

SOFT AFDX (AVIONICS FULL DUPLEX SWITCHED ETHERNET) END
SYSTEM IMPLEMENTATION WITH STANDARD PC AND ETHERNET CARD

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMRE ERDİNÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

MAY 2010

Approval of the thesis:

SOFT AFDX (AVIONICS FULL DUPLEX SWITCHED ETHERNET) END

SYSTEM IMPLEMENTATION WITH STANDARD PC AND ETHERNET CARD

submitted by EMRE ERDİNÇ in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof Dr. İsmet Erkmen
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Hasan Güran
Supervisor, Electrical and Electronics Engineering Dept, METU

Examining Committee Members

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept, METU

Prof. Dr. Hasan Güran
Electrical and Electronics Engineering Dept, METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical and Electronics Engineering Dept, METU

Asst. Prof. Dr. Şenan Ece Schmidt
Electrical and Electronics Engineering Dept, METU

MSc. Mert KOLAYLI
Avionics Design Engineer, TUSAS

 Date:

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

 Name, Last name : Emre ERDİNÇ

 Signature :

iv

ABSTRACT

SOFT AFDX (AVIONICS FULL DUPLEX SWITCHED ETHERNET)
END SYSTEM IMPLEMENTATION WITH STANDARD PC AND

ETHERNET CARD

Erdinç, Emre

M.Sc. Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Hasan Güran

May 2010, 107 pages

ARINC 664/AFDX (Avionics Full Duplex Switched Ethernet) protocol is a leading

onboard communication technology in civil aviation. As AFDX is a new

technology, unit cost of the hardware devices are high and protocol is open to

changes. This thesis discusses the design of an AFDX End System application for

test environment with a software based solution with cheap COTS (Commercial off-

the shelf) equipment, explains the implementation of the software and analysis the

performance.

Keywords: Avionics Full Duplex Switched Ethernet, Avionic data buses,

Soft AFDX

v

ÖZ

STANDART PC VE ETERNET KARTI İLE YAZILIMSAL AFDX

(AVIONICS FULL DUPLEX SWITCHED ETHERNET) UÇ SİSTEM

UYGULAMASI

Erdinç, Emre

M.Sc. Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Hasan Güran

Mayıs 2010, 107 sayfa

ARINC 664/AFDX (Avionics Full Duplex Switched Ethernet) protokolü,

sivil havacılıkta önder bir uçak içi haberleşme teknolojisidir. Çok yeni bir teknoloji

olduğundan donanım cihazlarının birim fiyatları yüksektir ve protokol değişikliklere

açıktır. Bu tez çalışmasında, bir test ortamı için RAHAT (RAfta HAzır Ticari) ucuz

ekipman kullanılarak yazılım tabanlı bir AFDX uç sistem tasarımı tartışılmış,

uygulama yazılımı yapılmış ve performans analizleri gerçekleştirilmiştir.

Anahtar Kelimeler: Avionics Full Duplex Switched Ethernet, Avionic

Veriyolları, Yazılımsal AFDX

vi

ACKNOWLEGMENTS

The author wishes to express his gratitude to his supervisor Prof. Dr. Hasan Cengiz

Güran for his guidance, advice, criticism, encouragements, insight and his tolerance

throughout the research.

He would like to express his appreciation to the members of TAI, Turkish

Aerospace Industries for their technical support and tolerance during this study.

The author would also like to thank his mother Neriman Erdinç, his father Nedim

Erdinç and especially to his wife Selen Erdinç for their endless support and patience.

And lastly, he wishes to thank his friends Gürsu Karateke, Coşkun Çelik and Aykut

Erden for their encouragement and support.

vii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... v

ACKNOWLEGMENTS .. vi

TABLE OF CONTENTS .. vii

LIST OF TABLES .. x

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS .. xiii

LIST OF CHAPTERS

1. INTRODUCTION... 1

2. AVIONICS DATA BUSES .. 6

2.1. Types of Data Bus .. 7

2.1.1.Unidirectional Data Bus ... 7

2.1.2.Bidirectional Data Bus ... 8

2.2. Some of the Most Used Avionics Communication Protocols 9

2.2.1.ARINC 429 .. 10

2.2.2.MIL-STD-1553 .. 14

2.3. Avionics Full-Duplex Switched Ethernet (AFDX) 20

2.3.1. History .. 20

2.3.2. Characteristics .. 20

2.3.3. AFDX Network Components ... 21

2.3.4. Comparison with other Avionics Buses 26

2.3.5. AFDX Solutions ... 27

3. FRAME STRUCTURE OF AFDX AND COMPARISON WITH THE

RELATED COMMUNICATION STANDARDS .. 29

viii

3.1. General ... 29

3.2. Physical Layer .. 30

3.3. Data Link Layer ... 30

3.3.1 Source Address.. 32

3.3.2 Destination Address .. 32

3.3.3 Type .. 33

3.3.4 Integrity Check .. 33

3.3.5 Redundancy Management ... 34

3.3.6 Flow Regulation .. 35

3.3.7 Flow Scheduling ... 35

3.3.8 Data Link Layer Overview.. 35

3.4 Network Layer .. 37

3.4.1 IP Structure ... 38

3.4.2 IP Source Address: .. 38

3.4.3 IP Destination Address .. 39

3.5 Transport Layer ... 39

3.6 Application Layer ... 41

4. IMPLEMENTATION ... 42

4.1. Platform .. 42

4.2. Tools ... 43

4.2.1 Development Environment ... 43

4.2.2 Data Link Layer Frame Access ... 43

4.3. Configuration ... 46

4.3.1. Installation of DLL ... 46

4.3.2. Compiler Settings ... 46

4.3.3. Linker Settings ... 47

4. 4 AFDX Transmitter ... 47

4.4.1 API Stack Overview .. 47

4.4.2 Application Flow Chart ... 50

4.4.3 Application Class List ... 51

4.4.4 Detailed Explanation of the AFDX Transmitter ApplicatioN 61

ix

4.5 AFDX Receiver ... 64

4.5.1 API Stack Overview .. 64

4.5.2 Application Flow Chart ... 67

4.5.3 Application Class List ... 68

4.4.4 Detailed Explanation of the AFDX Receiver ApplicatioN 78

5. PERFORMANCE ... 81

5.1. Latency ... 81

5.2. MAC Constraints ... 84

5.3. Jitter .. 85

5.3.1 The Effect of Number of AFDX Ports on Jitter 86

5.3.2 The Effect of Number of Virtual Links on Jitter......................... 89

5.3.3 The Effect of Lmax on Jitter ... 92

5.3.4 The Effect of BAG on Jitter .. 95

6. CONCLUSION ... 98

REFERENCES .. 102

AFDXAPI.H FILE OF AFDX TRANSMITTER ... 104

AFDXAPI.H FILE OF AFDX RECEIVER ... 106

x

LIST OF TABLES

Table 2.1 Criteria for an Avionics Data Bus ... 7

Table 2.2 SSM Meaning for different data types. ... 14

Table 2.3 Comparison Results .. 27

Table 5.1 Transmitter Latency Test Results Sample .. 83

xi

LIST OF FIGURES

Figure 1.1 Independent Avionics .. 2
Figure 2.1 Unidirectional data bus .. 8
Figure 2.2 Bidirectional data bus .. 9
Figure 2.3 ARINC 429 cabling ... 10
Figure 2.4. ARINC 429 Message Format ... 11
Figure 2.5. Binary data allocation ... 12
Figure 2.6. BCD data allocation .. 12
Figure 2.7 MIL-STD-1553B Bus concept .. 16
Figure 2.8 MIL-STD-1553B Coupling Types .. 16
Figure 2.9 MIL-STD-1553B Word formats .. 17
Figure 2.10 Message Sequence ... 19
Figure 2.11. Sample AFDX Network ... 21
Figure 2.12. AFDX End System ... 21
Figure 2.13. Physical Cable and Virtual Links ... 23
Figure 2.14. Bandwidth of the Virtual Links .. 24
Figure 2.15. Round Robin ... 25
Figure 2.16. AFDX Switch ... 25
Figure 3.1 A brief description in layered architecture perspective 30
Figure 3.2 Ethernet Frame (Data Link Layer) .. 31
Figure 3.3. AFDX Frame (Data Link Layer) .. 31
Figure 3.4 MAC Source Address .. 32
Figure 3.5 MAC Destination Address ... 33
Figure 3.6 Network Redundancy Concept .. 34
Figure 3.7 AFDX Transmitter Data Link Layer Overview....................................... 36
Figure 3.8 AFDX Receiver Data Link Layer Overview ... 37
Figure 3.9 AFDX Frame (Network Layer) ... 37
Figure 3.10 IPv4 Structure .. 38
Figure 3.11 IP Source Address ... 39
Figure 3.12 IP Destination Address .. 39
Figure 3.13 AFDX Frame (Transport Layer) .. 39
Figure 3.14 UDP Header ... 40
Figure 3.15 Allocation of SAP and AFDX Port Numbers .. 40
Figure 3.16 Port Allocation Range for IP Unicast or Multicast 40
Figure 3.17 AFDX Message Structure .. 41
Figure 4.1. Winpcap Capture Stack .. 45
Figure 4.2. AFDX Transmitter class hierarchy ... 49
Figure 4.3. AFDX Transmitter Application Flow Chart ... 50
Figure 4.4. AFDX Transmitter Class Diagram ... 52

xii

Figure 4.5. AFDX Transmitter Sequence Diagram ... 61
Figure 4.6. AFDX Transmitter Configuration File .. 62
Figure 4.7. AFDX Receiver API Stack Overview ... 66
Figure 4.8. AFDX Receiver Application Flow Chart ... 67
Figure 4.9. AFDX Receiver Class Diagram ... 69
Figure 4.10 AFDX Receiver Sequence Diagram ... 78
Figure 5.1 Full Bandwidth Usage Test ... 85
Figure 5.2 The Effect of Number of AFDX Ports on Maximum Jitter 88
Figure 5.3 The Effect of Number of AFDX Ports on Average Jitter 89
Figure 5.4 The Effect of Number of Virtual Links on Maximum Jitter 91
Figure 5.5 The Effect of Number of Virtual Links on Average Jitter 92
Figure 5.6 The Effect of Lmax on Maximum Jitter .. 94
Figure 5.7 The Effect of Lmax on Average Jitter ... 94
Figure 5.8 The Effect of BAG on Maximum Jitter ... 97
Figure 5.9 The Effect of BAG on Average Jitter .. 97

xiii

LIST OF ABBREVIATIONS

AEEC Airlines Electronic Engineering Committee

AFDX Avionics Full Duplex Switched Ethernet

API Application Programming Interface

ARINC Aeronautical Radio Incorporated

BC Bus Controller

BCD Binary Coded Decimal

BM Bus Monitor

BNR Two’s complement binary

BNRZ Bipolar Non Return to Zero

CAN Controller Area Network

CSV Comma-Separated Values

CPU Central Processing Unit

DAL Design Assurance Level

DAS Data Acquisition System

DLL Dynamic Link Library

EASA European Aviation Safety Agency

FAA Federal Aviation Administration

FADEC Full Authority Digital Engine Control

FCS Frame Check Sequence

ID Identification

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IFG Inter Frame Gap

IMA Integrated Modular Avionics

IP Internet Protocol

xiv

IP Intellectual Property

ISO International Organization for Standardization

Kbps Kilo bits per seconds

LRU Line Replaceable Unit

MAC Medium Access Control Protocol

NIC Network Interface Card

NPF Netgroup Packet Filter

OS Operating System

OSI Open System Interconnection

PCI Peripheral Component Interconnect

PMC PCI Mezzanine Card

PHY Physical Layer

RM Redundancy Management

RT Remote Terminal

RTCA Radio Technical Commission for Aeronautics

RTOS Real Time Operating System

SAE Society of Automotive Engineers

SDI Source/Destination Identifier

SFD Start Frame Delimiter

SMTP Simple Mail Transfer Protocol

SN Sequence Number

SNMP Simple Network Management Protocol

SSM Sign/Status Matrix

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

TTL Time To Live

UDP User Datagram Protocol

VL Virtual Link

VMEbus Versa Module Eurocard Bus

1

CHAPTER 1

INTRODUCTION

The term “avionics” is the combination of the aviation and electronics, which

could be defined as electronics of aircrafts, artificial satellites and spacecrafts.

Collinson mentions that the word avionics “was first used in the USA in the early

1950s and has since gained wide scale usage and acceptance” [1].

The sensors and instrumentation structure in the aircrafts became more and

more complicated in parallel with the development of the aircrafts day by day. In

1783, the Montgolfier brothers used a barometer to measure altitude. From about

1914, first gyro systems were used. “World War 2 drove a number of important

advances including navigation aids, airborne radar and electronic warfare

equipment” [2].

In the beginning of the second half of 20th century, aircraft avionics were

composed of a few separate, analog systems such as radar, navigation and

communication equipment and cockpit displays, connected by dedicated wiring.

During 1960’s and 1970’s, the number of avionics increased per aircraft, digital

technology appeared and systems began to be more complex. Also with the rise of

digital technology, equipment was started to be designed to share information with

each other. This communication needed increased the number of wirings in the

aircraft which resulted in an increase of power consumption and weight. After

2

1970s, the use of data bus was introduced in aviation and this helped to reduce

number of wirings and simplify total design and also maintenance.

Avionics architectures were also affected with these revolutions. The earliest

architecture was independent avionics architecture in which each equipment had its

own functionality independent of other similar or different equipment. Following

figure represents a sample of independent avionic architecture.

Figure 1.1 Independent Avionics

In the next decades, the integration of the different kind of systems emerged

as a Federated Avionics Systems. Federated System Architectures have separate

subsystems implementing functions using dedicated components, dedicated

modules, LRUs, and software. Federated Architectures do not share or time-share

component or information across subsystems in the avionics suite

3

Figure 1.2 Federated Avionics

Integrated Architectures share “components” to support multiple functions.

Integrated front ends simultaneously share or time-share the same antennas, RF/EO

modules, processor modules and data buses. Integrated Software/Data/Control

Architectures share information and control across subsystems or functions.

Last generation avionics architecture at the time of writing of this thesis was

Integrated Modular Avionics (IMA). IMA combines LRU’s into software packages

running on a computer. IMA defines the separation of the resources and enables

certification independently [3]. “In the IMA architecture model, most special-to-

purpose controllers are replaced by common standardized platforms (so-called IMA

modules) that usually host applications of several systems. For inter-system

communication, either IMA module-internal communication or standardized aircraft

networking technology with guaranteed bandwidth and high availability is used” [4].

New architectures require new communication skills. Avionics Full Duplex

Mission

4

Switched Ethernet (AFDX) is a suitable data communication specification for IMA

which supports means for addressing partitions.

AFDX is the leading edge avionics network technology that is chosen by the

greatest aircraft companies like Airbus and Boeing. The first application of AFDX

was started with A380 of Airbus and continued with A400M of Airbus Military and

Boeing 787.

As the AFDX is a very new technology and is considered to be the future of

the aviation, more companies started to focus on components and development of

AFDX systems.

In this thesis we aim to study well known avionics data buses. Describe their

basic specifications, characteristics and usage. Moreover we aim to study the

features of the ARINC 664/AFDX specification in details and investigate layers of

AFDX and messaging specifications, give a comparison with other avionics buses

and underline its superiorities. Finally we aim to develop software running on a

standard PC with a Windows XP operating system that uses standard Ethernet cards

to implement AFDX communications and make performance analysis.

Chapter 2 gives a brief background on different avionic data buses.

Describes the specifications of AFDX, makes a comparison between AFDX and

other buses and lists advantages and disadvantages of both hard AFDX solutions and

soft AFDX solutions.

Chapter 3 looks more closely into the AFDX frame structure and investigates

the basic differences with the standard UDP/IP frames on Ethernet.

Chapter 4 explains the development environment, tools and the software

developed for this thesis.

5

Chapter 5 gives the performance criteria for AFDX End System and

describes the performance test conducted.

Finally Chapter 6 summarizes the thesis and concludes with comments on

the test results and on the performance and states some future work directions.

6

CHAPTER 2

AVIONICS DATA BUSES

 Wide usage of information sharing in avionics systems brought defining

safety-critical communication protocols. Most modern avionics flight control

systems are designed with a group of central computers named as mission computer,

flight control computer, central control computer, etc. that are connected to sensors

and actuators using point-to-point connections. To decrease the weight and increase

flexibility, broadcast communication protocols is replacing the point-to-point

architecture. As an example, the military transport aircraft C130J’s avionic systems

were previously using discrete wiring and were upgraded to the MIL-STD-1553B

bidirectional data bus. This upgrade returned a significant weight saving, and a very

high amount of work hour was saved to wire the harnesses. However, the bus

handling became more complex.

The communication bus handling has grown up as a new discipline besides

the engineering of the integrating complex systems. Some main basic rules (Table

2.1) have been defined to certificate an avionics data bus.

7

Table 2.1 Criteria for an Avionics Data Bus [5]

Criterion Selected Evaluation Factors
Safety Availability and reliability,

Partitioning, Failure detection,
Common cause/mode failures,
Bus expansion strategy,
Redundancy management

Data Integrity Maximum error rate,
Error recovery, Load analysis
Bus capacity, Security

Performance Operating speed, Bandwidth,
Schedulability of messages,
Bus length and max. load,
Retry capability, Data latency

Electromagnetic Compability Switching speed, Wiring, Pulse rise and fall
times,

Design Assurance Compliance with standards (such as DO-254
& DO-178B)

Configuration Management Change control, compliance with standards,
documentation, interface control, etc.

Continued Airworthiness Physical degradation, in-service modifications
and repairs, impact analysis, etc.

2.1. Types of Data Bus

2.1.1. Unidirectional Data Bus

In a unidirectional data bus, the system is driven by a single transmitter and a

number of receivers that monitor the line and listen for all or specific data. If it is

necessary to communicate back to the transmitter node, a separate transmission line

should be defined. The simplicity of this topology makes the bus more reliable and

easy to design and implement. But with respect to bidirectional buses, unidirectional

buses need more wiring; resulting in more weight, more cost. The following figure

represents a unidirectional data bus, LRU-1 is the driver (transmitter) and other

LRUs are receivers.

8

Figure 2.1 Unidirectional data bus

2.1.2. Bidirectional Data Bus

In a bidirectional data bus, each node can both receive and transmit.

Arbitration of the bus may be master/slave or multi-master type.

In a master/slave mode type bus, there should always be a master that is

responsible for all messaging on the bus. The master can initiate a data transfer from

master to slave, slave to master or a slave to another slave. It is possible to design

the bus with one or more backup masters that can take the control of the bus with a

predefined scenario and control the messaging on the bus.

In a multi-master type bus, there is more than one node which can start a

transmission. For this kind of buses arbitration mechanism should be defined. This

mechanism may be realized electrically as in CAN bus, or in a time sharing basis.

Also the messaging can be half-duplex or full-duplex.

Following figure represents a bidirectional data bus. Each LRU is able to

transmit and receive data on the same media.

9

Figure 2.2 Bidirectional data bus

2.2. Some of the Most Used Avionics Communication Protocols

As the number of functions added to an air vehicle increase, to decrease the

pilot workload, many complex functions that use lots of data are ported to the

computers. As a result, data transfer for an aircraft increases, lots of intelligent

LRUs appear and the need to communicate all of the LRUs becomes more and more

important and complex.

The definition of the protocols makes it easier to integrate the systems and

experience sharing for an aircraft development which gets more complicated in each

new product. These definitions are published by some leading aviation committees

like ARINC that cooperates with RTCA/EUROCAE, IEEE, Society of Automotive

Engineers (SAE), EIA/ANSI/ISO Standards Organizations, etc.

These organizations develop and publish specifications for data

communication for general and special purposes. Some of these protocols are widely

used and some others are used for special applications. Following sections introduce

into most common used protocols in aviation world.

10

2.2.1. ARINC 429

ARINC 429 is one of the most used data transfer protocol in aviation and

according to ARINC 429 Tutorial of Condor Engineering [6], “is the most

commonly used data bus for commercial and transport aircraft.”

ARINC 429 was developed from the old ARINC 419 Specification which

was released in 1966 and had a final revision in 1983. ARINC 419 was defining four

different wiring topologies which were also including ARINC 429 wiring type. In

1978, Aeronautical Radio Incorporated published the first release of ARINC 429

specification which was adopted by the AEEC in 1995. Specification is comprised

of 3 parts; “ARINC Specification 429, Part 1-15: Functional Description, Electrical

Interface, Label Assignments and Word Formats” which addresses the buses

physical parameters, label and address assignments, and word formats, “ARINC

Specification 429, Part 2-15: Discrete Word Data Standards” which defines the

formats of words with discrete word bit assignments and “ARINC Specification 429,

Part 3-15: File Data Transfer Techniques” which defines link layer file data transfer

protocol for data block and file transfers [7].

The first issue about ARINC 429 specification is the physical layer

characteristics. 78 ohm twisted shielded cable is used to connect the nodes. Shields

should be grounded in both ends and in each junction as given in the figure.

Figure 2.3 ARINC 429 cabling [7]

11

ARINC 429 is a differential line with bipolar non return to zero (BNRZ)

signaling. Differential voltage between two lines is +10V (between 7,25 and 11V), -

10V (between -7,25 and -11V) or 0 V (between -0,5 and 0,5V) for high, low and

null respectively. 32 bit words are separated with 4 bit times of null gaps and each

bit has a transition from the zero volts according to BNRZ which together help

synchronization without a clock signal.

ARINC 429 is a simplex data bus, the transmitter starts unidirectional

message flow to at least one but up to 20 receivers. Line length is not specified in

the specification which depends on number and location of receivers.

Two bit rates are defined in the specification; high speed 100 kbps and low

speed 12-14,5 kbps. Rise and fall times of the signal is 10±5 µs for low speed and

1,5±0,5 µs for high speed [8].

 32 bit message consists of Label, SDI (Source/Destination Identifier), Data,

SSM (Sign/Status Matrix) and Parity fields as given in the Figure 2.4. Label and

parity are required fields in the message in contrast with optional SSM, SDI and data

which can be used for different purposes.

Figure 2.4. ARINC 429 Message Format

8 bit Label identifies the data and message format which is generally

expressed in 3 octal digits. Label is the first transmitted field that informs the

receivers about the remaining of the message. Bit order of the message is least

significant bit first but this order shows difference only for the label, of which the 8th

bit is transmitted first.

12

Source/Destination Identifier is used to identify either the source of the data

or the destination receiver. As it is optional it may also be added to the data in order

to increase the resolution.

The 19 bits Data field starts from the 11th bit and continues up to 29th bit.

This may be considered as a disadvantage that the resolution is not high enough for

sensitive parameters. As ARINC 429 specification is very flexible, data may be used

in different formats such as two’s complement binary (BNR), decimal coded binary

(BCD), discrete data, maintenance data and acknowledgement and ISO Alphabet #5

character data.

For binary format, generally 16 bits of the 19 bit is used as left aligned data

and the remaining 3 bits (bits 11, 12 and 13) are padded with 0. But it is also

possible to use all 19 bits for data. The most significant bit (29th bit) is the sign bit. A

1 in the sign bit indicates a negative number or a direction; “South”, “West”, “Left”,

“From” or “Below”. A zero is used to indicate a positive number or “North”, “East”,

“Right”, “To” or “Over”.

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

Sign Value Pad

Figure 2.5. Binary data allocation

When BCD data format is used, the data field is divided into 5 subfields each

representing a BCD digit. The most significant digit is 3 bits and it is possible to put

numbers 0 to maximum 7. Other digits are 4-bit standard BCD digits.

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

BCD Digit 1 BCD Digit 2 BCD Digit 3 BCD Digit 4 BCD Digit 5

Figure 2.6. BCD data allocation

In a Discrete data format ARINC 429 word, bits are named one by one to

represent a specific Boolean data. Generally, bit assignment starts with the 11th bit

13

and unused bits are padded with 0. It is also common that discrete data are combined

with binary or BCD data that is called as mixed data format. When the data format is

mixed, discrete data starts from least significant bit of data and binary or BCD part

is assigned from the most significant part.

Maintenance data or acknowledgement requires two way communications

which can be established by using two ARINC 429 channels.

Williamsburg/Buckhorn is a bit-oriented file transfer protocol where more than 21

bits are necessary to transfer also used in maintenance data or acknowledgement.

This file transfer mechanism uses handshake, that’s why, requires two ARINC 429

channels.

Another field in the ARINC 429 word is Sign/Status Matrix, bits 30 and 31,

has different meanings according to data type. The sign or direction of the data,

status of the transmitting equipment or validity of the data transmitted may be

indicated with this two bit field. The meaning of the field according to data type is

given in Table 2.2.

The 32nd bit of the word is parity bit. Odd parity is used in ARINC 429

messages.

14

Table 2.2 SSM Meaning for different data types

BIT

BNR Data Type BCD Data Type Discrete Data Type

31 30

0 0 Failure Warning Plus, North, East, Right,
To, Above

Verified Data, Normal
Operation

0 1 No Computed Data No Computed Data No Computed Data

1 0 Functional Test Functional Test Functional Test

1 1 Normal Operation Minus, South, West, Left,
From, Below Failure Warning

2.2.2. MIL-STD-1553

US Department of Defense published MIL-STD-1553 specifications in 1973

as a standard of US Air Force that defines mechanical, electrical and functional

properties of a time division command response multiplex bus. It was designed to be

used in military aviation but it is still being widely used in civil and transport

aircrafts and also for in other sectors like railway systems. The first application of

MIL-STD-1553 was F-16 Fighting Falcon. Then, it was used in F-18 Hornet and

many other programs.

MIL-STD-1553A of 1975 was revised as MIL-STD-1553B in 1978. One of

the most important differences between two versions is; MIL-STD-1553B defines

protocol more strictly and clearly than MIL-STD-1553A and therefore enables an

easier integration of subsystems from different companies. Also redundancy

requirement of MIL-STD-1553B is a major difference. MIL-STD-1553B has six

revisions from 1978 to date.

Bi-phase Manchester coded data is transmitted via a cable pair that has a 70-

80 Ω -typically 78 Ω- impedance at 1 MHz. The bit rate is 1 Mbps for the bus. Bus

15

can have double or triple redundant media as using various pairs of cables

independently. Common usage is dual redundant bus. For dual redundant usages,

one of the lines is active and the alternate bus always stays silent and is used only

when a failure occurs in the active bus. General naming for redundant lines in a

MIL-STD-1553B bus is; Primary bus (Bus A) and Secondary bus (Bus B).

 The messages are transmitted over 16 bits words (command, data or status).

Each word starts with a 3 μs synchronization pulse, 1,5 μs low and 1,5 μs high, and

ends with a parity bit. Parity for MIL-STD-1553B is odd. In practical, each word

can be considered as 20 bits: 3 bits for synchronization, 16 bits of payload and 1 bit

for parity check. The words in a message are transmitted consecutively and there is a

4 μs delay between each word. A remote terminal is required to respond a command

in maximum 12 μs.

The elements of the MIL-STD-1553B bus are BC (bus controller), RT

(remote terminal) and BM (bus monitor). For a MIL-STD-1553B network, BC and

RT are essential.

 Bus controller is responsible to control all communication in the bus,

emission or reception is done with a command of the bus controller. There can only

be one bus controller for a bus. Also backup bus controller (BBC) is defined as a

backup for the bus which is able to take the control [9].

Remote terminals are 5 bit addressed slave devices responding to the bus

controller. Remote terminals count has been limited with 31 devices for each line

[10].

There is no limitation in number for bus monitors. System integrator is free

to install unlimited number of bus monitors to the bus in order to record traffic or

simply not to use a bus monitor. Bus monitors are devices that have no address and

never respond to any message. Alignment of the devices in the bus is given in the

following figure.

16

Figure 2.7 MIL-STD-1553B Bus concept

Connection of devices to the bus can be done in two types; direct coupling

and transformer coupling. Direct coupling is connecting the conductors directly

whereas transformer coupling is connecting a terminal to the bus over a transformer.

Stub length for direct coupling is 1 foot and this length increases up to 6 feet for a

transformer coupling. Following figure shows both coupling types.

Figure 2.8 MIL-STD-1553B Coupling Types

There are three types of words defined for MIL-STD-1553B bus; command

word, data word and status word.

Bus controller always initiates the messaging by a command word. The

command word is formed as follows; The first 5 bits are the address of the remote

terminal (0-31). The sixth bit is “0” for reception and “1” for transmission. The

17

direction of the flow is always decided with the remote terminal view. The 5

following bits indicate the position at which to supply or acquire the data

(subaddress) in the terminal (1-30) or the type of the message is a mode code (0, 31).

The final 5 bits indicate the number of the words to wait for (1-32). If all are “0”,

indicate 32 words to transmit or receive. In the case of the mode code, these bits are

the number of the mode code; such as Initiate Self Test, Transmit BIT Word, etc.

The status word is formed as; the first 5 bits are the remote terminal address

that is replying. 9th to 19th bits are used as flags and as reserved bits. Following

figure shows each word type with bit field indications.

Figure 2.9 MIL-STD-1553B Word formats

There are 9 types of transaction between bus controller and remote terminals.

• BC to RT: The bus controller sends one command word that includes

the remote terminal address, subaddress and number of data words to

18

be received by the RT which is immediately followed by 1 to 32 data

words. The remote terminal which is selected sends only one status

word to the bus controller that informs about status of the transaction

and terminal.

• RT to BC: The bus controller sends one word to the remote terminal

that includes the remote terminal address, subaddress and number of

data words to be transmitted by the RT. The remote terminal sends

only one status word hat informs about status of the transaction and

terminal which is immediately followed by 1 to 32 data words to the

bus controller.

• Mode Code with / without data word: The bus controller sends one

command word with a subaddress/ mode field filled with 0 or 32. The

command can be followed by a word dependent to the selected mode

code. The remote terminal responds with a status word that can be

followed by a single word of data according to mode code type.

• RT to RT: The bus controller sends one command word for the

receiving remote terminal to receive data followed by one command

word to the transmitting remote terminal to transmit data. The

transmitting terminal sends one word followed by 1 to 32 words of

data to the receiving terminal. The receiving terminal sends its status

word finally.

• BC to RTs (Broadcast Data): This functionality did not exist at MIL-

STD-1553A. The bus controller sends one command word to

terminal 31, in reality this indicates that the command word is sent as

broadcast type, followed by 1 to 32 data words. All the remote

terminals accept the data without replying with a status word. This

functionality can be used for the actualization of the whole system

such as time information.

• Broadcast Mode Code with / without data word: The bus controller

sends one command word with a subaddress/ mode field filled with 0

or 32. The command can be followed by a word dependent to the

selected mode code.

19

The sequence for each transaction is defined in the standard. The sequences

guarantee that the terminal is working properly and ready to transmit or receive data.

The request issued at the end of the transmission shows that the data is received and

the result of the transmission of the data is legitimate. This sequence proves the

high-integrity of the MIL-STD-1553B.

Remote terminal device can not originate the transmission by itself. The

requests of the transmissions are generated by the bus controller to the terminals.

The high-priority messages appear more frequently compared to the low-priority

ones but the protocol does not specify any time-share between word types. This is

decided by the system architectures by taking into account that the absence of the

reply indicates failure.

Figure 2.10 Message Sequence

20

2.3. Avionics Full-Duplex Switched Ethernet (AFDX)

2.3.1. History

As described in the other network types, limitations due to the topology or

protocol forced the system integrators to develop a new definition by taking the

advantage of the flexibility and wide usage in terrestrial networks and readily

available software of IEEE 802.3, Ethernet.

“ARINC 664 Aircraft Data Network specification defines electrical

characteristics and protocol recommended for commercial avionics. It is Ethernet for

avionics, which is usually shunned by avionics engineers for its non-determinism.

This was overcome when Airbus created Avionics Full Duplex Ethernet (AFDXTM)

and the Airlines Electronic Engineering Committee (AEEC) adapted it in ARINC

664 Part 7, published on June 27, 2005. AFDX is a deterministic protocol for real

time application on Ethernet media.” [11]

2.3.2. Characteristics

AFDX is a serial data bus which supports data transmission at 10 or 100

Mbps rates over a copper or fiber transmission medium. It is a deterministic

network, which guarantees the bandwidth of each logical communication channel,

called a Virtual Link (VL) with traffic flow control. The jitter and transmit latency

are defined and limited. Packets are received in the same order that they are

transmitted. Carrying the same information at the same time over two redundant

channels ensures the reliability and availability of the AFDX standard; each AFDX

channel has to be a dual redundant channel.

These characteristics make AFDX to ensure “a BER as low as 10-12 while

providing a bandwidth up to 100 Mbps.” [12]

21

Figure 2.11. Sample AFDX Network

2.3.3. AFDX Network Components

2.3.3.1. End System

The AFDX End System (ES) is the part of an avionics system or an avionics

subsystem that connects logical unit to the physical AFDX network. An End System

implements protocol specific functions and carries out messaging features.

Functions may be classified as transmitting function and receiving functions.

Figure 2.12. AFDX End System [13]

22

“Transmit Management allows creation of VL, transmitting of data, and

scheduling of messages onto the network interconnect media. Redundancy

Management allows gathering of the correctly ordered data using both port A and

port B in case of data corruption. Receive Management allows correctly ordered data

to reach the API” [13]. The requirements for an AFDX End System which will be

described later are addressed in ARINC 664 specification.

2.3.3.2. Virtual Link

The Virtual Link (VL) concept has been inspired from ARINC 429 protocol.

Virtual Links are logical implementations of the unidirectional point-to-point

physical connections of ARINC 429. A transmitting Virtual Link may be connected

to unlimited number of receiving Virtual Links but a receiving Virtual Link is shall

be connected to only and only one transmitting Virtual Link.

Each interface of an AFDX End System is connected to the switch which

connects the End System to the AFDX network. This connection is established via a

single physical transmission line. However, definition of the Virtual Links enables

establishing many separate and “isolated” logical connections between End Systems

on the same physical medium.

“VLs make it possible to establish a sophisticated network communication

while ensuring a deterministic behavior through VL bandwidth policing carried out

by the switch.” [12] An AFDX End-Systems is required to support up to 128 VLs.

23

Figure 2.13. Physical Cable and Virtual Links

Virtual Link Scheduling

An End System has to shape the generated traffic according configuration of

the network and AFDX messaging properties. In the AFDX specifications, the

bandwidth of the Virtual Links is fixed by defining a time window Band Allocation

Gap (BAG) and a jitter that tolerates the delays which occur on the medium (Figure

2.14). In each VL there are multiple frames that have to be ordered into a single flow

of frames. The BAG defines the minimum time slot between two consecutive frames

which has a value in the range of 1 to 128 ms with the powers of 2; 1ms, 2 ms, 4 ms,

8 ms, 16 ms, 32 ms, 64 ms and 128 ms. “The variation (i.e., standard deviation) in

the packet arrival times is called jitter.” [14] In AFDX messaging, it is expected to

observe a frame of the same VL in the interval of BAG time after the last frame and

BAG time plus maximum jitter time after the last frame.

Physical cable

AFDX Ports

Virtual Links

24

Figure 2.14. Bandwidth of the Virtual Links

Sub Virtual Links

“To accommodate less critical data communication needs, AFDX also allows

for the construction of sub virtual links (sub-VLs).” [15] Sub Virtual Links are data

queues that share a single Virtual Link. A Virtual Link reads each data queue in a

round robin manner and services the available data to the network according to its

BAG definition. Sub Virtual Link and normal port communication cannot be

assigned to a Virtual Link at the same time; if sub Virtual Links are assigned to a

Virtual Link, it can only serve to these sub Virtual Links. On the other hand any sub

Virtual Link cannot distribute its messages across different Virtual Links. Sub-VLs

are useful for non critical or non time critical data transmission.

time

25

Figure 2.15. Round Robin

2.3.3.3. AFDX Switch

AFDX switch is the central element of the star topology of AFDX network

that interconnects the End System to the End System and network to the network.

Figure 2.16. AFDX Switch [16]

26

The functions assigned to an AFDX Switch are; filtering, policing and

switching valid incoming frames to the correct destinations according to network

configuration. All incoming frames enter to the filtering and policing functional

block that drops the invalid frames and switching functional block deliver the valid

frames to the correct destinations. Information about the frames is stored in the

configuration tables. Switch is configured with “static” configuration tables

according to the network architect’s definitions.

Monitoring Function is used to monitor and log all switch operations and

service health and network status data to the subsystems.

AFDX Switch plays the most important role for the shaped traffic feature of

the AFDX network.

2.3.4. Comparison with other Avionics Buses

Schuster and Verma [11] made a comparison between AFDX and two major

avionics data buses; ARINC 429 which is commonly used in civil aircrafts and

MIL-STD-1553B which is commonly used in military aircrafts. They started to

evaluation with six stakeholders; Performance, Reliability, Security & Certifiability,

Cost, Evolvability & Flexibility and Supportability & Logistics. Then they listed 13

criteria; Transmission Speed, Throughput, Latency, Quality of Service (QoS),

Partitioning, Redundancy, Topology, Harness Requirements, Software (SW)

Development, Weight, Hardware (HW) Reliability, Software Reliability and COTS

Availability. They weighted each criterion according to stakeholders with subjective

approach according to their experience and graded them with four numbers; 0 for

not linked, 1 for possibly linked, 3 for moderately linked and 9 for strongly linked.

According to their evaluation result “AFDX bus provides more redundancy,

security, speed, determinism, and long-term cost effectiveness for the cumulative

27

required support (wire, hardware, and software).” Following table shows the results

of their evaluation.

Table 2.3 Comparison Results [11]

CRITERIA

BUS SCORE

PR
IO

R
IT

IE
S

A
R

IN
C

 4
29

M
IL

-S
T

D
-

15
53

B

A
FD

X

Transmission Speed 1 3 9 5%
Throughput 1 3 9 4%
Latency 9 1 3 9%
QoS 9 1 3 4%
Partitioning 3 1 9 12%
Redundancy 9 3 9 9%
Topology 3 3 9 12%
Harness Requirements 1 3 9 6%
SW Development 3 3 9 6%
Weight 3 3 3 2%
HW Reliability 3 3 3 12%
SW Reliability 3 3 3 11%
COTS Availability 3 3 9 7%

SCORE 4 2,5 6,7

2.3.5. AFDX Solutions

2.3.5.1. Hard AFDX Stack

Most common implementation type of AFDX is with specific hardware in

PMC, PCI, PCI-X, VMEbus or other form factors. The electronics circuitry may

use standard Ethernet chips with a microcontroller or a DSP or implement with an

FPGA with use of specific IP (Intellectual Property) core. Some FPGA companies

like Actel publishes design guidelines for AFDX End System implementation. [15]

Pickles [13] lists the advantages of a hard AFDX solution as reduced host

processing requirement and easy distribution as a COTS PMC style board.

28

He also lists the disadvantages as possible hardware design change

requirements due to being new technology of AFDX, component obsolescence

issues that may require redesign and re-certification of the product and costs of

creating and maintaining firmware code, which is typically written in low-level

assembly language.

2.3.5.2. Soft AFDX Stack

Soft AFDX stack is another idea to implement End System in the host

computer along with application software. This implementation option uses

processing resources of computer to realize protocol requirements and readily

available Ethernet hardware for interconnection to the physical medium.

For Soft AFDX, Pickles [13] starts to list the advantages with cheap and

readily available hardware. He implies the easily updating opportunity to faster

transmission rates without changing the design. He adds that there is no

obsolescence issue and possible protocol changes may be implemented in a high-

level language, such as C, C++ or Ada.

He also highlights the disadvantages of Soft AFDX stack as the need for

more processing power for protocol implementation on the host and necessity to

Ethernet driver and protocol stack optimization for hard performance requirements

of the standard such as latency.

29

CHAPTER 3

FRAME STRUCTURE OF AFDX AND COMPARISON WITH

THE RELATED COMMUNICATION STANDARDS

3.1. General

OSI (Open System Interconnection) Reference Model is composed of seven

layers as given below;

• Physical Layer

• Data Link Layer

• Network Layer

• Transport Layer

• Session Layer

• Presentation Layer

• Application Layer

On the other hand, TCP/IP Model is composed of 4 layers given below;

• Link Layer

• Internet Layer

• Transport Layer

• Application Layer

30

AFDX is also an open standard, inspired with these layered models and

common protocols. Following figure gives a brief description in layered architecture

perspective.

Figure 3.1 A brief description in layered architecture perspective

3.2. Physical Layer

Physical layer is not restrictedly specified for AFDX, but should be any of

the ARINC 664 Part 2 defined solutions. The physical layer that is used in modern

day computers is acceptable. Connection with CAT-5, CAT-6 or fiber media

may be used with a star topology. The physical layer part of Ethernet 802.3 is

used for AFDX systems.

3.3. Data Link Layer

31

In Draft 3 of Project Paper 664: Aircraft Data Network, Part 7 - Avionics

Full Duplex Switched Ethernet (AFDX) Network [16], it is denoted that IEEE

Standard 802.3, 2000 Edition, is considered an integral part of ARINC 664

specification.

A standard Ethernet frame is given below;

7 (bytes) 1 6 6 2 45-1499 4 12

Preamble

S
F
D

Destination

Address
Source
Address

T
y
p
e

Ethernet Payload

F
C
S

IFG

Figure 3.2 Ethernet Frame (Data Link Layer)

Ethernet frame has a header;

• Destination MAC Address (6 bytes)

• Source MAC Address (6 bytes)

• Ethernet Type (2 bytes) And a trailer;

• Frame Check Sequence (4 bytes)

Payload part is minimum 46 bytes and maximum 1500 bytes.

For AFDX this structure is same with a difference, just after the end of the

payload part and before the FCS, a Sequence Number is inserted which will be described

later.

7 (bytes) 1 6 6 2 45-1499 1 4 12

Preamble

S
F
D

Destination
Address

Source
Address

T
y
p
e

AFDX Payload SN

F
C
S

IFG

Figure 3.3. AFDX Frame (Data Link Layer)

32

3.3.1 Source Address

The specification specifies the MAC Source address as an Individual and Locally

Administered address compliant with IEEE 802.3 protocol.

Figure 3.4 MAC Source Address

Network ID and Equipment ID are assigned by the network and equipment

designers.

Interface ID is 3 bits long but has two options;

‘001’ The Ethernet MAC controller is connected to the network A

‘010’ The Ethernet MAC controller is connected to the network B

Network identification is used for redundancy and other bit combinations are

not used.

The main difference from standard Ethernet is the ability of the end-user to

configure the source MAC address according to his network by either jumper set or

soft pre-configuration.

3.3.2 Destination Address

The specification specifies the MAC Destination address as a Group and Locally

Administered address compliant with IEEE 802.3, which carries the Virtual Link

information in the last 16 bits.

33

Figure 3.5 MAC Destination Address

Each End System should get "constant field" and "Virtual Link Identifier" values

from the system integrator. The values are not specified in ARINC 664. The constant field

should be the same for each End System in any given AFDX network. The least

significant bit of the first byte indicates the group address (always = 1).

In order to use the standard Ethernet frame, MAC group addresses should be

changed to send frames from End System to End System (s).

The second to least significant bit of the first byte indicates the locally

administered address (always = 1).

3.3.3 Type

2 byte type part of the frame is always 0x800, indicating IPv4.

3.3.4 Integrity Check

In addition to the frame check sequence bytes of the standard Ethernet frame,

frame sequence number (SN) is 1 byte long and should be located just before the

MAC CRC field as illustrated in the Figure 3.3. Sequence number is used for

integrity check.

The transmitter is in charge of putting a sequence number per VL basis in a

range of 0 to 255. Transmitter initializes the sequence number of each Virtual Link

as 0 after each End System reset and increments by one for each consecutive frame

34

of the same Virtual Link. When the value reaches 255, transmitter wraps-around the

sequence number to 1 instead of 0.

When the frame is valid according to sequence number, integrity check

function passes the frame to redundancy management. When the sequence number is

faulty, it drops the invalid frame and informs network management. Frames with a

sequence number 1 or 2 more than the sequence number of last received frame are

accepted as valid frames. Increment with one or 2 must be conducted with the care

of wrapping-around to 1 after 255.

“This function increases integrity robustness by, for example, eliminating stuck

frames or single abnormal frames and reducing the impact of a babbling switch. Loss of

one single frame is considered as a normal event due to a non-zero Bit Error Rate.” [16]

3.3.5 Redundancy Management

As another difference from standard Ethernet, AFDX has a defined

redundancy management. The interconnections of End Systems are established

through two different redundant networks. This protects the loss of communication

from single failure of a cable or switch.

Figure 3.6 Network Redundancy Concept

According to the specification [16] on a per VL basis, the End System should

be able to receive:

35

• a redundant VL and deliver to the application one of the redundant data (RM

active)

• a redundant VL and deliver to the application both redundant data (RM not

active)

• a non redundant VL on either attachment and submit data from it to the

application (in this case, RM can be active or not).

3.3.6 Flow Regulation

ARINC 664 defines fixed BAG for each Virtual Link. If application

generates frames exceeding this BAG, in the data link layer, End System makes a

regulation as one frame per gap basis. Flow regulation is only applicable to

transmitter side End System.

3.3.7 Flow Scheduling

As several Virtual Links defined in an End System with a single physical

output (except the redundant) there should be a scheduling control for each Virtual

Link to direct the physical layer.

In a transmitting end system with multiple VLs, the Scheduler

multiplexes the different flows coming from the Regulators.

The End System should regulate transmitted data on a per VL basis, since

this Traffic Shaping Function (exact knowledge of flow characteristics) is the

basis of the determinism analysis. On a per VL basis the traffic regulator or traffic

shaping function should shape the flow to send no more than one packet in

each interval of BAG milliseconds.

3.3.8 Data Link Layer Overview

36

Figure 3.7 represents the data link layer operations in the transmitter point of

view of AFDX End System.

• Regulator regulates frames coming from upper layer

• Regulated frames in Virtual Link are put inside the BAG.

• Schedule Multiplexer multiplexes the frames coming from several Virtual

Links and conducts to Redundancy Management.

• Redundancy Management unit produces two instances of the same

frame if not disabled.

• Each MAC put its source MAC address to the frame and passes to the

physical layer.

Figure 3.7 AFDX Transmitter Data Link Layer Overview

Figure 3.8 represents the data link layer operations in the transmitter point of

view of AFDX End System.

• Received frames (according to MAC number, after CRC) are passed to

Integrity Check.

• Integrity Check unit checks the Sequence Numbers and passes to

Redundancy Management (RM) if not disabled. If RM is disabled, both

frames pass to next step.

• Redundancy Management unit passes the first valid frame to

demultiplexer.

37

• Demultiplexer delivers frames according to Virtual Links to the upper

layer.

Figure 3.8 AFDX Receiver Data Link Layer Overview

3.4 Network Layer

From the transmission point of view; the IP network layer receives the

packet from upper layer and determines whether it needs to be fragmented using the

appropriate VL’s Lmax value. The IP header is added, and IP checksum is

calculated for each fragment.

From the reception point of view; the network layer is responsible for

checking the IP checksum field and the packet reassembly, if necessary. The packet

is passed to the upper (transport) layer.

AFDX frame with the bytes filled by network layer is given below;

7 (bytes) 1 6 6 2 20 9-1479 0-16 1 4 12

Preamble

S
F
D

Destination
Address

Source
Address

T
y
p
e

IP Header AFDX Payload Pad
S
N

F
C
S

IFG

Figure 3.9 AFDX Frame (Network Layer)

38

3.4.1 IP Structure

AFDX has standard IPv4 structure except not including option bytes (0 or

more) between IP payload and IP destination address.

Figure 3.10 IPv4 Structure

• Version: (IPv4 =4)

• IHL: IP Header Length, number of 4 byte blocks (20 bytes=5) Type of

service: Not used

• Total Length: Total Length of the IP frame (header + payload)

• Fragmentation Identification: An id to the fragmented group given by

transmitter

• Control flag: Not used

• Fragmentation Offset: Position of the fragment relative to original

payload

• Time to live: Number of hops

• Protocol: TCP uses 6, UDP uses 17, ICMP uses 1.

• Header Checksum: Checksum for the IP header

3.4.2 IP Source Address:

The 32-bit IP source address should be a Class A and private Internet Unicast

Address used to identify the transmitting partition associated with the End System.

39

Class A

1-bit

Private IP Address

7-bits

Network ID

8-bits

Equipment ID

8-bits

Partition ID

8-bits

"0" "0001010" “0000” 4-bits 3-bits 5-bits 3-bits 5-bits

Figure 3.11 IP Source Address

3.4.3 IP Destination Address

According to the specification, the IP destination address of the AFDX frame

should be either the IP Unicast address to identify the target subscriber or an IP

Multicast address compliant to the format shown in Figure below.

Class D

4-bits

IP Multicast
Identifier

28

“1110” “0000 1110 0000” Virtual Link Identifier 16-bits

Figure 3.12 IP Destination Address

3.5 Transport Layer

The whole AFDX frame with the bytes filled by transport layer is given

below;

7 (bytes) 1 6 6 2 20 8 1-1471 0-16 1 4 12

Preamble

S
F
D

Destinatio
n Address

Source
Address Type

IP
Header

UDP
Header

AFDX
Payload

Pad

S
N

F
C
S

IFG

Figure 3.13 AFDX Frame (Transport Layer)

UDP Header is figured out as below;

40

16-bit

Source Port

Number

16-bit

Destination Port
Number

16-bit

UDP Length

16-bit

UDP
Checksum

Figure 3.14 UDP Header

Port number allocation is defined in ARINC Specification 664, Part 4:

Internet Based Address Structures and Assigned Numbers [17] according to the

tables below;

Figure 3.15 Allocation of SAP and AFDX Port Numbers

Figure 3.16 Port Allocation Range for IP Unicast or Multicast

As AFDX is a closed network, network architect is free to choose port

numbers from full range; 0 to 65535. However specification encourages the use of

Dynamic/Private range of numbers only. The reason for this is to avoid possible

conflicts with adjacent networks when an AFDX network is integrated with other

networks through a gateway. Port numbers shall be identical in a Virtual Link.

41

3.6 Application Layer

ARINC 664 specification defines two messaging formats in the application

layer; implicit and explicit. Explicit format includes format information overheads

that define the transmitted message to enable the receiver to interpret the contents of

the message accordingly. Because of the overheads, this format uses less part of the

bandwidth effectively. On the other hand, implicit message format uses like well

known service (WKS) concept of internet uses port and partition numbers to identify

the contents of the payload.

Data alignment of the implicit format of AFDX is given in the figure 3.17.

An AFDX payload is formed of a number of Functional Data Sets. Each Functional

Data Set is formed of up to 4 Data Sets and a Functional Status Set. Functional

Status Set is a 4 byte field that carries the status of each Data Set. If there are less

than 4 Data Sets, the remaining Functional Status bytes should be filled with 0. For

existing Data Sets the relevant byte is filled with the decimal enumerations as 0 for

“No Data”, 3 for “Normal Operation”, 12 for “Functional Test” and finally 48 for

“No Computed Data”. Data sets are collections of parametric data, for example

altitude, airspeed, heading etc.

AF
D

X
Pa

yl
oa

d

Figure 3.17 AFDX Message Structure

42

CHAPTER 4

IMPLEMENTATION

4.1. Platform

Usually system developers and system integrators choose realtime operating

systems (RTOS) such as VxWorks of Wind River [18], Integrity of Green Hills [19]

for flight critical software. However, for ground testing, besides RTOS's, it is also

common to use other operating systems like Linux, Unix or Microsoft Windows.

Most data acquisition systems (DAS) do not need realtime behavior but need data

logging with timestamps.

As cost efficiency is a major aim in this thesis, the development and all tests

were conducted in Microsoft Windows XP. As coding is performed with standard

C/C++ libraries, it is also possible to port the stack to any operating system which is

compatible with C/C++. On the other hand, it should be noticed that using realtime

operating system is the necessary but not the sufficient condition for flight critical

systems. As the development of the code is neither DO-178B certified (for any DAL

Level), nor certifiable (not designed under rules –guidance- of certification) the

software solution in this thesis is not assumed to be used in any flight critical

system, but in ground systems for testing and code development purposes.

43

4.2. Tools

4.2.1 Development Environment

Executable application is developed with Microsoft Visual C++ 2008 Express

Edition.

4.2.2 Data Link Layer Frame Access

As the frames differ from standard TCP/IP stack of a computer, a data link

layer access is necessary to implement AFDX framing. A network sniffer library for

the AFDX receiver and a data link layer frame manipulation library for AFDX

transmitter shall be used.

“Packet sniffers are hardware or software that read all of the packets on a

communications channel; in the distant past, all such sniffing required expensive

hardware whereas today the same functionality can be found with free software.

Packet sniffers can display traffic in real-time, store the packets for later display, and

provide detailed interpretation. Packet sniffers are useful tools for network

monitoring, investigations, reconnaissance, or just to learn how the protocols work.”

[20]

Risso and Degioanni [21] claim that “WinPcap architecture is the first open

system for packet capture on Win32 and it fills an important gap between Unix and

Windows. Furthermore WinPcap puts performance at the first place, thus it is able to

support the most demanding applications.”

“Most real-time TCP/IP packet sniffing systems are based on the Unix/Linux

packet capture library (libpcap) or its Windows counterpart (WinPcap). Using

libpcap/winpcap software is possibly the best place to start.” [20]

44

“WinPcap is the industry-standard tool for link-layer network access in

Windows environments: it allows applications to capture and transmit network

packets bypassing the protocol stack, and has additional useful features, including

kernel-level packet filtering, a network statistics engine and support for remote

packet capture.” [22]

Most networking applications use sockets for network access which forces

operating system to handle protocol specific jobs in the network stack. This is an

easy way to program with limitations. Operating system provides filtered and

stripped message to the application in reception. Also operating system fills headers

of the frame itself.

Sometimes, programmer needs to access raw data on the line and to

manipulate all the bit fields of the frame including headers and trailers.

The website of the WinPcap [22] addresses the purpose of WinPcap as to

give this kind of access to Win32 applications and provides facilities to:

• capture raw packets, both the ones destined to the machine where it's

running and the ones exchanged by other hosts (on shared media)

• filter the packets according to user-specified rules before dispatching

them to the application

• transmit raw packets to the network

• gather statistical information on the network traffic

by means of a device driver that is installed inside the networking portion of

Win32 kernels, plus a couple of DLLs.

“The basic structure of WinPcap retains the most important modules, a

filtering machine, two buffers (kernel and user) and a couple of libraries at user

level. However, WinPcap has some substantial differences in the structure and in the

behavior of the capture stack, and can be seen as the evolution of BPF.” [21]

45

Figure 4.1. Winpcap Capture Stack

Risso and Degioanni [21] describe three modules of WinPcap in their paper.

First module in the kernel level filters the packets, delivers raw packet to the user

level and conducts some OS-specific code such as timestamp management.

Second module, packet.dll may be considered as an operating system

abstraction module offering a system-independent API at the user level, coming

under the form of Dynamic Link Libraries (DLLs).

Third module, wpcap.dll, is the other DLL which is hosted in the user level.

This module provides operating system independent high-level functions such as

filter generation, user-level buffering and raw packet reception and injection.

46

Performance analyses were conducted for different configurations using

WinPcap. [21] [23]

It is mentioned in the official web site of WinPcap [22] that “Thanks to its

set of features, WinPcap is the packet capture and filtering engine of many open

source and commercial network tools, including protocol analyzers, network

monitors, network intrusion detection systems, sniffers, traffic generators and

network testers. Some of these tools, like Wireshark, Nmap, Snort, ntop are known

and used throughout the networking community.”

WinPcap is also used in many academic researches and papers. [24], [25],

[26], [27], [28].

4.3. Configuration

To execute WinPcap library functions with Visual C++ development

environment, following settings should be done.

It is assumed that the following files and folders are downloaded [22];

• WinPcap auto-installer (file: WinPcap_4_0_2.exe)

• WinPcap Developer's Packs (folder: WpdPack)

• WinPcap Source Code Distributions (folder: WpcapSrc)

4.3.1. Installation of DLL

Execute file: WinPcap_4_0_2.exe.

4.3.2. Compiler Settings

From project properties, compiler tab, include the following paths to

“Additional Include Directories”

47

• \WpcapSrc \wpcap\Win32-Extensions

• \WpcapSrc \wpcap\libpcap

• \WpcapSrc \wpcap\libpcap\Win32\Include

• From project properties, preprocessor tab include the following

preprocessor definitions

• WPCAP

• HAVE_REMOTE (for remote access)

4.3.3. Linker Settings

From project properties, linker tab, include the following path to “Additional

Library Directories”

\ WpdPack\Lib

From project properties, linker tab, add the following options to “Command

Line/Additional Options”

wpcap.lib

packet.lib

4. 4 AFDX Transmitter

4.4.1 API Stack Overview

AFDX Manager (AFDXTrasnmitter.cpp) is the source code that AFDX

network developer writes. This part is not intended to be a part of the thesis work but

is essential to demonstrate and test the prepared code. AFDX Manager uses AFDX

API to configure the AFDX stack and transmit AFDX messages.

AFDX Transmitter API (CAFDXTransmitterAPI.cpp) is the only interface

between AFDX Stack and user code, namely AFDX Manager. It is a singleton class

48

that has an interface with all created Virtual Links; AFDX Stack and Network

Interface Cards.

CVirtualLink class is the source for a Virtual Link object. API creates a

Virtual Link object per a defined Virtual Link in the configuration file. Any Virtual

Link includes a number of AFDXTxComPort objects as also defined in the

configuration file.

AFDX Tx ComPort class (AFDXTxComPort.cpp) is the source for a AFDX

Transmission Communication Port object. It includes three layers (transport layer,

network layer, data link layer) for frame assembly. AFDXTxComPort object takes

the AFDX payload from Virtual Link and passes it from each layer step by step.

UDP Class (CTransportLayer.cpp) adds UDP header to the payload which

includes UDP Source Port Number, UDP Destination Port Number, UDP Length

and calculates the UDP checksum.

IP Class (CNetworkLayer.cpp) calculates the 20 bytes of IP Header with

AFDX parameters like Virtual Link number and calculates checksum.

MAC Class (CDataLinkLaye.cpp) puts the MAC header and sequence

number. FCS calculation is achieved in the network interface card (NIC).

Finally AFDX Transmitter API uses Network Interface Card Interface class

(NICInterface.cpp) to duplicate the frame for both A and B interfaces and to

transmit with WinPcap library functions.

Figure 4.2 depicts the class hierarchy of the AFDX Transmitter Application.

49

AFDX_TRANSMITTER
(AFDX MANAGER)

CAFDXTransmitterApi

CVirtualLink

1

CAFDXTxComPort

1

CTransportLayer CNetworkLayer CDataLinkLayer

CNICInterface

CAFDXTxComPort

2

CAFDXTxComPort

M

Pcap.h

CVirtualLink

N

Channel A Channel B

Figure 4.2. AFDX Transmitter class hierarchy

50

4.4.2 Application Flow Chart

START

Start Transmitter

Change
Data

Ask/Read Data

Configure API

Figure 4.3. AFDX Transmitter Application Flow Chart

AFDX Manager is the code written by the user of the API. Uses only three

methods of the API to configure API, to start it and to change any parametric value.

Figure 4.3 shows the simple flow chart for an AFDX Transmitter application.

51

4.4.3 Application Class List

Here are the classes with brief descriptions:

• CAFDXTransmitterAPI

• CVirtualLink

• CAFDXTxComPort

• CTransportLayer

• CNetworkLayer

• CDataLinkLayer

• CNICInterface

Class Diagram of AFDX Transmitter API is given in the Figure 4.4.

52

Figure 4.4. AFDX Transmitter Class Diagram

53

4.4.3.1 CAFDXTransmitterAPI Class Reference

#include "AFDXTransmitterAPI.h"

#include "VirtualLink\VirtualLink.cpp"

#include "NICInterface\NICInterface.cpp"

#include <windows.h>

#include "process.h"

#include <iostream>

#include <fstream>

Public Member Functions

• CAFDXTransmitterAPI (void): The constructor of the class.

• ~CAFDXTransmitterAPI (void): The destructor of the class.

• int Configure (char *sConfigFilePath): Configures the API.

• int Start (): Starts the transmitter.

• int WriteMessage (int dVLIndex, int dPortIndex, char *sMsg): Writes a

message into an AFDX port of a VL. Network programmer uses this

method to change value of a port.

Static Public Member Functions

• static CAFDXTransmitterAPI * GetInstance (): This method is used

whenever a common instance of this class is wanted to be used. Because

this is a singleton class, returns every time a pointer to the same instance

Private Member Functions

• int ArrangeSlot (int dVLNo, int dBAG): This private method is used by

the API itself in configuration time. API arranges time slots for each

Virtual Link with this internal method.

Static Private Member Functions

54

• static unsigned __stdcall TransmitThread (void *arg): This is the thread

that is spawned for transmitter that calculates transmission times and

transmits frames.

Private Attributes

• int m_dNoOfVLs: API keeps the number of virtual links in this attribute

• CVirtualLink * m_xVirtualLinks: List of virtual links

• CNICInterface m_xNICInterface: Interface for the Ethernet cards.

• MsgReady m_pxTimeSlot [128]: API predetermines the times to send

each virtual link. This array of structure keeps the list of virtual links to

be sent in each millisecond 0 to 127. API loops this array.

MsgReady Struct Reference

• int dVLCount: Number of virtual links to be sent for the time slot

• int * dVLNo: Pointer to list the virtual links to be transmitted in the time

slot.

4.4.3.2 CVirtualLink Class Reference

#include "VirtualLink.h"

#include "AFDXTxComPort\AFDXTxComPort.cpp"

Public Member Functions

• CVirtualLink (void): Constructor of the class.

• ~CVirtualLink (void) : Destructor of the class.

• int Configure (unsigned char ucNetworkId,

unsigned char ucEquipmentId,

unsigned char ucPartitionId,

55

unsigned short usVLId,

int dNumberOfAFDXTxComPorts,

int dBAG, int dLMax): AFDXTransmitterAPI

configures each virtual link with Configure method of the virtual link

class.

• int GetNumberOfPorts (): Returns the number of AFDX communication

ports defined in the virtual link.

• int GetPortToSend (): Returns the index of AFDX communication port

which will be sent for current time slot. For each time slot, virtual link

sends a port in a round robin manner.

• int Send (int dPortIndex, char *sMessage): Prepares the message of the

selected port to be sent.

• int ConfigureAFDXComPort (int dIndex,

unsigned short usUDPSrcPortNo,

unsigned short usUDPDstPortNo,

int dFrameSize): AFDX Transmitter

API uses this method to configure each communication port.

• unsigned char * GetAFDXComPortMsg (int dIndex): Calls GetFrame

method of the communication port.

• int GetPortFrameSize (int dIndex): Calls GetFrameSize method of the

communication port.

Private Attributes

• unsigned short m_usVLId: Virtual link number

• unsigned char m_ucNetworkId: Keeps Network Id in MAC source

address.

• unsigned char m_ucEquipmentId: Keeps Equipment Id in MAC source

address.

• unsigned char m_ucPartitionId: Keeps Partition Id in MAC source

address.

56

• unsigned char m_sSrcIP [4]: Source IP Address

• unsigned char m_sDstIP [4]: Destination IP Address built from virtual

link no.

• unsigned char m_sSrcMAC [6]: Source MAC Address build from

Network Id, Equipment Id, Partition Id and a constant bit field.

• unsigned char m_sDstMAC [6]: Destination MAC Address build from

Virtual Link Id and a constant bit field.

• CAFDXTxComPort * m_xpAFDXComPort: Pointer to AFDX

Communication Ports defined in the virtual link.

• int m_dNumberOfAFDXTxComPorts: Keeps number of ports.

• int m_dPortIndexToSend: Keeps the next port to be sent.

• int m_dBAG: Keeps the band allocation gap (BAG).

• int m_dLMax: Keeps maximum frame size (Lmax).

4.4.3.3 CAFDXTxComPort Class Reference

#include "AFDXTxComPort.h"

#include "TransportLayer\TransportLayer.cpp"

#include "NetworkLayer\NetworkLayer.cpp"

#include "DataLinkLayer\DataLinkLayer.cpp"

Public Member Functions

• CAFDXTxComPort (void): Constructor of the class.

• ~CAFDXTxComPort (void): Destructor of the class.

• int Configure (unsigned short usUDPSrcPortNo,

unsigned short usUDPDstPortNo,

unsigned char *sSrcIP,

unsigned char *sDstIP,

unsigned char *sSrcMAC,

unsigned char *sDstMAC,

57

int dFrameSize): This method is used to configure a

single AFDX communication port.

• unsigned char * GetFrame (): Returns the AFDX frame to be sent.

• int GetFrameSize (): Returns the frame size to be sent.

• int Prepare (char *sMessage): Prepares the message to send. This method

calls prepare methods of layer classes.

• int VLSending (): Calls VLSending method of the data link layer.

Private Attributes

• unsigned char * m_sAFDXFrame: Keeps the whole AFDX frame.

• unsigned short m_usUDPSrcPortNo: Keeps UDP source port number.

• unsigned short m_usUDPDstPortNo: Keeps UDP destination port

number.

• int m_dFrameSize: Keeps the AFDX frame size.

• CTransportLayer m_xTransportLayer: An object to handle transport

layer functions.

• CNetworkLayer m_xNetworkLayer: An object to handle network layer

functions.

• CDataLinkLayer m_xDataLinkLayer: An object to handle data link layer

functions.

4.4.3.4 CTransportLayer Class Reference

#include <TransportLayer.h>

Public Member Functions

• CTransportLayer (void): Constructor of the class.

• ~CTransportLayer (void): Destructor of the class.

• void Configure (unsigned short dSrcPort,

58

unsigned short dDstPort,

unsigned char *sSrcIP,

unsigned char *sDstIP,

unsigned char *sAFDXFrame): Configures the layer.

• int PrepareMessage (int dNoOfChars, char *sMessage): Prepares the

transport layer parameters of the message to sent.

Private Member Functions

• unsigned short CheksumCalculate (unsigned short len_udp,

unsigned char src_addr[],

unsigned char dest_addr[],

bool padding,

unsigned char buff[]):

Calculates UDP Checksum. This is a private method and Prepare method

calls this method internally.

Private Attributes

• unsigned short m_usUDPLength: Keeps UDP length data.

• unsigned short m_usUDPChecksum: Keeps UDP checksum.

• unsigned short m_dSrcPort: Keeps UDP source port number.

• unsigned short m_dDstPort: Keeps UDP destination port number.

• unsigned char m_sSrcIP [4]: Keeps source IP address for Checksum

calculation.

• unsigned char m_sDstIP [4] : Keeps destination IP address for Checksum

calculation.

• unsigned char * m_sAFDXFrame: Points to the AFDX frame.

4.4.3.5 CNetworkLayer Class Reference

#include <NetworkLayer.h>

59

Public Member Functions

• CNetworkLayer (void): Constructor of the class.

• ~CNetworkLayer (void): Destructor of the class.

• void Configure (unsigned char *sSrcIP,

 unsigned char *sDstIP,

 unsigned char *sAFDXFrame): Configures the layer.

• int PrepareMessage (int dUDPLength): Prepares the network layer parameters

of the message to sent.

Private Member Functions

• unsigned short CheksumCalculate (unsigned short len_ip_header,

 unsigned short buff[]): Calculates IP

Header Checksum. This is a private method and Prepare method calls this

method internally.

Private Attributes

• unsigned char m_sSrcIP [4]: Keeps source IP address

• unsigned char m_sDstIP [4]: Keeps destination IP address

• unsigned char * m_sAFDXFrame: Points to the AFDX frame.

4.4.3.6 CDataLinkLayer Class Reference

#include <DataLinkLayer.h>

Public Member Functions

• CDataLinkLayer (void): Constructor of the class.

• ~CDataLinkLayer (void): Destructor of the class.

60

• void Configure (unsigned char *sSrcMAC,

 unsigned char *sDstMAC,

 unsigned char *sAFDXFrameA): Configures the layer.

• int PrepareMessage (int dIPLength): Prepares the data link layer parameters

of the message to sent.

• int VLSending (): This method is used to prepare the sequence number.

Sequence numbers are started from 0, incremented by one in each transmission

of the virtual link and wraps around to 1 after 255.

Private Attributes

• unsigned char m_sSrcMAC [6]: Source MAC Address

• unsigned char m_sDstMAC [6]: Destination MAC Address

• unsigned char * m_sAFDXFrame: Points to the AFDX frame

• unsigned char m_ucSequenceNo: Sequence number of the virtual link.

• int m_dFrameLength: Length of the AFDX frame to be sent.

4.4.3.7 CNICInterface Class Reference

#include <NICInterface.h>

#include <pcap.h>

Public Member Functions

• CNICInterface (void): Constructor of the class.

• ~CNICInterface (void): Destructor of the class.

• int Configure (char *sInterfaceNameA, char *sInterfaceNameB): Configures

the class. This method takes the names of the interface (Ethernet) cards and

uses to send frame through.

• int SendMsg (unsigned char *sMsg, int dLength): AFDX Transmitter API

uses this method to send an AFDX frame through both interfaces. Puts the

message and gives the number of bytes to be transmitted.

61

Private Attributes

• char m_sInterfaceNameA [100]: Name of the Ethernet Card for interface A

• char m_sInterfaceNameB [100]: Name of the Ethernet Card for interface B

• char m_sErrbufA [PCAP_ERRBUF_SIZE]: An internally used buffer to keep

possible errors for operations with Ethernet card for interface A

• char m_sErrbufB [PCAP_ERRBUF_SIZE]: An internally used buffer to keep

possible errors for operations with Ethernet card for interface B

• pcap_t * m_xAdHandleA: Handle for interface A

• pcap_t * m_xAdHandleB: Handle for interface B

4.4.4 Detailed Explanation of the AFDX Transmitter Application

Figure 4.5 shows the sequence diagram of the application with AFDX

Transmitter program.

Figure 4.5. AFDX Transmitter Sequence Diagram

62

AFDX Manager is the source code written by the AFDX network developer.

AFDX Manager configures the API with a configuration file in csv (comma-

separated values) file format.

Figure 4.6 shows the appearance of a simple configuration file on a text

editor. Second items of the first two row gives the interface names of the Ethernet

cards, first for Interface A and second for Interface B. Number of Virtual Links and

total number of AFDX communication ports are given below the interface names.

Virtual Link number, BAG, Lmax, Network Id, Equipment Id, and number of ports

for each Virtual Link information is given row by row as shown in the figure. After

the end of the Virtual Link based configurations, port by port configurations start.

Each port is identified by UDP Source / Destination number and frame size. Frame

sizes for each AFDX communication port should be less than or equal to Lmax of

relevant Virtual Link. Lmax for each Virtual Link should be selected no more than

1500 bytes.

Figure 4.6. AFDX Transmitter Configuration File

63

When the Configure() method of the AFDXTranmitterAPI is called by the

application with a path of the configuration file, API opens the file and starts to

configure itself, each Virtual Link and each port. Also with this configuration call,

API prepares the schedule to transmit each port most efficiently.

In a scheduling work, it is a common and useful way to divide frames into

minor and major frames when there are frames with different frequencies. Major

frame defines the period of overall messaging, which repeats the same sequence of

messages or processes. The minor frame defines the period inside the major frame.

Minor frame is calculated with the greatest common divisor of all periods and the

major frame is calculated with the least common multiple of all periods.

AFDX defines BAGs as 1 ms, 2 ms, 4 ms, 8 ms, 16 ms, 32 ms 64 ms and

128 ms, the minor frame for the schedule is 1 ms (the greatest common divisor of

possible BAGs) and the major frame is 128 ms (the least common multiple of

possible BAGs). The idea is ordering Virtual Links from smallest to biggest BAG

and putting them to the empty slots (minor frames) one by one. A 1 ms BAG Virtual

Link should be repeated in each minor frame whereas a 4 ms BAG Virtual Link

should be inserted once for 4 minor frames. Each time inserting a Virtual Link,

ArrangeSlot() method checks for best minor frame group to use the line effectively.

After the configuration is completed, API is ready to start to send AFDX

frames. Start() method initiates the periodical transmission by spawning

TransmitThread() method.

While the scheduler is running and transmitting AFDX frames, user

application can change the values of the frames with Write() method asynchronously

by pointing the message with Virtual Link index and port index.

AFDX scheduler uses performance counter of Windows to calculate the time

to transmit frame. QueryPerformanceCounter() function gives the number of CPU

clocks after the computer is powered on. As the time between to clock cycles differ

64

for different CPUs, QueryPerformanceFrequency() function which gives frequency

of CPU is used to calculate time independent of the CPU speed. At the beginning of

a minor frame, soft real time thread reads the starting clock ticks and calculates the

end of the minor frame with the following formula;

1000
FrequencyStartClockEndClock +=

As the frequency is the ticks per second and the duration of the minor frame

is 1 ms, adding the division of frequency by 1000 to the clock number measured at

the beginning gives the number of clocks for the end of the minor frame.

In a loop of 128 minor frames, scheduler measures the starting ticks and

calculates the ending ticks, transmits the frames of Virtual Links for that minor

frame and waits until 1 ms is completed. While transmitting a frame for a Virtual

Link, each Virtual Link object counts the next AFDX communication port to be

serviced in a round robin manner. Scheduler repeats 128 step of loop forever.

4.5 AFDX Receiver

4.5.1 API Stack Overview

AFDX Manager (AFDXReceiver.cpp) is the source code that AFDX

network developer writes. This part is not intended to be a part of thesis work but is

essential to demonstrate and test the prepared code. AFDX Manager uses AFDX

API to configure the AFDX stack and receive AFDX messages.

AFDX API (CAFDXAPI class) is the only interface between AFDX Stack

and user code, namely AFDX Manager. It is a singleton class that has an interface

with all created Virtual Links, AFDX Stack.

65

AFDX Stack (CvirtualLink class) is an object of a Virtual Link. It has three

layers (transport layer, network layer and data link layer) for frame disassembly and

WinPcap library functions to receive the message. It takes the raw data from the

interface, passes it from each layer step by step and supplies AFDX payload to API.

MAC Class (CDataLinkLayer class) checks the MAC header and sequence

number. FCS calculation is achieved in the network interface card (NIC).

IP Class (CNetworkLayer class) checks the 20 bytes of IP Header with

AFDX parameters and checksum.

UDP Class (CTransportLayer class) checks UDP header and the UDP

checksum.

66

Figure 4.7. AFDX Receiver API Stack Overview

67

4.5.2 Application Flow Chart

START

Start Receiver

Configure API

Read
Message

Record Data

Figure 4.8. AFDX Receiver Application Flow Chart

AFDX Manager is the code written by the user of the API. Uses only three

methods of the API to configure API, to start it and to read message from a Virtual

Link. Figure 4.8 shows the simple flow chart for an AFDX Receiver application.

68

4.5.3 Application Class List

Here are the classes with brief descriptions:

• CAFDXReceiverAPI

• CVirtualLink

• CTransportLayer

• CNetworkLayer

• CDataLinkLayer

Class Diagram of AFDX Receiver API is given in the Figure 4.9.

69

Figure 4.9. AFDX Receiver Class Diagram

70

4.5.3.1 CAFDXReceiverAPI Class Reference

#include <AFDXReceiverAPI.h>

#include "VirtualLink\VirtualLink.cpp"

#include <iostream>

#include <fstream>

#include <windows.h>

#include "process.h"

#include <time.h>

Public Member Functions

• int Configure (char *sConfigFilePath): Configures API with a configuration

file. Input argument is path of the configuration file.

• int Start (): Starts the receiver API.

• int Receive (char *cInterface,

unsigned short *dVLId,

char *sMsg

int *dMsgLen

unsigned char *ucSeqNo

unsigned short *usUDPSrcPort,

unsigned short *usUDPDstPort,

struct timeval *ts): Receiver method returns collected and

controlled messages from API. Input parameters are pointers to let API fill

with the receive results.

Static Public Member Functions

• static CAFDXReceiverAPI * GetInstance (): This method is used whenever a

common instance of this class is wanted to be used. Because this is a singleton

class, returns every time a pointer to the same instance.

71

Private Member Functions

• int DeviceConfiguration (char *sInterfaceNameA, char *sInterfaceNameB):

This private method is used by the API itself in configuration time. API

arranges time slots for each virtual link with this internal method.

Static Private Member Functions

• static unsigned __stdcall ReceiveThreadA (void *arg): API spawns this thread

with Start() method for interface A to retrive packets from Ethernet card.

• static unsigned __stdcall ReceiveThreadB (void *arg) : API spawns this thread

with Start() method for interface B to retrive packets from Ethernet card.

Private Attributes

• int m_dNoOfVLs: Number of virtual links defined for API.

• CVirtualLink * m_xVirtualLinks: List of virtual links.

• char m_sInterfaceNameA [100]: Name of the Ethernet Card for interface A.

• char m_sInterfaceNameB [100]: Name of the Ethernet Card for interface B.

• char m_sErrbufA [PCAP_ERRBUF_SIZE]: An internally used buffer to keep

possible errors for operations with Ethernet card for interface A.

• char m_sErrbufB [PCAP_ERRBUF_SIZE]: An internally used buffer to keep

possible errors for operations with Ethernet card for interface B.

• pcap_t * m_xAdHandleA: Handle for interface A.

• pcap_t * m_xAdHandleB: Handle for interface B.

• unsigned char m_sAFDXFrameA [1500]: A pointer to keep received frames

from interface A.

• bool m_bFreshA: Thread for interface A sets this flag whenever a message is

ready for interface A.

• unsigned short m_dVLOrderA: Keeps the index of the virtual link that last

received message from interface A belongs to.

72

• int m_dMsgLengthA: Keeps the length of the last received message from

interface A.

• unsigned char m_ucSeqNoA: Keeps the sequence number of the last received

message from interface A.

• unsigned short m_usUDPSrcPortA: Keeps the UDP source port number of the

last received message from interface A.

• unsigned short m_usUDPDstPortA: Keeps the UDP destination number of the

last received message from interface A.

• unsigned char m_sAFDXFrameB [1500]: A pointer to keep received frames

from interface B.

• bool m_bFreshB: Thread for interface B sets this flag whenever a message is

ready for interface B.

• unsigned short m_dVLOrderB: Keeps the index of the virtual link that last

received message from interface B belongs to.

• int m_dMsgLengthB: Keeps the length of the last received message from

interface B.

• unsigned char m_ucSeqNoB: Keeps the sequence number of the last received

message from interface B.

• unsigned short m_usUDPSrcPortB: Keeps the UDP source port number of the

last received message from interface B.

• unsigned short m_usUDPDstPortB: Keeps the UDP destination number of the

last received message from interface B.

ArgForThread Struct Reference

• CAFDXReceiverAPI* xThis: A pointer to the AFDXReceiverAPI object

• int dNwIndex: Network index; 0 for A and 1 for B

4.5.3.2 CVirtualLink Class Reference

#include <VirtualLink.h>

#include "TransportLayer\TransportLayer.cpp"

73

#include "NetworkLayer\NetworkLayer.cpp"

#include "DataLinkLayer\DataLinkLayer.cpp"

#include "string.h"

#include <pcap.h>

Public Member Functions

• CVirtualLink (void): Constructor of the class.

• ~CVirtualLink (void): Destructor of the class

• int Configure (unsigned short usVLId): Configures the virtual link object

with virtual link number.

• int ReceiveA (int dNoOfChars,

char *sMessage,

unsigned char *ucSeqNo,

unsigned short *usUDPSrcPort,

unsigned short *usUDPDstPort): Receive method for

interface A. This method directly retrives messages from interface card and

organizes the AFDX stack functions.

• int ReceiveB (int dNoOfChars,

char *sMessage,

unsigned char *ucSeqNo,

unsigned short *usUDPSrcPort,

unsigned short *usUDPDstPort): Receive method for

interface B. This method directly retrives messages from interface card and

organizes the AFDX stack functions.

• unsigned short GetVLId (): Returns the virtual link Id.

• bool RedundancyCheck (unsigned char dSN): This method is used for

redundancy check function of AFDX.

Private Attributes

74

• unsigned char m_ucNetworkId: Network Id for the received message

reteived from source MAC address.

• unsigned char m_ucEquipmentId: Equipment Id for the received message

reteived from source MAC address.

• unsigned char m_ucPartitionId: Partition Id for the received message

reteived from source MAC address.

• unsigned short m_usVLId: Keeps the virtual link Id.

• unsigned short m_usUDPSrcPortNo: Keeps UDP source port number of

the AFDX frame.

• unsigned short m_usUDPDstPortNo: Keeps UDP destination port number

of the AFDX frame.

• unsigned char m_sSrcIP [4]: Keeps source IP address

• unsigned char m_sDstIP [4]: Keeps destination IP address

• unsigned char m_sSrcMAC [6]: Keeps source MAC address

• unsigned char m_sDstMAC [6]: Keeps destination MAC address

• unsigned char m_sAFDXFrameA [1500]: A pointer to receive AFDX

frames from interface A.

• unsigned char m_sAFDXFrameB [1500] : A pointer to receive AFDX

frames from interface B.

• CTransportLayer m_xTransportLayerA: An object to handle transport

layer functions for interface A.

• CNetworkLayer m_xNetworkLayerA: An object to handle network layer

functions for interface A.

• CDataLinkLayer m_xDataLinkLayerA: An object to handle data link

layer functions for interface A.

• CTransportLayer m_xTransportLayerB: An object to handle transport

layer functions for interface B.

• CNetworkLayer m_xNetworkLayerB: An object to handle network layer

functions for interface B.

• CDataLinkLayer m_xDataLinkLayerB: An object to handle data link

layer functions for interface B.

75

• unsigned char m_ucSN: Sequence number of the last received AFDX

frame for this virtual link.

4.5.3.3 CTransportLayer Class Reference

#include < TransportLayer.h>

Public Member Functions

• CTransportLayer (void): Constructor of the class.

• ~CTransportLayer (void): Destructor of the class.

• void Configure (unsigned char *sDstIP, unsigned char *sAFDXFrame):

This method is used to configure transport layer for the owner virtual link

of this object.

• int CheckMessage (int dNoOfChars): Realizes message control operation

for transport layer.

• unsigned short GetSrcPort (): Returns the UDP source port number of the

AFDX frame received.

• unsigned short GetDstPort (): Returns the UDP destination port number

of the AFDX frame received.

Private Member Functions

• unsigned short CheksumCalculate (unsigned short len_udp,

unsigned char src_addr[],

unsigned char dest_addr[],

bool padding,

unsigned char buff[]):

Calculates the UDP checksum for received message.

Private Attributes

76

• unsigned short m_usUDPLength: Keeps the UDP message length field of

the received AFDX frame

• unsigned short m_usUDPChecksum: Keeps the checksum field of the

received AFDX frame.

• unsigned short m_dSrcPort: Keeps UDP source port number field of the

received AFDX frame.

• unsigned short m_dDstPort: Keeps UDP destination port number field of

the received AFDX frame.

• unsigned char m_sSrcIP [4] : Keeps IP source address field of the

received AFDX frame.

• unsigned char m_sDstIP [4] : Keeps IP destination address field of the

received AFDX frame.

• unsigned char * m_sAFDXFrame: Points to the received AFDX frame.

4.5.3.4 CNetworkLayer Class Reference

#include < NetworkLayer.h>

Public Member Functions

• CNetworkLayer (void): Constructor of the class.

• ~ CNetworkLayer (void): Destructor of the class.

• void Configure (unsigned char *sDstIP, unsigned char *sAFDXFrame):

This method is used to configure network layer for the owner virtual link

of this object.

• int CheckMessage (int dNoOfChars): Realizes message control operation

for network layer.

Private Member Functions

77

• unsigned short CheksumCalculate (unsigned char buff[]): Calculates the

IP checksum for received message.

Private Attributes

• unsigned char m_sSrcIP [4] : Keeps IP source address field of the

received AFDX frame.

• unsigned char m_sDstIP [4] : Keeps IP destination address field of the

received AFDX frame.

• unsigned char * m_sAFDXFrame: Points to the received AFDX frame.

4.5.3.5 CDataLinkLayer Class Reference

#include < DataLinkLayer.h>

Public Member Functions

• CDataLinkLayer (void): Constructor of the class.

• ~ CDataLinkLayer (void): Destructor of the class.

• void Configure (unsigned char * sDstMAC,

 unsigned char *sAFDXFrame): This method is used to

configure data link layer for the owner virtual link of this object.

• int CheckMessage (int dNoOfChars): Realizes message control operation

for data link layer.

• int IntegrityCheck (int dNoOfChars): Performs integrity check feature of

AFDX specification.

• unsigned char GetSequenceNo (): Returns the sequence number of the

received message.

• void SetSequenceNo (unsigned char ucSequenceNo): Sets sequence

number for integrity check.

78

Private Attributes

• unsigned char m_ sSrcMAC [6]: Keeps source MAC address field of the

received AFDX frame.

• unsigned char m_sDstMAC [6] : Keeps destination MAC address field of

the received AFDX frame.

• unsigned char * m_sAFDXFrame: Points to the received AFDX frame.

• unsigned char m_ucSequenceNo: Sequence number of the last received

AFDX frame from the owner interface, A or B. Used for integrity check.

• unsigned char m_ucFalseSeqCount: Count of the false sequence number

reception from the owner interface, A or B.

4.5.4 Detailed Explanation of the AFDX Receiver Application

Figure 4.10 shows the sequence diagram of the application with AFDX

Receiver program.

Figure 4.10 AFDX Receiver Sequence Diagram

79

AFDX Manager is the source code written by the AFDX network developer.

AFDX Manager configures the API with a configuration file in csv (comma-

separated values) file format.

The details of the configuration file and the fields will not be explained in

details as the configuration file used for the AFDX Receiver application is same as

the AFDX transmitter application.

When the Configure() method of the AFDXReceiverAPI is called by the

application with a path of the configuration file, API opens the file and starts to read

lines and configures itself and each Virtual Link.

After the configuration is completed, API is ready to start to receive AFDX

frames. Start() method initiates listening both Ethernet cards in forever loops by

spawning ReceiveThreadA () and ReceiveThreadB () methods.

ReceiveThreadA () and ReceiveThreadB () methods listen network interface

cards A and B respectively non-persistently. Any thread, after receiving AFDX

frame from the interface, checks the frame if it is an AFDX frame and then checks

the Virtual Link identifier with the Virtual Link identifier list configured. If the

Virtual Link identifier of the frame is valid for the End System, Virtual Link object

passes the frame from each layer; data link layer, network layer and transport layer

with CheckMessage() methods of each object respectively.

The first control is in the data link layer. Data link layer object checks data

link layer properties of the message and performs integrity check as well. Integrity

check is as defined in the specification; accept any frame with a sequence number

one or two greater than last received frame.

After passing the frame from each layer, ReceiveThread sets the freshness

flag (m_bFreshA for thread A and m_bFreshB for thread B) of message. On parallel,

Receive() method of AFDXReceiverAPI looks for freshness flags of both networks

and when any fresh flag is detected, passes received message from redundancy

80

management with RedundancyCheck() method of CVirtualLink object and returns

the result to the application program. Redundancy management is performed

according to specification; first valid frame wins.

81

CHAPTER 5

PERFORMANCE

AFDX Specification is developed for flight critical applications which

impose determinism. In order to say that any AFDX End System is deterministic,

the End System should meet the defined performance criteria. Specification defines

three performance criteria for an End System of which first two are applicable for

the receiving End System and all of the three are applicable for the transmitting End

System; latency, MAC constrains and jitter.

5.1. Latency

 AFDX specification defines latency for a transmitting End System as the

time between when a message is ready to be transmitted and the completion of the

transmission. Starting point of measurement is defined as the last bit of application

data is available to the AFDX stack and the ending point is defined as the last bit of

the corresponding AFDX frame is transmitted on the physical media.

Latency for a receiving End System is defined as the time between when a

message is physically received from the line and the data is ready for application.

Starting point of measurement is defined as the last bit of an Ethernet frame is

received on the physical media attachment and the ending point is defined as the last

bit of the corresponding data is available to the end-system hosted application.

82

Specification divides the latency into two parts; technological latency and

frame delay and bound the technological latency as 150 micro seconds for both

transmitting and receiving End Systems.

To perform the latency test for the developed application, transmitter and the

receiver nodes are implemented in the same computer. Interface A and interface B

of the computer is connected to each other with a cross Ethernet cable. The basic

idea to use the same computer was to find an opportunity to use the clock tick

counter of the CPU as the common time reference. Transmitter application fills the

message’s first 8 bytes with the performance clock counter value which is a 64 bit

unsigned integer and transmits the frame to the media. On the other hand, when the

receiving application receives the valid message after all processes are completed, it

records the message in a text file with the CPU clocks retrieved just after the

reception of the frame.

Specification says that technological latency is independent of traffic load

and should be measured with an empty mailbox with no conflicting resource access.

An empty mailbox means that there is no waiting message in the queue to transmit

for the transmitter side and there is no waiting message to process for the receiver

side. That’s why test is performed with one Virtual Link which has a BAG of 128

ms and a message length of 1500 bytes which is the largest possible frame length.

To calculate the latency, high and low parts of the CPU clock counts that are

received from the message which were filled by the transmitter were subtracted from

the high and low parts of the CPU clock counts that written by the receiver. The

result is divided by CPU frequency which is 2664100000 Hz for the testing

computer and multiplied by 1000000 to obtain the results in micro seconds. As the

latency definition of the specification, bit time is subtracted from the result. For a 10

Mbps link, a single bit lasts 0,1 micro seconds and 12000 bits which is the

multiplication of 1500 bytes by 8 bits last 1200 micro seconds on the line. Total

latency is obtained by subtracting bit time from the recorded time delta between

transmitter and receiver.

83

According to the test results maximum latency is measured as 162,19 micro

seconds which is the cumulative technological latency of transmitter and receiver.

As the stack structures of transmitter and the receiver are very similar, it can be

assumed that this latency is shared equally by each application. With this assumption

maximum latency for both the transmitting and receiving End Systems is obtained as

81,10 micro seconds, minimum latency is obtained as 51,08 micro seconds and

finally average latency is obtained as 51,08 micro seconds. The results are lower

than the maximum tolerable technological latency which is defined as 150 micro

seconds. Following table shows a small sample of the results of latency test. First

column of the Table 5.1 is the most significant word of the number of CPU ticks on

the transmitter side just before transmission and second column is the least

significant word of the same data. Third and fourth columns also establish the time

stamp when the application receives the message.

Table 5.1 Transmitter Latency Test Results Sample

TX HI PART
(tick count)

TX LO
PART

(tick count)

RX HI
PART

(tick count)

RX LO
PART

(tick count)

HI
DELTA
(usec)

LO
DELTA
(usec)

FRAME
DELAY
(usec)

CUM.
TECH.

LATENCY
(usec)

TX TECH.
LATENCY

(usec)

1643 445905072 1643 449457000 0 1333,26 1200 133,26 66,63
1643 786912656 1643 790445072 0 1325,93 1200 125,93 62,97
1643 1127915232 1643 1131527976 0 1356,08 1200 156,08 78,04
1643 1468919928 1643 1472462416 0 1329,71 1200 129,71 64,86
1643 1809923432 1643 1813423184 0 1313,67 1200 113,67 56,84
1643 2150927936 1643 2154408672 0 1306,53 1200 106,53 53,27
1643 2491933000 1643 2495438296 0 1315,75 1200 115,75 57,88
1643 2832937800 1643 2836443480 0 1315,90 1200 115,90 57,95
1643 3173942680 1643 3177439896 0 1312,72 1200 112,72 56,36
1643 3514947040 1643 3518528824 0 1344,46 1200 144,46 72,23
1643 3855952320 1643 3859462320 0 1317,52 1200 117,52 58,76
1643 4196957016 1643 4200443280 0 1308,61 1200 108,61 54,30
1644 242994336 1644 246495384 0 1314,16 1200 114,16 57,08
1644 583999088 1644 587468168 0 1302,16 1200 102,16 51,08
1644 925004160 1644 928496680 0 1310,96 1200 110,96 55,48
1644 1266008552 1644 1269498504 0 1309,99 1200 109,99 55,00
1644 1607014712 1644 1610505536 0 1310,32 1200 110,32 55,16
1644 1948020336 1644 1951617040 0 1350,06 1200 150,06 75,03
1644 2289022992 1644 2292590272 0 1339,02 1200 139,02 69,51
1644 2630028928 1644 2633594968 0 1338,55 1200 138,55 69,28
1644 2971035872 1644 2974536944 0 1314,17 1200 114,17 57,08
1644 3312037480 1644 3315535056 0 1312,85 1200 112,85 56,43
1644 3653044200 1644 3656529024 0 1308,07 1200 108,07 54,03
1644 3994047072 1644 3997527928 0 1306,58 1200 106,58 53,29
1645 40084592 1645 43579392 0 1311,81 1200 111,81 55,91

84

5.2. MAC Constraints

 AFDX specification requires an End System to be able to both transmit and

receive frames back to back with fixed inter frame gap and full bandwidth. The most

challenging case for full bandwidth transmission is expressed as the smallest frame

length with maximum number of frames. For instance for a 10 Mbps interface, with

64 bytes frames and 14800 frames per second occupies the full bandwidth. A frame

with 64 bytes, added 12 bytes of inter frame gap, 7 bytes of preamble and one byte

of start frame delimiter occupies 84 byte time in the line and lasts 0,672 micro

seconds. That is the reason why about 14800 frames fill the whole bandwidth

(14800 x 0,672 micro seconds = 9945,6 micro seconds per second). Specification

also underlines that this performance requirement could be relaxed for transmission

with the careful consideration of the designer.

In order to test MAC constraints requirement, configuration files were

prepared for most challenging scenario described above. 14 Virtual Links each with

64 bytes of frames are configured. The BAG for each frame was selected as 1

millisecond. Therefore 14 Virtual Links occupied 9,41 Mbps. 10000 sample of

transmitted frames for each configuration was collected with AFDXReceiver

application and time gap between two consecutive Virtual Links are measured. As

the BAG was selected as 1ms, total sample took 10 seconds. AFDXTransmitter

application copied 8 bytes of (64 bit integer) CPU tick count to the first 8 bytes of

the transmitting message in order to highlight the time difference between two

transmitting frame. Figure 5.1 gives time gap of consecutive Virtual Links with

respect to sample number. As the BAG is selected as 1 millisecond, it is expected to

have 1 millisecond of gaps between frames displayed. The outer and dark blue

points in the Figure 5.1 are formed with the time difference of two consecutive

frames that were received by the receiver which was obtained with the reception

time stamps, and the inner and pink points are formed with the time difference of

two consecutive frames that were transmitted which was derived from the first 8

bytes of message.

85

The baud rate for the tests is selected as 10Mbps with the motivation of

current real applications that all use 10 Mbps, A380 of Airbus and A400M of

EADS, formerly Airbus Military.

Figure 5.1 Full Bandwidth Usage Test

According to the graph, both AFDXTransmitter and AFDXReceiver

applications can run under full bandwidth.

5.3. Jitter

Jitter is only defined for transmitting End System in the specification.

ARINC 664 specification says that in transmission, the maximum allowed jitter on

each VL at the output of the ES should comply with bot h of the following formulas:

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1

27
3

54
5

81
7

10
89

13
61

16
33

19
05

21
77

24
49

27
21

29
93

32
65

35
37

38
09

40
81

43
53

46
25

48
97

51
69

54
41

57
13

59
85

62
57

65
29

68
01

70
73

73
45

76
17

78
89

81
61

84
33

87
05

89
77

92
49

95
21

97
93

 Frame Number

Ti
m

e
de

lta
 o

f t
w

o
co

ns
ec

ut
iv

e
vi

rtu
al

 li
nk

s (
µs

ec
)

86

For the given formula, maximum jitter is calculated in micro seconds, Nbw

is the bandwidth in bits per second, Lmax is the maximum allowable bytes for a

Virtual Link and 40 micro seconds is the minimum technological jitter. In the

commentary part of the specification, system integrator is advised to decide the

maximum jitter under the consideration of given formulas. System integrator is free

not to calculate the jitter according to first formula but select directly 500 micro

seconds.

With the motivation of Airbus choice of 500 micro seconds of maximum

jitter for communication with FADEC (Full Authority Digital Engine Control) of

A400M, the success criteria for developed End System software for jitter will also

be 500 micro seconds.

In order to examine jitter performance of the developed software, four

characteristics of AFDX message will be considered; number of AFDX ports,

number of Virtual Links, Lmax and BAG. For these four variables jitter

performance will be examined.

Implementation of the experiments will be the same as previous

implementation. AFDX related parameters will be changed, AFDXTransmitter

application will be used to transmit messages and AFDXReceiver application will be

used to receive and log. For each test case, each step was repeated 10 times and

average of the results were used for analyze.

5.3.1 The Effect of Number of AFDX Ports on Jitter

87

Measuring the effect of the number of AFDX ports to the jitter was

accomplished by keeping number of Virtual Links, Lmax and BAGs constant and

changing number of AFDX ports. Throughout this experiment, Lmax was chosen as

100 bytes, and Virtual Link is configured with a BAG of 4 milliseconds.

In the first experiment, number of AFDX communication ports was selected

as 5. For 5 AFDX com port, minimum jitter was measured as 0, namely delivery on

time, maximum jitter was measured as 217,60 micro seconds and average jitter was

calculated as 1,56 micro seconds.

Same experiment was repeated for 10 AFDX ports and maximum jitter was

measured as 209,30 micro seconds and average jitter was calculated as 1,53 micro

seconds.

Experiment was repeated for 15 AFDX ports and maximum jitter was

measured as 261,10 micro seconds and average jitter was calculated as 1,60 micro

seconds.

Fourth experiment was conducted with 20 AFDX ports and maximum jitter

was measured as 274,80 micro seconds and average jitter was calculated as 1,64

micro seconds.

Next experiment was performed with 25 AFDX ports and maximum jitter

was measured as 228,60 micro seconds and average jitter was calculated as 1,61

micro seconds

Finally experiment was repeated for 30 AFDX communication ports.

Maximum jitter was measured as 235,40 micro seconds and average jitter was

calculated as 1,60 micro seconds.

The sum of the six experiment results with graphs given in the Figure 5.2

which shows the change of the maximum jitter and the Figure 5.3 which shows the

88

change of the average jitter according to number of AFDX communication ports.

Biggest value of the maximum jitter graph axis was chosen as 500 micro seconds

which is the upper limit for acceptable jitter according to specification.

According to Figure 5.2, maximum fluctuates around 200-300 micro seconds

which is in the limits of specification and according to Figure 5.3, average jitter is

almost constant about 1,60 micro seconds. With the consideration of the

specification, it can be said that number of AFDX communication ports does not

singly affect the jitter. According to specification, any Virtual Link has authority to

transmit only one AFDX port in a BAG, so sending different ports and different

messages does not affect jitter.

0

50

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30

Number of AFDX Ports

Max Jitter (micro second)

Figure 5.2 The Effect of Number of AFDX Ports on Maximum Jitter

89

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5 10 15 20 25 30

Number of AFDX Ports

Avg. Jitter (micro seconds)

Figure 5.3 The Effect of Number of AFDX Ports on Average Jitter

With these findings, showing that number of AFDX communication ports

does not affect the jitter, following experiments may be conducted without

consideration of AFDX ports, one port may be used for one Virtual Link.

5.3.2 The Effect of Number of Virtual Links on Jitter

Measuring the effect of the number of Virtual Links to the jitter was

accomplished by keeping the number of AFDX ports, Lmax and BAGs constant and

changing the number of Virtual Links. Throughout this experiment, Lmax was

chosen as 64 bytes and Virtual Links were configured with a BAG of 1 millisecond

and only one AFDX port was used per a Virtual Link. In each experiment

AFDXTransmitter application transmitted frames according to configuration file

prepared for each case and AFDXReceiver application recorded a sample of 3000

frames per Virtual Link with time stamps. Each experiment was repeated 10 times

and average values were considered.

90

In the first experiment, only one Virtual Link was configured to transmit and

maximum jitter was measured as 149,40 micro seconds while average jitter was

calculated as 1,77 micro seconds.

Same experiment was repeated with two Virtual Links with the same

configuration; 64 bytes of Lmax, 1 millisecond of BAG and one AFDX port. For

two Virtual Links, maximum jitter was measured as 461,20 micro seconds and

average jitter was calculated as 1,58 micro seconds.

Configuration file of the transmitter was changed as 4 Virtual Links again for

64 bytes of Lmax, 1 millisecond of BAG and one AFDX port. Maximum jitter was

measured as 139,10 and average jitter was calculated as 1,45 micro seconds

respectively.

For a configuration file with 6 Virtual Links, 64 bytes of Lmax, 1

millisecond of BAG and one AFDX port, maximum jitter was measured as 396,10

micro seconds and average jitter was calculated as 1,57 micro seconds.

The same performance test was repeated for 8 Virtual Links. Maximum jitter

was measured as 125,20 micro seconds and average jitter was calculated as 1,48

micro seconds.

Configuration file of the transmitter was changed as 10 Virtual Links. For

this configuration maximum jitter was measured as 91,70 micro seconds and

average jitter was calculated as 1,40 micro seconds.

Same experiment was repeated with 12 Virtual Links and maximum jitter

was measured as 186,40 micro seconds. Average jitter was calculated as 39,93 micro

seconds.

Finally, configuration file of the transmitter was changed as 14 Virtual Links

again for 64 bytes of Lmax, 1 millisecond of BAG and one AFDX port. Maximum

91

jitter was measured as 224,90 and average jitter was calculated as 41,49 micro

seconds.

The sum of the eight experiment results with two graphs are given in the

Figure 5.4 showing maximum jitter and Figure 5.5 showing average jitter change

with the number of Virtual Links. According to figure 5.4, maximum jitter shows

differences around 90 and 470 micro seconds without a constant relation with the

number of Virtual Links transmitted. Average jitter stays almost constant up to 10

Virtual Links and than dramatically increases. It can be commented that the number

of Virtual Links has no effect on the jitter up to a saturation point of process and

then increases jitter. Here, number 10 may not be considered as a critical Virtual

Link number boundary, but BAG and Lmax should also be included in the

calculations. 14 Virtual Links with 1ms of BAG and 64 bytes of frames means 72%

of bandwidth usage and 14000 transmission process per second. Increasing the

number of Virtual Links increases both bandwidth usage and process which results

an increase in the average jitter after a point, 12 for 64 bytes of Lmax and 1 ms of

BAG.

0

50

100

150

200

250

300

350

400

450

500

1 2 4 6 8 10 12 14

Number of Virtual Links

Max Jitter (micro seconds)

Figure 5.4 The Effect of Number of Virtual Links on Maximum Jitter

92

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

50,0

1 2 4 6 8 10 12 14

Number of Virtual Links

Avg. Jitter (micro seconds)

Figure 5.5 The Effect of Number of Virtual Links on Average Jitter

5.3.3 The Effect of Lmax on Jitter

Measuring the effect of Lmax to the jitter was accomplished by keeping

number of AFDX ports, number of Virtual Links and BAG constant and changing

the Lmax value. Throughout this experiment, one Virtual Links with single AFDX

communication port was configured with a BAG of 16 milliseconds. Lmax value

was changed and results were recorded. In each experiment AFDXTransmitter

application transmitted frames according to configuration file prepared for each case

and AFDXReceiver application recorded a sample of 3000 frames per Virtual Link

with time stamps. Each experiment was repeated 10 times and average values were

considered.

In the first experiment, Lmax was configured as 100 bytes of frames and

maximum jitter was measured as 103,10 micro seconds. Average jitter was

calculated as 2,00 micro seconds.

93

In the second experiment, Lmax was configured as 300. Maximum and

average jitters were found as 116,00 and 2,04 micro seconds respectively.

The third experiment was conducted with Lmax equals to 600 bytes and

maximum jitter was measured as 97,40. Average jitter was calculated as 1,89 micro

seconds.

The same experiment was repeated with Lmax equals to 900 bytes.

Maximum and average jitters were obtained as 99,30 and 1,81 micro seconds

respectively.

The fifth experiment was performed with Lmax equals to 1200 bytes and

maximum jitter was measured as 102,20 micro seconds. Average jitter was

calculated as 1,80 micro seconds.

Finally Lmax was selected as 1500 bytes. Maximum and average jitters were

obtained as 112,90 and 1,90 micro seconds respectively.

The sum of the six experiment results with two graphs are given in the

Figure 5.6 showing maximum jitter and the Figure 5.7 showing average jitter change

by to Lmax. According to figure 5.6, maximum jitter fluctuates around 100 micro

seconds. Average jitter also fluctuates around 2 micro seconds and there is no

indication that the jitter is affected by Lmax for this application.

94

0

50

100

150

200

250

300

350

400

450

500

100 300 600 900 1200 1500

LMAX (bytes)

Max Jitter (micro seconds)

Figure 5.6 The Effect of Lmax on Maximum Jitter

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

100 300 600 900 1200 1500

LMAX (bytes)

Avg. Jitter (micro seconds)

Figure 5.7 The Effect of Lmax on Average Jitter

95

5.3.4 The Effect of BAG on Jitter

The effects of all possible BAGs; 1, 2, 4, 8, 16, 32, 64 and 128 were

measured by keeping number of AFDX ports, number of Virtual Links and Lmax

constant and changing BAG in eight different experiments. Throughout this

experiment, one Virtual Link with single AFDX communication port was configured

with an Lmax of 500 bytes. BAG was changed and results were recorded. In each

experiment AFDXTransmitter application transmitted frames according to

configuration file prepared for each case and AFDXReceiver application recorded a

sample of 3000 frames per Virtual Link with time stamps. Each experiment was

repeated 10 times and average values were considered.

The first experiment was performed with a BAG equals to 1 millisecond.

Maximum jitter was measured as 149,40 and average jitter was calculated as 1,77

micro seconds.

The second experiment was performed with a BAG equals to 2 milliseconds.

Maximum jitter was measured as 416,40 and average jitter was calculated as 1,99

micro seconds.

The third experiment was performed with a BAG equals to 4 milliseconds.

Maximum jitter was measured as 118,20 and average jitter was calculated as 1,59

micro seconds.

Next experiment was performed with a BAG equals to 8. Maximum jitter

was measured as 256,90 and average jitter was calculated as 2,08 micro seconds.

The fifth experiment was performed with a BAG equals to 16 milliseconds.

Maximum jitter was measured as 99,60 and average jitter was calculated as 2,17

micro seconds.

96

Next experiment was performed with a BAG equals to 32 milliseconds.

Maximum jitter was measured as 268,20 and average jitter was calculated as 3,51

micro seconds.

Same experiment was repeated with a BAG of 64 milliseconds. Maximum

jitter was measured as 125,50 and average jitter was calculated as 3,72 micro

seconds.

The last experiment was performed with the maximum BAG that is defined

in the specification; 128 milliseconds. Maximum jitter was measured as 102,90 and

average jitter was calculated as 6,75 micro seconds.

The sum of the eight experiment results with two graphs given in the Figure

5.8 showing the maximum jitter and Figure 5.9 showing the average jitter change by

BAG. According to the Figure 5.8, maximum jitter value fluctuates around 100 and

420 microseconds without a constant relation with the BAG. Figure 5.9 indicates

that average jitter has an increasing trend with increasing BAG. The reason for this

trend can be explained with the number of context switching. The application works

with 1 millisecond of steps to count each type of BAG. When the BAG increases,

number of steps also increases and possibility of interruptions to the execution of the

application increases. That is why the average jitter increases with the increase of

BAG. On the other hand maximum jitter is not related with the BAG.

97

0

50

100

150

200

250

300

350

400

450

500

1 2 4 8 16 32 64 128

BAG (ms)

Max Jitter (micro seconds)

Figure 5.8 The Effect of BAG on Maximum Jitter

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

1 2 4 8 16 32 64 128

BAG (ms)

Avg. Jitter (micro seconds)

Figure 5.9 The Effect of BAG on Average Jitter

98

CHAPTER 6

CONCLUSION

ARINC 664/AFDX (Avionics Full Duplex Switched Ethernet) protocol is a

leading onboard communication technology in civil aviation. The key features of

AFDX are high transmission rate, redundancy, guarantied bandwidth for data and

determinism. Nowadays many commercial companies develop AFDX network

components; switches and End Systems. End Systems use standard Ethernet

infrastructure with improved characteristics.

The main contribution of this thesis is developing an AFDX End System

with a standard PC with COTS Ethernet card. An object oriented software package

with simple API was prepared for the developers to prepare small applications. The

aim of the applications prepared with this software package is to enable the

developer to test his real AFDX application during development phase and to enable

test engineers to conduct ground test of AFDX networks. The improved

characteristics of AFDX were implemented in the software that runs under non real

time Windows XP operating system. The software was tested for performance

requirements defined in the specification document [16].

An AFDX End System has only one redundant interface with the AFDX

network. The entire generated network for a specific End System comes from and all

the traffic generated by this End System is goes through this single redundant

99

interface. That is why throughout all performance tests, the unit under test is tested

with a single computer simulating the switch interface.

Performance analysis shows that AFDX application running in a non

realtime environment with standard PC and Ethernet card suffices latency

requirements of ARINC 664 Specifications for both the receiver and the transmitter.

Also MAC constraints requirements of the specification are met by both the

transmitter and the receiver applications. Test results show that increasing the

bandwidth also affects jitter adversely but in the limitation of requirements.

The jitter requirement of the specification was tested against number of

AFDX ports used, number of Virtual Links, Lmax and BAG.

The specification limits any Virtual Link to transmit only one AFDX port

message in a BAG, hence changing number of AFDX ports does not have any effect

on messaging physically, but only changes the message itself. Tests also proved that

number of AFDX ports does not have any role in performance characteristics.

Increasing the number of Virtual Links not only increases the processes

performed by the software but also bandwidth usage. As the CPU used for this

application was selected more than sufficient, basically no effects of number of

Virtual Links to jitter were observed up to a level but after a critical number of

Virtual Links average jitter was observed as dramatically increasing within the

boundaries of specification.

No changes observed for increasing Lmax but it was observed that increasing

the value of BAG increases jitter in limits of specification.

For each test case, maximum jitter was not relatively changed with the

parameter under test but showed undeterministic distribution within the specification

boundary which is 500 micro seconds. It can be commented that maximum jitter is

100

not related with any parameter but the internal processes of the operating system

itself.

All these tests were performed with a “clear” operating system that no

application running besides the application under test. No antivirus programs were

installed to the test environment and firewall was disabled. Many of windows

services were disabled too. It was observed that windows services, especially the

ones that are related with networking limit the performance of the application and

result in unexpected interruptions on the transmission which shades determinism and

performance characteristics.

The research, code development and testing of the codes show that it is

possible to implement a software based AFDX End System with standard tools,

standard equipment and it is also possible to run this software in a non realtime

operating system with limitations.

Nevertheless non certifiable design method and unpredictable behavior of

non realtime operating system restrict the use of such a system only for ground

testing and code development phases but not in a real avionics system integrated on

an aircraft. This stack is very cost and development time effective for a data

acquisition system. Also realtime application developers can use this software

during development and functional tests of their new software. This could shorten

the development schedule of a software project.

Future research may be useful to improve the performance and

functionalities of this software stack. Performance improvement may help the host

computer also to perform other processes than AFDX End System. Other port types

like SAP port and fragmentation feature may be included to the software. Special

interest should be shown to control the unexpected behaviors of the operating

system.

101

Also the stack may be ported to other operating systems and platforms for

more flexibility. For instance, Linux or RTLinux could be good candidates to port

this software. As Ethernet communication libraries are portable, which have the

same API for DLL; it would be easy to port this part of the software. On the other

hand timing and scheduling parts of the code should be changed according to timers

for Linux and RTLinux. It would be much more successful to port the software to

RTLinux with realtime libraries.

102

REFERENCES

[1] Collinson, R. P. G., “Introduction to Avionics Systems”, Springer, 2003

[2] Faulconbridge, R.I., “Avionics Principles”, Argos Press, January 2007

[3] “Integrated Modular Avionics (IMA) Development Guidance and
Certification Considerations”, DO-297, August 2008

[4] Ott, A., “System Testing in the Avionics Domain”, Phd Thesis, Vorgelegt
im Fachbereich 3 (Mathematik & Informatik) der Universitat Bremen,
October 2007

[5] Zalewski, J., Trawczy, D., Sosnowski, J., Kornecki, A., Sniezek, M.
“Safety Issues in Avionics and Automotive Databuses”, IFAC World
Congress, July 2005

[6] “ARINC 429 Protocol Tutorial (1500-029)”, Condor Engineering, Rev.
1.07, July 2004

[7] “ARINC Specification Tutorial”, AIM GmbH, Rev 1.1, July 2001

[8] “ARINC Specification 429, Part1-16”, September 2001

[9] “MIL-HDBK-1553A Notice 2”, September 1978

[10] “MIL-STD-1553B”, November 1988

[11] Schuster, T., Verma, D., “Networking Concepts Comparison for Avionics
Architecture”, 27th Digital Avionics Systems Conference, Pages: 1.D.1-1 –
1.D.1-11, October 2008

[12] “AFDX/ARINC 664 Tutorial”, Techsat, August 2008

[13] Pickles, B., “Avionics Full Duplex Switched Ethernet (AFDX)”, SBS
Technologies, May 2006

[14] Tanenbaum, A.S., “Computer Networks”, Fourth Edition, Prentice Hall,
2003

103

[15] “Developing AFDX Solutions Application Note AC221”, Actel
Corporation, March 2005

[16] “Draft 3 of Project Paper 664 Aircraft Data Network Part 7 Avionics Full
Duplex Switched Ethernet (AFDX) Network”, September 2004

[17] “Draft 3 of Supplement 2 to ARINC Specification 664 Part 4 Internet
Based Address Structures and Assigned Numbers”, October 2007

[18] http://www.windriver.com, last visited 13/10/2009

[19] http://www.ghs.com, last visited 13/10/2009

[20] Kessler, G.C., “On Teaching TCP/IP Protocol Analysis to Computer
Forensics Examiners”, Journal of Digital Forensic Practice, 2(1), Pages:
43-53, March 2008

[21] Risso, F., Degioanni, L. “An Architecture for High Performance Network
Analysis”, Proceeding of the 6th IEEE Symposium on Computers and
Communications, July 2001

[22] http://www.winpcap.org, last visited 21/09/2009

[23] Degioanni, L., Baldi, M., Risso, F., Varenni, G. “Profiling and
Optimization of Software-Based Network-Analysis Applications”,
Proceeding of the 15th IEEE Symposium on Computer Architecture and
High Performance Computing, Page: 226-234, November 2003

[24] Yüksel, E., Örencik, B. “Sanal Özel Ağ Tasarımı ve Gerçeklemesi”, Ağ ve
Bilgi Güvenliği Ulusal Semp. (ABG 2005) Bildiriler Kitabı, Pages: 114-
118, June 2005

[25] Zhao X., Li X. “Methods of Capturing Network Packets”, Application of
Computers, Vol.21Issue 8, Pages: 242-243, 2004

[26] Chen C.,Wu S. “Design and Implementation of Message Monitor Based on
WinPcap”, Science Technology and Engineering, Vol.8 Issue 5, Pages:
1203-1207, 2008

[27] Ballard, D. “Network Monitor”, Ms Thesis, Rochester Institute of
Technology B. Thomas Golsiano Collage of Computing and Information
Sciences, February 2004

[28] Xiao Y., Li, L., Wen, J. “Network Program Architecture Based Winpcap
and Sock”, Ordnance Industry Automation, Vol.24 Issue 5, Pages: 49-50,
2005

104

APPENDIX A

AFDXAPI.H FILE OF AFDX TRANSMITTER

/***
*
* Class CAFDXTransmitterAPI (.h)
*
* Project : METU EEE, AFDX network monitor application with
* standard PC and ethernet card
*
* Author : Emre ERDINC
* Date : 04.08.2009
*
* Description : Main class to be included by tha application
* program
*
* Modification History:
*
***/

/**/
#pragma once
#include "VirtualLink\VirtualLink.cpp"
#include "NICInterface\NICInterface.cpp"
#include <windows.h>
#include "process.h"
#include <iostream>
#include <fstream>
/**/

struct MsgReady
{
 int dVLCount; // number of VL's in the slot
 int *dVLNo;
}MSGREADY;

/**/

class CAFDXTransmitterAPI
{
public:
 CAFDXTransmitterAPI(void);
 ~CAFDXTransmitterAPI(void);
 static CAFDXTransmitterAPI * GetInstance();
 int Configure(char* sConfigFilePath);

105

 int Start();
 int WriteMessage(int dVLIndex, int dPortIndex,char* sMsg);

private:

 int m_dNoOfVLs; // number of created virtual links
 CVirtualLink * m_xVirtualLinks; // virtual link pointer

 CNICInterface m_xNICInterface;

 MsgReady m_pxTimeSlot[128];
 int ArrangeSlot(int dVLNo,int dBAG);

 static unsigned __stdcall TransmitThread(void* arg);
};

106

APPENDIX B

AFDXAPI.H FILE OF AFDX RECEIVER

/***
*
* Class CAFDXReceiverAPI (.h)
*
* Project : METU EEE, AFDX network monitor application with
* standard PC and ethernet card
*
* Author : Emre ERDINC
* Date : 04.08.2009
*
* Description : Main class to be included by tha application
* program
*
* Modification History:
*
***/

/**/
#pragma once
#include "VirtualLink\VirtualLink.cpp"
#include <iostream>
#include <fstream>
#include <windows.h>
#include "process.h"
#include <time.h>

/**/

class CAFDXReceiverAPI
{
public:
 static CAFDXReceiverAPI * GetInstance();

 int Configure(char* sConfigFilePath);
 int Start();
 int Receive(char *cInterface,unsigned short *dVLId, char
*sMsg,int *dMsgLen,unsigned char*ucSeqNo,unsigned short*
usUDPSrcPort,unsigned short* usUDPDstPort,struct timeval *ts);

 HANDLE m_threadA;
 HANDLE m_threadB;

private:

107

 CAFDXReceiverAPI(void);
 ~CAFDXReceiverAPI(void);

 int DeviceConfiguration(char * sInterfaceNameA,
 char * sInterfaceNameB);

 int m_dNoOfVLs; // number of created virtual links
 CVirtualLink * m_xVirtualLinks;// virtual link pointer

 char m_sInterfaceNameA[100]; // pcap interface device name
for interface A
 char m_sInterfaceNameB[100]; // pcap interface device name
for interface B

 char m_sErrbufA[PCAP_ERRBUF_SIZE]; // pcap error buffer for
network A
 char m_sErrbufB[PCAP_ERRBUF_SIZE]; // pcap error buffer for
network B
 pcap_t *m_xAdHandleA; // pcap device handle for network A
 pcap_t *m_xAdHandleB; // pcap device handle for network B

 unsigned char m_sAFDXFrameA[1500];// whole frame for network A
 unsigned char m_sAFDXFrameB[1500];// whole frame for network B

 bool m_bFreshA; // true when there is a message ready in NW A
 bool m_bFreshB; // true when there is a message ready in NW B

 static unsigned __stdcall ReceiveThreadA(void* arg);
 static unsigned __stdcall ReceiveThreadB(void* arg);

 // return parameters for A
 unsigned short m_dVLOrderA;
 int m_dMsgLengthA;
 unsigned char m_ucSeqNoA;
 unsigned short m_usUDPSrcPortA;
 unsigned short m_usUDPDstPortA;
 struct timeval m_tsA;

 // return parameters for B
 unsigned short m_dVLOrderB;
 int m_dMsgLengthB;
 unsigned char m_ucSeqNoB;
 unsigned short m_usUDPSrcPortB;
 unsigned short m_usUDPDstPortB;
 struct timeval m_tsB;
};

struct ArgForThread
{
 CAFDXReceiverAPI* xThis; // this
 int dNwIndex; // Network Index 0:A, 1:B
}ARGFORTHREAD;

