

INTER-CONNECTED FLEXRAY AND CAN NETWORKS
FOR IN-VEHICLE COMMUNICATION:

GATEWAY IMPLEMENTATION AND END-TO-END
PERFORMANCE STUDY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MELİH ALKAN

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

MAY 2010

Approval of the thesis:

INTER-CONNECTED FLEXRAY AND CAN NETWORKS FOR IN-
VEHICLE COMMUNICATION: GATEWAY IMPLEMENTATION AND

END-TO-END PERFORMANCE STUDY

submitted by MELİH ALKAN in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen

Head of Department, Electrical and Electronics Engineering

Asst. Prof. Dr. Şenan Ece Schmidt

Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Semih Bilgen

Electrical and Electronics Engineering Dept., METU

Asst. Prof. Dr. Şenan Ece Schmidt

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Özgür Barış Akan

Electrical and Electronics Engineering Dept., METU

Asst. Prof. Dr. Cüneyt Bazlamaçcı

Electrical and Electronics Engineering Dept., METU

Emrah Yürüklü, M.Sc.

TOFAŞ Turkish Automobile Factory A.Ş.

 Date: 13.05.2010

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Melih Alkan

Signature :

iv

ABSTRACT

INTER-CONNECTED FLEXRAY AND CAN NETWORKS
FOR IN-VEHICLE COMMUNICATION: GATEWAY

IMPLEMENTATION AND END-TO-END
PERFORMANCE STUDY

Alkan, Melih

M. S., Department of Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Ece Ş. Güran Schmidt

May 2010, 265 pages

The increasing use of electronic components in today’s automobiles demands more

powerful in-vehicle network communication protocols. FlexRay protocol, which is

expected to be the de-facto standard in the near future, is a deterministic, fault

tolerant and fast protocol designed for in vehicle communication. The current de-

facto in-vehicle communication standard, CAN, and the future in-vehicle

communication standard FlexRay will exist together in future cars. Data exchange

between these two standards will be performed via Gateway units. In this thesis,

end-to-end performance of a FlexRay-CAN network connected by a Gateway is

evaluated as well as Gateway functionality and processing delay. The results of the

experiments, which are performed for a realistic message set with various

scheduling schemes, are presented and discussed.

Keywords : in-vehicle communication, FlexRay, Gateway, end-to-end performance

v

ÖZ

ARAÇ İÇİ HABERLEŞME İÇİN BİRBİRİNE BAĞLI
FLEXRAY VE CAN AĞLARI: AĞ GEÇİDİ (GATEWAY)

UYGULAMASI VE UÇTAN UCA BAŞARIM ÇALIŞMASI

Alkan, Melih

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Y. Doç. Dr. Ece Ş. Güran Schmidt

Mayıs 2010, 265 sayfa

Günümüz otomobillerinde artan elektronik birim kullanımı daha güçlü araba içi

haberleşme protokollerine olan ihtiyacı doğurmaktadır. FlexRay protokolü ortaya

çıkan bu ihtiyacı karşılayabilecek özelliklere sahip, kararlı, hatalara dayanıklı ve

hızlı bir haberleşme protokolüdür. Bugünün defakto araç içi haberleşme protokolü

CAN ve geleceğin defakto araç içi haberleşme protokolü FlexRay gelecekte,

otomobillerde eş zamanlı olarak yer almaları beklenmektedir. Bu iki ağ arasındaki

veri haberleşmesi ağ geçiti (gateway) birimleri ile gerçekleştirilecektir. Bu tezde,

Ağ Geçidi ile bağlanmış FlexRay-CAN ağlarının uçtan uca başarımı ve aynı

zamanda Ağ Geçidi işlem süresi ve çalışırlığı değerlendirilmiştir. Gerçekçi mesaj

kümesi ile çeşitli çizelgeleme yaklaşımlarına göre gerçekleştirilen deneylerin

sonuçları sunulmuş ve tartışılmıştır.

Anahtar Kelimeler: araç içi haberleşme, FlexRay, Ağ Geçidi, uçtan uca başarım

vi

To My Family

vii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Asst. Prof. Dr. Ece Ş.

Güran Schmidt for her guidance, advice, criticism, encouragement, endless patience

and insight throughout the completion of the thesis.

I wish to thank my company ASELSAN A.Ş for giving me the opportunity of

continuing my thesis study and supporting me in my efforts to get the Master

degree.

I owe a debt of gratitude to TOFAŞ Türk Otomobil Fabrikaları A.Ş. for their

support and providing the hardware and the software that I used throughout the

thesis.

I would like to forward my appreciation to all my friends and colleagues for the

contribution to my thesis with their continuous guidance, advice, encouragement

and for expanding my horizons.

Finally, my family. No word can suffice to express how I am grateful to my parents

but at least I can mention my sincere gratitude to them for their unwavering support,

continual confidence and endless and gratis love. I also wish to thank my beloved

sister for her support, criticism and help on the format of my thesis.

viii

TABLE OF CONTENTS

ABSTRACT...iv

ÖZ..v

ACKNOWLEDGEMENT...vii

TABLE OF CONTENTS...viii

CHAPTER

1 INTRODUCTION... 1

1.1 TERMINOLOGY.. 2
1.2 CONTRIBUTIONS OF THESIS... 3
1.3 THESIS ORGANIZATION... 4

2 BACKGROUND ... 5

2.1 IN-VEHICLE COMMUNICATION NETWORKS .. 9
2.1.1 CAN (Controller Area Network) ... 9
2.1.2 FlexRay.. 15
2.1.3 LIN (Local Interconnect Network) .. 28
2.1.4 MOST (Media Oriented System Transport) .. 31

2.2 GATEWAY NODE FOR INTERCONNECTED INVEHICLE NETWORKS 35

3 FLEXRAY-CAN GATEWAY DESIGN ... 38

3.1 FLEXRAY-TO-CAN GATEWAY FUNCTIONALITY DESIGN... 40
3.2 CAN-TO-FLEXRAY GATEWAY FUNCTIONALITY DESIGN... 45

4 DEVELOPMENT AND TEST ENVIRONMENT ... 47

4.1 SK-91465X-100MPC FUJITSU FLEXRAY EVALUATION BOARD.................................. 47
4.2 SOFTUNE WORKBENCH SOFTWARE DEVELOPMENT ENVIRONMENT................... 49
4.3 FR-FLASH PROGRAMMER ... 50
4.4 FLEXRAY COMMUNICATION CONTROLLER DRIVER... 51
4.5 FLEXCONFIG™ DEVELOPER – UNIVERSAL FLEXRAY CONFIGURATION TOOL... 54

ix

4.6 FLEXCARD CYCLONE II SE.. 55
4.7 FLEXALYZER ... 56

5 FLEXRAY-CAN GATEWAY IMPLEMENTATION... 59

5.1 GENERAL ARCHITECTURE OF THE GATEWAY .. 59
5.2 FLEXRAY PROJECT DETAILS.. 64

5.2.1 Tasks Executed In MAIN.c ... 65
5.2.2 Tasks Executed In TTask.c.. 73

5.3 CAN PROJECT DETAILS.. 79
5.3.1 Tasks Executed In MAIN.c ... 79
5.3.2 Tasks Executed In CAN.c.. 81

5.4 GATEWAY PROJECT DETAILS .. 84
5.4.1 Tasks Executed In MAIN.c ... 84
5.4.2 Tasks Executed In TTask.c.. 86
5.4.3 Tasks Executed In CAN.c.. 88

5.5 OTHER DEVELOPMENT ACTIVITIES ... 91

6 EXPERIMENTAL PERFORMANCE ANALYSIS AND RESULTS 95

6.1 PERFORMANCE METRICS.. 95
6.2 OVERVIEW OF THE EXPERIMENTS ... 98

6.2.1 Experiment Set-Up .. 101
6.2.2 Time Measurements... 105
6.2.3 Quantitative Analysis of the Time Measurement Errors.. 114

6.3 DISCUSSION OF THE EXPERIMENTS ... 122
6.3.1 CAN Experiments.. 122
6.3.2 FlexRay Static Segment Experiments.. 142
6.3.3 FlexRay Dynamic Segment Experiments .. 155
6.3.4 Gateway Experiments .. 164

7 CONCLUSION.. 190

REFERENCES... 194

APPENDICES

A... 198

B... 212

C... 217

D... 225

x

E... 262

F ... 264

G .. 265

xi

LIST OF FIGURES

FIGURES

Figure 2-1 CAN Bus Arbitration Scheme[14] .. 10

Figure 2-2 CAN Frame Format... 11

Figure 2-3 FlexRay TDMA Structure[14] .. 19

Figure 2-4 Scheduling Structure: (Msg, Freq, Offset): (M1, 2, 0) and (M2, 4, 1).. 20

Figure 2-5 FlexRay Timing Hierarchy [19] .. 21

Figure 2-6 FlexRay FTDMA Structure [14] ... 23

Figure 2-7 FlexRay Timing Hierarchy [19] .. 24

Figure 2-8 FlexRay Electrical Levels [14].. 25

Figure 2-9 FlexRay Frame Formats .. 26

Figure 2-10 LIN Communication Frame [14]... 29

Figure 2-11 Conventional Configuration of Audio and Video Signals 33

Figure 2-12 Example of a MOST Frame [14]... 35

Figure 3-1 FlexRay-to-CAN Gateway Functional Diagram................................... 44

Figure 3-2 CAN-to- FlexRay Gateway Functional Diagram.................................. 46

Figure 4-1 SK-91465X-100MPC Evaluation Board... 48

Figure 4-2 FR Family SOFTUNE Workbench V60L06... 49

Figure 4-3 FME FR-Flash Programmer V4.0.2.1 ... 50

Figure 4-4 FlexRay Communication Controller Driver Layer Concept [33].......... 52

Figure 4-5 FlexRay Communication Controller Driver Architecture [33] 53

Figure 4-6 FlexConfig™ User Interface ... 55

Figure 4-7 FlexCard Cyclone II SE .. 56

Figure 4-8 FlexAlyzer User Interface ... 58

Figure 5-1 Projects in the FlexRay Gateway Workspace 60

Figure 5-2 Coding Structure of the Projects.. 61

Figure 6-1 The PCB Bus Used For Both FlexRay and CAN Bus 102

xii

Figure 6-2 The Gateway Network Illustration .. 103

Figure 6-3 The Gateway Network Photograph ... 104

Figure 6-4 The Gateway Network... 105

Figure 6-5 Time Tagging: CAN2FR... 106

Figure 6-6 Time Tagging: FR2CAN... 108

Figure 6-7 A view from the log file exported by FlexAlyzer 110

Figure 6-8 Illustration for the task of obtaining the CANRX 112

Figure 6-9 Time Stamp Deviation from the Actual Time..................................... 117

Figure 6-10 End-to-End Delay vs Priorities: Conventional Scheduling 126

Figure 6-11 Jitter vs Priorities: Conventional Scheduling 126

Figure 6-12 End-to-End Delay and the Theoretical Maximum Values 128

Figure 6-13 End-to-End Delay vs Priorities: Prioritized Scheduling.................... 132

Figure 6-14 Jitter vs Priorities: Prioritized Scheduling... 132

Figure 6-15 End-to-End Delay and the Theoretical Maximum Values 134

Figure 6-16 E2E Delay vs Priorities: CAN Scheduling with Fixed Priorities 138

Figure 6-17 Jitter vs Priorities: CAN Scheduling with Fixed Priorities 138

Figure 6-18 End-to-End Delay and the Theoretical Maximum Values 140

Figure 6-19 End-to-End Delay vs Message ID: FID Allocation Without Jitter.... 147

Figure 6-20 Jitter vs Message ID: FID Allocation Without Jitter......................... 148

Figure 6-21 E2E Delay vs Message ID: FID Allocation With Minimum FID..... 153

Figure 6-22 Jitter vs Message ID: FID Allocation With Minimum FID 153

Figure 6-23 Illustration of End-to-End Delay of P26 ... 154

Figure 6-24 End-to-End Delay vs Priority: Dynamic Segment with 18 Minislots159

Figure 6-25 Maximum End-to-End Delay and Theoretical Maximum................. 160

Figure 6-26 End-to-End Delay and Theoretical Maximum 162

Figure 6-27 End-to-End Delay vs Theoretical Maximum 163

Figure 6-28 Protocol Conversion Experiment Network Topology....................... 165

Figure 6-29 Photograph of the Protocol Conversion Experiment......................... 166

Figure 6-30 Log File of the Experiment.. 168

Figure 6-31 Signal Mapping Functionality ... 169

Figure 6-32 a) Segmentation b) Combination... 171

Figure 6-33 Delay Decomposition of the Gateway Experiment 179

xiii

Figure 6-34 Delay Decomposition of the Gateway Experiment in Percentage 180

Figure 6-35 Jitter Values in Gateway Experiment .. 180

Figure 6-36 Delay Histogram in FlexRay-to-CAN Direction............................... 184

Figure 6-37 Delay Histogram in CAN-to-FlexRay Direction............................... 184

Figure 6-38 Effect of Polling: @ 5ms and @ 2.5 ms.. 189

xiv

LIST OF TABLES

TABLES

Table 2-1 Signals Travelling on a MOST Bus .. 32

Table 6-1 Error Components in the CAN2CAN Delay Calculations.................... 121

Table 6-2 Message Set for CAN Scheduling .. 123

Table 6-3 Priority Assignment Using Conventional CAN Scheduling................. 123

Table 6-4 Distribution of the Signals in CAN Nodes ... 124

Table 6-5 CAN Conventional Scheduling: End-to-End Delay and Jitter 125

Table 6-6 End-to-End Delay vs Theoretical Maximum.. 127

Table 6-7 Priority Assignment Using Prioritized CAN Scheduling 130

Table 6-8 CAN Prioritized Scheduling: End-to-End Delay and Jitter 131

Table 6-9 End-to-End Delay vs Theoretical Maximum Values............................ 133

Table 6-10 Priority Assignment Using CAN Scheduling with Fixed Priorities ... 136

Table 6-11 CAN Scheduling with Fixed Priorities: End-to-End Delay and Jitter 137

Table 6-12 End-to-End Delay vs Theoretical Maximum...................................... 139

Table 6-13 Network Configurations for the FlexRay Static Slot Experiments..... 143

Table 6-14 FlexRay Message Set .. 144

Table 6-15 FlexRay FID Allocation Without Jitter... 145

Table 6-16 FID Allocation Without Jitter: End-to-End Delay and Jitter 146

Table 6-17 FlexRay FID Allocation With Minimum FID 151

Table 6-18 FID Allocation With Minimum FID: End-to-End Delay and Jitter.... 152

Table 6-19 Configuration Parameters for the Dynamic Segment Experiments 157

Table 6-20 Message Set for the Dynamic Segment Experiments 158

Table 6-21 Priority Assignment .. 158

Table 6-22 End-to-End Delay: Dynamic Segment with 18 Minislots 159

Table 6-23 E2E Delay Comparison Against the Theoretical Maximum Values .. 160

Table 6-24 Priority Assignment .. 161

xv

Table 6-25 End-to-End Delay: Dynamic Segment with 19 Minislots 161

Table 6-26 Priority Assignment .. 163

Table 6-27 End-to-End Delay and Theoretical Maximum.................................... 163

Table 6-28 Experiment Configuration Parameters.. 166

Table 6-29 Signal Mapping for the Experiment.. 167

Table 6-30 Experiment Signal Mapping Scheme.. 170

Table 6-31 CAN Scheduling with Fixed Priorities ... 173

Table 6-32 FID Allocation Without Jitter ... 174

Table 6-33 CAN and FlexRay Messages that Cross the Gateway 175

Table 6-34 Signal Names in Gateway... 176

Table 6-35 Dynamic Segment Messages .. 176

Table 6-36 Gateway Experiment Parameters .. 177

Table 6-37 Experiment Results for the Signals Passing the Gateway 178

Table 6-38 Comparative Results for the Experiment and Theoretical Maximum 185

Table 6-39 CAN Priority Assignment for the Experiment.................................... 186

Table 6-40 Signal Distribution With Respect to the Nodes 187

Table 6-41 Experiment Parameters ... 188

Table 6-42 E2E Delay for Polling: @ 5ms and @ 2.5 ms 188

xvi

LIST OF ABBREVIATIONS

ABS : Antilock Braking System

API : Application Programming Interface

ASC : Automatic Stability Control

CAN : Controller Area Network

CC : Communication Controller

CCAL : Communication Controller Abstraction Layer

CHI : Controller Host Interface

ECU : Electronic Control Unit

EPS : Electric Power Steering

ESP : Electronic Stability Program

FHAL : FlexRay Hardware Abstraction Layer

FID : FlexRay Identification

FTDMA : Flexible Time Division Multiple Access

HAL : Hardware Abstraction Layer

IPC : Instrument Panel Cluster

LIN : Local Interconnect Network

LIP : Linear Integer Programming

MOST : Media Oriented System Transport

NIT : Network Idle Time

NRZ : Nonreturn-to-Zero

PFR : Port Function Register

QoS : Quality of Service

SAS : Steering Angle Sensor

TDMA : Time Division Multiple Access

1

CHAPTER 1

INTRODUCTION

Today, in modern automobiles, the most widely used network protocol for in-

vehicle communication is the Controller Area Network (CAN) [31]. Although other

communication schemes along with the CAN bus are also used, the CAN bus

constitutes the main communication backbone in current automobiles. The

requirement for a variety of distinct communication protocols arises from the

necessity of running applications with different needs in terms of delay, jitter,

bandwidth, message loss, integrity and Quality of Service (QoS). The controlling of

wipers, lights, doors and windows, telematic functions such as car radio, DVD,

navigation systems and rear seat entertainment, the functions for the electronic

control of the engine such as ABS, ESP, ASC and numerous safety-critical

functions to provide the control of suspension, steering and braking can be counted

as the applications running in the modern cars so as to emphasize the diversity.

Although CAN is well suited to be the main communication network for in-vehicle

communication with such applications, CAN is evaluated to fall short for very near

future applications such as x-by-wire which can, in short, be defined as the

replacement of mechanical and hydraulic systems by completely electronic ones,

due to its data rates between 50 Kbit/s and 1 Mbit/s and its event-triggered

arbitration mechanism. The emerging FlexRay protocol with a much higher

bandwidth of 10 Mbit/s and support for both time-triggered and event-triggered

message traffic is expected to replace CAN as the new de-facto standard for in-

vehicle communication [1]. However, since the technology transition from CAN to

2

FlexRay is not anticipated to happen at once, in the near future both network

protocols are expected to appear together in an automobile. In this scheme, the

applications requiring lower speed will still be carried out by CAN bus while new

high-speed functionality which necessitates real time response will be implemented

on FlexRay network. Consequently, this situation imposes the existence of a

Gateway unit which facilitates the inter-communication among the nodes on CAN

and FlexRay networks. As the CAN and the FlexRay networks are expected to exist

together for a long time, so does the Gateway. Therefore, attention should be paid

for the design of an efficient and high-performance Gateway. In this respect, a

Gateway has to perform fast and correct protocol conversion between both

networks. It must have the capability of processing the payload of the messages in

the signal level and the gateway processing delay should be bounded with low

variance.

1.1 TERMINOLOGY

Throughout the thesis, the terms that define the data carrying entities, signal,

message and frame are used with different meanings.

Signal is the smallest meaningful piece of data exchanged in a network. Speed data,

information from the sensors, indications of the display panel of an automobile can

be given as the examples to the signals. In this context, the length of the signals can

vary from 1-bit to tens of bytes depending on the application.

Message indicates the entire data that is exchanged in a single transmission. In this

sense, the messages are composed of signals. Depending on the application, the

messages can contain tens of signals as well as they might be composed of a single

signal.

Frame is the protocol data exchange format for both CAN and FlexRay networks.

The data payload of the frame is the message. Note that when the message in

3

encapsulated in the frame the necessary encoding and bitstuffing operations are

carried out.

1.2 CONTRIBUTIONS OF THESIS

The first contribution of this thesis is the design, implementation and performance

evaluation of a FlexRay-CAN Gateway that is realized by microcontroller

programming. The implementation is carried out on an evaluation board with

Fujitsu microcontroller and built-in FlexRay and CAN controllers. We demonstrate

that the Gateway can perform the correct protocol conversion by testing it in an

interconnected FlexRay-CAN network where the CAN nodes are the components of

a real vehicle and the FlexRay nodes are realized by evaluation boards with

FlexRay hardware. In addition we demonstrate the capability of the Gateway to

map the signals in the incoming messages to outgoing messages according to a

given configuration.

The second contribution of the thesis is the experimental performance study of

FlexRay and CAN networks that are interconnected by the designed Gateway. This

study involves both local timing measurements on the Gateway node to calculate its

processing delay and end-to-end delay and jitter where jitter indicates the deviation

of the periodicity for the signal transmission from source node to destination node

which are on different networks. The scheduling approaches followed for both CAN

and FlexRay Networks affect the timing performance of the signals that are sent

within a single network as well as the signals that are sent to the other network in

the entire inter-connected network. In this respect we first investigate the timing

performance of different scheduling algorithms for CAN and FlexRay networks.

Next we demonstrate the end-to-end timing performance of selected scheduling

approaches on a 7 node FlexRay-CAN network inter-connected by the Gateway.

In the literature, there is a small number of studies on FlexRay-CAN Gateway.

However, these studies focus on the demonstration of the correct protocol

4

conversion and measuring the Gateway processing time. The arbitrary signal

mapping capability of the Gateway is not implemented. Furthermore to the best of

our knowledge there is no previous study that presents the end to end delay and

jitter measurements on an interconnected FlexRay-CAN network.

1.3 THESIS ORGANIZATION

The thesis is organized as follows. CHAPTER 2 describes the evolution of in-

vehicle communication, the basic characteristics of CAN and FlexRay protocols

together with some other in-vehicle networking schemes and discusses the previous

work made on Gateway. In CHAPTER 3, we explain the design phases of a

FlexRay-CAN Gateway. While we introduce the development and test tools that we

have used throughout the study in CHAPTER 4, the implementation details of the

Gateway, design of which is described in CHAPTER 3, are discussed in CHAPTER

5. Our experimental data and the complete discussion of the results are reported in

CHAPTER 6. Finally, CHAPTER 7 summarizes the entire thesis work and provides

concluding remarks.

5

CHAPTER 2

BACKGROUND

In the beginning of their invention, automobiles were described to be composed of

purely mechanical and hydraulic systems. This description was valid until the

beginning of 1970s [1]. Parallel with the developments in electronics after the

introduction of transistor, share of the electronic parts and systems in the

automobiles rapidly increased. The growing reliability and the performance of the

electronic hardware components enabled improving the in-vehicle comfort as well

as the safety. The very first adopted electronic components were mainly about

comfort and utilities, like wipers, tapes, electric windows, lights and so on. As the

time passed, safety-critical functions were implemented in the car, while more and

more electronic components for entertainment and comfort were continued being

introduced. Today, in most modern cars, safety-critical electronic systems and

components like Antilock Braking System (ABS), Electronic Stability Program

(ESP), Electric Power Steering (EPS), Airbags, Active Suspension, Engine Control

and so forth, exist in their base configuration. As a result of this “electronization”,

signal exchange traffic in the automobiles is enormously increased. In today’s

luxury cars, up to 2500 signals are exchanged by up to 70 “Electronic Control

Units” (ECU) [22].

In the beginning of automotive electronics, each function was implemented by stand

alone ECUs which had their own microcontroller, sensors and actuators. Until the

beginning of 1990s, signal exchange between ECUs was provided by point-to-point

links. According to this strategy, n2 communication channels were required,

6

assumed that all ECUs interconnected and number of ECUs is n. In other words, the

number of communication links were to grow with n2. However, as the number of

ECUs were increasing very rapidly by time, this approach fell short due to problems

of weight and cost of ECUs and reliability, power consumption and complexity

because of the interconnection of huge numbers of wires and connectors. The

solution to these problems was to use communication networks in the automobiles

to multiplex numerous signals over a shared medium between different ECUs. This

new approach was effective and really flourished. It was mentioned that replacing

the wiring in the four doors of BMW with Local Area Network reduced the weight

by 15 kilograms [2]. On the other hand, when communication network was used, it

was seen that the amount of required wires was reduced 40% from 635 to 370 in

Peugeot 307 with regard to non-multiplexed Peugeot 306 [3]. Besides the reduction

in weight and the number of wires required, it is obvious to conclude that, this

wiring replacement would also reduce power consumption and space allocation for

the wiring harness and improve reliability and complexity.

In the beginning, every manufacturer was developing its own network in its

automobile. However, as the role of external component suppliers became

important in automotive industry, cost of integration of new components to the in-

vehicle communication networks increased and reliability deteriorated. This is

because, external suppliers were required to adapt their components to different

communication networks for different manufacturer’s car. So, standardized and

widely accepted defining rules, i.e protocols for signal exchange through a shared

medium were needed to be defined. This need was fulfilled in mid-1980s by Bosch

which developed Controller Area Network (CAN) [1]. Popularity of CAN increased

very rapidly beginning with its first use in Mercedes cars in early1990s. Designed

specifically for automotive applications, CAN became to be used in other areas

such as industrial automation and medical equipment. In 2005 it is estimated that

about 400 million CAN nodes (all application fields) were being sold per year [4].

Today, CAN has become most widely used communication network in automotive

industry.

7

Since the introduction of CAN, new components, technologies and needs continued

to emerge in automotive industry. All these new components were requiring new

networking approaches. In modern cars, while for some applications, bounded delay

and real time performance is required (like x-by-wire), for some other applications

large bandwidth allocation is needed (like media applications). Since the

performance demands and safety needs of all the functions embedded in the car are

not the same, different Quality of Service (QoS like, bounded delay, jitter,

bandwidth, redundancy of communication channels, efficient error detection

mechanisms, so forth) are expected from communication networks. Therefore,

today, apart from CAN bus, different communication network protocols exist

together in a car. Among the some others, LIN (Local Interconnect Network),

MOST (Media Oriented System Transport), FlexRay and CAN can be counted as

the basic communication network system in a modern car.

An in-car embedded electronic system, typically, is divided into four functional

domains which have different features, structure, QoS requirements and constraints,

namely, powertrain, chassis, body and telematics [5].

Powertrain is mainly responsible for controlling the engine of the automobile.

Powertrain domain involves with real time control functions and performs safety-

critical operations. In order to cope with diversity of critical tasks to be performed

which are concerned with the most important component of a car, engine,

multitasking is required and stringent time scheduling constraints are imposed on

the tasks. Furthermore, powertrain domain requires frequent data exchange with

other car domains such as the chassis (ABS, ESP, ASC), and the body (dashboard,

climate control).

Chassis domain is the other domain which is concerned with safety-critical

functions in the car. The main function of the chassis domain is to provide the

control of suspension, steering and braking. Some of the functions that are gathered

under the chassis domain are ASC (Automatic Stability Control), ESP, ABS, 4WD

(4 Wheel Drive) and so forth. Chassis domain is little bit more critical than

8

powertrain in safety standpoint since functions in this domain have a stronger

impact on vehicle’s stability, dynamics and agility. Moreover, the x-by-wire

technology, which is a generic term and means the replacement of mechanical and

hydraulic systems by completely electronic ones, is being introduced to perform

steering or braking functions. Although the x-by-wire technology has been being

used in avionics industry, it is an emerging technology for automotive industry.

Studies on this new technology leads to new design methods for developing the x-

by-wire functions safely [6] and for preventing the interferences between functions

[7]. Chassis domain mainly exchange signal with powertrain. Implementation of

both powertrain and chassis domains moves toward a time-triggered approach

rather event-triggered ones which will enhance the deterministic real-time

behaviour of the system [8] [9]. As a result, CAN bus usage in these domains is

being given up in favor of TTCAN or new emerging technology FlexRay.

Body domain composed of systems such as dashboard, wipers, lights, doors,

windows, seats, mirrors, climate control and so on which are more and more began

to be controlled by software based systems. Main characteristic of this domain is

that the components of the system require to exchange numerous of messages with

small piece of data and that the functions are mainly triggered by the passengers’ or

the driver’s solicitation. Despite the event-triggered characteristics of the body

functions, since most of the nodes do not require large bandwidth through

communication, which is offered by CAN bus, a new low-cost network is required

to be designed, namely Local Interconnect Network (LIN), to satisfy the

requirements of the body domain.

Telematics is another domain existing in modern cars. Number of signals

exchanged, number of functions implemented and bandwidth used in this domain

have been increasing more and more rapidly nowadays. Functions like hands-free

phones, car radio, CD, DVD, navigation systems, rear seat entertainment and so

forth are, all, becoming standard in the automobiles today. Common property of

these functions is that they require to exchange big amount of data within the car,

9

even with the external world, when compared to other domains [10]. In this domain,

rather than the messages subject to strict deadline scheduling, multimedia data

streams, multimedia QoS, bandwidth sharing, integrity are considered to be more

important. Both the data rate of CAN and LIN are inadequate to satisfy the

requirements of telematics. Moreover, in this domain, once functions activated,

signals are exchanged periodically instead of event-triggered signal exchange.

Therefore, as the requirements of this domain are different than the other domains,

data communication structure should also be different. In the modern automobiles,

the telematics functions are exchanged through Media Oriented System Transport

(MOST) networks.

2.1 IN-VEHICLE COMMUNICATION NETWORKS

In the following sections, the basic operating principles of some important

communication networks implemented in modern cars will be described and their

usage in automobile networks will be explained briefly. Although we, mainly, are

interested in CAN and FlexRay network protocols in the scope of this study, the

basic characteristics of LIN and MOST networks are also included by keeping the

discussion short for the sake of the completeness of the literature.

2.1.1 CAN (Controller Area Network)

The CAN bus was developed by Robert Bosch GmbH as a multi-master, message

broadcast system that specifies a maximum signaling rate of 1 Mbits/s [11]. It was

designed initially to be used in automotive industry. While, today, CAN is the most

popular field bus used in various fields like electric power, petroleum, chemical,

metallurgical, steel and transport industry, CAN is widely applied in automotive

industry, aviation industry, industrial control and security protection [12].

As mentioned above CAN communication is a multi-master protocol. That is to say,

every individual node connected to CAN bus can send message whenever they find

10

the medium idle. With this regard, CAN communication is attributed as event-

triggered communication. Conflicts may occur, as accessing the shared medium, if

two or more nodes try to send message at the same time when they see that the

medium is idle. In the case of conflict, arbitration is done via the identifiers of the

messages. The identifiers specify the priority of the message. The lower the

identifier is, the higher the priority. This scheme is the result of the arbitration

mechanism performed throughout the bus. According to this arbitration mechanism,

in the physical layer of CAN protocol, logic (HIGH or LOW) provided by each

node are ANDed and this ANDed logic is put on the wire of CAN bus. Therefore, if

a node sending a HIGH logic level (which is recessive) sees a LOW logic level on

the bus, the node understands that there exists at least an other node with a smaller

identifier which means higher priority and immediately stops its transmission. CAN

arbitration procedure relies on the fact that the sending node monitors the bus while

transmitting. The Figure 2-1 is illustrating the CAN arbitration mechanism.

Figure 2-1 CAN Bus Arbitration Scheme[14]

11

This arbitration mechanism affects the feasible communication data rate and

communication distance. Throughout the arbitration process, before a bit value is

decided along the bus, the signal must propagate to the most remote node and return

back. Therefore, by taking the speed of signal through the wires into consideration,

1 Mbps rate is achieved on a 40m bus at maximum, whereas 250 kbps rate is

feasible over 250m.

CAN with a physical layer implementation on a twisted pair of copper wires

became an ISO standard in 1994 [13] and found a wide range of application area in

automotive industry due to its low cost, robustness and fairly bounded delay for its

applications [4]. There exists, today, two versions of CAN protocol differing in size

of identifiers. CAN 2.0A is the “Standard” CAN protocol with 11-b identifier and

CAN 2.0B is the “Extended” CAN protocol with 29-b identifier. Up to now,

Standard CAN protocol was sufficient for in-vehicle communication since it

facilitated 211 messages to be sent via CAN bus. However, developments in

automotive electronics and upcoming needs were taken into consideration, the

usage of Extended CAN in automobiles will be a requirement in near future.

CAN protocol permits maximum 8 bytes of data to be sent through the bus. When

all the protocol overheads considered, a Standard CAN frame can contain at

maximum 135 bits. CAN frame format is depicted in Figure 2-2.

Figure 2-2 CAN Frame Format

12

A CAN frame is composed of 7 fields.

• the start of frame

• the arbitration field

• the control field

• the data field

• the CRC sequence

• the ACKnowledgement field

• the end of frame

An 8th area, called interframe space, forms an integral part of the frame to bind it to

the next frame. In the following parts the content of these fields will be briefly

dissected.

Start of frame. Start of frame (SOF) field consists of a single dominant bit signaling

that the data exchange starts.

Arbitration field. This field consists of standard identifier (11-b) and a bit called

Remote Transmission Request (RTR). A valid identifier can not have all of its most

significant bits to be recessive (1). Therefore maximum number of valid identifier

combination is 211 – 24 = 2032. On the other hand, in a data frame RTR bit must be

dominant (0).

Control field. Control field consists of 6 bits. The first 2 bits are reserved bits to

ensure the future upward compatibility. The last 4 bits of the control field is called

Data Length Code (DLC) and indicates the number of bytes contained in the data

field of the CAN frame. DLC field can be between 1 and 8 since CAN protocol

permits maximum 8 bytes of data to be send in a single CAN frame.

13

Data field. Data field is the field which consists of useful data of CAN message

exchange. Data to be transferred via CAN frame can be any number of bytes

between 0 and 8, both inclusive. Since 9 possible values exist to indicate the

number of data to be sent, to represent these values, 4 bits are used in DLC in

“Control Field”.

CRC field. CRC stands for “Cyclic Redundancy Code”. This field consists of the

CRC sequence area followed by a CRC delimiter.

The receivers check whether the transmitted message contains error by the help of

CRC sequence sent by the transmitter. If CRC sequence and the data are not

compatible the transmitted message is considered to be erroneous and rejected.

CRC sequence is maximum 15 bits. Including the CRC delimiter, CRC Field can be

maximum 16 bits.

Acknowledgement field. This field consists of two bits, namely ACK slot and ACK

delimiter. During these two bits time, transmitter sends two recessive (1) bits along

the bus (in practice, the sender leaves the bus free and switches itself to listening or

‘receiver’ mode) [14]. If a receiver in the network receives the message with “no

transmission error” including CRC, the received message is considered to be valid

and receiving node acknowledges this message by sending dominant bit (0) in ACK

slot time. Since the logic level along the bus is the result of AND operation of

individual nodes’ output, the transmitting node will see a dominant bit in ACK slot

although it has sent a recessive bit. This signifies that the transmitted message is

acknowledged by a receiver node. Although the nodes connected to the CAN

network are not interested in the transmitted message, they must acknowledge it if

they received it with “no transmission error”. With this sense, acknowledgement of

the transmitted message does not mean that the message is being used by one of the

nodes, it simply means that the message is received correctly by at least one of the

nodes connected to the network. If the received message contains one or more

transmission errors then the receiving node must issue an error frame. On the other

14

hand, ACK delimiter slot must be always recessive (1). Therefore, ACK slot lies

between two recessive (1) bits, namely CRC delimiter and ACK delimiter.

End of frame. The data frame is terminated by a flag consisting of a sequence of 7

recessive (1) bit which is longer than the standard length of bit stuffing.

Interframe space. After the transmitting frame ends, another node can not start a

new frame immediately. According to protocol, time between two consecutive

frames must be at least 3-bit time.

In the physical layer, CAN uses nonreturn-to-zero (NRZ) bit representation with a

bit stuffing length of 5. Bit stuffing is an important feature of CAN. In order to

count the bit time, stations need to resyncronize periodically. However, if signal

along the bus is recessive/dominant for a very long time, the stations can not find

the opportunity to resyncronize themselves. In another words, station needs to see

edges (changes from 0 to1 or 1 to 0) in the signal. Because of this requirement,

according to CAN protocol, more than 5 consecutive equal-level (all-recessive or

all-dominant) bits can not exist. If six or more equal-level bits are required to be

sent by a transmitter, transmitter stuffs an opposite-level bit after 5 consecutive

equal-level bits. On the other hand, receiver destuffs the sixth bit coming after 5

equal-level bit and obtains the original message sent by the transmitter.

As explained above in the CAN frame fields, when an error is detected by a node,

an “error flag”, which consists of six consecutive dominant bits, is send to make the

network be aware of the fault. Error recovery time in CAN, defined as the time

from detecting of an error until the possible start of a new frame, is 17-31 bit time

long. Since the corrupted frame reenters into the next arbitration phase, the

additional delay, which is at least as long as error recovery time, may cause the

frame to miss its deadline. Although CAN possesses some fault-confinement

mechanisms based on error counters which are aimed at identifying permanent

failures due to hardware disfunctioning at the level of the microcontroller,

communication controller or physical layer, the main drawback of CAN is that a

15

node must diagnose itself [1]. This requirement may lead to the nondetection of

some critical error. Besides, for instance, a single node can perturb the functioning

of the whole network by sending messages outside their specification (i.e., length

and period of the frames). Some mechanisms were proposed to increase the

reliability of CAN-based networks [15] [16] [17]. However, it is pointed out that

although each of them solves a particular problem, none of them proposes a

complete remedy [18]. Therefore, in the light of the above discussion, and by taking

the inadequate communication rate of CAN, it can be said that CAN is not suited

for safety-critical applications such as some future x-by-wire systems. Today, in

modern cars, CAN is used in domains named powertrain, chassis and body.

Although the former two domains are concerned with real-time control and safety

of the vehicle’s behaviour, currently CAN meets the requirements fairly well.

However, with the introduction of x-by-wire applications and with the increase in

the requirements of safety-critical and real time applications, CAN will fall short in

a very near future. The gap in this domain will be satisfied with an emerging bus

architecture named FlexRay™.

2.1.2 FlexRay

FlexRay protocol is the product of the exhaustive studies of a consortium whose

core members are BMW, Bosch, DaimlerChrysler, General Motors, Motorola,

Philips, and Volkswagen. The aim of the consortium, which was signed in 2000,

was to conduct technical analyses of the existing networks used or available for use

in the car industry, namely CAN, TTCAN, TCN, TTP/C and Byteflight to discover

whether any one of them was capable of meeting all the technical requirements like

high data rate, redundant channel support, deterministic delay, optical transmission

demanded by modern automobiles when some near-future requirements were also

taken into consideration. All of them were found to be insufficient at some point.

16

The shortcomings of these networking protocols, according to the study of the

consortium are summarized below.

• CAN is not fast enough for the new applications required. Also, CAN does

not utilize redundant channel and making CAN truly deterministic is

difficult due to its event-trigger nature.

• TTCAN is inevitably not fast enough since it is somehow modified version

of CAN. Although, due to its time triggered nature, it facilitates to make the

transmission deterministic, still it does not support the redundant

transmission channel. Also, it fails to provide support for optical

transmission and a bus guardian.

• TTP/C frame size is considered to be too small for new applications. In spite

of the use of TDMA for bus access, TTP/C provides no flexibility when

compared to FlexRay. Support of the combination of synchronous and

asynchronous transmission sections, the multiple transmission slots for a

single node in the synchronous section and the nodes acting on single,

double or mixed channels can be counted as the facilities of the TDMA in

FlexRay which do not exist in TTP/C.

• Byteflight can be considered to be the subset of FlexRay. The asynchronous

mode of FlexRay is functionally compatible with byteflight. Therefore

Byteflight does not offer enough functionality for demanding applications.

As a result of this picture, consortium began to work on a new communication

protocol, named FlexRay, which will be remedy for the insufficiencies of the

existing networking protocols. The FlexRay protocol is aimed to operate at high

frequencies so as to fill the gap in the applications where the bit rate of CAN falls

short. FlexRay is designed to be capable of implementing X-by-Wire applications

and providing redundancy. Some of the new and promising facilities that FlexRay

17

provides is given below which signify that the FlexRay protocol is defined to be

capable of serving all near-future electronic functions.

FlexRay;

• supports single channel or two channel (redundant) communication topology

(nodes using single channel communication or two channel communication

may exist in the same network),

• provides gross data rate of 10 Mbps,

• transmits data in synchronous and asynchronous modes and the length of

these modes can be adjustable,

• provides deterministic data transmission with pre-known and guaranteed

latency and jitter,

• detects the signal errors very quickly,

• withstands synchronization errors of the global time base,

• provides an error management mechanism via an independent “bus

guardian” (bus guardian is optional and network still works without a

centralized bus guardian),

• permits the addition of new nodes to an existing system without the need to

reconfigure the existing nodes,

• avoids collision for bus access,

• provides a robust system against transient faults and external radiation.

Having included these facilities, FlexRay working group created by the consortium,

published the first publicly available protocol specification in 2004 [19]. The final

version of the FlexRay is “Version 2.1” and released in December 2005 [19]. The

18

above mentioned parameters and facilities will enable future requirements to be met

for three classes of application not yet covered by CAN or by other existing

protocols. These are communication with high bandwidth, deterministic

communication with high bandwidth and deterministic and redundant

communication with high bandwidth. Since FlexRay protocol is just a recently

emerged protocol, it will take about 10 year of time before industry has widely

implemented FlexRay protocol in automobiles. When the FlexRay is commonly

being used in automotive industry in near future, CAN will be used as a sub-bus of

FlexRay and LIN as a sub-bus of CAN [14].

2.1.2.1 Protocol Properties

Bus access in FlexRay is implemented via TDMA structure. As a natural

consequence of TDMA, at least one time slot is assigned for every node constituting

the network so that they can transmit their frames at these time slots exclusively.

Since the synchronization is well established throughout the network, all nodes can

estimate the time slot which they are in with fairly small and acceptable differences.

As each node sends their messages in the time slots dedicated to them, no collision

arises when accessing the bus except that the collisions which may occur during the

starting phase of the network. One whole cycle of the FlexRay network is divided

into two separate parts namely Static Part and Dynamic Part. Static Part is the part

of the FlexRay cycle where frames are sent according to TDMA structure as

defined above. Whereas, Dynamic Part adds event-triggering nature to the FlexRay

cycle and properties of Dynamic Part will be explained in the following chapters

more detailed. It is worth mentioning that the proportion of Static Part to Dynamic

Part in one FlexRay cycle is configurable and may change from a network to other.

Even in some configurations one of the parts may not exist at all. This concept is

illustrated in Figure 2-3

19

Figure 2-3 FlexRay TDMA Structure[14]

In order to understand FlexRay synchronization, protocol properties and TDMA

structure better, some terms regarding the timing hierarchy of the FlexRay protocol

are given below.

Communication Cycle: Communication in FlexRay takes place with the aid of

recurring communication cycles. These communication cycles are composed of

“static segment”, “dynamic segment”, “symbol window” (optional) and a phase in

which the network is in idle mode, called the Network Idle Time (NIT). This is

illustrated in Figure 2-7.

Once the FlexRay Bus is configured, every node knows in which time slots to

transmit their frames throughout the cycle. In all cycles, those time slots are

dedicated to the very same nodes. However, nodes may decide to send different

messages in the same time slot in seperate cycles or not to send any frames at all.

For example, Node A, to whom, let’s say, 15th time slot is allocated in the cycle,

may be configured to send frame1 in every 2 cycles and frame2 in every 4 cycles in

the 15th slot by giving frame2 an offset. This is similar to the “Matrix Structure”

20

M1 M2 Empty

where rows of the Matrix are the FlexRay cycles and the columns are time slots in a

cycle. This scheme is illustrated in Figure 2-4 for 15th time slot. In this “Matrix

Structure”, number of row, i.e number of cycles can be 64 at maximum according to

FlexRay protocol.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Figure 2-4 Scheduling Structure: (Msg, Freq, Offset): (M1, 2, 0) and (M2, 4, 1)

Macrotick:

Macrotick is the smallest unit of global time granularity of the network [19].

Macrotick time interval is derived from the cluster-wide clock synchronization

algorithm. Therefore, macrotick duration is same for all nodes comprising the

network. Macrotick duration is calculated by an algorithm synchronization routine

and is composed of whole number of microticks.

Microtick:

Microtick, which constitutes the macrotick, is even smaller time unit in FlexRay

timing hierarchy. Main difference with macrotick is that microtick duration is not

common for all nodes throughout the network. Rather, they are created locally node

by node and are, directly, derived from CC’s (Communication Controller) oscillator

possibly through the use of a prescaler.

21

The timing hierarchy of FlexRay from communication cycle level to microtick level

is illustrated in Figure 2-5.

Figure 2-5 FlexRay Timing Hierarchy [19]

2.1.2.2 Medium Access

FlexRay cycle is composed of two different segments where FlexRay frames

containing the payload are transmitted. These segments are called Static Segment

and Dynamic Segment. Although there are two other segments that are composing

the FlexRay cycle, namely “Symbol Window” and “Network Idle Time (NIT)”,

these segments are not used for exchanging payload, rather they are used for

synchronization and other purposes.

Medium access in Static Segment and Dynamic Segment are different from each

other and are summarized in the following parts.

Static Segment: Medium access in Static Segment is purely TDMA. According to

this structure, the segment is divided into equal time slots including silence spaces.

The whole segment is well structured and start and end times are precisely defined

22

cluster-wide. Each time slots are assigned a unique identifier. When FlexRay

network is established this time slots are allocated by certain nodes. Therefore, this

structure enables to have a media free from collisions, to have a real time network

due to the known latencies and to have a system with known bandwidth for a given

bit time.

Dynamic Segment: Medium access in Dynamic Segment can be defined as Flexible

TDMA (FTDMA) as in Byteflight. According to this FTDMA structure, Dynamic

Segment is divided into equal minislots. Each minislot is identified by a unique

identifier similar to the slot identifiers in the Static Segment. However, in Dynamic

Segment, duration of minislots is much smaller than the duration of the slots in

Static Segment, as the name “mini”slot implies. Therefore, it is not possible to

transmit a regular FlexRay frame which can be 254-byte long through this minislot.

When it is taken into consideration that Dynamic Segment of FlexRay cycle is used

to send the event-triggered and spontaneous data, it is obvious that many nodes may

not have any frame to send when their time has come and it is logical to design

minislot duration to be small so that not much bandwidth is wasted when the node

has nothing to send in its minislot time. For instance, assume, the network is at the

time of minislot “m”. If the node, which is supposed to send the frame with

identifier “m” if there exists a frame to send, does not have any frame to send at that

time instant, nothing is sent and after one minislot time the network becomes to be

at the time of minislot “m+1”. But, if at that instant, that node does have a frame to

send with identifier “m”, then the node transmits its frame by extending the minislot

duration so that the duration is sufficient to send the whole frame properly. After

the frame with identifier “m” is sent, then network becomes to be at the time of

minislot “m+1”. This procedure goes like this till to the end of the Dynamic

Segment. As it can easily be understood from the architecture of Dynamic Segment,

while in a cycle Dynamic Segment ends, say, with kth minislot, in another cycle it

ends, say, with nth minislots where "k" and "n" may be different from each other.

This may happen because in some cycles quite a lot frames may be ready to be sent

when their minislot time has come which prevents minislot counter from increasing

23

much whereas in other cycles few frames may be ready to be sent when their

minislot time has come and since the frames are passed idle, minislot counter counts

more. As a result of this, a node having a frame to send with a large frame

identifier, may not send its frame if there are fairly many frames with smaller

identifier to be sent in that cycle. Therefore, this may lead that frame to miss its

deadline. To avoid this, the designers of FlexRay network should allocate identifiers

to the frames inversely proportional to their priorities. With the introduction of this

FTDMA structure to FlexRay network cycle, it became possible to send

spontaneous and event-triggered messages, provide burst transmission, easily

manage diagnostic data and, in general, transfer all kinds of messages in an ad hoc

way. The FTDMA structure of FlexRay is depicted in Figure 2-6

Figure 2-6 FlexRay FTDMA Structure [14]

What is explained up to this point about the timing hierarchy and the protocol

structure of FlexRay protocol can be illustrated by Figure 2-7

24

Figure 2-7 FlexRay Timing Hierarchy [19]

2.1.2.3 Physical Characteristics

As opposed to CAN protocol, in FlexRay protocol specification, the physical layer

of the protocol is not explicitly defined. Therefore, there may exist various physical

layer possibilities from differential pair wire to optical fiber.

A very distinctive feature of FlexRay protocol is that physical layer must consist of

two completely independent channels. While these channels may be used separately

from each other for data transmission so as to increase data rate up to 10 Mbps

gross bandwidth, the channels can also be used completely equivalent to each other

so that functional redundancy can be achieved throughout the network providing

reliability and enhancing the fault-tolerant aspect of the system.

The bit coding of FlexRay network is “non-return to zero” (NRZ 8N1) coding,

which means that the transmission of each byte (8 bit) is framed by a start bit and a

stop bit and that the value of the physical signal does not change during the whole

of the bit time.

25

According to the FlexRay 2.0 specification [19], the electrical values of the binary

elements 1 and 0 are both represented by dominant states. Because the differential

electrical levels alternate (change their sign) to represent logical level “1” and “0”.

As it is seen from the Figure 2-8, there are two other electrical levels defined in the

protocol. Both of these recessive levels are reserved for the idle modes of the bus

except that one of them is for “low power down” idle mode. Since the differential

voltage level between the dominant levels is in the order of 0.7V, signals do not

cause any significant electromagnetic radiation throughout the network.

Figure 2-8 FlexRay Electrical Levels [14]

The bit time and the propagation time bound is strongly related in CAN network.

This is not the case for the FlexRay bus as the medium access is realized with time

sharing principle. Gross bit rate for FlexRay protocol is 10 Mbps which is implying

a bit time of 100ns. According to the protocol, regardless of the FlexRay network

topology (direct line, active stars, repeaters, etc.), the maximum propagation time

must not exceed 2500ns.

26

2.1.2.4 Communication Frame Format

FlexRay frame consists of 3 separate data fields, namely, header, payload and

trailer. The whole picture of a FlexRay frame is shown in Figure 2-9

Figure 2-9 FlexRay Frame Formats

Header

Every frame starts with a Frame Starting Sequence (FSS) consisting of 8 bits of ‘0’

without a start or stop bit. FSS situates between two consecutive frames. After FSS,

comes header segment which is encoded in 40 bits. The first 5-bit area is the control

area in header segment. The name of the bits in this 5-bit area in order of

appearance is given below:

• reserved = 1

• payload preamble indicator

• null frame indicator

• synchronization frame indicator

Control
Frame

ID

Payload

Length

Header

CRC

Cycle

Count
Data 0-N CRC

5 bits 11 bits 11 bits7 bits 6 bits 0 to 254 bytes

24 bits

Header Payload Trailer

FlexRay Frame: 5 + (0-254) + 3 Bytes

27

o “0” means normal frame

o “1” means sync frame for synchronizing the clocks

• start-up frame indicator

The next field in Header Segment is Frame ID area. Frame ID consists of 11 bits

ranging from 1 to 2047, “0” being illegal. In a cycle, Frame ID determines the slot

number in Static Segment. In other words, a frame is transmitted only at the slot

time equal to its Frame ID. Frame ID also determines the priority of a frame in

dynamic segment as a low identifier value indicating high priority.

The length of the message to be transmitted is indicated in Payload Length field in

terms of double byte. Since the payload length can be 127 at maximum, 254 bytes

of data can be transmitted with a single FlexRay frame. The data up to this point is

protected with Header CRC field which is encoded in 11 bits with a Hamming

distance of 6. The last field in Header Segment is Cycle Counter field. Cycle

Counter is 6-bit field indicating the number of the current communication cycle.

The communication cycle number can not be increased indefinitely and is bounded

with the maximum number of 64 as explained in the preceding chapters. Frame

allocations for all nodes repeat itself with the periodicity of this maximum number

of communication cycle value.

Payload

Payload Segment is the field where useful data of the length as indicated in Payload

Length field in Header Segment is transmitted.

Trailer

At the very end of the frame comes another CRC field encoded in 24 bits which

protects the integrity of the whole frame with a Hamming distance of 6.

28

2.1.3 LIN (Local Interconnect Network)

In modern cars today, CAN, with its variants namely High Speed CAN, Low Speed

CAN and Low Speed CAN Fault Tolerant, is used as the primary communication

network. However, among the numerous functionalities existing in a modern

automobile, some of them requires much less capacity than CAN offers. Therefore,

for those functions those require less bandwidth and capacity, a new serial

communication system to be used as SAE Class A network, namely LIN (Local

Interconnect Network), has been designed by the consortium comprised of the

companies, Audi, BMW, Daimler Chrysler, Volkswagen, Volvo Car Corporation

and Motorola. The final specification of the LIN protocol (rev 2.0) was issued in

September 2003 [20]. The primary and original purpose of LIN [21] is to provide a

“sub-bus” for CAN, with reduced functionality and lower costs, in other words to

provide an economical solution when the requisite performance level is not high.

Sun roof (open, close, inclination, etc.), rain detector, automatic headlight switch-

on, seats (all seat adjustments and functions) are some of the network

nodes/participants which work satisfactorily in a LIN bus.

LIN serial network works on “single master multiple slaves” concept. According to

this concept, one of the nodes in LIN network operates as the master node and all

the other nodes in the network are the slaves. The LIN link is based on

asynchronous communication. No nodes are required to keep a supplementary clock

for the operation. The traffic on the bus is initialized and controlled solely by the

“master task” of the network which sits in the master node. The master node invites

the slave nodes to communicate on the bus according to the scheduling table in its

“master task”. The node for whom the communication is granted, which can be the

master node itself, sends its frame through the network. Thus, neither the arbitration

for accessing the shared media nor a supplementary clock to track the network time

is needed in LIN network. Since the slaves cannot supply data unless they have

been invited on the basis of a scheduling table established by the master, it enables

29

us, by examining the scheduling table, to predict the moment when a message will

be supplied on the bus. So LIN protocol provides us a degree of determinism.

A LIN communication frame consists of a header provided by the master task and a

response provided by a slave task. In other words, master nodes invites a slave task

to talk in the header part of the communication frame and the invited slave task

supplements its data in the data part of the very same frame. LIN communication

frame is depicted in Figure 2-10.

Figure 2-10 LIN Communication Frame [14]

Header

The frame starts with a header field, consisting of three main parts, all transmitted

by the master, as mentioned above. The first field in header is “break field” which

consists of at least 13 dominant bits and followed by “break delimiter” which is at

least 1 recessive bit long. Then comes the synchronization field. So as to facilitate

the evaluation of the bit rate of the bus, synchronization field has the conventional

value of “0101 0101” (hex 0x55), framed by the dominant start bit ‘1’ and recessive

stop bit ‘0’, making numerous bit transitions available. After synchronization field,

there exists a 10-bit field where the identifier of the message is defined. This 10-bit

header field starts with a dominant start bit and ends with a recessive stop bit. 2

parity bits are added just before the stop bit. The remaining 6 bits represents the

identifier of the message providing 64 identifiers. The 6-bit identifier field also can

30

be divided into two. While the first 4 bits define the identifier, the other 2 bits

specify the length of the data field in 4 different values, 1 byte, 2 bytes, 4 bytes and

8 bytes.

Data

The frame is followed by the “response” of one of the slaves (or the master task).

So as to decode and process the header field, a space called “response space” is

granted to the slave tasks (or master task) between the header and the data field. The

data field consists of 1 to 8 bytes data as required in the header section plus 3

command and security bytes. The checksum field which is sent after the data

terminates the LIN frame. The consecutive frames are separated by a time interval

called the ‘interframe’.

The slave nodes do not send any acknowledgement of correctly received messages

in LIN. The consistency of the network traffic is checked by the master node. If

there is an inconsistency (no response from the slave, incorrect checksum, etc.), the

master can retransmit the message. On the other side if the slave detects an

inconsistency, the slave controller sends it to the master in the form of diagnostic

data.

The maximum bus bit rate of LIN network is 20 kbps. Because this low bit rate and

low cost, LIN is suitable for the low bit-rate applications where using CAN would

be waste of both bandwidth and money.

The bit encoding of LIN is NRZ (non return to zero) and the termination resistance

of master node and the slave nodes are 1 kΩ and 20-47 kΩ, respectively. The length

of the wire link of a network must not exceed 40m and the maximum recommended

number of nodes in a sub-network should not exceed 16 even though the protocol

can support a maximum of 63.

31

2.1.4 MOST (Media Oriented System Transport)

Changing applications throughout the years necessitate imposing new requirements

for in-vehicle communication networks. As the share of the telematics and media

functions increased in automobiles by time, conventional buses like CAN bus began

to fall short to meet the requirements of these applications. Media and telematics

functions were requiring larger bandwidth than CAN could provide and were

necessitating working synchronously which is not compatible with the event-trigger

nature of CAN bus. Because of these motivations, the MOST Cooperation was set

up in 1998 by BMW, Daimler Chrysler, Harman/Becker and OASIS Silicon

Systems, with the aim of standardizing the communication technology of the MOST

concept. The MOST bus is designed to provide links between radios, navigation

controllers and associated systems, displays (on the instrument panel, at seats, etc.),

CD players and changers (audio and video CD, DVD, CD-ROM, etc.), voice

recognition systems, mobile telephony, active in-car sound distributors and so forth.

Although synchronous mode communication is dominant, MOST enables to

communicate in both synchronous mode and asynchronous mode. In Table 2-1 the

main properties of most of the signals that can travel on a MOST bus are

summarized.

32

Table 2-1 Signals Travelling on a MOST Bus

Signal Type Signals Bit Rate Format

Control Signals 125/250 kbps Async

Digital Audio:
- Uncompressed
audio CD
- MPEG
compressed audio

1.41 Mbps

128/384 kbps

Sync

Async

Digital Video:
– Uncompressed
CCIR 601/4:2:0
– Compressed
MPEG1
– Compressed
MPEG2

249 Mbit s-1

1.86 Mbit s-1

2/15 Mbit s

Sync

ASync

A Sync

Navigation:
– Data carrier
– MPEG1 video
– Vice

250 kbps
1.4 Mbps
1.4 Mbps

Async
Sync
Sync

Data Signals

Data
Communications Several bytes Async

In Figure 2-11, the most unfavorable situation of a conventional configuration for

audio and video signal distributions in a motor vehicle is given.

33

Figure 2-11 Conventional Configuration of Audio and Video Signals

Therefore, the MOST bus must provide a data rate in the order of 20 Mbps to

satisfactorily meet the requirements of a modern car. In fact, the theoretical gross

data transfer rate of the MOST bus is 25.46 Mbps in synchronous mode. However,

the MOST networks currently operate at around 8-10 Mbps gross for video and

audio applications. On the other hand, MOST networks operate at 14.4 Mbps at

maximum in asynchronous mode which can be used for example, to transmit short

Four-Channel Stereo Audio (4x2) x 1.4 Mbps 11.2 Mbps

Multiplexed Video 2.8 to 11 Mbps

+ reserve of 4 Mbps

+2.8 to 11 Mbps

+ 4 Mbps

Making Total of 18 to 26.2 Mbps

Navigation:

Video Image:

1.4 Mbps

Audio:

1.4 Mbps

TV:

Video Image:

1.4 Mbps

Audio:

1.4 Mbps

DVD:

Video Image:

2.8 - 11 Mbps

Audio:

1.4 Mbps

CD-Video:

Video Image:

1.4 Mbps

Audio:

1.4 Mbps

34

bursts of signals such as those corresponding to voice signals for navigation

assistance and other driver assistance messages.

Based on the D2B solution, the MOST is initially designed to carry digital audio

CD data at a fixed rate. This working mode is the “synchronous” mode of the

MOST system. In synchronous mode, a master supplies a clock signal so that all the

other network participants synchronize themselves to this clock. MOST also

supports the presence of several masters in a single network and the maximum

number of participants is 64. The digital data is transferred in frames with 44.1 kHz

(the rate of digital Audio CD) rate. Each frame consists of 60 channels of 1 byte

each. Therefore, the theoretical maximum data rate of the bus is calculated as

follows:

 Mbps268.2144100)860(=×× (2-1)

In fact, because of the format of the byte transmitted (in 10 bits, 8N1) in this mode,

the maximum gross data transfer rate is:

 Mbps585.2644100)1060(=×× (2-2)

The working principle of the MOST network is simple. 60 bytes of the frame is

considered as 60 channels and these channels are multiplexed with nodes or

applications. For example, as shown in the Figure 2-12, 6 channels of the frame,

making up 2.1168 Mbps, can be reserved for audio transmission and 29 channels of

the frame, making up 10.231 Mbps, can be allocated for carrying video signals.

Thus, taking the number and the quality of the applications (how many audio

signals, how many video signals and what quality) to be transmitted through the

MOST bus into consideration, sufficient number of channels are assigned to each

application. Along with these data channels, some communication channels are

dedicated to the transfer of commands, which indicates the command information of

the data send by the transmitter. Consequently, once the channel allocation is done,

35

when the connection has been established, the digital data stream can be transmitted

without being formed into packets.

Figure 2-12 Example of a MOST Frame [14]

The MOST physical layer was originally designed around a ‘copper’ twisted pair

wire link. However, now, it has evolved to its present form, supported by a fiber

optic medium. The MOST bus with optical fiber physical medium provides both a

wider range of applications and greater immunity to external parasitic signals, while

avoiding interference by radiation with the immediate environment. The application

topology of this bus is often in the form of a ring network.

2.2 GATEWAY NODE FOR INTERCONNECTED INVEHICLE

NETWORKS

As explained in the preceding sections, various network protocols, from LIN to

FlexRay, have emerged throughout the evolution of the in-vehicle electronics and

communication. This is due to the fact that, numerous applications, whose

performance and quality requirements differentiate significantly from each other,

are to run together in modern cars today. While for some applications, bounded

delay and real time performance is required, for some other applications providing a

large bandwidth is nothing but waste of sources. Among the diverse automotive

networking protocols, each of which are developed to suit to a specific requirement,

we can easily say that CAN bus is still the most important networking protocol and

constitutes the backbone of the in-vehicle communication. However, this will not be

36

the case in near future. New technologies such as x-by wire technology, which is a

generic term and means the replacement of mechanical and hydraulic systems by

completely electronic ones, is being introduced step by step to perform steering or

braking functions. Since such emerging technologies perform safety-critical tasks

which require real time communication, they require much more bandwidth than

CAN provides. Therefore a new network protocol, FlexRay, has recently been

developed to be used in x-by-wire applications where the CAN bus falls short in

satisfying the requirements. It is expected that in long term, the FlexRay protocol

will completely replace the CAN bus for high-speed applications and become the

main communication backbone in automobiles. CAN is expected to stay around for

a long time for relatively lower speed applications due to its legacy status. Hence,

both during the transition from CAN to FlexRay for high-speed applications and

afterwards both protocols will exist together in the car performing the tasks of

different characteristics. The co-existence of FlexRay and CAN in the car imposes a

Gateway unit which provides an interface between the both networks and facilitates

the inter-communication without compromising the overall performance of the

inter-connected network in terms of delay and jitter.

The previous work on Gateway design and implementation for in-vehicle networks

include Gateway implementation on FPGA which focus on the hardware

performance and timing properties [24], [25]. In addition, implementations by

micro-controller programming in [26], [27], [28] and [29] demonstrate that the

gateway correctly converts the messages between protocols. Among these studies,

[29] implements the Gateway unit in a Hybrid Electrical Vehicle test bench and

report experimental results for the achieved data rate of 0.9285 Mbps data rate on

CAN and 4.3478 Mbps on FlexRay. To the best of our knowledge all of the

previous Gateway implementations convert the messages from one protocol to

another without any processing of the message payload in the signal level.

Furthermore there is no study of the end-to-end network performance study for

FlexRay-CAN networks connected by a Gateway. In this thesis, we both process the

message payload in the signal level in addition to the protocol conversion and

37

examine the end-to-end network performance as well as the Gateway processing

delay for the Gateway implemented. Being able to process the messages in signal

level is very important for a full functional Gateway. Because according to the

configuration of the networks and the operational scenario of the Gateway, it might

be required to fragment the incoming messages into their signals and pack the

signals that will be sent in a single message according to the application

requirements and to potentially increase the network efficiency. One example could

be an ECU on FlexRay which requires multiple signals collected from different

sensors on CAN network to complete a certain task. If the periods of the CAN

signals are appropriate the gateway unit can put the signals in individual CAN

messages into a single FlexRay message and send it to the ECU. Similarly the ECU

in FlexRay might generate multiple signals at the same time to be sent to a number

of different actuators on the CAN bus. In that case it sends a single FlexRay

message which carries these multiple signals. The gateway fragments the message

and sends each signal to a different CAN node with different priorities as required.

The design, implementation and the performance analysis of the Gateway are

discussed respectively in the following chapters.

38

CHAPTER 3

FLEXRAY-CAN GATEWAY DESIGN

A Gateway, as explained above, is the unit which has interface with several

different networks in a bigger network and provides data transfer between the nodes

in distinct networks. These networks might employ different communication

protocols. In this context, FlexRay-CAN Gateway properties, design requirements

and the functional design of the Gateway are discussed in this chapter.

The operational requirements and performance metrics that we consider in the

design are the correct protocol conversion between FlexRay and CAN, bounded

gateway processing delay and delay variance and the flexibility of the

configuration. We first eloborate these design considerations and then describe the

Gateway functionality to transfer messages between FlexRay and CAN networks.

First of all, the Gateway has to perform protocol conversion which includes

extracting the payloads of the incoming messages and then adding the correct

protocol headers before sending them to their destination network.

Since FlexRay and CAN communication protocols are very different from each

other conceptually, FlexRay-CAN Gateway must comply with some number of

requirements. The Gateway design must take the basic differences between the

FlexRay and the CAN Networks into consideration which are the payload

difference, bit-rate difference and the difference in the arbitration scheme of the

protocols. While the maximum payload which can be transferred through CAN

39

network is 8 bytes, FlexRay frame might be up to 254 bytes long. Regarding the

arbitration schemes, CAN is an event-triggered network and uses the bus access is

granted to frames based on their priorities. FlexRay is a time-triggered network.

There is no conflict for medium access in FlexRay network since FlexRay uses

TDMA and flexible TDMA structure. Also bit rates of these two protocols are very

different from each other. As FlexRay bit rate is 10 Mbps, CAN network bit rate

can vary from several tens of kilobits to 1 Mbps at maximum. This difference in

transfer data rate of the two networks must be compensated and some precautions

should be taken in the Gateway so that no conflict occurs and no data is lost in

communication. The impacts of these differences of the FlexRay and CAN

networks on the design of the Gateway are explained below in 2 parts: FlexRay-to-

CAN Functionality Design and CAN-to-FlexRay Functionality Design.

Needless to mention, a very important performance metric for a Gateway is the

processing delay which is defined as the time difference between the transmit time

of the signal from the Gateway and the receive time of the same signal in the

Gateway. The processing delay is a component of the end-to-end delay of the

signals carried in the message. Hence it should be bounded by a maximum value to

be able to compute an upper bound for the signals that are transmitted end-to-end

over the Gateway. Obviously, the lesser the delay that the signals experience in the

Gateway, the better performance the Gateway has. The experimental data showing

that the Gateway processing delay is bounded is given in section 6.3.4.3. Finally the

processing of the Gateway is also related with the hardware used in it. For a better

performance, as mentioned previously, a high speed microcontroller unit is used in

the design of the Gateway. A further metric that is related to processing delay is the

variation of it. This variation particularly increases the jitter of the periodic signals

that are transmitted from FlexRay to CAN.

The messages that arrive at the Gateway might contain more than one signal. In that

case the Gateway should be able to map these signals to different outgoing

messages in a flexible way as required by the operation of the vehicle.

40

Our Gateway design is realized by software on a microcontroller. We took the

software complexity into consideration in the implementation. Low software

complexity is important for both keeping the processing delay low and the easy

adaptation of the Gateway code to the new emerging requirements of the node.

3.1 FLEXRAY-to-CAN GATEWAY FUNCTIONALITY DESIGN

FlexRay-to-CAN functionality mainly focuses on the fragmentation of the FlexRay

message and queuing the incoming messages to transfer them in order through

FlexRay network since FlexRay frame and data rate can be much greater than CAN

frame and data rate. The tasks that are performed in FlexRay-to-CAN functionality

are explained below in more detail.

Fragmentation

An average FlexRay frame is expected to be longer than the longest CAN frame

which is 8 bytes long. This is because the maximum FlexRay frame length is 254

bytes. Therefore, for FlexRay frames longer than the biggest CAN frame, FlexRay-

to-CAN functionality has to fragment the incoming message into pieces and send

them in consecutive CAN messages. If the incoming message is fragmented, the

Gateway must put a header to each message piece so as to relate these fragments

with the entire message on the other side. CAN node on the other side can easily

reassemble the messages coming from the Gateway and build up the whole

message. To handle the incoming FlexRay messages in the Gateway and making

them wait to be sent through CAN bus, Gateway needs to have some dedicated

buffers or a queue structure to store the fragments of the FlexRay message. Since

the data rate of the FlexRay is greater than the bit rate of CAN bus, after a while,

the fragments waiting to be sent on CAN bus might be accumulating in the

Gateway. So, to prevent any loss of data, the length of buffer allocated for the

fragments must be considered properly to meet the requirements of the Gateway.

Message Elaboration with Signal Mapping (Processing)

41

Very often, multiple signals of the vehicle such as temperature and pressure values

can be carried in a single message. Hence these signals might be destined to

different nodes. In addition, a certain signal might be received by multiple nodes.

The different message routing options that the Gateway must handle are

summarized below in bullets:

• Multiple fragments of the FlexRay message (each carrying a different

signal), each is sent with distinct CAN ID.

• Some fragments of the FlexRay Messsage might be multiplexed to different

CAN nodes and the others, each, is sent to single distinct CAN ID. E.g

Flexray message : 20 B, Fragment 1 (F1) : 6 B, Fragment 2 (F2) : 6 B,

Fragment 3 (F3) : 5 B and Fragment 4 (F4) : 3 B. F1 goes to CAN ID 1,

CAN ID 3 and CAN ID 4, F2 goes to CAN ID 2 and CAN ID 7, F3 goes to

CAN ID 6 and F4 goes to CAN ID 5

• Further, some fragments of the FlexRay message might be directed to the

same CAN ID. E.g F1 and F5 directed to CAN ID 10.

• As a situation related with fragmentation, if multiple fragments of the

FlexRay Message are sent by single CAN ID in the CAN bus, the total

length of the fragments may exceed 8 B. Then the message must be

fragmented and headers must be put properly. E.g F2(4B), F3(5B), F4(3B)

and F7(2B) wanted to be sent by CAN ID 5 then the fragments can be

packed as F2-F4 and F3-F7 so that total length of data becomes 7B and

there still remains 1B space to put header into the message.

As seen, Gateway must be able to handle very different signal mapping situations

and process the incoming data accordingly. Even, some of the possibilities

described above in bullets, might exist at the same time. In this case the buffer

management is very significant when processing the FlexRay frame. For instance, if

the message to be transmitted via CAN is more than 8 bytes, the message needs to

42

be transmitted in parts and the waiting parts must be stored in buffers. Therefore,

the more "greater than 8 byte messages" to be transmitted through CAN bus, the

more buffers the Gateway needs. Moreover, if the priority of the CAN message that

Gateway transmits is low (with greater ID) and the production rate of the message

in FlexRay network is high then it is probable that before all parts of the message

have been sent via CAN network, new messages arrive from FlexRay network. This

situation leads to the increase in the number of buffers needed. The same problem

may occur, though less probable, when the length of the message to be transmitted

through CAN is less than 8 bytes. Therefore, FlexRay ID numbers and CAN

priorities should be assigned properly by taking the specific mapping situations and

the data rates into consideration so that minimum number of buffers is needed in

Gateway and no data is lost. As a result, message processing functionality of the

Gateway is highly dependent on the network configuration. Besides this, software

protocol for the data exchange is also important. While, as one possibility,

according to the protocol running, Gateway might, for example, be required to add

header before each signal when multiple signals are to be sent in a single CAN

frame, as another possibility, the places of all signals are predefined in software and

zero is sent for the signal that are not present. To sum up, in message processing

task, Gateway must take, application dynamics, network configuration and software

protocol into account all together.

Queuing

Queuing is a very important functionality of the Gateway. The queuing requirement

arises from the bit rate difference of FlexRay and CAN network. Therefore,

Gateway must create and handle a proper queue structure and manage the incoming

messages by the help of this queue.

As discussed above, main functionalities of the Gateway can not be considered

independent of network configuration and software protocol running on Gateway.

Therefore, for the Gateway to function properly, queue requirements and structure,

43

FlexRay IDs and CAN priorities must be selected accordingly. As a consequence of

this, Gateway performance will be increased and data loss will be avoided.

Gateway functionality is depicted in Figure 3-1.

44

Figure 3-1 FlexRay-to-CAN Gateway Functional Diagram

Software

Protocol

Start

Message

from FR?

NO

YES

Message Proc
Network

Configuration

Compute N = # of CAN

Messages to Transmit

N

Message

Count = 0

FlexRay ID – CAN ID

(29b/11b) Conversion

Length in Bytes (L), ID,

Payload Extract

Message Waiting

in Queue

Put Header (If

Needed)

YES

Find Lnew

QUEUE QUEUE

PARAMETERS

L>8

NO

Put Header (If

Needed)
Find Lnew

L = Lnew - 8

YES

Put Message to

CAN Buffer

L = 8

NO

CAN Tx

Message Count =N
GO TO

START

YES

NO

L>8

YES
NO

N = N + 1

45

3.2 CAN-to-FLEXRAY GATEWAY FUNCTIONALITY DESIGN

CAN-to-FlexRay part of the Gateway is fairly straightforward when compared to

FlexRay-to-CAN direction since the data rate and the frame length of FlexRay are

greater than those of CAN bus. Therefore, Gateway does not have much difficulty

in processing the burst of CAN data and worry about how to store and where to

store the incoming data. CAN-to-FlexRay functionality performs basically CAN-

FlexRay ID conversion according to the signal mapping in the network. On top of

this, Gateway mainly focuses on elaborating the incoming CAN signals and packing

them properly so that the network sources is used efficiently without compromising

the delay requirements of the CAN signals. In a network composed of both FlexRay

and CAN nodes, lots of the signals passing through the Gateway are addressed to

the same FlexRay node. Therefore, it is wise for the Gateway to combine the signals

properly such that not distinct FlexRay slots are allocated to each incoming CAN

signal. This way network sources are utilized efficiently and CAN signals

experience less delay. This packing mechanism in the Gateway is strongly related

with network configuration. The factors such as length of the static slot in static

segment, CAN signal frame length, CAN signal priority, arrival rate of the

incoming CAN signals, mapping of the network and so forth, all, affect the way

how the incoming signals will be elaborated in the Gateway. Buffer management

and queuing requirements in FlexRay-to-CAN functionality of the Gateway are not

likely to be needed in this part of the Gateway unless the CAN traffic is too

crowded or Gateway structure is established badly. As a result, it can be said that

the CAN-to-FlexRay Gateway, while, forwards signals according to the CAN-to-

FlexRay signal mapping, it also accomplishes the signal transfer between the

FlexRay and the CAN network by making use of the network parameters as

described above.

46

Functional description of the Gateway is given in Figure 3-2.

Figure 3-2 CAN-to- FlexRay Gateway Functional Diagram

START

CAN

Received?

NO

YES

Length (L), ID, Payload

Extract

CAN ID (29b/11b) -

FlexRay ID Conversion

Message Packing

Network

Configuration

Put Message to Buffer

Send Thru Flexray

47

CHAPTER 4

DEVELOPMENT AND TEST ENVIRONMENT

The entire development, debugging, testing and the experimentation phases of the

Gateway are done using hardware and software tools that are compliant with the

automotive standards. All of these tools are mainly designed to be used for

automotive applications, particularly for FlexRay. Though all of the tools are very

new, since FlexRay protocol is recently maturing, they are fairly stable and worked

well throughout the studies. In order to provide a better understanding about how

the Gateway is developed and the experimentations are held, the tools and the

hardware used during the studies will be explained briefly in the following sections.

4.1 SK-91465X-100MPC FUJITSU FLEXRAY EVALUATION

BOARD

The SK-91465X-100MPC is a multifunctional evaluation board for the Fujitsu 32-

bit Flash microcontroller series MB91F465XA (CPU) which is very efficient to be

used in automotive applications. This Fujitsu FlexRay Evaluation Board is the main

building block of the network composed of CAN nodes, FlexRay nodes and the

Gateway node. In the experiments, this hardware is used as a distinct node as one of

the three options, namely, FlexRay Node, CAN Node, Gateway Node. Besides the

FlexRay and CAN support, the evaluation board is also compatible with LIN. As a

whole, it has 2 FlexRay Channels, 2 CAN Channels, 2 LIN/UART Channels and 1

dedicated UART Channel.

48

FlexRay Channels of the board are the redundant Channels, namely Channel A and

Channel B. Physical layer of the FlexRay via these channels is implemented by

AMS8221B transceiver. As opposed to CAN, data to the transceiver is not delivered

directly by the Microcontroller, MB91F465XA. Communication with the

transceiver is provided by the MB88121 series Standalone Communication

Controller. The function of the CPU is to control and configure the Communication

Controller.

MB91F465XA supports up to 6 different CAN connections. However, only 2 of

these connections are used in the Evaluation Board. So, it is possible to connect the

Fujitsu FlexRay Evaluation board to two different CAN networks at the same time

via the dedicated CAN channels located on it. TLE6250GV33 high speed

transceivers are used on the board for the CAN communication.

Figure 4-1 shows the SK-91465X-100MPC multifunctional evaluation board.

Figure 4-1 SK-91465X-100MPC Evaluation Board

49

4.2 SOFTUNE WORKBENCH SOFTWARE DEVELOPMENT

ENVIRONMENT

Softune Workbench, which is the propriety of FUJITSU, is the development

environment for FR Family Microprocessors. The projects to be finally downloaded

into the Fujitsu Microcontrollers are created, developed, manipulated, built and

stored in Softune Software Development Environment. The Gateway and all the

experiments are developed by the V60L06 version of the Softune Workbench. After

compilation of the developed project, Softune Workbench creates a *.mhx file as

the output. This *.mhx file can be directly downloaded into the flash memory of the

CPU (MB91F465XA). Softune also creates a *.abs file which includes necessary

information for the debugging process. Figure 4-2 shows a view from the Softune

Workbench Development Environment.

Figure 4-2 FR Family SOFTUNE Workbench V60L06

50

4.3 FR-FLASH PROGRAMMER

FME FR-Flash Programmer V4.0.2.1, the propriety Fujitsu Microelectronics

Europe GmbH, is used to download the projects to the flash memory of the

microcontroller without requiring an emulator. FR-Flash Programmer facilitates to

bury the code into the all kind of FR Family microcontroller via RS-232 serial port.

It connects to the correct memory area (FLASH) of the CPU, goes in flash mode,

erases the existing code in the flash and programs the flash with the machine code

located in *.mhx file. A view from the flash programmer which has many additional

advanced features is shown in Figure 4-3

Figure 4-3 FME FR-Flash Programmer V4.0.2.1

51

4.4 FLEXRAY COMMUNICATION CONTROLLER DRIVER

In the SK-91465X-100MPC message handling and communication tasks for the

FlexRay bus are not performed by the CPU but rather these tasks are handled by a

specific Communication Controller located on the board. The Communication

Controller used in the board is Bosch ERay series Standalone Communication

Controller [32]. The MCU's mission is to configure this Communication Controller

and to read/write from/to the registers of the controller. Therefore, Fujitsu

Microelectronics Europe GmbH offers a FlexRay Communication Controller Driver

to perform all necessary communication between the MCU and the Communication

Controller and to provide software to facilitate the evaluation of the FlexRay. The

aim of Fujitsu in providing such a tool is to save the users from dealing with the

dedicated registers in the beginning of their evaluations since getting familiar with a

new bus system like FlexRay bus requires quite a time.

Besides, FlexRay Communication Controller Driver provides an environment for

the user to easily configure the Communication Controller, which is Bosch ERay

module in the Evaluation Board, it also includes numerous of API (Application

Programming Interface) functions to evaluate the FlexRay network. The

configuration of the Communication Controller with the driver can be performed in

two ways. The first way is to manually program the dedicated registers in Bosch

ERay via the driver software. The other and more user friendly option is to use a

dedicated program, called FlexConfig, to configure FlexRay bus. This program,

which will be explained in the following chapter, outputs a *.chi file which is

recognized and can be directly used by FlexRay Communication Controller Driver.

Therefore, once a proper *.chi file describing the configuration of the network is

included in the project, FlexRay Driver automatically uses the file and makes the

necessary settings according to the configuration of the network. FlexRay

Communication Controller Driver is built upon a layered architecture which

contains four layers named as Application Programming Interface (API),

Communication Controller Abstraction Layer (CCAL), FlexRay Hardware

52

Abstraction Layer (FHAL) and Hardware Abstraction Layer (HAL) as shown in

Figure 4-4.

Application Programming Interface (API)

Communication Controller Abstraction Layer (CCAL)

FlexRay Hardware Abstraction Layer (FHAL)

Hardware Abstraction Layer (HAL)

Figure 4-4 FlexRay Communication Controller Driver Layer Concept [33]

API layer as its name implies provides variety of functions to the user to evaluate

the FlexRay bus. In other words it can be said that API layer is the user interface of

the Fujitsu FlexRay Driver. API layer of the driver provides the user with more than

90 functions which can be categorized in various services as listed below.

• Initialization Services (by “*.chi” files or manually)

• Control Service

• Interrupt Services

• Reception (Rx) Services

• Status Information Services

• Time Services

• Timer Services

• Transmission (Tx) Services

53

CCAL layer contains the routines for the driver while FHAL is the layer where the

FlexRay hardware description (Bosch ERay) is done. Finally the read/write

operations via the control hardware (CPU, MB91F465XA) are defined in the HAL

layer. The relations of these 4 layers between each other are strongly related with

the working principle of the driver. According to the architecture of the driver, the

user application calls one of the API functions (ffrd_api_functionname) for the

Fujitsu FlexRay Driver. This function evaluates and calls pertain routine

ffrd_ccal_functionname (). This layer includes all routines for computing values,

register settings, buffer requests and interrupt routines etc.

The ffrd_ccal_functionname () calls the Macro from ffrd_fhal_functionname (). In

this layer the address offset for the E-Ray address is added.

In ffrd_hal_function () the macros for different MCU-FlexRay Controller access

placed.

The Fujitsu FlexRay Driver is developed flexible to be used for various hardware

combinations therefore files, macros and functions are included in the software if

needed only. The principle driver architecture is shown in the Figure 4-5.

Figure 4-5 FlexRay Communication Controller Driver Architecture [33]

54

4.5 FLEXCONFIG™ DEVELOPER – UNIVERSAL FLEXRAY

CONFIGURATION TOOL

As discussed in FlexRay Communication Controller Driver part, FlexRay network

parameters can be configured either manually or automatically by means of *.chi

file. FlexConfig™ Developer is a software which facilitates to configure the

numerous parameters of the FlexRay network with its user friendly interface and

outputs a corresponding *.chi file to be used in the FlexRay Driver. Version S3V0-

F of the FlexConfig™ Developer is used throughout the all development and the

experimentation phases of the study. By means of FlexConfig™ Developer all

possible network parameters of the FlexRay bus defined in the FlexRay protocol

specification can be set and modified very easily. Therefore, it is not possible, by

using the FlexConfig™, to leave a network parameter unconfigured which might

lead the network to undetermined and unstable states. Moreover, using this tool in

the configuration of the FlexRay network is less prone to errors when compared to

configuring it by handling all the dedicated registers manually. Because

FlexConfig™ checks all the parameters entered by the user to identify if there exists

any non-conformances and, if there is, indicates these in the form of warnings and

errors. Even before the user sets any parameter, FlexConfig™ guides the user about

the limit values of the field to be entered, by taking all the other current parameter

values of the network into account. Also, the software shows to the user which

parameters of the network would be directly affected if the parameter pointed out

by the cursor was changed which provides the user a broader perspective about the

network. Scheduling, Frame ID allocation, fixing the Static Slot length, choosing

the macrotick duration, deciding the payload amount, defining the synchronization

and the start-up nodes are just a few examples among the many others a user can set

by using the FlexConfig™.

A view from the user interface of the FlexConfig™ is shown in Figure 4-6.

55

Figure 4-6 FlexConfig™ User Interface

4.6 FLEXCARD CYCLONE II SE

FlexCard Cyclone II SE is the network analyzer hardware used for the evaluation of

the performance metrics of both the FlexRay bus and the CAN bus. It is 32-bit

CardBus Card which is interfaced with a personal computer through PCMCIA slot.

FlexCard Cyclone II SE supports two redundant FlexRay channels as well as two

high speed CAN channels. Therefore, with this hardware, it is very easy to make a

performance analysis of a Gateway network which includes both CAN and FlexRay

network since the FlexCard Cyclone facilitates the user to use its CAN and FlexRay

interfaces at the same time. Apart from listening to the bus connected to it,

FlexCard Cyclone II SE can also send messages to both CAN and FlexRay

networks. While Bosch E-Ray communication controller, which is the

communication controller used in this study, core is included in it, FlexCard

Cyclone has 2MB memory for buffering the incoming data which makes it very

56

precise in tracking and logging the network traffic. A picture of the FlexCard

Cyclone II SE hardware is given in Figure 4-7.

Figure 4-7 FlexCard Cyclone II SE

4.7 FLEXALYZER

The FlexAlyzer is the software which is developed to operate in accordance with

the FlexCard Cyclone II SE to monitor and analyze FlexRay and CAN network

traffic. Both of FlexRay and CAN network traffic can be tracked and analyzed by

FlexAlyzer software at the same time. Monitoring in FlexRay bus can be performed

in synchronous and asynchronous mode. The synchronous mode, which is used

throughout this study, gives out more accurate results with respect to asynchronous

mode. To work in synchronous mode, FlexAlyzer software requires a dedicated

*.chi file which describes the scheduling of the FlexRay bus and when to

send/receive for the FlexCard Cyclone according to this scheduling. Since the

FlexCard Cyclone has the Bosch E-Ray communication controller core in it, the

registers of it can be configured by means of a *.chi file. In this context, FlexCard

can be seen as a distinct node in the network which can send/receive messages

57

to/from the network. Therefore, when FlexRay network is configured by

FlexConfig™, the time slots, generally the all, where the FlexAlyzer needs to

monitor the bus must be marked as receive slots for FlexCard. On top of it, if in

some time slots, FlexCard is required to send data, then those slots must be chosen

as transmit slot for the FlexCard. However, throughout this study, no data is sent by

FlexCard. After the configuration has been finished, FlexConfig outputs a dedicated

*.chi file for each of the nodes connected to the network, one of which is FlexCard.

When the *.chi file for the FlexCard Cyclone is included in the FlexAlyzer, the

software begins to operate properly. The FlexAlyzer software shows in the monitor

the incoming payload, its data length, frame id and the receive cycle for both

Channel A and Channel B as well as the diagnostic data like, network info, flags,

CRC, errors and so forth. FlexAlyzer is capable of working with multiple FlexCards

at the same time. In such a case, the software gives the monitoring information of

each hardware in distinct windows.

FlexAlyzer software can also be used to monitor and analyze the CAN bus.

FlexCard can be used to transmit data for CAN network too. For the FlexCard to be

ready to operate on a CAN bus, the communication data rate must be set correctly

and the CAN bus must be terminated with 120 ohm. Once these are done, the

software will immediately begin to monitor the CAN bus. FlexCard has two

interfaces on it which can be used for either CAN or FlexRay according to the

application. Therefore, if required, both of the interfaces can be used to monitor two

different CAN buses with different data rate. In total, FlexAlyzer software is

capable of monitoring 8 different CAN buses at the same time and giving the

information to the output window. The FlexAlyzer, when monitoring the CAN bus,

shows in the monitor the local time stamp for the receive time, the CAN id and the

payload.

58

The FlexAlyzer software has a user friendly architecture which provides user with

various flexibilities. Filtering the data to show in the monitor according to

numerous different criteria, taking log of the network traffic without any time

limitation, displaying the data in decimal or hexadecimal format are some of the

examples to the user friendly structure of the FlexAlyzer software.

A view from FlexAlyzer user interface is shown in Figure 4-8.

Figure 4-8 FlexAlyzer User Interface

59

CHAPTER 5

FLEXRAY-CAN GATEWAY IMPLEMENTATION

In this chapter we provide the details of all design and development phases of the

FlexRay-CAN Gateway. In this context, the discussion of the details of the

FlexRay-CAN Gateway design can be categorized under three sub-titles which

includes the considerations specific to the Gateway experiment, critical issues to be

taken into account about CAN and FlexRay protocols and the general structure of

the workflow in the software.

In order to clearly explain all the design considerations without missing any detail,

after having gone over the general structure of the design, the critical parts of the

FlexRay-CAN Gateway project will be handled exclusively. Finally, the remarks

about the FlexRay Communication Controller Driver, the experiences obtained

while working on auxilary hardware and software such as analysis tools, and

additional design considerations will be presented.

5.1 GENERAL ARCHITECTURE OF THE GATEWAY

A Softune Workbench workspace consists of the collection of a number of projects

each of which stands for a distinct node of the network. In this context, as it will be

detailed in Section 6.3, the workspace of the FlexRay-CAN Gateway experiment is

composed of 7 projects for 3 FlexRay nodes, 3 CAN nodes and a Gateway node.

This is shown in Figure 5-1 below. All the tasks such as message receiving,

message sending, time management, buffer handling and so forth for the FlexRay

60

nodes are covered in the projects named "Node1_ffrd.prj", "Node2_ffrd.prj" and

"Node3_ffrd.prj". Similarly, the tasks for CAN nodes are included in the CAN

projects named "CAN1.prj", "CAN2.prj" and "CAN3.prj". "Gateway.prj" is the

project where the Gateway tasks are implemented. After being developed and

compiled, *.mhx file for each of the project is downloaded into the distinct node of

the network via FR-Flashprogrammer.

Figure 5-1 Projects in the FlexRay Gateway Workspace

The coding structure of the projects is as shown in Figure 5-2. Top-most folders

starting with the name "api" and ending with "hal" are the places where the FlexRay

Communication Controller Driver software is located. The FlexRay Driver is

required to facilitate the communication with the FlexRay Communication

Controller and the MCU. Therefore, it is needed to be used, naturally, in FlexRay

projects and also in the Gateway project since the Gateway also interfaces with the

61

FlexRay bus during its operation. In order to make correct time measurements and

obtain reliable values for the performance metrics, CAN nodes are to be

synchronized to FlexRay network. Hence, in all experiments, FlexRay software

driver is, also, included in the CAN projects. The source files which perform the

main functions of the node are located under the FlexRay software driver folders.

While the header files of the software driver are located automatically in the

"Dependencies" folder, the user-created header files might be located in either

"Include" folder or the "Dependencies" folder.

Figure 5-2 Coding Structure of the Projects

Some of the source files namely, Start91460.asm, ffrd_api_int_chi.c, mb91465x.h,

vector.c and print_status.c are common to all projects. These files are important and

fundamental for the projects to work properly.

To begin with, Start91460.asm makes all the necessary settings of the 91460 series

Fujitsu chips. When powered on, CPU first runs this code and adjusts its own

62

settings. In another saying, Start91460.asm is the boot-up code of the 91460 series

Fujitsu microcontroller. Via the Start91460.asm file, the user can select the

controller device to work as the CPU from the options of the 91460 series Fujitsu

chips, perform all the memory management tasks, initialize the stacks, make the

Boot-Flash security settings, determine the clock speed of all kind of clocks exist in

the CPU, such as the peripheral clock, main clock, external clock, CAN clock an so

forth and perform many other task to make the CPU ready-to-go after power up.

Although Start91460.asm has never been modified during this study, it is required

to be modified accordingly when a project is to be debugged via Accemic Debugger

tool for Fujitsu Microcontrollers.

The file named ffrd_api_int_chi.c is also common to all projects. This source file is

used to configure the FlexRay network automatically via a corresponding *.chi

(controller host interface) file. This source code is called only if the initialization

mode of the FlexRay Software driver, which is "FFRD_INIT_MODE", is defined as

"CHI". This definition and many other settings about the FlexRay Communication

Controller Driver are located in the header file named "ffrd_api_global_def.h".

Another option to be selected for the configuration of the FlexRay network in

"ffrd_api_global_def.h" is "MAN" which stands for the manual configuration of the

FlexRay Communication Controller meaning to input all the dedicated register

values by hand.

If "CHI" is selected as "FFRD_INIT_MODE" in the "ffrd_api_global_def.h" file,

then the name of the *.chi file must be entered in the proper place of the code by the

user as shown below.

void ffrd_api_include_chi (void)

{

#include "Controller_Name.chi" /* add your *.chi file */

}

63

The *.chi file whose name is added in the source code should also be included in

the project. The Fujitsu FlexRay Software Driver searches for the *.chi file in the

following address: Root\Generated_files\src_FlexConfig. The "Root" in the address

is the place where the workspace file, *.wsp, is located. Having performed these

steps, as a result of the compilation of the project, the *.chi file, which is included in

the above address and whose name is added in ffrd_api_include_chi.c, appears

under the "Dependencies" folder of the project automatically and the configuration

of the Communication Controller has been successfully achieved.

"mb91465x.h" is a very important header file which has to be used in all projects.

Because all of the registers constructing the microcontroller, MB91465XA, are

defined in this file according to their memory addresses in the CPU. Moreover, by

making use of the "union" structure of "C", all registers are structured to be

accessible in bit, byte, half-word (16-bit) or word (32-bit) level as whichever of

those are useful. Therefore, mb91465x.h header file has to be included in all of

those source files and the header files where a register of the microcontroller,

MB91465XA, is to be used.

Finally, "vector.c" and "print_status.c" are the files common in all experiments that

worth making a few words about. Vector.c is a very fundamental source file which

is responsible for the Interrupt management in the project. Though, the "interrupt

sub-routines" for specific interrupt sources might be located in different source files

of the project, the necessary settings about the interrupts are handled in this file. In

Vector.c, priority levels of the interrupt sources are arranged, the interrupt sub-

routines are defined and the vector address, which is the memory address where the

running code would jump and execute the interrupt subroutine, of the interrupt

sources are set.

Print_status.c is the file which includes the idle task running in the experiments. As

it will be explained in more details later, in all experiments, there exists an idle task,

of which name is "printFlexRayStatus", running all the time in an infinite "for"

loop. Via "printFlexRayStatus" routine, the standing status of the node in FlexRay

64

bus is exported as ASCII characters through one of the RS-232 interfaces of the SK-

91465X-100MPC evaluation board. Therefore, by connecting the PC to the serial

interface of the evaluation board through the HyperTerminal software, the user can

observe the standing status of the node, which can be "Online", "Offline", "Wakeup

Listen", "Wakeup Standby" and so on.

Having explained the general architecture of the Gateway workspace and given

detailed information about the fundamental source codes which are included in all

of the projects in all experiments, in the following chapters, the tasks performed in

the FlexRay nodes, CAN nodes and the Gateway node will be discussed, in order,

more deeply.

5.2 FLEXRAY PROJECT DETAILS

The FlexRay projects in the Gateway experiment are "Node1_ffrd.prj",

"Node2_ffrd.prj" and "Node3_ffrd.prj" as shown in Figure 5-1. Since they are built

on the same architecture and only their related messages and their scheduling differ

from each other, "Node1_ffrd.prj" is selected as a generic FlexRay project to

explain in detail.

In the broadest sense, in the FlexRay projects two tasks are executed. Idle task is the

task which is always running in the project. "printFlexRayStatus" function, which is

the function to send FlexRay standing status as explained in the previous chapter, is

realized in the Idle task. The FlexRay task which is responsible for the handling of

the FlexRay message exchange, is executed upon a dedicated interrupt and is the

second task running in the project. The main structure of the code in the FlexRay

project is built on this "idle task" - "interrupt" cycle. In fact, this structure also

applies to CAN projects and the Gateway project which will be detailed in the

following chapters.

65

5.2.1 Tasks Executed In MAIN.c

The steps that have been taken during the design of the FlexRay node will be

explained and discussed beginning with the "MAIN.c" file of the project. If the

"MAIN.c" file, which is included in APPENDIX A, is examined, it can be seen that,

first, all interrupts and ports are enabled since, after power-on, the default attribute

for the interrupts and the ports is "disabled". Also the hardware watchdog is cleared

to initialize the code.

 __EI(); /* enable interrupts */

 __set_il(31); /* allow all levels */

 HWWD = 0x10; /* clear HW watchdog */

 PORTEN = 0x3; /* enable I/O Ports */

Then, in the flow of the main(), some CPU registers that are not set in

Start91460.asm and the interrupt vector table are initialized by InitCPUExtraRegs()

and InitIrqLevels(), respectively. InitIrqLevels() is a routine in the file named

vector.c. As explained in the previous chapter, priority levels of the interrupts and

the vector addresses of the interrupt sub-routines are set in "vector.c".

On the other hand, port 16 and port 27, which are connected to the LEDs in the

starter kit, are set to I/O port, UART4 of the evaluation board is initialized to be

used as the serial communication channel with the personal computer and a number

of "reload timers" are set to their initial values in InitCPUExtraRegs(). Six distinct

reload timers are used in the FlexRay tasks. One of them is used to clear watchdog

periodically and one another is loaded to issue interrupts to produce FlexRay static

messages. The remaining four "reload timers" are used as time ticks for the

generation of the sporadic dynamic segment messages. In the main flow, after

InitCPUExtraRegs(), all those 6 reload timers are started so as to periodically

interrupt the code for their individual tasks. Meanwhile, FlexRay driver and

Communication Controller are initialized by ttStartupHook() function. So that the

66

sporadic messages can be produced properly, "C" command, for the random number

generation, "srand(nTime2)" is used where the nTime2 is the seed of the random

number generator obtained by taking the network time of the FlexRay bus. The

script for the random number generation is given below.

 nTime2 = ffrd_api_get_mtick();

 srand(nTime2);

Up to this point, various registers for the operation of the program have been set and

initialized, the reload timers, which will supply time tick for the main tasks of the

FlexRay node, are loaded and started and the hardware to perform all these tasks is

initialized for the proper operation. Therefore, after all those preparations have been

done, the idle task of the FlexRay project, "runTask()", is called to start the

operation. The idle task is essentially an infinite loop in which the standing status of

the FlexRay network is transferred to a PC via the RS-232 interface. In the normal

flow of the project, this loop is interrupted by one of the reload timers so that the

task corresponding to that reload timer can be performed. Once the task is

successfully performed after the issue of the interrupt, the code returns to the

infinite loop of idle task, performing the "printFlexRayStatus()" and waiting for

another interrupt to jump into. As a consequence, throughout the operation of the

project, the program can never complete the idle task, "runTask()". If, somehow, the

code achieves to get rid of the idle task trap, this means that the FlexRay project

does not function properly and something goes wrong. So, to prevent the program

from ending in an undesirable state, after the idle task, a function named,

ttShutdownHook(0), is added which shuts the FlexRay driver down and ends the

operation of the code.

Next, we look into the details of the tasks performed in "MAIN.c". Mainly, in the

file, MAIN.c, the production of the periodic and the sporadic messages is realized.

As mentioned previously, the structure of the code is built on the generation of the

interrupts for distinct tasks in a timely manner and the time ticks for the tasks are

67

supplied by the distinct "Reload Timers". Next we explain the details of the "Reload

timers" subroutine which performs the FlexRay tasks.

To begin with, when the interrupt for the static slot message generation is issued,

the necessary arrangements for the production of the static segment message is

made in the subroutine of the interrupt named IsrReloadTimer1(). "Reload timer1"

is programmed to issue interrupt with the period of 5 ms which is the cycle length

of the Gateway experiment. The period of the "reload timer" may be altered in

different experiments, according to the cycle length of the network or the specific

message generation requirement of the experiment.

The goal of the periodic message generation is to generate the entire set of the static

segment messages in the very beginning of the FlexRay cycle. There are three

related issues. First of all, when a node is turned on, it synchronizes itself to the

already running FlexRay network and begins generation FlexRay messages with the

period of 5 ms. However, it is very likely, when it is synchronized to the network,

that the network is at an arbitrary time of the cycle which is beyond the time where

the FlexRay messages are meant to be generated. Second, even the static segment

message generation is in the very beginning of the cycle, still, after some time,

message generation begins to be realized in an undesired portion of the cycle due to

the drift of the local clock of the node from the global time tick of the network.

Finally, the generation time of the "reload timer" interrupt with 5 ms period may

also drift with respect to the global network time which results in the same

undesired consequence with the previous two situations.

To overcome the above problems and stabilize the message generation to the

beginning portion of the cycle time the following procedure is followed [23]. In the

interrupt subroutine, the network time of the FlexRay network is obtained in

macroticks via the function "ffrd_api_get_mtick()". This is a utility function

supplied by the FlexRay Software Driver in its time services. Therefore, to be able

to use this function, "ffrd_api_time_service.h" header file must be included at the

beginning of the corresponding file. "ffrd_api_get_mtick()" gives the current

68

macrotick value of the network in 16-bits. The aim is to issue the "reload timer"

interrupt, so that it always falls within the macrotick values from 0 to

TASK_OFFSET where the TASK_OFFSET is the user defined macrotick value

defining the limit of the "beginning of the cycle" term quantitatively. As observed

in APPENDIX A, the TASK_OFFSET is defined to be 100 for the Gateway

experiment which means that the timer interrupt for the periodic message

generation is to be realized within the first 100 macroticks of the FlexRay cycle.

Therefore, in the "Reload Timer1" interrupt subroutine, the network time obtained

by "ffrd_api_get_mtick()" is compared with the "TASK_ OFFSET" so as to

determine whether the interrupt generation falls in the limits. If not, the "Reload

Timer" is loaded with a reload value which corresponds to a smaller period than 5

ms so as to adjust the interrupt issuing time. Unless the "reload timer" is loaded

with a specific reload value, "reload timer" continues to issue interrupt according to

the last reload value. Since the last value after the adjustment is the reload value

which corresponds to a smaller period than 5 ms, this reload value causes the

interrupts to be issued in an earlier network macrotick each time. As a consequence,

another user defined variable TASK_OFFSET_MIN is defined. When the interrupt

issuing time happens to be a smaller value than TASK_OFFSET_MIN, then the

reload value corresponding to 5ms period is begun to be used again which prevents

the further interrupts from being issued earlier. Therefore, the "reload timer"

interrupt issuing time for the generation of the messages fluctuate between the

macrotick values TASK_OFFSET and the TASK_OFFSET_MIN which stabilizes

the message generation to happen, fairly, in the beginning of the FlexRay cycle. The

script achieving this stabilization task is given below.

__interrupt void IsrReloadTimer1(void) // 5ms

{

 /* get FlexRay ClusterTime */

nTime = ffrd_api_get_mtick();

/* correct host offset */

69

 if (nTime >= TASK_OFFSET)

 {

 TMRLR1 = 2490u; //reload value 4.98 ms

 }

 if (nTime <= TASK_OFFSET_MIN)

 {

 TMRLR1 = 2500u; //reload value 4.98 ms

 }

TMCSR1_UF = 0; /*Reset Timer, clear interrup flag*/

......

}

It is important here to notice that the case only in one direction where the interrupt

issued after the "TASK_OFFSET" is handled in the code. The reason for this is that

the "reload timer" of the node always retards with respect to the global network

time. So, the time drift happens only in one direction and it is not required to

consider the situation where the interrupt is issued earlier than 5 ms.

Having the periodic FlexRay messages generated at a known time, particularly, in

the beginning of the cycle is important. By doing so, more controllable and robust

results are obtained. For example, by generating all messages in the beginning of

the cycle, it is guaranteed that the messages are sent through FlexRay in that cycle

unless any specific constraints because of the repetition and the offset values apply.

In other words, if the messages were generated at arbitrary times in the cycle, it

would be possible for a message to be created at a time after its sending slot time

which would cause the message to wait for an about the cycle time unnecessarily.

To conclude, if the stabilization of the generation of the messages was not done, it

70

would get harder to make conclusions about the behavior of the FlexRay network or

figure out the reasons of the possible errors by examining, the jitter and the end-to-

end delay values of the messages since the arrival of the messages is chaotic or, at

least, drifts in time uncontrollably.

Moreover, the kick off for all of the FlexRay messages must be realized beginning

from the very same FlexRay cycle so that the more controlled results can be

obtained from the hardware experiment. This common cycle where all FlexRay

signals are begun to be generated is selected to be the 0th FlexRay cycle. However,

unless some precautions are taken, the nodes shall not start the message generation

beginning from the 0th cycle. Even, all nodes will begin to generate the messages in

different FlexRay cycles since they will be synchronized to the FlexRay network in

different cycles with respect to each other. To solve this problem, each node finds

out the current FlexRay cycle by utilizing the FlexRay Driver routine,

"ffrd_api_get_cycle()". Unless the FlexRay cycle they are in is not the 0th cycle,

they do not generate their initial message. Moreover, not any of the nodes begins to

send FlexRay messages once they are in 0th cycle after powered on, but, rather, all

of the nodes wait for the 0th cycle to have passed 150 times before sending the

initial static segment FlexRay message. The first reason for this wait time is that the

FlexRay node can not immediately be synchronized to the FlexRay network and

when a node is not synchronized then the output of the "ffrd_api_get_cycle()"

routine is always zero. So, before the synchronization is established, the node finds

itself to be in 0th cycle numerous times although in fact it is not. Besides, although

one of the nodes may have been synchronized and ready to generate messages, it

should still wait some time for all the other nodes to be synchronized. As a result, to

compensate for these effects, each node starts their message generation after they

have counted the 0th FlexRay cycle 150 times. The script for this cycle management

is given below.

if(start<=150)

{

71

 task_Node1();

 cycle_no = ffrd_api_get_cycle();

 if (cycle_no == 0)

 {

 start++;

 }

 }

if(start > 150)

{

}

At this point of the interrupt subroutine, IsrReloadTimer1(), for the Reload Timer1,

it is guaranteed that the first message is generated in the 0th cycle of the FlexRay

network and all the messages are produced in the very beginning of each cycle by

compensating for the drifts in the local clock. Once this infrastructure has been

provided, the messages are generated according to their periods. So as to generate a

message in the subroutine, a flag for the message is set to be processed in the

function task_Nodex() which is the function where the FlexRay task is handled.

After the flags for the messages to be produced in that specific cycle have been set,

the FlexRay task, task_Nodex(), is called in the interrupt subroutine so that the

messages got prepared in the correct FlexRay buffer.

Another task handled in the MAIN.c is the clearance of the hardware watchdog.

Hardware watchdog of the project is cleared in every 500ms the time tick of which

72

is provided by reload timer0. By clearing the hardware watchdog periodically, the

node is prevented from being reset by the watchdog after certain amount of time.

Generation of the sporadic messages is performed in four different interrupt

subroutines. The tasks held in all of four subroutines are the same. When an

interrupt for one of the sporadic messages is issued, it means that the time to

generate the message has come. As opposed to the static message generation case,

the payload for the message is immediately put into the FlexRay buffers. It should

be remembered that in the static segment message generation, the flags for the

messages to be produced were set and the necessary data were put into the buffer by

a FlexRay task function, task_Nodex(), which is called periodically at the end of the

IsrReloadTimer1() interrupt subroutine. As a result, the messages were achieved to

be produced periodically, which is the goal of the static segment message

generation. However, the goal of the sporadic message generation is to produce all

the sporadic messages with random interarrival times. Therefore, it is not possible

to assign a flag to each sporadic message and fill the corresponding FlexRay buffers

with the necessary data in a single task according to the flags. As a consequence of

this, for each sporadic message, a specific reload timer is assigned to determine the

sporadic generation time and the message data is immediately transferred to the

corresponding buffer in the very interrupt subroutine of the message. Having had

the sporadic message generated, load value of the reload timer is determined for the

next generation of the interrupt. Unless loaded with a specific value, reload timers

are programmed to be loaded with the last reload value that they operated. So, not

reloading the reload timer means generating the reload interrupt with a period of its

reload value which is not desired in sporadic message generation. In order to kill

this periodicity in the sporadic message generation, a random number is produced

via standard "C" function rand(). As mentioned previously, while the main code is

being prepared for the proper operation, a seed for the random number generation

process is produced via "srand(nTime2)" where "nTime2" is the network macrotick

time of the moment when the command is called. The random number generated by

the "rand()" function is used as the new reload value of the reload timer which

73

determines the time after which the timer issues the interrupt. Since after each time

the interrupt is generated, reload value is determined anew randomly, sporadic

message generation is achieved. What is important here is that the random numbers

as the result of the "rand()" command that are below some certain value are not

allowed to be used as the new reload value of the reload timer. This is because,

besides, the messages are to be generated with random interarrival times, the

interarrival time of the generated messages must, also, be greater than some certain

value. Therefore, by ignoring the values smaller than the limit and iterating the

random number generation until a value satisfying the requirement has been

obtained, the interarrival time between the consecutive message generation is

guaranteed to be greater than some certain value. The minimum interarrival time is

not unique and the value changes depending on the sporadic message. The script for

the random number generation is provided below.

 do {

 r_number = rand();

 }while (r_number <= 5000);//min. interarrival limit

As a final remark, the message handling through the FlexRay buffers is performed

in the dynamic segment message generation process. To elaborate the FlexRay

buffers in the MAIN.c, buffer handling and reading/writing services of the FlexRay

Software Driver must be utilized. This means that the corresponding header files

must also be included in the MAIN.c as well as TTask.c.

5.2.2 Tasks Executed In TTask.c

In the previous section, FlexRay message generation for both the periodic messages

in the Static Segment and the sporadic messages in the Dynamic Segment is

explained. As mentioned above, the periodicity of the static segment messages is

provided in "MAIN.c" and those messages are filled into the buffers via the

FlexRay task in the "TTask.c" to be sent through the FlexRay bus. This FlexRay

74

task, namely, "task_Nodex()", will be explained in this section. Apart from the

function,"task_Nodex()", there, also, exists other functions named

"ttStartupHook()", "ttErrorHook()" and "ttShutdownHook()".FlexRay driver and

Communication Controller are initialized via "ttStartupHook()". As its name

implies, "ttShutdownHook()" stops the operation of the FlexRay driver. This

function is called after the idle task, runTask(), has been run. Since the runTask() is,

in fact, an infinite loop, if program tried to execute the next command after

runTask(), this means that something has gone wrong and the FlexRay operation

should be terminated so as not to give way to the unstable situations.

The most important task existing in TTask.c is the task named "task_Nodex()"

where the message exchange through the FlexRay buffers is handled. This function

is originally called in the subroutine named "IsrReloadTimer1()" where the static

segment messages are generated. As mentioned previously, in this interrupt

subroutine, the flags for the messages whose periods have arrived in that specific

cycle are set and task_Nodex() is called. Therefore, in every cycle, which is 5 ms

for the Gateway experiment, task_Nodex() is called periodically and the messages

whose flags have been set are put into the corresponding FlexRay buffers. Since

throughout the tasks handled in the "TTask.c", details of which will be covered

shortly, Reception (Rx) Services, Transmission (Tx) Services, Status Information

Services, Control Services, Time Services and Initialization Services of the FlexRay

Communication Controller Driver are used, the following header files must,

additionally, be included in the beginning of the TTask.c.

#include <ffrd_api_init_chi.h>

#include <ffrd_api_control_service.h>

#include <ffrd_api_tx_handler.h>

#include <ffrd_api_rx_handler.h>

#include <ffrd_api_status_service.h>

#include "ffrd_api_time_service.h"

75

Every time task_Nodex() is called, first of all, status of the Communication

Controller is checked and if it is not working in the normal way and still not halted,

then the Communication Controller is forced to be started through the

"COLDSTART" method.

After the status check, all the messages to be sent in that cycle are filled into the

FlexRay buffers one by one via the script equivalent to the following.

if (tx8_flag){

 buffer8.Port = tx8_data;

 buffer8.period = tx8_period;

 buffer8.m_counter = ffrd_api_get_mtick();

 buffer8.c_counter = ffrd_api_get_cycle();

 statusTx8=ffrd_api_tx_handler_buffer((FFRD_UINT32)
&buffer8, 10, 3, FFRD_CHANNEL_A_B);

 tx8_flag = 0;

}

Actually, the above code is just an example of the scripts doing the same job for the

other static segment messages. For instance, that is the code to fill the necessary

FlexRay buffer for the periodic message whose message number is 8. It should be

noted that when the message number 8 is generated in the MAIN.c part, then the

flag for that message is set and after all flags have been set, the function

task_Nodex() is called. The above script is the place where this flag is processed in

the task_Nodex() routine. In task_Nodex(), all the flags for all the messages are

checked individually to determine whether the messages will be sent in that cycle or

not. If the flag is set then the corresponding buffer, which is buffer8 in the above

example, is filled with the payload to be sent through FlexRay bus. As seen from

the above code, for the Gateway experiment, the data consists of the payload,

period, cycle number and macrotick time of the network. All these elements

composing the whole data to be written into the buffer are the elements of the C

76

structure which is created for all of the buffers. The buffer structure designed for the

Gateway experiment is given below.

typedef struct{

uint16_t Port;

FFRD_UINT16 c_counter;

FFRD_UINT16 m_counter;

uint16_t period;

uint16_t empty[1];

}data_content;

Although 8 bytes were enough for the data, the structure was created as 10 bytes

long since the length of the FlexRay frame to be sent in the Gateway experiment

was 10 bytes long.

Note that in the C structure of the buffers that in the Fujitsu CPU, MB91F465XA,

the memory is reached as 16-bit or 32-bit. 8 bits of data can not be read/written

from/to the CPU memory. Therefore, the members in the C structure with the length

of 8 bit will be read/written from/to the memory as 16 bits. This may cause to the

loss of data in the situation where the structure includes members with length of 8

bits and no unused structure members are included. The situation can be illustrated

by the following example C structure.

typedef struct{

 uint8_t mem1;

 uint8_t mem2;

 uint16_t mem3;

 uint16_t mem4;

77

}data_content;

In the above structure, structure length is 6 bytes. When 6 bytes of data beginning

from the first member of the structure is to be written to the memory of the CPU,

the last member, mem4, of the structure can not be written to the memory since the

first two members of the structure occupy 4 bytes of memory instead of 2 bytes

which results in the loss of the last member of the structure. Because of this reason,

to track the data length of the structure easily, the data type of the variable

"c_counter" was chosen as "FFRD_UINT16" instead of FFRD_UINT8 though the

maximum value for the cycle number is 255.

Once the members of the buffer structure are properly assigned, the data is copied

to Communication Controller hardware by means of the

ffrd_api_tx_handler_buffer() routine. This function is the member of the

Transmission (Tx) Service in the FlexRay Software Diver. What

ffrd_api_tx_handler_buffer() function actually does can, more easily, be explained

by going over the above example for the message number 8. This message handling

function looks like the following with its arguments included.

statusTx8=ffrd_api_tx_handler_buffer((FFRD_UINT32)

&buffer8, 10, 3, FFRD_CHANNEL_A_B);

The first argument of the function signifies the address of the buffer8. The second

argument means the data length whereas the third argument indicates the

Communication Controller buffer number. So, in the light of these definitions, the

function ffrd_api_tx_handler_buffer() copies 10 bytes of data from the beginning of

buffer8 to the 3rd buffer of the Communication Controller. Last argument of the

function means that the data will be transmitted from both of the FlexRay channels.

Sending the data from only Channel A or only Channel B are the other remaining

options for the last argument of the function. After this

ffrd_api_tx_handler_buffer() function has been handled, the data is put into the

Communication Controller buffer. From this point on, the job of sending the

message through FlexRay bus belongs to the Communication Controller and the

78

FlexRay transceiver. According to the FlexRay IDs (FID) of its buffers,

Communication Controller waits for the slot time to come for each of the buffers

and sends the message of the buffer whose time has come to the transceiver so that

the message is put onto the wire on time. As a result of this mechanism, the TDMA

structure of the FlexRay network is successfully achieved.

The buffer where to store the static segment messages is determined according to

the network configuration. As mentioned before, the FlexRay network is configured

via the FlexConfig™ program which provides a graphic user interface to facilitate

the network configuration without any error. The FlexConfig™ outputs a *.chi file

for each node in the network describing the scheduling of the node and the register

settings of the Communication Controller. The scheduling related part of the *.chi

file of the FlexConfig™ for one FID is given below as an example.

/* Tx Buffer 5 (Frame Id: 19, Payload length 5,
FlexRayAB, Base 0, Rep. 2)*/

WAIT_TILL_CLEARED32(0x80000000, 0x00000514);

WRITE32(0x17020013, 0x00000500); /* WRHS1 */

WRITE32(0x000500be, 0x00000504); /* WRHS2 */

WRITE32(0x0000007c, 0x00000508); /* WRHS3 */

WRITE32(0x00000001, 0x00000510); /* IBCM */

WRITE32(0x00000005, 0x00000514); /* IBCR */

As seen from the example, the Communication Controller is configured by the

FlexConfig™ to store the message to be sent in the 19th static slot in its 5th buffer.

Similarly, the information about which message belongs to which buffer is included

in the *.chi file for all of the messages one by one. Therefore, the developer

programming the task_Nodex() routine has to use the *.chi file corresponding to the

very node he is working on and assign the buffer argument of the

ffrd_api_tx_handler_buffer() routine accordingly. Doing the job of mapping of the

buffer number and the static slot via the *.chi file by hand is cumbersome and prone

79

to errors. To eliminate these problems and realize the buffer number and the static

slot mapping automatically, a code parsing program is composed and the structure

of the project is changed accordingly. The details of this program are discussed in

section 5.5.

5.3 CAN PROJECT DETAILS

In the Gateway experiment, there exist three CAN projects of which structures are

very similar to each other as shown in Figure 5-1. Without loss of generality, the

tasks held on the CAN projects will be discussed by projecting the discussion to one

of the projects namely "CAN1.pjt".

As in the FlexRay project, the tasks performed in the CAN projects can, also, be

combined in two different files. These are MAIN.c and CAN.c. Therefore, these

files will be explained in the coming two sections to figure out, more detailed, what

is being done in the CAN projects.

5.3.1 Tasks Executed In MAIN.c

In MAIN.c, the time ticks are provided so that the CAN messages are generated

according to the desired periodicity. The structure of MAIN.c in the CAN project is

very similar to that of the FlexRay project. Therefore, instead of discussing all the

details in the file, the tasks held in MAIN.c will be tried to be explained through the

differences/similarities from/to the MAIN.c of the FlexRay project.

First of all, it should be noted that the CAN nodes are also connected to the FlexRay

network in addition to the CAN bus to have synchronization with the other nodes

and get the network time to be used for measurements. As a result, all the necessary

arrangements, settings and the initialization which have been done for the FlexRay

bus in the FlexRay nodes should also be done in the CAN nodes except the message

receive and transmission functions.

80

The flow of the code in main() for CAN project is essentially the same as that of the

FlexRay project except for the two differences. The first difference is in the

InitCPUExtraRegs() function where some registers used throughout the project are

initialized. In CAN project additionally, InitCANCtrl0() function is added in

InitCPUExtraRegs(). Like, the FlexRay driver is initialized via ttStartupHook(),

CAN engine in the CPU also must be initialized to be ready for a proper operation.

InitCANCtrl0() is the function which initializes one of the 6 CAN controllers

existing in the CPU and the details for this initialization function will be given

under the next chapter.

The other difference is that there are 2 reload timers in CAN project instead of 6

reload timers which is the case in the FlexRay project. One of the reload timers is

used to clear the hardware watchdog periodically and the other reload timer is used

to provide time tick for the periodic CAN message production. The four reload

timers, which account for the difference between the two projects, are each used for

the sporadic message generation in the FlexRay project. Since there exist no

sporadic messages in the CAN project, no additional reload timers are needed.

Under IsrReloadTimer3() subroutine which is the interrupt subroutine of the reload

timer responsible for the periodic message generation, essentially the same tasks are

performed as in the static slot message generation of the FlexRay project. The CAN

messages are generated in the very beginning of each FlexRay cycle and the first

CAN message generation takes place at the 0th FlexRay cycle. These tasks are

achieved as they are achieved in the FlexRay project. In the end of the subroutine

CAN0_SendMessage function which is responsible for sending the CAN messages

is called. CAN0_SendMessage routine fills the applicable registers of the CAN

engine in the CPU as required and the CAN engine sends the message to the CAN

transceiver so that the message is physically put on the CAN bus. The details of the

CAN0_SendMessage function will be presented in the following section.

81

5.3.2 Tasks Executed In CAN.c

In the file CAN.c 5 different tasks are executed. These are InitCANCtrl0,

CAN0_STATUS_ISR_Handler, CAN0_ReadMessageBuffer, CAN0_SendMessage

and CAN0_ISR.

In InitCANCtrl0 routine, the registers of the 0th CAN Controller of the CPU are

initialized so that the CPU can process the incoming and the outgoing messages in a

desired way. The CPU, MB91465XA, supports 6 different CAN Controller in its

peripherals. However, only two of them are interfaced to the CAN transceivers and

the rest are used as general purpose in the Fujitsu evaluation board, SK-91465X-

100MPC. Used CAN controllers in the SK-91465X-100MPC are CAN0 and CAN4

and InitCANCtrl0 routine initializes the former one. Since the CAN0 transceiver is

connected to the 23rd port of MB91465XA, applicable bits of the PFR23 (Port

Function Register 23) must be set for CAN receive and CAN transmit functions.

The following arrangements are made for this purpose.

 PFR23_D0 = 1; /* RX */

 PFR23_D1 = 1; /* TX */

Configuration of the CAN0 controller is also done in InitCANCtrl0. The CAN baud

rate determination, deciding on which type of interrupts to be issued and making the

buffer arrangements according to the application are some examples to the

configuration options of the CAN controller. The CAN controller must be disabled

so that some of the configurations may be done and after the configurations have

been set, the CAN controller is enabled again. The script for this operation and the

setting of the CAN bit rate is given below.

CTRLR0_CCE = 1; /* enable cfg change */

BTR0 = BTR_16M_500k_16_68_3; /* BTR config 500 kBaud */

CTRLR0_CCE = 0; /* disable cfg change */

82

CTRLR0_EIE = 1; /* enable error interrupt */

CTRLR0_SIE = 1; /* enable status change interrupt */

CTRLR0_IE = 1; /*enable interrupt generation for CAN0*/

CTRLR0_Init = 0; /* complete init, start CAN0 */

Message buffers in the CAN Controller must also be configured in the

InitCANCtrl0 routine. There exist 32 message buffers in each CAN controller of the

CPU. Each of the buffers can be set to be used either as transmit buffer or receive

buffer according to the application. All the necessary settings to properly arrange

the message buffers are done in InitCANCtrl0. Defining the ID to receive/send,

deciding to use the extended ID mode or not, managing the interrupt settings are

some of the examples of the buffer configuration which are covered in

InitCANCtrl0. One last thing to be taken into account when configuring the

message buffers of the CAN Controller of the MB91465XA is that the CAN buffers

greater than 16 in number can not be configured to be used as receive buffer

whereas all the buffers from 1 to 32 can be used as transmit buffer. In other words,

it must be avoided to configure the buffers from 17 to 32 as CAN receive buffer.

In the operating CAN scenario, CPU is informed when the CAN messages are

received via interrupts instead of polling the CAN controller message buffers.

Because of this reason, the routines, CAN0_ReadMessageBuffer, CAN0_ISR and

CAN0_STATUS_ISR_Handler functions in cooperation with each other. The latter

two of them are responsible for the interrupt handling. These functions determine

the source of the interrupt, clear the necessary flags and call the

CAN0_ReadMessageBuffer function if the interrupt source is one of the receive

message buffers. CAN0_ReadMessageBuffer function is called in the interrupt

subroutine by the argument which is the number of the buffer causing the interrupt.

Therefore what should be done first in the CAN0_ReadMessageBuffer routine is to

transfer the payload and the other necessary data from the message buffer to the

interface registers of the CPU so that the CPU can easily process the incoming data.

This is done by the following code.

83

IF1CREQ0 = buffer; // buffer number to be transferred

This command transfers all of the content of the buffer which is not masked, to the

interface registers of the CPU. From this point on the CPU is able to read and

manipulate, the ID, the payload or the any other information about the message

transfer of the incoming message.

The last task held in CAN.c is sending the CAN messages via CAN0_SendMessage

function. This function is called in the reload timer subroutine where the CAN

messages are generated. In the interrupt subroutine, CAN0_SendMessage function

is called with 5 arguments. Two of the arguments are the 4-byte data pieces which

form the 8 byte payload of the CAN message. The others are the ID of the message,

data length in bytes and the buffer number from which the message is to be

transmitted. While storing a message to the message buffer, the opposite procedure

is followed when compared to reading the message from the buffer. First of all, the

CPU transfers the data to the applicable interface registers as required with the

arguments of the function and then executes the following command.

IF1CREQ0 = buffer; // buffer number to be transferred

This time the above command stores all the content of the interface registers which

are not masked, to the specified message buffer so that it is put on the CAN bus via

CAN protocol engine. Since in the Gateway experiment, message trip time

throughout the network is measured so as to evaluate the performance metrics of the

Gateway, timestamp is put on the outgoing CAN message. This timestamp obtained

via the time service functions of the FlexRay Software driver. Therefore, so as to

use the applicable functions of the time service routines of the FlexRay driver,

"ffrd_api_time_service.h" is included in CAN.c. After the timestamps have been

obtained, they are written into the CPU interface registers which store the payload

of the outgoing message. Then, the content of the interface registers is transferred to

the message buffer as described above and the CAN message with the timestamp on

it, starts its journey on the CAN bus. The code for the timestamps is given below.

84

 nCycle = ffrd_api_get_cycle();

 mtick = ffrd_api_get_mtick();

 IF1DTA120 = nCycle + (mtick<<8) + (data1<<24);

5.4 GATEWAY PROJECT DETAILS

Gateway project also has very big similarities with the CAN and the FlexRay

project since Gateway is somehow the combination of both projects. In the coming

sections, only, the considerations and the approaches that differ from the preceding

projects will be discussed and the things which are repeated in the Gateway project

will simply be omitted. The tasks held in the Gateway will be discussed under 3

chapters; Main tasks, FlexRay tasks and CAN tasks.

5.4.1 Tasks Executed In MAIN.c

The tasks performed in MAIN.c are very much the same with that of, CAN project

and the FlexRay project. The structure of the code is the same. First of all, the

registers are configured and set, second reload timers are started and finally the idle

task of the project begins to run waiting the interrupts to be issued so that the main

tasks of the project can be performed.

It should be noted that the CAN Controller of the CPU must be initialized also for

the Gateway node. This is because the Gateway node performs the tasks of both

FlexRay and CAN nodes. Therefore, the initialization routine for the CAN

Controller, InitCANCtrl0(), is called in the InitCPUExtraRegs() function. In

addition to this, CAN interrupt vector and the CAN interrupt priority must also be

defined in vector.c by the user so that the Gateway node can receive CAN messages

through interrupt mechanism.

One of the reload timers is used to call the FlexRay task in every 5 ms. Since the

Gateway has no message generation requirement, in the interrupt subroutine, no

85

FlexRay message is prepared. Instead of message generation, this reload timer is

used for message polling of the incoming FlexRay messages. The incoming

messages are polled with the period of 5 ms in MAIN.c and if some messages are

received, they are processed and routed through the CAN network in the TTask.c.

One more thing to add about this reload timer subroutine and the polling

mechanism is that the polling time of the node is adjusted to occur just in the middle

time of the whole cycle, which is 2.5 ms. Adjusting of the polling time just in the

middle of the cycle is specific to the Gateway experiment. As mentioned in the

previous chapters, it is possible and desirable to generate the reload timer interrupts

in the very beginning of the FlexRay cycle for the FlexRay and the CAN projects.

The mechanism to stabilize the interrupt issuing time to the beginning of the

FlexRay cycle is discussed in section 5.2.1. Moreover, the reasons for adjusting the

message generation time this way is also explained clearly. Because of the parallel

reasons but with a different point of view, the FlexRay messages in the Gateway

must be polled in the middle of the FlexRay cycle. The reason for this is that, as it is

mentioned, the FlexRay messages are being generated in the beginning of the

FlexRay cycle. Therefore, the messages do not miss their sending time slot if they

are to be sent in that very cycle. On the other hand, if the receiving node, which is

the Gateway, for those messages is programmed to poll the incoming buffers in the

very beginning of the cycle, naturally, the receiving node will see that either the

buffers are empty or the messages sitting there belong to the messages of the

previous cycle. In other words, the Gateway will receive nearly all of the messages

with one whole cycle delay. Because the messages were not generated yet and they

could only be sent after their defined slot time has come. Therefore, so as to avoid

this phase delay between the generated Flexray messages and the received ones, the

Gateway polls the receive buffers if there is a new message arrived just in the

middle of the cycle. The middle of the FlexRay cycle is an important time spot,

because, according to the scheduling the FlexRay network that the Gateway is

connected to, it is guaranteed that all the generated messages are achieved to be

transmitted to the other node until the mids of the FlexRay cycle. The stabilization

of the reload timer interrupt to the mids of the FlexRay is essentially the same thing

86

as the stabilization of the messages to the very beginning of the cycle which is

explained in section 5.2.1 in details. The only difference with that case is that the

TASK_OFFSET value is defined to be 2500 which signifies the 2.5 ms time

difference instead of using the previous value which was 100 and indicated the

beginning of the cycle.

5.4.2 Tasks Executed In TTask.c

As mentioned previously, task_Nodex routine in TTask.c is used for polling the

FlexRay receive buffers to see if new messages have come or not. The function

task_Nodex is not used to send FlexRay messages through the FlexRay network

though the Gateway has to perform this task also. This sending task is held in

CAN.c and the details of the task will be explained in the following chapter.

Before performing the receive task, in the beginning of the function, task_Nodex

checks the status of the Communication Controller and, if it is needed to, follow the

procedure to start the Controller as described in section 5.2.2. After the status check

and the necessary arrangements, the FlexRay task does check all the receive buffers

one by one to see if there are new received messages. The function named

ffrd_api_rx_handler_buffer(), whose structure is very similar to the message

transmit handling function, is used to receive messages from FlexRay bus. While

the routine ffrd_api_rx_handler_buffer must be called twice separately for each

redundant channel, calling the message transmitting routine only once is enough.

Because there exist two distinct channels, Channel A and Channel B, to receive the

FlexRay messages and although, the sending side of the message has send the

message through both channels it is possible that the message might be received at

only one channel due to the hardware problems, software bug or electromagnetic

interference. On the other hand, to send a message through redundant channels,

filling only one buffer is enough. The Communication Controller copies the content

of this transmitting buffer when to send the data to the FlexRay transceivers of both

Channels. Parallel to this structure, when the FlexRay network is scheduled by

87

defining the receiving and the transmitting time slots via the FlexConfig™, the

program outputs a *.chi file where only a single buffer is allocated for each

transmitted signal and two buffers for each received signal. An example to this

situation from a *.chi file is given below.

/* Tx Buffer 5 (Frame Id: 34, Payload 5, FlexRayAB*/

WAIT_TILL_CLEARED32(0x80000000, 0x00000514);

WRITE32(0x17030022, 0x00000500); /* WRHS1 */

………………………………………

/* Rx Buffer 8 (Frame Id: 68, Payload 4, FlexRayA */

………………………………………

/* Rx Buffer 9 (Frame Id: 68, Payload 4, FlexRayB*/

………………………………………

The script to check the receive buffers to determine if some messages have come is

given below.

statusRx1=ffrd_api_rx_handler_buffer((FFRD_UINT32)&sRx1,
&header_rx1, 10, 0, FFRD_CHANNEL_A,
ffrd_api_new_rx_data_buffer(0));

statusRx2=ffrd_api_rx_handler_buffer((FFRD_UINT32)&sRx1,
&header_rx1, 10, 1, FFRD_CHANNEL_B,
ffrd_api_new_rx_data_buffer(1));

The first 2 arguments of the total 5 arguments of the function

ffrd_api_rx_handler_buffer() are the outputs and the rest of them are the inputs of

the routine. First argument of the function is the payload of the received message

and the second argument is the header. The input arguments of the

ffrd_api_rx_handler_buffer() function which are the 3rd, 4th and the 5th arguments

88

stand for the data length in bytes, the buffer number and the receiving channel,

respectively. Therefore, to combine it all, ffrd_api_rx_handler_buffer() routine

reads the content of the receive buffer, which is given in the 4th argument, for the

specified channel and writes the payload and the header of the received message to

the addresses defined by the 1st and the 2nd arguments, respectively. The length of

the data that will be written beginning with the memory address specified in the first

argument is given in the 3rd argument. As it is in the message transmit case, in

ffrd_api_rx_handler_buffer() function also, the user must enter carefully the buffer

numbers that will be read by the function, by checking it from the corresponding

*.chi file.

In task_Nodex(task), the message receiving task for the periodic messages and that

of the sporadic messages are handled separately although it does not have to.

Because, since the structure of dynamic segment messages and the static segment

messages are different from each other, it is more convenient to process those

messages separately.

It is considered that a new message has arrived to the node if the return value of the

ffrd_api_rx_handler_buffer() function is FFRD_OKAY for at least one of the

redundant channels. The function ffrd_api_rx_handler_buffer() does not return

FFRD_OKAY value again after it has read a buffer until a new message arrives to

the receive buffer. When it is determined, as just explained, that a new message has

arrived, the incoming message is processed and forwarded through the CAN bus

according to the requirements of the Gateway experiment. The details of the

task_Nodex() function for the Gateway project is given in APPENDIX C.

5.4.3 Tasks Executed In CAN.c

The tasks held in CAN.c is very similar those of the CAN project which is

discussed previously. Also in the Gateway project, the same tasks namely,

InitCANCtrl0, CAN0_STATUS_ISR_Handler, CAN0_ReadMessageBuffer,

89

CAN0_SendMessage and CAN0_ISR are held. Only the applications coded for the

tasks differ.

In the beginning of the CAN.c the routine named InitCANCtrl0 is implemented. In

InitCANCtrl0, CAN Network and the CAN Controller is configured. The tasks such

as configuring the message buffers and determining the CAN baud rate are held in

the function as discussed under CAN project. It should be noted that although the

InitCANCtrl0 routine is defined and implemented in CAN.c, the function is called

in MAIN.c during the configuration of the necessary registers of the CPU. In

addition, so as to be able to receive messages via CAN bus, the CAN interrupt

vector and the CAN interrupt priority must also be defined in vector.c

The CAN0_SendMessage function is an other task held in the CAN.c the structure

of which is also very much the same with that of the CAN project. The function

CAN0_SendMessage is called from TTask.c when a FlexRay message is received.

After a FlexRay message has been received, the Gateway node processes the

incoming message according to the application and sends the message through

CAN bus by calling the CAN0_SendMessage function. Inside the function,

timestamp, which signifies the leaving time of the message from the Gateway, is

added in the payload so that the performance metrics of the network can easily be

measured and then the message is put into the buffers to be transmitted through the

CAN bus.

The other important task held in CAN.c is CAN0_ReadMessageBuffer routine. The

CAN0_ReadMessageBuffer function works in concordance with the interrupt

related routines, namely CAN0_STATUS_ISR_Handler and CAN0_ISR. When a

new CAN message is received, an interrupt is issued by the CAN Controller

indicating the message buffer number in which the incoming message is stored.

CAN0_ReadMessageBuffer is called in the interrupt subroutine with an argument

which stands for the buffer to read.

90

In CAN0_ReadMessageBuffer routine first of all the network time is obtained by

using the FlexRay Driver API functions. The obtained values signify the receive

time of the CAN messages in the Gateway. After the timestamp has been obtained,

the data in the message buffer is transferred to the interface registers so that the

CPU easily processes the incoming data. Then the payload and the ID of the

received message is read and processed. Since the incoming message contains the

timestamp indicating the transmitting time of the message, macrotick value and the

cycle number are separately extracted to be sent through FlexRay. The script

extracting the timestamp components from the payload and reading the ID from the

corresponding register is given below.

 can_send_cycle = 0x000000FF&IF1DTA120;

 can_send_mtick = (0x00FFFF00&IF1DTA120)>>8;

 ID = 0x1FFFFFFF&IF1ARB120;

The remaining code in the CAN0_ReadMessageBuffer routine forwards the

received CAN messages to the FlexRay network according to the CAN-to-FlexRay

mapping of the Gateway.

It should be noted that as opposed to the FlexRay message generation case in the

FlexRay project, here, a-flag-for-each-message structure is not applied. Instead of

setting a flag for each CAN to be sent through the FlexRay network and processing

all the flags periodically and sending the messages whose flags are set, in

CAN0_ReadMessageBuffer, the FlexRay buffers are filled with the corresponding

CAN messages immediately. In other words, ffrd_api_tx_handler_buffer() function

is directly called under CAN0_ReadMessageBuffer whenever needed. If the

ffrd_api_tx_handler_buffer() routine was not immediately called and the CAN

messages are put into the FlexRay buffers all together periodically by the call of the

task_Nodex function, then the CAN messages would experience extra delay by

waiting the period of the task_Nodex to come. Even as the worst case, it is possible

that a CAN message is received just after the call of the task_Nodex. In this case the

91

CAN message will suffer in the Gateway for a time of a whole cycle which is 5 ms

for the Gateway experiment. For the case of 5 ms task_Nodex polling period, the

mean time the CAN messages will stay additionally in the Gateway is 2,5 ms which

is a very large amount of time for the performance of the Gateway. However, the

aim of the design of the Gateway is to keep the incoming messages in the Gateway

with minimum of time and forward them to the destination network as soon as

possible. Therefore, so as to improve the delay performance of the Gateway,

ffrd_api_tx_handler_buffer() function is called and the FlexRay buffers are filled

with the messages immediately in the CAN.c. Also, since the buffer handling, time

and control services of the FlexRay Software driver are used throughout the coding

in CAN.c, the driver header files listed below must be included in the beginning of

the file.

#include "ffrd_api_time_service.h"

#include <ffrd_api_tx_handler.h>

#include <ffrd_api_status_service.h>

#include <ffrd_api_control_service.h>

5.5 OTHER DEVELOPMENT ACTIVITIES

As it is explained in the previous sections, while using the

ffrd_api_tx_handler_buffer() and the ffrd_api_rx_handler_buffer() functions, the

arguments of the functions, particularly the buffer number, have to be entered

manually by the programmer. This is done by checking the mapping of the Gateway

and the corresponding *.chi file of the Gateway where the buffer allocation for each

FlexRay ID is given. Since all those checking of the files are done by hand, the task

of filling the buffer number of the ffrd_api_tx_handler_buffer() and the

ffrd_api_rx_handler_buffer() functions is cumbersome and carries the risk of

making errors. Therefore, so as to do the mapping and filling the buffer numbers in

the corresponding FlexRay functions automatically, a program is written in

92

Windows environment and the coding structure of the applicable files are a little bit

changed.

According to the scenario which will carry out the above mentioned process

automatically, first of all, a *.txt file named "config.txt" is created. In the

"config.txt" file, CAN-to-FlexRay mapping, FlexRay-to-CAN mapping information

and the name of the *.chi file created for the Gateway node by the FlexConfig™ is

entered by the user. An example for the "config.txt" file is given in APPENDIX E.

The "config.txt" file and the *.chi file created for the Gateway node are both

included in the project directory of the program which is coded by the MS Visual

Studio 6.0 in C language. This program parses both the config.txt file and the *.chi

file of the Gateway and outputs two files named gateway.c and gateway.h where the

FlexRay buffers are mapped with the FlexRay IDs and the CAN messages. The

content of the files, "gateway.c" and "gateway.h", are given in APPENDIX F and

APPENDIX G, respectively. As the file "gateway.c" is examined, it will be

observed that all the FlexRay IDs and the CAN IDs, which are received and

transmitted during the operation of the Gateway, are stored in the file as distinct

arrays. The name of those arrays are CANtx[],CANrx[],FRtx[] and FRrx[]. In

addition to this, the mapping information is kept in two different arrays, namely

CAN2FR[] and FR2CAN[]. CAN2FR[] is the array that indicates the FlexRay IDs

to which the incoming CAN signals will be mapped by storing the index number of

the FRtx[]. Likely, the array FR2CAN[] indicates the CAN IDs to which the

incoming FlexRay signals will be mapped by storing the index number of the

CANtx[]. This concept can be illustrated by the following script which is taken

from a real "gateway.c".

int CANtx[15] = {1, 0, 19, 18, 17, 13, 12, 11, 10, 9,
8, 5, 4, 3, 2};

int CANrx[15] = {123, 400};

int FRtx[2] = {6, 9};

int FRrx[15] = {7, 8, 16, 17, 19, 20, 26, 28, 31, 33,
36, 37, 41, 47, 48};

93

int CAN2FR[2] = {0, 1};

int FR2CAN[15] = {0, 2, 1, 3, 4, 10, 6, 7, 5, 9, 8,
14, 12, 13, 11};

When FRCAN[] is examined, for example, the 6th element of the array, which is

FR2CAN[5], is found to be 10. This means that the 6th element of the FRrx[] array

which stands for the incoming FlexRay signals is mapped to the 10th element of the

CANtx[] array signifying the outgoing CAN messages. Therefore, FID 26 is

mapped to CAN ID 12 according to the above script. The same logic applies to the

CAN2FR array also.

Finally, in the gateway.c, the buffer allocations for the FlexRay IDs for both receive

and the transmit buffers are in Tx_Buffer[],Rx_Buffer_A[] and Rx_Buffer_B[]

arrays. In those arrays, buffer numbers to which the FlexRay IDs are mapped are

stored. Similar to the previous logic, the number corresponding to an element of the,

say, Tx_Buffer[], indicates that the buffer with that number is allocated to the

FlexRay ID corresponding to that index number in the FRtx[] array. The same

condition also applies to the Rx_Buffer_A[], Rx_Buffer_B[] and FRrx[] triplets.

Note that two distinct buffers are allocated to each FlexRay ID. Therefore, there

exist two different buffer mapping array in the "gateway.c" for the received signals

in the FRrx[].

Once the files gateway.c and the gateway.h are created by the program coded in

Windows environment as explained above, the next step is to adapt these files to the

Gateway project and change, if needed, the structure of the Gateway code

accordingly so that the FlexRay buffer numbers are automatically entered with less

effort and without any error.

In fact, no drastic, changes are done in the structure of the Gateway coding.

Including the gateway.h file in the corresponding Gateway file is enough to be able

to use the arrays in the gateway.c. If the gateway.h file is observed in APPENDIX

G, it will be seen that, what is done basically in the file is to render the arrays

existing in the gateway.c to be used in external files by the C command "extern".

94

The reason that the gateway.h is created together with gateway.c is to obtain a more

flexible structure and to be able to use the gateway.c in any files without any

compilation error by simply including the gateway.h file in the corresponding file.

Therefore, in the light of the above information, to be able to use the files gateway.c

and gateway.h, first of all, these files are included in the working directory of the

Gateway project. After that, the gateway.h is included in all of the files where the

ffrd_api_tx_handler_buffer() and the ffrd_api_rx_handler_buffer() functions are

used. Finally, depending on the function used, one of Tx_Buffer[], Rx_Buffer_A[]

or Rx_Buffer_B[] arrays is used in the argument of the function which stands for

the buffer number. As a result of the usage of Tx_Buffer[], Rx_Buffer_A[] and

Rx_Buffer_B[] arrays, the buffer numbers for the ffrd_api_tx_handler_buffer() and

the ffrd_api_rx_handler_buffer() functions are automatically entered, the

probability of making error in filling those arguments decreases and the

cumbersome task of checking both the network scheduling and the corresponding

*.chi file to match the buffer allocation one by one is avoided.

95

CHAPTER 6

EXPERIMENTAL PERFORMANCE ANALYSIS AND

RESULTS

In this chapter, we present the experimental performance evaluation of our designed

Gateway node as well as a performance evaluation of an interconnected FlexRay-

CAN network. Before going over each experiment individually, first of all the

performance metrics investigated in the experiments are explained. Next, general

description of the experiments is presented, the issues common to all of the

experiments are discussed and the time measuring mechanism is explained in

details including the discussion about the effects of possible errors. Finally, each

experiments held during the study is discussed under separate title. Our selected

results and discussions are also presented in [34].

6.1 PERFORMANCE METRICS

In this work, we first investigate the end-to-end delay (worst case response time)

and jitter of messages in individual FlexRay and CAN networks as well as end-to-

end delay and jitter of the signals that go through the Gateway. In addition we

consider the effect of different scheduling approaches on the timing of the messages

and the efficiency of the bandwith use particularly for the FlexRay network.

The end-to-end delay and jitter of the signals that are transmitted through the

Gateway depend on the performance of our Gateway design and implementation.

96

Hence, we investigate the correctness of the protocol conversion, signal mapping

and the processing delay for the Gateway.

Next, we define these metrics in detail.

The end-to-end delay is defined as the time difference between the transmit time of

the message and the receive time of the same signal. Here, the transmit time,

theoretically, is defined as the time that the message is put on the wire for the

FlexRay node and that the message is tried to be put on the wire for the first time

for the CAN node. In both of the definitions, the time stamp for the transmit time

must be put into the message just at the end of the respective transceivers of the

CAN and the FlexRay node. Therefore, let us call this time as the hardware transmit

time. However, the hardware transmit time is not measurable practically since the

transceivers are not programmable and the timestamps are put into the payload via

the software running on the CPU. As a result of this, the transmit time for both the

CAN nodes and the FlexRay nodes is considered to be the time where the message

is put into the sending buffers of the nodes in the CPU. Let us call this time as

software transmit time.

Similarly the same logic applies to the receive time for both the CAN and the

FlexRay nodes. So, the hardware receive time is the time where the incoming signal

is received from the wire via the transceiver. The software receive time is the time

where the CPU is, for the first time, able to process the message.

To combine it all, the end-to-end delay can be formulated as follows.

)(,,, hardwarettT hwtxhwrxhwendtoend −=Δ −− (6-1)

)(,,, softwarettT swtxswrxswendtoend −=Δ −− (6-2)

In the experiments, end-to-end delay is calculated by using the formula for the

software end-to-end delay although this value is greater than the actual delay

experienced by the messages. The difference between the software end-to-end delay

97

and the hardware end-to-end delay is discussed in details in the chapters where the

experiments are individually handled by displaying the order of the deviation

quantitatively and explaining the reasons of the deviation.

Jitter is the second performance metric which is measured in the experiments. The

jitter that the signals experience is easily calculated once the receive time of those

messages is properly measured. As defined formerly, jitter is the time deviation

from the periodicity and is, obviously, applicable to the periodic signals only. Also,

it should be noted that this jitter definition is applicable per signal rather than the

group of signals. The average jitter of a signal can be formulated as follows.

 periodsignalntnt
N

AvgJitter swrx

N

n
swrx _)1()(1_ ,

1
, −−−×= ∑

=

 (6-3)

According to this formula the jitter is calculated in all experiments for the periodic

signals and the jitter results are discussed under the corresponding chapter where

the experiment is explained in details.

Protocol conversion correctness is the main performance metric for the

functionality of the Gateway. If verified, this performance metric means that the

Gateway performs its very basic functionality. In this context, the protocol

conversion includes being able to receive messages from both networks, map the

incoming messages to be sent in the other network according to the network

scheduling configuration and writing the payload to be sent to the right buffer while

satisfying the specific requirements of both networks.

Signal mapping is another performance metric which is about the Gateway

functionality. This metric covers the capability of the Gateway to process the

received messages in the signal level. While the Gateway is able to segment an

incoming message into pieces to transmit each in distinct messages possibly

together with other signals, it is also able to assemble several signals in order to

send them in a single message.

98

Processing delay is simply defined as the time during which a signal stay in the

Gateway while crossing it. Therefore, this metric is the measure of the quality of the

Gateway design and the smaller the processing delay is, the better performance the

Gateway exhibits.

6.2 OVERVIEW OF THE EXPERIMENTS

The basic aim of this study is to design and implement a high performance

FlexRay-CAN Gateway which satisfies all the functionalities that are discussed in

CHAPTER 3 and conduct an end-to-end performance analysis of the inter-

connected FlexRay and CAN networks in terms of delay and jitter. The

performance of the Gateway mainly signifies the processing delay of the node and

its contribution to the overall jitter. In this context, the performance of the Gateway

solely depends on its design and implementation. On the other hand, end-to-end

performance analysis of the interconnected network, which is composed of FlexRay

network, CAN Network and the Gateway node, depends on the performances of

both networks and the Gateway unit separately. This is because, a signal that is

generated from one end of the network experience a delay in both FlexRay and

CAN networks and a processing delay in the Gateway during its transmission to the

other end. The variations in these delay components also cause the signal to

experience a jitter if it is a periodic signal. Therefore, the goal in designing the

entire interconnected network is to minimize the end-to-end delay and the jitter that

the signals experience as well as guaranteeing that all of the signals are delivered to

the destination within their deadlines. The relationship between the deadline of the

signals which cross the Gateway and the delay components that those very same

signals experience in each network are given in (6-4).

 GWFRCS tddd ++> (6-4)

99

where dS is the deadline of the signal, dC is the time duration that the signal passes

in CAN network, dFR is the delay that the signal experiences in FlexRay network

and tGW is the processing delay of the Gateway.

Before setting up a network, the first task is to compute the message schedule for

FlexRay, CAN networks and the Gateway node so that all of the messages meet

their deadline requirements. In the context of message scheduling, the deadlines dC

and dFR in (6-4) are free parameters that have to be chosen such that their sum is

smaller than the signal deadline, dS, reduced by the processing delay of the Gateway

delay as shown in (6-5).

 FRCGWS ddtd +>− (6-5)

It is readily observed that the deadlines of the CAN messages sent by the Gateway

can only be evaluated if the deadlines of the corresponding FlexRay messages are

known and vice versa. Therefore, it becomes impossible to determine a scheduling

scheme for either network since the deadlines, before which the signals must be

delivered, can not be fixed. In order to break this cyclic dependency, one of dC or

dFR shall be fixed so that the other variable can be determined as in (6-5). It is

proposed in [30] to first compute a CAN priority assignment such that the messages

passing the Gateway have the shortest possible worst-case response times on CAN

since the uncertainty in the worst-case response time and the message jitter is

introduced by the slower and event-triggered CAN network. After the CAN

deadline is computed for each of the messages, the FlexRay deadline can easily be

calculated as in (6-5) and the FlexRay network is scheduled accordingly.

In [30] three different scheduling schemes are proposed and discussed for the CAN

network. On the other hand, two priority assignment schemes are suggested for the

FlexRay network.

It is obvious that the scheduling schemes that the networks utilize directly affect the

delay that the messages experience on those networks. Since one of our goals is to

100

study the end-to-end performance of an inter-connected FlexRay and CAN

networks in terms of delay and jitter, we analyze the performances of the sole CAN

network and sole FlexRay network with the scheduling schemes proposed in [30].

Moreover, having examined the behaviour of the individual CAN and FlexRay

networks, we will be able to understand and exhibit the performance of the Gateway

unit better while performing experiments on the whole network where there exist

CAN network, FlexRay network and the Gateway node.

Apart from these experiments, where the performance of CAN and FlexRay

networks are analyzed according to the scheduling schemes suggested in [30], also

several other experiments are held to verify and test the Gateway functionality and

the performance. During the testing of the Gateway functionality and the

performance, a bigger network, in which there also exist CAN and FlexRay

networks, is established.

All of the experiments held during this study are listed below in order to provide a

more comprehensive picture.

• Experiments to investigate the impact of scheduling

o CAN Experiments

 Conventional Scheduling

 Prioritized Scheduling

 Scheduling with Fixed Priority

o FlexRay Static Segment Experiments

 Scheduling Without Jitter

 Scheduling With Minimum FID

o FlexRay Dynamic Segment Experiments

101

 18 Minislots

 19 Minislots

 20 Minislots

• Overall network performance: Experiments with the Gateway

o Gateway Functionality

 Protocol Conversion

 Signal Mapping

o Gateway Performance

 Real-Time measurements

 Effect of polling frequency

6.2.1 Experiment Set-Up

The structure of the experiment set-up for all of the experiments are similar to each

other. The set-up consists of SK-91465X-100MPC evaluation boards, CAN and

FlexRay PCB busses, cables with 1-to-1 D-Sub-9 female connectors at both end,

FlexCard Cyclone II SE network analyzer card and a PC. Each SK-91465X-

100MPC starter kit is used as an individual node composing the network. Since SK-

91465X-100MPC has both CAN and FlexRay interfaces on it, it can be used as a

CAN node, a FlexRay node or the Gateway node in the experiments. The nodes

composing the network, i.e the SK-91465X-100MPC starter kits, are connected to

each other via hardware busses. The hardware busses used in the experiments are

the PCBs with D-Sub-9 Male connectors mounted on it. All of 9 pins of those

connectors are connected to each other through the PCB to enable several distinct

nodes communicate each other through the PCB. A maximum number of 9 nodes

102

can be connected via the PCB. The photograph of the PCB bus used in the

experiments is shown in the Figure 6-1.

Figure 6-1 The PCB Bus Used For Both FlexRay and CAN Bus

While used as FlexRay bus, two distinct PCB busses are used in the experiments,

one for each FlexRay channel. The FlexRay bus and the CAN bus are physically

identical to each other except that there are termination resistors on the CAN bus.

Two parallel 120 Ω resistors are welded on the two different connectors of the PCB

bus between the live pins, namely CAN_L and CAN_H to provide proper

termination. Without the termination is provided, CAN communication can be

established between the SK-91465X-100MPC nodes up to 100 kbps data rate.

Beyond this bit rate, SK-91465X-100MPC requires termination for the CAN

communication. However, without termination, FlexCard analyzer is not able take

any CAN measurement even for the bit rates smaller than 100 kbps. Therefore,

throughout the experiments with all CAN data rates, smaller or greater than 100

kbps, the PCB CAN bus is terminated to properly log and analyze the bus.

FlexCard Cyclone II SE is used in all of the experiments as a FlexRay node or a

CAN node or both at the same time depending on the experiment. Although it is

possible to use the FlexCard Cyclone II SE to send messages in the network, it is

only used as a receive node to monitor the data exchange through the CAN and the

FlexRay busses. While, to monitor the CAN bus, no arrangement is required to be

done on FlexCard Analyzer except the CAN data rate, in order to, properly, analyze

the FlexRay bus, the *.chi file produced by the FlexConfig™ for the FlexCard must

103

be included in the FlexAlyzer software. Therefore, while scheduling the FlexRay

network via FlexConfig™, FlexCard is also defined to be a receiving FlexRay node

for all of the time slots.

The final equipment used in all of the experiments is a PC. Via the PC, the

microcontrollers of the nodes are programmed by using the FME FR-Flash

Programmer V4.0.2.1. Also, the data exchange through the network is monitored

and logged by the FlexAlyzer software which is installed in the PC. Finally the

logged data is parsed offline by using the parsing program, that we wrote in the PC,

to obtain the results of the performance metrics.

Illustration and the photograph of the Gateway network are given in Figure 6-2 and

Figure 6-3, respectively.

Figure 6-2 The Gateway Network Illustration

104

Figure 6-3 The Gateway Network Photograph

When Figure 6-2 and Figure 6-3 are examined, it is seen that CAN nodes are also

connected to the FlexRay network. The reason for this connection is that so as to

take the time measurement that is valid throughout the whole network, all the nodes

composing the network must be synchronized to each other. CAN bus is an event

trigger bus without any synchronization. Because of this reason the synchronization

among all nodes is established through the FlexRay bus via the FlexRay interfaces

on SK-91465X-100MPC. This way, the transmit and the receive time of all of the

messages, whether from CAN node or FlexRay node, can easily be tagged in order

to be used in the analysis of the network. The considerations taken into account

during the time measurements and the logging are explained in the following

chapter in more detail.

FlexRay

Bus

CAN Bus GATEWAY

105

6.2.2 Time Measurements

The experimental evaluation of the timing performance requires the correct time

measurements. As introduced in the preceding chapter, the all nodes in the network

must be synchronized to each other through the FlexRay network so that the all of

the signals exchanged via the network can be time tagged properly. An experiment

set-up consisting of a Gateway node, CAN nodes which are connected to also the

FlexRay network, FlexRay nodes and the FlexCard which is used to monitor the

whole network traffic, is illustrated Figure 6-4.

Figure 6-4 The Gateway Network

CAN Node 1

CAN1

CAN2

FRA

FRB

CAN Node 2

CAN1

CAN2

FRA

FRB

CAN Node 3

CAN1

CAN2

FRA

FRB

FlexRay Node 1

FRA

FRB

CAN1

CAN2

FlexRay Node 2

FRA

FRB

CAN1

CAN2

FlexRay Node 3

FRA

FRB

CAN1

CAN2

GATEWAY

CAN1

CAN2

FRA

FRB

FRA

FRB

CAN1

CAN2
FlexAlyzer

106

Once all of the nodes connected to the network are synchronized to each other, four

different timestamps are included, at four distinct points of the network, into the

payload of the message traveling from the originating node to the destination. The

spots, in the network, that the timestamps are added into the payload are the exit

point from the CAN/FlexRay node, the arrive point in the Gateway, the exit point

from the Gateway and the arrive point in the FlexRay/CAN node. By means of

these 4 timestamps it becomes possible to measure the end-to-end delay and the

jitter that a signal experiences exclusively, in CAN network, in Gateway, in

FlexRay network and throughout whole of its travel.

If we consider, first, the travel of a packet from CAN to FlexRay bus the scenario is

as the following. The message packet originates from a CAN node and it is sent on

the CAN bus. Then the message is received by the Gateway via its CAN interface.

After the Gateway has processed and mapped the signal to a FlexRay signal, the

signal is transmitted through the FlexRay network. Finally the signal arrives to its

final destination, a FlexRay node. In all of the experiments, FlexCard Cyclone II SE

is used as the FlexRay node which receives all signals coming from the Gateway.

(See Figure 6-5)

Figure 6-5 Time Tagging: CAN2FR

The timestamp CANTX is obtained in CAN0_SendMessage routine, which is

explained in CHAPTER 5, just before loading the payload to the outgoing message

buffer of the CAN Controller. Next, when this CAN message packet is received by

the Gateway, the timestamp CANRX is obtained just at the beginning of the

CAN0_ReadMessageBuffer function which is called in the CAN interrupt

107

subroutine. Finally, the Gateway obtains the FRTX timestamp indicating the

leaving time of the packet from the Gateway just before storing the payload to the

FlexRay sending buffers via ffrd_api_tx_handler_buffer() function. As introduced

in section 6.1, those timestamps obtained at some certain points of the network do

not represent the actual time that they refer to. Rather, they are either obtained a

little bit earlier or a little bit later. The source of these errors is discussed in section

6.2.3 and the impact of the difference, which is no significant, is discussed in more

detail for each experiment in further sections. The timestamp FRRX is obtained by

the FlexAlyzer showing the receive time of the packet in the FlexCard. Therefore

FFRX does not come in the payload of the signal but rather it is created and logged

by the FlexAlyzer analyze software.

The timestamps, which are included to the payload of the message, are obtained via

two different time service functions of the FlexRay Software driver. These

functions return the network time by means of the FlexRay network fundamental

time units which are the cycle number and the macrotick count. Since the time

service functions return the cycle number and the macrotick count in 8-bits and 16-

bits, respectively, each timestamp engraved in the packets are 3 bytes long.

Therefore, the time tags except FRRX, namely CANTX, CANRX and FRTX,

shown in Figure 6-5 are all 3 bytes long. As a consequence of this, the length of the

FlexRay message at the end of the Gateway becomes to 9 bytes long. Since the

maximum payload length allowed in FlexRay protocol is 254 bytes, 9 bytes of

timestamp data is easily be sent through FlexRay bus to be received by the

FlexCard.

As mentioned, all of the messages are finally received by the FlexCard. The

incoming network traffic to the FlexCard is logged by the FlexAlyzer software.

Since the all 3 timestamps are already in payload of the incoming traffic and the

FlexAlyzer itself tags the 4th timestamp in the log as the receive time of the

messages, in the log file extracted by the FlexAlyzer, all four timestamps shown in

Figure 6-5 are present together. In order to examine those log files offline to

108

measure the performance metrics, distinct text parsing scripts are written for each of

the experiments.

For FlexRay to CAN communication the signal which is produced by a FlexRay

node sinks at the Gateway node. After being processed in the Gateway, the message

is transmitted via CAN bus. Again, the final destination of the message has to be the

FlexCard where the network traffic is monitored and analyzed. The timestamps

must also be included in the payload as shown in Figure 6-6, so as to be able to

analyze the network performance afterwards depending on the data log stored by

the FlexAlyzer.

Figure 6-6 Time Tagging: FR2CAN

Although each timestamp must be 3 bytes long, the timestamp, FFRX, is only

composed of the cycle number which is 1 byte long as seen from the Figure 6-6.

Because, if all the timestamps were, as in the previous case, 3 bytes long, the

Gateway would have to send 9 bytes of data through the CAN bus after having

included the timestamp, CANTX. However, it is impossible to transmit a message

bigger than 8 bytes through CAN bus in a single packet. On the other hand, if the

timestamp data were to be transmitted as two CAN frames, this would impair the

analysis results of the experiments. Therefore, one of the FlexRay network time

units, namely, cycle number and macrotick count, would have to be omitted from

one of the timestamps. It is seen that the omission of the macrotick count from the

timestamp, FRRX, has no impact on the end-to-end delay and the jitter calculations.

The reason for this is that the receive time of a static slot message is exactly

109

determined in terms of macrotick due to the TDMA structure of the FlexRay

network. Besides, the receive cycle number must, still, be included in the timestamp

since the FlexRay messages might be sent with variety of repetition and offset

settings which makes the receive time of the message ambiguous.

As a result of this small change in the time tagging structure, the total length of the

timestamps in the payload happens is 7 bytes long. This 7 byte time data is received

by the FlexCard in the end. The FlexCard, also, puts the CANRX time tag and

stores all the time data in a log file. As explained previously, those log files are

analyzed by means of the text parsing codes and the results about the performance

of the network is this way obtained.

As mentioned above, the timestamps FRRX and CANRX are obtained via the

FlexCard itself in the two opposite communication directions of the Gateway. So

that the reliable results can be obtained as a result of parsing the log file created by

the FlexAlyzer software, those timestamps, FRRX and CANRX, must also be in the

same time units as the other time tags. A view from the log file exported by the

FlexAlyzer software is displayed in Figure 6-7.

110

Figure 6-7 A view from the log file exported by FlexAlyzer

A received FlexRay message is encircled in Figure 6-7 to give an example for the

CAN2FR communication direction of the Gateway. In this direction, a message

originated from the CAN bus is finally received by the FlexCard through the

FlexRay bus. Since all the three timestamps, until arriving in the FlexCard

hardware, namely CANTX, CANRX and FRTX, are described in terms of the cycle

number and the macrotick count, the timestamp, FRRX, which is obtained by the

FlexCard, must also be in the same form. While the former three timestamps exist

in the payload of the received message, the time tag, FRRX, is encircled by a blue

rectangle in Figure 6-7. As seen, the FlexAlyzer gives this time tag in the form of

111

the receive cycle and the receive ID which is not exactly the same as the form of the

other three timestamps. However, this time tag can easily be converted to the

conventional form since the receive ID indicates the receiving time slot of the signal

and the length of a timeslot is fixed and known in terms of macrotick. Therefore, all

4 timestamps can be considered to be in the same form and the end-to-end delay

that a message experiences from the CAN node to the FlexRay node can be

formulated as in (6-6).

 []
MacrotickCANTX

MTinOffsetActionMTinLengthSSIDRx
MTinLengthCycleCycleCANTXCycleFRRX

.
______)1(

___)..(

−
+×−

+×−
 (6-6)

where

FRRX.Cycle and the CANTX.Cycle are the cycle numbers of the timestamps

FRRX and CANTX, respectively,

Cycle_Length_in_MT, SS_Length_in_MT and Action_Offset_in_MT are the

matrotick correspondences of the network parameters the Cycle Length, the Static

Slot Length and the Action Offset Length respectively,

IDRx is the ID of the received FlexRay message via Flexcard and

CANTX.Macrotick is the macrotick count of the timestamp CANTX.

The task of obtaining the timestamp is not that straightforward for the FR2CAN

direction as the CAN2FR communication direction of the Gateway. To illustrate the

situation in the FR2CAN direction, a view from the log file of an experiment is

given Figure 6-8.

112

Figure 6-8 Illustration for the task of obtaining the CANRX

As seen from the Figure 6-8, the time tag obtained by the FlexCard is not in the

form of the cycle count and the macrotick count since it receives the data from the

CAN interface. On the other hand the time tag that the FlexAlyzer includes in the

beginning of every line of the log file is the local time of the FlexCard indicating

the amount of time that has passed since the beginning of the measurements.

Therefore, this local time is not in the conventional form either and has no chance

of being directly used. To overcome this problem, the log data regarding the

FlexRay messages is used to make a connection to the time domain of the

synchronization, which is the FlexRay time domain, as follows. First of all, we

113

make use of the fact that the time delay to a received FlexRay message in the

FlexCard can be easily calculated as described in the previous case. Secondly, it is

known that in the beginning of every line of the log file the FlexCard puts the local

time as the receive time of the corresponding message. Therefore, in order to find

the delay that a message experiences from a FlexRay node to a CAN node, first of

all, the delay up to a received FlexRay packet is calculated. Then, the time offset

between the local time of the received CAN signal and the local time of the

received FlexRay signal up to which the delay component has been measured, is

added to the already calculated delay and this way, the total delay that the signal

experiences is found.

This calculation can easily be illustrated on the Figure 6-8. For instance, suppose

that the end-to-end delay between the production time of a FlexRay signal and the

CAN signal encircled with a blue rectangle in Figure 6-8 is required to be

calculated. Production time of the FlexRay message is already in the payload of the

message. As described above, first of all, the time delay to an arbitrary FlexRay

message, which is called "reference FlexRay message", is calculated. In Figure 6-8,

"reference FlexRay message" is shown in orange rectangle. The local receive time

of the FlexRay message is 0.039440 and this local time is called as "reference

time". The time delay from the original FlexRay message to this "reference FlexRay

message" is calculated as in the case of the CAN2FR communication direction of

the Gateway. Having calculated this delay, it is known from the Figure 6-8 that the

CAN message, which is encircled with a blue rectangle, is received at the local time

0.039819 which is (0.039819 - 0.039440) second later than the "reference FlexRay

message". Therefore, this time offset is added upon the, previously, calculated delay

value and this way the desired end-to-end delay is found. The end-to-end delay that

a message experiences from the FlexRay node to the CAN node is formulated as

follows.

114

 []
)..(.

______)1_(
___)._.(

reftimeRfFRreftimeCANRXMTFRTX
MTinOffsetActionMTinLengthSSrefIDRx

MTinLengthCycleCycleFRTXrefCycleFRRX

−+−

⎥
⎦

⎤
⎢
⎣

⎡
+×−

+×−
 (6-7)

where

FRRX.Cycle_ref and the FRTX.Cycle are the cycle numbers of the timestamps

"Reference FlexRay Message" and FRTX, respectively,

Cycle_Length_in_MT, SS_Length_in_MT and Action_Offset_in_MT are the

matrotick correspondences of the network parameters the Cycle Length, the Static

Slot Length and the Action Offset Length, respectively,

FRTX.MT is the macrotick number of the timestamp FRTX,

IDRx_ref is the ID of the "Reference FlexRay Message" and

CANRX.reftime and RfFR.reftime are the local receive time of the received CAN

message and the "Reference FlexRay Message" in the FlexCard.

6.2.3 Quantitative Analysis of the Time Measurement Errors

In order to examine the end-to-end delay and the jitter values that the signals

experience, throughout the experiments, we take measurements at certain points of

the network as described in section 6.2.2. Obviously, the calculations of the

performance metrics such as end to-end delay and jitter directly depend on that we

take the time measurements accurately. However, it is inevitable that the time

measurements taken in the experiments deviate for certain amount from the real

time values for several reasons. The reasons for the deviation are listed below from

the CAN bus perspective.

1. In the experiments, the time stamps are put on the messages before they,

actually, are put on the wire. After the timestamp has been tagged in the

software, the software continues to run for a certain time before the message

115

with the timestamp is transferred to the transmit buffers in the CAN

Controller of the CPU. The first component of the deviation of the

timestamps from the actual values is this software processing time.

Transferring the message to the transmit buffer does not mean that the

message is put on the wire. In the buffers, the messages experience certain

delay before they are, first, passed to the CAN transceiver and then put on

the CAN bus physically. This delay experienced in the hardware is the

second component of the deviation of the timestamps from the actual values.

2. Unlikely, on the CAN receive side of the messages, the timestamps are

tagged later than the actual receive time of the messages. The components of

the deviations are as follows. When the packet is first received in the CAN

node, the unit that welcomes the message is the transceiver. Then the

transceiver passes the message to the CAN engine of the CPU. After some

time in the buffer of the CAN Engine, the CAN Controller issues an

interrupt alerting the software about the receive of a new CAN packet. The

time up to this point is the time passed in the hardware. From the issuing

time of the interrupt to the time where the application code running on the

CPU reads the incoming message and obtains the timestamp, CPU processes

the interrupt in the software. This time delay is the software component of

the entire deviation.

3. When two nodes communicate through the CAN bus, the above discussions

explain the deviations of the delay that the CAN signals experience from the

actual delay values assuming that the network time of the communicating

nodes are exactly the same. However, in reality, the clocks of the nodes in a

network drift with respect to each other. Therefore, network time of the

communicating nodes always differ for certain amount. At this point assume

that the clock of the receiving node is ahead of that of the transmitting node.

In such a situation, the receiving node tags the received message by a greater

time value with the amount equal to the difference of the clocks of the nodes

116

than the time value that the node would tag the receiving message if there

were no clock deviation between the nodes. Therefore, in addition to the

first two factors, the clock difference between the nodes might also cause

the calculated time to deviate from the real time.

4. The last error factor is the FlexAlyzer. The timestamps put on the log file of

the FlexAlyzer have also error in it. The timestamps in the log file are used

twice for the cases where the CAN messages are received via the FlexCard.

In such a case, timestamps used in the calculations are the time tags for the

"reference FlexRay message" and the received CAN signal. For the

situations where the FlexAlyzer measurements are used twice, time

deviations from the actual values get bigger.

As mentioned, the above explanations are written for the CAN communication time

measurement errors. Although the very same factors affect the time measurements

in the FlexRay network in the same manner, the errors do not appear in the FlexRay

results. The reason for this is that the delay values of the FlexRay messages occur in

the multiple of the FlexRay cycle which is 5ms since the FlexRay network

contention is provided via TDMA. Since the time measurement errors are much

smaller than the FlexRay cycle length, these errors do not affect the results obtained

for the FlexRay bus. On the other hand, since the CAN bus is an event triggered

bus, the time measurement errors appear in the CAN bus experiment results. For

this reason, the above explanations which account for the deviation of the time

measurements taken in the experiments from the actual time values are given from

the CAN bus perspective.

Several experiments are run in order to quantitatively figure out the order of these

errors listed above. Before continuing with the experiments, the error components,

which are explained in the first two bullets above, are exhibited below in Figure

6-9.

117

Figure 6-9 Time Stamp Deviation from the Actual Time

Out of the 4 issues explained above, different ones are effective in different

experiments when calculating the end-to-end delay that a signal experiences

through the CAN bus. In fact, exploring the behavior of the error components under

two cases will be enough. The first case comprises of the experiments where the

both timestamps are tagged via the CPU in the delay calculations. In this context,

the delay calculations for the CAN2CAN experiments and for the signals that

SW

Processing

TIME TAG :

TX

CAN

Controller

CAN

Transceiver

Actual Time :

TX

Interrupt

Processing

CAN

Controller

CAN

Transceiver

Actual Time :

RX

T1 T2 T3

T6 T5 T4

CAN BUS

TIME TAG :

RX

118

traverse the Gateway in CAN2FR direction can be included under the first case. In

such situations, the articles number 1, 2 and 3 are effective in the calculation of the

error between the measured time and the actual time. On the other hand, the second

case includes the experiments where one of the timestamps is obtained in the CPU

and the other time tag is put via the FlexAlyzer. The delay calculations for the

signals that travel in the Gateway in the FR2CAN direction can be the example for

this case. The articles number 1, 3 and 4 are effective in the calculation of the error

between the measured time and the actual time in the second type of situations.

To begin with the first case where the both timestamps are tagged via the CPU in

the delay calculations, it is already mentioned that the articles number 1, 2 and 3 are

effective in the calculation of the error between the measured time and the actual

time. In order to calculate quantitatively the impact of these factors to the time

measurement errors, the following simple experiment is set up. In the experiment,

only one CAN message is sent through the CAN bus so that the packet does not lose

any time for the contention. Therefore, the time that the message spends in the bus

is supposed to be 270 µs where the bit rate of the CAN bus is 500 kbps and the

message length is 8 B. The very same message is sent periodically in every 5 ms

and the both transmit time and the receive time of the messages are tagged via the

CPU. After the receive time tag have been put on the signal, the message is sent via

FlexRay network where all those FlexRay messages are received and logged by the

FlexAlyzer analyzer. When the log file that is output by the FlexAlyzer is processed

by the text parsing program the maximum end-to-end delay that the messages

experience is found to be 316 µs. This means that the time measurements taken by

the CPU in the CAN2CAN experiments cause the end-to-end delay calculations to

deviate about 46 µs from the actual end-to-end delay that the CAN packets

experience. In this 46 µs delay error, all of the 3 articles, article number 1, 2 and 3,

are accounted. Therefore, the sum of the time components from T1 to T6 in Figure

6-9 plus the time deviation caused because of the instability of the clocks of the

nodes with respect to each other equals to 46 µs. However, in the real experiments

there exist tens of messages rather than single message. As explained above, if

119

single message existed in the network, the end-to-end delay of the message would

deviate from the actual value with 46 µs. When there are multiple messages

exchanged through the network, the messages might not be able to directly be

passed through the CAN controller by issuing interrupt. Because at the time that a

packet is received via CAN Controller and it is stored in the message buffers, there

might exist some packets already have been waiting to be passed to the software via

interrupt. Therefore, the message might wait, in addition to the time components

depicted in Figure 6-9, for the messages whose priority is greater than itself to be

processed. This process time is not the software processing time of the interrupt

subroutine as shown in Figure 6-9 with T6 but the time for the processing time of

the messages in CAN0_ReadMessageBuffer(). To sum up, in order to have an idea

about the time quantity that a message waits in the CAN Controller for the situation

where the multiple messages are exchanged via CAN bus, the duration of the

routines named CAN0_ReadMessageBuffer, CAN0_ISR() and

CAN0_STATUS_ISR_Handler() must also be known. Another experiment is set up

to measure the duration of these routines. In the experiments, we make use of the

FlexRay driver time service functions, namely, ffrd_api_get_cycle() and

ffrd_api_get_mtick(). So as to calculate the duration of the routines, in the very

beginning and at the very end of the functions, the network time is obtained via

those time service functions. Then the time data obtained with these functions are

sent through the FlexRay bus so that the data are logged via the FlexAlyzer

software into a log file. Finally the duration of these functions are easily calculated

by properly processing the log file. The results obtained for the functions are as

follows.

T[CAN0_ReadMessageBuffer] = 35 µs

T[CAN0_ISR()] = 4 µs

T[CAN0_STATUS_ISR_Handler()] = 2 µs

120

Apart from this, a message packet in the CAN controller might also wait for the

interrupt subroutines, IsrReloadTimer1() and IsrReloadTimer3(), which are used to

clear the watchdog and to perform the FlexRay task, respectively. The reason for

this is that the priorities of both interrupt subroutines are greater than that of

CAN0_ISR(). Although the probability of this to occur is fairly small, it should be

taken into consideration in the worst case delay calculations since it is enough for

such a situation to happen only once to affect the calculation. Below listed are the

results.

T[IsrReloadTimer1()] = 2 µs

T[IsrReloadTimer3()] = 10 + n*20 µs

where "n" is the number of CAN messages sent by the node.

Therefore, while analyzing the possible errors between the measurement time and

the actual time, all of the factors summarized above should be considered for the

first case.

The situation in the second case is a little bit different from the first case as

previously described. In this case, while one of the timestamps is obtained in the

CPU and the other time tag is put via the FlexAlyzer. It is more difficult in this case

to find out the error in the delay calculations since the calculations involve the

FlexCard hardware in which we have no control. Either, there exists no information

in the data sheets of the FlexCard and the FlexAlyzer software about the

measurement errors of the tools. As mentioned, the error components effective in

the second case are the 1st, 3rd and the 4th articles discussed above. 1st article

comprises of the error components T1, T2 and T3 as shown in Figure 6-9. It is

logical to accept this error component as the half of the error which is depicted in

Figure 6-9 and calculated to be 46 µs above. Therefore, the error component for the

1st article is found to be 23 µs. The error components discussed in the 3rd and the 4th

articles are related to each other and can be figured out by examining the behavior

of the FlexAlyzer. In order to measure the error in the FlexAlyzer, a real scenario is

121

run and the log file obtained by the FlexAlyzer is observed. The receive time of the

CAN packets are recorded in the log file. It is seen that the consecutive CAN

messages are reported to be received with 295 µs apart. This means that when a

burst of CAN messages with N members is received in the FlexCard, the last

received message will be reported with an error of (N-1)*25 µs.

The possible the error components discussed so far which might occur during the

end-to-end delay calculations are summarized quantitatively in Table 6-1.

Table 6-1 Error Components in the CAN2CAN Delay Calculations

MEASUREMENT ERRORS

Error Components Duration (µs)

TX Error (T1 + T2 + T3) 23

RX Error (T4 + T5 + T6) 23

Hardware Error (T1 + T2 + T3 + T4 + T5 + T6) 46

T[CAN0_ReadMessageBuffer] 35

T[CAN0_ISR()] 4

T[CAN0_STATUS_ISR_Handler()] 2

T[IsrReloadTimer1()] 2

T[IsrReloadTimer3()] (for n CAN messages) 10 + n*20

FlexAlyzer Error (for a burst of N packets) (N-1) * 25

122

6.3 DISCUSSION OF THE EXPERIMENTS

The list of the experiments held throughout this thesis study is given in Section 6.2.

In this section, each experiment will be discussed separately in more detail. The

message sets used in the experiments, the measurements, the set-up changes done

specific to the experiments, the results obtained and the discussions about the

results including the possible measurement faults are the topics that are explained in

the following sections.

6.3.1 CAN Experiments

As mentioned previously, the main goal of this thesis is to design and implement a

high performance FlexRay-CAN Gateway and make an end-to-end performance

analysis of the inter-connected FlexRay and CAN networks in terms of delay and

jitter. In this section, we examine the performance of CAN network with respect to

different scheduling schemes proposed in [30]. The delay and the jitter values

experienced by the signals in the CAN network directly affect the end-to-end delay

and the jitter that the signals experience in the inter-connected network. Therefore,

examining the behavior of the CAN network is also useful to visualize the bigger

picture where both CAN and FlexRay networks and the Gateway unit exist.

Three experiments with distinct CAN scheduling schemes are held as described in

[30]. The CAN network is composed of 3 distinct nodes with the data rate of 500

kbps. The aim of the experiments is to measure the delay and the jitter that the CAN

signals experience when the priorities of the CAN messages are assigned according

to respective scheduling algorithm proposed in [30]. The experimental results are

compared with the worst case response times of the messages which are computed

with an analytical approach in [30].

123

6.3.1.1 Conventional Scheduling CAN Experiment

A well known scheduling approach for real time systems is simply to assign the

priorities to the CAN messages increasing with the decreasing deadlines of the

messages. Therefore, in Conventional Scheduling, smaller the deadline that the

signal has, higher the priority that is assigned to the signal.

The message set which is used in the experiment and the priority assignment for the

messages as per the Conventional Scheduling algorithm are given in Table 6-2 and

Table 6-3, respectively.

Table 6-2 Message Set for CAN Scheduling

Signal Period Deadline Length Message Period Deadline Length

C1 10 ms 2.5 ms 8B C14 20 ms 20 ms 8B
C2 5 ms 5 ms 8B C15 20 ms 20 ms 8B
C3 5 ms 5 ms 8B C16 20 ms 20 ms 8B
C4 10 ms 5 ms 8B C17 20 ms 20 ms 8B
C5 10 ms 5 ms 8B C18 20 ms 20 ms 8B
C6 10 ms 7 ms 8B C19 20 ms 20 ms 8B
C7 10 ms 7.6 ms 5B C20 20 ms 20 ms 8B
C8 10 ms 10 ms 8B C21 20 ms 20 ms 8B
C9 10 ms 10 ms 8B C22 20 ms 20 ms 8B
C10 10 ms 10 ms 8B C23 20 ms 20 ms 8B
C11 10 ms 10 ms 8B C24 20 ms 20 ms 8B
C12 10 ms 10 ms 8B C25 20 ms 20 ms 8B
C13 10 ms 10 ms 8B C26 20 ms 20 ms 8B

Table 6-3 Priority Assignment Using Conventional CAN Scheduling

Signal C1 C2 C3 C4 C5 C6 C7 C8 C9
Priority 1 0 4 3 2 5 6 12 11

Signal C10 C11 C12 C13 C14 C15 C16 C17 C18
Priority 10 9 8 7 25 24 23 22 21

Signal C19 C20 C21 C22 C23 C24 C25 C26
Priority 20 19 18 17 16 15 14 13

124

The message parameters in the Table 6-2 are inspired from the message set of a real

automotive company and only minor modifications are done in producing the

message set. The 26 CAN signals are distributed to 3 CAN nodes as shown in Table

6-4.

Table 6-4 Distribution of the Signals in CAN Nodes

CAN Node Signals
CAN Node 1 C5, C7, C8, C16, C17, C18, C19, C20, C26

CAN Node 2 C1, C2, C3, C4, C6, C9, C10, C11, C12, C13, C14, C15, C21,
C22, C23

CAN Node 3 C24, C25

The CAN nodes produce the signals as shown in Table 6-4 according to the

message set and the priority assignment as explained. The aim in performing this

experiment is to generate all 26 CAN messages at the same time in the very

beginning of the experiment and continue to generate the signals according to the

periods of the messages afterwards. However, in reality, all of the nodes, which are

actually SK-91465X-100MPC, can not start to operate at the same time. Therefore,

the message generation times have offset with respect to each other. It should be

remembered that although this experiment is held for a purely CAN network, for

time measurements purposes as explained before, all of the CAN nodes are also

synchronized to each other via FlexRay network. Since all of the CAN messages

have the period which is multiple of 5 ms, the cycle length of the FlexRay network

is chosen to be 5 ms and all the CAN messages are generated in the beginning of

the FlexRay cycles as explained in section 5.2.1. However, since the nodes can not

be synchronized to the network at the same time, every time the experiment is run

different results are obtained. The solution to this problem is to have all the nodes

wait for a time so that all the nodes can be synchronized and after that have all 3

nodes start to operate in the same cycle. This solution is also explained in section

5.2.1 in details. Having taken this measure, the Conventional Scheduling CAN

125

experiment is run with the signal set and the assignments shown above for about

120 seconds. The results obtained for the performance metrics, namely maximum

end-to-end delay and jitter, are given in Table 6-5.

Table 6-5 CAN Conventional Scheduling: End-to-End Delay and Jitter

Signal Priority Delay (µs) Jitter (µs) Period (ms) Jitter (%)

C1 1 557 73.25 10 0.73
C2 0 590 137.98 5 2.76
C3 4 1159 765.68 5 15.31
C4 3 831 73.93 10 0.74
C5 2 880 133.61 10 1.34
C6 5 1394 75.46 10 0.75
C7 6 1444 289.21 10 2.89
C8 12 3444 93.42 10 0.93
C9 11 3042 92.46 10 0.92
C10 10 2768 91.79 10 0.92
C11 9 2499 90.93 10 0.91
C12 8 2230 89.91 10 0.90
C13 7 1958 88.99 10 0.89
C14 25 7581 42.46 20 0.21
C15 24 7309 40.42 20 0.20
C16 23 7072 38.56 20 0.19
C17 22 6803 36.70 20 0.18
C18 21 6533 34.80 20 0.17
C19 20 6269 34.90 20 0.17
C20 19 6000 34.84 20 0.17
C21 18 5299 35.93 20 0.18
C22 17 4738 33.90 20 0.17
C23 16 4182 76.36 20 0.38
C24 15 4341 75.61 20 0.38
C25 14 4357 727.56 20 3.64
C26 13 3710 73.14 20 0.37

Also the figures in Figure 6-10 and Figure 6-11 illustrate the results obtained for the

Conventional CAN Scheduling with respect to the increasing priority values of the

CAN signals. The bars with light blue color in the figures indicate the signals that

pass through the Gateway. While in Figure 6-10, the end-to-end delay values that

126

the signals experience are shown in milisecond, in Figure 6-11 the jitter values are

shown in microsecond.

Figure 6-10 End-to-End Delay vs Priorities: Conventional Scheduling

Figure 6-11 Jitter vs Priorities: Conventional Scheduling

In [30], the theoretical maximum delay that the signals defined in Table 6-2 with

the priority assignment in Table 6-3 could experience is also calculated.

127

Comparative results with respect to this experiment and the theoretical values are

given below in Table 6-6 and Figure 6-12 where the light blue bars indicates the

signals passing the Gateway. In Figure 6-12, the end-to-end delay values that the

signals experience are shown together with the theoretical maximum values which

can be observed in the network.

Table 6-6 End-to-End Delay vs Theoretical Maximum

Signal Priority Delay in Experiment (ms) Theoretical Max. Delay (ms)

C1 1 0.557 0.96
C2 0 0.590 0.64
C3 4 1.159 1.92
C4 3 0.831 1.6
C5 2 0.880 1.28
C6 5 1.394 2.24
C7 6 1.444 2.5
C8 12 3.444 4.42
C9 11 3.042 4.1
C10 10 2.768 3.78
C11 9 2.499 3.46
C12 8 2.230 3.14
C13 7 1.958 2.82
C14 25 7.581 7.82
C15 24 7.309 7.82
C16 23 7.072 7.5
C17 22 6.803 7.81
C18 21 6.533 6.98
C19 20 6.269 6.66
C20 19 6.000 6.34
C21 18 5.299 6.14
C22 17 4.738 5.82
C23 16 4.182 5.18
C24 15 4.341 4.92
C25 14 4.357 4.8
C26 13 3.710 4.62

128

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16 18 20 22 24

Priority

E2
E

D
el

ay
 (m

s)

Experiment Max. E2E Delay Theoretical Maximum

Figure 6-12 End-to-End Delay and the Theoretical Maximum Values

When Table 6-6 and the Figure 6-12 are observed, it is found out that the end-to-

end delay that the CAN signals experience in the experiment stays within the

theoretical limits. Note that the theoretical worst case limit computation in [30]

assumes that all CAN signals are generated at the same time. However, in the

hardware, although the CAN signals are intended to be generated at the same time,

it is never possible to make a fine tuning of the generation time of the signals. The

possible factors which might affect the generation time of the signals can be the

FlexRay network time stability of the nodes, being a slave or master in the network

or the volume of the application running on the node.

The following example demonstrates the situation. Consider the messages C20 and

C21 which are generated by CAN Node1 and CAN Node2, respectively. Priorities

of those messages are given as 19 and 18. Both CAN Node1 and CAN Node2 begin

to generate their CAN messages in the beginning of the FlexRay cycle. There are

also other signals assigned to CAN Node1 and CAN Node2. Assume that, either

129

because of the reasons mentioned so far or due to the other factors, CAN Node1

achieved to generate C20 whose priority is 19, before CAN Node2 manages it. In

such a situation a message with a lower priority goes earlier than a signal of higher

priority since the former one produced earlier. Because of these kind of impurities

existed in the hardware environment, the end-to-end delay values of the signals may

display variation form node to node and signal to signal.

The other performance metric calculated in the experiment is the jitter that the CAN

packets experience. In order to understand the jitter behavior of the network, the

total of 26 CAN signals exchanged throughout the network should be divided into

three set of messages according to their message generation periods. So, in this

context, CAN messages C2 and C3 form the first group whose period is 5 ms. C1

and all messages from C4 to C13, inclusive, form the group with 10 ms period. The

third group whose period is 20 ms is composed of the messages from C14 to C26,

inclusive. Since all of the messages are begun to be generated in the very same

cycle at the same time, there happens to be only three scenarios. Either only the first

group signals are generated or the second group signals are also generated together

with the first group signals in the cycles that are multiples of 2 or finally the third

group signals are added on top of the first two signal groups in the cycles that are

multiples of 4. Therefore, first group messages sometimes fight only against each

other for the medium access. In these situations, the end-to-end delay they

experience is the minimum. In the cycles that are multiples of 2, these signals try to

grab the medium also against additional second group. So, in those cycles the end-

to-end delay they experience is greater than the previous case. As a worst case, in

the cycles that are multiples of 2, all CAN signals fight against each other for

contention. Obviously, the first group signals experience the maximum delay in the

medium. Therefore, those three different delay order causes the first group signals

to experience jitter. If Table 6-5 is examined, it is observed that the first group CAN

signals, which are C2 and C3, experience fairly big jitter values when compared to

other CAN signals. The same logic applies to the second group signals also. While,

they, half of the time, fight against the CAN signals of the first group and the

130

second group, in the other half of its time, they try to grab the medium against all of

the signals. Therefore, they experience two different delay values in the consecutive

generation time which, obviously, means the jitter.

Also, due to the fact that some messages might be ready to be put on the wire before

the other opponents due to the differences in the hardware as explained in the

previous paragraph, some of the signals may have to wait additionally for the lower

priority signals which appear on the bus earlier and this situation causes jitter.

6.3.1.2 Prioritized Scheduling CAN Experiment

According to this priority ordering explained in [30], the CAN messages which

carry the signals destined to FlexRay network are given higher priorities with

respect to the messages which are sent within the CAN network only. The analytical

worst case response time calculation for each message with the given priority

ensures that the entire CAN message set meets their deadlines. The CAN messages

to be sent through the Gateway are C9, C10 and the signals from C14 to C26, both

inclusive. In the light of this information, the priority assignment used in this

experiment is given in Table 6-7.

Table 6-7 Priority Assignment Using Prioritized CAN Scheduling

Signal C1 C2 C3 C4 C5 C6 C7 C8 C9
Priority 7 6 16 15 14 20 21 25 1

Signal C10 C11 C12 C13 C14 C15 C16 C17 C18
Priority 0 24 23 22 19 18 17 13 12

Signal C19 C20 C21 C22 C23 C24 C25 C26
Priority 11 10 9 8 5 4 3 2

The message IDs sent by the nodes do not change and are the same as the Table 6-4.

The experiment is run for 2 minutes just same as the previous experiment except the

configuration changes explained above. The results obtained are given in Table 6-8.

131

Table 6-8 CAN Prioritized Scheduling: End-to-End Delay and Jitter

Signal Priority Delay (µs) Jitter (µs) Period (ms) Jitter (%)

C1 7 2013 946.01 10 9.46
C2 6 2328 660.50 5 13.21
C3 16 4923 2778.39 5 55.57
C4 15 4020 2874.75 10 28.75
C5 14 4359 2584.48 10 25.84
C6 20 6033 4311.29 10 43.11
C7 21 6950 4312.19 10 43.12
C8 25 8081 4315.65 10 43.16
C9 1 576 10.25 10 0.10
C10 0 553 9.15 10 0.09
C11 24 7135 4314.77 10 43.15
C12 23 6863 4313.81 10 43.14
C13 22 6593 4312.93 10 43.13
C14 19 5600 32.66 20 0.16
C15 18 5329 30.64 20 0.15
C16 17 4261 29.48 20 0.15
C17 13 3408 69.67 20 0.35
C18 12 3138 68.21 20 0.34
C19 11 2869 67.67 20 0.34
C20 10 2603 67.61 20 0.34
C21 9 2444 67.58 20 0.34
C22 8 2176 66.08 20 0.33
C23 5 1031 13.02 20 0.07
C24 4 1159 116.46 20 0.58
C25 3 1463 220.13 20 1.10
C26 2 820 10.36 20 0.05

The results are also illustrated in Figure 6-13 and Figure 6-14 with respect to the

increasing priority values of the CAN signals. Similar with the previous experiment,

the bars with light blue color shows the signals that pass the Gateway. In Figure

6-13, the end-to-end delay values that the signals experience are shown in

milisecond for all of the signals. Similarly, in Figure 6-14, the jitter values that the

signals experience are exhibited in microsecond.

132

Figure 6-13 End-to-End Delay vs Priorities: Prioritized Scheduling

Figure 6-14 Jitter vs Priorities: Prioritized Scheduling

When these results are compared against the theoretical maximum values computed

in [30], the comparative results are demonstrated in Table 6-9 and Figure 6-15. In

Figure 6-15, the bars indicate the individual signals and the line draws an envelope

133

for the corresponding signals such that no signals can experience an end-to-end

delay beyond this envelope line. The bars of light blue color in Figure 6-15 indicate

the signals passing the Gateway.

Table 6-9 End-to-End Delay vs Theoretical Maximum Values

Signal Priority Delay in Experiment (ms) Theoretical Max. Delay (ms)

C1 7 2.013 2.36
C2 6 2.328 2.04
C3 16 4.923 5
C4 15 4.020 4.68
C5 14 4.359 4.36
C6 20 6.033 6.6
C7 21 6.950 6.86
C8 25 8.081 7.82
C9 1 0.576 0.96
C10 0 0.553 0.64
C11 24 7.135 7.82
C12 23 6.863 7.5
C13 22 6.593 7.18
C14 19 5.600 6.28
C15 18 5.329 5.96
C16 17 4.261 5.64
C17 13 3.408 4.04
C18 12 3.138 3.84
C19 11 2.869 3.52
C20 10 2.603 3.2
C21 9 2.444 3
C22 8 2.176 2.68
C23 5 1.031 1.64
C24 4 1.159 1.54
C25 3 1.463 1.34
C26 2 0.820 1.16

134

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Priority

E2
E

D
el

ay
 (m

s)

Experiment Max E2E Delay theoretical Maximum

Figure 6-15 End-to-End Delay and the Theoretical Maximum Values

As Table 6-9 and Figure 6-15 are examined, although generally the end-to-end

delay that the CAN signals experience in the experiment stays within the theoretical

limits, some CAN packets, which are highlighted in Table 6-9, namely C2, C7, C8

and C25, exceed the theoretical end-to-end delay limit for themselves. This is

rooted from the fact that the time measurements taken for the experiments are not

exact as discussed in section 6.2.3 in details. It should be noted that the situation in

this experiment falls into the second case in section 6.2.3 where one of the

timestamps is tagged via the CPU and the other time tag is put in the FlexAlyzer for

the delay calculations. If we focus on the magnitude of the errors, the deviations in

the end-to-end delay calculations are found to be 288 µs, 90 µs, 251 µs and 123 µs

for the C2, C7, C8 and C25, respectively. Referring the details to the section 6.2.3,

the deviation of the end-to-end calculations from the actual end-to-end delay can be

formulated as follows.

 25)1(_ ×−+= NErrorTXError (6-8)

135

where N is the number of the messages in a CAN burst received by the FlexCard up

to the CAN packet whose end-to-end delay is calculated. The variable TX Error is

defined in section 6.2.3. Although the number of the messages received in a burst

before the signal whose end-to-end delay is to be calculated can not be known

exactly, since in the worst case all the signals are sent through the CAN bus, it is

logical to accept N to be the priority of the CAN signal. Still, some messages with

lower priority might be received earlier than the higher priority messages since the

generation time of the messages can not be exactly fixed and controlled, as

discussed previously. In the light of this and the above formula the maximum

possible errors are calculated to be 223 µs, 573 µs, 673 µs and 123 µs for the

signals C2, C7, C8 and C25, respectively. According to the results, while for the

signals C7, C8 and C25, the deviation in the end-to-end delay calculation are

explained with the above formula, the deviation that occurs for the signal C2 can

not be accounted for. It should be remembered that there exists an interrupt

subroutine whose priority is greater than that of the interrupt subroutine which is

responsible for the generation of C2. This interrupt subroutine must also be taken

into account since there is a certain probability, though small, that this interrupt is

issued while C2 is being generated. If the length of this interrupt subroutine is also

considered, the deviation in the end-to-end delay calculation can be explained for

the signal C2.

The other performance metric of the experiment, which is jitter, is shown in Table

6-8 and Figure 6-14. As the jitter values in Figure 6-14 are examined together with

the signal periods that are included in Table 6-8, it is observed that the priorities at

which the signals experience significant jitter belong to the signals whose periods

are 5 ms and 10 ms. On the other hand, signals with 20 ms period experience fairly

no jitter. These results are expected due to the reasons discussed in section 6.3.1.1

in the paragraph where the jitter results are explained.

136

6.3.1.3 CAN Scheduling with Fixed Priority

The scheduling used in this experiment is more convenient for practical purposes.

In reality, a network is not established at once at a given time. Rather, new signals

are required to be added to the network gradually. By using the CAN Scheduling

with Fixed Priorities algorithm it is possible to assign priorities only to the CAN

signals which are to be added to the network and keep the priorities of the existing

signals as they are. Therefore, this scheduling scheme saves the engineers from the

obligation of configuring the CAN network from the beginning every time a new

signal is to be added. The algorithm presented in [30] assigns the priorities to the

new messages and checks the schedulability of the entire message set.

The priority assignment according to the CAN Scheduling with Fixed Priorities

algorithm is given in Table 6-10.

Table 6-10 Priority Assignment Using CAN Scheduling with Fixed Priorities

Signal C1 C2 C3 C4 C5 C6 C7 C8 C9
Priority 7 3 10 12 17 28 30 20 1

Signal C10 C11 C12 C13 C14 C15 C16 C17 C18
Priority 0 58 22 14 31 29 21 19 18

Signal C19 C20 C21 C22 C23 C24 C25 C26
Priority 13 11 9 8 6 5 4 2

The mapping of the signals to each node does not change with respect to the

previous two experiments and given in the Table 6-4. The experiment is run for

about 120 seconds and end-to-end delay and jitter values are obtained as the

outcome of the experiments. The results are shared in Table 6-11.

137

Table 6-11 CAN Scheduling with Fixed Priorities: End-to-End Delay and Jitter

Signal Priority Delay (µs) Jitter (µs) Period (ms) Jitter (%)

C1 7 2587 1120.90 10 11.21
C2 3 1461 491.49 5 9.83
C3 10 3477 1738.48 5 34.77
C4 12 4024 1983.89 10 19.84
C5 17 4654 1966.85 10 19.67
C6 28 6900 3738.37 10 37.38
C7 30 7532 4024.14 10 40.24
C8 20 6064 3446.74 10 34.47
C9 1 793 10.11 10 0.10
C10 0 480 9.62 10 0.10
C11 58 7531 4312.82 10 43.13
C12 22 6069 3737.49 10 37.37
C13 14 4025 2270.66 10 22.71
C14 31 7190 42.90 20 0.21
C15 29 6592 39.05 20 0.20
C16 21 6332 33.20 20 0.17
C17 19 5154 29.32 20 0.15
C18 18 4843 27.50 20 0.14
C19 13 4241 69.09 20 0.35
C20 11 3634 67.88 20 0.34
C21 9 2520 66.44 20 0.33
C22 8 2213 64.82 20 0.32
C23 6 1613 61.85 20 0.31
C24 5 2041 305.28 20 1.53
C25 4 1733 66.00 20 0.33
C26 2 999 11.66 20 0.06

The results are also illustrated in Figure 6-16 and Figure 6-17 with respect to the

increasing priority values of the CAN signals. The signals passing the Gateway are

shown with light blue color in the figures. While in Figure 6-16, the end-to-end

delay values that the signals experience are shown in milisecond, in Figure 6-17 the

jitter values are shown in microsecond.

138

Figure 6-16 E2E Delay vs Priorities: CAN Scheduling with Fixed Priorities

Figure 6-17 Jitter vs Priorities: CAN Scheduling with Fixed Priorities

As done in the previous two experiments, the results obtained in the experiment are

compared against the maximum theoretical values for each of the signals in Table

6-12 and Figure 6-18 where the bars with light blue colour indicate the signals that

pass the Gateway. The envelope line given in Figure 6-18 indicates the theoretical

maximum values.

139

Table 6-12 End-to-End Delay vs Theoretical Maximum

Signal Priority Delay in Experiment (ms) Theoretical Max. Delay (ms)

C1 7 2.587 2.36
C2 3 1.461 1.44
C3 10 3.477 3.32
C4 12 4.024 3.84
C5 17 4.654 4.8
C6 28 6.900 6.92
C7 30 7.532 7.5
C8 20 6.064 5.96
C9 1 0.793 0.96
C10 0 0.480 0.64
C11 58 7.531 7.82
C12 22 6.069 6.6
C13 14 4.025 4.48
C14 31 7.190 7.82
C15 29 6.592 7.24
C16 21 6.332 6.28
C17 19 5.154 5.64
C18 18 4.843 5.12
C19 13 4.241 4.16
C20 11 3.634 3.52
C21 9 2.520 3
C22 8 2.213 2.68
C23 6 1.613 2.04
C24 5 2.041 1.84
C25 4 1.733 1.66
C26 2 0.999 1.16

140

0
1
2

3
4
5
6

7
8
9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 18 19 20 21 22 28 29 30 31 58
Priority

E2
E

D
el

ay
 (m

s)

Experiment Max E2E Delay Theoretical Maximum

Figure 6-18 End-to-End Delay and the Theoretical Maximum Values

When the Table 6-12 and Figure 6-18 are observed, it is seen that the delay that

some of the CAN signals experience does not stay within the theoretical limits.

These CAN messages are highlighted in Table 6-12. Referring the details of the

reasons for this deviation to the discussion done for the previous experiment about

the end-to-end delay and to the section 6.2.3, we will elaborate only the signals

which exceed the theoretical limits with a significant error, by using (6-8). These

signals are C1, C4 and C24 with the deviations of 227 µs, 184 µs and 201 µs,

respectively. The maximum possible errors expected in the delay calculations are

found to be 223 µs, 373 µs and 173 µs using (6-8) for the signals C1, C4 and C24,

respectively. Therefore, errors that occur in the end-to-end delay calculation of

these signals are accounted by this quantitative analysis except for several

microseconds which can be acceptable for such hardware applications. On the other

hand, as mentioned above, the delay deviations of the other signals from the

theoretical maximum values are not even calculated as they are far small with

respect to those 3 signals.

As Table 6-11 and Figure 6-17 are examined it is observed that the jitter values are

greater for the messages with the period of 5 ms and 10 ms than the messages

141

whose period are 20 ms. This result is already anticipated according to the

discussion done about the jitter behavior of the signals in section 6.3.1.1.

6.3.1.4 Overall Discussion of the CAN Experiment Results

For the preceding CAN experiments, the performance metrics namely, maximum

end-to-end delay and jitter are compared against each other for only the CAN

signals destined to FlexRay network. The reason for this is that the scheduling

schemes that are used in the CAN experiments are created so that the delay values

that those signals experience is decreased. In this context, the observations about the

results obtained in the CAN experiments can be expressed as follows. It is readily

seen from the results that the signals that pass the Gateway experience the biggest

maximum end-to-end delay values in CAN Conventional Scheduling Experiment.

This result is expected since the priorities are assigned in the Conventional

Scheduling such that they increase with the decreasing deadlines of the messages.

Therefore, no particular arrangement is done for the signals destined to the FlexRay

network. On the other hand the maximum end-to-end delay values that the signals

passing the Gateway experience are observed to be the smallest in the CAN

Prioritized Scheduling Experiment since in this scheduling scheme, the CAN

signals destined to FlexRay network are given higher priorities with respect to the

signals which are sent within the CAN network only. For the CAN Scheduling with

Fixed Priorities Experiment, the maximum end-to-end delay values that the signals,

which cross the Gateway, experience fall in between the two experiments,

expectedly. Also, in the CAN Scheduling with Fixed Priorities, the signals which

are destined to the FlexRay network are given higher priorities. However, in this

scheme, we can not assign the priorities to those signals as we wish. Because, some

of the CAN IDs are assumed to be already existing and assigned to certain signals.

Therefore, the signals that pass the Gateway are scheduled without using the CAN

IDs which are already assigned. Although, due to the reasons explained above, the

CAN Scheduling with Fixed Priorities scheme observes greater maximum end-to-

142

end delay than CAN Prioritized Scheduling does, the former scheduling scheme is

the most convenient for practical purposes among the three scheduling schemes.

When we examine the jitter that the signals destined to FlexRay network

experience, we observe that the values in the CAN Conventional Scheduling are

greater than the other two scheduling schemes, while the experienced jitter in these

scheduling schemes are almost equal to each other.

These three scheduling schemes are also simulated in the [30] using the very same

settings and the messages sets with those of the experiments. When the experiment

results are compared against the simulation results, we observe that the experiment

results, which are exhibited and discussed in the preceding chapters, agree with

those of the simulation in the sense of maximum end-to-end delay and jitter.

6.3.2 FlexRay Static Segment Experiments

FlexRay network composes the one part of the bigger inter-connected network

where the other part is the CAN network. As discussed in section 6.3.1, the delay

and the jitter values experienced by the signals in solely FlexRay network directly

affect the end-to-end delay and the jitter experienced by the signals in the inter-

connected network. Therefore, by studying the performance of the FlexRay network

according to different scheduling schemes, we will have a strong grounding about

the behavior of the overall network where both CAN and FlexRay networks and the

Gateway exist.

The experiments held in this chapter are FlexRay FID Allocation Without Jitter and

FlexRay FID Allocation With Minimum FID. The network configurations are

common to both experiments and shown in Table 6-13.

143

Table 6-13 Network Configurations for the FlexRay Static Slot Experiments

Network Parameter Value

FlexRay Cycle Length 5 ms

Static Slot Length 31 µs

Static Slot Number 64

Dynamic Segment Length 0

The discussions about these experiments are done in the following sections.

6.3.2.1 FlexRay FID Allocation Without Jitter

This experiment is held on pure FlexRay network which is composed of 3 distinct

nodes, Fujitsu SK-91465X-100MPC. The aim of the experiment is to measure the

end-to-end delay and the jitter that the FlexRay messages experience when the FIDs

of the FlexRay messages are allocated so that the messages are delivered without

any jitter. The message set used in the experiment are comprised of 41 messages

which are used by an automotive company in real applications. The messages used

in this experiment are given in Table 6-14. FID allocation, which is demonstrated in

Table 6-15, for these signals is taken from [30] where the messages are scheduled

so that they experience no jitter. In Table 6-15, the messages of node 1, 2 and 3 are

characterized by a white, light gray and dark gray background, respectively. It can

be observed from the table that each message is scheduled with the largest possible

repetition that is a divisor of the message period. Hence, the smallest possible FID

count without introducing jitter, which is the optimal solution, is achieved. The

formal discussion for the scheduling scheme is given in [30].

144

Note, also, that the signals that are used in this experiment are sent in the FID

values with an offset of 16 slots with respect to the FID values mentioned in [30].

The reason for this is that all of the FlexRay messages are started to be generated in

the beginning of the cycle. Since the process of the message generation, which

includes the storing of the messages to the applicable FlexRay buffers, takes certain

time, the FlexRay messages with low FID can not be sent for sure in the very cycle

that they are generated. From the FID allocation in [30], it is seen that all of the

messages are to be transmitted within the first 16 FlexRay slots. Although this may

cause no difficulty for simulation purposes, it means that almost all of the messages

are to be sent in the next cycle in the FlexRay bus, if they are generated in real

hardware. Because of this reason the FID allocation for the FlexRay signals are

shifted by 16 static slots so that each node is able to prepare all of its messages

before their slot time has passed.

Table 6-14 FlexRay Message Set

Signal P1 P2 P3 P4 P5 P6 P7 P8 P9
Period/ms 10 5 20 10 10 10 10 10 10

Node 2 2 2 2 1 2 1 1 2

Signal P10 P11 P12 P13 P14 P15 P16 P17 P18
Period/ms 10 10 20 10 20 10 10 10 10

Node 2 2 2 2 2 2 1 1 1

Signal P19 P20 P21 P22 P23 P24 P25 P26 P27
Period/ms 100 50 100 100 100 250 500 250 10

Node 1 1 2 2 2 3 3 1 2

Signal P28 P29 P30 P31 P32 P33 P34 P35 P36
Period/ms 100 100 100 2000 2000 1000 1000 20 2000

Node 1 1 1 1 1 1 1 3 1

Signal P37 P38 P39 P40 P41
Period/ms 2000 2000 2000 2000 100

Node 1 2 2 3 1

145

Table 6-15 FlexRay FID Allocation Without Jitter

Signal P1 P2 P3 P4 P5 P6 P7
Period/ms 10 5 20 10 10 10 10

FID 24 23 28 24 22 25 17
Repetition/ms 10 5 20 10 10 10 10

Offset 0 0 1 1 0 0 0

Signal P8 P9 P10 P11 P12 P13 P14
Period/ms 10 10 10 10 20 10 20

FID 17 25 26 26 28 27 29
Repetition/ms 10 10 10 10 20 10 20

Offset 1 1 0 1 3 0 0

Signal P15 P16 P17 P18 P19 P20 P21
Period/ms 10 10 10 10 100 50 100

FID 27 18 18 19 20 19 29
Repetition/ms 10 10 10 10 20 10 20

Offset 1 0 1 0 0 1 1

Signal P22 P23 P24 P25 P26 P27 P28
Period/ms 100 100 250 500 250 10 100

FID 29 29 31 31 21 28 20
Repetition/ms 20 20 10 20 10 10 20

Offset 2 3 0 3 0 0 1

Signal P29 P30 P31 P32 P33 P34 P35
Period/ms 100 100 2000 2000 1000 1000 20

FID 20 20 22 22 21 21 31
Repetition/ms 20 20 80 80 40 40 20

Offset 2 3 1 3 3 7 1

Signal P36 P37 P38 P39 P40 P41
Period/ms 2000 2000 2000 2000 2000 100

FID 22 22 30 30 32 21
Repetition/ms 80 80 80 80 80 20

Offset 5 7 0 1 0 1

According to the message set and the scheduling shown in Table 6-14 and Table

6-15, respectively, at each node, the FlexRay signals are generated in the beginning

of the FlexRay cycles as explained in section 5.2.1. The experiment is run for 2

minutes and the network traffic is logged via FlexAlyzer so as to obtain the

146

performance of the FlexRay network with respect to the performance metrics, end-

to-end delay and the jitter. Below, the results obtained for the end-to-end delay and

the jitter are given in Table 6-16.

Table 6-16 FID Allocation Without Jitter: End-to-End Delay and Jitter

Signal FID Delay (µs) Jitter (µs) Period (ms) Jitter (%)

P1 24 634 1.21 10 0.01
P2 23 633 0.65 5 0.01
P3 28 5516 2.43 20 0.01
P4 24 5607 1.21 10 0.01
P5 22 458 1.21 10 0.01
P6 25 611 1.21 10 0.01
P7 17 440 1.21 10 0.01
P8 17 5413 1.21 10 0.01
P9 25 5585 1.21 10 0.01
P10 26 589 1.21 10 0.01
P11 26 5562 1.21 10 0.01
P12 28 15490 2.43 20 0.01
P13 27 567 1.21 10 0.01
P14 29 494 2.43 20 0.01
P15 27 5540 1.21 10 0.01
P16 18 417 1.21 10 0.01
P17 18 5391 1.21 10 0.01
P18 19 395 1.21 10 0.01
P19 20 370 12.14 100 0.01
P20 19 5368 6.07 50 0.01
P21 29 5466 12.14 100 0.01
P22 29 10439 12.14 100 0.01
P23 29 15412 12.14 100 0.01
P24 31 911 30.34 250 0.01
P25 31 15857 60.69 500 0.01
P26 21 401 30.35 250 0.01
P27 28 544 1.21 10 0.01
P28 20 5343 12.14 100 0.01
P29 20 10316 12.14 100 0.01
P30 20 15290 12.14 100 0.01
P31 22 5187 242.75 2000 0.01
P32 22 15160 242.76 2000 0.01
P33 21 15238 121.38 1000 0.01
P34 21 35212 121.38 1000 0.01

147

 Table 6-16 (Continued)

P35 31 5911 2.43 20 0.01
P36 22 25134 242.75 2000 0.01
P37 22 35107 242.75 2000 0.01
P38 30 416 242.76 2000 0.01
P39 30 5389 242.75 2000 0.01
P40 32 859 242.76 2000 0.01
P41 21 5294 12.14 100 0.01

Also the figures in Figure 6-19 and Figure 6-20 illustrate the results obtained for the

FID Allocation Without Jitter with respect to the increasing message IDs of the

FlexRay messages. While in the figures, in x-axis, the FIDs of the signals which are

used in the experiment are shown, in y-axis the values obtained in the experiment

are exhibited.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 6 11 16 21 26 31 36 41

Message ID

E
2E

 D
el

ay
 (m

ic
ro

se
c)

Max E2E Delay

Figure 6-19 End-to-End Delay vs Message ID: FID Allocation Without Jitter

148

0

50

100

150

200

250

300

1 6 11 16 21 26 31 36 41

Message ID

Ji
tte

r (
m

ic
ro

se
c)

Jitter

Figure 6-20 Jitter vs Message ID: FID Allocation Without Jitter

In order to check if the experiment results exhibited in Table 6-16, Figure 6-19 and

Figure 6-20 are correct, we can compute the maximum end-to-end delay and the

jitter values that the signals experience. Since the FlexRay signals are only

exchanged in their dedicated time slots and repetition and offset values are known

for the entire signal set, it is easy to figure out the delay and the jitter values that the

signals experience without doing complex algebra. We can understand the amount

of delay that the signals experience through an example more clearly for the signal

set and the scheduling scheme given in Table 6-14 and Table 6-15. Consider the

signal P12. This signal is generated with a period of 20 ms, i.e. 4 cycles, and the

repetition and the offset values for the signal are 20 ms and 3 cycles, respectively.

Since all of the signals in Table 6-15 are begun to be produced simultaneously from

the 0th cycle, it is obvious that P12 is generated in the cycles that are multiples of 4,

i.e. 0, 4, 8 and so on. On the other hand, the signal is scheduled to be exchanged

through the network in the cycles which are equal to three in modulo 4, i.e. 3, 7, 11

and so forth. Therefore, it is readily observed that P12 experiences a delay of 3

cycles which is equal to 15 ms. When this computed value is compared with the

maximum end-to-end delay that P12 experiences in the experiment and shown in

Table 6-16, it is observed that the delay value obtained in the experiment, which is

149

15.49 ms, agrees with this computed value. The additional fraction value which

exists in the experiment result is due to the generation time of P12 in the hardware

which occurs earlier than its dedicated FlexRay slot with the amount of this

additional fraction. To sum up, the computation of the end-to-end delay values can

be generalized as follows. As the signals are scheduled with the repetition values

which are a divisor of the signals' period, all of the signals are transmitted in one of

their assigned slots except the offset values. Therefore, the signals experience a

delay which is equal to their schedule offset multiplied by the cycle length in

milisecond. When the Table 6-16 is examined anew, the maximum end-to-end

delay values that the signals experience are observed to be equal to their offset

values in milisecond.

On the other hand, the jitter is defined, in short, as the deviation from the

periodicity. It is computed above that all the signals are transmitted through the

network in their time slots which appear later than the generation time with the

amount which exactly equals to the offset count. Therefore, the transmit times of

the signals are also strictly periodic. As a result, we conclude that in this scheduling

scheme signals are to experience no jitter. This conclusion is verified with the

experiment results demonstrated in Table 6-16 where the experienced jitter values

are found to be 0.01% in percentage. These very small but non-zero jitter values

might be experienced due to the instability of the clocks of the nodes which cause

small fluctuations in the generation time of the signals.

6.3.2.2 FlexRay FID Allocation With Minimum FID

In this experiment the impact of the FID assignment, which will provide minimum

number of static slot allocation, to the performance metrics is examined. All other

configurations and arrangements including the FlexRay message set are same as the

previous FlexRay static segment experiment. As its name implies the aim in this

FID allocation scheme is to assign all of the messages to the minimum number of

time slots by properly selecting the scheduling parameters. In this scheduling, as

150

opposed to the previous one, the rule of choosing the signal repetition values that

are a divisor of the signal period is broken in favor of the minimum bandwidth

usage. Consequently, by using this scheduling scheme, while some of the signals in

Table 6-14 are allowed to experience jitter, the number of the allocated FIDs is

decreased from 16 to 12 when compared to FlexRay FID Allocation Without Jitter.

The details of the scheduling algorithm are discussed in [30].

The FID assignment used for these FlexRay messages, as it was the case in the

previous experiment, are taken from [30] except that all the FID values are used

with an offset of 16 slots. The reason for the offset of 16 time slots is discussed in

the previous experiment. The FlexRay FID Allocation with Minimum FID is given

in Table 6-17. Similar to the experiment, FID Allocation Without Jitter, the

messages of node 1, 2 and 3 are also characterized by a white, light gray and dark

gray background, respectively in this experiment.

151

Table 6-17 FlexRay FID Allocation With Minimum FID

Signal P1 P2 P3 P4 P5 P6 P7
Period/ms 10 5 20 10 10 10 10

FID 22 21 26 23 17 22 17
Repetition/ms 2 1 4 2 2 2 2

Offset 0 0 1 0 0 1 1

Signal P8 P9 P10 P11 P12 P13 P14
Period/ms 10 10 10 10 20 10 20

FID 18 23 24 24 26 25 27
Repetition/ms 2 2 2 2 4 2 4

Offset 0 1 0 1 3 0 0

Signal P15 P16 P17 P18 P19 P20 P21
Period/ms 10 10 10 10 100 50 100

FID 25 18 19 19 20 20 27
Repetition/ms 2 2 2 2 16 8 16

Offset 1 1 0 1 1 0 1

Signal P22 P23 P24 P25 P26 P27 P28
Period/ms 100 100 250 500 250 10 100

FID 27 17 28 28 20 26 20
Repetition/ms 16 16 32 64 32 2 16

Offset 2 3 1 2 6 0 2

Signal P29 P30 P31 P32 P33 P34 P35
Period/ms 100 100 2000 2000 1000 1000 20

FID 20 20 20 20 20 20 28
Repetition/ms 16 16 64 64 64 64 4

Offset 3 4 10 11 7 9 0

Signal P36 P37 P38 P39 P40 P41
Period/ms 2000 2000 2000 2000 2000 100

FID 20 20 27 27 28 20
Repetition/ms 64 64 64 64 64 16

Offset 12 13 5 7 3 5

The experiment is run for about 120 seconds using the FlexRay FID Allocation

With Minimum FID. The network traffic is logged via FlexAlyzer and the results

obtained by parsing the log files are exhibited in Table 6-18.

152

Table 6-18 FID Allocation With Minimum FID: End-to-End Delay and Jitter

Signal FID Delay (ms) Jitter (ms) Period (ms) Jitter (%)

P1 22 0.45 0.001 10 0.012
P2 21 0.45 0.001 5 0.013
P3 26 5.33 0.002 20 0.012
P4 23 0.43 0.001 10 0.012
P5 17 0.32 0.001 10 0.012
P6 22 5.42 0.001 10 0.012
P7 17 5.29 0.001 10 0.012
P8 18 0.29 0.001 10 0.012
P9 23 5.40 0.001 10 0.012
P10 24 0.40 0.001 10 0.012
P11 24 5.38 0.001 10 0.012
P12 26 15.30 0.002 20 0.012
P13 25 0.38 0.001 10 0.012
P14 27 0.31 0.002 20 0.012
P15 25 5.35 0.001 10 0.012
P16 18 5.27 0.001 10 0.012
P17 19 0.27 0.001 10 0.012
P18 19 5.24 0.001 10 0.012
P19 20 65.22 30.010 100 30.010
P20 20 30.25 15.001 50 30.002
P21 27 65.28 30.010 100 30.010
P22 27 70.25 30.010 100 30.010
P23 17 75.23 30.010 100 30.010
P24 28 155.69 78.751 250 31.500
P25 28 310.63 157.501 500 31.500
P26 20 150.08 78.755 250 31.502
P27 26 0.36 0.001 10 0.012
P28 20 70.19 30.010 100 30.010
P29 20 75.17 30.010 100 30.010
P30 20 60.14 30.010 100 30.010
P31 20 289.95 121.315 2000 6.066
P32 20 294.92 121.315 2000 6.066
P33 20 315.01 70.758 1000 7.076
P34 20 284.98 70.758 1000 7.076
P35 28 0.69 0.002 20 0.012
P36 20 299.90 121.315 2000 6.066
P37 20 304.87 121.315 2000 6.066
P38 27 265.20 121.315 2000 6.066
P39 27 275.17 121.315 2000 6.066
P40 28 255.61 121.315 2000 6.066
P41 20 65.11 30.010 100 30.010

153

Also the figures in Figure 6-21 and Figure 6-22 illustrate the results obtained for the

FID Allocation Without Minimum FID with respect to the increasing message IDs

of the FlexRay messages. The x-axis of the figures indicates the FID assignment of

the experiment, while in y-axis, the results obtained in the experiment are exhibited.

0

50

100

150

200

250

300

350

1 6 11 16 21 26 31 36 41
Message ID

E2
E

 D
el

ay
 (m

s)

Max E2E Delay

Figure 6-21 E2E Delay vs Message ID: FID Allocation With Minimum FID

0

20

40

60

80

100

120

140

160

180

1 6 11 16 21 26 31 36 41
Message ID

Ji
tte

r (
m

s)

Jitter

Figure 6-22 Jitter vs Message ID: FID Allocation With Minimum FID

154

The results demonstrated in Table 6-18 can also be theoretically computed and the

behaviours of the performance metrics can be better explained by means of

examples.

To begin with the worst case end-to-end delay, consider, the FlexRay signal P26.

The period, repetition and the offset values of the signal, P26, are 250, 32 and 6,

respectively, as shown in Table 6-17. This means that the signal is generated at

every 250 ms and it is transmitted either in the cycle 6 or 38 as there exist 64 cycles

totally. The generation time and the transmit time of P26 in terms of the FlexRay

cycle number are illustrated in Figure 6-23 beginning from the 0th cycle.

Figure 6-23 Illustration of End-to-End Delay of P26

As seen from the figure while the cells with blue shading indicates the message

generation time of the signal in terms of the cycle number, the green shaded cells

show the transmit time of the messages. Moreover, numbers in the upper row of the

figure indicate the number of the message and the lower row numbers show the

number of the cycle where the generation or the transmit of the signal takes place.

So, in Figure 6-23, for example, the second message is depicted to be generated in

50th cycle. Since the repetition value of P26 is 32, this means that the message P26

can not be transmitted at all cycles through the FlexRay bus but rather the transmit

resolution of the signal is 32 cycles. It is already mentioned that the transmit cycles

for P26 are either cycle number 6 or cycle number 38. As a consequence, the

155

second message, which is generated in 50th cycle can hardly be sent in 6th cycle in

its time slot experiencing a delay of 100 ms. Similarly, when all the consecutive

messages of P26 are examined this way, it is calculated that the maximum end-to-

end delay that the message P26 can experience with these settings, is 30 cycles

which corresponds to 150 ms delay. This theoretical approach is also verified with

this experiment such that the corresponding maximum end-to-end delay is found to

be 150.08 ms in Table 6-18 for P26. It is possible to apply this example to all 41

signals to determine the maximum delay values that each signal experiences and

verify the experiment theoretically.

The Figure 6-23 can also be used to explain the jitter behavior of the signals which

are exchanged in this experiment. When we examine the jitter that P26 experiences,

we find out that the delay between the receive times of the consecutive P26 signals

are 320 ms, 160 ms, 320 ms, 320 ms, 160 ms and so forth. In fact, this scheme

explains the reason for the jitter. In order not to experience jitter, the receive time of

the consecutive P26 signals must, all, be 250 ms apart which means 50 cycles. This

could be achieved if the repetition value of the signal was 50 or one of the divisors

of 50. However, 32 is not the divisor of 50 and expectedly the signal P26

experiences jitter. According to the above explanations the amount of jitter that P26

experiences is found to be 76.7 ms theoretically. When this value is compared with

the jitter value that P26 experiences in Table 6-18, it is observed that the jitter value

obtained in the experiment is 78.76 ms and agrees with the value computed

theoretically. In a similar manner with this example, all the jitter values that are

obtained in the experiment are verified with those which are computed theoretically

and the results obtained in the experiment are observed to be in agreement with the

theoretically computed jitter values.

6.3.3 FlexRay Dynamic Segment Experiments

In this section, the impact of the length of the FlexRay dynamic segment to the end-

to-end performance of the interconnected FlexRay and CAN networks is studied.

156

The length of the dynamic segment directly affects the schedulability of the

messages and the delay that the sporadic messages experience. As described in

section 2.1.2.2, the dynamic segment is composed of minislots. All of the sporadic

signals are granted an FID number at which they can be transmitted. If the sporadic

signal is not ready to go at the time of its FID, only one minislot time passes, FID

counter is increased by one and the other signal to which the next FID is assigned is

checked to be sent. On the other hand, when the slot time comes for a particular

signal that is ready to be sent, the content of the signal is transmitted. In this case,

depending on the length of that particular signal, some number of minislots is

consumed by the signal leaving less number of minislots for the remaining signals

and again FID counter is only increased by one. As a result of this scheme, if the

length of the dynamic segment is not big enough, a sporadic signal, to which a

greater FID is assigned (low priority), may suffer for a long time before being

transmitted or even may not be able to be sent at all. In order to avoid such

situations the length of the dynamic segment should be chosen properly together

with the FID assignments of the sporadic messages.

Together with the length of the dynamic segment, the FID assignments for the

sporadic signals are also important. In order to assign FID values to the signals, a

worst-case delay analysis is done. For a signal, S, to experience a worst case delay,

S should arrive right after its dedicated time slot. The delay component from this

arrival time to the end of the cycle composes the one part of the total delay and is

called as initial delay. Next, a linear integer programming (LIP) problem is

formulated that tries to fill the dynamic segment of the following N FlexRay cycles

with signals that have a smaller FID than S. If this is achieved, then the worst-case

response time of S is larger than the sum of the initial delay and the time for the N

FlexRay cycles. Moreover, the same analysis has to be carried out for (N+1)

FlexRay cycles. On the other hand, if N FlexRay cycles can not be filled with the

signals that have a smaller FID, the worst-case response time of S can be computed

from the longest delay S experiences within N FlexRay Cycles. Using this

algorithm, the schedulability analysis is done for a particular message set and FIDs

157

are assigned to each signal so that they experience a worst case delay that is smaller

than their deadlines. When this algorithm is applied for the message set given in

Table 6-20, starting from the dynamic segment length of 8 minislots, the algorithm

determines that the message set is schedulable for the dynamic segment length of, at

least, 19 minislots. The algorithm is discussed in more detail in [30].

We examine the effect of changing the length of the dynamic segment to the

schedulability by conducting three dynamic segment experiments where the

dynamic segment lengths are chosen to be 18 minislots, 19 minislots and 20

minislots. We use the scheduling assignment as per [30] and the network

parameters which are set for all of the 3 experiments are as follows.

Table 6-19 Configuration Parameters for the Dynamic Segment Experiments

Network Parameter Value

FlexRay Cycle Length 4 ms
Static Slot Length 31 µs
Macrotick Length 1 µs
Minislot Length 5 MT
SymbolWindow 100 MT

NIT 800 MT
DynamicSlotIdlePhase 1 MS

The details of the experiments and the discussions about the results are given in the

following sections.

6.3.3.1 Dynamic Segment with the Length of 18 Minislots

The aim of this experiment is to determine whether the dynamic segment signals

exchanged in the experiment are delivered within their deadlines when the dynamic

segment length is 18 minislots. The signals in this experiment are also exchanged

by three nodes as it is the case in the previous FlexRay experiments. In the

158

experiment, only the dynamic segment of the FlexRay cycle is used, i.e. no static

segment message is exchanged. The message set used in this dynamic segment

experiment is given in Table 6-20.

Table 6-20 Message Set for the Dynamic Segment Experiments

Signal D1 D2 D3 D4 D5
Period (ms) 10 10 20 20 25
Deadline (ms) 5 10 15 15 18
Length (B) 18 12 8 12 4
of Minislot 8 7 6 7 5

The period in the above table means the minimum inter-arrival time between the

consecutive sporadic messages. The priority assignments for these messages, which

are shown in Table 6-21, are done according to the scheduling algorithm which is

introduced in section 6.3.3 and discussed in detail in [30].

Table 6-21 Priority Assignment

Signal D1 D2 D3 D4 D5
Priority 1 2 3 4 5

The experiment is run for this message set and the corresponding priority

assignment with the network configurations described in section 6.3.3 for about 2

minutes. So as to increase the probability to create the worst case scenario,

consecutive sporadic messages are generated within 3 ms after the minimum inter-

arrival time. The network traffic is analyzed via the FlexAlyzer to obtain the end-to-

end delay values that the sporadic messages experience in the network to check

whether the message set is schedulable with the dynamic segment of 18 minislots as

in the theoretical computation. In this experiment, no jitter value is calculated since,

by definition, the performance metric jitter is only applicable to the periodic

159

messages. The results obtained for the worst case end-to-end delay is given in the

Table 6-22 and Figure 6-24. In Figure 6-24, the dynamic segment priorities of the

signals and the end-to-end delay values that those signals experience are depicted.

Table 6-22 End-to-End Delay: Dynamic Segment with 18 Minislots

Signal Priority Delay (ms) Deadline (ms)

D1 1 4.034 5
D2 2 4.067 10
D3 3 8.022 15
D4 4 8.059 15
D5 5 19.804 18

0

5

10

15

20

25

1 2 3 4 5
Priority

E2
E

D
el

ay
 (m

s)

Max E2E Delay

Figure 6-24 End-to-End Delay vs Priority: Dynamic Segment with 18 Minislots

In [30], the maximum time duration that a dynamic segment message has to wait

before being delivered is calculated theoretically according to the message set,

priority assignment and the minislot number. The results obtained in the experiment

are compared with the theoretical maximum values in Table 6-23 and Figure 6-25.

160

The envelope line that is observed in Figure 6-25 represents the theoretical

maximum values that the signals can ever experience in the network.

Table 6-23 E2E Delay Comparison Against the Theoretical Maximum Values

Message Priority Delay in Experiment (ms) Theoretical Max (ms)

D1 1 4.034 4.04
D2 2 4.067 4.07
D3 3 8.022 8.035
D4 4 8.059 8.065
D5 5 19.804 (−)

0

5

10

15

20

25

1 2 3 4 5
Priority

E2
E

D
el

ay
 (m

s)

Max E2E Delay in Experiment Theoretical Max

Figure 6-25 Maximum End-to-End Delay and Theoretical Maximum

When the Table 6-23 and Figure 6-25 are observed, it is found out that the dynamic

signal with the lowest priority, D5, is delivered beyond its deadline as expected.

Because when the algorithm, details of which are discussed in [30], is run for the

dynamic segment of length 18 minislots, this experiment's message set is found to

161

non-schedulable. This theoretical expectation mentioned in [30] is verified via this

dynamic segment experiment.

6.3.3.2 Dynamic Segment with the Length of 19 Minislots

In this experiment, the number of minislots composing the Dynamic Segment is

increased from 18 to 19. Also, the priority assignment is changed and given in

Table 6-24. Apart from these two changes, no other modification is made on the

previous experiment. The aim of this experiment is to obtain the worst case end-to-

end delay values that the sporadic signals experience and decide whether the

message set is schedulable with the dynamic segment of 19 minislots. After having

run the experiment for 2 minutes, the obtained results are exhibited in Table 6-25

and Figure 6-26 together with the theoretical the maximum time delay that a

dynamic segment message experiences according to [30]. In Figure 6-26, the bars

represent the end-to-end delay values of the corresponding signals and the envelope

line shows the maximum delay limit that those signals can experience in the

network.

Table 6-24 Priority Assignment

Signal D1 D2 D3 D4 D5
Priority 1 2 4 3 5

Table 6-25 End-to-End Delay: Dynamic Segment with 19 Minislots

Signal Priority Delay (ms) Theoretical Max (ms)

D1 1 4.034 4.04
D2 2 4.067 4.07
D3 4 8.053 8.065
D4 3 8.034 8.035
D5 5 15.943 16.025

162

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5
Priority

E
2E

 D
el

ay
 (m

s)

Max E2E Delay in Experiment Theoretical Max

Figure 6-26 End-to-End Delay and Theoretical Maximum

In agreement with the computations of the algorithm in [30], the results exhibited in

Table 6-25 and Figure 6-26 shows that the message set is schedulable for the

dynamic segment of 19 minislots and all the messages can be delivered within a

bounded time without violating their deadline requirements.

6.3.3.3 Dynamic Segment with the Length of 20 Minislots

This is the last dynamic segment experiment where the length is increased to 20

minislots. The priority assignment for the experiment is the same as the experiment

with 18 minislots and given in Table 6-26. All of the other configurations are done

as described in section 6.3.3. The aim of this experiment, which is same as the

previous experiments, is to obtain the worst case end-to-end delay values that the

sporadic signals experience and check whether the message set is schedulable with

the dynamic segment of 20 minislots. The experiment is run for about 120 seconds

and the network is traffic is monitored and logged by FlexAlyzer. The results

obtained after parsing the log file is shown below in Table 6-27 and Figure 6-27.

Similar to the previous dynamic segment experiments, also in Figure 6-27, the

163

theoretical maximum end-to-end delay values that the sporadic signals can

experience are shown with an envelope line.

Table 6-26 Priority Assignment

Signal D1 D2 D3 D4 D5
Priority 1 2 3 4 5

Table 6-27 End-to-End Delay and Theoretical Maximum

Signal Priority Delay (ms) Theoretical Max (ms)

D1 1 4.034 4.04
D2 2 4.067 4.07
D3 3 8.02 8.035
D4 4 8.06 8.065
D5 5 14.82 16.025

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5
Priority

E
2E

 D
el

ay
 (m

s)

Max E2E Delay in Experiment Theoretical Max

Figure 6-27 End-to-End Delay vs Theoretical Maximum

164

Therefore, the results shown in Table 6-27 and Figure 6-27 verify the algorithm

computations made in [30] that the dynamic segment with the length of 20 minislots

is schedulable for this message set and the configuration and that all the messages

can be delivered within a bounded time.

6.3.4 Gateway Experiments

The experiments which are performed in this section can be grouped under two

subsections. In the first group of experiments, the Gateway functionality is verified

and tested. By means of the other group of experiments, the end-to-end performance

analysis of the inter-connected FlexRay and CAN networks is performed for the

performance metrics of delay and jitter, as well as the performance analysis of the

Gateway node in terms of Gateway processing delay. The experiments discussed in

this chapter are, namely, Gateway Protocol Conversion Functionality, Gateway

Signal Mapping Functionality, Gateway Performance Measurements and The Effect

of Polling.

6.3.4.1 Gateway Functionality: Protocol Conversion

The aim of this experiment is to verify that the designed Gateway performs its basic

functionality, which is the protocol conversion, and operates according to the

requirements that it is programmed to. What makes this experiment more valuable

is that this verification is held on the real hardware of an automotive company. The

utilized real components which exist in a real automobile are Instrument Panel

Cluster (IPC) and Steering Angle Sensor (SAS). In the experiment all of the

capabilities of the Gateway are tested. For this purpose, the FlexRay messages with

different periods are exchanged through the Gateway. Besides, Gateway is

scheduled to use its dynamic segment. On top of these, in this experiment, Gateway

is tested to realize the protocol conversion while it is connected to two distinct CAN

busses with different bit rates, namely, 50 kbps and 500 kbps. The network

165

topology and the experiment set-up are illustrated in Figure 6-28 and the

photograph of the real experiment environment is show in Figure 6-29.

Figure 6-28 Protocol Conversion Experiment Network Topology

166

Figure 6-29 Photograph of the Protocol Conversion Experiment

The configuration parameters for the network and the message set together with

signal mapping are given in Table 6-28 and Table 6-29, respectively.

Table 6-28 Experiment Configuration Parameters

Network Parameter Value

FlexRay Cycle Length 5 ms
Static Slot Length 31 µs
Static Slot Number 64

Minislot Length 5 µs
Minislot Number 20
B-CAN Data Rate 50 kbps
C-CAN Data Rate 500 kbps

SAS

IPC

167

Table 6-29 Signal Mapping for the Experiment

CAN Gateway FlexRay

Sending

Node
CAN ID Direction

Gateway

Send FID
Direction

Receiving

Node

SAS 0x27ABDC 24 FlexCard

IPC

(Status)
0x6336983 67 FlexCard

CAN Gateway FlexRay

Receiving

Node
Direction

Gateway

Send ID
Direction FID

Sending

Node

IPC

(Speed

Odometer)

 0xABFD123 5
FR Node

1

CAN

Analyzer
 0xA0CA246 7

FR Node

2

The experiment is run with this configuration and the mapping on a real hardware

as mentioned above. As a result, it is verified that the Gateway performs the

protocol conversion task successfully and no problem occurs during the operation

of the Gateway on the hardware of an automotive company. In Figure 6-30, a

snapshot from the log file of the experiment exhibits how the Gateway handles the

protocol conversion.

168

Figure 6-30 Log File of the Experiment

Via the Figure 6-30, the Gateway is verified to perform the task of protocol

conversion. Also from the Figure 6-30, it is observed that the Gateway can extract

the CAN data partially and map it to the FlexRay message. Similarly, it can map the

incoming FlexRay message to the specified part of the CAN signal. This capability

of the Gateway will be examined in more details in the following chapter.

6.3.4.2 Gateway Functionality: Signal Mapping

Another important functionality of the Gateway is tested in this experiment. This

functionality has two folds. The first one is the ability of the Gateway to segment

any incoming message and forward them to the other side as separate signals. The

other fold of the functionality is just the opposite. It is the ability of the Gateway to

169

combine several incoming signals so as to send them to the other network in a

single message. In order to test this capability of the Gateway this experiment is

established. According to the experiment, 3 CAN nodes send 10 CAN messages to

the Gateway to be transferred to the FlexRay network. The Gateway combines two

CAN signals into one FlexRay message and sends 10 CAN messages in 5 FlexRay

signals through the FlexRay network. Besides, it segments the incoming FlexRay

messages into several CAN signals and transmits each of segmented CAN signals

separately. The Gateway capability to be tested in this experiment is illustrated in

Figure 6-31.

Figure 6-31 Signal Mapping Functionality

The experiment is set up on seven distinct nodes. Out of seven nodes, three nodes

are used as CAN nodes, another three nodes are FlexRay nodes and the remaining

node is the Gateway node. Although numerous other signals are exchanged in CAN

bus and in FlexRay network, we are only concerned about the messages on which

the Gateway performs the signal mapping functionality. Those signals of concern

and their mapping are given in Table 6-30.

170

Table 6-30 Experiment Signal Mapping Scheme

Combination Segmentation

CAN ID FlexRay ID FlexRay ID CAN ID

31 1

29
33 23

0

21 19

18
34

13

11

68

8

9
33

6

5
34

4

2
67

After the experiment has been run and the network traffic is monitored via

FlexAlyzer, a log file is obtained showing the behaviour of the network. When the

monitor screen of the FlexAlyzer, a snapshot of which is included in Figure 6-32, is

observed, it is clearly seen that the Gateway fully satisfies the signal mapping

functionality.

171

(a)

(b)

S5
S4

S3

S12 S10 S11

Figure 6-32 a) Segmentation b) Combination

6.3.4.3 Gateway Performance: Real-Time Measurements

We have verified, thus far, the basic functionality of the Gateway in the previous

experiments, one of which is held on a real hardware. In this experiment, the

performance of the designed Gateway will be examined with respect to the

performance metrics, namely, worst case end-to-end delay and jitter. So as to have a

complete picture together with the experiments held in sections 6.3.1, 6.3.2 and

6.3.3, we have decided to set the Gateway experiment up on the message sets

examined in the previous FlexRay and the CAN experiments. The messages are

generated with the same configuration that they are used in sections 6.3.1.3 and

6.3.2.1. That is to say, both CAN and FlexRay message sets are generated in 3

distinct nodes and the mapping of the signals to the nodes are as it is in the

corresponding chapters. The message sets for the CAN signals and the FlexRay

signals are given in Table 6-2 and Table 6-14, respectively. Since there exists a

172

Gateway unit in this experiment set up, some of the signals from both CAN and the

FlexRay message sets are chosen to be passed to the other network through the

Gateway.

Coming to the scheduling schemes, there exists more than one possibility for both

CAN and FlexRay messages. For the CAN message set to be used in the Gateway

performance experiment, the CAN Scheduling with Fixed Priorities is decided to be

assigned. The reason for choosing this scheduling assignment is that it has more

practical concern with respect to the other two priority assignment schemes

discussed under section 6.3.1. On the other hand, the FID allocation without jitter

scheme is chosen for the FlexRay message set since we want to decrease the overall

jitter value that the messages experience. Moreover, economizing the bandwidth for

such a case where only several tens of signals are exchanged, has no practical value.

The priority assignment for the CAN messages which travel only in CAN bus, FID

allocation for the FlexRay messages that are exchanged only in FlexRay network

and the priority assignment of both CAN and FlexRay messages that cross the

Gateway are given in Table 6-31, Table 6-32 and Table 6-33, respectively. The

CAN and the FlexRay signals, which cross the Gateway, are highlighted in Table

6-31 and Table 6-32 so as to provide a better understanding. One thing to be noted

about the Table 6-32 and Table 6-33 is that the FID allocations for the P5, P7, P10

and P16 are different in Table 6-33 than the original FID assignment located in

Table 6-32. The reason for this is that these FlexRay messages share the same time

slot with other FlexRay signals. For instance, the FlexRay signals P7 and P8 are

both to be sent in the 17th static slot. If the Gateway was also to transmit in the same

time slots, the two distinct nodes would happen to share the same time slot which

violates the FlexRay protocol. Therefore, the FID assignment for the signals P5, P7,

P10 and P16 are defined as in Table 6-33. However for P2, the FID allocation is not

changed. This is because; Gateway is not the sender node for P2 but only the

receiver node.

173

On the other hand, in order to make the performance analysis of a complete

Gateway, which handles and routes all kinds of signals, the dynamic segment

messages are also mixed in the CAN and the FlexRay signals. The message set and

the priority assignment for the sporadic messages are same as those of the dynamic

segment experiment with 20 minislots in section 6.3.3.3. There are only two

differences from the configuration of section 6.3.3.3. The first one is that in this

experiment, all of the sporadic messages are generated by only one FlexRay node

and the Gateway node. The second difference is done by applying a minor change

to the priority assignment scheme. Two out of the total 5 dynamic segment signals

are chosen to be passed through the Gateway and shown in Table 6-33. For the sake

of completeness the priority assignment of the sporadic messages are given in Table

6-35, shading in color the signals that cross the Gateway.

Table 6-31 CAN Scheduling with Fixed Priorities

Signal C1 C2 C3 C4 C5 C6 C7 C8 C9
Priority 7 3 10 12 17 28 30 20 1

Signal C10 C11 C12 C13 C14 C15 C16 C17 C18
Priority 0 58 22 14 31 29 21 19 18

Signal C19 C20 C21 C22 C23 C24 C25 C26
Priority 13 11 9 8 6 5 4 2

174

Table 6-32 FID Allocation Without Jitter

Signal P1 P2 P3 P4 P5 P6 P7
Period/ms 10 5 20 10 10 10 10

FID 24 23 28 24 22 25 17
Repetition/ms 10 5 20 10 10 10 10

Offset 0 0 1 1 0 0 0

Signal P8 P9 P10 P11 P12 P13 P14
Period/ms 10 10 10 10 20 10 20

FID 17 25 26 26 28 27 29
Repetition/ms 10 10 10 10 20 10 20

Offset 1 1 0 1 3 0 0

Signal P15 P16 P17 P18 P19 P20 P21
Period/ms 10 10 10 10 100 50 100

FID 27 18 18 19 20 19 29
Repetition/ms 10 10 10 10 20 10 20

Offset 1 0 1 0 0 1 1

Signal P22 P23 P24 P25 P26 P27 P28
Period/ms 100 100 250 500 250 10 100

FID 29 29 31 31 21 28 20
Repetition/ms 20 20 10 20 10 10 20

Offset 2 3 0 3 0 0 1

Signal P29 P30 P31 P32 P33 P34 P35
Period/ms 100 100 2000 2000 1000 1000 20

FID 20 20 22 22 21 21 31
Repetition/ms 20 20 80 80 40 40 20

Offset 2 3 1 3 3 7 1

Signal P36 P37 P38 P39 P40 P41
Period/ms 2000 2000 2000 2000 2000 100

FID 22 22 30 30 32 21
Repetition/ms 80 80 80 80 80 20

Offset 5 7 0 1 0 1

175

Table 6-33 CAN and FlexRay Messages that Cross the Gateway

CAN2FR FR2CAN

CAN FlexRay FlexRay CAN

C14 31 1 C9

C15 29
33 P5 P2 23

0 C10

C16 21 19 C17

C18 18
34 P7

13 C19

C20 11

D3 68

8 C22

C21 9
33 P10

C23 6

C24 5
34 P16

C25 4

C26 2
67 D4

The signal names shown in Table 6-33 are renamed in Gateway perspective so that

the results are exhibited without causing any confusion.

176

Table 6-34 Signal Names in Gateway

Name in CAN Name in Gateway

C9 S1
C10 S2
C17 S3
C19 S4
C22 S5
C14 S6
C15 S7
C16 S8
C18 S9
C20 S10
C21 S11
C23 S12
C24 S13
C25 S14
C26 S15

Table 6-35 Dynamic Segment Messages

Signal D1 D2 D3 D4 D5
Priority 65 66 68 67 69

The Gateway experiment set-up is composed of 7 distinct SK-91465X-100MPC

Fujitsu nodes. Out of these 7 nodes, three of them are used as CAN nodes, the other

three are used as FlexRay nodes and the remaining node is the Gateway node. The

experimentation parameters for the Gateway Performance Analysis experiment can

be summarized in Table 6-36.

177

Table 6-36 Gateway Experiment Parameters

Network Parameter Value

FlexRay Cycle Length 5 ms
Static Slot Length 31 µs
Static Slot Number 64

Minislot Length 5 µs
Minislot Number 20
CAN Data Rate 500 kbps

So as to calculate the end-to-end delay and the jitter that the signals, which cross the

Gateway, experience, during the travel of the signals, 4 time stamps are obtained at

four different points of the network. Besides the end-to-end delay values, the delay

components that the signals experience only in CAN network, only in FlexRay

network and only in the Gateway are also calculated via these time stamps. The

details about how to obtain those time stamps, how to calculate the delay values and

the possible errors in calculations are discussed in sections 6.2.2 and 6.2.3. After

having run the Gateway experiment for 2 minutes, the log file obtained by the

FlexAlyzer software is analyzed and the results shown in Table 6-37, Figure 6-33

and Figure 6-35 are obtained. In these table and figures, the delay and the jitter

values that only 15 signals, which cross the Gateway, experience are exhibited.

178

Table 6-37 Experiment Results for the Signals Passing the Gateway

Signal S CAN Delay
(ms)

GW Delay
(ms)

FR Delay
(ms)

E2E Delay
(ms) Jitter (ms)

S1 0.840 1.912 0.607 3.325 0.11693
S2 0.576 1.889 0.607 3.042 0.11516
S3 2.710 0.716 9.985 11.956 NA
S4 1.866 0.694 9.985 11.678 NA
S5 1.029 0.672 9.985 11.398 NA
S6 8.228 0.050 4.037 10.808 0.00499
S7 7.104 0.050 4.580 10.789 0.00499
S8 6.333 0.050 6.063 10.912 0.00499
S9 4.851 0.050 6.637 10.890 0.00499
S10 3.662 0.050 3.314 5.837 0.01272
S11 2.235 0.050 3.886 5.771 0.01272
S12 1.563 0.050 4.487 5.784 0.00499
S13 1.473 0.050 5.623 5.978 0.00499
S14 1.163 0.050 6.034 6.936 0.06371
S15 0.475 0.050 6.318 6.827 0.06188

In Figure 6-33, all of the delay components that the signals experience are shown

together in one figure. These delay components are, end-to-end delay, CAN delay,

FlexRay delay and the Gateway processing delay.

179

0

2

4

6

8

10

12

14

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15
Signals

D
el

ay
 (m

s)

CAN Delay GW Delay FR Delay E2E Delay

Figure 6-33 Delay Decomposition of the Gateway Experiment

In order to better visualize the weight of the Gateway processing delay, the Figure

6-34 which shows the delay components of the signals in percentage is also

included below. The delay components shown in Figure 6-33 except the end-to-end

delay are represented in Figure 6-34

Figure 6-34 such that the individual weight of the delay components to the total

delay are exhibited and their summation makes 100%.

180

Figure 6-34 Delay Decomposition of the Gateway Experiment in Percentage

Figure 6-35 Jitter Values in Gateway Experiment

FR-to-CAN

POLLING EFFECTIVE

FR-to-CAN

ONLY GATEWAY PROCESSING

DELAY : 50 µs

181

Let us, first of all, analyze the delay behavior of the Gateway by means of the

results exhibited in Table 6-37, Figure 6-33 and Figure 6-35. When the CAN delay

that the signals experience is observed in Table 6-37 and compared against the

delay values obtained in the CAN experiment with the same CAN scheduling

scheme which is shown in Table 6-11, it is found out that, more or less, the all

results except several agree with each other. This situation might arise from the fact

that though, in both experiments, the same scheduling is applied, by the inclusion of

the Gateway node, the signals are distributed among four nodes instead of three in

the Gateway experiment. Moreover, since the Gateway node generates the CAN

signals whenever it receives the corresponding FlexRay packet, the message

generation pattern also differs from that of the CAN experiment. Therefore, due to

these two factors, the deviations in the CAN Delay values in both experiments with

respect to each other can be considered to be acceptable.

Coming to the FlexRay delay analysis of the Gateway, the FlexRay FID allocation

in both dynamic segment and the static segment are changed with respect to the

previous FlexRay experiments except the message P2 in Table 6-16. Therefore, no

comparison can be done for the FlexRay delay values against any previous

experiments except the delay that the signal P2 experiences. The FlexRay delay that

P2 experiences in the FlexRay and the Gateway experiment are observed to be in

agreement with each other.

When the Table 6-37 is examined to observe the time duration that the signals

experience in the Gateway, it is found out that while the signals travel in the CAN-

to-FR direction experience very little amount of time, the signals that cross the

Gateway in the FR-to-CAN direction experience a considerable amount of time.

The situation can be visualized in Figure 6-34 better. From the figure, it is seen that

the Gateway delay has almost no contribution to the end-to-end delay for the signals

passing the Gateway in CAN-to-FlexRay direction. The time duration that the

signals stay in the Gateway in this direction is about 50 µs. Therefore, the Gateway

performance in this direction is perfectly good. However, in the reverse direction,

182

the Gateway delay is observed to be fairly high. The reason behind it lies in the

polling mechanism which is used to receive the FlexRay packets. In the Gateway,

the FlexRay messages are received through polling the incoming message buffers in

every 5 ms as opposed to CAN receive mechanism. The Gateway is informed of the

arrival of a CAN message through the interrupts issued by the CAN Controller.

Thus, although a FlexRay message is received and put into the receive buffers of

the Gateway, the CPU does not extract the buffer content before the polling time

comes. This forms the biggest part of the time that the signals pass in the Gateway.

The amount of the time delay caused by the polling mechanism can be discussed

quantitatively in the following manner. In Table 6-33, it is seen that the Gateway

receives only two FlexRay signals, one in 23rd and the other in 68th time slots. The

polling time of the incoming buffers is chosen to be in the very middle of the whole

cycle in order to decrease the time that the messages waste in the FlexRay receive

buffers. For this purpose, the very same mechanism which is used to generate the

messages in the very beginning of the FlexRay cycle and explained in details in

section 5.2.1 is used to provide the time ticks as the polling time in the middle of

the cycle, i.e at 2500th macrotick. Therefore we can assume that the CPU reads the

FlexRay buffer content in 2500th macrotick. However, the messages from the 23rd

and the 68th time slots are found to be received in macrotick 709 and 2070,

respectively by using the following formula.

MTinOffsetAction
MTinLengthSSFIDFIDMacrotickRXFlexRay

___)1()(__ +×−=

 (6-9)

where SS_Length_in_MT and Action_Offset_in_MT are the matrotick

correspondences of the network parameters the the Static Slot Length and the

Action Offset Length, respectively and the FID is the slot number of the received

FlexRay message.

As a result, the messages received from 23rd and the 68th time slots are read by the

CPU 1800 µs and 430 µs later than the time they are actually stored in the received

buffers. So, without the polling mechanism, the Gateway processing delay is found

183

to be approximately 100 µs and 250 µs for the messages received from 23rd and the

68th time slots referring the Table 6-37. This result is in the order of the delay that

the messages experience in the CAN-to-FlexRay direction.

The Gateway delay in the FlexRay-to-CAN direction can be decreased in two ways.

The first solution is to use the interrupt mechanism also in receiving the FlexRay

messages instead of polling. However this solution is not feasible due to two

reasons. First of all, the FlexRay messages are received via a dedicated FlexRay

Communication Controller. As mentioned previously, the application running on

the CPU controls the Communication Controller by means of the Fujitsu FlexRay

Software Driver. Therefore, so as to receive the FlexRay messages through interrupt

mechanism, the Communication Controller must be checked if it supports interrupt

processing. Even the Communication Controller supports the interrupt processing, it

will take more time in the CPU to process the interrupts which are fed outside.

Secondly, assume that, somehow, interrupt mechanism could be used to receive the

FlexRay messages and the number of the messages exchanged are much greater. In

such a situation, significant number of the available slots would be allocated. Due to

the TDMA structure of the FlexRay protocol, once the messages begin to be

received, CPU will be occupied, for a long while, by the interrupts issued

consecutively. This would prevent the CPU from handling the other tasks that it

should perform including the CAN receive interrupt processing. Moreover, the time

available for the interrupt processing of the received FlexRay signals is only 31 µs

which is the length of the static slot. In such a situation, the received messages

would still be made wait in the buffers for the processing of the preceding interrupts

and this would also cause significant amount of delays. Therefore, because of the

reasons discussed above, the polling mechanism is considered to be more feasible

with respect to the interrupt processing.

The other solution to decrease the Gateway delay in the FlexRay-to-CAN direction

is to utilize the polling mechanism more than once throughout the cycle. This

solution is tried in section 6.3.4.4 as a separate experiment. Referring the details to

184

section 6.3.4.4, we can say that by increasing the polling frequency twice, it is

observed that the Gateway processing delay is decreased by certain amount.

To sum up the discussion about the delay that the signals experience in the

Gateway, we can say that the Gateway processing delay is bounded to 50 µs and the

delay in the FlexRay-to-CAN direction is sourced from the polling mechanism as

discussed above. The histograms of the delay that the signals experience in the

Gateway in both directions are given in Figure 6-36 and Figure 6-37, respectively.

Figure 6-36 Delay Histogram in FlexRay-to-CAN Direction

Figure 6-37 Delay Histogram in CAN-to-FlexRay Direction

185

When we examine Figure 6-36 and Figure 6-37, we observe that the variance of the

Gateway delay is fairly small. This means that the Gateway contribution to the end-

to-end jitter is low. On the other hand, if the Table 6-37 is examined for the purpose

of observing the jitter behavior of the network, it is seen that the jitter that the

signals experience is considerably small such that they can be assumed to be zero.

Although the CAN signals experience fairly big jitter values in percentage as seen

in section 6.3.1.3, it can be said that because of the TDMA nature of the protocol,

FlexRay regulates the signal flow such that the end-to-end jitter values appear to be

fairly small. Therefore, the success of the network in jitter performance should

mostly be attributed to the FlexRay network while considering the low-jitter

behavior of the Gateway processing delay.

Finally, the results of the experiment are compared against the theoretical maximum

values which are computed in [30] for both of the networks and demonstrated in

Table 6-38.

Table 6-38 Comparative Results for the Experiment and Theoretical Maximum

Signal CAN Delay (ms)
(Exp/Max)

FlexRay Delay (ms)
(Exp/Max)

E2E Delay (ms)
(Exp/Max)

S1 0.84 0.96 0.607 5 3.325 6.46
S2 0.576 0.64 0.607 5 3.042 6.14
S3 2.71 5.04 9.985 10 11.956 14.04
S4 1.866 4.16 9.985 10 11.678 13.52
S5 1.029 2.68 9.985 10 11.398 12.68
S6 8.228 7.82 4.037 10 10.808 17.22
S7 7.104 7.24 4.58 10 10.789 17.24
S8 6.333 6.28 6.063 10 10.912 16.28
S9 4.851 5.12 6.637 10 10.89 15.12
S10 3.662 3.52 3.314 10 5.837 13.52
S11 2.235 3 3.886 10 5.771 13
S12 1.563 2.04 4.487 10 5.784 12.04
S13 1.473 1.84 5.623 10 5.978 11.84
S14 1.163 1.68 6.034 10 6.936 11.68
S15 0.475 1.16 6.318 10 6.827 11.16

186

As seen from Table 6-38, the experiment results lie within the theoretical limits.

6.3.4.4 Gateway Performance: Effect of Polling

In this experiment, the solution that is proposed in section 6.3.4.3 to decrease the

time duration that the signals stay in the Gateway is performed. The suggested

solution is to utilize the polling mechanism more than once throughout the cycle.

For this purpose two experiments are set up. While one of the experiments is

utilizing the polling mechanism once in a cycle, in the other experiment, which is of

the very same configuration with the first one, the incoming buffers are polled once

in every 2.5 ms. The goal in performing these experiments is to compare the

experiments against each other and visualize the effect of polling to the Gateway

processing delay. The message set used in this experiment is same as that of the

CAN Conventional Scheduling Experiment which is shown in Table 6-2. The

priority assignment for the CAN signals are also the same and shown in Table 6-39.

Table 6-39 CAN Priority Assignment for the Experiment

Signal C1 C2 C3 C4 C5 C6 C7 C8 C9
Priority 1 0 4 3 2 5 6 12 11

Signal C10 C11 C12 C13 C14 C15 C16 C17 C18
Priority 10 9 8 7 25 24 23 22 21

Signal C19 C20 C21 C22 C23 C24 C25 C26
Priority 20 19 18 17 16 15 14 13

In this experiment, 3 CAN nodes and the Gateway node exchange the CAN

messages that are shown in Table 6-39. The signals named C9, C10 and the signals

from C14 to C26 are generated by the Gateway. These messages are sent to the

Gateway through the FlexRay network from a single FlexRay node. Gateway does

not forward any received CAN messages to the FlexRay network. Therefore, the

187

Gateway operates only in one direction namely, FlexRay-to-CAN. The mapping of

the signals to the nodes is shown in Table 6-40.

Table 6-40 Signal Distribution With Respect to the Nodes

NODES

CAN1 CAN2 CAN3 Gateway FlexRay

S P S P S P S P S P

C1 1 C2 0 C3 4 C9 11 FR1 7

C4 3 C5 2 C6 5 C10 10 FR2 8

C7 6 C8 12 C11 9 C14 25 FR3 16

C12 8 C13 7 C15 24 FR4 17

C16 23 FR5 19

C17 22 FR6 20

C18 21 FR7 26

C19 20 FR8 28

C20 19 FR9 31

C21 18 FR10 33

C22 17 FR11 36

C23 16 FR12 37

C24 15 FR13 41

C25 14 FR14 47

C26 13 FR15 48

188

The other configurations that are used in the experiments are summarized in Table

6-41. Two distinct experiments are run with these parameters for about 120

seconds. The only difference between the experiments is in the polling mechanism

such that, while in one of the experiments the message buffers are polled once in a

cycle, in the second experiment the polling frequency is increased two times so as

to see the effect of the polling in the delay that the signals experience in the

Gateway. The comparative results for the end-to-end delay that the signals passing

the Gateway experience is given in Table 6-42 and Figure 6-38.

Table 6-41 Experiment Parameters

Network Parameter Value

FlexRay Cycle Length 5 ms
Static Slot Length 31 µs
Static Slot Number 64

Dynamic Segment Length 0
CAN Data Rate 500 kbps

Table 6-42 E2E Delay for Polling: @ 5ms and @ 2.5 ms

Signal Delay @ 5 ms
Polling (ms)

Delay @ 2.5 ms
Polling (ms)

Delta in
Delay (ms)

C9 6.784 4.217 2.567
C10 6.602 4.189 2.413
C14 5.703 3.27 2.433
C15 5.819 3.328 2.491
C16 5.821 3.275 2.546
C17 5.822 3.354 2.468
C18 5.999 3.526 2.473
C19 6.089 3.584 2.505
C20 6.151 3.557 2.594
C21 6.29 3.61 2.68
C22 6.3 3.787 2.513
C23 6.38 3.841 2.539
C24 6.39 3.811 2.579
C25 6.4 3.871 2.529
C26 6.445 4.043 2.402

189

0

1

2

3

4

5

6

7

8

C9 C10 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26
Signals

E
2E

 D
el

ay
 (m

s)

5ms Polling 2.5 ms Polling Improvement

Figure 6-38 Effect of Polling: @ 5ms and @ 2.5 ms

The results exhibited in Table 6-42 and Figure 6-38 were already expected. Because

in the experiment where the incoming FlexRay buffers are polled once in a cycle,

polling is done in the very beginning of the cycle. At the time of polling, buffers are

observed to be empty since no data could be generated from the FlexRay node.

Therefore, for this case, all the time when the buffers are polled, the data extracted

from the buffers belong to the FlexRay messages which are generated in the

previous cycle. As a result of this scheme, the FlexRay messages are received in the

Gateway with an approximate delay of 5 ms when the polling is performed with a

period of 5 ms. On the other hand, in the experiment where the polling is performed

once in every 2.5 ms, the incoming buffers are polled once in the beginning of the

cycle and for a second time, in the very middle. So, although the first polling sees

the buffers empty, during the second polling the message data are extracted from

the incoming buffers. Consequently, the messages in the Gateway which applies the

polling with a period of 2.5 ms experience a delay about 2.5 ms. To sum up, this

experiment verifies the suggestion proposed in section 6.3.4.3 that increasing the

polling frequency in the Gateway improves the Gateway processing delay.

190

CHAPTER 7

CONCLUSION

In this thesis study, the performance of FlexRay-CAN networks inter-connected by

a Gateway unit for in-vehicle communication is experimentally evaluated and the

obtained results are exhibited with detailed discussions. Apart from the verification

of the Gateway functionality, in particular, we focus on the flexibility of the

Gateway implementation regarding the mapping of signals to messages and the

worst-case response times encountered by signals that pass the Gateway including a

Gateway processing delay. The end-to-end delay and the jitter that the signals

experience, particularly, in FlexRay network, CAN network and the Gateway unit

are examined by experiments with variety of different scheduling schemes each of

which exhibits distinct characteristics in terms of performance metrics and practical

applicability. All of these experiments are realized in real time hardware

environment with realistic message sets depending on the message set provided by

an automotive company.

We first focused on the behavior of the individual CAN and FlexRay networks so as

to show the impact of scheduling of these networks to the overall performance in

the sense of end-to-end delay and jitter. Therefore, CAN and FlexRay networks are

elaborated respectively for different scheduling schemes with realistic message sets

in order to exhibit the delay and the jitter performance.

The characteristics of CAN network is evaluated via three experiments, namely

CAN Conventional Scheduling Experiment, CAN Prioritized Scheduling

191

Experiment and CAN Scheduling with Fixed Priorities Experiment. We show that

the messages that pass the Gateway experience the biggest delay values in CAN

Conventional Scheduling Experiment as expected since no special arrangement is

made in this experiment to improve the performance of the signals crossing the

Gateway. While the signals passing the Gateway experience the smallest delay in

CAN Prioritized Scheduling Experiment, the performance of CAN Scheduling with

Fixed Priorities Experiment falls between the two experiments in terms of

experienced delay. The reason for this is that in CAN Prioritized Scheduling the

signals crossing the Gateway are granted higher priorities (lower IDs), i.e. they are

prioritized, with respect to the remaining CAN messages. On the other hand in the

CAN Scheduling with Fixed Priorities Experiment, the signals that pass the

Gateway are given higher priorities while some of the CAN signals are assumed to

have fixed priorities. Because of this reason, the delay performance of the CAN

Scheduling with Fixed Priorities is a little worse than that of the CAN Prioritized

Scheduling. When the performances of the scheduling schemes are examined in the

sense of experienced jitter, in spite of fluctuations, generally the jitter values that

the signals passing the Gateway are greater in the CAN Conventional Scheduling

than the other two scheduling schemes while the jitter in these two scheduling

schemes are moreorless the same.

Then, we study the impact of scheduling in FlexRay network. The experiments held

in FlexRay network are decomposed into two experiment sets since the FlexRay

arbitration structure is composed of two distinct schemes, namely Static Segment

and Dynamic Segment. In Static Segment experiments we evaluate the Static

Segment performance in terms of delay and jitter with two scheduling schemes

where the message set used is derived from the signals in a real vehicle. We apply

the scheduling algorithms named FID Scheduling Without Jitter and FID

Scheduling with Minimum FID. As its name implies, in FID Scheduling Without

Jitter Experiment, the exchanged signals experience, fairly, no jitter. On the other

hand, the signals that are exchanged in the FID Scheduling with Minimum FID

experiment, experience jitter. However, in this experiment, the signals are achieved

192

to be allocated in a number of FID which is much less than the FID number used in

FID Scheduling Without Jitter Experiment. Therefore the bandwidth is utilized

more efficiently in the FID Scheduling with Minimum FID experiment.

In Dynamic Segment experiment, we examine the schedulability of the dynamic

segment with respect to the length of it in minislots by measuring the delay that the

signals experience. We perform 3 experiments to see if the dynamic segment is

schedulable with the minislot counts of 18, 19 and 20, respectively. We show that

the message set used is not schedulable when the minislot number of the dynamic

segment is 18 since the worst case delay that one of the messages experiences is

greater than its deadline. On the other hand, when the experiments are held with the

dynamic segment of 19 and 20 minislots respectively, it is observed that all of the

messages are sent within their deadlines which signifies that the messages sets that

are used in these experiments are schedulable.

Finally we conduct the experiments where the Gateway unit is also included. Out of

four Gateway experiments, we examine the Gateway performance quantitatively in

two experiments while the other two experiments are held qualitatively as the proof

of concept of different functionalities of the Gateway. First of all, we verify the

main functionality of the Gateway which is the protocol conversion between both

networks. Second, we demonstrate the signal mapping capability of the Gateway

which is the processing of the messages in signal level including the functionalities

of message fragmentation and signal assembly. Next, we perform the first

quantitative experiment where FlexRay-CAN networks are inter-connected via the

Gateway unit. In this experiment, we show the end-to-end worst-case response time

of the signals in the overall network with a large message set that is derived from

the signals in a real vehicle as well as the Gateway processing delay. The worst-

case end-to-end delay values are found to be within the signal deadlines and smaller

than the theoretical maximum values. Also we show that the processing delay of the

Gateway is 50 µs at maximum. The previous work on FlexRay-CAN gateway

design mostly focus on the minimizing of the processing delay. However, we

193

observe that although processing delay can have impact on the end-to-end delay

values, the scheduling of the messages on both networks has the most significant

effect.

Finally, we conduct an experiment to examine the time duration that the signals stay

in the Gateway with respect to two different polling frequencies. We demonstrate

that when the Gateway polling period is decreased from 5 ms to 2.5 ms, the

duration that the signals stay in the Gateway decreases about 2.5 ms.

In this thesis, we provide the groundwork for the anticipated in-vehicle network

architecture in the near future. That is to say, we develop a verified Gateway unit

and the experimental performance analysis of possible scheduling approaches for

interconnected FlexRay and CAN networks. The next stage in our research aims at

developing selected x-by-wire applications such as automatic parking, steer-by-wire

and break-by-wire. For this purpose, first the required FlexRay ECU’s, their

respective signals and messages and the appropriate scheduling approach will be

determined. Then the signal exchange between the FlexRay ECUs and CAN ECUs

for the envisaged application will be carried out via our Gateway unit.

194

REFERENCES

[1] N. Navet, Y. Song, F. Simonot-Lion and C. Wilwert, “Trends in Automotive

Communication Systems," Proceedings of the IEEE, vol. 93, no. 6, pp. 1204 -1223,

June 2005.

 [2] G. Leen and D. Heffernan, “Expanding Automotive Electronic Systems,” IEEE

Comput., vol. 35, no. 1, pp. 88–93, Jan. 2002.

[3] Y. Martin, “L’avenir de l’automobile tient à un fil,” L’argus de l’automobile,

vol. 3969, pp. 22–23, Mar. 2005.)

[4] K. Johansson, M. Törngren, and L. Nielsen, "Handbook of Networked and

Embedded Control Systems," D. Hristu-Varsakelis and W. S. Levine, Eds. Boston,

MA: Birkhäuser, 2005.

[5] F. Simonot-Lion, “In-car embedded electronic architectures: how to ensure their

safety,” presented at the 5th IFAC Int. Conf. Fieldbus Systems and Their

Applications (FeT 2003), Aveiro, Portugal, 2003.

[6] C.Wilwert, N. Navet, Y.-Q. Song, and F. Simonot-Lion, “Design of automotive

X-by-Wire systems,” in The Industrial Communication Technology Handbook, R.

Zurawski, Ed. Boca Raton, FL: CRC, 2004.

[7] M. Ayoubi, T. Demmeler, H. Leffler, and P. Köhn, “X-by-Wire functionality,

performance and infrastructure,” presented at the Convergence Conf. 2004, Detroit,

MI.

[8] J. Rushby, “A Comparison of Bus Architecture for Safety-Critical Embedded

Systems,” NASA/CR, Tech. Rep. NASA/CR-2003- 212161, Mar. 2003.

195

[9] S. Poledna, W. Ettlmayr, and M. Novak, “Communication bus for automotive

applications,” presented at the 27th Eur. Solid-State Circuits Conf., Villach, Austria,

2001.

[10] K. Ramaswamy and J. Cooper, “Delivering multimedia content to automobiles

using wireless networks,” presented at the Convergence Conf. 2004, Detroit, MI.

[11] "CAN Specification 2.0," 2003, retrieved from http://www.can-cia.org/can/,

Oct 18th, 2009.

[12] L. Hui, Z. Hao, P. Daogang, H. Wen, "Design and Application of

Communication Gateway based on FlexRay and CAN," 2009 International

Conference on Electronic Computer Technology, pp. 664-668, 2009.

[13] Road Vehicles—Interchange of Digital Information—Controller Area Network

for High-Speed Communication, ISO 11 898, 1994.

[14] D. Paret, "Multiplexed Networks for Embedded Systems," pp. 25-242, John

Wiley & Sons, 2007.

[15] G. Lima and A. Bums, “Timing-independent safety on top of CAN,” presented

at the 1st Int. Workshop Real-Time LAN’s in the Internet Age, Vienna, Austria,

2002.

[16] J. Ferreira, L. Almeida, J. Fonseca, G. Rodriguez-Navas, and J. Proenza,

“Enforcing consistency of communication requirements updates in FTT-CAN,”

presented at the Int. Workshop Dependable Embedded Systems, Florence, Italy,

2003.

[17] G. Rodriguez-Navas and J. Proenza, “Clock synchronization in CAN

distributed embedded systems,” presented at the 3rd Int. Workshop Real-Time

Networks, Catania, Italy, 2004.

196

[18] G. Rodriguez-Navas, M. Barranco and J. Proenza, “Harmonizing dependability

and real time in CAN networks,” presented at the 2nd Int.Workshop Real-Time

LANs in the Internet Age, Porto, Portugal, 2003.

[19] FlexRay Consortium. (2004, Jun.) FlexRay Communication System, Protocol

Specification, Version 2.0. [Online]. Available: http://www.flexray.com. Accessed

on 15 March 2010.

[20] LIN Consortium. (2003, Sep.) LIN Specification Package, Revision 2.0.

[Online]. Available: http://www.lin~subbus.org/. Accessed on 20 March 2010.

[21] A. Rajnák, The Industrial Communication Technology Handbook, R.

Zurawski, Ed. Boca Raton, FL: CRC, 2005.

[22] A. Albert, “Comparison of event-triggered and time-triggered concepts with

regards to distributed control systems,” presented at the Embedded World Conf.

2004, Nürnberg, Germany, 2004.

[23] A. Demirci, "Performance Evaluation of Flexray Networks for In-Vehicle

Communication," Master Thesis, Ankara, Nov. 2009.

[24] S. Shaheen, D. Heffernan and G. Leen, "A gateway for time-triggered control

networks," Microprocessors and Microsystems, vol. 31, no. 1, pp. 38-50, Agu.

2006.

[25] T. Lorenz, "Advanced Gateways in Automotive Applications," Ph.D. Thesis,

Elektrotechnik und Informatik der Technische Universität Berlin, 2008.

[26] L.Hui, Z. Hao, P. Daogang and H. Wen, "Design and application of

communication gateway based on FlexRay and CAN," International Conference on

Electronic Computer Technology, ICECT 2009, pp. 664-668, 2009.

[27] T. Y. Moon, S. H. Seo and J. H. Kim, "Gateway system with diagnostic

function for LIN, CAN and FlexRay," CCAS 2007 - International Conference on

Control, Automation and Systems, pp. 2844 – 2849, 2007.

197

[28] T. Y. Moon, S. H. Seo, J. H. Kim, K. H. Kwon and J. W. Jeon, "A fault-

tolerant gateway for in-vehicle networks," IEEE International Conference on

Industrial Informatics (INDIN), pp. 1144-1148, 2008.

[29] T. Y. Moon, S. H. Seo, J. H. Kim, K. H. Kwon and J. W. Jeon, "An evaluation

of the FlexRay-CAN gateway-embedded system in the HEV test bench," IEEE

International Symposium on Industrial Electronics, 2009. ISIE 2009., pp. 664-669,

2009.

[30] E.G. Schmidt and K. Schmidt, "Development of a FlexRay-CAN Gateway,"

Technical Report, Chair of Automatic Control, University of Erlangen-Nuremberg,

2010.

[31] I. Standard-11898, “Road vehicles-interchange of digital information –

Controller Area Network (CAN) for high-speed communication,” International

Standards Organisation (ISO), 1993.

[32] (2009) Bosch E-Ray FlexRay IP-Module user’s manual. [Online]. Available:

http://www.semiconductors.bosch.de/pdf/ERay Users Manual 1 2 6.pdf. Accessed

on 15 January 2010.

[33] Fujitsu Microelectronics Europe (2007) Fujitsu FlexRay Driver Manual V1.3,

Langen, Germany.

[34] E. G. Schmidt, M. Alkan, K. Schmidt, E. Yuruklu, and U. Karakaya,

“Performance Evaluation of FlexRay/CAN Networks Interconnected by a

Gateway,” IEEE - Symposium on Industrial Embedded Systems, SIES 2010

(Submitted).

198

APPENDIX A

GATEWAY EXPERIMENT SOURCE CODE:
FLEXRAY.PRJ/MAIN.C

/*--

MAIN.C

--*/

/********************@INCLUDE_START*********************

#if (EMULATOR == 0)

#include "mb91465x.h"

#else

#include "mb91465x_emulator.h"

#endif

#include "global.h"

#include <ffrd_api_global.h>

#include <ffrd_fhal_read.h>

#include <ffrd_api_status_service.h>

#include "ffrd_api_time_service.h"

#include "ReloadTimer.h"

#include "data.h"

199

#include "TTASK.h"

#include "uart.h"

#include "print_status.h"

/***********************@INCLUDE_END*******************/

#define TASK_OFFSET 100

#define TASK_OFFSET_MIN 50

#define TASK_OFFSET_MAX 150

/******************@GLOBAL_VARIABLES_START*************/

FFRD_UINT8 nOSSyncStatus;

uint32_t nRCWD = 0;

uint16_t counter=0;

uint16_t r_number = 0;

FFRD_UINT16 nTime = 0;

FFRD_UINT16 nTime2 = 0;

FFRD_UINT16 cycle_no;

uint8_t start = 0;

static volatile FFRD_RETURN_TYPE statusSx1;

static volatile FFRD_RETURN_TYPE statusSx2;

static volatile FFRD_RETURN_TYPE statusSx3;

static volatile FFRD_RETURN_TYPE statusSx5;

typedef struct{

uint8_t Port;

FFRD_UINT8 c_counter; // cycle counter value ==> Ali

200

FFRD_UINT16 m_counter; // macrotic counter value ==> Ali

uint16_t empty[8];

}sporadic_content;

sporadic_content Sbuffer1;

sporadic_content Sbuffer2;

sporadic_content Sbuffer3;

sporadic_content Sbuffer5;

/*******************@GLOBAL_VARIABLES_END**************/

/*****************@FUNCTION_DECLARATION_START**********/

extern void InitController(void);

static void InitCPUExtraRegs(void);

/*****************@FUNCTION_DECLARATION_END************/

static void InitCPUExtraRegs(void)

{

 HWWD = 0x10; /* clear HW watchdog of MB91F465X */

 /* Port 16 and 25 are connected to LED at SK-91F467-
FLEXRAY Stareterkit */

 PDR16 = 0x00; /* clear port data register */

 PFR16 = 0x00; /* set port function to I/O port */

 DDR16 = 0x0F; /* data direction 0..3: output */

 PDR27 = 0x00; /* clear port data register */

 PFR27 = 0x00; /* set port function to I/O port */

 DDR27 = 0x0F; /* data direction 0..3: output */

201

 Init_rldtmr_0(62500u, 0x181A);

 Init_rldtmr_1(2500u, 0x081A);

 Init_rldtmr_2(5000u, 0x081A); /* D1 10ms */

 Init_rldtmr_3(5000u, 0x081A); /* D2 10ms */

 Init_rldtmr_4(10000u, 0x081A); /* D3 20ms */

 Init_rldtmr_6(12500u, 0x081A); /* D5 25ms */

 InitUart4();

 HWWD = 0x10; /* clear HW watchdog of MB91F465X */

} /* eof InitCPUExtraRegs */

static void runTask(void)

{

 for (;;)

 {

 printFlexRayStatus();

 }

}

void main(void)

{

 __EI(); /* enable interrupts */

 __set_il(31); /* allow all levels */

 HWWD = 0x10; /* clear HW watchdog of MB91F467D */

 PORTEN = 0x3; /* enable I/O Ports */

 InitCPUExtraRegs();

 nRCWD = 1; /* count up variable used in WD ISR */

202

 InitIrqLevels(); * init interrupts (intvect table) */

 HWWD = 0x10; /* clear HW watchdog of MB91F467D */

 start_rldtmr_0(); /* start HW watchdog tick */

 nRCWD = 1; /* count up variable used in WD ISR */

 ttStartupHook(); /* initialise FlexRay driver */

 nRCWD = 1;

 start_rldtmr_1(); /* start system tick */

 nRCWD = 1;

 start_rldtmr_2();

 nRCWD = 1;

 start_rldtmr_3();

 nRCWD = 1;

 start_rldtmr_4();

 nRCWD = 1;

 start_rldtmr_6();

 nRCWD = 1;

 nTime2 = ffrd_api_get_mtick();

 srand(nTime2);

 runTask(); /* Idle Task */

 nRCWD = 1;

 ttShutdownHook(0); /* shutdown FlexRay driver */

}

__interrupt void IsrReloadTimer0(void) //500ms

{

 if (nRCWD > 0){

203

 nRCWD = 0;

 HWWD = 0x10;

 }

 TMCSR0_UF = 0;

}

__interrupt void IsrReloadTimer1(void) // 5ms

{

 /* get FlexRay ClusterTime */

 nTime = ffrd_api_get_mtick();

 /* correct host offset */

 if (nTime >= TASK_OFFSET)

 {

 TMRLR1 = 2490u;

 }

 if (nTime <= TASK_OFFSET_MIN)

 {

 TMRLR1 = 2500u;

 }

 TMCSR1_UF = 0; // Reset Timer _ clear interrup flag

 if(start<=150)

 {

 task_Node1();

 cycle_no = ffrd_api_get_cycle();

204

 if (cycle_no == 0)

 {

 start++;

 }

 }

 if(start > 150)

 {

 if (counter%2 == 0)

 {

 tx8_data = 8;

 tx8_flag = 1;

 tx8_period = 10;

 }

 if (counter%2 == 0)

 {

 tx17_data = 17;

 tx17_flag = 1;

 tx17_period = 10;

 }

 if (counter%2 == 0)

 {

 tx18_data = 18;

 tx18_flag = 1;

 tx18_period = 10;

 }

205

 if (counter%10 == 0)

 {

 tx20_data = 20;

 tx20_flag = 1;

 tx20_period = 50;

 }

 if (counter%20 == 0)

 {

 tx19_data = 19;

 tx19_flag = 1;

 tx19_period = 100;

 }

 if (counter%20 == 0)

 {

 tx28_data = 28;

 tx28_flag = 1;

 tx28_period = 100;

 }

 if (counter%20 == 0)

 {

 tx29_data = 29;

 tx29_flag = 1;

 tx29_period = 100;

 }

 if (counter%20 == 0)

 {

206

 tx30_data = 30;

 tx30_flag = 1;

 tx30_period = 100;

 }

 if (counter%50 == 0)

 {

 tx26_data = 26;

 tx26_flag = 1;

 tx26_period = 250;

 }

 if (counter%20 == 0)

 {

 tx41_data = 41;

 tx41_flag = 1;

 tx41_period = 100;

 }

 if (counter%200 == 0)

 {

 tx33_data = 33;

 tx33_flag = 1;

 tx33_period = 1000;

 }

 if (counter%200 == 0)

 {

 tx34_data = 34;

 tx34_flag = 1;

207

 tx34_period = 1000;

 }

 if (counter%400 == 0)

 {

 tx31_data = 31;

 tx31_flag = 1;

 tx31_period = 2000;

 }

 if (counter%400 == 0)

 {

 tx32_data = 32;

 tx32_flag = 1;

 tx32_period = 2000;

 }

 if (counter%400 == 0)

 {

 tx36_data = 36;

 tx36_flag = 1;

 tx36_period = 2000;

 }

 if (counter%400 == 0)

 {

 tx37_data = 37;

 tx37_flag = 1;

 tx37_period = 2000;

 }

208

 counter++;

 if (counter == 400)

 counter = 0;

 task_Node1(); /* start FlexRay Task */

 }//if(start >150) __END

}

__interrupt void IsrReloadTimer2(void)

{

 nRCWD = 1;

 Sbuffer1.Port = 1; /* D1 */

 Sbuffer1.m_counter = ffrd_api_get_mtick();

 Sbuffer1.c_counter = ffrd_api_get_cycle();

 statusSx1 =
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer1, 18,
19, FFRD_CHANNEL_A);

 statusSx1 =
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer1, 18,
20, FFRD_CHANNEL_B);

 do {

 r_number = rand();

 } while (r_number <= 5000);

209

 TMRLR2 = r_number;

 TMCSR2_UF = 0;

 nRCWD = 1;

}

__interrupt void IsrReloadTimer3(void)

{

 nRCWD = 1;

 Sbuffer2.Port = 2; /* D2 */

 Sbuffer2.m_counter = ffrd_api_get_mtick();

 Sbuffer2.c_counter = ffrd_api_get_cycle();

 statusSx2 =
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer2, 12,
21, FFRD_CHANNEL_A);

 statusSx2 =
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer2, 12,
22, FFRD_CHANNEL_B);

 do {

 r_number = rand();

 } while (r_number <= 5000);

TMRLR3 = r_number;

 TMCSR3_UF = 0;

 nRCWD = 1;

}

__interrupt void IsrReloadTimer4(void)

210

{

 nRCWD = 1;

 Sbuffer3.Port = 3; /* D3 */

 Sbuffer3.m_counter = ffrd_api_get_mtick();

 Sbuffer3.c_counter = ffrd_api_get_cycle();

 statusSx3 =
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer3, 8,
23, FFRD_CHANNEL_A);

 statusSx3 =
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer3, 8,
24, FFRD_CHANNEL_B);

 do {

 r_number = rand();

 } while (r_number <= 10000);

 TMRLR4 = r_number;

 TMCSR4_UF = 0;

 nRCWD = 1;

}

__interrupt void IsrReloadTimer6(void)

{

 nRCWD = 1;

 Sbuffer5.Port = 5; /* D5 */

 Sbuffer5.m_counter = ffrd_api_get_mtick();

 Sbuffer5.c_counter = ffrd_api_get_cycle();

211

 statusSx5 =
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer5, 4,
25, FFRD_CHANNEL_A);

 statusSx5 =
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer5, 4,
26, FFRD_CHANNEL_B);

 do {

 r_number = rand();

 } while (r_number <= 12500);

 TMRLR6 = r_number;

 TMCSR6_UF = 0;

 nRCWD = 1;

}

212

APPENDIX B

GATEWAY EXPERIMENT SOURCE CODE:
GATEWAY.PRJ/MAIN.C

/*--

 MAIN.C

 --*/

/**********************@INCLUDE_START******************/

#if (EMULATOR == 0)

#include "mb91465x.h"

#else

#include "mb91465x_emulator.h"

#endif

#include "global.h"

#include <ffrd_api_global.h>

#include <ffrd_fhal_read.h>

#include <ffrd_api_status_service.h>

#include "ffrd_api_time_service.h"

#include "ReloadTimer.h"

#include "TTASK.h"

213

#include "uart.h"

#include "print_status.h"

#include "CAN.h"

/**********************@INCLUDE_END********************/

#define TASK_OFFSET 2500 //for 2,5 ms offset

#define TASK_OFFSET_MIN 2450

#define TASK_OFFSET_MAX 150

/*****************@GLOBAL_VARIABLES_START**************/

FFRD_UINT8 nOSSyncStatus;

uint32_t nRCWD = 0;

FFRD_UINT16 nTime = 0;

/******************@GLOBAL_VARIABLES_END***************/

/****************@FUNCTION_DECLARATION_START***********/

extern void InitController(void);

static void InitCPUExtraRegs(void);

/****************@FUNCTION_DECLARATION_END*************/

static void InitCPUExtraRegs(void)

{

 HWWD = 0x10; /* clear HW watchdog of MB91F465X */

 /* Port 16 and 25 are connected to LED at SK-91F467-
FLEXRAY Stareterkit */

 PDR16 = 0x00; /* clear port data register */

 PFR16 = 0x00; /* set port function to I/O port */

214

 DDR16 = 0x0F; /* data direction 0..3: output */

 PDR27 = 0x00; /* clear port data register */

 PFR27 = 0x00; /* set port function to I/O port */

 DDR27 = 0x0F; /* data direction 0..3: output */

 Init_rldtmr_1(31250u, 0x181A);

 Init_rldtmr_3(2500u, 0x081A);

 InitUart4();

 InitCANCtrl0();

 HWWD = 0x10;

} /* eof InitCPUExtraRegs */

static void runTask(void)

{

 for (;;)

 {

 printFlexRayStatus();

 }

}

void main(void)

{

 __EI(); /* enable interrupts */

 __set_il(31); /* allow all levels */

 HWWD = 0x10;

 PORTEN = 0x3; /* enable I/O Ports */

215

 InitCPUExtraRegs();

 nRCWD = 1; /* count up variable used in WD ISR */

 InitIrqLevels(); * init interrupts (intvect table) */

 HWWD = 0x10;

 start_rldtmr_1();

 nRCWD = 1;

 ttStartupHook(); /* initialise FlexRay driver */

 nRCWD = 1;

 start_rldtmr_3(); /* start system tick */

 nRCWD = 1;

 runTask(); /* Idle Task */

 nRCWD = 1;

 ttShutdownHook(0); /* shutdown FlexRay driver */

}

__interrupt void IsrReloadTimer1(void)

{

 if (nRCWD > 0){

 nRCWD = 0;

 HWWD = 0x10;

 }

 TMCSR1_UF = 0; /* clear Interrupt flag */

}

__interrupt void IsrReloadTimer3(void) // 5ms

{

 /* get FlexRay ClusterTime */

216

 nTime = ffrd_api_get_mtick();

 /* correct host offset */

 if (nTime >= TASK_OFFSET)

 {

 TMRLR3 = 2490u;

 }

 if (nTime <= TASK_OFFSET_MIN)

 {

 TMRLR3 = 2500u;

 }

 TMCSR3_UF = 0; /* Reset Timer_clear interrup flag*/

 task_Node1(); /* start FlexRay Task */

}

217

APPENDIX C

GATEWAY EXPERIMENT SOURCE CODE:
GATEWAY.PRJ/TTASK.C

/*--

 TTASK.C

 --*/

#include "TTASK.h"

#include <ffrd_api_global.h>

#include <ffrd_api_init_chi.h>

#include <ffrd_api_control_service.h>

#include <ffrd_api_tx_handler.h>

#include <ffrd_api_rx_handler.h>

#include <ffrd_api_status_service.h>

#include "ffrd_api_time_service.h"

#include "global.h"

#include "CAN.h"

#if (EMULATOR == 0)

#include "mb91465x.h"

#else

218

#include "mb91465x_emulator.h"

#endif

#include "uart.h"

#define NODE_NAME "Node1"

extern uint32_t nRCWD;

static volatile unsigned int nIdleTaskInvocations;

static volatile unsigned int nTaskInvocations;

static volatile FFRD_RETURN_TYPE statusRx1;

static volatile FFRD_RETURN_TYPE statusRx2;

static volatile FFRD_RETURN_TYPE statusRx3;

static volatile FFRD_RETURN_TYPE statusRx4;

FFRD_RX_BUFFER_HEADER_STRUCT header_rx1;

uint32_t data;

uint16_t period = 10;

uint8_t j = 0;

uint32_t cycle;

uint32_t macro_tick;

uint32_t period_for_shift;

uint32_t port_for_shift;

uint8_t rx_cycle;

FFRD_UINT8 old_c_counter = 0;

FFRD_UINT16 old_m_counter = 0;

int CANtx[5] = {0, 1, 8, 13, 19};

219

typedef struct{

uint16_t Port;

FFRD_UINT16 c_counter;

FFRD_UINT16 m_counter;

uint16_t period;

uint16_t empty[1];

}data_content;

data_content sRx1;

typedef struct{

uint8_t Port;

FFRD_UINT8 c_counter;

FFRD_UINT16 m_counter;

uint16_t empty[8];

}sporadic_content;

sporadic_content Sbuffer1;

ttTASK(Node1)

{

 FFRD_POC_STATUS_TYPE poc_status;

 ++nTaskInvocations;

 ++nIdleTaskInvocations;

 nRCWD = 1;

 if(!(nTaskInvocations%100))

220

 {

 /* check if FlexRay CC is not sync */

 poc_status = ffrd_api_get_poc_status();

 /* check if FlexRay CC is not sync */

 if (poc_status != FFRD_POCS_NORMAL_ACTIVE)

 {

 if(!ffrd_api_pocs_is_halt())

 {

 /* if not sync, enter HALT state */

 ffrd_api_poc_command(FFRD_POCC_FREEZE);

 }

 /* enter DEFAULT_CONFIG state */

 ffrd_api_poc_command(FFRD_POCC_CONFIG);

 /* enter CONFIG state */

 ffrd_api_poc_command(FFRD_POCC_CONFIG);

 /* enter READY state */

 ffrd_api_poc_command(FFRD_POCC_READY);

 /* enter RUN state */

 ffrd_api_poc_command(FFRD_POCC_RUN);

ffrd_api_poc_command(FFRD_POCC_RESET_STATUS_INDICATORS);

/* do a coldstart or integration start */
ffrd_api_poc_command(FFRD_POCC_ALLOW_COLDSTART);

 }

 }

 nRCWD = 1;

221

 /* Receive data */

 nRCWD = 1;

 /*P2*/

statusRx1=ffrd_api_rx_handler_buffer((FFRD_UINT32)&sRx1,
&header_rx1, 10, 0, FFRD_CHANNEL_A,
ffrd_api_new_rx_data_buffer(0));

statusRx2=ffrd_api_rx_handler_buffer((FFRD_UINT32)&sRx1,
&header_rx1, 10, 1, FFRD_CHANNEL_B,
ffrd_api_new_rx_data_buffer(1));

if (statusRx1 == FFRD_OKAY || statusRx2 == FFRD_OKAY)

{

rx_cycle = ffrd_api_get_cycle();

cycle = sRx1.c_counter;

macro_tick = sRx1.m_counter;

period_for_shift = sRx1.period;

data = period_for_shift + (cycle<<8) + (macro_tick<<16);

CAN0_SendMessage(data, rx_cycle, 17, CANtx[0], 8);

CAN0_SendMessage(data, rx_cycle, 18, CANtx[1], 8);

}//end if for P2

/*D3*/

statusRx3=ffrd_api_rx_handler_buffer((FFRD_UINT32)&Sbuff
er1, &header_rx1, 20, 8, FFRD_CHANNEL_A,
ffrd_api_new_rx_data_buffer(8));

222

statusRx4=ffrd_api_rx_handler_buffer((FFRD_UINT32)&Sbuff
er1, &header_rx1, 20, 9, FFRD_CHANNEL_B,
ffrd_api_new_rx_data_buffer(9));

if (statusRx3 == FFRD_OKAY || statusRx4 == FFRD_OKAY)

{

if(Sbuffer1.c_counter != old_c_counter ||
Sbuffer1.m_counter != old_m_counter)

{

rx_cycle = ffrd_api_get_cycle();

cycle = Sbuffer1.c_counter;

macro_tick = Sbuffer1.m_counter;

port_for_shift = Sbuffer1.Port;

data = port_for_shift + (cycle<<8) + (macro_tick<<16);

CAN0_SendMessage(data, rx_cycle, 19, CANtx[2], 8);

CAN0_SendMessage(data, rx_cycle, 20, CANtx[3], 8);

CAN0_SendMessage(data, rx_cycle, 21, CANtx[4], 8);

old_c_counter = Sbuffer1.c_counter;

old_m_counter = Sbuffer1.m_counter;

}

}//end if for D3

}

void ttErrorHook(int error)

{

223

}

void ttStartupHook(void)

{

 FFRD_RETURN_TYPE initController;

 nRCWD = 1;

 #if (EMULATOR == 0) /* set PLL2 of MB91F465XA */

 PLL2DIVM = 1;

 PLL2DIVN = 0x13;

 PLL2DIVG = 0;

 PLL2MULG = 0;

 PLL2CLKR = 0x04; /* enable PLL, BCLCK & SCLK */

 /* wait for PLL Oscillaition stabilisation */

 TBCR = 0x08; /* setup Timebase Timer */

 CTBR = 0x00; /* clear TBT count register */

 while (!TBCR_TBIF)

 nRCWD = 1; /* wait until timer finished */

 PLL2CLKR |= 0x02; /* switch to PLL2 clock */

 EPFR31 = 0x77; // set pin to FlexRay function

 PFR31 = 0x77; // Use FlexRay Function no I/O port

 DDR31 = 0x77;

 #endif

 initController = ffrd_api_init_chi();

 nRCWD = 1;

 if (initController != FFRD_OKAY)

224

 {

 ttShutdownHook(-1);

 PDR16 = 0xAA;

 }

 nRCWD = 1;

}

void ttShutdownHook(int error)

{

 putstr(4, "\n");

 putstr(4, "Node1 is shut down");

 putstr(4, "\n");

}

225

APPENDIX D

GATEWAY EXPERIMENT SOURCE CODE:
GATEWAY.PRJ/CAN.C

/**/

/** \file CAN.C

/**/

/*********************@INCLUDE_START*******************/

#include "CAN.h"

#include "uart.h"

#include "skwizard.h"

#include "global.h"

#include <ffrd_api_global.h>

#include "ffrd_api_time_service.h"

#include "TTASK.h"

#include <ffrd_api_tx_handler.h>

#include <ffrd_api_rx_handler.h>

#include <ffrd_api_status_service.h>

#include <ffrd_api_init_chi.h>

226

#include <ffrd_api_control_service.h>

/**********************@INCLUDE_END********************/

/****************@GLOBAL_VARIABLES_START***************/

int8_t RxOK_Int;

int8_t TxOK_Int;

int8_t LEC_Int;

uint32_t nCycle;

uint32_t mtick;

uint16_t IntPointer = 0x0000;

uint16_t IntBuffer;

uint32_t can_send_cycle;

uint32_t can_send_mtick;

uint32_t ID;

uint32_t fr_rx_cycle_forshift;

unsigned char sth_came_3129=0;

unsigned char sth_came_2118=0;

unsigned char sth_came_1109=0;

unsigned char sth_came_0605=0;

unsigned char sth_came_0402=0;

FFRD_UINT8 prev_cycle3129=0;

FFRD_UINT8 prev_cycle2118=0;

FFRD_UINT8 prev_cycle1109=0;

FFRD_UINT8 prev_cycle0605=0;

FFRD_UINT8 prev_cycle0402=0;

unsigned char token_3129=31;

227

unsigned char token_2118=21;

unsigned char token_1109=11;

unsigned char token_0605=6;

unsigned char token_0402=4;

static volatile FFRD_RETURN_TYPE statusTx5;

static volatile FFRD_RETURN_TYPE statusTx7;

static volatile FFRD_RETURN_TYPE statusTx10;

static volatile FFRD_RETURN_TYPE statusTx16;

static volatile FFRD_RETURN_TYPE statusTx4;

typedef struct{

uint16_t Port;

FFRD_UINT16 can_send_cycle;

FFRD_UINT16 can_send_mtick;

FFRD_UINT16 can_rx_cycle;

FFRD_UINT16 can_rx_mtick;

}gateway_content;

gateway_content buffer7;

gateway_content buffer5;

gateway_content buffer10;

gateway_content buffer16;

typedef struct{

uint16_t Port;

FFRD_UINT16 can_send_cycle;

228

FFRD_UINT16 can_send_mtick;

FFRD_UINT16 can_rx_cycle;

FFRD_UINT16 can_rx_mtick;

uint16_t empty[5];

}gateway_content_dyn;

gateway_content_dyn buffer4;

/*******************@GLOBAL_VARIABLES_END**************/

void InitCANCtrl0(void)

{

 int16_t bufcnt;

 PFR23_D0 = 1; /* RX */

 PFR23_D1 = 1; /* TX */

 CTRLR0_Init = 1; /* Stop CAN operation */

 IF1ARB120 = 0x00000000;

 IF1MSK120 = 0x00000000;

 IF1MCTR0 = 0x0080; /* only EOB-Flag is set */

 IF1DTA120 = 0x00000000;

 IF1DTB120 = 0x00000000;

 IF1CMSK0_WR = 1;

 IF1CMSK0_Mask = 1;

 IF1CMSK0_Arb = 1;

229

 IF1CMSK0_Control = 1; /* Tx request NOT set */

 IF1CMSK0_TxReq = 0;

 IF1CMSK0_DataA = 1;

 IF1CMSK0_DataB = 1;

 for(bufcnt=1; bufcnt<=MAXBUF; bufcnt++)

 {

 IF1CREQ0 = bufcnt;/*xfer the IF content to buffer */

 }

 CTRLR0_CCE = 1; /* enable cfg change */

 BTR0 = BTR_16M_500k_16_68_3; /*BTR config 500 kBaud */

 CTRLR0_CCE = 0; /* disable cfg change */

 CTRLR0_EIE = 1; /* enable error interrupt */

 CTRLR0_SIE = 1; /* enable status change interrupt */

 CTRLR0_IE = 1; /* enable interrupt generation */

 CTRLR0_Init = 0; /* complete init, start CAN */

/* Config CAN0 Buffer 1-16 as Rx, Rx>16 will not work */

 IF1ARB120 = 2;

 IF1ARB20_Xtd = 1; /* 29bit ID */

 IF1ARB20_DIR = 0; /* Rx buffer */

 IF1ARB20_MsgVal = 1; /* buffer set as valid */

 IF1MSK120 = 0x1fffffff; /* mask all ID */

 IF1MSK20_MDir = 0; /* do not mask Dir flag */

230

 IF1MSK20_MXtd = 1; /* mask ID type flag */

 IF1MCTR0_NewDat = 0; /* clear NewDat flag */

 IF1MCTR0_MsgLst = 0; /* clear MsgLst flag */

 IF1MCTR0_IntPnd = 0; /* clear IntPnd flag */

 IF1MCTR0_UMask = 1; /* use Mask Filter */

 IF1MCTR0_TxIE = 0;

 IF1MCTR0_RxIE = 1;

 IF1MCTR0_RmtEn = 0;

 IF1MCTR0_TxRqst = 0;

 IF1MCTR0_EoB = 1;

 IF1CMSK0_WR = 1;

 IF1CMSK0_Mask = 1;

 IF1CMSK0_Arb = 1;

 IF1CMSK0_Control = 1;

 IF1CMSK0_TxReq = 0;

 IF1CMSK0_DataA = 0;

 IF1CMSK0_DataB = 0;

 IF1CREQ0 = 1;

 …

The buffer config is same for other Rx buffers, so
omitted

 …

 /* Config CAN0 Buffer 17-21 as Tx, Tx>16 will work */

 IF1ARB120 = MSG2STD(0x02);

 IF1ARB20_Xtd = 1; /* 29bit ID */

231

 IF1ARB20_DIR = 1; /* Tx buffer */

 IF1ARB20_MsgVal = 1; /* buffer set as valid */

 IF1MSK120 = 0x1fffffff; /* accept all ID */

 IF1MSK20_MDir = 1; /* mask Dir flag */

 IF1MSK20_MXtd = 1; /* mask ID type flag */

 IF1MCTR0_NewDat = 0; /* clear NewDat flag */

 IF1MCTR0_MsgLst = 0; /* clear MsgLst flag */

 IF1MCTR0_IntPnd = 0; /* clear IntPnd flag */

 IF1MCTR0_UMask = 1; /* use Mask Filter */

 IF1MCTR0_TxIE = 0;

 IF1MCTR0_RxIE = 1;

 IF1MCTR0_RmtEn = 0;

 IF1MCTR0_TxRqst = 0;

 IF1MCTR0_EoB = 1;

 IF1CMSK0_WR = 1;

 IF1CMSK0_Mask = 1;

 IF1CMSK0_Arb = 1;

 IF1CMSK0_Control = 1;

 IF1CMSK0_TxReq = 0;

 IF1CMSK0_DataA = 0;

 IF1CMSK0_DataB = 0;

 IF1CREQ0 = 17;

 …

The buffer config is same for other Tx buffers, so
omitted

232

 …

void CAN0_ReadMessageBuffer(unsigned char buffer)

{

 nCycle = ffrd_api_get_cycle();

 mtick = ffrd_api_get_mtick();

/* receive Control Info, Msg data and Arbitration
from Msg Buffer */

 IF1CMSK0_WR = 0;

 IF1CMSK0_Mask = 0;

 IF1CMSK0_Arb = 1;

 IF1CMSK0_Control = 1;

IF1CMSK0_CIP = 1; /*clear pending Int by reading */

 IF1CMSK0_TxReq = 1;

 IF1CMSK0_DataA = 1;

 IF1CMSK0_DataB = 1;

 IF1CREQ0 = buffer; /* start transfer */

 if(IF1MCTR0_MsgLst) /* in case msg lost */

 {

 IF1MCTR0_MsgLst = 0;

 IF1CMSK0_WR = 1;

 IF1CMSK0_Mask = 0;

 IF1CMSK0_Arb = 0;

 IF1CMSK0_Control = 1;

 IF1CMSK0_CIP = 0;

233

 IF1CMSK0_TxReq = 0;

 IF1CMSK0_DataA = 0;

 IF1CMSK0_DataB = 0;

 IF1CREQ0 = buffer;

 }

 can_send_cycle = 0x000000FF&IF1DTA120;

 can_send_mtick = (0x00FFFF00&IF1DTA120)>>8;

 ID = 0x1FFFFFFF&IF1ARB120;

if (ID==31) //C14 or C15 to P5

{

 if(sth_came_3129==1)

 {

 if(nCycle==prev_cycle3129)//second one has come in
the same cycle

 {

 sth_came_3129 = 0;

 if(token_3129==31)

 {

 buffer5.Port = 31;

 buffer5.can_send_cycle = can_send_cycle;

 buffer5.can_send_mtick = can_send_mtick;

 buffer5.can_rx_cycle = nCycle;

 buffer5.can_rx_mtick = mtick;

statusTx5=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r5, 10, 2, FFRD_CHANNEL_A_B);

234

 token_3129=29;

 }

 else

 {

 token_3129=31;

 }

 }//if(nCycle==prev_cycle) __END

 else

 {

 prev_cycle3129 = nCycle;

 if(token_3129==31)

 {

 buffer5.Port = 31;

 buffer5.can_send_cycle = can_send_cycle;

 buffer5.can_send_mtick = can_send_mtick;

 buffer5.can_rx_cycle = nCycle;

 buffer5.can_rx_mtick = mtick;

statusTx5=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r5, 10, 2, FFRD_CHANNEL_A_B);

 }

 }

 }// if(sth_came_3129==1) __END

 else

 {

235

 sth_came_3129 = 1;

 prev_cycle3129 = nCycle;

 if(token_3129==31)

 {

 buffer5.Port = 31;

 buffer5.can_send_cycle = can_send_cycle;

 buffer5.can_send_mtick = can_send_mtick;

 buffer5.can_rx_cycle = nCycle;

 buffer5.can_rx_mtick = mtick;

statusTx5=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r5, 10, 2, FFRD_CHANNEL_A_B);

 }

 }

}//if (ID==31) __END

 if (ID==29) //C14 or C15 to P5

 {

 if(sth_came_3129==1)

 {

if(nCycle==prev_cycle3129)//second one has come in
the same cycle

 {

 sth_came_3129 = 0;

 if(token_3129==29)

 {

buffer5.Port = 29;

236

buffer5.can_send_cycle = can_send_cycle;

buffer5.can_send_mtick = can_send_mtick;

buffer5.can_rx_cycle = nCycle;

buffer5.can_rx_mtick = mtick;

statusTx5=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r5, 10, 2, FFRD_CHANNEL_A_B);

 token_3129=31;

 }

 else

 {

 token_3129=29;

 }

 }//if(nCycle==prev_cycle) __END

 else

 {

 prev_cycle3129 = nCycle;

 if(token_3129==29)

 {

 buffer5.Port = 29;

 buffer5.can_send_cycle = can_send_cycle;

 buffer5.can_send_mtick = can_send_mtick;

 buffer5.can_rx_cycle = nCycle;

 buffer5.can_rx_mtick = mtick;

237

statusTx5=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r5, 10, 2, FFRD_CHANNEL_A_B);

 }

 }

 }//if(sth_came_3129==1)

 else

 {

 sth_came_3129 = 1;

 prev_cycle3129 = nCycle;

 if(token_3129==29)

 {

 buffer5.Port = 29;

 buffer5.can_send_cycle = can_send_cycle;

 buffer5.can_send_mtick = can_send_mtick;

 buffer5.can_rx_cycle = nCycle;

 buffer5.can_rx_mtick = mtick;

statusTx5=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r5, 10, 2, FFRD_CHANNEL_A_B);

 }

 }

 }//if (ID==29) __END

 if (ID==21) //C16 or C18 to P7

 {

 if(sth_came_2118==1)

 {

238

 if(nCycle==prev_cycle2118)//second one has come in
the same cycle

 {

 sth_came_2118 = 0;

 if(token_2118==21)

 {

 buffer7.Port = 21;

 buffer7.can_send_cycle = can_send_cycle;

 buffer7.can_send_mtick = can_send_mtick;

 buffer7.can_rx_cycle = nCycle;

 buffer7.can_rx_mtick = mtick;

statusTx7=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r7, 10, 4, FFRD_CHANNEL_A_B);

 token_2118=18;

 }

 else

 {

 token_2118=21;

 }

 }//if(nCycle==prev_cycle) __END

 else

 {

 prev_cycle2118 = nCycle;

 if(token_2118==21)

 {

 buffer7.Port = 21;

239

 buffer7.can_send_cycle = can_send_cycle;

 buffer7.can_send_mtick = can_send_mtick;

 buffer7.can_rx_cycle = nCycle;

 buffer7.can_rx_mtick = mtick;

statusTx7=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r7, 10, 4, FFRD_CHANNEL_A_B);

 }

 }

 }//if(sth_came_2118==1)

 else

 {

 sth_came_2118 = 1;

 prev_cycle2118 = nCycle;

 if(token_2118==21)

 {

 buffer7.Port = 21;

 buffer7.can_send_cycle = can_send_cycle;

 buffer7.can_send_mtick = can_send_mtick;

 buffer7.can_rx_cycle = nCycle;

 buffer7.can_rx_mtick = mtick;

statusTx7=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r7, 10, 4, FFRD_CHANNEL_A_B);

 }

 }

 }//if (ID==21) __END

240

 if (ID==18) //C16 or C18 to P7

 {

 if(sth_came_2118==1)

 {

if(nCycle==prev_cycle2118)//second one has come in the
same cycle

 {

 sth_came_2118 = 0;

 if(token_2118==18)

 {

 buffer7.Port = 18;

 buffer7.can_send_cycle = can_send_cycle;

 buffer7.can_send_mtick = can_send_mtick;

 buffer7.can_rx_cycle = nCycle;

 buffer7.can_rx_mtick = mtick;

statusTx7=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r7, 10, 4, FFRD_CHANNEL_A_B);

token_2118=21;

 }

else

 {

 token_2118=18;

 }

 }//if(nCycle==prev_cycle) __END

else

241

 {

 prev_cycle2118 = nCycle;

 if(token_2118==18)

 {

 buffer7.Port = 18;

 buffer7.can_send_cycle = can_send_cycle;

 buffer7.can_send_mtick = can_send_mtick;

 buffer7.can_rx_cycle = nCycle;

 buffer7.can_rx_mtick = mtick;

statusTx7=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r7, 10, 4, FFRD_CHANNEL_A_B);

 }

 }

 }//if(sth_came_2118==1)

 else

 {

 sth_came_2118 = 1;

 prev_cycle2118 = nCycle;

 if(token_2118==18)

 {

 buffer7.Port = 18;

 buffer7.can_send_cycle = can_send_cycle;

 buffer7.can_send_mtick = can_send_mtick;

 buffer7.can_rx_cycle = nCycle;

 buffer7.can_rx_mtick = mtick;

242

statusTx7=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r7, 10, 4, FFRD_CHANNEL_A_B);

 }

 }

 }//if (ID==18) __END

 if (ID==11) //C20 or C21 to P10

 {

 if(sth_came_1109==1)

 {

if(nCycle==prev_cycle1109)//second one has come in the
same cycle

 {

 sth_came_1109 = 0;

 if(token_1109==11)

 {

 buffer10.Port = 11;

 buffer10.can_send_cycle = can_send_cycle;

 buffer10.can_send_mtick = can_send_mtick;

 buffer10.can_rx_cycle = nCycle;

 buffer10.can_rx_mtick = mtick;

statusTx10=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er10, 10, 3, FFRD_CHANNEL_A_B);

 token_1109=9;

 }

 else

 {

243

 token_1109=11;

 }

 }//if(nCycle==prev_cycle) __END

 else

 {

 prev_cycle1109 = nCycle;

 if(token_1109==11)

 {

 buffer10.Port = 11;

 buffer10.can_send_cycle = can_send_cycle;

 buffer10.can_send_mtick = can_send_mtick;

 buffer10.can_rx_cycle = nCycle;

 buffer10.can_rx_mtick = mtick;

statusTx10=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er10, 10, 3, FFRD_CHANNEL_A_B);

 }

 }

 }//if(sth_came_1109==1)

 else

 {

 sth_came_1109 = 1;

 prev_cycle1109 = nCycle;

 if(token_1109==11)

 {

 buffer10.Port = 11;

244

 buffer10.can_send_cycle = can_send_cycle;

 buffer10.can_send_mtick = can_send_mtick;

 buffer10.can_rx_cycle = nCycle;

 buffer10.can_rx_mtick = mtick;

statusTx10=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er10, 10, 3, FFRD_CHANNEL_A_B);

 }

 }

 }//if (ID==11) __END

 if (ID==9) //C20 or C21 to P10

 {

 if(sth_came_1109==1)

 {

if(nCycle==prev_cycle1109)//second one has come in the
same cycle

 {

 sth_came_1109 = 0;

 if(token_1109==9)

 {

 buffer10.Port = 9;

 buffer10.can_send_cycle = can_send_cycle;

 buffer10.can_send_mtick = can_send_mtick;

 buffer10.can_rx_cycle = nCycle;

 buffer10.can_rx_mtick = mtick;

statusTx10=ffrd_api_tx_handler_buffer((FFRD_UINT32)
&buffer10, 10, 3, FFRD_CHANNEL_A_B);

245

token_1109=11;

 }

 else

 {

 token_1109=9;

 }

 }//if(nCycle==prev_cycle) __END

 else

 {

 prev_cycle1109 = nCycle;

 if(token_1109==9)

 {

 buffer10.Port = 9;

 buffer10.can_send_cycle = can_send_cycle;

 buffer10.can_send_mtick = can_send_mtick;

 buffer10.can_rx_cycle = nCycle;

 buffer10.can_rx_mtick = mtick;

statusTx10=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er10, 10, 3, FFRD_CHANNEL_A_B);

 }

 }

 }//if(sth_came_1109==1)

 else

 {

 sth_came_1109 = 1;

 prev_cycle1109 = nCycle;

246

 if(token_1109==9)

 {

 buffer10.Port = 9;

 buffer10.can_send_cycle = can_send_cycle;

 buffer10.can_send_mtick = can_send_mtick;

 buffer10.can_rx_cycle = nCycle;

 buffer10.can_rx_mtick = mtick;

statusTx10=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er10, 10, 3, FFRD_CHANNEL_A_B);

 }

 }

 }//if (ID==9) __END

if (ID==6) //C23 or C24 to P16

 {

 if(sth_came_0605==1)

 {

if(nCycle==prev_cycle0605)//second one has come in the
same cycle

 {

 sth_came_0605 = 0;

if(token_0605==6)

 {

 buffer16.Port = 6;

 buffer16.can_send_cycle = can_send_cycle;

 buffer16.can_send_mtick = can_send_mtick;

 buffer16.can_rx_cycle = nCycle;

247

 buffer16.can_rx_mtick = mtick;

statusTx16=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er16, 10, 5, FFRD_CHANNEL_A_B);

 token_0605=5;

 }

 else

 {

 token_0605=6;

 }

 }//if(nCycle==prev_cycle) __END

 else

 {

 prev_cycle0605 = nCycle;

 if(token_0605==6)

 {

 buffer16.Port = 6;

 buffer16.can_send_cycle = can_send_cycle;

 buffer16.can_send_mtick = can_send_mtick;

 buffer16.can_rx_cycle = nCycle;

 buffer16.can_rx_mtick = mtick;

statusTx16=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er16, 10, 5, FFRD_CHANNEL_A_B);

 }

 }

 }//if(sth_came_0605==1)

248

 else

 {

 sth_came_0605 = 1;

 prev_cycle0605 = nCycle;

 if(token_0605==6)

 {

 buffer16.Port = 6;

 buffer16.can_send_cycle = can_send_cycle;

 buffer16.can_send_mtick = can_send_mtick;

 buffer16.can_rx_cycle = nCycle;

 buffer16.can_rx_mtick = mtick;

statusTx16=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er16, 10, 5, FFRD_CHANNEL_A_B);

 }

 }

 }//if (ID==6) __END

if (ID==5) //C23 or C24 to P16

 {

 if(sth_came_0605==1)

 {

if(nCycle==prev_cycle0605)//second one has come in the
same cycle

 {

 sth_came_0605 = 0;

 if(token_0605==5)

 {

249

 buffer16.Port = 5;

 buffer16.can_send_cycle = can_send_cycle;

 buffer16.can_send_mtick = can_send_mtick;

 buffer16.can_rx_cycle = nCycle;

 buffer16.can_rx_mtick = mtick;

statusTx16=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er16, 10, 5, FFRD_CHANNEL_A_B);

 token_0605=6;

 }

 else

{

 token_0605=5;

 }

 }//if(nCycle==prev_cycle) __END

 else

 {

 prev_cycle0605 = nCycle;

 if(token_0605==5)

 {

 buffer16.Port = 5;

 buffer16.can_send_cycle = can_send_cycle;

 buffer16.can_send_mtick = can_send_mtick;

 buffer16.can_rx_cycle = nCycle;

 buffer16.can_rx_mtick = mtick;

250

statusTx16=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er16, 10, 5, FFRD_CHANNEL_A_B);

 }

 }

 }//if(sth_came_0605==1)

 else

 {

 sth_came_0605 = 1;

 prev_cycle0605 = nCycle;

 if(token_0605==5)

 {

 buffer16.Port = 5;

 buffer16.can_send_cycle = can_send_cycle;

 buffer16.can_send_mtick = can_send_mtick;

 buffer16.can_rx_cycle = nCycle;

 buffer16.can_rx_mtick = mtick;

statusTx16=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er16, 10, 5, FFRD_CHANNEL_A_B);

 }

 }

}//if (ID==5) __END

 if (ID==4) //C25 or C26 to D4

 {

 if(sth_came_0402==1)

251

 {

if(nCycle==prev_cycle0402)//second one has come in the
same cycle

 {

 sth_came_0402 = 0;

 if(token_0402==4)

 {

 buffer4.Port = 4;

 buffer4.can_send_cycle = can_send_cycle;

 buffer4.can_send_mtick = can_send_mtick;

 buffer4.can_rx_cycle = nCycle;

 buffer4.can_rx_mtick = mtick;

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 6, FFRD_CHANNEL_A);

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 7, FFRD_CHANNEL_B);

 token_0402=2;

}

 else

 {

 token_0402=4;

 }

 }//if(nCycle==prev_cycle) __END

else

 {

 prev_cycle0402 = nCycle;

252

 if(token_0402==4)

 {

 buffer4.Port = 4;

 buffer4.can_send_cycle = can_send_cycle;

 buffer4.can_send_mtick = can_send_mtick;

 buffer4.can_rx_cycle = nCycle;

 buffer4.can_rx_mtick = mtick;

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 6, FFRD_CHANNEL_A);

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 7, FFRD_CHANNEL_B);

 }

}

}//if(sth_came_0402==1)

 else

 {

 sth_came_0402 = 1;

 prev_cycle0402 = nCycle;

 if(token_0402==4)

 {

 buffer4.Port = 4;

 buffer4.can_send_cycle = can_send_cycle;

 buffer4.can_send_mtick = can_send_mtick;

 buffer4.can_rx_cycle = nCycle;

 buffer4.can_rx_mtick = mtick;

253

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 6, FFRD_CHANNEL_A);

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 7, FFRD_CHANNEL_B);

 }

 }

 }//if (ID==4) __END

 if (ID==2) //C25 or C26 to D4

{

 if(sth_came_0402==1)

 {

 if(nCycle==prev_cycle0402)//second one has come in the
same cycle

 {

 sth_came_0402 = 0;

 if(token_0402==2)

 {

 buffer4.Port = 2;

 buffer4.can_send_cycle = can_send_cycle;

 buffer4.can_send_mtick = can_send_mtick;

 buffer4.can_rx_cycle = nCycle;

 buffer4.can_rx_mtick = mtick;

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 6, FFRD_CHANNEL_A);

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 7, FFRD_CHANNEL_B);

254

 token_0402=4;

 }

else

 {

 token_0402=2;

}

 }//if(nCycle==prev_cycle) __END

else

 {

 prev_cycle0402 = nCycle;

if(token_0402==2)

 {

 buffer4.Port = 2;

 buffer4.can_send_cycle = can_send_cycle;

 buffer4.can_send_mtick = can_send_mtick;

 buffer4.can_rx_cycle = nCycle;

 buffer4.can_rx_mtick = mtick;

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 6, FFRD_CHANNEL_A);

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 7, FFRD_CHANNEL_B);

 }

 }

}//if(sth_came_0402==1)

255

 else

 {

 sth_came_0402 = 1;

 prev_cycle0402 = nCycle;

 if(token_0402==2)

 {

 buffer4.Port = 2;

 buffer4.can_send_cycle = can_send_cycle;

 buffer4.can_send_mtick = can_send_mtick;

 buffer4.can_rx_cycle = nCycle;

 buffer4.can_rx_mtick = mtick;

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 6, FFRD_CHANNEL_A);

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 7, FFRD_CHANNEL_B);

 }

 }

 }//if (ID==2) __END

}

int CAN0_SendMessage(uint32_t data, uint8_t fr_rx_cycle,
unsigned char buffer, int id, unsigned char dlc)

{

 uint32_t timeout = 0;

IF1ARB120 = id;

IF1ARB20_Xtd = 1;

IF1ARB20_DIR = 1;

256

IF1ARB20_MsgVal = 1;

 IF1MSK120 = 0x1fffffff;

 IF1MSK20_MDir = 1;

 IF1MSK20_MXtd = 1;

 IF1MCTR0_NewDat = 0;

 IF1MCTR0_MsgLst = 0;

 IF1MCTR0_IntPnd = 0;

 IF1MCTR0_UMask = 1;

 IF1MCTR0_TxIE = 0;

 IF1MCTR0_RxIE = 0;

 IF1MCTR0_RmtEn = 0;

 IF1MCTR0_TxRqst = 1;

 IF1MCTR0_EoB = 1;

 IF1MCTR0_DLC = dlc;

 IF1DTA120 = data;

 nCycle = ffrd_api_get_cycle();

 mtick = ffrd_api_get_mtick();

 fr_rx_cycle_forshift = fr_rx_cycle;

 IF1DTB120 = nCycle + (mtick<<8) +
(fr_rx_cycle_forshift<<24);

 IF1CMSK0_WR = 1;

 IF1CMSK0_Mask = 1;

 IF1CMSK0_Arb = 1;

257

 IF1CMSK0_Control = 1;

 IF1CMSK0_TxReq = 0;

 IF1CMSK0_DataA = 1;

 IF1CMSK0_DataB = 1;

 IF1CREQ0 = buffer;

while((TREQR120 & (0x1 << (buffer-1)) != 0) &&
(timeout++ < TIMEOUT) && (CTRLR0_Init != 1));

if((timeout == TIMEOUT) || (CTRLR0_Init == 1)) /* the
following code clears TxRqst bit */

 {

 IF1CMSK0_WR = 0;

 IF1CMSK0_Mask = 0;

 IF1CMSK0_Arb = 0;

 IF1CMSK0_Control = 1; /* because TxRqst is a Control
bit! (MCTR) */

 IF1CMSK0_TxReq = 0;

 IF1CMSK0_DataA = 0;

 IF1CMSK0_DataB = 0;

 IF1CREQ0 = buffer;

 IF1MCTR0_TxRqst = 0;

 IF1CMSK0_WR = 1;

 IF1CREQ0 = buffer;

 return 0; /* Tx failed! */

 }

 return 1; /* Tx succedded */

}

258

__interrupt void CAN0_ISR(void)

{

 HWWD_CL = 0;

 IntPointer = INTR0;

if((IntPointer & 0x8000) == 0x8000)/* is Status
Interrupt */

 {

 CAN0_STATUS_ISR_Handler();

 /* IRQ should be cleared here */

 }

 else /* is message buffer interrupt */

 {

IntPointer = IntPointer & 0x00FF;/* use only the
lower six bits */

if((IntPointer >= 1) && (IntPointer <= 0x80)) /* valid
buffer number */

 {

IntBuffer = 0x01 << (IntPointer-1);

 {

/* Check whether the interrupt source is a valid buffer
*/

 if((MSGVAL120 & IntBuffer) != 0) /* message buffer
is valid */

 {

 /* Check whether the interrupt cause is recieve or
transmit */

 if((NEWDT120 & IntBuffer) != 0) /* is a
recieve interrupt */

 {

259

 /* call the recieve handler */

 CAN0_ReadMessageBuffer(IntPointer);

/* Clear Newdat and pending Int */

 }

 else /* is a transmit interrupt */

 {

 /* call the transmit handler */

 } /* end else "is a transmit interrupt" */

 } /* end if "message buffer is valid" */

 }

 } /* end if "valid buffer number" */

} /* end else "is message buffer interrupt" */

}

void CAN0_STATUS_ISR_Handler()

{

 unsigned short int canstatus;

/* Read the Status Register (this operation will clear
pending Status/Error Interrupt) */

 canstatus = STATR0;

 /* Error Interrupt handling */

 /* BusOff State */

if((canstatus & 0x80) == 0x80) /* C_CAN Channel is in
BusOff state */

 {

/* Do what has do be done in BusOff state */

putstr(5,CUP(1,27)); /* set Cursor to position 1, line26
*/

260

putstr(5, "C_CAN channel 0 is in BusOff state -> System
Halted !!!");

 while(1)

 {

 HWWD_CL = 0; /* endless loop */

 }

}

 /* RX ok */

if((canstatus & 0x10) == 0x10) /* Last Reception ok */

 {

 RxOK_Int = 1;

 /* Clear RxOK Flag in Status register. */

 STATR0_RxOK = 0;

 }

 /* TX ok */

if((canstatus & 0x08) == 0x08) /* Last Transmission ok
*/

{

 TxOK_Int = 1;

 /* Clear TxOK Flag in Status register. */

 STATR0_TxOK = 0;

}

/* Last Error Counter */

if((canstatus & 0x07) != 0x00) /* Show Last Error */

{

LEC_Int = 1;

/* Clear LEC in Status register. */

261

STATR0_LEC = 0;

}

}

262

APPENDIX E

CONFIG.TXT

/* Enter here your CAN IDs and corresponding FID for
each CAN ID*/

/* CANRX FRTX */

CANID 0 = 123 --> FID 0 = 6

CANID 1 = 400 --> FID 1 = 9

/* Enter here your FIDs and corresponding CAN ID for
each FID*/

/* CANTX FRRX */

FID 0 = 7 --> CANID 0 = 1

FID 1 = 8 --> CANID 1 = 0

FID 2 = 16 --> CANID 2 = 19

FID 3 = 17 --> CANID 3 = 18

FID 4 = 19 --> CANID 4 = 17

FID 5 = 20 --> CANID 5 = 13

FID 6 = 26 --> CANID 6 = 12

FID 7 = 28 --> CANID 7 = 11

263

FID 8 = 31 --> CANID 8 = 10

FID 9 = 33 --> CANID 9 = 9

FID 10 = 36 --> CANID 10 = 8

FID 11 = 37 --> CANID 11 = 5

FID 12 = 41 --> CANID 12 = 4

FID 13 = 47 --> CANID 13 = 3

FID 14 = 48 --> CANID 14 = 2

/* Enter here .chi file of your gateway*/

Gateway Chi File = GW_Controller1.chi

264

APPENDIX F

GATEWAY.C

int CANtx[15] = {1, 0, 19, 18, 17, 13, 12, 11, 10, 9, 8,
5, 4, 3, 2};

int CANrx[15] = {123, 400};

int FRtx[2] = {6, 9};

int FRrx[15] = {7, 8, 16, 17, 19, 20, 26, 28, 31, 33,
36, 37, 41, 47, 48};

int CAN2FR[2] = {0, 1};

int FR2CAN[15] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14};

int Tx_Buffer[2] = {1, 4};

int Rx_Buffer_A[15] = {0, 2, 4, 6, 8, 10, 13, 15, 17,
19, 21, 23, 24, 26, 28};

int Rx_Buffer_B[15] = {1, 3, 5, 7, 9, 11, 12, 14, 16,
18, 20, 22, 25, 27, 29};

265

APPENDIX G

GATEWAY.H

#define fr_rx_count 15

extern int CANtx[15];

extern int CANrx[2];

extern int FRtx[2];

extern int FRrx[15];

extern int CAN2FR[2];

extern int FR2CAN[15];

extern int Tx_Buffer[2];

extern int Rx_Buffer_A[15];

extern int Rx_Buffer_B[15];

