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ABSTRACT 

 

HLA FOM DEVELOPMENT  

WITH MODEL TRANSFORMATIONS 

 

Dinç, Ali Cem 

M.S., Department of Computer Engineering  

 Supervisor: Assoc. Prof. Dr. Halit Oğuztüzün 

 

May 2010, 90 pages 

  

There has been a recent interest in the model-based development approach in the 

modeling and simulation community. The Model-Driven Architecture (MDA) of 

OMG envisions a fully model-based development process where models are 

created for capturing not only requirements, but also designs and implementations. 

Domain-specific metamodels and model transformations constitute the 

cornerstones of this approach. We have developed transformations from the data 

part of Field Artillery (FA) domain models to High Level Architecture (HLA) Object 

Model Template (OMT) models, honoring the MDA philosophy. In the MDA 

terminology, the former corresponds to the CIM (Computation-Independent Model) 

or, arguably, PIM (Platform-Independent Model), and the latter corresponds to the 

PSM (Platform-Specific Model), where the platform is HLA. As a case study for the 

source metamodel, we have developed a metamodel for the data model part of the 

(observed) fire techniques of the FA domain. All of the entities in the metamodel 

are derived from the NATO’s Command and Control Information Exchange Data 

Model (C2IEDM) elements.  

 

 

 

Keywords: Metamodeling, Domain Specific Modeling, Model Transformations,   

Field Artillery 



v 

 

ÖZ 

 

MODEL DÖNÜ�ÜMLERİ İLE  

HLA FOM GELİ�TİRME  

 

 

Dinç, Ali Cem 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü   

 Tez Yöneticisi: Assoc. Prof. Dr. Halit Oğuztüzün 

 

Mayıs 2010, 90 sayfa 

 

Son yıllarda modelleme ve simülasyon camiasında model tabanlı geliştirim 

yaklaşımına dair bir ilgi ortaya çıkmıştır. OMG’nin Model Güdümlü Mimarisi (MDA -

Model Driven Architecture), modellerin sadece isterlerin değil, bunların yanı sıra 

tasarım ve gerçekleştirimin de yakalandığı, tamamen model tabanlı bir geliştirme 

sürecini hedeflemektedir. Alana özel metamodeller ve model dönüşümleri bu 

yaklaşımın köşe taşlarını teşkil etmektedir. Sahra Topçuluğu (ST) alan modellerinin 

veri modeli kısımlarından High Level Architecture (HLA) Object Model Template 

(OMT) modellerine MDA felsefesine uygun dönüşümler geliştirdik. MDA terimler 

dizgesinde ST Modeli Platformdan Bağımsız Model (PBM)’ye, federasyon mimarisi 

modeli ise, HLA’nın platform olduğu, Platforma Özel Model (PÖM)’e karşılık 

gelmektedir. Kaynak metamodel örneği olmak üzere, ST alanının gözetlemeli atış 

tekniklerinin veri modeli kısmına dair bir metamodel geliştirmiş bulunuyoruz. 

Metamodeldeki bütün varlıklar NATO’nun Command and Control Information 

Exchange Data Model (C2IEDM) elemanlarından türetilmiştir.  

 

 

Anahtar Kelimeler: Metamodelleme, Alan Spesifik Modelleme, Model Dönüşümleri, 

Sahra Topçuluğu 
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CHAPTER 1 

INTRODUCTION 

This chapter provides the motivation and background for this study, represents the 

scope and assumptions, discusses the related work and yields about model driven 

technologies and approaches. 

1.1. Motivation 

The Model-Driven Engineering (MDE) approach is becoming prominent in software 

and systems engineering, bringing forth a model-centric approach to the 

development cycle in contrast with today’s mostly code-centric practices [1]. A well-

known MDE initiative is the Model Driven Architecture (MDA) of Object 

Management Group (OMG). Model transformations are considered the heart of 

MDA, where the Platform Independent Model (PIM) of a system to be constructed, 

is transformed, or refined, into a Platform Specific Model (PSM) [2].  Both PIM and 

PSM conform to their own metamodels, which act as languages that define these 

models. 

Model Integrated Computing (MIC), an earlier manifestation of MDE, relies on 

metamodeling to define domain-specific modeling languages and model integrity 

constraints. The language is then used to automatically compose a domain-specific 

model-building environment for creating, analyzing, and evolving the system 

through modeling and generation. 

During the last decade, MIC has gained acceptance through several fielded 

systems [3], and it is recognized in both academia and industry today. In the MIC 

approach, a crucial point is the generation, where (domain-specific) models are 

transformed into lower level executable and/or analysis models. Model 

transformation techniques and tools are essential to MIC in realizing the generation 

process. 
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In this thesis, the transformation process of Field Artillery Conceptual Data Model 

(FADM) [4] into the Federation Design Model (FDM) [5] targeted to the HLA-OMT 

Model [6]. An OMT model can further be used to generate Java/AspectJ code for 

execution on an HLA Run-time Infrastructure (RTI)0. Figure 1 depicts a high-level 

picture of the overall work. Our main focus is in phase 1 where the model 

transformer converts an FADM which conforms to the Field Artillery (FA) 

MetaModel into an HLA - OMT federation architecture model, which conforms to 

the Federation Architecture MetaModel (FAMM). 

In this sense this work can be considered as an application of the MIC approach. 

Both of the source and target models are developed in Generic Modeling 

Environment (GME) tool. The model transformations are carried out with Graph 

Rewrite and Transformations (GReAT), and partly hand-coded in C++. Both tools 

are provided by Institute of Software Integrated Systems at Vanderbilt University. 
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Figure 1. The model transformation of FADM to FAMM to executable code 

 

1.2. Scope and Assumptions  

Both the source and target domains are restricted to data models only; that is, any 

behavior modeling is out of the scope of this work. The source and target domains 

are modeled in GME [8] and the model transformation is developed in GReAT 

[9][10]. The FADM includes such elements as domain entities, messages and 

entity interactions through messaging. This setting only addressed static aspects; 

that is, there was no notion of dynamism, like missions or tasks. The same 



3 

 

situation was valid for the HLA-OMT metamodel side. Although it enabled to define 

classes, interactions, attributes and parameters resembling the practices of object-

oriented programming, it lacked dynamic behavior such as federation executions.  

1.3. Organization of the Thesis 

The rest of the thesis is organized as follows. Section 2 lays the background; 

briefly introduce the field artillery domain, HLA, GME and GReAT tools used in 

modeling and model transformations, respectively. Section 3 is for the source 

model that sets up the Field Artillery Data Model. The target model, HLA-OMT 

Model, will be described in the Section 4. Section 5 is devoted to the 

transformation of FADM to HLA-OMT Model. Finally, Section 6 concludes the 

thesis. 
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CHAPTER 2 

BACKGROUND 

This chapter introduces the key concepts, technologies and tools used, including 

the modeling tool and the model transformation tool. 

2.1. Related work 

The Model-Driven Architecture of OMG envisions a development paradigm where 

designers create a Platform-Independent Model (PIM) of the design, which is then 

refined into a Platform-Specific Model (PSM). Exposing a better solution to the 

transformation of a Platform Independent Model (PIM) to a Platform Specific Model 

(PSM) is still the main problem in the Model Driven Engineering. This problem will 

certainly continue to occupy the greatest attention in the MDA community as it is 

the main driving force of the motivation for the MDA vision. On the other hand, we 

are considering changing the domain of the model transformation problem from 

HLA-based distributed simulation. The reason for this is that the HLA-based 

distributed simulation is just far too huge to be a modeling concept. It involves 

cross-cutting concepts, technologies and issues. One can simulate almost anything 

with HLA and it is virtually possible to ever devise a generic conceptual model and 

a generic federation design model for HLA itself. In that respect HLA can be 

considered as a very abstract and intangible “entity” to develop a PIM and PSM for. 

2.1.1. Model Driven Development\Architecture 

MDA introduces the concept of the Platform Independent Model (PIM) and the 

Platform Specific Model (PSM). A PIM is an abstract model of the software design 

that omits any platform (i.e. implementation-specific details). A PSM, on the other 

hand, is another model that includes implementation-specific details. The PSM is 

obviously dependent on the PIM, and arguably one (the PSM) can be derived 
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automatically from the other one (the PIM). However, this derivation process is 

highly domain-specific: different domains might need different methods for 

implementing the derivation. This thesis uses a technique and a prototype tool 

developed at the Institute for Software Integrated Systems of Vanderbilt University 

for creating highly configurable model transformation tools that can be applied in 

the MDA context. The technique (and the tool) is based on a well-established 

theoretical framework based on graph transformations. 

The Conceptual Models of the Mission Space (CMMS) effort, initiated by the U.S. 

Department of Defense (DoD), aims to facilitate the development and reuse of 

simulation models. CMMS is defined in [11] as first abstractions of the real world 

that serve as a frame of reference for simulation development by capturing the 

basic information about important entities involved in any mission and their key 

actions and interactions. CMMS emphasizes the implementation-independent 

functional descriptions of the real world processes, entities, environmental factors, 

and associated relationships and interactions constituting a particular set of 

missions, operations or tasks. An important part of CMMS includes the domain 

specific conceptual models, called “Mission Space Models”. They are consistent, 

structured and functional descriptions of real military operations or processes. 

Some recent studies, notably Defense Conceptual Modeling Framework (DCMF) 

[12] and the conceptual modeling tool KAMA 0 have further elaborated the vision 

promoted by the CMMS.  

Joint Command, Control and Consultation Information Exchange Data Model 

(JC3IEDM) are the core of NATO Reference Model and is also a view model of 

NATO STANAG 5525 [14]. The data model is focused primarily on the information 

requirements that support the operations planning and execution activities of a 

military or civilian headquarters or a command post. JC3IEDM has recently evolved 

from C2IEDM, or Command and Control Information Exchange Data Model [15] by 

additionally including and modeling new joint operational concepts. 

2.1.2. Model Transformation  

Model transformation is the process of converting one or more models – called 

source models – to one output model – the target model – of the same system [16]. 

This process takes a model conforming to a given source meta-model as input and 
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produces another model conforming to a target meta-model as output. The 

transformation process, composed of a set of rules, should itself be considered as 

a model. As a consequence, it is based on a corresponding meta-model, that is an 

abstract definition of the used transformation language.  

The deprivation for techniques that can be usable for model transformations has 

been recently anticipated in the UML realms. To illustrate, see [17], [18] and [19]. 

Model transformation is an essential tool for many applications, including 

translating abstract design models into concrete implementation models [19] or for 

specification techniques [18]. The innovations in UML (such as [20]) accentuate the 

use of meta-models, and yield solid foundation for the accurate specification of 

domain semantics. 

Many languages and tools have been developed to specify and execute 

transformation process. In 2002 OMG issued the Query/View/Transformation 

request for proposal [21] to define a standard transformation language. Although 

the specification was finalized at the end of 2005, there are lots of researches 

going on about model transformations. Over the last decade, in parallel to the 

OMG process, a number of model transformation approaches have been 

introduced both from academia and industry. The paradigms, constructs, modeling 

approaches, used tools distinguish these model transformation techniques. Each of 

them has its own suitability for a certain set of problems. For detailed classification 

of a today’s model transformation approaches please refer to [22], [23] and [24]. 

In this thesis, GReAT would be used to transform FADM into the FDM targeted to 

the HLA-OMT Model so as to take the advantages of graph-based model 

transformation. 

2.1.3. Graph-based Model Transformation 

Graph transformation, or graph rewriting is known as the technique of creating a 

new graph out of an original graph using some automatic rules. Graph grammars 

and graph rewriting [25][26] have been developed during the last 25+ years as 

techniques for formal modeling and tools for very high-level programming. It has 

large number of applications, ranging from verification of software to algorithms. 



7 

 

Graph transformations can be used as computational isolation. Basically, the state 

of a computation can be represented as a graph and the transformation rules on 

that graph represent the further steps in that. These rules formed by an original 

graph, which is going to be matched to a subgraph in the complete state, and a 

replacing graph, which would replace this matched subgraph. 

Beyond the ground-laying work in the theory of graph grammars and rewriting, the 

approach has found several applications as well. Graph rewriting has been used in 

formalizing the semantics of statecharts [27], as well as various concurrency 

models [26]. Several tools —including programming environments— have been 

developed [28][29] that illustrate the practical applicability of the graph rewriting 

approach. These environments have demonstrated that complex transformations 

can be expressed in the form of rewriting rules, and graph rewriting rules can be 

compiled into efficient code. Programming via graph transformations has been 

applied in some domains [25] with reasonable success.  

2.2. Elements of Field Artillery 

This section provides basic understanding of artillery firing systems, which will be 

the case study domain of the thesis. Specifically, the case study concepts are 

adopted from the work done in [30] where an HLA based simulation is developed 

to train the officers in an artillery battalion.  

Field artillery is a unit composed of artillery weapons. The general mission of field 

artillery is to destroy, neutralize or suppress the enemy by cannon, rocket, and 

missile fire and to help integrate all fire support assets into combined arms 

operations [31]. The field artillery system provides close support to maneuver 

forces, counter fire and interdiction as required. These fires neutralize, canalize, or 

destroy enemy attack formations or defenses; obscure the enemy’s vision or 

otherwise inhibit his ability to acquire and attack friendly targets; and destroy 

targets deep in the enemy rear with long-range rocket or missile fires. Field artillery 

support can range from conventional fires in a company zone to massive nuclear 

and chemical fires across a corps front [31]. 

An artillery battery, being one of the 3 to 6 parts of an artillery battalion has 3 main 

units in its organizational structure. These are; 
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• Forward Observing Post (FOP), 

• Fire Control Center (FCC), and 

• Weapons (6-8 weapons for every battery), 

 

 

Figure 2. A Typical Artillery Battery System 

 

Figure 2 sketches the flow information and interactions between the units in the 

battery organization. The rest of this section briefly defines these units and 

summarizes the roles that they play in a battle environment. 

2.2.1. Forward Observing Post (FOP)  

There are three FOP teams in an artillery battery organization. FOPs are the eyes 

of the battery and their basic duty is to detect the targets and make the 

adjustments after the shots. They usually consist of several soldiers with distance 

measurement equipment to detect the location of the targets, and various 

communication equipments to inform the fire control center of the data they 

acquire.  
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2.2.1.1. Target Detection  

In tactical military operations, military units usually use 1/25000-scaled maps. In 

these maps, 1cm is equal to 250 m and 4 cm is equal to 1000 m. The grid lines in 

these maps are located in every 1000 m, in both horizontal and vertical directions. 

Each 1000x1000 square in the map is called grid square. Figure 3 depicts a 

simplified example of a military map. The FOP detects targets by usually employing 

two techniques, namely, grid coordinate technique, and polar coordinate technique: 

 

 

 

Figure 3. Simplified Military Map Showing Target Detection Techniques 

 

a) Grid Coordinate Method: FOP determines the grid coordinate of a point by map 

searching. The approximate coordinates of the targets in Figure 3 are determined 

below. The second column indicates the west-to-east, and the third column 

indicates the south-to-north coordinates.  
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Table 1. Coordinates in Grid Coordinate Method 

 

Target W-to-E S-to-N 

T1 29550 31780 

T2 28600 31450 

T3 30880 31500 

T4 30380 30600 

 

b) Polar Coordinate Method: FOP informs the FCC with the distance and direction 

angle of the target. Distance is measured by laser-meter in meters, and direction 

angle is measured by compass in mils. The angles widen in clockwise direction, 

starting from 0 in the north, and ending at 6400, again in the north. The 

approximate polar coordinates of the targets in Figure 3 are determined below:  

 

Table 2. Coordinates in Polar Coordinate Method 

 

Target Distance Dir. Angle 

T1 1850 6400 

T2 1700 5740 

T3 1950 750 

T4 975 930 
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2.2.1.2. Adjustment 

FOP detects the vertical and horizontal deflections of the hit points of the shots 

from the target. As in the case of target detection, he uses laser-meter and 

compass to measure the deflections. Later he communicates the results to the 

FCC. 

2.2.2. Fire Control Center (FCC)  

There is only one FCC in an artillery battery. The FCC inputs various 

environmental data such as wind direction and magnitude, the information coming 

from the FOP, and its own knowledge of the location of the target, the FOP, and 

the weapons, and computes the necessary parameters for the weapons to make 

their shoots to the target. Although there are many automated fire control tools, it is 

unnecessary risk not to calculate it manually. Manual fire control is simply made as 

follows: 

 

 

 

Figure 4. A Horizontal Plan Paper 
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First of all, the FCC gets the location of the target from the FOP and marks it on a 

sheet called the horizontal plan paper, which has vertical and horizontal grid lines 

on it (see Figure 4). Horizontal plan paper represents a 1/25000-scaled map of the 

battle area. Location of the FOP and the battery are already marked on it. 

Then it measures the distance from battery to the target by using a special ruler. 

Remember that the distance that the FOP detected was from FOP to target. By 

using the distance and the elevation interval between target and the battery, FCC 

calculates the powder charge and the vertical angle of the weapons. Powder 

charge has a direct relationship with the initial velocity, which constitutes one of the 

two major outputs of the mathematical calculations that the FCC made (the other is 

the vertical angle). Finally, since the battery and the target are most probably not 

vertically aligned, the FCC measures the direction angle of the weapons to the 

target. 

Thus, the three shoot parameters that the FCC computes and provides to a 

weapon are, powder charge, direction angle, and vertical angle. The following 

computations are done similarly, after receiving the adjustment values regarding 

the previous shot from the FOP, until the target is destroyed. 

2.2.2.1. Field Artillery Observed Fire 

The general mission of Field Artillery (FA) is to destroy, neutralize or suppress the 

enemy by cannon, rocket, and missile fires and to help integrate all fire support 

assets into combined arms operations. FA weapons are usually located in 

defiladed areas in order to protect them from enemy detection. This nature of FA 

gunnery makes it an indirect fire problem. Observed fire, the technique that solves 

the indirect FA gunnery problem, is carried out by the coordinated efforts of the 

Forward Observers (FwdObserver), the Fire Direction Center (FDC), and firing 

sections of the firing unit, all together forming the Field Artillery Team (FAT). 

Authoritative reference [31] provides a comprehensive explanation on tactics, 

techniques and procedures for FA fire direction process. 

Basic duty of the FO, considered the eyes of the FAT, is to detect and locate 

suitable indirect fire targets within his zone of observation. (In fact, the FO 

functionality is realized as several soldiers equipped with sophisticated binoculars, 

laser range finders and maps among others for accurate target location, and 
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communication equipment to convey observation information to the FDC. We do 

not attempt to capture such information in our model. Rather, we aim at a 

functional description of the domain.) In order to start an attack on a target, the FO 

issues a Call For Fire (CFF) request to the FDC. It contains all information needed 

by the FDC to determine the method of attack.  

As it is unlikely to achieve a target hit in the first round of fire (due to such error 

factors as improper target location, nonstandard ammunition, distortions in the 

barrel and meteorological effects), the common practice is firstly to conduct 

adjustment on the target. Usually the central cannon are selected as the adjusting 

weapon. The FO provides correction information to the FDC after each shot based 

on his spotting of the detonation. The correction information includes, but is not 

limited to deviation, range, height of bust, observer-target direction and distribution 

corrections. Moreover, the FO may request changes on any of the fire parameters 

such as method of fire, method of control, ammunition or trajectory. Changes on 

the target description are also included in the correction information. Once a target 

hit is achieved, the FO initiates the Fire for Effect (FFE) phase by noting this in his 

correction. FFE is carried out by cannons firing all together with the same fire 

parameters as the last adjustment shot. After the designated number of rounds is 

fired, the FO sends a final correction including surveillance information. Based on 

the surveillance information, if the desired effect on the target is achieved, mission 

ends. Otherwise, the FO may request repetitions, or restarts the adjustment phase 

if deemed necessary. 

2.2.2.2. Adjustment Followed By Fire for Effect Mission 

The Adjustment followed by Fire for Effect (AdjFFE), which is by far the most 

common and widely known among the FA observed fire missions. The mission 

starts by FwdObserver initiating a Call for Fire (CFF) request to the Fire Direction 

Center (FDC), consisting of three sub-messages, among which the mission type 

(i.e., AdjFFE) is also specified. Once the FDC receives the CFF, it determines how 

the target will be attacked. The FwdObserver observes bursts. After a spotting has 

been made, the observer must send corrections to the FDC to move the bursts 

onto the adjusting point. To conclude the correction cycle, the observer sends a 

last surveillance message. At the end of FFE, the FwdObserver announces the 
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effect on the target. According to the result, the mission is completed, aborted, or 

continued. 

2.2.2.3. Tactical and Technical Fire Direction 

Fire direction is the employment of firepower. The objectives of fire direction are to 

provide continuous, accurate, and responsive fire support under all conditions [31]. 

The FDC, considered the brain of the FAT, receives the CFF from the observer, 

determines firing data, and converts them to fire commands to be executed by the 

firing sections. The FDC abstraction can be separated into two distinguished 

functionalities, namely, tactical and technical fire direction.  

The primary concern of tactical fire direction is to determine how the target will be 

attacked. This is specified as a fire order in which information concerning the units 

to fire, and the type and amount of ammunition to be fired are included. Technical 

fire direction is conducted by issuing fire commands where the necessary 

information for orienting, loading and firing a howitzer is included. 

Battalion directed and autonomous modes are the two alternatives under which fire 

direction can be conducted. In the present study we focus on battalion directed 

organization for several reasons: First, in this setting there is a clear assignment of 

tactical and technical fire direction functionalities to the battalion and battery FDCs, 

respectively. This separation of roles to two different actors leads to more 

straightforward domain modeling. Interested reader may refer to [31] for details. 

In battalion-directed setting, the information flow between the FO and the rest of 

the FAT is carried through the battalion FDC as illustrated in Figure 5. In this 

respect the battalion FDC is the sole contact point of the FO. The battalion FDC 

receives the CFF from the FO, prepares the fire order and Message To Observer 

(MTO) and send them to the battery FDC and the FO, respectively. After the FO 

receives the MTO, it waits for a detonation to spot. The MTO conveys the 

necessary information for the FO to assist in pursuing and synchronizing with 

projectile detonations. Note that the battalion FDC is a higher post than the FO and 

may override his decisions made in the CFF with the MTO. 
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Figure 5. Typical Field Artillery Team Setting 

 

When the fire order is received by the battery FDC, it starts to prepare the fire 

command to be sent to the firing sections. The fire command contains detailed 

technical data enabling the firing section personnel to load and orient howitzers to 

convey fire to the target. In order to compute the fire parameters in the fire 

command, the battery takes into consideration the situation map where all the 

information pertaining to the terrain as well as the FO and target locations are 

present, the metro report issued by the meteorology station, and current 
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ammunition reserve. (Computation of the firing parameters, however, is out of our 

modeling scope.) 

If the fire command tells so, the firing section sends a volley to the target according 

to the parameters in the fire command. The section chief reports to the battery 

FDC about the action that the firing section has just performed. A firing report 

generally covers synchronization data, ammunition or task status.  

In most cases, certain parts of the fire order and fire command does not show any 

difference from one mission to the next, and based on the tactical situation, 

personnel and weapon status, type and amount of ammunition available, and the 

commander’s intuition, some parts of  the fire order and fire command can be 

announced as standard. If some element of the fire order or fire command is not 

provided, then the standard (default) value for that element is accounted as valid. 

Standards stay in effect until cancelled, changed with another standard or 

overridden inside a fire order or fire command. 

2.2.3. Weapons 

Weapons (more specifically, cannons) apply the orders coming from the FCC. One 

of the cannons, typically the one located in the middle of the battery, is called as 

the base cannon. The base cannon continue to apply the orders at each loop, until 

the target is hit. Once the target is hit, all the cannons in the battery make their 

shots to the target with the same shoot parameters as the base cannon. This is 

called a group shot. 

Of course there are many issues that must be taken into account in a real world 

scenario regarding the cannons themselves, such as barrel deformations due to 

heating, variation of the minimum time between two shots, internal ballistics and 

external ballistics of the bullets, and so on. For the sake simplicity, these factors 

will be ignored in our case study. However, once the proof of concept is achieved, 

they may definitely be included. 

2.3. High Level Architecture 

The High Level Architecture (HLA) is general purpose architecture for distributed 

computer simulation systems. The HLA is not software, it provides a common 
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framework. Using HLA, computer simulations can communicate to other computer 

simulations regardless of the computing platforms. Communication between 

simulations is managed by a Run-Time Infrastructure (simulation) (RTI).  

The HLA was approved as US Department of Defense (DoD)’s technical 

architecture for modeling and simulation in September 1996. In HLA terminology 

[32] a federate is one simulation (e.g. could represent one platform, like a ship, a 

cockpit simulator) while a federation is a named set of interacting federates with 

the support of RTI to form an integrated simulation (e.g. could represent an 

aggregate, like a naval task group simulation). A federate is a member of a 

federation. Federation Execution means a session of a federation executing 

together. 

The High Level Architecture (HLA) consists of the following components: 

• Interface Specification. The interface specification document defines 

how HLA compliant simulators interact with the Run-Time Infrastructure 

(RTI). The RTI provides a programming library and an application 

programming interface (API) compliant to the interface specification.  

• Object Model Template (OMT). The OMT specifies what information is 

communicated between simulations and how it is documented.  

• HLA Rules. Rules that simulations must obey to be compliant to the 

standard. 

2.3.1. Interface specification 

The HLA Interface Specification defines the interface between the simulation and 

the software that will provide the network and simulation management services. 

RTI is the software that provides these services [33][34]. The interface specification 

is object oriented. Many RTIs provide APIs in C++ and the Java programming 

languages. 

The interface specification is divided into service groups: 

• Federation Management: Creating, modifying, deleting and dynamic 

control of a federation execution are provided by federation 

management services.  
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• Declaration Management: Joined federates use the services in this 

group to declare their interest to an object class attribute or an 

interaction class.  

• Object Management: The services in this group deal with the 

registration, modification, and deletion of object instances and the 

sending and receiving of interactions.  

• Ownership Management: The services in this group are used to transfer 

ownership of instance attributes among joined federates.  

• Time Management: Messages sent by different joined federates are 

delivered in a consistent order throughout the federation execution by 

the time management services and associated mechanisms.   

• Data Distribution Management: The services in this group provide 

information on data relevance at different levels and allow refining the 

data requirements.  

• Support Services: This group includes miscellaneous services for 

performing such actions as setting advisory switches, manipulating 

regions, or RTI start-up and shutdown. 

2.3.2. HLA rules 

The HLA rules describe the responsibilities of federations and the federates that 

join. These are a set of rules, which must be followed to achieve proper interaction 

of federates in a federation. These following rules describe the responsibilities of 

simulations and RTI in HLA federations [33]. 

• Federations shall have an HLA Federation Object Model (FOM), 

documented in accordance with the HLA Object Model Template 

(OMT).  

• In a federation, all representation of objects in the FOM shall be in the 

federates, not in the run-time infrastructure (RTI).  

• During a federation execution, all exchange of FOM data among 

federates shall occur via the RTI.  

• During a federation execution, federates shall interact with the run-time 

infrastructure (RTI) in accordance with the HLA interface specification.  
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• During a federation execution, an attribute of an instance of an object 

shall be owned by only one federate at any given time.  

• Federates shall have an HLA Simulation Object Model (SOM), 

documented in accordance with the HLA Object Model Template 

(OMT).  

• Federates shall be able to update and/or reflect any attributes of objects 

in their SOM and send and/or receive SOM object interactions 

externally, as specified in their SOM.  

• Federates shall be able to transfer and/or accept ownership of an 

attribute dynamically during a federation execution, as specified in their 

SOM.  

• Federates shall be able to vary the conditions under which they provide 

updates of attributes of objects, as specified in their SOM.  

• Federates shall be able to manage local time in a way that will allow 

them to coordinate data exchange with other members of a federation. 

2.3.3. OMT (Object Model Template)  

The OMT prescribes a common method for recording the information that will be 

produced and communicated by each simulation participating in the distributed 

exercise [33]. An HLA object model is a composition of a set of interrelated 

components encapsulating information on classes of objects and their attributes 

and interactions and their parameters. HLA object models identify the data 

exchanged at runtime to achieve federation objectives. The OMT Specification 

defines the format and syntax of HLA object models. Furthermore it provides a 

common framework for the communication between HLA simulations.  

All objects and interactions managed by a federate, and visible outside the 

federate, are described according to the standard OMT. This common template 

facilitates understanding and comparisons of different federates and federations, 

and provides a contract between members of a federation on the types of objects 

and interactions that will be supported across multiple interoperating simulations 

[33]. The primary objective of the HLA OMT is to facilitate interoperability among 

simulations and reuse of simulation components. 
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HLA object models are documented using OMT components, which represent 

information about classes of objects, their attributes and their interactions in tabular 

form. The template for the core of an HLA object model shall consist of the 

following components: 

• Object model identification table: To associate important identifying 

information with the HLA object model. 

• Object class structure table: To record the namespace of all federate or 

federation object classes and to describe their class-subclass 

relationships. 

• Interaction class structure table: To record the namespace of all 

federate or federation interaction classes and to describe their class–

subclass relationships. 

• Attribute table: To specify features of object attributes in a federate or 

federation. 

• Parameter table: To specify features of interaction parameters in a 

federate or federation. 

• Dimension table: To specify dimensions for filtering instance attributes 

and interactions.  

• Time representation table: To specify the representation of time values.  

• User-supplied tag table: To specify the representation of tags used in 

HLA services. 

• Synchronization table: To specify representation and data types used in 

HLA synchronization services. 

• Transportation type table: To describe the transportation mechanisms 

used. 

• Switches table: To specify initial settings for parameters used by the 

RTI. 

• Data type tables: To specify details of data representation in the object 

model. 

• Notes table: To expand explanations of any OMT table item. 

• Routing space table: To specify routing spaces for object attributes and 

interactions in a federation. 

• FOM/SOM lexicon: To define the terms used in the tables.  
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OMT specifies three types of object models: 

• Federation Object Model (FOM): The FOM describes the all shared 

object, attributes and interactions and associations for the whole 

federation among federates essential to a particular federation.  

• Simulation Object Model (SOM): A SOM describes the shared object, 

attributes and interactions used for a single federate.  

• Management Object Model (MOM): MOM identifies classes and 

interactions related to federation management. 

All of the OMT components shall be completed when specifying an HLA object 

model for both federations and individual federates. However, certain tables may 

be empty or devoid of domain-specific content. For instance, although federations 

typically support interactions among their federate’s, some federates (such as a 

stealth viewer) might not be involved in interactions. In this situation, the interaction 

class structure table would contain only the single interaction class required by the 

HLA and the parameter table would be empty in that federate’s SOM. It is also 

expected that federates commonly have objects with attributes of interest across 

the federation; in such cases, these objects and attributes shall be documented. 

However, a federate or an  entire  federation  may  exchange  information  solely  

via  interactions;  in  which  case,  its  object  class structure  table  and  attribute  

table  would  contain  only  HLA-required  data.   

The final HLA OMT component, the FOM/SOM lexicon, is essential to ensure that 

the semantics of the terms used in an HLA object model are understood and 

documented. The HLA MOM specifies a designated set of information elements 

that are associated with federation executions. Implementation of the MOM 

information elements as specified in IEEE STD 1516.1-2000 ([34]) provides a 

mechanism for management of federation executions using existing HLA services. 

Inclusion of the MOM is required for all FOMs. Any FOM or SOM that fully 

conforms to all of the rules and constraints stated in this specification is a 

compliant object model. 
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2.4. GME (Generic Modeling Environment) 

The Generic Modeling Environment (GME) is a configurable toolkit for creating 

domain-specific modeling and program synthesis environments [8]. The 

configuration is accomplished through metamodels specifying the modeling 

paradigm (i.e., modeling language) of the application domain. The modeling 

paradigm contains all the syntactic, semantic, and presentation information 

regarding the domain. It defines the family of models that can be created using the 

resultant modeling environment. 

The metamodels are used to automatically generate the target domain-specific 

environment. An interesting aspect of this approach is that the environment itself is 

used to build the metamodels. The generated domain-specific environment is then 

used to build and manipulate domain models that are stored in a model database. 

The metamodels specifying the modeling paradigm are used to automatically 

generate the target domain-specific environment. The generated domain-specific 

environment is then used to build domain models that are stored in a model 

database or in XML format. These models are used to automatically generate the 

applications or to synthesize input to different COTS analysis tools. 

GME has a modular, extensible architecture that uses MS COM for integration. 

GME is easily extensible; external components can be written in any language that 

supports COM (C++, Visual Basic, C#, Python etc.). GME has many advanced 

features. A built-in constraint manager enforces all domain constraints during 

model building. GME supports multiple aspect modeling. It provides metamodel 

composition for reusing and combining existing modeling languages and language 

concepts. It supports model libraries for reuse at the model level. All GME 

modeling languages provide type inheritance. Model visualization is customizable 

through decorator interfaces.  

2.4.1. Technical Overview 

The GME includes several other relevant features:  

• It is used primarily for model-building. The models take the form of 

graphical, multi-aspect, attributed entity-relationship diagrams. The 
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dynamic semantics of a model is not the concern of GME – that is 

determined later during the model interpretation process.  

• It supports various techniques for building large-scale, complex models. 

The techniques include: hierarchy, multiple aspects, sets, references, 

and explicit constraints. These concepts are discussed later.  

• It contains one or more integrated model interpreters that perform 

translation and analysis of models currently under development.  

GME has a modular, component-based architecture depicted in Figure 6  below. 

 

 

Figure 6. Generic Modeling Environment Architecture 

 

The Core component implements the two fundamental building blocks of a 

modeling environment: objects and relations. Among its services are distributed 

access (i.e. locking) and undo/redo [8]. 
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On top of the architecture, the user interacts with these components: the GME 

User Interface, the Model Browser, the Constraint Manager, Interpreters and Add-

ons. 

Add-ons are event-driven model interpreters. The GModel component exposes a 

set of events, such as "Object Deleted," "Set Member Added," "Attribute Changed," 

etc. External components can register to receive some or all of these events. They 

are automatically invoked by the GModel when the events occur. When a particular 

domain calls for some special operations, these can be supported without 

modifying the GME itself [8]. 

The Constraint Manager behaves as an interpreter and an add-on at the same 

time. It can be invoked when event-driven constraints are present in the given 

paradigm and it is also invoked explicitly by the user. Depending on the priority of a 

constraint, the operation that caused a constraint violation is aborted. For less 

serious constraint violations, the Constraint Manager only issues a warning 

message. 

There is no special privilege for the GME User Interface component in this 

architecture. Any operation that can be done through the Graphical User Interface 

(GUI) can also be done programmatically through the interfaces. By this way, the 

architecture is very flexible and supports extensibility of the whole environment. 

 2.4.2. Modeling Concepts 

The vocabulary of the domain-specific languages implemented by different GME 

configurations is based on a set of generic concepts built into GME itself. GME 

supports various concepts for building large-scale, complex models as depicted in 

Figure 7.  

A Project contains a set of Folders. Folders are containers that help organize 

Models, just like folders on a disk help organize files. Folders contain Models. 

Models, Atoms, References, Connections and Sets are all first class objects, or 

FCOs for short. FCO is used as the abstract base class for these elements in 

modeling.  
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1.
.*

 

Figure 7. GME modeling concepts [8] 

 

Atoms are the elementary objects; that is, they cannot contain parts. Each kind of 

Atom is associated with an icon and can have a predefined set of attributes, whose 

values are user changeable.  

Models are the compound objects that can have parts and inner structure. A part in 

a container Model always has a Role. The modeling paradigm determines what 

kind of parts are allowed in Models acting in which Roles, but the modeler 

determines the specific instances and number of parts a given model contains (of 

course, explicit constraints can always restrict the design space). Any element 

must have at most one parent, which must be a Model. At least one Model does 

not have a parent and is called a root Model.  

A common way of expressing a relationship between two model elements in GME 

is with a Connection. Connections can be directed or undirected, and have 

Attributes. In order to make a Connection between two modeling elements they 

must have the same parent in the containment hierarchy. It is specified what kind 

of objects can participate in a given kind of Connection. Connections can further be 

restricted by explicit Constraints, such as their multiplicity. 
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In GME, a Reference must appear as a part in a Model. This establishes a 

relationship between the Model that contains the Reference and the referred-to 

object. Any FCO, except for a Connection, can be referred to (even References 

themselves). A Reference always refers to exactly one FCO, while a single FCO 

can be referred to by multiple References.  

Some information does not lend itself well to graphical representation. GME 

provides the facility to augment the graphical objects with textual attributes. All 

FCOs can have different sets of Attributes among the kinds text, integer, double, 

boolean and enumerated. 

The GME is made up of instances of Folders, FCOs (Models, Atoms, Sets, 

References, Connections), Roles, Constraints and Aspects. These are the main 

concepts that are used to define a modeling paradigm. As soon as a particular 

model is created in GME, it becomes a type (class). It can be sub typed and 

instantiated as many times as the user wishes. The general rules that govern the 

behavior of this inheritance hierarchy are: 

• Only attribute values of model instances can be modified. No parts can 

be added or deleted. 

• Parts cannot be deleted but new parts can be added to subtypes. 

This concept supports the reuse and maintenance of models because any change 

in a type automatically propagates down the type hierarchy. Also, this makes it 

possible to create libraries of type models that can be used in multiple applications 

in the given domain. 

 2.4.3. Extensibility 

GME identifies data and tool integration as one of its primary application areas, so 

data access and standards-compliant extensibility is one of its primary design 

goals. Hence, GME is completely component-based with public interfaces among 

its components. Most notably, the GME editor, i.e. the visualization component, the 

model storage and logic, and the meta-modeling module is separated by interfaces 

which are accessible to user-written components as well, thus giving them access 

level identical to that of the GME editor. Since the component model is COM, the 

primary languages for integration are C++ and Visual Basic, while Java, Python, 
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etc. access is also available. Access is bi-directional, and fully transactional, which 

makes different 'on-line modeling' scenarios feasible. For example, the GME user 

interface itself can be used as the user interface of a generated application to 

provide feedback to the user in terms of the models. Furthermore, the bi-directional 

access makes it possible to convert legacy data into models in an automated 

fashion [8]. 

Programming at the component level is somewhat challenging in the sense that it 

requires advanced transaction control and event handling. Several alternatives 

provide easier access through simpler interfaces (albeit with limited functionality). 

First, the GME pattern-based report language provides simple reporting 

capabilities by interpreting macro definitions in a simple text input file. A more 

complex interface is layered on top of the COM interfaces providing an easy-to-use 

extensible C++ API. GME also provides bi-directional XML access for both model 

and meta-model information [8]. 

 2.4.4. Metamodeling with GME 

Defining a modeling paradigm can be considered just another modeling problem. It 

is quite natural then that GME itself is used to solve this problem. There is a 

metamodeling paradigm defined that configures GME for creating metamodels 

[35]. These models are then automatically translated into GME configuration 

information through model interpretation. Originally, the metamodeling paradigm 

was hand-crafted. Once the metamodeling interpreter was operational, a meta-

metamodel was created and the metamodeling paradigm was regenerated 

automatically. This is similar to writing C compilers in C. 

The metamodeling paradigm is based on UML [36]. The syntactic definitions are 

modeled using pure UML class diagrams and the static semantics are specified 

with constraints using the Object Constraint Language (OCL) [40]. Only the 

specifications of presentation/visualization information are extensions to UML, 

mainly in the form of predefined object attributes. 

Just as the reusability of domain models from application to application is essential, 

the reusability of meta-models from domain to domain is also an important 

consideration. In GME a library of meta-models of important sub-domains is made 
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available to the meta modeler, who then can pick and choose from them, extend 

and compose them together to specify new domain languages. The extension and 

composition mechanisms must not modify the original metamodels for two reasons. 

First, changes in the meta-model libraries, reflecting a better understanding of the 

given domain, for example, should propagate to the meta-models that utilize them. 

Second, by precisely specifying the extension and composition rules, using 

inheritance and equivalence operators, for instance, models specified in the 

original domain language can be automatically translated to comply with the new, 

extended and composed, modeling language. This is a simple and elegant solution 

to the well-known model migration problem. For more detail on metamodel 

composition please see [37]. 

 2.4.5. User Interface 

The native graphical user interface of GME is shown in the Figure 8 below. The 

picture shows a model of a signal flow graph loaded. In this simple model, only 

Models, Atoms and Connections are used. The window on the right hand side 

shows the Model Browser that displays the whole project in a tree-like fashion. The 

Aggregate tab displays the containment hierarchy, while the Inheritance tab shows 

the type inheritance hierarchy. The Meta tab provides an overview of the modeling 

paradigm specifications. The bottom window is the Part Browser where all the 

parts that are available in the current aspect of the current model are shown. 

Notice that two tabs indicate the aspects of the signal flow model: SignalFlow and 

Parameter. 
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Figure 8. Graphical User Interface of GME 

 

2.5. Graph Transformations with GreAT 

Graph Rewriting and Transformation (GReAT) [9][10] is a transformation language 

developed for model-to-model transformations/rewriting. In other words, GReAT is 

a tool for building model transformation tools using graph transformation 

techniques. This section provides an overview of GReAT, while [38] provides a 

more detailed description. The operational semantics of GReAT is formally defined 

in [10]. GReAT is based on the theoretical work of graph grammars and 

transformations [26] and belongs to the set of practical graph transformations 

systems. 



 

Figure 9. Transformation Modeling and Execution in GReAT
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. Transformation Modeling and Execution in GReAT [9]

GReAT uses metamodels to specify the abstract syntax of the input and the target 

models (i.e. the modeling languages), and sequenced graph rewriting rules for 

specifying the transformation itself. It takes the input graph, applies the 

transformations to it, and generates the output graph. Inputs to the GRE are the 

UML class diagrams for the input and output graphs (also known as meta

the transformation specification and the input graph. The GRE executes the rules 

according to the sequencing and produces an output graph based upon the actions 

The approach used in GReAT is illustrated in Figure 9 above

For building a model transformation tool using GReAT, one first has to specify the 

metamodels of the input and the target models. This is done using the UML

GME and UDM [39]. 

The GReAT transformation rules are graph rewriting rules that transform a part of 

the input model (a typed, attributed graph of model elements) into part of the target 
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attributes). The match is always computed starting from specific nodes, called the 
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in the graph to limit the search, and pivot nodes could be passed down 

to subsequent rules. The rule execution is explicitly sequenced, and various control 

structures (including conditional and looping structures are available).

includes a number of tools, as illustrated on the Figure 10 below.  

Figure 10. Transformation Tools in GReAT [9] 
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required in many domains. A few use case scenarios of this tools suite are:  
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• Developing model interpreters that convert GME models (conforming to 

a meta-model) to XML files conforming to a particular dtd.  

• Developing model interpreters that convert GME models (conforming to 

a metamodel) to a set of secondary data structures. A visitor can then 

be written to convert the secondary models to text.  

• Developing model interpreters that convert GME models (conforming to 

a metamodel) to GME models conforming to another metamodel.  

• Developing transformers that convert xml files belonging to one dtd to 

xml files belonging to another dtd.  

• Developing transformers that convert xml files belonging to a dtd to 

GME models. 

GReAT is the model transformation language that we have employed in FACM to 

FAM transformations. UMLModelTransformer paradigm, which is the metamodel of 

the GReAT language, comes out of the box as registered in GME. By creating 

models conforming to this paradigm in GME, we are able to define our model 

transformations. GReAT can be divided into 3 distinct parts: (1) Pattern 

specification language, (2) Graph transformation language, and (3) Control flow 

language, which we briefly summarize below. The details on all the three parts can 

be found in [9]. 

2.5.1. The Pattern Specification Language 

The heart of a graph transformation language is the pattern specification language 

and the related pattern matching algorithms. Graph patterns allow selecting 

portions of the input (host) graph, and thus specify the scope of individual 

transformation steps. In broadest terms, the goal of the pattern language is to 

specify patterns over graphs (of objects and links), where the vertices and edges 

belong to specific classes and associations. GReAT assumes that a UML class 

diagram is available for the objects. The UML class diagram can be considered as 

the “graph grammar,” which specifies all legal constructs formed over the objects 

that are instances of classes introduced in the class diagram. Please refer to [9] for 

details. 
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2.5.2. Graph Rewriting Transformation Language 

Another important concern besides pattern specification is the specification of 

static structural constraints in graphs and ensuring that these are maintained 

throughout the transformations [25]. Model-to-model transformations usually 

transform models from one domain to models that conform to another domain 

making the problem two-fold. The first problem is to specify and maintain two 

different models conforming to two different metamodels. An even more important 

problem to address involves maintaining references between the two models. 

GReAT’s solution to these problems is to use the source and destination 

metamodels to explicitly specify the temporary vertices and edges. This approach 

creates a unified metamodel along with the temporary objects. Then the source 

model, destination model, and temporary objects can be treated as a single graph. 

In GReAT, each pattern object’s type conforms to the unified metamodel and only 

transformations that do not violate the metamodel are allowed. At the end of the 

transformation, the temporary objects are removed and the two models conform 

exactly to their respective metamodels. 

The graph transformation language of GReAT defines a production (also referred 

to as rule) as the basic transformation entity. A production contains a pattern graph 

that consists of pattern vertices and edges. These pattern objects conform to a 

type from the metamodel. Each pattern has another attribute that specifies the role 

it plays in the transformation. A pattern can play the following three different roles: 

• Bind – used to match objects in the graph. 

• Delete – also used to match objects in the graph, but after these objects 

are matched they are deleted from the graph. 

• New – used to create objects after the pattern is matched. 

The execution of a rule involves matching every pattern object marked either bind 

or delete. If the pattern matcher is successful in finding matches for the pattern, 

then for each match the pattern objects marked delete are deleted from the match 

and objects marked new are created. 

Sometimes the patterns by themselves are not enough to specify the exact graph 

parts to match and we need other, non-structural constraints on the pattern. These 
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constraints or pre-conditions are expressed in a guard and are described using 

Object Constraint Language (OCL) [40]. There is also a need to provide values to 

attributes of newly created objects and/or modify attributes of existing object. 

Attribute Mapping is another ingredient of the production: it describes how the 

attributes of the “new” objects should be computed from the attributes of the 

objects participating in the match. Attribute mapping is applied to each match after 

the structural changes are completed. 

A production is thus a 4-tuple, containing a pattern graph, mapping function that 

maps pattern objects to actions, a guard expression (in OCL), and an attribute 

mapping. 

2.5.3. Controlled Graph Rewriting and Transformation 

To increase the efficiency and effectiveness of GReAT, it is essential to have 

efficient implementations for the productions. Since the pattern matcher is the most 

time consuming operation, it needs to be optimized. One solution is to reduce the 

search space (and thus time) by starting the pattern-matching algorithm with an 

initial context. An initial context is a partial binding of pattern objects to input (host) 

graph objects. In order to provide initial bindings, the production definition is 

expanded to include the concept of ports. Ports are elements of a production that 

are visible at a higher-level and can then be used to supply initial bindings. Ports 

are also used to retrieve output objects from the production. 

The next concern is the application order of the productions. The control flow 

language of GReAT supports the following features: 

• Sequencing – rules (i.e., productions) can be sequenced to fire one 

after another. This is achieved by attaching the output port of the first 

rule to the input port of the next. 

• Non-Determinism – when required parallel execution of a set of rules 

can be specified. The order of execution of these rules is non-

deterministic. This construct is achieved by attaching the output of one 

rule to the input of more than one rule. 

• Hierarchy – High-level rules have been introduced in the language. 

These are used for encapsulation and data abstraction. Compound 
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rules can contain other compound rules or primitive transformation 

rules. 

• Recursion – A high level rule can “call” itself. 

• Test/Case – A conditional branching construct that can be use to 

choose between different control flow paths. 

2.5.4. The GReAT Engine 

The model transformation language described above is supported through a Graph 

Rewriting and Transformation Execution Engine (GReAT-E), whose architecture is 

shown in Figure 11. The engine works as an interpreter: it takes the model 

transformation “program” in the form of a data structure, and it “executes” it on an 

input graph to produce an output graph. The engine uses generic API-s (using the 

model-driven reflection package called UDM [39]), and is thus suitable for 

executing any model transformation. 

 

 

Figure 11. Run time architecture of the GReAT Interpreter [9] 

 

The interpreter accesses the input and output graph with the help of a generic 

UDM API that allows the traversal of input and output graph. The rewrite rules are 
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stored in their own language format and can be accessed using the language 

specific UDM API. The GReAT is composed of two major components, (1) 

Sequencer, (2) Rule Executor (RE). The Rule Executor is further broken down into 

(1) Pattern Matcher (PM) and (2) Effector (or ‘output generator’). The Sequencer 

determines the order of execution for the rules using the ‘Execute’ function 

described above and it calls the ExecuteRule for each rule. The rule executor 

internally calls the PM with the pattern of the rule. The matches found by the PM 

are used by the Effector to manipulate the output graph by performing the actions 

specified in the rules. 

The Pattern Matcher finds the subgraph(s) in the input graph that are isomorphic to 

the pattern specification. When a pattern vertex/edge matches a vertex/edge in the 

input graph, the pattern vertex/edge will be bound to that vertex/edge. The matcher 

starts with an initial binding supplied to it by the Sequencer. Then it incrementally 

extends the bindings till there are no unbound edges/vertices in the pattern. At 

each step it first checks every unbound edge that has both its vertices bound and 

tries to bind these. After it succeeds to bind all such edges it then finds an edge 

with one vertex bound and then binds the edge and its unbound vertex. This 

process is repeated until all the vertices and edges are bound.  
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CHAPTER 3 

FIELD ARTILLERY METAMODEL  

This section is about the formalization of the conceptual model. The data model 

identifies the entities in the FA domain along with their properties and associations. 

The conceptual data model is constructed as a metamodel by using the GME. 

Once the FA metamodel is registered with GME, it automatically provides a 

customized environment to model particular FA data models.  

Figure 12 depicts an excerpt of the metamodel as shown in the GME Browser 

window. The DurableData, EntityFADomain and Message folders and the Utility 

sheet contain the data model part. Finally, FADMMRoot sheet gathers the top level 

elements in these folders under the root element, DataModel. 

 

 

Figure 12. An overview of FADMM in GME Browser 

 

Before moving any further, a clarification on the levels of modeling would be 

worthwhile. Object Management Group (OMG) introduces a four-layer metamodel 

hierarchy for defining modeling, metamodeling, and meta-metamodeling languages 

and activities in [36].  

Table 3 relates the FADM metamodel to OMG’s four-layer modeling hierarchy.  
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Table 3. FA Metamodel correlated with OMG’s model hierarchy 

 

OMG’s Metamodel Hierarchy Related Model 

Meta-metamodel (M3 layer) GME metamodel (metaGME) 

Metamodel (M2 layer) FADM metamodel (referred to as a 

“paradigm” in GME vernacular) 

Model (M1 layer) A particular FA mission description, e.g., The 

Adjustment followed by Fire For Effect  

(AdjFFE). 

Run-time instance (M0 layer) A particular execution of a FA mission (e.g., 

exercising an AdjFFE scenario) 

 

3.1. Data Model 

Messages are an important part of the FA domain information. Typically, they are 

highly structured and they have with many optional or conditional fields of various 

data types. There are further syntactic, semantic or cardinality constraints on the 

message structures, both on a single field and inter-field basis.  

Our analysis has revealed two kinds of message usage in the domain. The first 

kind includes those messages that are sent as single chunks of information 

independent of any previous ones. Every such message supplants its immediate 

predecessor of the same type. The second kind of usage is practically an 

accumulation of a series of communications of the same message type. 

Specifically, the current interpretation of a message at a particular destination is a 

function of all previous receptions of that message kind. In such a usage, the first 

reception of a message creates an initial copy at the destination. Subsequent 

message receptions result in updates on the original copy. The message is 
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removed from the scope of the actor with the arrival of a special deletion message. 

In the FA domain model the majority of the message usages are of the first kind. 

The mission hierarchy builds up the set of FA observed fire missions that are 

modeled in this work. The mission model elements themselves do not possess 

mission related information; rather they are simple atomic elements merely used as 

markers of mission types. Mission specific information is conveyed within message 

structures. Mission model elements exist as parts of some of those message 

structures. Figure 13 and Figure 14 show the synopsis of the data model hierarchy 

as manifested in GME Browser. 

 

 

Figure 13. A sample of data model in GME 
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Figure 14. An overview of data model in GME Browser 

 

3.2. Metamodeling of Observed Fire in GME 

An examination of the narrative FA model outline of 2.2. Elements of Field Artillery 

suggests a set of messages, entities and relationships between these entities.  

The observed (indirect) fire techniques of the Field Artillery (FA) domain constitute 

the source model for the transformations. This section first gives a conceptual 

overview on the elements and fire direction processes of the FA domain, and then 

presents the metamodeling effort of the domain implemented in GME environment. 

The entities in the FA domain are FO, Battalion FDC, Battery FDC, Firing Section, 

FAT and Target. Note that, when we examine the field manuals [31], it is seen that 

there are many more sub-divisions and personnel working in coordination in an FA 



41 

 

unit. In order to reduce complexity and provide a better understanding of the 

responsibilities, we worked out to gather all these real-life participants under 

following functional entities. 

From a military perspective, firing sections are organized under batteries and 

batteries are organized under battalions. However, from modeling perspective, the 

kinds of interactions that can occur among them are more important and 

organizational hierarchy is not a serious concern. Thus, we gathered the Battalion 

FDC, Battery FDC and Firing Section under the aggregate FAT (Field Artillery 

Team). In fact, this non-hierarchic organization schema is relevant in order to 

sketch message communication diagrams straightforwardly in GME.  

Target is rather a passive actor that most of the time is a primary concern of the 

others. Its most distinguishing features are that it provides a location to issue fire 

orders for, shapes the method of engagement, fire and control according to its 

kind, and provide feedback for mission termination. Last, but not least, a field 

artillery operation cannot be envisioned at all without a target concept.  

All the entities mentioned are modeled as GME models and are considered 

specializations of an abstract Entity model element. Figure 15 depicts the entities 

as defined in GME. 

 

 

 

Figure 15. Field Artillery Entities 
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Figure 16. An overview of the FACM metamodel 

 

An overview of the FACM metamodel, as sown in GME model browser, is given in 

Figure 16. The components making up the model are organized under four major 

folders.  

The actors are the active driving forces of mission executions. In modeling actors 

we assumed a functional perspective rather than a one to one mapping of real life 

entities. Therefore they represent personnel, equipment or an aggregation of these 

in FA batteries. Actors are the producers and comsumers of the message traffic.  

Nets are similar to actors in terms for producing and consuming messages. 

However they are an abstraction of a set of actors in the domain. Any message 

entering a net is distributed to the actors in the net. Hence they resemble the real 

life nets in the mission space. 
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Figure 17. An example of DurableData in FACM 

 

The DurableData folder contains the model elements that represent the long 

lasting domain information such as ammunition, SOPs, and metro reports. Durable 

data are usually expected to exist and keep their states until a mission is either 

completed or aborted. Their states can be (partly) modified and these modifications 

are transmitted among actors. The sketch of DurableData is shown in Figure 17 as 

an example. The details can be found in Appendix B. 

The messages are communicated among the actors while executing FA missions. 

These are generally instantaneously generated by its sender and are void. Once 

they are consumed by the receiver(s). In short they are short-lived, volatile 

information chunks that do not have lives spanning multiple message 

communications. The messages are best candidates for transforming into 

interaction classes in OMT. 

The utility sheet consists of a variety of lower level components that are commonly 

used by the higher level messages. These encompass such components as date 

and time, location, measurement, etc. These utility components are specially 

treated during transformations in that they have their own transformation rules and 

these rules are called from the higher level rules that transform messages. 

Consequently the utilities facilitate modularization and reuse. 

Please refer to Appendix B for the details of the entities. 
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CHAPTER 4 

HLA OMT METAMODEL  

4.1. Federation Design Model 

The HLA-OMT metamodel has been developed in a previous study [6]. Here we 

provide only refreshment that would be necessary for the reader to understand our 

target model. 

The Federation Design Model (FDM) provides an interface to define a federation 

and the federates and to connect them to the related FOM and SOMs. In FDM, 

FOM and SOMs are referenced object models. Each design can include one 

federation and one FOM reference, while there may be any number of federates 

and SOMs.  

 

 

Figure 18. Federation design model 
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Figure 18 shows the GME class diagram of federation design model. There is a 

“MemberOf” connection between federation and federates. This connection 

presents the federation execution capabilities. Federation Design Model is not 

intended to complete; it is constructed to show the usage of object models in 

context. 

4.2. Object Model 

The Object Model paradigm sheet includes the main diagram for object models. As 

seen in Figure 19, there are three types of object models, namely, FOM, SOM and 

Other. FOM and SOM are HLA object models which are defined in HLA OMT 

specification. The “Other” type provides a template for “temporary” object models.  

Object Model, which is the parent of FOM, SOM and Other, is an abstract class. 

The inheritance operator in this figure presents a parent-child relation that is 

analogous to the inheritance in usual OO approach. Object models have some 

attributes [6]: 

• Name: The name assigned to the object model.  

• Version: The version identification assigned to the object model.  

• Modification Date: The latest date on which this version of the object 

model was created or modified.  

• Purpose: The purpose for which the federate or federation was 

developed.  

• Application Domain: The type or class of application to which the 

federate or federation applies.  

• Sponsor: The organization that sponsored the development of the 

federate or federation. 

• Point of Contact: The name of the point of contact (POC) for 

information.  

• POC Organization: The organization with which the POC is affiliated.  

• POC Telephone: The telephone number for the POC.  

• POC E-mail: The e-mail address of the POC.  

• References: Additional sources of information. The default value is 

“NA”.  
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• Other: Other information related to the object model. The default value 

is “NA”.  

• MOM version: The version of the included management object model. 

The default value is “IEEE 1516”. Selecting a MOM name is required for 

all FOMs. In SOMs the MOM shall be included if needed.  

• Notes: Note labels added to the object model.  

Object models have five aspects, namely Classes, User-Supplied Tags, 

Synchronization, Switches and Time Representation. In each aspect the model 

definitions are taken from the related paradigm sheets with proxy elements. The 

Classes aspect includes the definition of object classes, attributes, interaction 

classes and parameters. The User-Supplied Tags aspect includes the user-

supplied tag elements. The Synchronization aspect includes the definition of 

synchronization point models. The Switches aspect includes the switches in order 

to change the initial settings and time representation aspect includes the definition 

of look ahead and timestamp models. 

4.3. OMT Core 

Both FOM’s and SOM’s  structure make use of the same set of model constructs 

defined inside the OMTCore package. Therefore the OMT elements can be 

considered as the core of the object model, as its name implies. In Figure 19, we 

see the object model structure. The OMT core contains any number of federates 

and HLA classes. Federates have publish and subscribe relationships to attribute 

lists, which in turn have relationship to the attributes of HLA classes. 
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Figure 19. OMT Object Models diagram 

 

There are two types of HLA classes and HLA attributes. Each class has its own 

type of attributes, namely, Object attribute and Interaction parameter. The value 

that an HLA attribute carries is represented with a separate HLAAttribValue FCO 

construct, which has a recursively defined tree structure having primitive GME-

typed atomic values at the leaves. This structure is displayed in Figure 20. 
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Figure 20. HLA Class and Attribute Structure 

 

4.4. The Meta Data 

Meta data are used in declaring various HLA borne properties of HLA 

classes and attributes. The MetaData model element is specified into 

HLAClassMetaData and HLAAttribMetaData submodels. HLAClassMetaData is 

further categorized into ObjectClassMetaData and InteractionClassMetaData, 

whose single submodels being PS and ISR, respectively. HLAAttribMetaData has 

six immediate leaf submodels, and an ObjectAttributeMetaData submodel that has 

four further submodels. Finally, all these leaf metadata elements are contained in 

HLA classes and attributes with cardinality 1 (see Figure 21). Note that the 

metadata hierarchy naturally follows the HLA class and attribute hierarchy. These 

metadata have distinguished data types provided by HLA. 
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Figure 21. HLA Meta Data Hierarchy 

 

4.5. The Meta Data Types 

This section defines the types of the meta data elements. As known from the 

programming language theory, every datum must have a type associated with it 

that resembles the set of all of the similar other data elements. This rule surely 

applies in our case. Figure 22 shows the top level meta data type hierarchy for 

HLA meta data. Each meta data type consists of a set of literals. Primitive literals 

are string, double, integer, and boolean literals, and there are infinitely many of 

them, except for the Boolean literals, which are true and false. 

Please refer to [6] and Appendix C for the other details of the HLA-OMT Meta 

Model. 
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Figure 22. Top Level HLA Meta Data Type Hierarchy 
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CHAPTER 5 

FA DATA MODEL TO HLA-OMT TRANSFORMATIONS 

The data model transformation of FADMM2HOMM has little in graph-based pattern 

matching, but has much done in user code library. The DataTypes block contains 

rules for creating any non-standard basic, simple, enumerated, array and fixed 

record data types that the following rules will refer to. Figure 23 shows the top-level 

data model transformation block. 

 

 

 

Figure 23. Top-level data model transformation block 
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The InitFOM rule is shown in Figure 24. The pattern matches if the FACM data 

model has a Messages and DurableDataStore folders (The match on FAM side 

about data types is trivial since those elements were hand-prepared in a previous 

rule. Once the input and output patterns match, an ObjectModels folder is created 

under HLAObjectModel parent folder. Moreover a FOM element is created with all 

of its child objects under ObjectModels. HLAInteractionRoot and HLAPrivilegeTo-

DeleteObject are the two constant top level objects from which all of the interaction 

classes and object classes are extended [41]. A blue color of an association or a 

model entity indicates “CreateNew”, whereas black indicates “Bind” semantic. Input 

packets arrive at a rule trough blue input ports and leave out via the red output 

ports. AttributeMapping provides the user an opportunity to specify custom code (in 

C++) for applying more complicated and/or flexible operations on the bound 

objects using the UDM API [39]. These operations range from simple ones such as 

setting a new object’s name or position on the screen to sophisticated graph 

traversals, object creations or deletions. 

 

 

 

Figure 24. InitFOM rule 
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InteractionClasses rule, as seen in Figure 25, simply creates an interaction class 

per NonDurableMsg matched from the FACM. The sister rule ObjectClasses does 

a similar job as creating an object class per DurebleData. Remember that the non-

durable messages and durable data define families of objects with varying size and 

complexity underneath them. The whole convolution of converting field artillery 

messages and durable data into HLA classes and objects is hindered under the 

AttributeMapping code, which makes a call to the user code library to perform a 

programmatic transformation using the UDM API [39]. We have developed the user 

code library as Microsoft Visual C++ project. It consists of hundreds of lines of 

code with a handful of methods. The source code of the library is presented in 

Appendix A. In addition to that, all other transformation rules defined for FADM to 

HLA-OMT transformation is presented in Appendix D.  

 

 

Figure 25. InteractionClasses rule 

 

We have identified and implemented three distinct approaches, the third one 

having two varieties, to transforming a FACM message into an OMT class with 

attributes. The problem is that, a FA message is usually highly structured, with the 

possibility of having child objects being bound to their parents in varying 

cardinalities. This makes the situation even worse, because in order to represent 

such combination possibilities we would need many patterns, hence rules. For 

example if a structure can have n direct children each with a 0..1 cardinality, then 

we would need at least n parallel rules to cope with the source model. This is one 

of the reasons why we called for user code library support. In this case we only 
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need one rule no matter how many children with whatever cardinality a message 

structure may have. The other reason is course performance gain; direct C++ 

executes much faster than first matching a graph and then calling the effector 

(Note that solving graph isomorphism problem is NP-hard, which is done in every 

pattern matching). In all of them an OMT class is created for a FA message or 

durable data (from now on, FA message and durable data will be used 

interchangeably when not stated explicitly otherwise). The difference lies in the 

construction of the attributes of the class. Whereas a FA message is highly 

structured, an OMT class has a fairly simple structure; it consists of only OMT 

attributes (which correspond to message parts) as well as some HLA-specific 

elements. The data model view of FADM Input model that will be transformed into 

HLA-OMT output model for the following examples is shown in Figure 26. Note that 

the Oid_W_Msg message which is a Call for Fire message in FA has been 

expanded in the view so as to be used in the following transformation cases as an 

example. 

 

 

Figure 26. Example FADM Input Model 
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5.1. Message Structure Flattened into a Set of Plain Attributes 

In this strategy, a field artillery message structure is transformed into a set of fully 

flattened OMT attributes within the OMT class. All of the attributes have 

primitive/simple data types and their names consist of a string of concatenated 

message structure names, separated by ‘_’, from the leaf to the root node. This is 

best explained with a visual example. Figure 27 shows a typical FA message which 

is part of a call for fire request and Figure 28 shows the transformation result of it 

using this strategy. 

 

 

 

Figure 27. FA message of a call for fire request 
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Figure 28. Transformation result of call for fire by flattenning 

 

5.2. Message Structure Mapped into one Attribute of FixedRecord 

This schema is at the other extreme compared to the previous one. This time only 

one super attribute is created under the class having an HLA fixed record data 

type. The data type directly mimics the FA message structure. Members of the 

fixed record type are also made fix record types until primitive/simple types of the 
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leaves are reached. In other words, the class and the attribute together form a 

fairly simple structure, but the whole complexity of the message structure is pushed 

inside the attribute’s data type. The above example’s transformation with this 

schema is shown in Figure 29. 

 

 

 

Figure 29. The FA message transformed by fixed record 

 

5.3. A Hybrid Solution of Flattening and Fixed Recording 

The third approach is actually a mixture of the two previous strategies. The field 

artillery message structure is transformed into an OMT attribute having a fixed 
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record data type, within the OMT class. Each common message part that is reused 

(among multiple messages) is transformed into a fixed record type's field, having 

further a fixed record data type, mimicking the common message part. All of the 

other non-common parts of the message structure are transformed into fields of the 

fixed record type having appropriate primitive/simple types, with the field name 

mimicking the message structure hierarchy. The field name consists of a string of 

concatenated message structure types, separated by _, from the leaf to the root 

node as in the first scheme (i.e., message structure flattening). 

 

 

 

Figure 30. The FA message transformed by hybrid solution 
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This approach can exhibit different levels of commitment to the two schemas that it 

combines. We identified two variations of this scheme. In the first variant, the low 

level fixed record type corresponding to the common message structure has a 

further continuing fixed record type inside, whereas in the second variant, the low 

level fixed record type corresponding to the common message structure has a set 

of flattened primitive/simple typed fields. In the beginning there was only the first 

variant, however, experience showed that it was not ideal in that if there were 

similar sub-fixed record types, these would quickly clutter the 

FixedRecordDataTypes folder. Later we naturally devised the second variant, 

which is free of this flaw, more compact and looks more legitimate. Many tests in 

transformations have revealed that the third schema, variant two is the best one 

among the proposed approaches to transforming FA messages to HLA classes.  

 

 

 

Figure 31. Example HLA-OMT Output Model 
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To provide more liberty to the user, we established a configuration mechanism to 

select among the four available alternatives. The choice is made inside the source 

model. Then the selected strategy is extracted at run time and the flow is controlled 

accordingly. The above example Call for Fire Request message transformation 

with this schema using second variant is shown in Figure 30. In addition to that, the 

output HLA_OMT model of Figure 26 is presented in Figure 31. 
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CHAPTER 6 

CONCLUSION 

In this thesis we have developed a data model and a model transformer for Field 

Artillery (FA) observed fire domain. The most striking promise of the FA metamodel 

is the opening up the path to MDE. The model transformer converts a FA data 

model, which conforms to the FA metamodel into the object model part (i.e., OMT) 

of an HLA federation architecture model. The model transformer tool used is Graph 

Rewriting and Transformation (GReAT), a model transformation generator based 

on graph transformations, where the transformations are a set of explicitly 

sequenced elementary rewriting operations [9]. A preliminary version of the model 

transformation study is presented in [42]. 

We proposed three approaches in transforming an FA model into an HLA OMT 

model. In the first one is a field artillery message structure is transformed into a set 

of fully flattened OMT attributes within the OMT class. The advantage of this 

schema is its simplicity, where all of the attributes have primitive/simple data types 

and their names consist of a string of concatenated message structure names, 

separated by ‘_’, from the leaf to the root node. On the other hand, there is no 

possibility of representing composite data types that could exhibit a one-to-one 

correspondence to the source model element (data) structure here.  

The second approach, on the contrary to the first one, only creates one super 

attribute under the class having an HLA fixed record data type, whose parts are 

also fixed record types until primitive/simple types of the leaves are reached. In 

other words, the class and the attribute together form a fairly simple structure, but 

the whole complexity of the message structure is pushed inside the attribute’s data 

type, which is structurally equivalent to the source model (data) structure. This 

structural resemblance could both be an advantage or disadvantage. If a 

prospective model executor that uses the target model supports complex data 
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types, then a direct data type mapping could be possible. However, if does not, 

then there is even no change to make use of the produced target model at all. 

The third proposal is a well-balanced compromise between the previous two 

extreme alternatives. This time the FA message structure is transformed into an 

OMT attribute having a fixed record data type, within the OMT class, where each 

reusable common message part is transformed into a fixed record type's field, 

having further a fixed record data type, just as in the second approach. Apart from 

that, all of the non-common parts are transformed into fields of the fixed record 

type having simple types, similar to the first approach. We proposed identified two 

variants of this third method. In one of them, the low level fixed record type 

corresponding to the common message structure has a further continuing fixed 

record type inside. In the other one, the low level fixed record type corresponding 

to the common message structure has a set of flattened simple typed fields.  

The third approach combines the merits of the previous two approaches, providing 

a flexible, yet expressive enough model representation capability. On the other 

hand, exercising with the two variants of the third approach revealed that the first 

variant would result in redundant sub fixed-records for common, repeating model 

parts. The second variant eliminates this duplication problem, yielding a compact 

and legitimate target model for a source model. 
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APPENDIX A 

TRANSFORMATION SOURCE CODE 

Source code for transforming field artillery messages into HLA classes. 

#include <UdmBase.h> 

#include <UdmUtil.h> 

#include <cint_string.h> 

#include "stack" 

#include "..\Udm\HOMM.h" 

#include "..\Udm\FADMM.h" 

 

class DataTypeRetriever 

{ 

public: 

 //Given any matched node, dataTypaClassName and dataTypeName, this method 

first tracks upwards along the node tree to the root and  

 //then tracks down into to HLADataTypes node and then scans inside all of the 

HLA data type folders under that, to find the data type 

 //identified by the dataTypaClassName and dataTypeName. 

 static HOMM::HLADataTypeRef_RefersTo_Base GetDataType(Udm::Object matchNode, 

string dataTypeClassName, string dataTypeName){ 

  //Go up through the node tree to the root node. 

  Udm::Object fadmRoot = matchNode; 

  int depth = matchNode.depth_level() ; 

  for (int i = depth ; i>0 ; i--){ 

   fadmRoot = fadmRoot.GetParent(); 

  } 

  //Locate the specific DataType under one of the child folders (i.e., 

ArrayDataTypes, SimpleDataTypes, etc.) of the HLADataTypes folder 

  HOMM::HLADataTypeRef_RefersTo_Base DataType; 

  std::set<Udm::Object> fadmChilds = fadmRoot.GetChildObjects(); 

  //bool found = false; 

  if (!fadmChilds.empty()){ 

   for( std::set<Udm::Object>::iterator iter= fadmChilds.begin(); 

iter!= fadmChilds.end() && (DataType.operator ==(NULL)) ; ++iter){ 

    Udm::Object childNode = (Udm::Object)(*iter); 

    std::string childName = "Name"; 

    childNode.GetStrValue("name",childName); 

 

    Uml::Class cls =  childNode.type(); 

    Udm::StringAttr clsNameStrAttr = cls.name(); 

    string clsNameStr = clsNameStrAttr.operator 

std::string(); 

 

    if (clsNameStr == "HLADataTypes"){ 

     std::set<Udm::Object> fadmDTChilds = 

childNode.GetChildObjects(); 

     for( std::set<Udm::Object>::iterator iter2= 

fadmDTChilds.begin(); iter2!= fadmDTChilds.end() && (DataType.operator ==(NULL)); 

++iter2){ 

      Udm::Object childNode2 = 

(Udm::Object)(*iter2); 

      std::string childName2 = "Name"; 

     

 childNode2.GetStrValue("name",childName2); 
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      Uml::Class cls2 =  childNode2.type(); 

      Udm::StringAttr clsNameStrAttr2 = 

cls2.name(); 

      string clsNameStr2 = 

clsNameStrAttr2.operator std::string(); 

 

      if (clsNameStr2 == "ArrayDataTypes" || 

clsNameStr2 == "SimpleDataTypes" || clsNameStr2 == "FixedRecordDataTypes"){ 

       std::set<Udm::Object> 

fadmADTChilds = childNode2.GetChildObjects(); 

       for( 

std::set<Udm::Object>::iterator iter3= fadmADTChilds.begin(); iter3!= 

fadmADTChilds.end() && DataType.operator ==(NULL); ++iter3){ 

        Udm::Object childNode3 = 

(Udm::Object)(*iter3); 

        std::string childName3 = 

"Name"; 

       

 childNode3.GetStrValue("name",childName3); 

 

        Uml::Class cls3 =  

childNode3.type(); 

        Udm::StringAttr 

clsNameStrAttr3 = cls3.name(); 

        string clsNameStr3 = 

clsNameStrAttr3.operator std::string(); 

 

        if 

(clsNameStr3==dataTypeClassName && childName3 == dataTypeName){ 

         DataType = 

HOMM::HLADataTypeRef_RefersTo_Base::Cast(childNode3);  

 

         HOMM::MgaObject 

mgaObj = HOMM::MgaObject::Cast(childNode3); 

         string mgaName = 

mgaObj.name().operator std::string(); 

         //found = true; 

         //break; 

         return DataType; 

        }   

      

       } 

      } 

 

     } 

    } 

   }  

  } 

  return DataType; 

 } 

}; 

enum HLAObjectType { 

 OBJECT, 

 INTERACTION 

}; 

 

 

class ModelTransUtils 

{ 

protected: 

 static HOMM::HLADataTypeRef_RefersTo_Base GetHLAASCIIStringDT(Udm::Object 

matchNode){ 

  return 

DataTypeRetriever::GetDataType(matchNode,"HLAArrayData","HLAASCIIString");; 

 } 

 static HOMM::HLADataTypeRef_RefersTo_Base GetInt32DT(Udm::Object matchNode){

   

  return 

DataTypeRetriever::GetDataType(matchNode,"HLASimpleData","Int32");  

 } 



68 

 

 static HOMM::HLADataTypeRef_RefersTo_Base GetReal32DT(Udm::Object matchNode){ 

  return 

DataTypeRetriever::GetDataType(matchNode,"HLASimpleData","Real32"); 

 } 

 

 

 

 //Compose the node (i.e., ICParameter) name by concatenating all ancestor 

names up until the root node, delimited by - 

 static string GetAbsoluteNameForNode(Udm::Object node, Udm::Object root){ 

   

  return GetAbsoluteNameForNode(node,root,false); 

 } 

 //Compose the node (i.e., ICParameter) name by concatenating all ancestor 

names up until the root node, delimited by - 

 static string GetAbsoluteNameForNode(Udm::Object node, Udm::Object root, bool 

useNodeTypeInsteadOfName){  

  std::string nodeName = ""; 

  std::string absoluteName = ""; 

  if (useNodeTypeInsteadOfName){ 

   Uml::Class cls1st =  node.type(); 

   Udm::StringAttr clsNameStrAttr1st = cls1st.name(); 

   absoluteName = clsNameStrAttr1st.operator std::string(); 

   while (node.operator != (root)){ 

    node = node.GetParent(); 

    //NOTE!: If we use the existing variables 

above(cls1st,clsNameStrAttr1st), then node's parent type names get mixed up!!! 

    //Even the same var names for above and below would be 

OK, but new declaration is a MUST. This costed me 6 hours!!! 

    Uml::Class cls =  node.type(); 

    Udm::StringAttr clsNameStrAttr = cls.name(); 

    nodeName = clsNameStrAttr.operator std::string(); 

    absoluteName = nodeName+"-"+absoluteName; 

   } 

  }else{ 

   node.GetStrValue("name",absoluteName);//Initially assign the 

"name" attribute to absoluteName variable 

   while (node.operator != (root)){ 

    node = node.GetParent(); 

    node.GetStrValue("name",nodeName); 

    absoluteName = nodeName+"-"+absoluteName; 

   } 

  } 

  return absoluteName; 

 } 

 

 //Push the child nodes of a node to the given stack 

 static void PushNodeChildrenToStack(std::stack<Udm::Object>& 

nodeStack,Udm::Object node){    

  if (/*nodeStack.operator ==(NULL) || */node.operator ==(NULL)) 

return; 

  std::set<Udm::Object> childs = node.GetChildObjects(); 

  if (!childs.empty()){ 

   for( std::set<Udm::Object>::iterator iter= childs.begin(); 

iter!= childs.end(); ++iter){ 

    Udm::Object child = (Udm::Object)(*iter); 

    if (child.operator !=(NULL)){ 

     nodeStack.push(child); 

    } 

   } 

  }    

 } 

 

 static void CreateAttributesForNode(Udm::Object node, Udm::Object root, 

/*HOMM::InteractionClass&*/ Udm::Object& InteractionClass, HLAObjectType 

hlaObjType){ 

  //First get the HLAAsciiString and Int32 data type objects at hand to 

use later in Parameter data type ref constructions 

  HOMM::HLADataTypeRef_RefersTo_Base HLAAsciiString = 

GetHLAASCIIStringDT(InteractionClass); 
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  HOMM::HLADataTypeRef_RefersTo_Base Int32 = 

GetInt32DT(InteractionClass); 

  HOMM::HLADataTypeRef_RefersTo_Base Real32 = 

GetReal32DT(InteractionClass); 

 

  //Compose the node (i.e., ICParameter) name by concatenating all 

ancestor names up until the root node, delimited by - 

  std::string absoluteName = GetAbsoluteNameForNode(node,root); 

 

  Uml::Class cls =  node.type(); 

  Udm::StringAttr clsNameStrAttr = cls.name(); 

  string clsNameStr = clsNameStrAttr.operator std::string(); 

  Udm::ChildrenAttr<::Uml::Attribute> childrenAttr = cls.attributes(); 

  std::vector<::Uml::Attribute> attrs = childrenAttr.operator 

std::vector<::Uml::Attribute>();     

  //Create a parameter for every attribute of a node. Node being branch 

or leaf does not matter. Note that if the node has attributes, 

  // then no parameter is created excessively for the node itself, but 

only for its attributes. 

  for( std::vector<::Uml::Attribute>::iterator iter= attrs.begin(); 

iter!= attrs.end(); ++iter){ 

   ::Uml::Attribute childAttr = (::Uml::Attribute)(*iter); 

   Udm::StringAttr udmStrAttrName = childAttr.name(); 

   Udm::StringAttr udmStrAttrType = childAttr.type(); 

 

   string attrNameStr = udmStrAttrName.operator std::string(); 

   string attrTypeStr = udmStrAttrType.operator std::string(); 

 

   HOMM::OMTAttribute omtAttribute; 

 

   //Code repetition of below: 

   if (hlaObjType==INTERACTION){ 

    //HOMM::Parameter ICParameter= 

HOMM::Parameter::Create(InteractionClass);  

    omtAttribute = 

HOMM::Parameter::Create(InteractionClass);  

   }else if (hlaObjType==OBJECT){ 

    omtAttribute = 

HOMM::Attribute::Create(InteractionClass);  

   } 

   omtAttribute.name()=absoluteName+"-"+attrNameStr; 

   //Set the dataType for ICParameter. 

   //IMPORTANT NOTE/FACT: enumerated attribute types in FADMM are 

treated as String by the Udm API!!! (e.g. CFF tgt type comes as String typed in C++ 

code here!) This simplifies our job :-) 

   HOMM::HLADataTypeRef dataTypeRef = 

HOMM::HLADataTypeRef::Create(omtAttribute); 

 

   std::string dtRefName = "DataType"; 

   if (attrTypeStr=="String"){ 

    HLAAsciiString.GetStrValue("name",dtRefName); 

    dataTypeRef.name()=dtRefName+"Ref"; 

    dataTypeRef.ref() = HLAAsciiString;//new 

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>();  //Udm::PointerAttr< 

::HOMM::HLADataTypeRef_RefersTo_Base> ref() 

   } 

   else if (attrTypeStr=="Integer"){ 

    Int32.GetStrValue("name",dtRefName); 

    dataTypeRef.name()=dtRefName+"Ref"; 

    dataTypeRef.ref() = Int32;//new 

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>();  //Udm::PointerAttr< 

::HOMM::HLADataTypeRef_RefersTo_Base> ref() 

   }else if (attrTypeStr=="Double"||attrTypeStr=="Real"){ 

    Real32.GetStrValue("name",dtRefName); 

    dataTypeRef.name()=dtRefName+"Ref"; 

    dataTypeRef.ref() = Real32;//new 

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>();  //Udm::PointerAttr< 

::HOMM::HLADataTypeRef_RefersTo_Base> ref() 

   } 

  } 
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  //Create a parameter for nodes that have NO attributes and that are 

leaf nodes! (such as marker nodes like Shot, Fire, etc.) 

  if (attrs.size()==0 && node.GetChildObjects().empty()){ 

   //HOMM::Parameter ICParameter= 

HOMM::Parameter::Create(InteractionClass);  

   HOMM::OMTAttribute omtAttribute; 

   if (hlaObjType==INTERACTION){ 

    //HOMM::Parameter ICParameter= 

HOMM::Parameter::Create(InteractionClass);  

    omtAttribute = 

HOMM::Parameter::Create(InteractionClass);  

   }else if (hlaObjType==OBJECT){ 

    omtAttribute = 

HOMM::Attribute::Create(InteractionClass);  

   } 

 

   omtAttribute.name()=absoluteName;//    

(std::string)NonDurableMsg.name()+ "_" +  objName; 

   HOMM::HLADataTypeRef dataTypeRef = 

HOMM::HLADataTypeRef::Create(omtAttribute); 

   //Set the dataType for ICParameter. Give it a default datatype 

of HLAAsciiString 

   std::string dtRefName = "DataType"; 

   HLAAsciiString.GetStrValue("name",dtRefName); 

   dataTypeRef.name()=dtRefName+"Ref"; 

   dataTypeRef.ref() = HLAAsciiString;//new 

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>();  //Udm::PointerAttr< 

::HOMM::HLADataTypeRef_RefersTo_Base> ref() 

  } 

 } 

 

 

 //Note: on durable data part, we do not transform DurableData_Msg, as similar 

to NonDurableMsg, but DurableData, which is part of DurableData_Msg  

 static void TransformFAMessage2OMTClass(Udm::Object& faMsg, Udm::Object& 

omtClass, HLAObjectType hlaObjectType){ 

  std::stack<Udm::Object>& nodeStack = std::stack<Udm::Object>();//This 

is an initialization stmt in C++. If  

  //Initially push the root (i.e., faMsg) node. 

  nodeStack.push(faMsg); 

  Udm::Object currentNode; 

  while (!nodeStack.empty()){ 

   currentNode = nodeStack.top(); 

   nodeStack.pop(); 

   CreateAttributesForNode(currentNode, faMsg, 

omtClass,hlaObjectType); 

   PushNodeChildrenToStack(nodeStack, currentNode); 

  } 

 } 

 //-------------------------------3rd approach type: Convert Msgs into Full 

HLAFixedRecord Types 

 

 static void TransformFAMessage2OMTClass_FullFixRec(Udm::Object& FAMsg, 

Udm::Object node, HOMM::HLAFixedRecordData& HLAFixedRecordData, 

HOMM::FixedRecordDataTypes& DataTypes){ 

  //By giving UseOnlyTypeInNaming false, we use 

absolutePathToRoot+attrName in new DataType names. By giving true we only use 

attrType in new DataType names 

  TransformFAMessage2OMTClass_FullFixRec(FAMsg, node, 

HLAFixedRecordData, DataTypes,false); 

 } 

 static void TransformFAMessage2OMTClass_FullFixRec(Udm::Object& FAMsg, 

Udm::Object node, HOMM::HLAFixedRecordData& HLAFixedRecordData, 

HOMM::FixedRecordDataTypes& DataTypes, bool UseOnlyTypeInNaming){ 

  //CreateAttributesForNode_FullFixRec(currentNode, faMsg, 

omtClass,hlaObjectType); 

  //First get the HLAAsciiString and Int32 data type objects at hand to 

use later in Parameter data type ref constructions 

  HOMM::HLADataTypeRef_RefersTo_Base HLAAsciiString = 

GetHLAASCIIStringDT(DataTypes); 

  HOMM::HLADataTypeRef_RefersTo_Base Int32 = GetInt32DT(DataTypes); 
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  HOMM::HLADataTypeRef_RefersTo_Base Real32 = GetReal32DT(DataTypes); 

 

  //Compose the node (i.e., ICParameter) name by concatenating all 

ancestor names up until the root node, delimited by - 

  std::string absoluteName = GetAbsoluteNameForNode(node,FAMsg); 

 

  Uml::Class cls =  node.type(); 

  Udm::StringAttr clsNameStrAttr = cls.name(); 

  string clsNameStr = clsNameStrAttr.operator std::string(); 

  Udm::ChildrenAttr<::Uml::Attribute> childrenAttr = cls.attributes(); 

  std::vector<::Uml::Attribute> attrs = childrenAttr.operator 

std::vector<::Uml::Attribute>();     

  //Create a Field on the HLAFixedRecordData for every attribute of the 

node (that corresponds to the FixedRecord). These fields would have 

SimpleDataTypereferences. 

 

  //Create a parameter for every attribute of a node. Node being branch 

or leaf does not matter. Note that if the node has attributes, 

  // then no parameter is created excessively for the node itself, but 

only for its attributes. 

  for( std::vector<::Uml::Attribute>::iterator iter= attrs.begin(); 

iter!= attrs.end(); ++iter){ 

   ::Uml::Attribute childAttr = (::Uml::Attribute)(*iter); 

   Udm::StringAttr udmStrAttrName = childAttr.name(); 

   Udm::StringAttr udmStrAttrType = childAttr.type(); 

 

   string attrNameStr = udmStrAttrName.operator std::string(); 

   string attrTypeStr = udmStrAttrType.operator std::string(); 

 

   HOMM::Field fixedRecField = 

HOMM::Field::Create(HLAFixedRecordData); 

   if (UseOnlyTypeInNaming){ 

    //NOTE: we used attrNameStr instead of attrTypeStr 

when UseOnlyTypeInNaming==true, as opposed to below, because for primitive types 

attrTypeStr would result in String, Integer, etc, which is not desired. 

    fixedRecField.name()=attrNameStr; 

   }else{ 

    fixedRecField.name()=absoluteName+"-"+attrNameStr; 

   } 

   //IMPORTANT NOTE/FACT: enumerated attribute types in FADMM are 

treated as String by the Udm API!!! (e.g. CFF tgt type comes as String typed in C++ 

code here!) This simplifies our job :-) 

   HOMM::HLADataTypeRef dataTypeRef = 

HOMM::HLADataTypeRef::Create(fixedRecField); 

 

   std::string dtRefName = "DataType"; 

   if (attrTypeStr=="String"){ 

    HLAAsciiString.GetStrValue("name",dtRefName); 

    dataTypeRef.name()=dtRefName+"Ref"; 

    dataTypeRef.ref() = HLAAsciiString;//new 

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>();  //Udm::PointerAttr< 

::HOMM::HLADataTypeRef_RefersTo_Base> ref() 

   } 

   else if (attrTypeStr=="Integer"){ 

    Int32.GetStrValue("name",dtRefName); 

    dataTypeRef.name()=dtRefName+"Ref"; 

    dataTypeRef.ref() = Int32;//new 

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>();  //Udm::PointerAttr< 

::HOMM::HLADataTypeRef_RefersTo_Base> ref() 

   }else if (attrTypeStr=="Double"){ 

    Real32.GetStrValue("name",dtRefName); 

    dataTypeRef.name()=dtRefName+"Ref"; 

    dataTypeRef.ref() = Real32;//new 

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>();  //Udm::PointerAttr< 

::HOMM::HLADataTypeRef_RefersTo_Base> ref() 

   } 

 

  } 

 

  //  //Create a parameter for nodes that have NO attributes 

and that are leaf nodes! (such as marker nodes like Shot, Fire, etc.) 
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  //if (attrs.size()==0 && node.GetChildObjects().empty()){ 

  // //HOMM::Parameter ICParameter= 

HOMM::Parameter::Create(InteractionClass);  

  // HOMM::OMTAttribute omtAttribute; 

  // if (hlaObjType==INTERACTION){ 

  //  //HOMM::Parameter ICParameter= 

HOMM::Parameter::Create(InteractionClass);  

  //  omtAttribute = 

HOMM::Parameter::Create(InteractionClass);  

  // }else if (hlaObjType==OBJECT){ 

  //  omtAttribute = 

HOMM::Attribute::Create(InteractionClass);  

  // } 

 

  // omtAttribute.name()=absoluteName;//    

(std::string)NonDurableMsg.name()+ "_" +  objName; 

  // HOMM::HLADataTypeRef dataTypeRef = 

HOMM::HLADataTypeRef::Create(omtAttribute); 

  // //Set the dataType for ICParameter. Give it a default datatype 

of HLAAsciiString 

  // std::string dtRefName = "DataType"; 

  // HLAAsciiString.GetStrValue("name",dtRefName); 

  // dataTypeRef.name()=dtRefName+"Ref"; 

  // dataTypeRef.ref() = HLAAsciiString;//new 

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>();  //Udm::PointerAttr< 

::HOMM::HLADataTypeRef_RefersTo_Base> ref() 

  //} 

 

  //If the node has further children (i.e., structure), then create a 

FixedRecordType for every child, push those children on the stack, and let the loop 

repeat the same process of creating simple types for that every child node's 

attributes and fixedrec types for further children of the child node 

  std::set<Udm::Object> childs = node.GetChildObjects(); 

  if (!childs.empty()){ 

   for( std::set<Udm::Object>::iterator iter= childs.begin(); 

iter!= childs.end(); ++iter){ 

    Udm::Object child = (Udm::Object)(*iter); 

    if (child.operator !=(NULL)){ 

     FADMM::MgaObject mgaChild = 

FADMM::MgaObject::Cast(child); 

     Udm::StringAttr udmStrAttrMgaChild = 

mgaChild.name(); 

     Uml::Class umlClsMgaChild = mgaChild.type(); 

     string mgaChildNameStr = 

udmStrAttrMgaChild.operator std::string(); 

     string attrTypeStr = 

(umlClsMgaChild.name()).operator std::string(); 

 

     string namePrefix; 

     if (UseOnlyTypeInNaming){ 

      namePrefix=attrTypeStr; 

     }else{ 

      namePrefix=absoluteName+"-

"+mgaChildNameStr; 

     } 

 

     //Create a Field for the child object under the 

HLAFixedRecordData of the parent object, that will contain a HLADataTypeRef to a 

further child HLAFixedRecordData 

     HOMM::Field fixedRecField = 

HOMM::Field::Create(HLAFixedRecordData); 

     fixedRecField.name()=namePrefix; 

     //Create a separate HLAFixedRecordData for the 

child, to be passed into the recursive call for further building up the data 

structure for the child's descendants. 

     HOMM::HLAFixedRecordData fixedRecordData = 

HOMM::HLAFixedRecordData::Create(DataTypes); 

     fixedRecordData.name()=namePrefix+"-

FixRecType"; 
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     //Create a HLADataTypeRef under the Field of 

the child object and establish the reference association to the would be later 

constructed HLAFixedRecordData of the child object 

     HOMM::HLADataTypeRef fixedRecordDataRef = 

HOMM::HLADataTypeRef::Create(fixedRecField); 

     fixedRecordDataRef.name()=namePrefix+"-

FixRecTypeRef"; 

     fixedRecordDataRef.ref() = fixedRecordData; 

     //Call the method recursively with the child 

object together with its HLAFixedRecordData  

     TransformFAMessage2OMTClass_FullFixRec(FAMsg, 

child, fixedRecordData, DataTypes,UseOnlyTypeInNaming); 

    } 

   } 

  }    

 

 } 

 

 

 

 //---------------------------------------------------------------------------

------------ 

 // --------------------------- P U B L I C  M E T H O D S -------------------

------------ 

public: 

 

 static void TransformNonDurableMsg2InteractionCls(FADMM::NonDurableMsg& 

NonDurableMsg, HOMM::InteractionClass& InteractionClass){ 

  InteractionClass.name()=(std::string)NonDurableMsg.name()+"IC"; 

 

 TransformFAMessage2OMTClass(NonDurableMsg,InteractionClass,INTERACTION); 

 } 

 

 static void TransformDurableData2ObjectCls(FADMM::DurableData& DurableData, 

HOMM::ObjectClass& ObjectClass){ 

  ObjectClass.name()=(std::string)DurableData.name()+"OC"; 

  TransformFAMessage2OMTClass(DurableData,ObjectClass,OBJECT); 

 } 

 

 

 static void 

TransformNonDurableMsg2InteractionCls_FullFixRec(FADMM::NonDurableMsg& 

NonDurableMsg, HOMM::HLAFixedRecordData& HLAFixedRecordData, 

HOMM::FixedRecordDataTypes& DataTypes){ 

 

 TransformFAMessage2OMTClass_FullFixRec(NonDurableMsg,NonDurableMsg,HLAFixedRe

cordData,DataTypes);  

 } 

 

 static void TransformDurableData2ObjectCls_FullFixRec(FADMM::DurableData& 

DurableData, HOMM::HLAFixedRecordData& HLAFixedRecordData, 

HOMM::FixedRecordDataTypes& DataTypes){ 

 

 TransformFAMessage2OMTClass_FullFixRec(DurableData,DurableData,HLAFixedRecord

Data,DataTypes);  

 } 

 

 

 static void TransformDurableData2ObjectCls_Hybrid(FADMM::DurableData& 

DurableData, HOMM::ObjectClass& ObjectClass,HOMM::FixedRecordDataTypes& DataTypes){ 

//  InteractionClass.name()=(std::string)NonDurableMsg.name()+"IC"; 

 

 TransformFAMessage2OMTClass_Hybrid(DurableData,ObjectClass,OBJECT,DataTypes); 

 } 

 

 static void 

TransformNonDurableMsg2InteractionCls_Hybrid(FADMM::NonDurableMsg& NonDurableMsg, 

HOMM::InteractionClass& InteractionClass,HOMM::FixedRecordDataTypes& DataTypes){ 

 // InteractionClass.name()=(std::string)NonDurableMsg.name()+"IC"; 
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 TransformFAMessage2OMTClass_Hybrid(NonDurableMsg,InteractionClass,INTERACTION

,DataTypes); 

 } 

 

 //static std::set<std::string>& commonFadmElements; 

 

 static bool IsCommonUtilityElement(std::string fadmNodeType, 

std::set<std::string>& commonFadmElements){ 

  if (!commonFadmElements.empty()){ 

   for( std::set<std::string>::iterator iter= 

commonFadmElements.begin(); iter!= commonFadmElements.end() /*&& (DataType.operator 

==(NULL))*/ ; ++iter){ 

    if (fadmNodeType == (*iter)){ 

     return true; 

    } 

   } 

  } 

  return false; 

 } 

 

 static void InitializeCommonElements(std::set<std::string>& 

commonFadmElements){ 

  ///*std::set<std::string>& */commonFadmElements = 

std::set<std::string>(); 

  //std::stack<Udm::Object>& nodeStack = 

std::stack<Udm::Object>();//This is an initialization stmt in C++. If  

  commonFadmElements.insert("PolarLoc"); 

  commonFadmElements.insert("GridLoc"); 

  commonFadmElements.insert("ShiftKPLoc"); 

  commonFadmElements.insert("Duration"); 

  commonFadmElements.insert("Angle"); 

  commonFadmElements.insert("Distance"); 

  commonFadmElements.insert("Speed"); 

  commonFadmElements.insert("Pressure"); 

  commonFadmElements.insert("Temperature"); 

  commonFadmElements.insert("DateTime"); 

  commonFadmElements.insert("LateralShiftDist"); 

  commonFadmElements.insert("VerticalShiftDist"); 

  commonFadmElements.insert("RangeShiftDist"); 

  commonFadmElements.insert("HorizontalDir"); 

  commonFadmElements.insert("VerticalDir"); 

  commonFadmElements.insert("RangeDir"); 

  commonFadmElements.insert("SheafDir"); 

  commonFadmElements.insert("CardinalDir"); 

  commonFadmElements.insert("LateralShiftAng"); 

  commonFadmElements.insert("VerticalShiftAng"); 

  commonFadmElements.insert("SheafShiftAng"); 

 } 

 

 //Note: on durable data part, we do not transform DurableData_Msg, as similar 

to NonDurableMsg, but DurableData, which is part of DurableData_Msg  

 static void TransformFAMessage2OMTClass_Hybrid(Udm::Object& faMsg, 

Udm::Object& omtClass, HLAObjectType hlaObjectType,HOMM::FixedRecordDataTypes& 

DataTypes){ 

 

  std::set<std::string>& commonFadmElements=std::set<std::string>(); 

 

  InitializeCommonElements(commonFadmElements); 

 

  std::stack<Udm::Object>& nodeStack = std::stack<Udm::Object>();//This 

is an initialization stmt in C++. If  

  //Initially push the root (i.e., faMsg) node. 

  nodeStack.push(faMsg); 

  Udm::Object currentNode; 

  while (!nodeStack.empty()){ 

   currentNode = nodeStack.top(); 

   nodeStack.pop(); 

 

   Uml::Class cls = currentNode.type(); 

   Udm::StringAttr clsNameStrAttr = cls.name(); 
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   string clsNameStr = clsNameStrAttr.operator std::string(); 

 

   //Else part is the same as in TransformFAMessage2OMTClass. The 

if part is new; it creates FixedRecTypes for common elements (only once per type!) 

   if (IsCommonUtilityElement(clsNameStr,commonFadmElements)){ 

 

    FADMM::MgaObject currentNodeMga = 

FADMM::MgaObject::Cast(currentNode); 

 

    HOMM::OMTAttribute omtAttribute; 

    if (hlaObjectType==INTERACTION){ 

     //HOMM::Parameter ICParameter= 

HOMM::Parameter::Create(InteractionClass);  

     omtAttribute = 

HOMM::Parameter::Create(omtClass);  

    }else if (hlaObjectType==OBJECT){ 

     omtAttribute = 

HOMM::Attribute::Create(omtClass);  

    } 

   

 omtAttribute.name()=(std::string)currentNodeMga.name();//absoluteName+"-

"+attrNameStr; 

 

    HOMM::HLADataTypeRef& HLADataTypeRef= 

HOMM::HLADataTypeRef::Create( omtAttribute); 

   

 HLADataTypeRef.name()=(std::string)currentNodeMga.name()+"DTRef"; 

 

 

    //HOMM::HLAFixedRecordData& HLAFixedRecordData= 

HOMM::HLAFixedRecordData::Create(DataTypes);   

 

    //Check if the FixedRecord data type already exists, 

and if so, get it 

    string fixRecDTName = clsNameStr; 

    HOMM::HLADataTypeRef_RefersTo_Base baseDT = 

DataTypeRetriever::GetDataType(DataTypes,"HLAFixedRecordData",fixRecDTName); 

    HOMM::HLAFixedRecordData HLAFixedRecordData = 

HOMM::HLAFixedRecordData::Cast(baseDT); 

    // If the FixedRecord data type does not exist, then 

create it for the first time 

    if (HLAFixedRecordData.operator ==(NULL)){ 

     HLAFixedRecordData= 

HOMM::HLAFixedRecordData::Create(DataTypes);   

     HLAFixedRecordData.name()= 

fixRecDTName;//(std::string)currentNodeMga.name()+"DT";     

      

     //THESE BELOW ARE TWO ALTERNATIVES TO SELECT 

ONE FROM 

    

 //TransformFAMessage2OMTClass_FullFixRec(currentNode,currentNode,HLAFixedReco

rdData,DataTypes,true);  

    

 TransformFAMessagePart2HLAFixedRecord(currentNode,currentNode,HLAFixedRecordD

ata,DataTypes,false); 

    } 

    //Bind the DataType Ref to the FixedRecord data 

    HLADataTypeRef.ref() = HLAFixedRecordData; 

 

   }else{ 

    CreateAttributesForNode(currentNode, faMsg, 

omtClass,hlaObjectType); 

    PushNodeChildrenToStack(nodeStack, currentNode); 

   } 

  } 

 } 

 

 static void TransformFAMessagePart2HLAFixedRecord(Udm::Object root, 

Udm::Object node, HOMM::HLAFixedRecordData& HLAFixedRecordData, 

HOMM::FixedRecordDataTypes& DataTypes, bool UseOnlyTypeInNaming){ 
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  //CreateAttributesForNode_FullFixRec(currentNode, faMsg, 

omtClass,hlaObjectType); 

  //First get the HLAAsciiString and Int32 data type objects at hand to 

use later in Parameter data type ref constructions 

  HOMM::HLADataTypeRef_RefersTo_Base HLAAsciiString = 

GetHLAASCIIStringDT(DataTypes); 

  HOMM::HLADataTypeRef_RefersTo_Base Int32 = GetInt32DT(DataTypes); 

  HOMM::HLADataTypeRef_RefersTo_Base Real32 = GetReal32DT(DataTypes); 

 

  //Compose the node (i.e., ICParameter) name by concatenating all 

ancestor names up until the root node, delimited by - 

  std::string absoluteName = GetAbsoluteNameForNode(node,root,true); 

 

  Uml::Class cls =  node.type(); 

  Udm::StringAttr clsNameStrAttr = cls.name(); 

  string clsNameStr = clsNameStrAttr.operator std::string(); 

  Udm::ChildrenAttr<::Uml::Attribute> childrenAttr = cls.attributes(); 

  std::vector<::Uml::Attribute> attrs = childrenAttr.operator 

std::vector<::Uml::Attribute>();     

  //Create a Field on the HLAFixedRecordData for every attribute of the 

node (that corresponds to the FixedRecord). These fields would have 

SimpleDataTypereferences. 

 

  //Create a parameter for every attribute of a node. Node being branch 

or leaf does not matter. Note that if the node has attributes, 

  // then no parameter is created excessively for the node itself, but 

only for its attributes. 

  for( std::vector<::Uml::Attribute>::iterator iter= attrs.begin(); 

iter!= attrs.end(); ++iter){ 

   ::Uml::Attribute childAttr = (::Uml::Attribute)(*iter); 

   Udm::StringAttr udmStrAttrName = childAttr.name(); 

   Udm::StringAttr udmStrAttrType = childAttr.type(); 

 

   string attrNameStr = udmStrAttrName.operator std::string(); 

   string attrTypeStr = udmStrAttrType.operator std::string(); 

 

   HOMM::Field fixedRecField = 

HOMM::Field::Create(HLAFixedRecordData); 

   if (UseOnlyTypeInNaming){ 

    //NOTE: we used attrNameStr instead of attrTypeStr 

when UseOnlyTypeInNaming==true, as opposed to below, because for primitive types 

attrTypeStr would result in String, Integer, etc, which is not desired. 

    fixedRecField.name()=attrNameStr; 

   }else{ 

    fixedRecField.name()=absoluteName+"-"+attrNameStr; 

   } 

   //IMPORTANT NOTE/FACT: enumerated attribute types in FADMM are 

treated as String by the Udm API!!! (e.g. CFF tgt type comes as String typed in C++ 

code here!) This simplifies our job :-) 

   HOMM::HLADataTypeRef dataTypeRef = 

HOMM::HLADataTypeRef::Create(fixedRecField); 

 

   std::string dtRefName = "DataType"; 

   if (attrTypeStr=="String"){ 

    HLAAsciiString.GetStrValue("name",dtRefName); 

    dataTypeRef.name()=dtRefName+"Ref"; 

    dataTypeRef.ref() = HLAAsciiString;//new 

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>();  //Udm::PointerAttr< 

::HOMM::HLADataTypeRef_RefersTo_Base> ref() 

   } 

   else if (attrTypeStr=="Integer"){ 

    Int32.GetStrValue("name",dtRefName); 

    dataTypeRef.name()=dtRefName+"Ref"; 

    dataTypeRef.ref() = Int32;//new 

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>();  //Udm::PointerAttr< 

::HOMM::HLADataTypeRef_RefersTo_Base> ref() 

   }else if (attrTypeStr=="Double"){ 

    Real32.GetStrValue("name",dtRefName); 

    dataTypeRef.name()=dtRefName+"Ref"; 
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    dataTypeRef.ref() = Real32;//new 

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>();  //Udm::PointerAttr< 

::HOMM::HLADataTypeRef_RefersTo_Base> ref() 

   } 

 

  } 

 

  std::set<Udm::Object> childs = node.GetChildObjects();   

  //Create a fixed record field for nodes that have NO attributes and 

that are leaf nodes! (such as marker nodes like Shot, Fire, etc.) 

  if (attrs.size()==0 && childs.empty()){ 

   HOMM::Field fixedRecField = 

HOMM::Field::Create(HLAFixedRecordData); 

   if (UseOnlyTypeInNaming){ 

    //Use only the node's type name in field name 

    Uml::Class cls =  node.type(); 

    Udm::StringAttr clsNameStrAttr = cls.name(); 

    string nodeTypeStr = clsNameStrAttr.operator 

std::string(); 

    fixedRecField.name()=nodeTypeStr; 

   }else{ 

    //Use the canonical path from the node to the root in 

field name 

    fixedRecField.name()=absoluteName; 

   } 

   //IMPORTANT NOTE/FACT: enumerated attribute types in FADMM are 

treated as String by the Udm API!!! (e.g. CFF tgt type comes as String typed in C++ 

code here!) This simplifies our job :-) 

   HOMM::HLADataTypeRef dataTypeRef = 

HOMM::HLADataTypeRef::Create(fixedRecField); 

   std::string dtRefName = "DataType"; 

   HLAAsciiString.GetStrValue("name",dtRefName); 

   dataTypeRef.name()=dtRefName+"Ref"; 

   dataTypeRef.ref() = HLAAsciiString;//new 

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>();  //Udm::PointerAttr< 

::HOMM::HLADataTypeRef_RefersTo_Base> ref() 

  } 

  //If the node has further children (i.e., structure), then create a 

FixedRecordType for every child, push those children on the stack, and let the loop 

repeat the same process of creating simple types for that every child node's 

attributes and fixedrec types for further children of the child node 

  if (!childs.empty()){ 

   for( std::set<Udm::Object>::iterator iter= childs.begin(); 

iter!= childs.end(); ++iter){ 

    Udm::Object child = (Udm::Object)(*iter); 

    if (child.operator !=(NULL)){ 

     TransformFAMessagePart2HLAFixedRecord(root, 

child, HLAFixedRecordData, DataTypes,UseOnlyTypeInNaming); 

    } 

   } 

  }    

 } 
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APPENDIX B 

GME SCREENSHOTS OF FADMM 

Entities 

 

 

Durable Data 

a. Ammunition 
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b. FireCommandSOP 
 

 

 

c. FireOrderSOP 

 

 

 

d. MainDurableData 
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e. MetroReport 

 

 

f. MissionTypeHierarchy 
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 Utilities 

 

Messages 
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a. AmmoSOPMetMsgDefs 
 

 

 

b. CallForFire 
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c. Correction 
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APPENDIX C 

GME SCREENSHOTS OF HLA-OMT MODEL  

Main Diagram 

 

Object Model 
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HLA Classes 

 

 

Publish-Subscribe Diagram 
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APPENDIX D 

FADM TO HLA-OMT TRANSFORMATIONS SCREENSHOTS 

Overview 

 

 GetTransConfig 
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IEEE1516Defaults  

 

InitOMTClassFolders 
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SelectTransType 

 

Trans_Simple 
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Trans_FixRec 

 

Trans_Hybrid_FRInFR 
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Trans_Hybrid_SInFR 

 


