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ABSTRACT 

INTER-CONNECTED FLEXRAY AND CAN NETWORKS 
FOR IN-VEHICLE COMMUNICATION: GATEWAY 

IMPLEMENTATION AND END-TO-END 
PERFORMANCE STUDY 

Alkan, Melih 

 

M. S., Department of Electrical and Electronics Engineering  

Supervisor: Asst. Prof. Dr. Ece Ş. Güran Schmidt 

 

May 2010, 265 pages 

The increasing use of electronic components in today’s automobiles demands more 

powerful in-vehicle network communication protocols. FlexRay protocol, which is 

expected to be the de-facto standard in the near future, is a deterministic, fault 

tolerant and fast protocol designed for in vehicle communication. The current de-

facto in-vehicle communication standard, CAN, and the future in-vehicle 

communication standard FlexRay will exist together in future cars. Data exchange 

between these two standards will be performed via Gateway units. In this thesis, 

end-to-end performance of a FlexRay-CAN network connected by a Gateway is 

evaluated as well as Gateway functionality and processing delay. The results of the 

experiments, which are performed for a realistic message set with various 

scheduling schemes, are presented and discussed. 

Keywords : in-vehicle communication, FlexRay, Gateway, end-to-end performance 
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ÖZ 

ARAÇ İÇİ HABERLEŞME İÇİN BİRBİRİNE BAĞLI 
FLEXRAY VE CAN AĞLARI: AĞ GEÇİDİ (GATEWAY) 

UYGULAMASI VE UÇTAN UCA BAŞARIM ÇALIŞMASI 

Alkan, Melih 

 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Y. Doç. Dr. Ece Ş. Güran Schmidt 

 

Mayıs 2010, 265 sayfa 

Günümüz otomobillerinde artan elektronik birim kullanımı daha güçlü araba içi 

haberleşme protokollerine olan ihtiyacı doğurmaktadır. FlexRay protokolü ortaya 

çıkan bu ihtiyacı karşılayabilecek özelliklere sahip, kararlı, hatalara dayanıklı ve 

hızlı bir haberleşme protokolüdür. Bugünün defakto araç içi haberleşme protokolü 

CAN ve geleceğin defakto araç içi haberleşme protokolü FlexRay gelecekte, 

otomobillerde eş zamanlı olarak yer almaları beklenmektedir. Bu iki ağ arasındaki 

veri haberleşmesi ağ geçiti (gateway) birimleri ile gerçekleştirilecektir. Bu tezde, 

Ağ Geçidi ile bağlanmış FlexRay-CAN ağlarının uçtan uca başarımı ve aynı 

zamanda Ağ Geçidi işlem süresi ve çalışırlığı değerlendirilmiştir. Gerçekçi mesaj 

kümesi ile çeşitli çizelgeleme yaklaşımlarına göre gerçekleştirilen deneylerin 

sonuçları sunulmuş ve tartışılmıştır. 

Anahtar Kelimeler: araç içi haberleşme, FlexRay, Ağ Geçidi, uçtan uca başarım 
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CHAPTER 1  

 

INTRODUCTION 

Today, in modern automobiles, the most widely used network protocol for in-

vehicle communication is the Controller Area Network (CAN) [31]. Although other 

communication schemes along with the CAN bus are also used, the CAN bus 

constitutes the main communication backbone in current automobiles. The 

requirement for a variety of distinct communication protocols arises from the 

necessity of running applications with different needs in terms of delay, jitter, 

bandwidth, message loss, integrity and Quality of Service (QoS). The controlling of 

wipers, lights, doors and windows, telematic functions such as car radio, DVD, 

navigation systems and rear seat entertainment, the functions for the electronic 

control of the engine such as ABS, ESP, ASC and numerous safety-critical 

functions to provide the control of suspension, steering and braking can be counted 

as the applications running in the modern cars so as to emphasize the diversity. 

Although CAN is well suited to be the main communication network for in-vehicle 

communication with such applications, CAN is evaluated to fall short for very near 

future applications such as x-by-wire which can, in short, be defined as the 

replacement of mechanical and hydraulic systems by completely electronic ones, 

due to its data rates between 50 Kbit/s and 1 Mbit/s and its event-triggered 

arbitration mechanism. The emerging FlexRay protocol with a much higher 

bandwidth of 10 Mbit/s and support for both time-triggered and event-triggered 

message traffic is expected to replace CAN as the new de-facto standard for in-

vehicle communication [1]. However, since the technology transition from CAN to 
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FlexRay is not anticipated to happen at once, in the near future both network 

protocols are expected to appear together in an automobile. In this scheme, the 

applications requiring lower speed will still be carried out by CAN bus while new 

high-speed functionality which necessitates real time response will be implemented 

on FlexRay network. Consequently, this situation imposes the existence of a 

Gateway unit which facilitates the inter-communication among the nodes on CAN 

and FlexRay networks. As the CAN and the FlexRay networks are expected to exist 

together for a long time, so does the Gateway. Therefore, attention should be paid 

for the design of an efficient and high-performance Gateway. In this respect, a 

Gateway has to perform fast and correct protocol conversion between both 

networks. It must have the capability of processing the payload of the messages in 

the signal level and the gateway processing delay should be bounded with low 

variance. 

1.1 TERMINOLOGY 

Throughout the thesis, the terms that define the data carrying entities, signal, 

message and frame are used with different meanings.  

Signal is the smallest meaningful piece of data exchanged in a network. Speed data, 

information from the sensors, indications of the display panel of an automobile can 

be given as the examples to the signals. In this context, the length of the signals can 

vary from 1-bit to tens of bytes depending on the application. 

Message indicates the entire data that is exchanged in a single transmission. In this 

sense, the messages are composed of signals. Depending on the application, the 

messages can contain tens of signals as well as they might be composed of a single 

signal. 

Frame is the protocol data exchange format for both CAN and FlexRay networks. 

The data payload of the frame is the message. Note that when the message in 
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encapsulated in the frame the necessary encoding and bitstuffing operations are 

carried out.  

1.2 CONTRIBUTIONS OF THESIS 

The first contribution of this thesis is the design, implementation and performance 

evaluation of a FlexRay-CAN Gateway that is realized by microcontroller 

programming. The implementation is carried out on an evaluation board with 

Fujitsu microcontroller and built-in FlexRay and CAN controllers. We demonstrate 

that the Gateway can perform the correct protocol conversion by testing it in an 

interconnected FlexRay-CAN network where the CAN nodes are the components of 

a real vehicle and the FlexRay nodes are realized by evaluation boards with 

FlexRay hardware. In addition we demonstrate the capability of the Gateway to 

map the signals in the incoming messages to outgoing messages according to a 

given configuration.  

The second contribution of the thesis is the experimental performance study of 

FlexRay and CAN networks that are interconnected by the designed Gateway. This 

study involves both local timing measurements on the Gateway node to calculate its 

processing delay and end-to-end delay and jitter where jitter indicates the deviation 

of the periodicity for the signal transmission from source node to destination node 

which are on different networks. The scheduling approaches followed for both CAN 

and FlexRay Networks affect the timing performance of the signals that are sent 

within a single network as well as the signals that are sent to the other network in 

the entire inter-connected network. In this respect we first investigate the timing 

performance of different scheduling algorithms for CAN and FlexRay networks. 

Next we demonstrate the end-to-end timing performance of selected scheduling 

approaches on a 7 node FlexRay-CAN network inter-connected by the Gateway. 

In the literature, there is a small number of studies on FlexRay-CAN Gateway. 

However, these studies focus on the demonstration of the correct protocol 
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conversion and measuring the Gateway processing time. The arbitrary signal 

mapping capability of the Gateway is not implemented. Furthermore to the best of 

our knowledge there is no previous study that presents the end to end delay and 

jitter measurements on an interconnected FlexRay-CAN network. 

1.3 THESIS ORGANIZATION 

The thesis is organized as follows. CHAPTER 2 describes the evolution of in-

vehicle communication, the basic characteristics of CAN and FlexRay protocols 

together with some other in-vehicle networking schemes and discusses the previous 

work made on Gateway. In CHAPTER 3, we explain the design phases of a 

FlexRay-CAN Gateway. While we introduce the development and test tools that we 

have used throughout the study in CHAPTER 4, the implementation details of the 

Gateway, design of which is described in CHAPTER 3, are discussed in CHAPTER 

5. Our experimental data and the complete discussion of the results are reported in 

CHAPTER 6. Finally, CHAPTER 7 summarizes the entire thesis work and provides 

concluding remarks. 
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CHAPTER 2  

 

BACKGROUND 

In the beginning of their invention, automobiles were described to be composed of 

purely mechanical and hydraulic systems. This description was valid until the 

beginning of 1970s [1]. Parallel with the developments in electronics after the 

introduction of transistor, share of the electronic parts and systems in the 

automobiles rapidly increased. The growing reliability and the performance of the 

electronic hardware components enabled improving the in-vehicle comfort as well 

as the safety. The very first adopted electronic components were mainly about 

comfort and utilities, like wipers, tapes, electric windows, lights and so on. As the 

time passed, safety-critical functions were implemented in the car, while more and 

more electronic components for entertainment and comfort were continued being 

introduced. Today, in most modern cars, safety-critical electronic systems and 

components like Antilock Braking System (ABS), Electronic Stability Program 

(ESP), Electric Power Steering (EPS), Airbags, Active Suspension, Engine Control 

and so forth, exist in their base configuration. As a result of this “electronization”, 

signal exchange traffic in the automobiles is enormously increased. In today’s 

luxury cars, up to 2500 signals are exchanged by up to 70 “Electronic Control 

Units” (ECU) [22]. 

In the beginning of automotive electronics, each function was implemented by stand 

alone ECUs which had their own microcontroller, sensors and actuators. Until the 

beginning of 1990s, signal exchange between ECUs was provided by point-to-point 

links. According to this strategy, n2 communication channels were required, 
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assumed that all ECUs interconnected and number of ECUs is n. In other words, the 

number of communication links were to grow with n2. However, as the number of 

ECUs were increasing very rapidly by time, this approach fell short due to problems 

of weight and cost of ECUs and reliability, power consumption and complexity 

because of the interconnection of huge numbers of wires and connectors. The 

solution to these problems was to use communication networks in the automobiles 

to multiplex numerous signals over a shared medium between different ECUs. This 

new approach was effective and really flourished. It was mentioned that replacing 

the wiring in the four doors of BMW with Local Area Network reduced the weight 

by 15 kilograms [2]. On the other hand, when communication network was used, it 

was seen that the amount of required wires was reduced 40% from 635 to 370 in 

Peugeot 307 with regard to non-multiplexed Peugeot 306 [3]. Besides the reduction 

in weight and the number of wires required, it is obvious to conclude that, this 

wiring replacement would also reduce power consumption and space allocation for 

the wiring harness and improve reliability and complexity. 

In the beginning, every manufacturer was developing its own network in its 

automobile. However, as the role of external component suppliers became 

important in automotive industry, cost of integration of new components to the in-

vehicle communication networks increased and reliability deteriorated. This is 

because, external suppliers were required to adapt their components to different 

communication networks for different manufacturer’s car. So, standardized and 

widely accepted defining rules, i.e protocols for signal exchange through a shared 

medium were needed to be defined. This need was fulfilled in mid-1980s by Bosch 

which developed Controller Area Network (CAN) [1]. Popularity of CAN increased 

very rapidly beginning with its first use in Mercedes cars in early1990s. Designed 

specifically for automotive applications, CAN became to be used in other areas 

such as industrial automation and medical equipment. In 2005 it is estimated that 

about 400 million CAN nodes (all application fields) were being sold per year [4]. 

Today, CAN has become most widely used communication network in automotive 

industry.  
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Since the introduction of CAN, new components, technologies and needs continued 

to emerge in automotive industry. All these new components were requiring new 

networking approaches. In modern cars, while for some applications, bounded delay 

and real time performance is required (like x-by-wire), for some other applications 

large bandwidth allocation is needed (like media applications). Since the 

performance demands and safety needs of all the functions embedded in the car are 

not the same, different Quality of Service (QoS like, bounded delay, jitter, 

bandwidth, redundancy of communication channels, efficient error detection 

mechanisms, so forth) are expected from communication networks. Therefore, 

today, apart from CAN bus, different communication network protocols exist 

together in a car. Among the some others, LIN (Local Interconnect Network), 

MOST (Media Oriented System Transport), FlexRay and CAN can be counted as 

the basic communication network system in a modern car. 

An in-car embedded electronic system, typically, is divided into four functional 

domains which have different features, structure, QoS requirements and constraints, 

namely, powertrain, chassis, body and telematics [5]. 

Powertrain is mainly responsible for controlling the engine of the automobile. 

Powertrain domain involves with real time control functions and performs safety-

critical operations. In order to cope with diversity of critical tasks to be performed 

which are concerned with the most important component of a car, engine, 

multitasking is required and stringent time scheduling constraints are imposed on 

the tasks. Furthermore, powertrain domain requires frequent data exchange with 

other car domains such as the chassis (ABS, ESP, ASC), and the body (dashboard, 

climate control). 

Chassis domain is the other domain which is concerned with safety-critical 

functions in the car. The main function of the chassis domain is to provide the 

control of suspension, steering and braking. Some of the functions that are gathered 

under the chassis domain are ASC (Automatic Stability Control), ESP, ABS, 4WD 

(4 Wheel Drive) and so forth. Chassis domain is little bit more critical than 
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powertrain in safety standpoint since functions in this domain have a stronger 

impact on vehicle’s stability, dynamics and agility. Moreover, the x-by-wire 

technology, which is a generic term and means the replacement of mechanical and 

hydraulic systems by completely electronic ones, is being introduced to perform 

steering or braking functions. Although the x-by-wire technology has been being 

used in avionics industry, it is an emerging technology for automotive industry. 

Studies on this new technology leads to new design methods for developing the x-

by-wire functions safely [6] and for preventing the interferences between functions 

[7]. Chassis domain mainly exchange signal with powertrain. Implementation of 

both powertrain and chassis domains moves toward a time-triggered approach 

rather event-triggered ones which will enhance the deterministic real-time 

behaviour of the system [8] [9]. As a result, CAN bus usage in these domains is 

being given up in favor of TTCAN or new emerging technology FlexRay.  

Body domain composed of systems such as dashboard, wipers, lights, doors, 

windows, seats, mirrors, climate control and so on which are more and more began 

to be controlled by software based systems. Main characteristic of this domain is 

that the components of the system require to exchange numerous of messages with 

small piece of data and that the functions are mainly triggered by the passengers’ or 

the driver’s solicitation. Despite the event-triggered characteristics of the body 

functions, since most of the nodes do not require large bandwidth through 

communication, which is offered by CAN bus, a new low-cost network is required 

to be designed, namely Local Interconnect Network (LIN), to satisfy the 

requirements of the body domain. 

Telematics is another domain existing in modern cars. Number of signals 

exchanged, number of functions implemented and bandwidth used in this domain 

have been increasing more and more rapidly nowadays. Functions like hands-free 

phones, car radio, CD, DVD, navigation systems, rear seat entertainment and so 

forth are, all, becoming standard in the automobiles today.  Common property of 

these functions is that they require to exchange big amount of data within the car, 
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even with the external world, when compared to other domains [10]. In this domain, 

rather than the messages subject to strict deadline scheduling, multimedia data 

streams, multimedia QoS, bandwidth sharing, integrity are considered to be more 

important. Both the data rate of CAN and LIN are inadequate to satisfy the 

requirements of telematics. Moreover, in this domain, once functions activated, 

signals are exchanged periodically instead of event-triggered signal exchange.  

Therefore, as the requirements of this domain are different than the other domains, 

data communication structure should also be different. In the modern automobiles, 

the telematics functions are exchanged through Media Oriented System Transport 

(MOST) networks. 

2.1 IN-VEHICLE COMMUNICATION NETWORKS 

In the following sections, the basic operating principles of some important 

communication networks implemented in modern cars will be described and their 

usage in automobile networks will be explained briefly. Although we, mainly, are 

interested in CAN and FlexRay network protocols in the scope of this study, the 

basic characteristics of LIN and MOST networks are also included by keeping the 

discussion short for the sake of the completeness of the literature. 

2.1.1 CAN (Controller Area Network) 

The CAN bus was developed by Robert Bosch GmbH as a multi-master, message 

broadcast system that specifies a maximum signaling rate of 1 Mbits/s [11]. It was 

designed initially to be used in automotive industry. While, today, CAN is the most 

popular field bus used in various fields like electric power, petroleum, chemical, 

metallurgical, steel and transport industry, CAN is widely applied in automotive 

industry, aviation industry, industrial control and security protection [12]. 

As mentioned above CAN communication is a multi-master protocol. That is to say, 

every individual node connected to CAN bus can send message whenever they find 
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the medium idle. With this regard, CAN communication is attributed as event-

triggered communication. Conflicts may occur, as accessing the shared medium, if 

two or more nodes try to send message at the same time when they see that the 

medium is idle. In the case of conflict, arbitration is done via the identifiers of the 

messages. The identifiers specify the priority of the message. The lower the 

identifier is, the higher the priority. This scheme is the result of the arbitration 

mechanism performed throughout the bus. According to this arbitration mechanism, 

in the physical layer of CAN protocol, logic (HIGH or LOW) provided by each 

node are ANDed and this ANDed logic is put on the wire of CAN bus. Therefore, if 

a node sending a HIGH logic level (which is recessive) sees a LOW logic level on 

the bus, the node understands that there exists at least an other node with a smaller 

identifier which means higher priority and immediately stops its transmission. CAN 

arbitration procedure relies on the fact that the sending node monitors the bus while 

transmitting.  The Figure 2-1 is illustrating the CAN arbitration mechanism. 

 

Figure 2-1 CAN Bus Arbitration Scheme[14] 
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This arbitration mechanism affects the feasible communication data rate and 

communication distance. Throughout the arbitration process, before a bit value is 

decided along the bus, the signal must propagate to the most remote node and return 

back. Therefore, by taking the speed of signal through the wires into consideration, 

1 Mbps rate is achieved on a 40m bus at maximum, whereas 250 kbps rate is 

feasible over 250m. 

CAN with a physical layer implementation on a twisted pair of copper wires 

became an ISO standard in 1994 [13] and found a wide range of application area in 

automotive industry due to its low cost, robustness and fairly bounded delay for its 

applications [4]. There exists, today, two versions of CAN protocol differing in size 

of identifiers. CAN 2.0A is the “Standard” CAN protocol with 11-b identifier and 

CAN 2.0B is the “Extended” CAN protocol with 29-b identifier. Up to now, 

Standard CAN protocol was sufficient for in-vehicle communication since it 

facilitated 211 messages to be sent via CAN bus. However, developments in 

automotive electronics and upcoming needs were taken into consideration, the 

usage of Extended CAN in automobiles will be a requirement in near future. 

CAN protocol permits maximum 8 bytes of data to be sent through the bus. When 

all the protocol overheads considered, a Standard CAN frame can contain at 

maximum 135 bits. CAN frame format is depicted in Figure 2-2. 

 

Figure 2-2 CAN Frame Format 
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A CAN frame is composed of 7 fields. 

• the start of frame 

• the arbitration field 

• the control field 

• the data field 

• the CRC sequence 

• the ACKnowledgement field 

• the end of frame 

An 8th area, called interframe space, forms an integral part of the frame to bind it to 

the next frame. In the following parts the content of these fields will be briefly 

dissected. 

Start of frame. Start of frame (SOF) field consists of a single dominant bit signaling 

that  the data exchange starts. 

Arbitration field. This field consists of standard identifier (11-b) and a bit called 

Remote Transmission Request (RTR). A valid identifier can not have all of its most 

significant bits to be recessive (1). Therefore maximum number of valid identifier 

combination is 211 – 24 = 2032. On the other hand, in a data frame RTR bit must be 

dominant (0). 

Control field. Control field consists of 6 bits. The first 2 bits are reserved bits to 

ensure the future upward compatibility. The last 4 bits of the control field is called 

Data Length Code (DLC) and indicates the number of bytes contained in the data 

field of the CAN frame. DLC field can be between 1 and 8 since CAN protocol 

permits maximum 8 bytes of data to be send in a single CAN frame.   
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Data field. Data field is the field which consists of useful data of CAN message 

exchange. Data to be transferred via CAN frame can be any number of bytes 

between 0 and 8, both inclusive. Since 9 possible values exist to indicate the 

number of data to be sent, to represent these values, 4 bits are used in DLC in 

“Control Field”. 

CRC field. CRC stands for “Cyclic Redundancy Code”. This field consists of the 

CRC sequence area followed by a CRC delimiter.  

The receivers check whether the transmitted message contains error by the help of 

CRC sequence sent by the transmitter. If CRC sequence and the data are not 

compatible the transmitted message is considered to be erroneous and rejected.  

CRC sequence is maximum 15 bits. Including the CRC delimiter, CRC Field can be 

maximum 16 bits. 

Acknowledgement field. This field consists of two bits, namely ACK slot and ACK 

delimiter. During these two bits time, transmitter sends two recessive (1) bits along 

the bus (in practice, the sender leaves the bus free and switches itself to listening or 

‘receiver’ mode) [14]. If a receiver in the network receives the message with “no 

transmission error” including CRC, the received message is considered to be valid 

and receiving node acknowledges this message by sending dominant bit (0) in ACK 

slot time. Since the logic level along the bus is the result of AND operation of 

individual nodes’ output, the transmitting node will see a dominant bit in ACK slot 

although it has sent a recessive bit. This signifies that the transmitted message is 

acknowledged by a receiver node. Although the nodes connected to the CAN 

network are not interested in the transmitted message, they must acknowledge it if 

they received it with “no transmission error”. With this sense, acknowledgement of 

the transmitted message does not mean that the message is being used by one of the 

nodes, it simply means that the message is received correctly by at least one of the 

nodes connected to the network. If the received message contains one or more 

transmission errors then the receiving node must issue an error frame. On the other 
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hand, ACK delimiter slot must be always recessive (1). Therefore, ACK slot lies 

between two recessive (1) bits, namely CRC delimiter and ACK delimiter. 

End of frame. The data frame is terminated by a flag consisting of a sequence of 7 

recessive (1) bit which is longer than the standard length of bit stuffing. 

Interframe space. After the transmitting frame ends, another node can not start a 

new frame immediately. According to protocol, time between two consecutive 

frames must be at least 3-bit time.  

In the physical layer, CAN uses nonreturn-to-zero (NRZ) bit representation with a 

bit stuffing length of 5. Bit stuffing is an important feature of CAN. In order to 

count the bit time, stations need to resyncronize periodically. However, if signal 

along the bus is recessive/dominant for a very long time, the stations can not find 

the opportunity to resyncronize themselves. In another words, station needs to see 

edges (changes from 0 to1 or 1 to 0) in the signal. Because of this requirement, 

according to CAN protocol, more than 5 consecutive equal-level (all-recessive or 

all-dominant) bits can not exist. If six or more equal-level bits are required to be 

sent by a transmitter, transmitter stuffs an opposite-level bit after 5 consecutive 

equal-level bits. On the other hand, receiver destuffs the sixth bit coming after 5 

equal-level bit and obtains the original message sent by the transmitter. 

As explained above in the CAN frame fields, when an error is detected by a node, 

an “error flag”, which consists of six consecutive dominant bits, is send to make the 

network be aware of the fault. Error recovery time in CAN, defined as the time 

from detecting of an error until the possible start of a new frame, is 17-31 bit time 

long. Since the corrupted frame reenters into the next arbitration phase, the 

additional delay, which is at least as long as error recovery time, may cause the 

frame to miss its deadline. Although CAN possesses some fault-confinement 

mechanisms based on error counters which are aimed at identifying permanent 

failures due to hardware disfunctioning at the level of the microcontroller, 

communication controller or physical layer, the main drawback of CAN is that a 
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node must diagnose itself [1]. This requirement may lead to the nondetection of 

some critical error. Besides, for instance, a single node can perturb the functioning 

of the whole network by sending messages outside their specification (i.e., length 

and period of the frames). Some mechanisms were proposed to increase the 

reliability of CAN-based networks [15] [16] [17]. However, it is pointed out that 

although each of them solves a particular problem, none of them proposes a 

complete remedy [18]. Therefore, in the light of the above discussion, and by taking 

the inadequate communication rate of CAN, it can be said that CAN is not suited 

for safety-critical applications such as some future x-by-wire systems. Today, in 

modern cars, CAN is used in domains named powertrain, chassis and body. 

Although the former two domains are concerned with real-time control and safety 

of the vehicle’s behaviour, currently CAN meets the requirements fairly well. 

However, with the introduction of x-by-wire applications and with the increase in 

the requirements of safety-critical and real time applications, CAN will fall short in 

a very near future. The gap in this domain will be satisfied with an emerging bus 

architecture named FlexRay™. 

2.1.2 FlexRay 

FlexRay protocol is the product of the exhaustive studies of a consortium whose 

core members are BMW, Bosch, DaimlerChrysler, General Motors, Motorola, 

Philips, and Volkswagen. The aim of the consortium, which was signed in 2000, 

was to conduct technical analyses of the existing networks used or available for use 

in the car industry, namely CAN, TTCAN, TCN, TTP/C and Byteflight to discover 

whether any one of them was capable of meeting all the technical requirements like 

high data rate, redundant channel support, deterministic delay, optical transmission 

demanded by modern automobiles when some near-future requirements were also 

taken into consideration. All of them were found to be insufficient at some point.  
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The shortcomings of these networking protocols, according to the study of the 

consortium are summarized below. 

• CAN is not fast enough for the new applications required. Also, CAN does 

not utilize redundant channel and making CAN truly deterministic is 

difficult due to its event-trigger nature. 

• TTCAN is inevitably not fast enough since it is somehow modified version 

of CAN. Although, due to its time triggered nature, it facilitates to make the 

transmission deterministic, still it does not support the redundant 

transmission channel. Also, it fails to provide support for optical 

transmission and a bus guardian. 

• TTP/C frame size is considered to be too small for new applications. In spite 

of the use of TDMA for bus access, TTP/C provides no flexibility when 

compared to FlexRay. Support of the combination of synchronous and 

asynchronous transmission sections, the multiple transmission slots for a 

single node in the synchronous section and the nodes acting on single, 

double or mixed channels can be counted as the facilities of the TDMA in 

FlexRay which do not exist in TTP/C. 

• Byteflight can be considered to be the subset of FlexRay. The asynchronous 

mode of FlexRay is functionally compatible with byteflight. Therefore 

Byteflight does not offer enough functionality for demanding applications. 

As a result of this picture, consortium began to work on a new communication 

protocol, named FlexRay, which will be remedy for the insufficiencies of the 

existing networking protocols. The FlexRay protocol is aimed to operate at high 

frequencies so as to fill the gap in the applications where the bit rate of CAN falls 

short. FlexRay is designed to be capable of implementing X-by-Wire applications 

and providing redundancy. Some of the new and promising facilities that FlexRay 
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provides is given below which signify that the FlexRay protocol is defined to be 

capable of serving all near-future electronic functions.  

FlexRay; 

• supports single channel or two channel (redundant) communication topology 

(nodes using single channel communication or two channel communication 

may exist in the same network), 

• provides gross data rate of 10 Mbps, 

• transmits data in synchronous and asynchronous modes and the length of 

these modes can be adjustable, 

• provides deterministic data transmission with pre-known and guaranteed 

latency and jitter, 

• detects the signal errors very quickly, 

• withstands synchronization errors of the global time base, 

• provides an error management mechanism via an independent “bus 

guardian” (bus guardian is optional and network still works without a 

centralized bus guardian), 

• permits the addition of new nodes to an existing system without the need to 

reconfigure the existing nodes, 

• avoids collision for bus access, 

• provides a robust system against transient faults and external radiation. 

Having included these facilities, FlexRay working group created by the consortium, 

published the first publicly available protocol specification in 2004 [19]. The final 

version of the FlexRay is “Version 2.1” and released in December 2005 [19]. The 
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above mentioned parameters and facilities will enable future requirements to be met 

for three classes of application not yet covered by CAN or by other existing 

protocols. These are communication with high bandwidth, deterministic 

communication with high bandwidth and deterministic and redundant 

communication with high bandwidth. Since FlexRay protocol is just a recently 

emerged protocol, it will take about 10 year of time before industry has widely 

implemented FlexRay protocol in automobiles. When the FlexRay is commonly 

being used in automotive industry in near future, CAN will be used as a sub-bus of 

FlexRay and LIN as a sub-bus of CAN [14]. 

2.1.2.1 Protocol Properties 

Bus access in FlexRay is implemented via TDMA structure. As a natural 

consequence of TDMA, at least one time slot is assigned for every node constituting 

the network so that they can transmit their frames at these time slots exclusively. 

Since the synchronization is well established throughout the network, all nodes can 

estimate the time slot which they are in with fairly small and acceptable differences. 

As each node sends their messages in the time slots dedicated to them, no collision 

arises when accessing the bus except that the collisions which may occur during the 

starting phase of the network. One whole cycle of the FlexRay network is divided 

into two separate parts namely Static Part and Dynamic Part. Static Part is the part 

of the FlexRay cycle where frames are sent according to TDMA structure as 

defined above. Whereas, Dynamic Part adds event-triggering nature to the FlexRay 

cycle and properties of Dynamic Part will be explained in the following chapters 

more detailed. It is worth mentioning that the proportion of Static Part to Dynamic 

Part in one FlexRay cycle is configurable and may change from a network to other. 

Even in some configurations one of the parts may not exist at all. This concept is 

illustrated in Figure 2-3 
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Figure 2-3 FlexRay TDMA Structure[14] 

In order to understand FlexRay synchronization, protocol properties and TDMA 

structure better, some terms regarding the timing hierarchy of the FlexRay protocol 

are given below. 

Communication Cycle: Communication in FlexRay takes place with the aid of 

recurring communication cycles. These communication cycles are composed of  

“static segment”, “dynamic segment”, “symbol window” (optional) and a phase in 

which the network is in idle mode, called the Network Idle Time (NIT). This is 

illustrated in Figure 2-7. 

Once the FlexRay Bus is configured, every node knows in which time slots to 

transmit their frames throughout the cycle. In all cycles, those time slots are 

dedicated to the very same nodes. However, nodes may decide to send different 

messages in the same time slot in seperate cycles or not to send any frames at all. 

For example, Node A, to whom, let’s say, 15th time slot is allocated in the cycle, 

may be configured to send frame1 in every 2 cycles and frame2 in every 4 cycles in 

the 15th slot by giving frame2 an offset. This is similar to the “Matrix Structure” 
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M1 M2 Empty 

where rows of the Matrix are the FlexRay cycles and the columns are time slots in a 

cycle. This scheme is illustrated in Figure 2-4 for 15th time slot. In this “Matrix 

Structure”, number of row, i.e number of cycles can be 64 at maximum according to 

FlexRay protocol. 

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

 

Figure 2-4 Scheduling Structure: (Msg, Freq, Offset): (M1, 2, 0) and (M2, 4, 1) 

Macrotick:  

Macrotick is the smallest unit of global time granularity of the network [19]. 

Macrotick time interval is derived from the cluster-wide clock synchronization 

algorithm. Therefore, macrotick duration is same for all nodes comprising the 

network. Macrotick duration is calculated by an algorithm synchronization routine 

and is composed of whole number of microticks. 

Microtick: 

Microtick, which constitutes the macrotick, is even smaller time unit in FlexRay 

timing hierarchy. Main difference with macrotick is that microtick duration is not 

common for all nodes throughout the network. Rather, they are created locally node 

by node and are, directly, derived from CC’s (Communication Controller) oscillator 

possibly through the use of a prescaler. 
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The timing hierarchy of FlexRay from communication cycle level to microtick level 

is illustrated in Figure 2-5. 

 

Figure 2-5 FlexRay Timing Hierarchy [19] 

2.1.2.2 Medium Access 

FlexRay cycle is composed of two different segments where FlexRay frames 

containing the payload are transmitted. These segments are called Static Segment 

and Dynamic Segment. Although there are two other segments that are composing 

the FlexRay cycle, namely “Symbol Window” and “Network Idle Time (NIT)”, 

these segments are not used for exchanging payload, rather they are used for 

synchronization and other purposes.  

Medium access in Static Segment and Dynamic Segment are different from each 

other and are summarized in the following parts. 

Static Segment: Medium access in Static Segment is purely TDMA. According to 

this structure, the segment is divided into equal time slots including silence spaces. 

The whole segment is well structured and start and end times are precisely defined 
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cluster-wide. Each time slots are assigned a unique identifier. When FlexRay 

network is established this time slots are allocated by certain nodes. Therefore, this 

structure enables to have a media free from collisions, to have a real time network 

due to the known latencies and to have a system with known bandwidth for a given 

bit time. 

Dynamic Segment: Medium access in Dynamic Segment can be defined as Flexible 

TDMA (FTDMA) as in Byteflight. According to this FTDMA structure, Dynamic 

Segment is divided into equal minislots. Each minislot is identified by a unique 

identifier similar to the slot identifiers in the Static Segment. However, in Dynamic 

Segment, duration of minislots is much smaller than the duration of the slots in 

Static Segment, as the name “mini”slot implies. Therefore, it is not possible to 

transmit a regular FlexRay frame which can be 254-byte long through this minislot. 

When it is taken into consideration that Dynamic Segment of FlexRay cycle is used 

to send the event-triggered and spontaneous data, it is obvious that many nodes may 

not have any frame to send when their time has come and it is logical to design 

minislot duration to be small so that not much bandwidth is wasted when the node 

has nothing to send in its minislot time. For instance, assume, the network is at the 

time of minislot “m”. If the node, which is supposed to send the frame with 

identifier “m” if there exists a frame to send, does not have any frame to send at that 

time instant, nothing is sent and after one minislot time the network becomes to be 

at the time of minislot “m+1”. But, if at that instant, that node does have a frame to 

send with identifier “m”, then the node transmits its frame by extending the minislot 

duration so that the duration is sufficient to send the whole frame properly. After 

the frame with identifier “m” is sent, then network becomes to be at the time of 

minislot “m+1”. This procedure goes like this till to the end of the Dynamic 

Segment. As it can easily be understood from the architecture of Dynamic Segment, 

while in a cycle Dynamic Segment ends, say, with kth minislot, in another cycle it 

ends, say, with nth minislots where "k" and "n" may be different from each other. 

This may happen because in some cycles quite a lot frames may be ready to be sent 

when their minislot time has come which prevents minislot counter from increasing 
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much whereas in other cycles few frames may be ready to be sent when their 

minislot time has come and since the frames are passed idle, minislot counter counts 

more. As a result of this, a node having a frame to send with a large frame 

identifier, may not send its frame if there are fairly many frames with smaller 

identifier to be sent in that cycle. Therefore, this may lead that frame to miss its 

deadline. To avoid this, the designers of FlexRay network should allocate identifiers 

to the frames inversely proportional to their priorities. With the introduction of this 

FTDMA structure to FlexRay network cycle, it became possible to send 

spontaneous and event-triggered messages, provide burst transmission, easily 

manage diagnostic data and, in general, transfer all kinds of messages in an ad hoc 

way. The FTDMA structure of FlexRay is depicted in Figure 2-6 

 

 

Figure 2-6 FlexRay FTDMA Structure [14] 

What is explained up to this point about the timing hierarchy and the protocol 

structure of FlexRay protocol can be illustrated by Figure 2-7 
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Figure 2-7 FlexRay Timing Hierarchy [19] 

2.1.2.3 Physical Characteristics  

As opposed to CAN protocol, in FlexRay protocol specification, the physical layer 

of the protocol is not explicitly defined. Therefore, there may exist various physical 

layer possibilities from differential pair wire to optical fiber.  

A very distinctive feature of FlexRay protocol is that physical layer must consist of  

two completely independent channels. While these channels may be used separately 

from each other for data transmission so as to increase data rate up to 10 Mbps 

gross bandwidth, the channels can also be used completely equivalent to each other 

so that functional redundancy can be achieved throughout the network providing 

reliability and enhancing the fault-tolerant aspect of the system. 

The bit coding of FlexRay network is “non-return to zero” (NRZ 8N1) coding, 

which means that the transmission of each byte (8 bit) is framed by a start bit and a 

stop bit and that the value of the physical signal does not change during the whole 

of the bit time. 
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According to the FlexRay 2.0 specification [19], the electrical values of the binary 

elements 1 and 0 are both represented by dominant states. Because the differential 

electrical levels alternate (change their sign) to represent logical level “1” and “0”. 

As it is seen from the Figure 2-8, there are two other electrical levels defined in the 

protocol. Both of these recessive levels are reserved for the idle modes of the bus 

except that one of them is for “low power down” idle mode. Since the differential 

voltage level between the dominant levels is in the order of 0.7V, signals do not 

cause any significant electromagnetic radiation throughout the network. 

 

 

Figure 2-8 FlexRay Electrical Levels [14] 

The bit time and the propagation time bound is strongly related in CAN network. 

This is not the case for the FlexRay bus as the medium access is realized with time 

sharing principle. Gross bit rate for FlexRay protocol is 10 Mbps which is implying 

a bit time of 100ns. According to the protocol, regardless of the FlexRay network 

topology (direct line, active stars, repeaters, etc.), the maximum propagation time 

must not exceed 2500ns. 
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2.1.2.4 Communication Frame Format 

FlexRay frame consists of 3 separate data fields, namely, header, payload and 

trailer. The whole picture of a FlexRay frame is shown in Figure 2-9 

 

 

 

 

Figure 2-9 FlexRay Frame Formats 

Header 

Every frame starts with a Frame Starting Sequence (FSS) consisting of 8 bits of ‘0’ 

without a start or stop bit. FSS situates between two consecutive frames. After FSS, 

comes header segment which is encoded in 40 bits. The first 5-bit area is the control 

area in header segment. The name of the bits in this 5-bit area in order of 

appearance is given below: 

• reserved = 1 

• payload preamble indicator 

• null frame indicator 

• synchronization frame indicator 

Control 
Frame 

ID 

Payload 

Length 

Header 

CRC 

Cycle 

Count 
Data 0-N CRC 

5 bits 11 bits 11 bits7 bits 6 bits 0 to 254 bytes 
 

24 bits

Header Payload Trailer 

FlexRay Frame: 5 + (0-254) + 3 Bytes 
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o “0” means normal frame 

o “1” means sync frame for synchronizing the clocks 

• start-up frame indicator 

The next field in Header Segment is Frame ID area. Frame ID consists of 11 bits 

ranging from 1 to 2047, “0” being illegal. In a cycle, Frame ID determines the slot 

number in Static Segment. In other words, a frame is transmitted only at the slot 

time equal to its Frame ID. Frame ID also determines the priority of a frame in 

dynamic segment as a low identifier value indicating high priority. 

The length of the message to be transmitted is indicated in Payload Length field in 

terms of double byte. Since the payload length can be 127 at maximum, 254 bytes 

of data can be transmitted with a single FlexRay frame. The data up to this point is 

protected with Header CRC field which is encoded in 11 bits with a Hamming 

distance of 6. The last field in Header Segment is Cycle Counter field. Cycle 

Counter is 6-bit field indicating the number of the current communication cycle. 

The communication cycle number can not be increased indefinitely and is bounded 

with the maximum number of 64 as explained in the preceding chapters. Frame 

allocations for all nodes repeat itself with the periodicity of this maximum number 

of communication cycle value. 

Payload 

Payload Segment is the field where useful data of the length as indicated in Payload 

Length field in Header Segment is transmitted. 

Trailer 

At the very end of the frame comes another CRC field encoded in 24 bits which 

protects the integrity of the whole frame with a Hamming distance of 6. 
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2.1.3 LIN (Local Interconnect Network) 

In modern cars today, CAN, with its variants namely High Speed CAN, Low Speed 

CAN and Low Speed CAN Fault Tolerant, is used as the primary communication 

network. However, among the numerous functionalities existing in a modern 

automobile, some of them requires much less capacity than CAN offers. Therefore, 

for those functions those require less bandwidth and capacity, a new serial 

communication system to be used as SAE Class A network, namely LIN (Local 

Interconnect Network), has been designed by the consortium comprised of the 

companies, Audi, BMW, Daimler Chrysler, Volkswagen, Volvo Car Corporation 

and Motorola. The final specification of the LIN protocol (rev 2.0) was issued in 

September 2003 [20]. The primary and original purpose of LIN [21] is to provide a 

“sub-bus” for CAN, with reduced functionality and lower costs, in other words to 

provide an economical solution when the requisite performance level is not high. 

Sun roof (open, close, inclination, etc.), rain detector, automatic headlight switch-

on, seats (all seat adjustments and functions) are some of the network 

nodes/participants which work satisfactorily in a LIN bus. 

LIN serial network works on “single master multiple slaves” concept. According to 

this concept, one of the nodes in LIN network operates as the master node and all 

the other nodes in the network are the slaves. The LIN link is based on 

asynchronous communication. No nodes are required to keep a supplementary clock 

for the operation. The traffic on the bus is initialized and controlled solely by the 

“master task” of the network which sits in the master node. The master node invites 

the slave nodes to communicate on the bus according to the scheduling table in its 

“master task”. The node for whom the communication is granted, which can be the 

master node itself, sends its frame through the network. Thus, neither the arbitration 

for accessing the shared media nor a supplementary clock to track the network time 

is needed in LIN network. Since the slaves cannot supply data unless they have 

been invited on the basis of a scheduling table established by the master, it enables 
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us, by examining the scheduling table, to predict the moment when a message will 

be supplied on the bus. So LIN protocol provides us a degree of determinism. 

A LIN communication frame consists of a header provided by the master task and a 

response provided by a slave task. In other words, master nodes invites a slave task 

to talk in the header part of the communication frame and the invited slave task 

supplements its data in the data part of the very same frame. LIN communication 

frame is depicted in Figure 2-10. 

 

 

Figure 2-10 LIN Communication Frame [14] 

Header 

The frame starts with a header field, consisting of three main parts, all transmitted 

by the master, as mentioned above. The first field in header is “break field” which 

consists of at least 13 dominant bits and followed by “break delimiter” which is at 

least 1 recessive bit long. Then comes the synchronization field. So as to facilitate 

the evaluation of the bit rate of the bus, synchronization field has the conventional 

value of “0101 0101” (hex 0x55), framed by the dominant start bit ‘1’ and recessive 

stop bit ‘0’, making numerous bit transitions available. After synchronization field, 

there exists a 10-bit field where the identifier of the message is defined. This 10-bit 

header field starts with a dominant start bit and ends with a recessive stop bit. 2 

parity bits are added just before the stop bit. The remaining 6 bits represents the 

identifier of the message providing 64 identifiers. The 6-bit identifier field also can 
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be divided into two. While the first 4 bits define the identifier, the other 2 bits 

specify the length of the data field in 4 different values, 1 byte, 2 bytes, 4 bytes and 

8 bytes. 

Data 

The frame is followed by the “response” of one of the slaves (or the master task). 

So as to decode and process the header field, a space called “response space” is 

granted to the slave tasks (or master task) between the header and the data field. The 

data field consists of 1 to 8 bytes data as required in the header section plus 3 

command and security bytes. The checksum field which is sent after the data 

terminates the LIN frame. The consecutive frames are separated by a time interval 

called the ‘interframe’.   

The slave nodes do not send any acknowledgement of correctly received messages 

in LIN. The consistency of the network traffic is checked by the master node. If 

there is an inconsistency (no response from the slave, incorrect checksum, etc.), the 

master can retransmit the message. On the other side if the slave detects an 

inconsistency, the slave controller sends it to the master in the form of diagnostic 

data. 

The maximum bus bit rate of LIN network is 20 kbps. Because this low bit rate and 

low cost, LIN is suitable for the low bit-rate applications where using CAN would 

be waste of both bandwidth and money. 

The bit encoding of LIN is NRZ (non return to zero) and the termination resistance 

of master node and the slave nodes are 1 kΩ and 20-47 kΩ, respectively. The length 

of the wire link of a network must not exceed 40m and the maximum recommended 

number of nodes in a sub-network should not exceed 16 even though the protocol 

can support a maximum of 63. 
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2.1.4 MOST (Media Oriented System Transport) 

Changing applications throughout the years necessitate imposing new requirements 

for in-vehicle communication networks. As the share of the telematics and media 

functions increased in automobiles by time, conventional buses like CAN bus began 

to fall short to meet the requirements of these applications. Media and telematics 

functions were requiring larger bandwidth than CAN could provide and were 

necessitating working synchronously which is not compatible with the event-trigger 

nature of CAN bus. Because of these motivations, the MOST Cooperation was set 

up in 1998 by BMW, Daimler Chrysler, Harman/Becker and OASIS Silicon 

Systems, with the aim of standardizing the communication technology of the MOST 

concept. The MOST bus is designed to provide links between radios, navigation 

controllers and associated systems, displays (on the instrument panel, at seats, etc.), 

CD players and changers (audio and video CD, DVD, CD-ROM, etc.), voice 

recognition systems, mobile telephony, active in-car sound distributors and so forth. 

Although synchronous mode communication is dominant, MOST enables to 

communicate in both synchronous mode and asynchronous mode. In Table 2-1 the 

main properties of most of the signals that can travel on a MOST bus are 

summarized. 
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Table 2-1 Signals Travelling on a MOST Bus 

Signal Type Signals Bit Rate Format 

Control Signals  125/250 kbps Async 

Digital Audio: 
- Uncompressed 
audio CD 
- MPEG 
compressed audio 

 
1.41 Mbps 
 
128/384 kbps 

 
Sync 
 

Async 

Digital Video: 
– Uncompressed 
CCIR 601/4:2:0 
– Compressed 
MPEG1 
– Compressed 
MPEG2 

 
249 Mbit s-1 
 
1.86 Mbit s-1 
 
2/15 Mbit s 

 
Sync 
 
ASync 
 
A Sync 

Navigation: 
– Data carrier 
– MPEG1 video 
– Vice 

 
250 kbps 
1.4 Mbps 
1.4 Mbps 

 
Async 
Sync 
Sync 

Data Signals 

Data 
Communications Several bytes Async 

In Figure 2-11, the most unfavorable situation of a conventional configuration for 

audio and video signal distributions in a motor vehicle is given. 
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Figure 2-11 Conventional Configuration of Audio and Video Signals 

Therefore, the MOST bus must provide a data rate in the order of 20 Mbps to 

satisfactorily meet the requirements of a modern car. In fact, the theoretical gross 

data transfer rate of the MOST bus is 25.46 Mbps in synchronous mode. However, 

the MOST networks currently operate at around 8-10 Mbps gross for video and 

audio applications. On the other hand, MOST networks operate at 14.4 Mbps at 

maximum in asynchronous mode which can be used for example, to transmit short 

Four-Channel Stereo Audio (4x2) x 1.4 Mbps 11.2 Mbps 

Multiplexed Video 2.8 to 11 Mbps 

+ reserve of 4 Mbps 

+2.8 to 11 Mbps 

+ 4 Mbps 

Making Total of 18 to 26.2 Mbps 

Navigation: 

Video Image: 

1.4 Mbps 

Audio: 

1.4 Mbps 

TV: 

Video Image: 

1.4 Mbps 

Audio: 

1.4 Mbps 

DVD: 

Video Image: 

2.8 - 11 Mbps 

Audio: 

1.4 Mbps 

CD-Video: 

Video Image: 

1.4 Mbps 

Audio: 

1.4 Mbps 
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bursts of signals such as those corresponding to voice signals for navigation 

assistance and other driver assistance messages. 

Based on the D2B solution, the MOST is initially designed to carry digital audio 

CD data at a fixed rate. This working mode is the “synchronous” mode of the 

MOST system. In synchronous mode, a master supplies a clock signal so that all the 

other network participants synchronize themselves to this clock. MOST also 

supports the presence of several masters in a single network and the maximum 

number of participants is 64. The digital data is transferred in frames with 44.1 kHz 

(the rate of digital Audio CD) rate. Each frame consists of 60 channels of 1 byte 

each. Therefore, the theoretical maximum data rate of the bus is calculated as 

follows: 

 Mbps268.2144100)860( =××  (2-1) 

In fact, because of the format of the byte transmitted (in 10 bits, 8N1) in this mode, 

the maximum gross data transfer rate is: 

 Mbps585.2644100)1060( =××  (2-2) 

The working principle of the MOST network is simple. 60 bytes of the frame is 

considered as 60 channels and these channels are multiplexed with nodes or 

applications. For example, as shown in the Figure 2-12, 6 channels of the frame, 

making up 2.1168 Mbps, can be reserved for audio transmission and 29 channels of 

the frame, making up 10.231 Mbps, can be allocated for carrying video signals. 

Thus, taking the number and the quality of the applications (how many audio 

signals, how many video signals and what quality) to be transmitted through the 

MOST bus into consideration, sufficient number of channels are assigned to each 

application. Along with these data channels, some communication channels are 

dedicated to the transfer of commands, which indicates the command information of 

the data send by the transmitter. Consequently, once the channel allocation is done, 
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when the connection has been established, the digital data stream can be transmitted 

without being formed into packets. 

 

Figure 2-12 Example of a MOST Frame [14] 

The MOST physical layer was originally designed around a ‘copper’ twisted pair 

wire link. However, now, it has evolved to its present form, supported by a fiber 

optic medium. The MOST bus with optical fiber physical medium provides both a 

wider range of applications and greater immunity to external parasitic signals, while 

avoiding interference by radiation with the immediate environment. The application 

topology of this bus is often in the form of a ring network.  

2.2 GATEWAY NODE FOR INTERCONNECTED INVEHICLE 

NETWORKS 

As explained in the preceding sections, various network protocols, from LIN to 

FlexRay, have emerged throughout the evolution of the in-vehicle electronics and 

communication. This is due to the fact that, numerous applications, whose 

performance and quality requirements differentiate significantly from each other,  

are to run together in modern cars today. While for some applications, bounded 

delay and real time performance is required, for some other applications providing a 

large bandwidth is nothing but waste of sources. Among the diverse automotive 

networking protocols, each of which are developed to suit to a specific requirement, 

we can easily say that CAN bus is still the most important networking protocol and 

constitutes the backbone of the in-vehicle communication. However, this will not be 
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the case in near future. New technologies such as x-by wire technology, which is a 

generic term and means the replacement of mechanical and hydraulic systems by 

completely electronic ones, is being introduced step by step to perform steering or 

braking functions. Since such emerging technologies perform safety-critical tasks 

which require real time communication, they require much more bandwidth than 

CAN provides. Therefore a new network protocol, FlexRay, has recently been 

developed to be used in x-by-wire applications where the CAN bus falls short in 

satisfying the requirements. It is expected that in long term, the FlexRay protocol 

will completely replace the CAN bus for high-speed applications and become the 

main communication backbone in automobiles. CAN is expected to stay around for 

a long time for relatively lower speed applications due to its legacy status. Hence, 

both during the transition from CAN to FlexRay for high-speed applications and 

afterwards both protocols will exist together in the car performing the tasks of 

different characteristics. The co-existence of FlexRay and CAN in the car imposes a 

Gateway unit which provides an interface between the both networks and facilitates 

the inter-communication without compromising the overall performance of the 

inter-connected network in terms of delay and jitter.  

The previous work on Gateway design and implementation for in-vehicle networks 

include Gateway implementation on FPGA which focus on the hardware 

performance and timing properties [24], [25]. In addition, implementations by 

micro-controller programming in [26], [27], [28] and [29] demonstrate that the 

gateway correctly converts the messages between protocols. Among these studies, 

[29] implements the Gateway unit in a Hybrid Electrical Vehicle test bench and 

report experimental results for the achieved data rate of 0.9285 Mbps data rate on 

CAN and 4.3478 Mbps on FlexRay. To the best of our knowledge all of the 

previous Gateway implementations convert the messages from one protocol to 

another without any processing of the message payload in the signal level. 

Furthermore there is no study of the end-to-end network performance study for 

FlexRay-CAN networks connected by a Gateway. In this thesis, we both process the 

message payload in the signal level in addition to the protocol conversion and 
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examine the end-to-end network performance as well as the Gateway processing 

delay for the Gateway implemented. Being able to process the messages in signal 

level is very important for a full functional Gateway. Because according to the 

configuration of the networks and the operational scenario of the Gateway, it might 

be required to fragment the incoming messages into their signals and pack the 

signals that will be sent in a single message according to the application 

requirements and to potentially increase the network efficiency. One example could 

be an ECU on FlexRay which requires multiple signals collected from different 

sensors on CAN network to complete a certain task. If the periods of the CAN 

signals are appropriate the gateway unit can put the signals in individual CAN 

messages into a single FlexRay message and send it to the ECU. Similarly the ECU 

in FlexRay might generate multiple signals at the same time to be sent to a number 

of different actuators on the CAN bus. In that case it sends a single FlexRay 

message which carries these multiple signals. The gateway fragments the message 

and sends each signal to a different CAN node with different priorities as required. 

The design, implementation and the performance analysis of the Gateway are 

discussed respectively in the following chapters. 
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CHAPTER 3  

 

FLEXRAY-CAN GATEWAY DESIGN 

A Gateway, as explained above, is the unit which has interface with several 

different networks in a bigger network and provides data transfer between the nodes 

in distinct networks. These networks might employ different communication 

protocols. In this context, FlexRay-CAN Gateway properties, design requirements 

and the functional design of the Gateway are discussed in this chapter.  

The operational requirements and performance metrics that we consider in the 

design are the correct protocol conversion between FlexRay and CAN, bounded 

gateway processing delay and delay variance and the flexibility of the 

configuration. We first eloborate these design considerations and then describe the 

Gateway functionality to transfer messages between FlexRay and CAN networks. 

First of all, the Gateway has to perform protocol conversion which includes 

extracting the payloads of the incoming messages and then adding the correct 

protocol headers before sending them to their destination network. 

Since FlexRay and CAN communication protocols are very different from each 

other conceptually, FlexRay-CAN Gateway must comply with some number of 

requirements. The Gateway design must take the basic differences between the 

FlexRay and the CAN Networks into consideration which are the payload 

difference, bit-rate difference and the difference in the arbitration scheme of the 

protocols. While the maximum payload which can be transferred through CAN 
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network is 8 bytes, FlexRay frame might be up to 254 bytes long. Regarding the 

arbitration schemes, CAN is an event-triggered network and uses the bus access is 

granted to frames based on their priorities. FlexRay is a time-triggered network. 

There is no conflict for medium access in FlexRay network since FlexRay uses 

TDMA and flexible TDMA structure. Also bit rates of these two protocols are very 

different from each other. As FlexRay bit rate is 10 Mbps, CAN network bit rate 

can vary from several tens of kilobits to 1 Mbps at maximum. This difference in 

transfer data rate of the two networks must be compensated and some precautions 

should be taken in the Gateway so that no conflict occurs and no data is lost in 

communication. The impacts of these differences of the FlexRay and CAN 

networks on the design of the Gateway are explained below in 2 parts: FlexRay-to-

CAN Functionality Design and CAN-to-FlexRay Functionality Design. 

Needless to mention, a very important performance metric for a Gateway is the 

processing delay which is defined as the time difference between the transmit time 

of the signal from the Gateway and the receive time of the same signal in the 

Gateway. The processing delay is a component of the end-to-end delay of the 

signals carried in the message. Hence it should be bounded by a maximum value to 

be able to compute an upper bound for the signals that are transmitted end-to-end 

over the Gateway. Obviously, the lesser the delay that the signals experience in the 

Gateway, the better performance the Gateway has. The experimental data showing 

that the Gateway processing delay is bounded is given in section 6.3.4.3. Finally the 

processing of the Gateway is also related with the hardware used in it. For a better 

performance, as mentioned previously, a high speed microcontroller unit is used in 

the design of the Gateway. A further metric that is related to processing delay is the 

variation of it. This variation particularly increases the jitter of the periodic signals 

that are transmitted from FlexRay to CAN.  

The messages that arrive at the Gateway might contain more than one signal. In that 

case the Gateway should be able to map these signals to different outgoing 

messages in a flexible way as required by the operation of the vehicle. 
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Our Gateway design is realized by software on a microcontroller. We took the 

software complexity into consideration in the implementation. Low software 

complexity is important for both keeping the processing delay low and the easy 

adaptation of the Gateway code to the new emerging requirements of the node.  

3.1 FLEXRAY-to-CAN GATEWAY FUNCTIONALITY DESIGN 

FlexRay-to-CAN functionality mainly focuses on the fragmentation of the FlexRay 

message and queuing the incoming messages to transfer them in order through 

FlexRay network since FlexRay frame and data rate can be much greater than CAN 

frame and data rate. The tasks that are performed in FlexRay-to-CAN functionality 

are explained below in more detail. 

Fragmentation 

An average FlexRay frame is expected to be longer than the longest CAN frame 

which is 8 bytes long. This is because the maximum FlexRay frame length is 254 

bytes. Therefore, for FlexRay frames longer than the biggest CAN frame, FlexRay-

to-CAN functionality has to fragment the incoming message into pieces and send 

them in consecutive CAN messages. If the incoming message is fragmented, the 

Gateway must put a header to each message piece so as to relate these fragments 

with the entire message on the other side. CAN node on the other side can easily 

reassemble the messages coming from the Gateway and build up the whole 

message. To handle the incoming FlexRay messages in the Gateway and making 

them wait to be sent through CAN bus, Gateway needs to have some dedicated 

buffers or a queue structure to store the fragments of the FlexRay message. Since 

the data rate of the FlexRay is greater than the bit rate of CAN bus, after a while, 

the fragments waiting to be sent on CAN bus might be accumulating in the 

Gateway. So, to prevent any loss of data, the length of buffer allocated for the 

fragments must be considered properly to meet the requirements of the Gateway. 

Message Elaboration with Signal Mapping (Processing) 
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Very often, multiple signals of the vehicle such as temperature and pressure values 

can be carried in a single message. Hence these signals might be destined to 

different nodes. In addition, a certain signal might be received by multiple nodes. 

The different message routing options that the Gateway must handle are 

summarized below in bullets: 

• Multiple fragments of the FlexRay message (each carrying a different 

signal), each is sent with distinct CAN ID. 

• Some fragments of the FlexRay Messsage might be multiplexed to different 

CAN nodes and the others, each, is sent to single distinct CAN ID. E.g 

Flexray message : 20 B, Fragment 1 (F1) : 6 B, Fragment 2 (F2) : 6 B, 

Fragment 3 (F3) : 5 B and Fragment 4 (F4) : 3 B. F1 goes to CAN ID 1, 

CAN ID 3 and CAN ID 4, F2 goes to CAN ID 2 and CAN ID 7, F3 goes to 

CAN ID 6 and F4 goes to CAN ID 5 

• Further, some fragments of the FlexRay message might be directed to the 

same CAN ID. E.g F1 and F5 directed to CAN ID 10. 

• As a situation related with fragmentation, if multiple fragments of the 

FlexRay Message are sent by single CAN ID in the CAN bus, the total 

length of the fragments may exceed 8 B. Then the message must be 

fragmented and headers must be put properly. E.g F2(4B), F3(5B), F4(3B) 

and F7(2B) wanted to be sent by CAN ID 5 then the fragments can be 

packed as F2-F4 and F3-F7 so that total length of data becomes 7B and 

there still remains 1B space to put header into the message. 

As seen, Gateway must be able to handle very different signal mapping situations 

and process the incoming data accordingly. Even, some of the possibilities 

described above in bullets, might exist at the same time. In this case the buffer 

management is very significant when processing the FlexRay frame. For instance, if 

the message to be transmitted via CAN is more than 8 bytes, the message needs to 
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be transmitted in parts and the waiting parts must be stored in buffers. Therefore, 

the more "greater than 8 byte messages" to be transmitted through CAN bus, the 

more buffers the Gateway needs. Moreover, if the priority of the CAN message that 

Gateway transmits is low (with greater ID) and the production rate of the message 

in FlexRay network is high then it is probable that before all parts of the message 

have been sent via CAN network, new messages arrive from FlexRay network. This 

situation leads to the increase in the number of buffers needed. The same problem 

may occur, though less probable, when the length of the message to be transmitted 

through CAN is less than 8 bytes. Therefore, FlexRay ID numbers and CAN 

priorities should be assigned properly by taking the specific mapping situations and 

the data rates into consideration so that minimum number of buffers is needed in 

Gateway and no data is lost. As a result, message processing functionality of the 

Gateway is highly dependent on the network configuration. Besides this, software 

protocol for the data exchange is also important. While, as one possibility, 

according to the protocol running, Gateway might, for example, be required to add 

header before each signal when multiple signals are to be sent in a single CAN 

frame, as another possibility, the places of all signals are predefined in software and 

zero is sent for the signal that are not present. To sum up, in message processing 

task, Gateway must take, application dynamics, network configuration and software 

protocol into account all together. 

Queuing 

Queuing is a very important functionality of the Gateway. The queuing requirement 

arises from the bit rate difference of FlexRay and CAN network. Therefore, 

Gateway must create and handle a proper queue structure and manage the incoming 

messages by the help of this queue. 

As discussed above, main functionalities of the Gateway can not be considered 

independent of network configuration and software protocol running on Gateway. 

Therefore, for the Gateway to function properly, queue requirements and structure, 
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FlexRay IDs and CAN priorities must be selected accordingly. As a consequence of 

this, Gateway performance will be increased and data loss will be avoided. 

Gateway functionality is depicted in Figure 3-1. 
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Figure 3-1 FlexRay-to-CAN Gateway Functional Diagram 
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3.2 CAN-to-FLEXRAY GATEWAY FUNCTIONALITY DESIGN 

CAN-to-FlexRay part of the Gateway is fairly straightforward when compared to 

FlexRay-to-CAN direction since the data rate and the frame length of FlexRay are 

greater than those of CAN bus. Therefore, Gateway does not have much difficulty 

in processing the burst of CAN data and worry about how to store and where to 

store the incoming data. CAN-to-FlexRay functionality performs basically CAN-

FlexRay ID conversion according to the signal mapping in the network. On top of 

this, Gateway mainly focuses on elaborating the incoming CAN signals and packing 

them properly so that the network sources is used efficiently without compromising 

the delay requirements of the CAN signals. In a network composed of both FlexRay 

and CAN nodes, lots of the signals passing through the Gateway are addressed to 

the same FlexRay node. Therefore, it is wise for the Gateway to combine the signals 

properly such that not distinct FlexRay slots are allocated to each incoming CAN 

signal. This way network sources are utilized efficiently and CAN signals 

experience less delay. This packing mechanism in the Gateway is strongly related 

with network configuration. The factors such as length of the static slot in static 

segment, CAN signal frame length, CAN signal priority, arrival rate of the 

incoming CAN signals, mapping of the network and so forth, all, affect the way 

how the incoming signals will be elaborated in the Gateway. Buffer management 

and queuing requirements in FlexRay-to-CAN functionality of the Gateway are not 

likely to be needed in this part of the Gateway unless the CAN traffic is too 

crowded or Gateway structure is established badly. As a result, it can be said that 

the CAN-to-FlexRay Gateway, while, forwards signals according to the CAN-to-

FlexRay signal mapping, it also accomplishes the signal transfer between the 

FlexRay and the CAN network by making use of the network parameters as 

described above. 
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Functional description of the Gateway is given in Figure 3-2. 

 

 

Figure 3-2 CAN-to- FlexRay Gateway Functional Diagram 
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CHAPTER 4  

 

DEVELOPMENT AND TEST ENVIRONMENT 

The entire development, debugging, testing and the experimentation phases of the 

Gateway are done using hardware and software tools that are compliant with the 

automotive standards. All of these tools are mainly designed to be used for 

automotive applications, particularly for FlexRay. Though all of the tools are very 

new, since FlexRay protocol is recently maturing, they are fairly stable and worked 

well throughout the studies. In order to provide a better understanding about how 

the Gateway is developed and the experimentations are held, the tools and the 

hardware used during the studies will be explained briefly in the following sections. 

4.1 SK-91465X-100MPC FUJITSU FLEXRAY EVALUATION 

BOARD 

The SK-91465X-100MPC is a multifunctional evaluation board for the Fujitsu 32-

bit Flash microcontroller series MB91F465XA (CPU) which is very efficient to be 

used in automotive applications. This Fujitsu FlexRay Evaluation Board is the main 

building block of the network composed of CAN nodes, FlexRay nodes and the 

Gateway node. In the experiments, this hardware is used as a distinct node as one of 

the three options, namely, FlexRay Node, CAN Node, Gateway Node. Besides the 

FlexRay and CAN support, the evaluation board is also compatible with LIN. As a 

whole, it has 2 FlexRay Channels, 2 CAN Channels, 2 LIN/UART Channels and 1 

dedicated UART Channel.  
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FlexRay Channels of the board are the redundant Channels, namely Channel A and 

Channel B. Physical layer of the FlexRay via these channels is implemented by 

AMS8221B transceiver. As opposed to CAN, data to the transceiver is not delivered 

directly by the Microcontroller, MB91F465XA. Communication with the 

transceiver is provided by the MB88121 series Standalone Communication 

Controller. The function of the CPU is to control and configure the Communication 

Controller. 

MB91F465XA supports up to 6 different CAN connections. However, only 2 of 

these connections are used in the Evaluation Board. So, it is possible to connect the 

Fujitsu FlexRay Evaluation board to two different CAN networks at the same time 

via the dedicated CAN channels located on it. TLE6250GV33 high speed 

transceivers are used on the board for the CAN communication. 

Figure 4-1 shows the SK-91465X-100MPC multifunctional evaluation board. 

 

Figure 4-1 SK-91465X-100MPC Evaluation Board 
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4.2 SOFTUNE WORKBENCH SOFTWARE DEVELOPMENT 

ENVIRONMENT 

Softune Workbench, which is the propriety of FUJITSU, is the development 

environment for FR Family Microprocessors. The projects to be finally downloaded 

into the Fujitsu Microcontrollers are created, developed, manipulated, built and 

stored in Softune Software Development Environment. The Gateway and all the 

experiments are developed by the V60L06 version of the Softune Workbench. After 

compilation of the developed project, Softune Workbench creates a *.mhx file as 

the output. This *.mhx file can be directly downloaded into the flash memory of the 

CPU (MB91F465XA). Softune also creates a *.abs file which includes necessary 

information for the debugging process. Figure 4-2 shows a view from the Softune 

Workbench Development Environment. 

 

Figure 4-2 FR Family SOFTUNE Workbench V60L06 
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4.3 FR-FLASH PROGRAMMER 

FME FR-Flash Programmer V4.0.2.1, the propriety Fujitsu Microelectronics 

Europe GmbH, is used to download the projects to the flash memory of the 

microcontroller without requiring an emulator. FR-Flash Programmer facilitates to 

bury the code into the all kind of FR Family microcontroller via RS-232 serial port. 

It connects to the correct memory area (FLASH) of the CPU, goes in flash mode, 

erases the existing code in the flash and programs the flash with the machine code 

located in *.mhx file. A view from the flash programmer which has many additional 

advanced features is shown in Figure 4-3 

 

Figure 4-3 FME FR-Flash Programmer V4.0.2.1 
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4.4 FLEXRAY COMMUNICATION CONTROLLER DRIVER 

In the SK-91465X-100MPC message handling and communication tasks for the 

FlexRay bus are not performed by the CPU but rather these tasks are handled by a 

specific Communication Controller located on the board. The Communication 

Controller used in the board is Bosch ERay series Standalone Communication 

Controller [32]. The MCU's mission is to configure this Communication Controller 

and to read/write from/to the registers of the controller. Therefore, Fujitsu 

Microelectronics Europe GmbH offers a FlexRay Communication Controller Driver 

to perform all necessary communication between the MCU and the Communication 

Controller and to provide software to facilitate the evaluation of the FlexRay. The 

aim of Fujitsu in providing such a tool is to save the users from dealing with the 

dedicated registers in the beginning of their evaluations since getting familiar with a 

new bus system like FlexRay bus requires quite a time.  

Besides, FlexRay Communication Controller Driver provides an environment for 

the user to easily configure the Communication Controller, which is Bosch ERay 

module in the Evaluation Board, it also includes numerous of API (Application 

Programming Interface) functions to evaluate the FlexRay network. The 

configuration of the Communication Controller with the driver can be performed in 

two ways. The first way is to manually program the dedicated registers in Bosch 

ERay via the driver software. The other and more user friendly option is to use a 

dedicated program, called FlexConfig, to configure FlexRay bus. This program, 

which will be explained in the following chapter, outputs a *.chi file which is 

recognized and can be directly used by FlexRay Communication Controller Driver. 

Therefore, once a proper *.chi file describing the configuration of the network is 

included in the project, FlexRay Driver automatically uses the file and makes the 

necessary settings according to the configuration of the network. FlexRay 

Communication Controller Driver is built upon a layered architecture which 

contains four layers named as Application Programming Interface (API), 

Communication Controller Abstraction Layer (CCAL), FlexRay Hardware 
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Abstraction Layer (FHAL) and Hardware Abstraction Layer (HAL) as shown in 

Figure 4-4. 

Application Programming Interface (API) 

Communication Controller Abstraction Layer (CCAL) 

FlexRay Hardware Abstraction Layer (FHAL) 

Hardware Abstraction Layer (HAL) 

Figure 4-4 FlexRay Communication Controller Driver Layer Concept [33] 

API layer as its name implies provides variety of functions to the user to evaluate 

the FlexRay bus. In other words it can be said that API layer is the user interface of 

the Fujitsu FlexRay Driver. API layer of the driver provides the user with more than 

90 functions which can be categorized in various services as listed below. 

• Initialization Services (by “*.chi” files or manually) 

• Control Service 

• Interrupt Services 

• Reception (Rx) Services 

• Status Information Services 

• Time Services 

• Timer Services 

• Transmission (Tx) Services 
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CCAL layer contains the routines for the driver while FHAL is the layer where the 

FlexRay hardware description (Bosch ERay) is done. Finally the read/write 

operations via the control hardware (CPU, MB91F465XA) are defined in the HAL 

layer. The relations of these 4 layers between each other are strongly related with 

the working principle of the driver. According to the architecture of the driver, the 

user application calls one of the API functions (ffrd_api_functionname) for the 

Fujitsu FlexRay Driver. This function evaluates and calls pertain routine 

ffrd_ccal_functionname ( ). This layer includes all routines for computing values, 

register settings, buffer requests and interrupt routines etc. 

The ffrd_ccal_functionname ( ) calls the Macro from ffrd_fhal_functionname ( ). In 

this layer the address offset for the E-Ray address is added. 

In ffrd_hal_function ( ) the macros for different MCU-FlexRay Controller access 

placed. 

The Fujitsu FlexRay Driver is developed flexible to be used for various hardware 

combinations therefore files, macros and functions are included in the software if 

needed only. The principle driver architecture is shown in the Figure 4-5.  

 

Figure 4-5 FlexRay Communication Controller Driver Architecture [33] 
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4.5 FLEXCONFIG™ DEVELOPER – UNIVERSAL FLEXRAY 

CONFIGURATION TOOL 

As discussed in FlexRay Communication Controller Driver part, FlexRay network 

parameters can be configured either manually or automatically by means of *.chi 

file. FlexConfig™ Developer is a software which facilitates to configure the 

numerous parameters of the FlexRay network with its user friendly interface and 

outputs a corresponding *.chi file to be used in the FlexRay Driver. Version S3V0-

F of the FlexConfig™ Developer is used throughout the all development and the 

experimentation phases of the study. By means of FlexConfig™ Developer all 

possible network parameters of the FlexRay bus defined in the FlexRay protocol 

specification can be set and modified very easily. Therefore, it is not possible, by 

using the FlexConfig™, to leave a network parameter unconfigured which might 

lead the network to undetermined and unstable states. Moreover, using this tool in 

the configuration of the FlexRay network is less prone to errors when compared to 

configuring it by handling all the dedicated registers manually. Because 

FlexConfig™ checks all the parameters entered by the user to identify if there exists 

any non-conformances and, if there is, indicates these in the form of warnings and 

errors. Even before the user sets any parameter, FlexConfig™ guides the user about 

the limit values of the field to be entered, by taking all the other current parameter 

values of the network into account. Also, the software shows to the user which 

parameters of the network would be directly affected if the parameter pointed out 

by the cursor was changed which provides the user a broader perspective about the 

network. Scheduling, Frame ID allocation, fixing the Static Slot length, choosing 

the macrotick duration, deciding the payload amount, defining the synchronization 

and the start-up nodes are just a few examples among the many others a user can set 

by using the FlexConfig™.  

A view from the user interface of the FlexConfig™ is shown in Figure 4-6.   
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Figure 4-6 FlexConfig™ User Interface 

4.6 FLEXCARD CYCLONE II SE 

FlexCard Cyclone II SE is the network analyzer hardware used for the evaluation of 

the performance metrics of both the FlexRay bus and the CAN bus. It is 32-bit 

CardBus Card which is interfaced with a personal computer through PCMCIA slot. 

FlexCard Cyclone II SE supports two redundant FlexRay channels as well as two 

high speed CAN channels. Therefore, with this hardware, it is very easy to make a 

performance analysis of a Gateway network which includes both CAN and FlexRay 

network since the FlexCard Cyclone facilitates the user to use its CAN and FlexRay 

interfaces at the same time. Apart from listening to the bus connected to it, 

FlexCard Cyclone II SE can also send messages to both CAN and FlexRay 

networks. While Bosch E-Ray communication controller, which is the 

communication controller used in this study, core is included in it, FlexCard 

Cyclone has 2MB memory for buffering the incoming data which makes it very 
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precise in tracking and logging the network traffic. A picture of the FlexCard 

Cyclone II SE hardware is given in Figure 4-7. 

 

Figure 4-7 FlexCard Cyclone II SE 

4.7 FLEXALYZER 

The FlexAlyzer is the software which is developed to operate in accordance with 

the FlexCard Cyclone II SE to monitor and analyze FlexRay and CAN network 

traffic. Both of FlexRay and CAN network traffic can be tracked and analyzed by 

FlexAlyzer software at the same time. Monitoring in FlexRay bus can be performed 

in synchronous and asynchronous mode. The synchronous mode, which is used 

throughout this study, gives out more accurate results with respect to asynchronous 

mode. To work in synchronous mode, FlexAlyzer software requires a dedicated 

*.chi file which describes the scheduling of the FlexRay bus and when to 

send/receive for the FlexCard Cyclone according to this scheduling. Since the 

FlexCard Cyclone has the Bosch E-Ray communication controller core in it, the 

registers of it can be configured by means of a *.chi file. In this context, FlexCard 

can be seen as a distinct node in the network which can send/receive messages 
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to/from the network. Therefore, when FlexRay network is configured by 

FlexConfig™, the time slots, generally the all, where the FlexAlyzer needs to 

monitor the bus must be marked as receive slots for FlexCard. On top of it, if in 

some time slots, FlexCard is required to send data, then those slots must be chosen 

as transmit slot for the FlexCard. However, throughout this study, no data is sent by 

FlexCard. After the configuration has been finished, FlexConfig outputs a dedicated 

*.chi file for each of the nodes connected to the network, one of which is FlexCard. 

When the *.chi file for the FlexCard Cyclone is included in the FlexAlyzer, the 

software begins to operate properly. The FlexAlyzer software shows in the monitor 

the incoming payload, its data length, frame id and the receive cycle for both 

Channel A and Channel B as well as the diagnostic data like, network info, flags, 

CRC, errors and so forth. FlexAlyzer is capable of working with multiple FlexCards 

at the same time. In such a case, the software gives the monitoring information of 

each hardware in distinct windows. 

FlexAlyzer software can also be used to monitor and analyze the CAN bus. 

FlexCard can be used to transmit data for CAN network too. For the FlexCard to be 

ready to operate on a CAN bus, the communication data rate must be set correctly 

and the CAN bus must be terminated with 120 ohm. Once these are done, the 

software will immediately begin to monitor the CAN bus. FlexCard has two 

interfaces on it which can be used for either CAN or FlexRay according to the 

application. Therefore, if required, both of the interfaces can be used to monitor two 

different CAN buses with different data rate. In total, FlexAlyzer software is 

capable of monitoring 8 different CAN buses at the same time and giving the 

information to the output window. The FlexAlyzer, when monitoring the CAN bus, 

shows in the monitor the local time stamp for the receive time, the CAN id and the 

payload. 



58 

 

 

The FlexAlyzer software has a user friendly architecture which provides user with 

various flexibilities. Filtering the data to show in the monitor according to 

numerous different criteria, taking log of the network traffic without any time 

limitation, displaying the data in decimal or hexadecimal format are some of the 

examples to the user friendly structure of the FlexAlyzer software. 

A view from FlexAlyzer user interface is shown in Figure 4-8. 

 

Figure 4-8 FlexAlyzer User Interface 
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CHAPTER 5  

 

FLEXRAY-CAN GATEWAY IMPLEMENTATION 

In this chapter we provide the details of all design and development phases of the 

FlexRay-CAN Gateway. In this context, the discussion of the details of the 

FlexRay-CAN Gateway design can be categorized under three sub-titles which 

includes the considerations specific to the Gateway experiment, critical issues to be 

taken into account about CAN and FlexRay protocols and the general structure of 

the workflow in the software.  

In order to clearly explain all the design considerations without missing any detail, 

after having gone over the general structure of the design, the critical parts of the 

FlexRay-CAN Gateway project will be handled exclusively. Finally, the remarks 

about the FlexRay Communication Controller Driver, the experiences obtained 

while working on auxilary hardware and software such as analysis tools, and 

additional design considerations will be presented. 

5.1 GENERAL ARCHITECTURE OF THE GATEWAY 

A Softune Workbench workspace consists of the collection of a number of projects 

each of which stands for a distinct node of the network. In this context, as it will be 

detailed in Section 6.3, the workspace of the FlexRay-CAN Gateway experiment is 

composed of 7 projects for 3 FlexRay nodes, 3 CAN nodes and a Gateway node. 

This is shown in Figure 5-1 below. All the tasks such as message receiving, 

message sending, time management, buffer handling and so forth for the FlexRay 
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nodes are covered in the projects named "Node1_ffrd.prj", "Node2_ffrd.prj" and 

"Node3_ffrd.prj". Similarly, the tasks for CAN nodes are included in the CAN 

projects named "CAN1.prj", "CAN2.prj" and "CAN3.prj". "Gateway.prj" is the 

project where the Gateway tasks are implemented. After being developed and 

compiled, *.mhx file for each of the project is downloaded into the distinct node of 

the network via FR-Flashprogrammer. 

 

Figure 5-1 Projects in the FlexRay Gateway Workspace 

The coding structure of the projects is as shown in Figure 5-2. Top-most folders 

starting with the name "api" and ending with "hal" are the places where the FlexRay 

Communication Controller Driver software is located. The FlexRay Driver is 

required to facilitate the communication with the FlexRay Communication 

Controller and the MCU. Therefore, it is needed to be used, naturally, in FlexRay 

projects and also in the Gateway project since the Gateway also interfaces with the 
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FlexRay bus during its operation. In order to make correct time measurements and 

obtain reliable values for the performance metrics, CAN nodes are to be 

synchronized to FlexRay network. Hence, in all experiments, FlexRay software 

driver is, also, included in the CAN projects. The source files which perform the 

main functions of the node are located under the FlexRay software driver folders. 

While the header files of the software driver are located automatically in the 

"Dependencies" folder, the user-created header files might be located in either 

"Include" folder or the "Dependencies" folder. 

 

Figure 5-2 Coding Structure of the Projects 

Some of the source files namely, Start91460.asm, ffrd_api_int_chi.c, mb91465x.h, 

vector.c and print_status.c are common to all projects. These files are important and 

fundamental for the projects to work properly.  

To begin with, Start91460.asm makes all the necessary settings of the 91460 series 

Fujitsu chips. When powered on, CPU first runs this code and adjusts its own 
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settings. In another saying, Start91460.asm is the boot-up code of the 91460 series 

Fujitsu microcontroller. Via the Start91460.asm file, the user can select the 

controller device to work as the CPU from the options of the 91460 series Fujitsu 

chips, perform all the memory management tasks, initialize the stacks, make the 

Boot-Flash security settings, determine the clock speed of all kind of clocks exist in 

the CPU, such as the peripheral clock, main clock, external clock, CAN clock an so 

forth and perform many other task to make the CPU ready-to-go after power up. 

Although Start91460.asm has never been modified during this study, it is required 

to be modified accordingly when a project is to be debugged via Accemic Debugger 

tool for Fujitsu Microcontrollers.  

The file named ffrd_api_int_chi.c is also common to all projects. This source file is 

used to configure the FlexRay network automatically via a corresponding *.chi 

(controller host interface) file. This source code is called only if the initialization 

mode of the FlexRay Software driver, which is "FFRD_INIT_MODE", is defined as 

"CHI". This definition and many other settings about the FlexRay Communication 

Controller Driver are located in the header file named "ffrd_api_global_def.h". 

Another option to be selected for the configuration of the FlexRay network in 

"ffrd_api_global_def.h" is "MAN" which stands for the manual configuration of the 

FlexRay Communication Controller meaning to input all the dedicated register 

values by hand.  

If "CHI" is selected as "FFRD_INIT_MODE" in the "ffrd_api_global_def.h" file, 

then the name of the *.chi file must be entered in the proper place of the code by the 

user as shown below. 

void ffrd_api_include_chi ( void )  

{ 

#include "Controller_Name.chi" /* add your *.chi file */ 

} 
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The *.chi file whose name is added in the source code should also be included in 

the project. The Fujitsu FlexRay Software Driver searches for the *.chi file in the 

following address: Root\Generated_files\src_FlexConfig. The "Root" in the address 

is the place where the workspace file, *.wsp, is located. Having performed these 

steps, as a result of the compilation of the project, the *.chi file, which is included in 

the above address and whose name is added in ffrd_api_include_chi.c, appears 

under the "Dependencies" folder of the project automatically and the configuration 

of the Communication Controller has been successfully achieved. 

"mb91465x.h" is a very important header file which has to be used in all projects. 

Because all of the registers constructing the microcontroller, MB91465XA, are 

defined in this file according to their memory addresses in the CPU. Moreover, by 

making use of the "union" structure of "C", all registers are structured to be 

accessible in bit, byte, half-word (16-bit) or word (32-bit) level as whichever of 

those are useful. Therefore, mb91465x.h header file has to be included in all of 

those source files and the header files where a register of the microcontroller, 

MB91465XA, is to be used. 

Finally, "vector.c" and "print_status.c" are the files common in all experiments that 

worth making a few words about. Vector.c is a very fundamental source file which 

is responsible for the Interrupt management in the project. Though, the "interrupt 

sub-routines" for specific interrupt sources might be located in different source files 

of the project, the necessary settings about the interrupts are handled in this file. In 

Vector.c, priority levels of the interrupt sources are arranged, the interrupt sub-

routines are defined and the vector address, which is the memory address where the 

running code would jump and execute the interrupt subroutine, of the interrupt 

sources are set. 

Print_status.c is the file which includes the idle task running in the experiments. As 

it will be explained in more details later, in all experiments, there exists an idle task, 

of which name is "printFlexRayStatus", running all the time in an infinite "for" 

loop. Via "printFlexRayStatus" routine, the standing status of the node in FlexRay 



64 

 

bus is exported as ASCII characters through one of the RS-232 interfaces of the SK-

91465X-100MPC evaluation board. Therefore, by connecting the PC to the serial 

interface of the evaluation board through the HyperTerminal software, the user can 

observe the standing status of the node, which can be "Online", "Offline", "Wakeup 

Listen", "Wakeup Standby" and so on. 

Having explained the general architecture of the Gateway workspace and given 

detailed information about the fundamental source codes which are included in all 

of the projects in all experiments, in the following chapters, the tasks performed in 

the FlexRay nodes, CAN nodes and the Gateway node will be discussed, in order, 

more deeply. 

5.2 FLEXRAY PROJECT DETAILS 

The FlexRay projects in the Gateway experiment are "Node1_ffrd.prj", 

"Node2_ffrd.prj" and "Node3_ffrd.prj" as shown in Figure 5-1. Since they are built 

on the same architecture and only their related messages and their scheduling differ 

from each other, "Node1_ffrd.prj" is selected as a generic FlexRay project to 

explain in detail. 

In the broadest sense, in the FlexRay projects two tasks are executed. Idle task is the 

task which is always running in the project. "printFlexRayStatus" function, which is 

the function to send FlexRay standing status as explained in the previous chapter, is 

realized in the Idle task. The FlexRay task which is responsible for the handling of 

the FlexRay message exchange, is executed upon a dedicated interrupt and is the 

second task running in the project. The main structure of the code in the FlexRay 

project is built on this "idle task" - "interrupt" cycle. In fact, this structure also 

applies to CAN projects and the Gateway project which will be detailed in the 

following chapters. 
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5.2.1 Tasks Executed In MAIN.c 

The steps that have been taken during the design of the FlexRay node will be 

explained and discussed beginning with the "MAIN.c" file of the project. If the 

"MAIN.c" file, which is included in APPENDIX A, is examined, it can be seen that, 

first, all interrupts and ports are enabled since, after power-on, the default attribute 

for the interrupts and the ports is "disabled". Also the hardware watchdog is cleared 

to initialize the code. 

   __EI();            /* enable interrupts */ 

       __set_il(31);      /* allow all levels */ 

       HWWD = 0x10;       /* clear HW watchdog */ 

       PORTEN = 0x3;      /* enable I/O Ports */ 

 

Then, in the flow of the main(), some CPU registers that are not set in 

Start91460.asm and the interrupt vector table are initialized by InitCPUExtraRegs() 

and InitIrqLevels(), respectively. InitIrqLevels() is a routine in the file named 

vector.c. As explained in the previous chapter, priority levels of the interrupts and 

the vector addresses of the interrupt sub-routines are set in "vector.c". 

On the other hand, port 16 and port 27, which are connected to the LEDs in the 

starter kit, are set to I/O port, UART4 of the evaluation board is initialized to be 

used as the serial communication channel with the personal computer and a number 

of "reload timers" are set to their initial values in InitCPUExtraRegs(). Six distinct 

reload timers are used in the FlexRay tasks. One of them is used to clear watchdog 

periodically and one another is loaded to issue interrupts to produce FlexRay static 

messages. The remaining four "reload timers" are used as time ticks for the 

generation of the sporadic dynamic segment messages. In the main flow, after 

InitCPUExtraRegs(),  all those 6 reload timers are started so as to periodically 

interrupt the code for their individual tasks. Meanwhile, FlexRay driver and 

Communication Controller are initialized by ttStartupHook() function. So that the 
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sporadic messages can be produced properly, "C" command, for the random number 

generation, "srand(nTime2)" is used where the nTime2 is the seed of the random 

number generator obtained by taking the network time of the FlexRay bus. The 

script for the random number generation is given below. 

   nTime2 = ffrd_api_get_mtick(); 

   srand(nTime2); 

Up to this point, various registers for the operation of the program have been set and 

initialized, the reload timers, which will supply time tick for the main tasks of the 

FlexRay node, are loaded and started and the hardware to perform all these tasks is 

initialized for the proper operation. Therefore, after all those preparations have been 

done, the idle task of the FlexRay project, "runTask()", is called to start the 

operation. The idle task is essentially an infinite loop in which the standing status of 

the FlexRay network is transferred to a PC via the RS-232 interface. In the normal 

flow of the project, this loop is interrupted by one of the reload timers so that the 

task corresponding to that reload timer can be performed. Once the task is 

successfully performed after the issue of the interrupt, the code returns to the 

infinite loop of idle task, performing the "printFlexRayStatus()" and waiting for 

another interrupt to jump into. As a consequence, throughout the operation of the 

project, the program can never complete the idle task, "runTask()". If, somehow, the 

code achieves to get rid of the idle task trap, this means that the FlexRay project 

does not function properly and something goes wrong. So, to prevent the program 

from ending in an undesirable state, after the idle task, a function named, 

ttShutdownHook(0), is added which shuts the FlexRay driver down and ends the 

operation of the code.  

Next, we look into the details of the tasks performed in "MAIN.c". Mainly, in the 

file, MAIN.c, the production of the periodic and the sporadic messages is realized. 

As mentioned previously, the structure of the code is built on the generation of the 

interrupts for distinct tasks in a timely manner and the time ticks for the tasks are 
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supplied by the distinct "Reload Timers". Next we explain the details of the "Reload 

timers" subroutine which performs the FlexRay tasks. 

To begin with, when the interrupt for the static slot message generation is issued, 

the necessary arrangements for the production of the static segment message is 

made in the subroutine of the interrupt named IsrReloadTimer1(). "Reload timer1" 

is programmed to issue interrupt with the period of 5 ms which is the cycle length 

of the Gateway experiment. The period of the "reload timer" may be altered in 

different experiments, according to the cycle length of the network or the specific 

message generation requirement of the experiment. 

The goal of the periodic message generation is to generate the entire set of the static 

segment messages in the very beginning of the FlexRay cycle. There are three 

related issues. First of all, when a node is turned on, it synchronizes itself to the 

already running FlexRay network and begins generation FlexRay messages with the 

period of 5 ms. However, it is very likely, when it is synchronized to the network, 

that the network is at an arbitrary time of the cycle which is beyond the time where 

the FlexRay messages are meant to be generated. Second, even the static segment 

message generation is in the very beginning of the cycle, still, after some time, 

message generation begins to be realized in an undesired portion of the cycle due to 

the drift of the local clock of the node from the global time tick of the network. 

Finally, the generation time of the "reload timer" interrupt with 5 ms period may 

also drift with respect to the global network time which results in the same 

undesired consequence with the previous two situations. 

To overcome the above problems and stabilize the message generation to the 

beginning portion of the cycle time the following procedure is followed [23]. In the 

interrupt subroutine, the network time of the FlexRay network is obtained in 

macroticks via the function "ffrd_api_get_mtick()". This is a utility function 

supplied by the FlexRay Software Driver in its time services. Therefore, to be able 

to use this function, "ffrd_api_time_service.h" header file must be included at the 

beginning of the corresponding file. "ffrd_api_get_mtick()" gives the current 
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macrotick value of the network in 16-bits. The aim is to issue the "reload timer" 

interrupt, so that it always falls within the macrotick values from 0 to 

TASK_OFFSET where the TASK_OFFSET is the user defined macrotick value 

defining the limit of the "beginning of the cycle" term quantitatively. As observed 

in APPENDIX A, the TASK_OFFSET is defined to be 100 for the Gateway 

experiment which means that the timer interrupt for the periodic message 

generation is to be realized within the first 100 macroticks of the FlexRay cycle. 

Therefore, in the "Reload Timer1" interrupt subroutine, the network time obtained 

by "ffrd_api_get_mtick()" is compared with the "TASK_ OFFSET" so as to 

determine whether the interrupt generation falls in the limits. If not, the "Reload 

Timer" is loaded with a reload value which corresponds to a smaller period than 5 

ms so as to adjust the interrupt issuing time. Unless the "reload timer" is loaded 

with a specific reload value, "reload timer" continues to issue interrupt according to 

the last reload value. Since the last value after the adjustment is the reload value 

which corresponds to a smaller period than 5 ms, this reload value causes the 

interrupts to be issued in an earlier network macrotick each time. As a consequence, 

another user defined variable TASK_OFFSET_MIN is defined. When the interrupt 

issuing time happens to be a smaller value than TASK_OFFSET_MIN, then the 

reload value corresponding to 5ms period is begun to be used again which prevents 

the further interrupts from being issued earlier. Therefore, the "reload timer" 

interrupt issuing time for the generation of the messages fluctuate between the 

macrotick values TASK_OFFSET and the TASK_OFFSET_MIN which stabilizes 

the message generation to happen, fairly, in the beginning of the FlexRay cycle. The 

script achieving this stabilization task is given below.  

__interrupt void IsrReloadTimer1(void)  // 5ms 

{ 

 /* get FlexRay ClusterTime */ 

nTime = ffrd_api_get_mtick(); 

/* correct host offset */ 
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   if (nTime >= TASK_OFFSET) 

   {  

      TMRLR1 = 2490u; //reload value 4.98 ms 

   } 

   if (nTime <= TASK_OFFSET_MIN)  

    {   

    TMRLR1 = 2500u; //reload value 4.98 ms 

    } 

       

TMCSR1_UF = 0; /*Reset Timer, clear interrup flag*/ 

...... 

} 

 

It is important here to notice that the case only in one direction where the interrupt 

issued after the "TASK_OFFSET" is handled in the code. The reason for this is that 

the "reload timer" of the node always retards with respect to the global network 

time. So, the time drift happens only in one direction and it is not required to 

consider the situation where the interrupt is issued earlier than 5 ms. 

Having the periodic FlexRay messages generated at a known time, particularly, in 

the beginning of the cycle is important. By doing so, more controllable and robust 

results are obtained. For example, by generating all messages in the beginning of 

the cycle, it is guaranteed that the messages are sent through FlexRay in that cycle 

unless any specific constraints because of the repetition and the offset values apply. 

In other words, if the messages were generated at arbitrary times in the cycle, it 

would be possible for a message to be created at a time after its sending slot time 

which would cause the message to wait for an about the cycle time unnecessarily. 

To conclude, if the stabilization of the generation of the messages was not done, it 
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would get harder to make conclusions about the behavior of the FlexRay network or 

figure out the reasons of the possible errors by examining, the jitter and the end-to-

end delay values of the messages since the arrival of the messages is chaotic or, at 

least, drifts in time uncontrollably.  

Moreover, the kick off for all of the FlexRay messages must be realized beginning 

from the very same FlexRay cycle so that the more controlled results can be 

obtained from the hardware experiment. This common cycle where all FlexRay 

signals are begun to be generated is selected to be the 0th FlexRay cycle. However, 

unless some precautions are taken, the nodes shall not start the message generation 

beginning from the 0th cycle. Even, all nodes will begin to generate the messages in 

different FlexRay cycles since they will be synchronized to the FlexRay network in 

different cycles with respect to each other. To solve this problem, each node finds 

out the current FlexRay cycle by utilizing the FlexRay Driver routine, 

"ffrd_api_get_cycle()". Unless the FlexRay cycle they are in is not the 0th cycle, 

they do not generate their initial message. Moreover, not any of the nodes begins to 

send FlexRay messages once they are in 0th cycle after powered on, but, rather, all 

of the nodes wait for the 0th cycle to have passed 150 times before sending the 

initial static segment FlexRay message. The first reason for this wait time is that the 

FlexRay node can not immediately be synchronized to the FlexRay network and 

when a node is not synchronized then the output of the "ffrd_api_get_cycle()" 

routine is always zero. So, before the synchronization is established, the node finds 

itself to be in 0th cycle numerous times although in fact it is not. Besides, although 

one of the nodes may have been synchronized and ready to generate messages, it 

should still wait some time for all the other nodes to be synchronized. As a result, to 

compensate for these effects, each node starts their message generation after they 

have counted the 0th FlexRay cycle 150 times. The script for this cycle management 

is given below. 

if(start<=150) 

{ 



71 

 

  task_Node1();  

  cycle_no = ffrd_api_get_cycle(); 

     if (cycle_no == 0) 

    { 

       start++; 

    } 

 } 

 

if(start > 150) 

{ 

  ........  

} 

At this point of the interrupt subroutine, IsrReloadTimer1(), for the Reload Timer1, 

it is guaranteed that the first message is generated in the 0th cycle of the FlexRay 

network and all the messages are produced in the very beginning of each cycle by 

compensating for the drifts in the local clock. Once this infrastructure has been 

provided, the messages are generated according to their periods. So as to generate a 

message in the subroutine, a flag for the message is set to be processed in the 

function task_Nodex() which is the function where the FlexRay task is handled. 

After the flags for the messages to be produced in that specific cycle have been set, 

the FlexRay task, task_Nodex(), is called in the interrupt subroutine so that the 

messages got prepared in the correct FlexRay buffer. 

Another task handled in the MAIN.c is the clearance of the hardware watchdog. 

Hardware watchdog of the project is cleared in every 500ms the time tick of which 
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is provided by reload timer0. By clearing the hardware watchdog periodically, the 

node is prevented from being reset by the watchdog after certain amount of time. 

Generation of the sporadic messages is performed in four different interrupt 

subroutines. The tasks held in all of four subroutines are the same. When an 

interrupt for one of the sporadic messages is issued, it means that the time to 

generate the message has come. As opposed to the static message generation case, 

the payload for the message is immediately put into the FlexRay buffers. It should 

be remembered that in the static segment message generation, the flags for the 

messages to be produced were set and the necessary data were put into the buffer by 

a FlexRay task function, task_Nodex(), which is called periodically at the end of the 

IsrReloadTimer1() interrupt subroutine. As a result, the messages were achieved to 

be produced periodically, which is the goal of the static segment message 

generation. However, the goal of the sporadic message generation is to produce all 

the sporadic messages with random interarrival times. Therefore, it is not possible 

to assign a flag to each sporadic message and fill the corresponding FlexRay buffers 

with the necessary data in a single task according to the flags. As a consequence of 

this, for each sporadic message, a specific reload timer is assigned to determine the 

sporadic generation time and the message data is immediately transferred to the 

corresponding buffer in the very interrupt subroutine of the message. Having had 

the sporadic message generated, load value of the reload timer is determined for the 

next generation of the interrupt. Unless loaded with a specific value, reload timers 

are programmed to be loaded with the last reload value that they operated. So, not 

reloading the reload timer means generating the reload interrupt with a period of its 

reload value which is not desired in sporadic message generation. In order to kill 

this periodicity in the sporadic message generation, a random number is produced 

via standard "C" function rand(). As mentioned previously, while the main code is 

being prepared for the proper operation, a seed for the random number generation 

process is produced via "srand(nTime2)" where "nTime2" is the network macrotick 

time of the moment when the command is called. The random number generated by 

the "rand()" function is used as the new reload value of the reload timer which 
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determines the time after which the timer issues the interrupt. Since after each time 

the interrupt is generated, reload value is determined anew randomly, sporadic 

message generation is achieved. What is important here is that the random numbers 

as the result of the "rand()" command that are below some certain value are not 

allowed to be used as the new reload value of the reload timer. This is because, 

besides, the messages are to be generated with random interarrival times, the 

interarrival time of the generated messages must, also, be greater than some certain 

value. Therefore, by ignoring the values smaller than the limit and iterating the 

random number generation until a value satisfying the requirement has been 

obtained, the interarrival time between the consecutive message generation is 

guaranteed to be greater than some certain value. The minimum interarrival time is 

not unique and the value changes depending on the sporadic message. The script for 

the random number generation is provided below. 

 do { 

 r_number = rand(); 

 }while (r_number <= 5000);//min. interarrival limit  

 

As a final remark, the message handling through the FlexRay buffers is performed 

in the dynamic segment message generation process. To elaborate the FlexRay 

buffers in the MAIN.c, buffer handling and reading/writing services of the FlexRay 

Software Driver must be utilized. This means that the corresponding header files 

must also be included in the MAIN.c as well as TTask.c. 

5.2.2 Tasks Executed In TTask.c 

In the previous section, FlexRay message generation for both the periodic messages 

in the Static Segment and the sporadic messages in the Dynamic Segment is 

explained. As mentioned above, the periodicity of the static segment messages is 

provided in "MAIN.c" and those messages are filled into the buffers via the 

FlexRay task in the "TTask.c" to be sent through the FlexRay bus. This FlexRay 
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task, namely, "task_Nodex()", will be explained in this section. Apart from the 

function,"task_Nodex()", there, also, exists other functions named 

"ttStartupHook()", "ttErrorHook()" and "ttShutdownHook()".FlexRay driver and 

Communication Controller are initialized via "ttStartupHook()". As its name 

implies, "ttShutdownHook()" stops the operation of the FlexRay driver. This 

function is called after the idle task, runTask(), has been run. Since the runTask() is, 

in fact, an infinite loop, if program tried to execute the next command after 

runTask(), this means that something has gone wrong and the FlexRay operation 

should be terminated so as not to give way to the unstable situations. 

The most important task existing in TTask.c is the task named "task_Nodex()" 

where the message exchange through the FlexRay buffers is handled. This function 

is originally called in the subroutine named "IsrReloadTimer1()" where the static 

segment messages are generated. As mentioned previously, in this interrupt 

subroutine, the flags for the messages whose periods have arrived in that specific 

cycle are set and task_Nodex() is called. Therefore, in every cycle, which is 5 ms 

for the Gateway experiment, task_Nodex() is called periodically and the messages 

whose flags have been set are put into the corresponding FlexRay buffers. Since 

throughout the tasks handled in the "TTask.c", details of which will be covered 

shortly, Reception (Rx) Services, Transmission (Tx) Services, Status Information 

Services, Control Services, Time Services and Initialization Services of the FlexRay 

Communication Controller Driver are used, the following header files must, 

additionally, be included in the beginning of the TTask.c. 

#include <ffrd_api_init_chi.h> 

#include <ffrd_api_control_service.h> 

#include <ffrd_api_tx_handler.h> 

#include <ffrd_api_rx_handler.h> 

#include <ffrd_api_status_service.h> 

#include "ffrd_api_time_service.h" 
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Every time task_Nodex() is called, first of all, status of the Communication 

Controller is checked and if it is not working in the normal way and still not halted, 

then the Communication Controller is forced to be started through the 

"COLDSTART" method. 

After the status check, all the messages to be sent in that cycle are filled into the 

FlexRay buffers one by one via the script equivalent to the following. 

if (tx8_flag){ 

 buffer8.Port = tx8_data;  

 buffer8.period = tx8_period; 

 buffer8.m_counter = ffrd_api_get_mtick(); 

 buffer8.c_counter = ffrd_api_get_cycle(); 

 statusTx8=ffrd_api_tx_handler_buffer((FFRD_UINT32) 
&buffer8, 10, 3, FFRD_CHANNEL_A_B); 

 tx8_flag = 0;  

} 

Actually, the above code is just an example of the scripts doing the same job for the 

other static segment messages. For instance, that is the code to fill the necessary 

FlexRay buffer for the periodic message whose message number is 8. It should be 

noted that when the message number 8 is generated in the MAIN.c part, then the 

flag for that message is set and after all flags have been set, the function 

task_Nodex() is called. The above script is the place where this flag is processed in 

the task_Nodex() routine. In task_Nodex(), all the flags for all the messages are 

checked individually to determine whether the messages will be sent in that cycle or 

not. If the flag is set then the corresponding buffer, which is buffer8 in the above 

example, is filled with the payload to be sent through FlexRay bus. As seen from 

the above code, for the Gateway experiment, the data consists of the payload, 

period, cycle number and macrotick time of the network. All these elements 

composing the whole data to be written into the buffer are the elements of the C 
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structure which is created for all of the buffers. The buffer structure designed for the 

Gateway experiment is given below. 

typedef struct{ 

uint16_t Port; 

FFRD_UINT16 c_counter; 

FFRD_UINT16 m_counter;  

uint16_t period; 

uint16_t empty[1]; 

}data_content; 

Although 8 bytes were enough for the data, the structure was created as 10 bytes 

long since the length of the FlexRay frame to be sent in the Gateway experiment 

was 10 bytes long.  

Note that in the C structure of the buffers that in the Fujitsu CPU, MB91F465XA, 

the memory is reached as 16-bit or 32-bit. 8 bits of data can not be read/written 

from/to the CPU memory. Therefore, the members in the C structure with the length 

of 8 bit will be read/written from/to the memory as 16 bits. This may cause to the 

loss of data in the situation where the structure includes members with length of 8 

bits and no unused structure members are included. The situation can be illustrated 

by the following example C structure. 

typedef struct{ 

   uint8_t mem1; 

   uint8_t mem2; 

   uint16_t mem3; 

   uint16_t mem4; 
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}data_content; 

In the above structure, structure length is 6 bytes. When 6 bytes of data beginning 

from the first member of the structure is to be written to the memory of the CPU, 

the last member, mem4, of the structure can not be written to the memory since the 

first two members of the structure occupy 4 bytes of memory instead of 2 bytes 

which results in the loss of the last member of the structure. Because of this reason, 

to track the data length of the structure easily, the data type of the variable 

"c_counter" was chosen as "FFRD_UINT16" instead of FFRD_UINT8 though the 

maximum value for the cycle number is 255. 

Once the members of the buffer structure are properly assigned, the data is copied 

to Communication Controller hardware by means of the 

ffrd_api_tx_handler_buffer() routine. This function is the member of the 

Transmission (Tx) Service in the FlexRay Software Diver. What 

ffrd_api_tx_handler_buffer() function actually does can, more easily, be explained 

by going over the above example for the message number 8. This message handling 

function looks like the following with its arguments included. 

statusTx8=ffrd_api_tx_handler_buffer((FFRD_UINT32) 

&buffer8, 10, 3, FFRD_CHANNEL_A_B); 

The first argument of the function signifies the address of the buffer8. The second 

argument means the data length whereas the third argument indicates the 

Communication Controller buffer number. So, in the light of these definitions, the 

function ffrd_api_tx_handler_buffer() copies 10 bytes of data from the beginning of  

buffer8 to the 3rd buffer of the Communication Controller. Last argument of the 

function means that the data will be transmitted from both of the FlexRay channels. 

Sending the data from only Channel A or only Channel B are the other remaining 

options for the last argument of the function. After this 

ffrd_api_tx_handler_buffer() function has been handled, the data is put into the 

Communication Controller buffer. From this point on, the job of sending the 

message through FlexRay bus belongs to the Communication Controller and the 
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FlexRay transceiver. According to the FlexRay IDs (FID) of its buffers, 

Communication Controller waits for the slot time to come for each of the buffers 

and sends the message of the buffer whose time has come to the transceiver so that 

the message is put onto the wire on time. As a result of this mechanism, the TDMA 

structure of the FlexRay network is successfully achieved. 

The buffer where to store the static segment messages is determined according to 

the network configuration. As mentioned before, the FlexRay network is configured 

via the FlexConfig™ program which provides a graphic user interface to facilitate 

the network configuration without any error. The FlexConfig™ outputs a *.chi file 

for each node in the network describing the scheduling of the node and the register 

settings of the Communication Controller. The scheduling related part of the *.chi 

file of the FlexConfig™ for one FID is given below as an example. 

/* Tx Buffer 5 (Frame Id: 19, Payload length 5, 
FlexRayAB, Base 0, Rep. 2)*/ 

WAIT_TILL_CLEARED32(0x80000000, 0x00000514); 

WRITE32(0x17020013, 0x00000500); /* WRHS1 */ 

WRITE32(0x000500be, 0x00000504); /* WRHS2 */ 

WRITE32(0x0000007c, 0x00000508); /* WRHS3 */ 

WRITE32(0x00000001, 0x00000510); /* IBCM */ 

WRITE32(0x00000005, 0x00000514); /* IBCR */ 

 

As seen from the example, the Communication Controller is configured by the 

FlexConfig™ to store the message to be sent in the 19th static slot in its 5th buffer. 

Similarly, the information about which message belongs to which buffer is included 

in the *.chi file for all of the messages one by one. Therefore, the developer 

programming the task_Nodex() routine has to use the *.chi file corresponding to the 

very node he is working on and assign the buffer argument of the 

ffrd_api_tx_handler_buffer() routine accordingly. Doing the job of mapping of the 

buffer number and the static slot via the *.chi file by hand is cumbersome and prone 
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to errors. To eliminate these problems and realize the buffer number and the static 

slot mapping automatically, a code parsing program is composed and the structure 

of the project is changed accordingly. The details of this program are discussed in 

section 5.5. 

5.3 CAN PROJECT DETAILS 

In the Gateway experiment, there exist three CAN projects of which structures are 

very similar to each other as shown in Figure 5-1. Without loss of generality, the 

tasks held on the CAN projects will be discussed by projecting the discussion to one 

of the projects namely "CAN1.pjt". 

As in the FlexRay project, the tasks performed in the CAN projects can, also, be 

combined in two different files. These are MAIN.c and CAN.c. Therefore, these 

files will be explained in the coming two sections to figure out, more detailed, what 

is being done in the CAN projects. 

5.3.1 Tasks Executed In MAIN.c 

In MAIN.c, the time ticks are provided so that the CAN messages are generated 

according to the desired periodicity. The structure of MAIN.c in the CAN project is 

very similar to that of the FlexRay project. Therefore, instead of discussing all the 

details in the file, the tasks held in MAIN.c will be tried to be explained through the 

differences/similarities from/to the MAIN.c of the FlexRay project. 

First of all, it should be noted that the CAN nodes are also connected to the FlexRay 

network in addition to the CAN bus to have synchronization with the other nodes 

and get the network time to be used for measurements. As a result, all the necessary 

arrangements, settings and the initialization which have been done for the FlexRay 

bus in the FlexRay nodes should also be done in the CAN nodes except the message 

receive and transmission functions. 
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The flow of the code in main() for CAN project is essentially the same as that of the 

FlexRay project except for the two differences. The first difference is in the 

InitCPUExtraRegs() function where some registers used throughout the project are 

initialized. In CAN project additionally, InitCANCtrl0() function is added in 

InitCPUExtraRegs(). Like, the FlexRay driver is initialized via ttStartupHook(), 

CAN engine in the CPU also must be initialized to be ready for a proper operation. 

InitCANCtrl0() is the function which initializes one of the 6 CAN controllers 

existing in the CPU and the details for this initialization function will be given 

under the next chapter. 

The other difference is that there are 2 reload timers in CAN project instead of 6 

reload timers which is the case in the FlexRay project. One of the reload timers is 

used to clear the hardware watchdog periodically and the other reload timer is used 

to provide time tick for the periodic CAN message production. The four reload 

timers, which account for the difference between the two projects, are each used for 

the sporadic message generation in the FlexRay project. Since there exist no 

sporadic messages in the CAN project, no additional reload timers are needed. 

Under IsrReloadTimer3() subroutine which is the interrupt subroutine of the reload 

timer responsible for the periodic message generation, essentially the same tasks are 

performed as in the static slot message generation of the FlexRay project. The CAN 

messages are generated in the very beginning of each FlexRay cycle and the first 

CAN message generation takes place at the 0th FlexRay cycle. These tasks are 

achieved as they are achieved in the FlexRay project. In the end of the subroutine 

CAN0_SendMessage function which is responsible for sending the CAN messages 

is called. CAN0_SendMessage routine fills the applicable registers of the CAN 

engine in the CPU as required and the CAN engine sends the message to the CAN 

transceiver so that the message is physically put on the CAN bus. The details of the 

CAN0_SendMessage function will be presented in the following section. 
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5.3.2 Tasks Executed In CAN.c 

In the file CAN.c 5 different tasks are executed. These are InitCANCtrl0, 

CAN0_STATUS_ISR_Handler, CAN0_ReadMessageBuffer, CAN0_SendMessage 

and CAN0_ISR. 

In InitCANCtrl0 routine, the registers of the 0th CAN Controller of the CPU are 

initialized so that the CPU can process the incoming and the outgoing messages in a 

desired way.  The CPU, MB91465XA, supports 6 different CAN Controller in its 

peripherals. However, only two of them are interfaced to the CAN transceivers and 

the rest are used as general purpose in the Fujitsu evaluation board, SK-91465X-

100MPC. Used CAN controllers in the SK-91465X-100MPC are CAN0 and CAN4 

and InitCANCtrl0 routine initializes the former one. Since the CAN0 transceiver is 

connected to the 23rd port of MB91465XA, applicable bits of the PFR23 (Port 

Function Register 23) must be set for CAN receive and CAN transmit functions. 

The following arrangements are made for this purpose. 

  PFR23_D0 = 1;                /* RX */ 

  PFR23_D1 = 1;                /* TX */ 

 

Configuration of the CAN0 controller is also done in InitCANCtrl0. The CAN baud 

rate determination, deciding on which type of interrupts to be issued and making the 

buffer arrangements according to the application are some examples to the 

configuration options of the CAN controller. The CAN controller must be disabled 

so that some of the configurations may be done and after the configurations have 

been set, the CAN controller is enabled again. The script for this operation and the 

setting of the CAN bit rate is given below. 

CTRLR0_CCE = 1;              /* enable cfg change */ 

BTR0 = BTR_16M_500k_16_68_3; /* BTR config 500 kBaud */ 

CTRLR0_CCE = 0;              /* disable cfg change */ 
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CTRLR0_EIE = 1;             /* enable error interrupt */ 

CTRLR0_SIE = 1;     /* enable status change interrupt */ 

CTRLR0_IE = 1;  /*enable interrupt generation for CAN0*/ 

CTRLR0_Init = 0;   /* complete init, start CAN0 */ 

 

Message buffers in the CAN Controller must also be configured in the 

InitCANCtrl0 routine. There exist 32 message buffers in each CAN controller of the 

CPU. Each of the buffers can be set to be used either as transmit buffer or receive 

buffer according to the application. All the necessary settings to properly arrange 

the message buffers are done in InitCANCtrl0. Defining the ID to receive/send, 

deciding to use the extended ID mode or not, managing the interrupt settings are 

some of the examples of the buffer configuration which are covered in 

InitCANCtrl0. One last thing to be taken into account when configuring the 

message buffers of the CAN Controller of the MB91465XA is that the CAN buffers 

greater than 16 in number can not be configured to be used as receive buffer 

whereas all the buffers from 1 to 32 can be used as transmit buffer. In other words, 

it must be avoided to configure the buffers from 17 to 32 as CAN receive buffer. 

In the operating CAN scenario, CPU is informed when the CAN messages are 

received via interrupts instead of polling the CAN controller message buffers. 

Because of this reason, the routines, CAN0_ReadMessageBuffer, CAN0_ISR and 

CAN0_STATUS_ISR_Handler functions in cooperation with each other. The latter 

two of them are responsible for the interrupt handling. These functions determine 

the source of the interrupt, clear the necessary flags and call the 

CAN0_ReadMessageBuffer function if the interrupt source is one of the receive 

message buffers. CAN0_ReadMessageBuffer function is called in the interrupt 

subroutine by the argument which is the number of the buffer causing the interrupt. 

Therefore what should be done first in the CAN0_ReadMessageBuffer routine is to 

transfer the payload and the other necessary data from the message buffer to the 

interface registers of the CPU so that the CPU can easily process the incoming data. 

This is done by the following code. 
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IF1CREQ0 = buffer; // buffer number to be transferred 

 

This command transfers all of the content of the buffer which is not masked, to the 

interface registers of the CPU. From this point on the CPU is able to read and 

manipulate, the ID, the payload or the any other information about the message 

transfer of the incoming message. 

The last task held in CAN.c is sending the CAN messages via CAN0_SendMessage 

function. This function is called in the reload timer subroutine where the CAN 

messages are generated. In the interrupt subroutine, CAN0_SendMessage function 

is called with 5 arguments. Two of the arguments are the 4-byte data pieces which 

form the 8 byte payload of the CAN message. The others are the ID of the message, 

data length in bytes and the buffer number from which the message is to be 

transmitted. While storing a message to the message buffer, the opposite procedure 

is followed when compared to reading the message from the buffer. First of all, the 

CPU transfers the data to the applicable interface registers as required with the 

arguments of the function and then executes the following command. 

IF1CREQ0 = buffer; // buffer number to be transferred 

 

This time the above command stores all the content of the interface registers which 

are not masked, to the specified message buffer so that it is put on the CAN bus via 

CAN protocol engine. Since in the Gateway experiment, message trip time 

throughout the network is measured so as to evaluate the performance metrics of the 

Gateway, timestamp is put on the outgoing CAN message. This timestamp obtained 

via the time service functions of the FlexRay Software driver. Therefore, so as to 

use the applicable functions of the time service routines of the FlexRay driver, 

"ffrd_api_time_service.h" is included in CAN.c.  After the timestamps have been 

obtained, they are written into the CPU interface registers which store the payload 

of the outgoing message. Then, the content of the interface registers is transferred to 

the message buffer as described above and the CAN message with the timestamp on 

it, starts its journey on the CAN bus. The code for the timestamps is given below. 
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  nCycle = ffrd_api_get_cycle(); 

  mtick = ffrd_api_get_mtick(); 

  IF1DTA120 = nCycle + (mtick<<8) + (data1<<24); 

 

5.4 GATEWAY PROJECT DETAILS 

Gateway project also has very big similarities with the CAN and the FlexRay 

project since Gateway is somehow the combination of both projects. In the coming 

sections, only, the considerations and the approaches that differ from the preceding 

projects will be discussed and the things which are repeated in the Gateway project 

will simply be omitted. The tasks held in the Gateway will be discussed under 3 

chapters; Main tasks, FlexRay tasks and CAN tasks. 

5.4.1 Tasks Executed In MAIN.c 

The tasks performed in MAIN.c are very much the same with that of, CAN project 

and the FlexRay project. The structure of the code is the same. First of all, the 

registers are configured and set, second reload timers are started and finally the idle 

task of the project begins to run waiting the interrupts to be issued so that the main 

tasks of the project can be performed. 

It should be noted that the CAN Controller of the CPU must be initialized also for 

the Gateway node. This is because the Gateway node performs the tasks of both 

FlexRay and CAN nodes. Therefore, the initialization routine for the CAN 

Controller, InitCANCtrl0(), is called in the InitCPUExtraRegs() function. In 

addition to this, CAN interrupt vector and the CAN interrupt priority must also be 

defined in vector.c by the user so that the Gateway node can receive CAN messages 

through interrupt mechanism. 

One of the reload timers is used to call the FlexRay task in every 5 ms. Since the 

Gateway has no message generation requirement, in the interrupt subroutine, no 
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FlexRay message is prepared. Instead of message generation, this reload timer is 

used for message polling of the incoming FlexRay messages. The incoming 

messages are polled with the period of 5 ms in MAIN.c and if some messages are 

received, they are processed and routed through the CAN network in the TTask.c. 

One more thing to add about this reload timer subroutine and the polling 

mechanism is that the polling time of the node is adjusted to occur just in the middle 

time of the whole cycle, which is 2.5 ms. Adjusting of the polling time just in the 

middle of the cycle is specific to the Gateway experiment. As mentioned in the 

previous chapters, it is possible and desirable to generate the reload timer interrupts 

in the very beginning of the FlexRay cycle for the FlexRay and the CAN projects. 

The mechanism to stabilize the interrupt issuing time to the beginning of the 

FlexRay cycle is discussed in section 5.2.1. Moreover, the reasons for adjusting the 

message generation time this way is also explained clearly. Because of the parallel 

reasons but with a different point of view, the FlexRay messages in the Gateway 

must be polled in the middle of the FlexRay cycle. The reason for this is that, as it is 

mentioned, the FlexRay messages are being generated in the beginning of the 

FlexRay cycle. Therefore, the messages do not miss their sending time slot if they 

are to be sent in that very cycle. On the other hand, if the receiving node, which is 

the Gateway, for those messages is programmed to poll the incoming buffers in the 

very beginning of the cycle, naturally, the receiving node will see that either the 

buffers are empty or the messages sitting there belong to the messages of the 

previous cycle. In other words, the Gateway will receive nearly all of the messages 

with one whole cycle delay. Because the messages were not generated yet and they 

could only be sent after their defined slot time has come. Therefore, so as to avoid 

this phase delay between the generated Flexray messages and the received ones, the 

Gateway polls the receive buffers if there is a new message arrived just in the 

middle of the cycle. The middle of the FlexRay cycle is an important time spot, 

because, according to the scheduling the FlexRay network that the Gateway is 

connected to, it is guaranteed that all the generated messages are achieved to be 

transmitted to the other node until the mids of the FlexRay cycle. The stabilization 

of the reload timer interrupt to the mids of the FlexRay is essentially the same thing 
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as the stabilization of the messages to the very beginning of the cycle which is 

explained in section 5.2.1 in details. The only difference with that case is that the 

TASK_OFFSET value is defined to be 2500 which signifies the 2.5 ms time 

difference instead of using the previous value which was 100 and indicated the 

beginning of the cycle. 

5.4.2 Tasks Executed In TTask.c 

As mentioned previously, task_Nodex routine in TTask.c is used for polling the 

FlexRay receive buffers to see if new messages have come or not. The function 

task_Nodex is not used to send FlexRay messages through the FlexRay network 

though the Gateway has to perform this task also. This sending task is held in 

CAN.c and the details of the task will be explained in the following chapter. 

Before performing the receive task, in the beginning of the function, task_Nodex 

checks the status of the Communication Controller and, if it is needed to, follow the 

procedure to start the Controller as described in section 5.2.2. After the status check 

and the necessary arrangements, the FlexRay task does check all the receive buffers 

one by one to see if there are new received messages. The function named 

ffrd_api_rx_handler_buffer(), whose structure is very similar to the message 

transmit handling function, is used to receive messages from FlexRay bus. While 

the routine ffrd_api_rx_handler_buffer must be called twice separately for each 

redundant channel, calling the message transmitting routine only once is enough. 

Because there exist two distinct channels, Channel A and Channel B, to receive the 

FlexRay messages and although, the sending side of the message has send the 

message through both channels it is possible that the message might be received at 

only one channel due to the hardware problems, software bug or electromagnetic 

interference. On the other hand, to send a message through redundant channels, 

filling only one buffer is enough. The Communication Controller copies the content 

of this transmitting buffer when to send the data to the FlexRay transceivers of both 

Channels. Parallel to this structure, when the FlexRay network is scheduled by 
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defining the receiving and the transmitting time slots via the FlexConfig™, the 

program outputs a *.chi file where only a single buffer is allocated for each 

transmitted signal and two buffers for each received signal. An example to this 

situation from a *.chi file is given below. 

/* Tx Buffer 5 (Frame Id: 34, Payload 5, FlexRayAB*/ 

WAIT_TILL_CLEARED32(0x80000000, 0x00000514); 

WRITE32(0x17030022, 0x00000500); /* WRHS1 */ 

……………………………………… 

 

/* Rx Buffer 8 (Frame Id: 68, Payload 4, FlexRayA */ 

……………………………………… 

 

/* Rx Buffer 9 (Frame Id: 68, Payload 4, FlexRayB*/ 

……………………………………… 

 

The script to check the receive buffers to determine if some messages have come is 

given below. 

statusRx1=ffrd_api_rx_handler_buffer((FFRD_UINT32)&sRx1, 
&header_rx1, 10, 0, FFRD_CHANNEL_A, 
ffrd_api_new_rx_data_buffer(0)); 

statusRx2=ffrd_api_rx_handler_buffer((FFRD_UINT32)&sRx1, 
&header_rx1, 10, 1, FFRD_CHANNEL_B, 
ffrd_api_new_rx_data_buffer(1)); 

 

The first 2 arguments of the total 5 arguments of the function 

ffrd_api_rx_handler_buffer() are the outputs and the rest of them are the inputs of 

the routine. First argument of the function is the payload of the received message 

and the second argument is the header. The input arguments of the 

ffrd_api_rx_handler_buffer() function which are the 3rd, 4th and the 5th arguments 
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stand for the data length in bytes, the buffer number and the receiving channel, 

respectively. Therefore, to combine it all, ffrd_api_rx_handler_buffer() routine 

reads the content of the receive buffer, which is given in the 4th argument, for the 

specified channel and writes the payload and the header of the received message to 

the addresses defined by the 1st and the 2nd arguments, respectively. The length of 

the data that will be written beginning with the memory address specified in the first 

argument is given in the 3rd argument. As it is in the message transmit case, in 

ffrd_api_rx_handler_buffer() function also, the user must enter carefully the buffer 

numbers that will be read by the function, by checking it from the corresponding 

*.chi file. 

In task_Nodex(task), the message receiving task for the periodic messages and that 

of the sporadic messages are handled separately although it does not have to. 

Because, since the structure of dynamic segment messages and the static segment 

messages are different from each other, it is more convenient to process those 

messages separately. 

It is considered that a new message has arrived to the node if the return value of the 

ffrd_api_rx_handler_buffer() function is FFRD_OKAY for at least one of the 

redundant channels. The function ffrd_api_rx_handler_buffer() does not return 

FFRD_OKAY value again after it has read a buffer until a new message arrives to 

the receive buffer. When it is determined, as just explained, that a new message has 

arrived, the incoming message is processed and forwarded through the CAN bus 

according to the requirements of the Gateway experiment. The details of the 

task_Nodex() function for the Gateway project is given in APPENDIX C. 

5.4.3 Tasks Executed In CAN.c 

The tasks held in CAN.c is very similar those of the CAN project which is 

discussed previously. Also in the Gateway project, the same tasks namely, 

InitCANCtrl0, CAN0_STATUS_ISR_Handler, CAN0_ReadMessageBuffer, 
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CAN0_SendMessage and CAN0_ISR are held.  Only the applications coded for the 

tasks differ. 

In the beginning of the CAN.c the routine named InitCANCtrl0 is implemented. In 

InitCANCtrl0, CAN Network and the CAN Controller is configured. The tasks such 

as configuring the message buffers and determining the CAN baud rate are held in 

the function as discussed under CAN project. It should be noted that although the 

InitCANCtrl0 routine is defined and implemented in CAN.c, the function is called 

in MAIN.c during the configuration of the necessary registers of the CPU. In 

addition, so as to be able to receive messages via CAN bus, the CAN interrupt 

vector and the CAN interrupt priority must also be defined in vector.c 

The CAN0_SendMessage function is an other task held in the CAN.c the structure 

of which is also very much the same with that of the CAN project. The function 

CAN0_SendMessage is called from TTask.c when a FlexRay message is received. 

After a FlexRay message has been received, the Gateway node processes the 

incoming message according to the application and sends the message through 

CAN bus by calling the CAN0_SendMessage function. Inside the function, 

timestamp, which signifies the leaving time of the message from the Gateway, is 

added in the payload so that the performance metrics of the network can easily be 

measured and then the message is put into the buffers to be transmitted through the 

CAN bus.   

The other important task held in CAN.c is CAN0_ReadMessageBuffer routine. The 

CAN0_ReadMessageBuffer function works in concordance with the interrupt 

related routines, namely CAN0_STATUS_ISR_Handler and CAN0_ISR. When a 

new CAN message is received, an interrupt is issued by the CAN Controller 

indicating the message buffer number in which the incoming message is stored. 

CAN0_ReadMessageBuffer is called in the interrupt subroutine with an argument 

which stands for the buffer to read. 
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In CAN0_ReadMessageBuffer routine first of all the network time is obtained by 

using the FlexRay Driver API functions. The obtained values signify the receive 

time of the CAN messages in the Gateway. After the timestamp has been obtained, 

the data in the message buffer is transferred to the interface registers so that the 

CPU easily processes the incoming data. Then the payload and the ID of the 

received message is read and processed. Since the incoming message contains the 

timestamp indicating the transmitting time of the message, macrotick value and the 

cycle number are separately extracted to be sent through FlexRay. The script 

extracting the timestamp components from the payload and reading the ID from the 

corresponding register is given below. 

  can_send_cycle = 0x000000FF&IF1DTA120; 

  can_send_mtick = (0x00FFFF00&IF1DTA120)>>8; 

  ID = 0x1FFFFFFF&IF1ARB120; 

 

The remaining code in the CAN0_ReadMessageBuffer routine forwards the 

received CAN messages to the FlexRay network according to the CAN-to-FlexRay 

mapping of the Gateway.  

It should be noted that as opposed to the FlexRay message generation case in the 

FlexRay project, here, a-flag-for-each-message structure is not applied. Instead of 

setting a flag for each CAN to be sent through the FlexRay network and processing 

all the flags periodically and sending the messages whose flags are set, in 

CAN0_ReadMessageBuffer, the FlexRay buffers are filled with the corresponding 

CAN messages immediately. In other words, ffrd_api_tx_handler_buffer() function 

is directly called under CAN0_ReadMessageBuffer whenever needed. If the 

ffrd_api_tx_handler_buffer() routine was not immediately called and the CAN 

messages are put into the FlexRay buffers all together periodically by the call of the 

task_Nodex function, then the CAN messages would experience extra delay by 

waiting the period of the task_Nodex to come. Even as the worst case, it is possible 

that a CAN message is received just after the call of the task_Nodex. In this case the 
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CAN message will suffer in the Gateway for a time of a whole cycle which is 5 ms 

for the Gateway experiment. For the case of 5 ms task_Nodex polling period, the 

mean time the CAN messages will stay additionally in the Gateway is 2,5 ms which 

is a very large amount of time for the performance of the Gateway. However, the 

aim of the design of the Gateway is to keep the incoming messages in the Gateway 

with minimum of time and forward them to the destination network as soon as 

possible. Therefore, so as to improve the delay performance of the Gateway, 

ffrd_api_tx_handler_buffer() function is called and the FlexRay buffers are filled 

with the messages immediately in the CAN.c. Also, since the buffer handling, time 

and control services of the FlexRay Software driver are used throughout the coding 

in CAN.c, the driver header files listed below must be included in the beginning of 

the file. 

#include "ffrd_api_time_service.h" 

#include <ffrd_api_tx_handler.h> 

#include <ffrd_api_status_service.h> 

#include <ffrd_api_control_service.h> 

5.5 OTHER DEVELOPMENT ACTIVITIES 

As it is explained in the previous sections, while using the 

ffrd_api_tx_handler_buffer() and the ffrd_api_rx_handler_buffer() functions, the 

arguments of the functions, particularly the buffer number, have to be entered 

manually by the programmer. This is done by checking the mapping of the Gateway 

and the corresponding *.chi file of the Gateway where the buffer allocation for each 

FlexRay ID is given. Since all those checking of the files are done by hand, the task 

of filling the buffer number of the ffrd_api_tx_handler_buffer() and the 

ffrd_api_rx_handler_buffer() functions is cumbersome and carries the risk of 

making errors. Therefore, so as to do the mapping and filling the buffer numbers in 

the corresponding FlexRay functions automatically, a program is written in 
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Windows environment and the coding structure of the applicable files are a little bit 

changed. 

According to the scenario which will carry out the above mentioned process 

automatically, first of all, a *.txt file named "config.txt" is created. In the 

"config.txt" file, CAN-to-FlexRay mapping, FlexRay-to-CAN mapping information 

and the name of the *.chi file created for the Gateway node by the FlexConfig™ is 

entered by the user. An example for the "config.txt" file is given in APPENDIX E. 

The "config.txt" file and the *.chi file created for the Gateway node are both 

included in the project directory of the program which is coded by the MS Visual 

Studio 6.0 in C language. This program parses both the config.txt file and the *.chi 

file of the Gateway and outputs two files named gateway.c and gateway.h where the 

FlexRay buffers are mapped with the FlexRay IDs and the CAN messages. The 

content of the files, "gateway.c" and "gateway.h", are given in APPENDIX F and 

APPENDIX G, respectively. As the file "gateway.c" is examined, it will be 

observed that all the FlexRay IDs and the CAN IDs, which are received and 

transmitted during the operation of the Gateway, are stored in the file as distinct 

arrays. The name of those arrays are CANtx[],CANrx[],FRtx[] and FRrx[]. In 

addition to this, the mapping information is kept in two different arrays, namely 

CAN2FR[] and FR2CAN[]. CAN2FR[] is the array that indicates the FlexRay IDs 

to which the incoming CAN signals will be mapped by storing the index number of 

the FRtx[]. Likely, the array FR2CAN[] indicates the CAN IDs to which the 

incoming FlexRay signals will be mapped by storing the index number of the 

CANtx[]. This concept can be illustrated by the following script which is taken 

from a real "gateway.c". 

int CANtx[15] = {1, 0, 19, 18, 17, 13, 12, 11, 10, 9, 
8, 5, 4, 3, 2}; 

int CANrx[15] = {123, 400}; 

int FRtx[2] = {6, 9}; 

int FRrx[15] = {7, 8, 16, 17, 19, 20, 26, 28, 31, 33, 
36, 37, 41, 47, 48}; 
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int CAN2FR[2] = {0, 1}; 

int FR2CAN[15] = {0, 2, 1, 3, 4, 10, 6, 7, 5, 9, 8, 
14, 12, 13, 11}; 

When FRCAN[] is examined, for example, the 6th element of the array, which is 

FR2CAN[5], is found to be 10. This means that the 6th element of the FRrx[] array 

which stands for the incoming FlexRay signals is mapped to the 10th element of the 

CANtx[] array signifying the outgoing CAN messages. Therefore, FID 26 is 

mapped to CAN ID 12 according to the above script. The same logic applies to the 

CAN2FR array also. 

Finally, in the gateway.c, the buffer allocations for the FlexRay IDs for both receive 

and the transmit buffers are in Tx_Buffer[],Rx_Buffer_A[] and Rx_Buffer_B[] 

arrays. In those arrays, buffer numbers to which the FlexRay IDs are mapped are 

stored. Similar to the previous logic, the number corresponding to an element of the, 

say, Tx_Buffer[], indicates that the buffer with that number is allocated to the 

FlexRay ID corresponding to that index number in the FRtx[] array. The same 

condition also applies to the Rx_Buffer_A[], Rx_Buffer_B[] and FRrx[] triplets. 

Note that two distinct buffers are allocated to each FlexRay ID. Therefore, there 

exist two different buffer mapping array in the "gateway.c" for the received signals 

in the FRrx[]. 

Once the files gateway.c and the gateway.h are created by the program coded in 

Windows environment as explained above, the next step is to adapt these files to the 

Gateway project and change, if needed, the structure of the Gateway code 

accordingly so that the FlexRay buffer numbers are automatically entered with less 

effort and without any error. 

In fact, no drastic, changes are done in the structure of the Gateway coding. 

Including the gateway.h file in the corresponding Gateway file is enough to be able 

to use the arrays in the gateway.c. If the gateway.h file is observed in APPENDIX 

G, it will be seen that, what is done basically in the file is to render the arrays 

existing in the gateway.c to be used in external files by the C command "extern". 
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The reason that the gateway.h is created together with gateway.c is to obtain a more 

flexible structure and to be able to use the gateway.c in any files without any 

compilation error by simply including the gateway.h file in the corresponding file. 

Therefore, in the light of the above information, to be able to use the files gateway.c 

and gateway.h, first of all, these files are included in the working directory of the 

Gateway project. After that, the gateway.h is included in all of the files where the 

ffrd_api_tx_handler_buffer() and the ffrd_api_rx_handler_buffer() functions are 

used. Finally, depending on the function used, one of Tx_Buffer[], Rx_Buffer_A[] 

or Rx_Buffer_B[] arrays is used in the argument of the function which stands for 

the buffer number. As a result of the usage of Tx_Buffer[], Rx_Buffer_A[] and 

Rx_Buffer_B[] arrays, the buffer numbers for the ffrd_api_tx_handler_buffer() and 

the ffrd_api_rx_handler_buffer() functions are automatically entered, the 

probability of making error in filling those arguments decreases and the 

cumbersome task of checking both the network scheduling and the corresponding 

*.chi file to match the buffer allocation one by one is avoided. 



95 

 

CHAPTER 6  

 

EXPERIMENTAL PERFORMANCE ANALYSIS AND 

RESULTS 

In this chapter, we present the experimental performance evaluation of our designed 

Gateway node as well as a performance evaluation of an interconnected FlexRay-

CAN network. Before going over each experiment individually, first of all the 

performance metrics investigated in the experiments are explained. Next, general 

description of the experiments is presented, the issues common to all of the 

experiments are discussed and the time measuring mechanism is explained in 

details including the discussion about the effects of possible errors. Finally, each 

experiments held during the study is discussed under separate title. Our selected 

results and discussions are also presented in [34]. 

6.1 PERFORMANCE METRICS 

In this work, we first investigate the end-to-end delay (worst case response time) 

and jitter of messages in individual FlexRay and CAN networks as well as end-to-

end delay and jitter of the signals that go through the Gateway. In addition we 

consider the effect of different scheduling approaches on the timing of the messages 

and the efficiency of the bandwith use particularly for the FlexRay network. 

The end-to-end delay and jitter of the signals that are transmitted through the 

Gateway depend on the performance of our Gateway design and implementation. 
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Hence, we investigate the correctness of the protocol conversion, signal mapping 

and the processing delay for the Gateway.  

Next, we define these metrics in detail. 

The end-to-end delay is defined as the time difference between the transmit time of 

the message and the receive time of the same signal. Here, the transmit time, 

theoretically, is defined as the time that the message is put on the wire for the 

FlexRay node and that the message is tried to be put on the wire for the first time 

for the CAN node. In both of the definitions, the time stamp for the transmit time 

must be put into the message just at the end of the respective transceivers of the 

CAN and the FlexRay node. Therefore, let us call this time as the hardware transmit 

time. However, the hardware transmit time is not measurable practically since the 

transceivers are not programmable and the timestamps are put into the payload via 

the software running on the CPU. As a result of this, the transmit time for both the 

CAN nodes and the FlexRay nodes is considered to be the time where the message 

is put into the sending buffers of the nodes in the CPU. Let us call this time as 

software transmit time. 

Similarly the same logic applies to the receive time for both the CAN and the 

FlexRay nodes. So, the hardware receive time is the time where the incoming signal 

is received from the wire via the transceiver. The software receive time is the time 

where the CPU is, for the first time, able to process the message. 

To combine it all, the end-to-end delay can be formulated as follows. 

 )(,,, hardwarettT hwtxhwrxhwendtoend −=Δ −−  (6-1) 

 )(,,, softwarettT swtxswrxswendtoend −=Δ −−  (6-2) 

In the experiments, end-to-end delay is calculated by using the formula for the 

software end-to-end delay although this value is greater than the actual delay 

experienced by the messages. The difference between the software end-to-end delay 
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and the hardware end-to-end delay is discussed in details in the chapters where the 

experiments are individually handled by displaying the order of the deviation 

quantitatively and explaining the reasons of the deviation. 

Jitter is the second performance metric which is measured in the experiments. The 

jitter that the signals experience is easily calculated once the receive time of those 

messages is properly measured. As defined formerly, jitter is the time deviation 

from the periodicity and is, obviously, applicable to the periodic signals only. Also, 

it should be noted that this jitter definition is applicable per signal rather than the 

group of signals. The average jitter of a signal can be formulated as follows. 

 periodsignalntnt
N

AvgJitter swrx
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n
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1
, −−−×= ∑

=

 (6-3) 

According to this formula the jitter is calculated in all experiments for the periodic 

signals and the jitter results are discussed under the corresponding chapter where 

the experiment is explained in details. 

Protocol conversion correctness is the main performance metric for the 

functionality of the Gateway. If verified, this performance metric means that the 

Gateway performs its very basic functionality. In this context, the protocol 

conversion includes being able to receive messages from both networks, map the 

incoming messages to be sent in the other network according to the network 

scheduling configuration and writing the payload to be sent to the right buffer while 

satisfying the specific requirements of both networks. 

Signal mapping is another performance metric which is about the Gateway 

functionality. This metric covers the capability of the Gateway to process the 

received messages in the signal level. While the Gateway is able to segment an 

incoming message into pieces to transmit each in distinct messages possibly 

together with other signals, it is also able to assemble several signals in order to 

send them in a single message. 
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Processing delay is simply defined as the time during which a signal stay in the 

Gateway while crossing it. Therefore, this metric is the measure of the quality of the 

Gateway design and the smaller the processing delay is, the better performance the 

Gateway exhibits. 

6.2 OVERVIEW OF THE EXPERIMENTS 

The basic aim of this study is to design and implement a high performance 

FlexRay-CAN Gateway which satisfies all the functionalities that are discussed in 

CHAPTER 3 and conduct an end-to-end performance analysis of the inter-

connected FlexRay and CAN networks in terms of delay and jitter. The 

performance of the Gateway mainly signifies the processing delay of the node and 

its contribution to the overall jitter. In this context, the performance of the Gateway 

solely depends on its design and implementation. On the other hand, end-to-end 

performance analysis of the interconnected network, which is composed of FlexRay 

network, CAN Network and the Gateway node, depends on the performances of 

both networks and the Gateway unit separately. This is because, a signal that is 

generated from one end of the network experience a delay in both FlexRay and 

CAN networks and a processing delay in the Gateway during its transmission to the 

other end. The variations in these delay components also cause the signal to 

experience a jitter if it is a periodic signal. Therefore, the goal in designing the 

entire interconnected network is to minimize the end-to-end delay and the jitter that 

the signals experience as well as guaranteeing that all of the signals are delivered to 

the destination within their deadlines. The relationship between the deadline of the 

signals which cross the Gateway and the delay components that those very same 

signals experience in each network are given in (6-4). 

  GWFRCS tddd ++>  (6-4) 
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where dS is the deadline of the signal, dC is the time duration that the signal passes 

in CAN network, dFR is the delay that the signal experiences in FlexRay network 

and tGW is the processing delay of the Gateway. 

Before setting up a network, the first task is to compute the message schedule for 

FlexRay, CAN networks and the Gateway node so that all of the messages meet 

their deadline requirements. In the context of message scheduling, the deadlines dC 

and dFR in (6-4) are free parameters that have to be chosen such that their sum is 

smaller than the signal deadline, dS, reduced by the processing delay of the Gateway 

delay as shown in (6-5). 

   FRCGWS ddtd +>−  (6-5) 

It is readily observed that the deadlines of the CAN messages sent by the Gateway 

can only be evaluated if the deadlines of the corresponding FlexRay messages are 

known and vice versa. Therefore, it becomes impossible to determine a scheduling 

scheme for either network since the deadlines, before which the signals must be 

delivered, can not be fixed. In order to break this cyclic dependency, one of dC or 

dFR shall be fixed so that the other variable can be determined as in (6-5). It is 

proposed in [30] to first compute a CAN priority assignment such that the messages 

passing the Gateway have the shortest possible worst-case response times on CAN 

since the uncertainty in the worst-case response time and the message jitter is 

introduced by the slower and event-triggered CAN network. After the CAN 

deadline is computed for each of the messages, the FlexRay deadline can easily be 

calculated as in (6-5) and the FlexRay network is scheduled accordingly. 

In [30] three different scheduling schemes are proposed and discussed for the CAN 

network. On the other hand, two priority assignment schemes are suggested for the 

FlexRay network.  

It is obvious that the scheduling schemes that the networks utilize directly affect the 

delay that the messages experience on those networks. Since one of our goals is to 
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study the end-to-end performance of an inter-connected FlexRay and CAN 

networks in terms of delay and jitter, we analyze the performances of the sole CAN 

network and sole FlexRay network with the scheduling schemes proposed in [30]. 

Moreover, having examined the behaviour of the individual CAN and FlexRay 

networks, we will be able to understand and exhibit the performance of the Gateway 

unit better while performing experiments on the whole network where there exist 

CAN network, FlexRay network and the Gateway node. 

Apart from these experiments, where the performance of CAN and FlexRay 

networks are analyzed according to the scheduling schemes suggested in [30], also 

several other experiments are held to verify and test the Gateway functionality and 

the performance. During the testing of the Gateway functionality and the 

performance, a bigger network, in which there also exist CAN and FlexRay 

networks, is established. 

All of the experiments held during this study are listed below in order to provide a 

more comprehensive picture. 

• Experiments to investigate the impact of scheduling 

o CAN Experiments 

 Conventional Scheduling 

 Prioritized Scheduling 

 Scheduling with Fixed Priority 

o FlexRay Static Segment Experiments 

 Scheduling Without Jitter 

 Scheduling With Minimum FID 

o FlexRay Dynamic Segment Experiments 
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 18 Minislots 

 19 Minislots 

 20 Minislots 

• Overall network performance: Experiments with the Gateway 

o Gateway Functionality 

 Protocol Conversion 

 Signal Mapping 

o Gateway Performance 

 Real-Time measurements 

 Effect of polling frequency  

6.2.1 Experiment Set-Up 

The structure of the experiment set-up for all of the experiments are similar to each 

other. The set-up consists of SK-91465X-100MPC evaluation boards, CAN and 

FlexRay PCB busses, cables with 1-to-1 D-Sub-9 female connectors at both end, 

FlexCard Cyclone II SE network analyzer card and a PC. Each SK-91465X-

100MPC starter kit is used as an individual node composing the network. Since SK-

91465X-100MPC has both CAN and FlexRay interfaces on it, it can be used as a 

CAN node, a FlexRay node or the Gateway node in the experiments. The nodes 

composing the network, i.e the SK-91465X-100MPC starter kits, are connected to 

each other via hardware busses. The hardware busses used in the experiments are 

the PCBs with D-Sub-9 Male connectors mounted on it. All of 9 pins of those 

connectors are connected to each other through the PCB to enable several distinct 

nodes communicate each other through the PCB. A maximum number of 9 nodes 
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can be connected via the PCB. The photograph of the PCB bus used in the 

experiments is shown in the Figure 6-1. 

 

Figure 6-1 The PCB Bus Used For Both FlexRay and CAN Bus 

While used as FlexRay bus, two distinct PCB busses are used in the experiments, 

one for each FlexRay channel. The FlexRay bus and the CAN bus are physically 

identical to each other except that there are termination resistors on the CAN bus. 

Two parallel 120 Ω resistors are welded on the two different connectors of the PCB 

bus between the live pins, namely CAN_L and CAN_H to provide proper 

termination. Without the termination is provided, CAN communication can be 

established between the SK-91465X-100MPC nodes up to 100 kbps data rate. 

Beyond this bit rate, SK-91465X-100MPC requires termination for the CAN 

communication. However, without termination, FlexCard analyzer is not able take 

any CAN measurement even for the bit rates smaller than 100 kbps. Therefore, 

throughout the experiments with all CAN data rates, smaller or greater than 100 

kbps, the PCB CAN bus is terminated to properly log and analyze the bus. 

FlexCard Cyclone II SE is used in all of the experiments as a FlexRay node or a 

CAN node or both at the same time depending on the experiment. Although it is 

possible to use the FlexCard Cyclone II SE to send messages in the network, it is 

only used as a receive node to monitor the data exchange through the CAN and the 

FlexRay busses. While, to monitor the CAN bus, no arrangement is required to be 

done on FlexCard Analyzer except the CAN data rate, in order to, properly, analyze 

the FlexRay bus, the *.chi file produced by the FlexConfig™ for the FlexCard must 
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be included in the FlexAlyzer software. Therefore, while scheduling the FlexRay 

network via FlexConfig™, FlexCard is also defined to be a receiving FlexRay node 

for all of the time slots. 

The final equipment used in all of the experiments is a PC. Via the PC, the 

microcontrollers of the nodes are programmed by using the FME FR-Flash 

Programmer V4.0.2.1. Also, the data exchange through the network is monitored 

and logged by the FlexAlyzer software which is installed in the PC. Finally the 

logged data is parsed offline by using the parsing program, that we wrote in the PC, 

to obtain the results of the performance metrics. 

Illustration and the photograph of the Gateway network are given in Figure 6-2 and 

Figure 6-3, respectively. 

 

Figure 6-2 The Gateway Network Illustration 
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Figure 6-3 The Gateway Network Photograph 

When Figure 6-2 and Figure 6-3 are examined, it is seen that CAN nodes are also 

connected to the FlexRay network. The reason for this connection is that so as to 

take the time measurement that is valid throughout the whole network, all the nodes 

composing the network must be synchronized to each other. CAN bus is an event 

trigger bus without any synchronization. Because of this reason the synchronization 

among all nodes is established through the FlexRay bus via the FlexRay interfaces 

on SK-91465X-100MPC. This way, the transmit and the receive time of all of the 

messages, whether from CAN node or FlexRay node, can easily be tagged in order 

to be used in the analysis of the network. The considerations taken into account 

during the time measurements and the logging are explained in the following 

chapter in more detail. 

FlexRay 

Bus 

CAN Bus GATEWAY 
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6.2.2 Time Measurements 

The experimental evaluation of the timing performance requires the correct time 

measurements. As introduced in the preceding chapter, the all nodes in the network 

must be synchronized to each other through the FlexRay network so that the all of 

the signals exchanged via the network can be time tagged properly. An experiment 

set-up consisting of a Gateway node, CAN nodes which are connected to also the 

FlexRay network, FlexRay nodes and the FlexCard which is used to monitor the 

whole network traffic, is illustrated Figure 6-4. 

 

Figure 6-4 The Gateway Network 
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Once all of the nodes connected to the network are synchronized to each other, four 

different timestamps are included, at four distinct points of the network, into the 

payload of the message traveling from the originating node to the destination. The 

spots, in the network, that the timestamps are added into the payload are the exit 

point from the CAN/FlexRay node, the arrive point in the Gateway, the exit point 

from the Gateway and the arrive point in the FlexRay/CAN node. By means of 

these 4 timestamps it becomes possible to measure the end-to-end delay and the 

jitter that a signal experiences exclusively, in CAN network, in Gateway, in 

FlexRay network and throughout whole of its travel. 

If we consider, first, the travel of a packet from CAN to FlexRay bus the scenario is 

as the following. The message packet originates from a CAN node and it is sent on 

the CAN bus. Then the message is received by the Gateway via its CAN interface. 

After the Gateway has processed and mapped the signal to a FlexRay signal, the 

signal is transmitted through the FlexRay network. Finally the signal arrives to its 

final destination, a FlexRay node. In all of the experiments, FlexCard Cyclone II SE 

is used as the FlexRay node which receives all signals coming from the Gateway. 

(See Figure 6-5) 

 

Figure 6-5 Time Tagging: CAN2FR 

The timestamp CANTX is obtained in CAN0_SendMessage routine, which is 

explained in CHAPTER 5, just before loading the payload to the outgoing message 

buffer of the CAN Controller. Next, when this CAN message packet is received by 

the Gateway, the timestamp CANRX is obtained just at the beginning of the 

CAN0_ReadMessageBuffer function which is called in the CAN interrupt 
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subroutine. Finally, the Gateway obtains the FRTX timestamp indicating the 

leaving time of the packet from the Gateway just before storing the payload to the 

FlexRay sending buffers via ffrd_api_tx_handler_buffer() function. As introduced 

in section 6.1, those timestamps obtained at some certain points of the network do 

not represent the actual time that they refer to. Rather, they are either obtained a 

little bit earlier or a little bit later. The source of these errors is discussed in section 

6.2.3 and the impact of the difference, which is no significant, is discussed in more 

detail for each experiment in further sections. The timestamp FRRX is obtained by 

the FlexAlyzer showing the receive time of the packet in the FlexCard. Therefore 

FFRX does not come in the payload of the signal but rather it is created and logged 

by the FlexAlyzer analyze software. 

The timestamps, which are included to the payload of the message, are obtained via 

two different time service functions of the FlexRay Software driver. These 

functions return the network time by means of the FlexRay network fundamental 

time units which are the cycle number and the macrotick count. Since the time 

service functions return the cycle number and the macrotick count in 8-bits and 16-

bits, respectively, each timestamp engraved in the packets are 3 bytes long. 

Therefore, the time tags except FRRX, namely CANTX, CANRX and FRTX, 

shown in Figure 6-5 are all 3 bytes long. As a consequence of this, the length of the 

FlexRay message at the end of the Gateway becomes to 9 bytes long. Since the 

maximum payload length allowed in FlexRay protocol is 254 bytes, 9 bytes of 

timestamp data is easily be sent through FlexRay bus to be received by the 

FlexCard. 

As mentioned, all of the messages are finally received by the FlexCard. The 

incoming network traffic to the FlexCard is logged by the FlexAlyzer software. 

Since the all 3 timestamps are already in payload of the incoming traffic and the 

FlexAlyzer itself tags the 4th timestamp in the log as the receive time of the 

messages, in the log file extracted by the FlexAlyzer, all four timestamps shown in 

Figure 6-5 are present together. In order to examine those log files offline to 
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measure the performance metrics, distinct text parsing scripts are written for each of 

the experiments. 

For FlexRay to CAN communication the signal which is produced by a FlexRay 

node sinks at the Gateway node. After being processed in the Gateway, the message 

is transmitted via CAN bus. Again, the final destination of the message has to be the 

FlexCard where the network traffic is monitored and analyzed. The timestamps 

must also be included in the payload as shown in Figure 6-6, so as to be able to 

analyze the network performance afterwards depending on the data log stored by 

the FlexAlyzer. 

 

Figure 6-6 Time Tagging: FR2CAN 

Although each timestamp must be 3 bytes long, the timestamp, FFRX, is only 

composed of the cycle number which is 1 byte long as seen from the Figure 6-6. 

Because, if all the timestamps were, as in the previous case, 3 bytes long, the 

Gateway would have to send 9 bytes of data through the CAN bus after having 

included the timestamp, CANTX. However, it is impossible to transmit a message 

bigger than 8 bytes through CAN bus in a single packet. On the other hand, if the 

timestamp data were to be transmitted as two CAN frames, this would impair the 

analysis results of the experiments. Therefore, one of the FlexRay network time 

units, namely, cycle number and macrotick count, would have to be omitted from 

one of the timestamps. It is seen that the omission of the macrotick count from the 

timestamp, FRRX, has no impact on the end-to-end delay and the jitter calculations. 

The reason for this is that the receive time of a static slot message is exactly 
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determined in terms of macrotick due to the TDMA structure of the FlexRay 

network. Besides, the receive cycle number must, still, be included in the timestamp 

since the FlexRay messages might be sent with variety of repetition and offset 

settings which makes the receive time of the message ambiguous. 

As a result of this small change in the time tagging structure, the total length of the 

timestamps in the payload happens is 7 bytes long. This 7 byte time data is received 

by the FlexCard in the end. The FlexCard, also, puts the CANRX time tag and 

stores all the time data in a log file. As explained previously, those log files are 

analyzed by means of the text parsing codes and the results about the performance 

of the network is this way obtained. 

As mentioned above, the timestamps FRRX and CANRX are obtained via the 

FlexCard itself in the two opposite communication directions of the Gateway. So 

that the reliable results can be obtained as a result of parsing the log file created by 

the FlexAlyzer software, those timestamps, FRRX and CANRX, must also be in the 

same time units as the other time tags. A view from the log file exported by the 

FlexAlyzer software is displayed in Figure 6-7. 
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Figure 6-7 A view from the log file exported by FlexAlyzer 

A received FlexRay message is encircled in Figure 6-7 to give an example for the 

CAN2FR communication direction of the Gateway. In this direction, a message 

originated from the CAN bus is finally received by the FlexCard through the 

FlexRay bus. Since all the three timestamps, until arriving in the FlexCard 

hardware, namely CANTX, CANRX and FRTX, are described in terms of the cycle 

number and the macrotick count, the timestamp, FRRX, which is obtained by the 

FlexCard, must also be in the same form. While the former three timestamps exist 

in the payload of the received message, the time tag, FRRX, is encircled by a blue 

rectangle in Figure 6-7. As seen, the FlexAlyzer gives this time tag in the form of 
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the receive cycle and the receive ID which is not exactly the same as the form of the 

other three timestamps. However, this time tag can easily be converted to the 

conventional form since the receive ID indicates the receiving time slot of the signal 

and the length of a timeslot is fixed and known in terms of macrotick. Therefore, all 

4 timestamps can be considered to be in the same form and the end-to-end delay 

that a message experiences from the CAN node to the FlexRay node can be 

formulated as in (6-6). 

 [ ]
MacrotickCANTX

MTinOffsetActionMTinLengthSSIDRx
MTinLengthCycleCycleCANTXCycleFRRX
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______)1(
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+×−
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where 

FRRX.Cycle and the CANTX.Cycle are the cycle numbers of the timestamps 

FRRX and CANTX, respectively, 

Cycle_Length_in_MT, SS_Length_in_MT and Action_Offset_in_MT are the 

matrotick correspondences of the network parameters the Cycle Length, the Static 

Slot Length and the Action Offset Length respectively, 

IDRx is the ID of the received FlexRay message via Flexcard and 

CANTX.Macrotick is the macrotick count of the timestamp CANTX. 

The task of obtaining the timestamp is not that straightforward for the FR2CAN 

direction as the CAN2FR communication direction of the Gateway. To illustrate the 

situation in the FR2CAN direction, a view from the log file of an experiment is 

given Figure 6-8. 
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Figure 6-8 Illustration for the task of obtaining the CANRX 

As seen from the Figure 6-8, the time tag obtained by the FlexCard is not in the 

form of the cycle count and the macrotick count since it receives the data from the 

CAN interface. On the other hand the time tag that the FlexAlyzer includes in the 

beginning of every line of the log file is the local time of the FlexCard indicating 

the amount of time that has passed since the beginning of the measurements. 

Therefore, this local time is not in the conventional form either and has no chance 

of being directly used. To overcome this problem, the log data regarding the 

FlexRay messages is used to make a connection to the time domain of the 

synchronization, which is the FlexRay time domain, as follows. First of all, we 
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make use of the fact that the time delay to a received FlexRay message in the 

FlexCard can be easily calculated as described in the previous case. Secondly, it is 

known that in the beginning of every line of the log file the FlexCard puts the local 

time as the receive time of the corresponding message. Therefore, in order to find 

the delay that a message experiences from a FlexRay node to a CAN node, first of 

all, the delay up to a received FlexRay packet is calculated. Then, the time offset 

between the local time of the received CAN signal and the local time of the 

received FlexRay signal up to which the delay component has been measured, is 

added to the already calculated delay and this way, the total delay that the signal 

experiences is found. 

This calculation can easily be illustrated on the Figure 6-8. For instance, suppose 

that the end-to-end delay between the production time of a FlexRay signal and the 

CAN signal encircled with a blue rectangle in Figure 6-8 is required to be 

calculated. Production time of the FlexRay message is already in the payload of the 

message. As described above, first of all, the time delay to an arbitrary FlexRay 

message, which is called "reference FlexRay message", is calculated. In Figure 6-8, 

"reference FlexRay message" is shown in orange rectangle. The local receive time 

of the FlexRay message is 0.039440 and this local time is called as "reference 

time". The time delay from the original FlexRay message to this "reference FlexRay 

message" is calculated as in the case of the CAN2FR communication direction of 

the Gateway. Having calculated this delay, it is known from the Figure 6-8 that the 

CAN message, which is encircled with a blue rectangle, is received at the local time 

0.039819 which is (0.039819 - 0.039440) second later than the "reference FlexRay 

message". Therefore, this time offset is added upon the, previously, calculated delay 

value and this way the desired end-to-end delay is found. The end-to-end delay that 

a message experiences from the FlexRay node to the CAN node is formulated as 

follows. 
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where 

FRRX.Cycle_ref and the FRTX.Cycle are the cycle numbers of the timestamps 

"Reference FlexRay Message" and FRTX, respectively, 

Cycle_Length_in_MT, SS_Length_in_MT and Action_Offset_in_MT are the 

matrotick correspondences of the network parameters the Cycle Length, the Static 

Slot Length and the Action Offset Length, respectively, 

FRTX.MT is the macrotick number of the timestamp FRTX, 

IDRx_ref is the ID of the "Reference FlexRay Message" and 

CANRX.reftime and RfFR.reftime are the local receive time of the received CAN 

message and the "Reference FlexRay Message" in the FlexCard. 

6.2.3 Quantitative Analysis of the Time Measurement Errors 

In order to examine the end-to-end delay and the jitter values that the signals 

experience, throughout the experiments, we take measurements at certain points of 

the network as described in section 6.2.2. Obviously, the calculations of the 

performance metrics such as end to-end delay and jitter directly depend on that we 

take the time measurements accurately. However, it is inevitable that the time 

measurements taken in the experiments deviate for certain amount from the real 

time values for several reasons. The reasons for the deviation are listed below from 

the CAN bus perspective. 

1. In the experiments, the time stamps are put on the messages before they, 

actually, are put on the wire. After the timestamp has been tagged in the 

software, the software continues to run for a certain time before the message 
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with the timestamp is transferred to the transmit buffers in the CAN 

Controller of the CPU. The first component of the deviation of the 

timestamps from the actual values is this software processing time. 

Transferring the message to the transmit buffer does not mean that the 

message is put on the wire. In the buffers, the messages experience certain 

delay before they are, first, passed to the CAN transceiver and then put on 

the CAN bus physically. This delay experienced in the hardware is the 

second component of the deviation of the timestamps from the actual values. 

2. Unlikely, on the CAN receive side of the messages, the timestamps are 

tagged later than the actual receive time of the messages. The components of 

the deviations are as follows. When the packet is first received in the CAN 

node, the unit that welcomes the message is the transceiver. Then the 

transceiver passes the message to the CAN engine of the CPU. After some 

time in the buffer of the CAN Engine, the CAN Controller issues an 

interrupt alerting the software about the receive of a new CAN packet. The 

time up to this point is the time passed in the hardware. From the issuing 

time of the interrupt to the time where the application code running on the 

CPU reads the incoming message and obtains the timestamp, CPU processes 

the interrupt in the software. This time delay is the software component of 

the entire deviation. 

3. When two nodes communicate through the CAN bus, the above discussions 

explain the deviations of the delay that the CAN signals experience from the 

actual delay values assuming that the network time of the communicating 

nodes are exactly the same. However, in reality, the clocks of the nodes in a 

network drift with respect to each other. Therefore, network time of the 

communicating nodes always differ for certain amount. At this point assume 

that the clock of the receiving node is ahead of that of the transmitting node. 

In such a situation, the receiving node tags the received message by a greater 

time value with the amount equal to the difference of the clocks of the nodes 
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than the time value that the node would tag the receiving message if there 

were no clock deviation between the nodes. Therefore, in addition to the 

first two factors, the clock difference between the nodes might also cause 

the calculated time to deviate from the real time. 

4. The last error factor is the FlexAlyzer. The timestamps put on the log file of 

the FlexAlyzer have also error in it. The timestamps in the log file are used 

twice for the cases where the CAN messages are received via the FlexCard. 

In such a case, timestamps used in the calculations are the time tags for the 

"reference FlexRay message" and the received CAN signal. For the 

situations where the FlexAlyzer measurements are used twice, time 

deviations from the actual values get bigger. 

As mentioned, the above explanations are written for the CAN communication time 

measurement errors. Although the very same factors affect the time measurements 

in the FlexRay network in the same manner, the errors do not appear in the FlexRay 

results. The reason for this is that the delay values of the FlexRay messages occur in 

the multiple of the FlexRay cycle which is 5ms since the FlexRay network 

contention is provided via TDMA. Since the time measurement errors are much 

smaller than the FlexRay cycle length, these errors do not affect the results obtained 

for the FlexRay bus. On the other hand, since the CAN bus is an event triggered 

bus, the time measurement errors appear in the CAN bus experiment results. For 

this reason, the above explanations which account for the deviation of the time 

measurements taken in the experiments from the actual time values are given from 

the CAN bus perspective. 

Several experiments are run in order to quantitatively figure out the order of these 

errors listed above. Before continuing with the experiments, the error components, 

which are explained in the first two bullets above, are exhibited below in Figure 

6-9. 



117 

 

 

Figure 6-9 Time Stamp Deviation from the Actual Time 

Out of the 4 issues explained above, different ones are effective in different 

experiments when calculating the end-to-end delay that a signal experiences 

through the CAN bus. In fact, exploring the behavior of the error components under 

two cases will be enough. The first case comprises of the experiments where the 

both timestamps are tagged via the CPU in the delay calculations. In this context, 

the delay calculations for the CAN2CAN experiments and for the signals that 
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traverse the Gateway in CAN2FR direction can be included under the first case. In 

such situations, the articles number 1, 2 and 3 are effective in the calculation of the 

error between the measured time and the actual time. On the other hand, the second 

case includes the experiments where one of the timestamps is obtained in the CPU 

and the other time tag is put via the FlexAlyzer. The delay calculations for the 

signals that travel in the Gateway in the FR2CAN direction can be the example for 

this case. The articles number 1, 3 and 4 are effective in the calculation of the error 

between the measured time and the actual time in the second type of situations. 

To begin with the first case where the both timestamps are tagged via the CPU in 

the delay calculations, it is already mentioned that the articles number 1, 2 and 3 are 

effective in the calculation of the error between the measured time and the actual 

time. In order to calculate quantitatively the impact of these factors to the time 

measurement errors, the following simple experiment is set up. In the experiment, 

only one CAN message is sent through the CAN bus so that the packet does not lose 

any time for the contention. Therefore, the time that the message spends in the bus 

is supposed to be 270 µs where the bit rate of the CAN bus is 500 kbps and the 

message length is 8 B. The very same message is sent periodically in every 5 ms 

and the both transmit time and the receive time of the messages are tagged via the 

CPU. After the receive time tag have been put on the signal, the message is sent via 

FlexRay network where all those FlexRay messages are received and logged by the 

FlexAlyzer analyzer. When the log file that is output by the FlexAlyzer is processed 

by the text parsing program the maximum end-to-end delay that the messages 

experience is found to be 316 µs. This means that the time measurements taken by 

the CPU in the CAN2CAN experiments cause the end-to-end delay calculations to 

deviate about 46 µs from the actual end-to-end delay that the CAN packets 

experience. In this 46 µs delay error, all of the 3 articles, article number 1, 2 and 3, 

are accounted. Therefore, the sum of the time components from T1 to T6 in Figure 

6-9 plus the time deviation caused because of the instability of the clocks of the 

nodes with respect to each other equals to 46 µs. However, in the real experiments 

there exist tens of messages rather than single message. As explained above, if 
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single message existed in the network, the end-to-end delay of the message would 

deviate from the actual value with 46 µs. When there are multiple messages 

exchanged through the network, the messages might not be able to directly be 

passed through the CAN controller by issuing interrupt. Because at the time that a 

packet is received via CAN Controller and it is stored in the message buffers, there 

might exist some packets already have been waiting to be passed to the software via 

interrupt. Therefore, the message might wait, in addition to the time components 

depicted in Figure 6-9, for the messages whose priority is greater than itself to be 

processed. This process time is not the software processing time of the interrupt 

subroutine as shown in Figure 6-9 with T6 but the time for the processing time of 

the messages in CAN0_ReadMessageBuffer(). To sum up, in order to have an idea 

about the time quantity that a message waits in the CAN Controller for the situation 

where the multiple messages are exchanged via CAN bus, the duration of the 

routines named CAN0_ReadMessageBuffer, CAN0_ISR() and 

CAN0_STATUS_ISR_Handler() must also be known. Another experiment is set up 

to measure the duration of these routines. In the experiments, we make use of the 

FlexRay driver time service functions, namely, ffrd_api_get_cycle() and 

ffrd_api_get_mtick(). So as to calculate the duration of the routines, in the very 

beginning and at the very end of the functions, the network time is obtained via 

those time service functions. Then the time data obtained with these functions are 

sent through the FlexRay bus so that the data are logged via the FlexAlyzer 

software into a log file. Finally the duration of these functions are easily calculated 

by properly processing the log file. The results obtained for the functions are as 

follows. 

T[CAN0_ReadMessageBuffer] = 35 µs 

T[CAN0_ISR()] = 4 µs 

T[CAN0_STATUS_ISR_Handler()] = 2 µs 
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Apart from this, a message packet in the CAN controller might also wait for the 

interrupt subroutines, IsrReloadTimer1() and IsrReloadTimer3(), which are used to 

clear the watchdog and to perform the FlexRay task, respectively. The reason for 

this is that the priorities of both interrupt subroutines are greater than that of 

CAN0_ISR(). Although the probability of this to occur is fairly small, it should be 

taken into consideration in the worst case delay calculations since it is enough for 

such a situation to happen only once to affect the calculation. Below listed are the 

results. 

T[IsrReloadTimer1()] = 2 µs 

T[IsrReloadTimer3()] = 10 + n*20 µs 

where "n" is the number of CAN messages sent by the node. 

Therefore, while analyzing the possible errors between the measurement time and 

the actual time, all of the factors summarized above should be considered for the 

first case. 

The situation in the second case is a little bit different from the first case as 

previously described. In this case, while one of the timestamps is obtained in the 

CPU and the other time tag is put via the FlexAlyzer. It is more difficult in this case 

to find out the error in the delay calculations since the calculations involve the 

FlexCard hardware in which we have no control. Either, there exists no information 

in the data sheets of the FlexCard and the FlexAlyzer software about the 

measurement errors of the tools. As mentioned, the error components effective in 

the second case are the 1st, 3rd and the 4th articles discussed above. 1st article 

comprises of the error components T1, T2 and T3 as shown in Figure 6-9. It is 

logical to accept this error component as the half of the error which is depicted in 

Figure 6-9 and calculated to be 46 µs above. Therefore, the error component for the 

1st article is found to be 23 µs. The error components discussed in the 3rd and the 4th 

articles are related to each other and can be figured out by examining the behavior 

of the FlexAlyzer. In order to measure the error in the FlexAlyzer, a real scenario is 
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run and the log file obtained by the FlexAlyzer is observed. The receive time of the 

CAN packets are recorded in the log file. It is seen that the consecutive CAN 

messages are reported to be received with 295 µs apart. This means that when a 

burst of CAN messages with N members is received in the FlexCard, the last 

received message will be reported with an error of (N-1)*25 µs. 

The possible the error components discussed so far which might occur during the 

end-to-end delay calculations are summarized quantitatively in Table 6-1. 

Table 6-1 Error Components in the CAN2CAN Delay Calculations 

MEASUREMENT ERRORS 

Error Components Duration (µs) 

TX Error (T1 + T2 + T3) 23 

RX Error (T4 + T5 + T6) 23 

Hardware Error (T1 + T2 + T3 + T4 + T5 + T6) 46 

T[CAN0_ReadMessageBuffer] 35 

T[CAN0_ISR()] 4 

T[CAN0_STATUS_ISR_Handler()] 2 

T[IsrReloadTimer1()] 2 

T[IsrReloadTimer3()] (for n CAN messages) 10 + n*20 

FlexAlyzer Error (for a burst of N packets) (N-1) * 25 
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6.3 DISCUSSION OF THE EXPERIMENTS 

The list of the experiments held throughout this thesis study is given in Section 6.2. 

In this section, each experiment will be discussed separately in more detail. The 

message sets used in the experiments, the measurements, the set-up changes done 

specific to the experiments, the results obtained and the discussions about the 

results including the possible measurement faults are the topics that are explained in 

the following sections. 

6.3.1 CAN Experiments 

As mentioned previously, the main goal of this thesis is to design and implement a 

high performance FlexRay-CAN Gateway and make an end-to-end performance 

analysis of the inter-connected FlexRay and CAN networks in terms of delay and 

jitter. In this section, we examine the performance of CAN network with respect to 

different scheduling schemes proposed in [30]. The delay and the jitter values 

experienced by the signals in the CAN network directly affect the end-to-end delay 

and the jitter that the signals experience in the inter-connected network. Therefore, 

examining the behavior of the CAN network is also useful to visualize the bigger 

picture where both CAN and FlexRay networks and the Gateway unit exist. 

Three experiments with distinct CAN scheduling schemes are held as described in 

[30]. The CAN network is composed of 3 distinct nodes with the data rate of 500 

kbps. The aim of the experiments is to measure the delay and the jitter that the CAN 

signals experience when the priorities of the CAN messages are assigned according 

to respective scheduling algorithm proposed in [30]. The experimental results are 

compared with the worst case response times of the messages which are computed 

with an analytical approach in [30]. 
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6.3.1.1 Conventional Scheduling CAN Experiment 

A well known scheduling approach for real time systems is simply to assign the 

priorities to the CAN messages increasing with the decreasing deadlines of the 

messages. Therefore, in Conventional Scheduling, smaller the deadline that the 

signal has, higher the priority that is assigned to the signal. 

The message set which is used in the experiment and the priority assignment for the 

messages as per the Conventional Scheduling algorithm are given in Table 6-2 and 

Table 6-3, respectively. 

Table 6-2 Message Set for CAN Scheduling 

Signal Period Deadline Length Message Period Deadline Length
 

C1 10 ms 2.5 ms 8B C14 20 ms 20 ms 8B 
C2 5 ms 5 ms 8B C15 20 ms 20 ms 8B 
C3 5 ms 5 ms 8B C16 20 ms 20 ms 8B 
C4 10 ms 5 ms 8B C17 20 ms 20 ms 8B 
C5 10 ms 5 ms 8B C18 20 ms 20 ms 8B 
C6 10 ms 7 ms 8B C19 20 ms 20 ms 8B 
C7 10 ms 7.6 ms 5B C20 20 ms 20 ms 8B 
C8 10 ms 10 ms 8B C21 20 ms 20 ms 8B 
C9 10 ms 10 ms 8B C22 20 ms 20 ms 8B 
C10 10 ms 10 ms 8B C23 20 ms 20 ms 8B 
C11 10 ms 10 ms 8B C24 20 ms 20 ms 8B 
C12 10 ms 10 ms 8B C25 20 ms 20 ms 8B 
C13 10 ms 10 ms 8B C26 20 ms 20 ms 8B 

 

Table 6-3 Priority Assignment Using Conventional CAN Scheduling 

Signal C1 C2 C3 C4 C5 C6 C7 C8 C9 
Priority 1 0 4 3 2 5 6 12 11 
 

Signal C10 C11 C12 C13 C14 C15 C16 C17 C18 
Priority 10 9 8 7 25 24 23 22 21 
 

Signal C19 C20 C21 C22 C23 C24 C25 C26  
Priority 20 19 18 17 16 15 14 13  
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The message parameters in the Table 6-2 are inspired from the message set of a real 

automotive company and only minor modifications are done in producing the 

message set. The 26 CAN signals are distributed to 3 CAN nodes as shown in Table 

6-4. 

Table 6-4 Distribution of the Signals in CAN Nodes 

CAN Node Signals 
CAN Node 1 C5, C7, C8, C16, C17, C18, C19, C20, C26 

CAN Node 2 C1, C2, C3, C4, C6, C9, C10, C11, C12, C13, C14, C15, C21, 
C22, C23 

CAN Node 3 C24, C25 

The CAN nodes produce the signals as shown in Table 6-4 according to the 

message set and the priority assignment as explained. The aim in performing this 

experiment is to generate all 26 CAN messages at the same time in the very 

beginning of the experiment and continue to generate the signals according to the 

periods of the messages afterwards. However, in reality, all of the nodes, which are 

actually SK-91465X-100MPC, can not start to operate at the same time. Therefore, 

the message generation times have offset with respect to each other. It should be 

remembered that although this experiment is held for a purely CAN network, for 

time measurements purposes as explained before, all of the CAN nodes are also 

synchronized to each other via FlexRay network. Since all of the CAN messages 

have the period which is multiple of 5 ms, the cycle length of the FlexRay network 

is chosen to be 5 ms and all the CAN messages are generated in the beginning of 

the FlexRay cycles as explained in section 5.2.1. However, since the nodes can not 

be synchronized to the network at the same time, every time the experiment is run 

different results are obtained. The solution to this problem is to have all the nodes 

wait for a time so that all the nodes can be synchronized and after that have all 3 

nodes start to operate in the same cycle. This solution is also explained in section 

5.2.1 in details. Having taken this measure, the Conventional Scheduling CAN 
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experiment is run with the signal set and the assignments shown above for about 

120 seconds. The results obtained for the performance metrics, namely maximum 

end-to-end delay and jitter, are given in Table 6-5. 

Table 6-5 CAN Conventional Scheduling: End-to-End Delay and Jitter 

Signal Priority Delay (µs) Jitter (µs) Period (ms) Jitter (%) 
 

C1 1 557 73.25 10 0.73 
C2 0 590 137.98 5 2.76 
C3 4 1159 765.68 5 15.31 
C4 3 831 73.93 10 0.74 
C5 2 880 133.61 10 1.34 
C6 5 1394 75.46 10 0.75 
C7 6 1444 289.21 10 2.89 
C8 12 3444 93.42 10 0.93 
C9 11 3042 92.46 10 0.92 
C10 10 2768 91.79 10 0.92 
C11 9 2499 90.93 10 0.91 
C12 8 2230 89.91 10 0.90 
C13 7 1958 88.99 10 0.89 
C14 25 7581 42.46 20 0.21 
C15 24 7309 40.42 20 0.20 
C16 23 7072 38.56 20 0.19 
C17 22 6803 36.70 20 0.18 
C18 21 6533 34.80 20 0.17 
C19 20 6269 34.90 20 0.17 
C20 19 6000 34.84 20 0.17 
C21 18 5299 35.93 20 0.18 
C22 17 4738 33.90 20 0.17 
C23 16 4182 76.36 20 0.38 
C24 15 4341 75.61 20 0.38 
C25 14 4357 727.56 20 3.64 
C26 13 3710 73.14 20 0.37 

Also the figures in Figure 6-10 and Figure 6-11 illustrate the results obtained for the 

Conventional CAN Scheduling with respect to the increasing priority values of the 

CAN signals. The bars with light blue color in the figures indicate the signals that 

pass through the Gateway. While in Figure 6-10, the end-to-end delay values that 
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the signals experience are shown in milisecond, in Figure 6-11 the jitter values are 

shown in microsecond. 

 

Figure 6-10 End-to-End Delay vs Priorities: Conventional Scheduling 

 

Figure 6-11 Jitter vs Priorities: Conventional Scheduling 

In [30], the theoretical maximum delay that the signals defined in Table 6-2 with 

the priority assignment in Table 6-3 could experience is also calculated. 
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Comparative results with respect to this experiment and the theoretical values are 

given below in Table 6-6 and Figure 6-12 where the light blue bars indicates the 

signals passing the Gateway. In Figure 6-12, the end-to-end delay values that the 

signals experience are shown together with the theoretical maximum values which 

can be observed in the network. 

Table 6-6 End-to-End Delay vs Theoretical Maximum 

Signal Priority Delay in Experiment (ms) Theoretical Max. Delay (ms) 
 

C1 1 0.557 0.96 
C2 0 0.590 0.64 
C3 4 1.159 1.92 
C4 3 0.831 1.6 
C5 2 0.880 1.28 
C6 5 1.394 2.24 
C7 6 1.444 2.5 
C8 12 3.444 4.42 
C9 11 3.042 4.1 
C10 10 2.768 3.78 
C11 9 2.499 3.46 
C12 8 2.230 3.14 
C13 7 1.958 2.82 
C14 25 7.581 7.82 
C15 24 7.309 7.82 
C16 23 7.072 7.5 
C17 22 6.803 7.81 
C18 21 6.533 6.98 
C19 20 6.269 6.66 
C20 19 6.000 6.34 
C21 18 5.299 6.14 
C22 17 4.738 5.82 
C23 16 4.182 5.18 
C24 15 4.341 4.92 
C25 14 4.357 4.8 
C26 13 3.710 4.62 
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Figure 6-12 End-to-End Delay and the Theoretical Maximum Values 

When Table 6-6 and the Figure 6-12 are observed, it is found out that the end-to-

end delay that the CAN signals experience in the experiment stays within the 

theoretical limits. Note that the theoretical worst case limit computation in [30] 

assumes that all CAN signals are generated at the same time. However, in the 

hardware, although the CAN signals are intended to be generated at the same time, 

it is never possible to make a fine tuning of the generation time of the signals. The 

possible factors which might affect the generation time of the signals can be the 

FlexRay network time stability of the nodes, being a slave or master in the network 

or the volume of the application running on the node.  

The following example demonstrates the situation. Consider the messages C20 and 

C21 which are generated by CAN Node1 and CAN Node2, respectively. Priorities 

of those messages are given as 19 and 18. Both CAN Node1 and CAN Node2 begin 

to generate their CAN messages in the beginning of the FlexRay cycle. There are 

also other signals assigned to CAN Node1 and CAN Node2. Assume that, either 
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because of the reasons mentioned so far or due to the other factors, CAN Node1 

achieved to generate C20 whose priority is 19, before CAN Node2 manages it. In 

such a situation a message with a lower priority goes earlier than a signal of higher 

priority since the former one produced earlier. Because of these kind of impurities 

existed in the hardware environment, the end-to-end delay values of the signals may 

display variation form node to node and signal to signal. 

The other performance metric calculated in the experiment is the jitter that the CAN 

packets experience. In order to understand the jitter behavior of the network, the 

total of 26 CAN signals exchanged throughout the network should be divided into 

three set of messages according to their message generation periods. So, in this 

context, CAN messages C2 and C3 form the first group whose period is 5 ms. C1 

and all messages from C4 to C13, inclusive, form the group with 10 ms period. The 

third group whose period is 20 ms is composed of the messages from C14 to C26, 

inclusive. Since all of the messages are begun to be generated in the very same 

cycle at the same time, there happens to be only three scenarios. Either only the first 

group signals are generated or the second group signals are also generated together 

with the first group signals in the cycles that are multiples of 2 or finally the third 

group signals are added on top of the first two signal groups in the cycles that are 

multiples of 4. Therefore, first group messages sometimes fight only against each 

other for the medium access. In these situations, the end-to-end delay they 

experience is the minimum. In the cycles that are multiples of 2, these signals try to 

grab the medium also against additional second group. So, in those cycles the end-

to-end delay they experience is greater than the previous case. As a worst case, in 

the cycles that are multiples of 2, all CAN signals fight against each other for 

contention. Obviously, the first group signals experience the maximum delay in the 

medium. Therefore, those three different delay order causes the first group signals 

to experience jitter. If Table 6-5 is examined, it is observed that the first group CAN 

signals, which are C2 and C3, experience fairly big jitter values when compared to 

other CAN signals. The same logic applies to the second group signals also. While, 

they, half of the time, fight against the CAN signals of the first group and the 
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second group, in the other half of its time, they try to grab the medium against all of 

the signals. Therefore, they experience two different delay values in the consecutive 

generation time which, obviously, means the jitter. 

Also, due to the fact that some messages might be ready to be put on the wire before 

the other opponents due to the differences in the hardware as explained in the 

previous paragraph, some of the signals may have to wait additionally for the lower 

priority signals which appear on the bus earlier and this situation causes jitter. 

6.3.1.2 Prioritized Scheduling CAN Experiment 

According to this priority ordering explained in [30], the CAN messages which 

carry the signals destined to FlexRay network are given higher priorities with 

respect to the messages which are sent within the CAN network only. The analytical 

worst case response time calculation for each message with the given priority 

ensures that the entire CAN message set meets their deadlines. The CAN messages 

to be sent through the Gateway are C9, C10 and the signals from C14 to C26, both 

inclusive. In the light of this information, the priority assignment used in this 

experiment is given in Table 6-7. 

Table 6-7 Priority Assignment Using Prioritized CAN Scheduling 

Signal C1 C2 C3 C4 C5 C6 C7 C8 C9 
Priority 7 6 16 15 14 20 21 25 1 
 

Signal C10 C11 C12 C13 C14 C15 C16 C17 C18 
Priority 0 24 23 22 19 18 17 13 12 
 

Signal C19 C20 C21 C22 C23 C24 C25 C26  
Priority 11 10 9 8 5 4 3 2  

The message IDs sent by the nodes do not change and are the same as the Table 6-4. 

The experiment is run for 2 minutes just same as the previous experiment except the 

configuration changes explained above. The results obtained are given in Table 6-8. 
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Table 6-8 CAN Prioritized Scheduling: End-to-End Delay and Jitter 

Signal Priority Delay (µs) Jitter (µs) Period (ms) Jitter (%) 
 

C1 7 2013 946.01 10 9.46 
C2 6 2328 660.50 5 13.21 
C3 16 4923 2778.39 5 55.57 
C4 15 4020 2874.75 10 28.75 
C5 14 4359 2584.48 10 25.84 
C6 20 6033 4311.29 10 43.11 
C7 21 6950 4312.19 10 43.12 
C8 25 8081 4315.65 10 43.16 
C9 1 576 10.25 10 0.10 
C10 0 553 9.15 10 0.09 
C11 24 7135 4314.77 10 43.15 
C12 23 6863 4313.81 10 43.14 
C13 22 6593 4312.93 10 43.13 
C14 19 5600 32.66 20 0.16 
C15 18 5329 30.64 20 0.15 
C16 17 4261 29.48 20 0.15 
C17 13 3408 69.67 20 0.35 
C18 12 3138 68.21 20 0.34 
C19 11 2869 67.67 20 0.34 
C20 10 2603 67.61 20 0.34 
C21 9 2444 67.58 20 0.34 
C22 8 2176 66.08 20 0.33 
C23 5 1031 13.02 20 0.07 
C24 4 1159 116.46 20 0.58 
C25 3 1463 220.13 20 1.10 
C26 2 820 10.36 20 0.05 

The results are also illustrated in Figure 6-13 and Figure 6-14 with respect to the 

increasing priority values of the CAN signals. Similar with the previous experiment, 

the bars with light blue color shows the signals that pass the Gateway. In Figure 

6-13, the end-to-end delay values that the signals experience are shown in 

milisecond for all of the signals. Similarly, in Figure 6-14, the jitter values that the 

signals experience are exhibited in microsecond. 
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Figure 6-13 End-to-End Delay vs Priorities: Prioritized Scheduling 

 

Figure 6-14 Jitter vs Priorities: Prioritized Scheduling 

When these results are compared against the theoretical maximum values computed 

in [30], the comparative results are demonstrated in Table 6-9 and Figure 6-15. In 

Figure 6-15, the bars indicate the individual signals and the line draws an envelope 
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for the corresponding signals such that no signals can experience an end-to-end 

delay beyond this envelope line. The bars of light blue color in Figure 6-15 indicate 

the signals passing the Gateway. 

Table 6-9 End-to-End Delay vs Theoretical Maximum Values 

Signal Priority Delay in Experiment (ms) Theoretical Max. Delay (ms) 
 

C1 7 2.013 2.36 
C2 6 2.328 2.04 
C3 16 4.923 5 
C4 15 4.020 4.68 
C5 14 4.359 4.36 
C6 20 6.033 6.6 
C7 21 6.950 6.86 
C8 25 8.081 7.82 
C9 1 0.576 0.96 
C10 0 0.553 0.64 
C11 24 7.135 7.82 
C12 23 6.863 7.5 
C13 22 6.593 7.18 
C14 19 5.600 6.28 
C15 18 5.329 5.96 
C16 17 4.261 5.64 
C17 13 3.408 4.04 
C18 12 3.138 3.84 
C19 11 2.869 3.52 
C20 10 2.603 3.2 
C21 9 2.444 3 
C22 8 2.176 2.68 
C23 5 1.031 1.64 
C24 4 1.159 1.54 
C25 3 1.463 1.34 
C26 2 0.820 1.16 
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Figure 6-15 End-to-End Delay and the Theoretical Maximum Values 

As Table 6-9 and Figure 6-15 are examined, although generally the end-to-end 

delay that the CAN signals experience in the experiment stays within the theoretical 

limits, some CAN packets, which are highlighted in Table 6-9, namely C2, C7, C8 

and C25, exceed the theoretical end-to-end delay limit for themselves. This is 

rooted from the fact that the time measurements taken for the experiments are not 

exact as discussed in section 6.2.3 in details. It should be noted that the situation in 

this experiment falls into the second case in section 6.2.3 where one of the 

timestamps is tagged via the CPU and the other time tag is put in the FlexAlyzer for 

the delay calculations. If we focus on the magnitude of the errors, the deviations in 

the end-to-end delay calculations are found to be 288 µs, 90 µs, 251 µs and 123 µs 

for the C2, C7, C8 and C25, respectively. Referring the details to the section 6.2.3, 

the deviation of the end-to-end calculations from the actual end-to-end delay can be 

formulated as follows. 

 25)1(_ ×−+= NErrorTXError          (6-8) 
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where N is the number of the messages in a CAN burst received by the FlexCard up 

to the CAN packet whose end-to-end delay is calculated. The variable TX Error is 

defined in section 6.2.3. Although the number of the messages received in a burst 

before the signal whose end-to-end delay is to be calculated can not be known 

exactly, since in the worst case all the signals are sent through the CAN bus, it is 

logical to accept N to be the priority of the CAN signal. Still, some messages with 

lower priority might be received earlier than the higher priority messages since the 

generation time of the messages can not be exactly fixed and controlled, as 

discussed previously. In the light of this and the above formula the maximum 

possible errors are calculated to be 223 µs, 573 µs, 673 µs and 123 µs for the 

signals C2, C7, C8 and C25, respectively. According to the results, while for the 

signals C7, C8 and C25, the deviation in the end-to-end delay calculation are 

explained with the above formula, the deviation that occurs for the signal C2 can 

not be accounted for. It should be remembered that there exists an interrupt 

subroutine whose priority is greater than that of the interrupt subroutine which is 

responsible for the generation of C2. This interrupt subroutine must also be taken 

into account since there is a certain probability, though small, that this interrupt is 

issued while C2 is being generated. If the length of this interrupt subroutine is also 

considered, the deviation in the end-to-end delay calculation can be explained for 

the signal C2. 

The other performance metric of the experiment, which is jitter, is shown in Table 

6-8 and Figure 6-14. As the jitter values in Figure 6-14 are examined together with 

the signal periods that are included in Table 6-8, it is observed that the priorities at 

which the signals experience significant jitter belong to the signals whose periods 

are 5 ms and 10 ms. On the other hand, signals with 20 ms period experience fairly 

no jitter. These results are expected due to the reasons discussed in section 6.3.1.1 

in the paragraph where the jitter results are explained. 
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6.3.1.3 CAN Scheduling with Fixed Priority 

The scheduling used in this experiment is more convenient for practical purposes. 

In reality, a network is not established at once at a given time. Rather, new signals 

are required to be added to the network gradually. By using the CAN Scheduling 

with Fixed Priorities algorithm it is possible to assign priorities only to the CAN 

signals which are to be added to the network and keep the priorities of the existing 

signals as they are. Therefore, this scheduling scheme saves the engineers from the 

obligation of configuring the CAN network from the beginning every time a new 

signal is to be added. The algorithm presented in [30] assigns the priorities to the 

new messages and checks the schedulability of the entire message set.  

The priority assignment according to the CAN Scheduling with Fixed Priorities 

algorithm is given in Table 6-10. 

Table 6-10 Priority Assignment Using CAN Scheduling with Fixed Priorities 

Signal C1 C2 C3 C4 C5 C6 C7 C8 C9 
Priority 7 3 10 12 17 28 30 20 1 
 

Signal C10 C11 C12 C13 C14 C15 C16 C17 C18 
Priority 0 58 22 14 31 29 21 19 18 
 

Signal C19 C20 C21 C22 C23 C24 C25 C26  
Priority 13 11 9 8 6 5 4 2  

The mapping of the signals to each node does not change with respect to the 

previous two experiments and given in the Table 6-4. The experiment is run for 

about 120 seconds and end-to-end delay and jitter values are obtained as the 

outcome of the experiments. The results are shared in Table 6-11. 
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Table 6-11 CAN Scheduling with Fixed Priorities: End-to-End Delay and Jitter 

Signal Priority Delay (µs) Jitter (µs) Period (ms) Jitter (%) 
      

C1 7 2587 1120.90 10 11.21 
C2 3 1461 491.49 5 9.83 
C3 10 3477 1738.48 5 34.77 
C4 12 4024 1983.89 10 19.84 
C5 17 4654 1966.85 10 19.67 
C6 28 6900 3738.37 10 37.38 
C7 30 7532 4024.14 10 40.24 
C8 20 6064 3446.74 10 34.47 
C9 1 793 10.11 10 0.10 
C10 0 480 9.62 10 0.10 
C11 58 7531 4312.82 10 43.13 
C12 22 6069 3737.49 10 37.37 
C13 14 4025 2270.66 10 22.71 
C14 31 7190 42.90 20 0.21 
C15 29 6592 39.05 20 0.20 
C16 21 6332 33.20 20 0.17 
C17 19 5154 29.32 20 0.15 
C18 18 4843 27.50 20 0.14 
C19 13 4241 69.09 20 0.35 
C20 11 3634 67.88 20 0.34 
C21 9 2520 66.44 20 0.33 
C22 8 2213 64.82 20 0.32 
C23 6 1613 61.85 20 0.31 
C24 5 2041 305.28 20 1.53 
C25 4 1733 66.00 20 0.33 
C26 2 999 11.66 20 0.06 

The results are also illustrated in Figure 6-16 and Figure 6-17 with respect to the 

increasing priority values of the CAN signals. The signals passing the Gateway are 

shown with light blue color in the figures. While in Figure 6-16, the end-to-end 

delay values that the signals experience are shown in milisecond, in Figure 6-17 the 

jitter values are shown in microsecond. 
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Figure 6-16 E2E Delay vs Priorities: CAN Scheduling with Fixed Priorities 

 

Figure 6-17 Jitter vs Priorities: CAN Scheduling with Fixed Priorities 

As done in the previous two experiments, the results obtained in the experiment are 

compared against the maximum theoretical values for each of the signals in Table 

6-12 and Figure 6-18 where the bars with light blue colour indicate the signals that 

pass the Gateway. The envelope line given in Figure 6-18 indicates the theoretical 

maximum values. 
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Table 6-12 End-to-End Delay vs Theoretical Maximum 

Signal Priority Delay in Experiment (ms) Theoretical Max. Delay (ms) 
 
 

C1 7 2.587 2.36 
C2 3 1.461 1.44 
C3 10 3.477 3.32 
C4 12 4.024 3.84 
C5 17 4.654 4.8 
C6 28 6.900 6.92 
C7 30 7.532 7.5 
C8 20 6.064 5.96 
C9 1 0.793 0.96 
C10 0 0.480 0.64 
C11 58 7.531 7.82 
C12 22 6.069 6.6 
C13 14 4.025 4.48 
C14 31 7.190 7.82 
C15 29 6.592 7.24 
C16 21 6.332 6.28 
C17 19 5.154 5.64 
C18 18 4.843 5.12 
C19 13 4.241 4.16 
C20 11 3.634 3.52 
C21 9 2.520 3 
C22 8 2.213 2.68 
C23 6 1.613 2.04 
C24 5 2.041 1.84 
C25 4 1.733 1.66 
C26 2 0.999 1.16 
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Figure 6-18 End-to-End Delay and the Theoretical Maximum Values 

When the Table 6-12 and Figure 6-18 are observed, it is seen that the delay that 

some of the CAN signals experience does not stay within the theoretical limits. 

These CAN messages are highlighted in Table 6-12. Referring the details of the 

reasons for this deviation to the discussion done for the previous experiment about 

the end-to-end delay and to the section 6.2.3, we will elaborate only the signals 

which exceed the theoretical limits with a significant error, by using (6-8). These 

signals are C1, C4 and C24 with the deviations of 227 µs, 184 µs and 201 µs, 

respectively. The maximum possible errors expected in the delay calculations are 

found to be 223 µs, 373 µs and 173 µs using (6-8) for the signals C1, C4 and C24, 

respectively. Therefore, errors that occur in the end-to-end delay calculation of 

these signals are accounted by this quantitative analysis except for several 

microseconds which can be acceptable for such hardware applications. On the other 

hand, as mentioned above, the delay deviations of the other signals from the 

theoretical maximum values are not even calculated as they are far small with 

respect to those 3 signals. 

As Table 6-11 and Figure 6-17 are examined it is observed that the jitter values are 

greater for the messages with the period of 5 ms and 10 ms than the messages 
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whose period are 20 ms. This result is already anticipated according to the 

discussion done about the jitter behavior of the signals in section 6.3.1.1. 

6.3.1.4 Overall Discussion of the CAN Experiment Results 

For the preceding CAN experiments, the performance metrics namely, maximum 

end-to-end delay and jitter are compared against each other for only the CAN 

signals destined to FlexRay network. The reason for this is that the scheduling 

schemes that are used in the CAN experiments are created so that the delay values 

that those signals experience is decreased. In this context, the observations about the 

results obtained in the CAN experiments can be expressed as follows. It is readily 

seen from the results that the signals that pass the Gateway experience the biggest 

maximum end-to-end delay values in CAN Conventional Scheduling Experiment. 

This result is expected since the priorities are assigned in the Conventional 

Scheduling such that they increase with the decreasing deadlines of the messages. 

Therefore, no particular arrangement is done for the signals destined to the FlexRay 

network. On the other hand the maximum end-to-end delay values that the signals 

passing the Gateway experience are observed to be the smallest in the CAN 

Prioritized Scheduling Experiment since in this scheduling scheme, the CAN 

signals destined to FlexRay network are given higher priorities with respect to the 

signals which are sent within the CAN network only. For the CAN Scheduling with 

Fixed Priorities Experiment, the maximum end-to-end delay values that the signals, 

which cross the Gateway, experience fall in between the two experiments, 

expectedly. Also, in the CAN Scheduling with Fixed Priorities, the signals which 

are destined to the FlexRay network are given higher priorities. However, in this 

scheme, we can not assign the priorities to those signals as we wish. Because, some 

of the CAN IDs are assumed to be already existing and assigned to certain signals. 

Therefore, the signals that pass the Gateway are scheduled without using the CAN 

IDs which are already assigned. Although, due to the reasons explained above, the 

CAN Scheduling with Fixed Priorities scheme observes greater maximum end-to-
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end delay than CAN Prioritized Scheduling does, the former scheduling scheme is 

the most convenient for practical purposes among the three scheduling schemes. 

When we examine the jitter that the signals destined to FlexRay network 

experience, we observe that the values in the CAN Conventional Scheduling are 

greater than the other two scheduling schemes, while the experienced jitter in these 

scheduling schemes are almost equal to each other. 

These three scheduling schemes are also simulated in the [30] using the very same 

settings and the messages sets with those of the experiments. When the experiment 

results are compared against the simulation results, we observe that the experiment 

results, which are exhibited and discussed in the preceding chapters, agree with 

those of the simulation in the sense of maximum end-to-end delay and jitter. 

6.3.2 FlexRay Static Segment Experiments 

FlexRay network composes the one part of the bigger inter-connected network 

where the other part is the CAN network. As discussed in section 6.3.1, the delay 

and the jitter values experienced by the signals in solely FlexRay network directly 

affect the end-to-end delay and the jitter experienced by the signals in the inter-

connected network. Therefore, by studying the performance of the FlexRay network 

according to different scheduling schemes, we will have a strong grounding about 

the behavior of the overall network where both CAN and FlexRay networks and the 

Gateway exist. 

The experiments held in this chapter are FlexRay FID Allocation Without Jitter and 

FlexRay FID Allocation With Minimum FID. The network configurations are 

common to both experiments and shown in Table 6-13. 
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Table 6-13 Network Configurations for the FlexRay Static Slot Experiments 

Network Parameter Value 
 

FlexRay Cycle Length 5 ms 

Static Slot Length 31 µs 

Static Slot Number 64 

Dynamic Segment Length 0 

The discussions about these experiments are done in the following sections. 

6.3.2.1 FlexRay FID Allocation Without Jitter 

This experiment is held on pure FlexRay network which is composed of 3 distinct 

nodes, Fujitsu SK-91465X-100MPC. The aim of the experiment is to measure the 

end-to-end delay and the jitter that the FlexRay messages experience when the FIDs 

of the FlexRay messages are allocated so that the messages are delivered without 

any jitter. The message set used in the experiment are comprised of 41 messages 

which are used by an automotive company in real applications. The messages used 

in this experiment are given in Table 6-14. FID allocation, which is demonstrated in 

Table 6-15, for these signals is taken from [30] where the messages are scheduled 

so that they experience no jitter. In Table 6-15, the messages of node 1, 2 and 3 are 

characterized by a white, light gray and dark gray background, respectively. It can 

be observed from the table that each message is scheduled with the largest possible 

repetition that is a divisor of the message period. Hence, the smallest possible FID 

count without introducing jitter, which is the optimal solution, is achieved. The 

formal discussion for the scheduling scheme is given in [30]. 
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Note, also, that the signals that are used in this experiment are sent in the FID 

values with an offset of 16 slots with respect to the FID values mentioned in [30]. 

The reason for this is that all of the FlexRay messages are started to be generated in 

the beginning of the cycle. Since the process of the message generation, which 

includes the storing of the messages to the applicable FlexRay buffers, takes certain 

time, the FlexRay messages with low FID can not be sent for sure in the very cycle 

that they are generated. From the FID allocation in [30], it is seen that all of the 

messages are to be transmitted within the first 16 FlexRay slots. Although this may 

cause no difficulty for simulation purposes, it means that almost all of the messages 

are to be sent in the next cycle in the FlexRay bus, if they are generated in real 

hardware. Because of this reason the FID allocation for the FlexRay signals are 

shifted by 16 static slots so that each node is able to prepare all of its messages 

before their slot time has passed.  

Table 6-14 FlexRay Message Set 

Signal P1 P2 P3 P4 P5 P6 P7 P8 P9 
Period/ms 10 5 20 10 10 10 10 10 10 

Node 2 2 2 2 1 2 1 1 2 
 

Signal P10 P11 P12 P13 P14 P15 P16 P17 P18 
Period/ms 10 10 20 10 20 10 10 10 10 

Node 2 2 2 2 2 2 1 1 1 
 

Signal P19 P20 P21 P22 P23 P24 P25 P26 P27 
Period/ms 100 50 100 100 100 250 500 250 10 

Node 1 1 2 2 2 3 3 1 2 
 

Signal P28 P29 P30 P31 P32 P33 P34 P35 P36 
Period/ms 100 100 100 2000 2000 1000 1000 20 2000 

Node 1 1 1 1 1 1 1 3 1 
 

Signal P37 P38 P39 P40 P41     
Period/ms 2000 2000 2000 2000 100     

Node 1 2 2 3 1     



145 

 

Table 6-15 FlexRay FID Allocation Without Jitter 

Signal P1 P2 P3 P4 P5 P6 P7 
Period/ms 10 5 20 10 10 10 10 

FID 24 23 28 24 22 25 17 
Repetition/ms 10 5 20 10 10 10 10 

Offset 0 0 1 1 0 0 0 
 

Signal P8 P9 P10 P11 P12 P13 P14 
Period/ms 10 10 10 10 20 10 20 

FID 17 25 26 26 28 27 29 
Repetition/ms 10 10 10 10 20 10 20 

Offset 1 1 0 1 3 0 0 
 

Signal P15 P16 P17 P18 P19 P20 P21 
Period/ms 10 10 10 10 100 50 100 

FID 27 18 18 19 20 19 29 
Repetition/ms 10 10 10 10 20 10 20 

Offset 1 0 1 0 0 1 1 
 

Signal P22 P23 P24 P25 P26 P27 P28 
Period/ms 100 100 250 500 250 10 100 

FID 29 29 31 31 21 28 20 
Repetition/ms 20 20 10 20 10 10 20 

Offset 2 3 0 3 0 0 1 
 

Signal P29 P30 P31 P32 P33 P34 P35 
Period/ms 100 100 2000 2000 1000 1000 20 

FID 20 20 22 22 21 21 31 
Repetition/ms 20 20 80 80 40 40 20 

Offset 2 3 1 3 3 7 1 
 

Signal P36 P37 P38 P39 P40 P41  
Period/ms 2000 2000 2000 2000 2000 100  

FID 22 22 30 30 32 21  
Repetition/ms 80 80 80 80 80 20  

Offset 5 7 0 1 0 1  

According to the message set and the scheduling shown in Table 6-14 and Table 

6-15, respectively, at each node, the FlexRay signals are generated in the beginning 

of the FlexRay cycles as explained in section 5.2.1. The experiment is run for 2 

minutes and the network traffic is logged via FlexAlyzer so as to obtain the 
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performance of the FlexRay network with respect to the performance metrics, end-

to-end delay and the jitter. Below, the results obtained for the end-to-end delay and 

the jitter are given in Table 6-16. 

Table 6-16 FID Allocation Without Jitter: End-to-End Delay and Jitter 

Signal FID Delay (µs) Jitter (µs) Period (ms) Jitter (%) 
 

P1 24 634 1.21 10 0.01 
P2 23 633 0.65 5 0.01 
P3 28 5516 2.43 20 0.01 
P4 24 5607 1.21 10 0.01 
P5 22 458 1.21 10 0.01 
P6 25 611 1.21 10 0.01 
P7 17 440 1.21 10 0.01 
P8 17 5413 1.21 10 0.01 
P9 25 5585 1.21 10 0.01 
P10 26 589 1.21 10 0.01 
P11 26 5562 1.21 10 0.01 
P12 28 15490 2.43 20 0.01 
P13 27 567 1.21 10 0.01 
P14 29 494 2.43 20 0.01 
P15 27 5540 1.21 10 0.01 
P16 18 417 1.21 10 0.01 
P17 18 5391 1.21 10 0.01 
P18 19 395 1.21 10 0.01 
P19 20 370 12.14 100 0.01 
P20 19 5368 6.07 50 0.01 
P21 29 5466 12.14 100 0.01 
P22 29 10439 12.14 100 0.01 
P23 29 15412 12.14 100 0.01 
P24 31 911 30.34 250 0.01 
P25 31 15857 60.69 500 0.01 
P26 21 401 30.35 250 0.01 
P27 28 544 1.21 10 0.01 
P28 20 5343 12.14 100 0.01 
P29 20 10316 12.14 100 0.01 
P30 20 15290 12.14 100 0.01 
P31 22 5187 242.75 2000 0.01 
P32 22 15160 242.76 2000 0.01 
P33 21 15238 121.38 1000 0.01 
P34 21 35212 121.38 1000 0.01 
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     Table 6-16 (Continued) 

P35 31 5911 2.43 20 0.01 
P36 22 25134 242.75 2000 0.01 
P37 22 35107 242.75 2000 0.01 
P38 30 416 242.76 2000 0.01 
P39 30 5389 242.75 2000 0.01 
P40 32 859 242.76 2000 0.01 
P41 21 5294 12.14 100 0.01 

Also the figures in Figure 6-19 and Figure 6-20 illustrate the results obtained for the 

FID Allocation Without Jitter with respect to the increasing message IDs of the 

FlexRay messages. While in the figures, in x-axis, the FIDs of the signals which are 

used in the experiment are shown, in y-axis the values obtained in the experiment 

are exhibited. 
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Figure 6-19 End-to-End Delay vs Message ID: FID Allocation Without Jitter 
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Figure 6-20 Jitter vs Message ID: FID Allocation Without Jitter 

In order to check if the experiment results exhibited in Table 6-16, Figure 6-19 and 

Figure 6-20 are correct, we can compute the maximum end-to-end delay and the 

jitter values that the signals experience. Since the FlexRay signals are only 

exchanged in their dedicated time slots and repetition and offset values are known 

for the entire signal set, it is easy to figure out the delay and the jitter values that the 

signals experience without doing complex algebra. We can understand the amount 

of delay that the signals experience through an example more clearly for the signal 

set and the scheduling scheme given in Table 6-14 and Table 6-15. Consider the 

signal P12. This signal is generated with a period of 20 ms, i.e. 4 cycles, and the 

repetition and the offset values for the signal are 20 ms and 3 cycles, respectively. 

Since all of the signals in Table 6-15 are begun to be produced simultaneously from 

the 0th cycle, it is obvious that P12 is generated in the cycles that are multiples of 4, 

i.e. 0, 4, 8 and so on. On the other hand, the signal is scheduled to be exchanged 

through the network in the cycles which are equal to three in modulo 4, i.e. 3, 7, 11 

and so forth. Therefore, it is readily observed that P12 experiences a delay of 3 

cycles which is equal to 15 ms. When this computed value is compared with the 

maximum end-to-end delay that P12 experiences in the experiment and shown in 

Table 6-16, it is observed that the delay value obtained in the experiment, which is 
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15.49 ms, agrees with this computed value. The additional fraction value which 

exists in the experiment result is due to the generation time of P12 in the hardware 

which occurs earlier than its dedicated FlexRay slot with the amount of this 

additional fraction. To sum up, the computation of the end-to-end delay values can 

be generalized as follows. As the signals are scheduled with the repetition values 

which are a divisor of the signals' period, all of the signals are transmitted in one of 

their assigned slots except the offset values. Therefore, the signals experience a 

delay which is equal to their schedule offset multiplied by the cycle length in 

milisecond. When the Table 6-16 is examined anew, the maximum end-to-end 

delay values that the signals experience are observed to be equal to their offset 

values in milisecond. 

On the other hand, the jitter is defined, in short, as the deviation from the 

periodicity. It is computed above that all the signals are transmitted through the 

network in their time slots which appear later than the generation time with the 

amount which exactly equals to the offset count. Therefore, the transmit times of 

the signals are also strictly periodic. As a result, we conclude that in this scheduling 

scheme signals are to experience no jitter. This conclusion is verified with the 

experiment results demonstrated in Table 6-16 where the experienced jitter values 

are found to be 0.01% in percentage. These very small but non-zero jitter values 

might be experienced due to the instability of the clocks of the nodes which cause 

small fluctuations in the generation time of the signals. 

6.3.2.2 FlexRay FID Allocation With Minimum FID 

In this experiment the impact of the FID assignment, which will provide minimum 

number of static slot allocation, to the performance metrics is examined. All other 

configurations and arrangements including the FlexRay message set are same as the 

previous FlexRay static segment experiment. As its name implies the aim in this 

FID allocation scheme is to assign all of the messages to the minimum number of 

time slots by properly selecting the scheduling parameters. In this scheduling, as 
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opposed to the previous one, the rule of choosing the signal repetition values that 

are a divisor of the signal period is broken in favor of the minimum bandwidth 

usage. Consequently, by using this scheduling scheme, while some of the signals in 

Table 6-14 are allowed to experience jitter, the number of the allocated FIDs is 

decreased from 16 to 12 when compared to FlexRay FID Allocation Without Jitter. 

The details of the scheduling algorithm are discussed in [30]. 

The FID assignment used for these FlexRay messages, as it was the case in the 

previous experiment, are taken from [30] except that all the FID values are used 

with an offset of 16 slots. The reason for the offset of 16 time slots is discussed in 

the previous experiment. The FlexRay FID Allocation with Minimum FID is given 

in Table 6-17. Similar to the experiment, FID Allocation Without Jitter, the 

messages of node 1, 2 and 3 are also characterized by a white, light gray and dark 

gray background, respectively in this experiment. 
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Table 6-17 FlexRay FID Allocation With Minimum FID 

Signal P1 P2 P3 P4 P5 P6 P7 
Period/ms 10 5 20 10 10 10 10 

FID 22 21 26 23 17 22 17 
Repetition/ms 2 1 4 2 2 2 2 

Offset 0 0 1 0 0 1 1 
 

Signal P8 P9 P10 P11 P12 P13 P14 
Period/ms 10 10 10 10 20 10 20 

FID 18 23 24 24 26 25 27 
Repetition/ms 2 2 2 2 4 2 4 

Offset 0 1 0 1 3 0 0 
 

Signal P15 P16 P17 P18 P19 P20 P21 
Period/ms 10 10 10 10 100 50 100 

FID 25 18 19 19 20 20 27 
Repetition/ms 2 2 2 2 16 8 16 

Offset 1 1 0 1 1 0 1 
 

Signal P22 P23 P24 P25 P26 P27 P28 
Period/ms 100 100 250 500 250 10 100 

FID 27 17 28 28 20 26 20 
Repetition/ms 16 16 32 64 32 2 16 

Offset 2 3 1 2 6 0 2 
 

Signal P29 P30 P31 P32 P33 P34 P35 
Period/ms 100 100 2000 2000 1000 1000 20 

FID 20 20 20 20 20 20 28 
Repetition/ms 16 16 64 64 64 64 4 

Offset 3 4 10 11 7 9 0 
 

Signal P36 P37 P38 P39 P40 P41  
Period/ms 2000 2000 2000 2000 2000 100  

FID 20 20 27 27 28 20  
Repetition/ms 64 64 64 64 64 16  

Offset 12 13 5 7 3 5  

The experiment is run for about 120 seconds using the FlexRay FID Allocation 

With Minimum FID. The network traffic is logged via FlexAlyzer and the results 

obtained by parsing the log files are exhibited in Table 6-18. 
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Table 6-18 FID Allocation With Minimum FID: End-to-End Delay and Jitter 

Signal FID Delay (ms) Jitter (ms) Period (ms) Jitter (%) 
 

P1 22 0.45 0.001 10 0.012 
P2 21 0.45 0.001 5 0.013 
P3 26 5.33 0.002 20 0.012 
P4 23 0.43 0.001 10 0.012 
P5 17 0.32 0.001 10 0.012 
P6 22 5.42 0.001 10 0.012 
P7 17 5.29 0.001 10 0.012 
P8 18 0.29 0.001 10 0.012 
P9 23 5.40 0.001 10 0.012 
P10 24 0.40 0.001 10 0.012 
P11 24 5.38 0.001 10 0.012 
P12 26 15.30 0.002 20 0.012 
P13 25 0.38 0.001 10 0.012 
P14 27 0.31 0.002 20 0.012 
P15 25 5.35 0.001 10 0.012 
P16 18 5.27 0.001 10 0.012 
P17 19 0.27 0.001 10 0.012 
P18 19 5.24 0.001 10 0.012 
P19 20 65.22 30.010 100 30.010 
P20 20 30.25 15.001 50 30.002 
P21 27 65.28 30.010 100 30.010 
P22 27 70.25 30.010 100 30.010 
P23 17 75.23 30.010 100 30.010 
P24 28 155.69 78.751 250 31.500 
P25 28 310.63 157.501 500 31.500 
P26 20 150.08 78.755 250 31.502 
P27 26 0.36 0.001 10 0.012 
P28 20 70.19 30.010 100 30.010 
P29 20 75.17 30.010 100 30.010 
P30 20 60.14 30.010 100 30.010 
P31 20 289.95 121.315 2000 6.066 
P32 20 294.92 121.315 2000 6.066 
P33 20 315.01 70.758 1000 7.076 
P34 20 284.98 70.758 1000 7.076 
P35 28 0.69 0.002 20 0.012 
P36 20 299.90 121.315 2000 6.066 
P37 20 304.87 121.315 2000 6.066 
P38 27 265.20 121.315 2000 6.066 
P39 27 275.17 121.315 2000 6.066 
P40 28 255.61 121.315 2000 6.066 
P41 20 65.11 30.010 100 30.010 
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Also the figures in Figure 6-21 and Figure 6-22 illustrate the results obtained for the 

FID Allocation Without Minimum FID with respect to the increasing message IDs 

of the FlexRay messages. The x-axis of the figures indicates the FID assignment of 

the experiment, while in y-axis, the results obtained in the experiment are exhibited. 
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Figure 6-21 E2E Delay vs Message ID: FID Allocation With Minimum FID 
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Figure 6-22 Jitter vs Message ID: FID Allocation With Minimum FID 
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The results demonstrated in Table 6-18 can also be theoretically computed and the 

behaviours of the performance metrics can be better explained by means of 

examples. 

To begin with the worst case end-to-end delay, consider, the FlexRay signal P26. 

The period, repetition and the offset values of the signal, P26, are 250, 32 and 6, 

respectively, as shown in Table 6-17. This means that the signal is generated at 

every 250 ms and it is transmitted either in the cycle 6 or 38 as there exist 64 cycles 

totally. The generation time and the transmit time of P26 in terms of the FlexRay 

cycle number are illustrated in Figure 6-23 beginning from the 0th cycle. 

 

Figure 6-23 Illustration of End-to-End Delay of P26 

As seen from the figure while the cells with blue shading indicates the message 

generation time of the signal in terms of the cycle number, the green shaded cells 

show the transmit time of the messages. Moreover, numbers in the upper row of the 

figure indicate the number of the message and the lower row numbers show the 

number of the cycle where the generation or the transmit of the signal takes place. 

So, in Figure 6-23, for example, the second message is depicted to be generated in 

50th cycle. Since the repetition value of P26 is 32, this means that the message P26 

can not be transmitted at all cycles through the FlexRay bus but rather the transmit 

resolution of the signal is 32 cycles. It is already mentioned that the transmit cycles 

for P26 are either cycle number 6 or cycle number 38. As a consequence, the 
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second message, which is generated in 50th cycle can hardly be sent in 6th cycle in 

its time slot experiencing a delay of 100 ms. Similarly, when all the consecutive 

messages of P26 are examined this way, it is calculated that the maximum end-to-

end delay that the message P26 can experience with these settings, is 30 cycles 

which corresponds to 150 ms delay. This theoretical approach is also verified with 

this experiment such that the corresponding maximum end-to-end delay is found to 

be 150.08 ms in Table 6-18 for P26. It is possible to apply this example to all 41 

signals to determine the maximum delay values that each signal experiences and 

verify the experiment theoretically. 

The Figure 6-23 can also be used to explain the jitter behavior of the signals which 

are exchanged in this experiment. When we examine the jitter that P26 experiences, 

we find out that the delay between the receive times of the consecutive P26 signals 

are 320 ms, 160 ms, 320 ms, 320 ms, 160 ms and so forth. In fact, this scheme 

explains the reason for the jitter. In order not to experience jitter, the receive time of 

the consecutive P26 signals must, all, be 250 ms apart which means 50 cycles. This 

could be achieved if the repetition value of the signal was 50 or one of the divisors 

of 50. However, 32 is not the divisor of 50 and expectedly the signal P26 

experiences jitter. According to the above explanations the amount of jitter that P26 

experiences is found to be 76.7 ms theoretically. When this value is compared with 

the jitter value that P26 experiences in Table 6-18, it is observed that the jitter value 

obtained in the experiment is 78.76 ms and agrees with the value computed 

theoretically. In a similar manner with this example, all the jitter values that are 

obtained in the experiment are verified with those which are computed theoretically 

and the results obtained in the experiment are observed to be in agreement with the 

theoretically computed jitter values. 

6.3.3 FlexRay Dynamic Segment Experiments 

In this section, the impact of the length of the FlexRay dynamic segment to the end-

to-end performance of the interconnected FlexRay and CAN networks is studied. 
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The length of the dynamic segment directly affects the schedulability of the 

messages and the delay that the sporadic messages experience. As described in 

section 2.1.2.2, the dynamic segment is composed of minislots. All of the sporadic 

signals are granted an FID number at which they can be transmitted. If the sporadic 

signal is not ready to go at the time of its FID, only one minislot time passes, FID 

counter is increased by one and the other signal to which the next FID is assigned is 

checked to be sent. On the other hand, when the slot time comes for a particular 

signal that is ready to be sent, the content of the signal is transmitted. In this case, 

depending on the length of that particular signal, some number of minislots is 

consumed by the signal leaving less number of minislots for the remaining signals 

and again FID counter is only increased by one. As a result of this scheme, if the 

length of the dynamic segment is not big enough, a sporadic signal, to which a 

greater FID is assigned (low priority), may suffer for a long time before being 

transmitted or even may not be able to be sent at all. In order to avoid such 

situations the length of the dynamic segment should be chosen properly together 

with the FID assignments of the sporadic messages.  

Together with the length of the dynamic segment, the FID assignments for the 

sporadic signals are also important. In order to assign FID values to the signals, a 

worst-case delay analysis is done. For a signal, S, to experience a worst case delay, 

S should arrive right after its dedicated time slot. The delay component from this 

arrival time to the end of the cycle composes the one part of the total delay and is 

called as initial delay. Next, a linear integer programming (LIP) problem is 

formulated that tries to fill the dynamic segment of the following N FlexRay cycles 

with signals that have a smaller FID than S. If this is achieved, then the worst-case 

response time of S is larger than the sum of the initial delay and the time for the N 

FlexRay cycles. Moreover, the same analysis has to be carried out for (N+1) 

FlexRay cycles. On the other hand, if N FlexRay cycles can not be filled with the 

signals that have a smaller FID, the worst-case response time of S can be computed 

from the longest delay S experiences within N FlexRay Cycles. Using this 

algorithm, the schedulability analysis is done for a particular message set and FIDs 
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are assigned to each signal so that they experience a worst case delay that is smaller 

than their deadlines. When this algorithm is applied for the message set given in 

Table 6-20, starting from the dynamic segment length of 8 minislots, the algorithm 

determines that the message set is schedulable for the dynamic segment length of, at 

least, 19 minislots. The algorithm is discussed in more detail in [30]. 

We examine the effect of changing the length of the dynamic segment to the 

schedulability by conducting three dynamic segment experiments where the 

dynamic segment lengths are chosen to be 18 minislots, 19 minislots and 20 

minislots. We use the scheduling assignment as per [30] and the network 

parameters which are set for all of the 3 experiments are as follows. 

Table 6-19 Configuration Parameters for the Dynamic Segment Experiments 

Network Parameter Value 
 

FlexRay Cycle Length 4 ms 
Static Slot Length 31 µs 
Macrotick Length 1 µs 
Minislot Length 5 MT 
SymbolWindow 100 MT 

NIT 800 MT 
DynamicSlotIdlePhase 1 MS 

The details of the experiments and the discussions about the results are given in the 

following sections. 

6.3.3.1 Dynamic Segment with the Length of 18 Minislots 

The aim of this experiment is to determine whether the dynamic segment signals 

exchanged in the experiment are delivered within their deadlines when the dynamic 

segment length is 18 minislots. The signals in this experiment are also exchanged 

by three nodes as it is the case in the previous FlexRay experiments. In the 
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experiment, only the dynamic segment of the FlexRay cycle is used, i.e. no static 

segment message is exchanged. The message set used in this dynamic segment 

experiment is given in Table 6-20. 

Table 6-20 Message Set for the Dynamic Segment Experiments 

Signal D1 D2 D3 D4 D5 
Period (ms) 10 10 20 20 25 
Deadline (ms) 5 10 15 15 18 
Length (B) 18 12 8 12 4 
# of Minislot 8 7 6 7 5 

The period in the above table means the minimum inter-arrival time between the 

consecutive sporadic messages. The priority assignments for these messages, which 

are shown in Table 6-21, are done according to the scheduling algorithm which is 

introduced in section 6.3.3 and discussed in detail in [30]. 

Table 6-21 Priority Assignment 

Signal D1 D2 D3 D4 D5 
Priority 1 2 3 4 5 

The experiment is run for this message set and the corresponding priority 

assignment with the network configurations described in section 6.3.3 for about 2 

minutes. So as to increase the probability to create the worst case scenario, 

consecutive sporadic messages are generated within 3 ms after the minimum inter-

arrival time. The network traffic is analyzed via the FlexAlyzer to obtain the end-to-

end delay values that the sporadic messages experience in the network to check 

whether the message set is schedulable with the dynamic segment of 18 minislots as 

in the theoretical computation. In this experiment, no jitter value is calculated since, 

by definition, the performance metric jitter is only applicable to the periodic 



159 

 

messages. The results obtained for the worst case end-to-end delay is given in the 

Table 6-22 and Figure 6-24. In Figure 6-24, the dynamic segment priorities of the 

signals and the end-to-end delay values that those signals experience are depicted. 

Table 6-22 End-to-End Delay: Dynamic Segment with 18 Minislots 

Signal Priority Delay (ms) Deadline (ms) 
    

D1 1 4.034 5 
D2 2 4.067 10 
D3 3 8.022 15 
D4 4 8.059 15 
D5 5 19.804 18 
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Figure 6-24 End-to-End Delay vs Priority: Dynamic Segment with 18 Minislots 

In [30], the maximum time duration that a dynamic segment message has to wait 

before being delivered is calculated theoretically according to the message set, 

priority assignment and the minislot number. The results obtained in the experiment 

are compared with the theoretical maximum values in Table 6-23 and Figure 6-25. 
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The envelope line that is observed in Figure 6-25 represents the theoretical 

maximum values that the signals can ever experience in the network. 

Table 6-23 E2E Delay Comparison Against the Theoretical Maximum Values 

Message Priority Delay in Experiment (ms) Theoretical Max (ms) 
 

D1 1 4.034 4.04 
D2 2 4.067 4.07 
D3 3 8.022 8.035 
D4 4 8.059 8.065 
D5 5 19.804 (−) 
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Figure 6-25 Maximum End-to-End Delay and Theoretical Maximum 

When the Table 6-23 and Figure 6-25 are observed, it is found out that the dynamic 

signal with the lowest priority, D5, is delivered beyond its deadline as expected. 

Because when the algorithm, details of which are discussed in [30], is run for the 

dynamic segment of length 18 minislots, this experiment's message set is found to 
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non-schedulable. This theoretical expectation mentioned in [30] is verified via this 

dynamic segment experiment. 

6.3.3.2 Dynamic Segment with the Length of 19 Minislots 

In this experiment, the number of minislots composing the Dynamic Segment is 

increased from 18 to 19. Also, the priority assignment is changed and given in 

Table 6-24. Apart from these two changes, no other modification is made on the 

previous experiment. The aim of this experiment is to obtain the worst case end-to-

end delay values that the sporadic signals experience and decide whether the 

message set is schedulable with the dynamic segment of 19 minislots. After having 

run the experiment for 2 minutes, the obtained results are exhibited in Table 6-25 

and Figure 6-26 together with the theoretical the maximum time delay that a 

dynamic segment message experiences according to [30]. In Figure 6-26, the bars 

represent the end-to-end delay values of the corresponding signals and the envelope 

line shows the maximum delay limit that those signals can experience in the 

network. 

Table 6-24 Priority Assignment 

Signal D1 D2 D3 D4 D5 
Priority 1 2 4 3 5 

 

Table 6-25 End-to-End Delay: Dynamic Segment with 19 Minislots 

Signal Priority Delay (ms) Theoretical Max (ms) 
    

D1 1 4.034 4.04 
D2 2 4.067 4.07 
D3 4 8.053 8.065 
D4 3 8.034 8.035 
D5 5 15.943 16.025 
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Figure 6-26 End-to-End Delay and Theoretical Maximum 

In agreement with the computations of the algorithm in [30], the results exhibited in 

Table 6-25 and Figure 6-26 shows that the message set is schedulable for the 

dynamic segment of 19 minislots and all the messages can be delivered within a 

bounded time without violating their deadline requirements.  

6.3.3.3 Dynamic Segment with the Length of 20 Minislots 

This is the last dynamic segment experiment where the length is increased to 20 

minislots. The priority assignment for the experiment is the same as the experiment 

with 18 minislots and given in Table 6-26. All of the other configurations are done 

as described in section 6.3.3. The aim of this experiment, which is same as the 

previous experiments, is to obtain the worst case end-to-end delay values that the 

sporadic signals experience and check whether the message set is schedulable with 

the dynamic segment of 20 minislots. The experiment is run for about 120 seconds 

and the network is traffic is monitored and logged by FlexAlyzer. The results 

obtained after parsing the log file is shown below in Table 6-27 and Figure 6-27. 

Similar to the previous dynamic segment experiments, also in Figure 6-27, the 
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theoretical maximum end-to-end delay values that the sporadic signals can 

experience are shown with an envelope line.  

Table 6-26 Priority Assignment 

Signal D1 D2 D3 D4 D5 
Priority 1 2 3 4 5 

 

Table 6-27 End-to-End Delay and Theoretical Maximum 

Signal Priority Delay (ms) Theoretical Max (ms) 
    

D1 1 4.034 4.04 
D2 2 4.067 4.07 
D3 3 8.02 8.035 
D4 4 8.06 8.065 
D5 5 14.82 16.025 
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Figure 6-27 End-to-End Delay vs Theoretical Maximum 
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Therefore, the results shown in Table 6-27 and Figure 6-27 verify the algorithm 

computations made in [30] that the dynamic segment with the length of 20 minislots 

is schedulable for this message set and the configuration and that all the messages 

can be delivered within a bounded time. 

6.3.4 Gateway Experiments 

The experiments which are performed in this section can be grouped under two 

subsections. In the first group of experiments, the Gateway functionality is verified 

and tested. By means of the other group of experiments, the end-to-end performance 

analysis of the inter-connected FlexRay and CAN networks is performed for the 

performance metrics of delay and jitter, as well as the performance analysis of the 

Gateway node in terms of Gateway processing delay. The experiments discussed in 

this chapter are, namely, Gateway Protocol Conversion Functionality, Gateway 

Signal Mapping Functionality, Gateway Performance Measurements and The Effect 

of Polling. 

6.3.4.1 Gateway Functionality: Protocol Conversion 

The aim of this experiment is to verify that the designed Gateway performs its basic 

functionality, which is the protocol conversion, and operates according to the 

requirements that it is programmed to. What makes this experiment more valuable 

is that this verification is held on the real hardware of an automotive company. The 

utilized real components which exist in a real automobile are Instrument Panel 

Cluster (IPC) and Steering Angle Sensor (SAS). In the experiment all of the 

capabilities of the Gateway are tested. For this purpose, the FlexRay messages with 

different periods are exchanged through the Gateway. Besides, Gateway is 

scheduled to use its dynamic segment. On top of these, in this experiment, Gateway 

is tested to realize the protocol conversion while it is connected to two distinct CAN 

busses with different bit rates, namely, 50 kbps and 500 kbps. The network 
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topology and the experiment set-up are illustrated in Figure 6-28 and the 

photograph of the real experiment environment is show in Figure 6-29. 

 

Figure 6-28 Protocol Conversion Experiment Network Topology 
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Figure 6-29 Photograph of the Protocol Conversion Experiment  

The configuration parameters for the network and the message set together with 

signal mapping are given in Table 6-28 and Table 6-29, respectively.  

Table 6-28 Experiment Configuration Parameters 

Network Parameter Value 
 

FlexRay Cycle Length 5 ms 
Static Slot Length 31 µs 
Static Slot Number 64 

Minislot Length 5 µs 
Minislot Number 20 
B-CAN Data Rate 50 kbps 
C-CAN Data Rate 500 kbps 

 

SAS 

IPC 
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Table 6-29 Signal Mapping for the Experiment 

CAN Gateway FlexRay 

Sending 

Node 
CAN ID Direction 

Gateway 

Send FID 
Direction 

Receiving 

Node 

SAS 0x27ABDC  24  FlexCard 

IPC 

(Status) 
0x6336983  67  FlexCard 

 

CAN Gateway FlexRay 

Receiving 

Node 
Direction 

Gateway 

Send ID 
Direction FID 

Sending 

Node 

IPC 

(Speed 

Odometer) 

 0xABFD123  5 
FR Node 

1 

CAN 

Analyzer 
 0xA0CA246  7 

FR Node 

2 

The experiment is run with this configuration and the mapping on a real hardware 

as mentioned above. As a result, it is verified that the Gateway performs the 

protocol conversion task successfully and no problem occurs during the operation 

of the Gateway on the hardware of an automotive company. In Figure 6-30, a 

snapshot from the log file of the experiment exhibits how the Gateway handles the 

protocol conversion. 
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Figure 6-30 Log File of the Experiment 

Via the Figure 6-30, the Gateway is verified to perform the task of protocol 

conversion. Also from the Figure 6-30, it is observed that the Gateway can extract 

the CAN data partially and map it to the FlexRay message. Similarly, it can map the 

incoming FlexRay message to the specified part of the CAN signal. This capability 

of the Gateway will be examined in more details in the following chapter. 

6.3.4.2 Gateway Functionality: Signal Mapping 

Another important functionality of the Gateway is tested in this experiment. This 

functionality has two folds. The first one is the ability of the Gateway to segment 

any incoming message and forward them to the other side as separate signals. The 

other fold of the functionality is just the opposite. It is the ability of the Gateway to 
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combine several incoming signals so as to send them to the other network in a 

single message. In order to test this capability of the Gateway this experiment is 

established. According to the experiment, 3 CAN nodes send 10 CAN messages to 

the Gateway to be transferred to the FlexRay network. The Gateway combines two 

CAN signals into one FlexRay message and sends 10 CAN messages in 5 FlexRay 

signals through the FlexRay network. Besides, it segments the incoming FlexRay 

messages into several CAN signals and transmits each of segmented CAN signals 

separately. The Gateway capability to be tested in this experiment is illustrated in 

Figure 6-31. 

 

Figure 6-31 Signal Mapping Functionality 

The experiment is set up on seven distinct nodes. Out of seven nodes, three nodes 

are used as CAN nodes, another three nodes are FlexRay nodes and the remaining 

node is the Gateway node. Although numerous other signals are exchanged in CAN 

bus and in FlexRay network, we are only concerned about the messages on which 

the Gateway performs the signal mapping functionality. Those signals of concern 

and their mapping are given in Table 6-30. 
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Table 6-30 Experiment Signal Mapping Scheme 

Combination Segmentation 

CAN ID FlexRay ID FlexRay ID CAN ID 

31 1 

29 
33 23 

0 

21 19 

18 
34 

13 

11 

68 

8 

9 
33 

6 

5 
34 

4 

2 
67 

 

After the experiment has been run and the network traffic is monitored via 

FlexAlyzer, a log file is obtained showing the behaviour of the network. When the 

monitor screen of the FlexAlyzer, a snapshot of which is included in Figure 6-32, is 

observed, it is clearly seen that the Gateway fully satisfies the signal mapping 

functionality. 
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Figure 6-32 a) Segmentation b) Combination 

6.3.4.3 Gateway Performance: Real-Time Measurements 

We have verified, thus far, the basic functionality of the Gateway in the previous 

experiments, one of which is held on a real hardware. In this experiment, the 

performance of the designed Gateway will be examined with respect to the 

performance metrics, namely, worst case end-to-end delay and jitter. So as to have a 

complete picture together with the experiments held in sections 6.3.1, 6.3.2 and 

6.3.3, we have decided to set the Gateway experiment up on the message sets 

examined in the previous FlexRay and the CAN experiments. The messages are 

generated with the same configuration that they are used in sections 6.3.1.3 and 

6.3.2.1. That is to say, both CAN and FlexRay message sets are generated in 3 

distinct nodes and the mapping of the signals to the nodes are as it is in the 

corresponding chapters. The message sets for the CAN signals and the FlexRay 

signals are given in Table 6-2 and Table 6-14, respectively. Since there exists a 
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Gateway unit in this experiment set up, some of the signals from both CAN and the 

FlexRay message sets are chosen to be passed to the other network through the 

Gateway. 

Coming to the scheduling schemes, there exists more than one possibility for both 

CAN and FlexRay messages. For the CAN message set to be used in the Gateway 

performance experiment, the CAN Scheduling with Fixed Priorities is decided to be 

assigned. The reason for choosing this scheduling assignment is that it has more 

practical concern with respect to the other two priority assignment schemes 

discussed under section 6.3.1. On the other hand, the FID allocation without jitter 

scheme is chosen for the FlexRay message set since we want to decrease the overall 

jitter value that the messages experience. Moreover, economizing the bandwidth for 

such a case where only several tens of signals are exchanged, has no practical value. 

The priority assignment for the CAN messages which travel only in CAN bus, FID 

allocation for the FlexRay messages that are exchanged only in FlexRay network 

and the priority assignment of both CAN and FlexRay messages that cross the 

Gateway are given in Table 6-31, Table 6-32 and Table 6-33, respectively. The 

CAN and the FlexRay signals, which cross the Gateway, are highlighted in Table 

6-31 and Table 6-32 so as to provide a better understanding. One thing to be noted 

about the Table 6-32 and Table 6-33 is that the FID allocations for the P5, P7, P10 

and P16 are different in Table 6-33 than the original FID assignment located in 

Table 6-32. The reason for this is that these FlexRay messages share the same time 

slot with other FlexRay signals. For instance, the FlexRay signals P7 and P8 are 

both to be sent in the 17th static slot. If the Gateway was also to transmit in the same 

time slots, the two distinct nodes would happen to share the same time slot which 

violates the FlexRay protocol. Therefore, the FID assignment for the signals P5, P7, 

P10 and P16 are defined as in Table 6-33. However for P2, the FID allocation is not 

changed. This is because; Gateway is not the sender node for P2 but only the 

receiver node. 
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On the other hand, in order to make the performance analysis of a complete 

Gateway, which handles and routes all kinds of signals, the dynamic segment 

messages are also mixed in the CAN and the FlexRay signals. The message set and 

the priority assignment for the sporadic messages are same as those of the dynamic 

segment experiment with 20 minislots in section 6.3.3.3. There are only two 

differences from the configuration of section 6.3.3.3. The first one is that in this 

experiment, all of the sporadic messages are generated by only one FlexRay node 

and the Gateway node. The second difference is done by applying a minor change 

to the priority assignment scheme. Two out of the total 5 dynamic segment signals 

are chosen to be passed through the Gateway and shown in Table 6-33. For the sake 

of completeness the priority assignment of the sporadic messages are given in Table 

6-35, shading in color the signals that cross the Gateway.  

Table 6-31 CAN Scheduling with Fixed Priorities 

Signal C1 C2 C3 C4 C5 C6 C7 C8 C9 
Priority 7 3 10 12 17 28 30 20 1 
 

Signal C10 C11 C12 C13 C14 C15 C16 C17 C18
Priority 0 58 22 14 31 29 21 19 18 
 

Signal C19 C20 C21 C22 C23 C24 C25 C26  
Priority 13 11 9 8 6 5 4 2  
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Table 6-32 FID Allocation Without Jitter 

Signal P1 P2 P3 P4 P5 P6 P7 
Period/ms 10 5 20 10 10 10 10 

FID 24 23 28 24 22 25 17 
Repetition/ms 10 5 20 10 10 10 10 

Offset 0 0 1 1 0 0 0 
 

Signal P8 P9 P10 P11 P12 P13 P14 
Period/ms 10 10 10 10 20 10 20 

FID 17 25 26 26 28 27 29 
Repetition/ms 10 10 10 10 20 10 20 

Offset 1 1 0 1 3 0 0 
 

Signal P15 P16 P17 P18 P19 P20 P21 
Period/ms 10 10 10 10 100 50 100 

FID 27 18 18 19 20 19 29 
Repetition/ms 10 10 10 10 20 10 20 

Offset 1 0 1 0 0 1 1 
 

Signal P22 P23 P24 P25 P26 P27 P28 
Period/ms 100 100 250 500 250 10 100 

FID 29 29 31 31 21 28 20 
Repetition/ms 20 20 10 20 10 10 20 

Offset 2 3 0 3 0 0 1 
 

Signal P29 P30 P31 P32 P33 P34 P35 
Period/ms 100 100 2000 2000 1000 1000 20 

FID 20 20 22 22 21 21 31 
Repetition/ms 20 20 80 80 40 40 20 

Offset 2 3 1 3 3 7 1 
 

Signal P36 P37 P38 P39 P40 P41  
Period/ms 2000 2000 2000 2000 2000 100  

FID 22 22 30 30 32 21  
Repetition/ms 80 80 80 80 80 20  

Offset 5 7 0 1 0 1  
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Table 6-33 CAN and FlexRay Messages that Cross the Gateway 

CAN2FR FR2CAN 

CAN FlexRay FlexRay CAN 

C14 31 1 C9 

C15 29 
33 P5 P2 23 

0 C10 

C16 21 19 C17 

C18 18 
34 P7 

13 C19 

C20 11 

D3 68 

8 C22 

C21 9 
33 P10 

C23 6 

C24 5 
34 P16 

C25 4 

C26 2 
67 D4 

 

The signal names shown in Table 6-33 are renamed in Gateway perspective so that 

the results are exhibited without causing any confusion. 
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Table 6-34 Signal Names in Gateway 

Name in CAN Name in Gateway 
 

C9 S1 
C10 S2 
C17 S3 
C19 S4 
C22 S5 
C14 S6 
C15 S7 
C16 S8 
C18 S9 
C20 S10 
C21 S11 
C23 S12 
C24 S13 
C25 S14 
C26 S15 

 

Table 6-35 Dynamic Segment Messages 

Signal D1 D2 D3 D4 D5 
Priority 65 66 68 67 69 

The Gateway experiment set-up is composed of 7 distinct SK-91465X-100MPC 

Fujitsu nodes. Out of these 7 nodes, three of them are used as CAN nodes, the other 

three are used as FlexRay nodes and the remaining node is the Gateway node. The 

experimentation parameters for the Gateway Performance Analysis experiment can 

be summarized in Table 6-36. 
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Table 6-36 Gateway Experiment Parameters 

Network Parameter Value 
 

FlexRay Cycle Length 5 ms 
Static Slot Length 31 µs 
Static Slot Number 64 

Minislot Length 5 µs 
Minislot Number 20 
CAN Data Rate 500 kbps 

So as to calculate the end-to-end delay and the jitter that the signals, which cross the 

Gateway, experience, during the travel of the signals, 4 time stamps are obtained at 

four different points of the network. Besides the end-to-end delay values, the delay 

components that the signals experience only in CAN network, only in FlexRay 

network and only in the Gateway are also calculated via these time stamps. The 

details about how to obtain those time stamps, how to calculate the delay values and 

the possible errors in calculations are discussed in sections 6.2.2 and 6.2.3. After 

having run the Gateway experiment for 2 minutes, the log file obtained by the 

FlexAlyzer software is analyzed and the results shown in Table 6-37, Figure 6-33 

and Figure 6-35 are obtained. In these table and figures, the delay and the jitter 

values that only 15 signals, which cross the Gateway, experience are exhibited. 
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Table 6-37 Experiment Results for the Signals Passing the Gateway 

Signal S CAN Delay 
(ms) 

GW Delay 
(ms) 

FR Delay 
(ms) 

E2E Delay 
(ms) Jitter (ms) 

 

S1 0.840 1.912 0.607 3.325 0.11693 
S2 0.576 1.889 0.607 3.042 0.11516 
S3 2.710 0.716 9.985 11.956 NA 
S4 1.866 0.694 9.985 11.678 NA 
S5 1.029 0.672 9.985 11.398 NA 
S6 8.228 0.050 4.037 10.808 0.00499 
S7 7.104 0.050 4.580 10.789 0.00499 
S8 6.333 0.050 6.063 10.912 0.00499 
S9 4.851 0.050 6.637 10.890 0.00499 
S10 3.662 0.050 3.314 5.837 0.01272 
S11 2.235 0.050 3.886 5.771 0.01272 
S12 1.563 0.050 4.487 5.784 0.00499 
S13 1.473 0.050 5.623 5.978 0.00499 
S14 1.163 0.050 6.034 6.936 0.06371 
S15 0.475 0.050 6.318 6.827 0.06188 

In Figure 6-33, all of the delay components that the signals experience are shown 

together in one figure. These delay components are, end-to-end delay, CAN delay, 

FlexRay delay and the Gateway processing delay. 
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Figure 6-33 Delay Decomposition of the Gateway Experiment 

In order to better visualize the weight of the Gateway processing delay, the Figure 

6-34 which shows the delay components of the signals in percentage is also 

included below. The delay components shown in Figure 6-33 except the end-to-end 

delay are represented in Figure 6-34 

 

Figure 6-34 such that the individual weight of the delay components to the total 

delay are exhibited and their summation makes 100%. 
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Figure 6-34 Delay Decomposition of the Gateway Experiment in Percentage 

 

 

Figure 6-35 Jitter Values in Gateway Experiment 

FR-to-CAN 

POLLING EFFECTIVE 

FR-to-CAN 

ONLY GATEWAY PROCESSING 

DELAY : 50 µs
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Let us, first of all, analyze the delay behavior of the Gateway by means of the 

results exhibited in Table 6-37, Figure 6-33 and Figure 6-35. When the CAN delay 

that the signals experience is observed in Table 6-37 and compared against the 

delay values obtained in the CAN experiment with the same CAN scheduling 

scheme which is shown in Table 6-11, it is found out that, more or less, the all 

results except several agree with each other. This situation might arise from the fact 

that though, in both experiments, the same scheduling is applied, by the inclusion of 

the Gateway node, the signals are distributed among four nodes instead of three in 

the Gateway experiment. Moreover, since the Gateway node generates the CAN 

signals whenever it receives the corresponding FlexRay packet, the message 

generation pattern also differs from that of the CAN experiment. Therefore, due to 

these two factors, the deviations in the CAN Delay values in both experiments with 

respect to each other can be considered to be acceptable. 

Coming to the FlexRay delay analysis of the Gateway, the FlexRay FID allocation 

in both dynamic segment and the static segment are changed with respect to the 

previous FlexRay experiments except the message P2 in Table 6-16. Therefore, no 

comparison can be done for the FlexRay delay values against any previous 

experiments except the delay that the signal P2 experiences. The FlexRay delay that 

P2 experiences in the FlexRay and the Gateway experiment are observed to be in 

agreement with each other. 

When the Table 6-37 is examined to observe the time duration that the signals 

experience in the Gateway, it is found out that while the signals travel in the CAN-

to-FR direction experience very little amount of time, the signals that cross the 

Gateway in the FR-to-CAN direction experience a considerable amount of time. 

The situation can be visualized in Figure 6-34 better. From the figure, it is seen that 

the Gateway delay has almost no contribution to the end-to-end delay for the signals 

passing the Gateway in CAN-to-FlexRay direction. The time duration that the 

signals stay in the Gateway in this direction is about 50 µs. Therefore, the Gateway 

performance in this direction is perfectly good. However, in the reverse direction, 
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the Gateway delay is observed to be fairly high. The reason behind it lies in the 

polling mechanism which is used to receive the FlexRay packets. In the Gateway, 

the FlexRay messages are received through polling the incoming message buffers in 

every 5 ms as opposed to CAN receive mechanism. The Gateway is informed of the 

arrival of a CAN message through the interrupts issued by the CAN Controller. 

Thus, although a FlexRay message is received and put into the receive buffers of 

the Gateway, the CPU does not extract the buffer content before the polling time 

comes. This forms the biggest part of the time that the signals pass in the Gateway. 

The amount of the time delay caused by the polling mechanism can be discussed 

quantitatively in the following manner. In Table 6-33, it is seen that the Gateway 

receives only two FlexRay signals, one in 23rd and the other in 68th time slots. The 

polling time of the incoming buffers is chosen to be in the very middle of the whole 

cycle in order to decrease the time that the messages waste in the FlexRay receive 

buffers. For this purpose, the very same mechanism which is used to generate the 

messages in the very beginning of the FlexRay cycle and explained in details in 

section 5.2.1 is used to provide the time ticks as the polling time in the middle of 

the cycle, i.e at 2500th macrotick. Therefore we can assume that the CPU reads the 

FlexRay buffer content in 2500th macrotick. However, the messages from the 23rd 

and the 68th time slots are found to be received in macrotick 709 and 2070, 

respectively by using the following formula. 

MTinOffsetAction
MTinLengthSSFIDFIDMacrotickRXFlexRay

___
___)1()(__ +×−=

 (6-9) 

where SS_Length_in_MT and Action_Offset_in_MT are the matrotick 

correspondences of the network parameters the the Static Slot Length and the 

Action Offset Length, respectively and the FID is the slot number of the received 

FlexRay message. 

As a result, the messages received from 23rd and the 68th time slots are read by the 

CPU 1800 µs and 430 µs later than the time they are actually stored in the received 

buffers. So, without the polling mechanism, the Gateway processing delay is found 
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to be approximately 100 µs and 250 µs for the messages received from 23rd and the 

68th time slots referring the Table 6-37. This result is in the order of the delay that 

the messages experience in the CAN-to-FlexRay direction. 

The Gateway delay in the FlexRay-to-CAN direction can be decreased in two ways. 

The first solution is to use the interrupt mechanism also in receiving the FlexRay 

messages instead of polling. However this solution is not feasible due to two 

reasons. First of all, the FlexRay messages are received via a dedicated FlexRay 

Communication Controller. As mentioned previously, the application running on 

the CPU controls the Communication Controller by means of the Fujitsu FlexRay 

Software Driver. Therefore, so as to receive the FlexRay messages through interrupt 

mechanism, the Communication Controller must be checked if it supports interrupt 

processing. Even the Communication Controller supports the interrupt processing, it 

will take more time in the CPU to process the interrupts which are fed outside. 

Secondly, assume that, somehow, interrupt mechanism could be used to receive the 

FlexRay messages and the number of the messages exchanged are much greater. In 

such a situation, significant number of the available slots would be allocated. Due to 

the TDMA structure of the FlexRay protocol, once the messages begin to be 

received, CPU will be occupied, for a long while, by the interrupts issued 

consecutively. This would prevent the CPU from handling the other tasks that it 

should perform including the CAN receive interrupt processing. Moreover, the time 

available for the interrupt processing of the received FlexRay signals is only 31 µs 

which is the length of the static slot. In such a situation, the received messages 

would still be made wait in the buffers for the processing of the preceding interrupts 

and this would also cause significant amount of delays. Therefore, because of the 

reasons discussed above, the polling mechanism is considered to be more feasible 

with respect to the interrupt processing. 

The other solution to decrease the Gateway delay in the FlexRay-to-CAN direction 

is to utilize the polling mechanism more than once throughout the cycle. This 

solution is tried in section 6.3.4.4 as a separate experiment. Referring the details to 
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section 6.3.4.4, we can say that by increasing the polling frequency twice, it is 

observed that the Gateway processing delay is decreased by certain amount. 

To sum up the discussion about the delay that the signals experience in the 

Gateway, we can say that the Gateway processing delay is bounded to 50 µs and the 

delay in the FlexRay-to-CAN direction is sourced from the polling mechanism as 

discussed above. The histograms of the delay that the signals experience in the 

Gateway in both directions are given in Figure 6-36 and Figure 6-37, respectively. 

 

Figure 6-36 Delay Histogram in FlexRay-to-CAN Direction 

 

Figure 6-37 Delay Histogram in CAN-to-FlexRay Direction 
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When we examine Figure 6-36 and Figure 6-37, we observe that the variance of the 

Gateway delay is fairly small. This means that the Gateway contribution to the end-

to-end jitter is low. On the other hand, if the Table 6-37 is examined for the purpose 

of observing the jitter behavior of the network, it is seen that the jitter that the 

signals experience is considerably small such that they can be assumed to be zero. 

Although the CAN signals experience fairly big jitter values in percentage as seen 

in section 6.3.1.3, it can be said that because of the TDMA nature of the protocol, 

FlexRay regulates the signal flow such that the end-to-end jitter values appear to be 

fairly small. Therefore, the success of the network in jitter performance should 

mostly be attributed to the FlexRay network while considering the low-jitter 

behavior of the Gateway processing delay. 

Finally, the results of the experiment are compared against the theoretical maximum 

values which are computed in [30] for both of the networks and demonstrated in 

Table 6-38. 

Table 6-38 Comparative Results for the Experiment and Theoretical Maximum 

Signal CAN Delay (ms) 
(Exp/Max) 

FlexRay Delay (ms) 
(Exp/Max) 

E2E Delay (ms) 
(Exp/Max) 

 

S1 0.84 0.96 0.607 5 3.325 6.46 
S2 0.576 0.64 0.607 5 3.042 6.14 
S3 2.71 5.04 9.985 10 11.956 14.04 
S4 1.866 4.16 9.985 10 11.678 13.52 
S5 1.029 2.68 9.985 10 11.398 12.68 
S6 8.228 7.82 4.037 10 10.808 17.22 
S7 7.104 7.24 4.58 10 10.789 17.24 
S8 6.333 6.28 6.063 10 10.912 16.28 
S9 4.851 5.12 6.637 10 10.89 15.12 
S10 3.662 3.52 3.314 10 5.837 13.52 
S11 2.235 3 3.886 10 5.771 13 
S12 1.563 2.04 4.487 10 5.784 12.04 
S13 1.473 1.84 5.623 10 5.978 11.84 
S14 1.163 1.68 6.034 10 6.936 11.68 
S15 0.475 1.16 6.318 10 6.827 11.16 
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As seen from Table 6-38, the experiment results lie within the theoretical limits. 

6.3.4.4 Gateway Performance: Effect of Polling 

In this experiment, the solution that is proposed in section 6.3.4.3 to decrease the 

time duration that the signals stay in the Gateway is performed. The suggested 

solution is to utilize the polling mechanism more than once throughout the cycle. 

For this purpose two experiments are set up. While one of the experiments is 

utilizing the polling mechanism once in a cycle, in the other experiment, which is of 

the very same configuration with the first one, the incoming buffers are polled once 

in every 2.5 ms. The goal in performing these experiments is to compare the 

experiments against each other and visualize the effect of polling to the Gateway 

processing delay. The message set used in this experiment is same as that of the 

CAN Conventional Scheduling Experiment which is shown in Table 6-2. The 

priority assignment for the CAN signals are also the same and shown in Table 6-39. 

Table 6-39 CAN Priority Assignment for the Experiment 

Signal C1 C2 C3 C4 C5 C6 C7 C8 C9 
Priority 1 0 4 3 2 5 6 12 11 
 

Signal C10 C11 C12 C13 C14 C15 C16 C17 C18 
Priority 10 9 8 7 25 24 23 22 21 
 

Signal C19 C20 C21 C22 C23 C24 C25 C26  
Priority 20 19 18 17 16 15 14 13  

In this experiment, 3 CAN nodes and the Gateway node exchange the CAN 

messages that are shown in Table 6-39. The signals named C9, C10 and the signals 

from C14 to C26 are generated by the Gateway. These messages are sent to the 

Gateway through the FlexRay network from a single FlexRay node. Gateway does 

not forward any received CAN messages to the FlexRay network. Therefore, the 
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Gateway operates only in one direction namely, FlexRay-to-CAN. The mapping of 

the signals to the nodes is shown in Table 6-40. 

Table 6-40 Signal Distribution With Respect to the Nodes 

NODES 

CAN1 CAN2 CAN3 Gateway FlexRay 

S P S P S P S P S P 

C1 1 C2 0 C3 4 C9 11 FR1 7 

C4 3 C5 2 C6 5 C10 10 FR2 8 

C7 6 C8 12 C11 9 C14 25 FR3 16 

C12 8 C13 7   C15 24 FR4 17 

C16 23 FR5 19 

C17 22 FR6 20 

C18 21 FR7 26 

C19 20 FR8 28 

C20 19 FR9 31 

C21 18 FR10 33 

C22 17 FR11 36 

C23 16 FR12 37 

C24 15 FR13 41 

C25 14 FR14 47 

 

C26 13 FR15 48 
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The other configurations that are used in the experiments are summarized in Table 

6-41. Two distinct experiments are run with these parameters for about 120 

seconds. The only difference between the experiments is in the polling mechanism 

such that, while in one of the experiments the message buffers are polled once in a 

cycle, in the second experiment the polling frequency is increased two times so as 

to see the effect of the polling in the delay that the signals experience in the 

Gateway. The comparative results for the end-to-end delay that the signals passing 

the Gateway experience is given in Table 6-42 and Figure 6-38. 

Table 6-41 Experiment Parameters 

Network Parameter Value 
 

FlexRay Cycle Length 5 ms 
Static Slot Length 31 µs 
Static Slot Number 64 

Dynamic Segment Length 0 
CAN Data Rate 500 kbps 

 

Table 6-42 E2E Delay for Polling: @ 5ms and @ 2.5 ms 

Signal Delay @ 5 ms  
Polling (ms) 

Delay @ 2.5 ms 
Polling (ms) 

Delta in  
Delay (ms) 

 

C9 6.784 4.217 2.567 
C10 6.602 4.189 2.413 
C14 5.703 3.27 2.433 
C15 5.819 3.328 2.491 
C16 5.821 3.275 2.546 
C17 5.822 3.354 2.468 
C18 5.999 3.526 2.473 
C19 6.089 3.584 2.505 
C20 6.151 3.557 2.594 
C21 6.29 3.61 2.68 
C22 6.3 3.787 2.513 
C23 6.38 3.841 2.539 
C24 6.39 3.811 2.579 
C25 6.4 3.871 2.529 
C26 6.445 4.043 2.402 
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Figure 6-38 Effect of Polling: @ 5ms and @ 2.5 ms 

The results exhibited in Table 6-42 and Figure 6-38 were already expected. Because 

in the experiment where the incoming FlexRay buffers are polled once in a cycle, 

polling is done in the very beginning of the cycle. At the time of polling, buffers are 

observed to be empty since no data could be generated from the FlexRay node. 

Therefore, for this case, all the time when the buffers are polled, the data extracted 

from the buffers belong to the FlexRay messages which are generated in the 

previous cycle. As a result of this scheme, the FlexRay messages are received in the 

Gateway with an approximate delay of 5 ms when the polling is performed with a 

period of 5 ms. On the other hand, in the experiment where the polling is performed 

once in every 2.5 ms, the incoming buffers are polled once in the beginning of the 

cycle and for a second time, in the very middle. So, although the first polling sees 

the buffers empty, during the second polling the message data are extracted from 

the incoming buffers. Consequently, the messages in the Gateway which applies the 

polling with a period of 2.5 ms experience a delay about 2.5 ms. To sum up, this 

experiment verifies the suggestion proposed in section 6.3.4.3 that increasing the 

polling frequency in the Gateway improves the Gateway processing delay. 
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CHAPTER 7  

 

CONCLUSION 

In this thesis study, the performance of FlexRay-CAN networks inter-connected by 

a Gateway unit for in-vehicle communication is experimentally evaluated and the 

obtained results are exhibited with detailed discussions. Apart from the verification 

of the Gateway functionality, in particular, we focus on the flexibility of the 

Gateway implementation regarding the mapping of signals to messages and the 

worst-case response times encountered by signals that pass the Gateway including a 

Gateway processing delay. The end-to-end delay and the jitter that the signals 

experience, particularly, in FlexRay network, CAN network and the Gateway unit 

are examined by experiments with variety of different scheduling schemes each of 

which exhibits distinct characteristics in terms of performance metrics and practical 

applicability. All of these experiments are realized in real time hardware 

environment with realistic message sets depending on the message set provided by 

an automotive company. 

We first focused on the behavior of the individual CAN and FlexRay networks so as 

to show the impact of scheduling of these networks to the overall performance in 

the sense of end-to-end delay and jitter. Therefore, CAN and FlexRay networks are 

elaborated respectively for different scheduling schemes with realistic message sets 

in order to exhibit the delay and the jitter performance. 

The characteristics of CAN network is evaluated via three experiments, namely 

CAN Conventional Scheduling Experiment, CAN Prioritized Scheduling 
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Experiment and CAN Scheduling with Fixed Priorities Experiment. We show that 

the messages that pass the Gateway experience the biggest delay values in CAN 

Conventional Scheduling Experiment as expected since no special arrangement is 

made in this experiment to improve the performance of the signals crossing the 

Gateway. While the signals passing the Gateway experience the smallest delay in 

CAN Prioritized Scheduling Experiment, the performance of CAN Scheduling with 

Fixed Priorities Experiment falls between the two experiments in terms of 

experienced delay. The reason for this is that in CAN Prioritized Scheduling the 

signals crossing the Gateway are granted higher priorities (lower IDs), i.e. they are 

prioritized, with respect to the remaining CAN messages. On the other hand in the 

CAN Scheduling with Fixed Priorities Experiment, the signals that pass the 

Gateway are given higher priorities while some of the CAN signals are assumed to 

have fixed priorities. Because of this reason, the delay performance of the CAN 

Scheduling with Fixed Priorities is a little worse than that of the CAN Prioritized 

Scheduling. When the performances of the scheduling schemes are examined in the 

sense of experienced jitter, in spite of fluctuations, generally the jitter values that 

the signals passing the Gateway are greater in the CAN Conventional Scheduling 

than the other two scheduling schemes while the jitter in these two scheduling 

schemes are moreorless the same. 

Then, we study the impact of scheduling in FlexRay network. The experiments held 

in FlexRay network are decomposed into two experiment sets since the FlexRay 

arbitration structure is composed of two distinct schemes, namely Static Segment 

and Dynamic Segment. In Static Segment experiments we evaluate the Static 

Segment performance in terms of delay and jitter with two scheduling schemes 

where the message set used is derived from the signals in a real vehicle. We apply 

the scheduling algorithms named FID Scheduling Without Jitter and FID 

Scheduling with Minimum FID. As its name implies, in FID Scheduling Without 

Jitter Experiment, the exchanged signals experience, fairly, no jitter. On the other 

hand, the signals that are exchanged in the FID Scheduling with Minimum FID 

experiment, experience jitter. However, in this experiment, the signals are achieved 
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to be allocated in a number of FID which is much less than the FID number used in 

FID Scheduling Without Jitter Experiment. Therefore the bandwidth is utilized 

more efficiently in the FID Scheduling with Minimum FID experiment. 

In Dynamic Segment experiment, we examine the schedulability of the dynamic 

segment with respect to the length of it in minislots by measuring the delay that the 

signals experience. We perform 3 experiments to see if the dynamic segment is 

schedulable with the minislot counts of 18, 19 and 20, respectively. We show that 

the message set used is not schedulable when the minislot number of the dynamic 

segment is 18 since the worst case delay that one of the messages experiences is 

greater than its deadline. On the other hand, when the experiments are held with the 

dynamic segment of 19 and 20 minislots respectively, it is observed that all of the 

messages are sent within their deadlines which signifies that the messages sets that 

are used in these experiments are schedulable. 

Finally we conduct the experiments where the Gateway unit is also included. Out of 

four Gateway experiments, we examine the Gateway performance quantitatively in 

two experiments while the other two experiments are held qualitatively as the proof 

of concept of different functionalities of the Gateway. First of all, we verify the 

main functionality of the Gateway which is the protocol conversion between both 

networks. Second, we demonstrate the signal mapping capability of the Gateway 

which is the processing of the messages in signal level including the functionalities 

of message fragmentation and signal assembly. Next, we perform the first 

quantitative experiment where FlexRay-CAN networks are inter-connected via the 

Gateway unit. In this experiment, we show the end-to-end worst-case response time 

of the signals in the overall network with a large message set that is derived from 

the signals in a real vehicle as well as the Gateway processing delay. The worst-

case end-to-end delay values are found to be within the signal deadlines and smaller 

than the theoretical maximum values. Also we show that the processing delay of the 

Gateway is 50 µs at maximum. The previous work on FlexRay-CAN gateway 

design mostly focus on the minimizing of the processing delay. However, we 
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observe that although processing delay can have impact on the end-to-end delay 

values, the scheduling of the messages on both networks has the most significant 

effect. 

Finally, we conduct an experiment to examine the time duration that the signals stay 

in the Gateway with respect to two different polling frequencies. We demonstrate 

that when the Gateway polling period is decreased from 5 ms to 2.5 ms, the 

duration that the signals stay in the Gateway decreases about 2.5 ms. 

In this thesis, we provide the groundwork for the anticipated in-vehicle network 

architecture in the near future. That is to say, we develop a verified Gateway unit 

and the experimental performance analysis of possible scheduling approaches for 

interconnected FlexRay and CAN networks. The next stage in our research aims at 

developing selected x-by-wire applications such as automatic parking, steer-by-wire 

and break-by-wire. For this purpose, first the required FlexRay ECU’s, their 

respective signals and messages and the appropriate scheduling approach will be 

determined. Then the signal exchange between the FlexRay ECUs and CAN ECUs 

for the envisaged application will be carried out via our Gateway unit. 
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APPENDIX A 

GATEWAY EXPERIMENT SOURCE CODE: 
FLEXRAY.PRJ/MAIN.C 

/*------------------------------------------------------ 

MAIN.C 

------------------------------------------------------*/ 

 

/********************@INCLUDE_START********************* 

#if (EMULATOR == 0) 

#include "mb91465x.h" 

#else 

#include "mb91465x_emulator.h" 

#endif 

#include "global.h" 

#include <ffrd_api_global.h> 

#include <ffrd_fhal_read.h> 

#include <ffrd_api_status_service.h> 

#include "ffrd_api_time_service.h" 

#include "ReloadTimer.h" 

#include "data.h" 
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#include "TTASK.h" 

#include "uart.h" 

#include "print_status.h" 

/***********************@INCLUDE_END*******************/ 

 

#define TASK_OFFSET     100 

#define TASK_OFFSET_MIN  50 

#define TASK_OFFSET_MAX 150 

 

/******************@GLOBAL_VARIABLES_START*************/ 

FFRD_UINT8 nOSSyncStatus; 

uint32_t nRCWD = 0; 

uint16_t counter=0; 

uint16_t r_number = 0; 

FFRD_UINT16 nTime = 0; 

FFRD_UINT16 nTime2 = 0; 

FFRD_UINT16 cycle_no; 

uint8_t start = 0; 

static volatile FFRD_RETURN_TYPE statusSx1; 

static volatile FFRD_RETURN_TYPE statusSx2; 

static volatile FFRD_RETURN_TYPE statusSx3; 

static volatile FFRD_RETURN_TYPE statusSx5; 

 

typedef struct{ 

uint8_t Port; 

FFRD_UINT8  c_counter; // cycle counter value ==> Ali 



200 

 

FFRD_UINT16 m_counter; // macrotic counter value ==> Ali 

uint16_t empty[8]; 

}sporadic_content; 

 

sporadic_content Sbuffer1; 

sporadic_content Sbuffer2; 

sporadic_content Sbuffer3; 

sporadic_content Sbuffer5; 

/*******************@GLOBAL_VARIABLES_END**************/ 

 

/*****************@FUNCTION_DECLARATION_START**********/ 

extern  void InitController(void); 

static void InitCPUExtraRegs(void); 

/*****************@FUNCTION_DECLARATION_END************/ 

 

static void InitCPUExtraRegs(void) 

{ 

  HWWD = 0x10;      /* clear HW watchdog of MB91F465X */ 

  /* Port 16 and 25 are connected to LED at SK-91F467-
FLEXRAY Stareterkit */ 

  PDR16 = 0x00;   /* clear port data register */ 

  PFR16 = 0x00;   /* set port function to I/O port */   

  DDR16 = 0x0F;   /* data direction 0..3: output */ 

  PDR27 = 0x00;   /* clear port data register */ 

  PFR27 = 0x00;   /* set port function to I/O port */   

  DDR27 = 0x0F;   /* data direction 0..3: output */   
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  Init_rldtmr_0(62500u, 0x181A); 

  Init_rldtmr_1(2500u, 0x081A);    

  Init_rldtmr_2(5000u, 0x081A);  /* D1 10ms */ 

  Init_rldtmr_3(5000u, 0x081A);   /* D2 10ms */ 

  Init_rldtmr_4(10000u, 0x081A);  /* D3 20ms */ 

  Init_rldtmr_6(12500u, 0x081A);  /* D5 25ms */ 

  InitUart4();   

  HWWD = 0x10;      /* clear HW watchdog of MB91F465X */    

} /* eof InitCPUExtraRegs */ 

 

static void runTask(void) 

{     

   for (;;) 

   { 

      printFlexRayStatus();  

   } 

} 

 

void main(void) 

{ 

   __EI();                    /* enable interrupts */ 

   __set_il(31);              /* allow all levels */ 

   HWWD = 0x10;     /* clear HW watchdog of MB91F467D */ 

   PORTEN = 0x3;              /* enable I/O Ports */ 

   InitCPUExtraRegs(); 

   nRCWD = 1;   /* count up variable used in WD ISR */ 
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   InitIrqLevels(); * init interrupts (intvect table) */ 

   HWWD = 0x10;     /* clear HW watchdog of MB91F467D */    

   start_rldtmr_0();       /* start HW watchdog tick */ 

   nRCWD = 1;   /* count up variable used in WD ISR */ 

   ttStartupHook();  /* initialise FlexRay driver */ 

   nRCWD = 1;                  

   start_rldtmr_1();           /* start system tick */ 

   nRCWD = 1;        

   start_rldtmr_2(); 

   nRCWD = 1; 

   start_rldtmr_3(); 

   nRCWD = 1; 

   start_rldtmr_4();            

   nRCWD = 1;        

   start_rldtmr_6(); 

   nRCWD = 1; 

   nTime2 = ffrd_api_get_mtick(); 

   srand(nTime2); 

   runTask();                  /* Idle Task */ 

   nRCWD = 1; 

   ttShutdownHook(0);   /* shutdown FlexRay driver */ 

} 

 

__interrupt void IsrReloadTimer0(void)  //500ms 

{ 

   if (nRCWD > 0){ 



203 

 

      nRCWD = 0; 

      HWWD = 0x10;   

      }  

      TMCSR0_UF = 0; 

} 

 

__interrupt void IsrReloadTimer1(void)  // 5ms 

{ 

  /* get FlexRay ClusterTime */ 

   nTime = ffrd_api_get_mtick(); 

   /* correct host offset */ 

   if (nTime >= TASK_OFFSET) 

   {  

      TMRLR1 = 2490u; 

   } 

   if (nTime <= TASK_OFFSET_MIN)  

    {   

    TMRLR1 = 2500u; 

    } 

    TMCSR1_UF = 0; // Reset Timer _ clear interrup flag 

       

   if(start<=150) 

   { 

     task_Node1();  

    cycle_no = ffrd_api_get_cycle(); 
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    if (cycle_no == 0) 

    { 

      start++; 

    } 

   } 

    

   if(start > 150) 

   { 

  if (counter%2 == 0) 

  { 

   tx8_data = 8; 

   tx8_flag = 1; 

   tx8_period = 10; 

  }   

  if (counter%2 == 0) 

  { 

   tx17_data = 17; 

   tx17_flag = 1; 

   tx17_period = 10; 

  }   

  if (counter%2 == 0) 

  { 

   tx18_data = 18; 

   tx18_flag = 1; 

   tx18_period = 10; 

  } 
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  if (counter%10 == 0) 

  { 

   tx20_data = 20; 

   tx20_flag = 1; 

   tx20_period = 50; 

  }   

  if (counter%20 == 0) 

  { 

   tx19_data = 19; 

   tx19_flag = 1; 

   tx19_period = 100; 

  }   

  if (counter%20 == 0) 

  { 

   tx28_data = 28; 

   tx28_flag = 1; 

   tx28_period = 100; 

  } 

  if (counter%20 == 0) 

  { 

   tx29_data = 29; 

   tx29_flag = 1; 

   tx29_period = 100; 

  }   

  if (counter%20 == 0) 

  { 
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   tx30_data = 30; 

   tx30_flag = 1; 

   tx30_period = 100; 

  } 

  if (counter%50 == 0) 

  { 

   tx26_data = 26; 

   tx26_flag = 1; 

   tx26_period = 250; 

  }   

  if (counter%20 == 0) 

  { 

   tx41_data = 41; 

   tx41_flag = 1; 

   tx41_period = 100; 

  } 

  if (counter%200 == 0) 

  { 

   tx33_data = 33; 

   tx33_flag = 1; 

   tx33_period = 1000; 

  }   

  if (counter%200 == 0) 

  { 

   tx34_data = 34; 

   tx34_flag = 1; 
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   tx34_period = 1000; 

  } 

  if (counter%400 == 0) 

  { 

   tx31_data = 31; 

   tx31_flag = 1; 

   tx31_period = 2000; 

  } 

  if (counter%400 == 0) 

  { 

   tx32_data = 32; 

   tx32_flag = 1; 

   tx32_period = 2000; 

  } 

  if (counter%400 == 0) 

  { 

   tx36_data = 36; 

   tx36_flag = 1; 

   tx36_period = 2000; 

  } 

  if (counter%400 == 0) 

  { 

   tx37_data = 37; 

   tx37_flag = 1; 

   tx37_period = 2000; 

  } 
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  counter++; 

  if (counter == 400) 

  counter = 0; 

   

  task_Node1();     /* start FlexRay Task */ 

   

   }//if(start >150) __END   

} 

 

__interrupt void IsrReloadTimer2(void) 

{ 

       nRCWD = 1; 

       Sbuffer1.Port = 1;  /* D1 */ 

       Sbuffer1.m_counter = ffrd_api_get_mtick(); 

       Sbuffer1.c_counter = ffrd_api_get_cycle(); 

       statusSx1 = 
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer1, 18, 
19, FFRD_CHANNEL_A); 

       statusSx1 = 
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer1, 18, 
20, FFRD_CHANNEL_B); 

   

 do { 

 r_number = rand(); 

  

 } while (r_number <= 5000); 
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 TMRLR2 = r_number; 

 TMCSR2_UF = 0; 

 nRCWD = 1; 

} 

 

__interrupt void IsrReloadTimer3(void) 

{ 

       nRCWD = 1; 

       Sbuffer2.Port = 2;  /* D2 */ 

       Sbuffer2.m_counter = ffrd_api_get_mtick(); 

       Sbuffer2.c_counter = ffrd_api_get_cycle(); 

       statusSx2 = 
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer2, 12, 
21, FFRD_CHANNEL_A); 

       statusSx2 = 
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer2, 12, 
22, FFRD_CHANNEL_B); 

 

 do { 

 r_number = rand(); 

 } while (r_number <= 5000); 

  

TMRLR3 = r_number; 

 TMCSR3_UF = 0; 

 nRCWD = 1; 

} 

 

__interrupt void IsrReloadTimer4(void) 
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{ 

       nRCWD = 1; 

       Sbuffer3.Port = 3;  /* D3 */ 

       Sbuffer3.m_counter = ffrd_api_get_mtick(); 

       Sbuffer3.c_counter = ffrd_api_get_cycle(); 

       statusSx3 = 
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer3, 8, 
23, FFRD_CHANNEL_A); 

       statusSx3 = 
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer3, 8, 
24, FFRD_CHANNEL_B); 

 

 do { 

 r_number = rand(); 

 } while (r_number <= 10000); 

  

 TMRLR4 = r_number; 

 TMCSR4_UF = 0; 

 nRCWD = 1; 

} 

 

__interrupt void IsrReloadTimer6(void) 

{ 

       nRCWD = 1; 

       Sbuffer5.Port = 5;  /* D5 */ 

       Sbuffer5.m_counter = ffrd_api_get_mtick(); 

       Sbuffer5.c_counter = ffrd_api_get_cycle(); 
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       statusSx5 = 
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer5, 4, 
25, FFRD_CHANNEL_A); 

       statusSx5 = 
ffrd_api_tx_handler_buffer((FFRD_UINT32)&Sbuffer5, 4, 
26, FFRD_CHANNEL_B); 

 

 do { 

 r_number = rand(); 

 } while (r_number <= 12500); 

 

 TMRLR6 = r_number; 

 TMCSR6_UF = 0; 

 nRCWD = 1; 

} 
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APPENDIX B 

GATEWAY EXPERIMENT SOURCE CODE: 
GATEWAY.PRJ/MAIN.C 

/*------------------------------------------------------ 

  MAIN.C 

  ----------------------------------------------------*/ 

 

/**********************@INCLUDE_START******************/ 

#if (EMULATOR == 0) 

#include "mb91465x.h" 

#else 

#include "mb91465x_emulator.h" 

#endif 

#include "global.h" 

#include <ffrd_api_global.h> 

#include <ffrd_fhal_read.h> 

#include <ffrd_api_status_service.h> 

#include "ffrd_api_time_service.h" 

#include "ReloadTimer.h" 

#include "TTASK.h" 
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#include "uart.h" 

#include "print_status.h" 

#include "CAN.h" 

/**********************@INCLUDE_END********************/ 

 

#define TASK_OFFSET     2500 //for 2,5 ms offset 

#define TASK_OFFSET_MIN 2450 

#define TASK_OFFSET_MAX 150 

 

/*****************@GLOBAL_VARIABLES_START**************/ 

FFRD_UINT8 nOSSyncStatus; 

uint32_t nRCWD = 0; 

FFRD_UINT16 nTime = 0; 

/******************@GLOBAL_VARIABLES_END***************/ 

 

/****************@FUNCTION_DECLARATION_START***********/ 

extern  void InitController(void); 

static void InitCPUExtraRegs(void); 

/****************@FUNCTION_DECLARATION_END*************/ 

 

static void InitCPUExtraRegs(void) 

{ 

  HWWD = 0x10;      /* clear HW watchdog of MB91F465X */ 

  /* Port 16 and 25 are connected to LED at SK-91F467-
FLEXRAY Stareterkit */ 

  PDR16 = 0x00;   /* clear port data register */ 

  PFR16 = 0x00;   /* set port function to I/O port */   
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  DDR16 = 0x0F;   /* data direction 0..3: output */ 

  PDR27 = 0x00;   /* clear port data register */ 

  PFR27 = 0x00;   /* set port function to I/O port */   

  DDR27 = 0x0F;   /* data direction 0..3: output */   

   

  Init_rldtmr_1(31250u, 0x181A);   

  Init_rldtmr_3(2500u, 0x081A); 

  InitUart4(); 

  InitCANCtrl0(); 

  HWWD = 0x10;    

} /* eof InitCPUExtraRegs */ 

 

static void runTask(void) 

{     

   for (;;) 

   { 

      printFlexRayStatus();  

   } 

} 

 

void main(void) 

{ 

    __EI();                    /* enable interrupts */ 

    __set_il(31);              /* allow all levels */ 

    HWWD = 0x10;                

    PORTEN = 0x3;              /* enable I/O Ports */ 



215 

 

   InitCPUExtraRegs();         

   nRCWD = 1;    /* count up variable used in WD ISR */ 

   InitIrqLevels(); * init interrupts (intvect table) */ 

   HWWD = 0x10;     

   start_rldtmr_1();            

   nRCWD = 1;                   

   ttStartupHook();  /* initialise FlexRay driver */ 

   nRCWD = 1; 

   start_rldtmr_3();           /* start system tick */ 

   nRCWD = 1;                  

   runTask();                  /* Idle Task */ 

   nRCWD = 1;           

   ttShutdownHook(0);      /* shutdown FlexRay driver */ 

} 

 

__interrupt void IsrReloadTimer1(void)   

{ 

   if (nRCWD > 0){        

      nRCWD = 0; 

      HWWD = 0x10;        

  }  

   TMCSR1_UF = 0;        /* clear Interrupt flag */  

} 

__interrupt void IsrReloadTimer3(void)  // 5ms 

{ 

   /* get FlexRay ClusterTime */ 
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   nTime = ffrd_api_get_mtick(); 

   /* correct host offset */ 

   if (nTime >= TASK_OFFSET) 

   {  

      TMRLR3 = 2490u; 

   } 

   if (nTime <= TASK_OFFSET_MIN)  

    {   

      TMRLR3 = 2500u; 

    } 

     TMCSR3_UF = 0; /* Reset Timer_clear interrup flag*/ 

     task_Node1();            /* start FlexRay Task */ 

} 
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APPENDIX C 

GATEWAY EXPERIMENT SOURCE CODE: 
GATEWAY.PRJ/TTASK.C 

/*------------------------------------------------------ 

  TTASK.C 

  ----------------------------------------------------*/ 

 

#include "TTASK.h" 

#include <ffrd_api_global.h> 

#include <ffrd_api_init_chi.h> 

#include <ffrd_api_control_service.h> 

#include <ffrd_api_tx_handler.h> 

#include <ffrd_api_rx_handler.h> 

#include <ffrd_api_status_service.h> 

#include "ffrd_api_time_service.h" 

#include "global.h" 

#include "CAN.h" 

#if (EMULATOR == 0) 

#include "mb91465x.h" 

#else 
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#include "mb91465x_emulator.h" 

#endif 

#include "uart.h" 

#define NODE_NAME "Node1" 

  

extern uint32_t nRCWD; 

static volatile unsigned int nIdleTaskInvocations; 

static volatile unsigned int nTaskInvocations; 

static volatile FFRD_RETURN_TYPE statusRx1; 

static volatile FFRD_RETURN_TYPE statusRx2; 

static volatile FFRD_RETURN_TYPE statusRx3; 

static volatile FFRD_RETURN_TYPE statusRx4; 

FFRD_RX_BUFFER_HEADER_STRUCT header_rx1; 

 

uint32_t data; 

uint16_t period = 10; 

uint8_t j = 0; 

uint32_t cycle; 

uint32_t macro_tick; 

uint32_t period_for_shift; 

uint32_t port_for_shift; 

uint8_t rx_cycle; 

FFRD_UINT8 old_c_counter = 0; 

FFRD_UINT16 old_m_counter = 0; 

int CANtx[5] = {0, 1, 8, 13, 19}; 
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typedef struct{ 

uint16_t Port; 

FFRD_UINT16 c_counter; 

FFRD_UINT16 m_counter;  

uint16_t period;  

uint16_t  empty[1]; 

}data_content; 

 

data_content sRx1; 

 

typedef struct{ 

uint8_t Port; 

FFRD_UINT8  c_counter; 

FFRD_UINT16 m_counter; 

uint16_t empty[8]; 

}sporadic_content; 

 

sporadic_content Sbuffer1; 

 

ttTASK(Node1) 

{ 

    FFRD_POC_STATUS_TYPE poc_status;   

    ++nTaskInvocations; 

    ++nIdleTaskInvocations; 

    nRCWD = 1;                       

    if(!(nTaskInvocations%100)) 
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    { 

        /* check if FlexRay CC is not sync */ 

        poc_status = ffrd_api_get_poc_status(); 

   /* check if FlexRay CC is not sync */ 

        if (poc_status != FFRD_POCS_NORMAL_ACTIVE)  

        { 

           if(!ffrd_api_pocs_is_halt()) 

            { 

   /* if not sync, enter HALT state */ 

               ffrd_api_poc_command(FFRD_POCC_FREEZE);     

            } 

    /* enter DEFAULT_CONFIG state */ 

            ffrd_api_poc_command(FFRD_POCC_CONFIG); 

    /* enter CONFIG state */     

            ffrd_api_poc_command(FFRD_POCC_CONFIG);     

  /* enter READY state */ 

            ffrd_api_poc_command(FFRD_POCC_READY);      

  /* enter RUN state */ 

            ffrd_api_poc_command(FFRD_POCC_RUN);        

             

            
ffrd_api_poc_command(FFRD_POCC_RESET_STATUS_INDICATORS); 

/* do a coldstart or integration start */ 
ffrd_api_poc_command(FFRD_POCC_ALLOW_COLDSTART);     

        } 

    } 

     nRCWD = 1;                  
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    /* Receive data */ 

  nRCWD = 1; 

  /*P2*/ 

statusRx1=ffrd_api_rx_handler_buffer((FFRD_UINT32)&sRx1, 
&header_rx1, 10, 0, FFRD_CHANNEL_A, 
ffrd_api_new_rx_data_buffer(0)); 

statusRx2=ffrd_api_rx_handler_buffer((FFRD_UINT32)&sRx1, 
&header_rx1, 10, 1, FFRD_CHANNEL_B, 
ffrd_api_new_rx_data_buffer(1)); 

 

if ( statusRx1 == FFRD_OKAY || statusRx2 == FFRD_OKAY ) 

{ 

rx_cycle = ffrd_api_get_cycle();   

cycle = sRx1.c_counter; 

macro_tick = sRx1.m_counter; 

period_for_shift = sRx1.period; 

data = period_for_shift + (cycle<<8) + (macro_tick<<16); 

         

CAN0_SendMessage(data, rx_cycle, 17, CANtx[0], 8); 

CAN0_SendMessage(data, rx_cycle, 18, CANtx[1], 8); 

}//end if for P2 

      

/*D3*/ 

 

statusRx3=ffrd_api_rx_handler_buffer((FFRD_UINT32)&Sbuff
er1, &header_rx1, 20, 8, FFRD_CHANNEL_A, 
ffrd_api_new_rx_data_buffer(8)); 
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statusRx4=ffrd_api_rx_handler_buffer((FFRD_UINT32)&Sbuff
er1, &header_rx1, 20, 9, FFRD_CHANNEL_B, 
ffrd_api_new_rx_data_buffer(9)); 

 

if ( statusRx3 == FFRD_OKAY || statusRx4 == FFRD_OKAY ) 

{ 

if(Sbuffer1.c_counter != old_c_counter || 
Sbuffer1.m_counter != old_m_counter) 

{ 

rx_cycle = ffrd_api_get_cycle();   

cycle = Sbuffer1.c_counter; 

macro_tick = Sbuffer1.m_counter; 

port_for_shift = Sbuffer1.Port; 

data = port_for_shift + (cycle<<8) + (macro_tick<<16); 

         

CAN0_SendMessage(data, rx_cycle, 19, CANtx[2], 8); 

CAN0_SendMessage(data, rx_cycle, 20, CANtx[3], 8); 

CAN0_SendMessage(data, rx_cycle, 21, CANtx[4], 8); 

          

old_c_counter = Sbuffer1.c_counter; 

old_m_counter = Sbuffer1.m_counter; 

}  

}//end if for D3 

} 

 

void ttErrorHook( int error ) 

{ 
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} 

 

void ttStartupHook(void) 

{ 

    FFRD_RETURN_TYPE initController; 

    nRCWD = 1;     

 

    #if (EMULATOR == 0)   /* set PLL2 of MB91F465XA */ 

       PLL2DIVM = 1;  

       PLL2DIVN = 0x13;  

       PLL2DIVG = 0;  

       PLL2MULG = 0;  

       PLL2CLKR = 0x04; /* enable PLL, BCLCK & SCLK */ 

       /* wait for PLL Oscillaition stabilisation */ 

       TBCR = 0x08;     /* setup Timebase Timer */ 

       CTBR = 0x00;     /* clear TBT count register */ 

       while (!TBCR_TBIF)  

  nRCWD = 1;   /* wait until timer finished */ 

       PLL2CLKR |= 0x02;   /* switch to PLL2 clock */  

       EPFR31 = 0x77;    // set pin to FlexRay function 

       PFR31 = 0x77; // Use FlexRay Function no I/O port  

       DDR31 = 0x77; 

    #endif 

    initController = ffrd_api_init_chi();  

    nRCWD = 1; 

    if (initController != FFRD_OKAY) 
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    { 

       ttShutdownHook(-1); 

       PDR16 = 0xAA;  

    } 

    nRCWD = 1; 

}     

 

void ttShutdownHook( int error ) 

{ 

    putstr(4, "\n"); 

    putstr(4, "Node1 is shut down"); 

    putstr(4, "\n"); 

} 
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APPENDIX D 

GATEWAY EXPERIMENT SOURCE CODE: 
GATEWAY.PRJ/CAN.C 

/******************************************************/ 

/** \file  CAN.C 

   

/******************************************************/ 

 

/*********************@INCLUDE_START*******************/ 

#include "CAN.h" 

#include "uart.h" 

#include "skwizard.h" 

#include "global.h" 

#include <ffrd_api_global.h> 

#include "ffrd_api_time_service.h" 

#include "TTASK.h" 

#include <ffrd_api_tx_handler.h> 

#include <ffrd_api_rx_handler.h> 

#include <ffrd_api_status_service.h> 

#include <ffrd_api_init_chi.h> 
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#include <ffrd_api_control_service.h> 

/**********************@INCLUDE_END********************/ 

 

/****************@GLOBAL_VARIABLES_START***************/ 

int8_t RxOK_Int; 

int8_t TxOK_Int; 

int8_t LEC_Int; 

uint32_t nCycle; 

uint32_t mtick; 

uint16_t IntPointer = 0x0000; 

uint16_t IntBuffer; 

uint32_t can_send_cycle; 

uint32_t can_send_mtick; 

uint32_t ID; 

uint32_t fr_rx_cycle_forshift; 

unsigned char sth_came_3129=0; 

unsigned char sth_came_2118=0; 

unsigned char sth_came_1109=0; 

unsigned char sth_came_0605=0; 

unsigned char sth_came_0402=0; 

FFRD_UINT8 prev_cycle3129=0; 

FFRD_UINT8 prev_cycle2118=0; 

FFRD_UINT8 prev_cycle1109=0; 

FFRD_UINT8 prev_cycle0605=0; 

FFRD_UINT8 prev_cycle0402=0; 

unsigned char token_3129=31; 
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unsigned char token_2118=21; 

unsigned char token_1109=11; 

unsigned char token_0605=6; 

unsigned char token_0402=4; 

static volatile FFRD_RETURN_TYPE statusTx5; 

static volatile FFRD_RETURN_TYPE statusTx7; 

static volatile FFRD_RETURN_TYPE statusTx10; 

static volatile FFRD_RETURN_TYPE statusTx16; 

static volatile FFRD_RETURN_TYPE statusTx4; 

 

typedef struct{ 

uint16_t Port; 

FFRD_UINT16 can_send_cycle; 

FFRD_UINT16 can_send_mtick; 

FFRD_UINT16 can_rx_cycle;  

FFRD_UINT16 can_rx_mtick; 

}gateway_content; 

 

gateway_content buffer7; 

gateway_content buffer5; 

gateway_content buffer10; 

gateway_content buffer16; 

 

typedef struct{ 

uint16_t Port; 

FFRD_UINT16 can_send_cycle;  
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FFRD_UINT16 can_send_mtick;  

FFRD_UINT16 can_rx_cycle;  

FFRD_UINT16 can_rx_mtick;  

uint16_t  empty[5]; 

}gateway_content_dyn; 

 

gateway_content_dyn buffer4; 

 

/*******************@GLOBAL_VARIABLES_END**************/ 

 

void InitCANCtrl0(void) 

{ 

  int16_t bufcnt; 

  PFR23_D0 = 1;                /* RX */ 

  PFR23_D1 = 1;                /* TX */ 

  

  CTRLR0_Init = 1;             /* Stop CAN operation */ 

  IF1ARB120 = 0x00000000; 

  IF1MSK120 = 0x00000000; 

  IF1MCTR0 = 0x0080;          /* only EOB-Flag is set */ 

  IF1DTA120 = 0x00000000; 

  IF1DTB120 = 0x00000000; 

   

  IF1CMSK0_WR = 1; 

  IF1CMSK0_Mask = 1; 

  IF1CMSK0_Arb = 1; 
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  IF1CMSK0_Control = 1;        /* Tx request NOT set */ 

  IF1CMSK0_TxReq = 0; 

  IF1CMSK0_DataA = 1; 

  IF1CMSK0_DataB = 1; 

   

  for(bufcnt=1; bufcnt<=MAXBUF; bufcnt++) 

  { 

    IF1CREQ0 = bufcnt;/*xfer the IF content to buffer */ 

  } 

   

  CTRLR0_CCE = 1;              /* enable cfg change */ 

  BTR0 = BTR_16M_500k_16_68_3; /*BTR config 500 kBaud */ 

  CTRLR0_CCE = 0;              /* disable cfg change */ 

  CTRLR0_EIE = 1;           /* enable error interrupt */ 

  CTRLR0_SIE = 1;   /* enable status change interrupt */ 

  CTRLR0_IE = 1;    /* enable interrupt generation */ 

  CTRLR0_Init = 0;  /* complete init, start CAN */ 

   

/* Config CAN0 Buffer 1-16 as Rx, Rx>16 will not work */ 

  IF1ARB120 = 2; 

  IF1ARB20_Xtd = 1;            /* 29bit ID */ 

  IF1ARB20_DIR = 0;            /* Rx buffer */ 

  IF1ARB20_MsgVal = 1;         /* buffer set as valid */ 

   

  IF1MSK120 = 0x1fffffff;      /* mask all ID */ 

  IF1MSK20_MDir = 0;          /* do not mask Dir flag */ 
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  IF1MSK20_MXtd = 1;           /* mask ID type flag */ 

  IF1MCTR0_NewDat = 0;         /* clear NewDat flag */ 

  IF1MCTR0_MsgLst = 0;         /* clear MsgLst flag */ 

  IF1MCTR0_IntPnd = 0;         /* clear IntPnd flag */ 

  IF1MCTR0_UMask = 1;          /* use Mask Filter */ 

  IF1MCTR0_TxIE = 0; 

  IF1MCTR0_RxIE = 1; 

  IF1MCTR0_RmtEn = 0; 

  IF1MCTR0_TxRqst = 0; 

  IF1MCTR0_EoB = 1; 

   

  IF1CMSK0_WR = 1; 

  IF1CMSK0_Mask = 1; 

  IF1CMSK0_Arb = 1; 

  IF1CMSK0_Control = 1; 

  IF1CMSK0_TxReq = 0; 

  IF1CMSK0_DataA = 0; 

  IF1CMSK0_DataB = 0; 

   

  IF1CREQ0 = 1; 

 … 

The buffer config is same for other Rx buffers, so 
omitted 

     … 

  /* Config CAN0 Buffer 17-21 as Tx, Tx>16 will work */ 

   IF1ARB120 = MSG2STD(0x02); 

   IF1ARB20_Xtd = 1;            /* 29bit ID */ 
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   IF1ARB20_DIR = 1;            /* Tx buffer */ 

   IF1ARB20_MsgVal = 1;      /* buffer set as valid */ 

   

   IF1MSK120 = 0x1fffffff;      /* accept all ID */ 

   IF1MSK20_MDir = 1;           /* mask Dir flag */ 

   IF1MSK20_MXtd = 1;           /* mask ID type flag */ 

   IF1MCTR0_NewDat = 0;         /* clear NewDat flag */ 

   IF1MCTR0_MsgLst = 0;         /* clear MsgLst flag */ 

   IF1MCTR0_IntPnd = 0;         /* clear IntPnd flag */ 

   IF1MCTR0_UMask = 1;          /* use Mask Filter */ 

   IF1MCTR0_TxIE = 0; 

   IF1MCTR0_RxIE = 1; 

   IF1MCTR0_RmtEn = 0; 

   IF1MCTR0_TxRqst = 0; 

   IF1MCTR0_EoB = 1; 

   IF1CMSK0_WR = 1; 

   IF1CMSK0_Mask = 1; 

   IF1CMSK0_Arb = 1; 

   IF1CMSK0_Control = 1; 

   IF1CMSK0_TxReq = 0; 

   IF1CMSK0_DataA = 0; 

   IF1CMSK0_DataB = 0; 

   

   IF1CREQ0 = 17; 

   … 

The buffer config is same for other Tx buffers, so 
omitted 
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   … 

void CAN0_ReadMessageBuffer(unsigned char buffer) 

{ 

  nCycle = ffrd_api_get_cycle(); 

  mtick = ffrd_api_get_mtick(); 

 

/* receive Control Info, Msg data and Arbitration 
from Msg Buffer */ 

   

  IF1CMSK0_WR = 0; 

  IF1CMSK0_Mask = 0; 

  IF1CMSK0_Arb = 1; 

  IF1CMSK0_Control = 1; 

IF1CMSK0_CIP = 1; /*clear pending Int by reading */ 

  IF1CMSK0_TxReq = 1; 

  IF1CMSK0_DataA = 1; 

  IF1CMSK0_DataB = 1; 

   

  IF1CREQ0 = buffer;       /* start transfer */ 

  if(IF1MCTR0_MsgLst)      /* in case msg lost */ 

  { 

    IF1MCTR0_MsgLst = 0; 

    IF1CMSK0_WR = 1; 

    IF1CMSK0_Mask = 0; 

    IF1CMSK0_Arb = 0; 

    IF1CMSK0_Control = 1; 

    IF1CMSK0_CIP = 0; 
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    IF1CMSK0_TxReq = 0; 

    IF1CMSK0_DataA = 0; 

    IF1CMSK0_DataB = 0; 

    IF1CREQ0 = buffer; 

  } 

 

  can_send_cycle = 0x000000FF&IF1DTA120; 

  can_send_mtick = (0x00FFFF00&IF1DTA120)>>8; 

  ID = 0x1FFFFFFF&IF1ARB120; 

 

if (ID==31)  //C14 or C15 to P5 

{ 

   if(sth_came_3129==1) 

   { 

 if(nCycle==prev_cycle3129)//second one has come in 
the same cycle 

    { 

    sth_came_3129 = 0; 

  if(token_3129==31) 

  { 

      buffer5.Port = 31; 

      buffer5.can_send_cycle = can_send_cycle; 

       buffer5.can_send_mtick = can_send_mtick; 

   buffer5.can_rx_cycle = nCycle; 

       buffer5.can_rx_mtick = mtick; 

statusTx5=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r5, 10, 2, FFRD_CHANNEL_A_B); 
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         token_3129=29; 

   } 

       else 

       { 

       token_3129=31; 

        } 

       }//if(nCycle==prev_cycle) __END 

        

       else 

       { 

       prev_cycle3129 = nCycle; 

     

        if(token_3129==31) 

     { 

   buffer5.Port = 31; 

      buffer5.can_send_cycle = can_send_cycle; 

       buffer5.can_send_mtick = can_send_mtick; 

      buffer5.can_rx_cycle = nCycle; 

       buffer5.can_rx_mtick = mtick; 

statusTx5=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r5, 10, 2, FFRD_CHANNEL_A_B); 

      } 

     } 

  }//   if(sth_came_3129==1) __END 

     

  else 

  { 
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  sth_came_3129 = 1; 

  prev_cycle3129 = nCycle; 

     

    if(token_3129==31) 

   { 

 buffer5.Port = 31; 

    buffer5.can_send_cycle = can_send_cycle; 

    buffer5.can_send_mtick = can_send_mtick; 

    buffer5.can_rx_cycle = nCycle; 

    buffer5.can_rx_mtick = mtick; 

 
statusTx5=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r5, 10, 2, FFRD_CHANNEL_A_B); 

    } 

 } 

}//if (ID==31) __END 

   

  if (ID==29)   //C14 or C15 to P5 

  { 

   if(sth_came_3129==1) 

   { 

if(nCycle==prev_cycle3129)//second one has come in 
the same cycle 

 { 

 sth_came_3129 = 0; 

     if(token_3129==29) 

     { 

buffer5.Port = 29; 
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buffer5.can_send_cycle = can_send_cycle; 

buffer5.can_send_mtick = can_send_mtick; 

buffer5.can_rx_cycle = nCycle; 

buffer5.can_rx_mtick = mtick; 

statusTx5=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r5, 10, 2, FFRD_CHANNEL_A_B); 

       token_3129=31; 

       } 

        

       else 

       { 

       token_3129=29; 

        } 

       }//if(nCycle==prev_cycle) __END 

        

 

  else 

      { 

      prev_cycle3129 = nCycle; 

    if(token_3129==29) 

   { 

 buffer5.Port = 29; 

    buffer5.can_send_cycle = can_send_cycle; 

     buffer5.can_send_mtick = can_send_mtick; 

    buffer5.can_rx_cycle = nCycle; 

     buffer5.can_rx_mtick = mtick; 



237 

 

statusTx5=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r5, 10, 2, FFRD_CHANNEL_A_B); 

     } 

     } 

      

    }//if(sth_came_3129==1) 

 else 

   { 

   sth_came_3129 = 1; 

   prev_cycle3129 = nCycle; 

     if(token_3129==29) 

    { 

   buffer5.Port = 29; 

    buffer5.can_send_cycle = can_send_cycle; 

     buffer5.can_send_mtick = can_send_mtick; 

    buffer5.can_rx_cycle = nCycle; 

     buffer5.can_rx_mtick = mtick; 

statusTx5=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r5, 10, 2, FFRD_CHANNEL_A_B); 

     } 

    } 

  }//if (ID==29) __END 

   

  if (ID==21)   //C16 or C18 to P7 

  { 

   if(sth_came_2118==1) 

   { 
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   if(nCycle==prev_cycle2118)//second one has come in 
the same cycle 

    { 

    sth_came_2118 = 0; 

     if(token_2118==21) 

     { 

 buffer7.Port = 21; 

     buffer7.can_send_cycle = can_send_cycle; 

     buffer7.can_send_mtick = can_send_mtick; 

     buffer7.can_rx_cycle = nCycle; 

     buffer7.can_rx_mtick = mtick; 

statusTx7=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r7, 10, 4, FFRD_CHANNEL_A_B); 

      token_2118=18; 

     } 

     else 

    { 

    token_2118=21; 

    } 

       }//if(nCycle==prev_cycle) __END 

        

 else 

   { 

   prev_cycle2118 = nCycle; 

 if(token_2118==21) 

 { 

 buffer7.Port = 21; 
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 buffer7.can_send_cycle = can_send_cycle; 

 buffer7.can_send_mtick = can_send_mtick; 

     buffer7.can_rx_cycle = nCycle; 

     buffer7.can_rx_mtick = mtick; 

statusTx7=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r7, 10, 4, FFRD_CHANNEL_A_B); 

      } 

     } 

    }//if(sth_came_2118==1) 

     

    else 

   { 

   sth_came_2118 = 1; 

   prev_cycle2118 = nCycle; 

    if(token_2118==21) 

    { 

  buffer7.Port = 21; 

      buffer7.can_send_cycle = can_send_cycle; 

      buffer7.can_send_mtick = can_send_mtick; 

      buffer7.can_rx_cycle = nCycle; 

      buffer7.can_rx_mtick = mtick; 

statusTx7=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r7, 10, 4, FFRD_CHANNEL_A_B); 

     } 

    } 

  }//if (ID==21) __END 
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  if (ID==18)   //C16 or C18 to P7 

 { 

   if(sth_came_2118==1) 

   { 

if(nCycle==prev_cycle2118)//second one has come in the 
same cycle 

    { 

    sth_came_2118 = 0; 

  if(token_2118==18) 

    { 

  buffer7.Port = 18; 

      buffer7.can_send_cycle = can_send_cycle; 

      buffer7.can_send_mtick = can_send_mtick; 

      buffer7.can_rx_cycle = nCycle; 

      buffer7.can_rx_mtick = mtick; 

statusTx7=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r7, 10, 4, FFRD_CHANNEL_A_B); 

token_2118=21; 

    } 

     

else 

    { 

    token_2118=18; 

       } 

       }//if(nCycle==prev_cycle) __END 

        

else 



241 

 

       { 

       prev_cycle2118 = nCycle; 

       if(token_2118==18) 

     { 

  buffer7.Port = 18; 

      buffer7.can_send_cycle = can_send_cycle; 

      buffer7.can_send_mtick = can_send_mtick; 

      buffer7.can_rx_cycle = nCycle; 

      buffer7.can_rx_mtick = mtick; 

statusTx7=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r7, 10, 4, FFRD_CHANNEL_A_B); 

      } 

     } 

    }//if(sth_came_2118==1) 

     

    else 

   { 

   sth_came_2118 = 1; 

   prev_cycle2118 = nCycle; 

         if(token_2118==18) 

    { 

  buffer7.Port = 18; 

      buffer7.can_send_cycle = can_send_cycle; 

      buffer7.can_send_mtick = can_send_mtick; 

      buffer7.can_rx_cycle = nCycle; 

      buffer7.can_rx_mtick = mtick; 
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statusTx7=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r7, 10, 4, FFRD_CHANNEL_A_B); 

     } 

    } 

     

  }//if (ID==18) __END 

 

  if (ID==11)   //C20 or C21 to P10 

    { 

   if(sth_came_1109==1) 

   { 

if(nCycle==prev_cycle1109)//second one has come in the 
same cycle 

    { 

    sth_came_1109 = 0; 

     if(token_1109==11) 

     { 

  buffer10.Port = 11; 

      buffer10.can_send_cycle = can_send_cycle; 

      buffer10.can_send_mtick = can_send_mtick; 

  buffer10.can_rx_cycle = nCycle; 

  buffer10.can_rx_mtick = mtick; 

statusTx10=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er10, 10, 3, FFRD_CHANNEL_A_B); 

  token_1109=9; 

      } 

      else 

      { 
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       token_1109=11; 

       } 

       }//if(nCycle==prev_cycle) __END 

      else 

       { 

       prev_cycle1109 = nCycle; 

     if(token_1109==11) 

    { 

  buffer10.Port = 11; 

  buffer10.can_send_cycle = can_send_cycle; 

  buffer10.can_send_mtick = can_send_mtick; 

  buffer10.can_rx_cycle = nCycle; 

  buffer10.can_rx_mtick = mtick; 

statusTx10=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er10, 10, 3, FFRD_CHANNEL_A_B); 

      } 

     } 

      

    }//if(sth_came_1109==1) 

     

    else 

   { 

   sth_came_1109 = 1; 

   prev_cycle1109 = nCycle; 

      if(token_1109==11) 

    { 

 buffer10.Port = 11; 
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 buffer10.can_send_cycle = can_send_cycle; 

 buffer10.can_send_mtick = can_send_mtick; 

 buffer10.can_rx_cycle = nCycle; 

 buffer10.can_rx_mtick = mtick; 

  

statusTx10=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er10, 10, 3, FFRD_CHANNEL_A_B); 

     } 

    } 

  }//if (ID==11) __END 

 

  if (ID==9)   //C20 or C21 to P10 

    { 

   if(sth_came_1109==1) 

   { 

if(nCycle==prev_cycle1109)//second one has come in the 
same cycle 

    { 

    sth_came_1109 = 0; 

   if(token_1109==9) 

     { 

  buffer10.Port = 9; 

      buffer10.can_send_cycle = can_send_cycle; 

      buffer10.can_send_mtick = can_send_mtick; 

     buffer10.can_rx_cycle = nCycle; 

     buffer10.can_rx_mtick = mtick; 

statusTx10=ffrd_api_tx_handler_buffer((FFRD_UINT32)
&buffer10, 10, 3, FFRD_CHANNEL_A_B); 
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token_1109=11; 

  } 

  else 

    { 

    token_1109=9; 

     } 

   }//if(nCycle==prev_cycle) __END 

   else 

       { 

       prev_cycle1109 = nCycle; 

     

      if(token_1109==9) 

    { 

  buffer10.Port = 9; 

     buffer10.can_send_cycle = can_send_cycle; 

     buffer10.can_send_mtick = can_send_mtick; 

     buffer10.can_rx_cycle = nCycle; 

     buffer10.can_rx_mtick = mtick; 

statusTx10=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er10, 10, 3, FFRD_CHANNEL_A_B); 

      } 

     } 

   }//if(sth_came_1109==1) 

  else 

   { 

   sth_came_1109 = 1; 

   prev_cycle1109 = nCycle; 
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   if(token_1109==9) 

   { 

 buffer10.Port = 9; 

    buffer10.can_send_cycle = can_send_cycle; 

    buffer10.can_send_mtick = can_send_mtick; 

    buffer10.can_rx_cycle = nCycle; 

    buffer10.can_rx_mtick = mtick; 

statusTx10=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er10, 10, 3, FFRD_CHANNEL_A_B); 

     } 

    } 

   }//if (ID==9) __END 

 

if (ID==6)   //C23 or C24 to P16 

    { 

   if(sth_came_0605==1) 

   { 

if(nCycle==prev_cycle0605)//second one has come in the 
same cycle 

 { 

 sth_came_0605 = 0; 

if(token_0605==6) 

    { 

  buffer16.Port = 6; 

     buffer16.can_send_cycle = can_send_cycle; 

     buffer16.can_send_mtick = can_send_mtick; 

      buffer16.can_rx_cycle = nCycle; 
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      buffer16.can_rx_mtick = mtick; 

statusTx16=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er16, 10, 5, FFRD_CHANNEL_A_B); 

      token_0605=5; 

     } 

 else 

  { 

    token_0605=6; 

  } 

    }//if(nCycle==prev_cycle) __END 

    

  else 

       { 

       prev_cycle0605 = nCycle; 

     if(token_0605==6) 

    { 

  buffer16.Port = 6; 

     buffer16.can_send_cycle = can_send_cycle; 

     buffer16.can_send_mtick = can_send_mtick; 

     buffer16.can_rx_cycle = nCycle; 

     buffer16.can_rx_mtick = mtick; 

statusTx16=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er16, 10, 5, FFRD_CHANNEL_A_B); 

     } 

     } 

  }//if(sth_came_0605==1) 
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    else 

   { 

   sth_came_0605 = 1; 

   prev_cycle0605 = nCycle; 

   if(token_0605==6) 

    { 

  buffer16.Port = 6; 

     buffer16.can_send_cycle = can_send_cycle; 

     buffer16.can_send_mtick = can_send_mtick; 

     buffer16.can_rx_cycle = nCycle; 

      buffer16.can_rx_mtick = mtick; 

statusTx16=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er16, 10, 5, FFRD_CHANNEL_A_B); 

     } 

    } 

  }//if (ID==6) __END 

 

if (ID==5)   //C23 or C24 to P16 

 { 

   if(sth_came_0605==1) 

   { 

if(nCycle==prev_cycle0605)//second one has come in the 
same cycle 

    { 

    sth_came_0605 = 0; 

     if(token_0605==5) 

     { 
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  buffer16.Port = 5; 

     buffer16.can_send_cycle = can_send_cycle; 

     buffer16.can_send_mtick = can_send_mtick; 

      buffer16.can_rx_cycle = nCycle; 

      buffer16.can_rx_mtick = mtick; 

statusTx16=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er16, 10, 5, FFRD_CHANNEL_A_B); 

    

      token_0605=6; 

 } 

     else 

{ 

      token_0605=5; 

       } 

      }//if(nCycle==prev_cycle) __END 

        

 else 

       { 

       prev_cycle0605 = nCycle; 

     

  if(token_0605==5) 

  { 

   buffer16.Port = 5; 

      buffer16.can_send_cycle = can_send_cycle; 

      buffer16.can_send_mtick = can_send_mtick; 

      buffer16.can_rx_cycle = nCycle; 

      buffer16.can_rx_mtick = mtick; 
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statusTx16=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er16, 10, 5, FFRD_CHANNEL_A_B); 

      } 

     } 

   }//if(sth_came_0605==1) 

  

    else 

   { 

   sth_came_0605 = 1; 

   prev_cycle0605 = nCycle; 

 

     if(token_0605==5) 

    { 

  buffer16.Port = 5; 

     buffer16.can_send_cycle = can_send_cycle; 

     buffer16.can_send_mtick = can_send_mtick; 

     buffer16.can_rx_cycle = nCycle; 

      buffer16.can_rx_mtick = mtick; 

statusTx16=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buff
er16, 10, 5, FFRD_CHANNEL_A_B); 

     } 

    } 

}//if (ID==5) __END 

   

 if (ID==4)   //C25 or C26 to D4 

    { 

   if(sth_came_0402==1) 
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   { 

if(nCycle==prev_cycle0402)//second one has come in the 
same cycle 

 { 

 sth_came_0402 = 0; 

 if(token_0402==4) 

  { 

 buffer4.Port = 4; 

 buffer4.can_send_cycle = can_send_cycle; 

 buffer4.can_send_mtick = can_send_mtick; 

 buffer4.can_rx_cycle = nCycle; 

 buffer4.can_rx_mtick = mtick; 

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 6, FFRD_CHANNEL_A); 

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 7, FFRD_CHANNEL_B); 

 token_0402=2; 

} 

     

 else 

    { 

    token_0402=4; 

       } 

     }//if(nCycle==prev_cycle) __END 

      

else 

 { 

   prev_cycle0402 = nCycle; 
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 if(token_0402==4) 

 { 

  buffer4.Port = 4; 

  buffer4.can_send_cycle = can_send_cycle; 

  buffer4.can_send_mtick = can_send_mtick; 

  buffer4.can_rx_cycle = nCycle; 

   buffer4.can_rx_mtick = mtick; 

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 6, FFRD_CHANNEL_A); 

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 7, FFRD_CHANNEL_B); 

    } 

} 

 

}//if(sth_came_0402==1) 

     

    else 

   { 

   sth_came_0402 = 1; 

   prev_cycle0402 = nCycle; 

    if(token_0402==4) 

    { 

  buffer4.Port = 4; 

     buffer4.can_send_cycle = can_send_cycle; 

     buffer4.can_send_mtick = can_send_mtick; 

     buffer4.can_rx_cycle = nCycle; 

     buffer4.can_rx_mtick = mtick; 
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statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 6, FFRD_CHANNEL_A); 

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 7, FFRD_CHANNEL_B); 

     } 

    } 

     

  }//if (ID==4) __END 

 

 if (ID==2)   //C25 or C26 to D4 

{ 

   if(sth_came_0402==1) 

   { 

  if(nCycle==prev_cycle0402)//second one has come in the 
same cycle 

   { 

   sth_came_0402 = 0; 

   if(token_0402==2) 

    { 

   buffer4.Port = 2; 

      buffer4.can_send_cycle = can_send_cycle; 

      buffer4.can_send_mtick = can_send_mtick; 

      buffer4.can_rx_cycle = nCycle; 

      buffer4.can_rx_mtick = mtick; 

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 6, FFRD_CHANNEL_A); 

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 7, FFRD_CHANNEL_B); 
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 token_0402=4; 

  } 

   

else 

 { 

 token_0402=2; 

} 

   }//if(nCycle==prev_cycle) __END 

        

else 

   { 

   prev_cycle0402 = nCycle; 

if(token_0402==2) 

    { 

  buffer4.Port = 2; 

  buffer4.can_send_cycle = can_send_cycle; 

  buffer4.can_send_mtick = can_send_mtick; 

  buffer4.can_rx_cycle = nCycle; 

   buffer4.can_rx_mtick = mtick; 

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 6, FFRD_CHANNEL_A); 

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 7, FFRD_CHANNEL_B); 

     } 

   } 

}//if(sth_came_0402==1) 

     



255 

 

    else 

   { 

   sth_came_0402 = 1; 

   prev_cycle0402 = nCycle; 

    if(token_0402==2) 

    { 

  buffer4.Port = 2; 

     buffer4.can_send_cycle = can_send_cycle; 

     buffer4.can_send_mtick = can_send_mtick; 

     buffer4.can_rx_cycle = nCycle; 

     buffer4.can_rx_mtick = mtick; 

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 6, FFRD_CHANNEL_A); 

statusTx4=ffrd_api_tx_handler_buffer((FFRD_UINT32)&buffe
r4, 12, 7, FFRD_CHANNEL_B); 

     } 

    } 

     

  }//if (ID==2) __END 

} 

 

int CAN0_SendMessage(uint32_t data, uint8_t fr_rx_cycle, 
unsigned char buffer, int id, unsigned char dlc) 

{ 

  uint32_t timeout = 0; 

IF1ARB120 = id; 

IF1ARB20_Xtd = 1; 

IF1ARB20_DIR = 1; 
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IF1ARB20_MsgVal = 1; 

   

  IF1MSK120 = 0x1fffffff; 

  IF1MSK20_MDir = 1; 

  IF1MSK20_MXtd = 1; 

  IF1MCTR0_NewDat = 0; 

  IF1MCTR0_MsgLst = 0; 

  IF1MCTR0_IntPnd = 0; 

  IF1MCTR0_UMask = 1; 

  IF1MCTR0_TxIE = 0; 

  IF1MCTR0_RxIE = 0; 

  IF1MCTR0_RmtEn = 0; 

  IF1MCTR0_TxRqst = 1; 

  IF1MCTR0_EoB = 1; 

   

  IF1MCTR0_DLC = dlc; 

  IF1DTA120 = data; 

   

  nCycle = ffrd_api_get_cycle(); 

  mtick = ffrd_api_get_mtick(); 

  fr_rx_cycle_forshift = fr_rx_cycle;  

  IF1DTB120 = nCycle + (mtick<<8) + 
(fr_rx_cycle_forshift<<24); 

   

  IF1CMSK0_WR = 1; 

  IF1CMSK0_Mask = 1; 

  IF1CMSK0_Arb = 1; 
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  IF1CMSK0_Control = 1; 

  IF1CMSK0_TxReq = 0; 

  IF1CMSK0_DataA = 1; 

  IF1CMSK0_DataB = 1; 

   

  IF1CREQ0 = buffer; 

   

while((TREQR120 & (0x1 << (buffer-1)) != 0) && 
(timeout++ < TIMEOUT) && (CTRLR0_Init != 1)); 

if((timeout == TIMEOUT) || (CTRLR0_Init == 1))    /* the 
following code clears TxRqst bit */ 

  { 

    IF1CMSK0_WR = 0; 

    IF1CMSK0_Mask = 0; 

    IF1CMSK0_Arb = 0; 

    IF1CMSK0_Control = 1; /* because TxRqst is a Control 
bit! (MCTR) */ 

    IF1CMSK0_TxReq = 0; 

    IF1CMSK0_DataA = 0; 

    IF1CMSK0_DataB = 0; 

    IF1CREQ0 = buffer; 

    IF1MCTR0_TxRqst = 0; 

    IF1CMSK0_WR = 1; 

    IF1CREQ0 = buffer; 

    return 0;     /* Tx failed! */ 

  } 

  return 1;       /* Tx succedded */ 

} 
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__interrupt void CAN0_ISR(void) 

{ 

 HWWD_CL = 0; 

 IntPointer = INTR0; 

if( (IntPointer & 0x8000) == 0x8000)/* is Status 
Interrupt */ 

 { 

 CAN0_STATUS_ISR_Handler(); 

 /* IRQ should be cleared here */ 

 } 

 else /* is message buffer interrupt */ 

 { 

IntPointer = IntPointer & 0x00FF;/* use only the 
lower six bits */ 

if( (IntPointer >= 1) && (IntPointer <= 0x80) ) /* valid 
buffer number */ 

 { 

IntBuffer = 0x01 << (IntPointer-1); 

  { 

/* Check whether the interrupt source is a valid buffer 
*/ 

 if( (MSGVAL120 & IntBuffer) != 0) /* message buffer 
is valid */ 

 { 

 /* Check whether the interrupt cause is recieve or 
transmit */ 

  if( (NEWDT120 & IntBuffer) != 0 ) /* is a 
recieve interrupt */ 

   { 
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 /* call the recieve handler */ 

 CAN0_ReadMessageBuffer(IntPointer); 

/* Clear Newdat and pending Int */ 

 } 

 else /* is a transmit interrupt */ 

   { 

  /* call the transmit handler */ 

  } /* end else "is a transmit interrupt" */ 

  } /* end if "message buffer is valid" */ 

  } 

  } /* end if "valid buffer number" */ 

} /* end else "is message buffer interrupt" */ 

} 

 

void CAN0_STATUS_ISR_Handler() 

{ 

 unsigned short int canstatus; 

/* Read the Status Register (this operation will clear 
pending Status/Error Interrupt ) */  

 canstatus = STATR0; 

 /* Error Interrupt handling */ 

 /* BusOff State */ 

if( (canstatus & 0x80) == 0x80 ) /* C_CAN Channel is in 
BusOff state */ 

 { 

/* Do what has do be done in BusOff state */ 

putstr(5,CUP(1,27)); /* set Cursor to position 1, line26 
*/ 
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putstr(5, "C_CAN channel 0 is in BusOff state -> System 
Halted !!!"); 

 while(1) 

 { 

 HWWD_CL = 0; /* endless loop */ 

 }     

} 

 /* RX ok */ 

if( (canstatus & 0x10) == 0x10 ) /* Last Reception ok */ 

 { 

  RxOK_Int = 1; 

  /* Clear RxOK Flag in Status register. */ 

  STATR0_RxOK = 0; 

 } 

 /* TX ok */ 

if( (canstatus & 0x08) == 0x08 ) /* Last Transmission ok 
*/ 

{ 

 TxOK_Int = 1; 

 /* Clear TxOK Flag in Status register. */ 

 STATR0_TxOK = 0; 

} 

/* Last Error Counter */ 

if( (canstatus & 0x07) != 0x00 ) /* Show Last Error */ 

{ 

LEC_Int = 1; 

/* Clear LEC in Status register. */ 
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STATR0_LEC = 0;   

} 

} 
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APPENDIX E 

CONFIG.TXT 

/* Enter here your CAN IDs and corresponding FID for 
each CAN ID*/ 

 

/* CANRX FRTX */ 

CANID 0 = 123 --> FID 0 = 6 

CANID 1 = 400 --> FID 1 = 9 

 

/* Enter here your FIDs and corresponding CAN ID for 
each FID*/ 

 

/* CANTX FRRX */ 

FID 0 = 7 --> CANID 0 = 1 

FID 1 = 8 --> CANID 1 = 0 

FID 2 = 16 --> CANID 2 = 19 

FID 3 = 17 --> CANID 3 = 18 

FID 4 = 19 --> CANID 4 = 17 

FID 5 = 20 --> CANID 5 = 13 

FID 6 = 26 --> CANID 6 = 12 

FID 7 = 28 --> CANID 7 = 11 
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FID 8 = 31 --> CANID 8 = 10 

FID 9 = 33 --> CANID 9 = 9 

FID 10 = 36 --> CANID 10 = 8  

FID 11 = 37 --> CANID 11 = 5 

FID 12 = 41 --> CANID 12 = 4 

FID 13 = 47 --> CANID 13 = 3 

FID 14 = 48 --> CANID 14 = 2 

 

/* Enter here .chi file of your gateway*/ 

 

Gateway Chi File = GW_Controller1.chi 
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APPENDIX F 

GATEWAY.C 

int CANtx[15] = {1, 0, 19, 18, 17, 13, 12, 11, 10, 9, 8, 
5, 4, 3, 2}; 

int CANrx[15] = {123, 400}; 

int FRtx[2] = {6, 9}; 

int FRrx[15] = {7, 8, 16, 17, 19, 20, 26, 28, 31, 33, 
36, 37, 41, 47, 48}; 

int CAN2FR[2] = {0, 1}; 

int FR2CAN[15] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14}; 

int Tx_Buffer[2] = {1, 4}; 

int Rx_Buffer_A[15] = {0, 2, 4, 6, 8, 10, 13, 15, 17, 
19, 21, 23, 24, 26, 28}; 

int Rx_Buffer_B[15] = {1, 3, 5, 7, 9, 11, 12, 14, 16, 
18, 20, 22, 25, 27, 29}; 
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APPENDIX G 

GATEWAY.H 

#define   fr_rx_count  15 

extern int CANtx[15]; 

extern int CANrx[2]; 

extern int FRtx[2]; 

extern int FRrx[15]; 

extern int CAN2FR[2]; 

extern int FR2CAN[15]; 

extern int Tx_Buffer[2]; 

extern int Rx_Buffer_A[15]; 

extern int Rx_Buffer_B[15]; 


