other hand for the offline learner, all of

the previously collected training data has to be learnt which results in linearly increasing

training times as the user advances through the time steps.

Figure 4.20. Precision Performance for Online and Offline HOG + SVM learners.

Figure 4.21. Training times for the SVM models.

0
10
20
30
40
50
60
70
80
90
100

10 20 30 40 50

Precision (%)

Percentage of the Video Used for Training

Precision Performance

Offline HOG+SVM

Online HOG+SVM

0

20

40

60

80

100

10 20 30 40 50

Training Time
(seconds)

Percentage of the Video Used for Training

Comparison of the Training Times

Offline HOG+SVM

Online HOG+SVM

54

CHAPTER 5

CONCLUSION

In this thesis, an online face identification system is developed and suitable face

recognition algorithms have been evaluated. Extensive tests have been done in order to

compare different facial feature extraction and classification algorithms in terms of their

recognition accuracies and execution times. Execution times are also crucial since our

aim is to design an online learning system where constructed models are updated with

each addition of new data instead of reconstructing the models over and over.

Recognition accuracies of the considered algorithms have been evaluated by

implementing an interface for the face identification system. Here videos are partitioned

into meaningful segments using a shot boundary detection algorithm. Face detection and

tracking algorithms have been implemented to collect tracks of face images. We have

chosen Viola-Jones face detector [1] which is a very popular, fast and robust face

detector with Lucas-Kanade Optical Flow feature tracker [21] as the best performing face

tracker for our case. The success of our system depends on not only the overall tracking

of the “face region” but also keeping the eyes and mouth well-located within the face

while rejecting the background clutter as much as possible. That’s why a facial feature

tracker is used. The face recognition under a variety of environmental conditions is

already a challenging task so we have limited our attention to near-frontal poses. Hence

our face tracker is a facial feature tracker which returns near frontal faces. But this

limited our training and testing samples as faces are encountered throughout videos

under a variety of poses like profile faces. In our method there is no heavy post-

processing steps in order to improve the quality of the extracted face tracks, since

computationally expensive efforts prohibits a real time application scenario.

Local Binary Patterns, which is originally a texture descriptor, shows a good recognition

precision for the human face recognition process where faces are not constrained to be

55

controlled samples. Local Binary Patterns is a good alternative to Discrete Cosine

Transform Features being invariant to resizing of images for processing, having nearly

half the size of feature dimensions which decreases the computational cost and reduces

the amount of memory necessary to store the feature vectors for the Nearest

Neighborhood classification. But the test results show that Histogram of Oriented

Gradients is the best performing facial feature extraction method although the high

dimensionality of the feature vectors poses computational difficulties such as longer

training times and higher memory requirements.

According to our test results, Nearest Neighborhood classification method has a higher

recognition rate than the other two learning algorithms. This is due to the fact that,

recognition is performed for a collection of poses with high diversity which makes it

difficult to fit a model for the distribution of the feature vectors. Nearest Neighborhood

on the other hand does not fit a model for the data, hence different poses, different facial

expressions and other visual challenges in the database do not yield as much a problem

as they do for the case of LDA and SVM. The best performing combination includes the

Histogram of Oriented Gradients used with Nearest Neighborhood for the overall face

identification scenario. Nearest Neighbourhood is also a handy classification method as

new data can be added to the training surplus directly, whereas for SVM methods,

sequential training causes some decrease in the recognition precisions due to the splitting

of the training data during different training phases. Also the training and testing times

for Nearest Neighbourhood method are extremely short. If the number of training

samples per class is kept balanced, domination of crowded class vectors no longer pose a

threat to the recognition.

 The results are expected to show much higher precision values if precision is calculated

over a closed set for identification by considering only the suggested labels for the target

faces. But counting all face tracks, which include intruders such as other faces or false

face detections, reduces the overall accuracy. High precision values are expected for low

recall values and vice versa but it has been shown that intruders may also receive

relatively high similarity measures and intruder samples may not be eliminated by simply

setting a threshold to reduce recall.

Possible extensions for this work may include the improvement of the face tracker.

Kalman filtering [24] may be used in order to improve the estimation of the future facial

56

feature positions. Another improvement can be the handling of non-frontal faces. A

profile or half profile face detector may be used and collected face images may be

clustered according to the pose of the face images. For the multiple Kernel SVM

methods, Multiple Kernel Learning [41] algorithm can be applied in order to select

coefficients for the base kernels. Selecting equal weights for each base kernel does not

provide satisfactory improvements compared to the single kernel SVM, considering the

extra computational burden involved.

57

REFERENCES

[1] P. Viola, M. Jones, “Rapid object detection using a boosted cascade of simple

features”, Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 1, pp. 511-518, 2001.

[2] L. Wolf, T. Hassner, Y. Taigman,“Descriptor Based Methods in the Wild”, Real

Life Images Workshop at the European Conference on Computer Vision
(ECCV), October 2008.

[3] H.K.Ekenel, R. Stiefelhagen “Local Appearance Based Face Recognition Using

Discrete Cosine Transform”,in Proceedings of the 13th European Signal
Processing Conference (EUSIPCO 2005), Sep. 2005.

[4] T. Li, S. Zhu, M. Ogihara, “Using Discriminant Analysis for Multi-class

Classification”, Proceedings of the Third IEEE International Conference on Data
Mining, pp. 589- 592, 2003.

[5] Ognen Arandjelovic, Andrew Zisserman, “Automatic Face Recognition for Film

Character Retrieval in Feature-Length Films”, IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05) vol. 1,
pp.860-867, 2005.

[6] Bradski, G.R., “Computer Vision Face Tracking for Use in a perceptual user

interface”, Intel Technology Journal, 2nd Quarter, 1998.

[7] Cheng Y., “Mean Shift, Mode Seeking and Clustering.”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 17, pp. 790-799, 1995.

[8] J. Sivic, M.Everingham, A. Zisserman, “Person Spotting: video shot retrieval for

face sets”, in Proceedings of the 4th Conference on Image and Video Retrieval,
pp. 226-236, 2005.

[9] M. Fischer, “Automatic identification of persons in TV series” Universität

Karlsruhe (TH) M.S. Thesis, 2008.

58

[10] R. Lienhart, “Comparison of Automatic Shot Boundary Detection Algorithms”,
Proc. SPIE, vol. 3656, pp. 290-301, 1998.

[11] C.C. Chang, C.J. Lin, “ LIBSVM : a library for support vector machines”,

http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

[12] C. Domeniconi, D.Gunopulos, “Incremental Support Vector Machine

Construction”, Proceedings IEEE International Conference on Data Mining, pp.
589–592, 2001.

[13] L.Chen, B. Hu, “Face annotation for family photo album management”,

International Journal of Image and Graphics, vol. 3, No. 1, pp 1-14, 2003.

[14] B. Chupeau, V. Tollu, J. Stauder, I. G. Thomson, “Human face detection for

automatic classification and annotation of personal photo collections”,
Proceedings of the SPIE Visual Communications and Image Processing, vol.
5150, pp.1848-1856, 2003.

[15] R. M. Jiang, A. H. Sadka, H. Zhou, “Automatic human face detection for

content based image annotation”, International Workshop on Content-Based
Multimedia Indexing, CBMI 2008, pp. 66-69, 2008.

[16] N. Poh, C-H Chan, J. Kittler, “Face video Competition at ICB2009”, Int’l Conf.

on Biometrics (ICB), 2009.

[17] W. Ma, H. J. Zhang, “An indexing and browsing system for home video”,

European Signal Processing Conference No.10, pp. 131-134, 2000.

[18] S. Satoh, “Comparative Evaluation of Face Sequence Matching for Content-

based Video Access”, Fourth IEEE International Conference on Automatic Face
and Gesture Recognition, pp. 163-168, 2000.

[19] J. Stallkamp, H. K. Ekenel, “Video-based Face Recognition on Real-World

Data”, IEEE 11th International Conference on Computer Vision, ICCV 2007,
pp.1-8, 2007.

[20] J. Shi, C. Tomasi, “Good features to track", Proc. IEEE Comput. Soc. Conf.

Comput. Vision and Pattern Recogn., pp 593-600, 1994.

[21] J. Bouguet, “Pyramidal implementation of the Lucas-Kanade feature tracker:
description of the algorithm”. Technical report, OpenCV Document, Intel
Microprocessor Research Labs, 2000.

[22] M. Turk, A. Pentland, “Eigenfaces for Recognition”. J. Cogn. Neurosci. vol. 3

pp. 72–86, 1991.

59

[23] P. N. Belhumeur, J. P. Hespanha, D. J. Kriegman, “Eigenfaces vs. Fisherfaces:

Recognition Using Class Specific Linear Projection”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol.19, no.7, pp.711-720, 1997.

[24] C. Fagiani, M. Betke, J. Gips, “Evaluation of Tracking Methods for Human-
Computer Interaction”, Proceedings of the Sixth IEEE Workshop on
Applications of Computer Vision, pp. 121, 2002.

[25] K. Nummiaro, E. Koller-Meier, L. Van Gool, “An adaptive color-based particle

filter”, Image and Vision Computing, vol. 21, no.1, pp. 99-110, 2003.

[26] K. Jonsson, J. Kittler, Y.P. Li, J. Matas, "Learning Support Vectors for Face

Verification and Recognition,", Fourth IEEE International Conference on
Automatic Face and Gesture Recognition (FG'00), pp.208- 213, 2000.

[27] E. Aşan, “Video Shot Boundary Detection by Graph Theoretic

Approaches”,M.S.Thesis, Electrical and Electronics Engineering, Middle East
Technical University, September 2008.

[28] L. Shen, L. Bai, “A review on Gabor wavelets for face recognition”, Pattern

Analysis & Applications, Springer London, , vol. 9, no. 2-3, pp. 273-292,
October 2006.

[29] F. Jun, N. Dimitrova, V. Philomin, “Online face recognition system for videos

based on modified probabilistic neural networks”, International Conference on
Image Processing, vol. 3, pp. 2019- 2022, 2004.

[30] MATLAB Central, File Exchange. http://www.mathworks.com/matlabcentral/

 fileexchange/17960-particle-filter-color_tracker. 5 May 2010.

[31] A. Kudhinsky, C. Pering, M. L. Creech, D. Freeze, B. Serra, J. Gvvizdka,

“FofoFile: A Consumer Multimedia Organization and Retrieval System”,
Conference on Human Factors in Computing Systems, pp. 496-503, 1999.

[32] W. Zhao, R. Chellappa, P. J. Phillips, A. Rosenfeld, “Face recognition: A

literature survey”, ACM Computing Surveys, vol. 35, issue 4, pp. 399–458,
December 2003.

[33] H. A. Rowley, S. Baluja, and T. Kanade. “Neural networkbased face detection”.

IEEE Trans. on PAMI, vol.20, issue 1, pp.23–38, 1998.

[34] J. Zhu, S. C. H. Hoi, M. R. Lyu, “Face Annotation Using Transductive Kernel

Fisher Discriminant”, IEEE Transactions on Multimedia, pp. 86-96, 2008.

60

[35] B. Raytchev, H. Murase, “Unsupervised face recognition by associative
chaining”, Pattern Recognition 36, pp. 245 – 257, 2003.

[36] C. Czirjek, N. O’Connor, S. Marlow and N. Murphy, “Face Detection and

Clustering for Video Indexing Applications”, Advanced Concepts for Intelligent
Vision Systems, pp. 2-5, 2003.

[37] Y. Tian, W. Liu, R. Xiao, F. Wen, X. Tang, “A Face Annotation Framework

with Partial Clustering and Interactive Labeling”, IEEE Conference on Computer
Vision and Pattern Recognition, CVPR '07, pp. 1-8, 2007.

[38] M. Everingham, J. Sivic and A. Zisserman “"Hello! My name is... Buffy" –

Automatic Naming of Characters in TV Video”, BMVC 2006.

[39] D. Ramanan, S. Baker, S. Kakade, “Leveraging archival video for building face

datasets”, IEEE 11th International Conference on ICCV 2007, pp.1-8, 2007.

[40] N. A. Syed, H. Liu, K. K. Sung, “Incremental Learning with Support Vector

Machines”, International Joint Conference on Artificial Intelligence (IJCAI),
1999.

[41] M. Varma and D. Ray. “Learning the discriminative power invariance trade-off”,
IEEE 11th International Conference on ICCV 2007, pp.1-8, 2007.

[42] N. Dalal and B. Triggs. “Histogram of Oriented Gradients for human detection”,

IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 1, pp. 886-893, 2005.

[43] M. Everingham , J. Sivic, A. Zisserman, “Taking the bite out of automated

naming of characters in TV video”, Image and Vision Computing, vol. 27, issue
5, pp 545-559, April 2009.

[44] J. Sivic, M. Everingham, A. Zisserman, "“Who are you?” – Learning person

specific classifiers from video", IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1145-1152, 2009.

[45] R. Gonzalez, R. Woods, “Digital Image Processing”, Prentice Hall, Second ed.,

2002.

	memet1
	memet2
	memet3

