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ABSTRACT

TACTICAL INVENTORY AND BACKORDER DECISIONS FOR SYSTEMS WITH
PREDICTABLE PRODUCTION YIELD

Mart, Turgut

M.S., Department of Industrial Engineering

Supervisor : Assist. Prof. Dr. Serhan Duran

Co-Supervisor : Assist. Prof. Dr. İsmail Serdar Bakal

May 2010, 42 pages

We consider a manufacturing system with stochastic demand and predictable production

yield. The manufacturer has predetermined prices and limited production capacity in each

period. The producer also has the option to save some inventory for future periods even if

there is demand in the current period. The demand that is not met is lost or may be back-

ordered for only one period. Our objective is to maximize the expected profit by choosing

optimal production, save and backorder quantities in each period. We formulate this problem

as a Markov Decision Process where the state of the system is represented by the net inven-

tory and the efficiency parameter. We show that a modified (Y, S , B) policy is optimal in each

period. At the end, we have some computational analysis to examine the effects of yield on

the optimal decisions.

Keywords: tactical inventory, production yield, dynamic programming
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ÖZ

ÖNGÖRÜLEBİLEN VERİM İLE ÇALIŞAN ÜRETİM SİSTEMLERİNDE TAKTİK
ENVANTER VE SONRADAN KARŞILAMA KARARLARI

Mart, Turgut

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Serhan Duran

Ortak Tez Yöneticisi : Yrd. Doç. Dr. İsmail Serdar Bakal

Mayıs 2010, 42 sayfa

Çalışmamızda öngörülebilir verimle çalışan ve rassal talep ile karşılaşan bir üretim sistemini

ele aldık. Bu sistemde üreticinin her periyot için belirli bir üretim kapasitesi ve önceden

belirlenmiş ürün fiyatları vardır. Ayrıca, üreticinin ürünlerini mevcut periyotta talep olsa dahi

ileriki periyotlarda kullanmak üzere saklama opsiyonu bulunmaktadır. Karşılanmayan talep

kaybedilmekte ya da yalnızca bir periyot için sonradan karşılanabilmektedir. Burada bizim

amacımız en iyi üretim, saklama ve sonradan karşılama miktarlarını seçerek beklenen karı

en yüksek değerine ulaştırmaktır. Bu problemi sistem parametreleri net envanter seviyesi ve

verim parametresi olan bir Markov Karar Süreci olarak tasarladık ve modifiye edilmiş (Y, S , B)

politikasının her periyot için optimal olduğunu gösterdik. Son olarak verimin modelimizi

nasıl etkilediğini göstermek için sayısal analizler yaptık.

Anahtar Kelimeler: taktik envanter, imalat verimi, dinamik programlama
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CHAPTER 1

INTRODUCTION

In modern production systems, due to highly competitive markets, it is extremely essential to

follow and optimize all stages of the production. From raw material to the final customer all

processes have to be designed very carefully. Hence, vast numbers of studies were conducted

on supply chain systems, many of which are about inventory control systems. Inventory re-

lated costs such as holding costs, lost sales etc. have a significant part in total costs explaining

the particular interest in inventory problems.

Demand uncertainty is one of the main problems faced in inventory systems. The trade off

is between lost (or backordered) sales and inventory holding costs. Almost all inventory

strategies are conducted to overcome this problem and minimize costs by controlling this

trade off. In traditional inventory control systems the producer meets the demand with all

products at hand. However, sometimes it may be more profitable not to sell all items at

hand and allow some lost sales. That is especially true for systems with varying prices and

production costs. In recent years, an alternative inventory control policy considering this fact

has been improved. This policy is mentioned as rationing. With this policy the producer

have the option to reserve some of the products for future periods even if there is any demand

at current period. Although there are lots of studies in supply chain and inventory control

literature, only a few of them are about systems with rationing. Almost none of these studies

considers production yield.

In this study we consider a system including a single item producer with production capacity

restrictions and one customer class. He has the option to save some inventory for future use

and backorder some demand to be met in the following period. The producer determines

the prices for each period at the beginning of time horizon. However, these prices are not
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known by the customers before the beginning of that period. Hence, the customers do not

act tactically. This is a general assumption considered in recent studies on rationing such

as Federgruen and Henching [7], Chen and Simchi Levi [3], Chan et al [2], Duran et al [5].

Different than the pervious studies, there is a predictable production yield rate in each period

in our study. In each period, the producer has to decide how much to produce, save and

backorder.

Our model may be adopted successfully for a production system with a new product intro-

duction. In such a system the producer is the only supplier and can decide prices over a time

horizon. There are no substitutes and customers may accept backordering. We limit the back-

order time as one period to simplify the problem. Also, the firm may reserve products for

future use if there are restrictions such as capacity deficiency. Change in the production yield

and production costs can be forecasted as they are affected by learning effect and seasonality.

In such a system production and inventory policies have to be decided. For a real life exam-

ple, consider the time Apple introduced i-phone to the market. Before the product launch, the

price and probably prices for the following few months were already decided by the firm. In-

troductory price was set to be a bit higher than the next period prices. That is because people

had waited for the product for months and they were much more eager to buy initially. Also,

they easily accepted backordering. It is obvious that customers will accept backordering up

to a specific time, for example one month. For the costs, we can say that the firm can forecast

the labor costs, electronic material costs etc. with past data sets. Lastly, the firm probably had

a production yield trend affected by learning effect like we have in our model.

Remainder of this study is organized as follows. In Chapter 2 we review the related literature

and discuss recent studies about rationing and yield. Then we present the notation and the

assumptions in Chapter 3. We present the profit-to-go function and elaborate this function.

In Sections 3.2 and 3.3, we discuss save inventory and backlog demand models respectively.

After that we conduct some numerical analysis in Chapter 4 and share some insights. Finally,

we present our findings briefly and give some extension ideas in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

In this chapter we present and discuss recent studies related to our study. We review the

literature in two main streams; discretionary sales and production yield.

2.1 Studies on Discretionary Sales

Although there are lots of studies conducted on inventory theory, only a few of them con-

siders discretionary sales. We review the literature and present the studies conducted on

discretionary sales below.

The earliest study considering discretionary sales is the work of Scarf [16]. Scarf [16] focuses

on an inventory planning problem in a multi-period, single-item production system with pro-

duction capacity limits and fixed production setup costs. He shows that the expected profit

functions with discretionary sales are K-concave and the optimal inventory policy is of (s, S )

type. He also demonstrates that the optimal discretionary sale amount is dependent on re-

alized demand. Hence, the producer has to wait for the demand realization before deciding

discretionary sales.

Chan et al [2] integrate pricing and production decisions in a multi-period, single-item sys-

tem with discretionary sales. As in Scarf [16], there is a production capacity limit for each

period and unsatisfied demand is assumed to be lost. In this study, customers are assumed

to act myopically, not strategically. The authors aim to maximize the total profit over a finite

horizon by focusing on partial planning strategies; delayed production strategy and delayed

pricing strategy. In the former strategy, the pricing decision is made at the beginning of the

time horizon and the production decision is made at the beginning of each period. In the sec-
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ond one, the production decision is made at the beginning of the time horizon. The delayed

production strategy is in our interest and it is highly related to Scarf [16]. Different than Scarf

[16], Chan et al [2] show that the optimal policy is independent of the realized demand and

initial inventory.

Duran et al [5] discuss inventory policies in a multi-period, single-item system with two cus-

tomer classes and rationing among these customer classes. Rationing may be considered as

a type of discretionary sales; the difference is that rationing also takes the customer classes

into account. In this paper, customer classes are differentiated according to their willingness

to pay and wait. There is a production capacity for each period and the unmet demand may

be backordered for one period. Prices are determined at the beginning of the horizon and

production decision is made in each period. The profit-to-go function over a finite horizon

problem is given and discussed in the paper. The authors show that a modified order-up-to

policy is optimal and backorder and reserve decisions are independent of the realized demand.

Hence, the manufacturer is able to decide the optimal reserve and backorder decisions before

demand realizations. A similar study is conducted in Duran et al [6] where customers differ

in their patience and one of the classes never accepts backlogging.

Yang et al [20] develop a game theoretic model in an EOQ system with one supplier and two

retailers facing demand uncertainty. The pricing, service level and lot sizing decisions are

considered together in this paper. The risk sensitivity of the retailers, production capacity

and holding costs complicate these decisions. The authors discuss the annual expected profit

and certainty equivalent functions and demonstrate the effects of environment change. In

this paper, it is shown that the expected profit is increasing in risk aversion and service level

investment.

Smith et al [17] consider a joint pricing and inventory planning problem in a multi-period,

single-item system with both capacity and inventory constraints. The authors aim to deter-

mine the optimal price, production quantity and sales amount for each period. First, the

problem is solved exactly with an exponential demand function for a single period using a

linear programming model. Then, with this exact solution, a dynamic programming solution

is developed to solve the multi-period model. This paper extends Chan et al [2] by solving

pricing and production problem simultaneously.

Yan and Liu [19] determine replenishment and discretionary sales jointly in a system with
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limited capacity, uncertain demand, lost sales and random yield. In this study stochastically

proportional yield is used. The objective is to minimize the total cost by choosing optimal re-

plenishment and discretionary sales policy. The authors show that the optimal ordering policy

is not a order-up-to, but a threshold type. They also compare the results under random yield

with those under certain yield for finite and infinite horizon problem and analyze the effects

of random yield on the optimal policies. They present that the reorder and the discretionary

sales points are smaller in systems with deterministic yield than those in systems with ran-

dom yield. This paper is highly related to our study. The main difference is that we consider

backordering in addition to lost sales. Also we show that a modified order-up-to policy is

optimal.

Since Scarf [16] introduced discretionary sales, not too many studies have been conducted on

this area. Chan et al [2] consider a special case of Scarf [16] and show the optimal policy is

independent of the realized demand. Duran et al [5] extend Chan et al [2] to a system with

two customer classes and backorder. Yan and Liu [19] include random production yield to the

problem with lost sales. Our study is highly related to this study. However, we assume that

unsatisfied demand can be backlogged and the yield is predictable. Our objective is to char-

acterize the optimal inventory policy and analyze how the optimal production, discretionary

sales and backorder decisions are affected by changes in production yield. We also aim to

provide managerial insights on our findings.

2.2 Studies on Production Yield

Production yield is an important issue in production planning and inventory control problems,

and studied extensively in literature. Yano and Lee [21] present a detailed literature review on

this area. They classify and describe the studies up to their time.

Henig and Gerchak [11] provide an extensive analysis of a periodic-review single-item pro-

duction system with stochastically proportional yield. The authors provide analysis of single

period, finite horizon and infinite horizon models, and show that the infinite horizon order

point is lower when yield is uncertain. They also show that the order point is independent of

yield in single period model. We have similar results indicating that the efficiency in current

period does not have impact on the optimal policy of the current period.

5



Wang and Gerchak [18] consider a production planning problem in a periodic review system

with unpredictable capacity, random yield and stochastic demand. The authors discuss simul-

taneous effects of both uncertain capacity and yield on the lot sizing decision. Their objective

is to minimize the expected costs and they show that the objective function is quasi-concave.

They prove that the optimal policy is characterized by a single reorder point in each period,

but is not of an order-up-to type.

Another study considering yield in a different setting is conducted by Gerchak and Grosfeld-

Nir [8]. They study the conformity yield of a product having multiple functionalities with dif-

ferent degrees of conformity to standards when demand is upward-substitutable. The authors

model the problem as a complex multiple-lot-sizing production-to-order problem. Expected

cost is modeled in dynamic programming and results of numerical examples are provided.

Hsu and Bassok [12] consider a system with n different products and n different customer

classes. The products are full downward substitutable and demand is stochastic. The system

has a random production yield with a continuous yield coefficient. Probability distributions of

the yield coefficients are known. Demand that is not filled is assumed to be lost. Production

and delivery lead times are assumed to be zero. The authors present the total profit function

and three methods to describe the optimal production decision that maximizes the total profit.

Bollapragada and Morton [1] present three heuristics to decide optimal inventory policy

in a single-item periodic review inventory model with stochastically proportional yield and

stochastic demand where unsatisfied demand is backlogged. They show that a myopic policy

is a good approximation to the optimal policy under fairly general conditions and give some

numerical results to show performances of their heuristics.

Duenyas and Tsai [4] consider a continuous review production system with stochastic de-

mand, stochastic production times and random production quality yield. There are two quality

classes. The quality of the end product is uncertain and the demand is downward substitutable.

However, the manufacturer has the option to refuse satisfying low class customers with high

quality goods. The problem is modeled as a Markov Decision Process in the context of a sim-

ple M/M/2, make-to-stock queue with multiple customer classes, and a heuristic is proposed

and numerical analysis is made to test this heuristic.

Grosfeld-Nir et al [9] include inspection costs to a “multiple lot sizing production to order”
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model with random production yield. The problem is to minimize the total costs by optimizing

lot sizing and inspection simultaneously. Three yield patterns are considered; binomial yield,

interrupted geometric yield, discrete uniform yield. The authors show that the lot size with

costly inspection is smaller than the one with free inspection. They also show that the lot

size is independent of inspection costs when yield is binomial, and decreasing in the unit

inspection cost for other yield patterns.

Kazaz [13] adopts the production planning problem with random yield to the agriculture in-

dustry in the context of olive oil production. A two stage decision making process is consid-

ered, growing season and selling season. Demand and yield uncertainty are the main problems

considered in the paper.

Gupta and Cooper [10] use a stochastically proportional yield rate model and show that a

stochastic improvement on yield rate is not always advantageous. To support this idea, the

authors employ stochastic comparison techniques. They provide distribution free bounds on

the expected profit in a single period problem and identify properties of yield rate distribu-

tions.

Li and Zheng [14] extend combined pricing and inventory control problems to systems with

random yield. A single-item, periodic review model is considered in this paper. Demand is

independent and price sensitive. Unsatisfied demand is fully backlogged. Production yield

is uncertain and a stochastically proportional yield model is used. The aim of the paper is to

find optimal dynamic policies that simultaneously determine the production quality and price

in each period. The authors explore the operational effects of uncertain yield on the optimal

policy and value function. They show that the order threshold is higher in a system with

uncertain yield in the multi-period case.

Li et al [15] discuss on infinite horizon decision problem in a single-stage, single-item, peri-

odic review system. Production yield and demand are uncertain in the system. The authors

derive bounds for both the optimal order quantities and order threshold, and then develop

a heuristic based on these bounds. In this paper, again stochastically proportional yield is

used, and purchasing cost is charged only to the successful units produced and the unsatisfied

demand is backlogged.

There are various studies on production yield in production systems. However to the best of

7



our knowledge none of them except Yan and Liu [19] considers discretionary sales which is

discussed in Section 2.1. Another important point is that most of the studies use stochastically

proportional yield. Hence, we use stochastically proportional production yield in our study.
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CHAPTER 3

MODEL ASSUMPTIONS AND DESCRIPTION

We focus on a single product sold at a single manufacturer over a multi-period time horizon,

where the manufacturer has limited production capacity in each period. The manufacturer

serves a single customer class and makes decisions over a multi-period time horizon, t =

1, 2, . . . ,T , with T representing the end of the horizon. Production in each period t is limited

by the capacity, qt, and the manufacturer pays a production cost per each produced unit of

kt. Inventory holding cost is linear, and a charge per unit, ht+1, is assessed to carry inventory

from period t to t + 1.

The manufacturer has predetermined prices, pt, that may be different in each period. This is a

realistic assumption because separation of pricing and production decisions is very common in

current practice. In some companies, pricing decisions are given by the marketing department

before the start of a selling season, while production decisions are given by the operations

department.

The penalty cost per unit of demand that is rejected and lost is `t. We define the net revenue

of selling to a customer from current inventory as pt + ht+1 + `t. Here the producer gains

revenue from sold item and saves holding cost of the item and lost sale cost. Manufacturer

also has the option of backordering the demand in current period to be (definitely) satisfied

in the following period. βt is the penalty cost per unit of demand that is backlogged at period

t. Therefore the net revenue from backlogging a unit demand at period t is pt + `t − βt.

Demand function is a general non-stationary stochastic function, dt, with known probability

and cumulative distribution functions ψt and Ψt, respectively. We assume that the demand

function in each period is continuous and differentiable, but no other assumptions are made

on the shape of the demand function, so a wide variety of demand models could be used.
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Production is a decision made at the beginning of each period and the production leadtime

is zero. The net inventory (on hand inventory - backlogs) at the beginning of period t is It,

and let Y t represent the inventory plus successful production in period t in the presence of an

efficiency parameter εt.

The sequence of events in every period is as follows. At the beginning of a period, the manu-

facturer checks the net inventory level It and decides the production quantity. Products arrive

immediately, but only a fraction (εt) of them is successful production. Then the demand in

the current period is revealed and the manufacturer decides the amount to reserve from the

demand, S t, and the amount to promise for sale in the following period, Bt. The demand is

satisfied according to the Y t, S t, and Bt values. The notations that we defined so far is pro-

vided in Table 3.1 for ease of reference. We model the problem as a Markov decision process,

Table 3.1: Notation

qt Production capacity at period t
pt Unit selling price at period t
kt Production cost per produced unit for period t
ht+1 Holding cost per unit for period t
υ Salvage value of any item left at the end of the horizon
`t Lost sale cost for period t
βt Penalty cost per unit of demand that is backlogged at period t
dt Random demand for period t
εt Efficiency parameter at period t
It Net inventory at the beginning of period t
Y t Inventory after backorders are satisfied and production is realized at period t
S t Max. amount of inventory to reserve in period t
Bt Max. amount of demand to be backlogged in period t
Jt(It, εt) Expected profit from period t to the end of the horizon
Gt(Y t) Expected profit-to-go with Y t units of product available after production
At Realized backorder amount at period t

where the state of the system is represented by the net inventory and the efficiency parameter.

For clarity of exposition, we present the model with the S t and Bt decisions given ex ante.

However, in our analysis we show that the optimal (S t, Bt) decision is the same whether they

are made before or after demand revelation.
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3.1 Base Model

Let Jt(It, εt) be the total expected profit from period t to the end of the horizon, or the profit-

to-go with the efficiency parameter εt. Let Gt(Y t) be the expected profit-to-go with Y t units of

product available after production. We can now write the optimal expected profit in period t

and onward for the problem as the following recursive equation.

Jt(It, εt) = max
Y t:max{0,It}≤Y t≤It+εtqt

[−kt

εt
(Y t − It) + Gt(Y t)] (3.1)

Gt(Yt) = max
S t:0≤S t≤Yt, Bt:0≤Bt≤εt+1qt+1

{∫ [
pt(min(dt, Yt − S t + Bt))

− ht+1(S t + max(0,Yt − S t − dt))

− `t max(0, [dt − Yt − S t − Bt]) − βt min([dt − Yt + S t]+, Bt)

+ Jt+1(S t − Bt + max(0,Yt − S t − dt + Bt), εt+1)
]
dΨt(dt)

}
(3.2)

In Equation (3.1), the objective is to maximize the profit by the production decision. The

produce-up-to level Yt is greater than or equal to max{0, It} since backorders need to be fully

satisfied at the current period and less than or equal to It + εtqt since the production is limited

by the capacity and the efficiency parameter. The first term is the production cost, that is

charged to all produced products. Next term is the profit-to-go function of the remainder from

the horizon with the inventory after the backorders are satisfied and the production is realized.

In Equation (3.2), the profit-to-go function is maximized over the reserve and backorder deci-

sions. The constraints ensure that the reserve decision can not be greater than the inventory at

hand and no more than the capacity times the efficiency factor of the following period can be

backlogged. The first term is the revenue from both sold and backlogged items. The second

item is the inventory holding cost of the items reserved and the items that are not sold. Next

term is the lost sale cost incurred from the demand that is neither satisfied nor backlogged.

The fourth term is the penalty cost to be paid for the backlogged demand. Finally, the last

term is the maximum expected profit in future periods with the available inventory. In the last

period, when t = T , Jt+1 is replaced by υ(Yt − dt)+ which is the salvage revenue.

According to this model at each period the manufacturer have to decide the amount of items

to reserve and the amount of demand to backorder. This is not an easy problem to solve,

however we show that in an optimal policy for a period at least one of these decisions must

be zero.
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Lemma 3.1.1 In an optimal policy, S t . Bt = 0 for any t = 1, 2, . . . ,T.

That means if it is good to reserve some items in a period, it is not reasonable to backorder

items at the same period or the opposite. We will use contradiction to prove this.

Proof. Assume that there is an optimal solution, (S t, Bt), where both S t > 0 and Bt > 0. We

will show that there exists an alternate policy that is at least as good as and sometimes better

than the “optimal” solution. Let Vt and V
′
t be the expected profit starting from period t under

the optimal policy and the alternate policy, respectively. We will consider two main market

environments;

1) current net revenue from selling out of inventory > future marginal expected profit,

2) current net revenue from backlogging < future marginal expected profit.

Case 1: Since current net revenue from selling out of inventory is bigger than future marginal

expected profit, we do not have a motivation to reserve items to sell in the following periods,

thus the alternate policy is chosen to be reserving one less item. We can represent the alternate

policy as (S t − 1, Bt).

• When dt < Y t − S t

Vt = ptdt − ht+1(Yt − dt) + Jt+1(Y t − dt, εt+1)

V
′
t = ptdt − ht+1(Yt − dt) + Jt+1(Y t − dt, εt+1) = Vt,

• When Y t − S t ≤ dt < Y t − S t + Bt

Vt = ptdt − ht+1S t − βt(dt − (Y t − S t)) + Jt+1(Y t − dt, εt+1)

V
′
t = ptdt − ht+1(S t − 1) − βt(dt − Y t + (S t − 1)) + Jt+1(Y t − dt, εt+1)

= Vt + ht+1 + βt > Vt,

• When dt ≥ Y t − S t + Bt

Vt = pt(Y t − S t + Bt) − ht+1S t − `t(dt − Y t + S t − Bt) − βtBt + Jt+1(S t − Bt, εt+1)

V
′
t = pt(Y t − (S t − 1) + Bt) − ht+1(S t − 1) − `t(dt − Y t + (S t − 1) − Bt) − βtBt

+ Jt+1(S t − 1 − Bt, εt+1)

= Vt + (pt + ht+1 + `t) −
[
Jt+1(S t − Bt, εt+1) − Jt+1(S t − Bt − 1, εt+1)

]
> Vt.
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Case 2: Since current net revenue from backlogging is smaller than future marginal expected

profit, we do not have a motivation to backorder items to sell the future capacity in period

t, thus the alternate policy is chosen to be backordering one less item. We can represent the

alternate policy as (S t, Bt − 1).

• When dt < Y t − S t

Vt = ptdt − ht+1(Yt − dt) + Jt+1(Yt − dt, εt+1)

V
′
t = ptdt − ht+1(Yt − dt) + Jt+1(Yt − dt, εt+1) = Vt,

• When Y t − S t ≤ dt < Y t − S t + Bt

Vt = ptdt − ht+1S t − βt(dt − (Y t − S t)) + Jt+1(Y t − dt, εt+1)

V
′
t = ptdt − ht+1S t − βt(dt − (Y t − S t)) + Jt+1(Y t − dt, εt+1) = Vt,

• When dt ≥ Y t − S t + Bt

Vt = pt(Y t − S t + Bt) − ht+1S t − `t(dt − Y t + S t − Bt) − βtBt + Jt+1(S t − Bt, εt+1)

V
′
t = pt(Y t − S t + (Bt − 1)) − ht+1S t − `t(dt − Y t + S t − (Bt − 1)) − βt(Bt − 1)

+ Jt+1(S t − (Bt − 1), εt+1)

= Vt +
[
Jt+1(S t − Bt + 1, εt+1) − Jt+1(S t − Bt, εt+1)

]
− (pt + `t − βt) > Vt.

For all cases we have the same or better performance from the alternate policy. Then the

policy with both decisions positive can not be optimal, at least one of them must be zero. ¥

By Lemma 3.1.1, the problem can be simplified into two candidate policies, GS
t (Yt) and

GB
t (Yt), where, GS

t (Yt) is the “save-inventory” policy with positive S t value and GB
t (Yt) is

the “backlog-demand” policy with positive Bt value. Then the base problem can be rewritten

as

Gt(Yt) = max{GS
t (Yt),GB

t (Yt)}.

This simplification means that the better policy among those two policies will be chosen in

each period. The result that is proven formally is also true intuitively. It is better to choose the

save-inventory policy in an environment where the marginal expected profit from selling each

reserved item in the following period is greater than the net revenue from selling each item in
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the current period. For example, in a system with prices increasing by periods save inventory

policy is better. Because selling an item in future is more profitable. On the other hand,

when the net revenue of backlogging an item is greater than the marginal expected profit from

selling an item in the following period, the backlog-demand policy is the best one to choose.

A system with prices decreasing by periods would be a good candidate for this situation.

(a) Yt
∗

Decision (b) S ∗t Decision

(c) B∗t Decision

Figure 3.1: Optimal Unconstrained Decisions

In Sections 3.2 and 3.3, we will prove some structural (e.g. concave, non-increasing, etc.)

properties of the profit-to-go functions. The decision variables Yt, S t and Bt are all constrained

variables and they are limited by parameters and state variables of period t as seen in Equations

(3.1) and (3.2). But if we let Yt
∗
, S ∗t and B∗t to be the unconstrained optimal decisions and
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define them as;

Yt
∗

= max{Y : kt
εt
≤ ∂Gt(Y)

∂Y

}
i f kt

εt
≤ ∂Gt(0)

∂Y
,

S ∗t = max{I : pt + ht+1 + `t ≤ ∂Jt+1(I,εt+1)
∂I } i f pt + `t + ht+1 <

∂Jt+1(0,εt+1)
∂I ,

B∗t = min{I : pt + `t − βt ≤ ∂Jt+1(−I,εt+1)
∂I } i f pt + `t − βt >

∂Jt+1(0,εt+1)
∂I

where the decisions are zero if the corresponding conditions are not satisfied, we will be able

to prove the desired structural properties of the policies. Unconstrained optimal decisions and

how they are determined are illustrated in Figure 3.1.

Note that the choice of Yt
∗

decision can easily be verified by taking derivative of unconstrained

Equation (3.1) with respect to Yt. However the verification for S ∗t and B∗t decisions are not

trivial. But we can observe that when pt + `t + ht+1 (net revenue from selling out of inventory)

crosses the marginal expected profit curve in period t + 1 (∂Jt+1(I,εt+1)
∂I ) at a positive I value, we

have a positive S ∗t value but since pt + `t + ht+1 > pt + `t − βt, we have B∗t = 0. Similarly,

when pt + `t − βt crosses the the marginal expected profit curve in period t + 1 at a negative

I value, we have a positive B∗t decision but a zero S ∗t value. These relations comply with

Lemma 3.1.1 and verify the choice of S ∗t and B∗ decisions. Now we can discuss the two

models representing these two candidate policies.

3.2 Save-Inventory Policy

For the save-inventory policy, the optimal expected profit can be written as;

GS
t (Yt) = max

S t:0≤S t≤Yt

{∫ [
pt(min(dt, Yt − S t)) − ht+1(S t + max(0,Yt − S t − dt))

− `t max(0, [dt − Yt − S t]) + Jt+1(S t + max(0, Yt − S t − dt), εt+1)
]
dΨt(dt)

}
(3.3)

=

Yt−S t∫

0

pt xdΨt(x) +

∞∫

Yt−S t

pt(Yt − S t)dΨt(x) − `t

∞∫

Yt−S t

(x − (Yt − S t))dΨt(x)

+

Yt−S t∫

0

[
Jt+1(Yt − x, εt+1) − (Yt − x)ht+1

]
dΨt(x) +

∞∫

Yt−S t

[
Jt+1(S t, εt+1) − S tht+1

]
dΨt(x).

In Equation (3.3) the profit-to-go function is maximized over the reserve decision. It is a

simpler version of Equation (3.2) since there is only one decision to be considered in this

equation. The constraint ensures that reserve decision can not be more than the inventory

level after the production realization and can not take a negative value. The first term in the
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equation is the revenue gained from sold items. The producer reserves S t items for future

periods, and makes the remaining items on hand (Yt − S t) available to the customers in period

t. Obviously the producer can not sell more than the current demand. The second term is the

inventory holding cost to be paid for reserved items and items that are not sold. Next term

is the lost sale cost from unsatisfied demand. Last term is the maximum expected profit in

future periods with the available inventory. This term is replaced with salvage revenue in the

last period.

It is important to note that we start period t with It units and then decide Yt, which is limited

by It + εtqt. Therefore GS
t is independent of the εt. Next we will show that the profit-to-go

functions are concave and the optimal decisions are not dependent on the current period’s

efficiency parameter.

Theorem 3.2.1 For the profit-to-go functions,

• ∂GS
t (Yt)
∂Yt

is non-increasing in Y t and GS
t (Yt) is concave in Y t,

• ∂Jt(It ,εt)
∂It

is non-increasing in It and Jt(It, εt) is concave in It,

• for any (ε1
t , ε

2
t ) pair; Y

∗ε1
t

t = Y
∗ε2

t
t (∂

2GS
t (It)

∂It∂εt
= 0),

• for any (ε1
t , ε

2
t ) pair; S ∗ε

1
t

t = S ∗ε
2
t

t (∂
2 Jt+1(It+1,εt+1)
∂It+1∂εt

= 0).

Proof. We use induction for this proof. We first focus on GS
t (Yt) and start with period T .

Obviously S T = 0, and JT+1(·, ·) = 0 since there is not any meaningful decision in last period.

We see from Equation 3.3 that,

GS
T (YT ) =

YT∫

0

pT xdΨT (x) +

∞∫

YT

pT (YT )dΨT (x) + υ

YT∫

0

(YT − x)dΨT (x) − `T

∞∫

YT

(x − YT )dΨT (x)

where υ is the salvage value per item at the end of the horizon. Using Leibnitz’s rule we

obtain,

∂GS
T (YT )

∂YT
= pT (1 − ΨT (YT )) + `T (1 − ΨT (YT )) + υΨT (YT ),

∂2GS
T (YT )

∂Y
2
T

= (υ − `T − pT )ψT (YT )

16



Since by the assumption pT + `T > υ,
∂2GS

T (YT )

∂Y
2
T

≤ 0 Therefore GS
T (YT ) is concave in YT and

∂GS
T (YT )

∂YT
is non-increasing in YT .

Now we show that JT (IT , εT ) is concave. Define Y
∗
T as 0 if kT

εT
>

∂GS
T (0)

∂YT
, otherwise as max

{
Y :

kT
εT
≤ ∂GS

T (Y)

∂Y

}
. Because GS

T (YT ) is concave in YT and by the choice of Y
∗
T , Y

∗
T maximizes

JT (IT , εT ) with production realization of max{εT qT , (Y
∗
T − IT )}. Hence,

JT (IT , εT ) =



−kT qT + GS
T (IT + εT qT ) i f IT ≤ Y

∗
T − εT qT

−kT (Y
∗
T − IT ) + GS

T (Y
∗
T ) i f Y

∗
T − εT qT < IT ≤ Y

∗
T

GS
T (IT ) i f Y

∗
T < IT .

Therefore,

∂JT (IT , εT )
∂IT

=



∂GS
T (IT +εT qT )
∂IT

≥ kT
εT

i f IT ≤ Y
∗
T − εT qT

kT
εT

i f Y
∗
T − εT qT < IT ≤ Y

∗
T

∂GS
T (IT )
∂IT

≤ kT
εT

i f Y
∗
T < IT .

(3.4)

The two inequalities in Equation 3.4 hold due to the choice of Y
∗
T decision. Since

∂GS
T (YT )

∂YT
is

non-increasing in YT , ∂JT (IT ,εT )
∂IT

is also non-increasing in IT and JT (IT , εT ) is concave in IT . It

is seen that ∂JT (IT ,εT )
∂IT

is biggest when IT is small (≥ kT
εT

) then decreases as IT increases. Thus,
∂JT (IT ,εT )

∂IT
is non-increasing and JT (IT , εT ) is concave for all IT values.

Also noting that
∂GS

T (YT )

∂YT
is independent of εT , for any (ε1

T , ε
2
T ) pair, we have Y

∗ε1
T

T = Y
∗ε2

T
T , and

S
∗ε1

T
T = S

∗ε2
T

T = 0.

Now assume that
∂GS

t−1(Y t−1)

∂Y t−1
is non-increasing and JT (IT , εT ) is concave for period t = t...T , we

show that GS
t−1(Y t−1) is non-increasing. We have two GS

t−1(Y t−1) equations for the following

cases,

• Case 1: When Y t−1 ≤ S ∗εt−1
t−1 :

GS
t−1(Y t−1) =

[
Jt(Y t−1, εt) − Y t−1ht

] − `t−1

∞∫

0

xdΨt−1(x)

∂GS
t−1(Y t−1)

∂Y t−1
=

∂Jt(Y t−1, εt)

∂Y t−1
− ht

∂2GS
t−1(Y t−1)

∂Y
2
t−1

=
∂2Jt(Y t−1, εt)

∂Y
2
t−1

≤ 0 (due to induction hypothesis)
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• Case 2: When Y t−1 > S ∗εt−1
t−1 :

∂GS
t−1(Y t−1)

∂Y t−1
=

∞∫

Y t−1−S ∗t−1

(pt−1 + `t−1)dΨt−1(x) +

Y t−1−S ∗t−1∫

0

[∂Jt(Y t−1 − x, εt)

∂Y t−1
− ht

]
dΨt−1(x)

∂2GS
t−1(Y t−1)

∂Y
2
t−1

=
[∂Jt(S ∗t−1, εt)

∂Y t−1
− (pt−1 + ht + `t−1)

]
ψt−1(Y t−1 − S ∗t−1)

+

Y t−1−S ∗t−1∫

0

∂2Jt(Y t−1 − x, εt)

∂Y
2
t−1

dΨt(x) ≤ 0

Inequality is due to the induction hypothesis and the choice of S ∗εt−1
t−1 decision; which is 0 if

pt−1 + ht + `t−1 >
∂Jt(0,εt)

∂I , otherwise is equal to max{I : pt−1 + ht + `t−1 ≤ ∂Jt(I,εt)
∂I }. Thus,

∂GS
t−1(Y t−1)

∂Y t−1
is non-increasing in Y t−1, and GS

t−1(Y t−1) is concave in Y t−1.

Now define Y
∗
t−1 as 0 if kt−1

εt−1
>

∂GS
t−1(0)

∂Y t−1
, otherwise as max

{
Y : kt−1

εt−1
≤ ∂GS

t−1(Y)

∂Y

}
. Because

GS
t−1(Y t−1) is concave in Y t−1 and by the choice of Y

∗
t−1, Y

∗
t−1 maximizes Jt−1(It−1, εt−1) with

production realization of max{εt−1qt−1, (Y
∗
t−1 − It−1)}. Hence,

∂Jt−1(It−1, εt−1)
∂It−1

=



∂GS
t−1(It−1+εt−1qt−1)

∂It−1
≥ kt−1

εt−1
i f It−1 ≤ Y

∗
t−1 − εt−1qt−1

kt−1
εt−1

i f Y
∗
t−1 − εt−1qt−1 < It−1 ≤ Y

∗
t−1

∂GS
t−1(It−1)
∂It−1

≤ kt−1
εt−1

i f Y
∗
t−1 < It−1.

(3.5)

The two inequalities in Equation 3.5 hold due to the choice of Y
∗
t−1 decision. Since

∂GS
t−1(Y t−1)

∂Y t−1

is non-increasing in Y t−1, ∂Jt−1(It−1,εt−1)
∂It−1

is also non-increasing in It−1 and Jt−1(It−1, εt−1) is

concave in It−1. This is true for all It−1 values as mentioned before.

Again, we see that
∂GS

t−1(Y t−1)

∂Y t−1
is independent of εt−1, for any (ε1

t−1, ε
2
t−1) pair, we have Y

∗ε1
t−1

t−1 =

Y
∗ε2

t−1
t−1 .

Similarly, to see whether S
∗ε1

t−1
t−1 = S

∗ε2
t−1

t−1 or not, we need to check if ∂Jt(It ,εt)
∂It

depends on εt−1

for any It. We have

∂2Jt(It, εt)
∂It∂εt−1

=



∂2GS
t (It+εtqt)
∂It∂εt−1

= 0 i f It + εtqt ≤ Y
∗
t

0 i f Y
∗
t < It + εtqt,

since for period t, we have,
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• Case 1: When It + εtqt ≤ S ∗εt
t :

GS
t (It + εtqt) =

[
Jt+1(It + εtqt, εt+1) − (It + εtqt)ht+1

] − `t

∞∫

0

xdΨt(x)

∂GS
t (It + εtqt)
∂It

=
∂Jt+1(It + εtqt, εt+1)

∂It
− ht+1

∂2GS
t (It + εtqt)
∂It∂εt−1

= 0

• Case 2: When It + εtqt > S ∗εt
t :

∂GS
t (It + εtqt)
∂It

=

∞∫

It+εtqt−S ∗t

(pt + `t)dΨt(x)

+

It+εtqt−S ∗t∫

0

[∂Jt+1(It + εtqt − x, εt+1)
∂It

− ht+1
]
dΨt(x)

∂2GS
t (It + εtqt)
∂It∂εt−1

= 0

Thus ∂Jt(It,εt)
∂It

does not depend on εt−1 and S
∗ε1

t−1
t−1 = S

∗ε2
t−1

t−1 ¥

We show in Theorem 3.2.1 that the optimal unconstrained reserve and production decisions in

Save-Inventory policy are independent of the current period’s efficiency parameter and current

demand. It is intuitively true, because the efficiency parameter is known at the beginning of

the period and the producer takes this value into consideration. The producer would change

the production amount to compensate the change in the efficiency parameter. Hence, as we

assumed, the producer can decide the optimal policy at the beginning of each period before

demand and production realization. Theorem 3.2.1 implies the optimal policy for the Save-

Inventory policy; thus we have the following corollary.

Corollary 3.2.2 Given a vector of prices, there exists an optimal modified base stock policy

for the Save-Inventory policy with an optimal reserve-up-to level (S ∗t ) and optimal produce-

up-to level (Y
∗
t ).

In an optimal policy, the realized production level (Y t) and reserve (S t) decisions may not be

equal to the optimal produce-up-to (Y
∗
t ) and the optimal reserve-up-to (S ∗t ) levels. Capacity

and efficiency parameter may limit the production and if it is not possible to produce up to

(Y
∗
t ) then the producer should produce as much as possible. Similarly the (S t) decision is
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limited by (Y t). If there is not enough inventory on hand to reserve (S ∗t ) units then as much

units as possible should be reserved. Next, we discuss how decisions in period t changes with

εt+1.

Theorem 3.2.3 Under the save-inventory policy

• ∂2GS
t (Y t)

∂Y t∂εt+1
≤ 0 ∀Y t and Y

∗
t decision is non-increasing in εt+1.

• ∂2 Jt+1(It+1,εt+1)
∂It+1∂εt+1

≤ 0 ∀It+1 and S
∗
t decision is non-increasing in εt+1.

Proof. We will show that ∂GS
t (Y t)
∂Y t

and ∂Jt+1(It+1,εt+1)
∂It+1

curves are never shifting upwards (for any

It+1 or Y t value, respectively) as εt+1 increases. Figure 3.2 depicts that when this is the case,

both Y
∗
t and S

∗
t decisions are non-increasing in εt+1.

(a) Change in Yt
∗

Decision (b) Change in S ∗t Decision

Figure 3.2: εt+1 effect on decisions in period t under Save-Inventory Policy

We use induction for this proof. First we focus on GS
T (IT + εT qT ) and period T − 1

GS
T (IT + εT qT ) =

IT +εT qT∫

0

pT xdΨT (x) +

∞∫

IT +εT qT

pT (IT + εT qT )dΨT (x)

+ υ

IT +εT qT∫

0

(IT + εT qT − x)dΨT (x) − `T

∞∫

IT +εT qT

(x − IT − εT qT )dΨT (x)

then we obtain,

∂GS
T (IT + εT qT )

∂IT
= (pT + `T )(1 − ΨT (IT + εT qT )) + υΨT (IT + εT qT )

∂2GS
T (IT + εT qT )
∂IT∂εT

= qT (υ − pT − `T )ψT (IT + qTεT ) < 0 ∀IT . (∗)
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The inequality is true since pT + `T > υ by assumption. Then,

∂2JT (IT , εT )
∂IT∂εT

=



∂2GS
T (IT +εT qT )
∂IT∂εT

< 0 ( f rom ∗) i f IT ≤ Y
∗
T − εT qT

− kT
ε2

T
< 0 i f Y

∗
T − εT qT < IT ≤ Y

∗
T

∂2GS
T (IT )

∂IT∂εT
= 0 i f Y

∗
T < IT .

(∗∗)

Therefore, as IT increases, the reserve-up-to decision S ∗εT−1
T−1 first decreases (where 0 ≤ IT ≤

Y
∗
T ) and then remains unchanged. Moreover, there are two cases considered for the GS

T−1(YT−1)

function. We present derivatives of the function below;

• Case 1: When YT−1 ≤ S ∗εT−1
T−1 :

GS
T−1(YT−1) =

[
JT (YT−1, εT ) − YT−1hT

] − `T−1

∞∫

0

xdΨT−1(x)

∂GS
T−1(YT−1)

∂Y t−1
=

∂JT (YT−1, εT )

∂YT−1
− hT

∂2GS
T−1(YT−1)

∂YT−1∂εT
=

∂2JT (YT−1, εT )

∂YT−1∂εT
≤ 0 due to (∗∗).

• Case 2: When YT−1 > S ∗εT−1
T−1 :

∂GS
T−1(YT−1)

∂YT−1
=

∞∫

YT−1−S ∗T−1

(pT−1 + `T−1)dΨT−1(x)

+

YT−1−S ∗T−1∫

0

[∂JT (YT−1 − x, εT )

∂YT−1
− hT

]
dΨT−1(x)

∂2GS
T−1(YT−1)

∂YT−1∂εT
=

[
(pT−1 + hT + `T−1) − ∂JT (S ∗T−1, εT )

∂YT−1

]
ψT−1(YT−1 − S ∗T−1)

∂S ∗T−1

∂εT

+

YT−1−S ∗T−1∫

0

∂2Jt(YT−1 − x, εT )

∂YT−1∂εT
dΨT (x) ≤ 0 due to (∗∗) and S ∗T−1 decision.

Now for periods up to t − 1, assume,

∂2GS
t (It + εtqt)
∂It∂εt

< 0 ∀It. (∗ ∗ ∗)

Then we have,

∂2Jt(It, εt)
∂It∂εt

=



∂2GS
t (It+εtqt)
∂It∂εt

< 0 ( f rom ∗ ∗∗) i f It ≤ Y
∗
t − εtqt

− kt
εt
< 0 i f Y

∗
t − εtqt < It ≤ Y

∗
t

∂2GS
t (It)

∂It∂εt
= 0 i f Y

∗
t < It.

(∗ ∗ ∗∗)
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Moreover,

∂2GS
t−1(Y t−1)

∂Y t−1∂εt
=



∂2 Jt(Y t−1,εt)
∂Y t−1∂εt

≤ 0 i f Y t−1 ≤ S ∗t−1
Y t−1−S ∗t−1∫

0

∂2Jt(Y t−1 − x, εt)

∂Y t−1∂εt
≤ 0 otherwise

due to (∗ ∗ ∗∗).

To complete the proof it is enough to check whether

∂2GS
t−1(It−1 + εt−1qt−1)
∂It−1∂εt−1

< 0 ∀It−1

holds for period t − 2 or not. We have two cases;

• Case 1: When It−1 + εt−1qt−1 ≤ S ∗εt−1
t−1 :

GS
t−1(It−1 + εt−1qt−1) =

[
Jt(It−1 + εt−1qt−1, εt) − (It−1 + εt−1qt−1)ht

] − `t−1

∞∫

0

xdΨt−1(x)

then we obtain,

∂GS
t−1(It−1 + εt−1qt−1)

∂It−1
=

∂Jt(It−1 + εt−1qt−1, εt)
∂It−1

− ht

∂2GS
t−1(It−1 + εt−1qt−1)
∂It−1∂εt−1

=
∂2Jt(It−1 + εt−1qt−1, εt)

∂It−1∂εt−1
,

where

Jt(It−1 + εt−1qt−1, εt) =



ktqt + GS
t (It−1 + εt−1qt−1 + εtqt) i f It−1 + εt−1qt−1 ≤ Y

∗
t − εtqt

− kt
εt

(Y
∗
t − It−1 − εt−1qt−1) + GS

t (Yt
∗
) otherwise

GS
t (It−1 + εt−1qt−1) i f Y

∗
t < It−1 + εt−1qt−1

and,

∂2Jt(It−1 + εt−1qt−1, εt)
∂It−1∂εt−1

=



∂2GS
t (It−1+εt−1qt−1+εtqt)

∂It−1∂εt−1
< 0 i f It−1 + εt−1qt−1 ≤ Y

∗
t − εtqt

0 otherwise
∂2GS

t (It−1+εt−1qt−1)
∂It−1∂εt−1

< 0 i f Y
∗
t < It−1 + εt−1qt−1

f rom (∗ ∗ ∗).

• Case 2: When It−1 + εt−1qt−1 > S ∗εt−1
t−1 :

∂GS
t−1(It−1 + εt−1qt−1)

∂It−1
=

∞∫

It−1+εt−1qt−1−S ∗t−1

(pt−1 + `t−1)dΨt−1(x)

+

It−1+εt−1qt−1−S ∗t−1∫

0

[∂Jt(It−1 + εt−1qt−1 − x, εt)
∂It−1

− ht
]
dΨt−1(x)
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∂2GS
t−1(It−1 + εt−1qt−1)
∂It−1∂εt−1

= (qt−1 −
∂S ∗t−1

∂εt
)
(∂Jt(S ∗t−1, εt)

∂It−1
− (pt−1 + `t−1 + ht)

)
ψt−1(It−1 + εt−1qt−1 − S ∗t−1)

+

It−1+εt−1qt−1−S ∗t−1∫

0

∂2Jt(It−1 + εt−1qt−1 − x, εt)
∂It−1∂εt−1

dΨt−1(x) ≤ 0.

Therefore it holds. ¥

In this theorem we present that in Save-Inventory policy the current decisions are effected

by the efficiency parameter of the future periods. Initial inventory of the following period

is determined by current decisions and change in future periods effects the current decisions

because of the demand uncertainty. As efficiency parameter of the future periods increases

the producer can produce more in these periods and reserves less inventory to avoid holding

cost and lost sale cost. Therefore, there would be a lower S ∗t value.

3.3 Backlog-Demand Policy

Next model to consider is the model with positive Bt value. In this policy reserve-up-to

decision S t is zero and there will be a positive backorder-up-to decision Bt. The profit-to-go

function will be as the following;

GB
t (Yt) = max

Bt:0≤Bt≤ εt+1qt+1

{∫ [
pt(min(dt, Yt + Bt)) − ht+1(Yt − dt)+

− `t[dt − (Yt + Bt)]+ − βtAt + Jt+1((Yt − dt)+ − At, εt+1)
]
dΨt(dt)

}
(3.6)

=

Yt+B∗t∫

0

pt xdΨt(x) +

∞∫

Yt+B∗t

pt(Yt + B∗t )dΨt(x) − `t

∞∫

Yt+B∗t

(x − (Yt + B∗t ))dΨt(x)

− βt

Yt+B∗t∫

Yt

(x − Yt)dΨt(x) − βt

∞∫

Yt+B∗t

B∗t dΨt(x) − ht

Yt∫

0

(
Yt − x)dΨt(x)

+

Yt+B∗t∫

0

Jt+1(Yt − x, εt+1)dΨt(x) +

∞∫

Yt+B∗t

Jt+1(−B∗t , εt+1)dΨt(x)

The profit-to-go function is maximized over the backorder decision in Equation (3.6). The

constraint means that the back-order amount is limited by the efficiency parameter and the

capacity of the following period. The first term in the equation is the revenue from the sold
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products and backlogged demand. The second term is again the inventory holding cost and the

third one is the penalty cost to be paid for unsatisfied demand due to capacity and efficiency

restrictions. Next term where At = min([dt−Yt]+, Bt) is the realized backlogged demand. The

last term is same as in the previous equations, the maximum expected profit in future periods

with the available inventory which is replaced with salvage revenue in period T .

In backlog demand policy we have a similar theorem with the one in Save-Inventory policy.

Theorem 3.3.1 For the profit-to-go functions,

• ∂GB
t (Yt)
∂Yt

is non-increasing in Y t and GB
t (Yt) is concave in Y t,

• ∂Jt(It ,εt)
∂It

is non-increasing in It and Jt(It, εt) is concave in It,

• for any (ε1
t , ε

2
t ) pair; Y

∗ε1
t

t = Y
∗ε2

t
t (∂

2GB
t (It)

∂It∂εt
= 0),

• for any (ε1
t , ε

2
t ) pair; B∗ε

1
t

t = B∗ε
2
t

t (∂
2 Jt+1(It+1,εt+1)
∂It+1∂εt

= 0).

Proof. We follow a similar way in this proof. First, we consider GB
T (YT ). Obviously BT = 0,

and JT+1(·, ·) = 0 then:

GB
T (YT ) =

YT∫

0

pT xdΨT (x) +

∞∫

YT

pT (YT )dΨT (x) + υ

YT∫

0

(YT − x)dΨT (x) − `T

∞∫

YT

(x − YT )dΨT (x)

using Leibnitz’s rule we obtain

∂GB
T (YT )

∂YT
= pT (1 − ΨT (YT )) + `T (1 − ΨT (YT )) + υΨT (YT )

∂2GB
T (YT )

∂Y
2
T

= (υ − `T − pT )ψT (YT ) < 0 (since pT + `T > υ)

Hence, GB
T (YT ) is also concave in YT and ∂GB

T (YT )

∂YT
is non-increasing in YT . Now we focus on

JT (IT , εT ). Define Y
∗
t−1 as 0 if kt−1

εt−1
>

∂GS
t−1(0)

∂Y t−1
, otherwise as max

{
Y : kt−1

εt−1
≤ ∂GS

t−1(Y)

∂Y

}
then,

JT (IT , εT ) =



−kT qT + GB
T (IT + εT qT ) i f IT ≤ Y

∗
T − εT qT

−kT (Y
∗
T − IT ) + GB

T (Y
∗
T ) i f Y

∗
T − εT qT < IT ≤ Y

∗
T

GB
T (IT ) i f Y

∗
T < IT .
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Therefore,

∂JT (IT , εT )
∂IT

=



∂GB
T (IT +εT qT )
∂IT

≥ kT
εT

i f IT ≤ Y
∗
T − εT qT

kT
εT

i f Y
∗
T − εT qT < IT ≤ Y

∗
T

∂GB
T (IT )
∂IT

≤ kT
εT

i f Y
∗
T < IT .

(3.7)

The inequalities in Equation 3.7 hold due to the choice of Y
∗
T . Since ∂GB

T (YT )

∂YT
is non-increasing

in YT , ∂JT (IT ,εT )
∂IT

is also non-increasing in IT and JT (IT , εT ) is concave in IT . It is seen that
∂JT (IT ,εT )

∂IT
is biggest when IT is small (≥ kT

εT
) then decreases as IT increases. Thus, ∂JT (IT ,εT )

∂IT
is

non-increasing and JT (IT , εT ) is concave for all IT values.

Also noting that ∂GB
T (YT )

∂YT
is independent of εT , for any (ε1

T , ε
2
T ) pair, we have Y

∗ε1
T

T = Y
∗ε2

T
T , and

B
∗ε1

T
T = B

∗ε2
T

T = 0.

Now assume that
∂GB

t−1(Y t−1)

∂Y t−1
is non-increasing and JT (IT , εT ) is concave for period t = t...T ,

we show that GB
t−1(Y t−1) is non-increasing.

GB
t−1(Y t−1) =

Y t−1+B∗t−1∫

0

pt−1xdΨt−1(x) +

∞∫

Y t−1+B∗t−1

pt−1(Y t−1 + B∗t−1)dΨt−1(x)

− `t−1

∞∫

Y t−1+B∗t−1

(x − (Y t−1 + B∗t−1))dΨt−1(x) +

Y t−1+B∗t−1∫

0

Jt(Y t−1 − x, εt)dΨt−1(x)

− βt−1

Y t−1+B∗t−1∫

Y t−1

(x − Y t−1)dΨt−1(x) − βt−1

∞∫

Y t−1+B∗t−1

B∗t−1dΨt−1(x)

+

∞∫

Y t−1+B∗t−1

Jt(−B∗t−1, εt)dΨt−1(x) − ht−1

Y t−1∫

0

(Y t−1 − x)dΨt−1(x)

∂GB
t−1(Y t−1)

∂Y t−1
=

∞∫

Y t−1+B∗t−1

(pt−1 + `t−1)dΨt−1(x) +

Y t−1+B∗t−1∫

0

∂Jt(Y t−1 − x, εt)

∂Y t−1
dΨt−1(x)

− ht−1

Y t−1∫

0

dΨt−1(x) + βt−1

Y t−1+B∗t−1∫

Y t−1

dΨt−1(x)
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∂2GB
t−1(Y t−1)

∂Y
2
t−1

=
[∂Jt(−B∗t−1, εt)

∂Y t−1
− (pt−1 + `t−1 − βt−1)

]
ψt−1(Y t−1 + B∗t−1) − (ht + βt−1)ψt−1(Y t−1)

+

Y t−1+B∗t−1∫

0

∂2Jt(Y t−1 − x, εt)

∂Y
2
t−1

dΨt(x) ≤ 0

Inequality is due to the induction hypothesis and the choice of B∗εt−1
t−1 decision; which is 0 if

pt−1 + `t−1 − βt−1 <
∂Jt(0,εt)

∂I , otherwise equal to min{I : pt−1 + `t−1 − βt−1 ≤ ∂Jt(−I,εt)
∂I }. Thus,

∂GB
t−1(Y t−1)

∂Y t−1
is non-increasing in Y t−1, and GB

t−1(Y t−1) is concave in Y t−1.

Now define Y
∗
t−1 as 0 if kt−1

εt−1
>

∂GB
t−1(0)

∂Y t−1
, otherwise as max

{
Y : kt−1

εt−1
≤ ∂GB

t−1(Y)

∂Y

}
. Because

GB
t−1(Y t−1) is concave in Y t−1 and by the choice of Y

∗
t−1, Y

∗
t−1 maximizes Jt−1(It−1, εt−1) with

production realization of max{εt−1qt−1, (Y
∗
t−1 − It−1)}. Hence,

∂Jt−1(It−1, εt−1)
∂It−1

=



∂GB
t−1(It−1+εt−1qt−1)

∂It−1
≥ kt−1

εt−1
i f It−1 ≤ Y

∗
t−1 − εt−1qt−1

kt−1
εt−1

i f Y
∗
t−1 − εt−1qt−1 < It−1 ≤ Y

∗
t−1

∂GB
t−1(It−1)
∂It−1

≤ kt−1
εt−1

i f Y
∗
t−1 < It−1.

∂GB
t−1(Y t−1)

∂Y t−1
is non-increasing in Y t−1, then ∂Jt−1(It−1,εt−1)

∂It−1
is also non-increasing in It−1 and Jt−1(It−1, εt−1)

is concave in It−1.

As seen before
∂GB

t−1(Y t−1)

∂Y t−1
is independent of εt−1. Similarly, to see whether B

∗ε1
t−1

t−1 = B
∗ε2

t−1
t−1 or

not, we need to check if ∂Jt(It ,εt)
∂It

depends on εt−1 for any It. We have

∂2Jt(It, εt)
∂It∂εt−1

=



∂2GB
t (It+εtqt)
∂It∂εt−1

= 0 i f It + εtqt ≤ Y
∗
t

0 i f Y
∗
t < It + εtqt,

since for period t, we have,

∂GB
t (It + εtqt)
∂It

=

∞∫

It+εtqt+B∗t

(pt + `t)dΨt(x) +

It+εtqt+B∗t∫

0

∂Jt+1(It + εtqt − x, εt+1)
∂It

dΨt(x)

−
It+εtqt∫

0

htdΨt(x) + βt

It+εtqt+B∗t∫

It+εtqt

dΨt(x)

∂2GB
t (It + εtqt)
∂It∂εt−1

= 0.

Thus B
∗ε1

T
T = B

∗ε2
T

T = 0. ¥

We show in Theorem 3.3.1 that the optimal production and backlog decisions under backlog-

demand policy are also independent of the current demand and the efficiency parameter of
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the current period. It is intuitively true, because as in the save inventory policy the efficiency

parameter is known and the producer takes this value into consideration. The producer would

change the production amount to compensate the change in the efficiency parameter. There-

fore the producer can decide the optimal policy at the beginning of each period. Theorem

3.3.1 implies the optimal policy for the Backlog-Demand policy; thus we have the following

corollary.

Corollary 3.3.2 Given a vector of prices, there exists an optimal modified base stock policy

for the Backlog-Demand policy with an optimal backlog-up-to level (B∗t ) and optimal produce-

up-to level (Y
∗
t ).

We have mentioned that the realized production level (Y t) decision may be different than the

optimal produce-up-to level (Y
∗
t ) for the Save-Inventory policy. It is same for the Backlog-

Demand policy. In addition backlog (Bt) decision may not be equal to the optimal backlog-

up-to level (B∗t ). It is limited by the following period’s capacity and efficiency parameter.

Next, we discuss how decisions in period t changes with εt+1.

Theorem 3.3.3 Under backlog-demand policy

• ∂2GB
t (Y t)

∂Y t∂εt+1
≤ 0 ∀Y t and Y

∗
t decision is non-increasing in εt+1.

• ∂2 Jt+1(It+1,εt+1)
∂It+1∂εt+1

≤ 0 ∀It+1 and B
∗
t decision is non-decreasing in εt+1.

Proof. We will show that ∂GB
t (Y t)
∂Y t

and ∂Jt+1(It+1,εt+1)
∂It+1

curves are never shifting upwards (for any

It+1 or Y t value, respectively) as εt+1 increases. Figure 3.3 depicts that when this is the case,

Y
∗
t decision is non-increasing and B

∗
t decision is non-decreasing in εt+1.

Induction is used for this proof. First we focus on GB
T (IT + εT qT )

GB
T (IT + εT qT ) =

IT +εT qT∫

0

pT xdΨT (x) +

∞∫

IT +εT qT

pT (IT + εT qT )dΨT (x)

+ υ

IT +εT qT∫

0

(IT + εT qT − x)dΨT (x) − `T

∞∫

IT +εT qT

(x − IT − εT qT )dΨT (x)

∂GB
T (IT + εT qT )

∂IT
= (pT + `T )(1 − ΨT (IT + εT qT )) + υΨT (IT + εT qT )
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(a) Change in Yt
∗

Decision (b) Change in B∗t Decision

Figure 3.3: εt+1 effect on decisions in period t under Backlog-Demand Policy

∂2GB
T (IT + εT qT )
∂IT∂εT

= qT (υ − pT − `T )ψT (IT + qTεT ) < 0 ∀IT . (∗)

The inequality hold due to the assumption pT + `T > υ

∂2JT (IT , εT )
∂IT∂εT

=



∂2GB
T (IT +εT qT )
∂IT∂εT

< 0 ( f rom ∗) i f IT ≤ Y
∗
T − εT qT

−kT
ε2

T
< 0 i f Y

∗
T − εT qT < IT ≤ Y

∗
T

∂2GB
T (IT )

∂IT∂εT
= 0 i f Y

∗
T < IT .

(∗∗)

Therefore, as IT increases, the backorder-up-to decision B∗εT−1
T−1 first decreases and then re-

mains unchanged since B∗T−1 is defined as min{I : pT−1 + `T−1−βT−1 ≤ ∂JT (−I,εT )
∂I }. Moreover,

∂GB
T−1(YT−1)

∂YT−1
=

∞∫

YT−1+B∗T−1

(pT−1 + `T−1)dΨT−1(x) + βT−1

YT−1+B∗T−1∫

YT−1

dΨT−1(x)

+

YT−1+B∗T−1∫

0

∂JT (YT−1 − x, εT )

∂YT−1
dΨT−1(x) − hT

YT−1∫

0

dΨT−1

∂2GB
T−1(YT−1)

∂YT−1∂εT
=

[−(pT−1 + `T−1 − βT−1) +
∂JT (−B∗T−1, εT )

∂YT−1

]
ψT−1(YT−1 + B∗T−1)

∂B∗T−1

∂εT

+

YT−1+B∗T−1∫

0

∂2Jt(YT−1 − x, εT )

∂YT−1∂εT
dΨT (x) ≤ 0 due to (∗∗) and B∗T−1 decision.

Up to period t − 1,assume,

∂2GB
t (It + εtqt)
∂It∂εt

< 0 ∀It. (∗ ∗ ∗)

28



Then we have,

∂2Jt(It, εt)
∂It∂εt

=



∂2GB
t (It+εtqt)
∂It∂εt

< 0 ( f rom ∗ ∗∗) i f It ≤ Y
∗
t − εtqt

−kt
εt
< 0 i f Y

∗
t − εtqt < It ≤ Y

∗
t

∂2GB
t (It)

∂It∂εt
= 0 i f Y

∗
t < It.

(∗ ∗ ∗∗)

B
∗
t−1 decision is non-decreasing in εt since it is defined as min{I : pt−1 +`t−1−βt−1 ≤ ∂Jt(−I,εt)

∂I }.
Moreover,

∂2GB
t−1(Y t−1)

∂Y t−1∂εt
=

Y t−1+B∗t−1∫

0

∂2Jt(Y t−1 − x, εt)

∂Y t−1∂εt
≤ 0 due to (∗ ∗ ∗∗).

Finally for period t − 2 : it is enough to check whether

∂2GB
t−1(It−1 + εt−1qt−1)
∂It−1∂εt−1

≤ 0 ∀It−1

holds or not.

∂GB
t−1(It−1 + εt−1qt−1)

∂It−1
=

∞∫

It−1+εt−1qt−1+B∗t−1

(pt−1 + `t−1)dΨt−1(x)

+

It−1+εt−1qt−1+B∗t−1∫

0

∂Jt(It−1 + εt−1qt−1 − x, εt)
∂It−1

dΨt−1(x)

− ht−1

It−1+εt−1qt−1∫

0

dΨt−1(x) + βt−1

It−1+εt−1qt−1+B∗t−1∫

It−1+εt−1qt−1

dΨt−1(x)

∂2GB
t−1(It−1 + εt−1qt−1)
∂It−1∂εt−1

= (qt−1 +
∂B∗t−1

∂εt
)
(∂Jt(−B∗t−1, εt)

∂It−1
− (pt−1 + `t−1 − βt−1)

)
ψt−1(It−1 + εt−1qt−1 + B∗t−1)

− (ht−1 + βt−1)qt−1ψt−1(It−1 + εt−1qt−1)

+

It−1+εt−1qt−1+B∗t−1∫

0

∂2Jt(It−1 + εt−1qt−1 − x, εt)
∂It−1∂εt−1

dΨt−1(x) ≤ 0,

due to the B∗t−1 and since

Jt(It−1 + εt−1qt−1, εt) =



ktqt + GB
t (It−1 + εt−1qt−1 + εtqt) i f It−1 + εt−1qt−1 ≤ Y

∗
t − εtqt

− kt
εt

(Y
∗
t − It−1 − εt−1qt−1) + GB

t (Yt
∗
) otherwise

GB
t (It−1 + εt−1qt−1) i f Y

∗
t < It−1 + εt−1qt−1
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and,

∂2Jt(It−1 + εt−1qt−1, εt)
∂It−1∂εt−1

=



∂2GB
t (It−1+εt−1qt−1+εtqt)

∂It−1∂εt−1
< 0 i f It−1 + εt−1qt−1 ≤ Y

∗
t − εtqt

0 otherwise
∂2GB

t (It−1+εt−1qt−1)
∂It−1∂εt−1

< 0 i f Y
∗
t < It−1 + εt−1qt−1

f rom (∗ ∗ ∗).

Therefore, it holds. ¥

In this theorem we present that the current decisions are effected by the efficiency parameter

of the future periods. Change in future periods effects the current decisions because of the

demand uncertainty. Also initial inventory of the following period is determined by the current

decisions. As efficiency parameter of the future periods increases available amount for the

backlogged demand increases and there would be a higher B∗t value.
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CHAPTER 4

NUMERICAL STUDY

We conduct a numerical analysis and present the results in this chapter. Our aim is to obtain

insights about the model and how it is affected by parameter changes. We have built a pro-

gram (available upon request) in C++ and enumerate all possible solutions to find the optimal

policies in different problem environments.

We consider a finite time horizon with six periods and assume that demand in each period is

normally distributed with an average of 50. The coefficient of variation of demand in a given

period is assumed to be CVu = std(dt)/E(dt), where std(dt) denotes the standard deviation and

E(dt) denotes the expected value of demand. In all cases we set the coefficient of variation of

demand as 0.2 and truncate the demand distribution to be ≤ 3 standard deviations from the

mean. Hence, demand in each period is distributed between 20 and 80.

For the initial case we set the production capacity to 80% of the expected demand. Production

capacity is assumed to be same in each period. The production cost and the selling price are

considered to be 100 and 500 respectively. Both production cost and price are also constant

in the initial case. We assume the producer gives a 10% discount for back-ordered items and

set the penalty cost of back-ordered demand to 50. Holding cost is assumed to be 20% of

the initial production cost. For simplicity, lost sales cost per unit is assumed to be zero in the

initial case. These three parameters are also assumed to be constant over periods in the initial

case.

We also modify some parameters of this initial case and ran experiments with different prob-

lem settings. Our findings are presented in the following sections.
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4.1 Marginal Expected Profit Curves

In this section we want to illustrate Theorem 3.2.3 and Theorem 3.3.3 numerically. We focus

on a production system with prices decreasing over periods and present the effect of efficiency

parameter on marginal expected profit curves. We start with the initial case setting and allow

prices to decrease with a rate of 10% of the initial price. We solve the problem for two cases;

in the first one we set the efficiency parameter of Period 3 to 0.4, others to 0.8 and in the

second one all efficiency parameters are considered to be 0.8 as in the initial case. Marginal

expected profit curves for Period 2 are given in Figure 4.1 and Figure 4.2 respectively.

Figure 4.1: ε3 effect on Marginal J curve in period 2

Figure 4.2: ε3 effect on Marginal G curve in period 2

In this experiment it is observed that both curves are shifted to the left as efficiency parameter

of the following period increases. On the other hand the efficiency parameter does not have

any impact on the current or next periods’ curves. These findings are consistent with our

theorems.

32



4.2 Decreasing Price

In this section, we assume that the selling prices have a decreasing trend with a rate of 10%

of the initial price as in the previous section. We ran our program for four cases with different

efficiency parameter values; 0.9, 0.8, 0.7, 0.6. These values are not allowed to differ by

periods. Optimal decisions are given in Table 4.1.

Table 4.1: Optimal Decisions for a System with Decreasing Prices

εt = 0.9 εt = 0.8 εt = 0.7 εt = 0.6
Period Y

∗
t B∗t Y

∗
t B∗t Y

∗
t B∗t Y

∗
t B∗t

1 36 -36 32 -32 28 -28 24 -24
2 76 -36 72 -32 68 -28 64 -24
3 98 -36 108 -32 108 -28 104 -24
4 85 -36 92 -32 100 -28 107 -24
5 71 -36 75 -32 79 -28 83 -24
6 53 0 53 0 53 0 53 0

While prices are decreasing the producer is expected to have a tendency to sell future capacity

in the current period and as we expect back-ordering strategy is used in this production setting.

At the beginning of the time horizon the optimal Yt
∗

amount is smaller because of the de-

mand uncertainty and holding cost. Hence, the producer decides to produce less and backlog

demand exceeding inventory on hand. By doing this the producer produces items after de-

mand realization and reduces demand uncertainty. In the later periods optimal production

amount is increased to satisfy the expected back-orders. Coming up to the final period pro-

duction decreases again to decrease inventory on hand. It is also seen in Table 4.1 that B∗t is

non-decreasing in efficiency parameter.

4.3 Increasing Price

In this section the selling prices are assumed to have an increasing trend with a rate of 10%

of the initial price value. As in the previous section we consider four efficiency parameter

values; 0.9, 0.8, 0.7, 0.6. Optimal decisions are given in Table 4.2.

In this setting reserve decision is more advantageous than back-order decision and it is seen

33



Table 4.2: Optimal Decisions for a System with Increasing Prices

εt = 0.9 εt = 0.8 εt = 0.7 εt = 0.6
Period Y

∗
t S ∗t Y

∗
t S ∗t Y

∗
t S ∗t Y

∗
t S ∗t

1 36 40 32 40 28 40 24 40
2 76 38 72 54 68 70 64 80
3 111 23 112 35 108 47 104 59
4 97 9 105 17 113 25 121 33
5 81 0 85 3 88 7 92 11
6 59 0 59 0 59 0 59 0

that S ∗t is non-decreasing in efficiency parameter. As in Section 4.2 the optimal Yt
∗

amount is

higher in middle periods because of the same reason.

4.4 Increasing and Decreasing Price

In some production environments there may be both back-order and reserve decisions in the

optimal solution. In Section 4.4 we analyze a production system with both decreasing and

increasing prices. The optimal decision variables are given in Table 4.3. In the optimal solu-

tion there are both reserve and back-order decisions. It seems that in periods with decreasing

prices reserve decision is better and in others back-order decision is better which is intuitively

true.

Table 4.3: Optimal Decisions for a System with Increasing and Decreasing Prices

Period Y
∗
t S ∗t B∗t

1 32 40 0
2 72 36 0
3 112 14 0
4 96 0 -32
5 78 0 -32
6 54 0 0
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4.5 Decreasing Cost

In Section 4.5 we let the production cost decrease with a rate of 10% of the initial cost. In

this case as the prices are constant it is not important when to sell an item and change in

the production costs effects the decision when to produce. In such a production system if

the capacity is tight, the producer would choose to produce as much as possible and sells all

inventory on hand at current period since demand is higher. There is not any other options.

However, if the capacity is higher, then the producer may choose to use previous (reserve) or

next (backorder) periods’ excess capacities. Hence, in this section we consider the production

capacity in each period to be 120% of the expected demand.

Optimal decisions are given in Table 4.4. It is observed that backlogging is better than re-

serving. This is also intuitively true since the costs are decreasing and it is more profitable to

produce later.

Table 4.4: Optimal Decisions for a System with Decreasing Costs

Period Y
∗
t S ∗t B∗t

1 48 0 -16
2 78 0 -14
3 76 0 -20
4 73 0 -16
5 70 0 -28
6 63 0 0

4.6 Increasing Lost Sale Cost

In the initial case we assume lost sale costs to be zero and in Section 4.6 we analyze the lost

sale cost effect. In this case since the prices and the costs are considered to be constant we

assume the capacity to be 120% of the expected demand. Otherwise, as mentioned before in

Section 4.5 there would be no tactical decisions. In this section we ran experiments with four

different lost sale cost values; 25, 50, 75 and 100. Lost sale costs are assumed to be constant

over periods. Optimal decision variables are given in Table 4.5.

It is seen that as the lost sale increases optimal back-order amount decreases. This is intu-
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Table 4.5: Optimal Decisions for a System with Increasing Lost Sale Costs

`t = 25 `t = 50 `t = 75 `t = 100
Period Y

∗
t B∗t Y

∗
t B∗t Y

∗
t B∗t Y

∗
t B∗t

1 48 -10 48 -7 48 -4 48 -1
2 79 -12 79 -8 80 -5 81 -3
3 77 -13 77 -10 78 -7 78 -5
4 74 -15 74 -11 75 -9 75 -7
5 70 -15 70 -11 71 -9 71 -8
6 63 0 63 0 64 0 64 0

itively true since as the lost sale cost increases the producer will be more likely to avoid lost

sales. Because of demand uncertainty the optimal back-order amount decreases, next period’s

capacity is used for next period’s demand. Changes in lost sale costs affect the optimal deci-

sion amount; however similar results are obtained with the existence of lost sale costs. Hence,

our assumption of zero lost sale costs does not invalidate our study.

4.7 Increasing Back-Order Penalty

We present the effects of changes in back-order penalty costs in this section. Capacity is con-

sidered to be 120% of the expected demand in this section as in Section 4.5 and Section 4.6,

because the prices and the costs are constant. We consider four production settings with dif-

ferent back-order penalty costs; 25, 50, 75 and 100. Back-order penalty costs are considered

to be constant over periods. Optimal decision variables are given in Table 4.6.

Table 4.6: Optimal Decisions for a System with Increasing Backorder Penalty Costs

βt = 25 βt = 50 βt = 75 βt = 100
Period Y

∗
t B∗t Y

∗
t B∗t Y

∗
t B∗t Y

∗
t B∗t

1 48 -10 48 -7 48 -4 48 -2
2 78 -11 79 -8 80 -6 81 -4
3 77 -12 77 -10 78 -8 78 -6
4 74 -12 74 -11 75 -10 75 -9
5 70 -11 70 -11 71 -11 71 -11
6 63 0 63 0 63 0 63 0

It is observed that as the back-order penalty cost increases the optimal back-order quantity
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decreases. This is also intuitively true because as penalty cost increases cost of backlogging

any item increases and the optimal amount decreases.

4.8 Tactical vs. Traditional Inventory

As mentioned before there is no reserve option in traditional inventory control systems, the

producer meets the demand as much as there is sufficient inventory on hand. Also, in some

traditional systems backlogging is not allowed and unsatisfied demand is fully lost. In this

section, we compare tactical inventory control systems with such a traditional inventory con-

trol system.

Our objective is to present the efficiency of our tactical inventory policy over traditional inven-

tory control policy in different problem settings and determine the situations where tactical

inventory policies can provide significant improvements.

Four parameters (production capacity, efficiency parameter, cost and price) are allowed to

have three cases, so we have 81 different production settings. Production capacity is assumed

to be 60%, 80% and 100% of the expected demand. Efficiency parameter is assumed to be

0.6, 0.8 and 1. Both of these parameters are assumed to be constant over periods. Prices and

costs are assumed to have trends such as increasing, constant and decreasing.

Optimal total expected profit of six periods are computed and compared to those with tradi-

tional inventory control policy. Improvement percentages are given in the Table 4.7.

Table 4.7: Efficiency of Tactical Inventory Policy over Traditional Inventory Policy

qt = 60% 80% 100%
cost price εt = 0.6 0.8 1 0.6 0.8 1 0.6 0.8 1

dec
dec 16.67 15.11 15.01 16.96 16.43 18.64 17.78 19.54 20.12
cons 0.00 0.01 0.20 0.02 0.27 1.57 0.23 1.64 6.24
inc 17.85 11.84 7.67 13.32 6.72 2.28 9.20 2.44 2.90

cons
dec 20.00 16.94 16.19 20.26 18.12 19.50 20.94 20.84 20.29
cons 0.00 0.02 0.22 0.02 0.29 1.66 0.26 1.77 6.46
inc 21.43 13.33 8.39 16.00 7.59 2.57 11.08 2.83 2.84

inc
dec 25.00 19.29 17.61 25.20 20.29 20.52 25.68 22.50 20.32
cons 0.00 0.02 0.23 0.02 0.32 1.75 0.30 1.91 6.61
inc 26.78 15.26 9.29 20.03 8.76 2.97 13.93 3.40 2.98
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As expected tactical inventory policy is always better than or at least equal to traditional inven-

tory policy. It is mostly efficient in a system with tight capacity, small efficiency parameter,

and increasing costs and prices. In cases with non-constant prices the policy is more effi-

cient. This is because reserve and backorder decisions are more effective in such production

environments. When the prices are constant over periods the backorder and reserve decisions

become less important. Efficiency in systems with decreasing prices is always better because

in such systems demand uncertainty is reduced by backlogging demand.

It is also observed that when there is an increasing trend in prices, tactical inventory policy

is more efficient in systems with lower capacity. When there is a decreasing trend in prices

tactical inventory policy is more efficient in systems with higher capacity. In a system with

increasing prices save inventory policy is better. In this policy producer produces an item at

current period and sells later. If the capacity is high the producer may produce and sell later,

and there would be no holding costs. Hence, it is not profitable to save much inventory and

the efficiency decreases. On the other hand, in a system with decreasing prices backorder

policy is better. In this policy backorder amount is limited by the production capacity and the

efficiency parameter of the following period. Then high capacity means more backlogging

option and more efficiency.
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CHAPTER 5

CONCLUSIONS

In this study we focused on a single-item multi-period production system with limited capac-

ity and predictable yield. The producer has the option to refuse to satisfy part of the demand

even when there is inventory on hand. This strategy is referred as discretionary sales and is

beneficial when costs and prices are variable. The producer also has the option to backlog

demand for one period. Demand across periods is assumed to be independent and unsatis-

fied demand that is not backlogged is lost. Prices are assumed to be predetermined and not

known by the customers before the period. Hence, the customers do not act tactically. The

manufacturer has to decide optimal lot sizing, reserve and backorder amounts in each period.

We analyze the profit-to-go functions and show that the optimal policy is of a modified

produce-up-to type. This optimal policy is characterized by three parameters (Y, S , B) where

Y is the produce-up-to level, S is the reserve and B is the backlog-up-to levels. We prove that

the reserve and backlog decisions cannot be positive at the same period which is intuitively

true too. Hence, we have two candidate policies to be optimal; save-inventory policy and

backlog-demand policy. In each period the better one is chosen to be the optimal policy.

We analyze and present how the optimal policy is affected by changes in the production yield.

The production yield of the current period is shown to have no impact on the optimal policy for

the remaining periods. On the other hand, in the save-inventory strategy the optimal reserve

decision is non-increasing while in the backlog-demand strategy the optimal backlog decision

is non-decreasing in the production yield of the following period. The production decision is

non-increasing for both strategies.

In order to support our findings and test the performance of the tactical inventory control

policy we conduct some computational studies. We consider an initial case and analyze how
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the optimal decision variables change when some of the parameters change. We also compute

the improvement of the optimal expected total profit in tactical inventory control policy over

the one in traditional inventory control policy. We present the results in different problem

settings and show when it is best to use tactical inventory policy. Moreover the numerical

analysis was very supportive to provide managerial insights on the model.

There are some potential extensions we suggest for future research. One may consider random

production yield and analyze how the policies are affected. Random capacity limits may be

included to the model as some industries have unpredicted capacities due to production line

problems. Another extension of our study may allow backlogged items to be satisfied till the

end of the time horizon.
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