

HLA FOM DEVELOPMENT
WITH MODEL TRANSFORMATIONS

ALİ CEM DİNÇ

MAY 2010

 A
.C

. D
İN

Ç
 M

E
T

U
 2010

HLA FOM DEVELOPMENT

WITH MODEL TRANSFORMATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALİ CEM DİNÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

MAY 2010

Approval of thesis:

HLA FOM DEVELOPMENT WITH MODEL TRANSFORMATIONS

submitted by ALİ CEM DİNÇ in partial fulfillment of requirements for the degree of
Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Canan ÖZGEN
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assoc. Prof. Halit Oğuztüzün
Supervisor, Computer Engineering

Examining Committee Members

Assoc. Prof. Nihan Kesim Çiçekli
Computer Engineering Dept., METU

Assoc. Prof. Halit Oğuztüzün
Computer Engineering Dept., METU

Assoc. Prof. Ali H. Doğru
Computer Engineering Dept., METU

Asst. Prof. Aysu Betin Can
Informatics Institute, METU

Asst. Prof. Pınar �enkul
Computer Engineering Dept., METU

Date : 04 - May - 2010

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last name : Ali Cem Dinç

Signature :

iv

ABSTRACT

HLA FOM DEVELOPMENT

WITH MODEL TRANSFORMATIONS

Dinç, Ali Cem

M.S., Department of Computer Engineering

 Supervisor: Assoc. Prof. Dr. Halit Oğuztüzün

May 2010, 90 pages

There has been a recent interest in the model-based development approach in the

modeling and simulation community. The Model-Driven Architecture (MDA) of

OMG envisions a fully model-based development process where models are

created for capturing not only requirements, but also designs and implementations.

Domain-specific metamodels and model transformations constitute the

cornerstones of this approach. We have developed transformations from the data

part of Field Artillery (FA) domain models to High Level Architecture (HLA) Object

Model Template (OMT) models, honoring the MDA philosophy. In the MDA

terminology, the former corresponds to the CIM (Computation-Independent Model)

or, arguably, PIM (Platform-Independent Model), and the latter corresponds to the

PSM (Platform-Specific Model), where the platform is HLA. As a case study for the

source metamodel, we have developed a metamodel for the data model part of the

(observed) fire techniques of the FA domain. All of the entities in the metamodel

are derived from the NATO’s Command and Control Information Exchange Data

Model (C2IEDM) elements.

Keywords: Metamodeling, Domain Specific Modeling, Model Transformations,

Field Artillery

v

ÖZ

MODEL DÖNÜ�ÜMLERİ İLE

HLA FOM GELİ�TİRME

Dinç, Ali Cem

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

 Tez Yöneticisi: Assoc. Prof. Dr. Halit Oğuztüzün

Mayıs 2010, 90 sayfa

Son yıllarda modelleme ve simülasyon camiasında model tabanlı geliştirim

yaklaşımına dair bir ilgi ortaya çıkmıştır. OMG’nin Model Güdümlü Mimarisi (MDA -

Model Driven Architecture), modellerin sadece isterlerin değil, bunların yanı sıra

tasarım ve gerçekleştirimin de yakalandığı, tamamen model tabanlı bir geliştirme

sürecini hedeflemektedir. Alana özel metamodeller ve model dönüşümleri bu

yaklaşımın köşe taşlarını teşkil etmektedir. Sahra Topçuluğu (ST) alan modellerinin

veri modeli kısımlarından High Level Architecture (HLA) Object Model Template

(OMT) modellerine MDA felsefesine uygun dönüşümler geliştirdik. MDA terimler

dizgesinde ST Modeli Platformdan Bağımsız Model (PBM)’ye, federasyon mimarisi

modeli ise, HLA’nın platform olduğu, Platforma Özel Model (PÖM)’e karşılık

gelmektedir. Kaynak metamodel örneği olmak üzere, ST alanının gözetlemeli atış

tekniklerinin veri modeli kısmına dair bir metamodel geliştirmiş bulunuyoruz.

Metamodeldeki bütün varlıklar NATO’nun Command and Control Information

Exchange Data Model (C2IEDM) elemanlarından türetilmiştir.

Anahtar Kelimeler: Metamodelleme, Alan Spesifik Modelleme, Model Dönüşümleri,

Sahra Topçuluğu

vi

To My Family

vii

ACKNOWLEDGEMENTS

I would like to thank Assoc. Prof. Halit Oğuztüzün for his direction, assistance, and

guidance. In particular, Assoc. Prof. Halit Oğuztüzün's recommendations and

suggestions have been invaluable for the project and for software improvement.

I also wish to thank Mr. Gürkan Özhan, who has all taught me techniques of

programming and technical writing. He has made available his support in a

number of ways with timely assistance although he has lots to do with his doctoral

dissertation.

Finally, words alone cannot express the thanks I owe to Meryem Dinç, my wife, for

her encouragement and assistance.

viii

TABLE OF CONTENTS

ABSTRACT..iv

ÖZ...v

ACKNOWLEDGEMENTS..vii

TABLE OF CONTENTS..viii

LIST OF TABLES...xi

LIST OF FIGURES..xii

LIST OF ABBREVIATIONS..xiv

CHAPTER

1 INTRODUCTION .. 1

1.1. Motivation ... 1

1.2. Scope and Assumptions ... 2

1.3. Organization of the Thesis .. 3

2 BACKGROUND .. 4

2.1. Related work ... 4

2.1.1. Model Driven Development\Architecture ... 4

2.1.2. Model Transformation ... 5

2.1.3. Graph-based Model Transformation .. 6

2.2. Elements of Field Artillery ... 7

2.2.1. Forward Observing Post (FOP) ... 8

2.2.2. Fire Control Center (FCC) ... 11

2.2.3. Weapons ... 16

2.3. High Level Architecture ... 16

2.3.1. Interface specification .. 17

ix

2.3.2. HLA rules .. 18

2.3.3. OMT (Object Model Template) .. 19

2.4. GME (Generic Modeling Environment) ... 22

2.4.1. Technical Overview ... 22

2.4.2. Modeling Concepts ... 24

2.4.3. Extensibility ... 26

2.4.4. Metamodeling with GME ... 27

2.4.5. User Interface ... 28

2.5. Graph Transformations with GreAT .. 29

2.5.1. The Pattern Specification Language .. 32

2.5.2. Graph Rewriting Transformation Language 33

2.5.3. Controlled Graph Rewriting and Transformation 34

2.5.4. The GReAT Engine ... 35

3 FIELD ARTILLERY METAMODEL .. 37

3.1. Data Model ... 38

3.2. Metamodeling of Observed Fire in GME ... 40

4 HLA OMT METAMODEL .. 44

4.1. Federation Design Model .. 44

4.2. Object Model .. 45

4.3. OMT Core ... 46

4.4. The Meta Data .. 48

4.5. The Meta Data Types ... 49

5 FA DATA MODEL TO HLA-OMT TRANSFORMATIONS 51

5.1. Message Structure Flattened into a Set of Plain Attributes 55

5.2. Message Structure Mapped into one Attribute of Fixed Record 56

5.3. A Hybrid Solution of Flattening and Fixed Recording 57

x

6 CONCLUSION .. 61

REFERENCES ... 63

APPENDICES

A. TRANSFORMATION SOURCE CODE .. 66

B. GME SCREENSHOTS OF FADMM .. 78

C. GME SCREENSHOTS OF HLA-OMT MODEL .. 84

D. FADM TO HLA-OMT TRANSFORMATIONS SCREENSHOTS 86

xi

LIST OF TABLES

TABLES

Table 1. Coordinates in Grid Coordinate Method……...……………….……...…….10

Table 2. Coordinates in Polar Coordinate Method……….………….……………….10

Table 3. FA Metamodel correlated with OMG’s model hierarchy…..…….…..…….38

xii

LIST OF FIGURES

FIGURES

Figure 1. The model transformation of FADM to FAMM to executable code 2

Figure 2. A Typical Artillery Battery System .. 8

Figure 3. Simplified Military Map Showing Target Detection Techniques 9

Figure 4. A Horizontal Plan Paper ... 11

Figure 5. Typical Field Artillery Team Setting .. 15

Figure 6. Generic Modeling Environment Architecture .. 23

Figure 7. GME modeling concepts [8] ... 25

Figure 8. Graphical User Interface of GME ... 29

Figure 9. Transformation Modeling and Execution in GReAT [9]........................... 30

Figure 10. Transformation Tools in GReAT [9] .. 31

Figure 11. Run time architecture of the GReAT Interpreter [9] 35

Figure 12. An overview of FADMM in GME Browser ... 37

Figure 13. A sample of data model in GME .. 39

Figure 14. An overview of data model in GME Browser .. 40

Figure 15. Field Artillery Entities ... 41

Figure 16. An overview of the FACM metamodel .. 42

Figure 17. An example of DurableData in FACM .. 43

Figure 18. Federation design model ... 44

Figure 19. OMT Object Models diagram ... 47

Figure 20. HLA Class and Attribute Structure ... 48

Figure 21. HLA Meta Data Hierarchy .. 49

Figure 22. Top Level HLA Meta Data Type Hierarchy ... 50

Figure 23. Top-level data model transformation block ... 51

xiii

Figure 24. InitFOM rule ... 52

Figure 25. InteractionClasses rule .. 53

Figure 26. Example FADM Input Model .. 54

Figure 27. FA message of a call for fire request .. 55

Figure 28. Transformation result of call for fire by flattenning 56

Figure 29. The FA message transformed by fixed record...................................... 57

Figure 30. The FA message transformed by hybrid solution 58

Figure 31. Example HLA-OMT Output Model.. 59

xiv

LIST OF ABBREVIATIONS

API Application Programming Interface

C2IEDM Command and Control Information Exchange Data Model

CFF Call For Fire

CIM Computation Independent Model

CMMS Conceptual Models of the Mission Space

DCMF Defense Conceptual Modeling Framework

DoD The United States Department of Defense

FA Field Artillery

FADM Field Artillery Conceptual Data Model

FAMM Federation Architecture Meta Model

FAT Field Artillery Team

FCC Fire Control Center

FDC Fire Direction Center

FDM Federation Design Model

FFE Fire for Effect

FOM Federation Object Model

FOP Forward Observing Post

GME Generic Modeling Environment

xv

GReAT Graph Rewrite and Transformations

GUI Graphical User Interface

HLA High Level Architecture

IEEE Institute of Electrical and Electronic Engineers

JC3IEDM Joint Command, Control and Consultation Information

Exchange Data Model

MDA Model Driven Architecture

MDE Model Driven Engineering

MIC Model Integrated Computing

MOM Management Object Model

MTO Message To Observer

OCL Object Constraint Language

OMG Object Management Group

OMT Object Model Template

PIM Platform Independent Model

PSM Platform Specific Model

RTI Run Time Infrastructure

SOM Simulation Object Model

UML Unified Modeling Language

1

CHAPTER 1

INTRODUCTION

This chapter provides the motivation and background for this study, represents the

scope and assumptions, discusses the related work and yields about model driven

technologies and approaches.

1.1. Motivation

The Model-Driven Engineering (MDE) approach is becoming prominent in software

and systems engineering, bringing forth a model-centric approach to the

development cycle in contrast with today’s mostly code-centric practices [1]. A well-

known MDE initiative is the Model Driven Architecture (MDA) of Object

Management Group (OMG). Model transformations are considered the heart of

MDA, where the Platform Independent Model (PIM) of a system to be constructed,

is transformed, or refined, into a Platform Specific Model (PSM) [2]. Both PIM and

PSM conform to their own metamodels, which act as languages that define these

models.

Model Integrated Computing (MIC), an earlier manifestation of MDE, relies on

metamodeling to define domain-specific modeling languages and model integrity

constraints. The language is then used to automatically compose a domain-specific

model-building environment for creating, analyzing, and evolving the system

through modeling and generation.

During the last decade, MIC has gained acceptance through several fielded

systems [3], and it is recognized in both academia and industry today. In the MIC

approach, a crucial point is the generation, where (domain-specific) models are

transformed into lower level executable and/or analysis models. Model

transformation techniques and tools are essential to MIC in realizing the generation

process.

2

In this thesis, the transformation process of Field Artillery Conceptual Data Model

(FADM) [4] into the Federation Design Model (FDM) [5] targeted to the HLA-OMT

Model [6]. An OMT model can further be used to generate Java/AspectJ code for

execution on an HLA Run-time Infrastructure (RTI)0. Figure 1 depicts a high-level

picture of the overall work. Our main focus is in phase 1 where the model

transformer converts an FADM which conforms to the Field Artillery (FA)

MetaModel into an HLA - OMT federation architecture model, which conforms to

the Federation Architecture MetaModel (FAMM).

In this sense this work can be considered as an application of the MIC approach.

Both of the source and target models are developed in Generic Modeling

Environment (GME) tool. The model transformations are carried out with Graph

Rewrite and Transformations (GReAT), and partly hand-coded in C++. Both tools

are provided by Institute of Software Integrated Systems at Vanderbilt University.

Graph Based

Model

Transformer

Federate

Application

Code

Generator

Transformation
Definition

Field
Artillery

Meta-Model

Field
Artillery
Model

Federation
Architecture
Meta-Model

Federation
Architecture

Model FDD
File

Federate
Source
Code

C
o

n
fo

rm
s

Uses Uses

C
o

n
fo

rm
s

(including federate
behavior specs)

Phase I Phase II

Figure 1. The model transformation of FADM to FAMM to executable code

1.2. Scope and Assumptions

Both the source and target domains are restricted to data models only; that is, any

behavior modeling is out of the scope of this work. The source and target domains

are modeled in GME [8] and the model transformation is developed in GReAT

[9][10]. The FADM includes such elements as domain entities, messages and

entity interactions through messaging. This setting only addressed static aspects;

that is, there was no notion of dynamism, like missions or tasks. The same

3

situation was valid for the HLA-OMT metamodel side. Although it enabled to define

classes, interactions, attributes and parameters resembling the practices of object-

oriented programming, it lacked dynamic behavior such as federation executions.

1.3. Organization of the Thesis

The rest of the thesis is organized as follows. Section 2 lays the background;

briefly introduce the field artillery domain, HLA, GME and GReAT tools used in

modeling and model transformations, respectively. Section 3 is for the source

model that sets up the Field Artillery Data Model. The target model, HLA-OMT

Model, will be described in the Section 4. Section 5 is devoted to the

transformation of FADM to HLA-OMT Model. Finally, Section 6 concludes the

thesis.

4

CHAPTER 2

BACKGROUND

This chapter introduces the key concepts, technologies and tools used, including

the modeling tool and the model transformation tool.

2.1. Related work

The Model-Driven Architecture of OMG envisions a development paradigm where

designers create a Platform-Independent Model (PIM) of the design, which is then

refined into a Platform-Specific Model (PSM). Exposing a better solution to the

transformation of a Platform Independent Model (PIM) to a Platform Specific Model

(PSM) is still the main problem in the Model Driven Engineering. This problem will

certainly continue to occupy the greatest attention in the MDA community as it is

the main driving force of the motivation for the MDA vision. On the other hand, we

are considering changing the domain of the model transformation problem from

HLA-based distributed simulation. The reason for this is that the HLA-based

distributed simulation is just far too huge to be a modeling concept. It involves

cross-cutting concepts, technologies and issues. One can simulate almost anything

with HLA and it is virtually possible to ever devise a generic conceptual model and

a generic federation design model for HLA itself. In that respect HLA can be

considered as a very abstract and intangible “entity” to develop a PIM and PSM for.

2.1.1. Model Driven Development\Architecture

MDA introduces the concept of the Platform Independent Model (PIM) and the

Platform Specific Model (PSM). A PIM is an abstract model of the software design

that omits any platform (i.e. implementation-specific details). A PSM, on the other

hand, is another model that includes implementation-specific details. The PSM is

obviously dependent on the PIM, and arguably one (the PSM) can be derived

5

automatically from the other one (the PIM). However, this derivation process is

highly domain-specific: different domains might need different methods for

implementing the derivation. This thesis uses a technique and a prototype tool

developed at the Institute for Software Integrated Systems of Vanderbilt University

for creating highly configurable model transformation tools that can be applied in

the MDA context. The technique (and the tool) is based on a well-established

theoretical framework based on graph transformations.

The Conceptual Models of the Mission Space (CMMS) effort, initiated by the U.S.

Department of Defense (DoD), aims to facilitate the development and reuse of

simulation models. CMMS is defined in [11] as first abstractions of the real world

that serve as a frame of reference for simulation development by capturing the

basic information about important entities involved in any mission and their key

actions and interactions. CMMS emphasizes the implementation-independent

functional descriptions of the real world processes, entities, environmental factors,

and associated relationships and interactions constituting a particular set of

missions, operations or tasks. An important part of CMMS includes the domain

specific conceptual models, called “Mission Space Models”. They are consistent,

structured and functional descriptions of real military operations or processes.

Some recent studies, notably Defense Conceptual Modeling Framework (DCMF)

[12] and the conceptual modeling tool KAMA 0 have further elaborated the vision

promoted by the CMMS.

Joint Command, Control and Consultation Information Exchange Data Model

(JC3IEDM) are the core of NATO Reference Model and is also a view model of

NATO STANAG 5525 [14]. The data model is focused primarily on the information

requirements that support the operations planning and execution activities of a

military or civilian headquarters or a command post. JC3IEDM has recently evolved

from C2IEDM, or Command and Control Information Exchange Data Model [15] by

additionally including and modeling new joint operational concepts.

2.1.2. Model Transformation

Model transformation is the process of converting one or more models – called

source models – to one output model – the target model – of the same system [16].

This process takes a model conforming to a given source meta-model as input and

6

produces another model conforming to a target meta-model as output. The

transformation process, composed of a set of rules, should itself be considered as

a model. As a consequence, it is based on a corresponding meta-model, that is an

abstract definition of the used transformation language.

The deprivation for techniques that can be usable for model transformations has

been recently anticipated in the UML realms. To illustrate, see [17], [18] and [19].

Model transformation is an essential tool for many applications, including

translating abstract design models into concrete implementation models [19] or for

specification techniques [18]. The innovations in UML (such as [20]) accentuate the

use of meta-models, and yield solid foundation for the accurate specification of

domain semantics.

Many languages and tools have been developed to specify and execute

transformation process. In 2002 OMG issued the Query/View/Transformation

request for proposal [21] to define a standard transformation language. Although

the specification was finalized at the end of 2005, there are lots of researches

going on about model transformations. Over the last decade, in parallel to the

OMG process, a number of model transformation approaches have been

introduced both from academia and industry. The paradigms, constructs, modeling

approaches, used tools distinguish these model transformation techniques. Each of

them has its own suitability for a certain set of problems. For detailed classification

of a today’s model transformation approaches please refer to [22], [23] and [24].

In this thesis, GReAT would be used to transform FADM into the FDM targeted to

the HLA-OMT Model so as to take the advantages of graph-based model

transformation.

2.1.3. Graph-based Model Transformation

Graph transformation, or graph rewriting is known as the technique of creating a

new graph out of an original graph using some automatic rules. Graph grammars

and graph rewriting [25][26] have been developed during the last 25+ years as

techniques for formal modeling and tools for very high-level programming. It has

large number of applications, ranging from verification of software to algorithms.

7

Graph transformations can be used as computational isolation. Basically, the state

of a computation can be represented as a graph and the transformation rules on

that graph represent the further steps in that. These rules formed by an original

graph, which is going to be matched to a subgraph in the complete state, and a

replacing graph, which would replace this matched subgraph.

Beyond the ground-laying work in the theory of graph grammars and rewriting, the

approach has found several applications as well. Graph rewriting has been used in

formalizing the semantics of statecharts [27], as well as various concurrency

models [26]. Several tools —including programming environments— have been

developed [28][29] that illustrate the practical applicability of the graph rewriting

approach. These environments have demonstrated that complex transformations

can be expressed in the form of rewriting rules, and graph rewriting rules can be

compiled into efficient code. Programming via graph transformations has been

applied in some domains [25] with reasonable success.

2.2. Elements of Field Artillery

This section provides basic understanding of artillery firing systems, which will be

the case study domain of the thesis. Specifically, the case study concepts are

adopted from the work done in [30] where an HLA based simulation is developed

to train the officers in an artillery battalion.

Field artillery is a unit composed of artillery weapons. The general mission of field

artillery is to destroy, neutralize or suppress the enemy by cannon, rocket, and

missile fire and to help integrate all fire support assets into combined arms

operations [31]. The field artillery system provides close support to maneuver

forces, counter fire and interdiction as required. These fires neutralize, canalize, or

destroy enemy attack formations or defenses; obscure the enemy’s vision or

otherwise inhibit his ability to acquire and attack friendly targets; and destroy

targets deep in the enemy rear with long-range rocket or missile fires. Field artillery

support can range from conventional fires in a company zone to massive nuclear

and chemical fires across a corps front [31].

An artillery battery, being one of the 3 to 6 parts of an artillery battalion has 3 main

units in its organizational structure. These are;

8

• Forward Observing Post (FOP),

• Fire Control Center (FCC), and

• Weapons (6-8 weapons for every battery),

Figure 2. A Typical Artillery Battery System

Figure 2 sketches the flow information and interactions between the units in the

battery organization. The rest of this section briefly defines these units and

summarizes the roles that they play in a battle environment.

2.2.1. Forward Observing Post (FOP)

There are three FOP teams in an artillery battery organization. FOPs are the eyes

of the battery and their basic duty is to detect the targets and make the

adjustments after the shots. They usually consist of several soldiers with distance

measurement equipment to detect the location of the targets, and various

communication equipments to inform the fire control center of the data they

acquire.

9

2.2.1.1. Target Detection

In tactical military operations, military units usually use 1/25000-scaled maps. In

these maps, 1cm is equal to 250 m and 4 cm is equal to 1000 m. The grid lines in

these maps are located in every 1000 m, in both horizontal and vertical directions.

Each 1000x1000 square in the map is called grid square. Figure 3 depicts a

simplified example of a military map. The FOP detects targets by usually employing

two techniques, namely, grid coordinate technique, and polar coordinate technique:

Figure 3. Simplified Military Map Showing Target Detection Techniques

a) Grid Coordinate Method: FOP determines the grid coordinate of a point by map

searching. The approximate coordinates of the targets in Figure 3 are determined

below. The second column indicates the west-to-east, and the third column

indicates the south-to-north coordinates.

10

Table 1. Coordinates in Grid Coordinate Method

Target W-to-E S-to-N

T1 29550 31780

T2 28600 31450

T3 30880 31500

T4 30380 30600

b) Polar Coordinate Method: FOP informs the FCC with the distance and direction

angle of the target. Distance is measured by laser-meter in meters, and direction

angle is measured by compass in mils. The angles widen in clockwise direction,

starting from 0 in the north, and ending at 6400, again in the north. The

approximate polar coordinates of the targets in Figure 3 are determined below:

Table 2. Coordinates in Polar Coordinate Method

Target Distance Dir. Angle

T1 1850 6400

T2 1700 5740

T3 1950 750

T4 975 930

11

2.2.1.2. Adjustment

FOP detects the vertical and horizontal deflections of the hit points of the shots

from the target. As in the case of target detection, he uses laser-meter and

compass to measure the deflections. Later he communicates the results to the

FCC.

2.2.2. Fire Control Center (FCC)

There is only one FCC in an artillery battery. The FCC inputs various

environmental data such as wind direction and magnitude, the information coming

from the FOP, and its own knowledge of the location of the target, the FOP, and

the weapons, and computes the necessary parameters for the weapons to make

their shoots to the target. Although there are many automated fire control tools, it is

unnecessary risk not to calculate it manually. Manual fire control is simply made as

follows:

Figure 4. A Horizontal Plan Paper

12

First of all, the FCC gets the location of the target from the FOP and marks it on a

sheet called the horizontal plan paper, which has vertical and horizontal grid lines

on it (see Figure 4). Horizontal plan paper represents a 1/25000-scaled map of the

battle area. Location of the FOP and the battery are already marked on it.

Then it measures the distance from battery to the target by using a special ruler.

Remember that the distance that the FOP detected was from FOP to target. By

using the distance and the elevation interval between target and the battery, FCC

calculates the powder charge and the vertical angle of the weapons. Powder

charge has a direct relationship with the initial velocity, which constitutes one of the

two major outputs of the mathematical calculations that the FCC made (the other is

the vertical angle). Finally, since the battery and the target are most probably not

vertically aligned, the FCC measures the direction angle of the weapons to the

target.

Thus, the three shoot parameters that the FCC computes and provides to a

weapon are, powder charge, direction angle, and vertical angle. The following

computations are done similarly, after receiving the adjustment values regarding

the previous shot from the FOP, until the target is destroyed.

2.2.2.1. Field Artillery Observed Fire

The general mission of Field Artillery (FA) is to destroy, neutralize or suppress the

enemy by cannon, rocket, and missile fires and to help integrate all fire support

assets into combined arms operations. FA weapons are usually located in

defiladed areas in order to protect them from enemy detection. This nature of FA

gunnery makes it an indirect fire problem. Observed fire, the technique that solves

the indirect FA gunnery problem, is carried out by the coordinated efforts of the

Forward Observers (FwdObserver), the Fire Direction Center (FDC), and firing

sections of the firing unit, all together forming the Field Artillery Team (FAT).

Authoritative reference [31] provides a comprehensive explanation on tactics,

techniques and procedures for FA fire direction process.

Basic duty of the FO, considered the eyes of the FAT, is to detect and locate

suitable indirect fire targets within his zone of observation. (In fact, the FO

functionality is realized as several soldiers equipped with sophisticated binoculars,

laser range finders and maps among others for accurate target location, and

13

communication equipment to convey observation information to the FDC. We do

not attempt to capture such information in our model. Rather, we aim at a

functional description of the domain.) In order to start an attack on a target, the FO

issues a Call For Fire (CFF) request to the FDC. It contains all information needed

by the FDC to determine the method of attack.

As it is unlikely to achieve a target hit in the first round of fire (due to such error

factors as improper target location, nonstandard ammunition, distortions in the

barrel and meteorological effects), the common practice is firstly to conduct

adjustment on the target. Usually the central cannon are selected as the adjusting

weapon. The FO provides correction information to the FDC after each shot based

on his spotting of the detonation. The correction information includes, but is not

limited to deviation, range, height of bust, observer-target direction and distribution

corrections. Moreover, the FO may request changes on any of the fire parameters

such as method of fire, method of control, ammunition or trajectory. Changes on

the target description are also included in the correction information. Once a target

hit is achieved, the FO initiates the Fire for Effect (FFE) phase by noting this in his

correction. FFE is carried out by cannons firing all together with the same fire

parameters as the last adjustment shot. After the designated number of rounds is

fired, the FO sends a final correction including surveillance information. Based on

the surveillance information, if the desired effect on the target is achieved, mission

ends. Otherwise, the FO may request repetitions, or restarts the adjustment phase

if deemed necessary.

2.2.2.2. Adjustment Followed By Fire for Effect Mission

The Adjustment followed by Fire for Effect (AdjFFE), which is by far the most

common and widely known among the FA observed fire missions. The mission

starts by FwdObserver initiating a Call for Fire (CFF) request to the Fire Direction

Center (FDC), consisting of three sub-messages, among which the mission type

(i.e., AdjFFE) is also specified. Once the FDC receives the CFF, it determines how

the target will be attacked. The FwdObserver observes bursts. After a spotting has

been made, the observer must send corrections to the FDC to move the bursts

onto the adjusting point. To conclude the correction cycle, the observer sends a

last surveillance message. At the end of FFE, the FwdObserver announces the

14

effect on the target. According to the result, the mission is completed, aborted, or

continued.

2.2.2.3. Tactical and Technical Fire Direction

Fire direction is the employment of firepower. The objectives of fire direction are to

provide continuous, accurate, and responsive fire support under all conditions [31].

The FDC, considered the brain of the FAT, receives the CFF from the observer,

determines firing data, and converts them to fire commands to be executed by the

firing sections. The FDC abstraction can be separated into two distinguished

functionalities, namely, tactical and technical fire direction.

The primary concern of tactical fire direction is to determine how the target will be

attacked. This is specified as a fire order in which information concerning the units

to fire, and the type and amount of ammunition to be fired are included. Technical

fire direction is conducted by issuing fire commands where the necessary

information for orienting, loading and firing a howitzer is included.

Battalion directed and autonomous modes are the two alternatives under which fire

direction can be conducted. In the present study we focus on battalion directed

organization for several reasons: First, in this setting there is a clear assignment of

tactical and technical fire direction functionalities to the battalion and battery FDCs,

respectively. This separation of roles to two different actors leads to more

straightforward domain modeling. Interested reader may refer to [31] for details.

In battalion-directed setting, the information flow between the FO and the rest of

the FAT is carried through the battalion FDC as illustrated in Figure 5. In this

respect the battalion FDC is the sole contact point of the FO. The battalion FDC

receives the CFF from the FO, prepares the fire order and Message To Observer

(MTO) and send them to the battery FDC and the FO, respectively. After the FO

receives the MTO, it waits for a detonation to spot. The MTO conveys the

necessary information for the FO to assist in pursuing and synchronizing with

projectile detonations. Note that the battalion FDC is a higher post than the FO and

may override his decisions made in the CFF with the MTO.

15

Figure 5. Typical Field Artillery Team Setting

When the fire order is received by the battery FDC, it starts to prepare the fire

command to be sent to the firing sections. The fire command contains detailed

technical data enabling the firing section personnel to load and orient howitzers to

convey fire to the target. In order to compute the fire parameters in the fire

command, the battery takes into consideration the situation map where all the

information pertaining to the terrain as well as the FO and target locations are

present, the metro report issued by the meteorology station, and current

16

ammunition reserve. (Computation of the firing parameters, however, is out of our

modeling scope.)

If the fire command tells so, the firing section sends a volley to the target according

to the parameters in the fire command. The section chief reports to the battery

FDC about the action that the firing section has just performed. A firing report

generally covers synchronization data, ammunition or task status.

In most cases, certain parts of the fire order and fire command does not show any

difference from one mission to the next, and based on the tactical situation,

personnel and weapon status, type and amount of ammunition available, and the

commander’s intuition, some parts of the fire order and fire command can be

announced as standard. If some element of the fire order or fire command is not

provided, then the standard (default) value for that element is accounted as valid.

Standards stay in effect until cancelled, changed with another standard or

overridden inside a fire order or fire command.

2.2.3. Weapons

Weapons (more specifically, cannons) apply the orders coming from the FCC. One

of the cannons, typically the one located in the middle of the battery, is called as

the base cannon. The base cannon continue to apply the orders at each loop, until

the target is hit. Once the target is hit, all the cannons in the battery make their

shots to the target with the same shoot parameters as the base cannon. This is

called a group shot.

Of course there are many issues that must be taken into account in a real world

scenario regarding the cannons themselves, such as barrel deformations due to

heating, variation of the minimum time between two shots, internal ballistics and

external ballistics of the bullets, and so on. For the sake simplicity, these factors

will be ignored in our case study. However, once the proof of concept is achieved,

they may definitely be included.

2.3. High Level Architecture

The High Level Architecture (HLA) is general purpose architecture for distributed

computer simulation systems. The HLA is not software, it provides a common

17

framework. Using HLA, computer simulations can communicate to other computer

simulations regardless of the computing platforms. Communication between

simulations is managed by a Run-Time Infrastructure (simulation) (RTI).

The HLA was approved as US Department of Defense (DoD)’s technical

architecture for modeling and simulation in September 1996. In HLA terminology

[32] a federate is one simulation (e.g. could represent one platform, like a ship, a

cockpit simulator) while a federation is a named set of interacting federates with

the support of RTI to form an integrated simulation (e.g. could represent an

aggregate, like a naval task group simulation). A federate is a member of a

federation. Federation Execution means a session of a federation executing

together.

The High Level Architecture (HLA) consists of the following components:

• Interface Specification. The interface specification document defines

how HLA compliant simulators interact with the Run-Time Infrastructure

(RTI). The RTI provides a programming library and an application

programming interface (API) compliant to the interface specification.

• Object Model Template (OMT). The OMT specifies what information is

communicated between simulations and how it is documented.

• HLA Rules. Rules that simulations must obey to be compliant to the

standard.

2.3.1. Interface specification

The HLA Interface Specification defines the interface between the simulation and

the software that will provide the network and simulation management services.

RTI is the software that provides these services [33][34]. The interface specification

is object oriented. Many RTIs provide APIs in C++ and the Java programming

languages.

The interface specification is divided into service groups:

• Federation Management: Creating, modifying, deleting and dynamic

control of a federation execution are provided by federation

management services.

18

• Declaration Management: Joined federates use the services in this

group to declare their interest to an object class attribute or an

interaction class.

• Object Management: The services in this group deal with the

registration, modification, and deletion of object instances and the

sending and receiving of interactions.

• Ownership Management: The services in this group are used to transfer

ownership of instance attributes among joined federates.

• Time Management: Messages sent by different joined federates are

delivered in a consistent order throughout the federation execution by

the time management services and associated mechanisms.

• Data Distribution Management: The services in this group provide

information on data relevance at different levels and allow refining the

data requirements.

• Support Services: This group includes miscellaneous services for

performing such actions as setting advisory switches, manipulating

regions, or RTI start-up and shutdown.

2.3.2. HLA rules

The HLA rules describe the responsibilities of federations and the federates that

join. These are a set of rules, which must be followed to achieve proper interaction

of federates in a federation. These following rules describe the responsibilities of

simulations and RTI in HLA federations [33].

• Federations shall have an HLA Federation Object Model (FOM),

documented in accordance with the HLA Object Model Template

(OMT).

• In a federation, all representation of objects in the FOM shall be in the

federates, not in the run-time infrastructure (RTI).

• During a federation execution, all exchange of FOM data among

federates shall occur via the RTI.

• During a federation execution, federates shall interact with the run-time

infrastructure (RTI) in accordance with the HLA interface specification.

19

• During a federation execution, an attribute of an instance of an object

shall be owned by only one federate at any given time.

• Federates shall have an HLA Simulation Object Model (SOM),

documented in accordance with the HLA Object Model Template

(OMT).

• Federates shall be able to update and/or reflect any attributes of objects

in their SOM and send and/or receive SOM object interactions

externally, as specified in their SOM.

• Federates shall be able to transfer and/or accept ownership of an

attribute dynamically during a federation execution, as specified in their

SOM.

• Federates shall be able to vary the conditions under which they provide

updates of attributes of objects, as specified in their SOM.

• Federates shall be able to manage local time in a way that will allow

them to coordinate data exchange with other members of a federation.

2.3.3. OMT (Object Model Template)

The OMT prescribes a common method for recording the information that will be

produced and communicated by each simulation participating in the distributed

exercise [33]. An HLA object model is a composition of a set of interrelated

components encapsulating information on classes of objects and their attributes

and interactions and their parameters. HLA object models identify the data

exchanged at runtime to achieve federation objectives. The OMT Specification

defines the format and syntax of HLA object models. Furthermore it provides a

common framework for the communication between HLA simulations.

All objects and interactions managed by a federate, and visible outside the

federate, are described according to the standard OMT. This common template

facilitates understanding and comparisons of different federates and federations,

and provides a contract between members of a federation on the types of objects

and interactions that will be supported across multiple interoperating simulations

[33]. The primary objective of the HLA OMT is to facilitate interoperability among

simulations and reuse of simulation components.

20

HLA object models are documented using OMT components, which represent

information about classes of objects, their attributes and their interactions in tabular

form. The template for the core of an HLA object model shall consist of the

following components:

• Object model identification table: To associate important identifying

information with the HLA object model.

• Object class structure table: To record the namespace of all federate or

federation object classes and to describe their class-subclass

relationships.

• Interaction class structure table: To record the namespace of all

federate or federation interaction classes and to describe their class–

subclass relationships.

• Attribute table: To specify features of object attributes in a federate or

federation.

• Parameter table: To specify features of interaction parameters in a

federate or federation.

• Dimension table: To specify dimensions for filtering instance attributes

and interactions.

• Time representation table: To specify the representation of time values.

• User-supplied tag table: To specify the representation of tags used in

HLA services.

• Synchronization table: To specify representation and data types used in

HLA synchronization services.

• Transportation type table: To describe the transportation mechanisms

used.

• Switches table: To specify initial settings for parameters used by the

RTI.

• Data type tables: To specify details of data representation in the object

model.

• Notes table: To expand explanations of any OMT table item.

• Routing space table: To specify routing spaces for object attributes and

interactions in a federation.

• FOM/SOM lexicon: To define the terms used in the tables.

21

OMT specifies three types of object models:

• Federation Object Model (FOM): The FOM describes the all shared

object, attributes and interactions and associations for the whole

federation among federates essential to a particular federation.

• Simulation Object Model (SOM): A SOM describes the shared object,

attributes and interactions used for a single federate.

• Management Object Model (MOM): MOM identifies classes and

interactions related to federation management.

All of the OMT components shall be completed when specifying an HLA object

model for both federations and individual federates. However, certain tables may

be empty or devoid of domain-specific content. For instance, although federations

typically support interactions among their federate’s, some federates (such as a

stealth viewer) might not be involved in interactions. In this situation, the interaction

class structure table would contain only the single interaction class required by the

HLA and the parameter table would be empty in that federate’s SOM. It is also

expected that federates commonly have objects with attributes of interest across

the federation; in such cases, these objects and attributes shall be documented.

However, a federate or an entire federation may exchange information solely

via interactions; in which case, its object class structure table and attribute

table would contain only HLA-required data.

The final HLA OMT component, the FOM/SOM lexicon, is essential to ensure that

the semantics of the terms used in an HLA object model are understood and

documented. The HLA MOM specifies a designated set of information elements

that are associated with federation executions. Implementation of the MOM

information elements as specified in IEEE STD 1516.1-2000 ([34]) provides a

mechanism for management of federation executions using existing HLA services.

Inclusion of the MOM is required for all FOMs. Any FOM or SOM that fully

conforms to all of the rules and constraints stated in this specification is a

compliant object model.

22

2.4. GME (Generic Modeling Environment)

The Generic Modeling Environment (GME) is a configurable toolkit for creating

domain-specific modeling and program synthesis environments [8]. The

configuration is accomplished through metamodels specifying the modeling

paradigm (i.e., modeling language) of the application domain. The modeling

paradigm contains all the syntactic, semantic, and presentation information

regarding the domain. It defines the family of models that can be created using the

resultant modeling environment.

The metamodels are used to automatically generate the target domain-specific

environment. An interesting aspect of this approach is that the environment itself is

used to build the metamodels. The generated domain-specific environment is then

used to build and manipulate domain models that are stored in a model database.

The metamodels specifying the modeling paradigm are used to automatically

generate the target domain-specific environment. The generated domain-specific

environment is then used to build domain models that are stored in a model

database or in XML format. These models are used to automatically generate the

applications or to synthesize input to different COTS analysis tools.

GME has a modular, extensible architecture that uses MS COM for integration.

GME is easily extensible; external components can be written in any language that

supports COM (C++, Visual Basic, C#, Python etc.). GME has many advanced

features. A built-in constraint manager enforces all domain constraints during

model building. GME supports multiple aspect modeling. It provides metamodel

composition for reusing and combining existing modeling languages and language

concepts. It supports model libraries for reuse at the model level. All GME

modeling languages provide type inheritance. Model visualization is customizable

through decorator interfaces.

2.4.1. Technical Overview

The GME includes several other relevant features:

• It is used primarily for model-building. The models take the form of

graphical, multi-aspect, attributed entity-relationship diagrams. The

23

dynamic semantics of a model is not the concern of GME – that is

determined later during the model interpretation process.

• It supports various techniques for building large-scale, complex models.

The techniques include: hierarchy, multiple aspects, sets, references,

and explicit constraints. These concepts are discussed later.

• It contains one or more integrated model interpreters that perform

translation and analysis of models currently under development.

GME has a modular, component-based architecture depicted in Figure 6 below.

Figure 6. Generic Modeling Environment Architecture

The Core component implements the two fundamental building blocks of a

modeling environment: objects and relations. Among its services are distributed

access (i.e. locking) and undo/redo [8].

24

On top of the architecture, the user interacts with these components: the GME

User Interface, the Model Browser, the Constraint Manager, Interpreters and Add-

ons.

Add-ons are event-driven model interpreters. The GModel component exposes a

set of events, such as "Object Deleted," "Set Member Added," "Attribute Changed,"

etc. External components can register to receive some or all of these events. They

are automatically invoked by the GModel when the events occur. When a particular

domain calls for some special operations, these can be supported without

modifying the GME itself [8].

The Constraint Manager behaves as an interpreter and an add-on at the same

time. It can be invoked when event-driven constraints are present in the given

paradigm and it is also invoked explicitly by the user. Depending on the priority of a

constraint, the operation that caused a constraint violation is aborted. For less

serious constraint violations, the Constraint Manager only issues a warning

message.

There is no special privilege for the GME User Interface component in this

architecture. Any operation that can be done through the Graphical User Interface

(GUI) can also be done programmatically through the interfaces. By this way, the

architecture is very flexible and supports extensibility of the whole environment.

 2.4.2. Modeling Concepts

The vocabulary of the domain-specific languages implemented by different GME

configurations is based on a set of generic concepts built into GME itself. GME

supports various concepts for building large-scale, complex models as depicted in

Figure 7.

A Project contains a set of Folders. Folders are containers that help organize

Models, just like folders on a disk help organize files. Folders contain Models.

Models, Atoms, References, Connections and Sets are all first class objects, or

FCOs for short. FCO is used as the abstract base class for these elements in

modeling.

25

1.
.*

Figure 7. GME modeling concepts [8]

Atoms are the elementary objects; that is, they cannot contain parts. Each kind of

Atom is associated with an icon and can have a predefined set of attributes, whose

values are user changeable.

Models are the compound objects that can have parts and inner structure. A part in

a container Model always has a Role. The modeling paradigm determines what

kind of parts are allowed in Models acting in which Roles, but the modeler

determines the specific instances and number of parts a given model contains (of

course, explicit constraints can always restrict the design space). Any element

must have at most one parent, which must be a Model. At least one Model does

not have a parent and is called a root Model.

A common way of expressing a relationship between two model elements in GME

is with a Connection. Connections can be directed or undirected, and have

Attributes. In order to make a Connection between two modeling elements they

must have the same parent in the containment hierarchy. It is specified what kind

of objects can participate in a given kind of Connection. Connections can further be

restricted by explicit Constraints, such as their multiplicity.

26

In GME, a Reference must appear as a part in a Model. This establishes a

relationship between the Model that contains the Reference and the referred-to

object. Any FCO, except for a Connection, can be referred to (even References

themselves). A Reference always refers to exactly one FCO, while a single FCO

can be referred to by multiple References.

Some information does not lend itself well to graphical representation. GME

provides the facility to augment the graphical objects with textual attributes. All

FCOs can have different sets of Attributes among the kinds text, integer, double,

boolean and enumerated.

The GME is made up of instances of Folders, FCOs (Models, Atoms, Sets,

References, Connections), Roles, Constraints and Aspects. These are the main

concepts that are used to define a modeling paradigm. As soon as a particular

model is created in GME, it becomes a type (class). It can be sub typed and

instantiated as many times as the user wishes. The general rules that govern the

behavior of this inheritance hierarchy are:

• Only attribute values of model instances can be modified. No parts can

be added or deleted.

• Parts cannot be deleted but new parts can be added to subtypes.

This concept supports the reuse and maintenance of models because any change

in a type automatically propagates down the type hierarchy. Also, this makes it

possible to create libraries of type models that can be used in multiple applications

in the given domain.

 2.4.3. Extensibility

GME identifies data and tool integration as one of its primary application areas, so

data access and standards-compliant extensibility is one of its primary design

goals. Hence, GME is completely component-based with public interfaces among

its components. Most notably, the GME editor, i.e. the visualization component, the

model storage and logic, and the meta-modeling module is separated by interfaces

which are accessible to user-written components as well, thus giving them access

level identical to that of the GME editor. Since the component model is COM, the

primary languages for integration are C++ and Visual Basic, while Java, Python,

27

etc. access is also available. Access is bi-directional, and fully transactional, which

makes different 'on-line modeling' scenarios feasible. For example, the GME user

interface itself can be used as the user interface of a generated application to

provide feedback to the user in terms of the models. Furthermore, the bi-directional

access makes it possible to convert legacy data into models in an automated

fashion [8].

Programming at the component level is somewhat challenging in the sense that it

requires advanced transaction control and event handling. Several alternatives

provide easier access through simpler interfaces (albeit with limited functionality).

First, the GME pattern-based report language provides simple reporting

capabilities by interpreting macro definitions in a simple text input file. A more

complex interface is layered on top of the COM interfaces providing an easy-to-use

extensible C++ API. GME also provides bi-directional XML access for both model

and meta-model information [8].

 2.4.4. Metamodeling with GME

Defining a modeling paradigm can be considered just another modeling problem. It

is quite natural then that GME itself is used to solve this problem. There is a

metamodeling paradigm defined that configures GME for creating metamodels

[35]. These models are then automatically translated into GME configuration

information through model interpretation. Originally, the metamodeling paradigm

was hand-crafted. Once the metamodeling interpreter was operational, a meta-

metamodel was created and the metamodeling paradigm was regenerated

automatically. This is similar to writing C compilers in C.

The metamodeling paradigm is based on UML [36]. The syntactic definitions are

modeled using pure UML class diagrams and the static semantics are specified

with constraints using the Object Constraint Language (OCL) [40]. Only the

specifications of presentation/visualization information are extensions to UML,

mainly in the form of predefined object attributes.

Just as the reusability of domain models from application to application is essential,

the reusability of meta-models from domain to domain is also an important

consideration. In GME a library of meta-models of important sub-domains is made

28

available to the meta modeler, who then can pick and choose from them, extend

and compose them together to specify new domain languages. The extension and

composition mechanisms must not modify the original metamodels for two reasons.

First, changes in the meta-model libraries, reflecting a better understanding of the

given domain, for example, should propagate to the meta-models that utilize them.

Second, by precisely specifying the extension and composition rules, using

inheritance and equivalence operators, for instance, models specified in the

original domain language can be automatically translated to comply with the new,

extended and composed, modeling language. This is a simple and elegant solution

to the well-known model migration problem. For more detail on metamodel

composition please see [37].

 2.4.5. User Interface

The native graphical user interface of GME is shown in the Figure 8 below. The

picture shows a model of a signal flow graph loaded. In this simple model, only

Models, Atoms and Connections are used. The window on the right hand side

shows the Model Browser that displays the whole project in a tree-like fashion. The

Aggregate tab displays the containment hierarchy, while the Inheritance tab shows

the type inheritance hierarchy. The Meta tab provides an overview of the modeling

paradigm specifications. The bottom window is the Part Browser where all the

parts that are available in the current aspect of the current model are shown.

Notice that two tabs indicate the aspects of the signal flow model: SignalFlow and

Parameter.

29

Figure 8. Graphical User Interface of GME

2.5. Graph Transformations with GreAT

Graph Rewriting and Transformation (GReAT) [9][10] is a transformation language

developed for model-to-model transformations/rewriting. In other words, GReAT is

a tool for building model transformation tools using graph transformation

techniques. This section provides an overview of GReAT, while [38] provides a

more detailed description. The operational semantics of GReAT is formally defined

in [10]. GReAT is based on the theoretical work of graph grammars and

transformations [26] and belongs to the set of practical graph transformations

systems.

Figure 9. Transformation Modeling and Execution in GReAT

GReAT uses metamodels

models (i.e. the modeling languages), and sequenced graph rewriting rules for

specifying the transformation itself.

transformations to it, and generates the o

UML class diagrams for the input and output graphs (also known as meta

the transformation specification and the input graph. The GRE executes the rules

according to the sequencing and produces an output graph

of the rules. The approach used in GReAT is illustrated

For building a model transformation tool using GReAT, one first has to specify the

metamodels of the input and the target models. This

class diagrams, using GME

The GReAT transformation rules are graph rewriting rules that transform a part of

the input model (a typed, attributed graph of model elements) into part of the target

model (a typed, attributed graph of model elements). The rule has a pattern (to be

matched against input model), a guard (an expression to be evaluated on the result

of the match), and a set of actions (that create of delete model elements, or modify

attributes). The match is a

30

. Transformation Modeling and Execution in GReAT [9]

GReAT uses metamodels to specify the abstract syntax of the input and the target

models (i.e. the modeling languages), and sequenced graph rewriting rules for

specifying the transformation itself. It takes the input graph, applies the

transformations to it, and generates the output graph. Inputs to the GRE are the

UML class diagrams for the input and output graphs (also known as meta

the transformation specification and the input graph. The GRE executes the rules

according to the sequencing and produces an output graph based upon the actions

The approach used in GReAT is illustrated in Figure 9 above

For building a model transformation tool using GReAT, one first has to specify the

metamodels of the input and the target models. This is done using the UML

GME and UDM [39].

The GReAT transformation rules are graph rewriting rules that transform a part of

the input model (a typed, attributed graph of model elements) into part of the target

uted graph of model elements). The rule has a pattern (to be

matched against input model), a guard (an expression to be evaluated on the result

of the match), and a set of actions (that create of delete model elements, or modify

attributes). The match is always computed starting from specific nodes, called the

[9]

to specify the abstract syntax of the input and the target

models (i.e. the modeling languages), and sequenced graph rewriting rules for

It takes the input graph, applies the

utput graph. Inputs to the GRE are the

UML class diagrams for the input and output graphs (also known as meta-models),

the transformation specification and the input graph. The GRE executes the rules

based upon the actions

above.

For building a model transformation tool using GReAT, one first has to specify the

is done using the UML-style

The GReAT transformation rules are graph rewriting rules that transform a part of

the input model (a typed, attributed graph of model elements) into part of the target

uted graph of model elements). The rule has a pattern (to be

matched against input model), a guard (an expression to be evaluated on the result

of the match), and a set of actions (that create of delete model elements, or modify

lways computed starting from specific nodes, called the

pivot nodes in the graph to limit the search, and pivot nodes could be passed down

to subsequent rules. The rule execution is

structures (including conditiona

includes a number of tools, as illustrated on the

Figure

GReAT programs (transformation specs) are typically executed using a 'virtual

machine', called the GR Engine. This is an interpreter that interprets the rewriting

program, and allows the use of the debugger. Once the transformation is

corrected, one can use the

from the transformation program, which is then linked with other libraries to form an

executable that runs with much better performance. The GReAT transformation

rules could include executable code written

mapping' code -- this is for computations that need to be performed upon each

transformation step, best written as imperative code.

The GReAT tool suite has been designed for the rapid specification and

implementation of model

required in many domains. A few use case scenarios of this tools suite are:

31

in the graph to limit the search, and pivot nodes could be passed down

to subsequent rules. The rule execution is explicitly sequenced, and various control

structures (including conditional and looping structures are available).

includes a number of tools, as illustrated on the Figure 10 below.

Figure 10. Transformation Tools in GReAT [9]

programs (transformation specs) are typically executed using a 'virtual

machine', called the GR Engine. This is an interpreter that interprets the rewriting

program, and allows the use of the debugger. Once the transformation is

corrected, one can use the code generator the produce executable (C++) code

from the transformation program, which is then linked with other libraries to form an

executable that runs with much better performance. The GReAT transformation

rules could include executable code written in C++, in the form of ' attribute

this is for computations that need to be performed upon each

transformation step, best written as imperative code.

The GReAT tool suite has been designed for the rapid specification and

model-to-model transformations. These transformations are

required in many domains. A few use case scenarios of this tools suite are:

in the graph to limit the search, and pivot nodes could be passed down

explicitly sequenced, and various control

l and looping structures are available). GReAT

programs (transformation specs) are typically executed using a 'virtual

machine', called the GR Engine. This is an interpreter that interprets the rewriting

program, and allows the use of the debugger. Once the transformation is

code generator the produce executable (C++) code

from the transformation program, which is then linked with other libraries to form an

executable that runs with much better performance. The GReAT transformation

in C++, in the form of ' attribute

this is for computations that need to be performed upon each

The GReAT tool suite has been designed for the rapid specification and

model transformations. These transformations are

required in many domains. A few use case scenarios of this tools suite are:

32

• Developing model interpreters that convert GME models (conforming to

a meta-model) to XML files conforming to a particular dtd.

• Developing model interpreters that convert GME models (conforming to

a metamodel) to a set of secondary data structures. A visitor can then

be written to convert the secondary models to text.

• Developing model interpreters that convert GME models (conforming to

a metamodel) to GME models conforming to another metamodel.

• Developing transformers that convert xml files belonging to one dtd to

xml files belonging to another dtd.

• Developing transformers that convert xml files belonging to a dtd to

GME models.

GReAT is the model transformation language that we have employed in FACM to

FAM transformations. UMLModelTransformer paradigm, which is the metamodel of

the GReAT language, comes out of the box as registered in GME. By creating

models conforming to this paradigm in GME, we are able to define our model

transformations. GReAT can be divided into 3 distinct parts: (1) Pattern

specification language, (2) Graph transformation language, and (3) Control flow

language, which we briefly summarize below. The details on all the three parts can

be found in [9].

2.5.1. The Pattern Specification Language

The heart of a graph transformation language is the pattern specification language

and the related pattern matching algorithms. Graph patterns allow selecting

portions of the input (host) graph, and thus specify the scope of individual

transformation steps. In broadest terms, the goal of the pattern language is to

specify patterns over graphs (of objects and links), where the vertices and edges

belong to specific classes and associations. GReAT assumes that a UML class

diagram is available for the objects. The UML class diagram can be considered as

the “graph grammar,” which specifies all legal constructs formed over the objects

that are instances of classes introduced in the class diagram. Please refer to [9] for

details.

33

2.5.2. Graph Rewriting Transformation Language

Another important concern besides pattern specification is the specification of

static structural constraints in graphs and ensuring that these are maintained

throughout the transformations [25]. Model-to-model transformations usually

transform models from one domain to models that conform to another domain

making the problem two-fold. The first problem is to specify and maintain two

different models conforming to two different metamodels. An even more important

problem to address involves maintaining references between the two models.

GReAT’s solution to these problems is to use the source and destination

metamodels to explicitly specify the temporary vertices and edges. This approach

creates a unified metamodel along with the temporary objects. Then the source

model, destination model, and temporary objects can be treated as a single graph.

In GReAT, each pattern object’s type conforms to the unified metamodel and only

transformations that do not violate the metamodel are allowed. At the end of the

transformation, the temporary objects are removed and the two models conform

exactly to their respective metamodels.

The graph transformation language of GReAT defines a production (also referred

to as rule) as the basic transformation entity. A production contains a pattern graph

that consists of pattern vertices and edges. These pattern objects conform to a

type from the metamodel. Each pattern has another attribute that specifies the role

it plays in the transformation. A pattern can play the following three different roles:

• Bind – used to match objects in the graph.

• Delete – also used to match objects in the graph, but after these objects

are matched they are deleted from the graph.

• New – used to create objects after the pattern is matched.

The execution of a rule involves matching every pattern object marked either bind

or delete. If the pattern matcher is successful in finding matches for the pattern,

then for each match the pattern objects marked delete are deleted from the match

and objects marked new are created.

Sometimes the patterns by themselves are not enough to specify the exact graph

parts to match and we need other, non-structural constraints on the pattern. These

34

constraints or pre-conditions are expressed in a guard and are described using

Object Constraint Language (OCL) [40]. There is also a need to provide values to

attributes of newly created objects and/or modify attributes of existing object.

Attribute Mapping is another ingredient of the production: it describes how the

attributes of the “new” objects should be computed from the attributes of the

objects participating in the match. Attribute mapping is applied to each match after

the structural changes are completed.

A production is thus a 4-tuple, containing a pattern graph, mapping function that

maps pattern objects to actions, a guard expression (in OCL), and an attribute

mapping.

2.5.3. Controlled Graph Rewriting and Transformation

To increase the efficiency and effectiveness of GReAT, it is essential to have

efficient implementations for the productions. Since the pattern matcher is the most

time consuming operation, it needs to be optimized. One solution is to reduce the

search space (and thus time) by starting the pattern-matching algorithm with an

initial context. An initial context is a partial binding of pattern objects to input (host)

graph objects. In order to provide initial bindings, the production definition is

expanded to include the concept of ports. Ports are elements of a production that

are visible at a higher-level and can then be used to supply initial bindings. Ports

are also used to retrieve output objects from the production.

The next concern is the application order of the productions. The control flow

language of GReAT supports the following features:

• Sequencing – rules (i.e., productions) can be sequenced to fire one

after another. This is achieved by attaching the output port of the first

rule to the input port of the next.

• Non-Determinism – when required parallel execution of a set of rules

can be specified. The order of execution of these rules is non-

deterministic. This construct is achieved by attaching the output of one

rule to the input of more than one rule.

• Hierarchy – High-level rules have been introduced in the language.

These are used for encapsulation and data abstraction. Compound

35

rules can contain other compound rules or primitive transformation

rules.

• Recursion – A high level rule can “call” itself.

• Test/Case – A conditional branching construct that can be use to

choose between different control flow paths.

2.5.4. The GReAT Engine

The model transformation language described above is supported through a Graph

Rewriting and Transformation Execution Engine (GReAT-E), whose architecture is

shown in Figure 11. The engine works as an interpreter: it takes the model

transformation “program” in the form of a data structure, and it “executes” it on an

input graph to produce an output graph. The engine uses generic API-s (using the

model-driven reflection package called UDM [39]), and is thus suitable for

executing any model transformation.

Figure 11. Run time architecture of the GReAT Interpreter [9]

The interpreter accesses the input and output graph with the help of a generic

UDM API that allows the traversal of input and output graph. The rewrite rules are

36

stored in their own language format and can be accessed using the language

specific UDM API. The GReAT is composed of two major components, (1)

Sequencer, (2) Rule Executor (RE). The Rule Executor is further broken down into

(1) Pattern Matcher (PM) and (2) Effector (or ‘output generator’). The Sequencer

determines the order of execution for the rules using the ‘Execute’ function

described above and it calls the ExecuteRule for each rule. The rule executor

internally calls the PM with the pattern of the rule. The matches found by the PM

are used by the Effector to manipulate the output graph by performing the actions

specified in the rules.

The Pattern Matcher finds the subgraph(s) in the input graph that are isomorphic to

the pattern specification. When a pattern vertex/edge matches a vertex/edge in the

input graph, the pattern vertex/edge will be bound to that vertex/edge. The matcher

starts with an initial binding supplied to it by the Sequencer. Then it incrementally

extends the bindings till there are no unbound edges/vertices in the pattern. At

each step it first checks every unbound edge that has both its vertices bound and

tries to bind these. After it succeeds to bind all such edges it then finds an edge

with one vertex bound and then binds the edge and its unbound vertex. This

process is repeated until all the vertices and edges are bound.

37

CHAPTER 3

FIELD ARTILLERY METAMODEL

This section is about the formalization of the conceptual model. The data model

identifies the entities in the FA domain along with their properties and associations.

The conceptual data model is constructed as a metamodel by using the GME.

Once the FA metamodel is registered with GME, it automatically provides a

customized environment to model particular FA data models.

Figure 12 depicts an excerpt of the metamodel as shown in the GME Browser

window. The DurableData, EntityFADomain and Message folders and the Utility

sheet contain the data model part. Finally, FADMMRoot sheet gathers the top level

elements in these folders under the root element, DataModel.

Figure 12. An overview of FADMM in GME Browser

Before moving any further, a clarification on the levels of modeling would be

worthwhile. Object Management Group (OMG) introduces a four-layer metamodel

hierarchy for defining modeling, metamodeling, and meta-metamodeling languages

and activities in [36].

Table 3 relates the FADM metamodel to OMG’s four-layer modeling hierarchy.

38

Table 3. FA Metamodel correlated with OMG’s model hierarchy

OMG’s Metamodel Hierarchy Related Model

Meta-metamodel (M3 layer) GME metamodel (metaGME)

Metamodel (M2 layer) FADM metamodel (referred to as a

“paradigm” in GME vernacular)

Model (M1 layer) A particular FA mission description, e.g., The

Adjustment followed by Fire For Effect

(AdjFFE).

Run-time instance (M0 layer) A particular execution of a FA mission (e.g.,

exercising an AdjFFE scenario)

3.1. Data Model

Messages are an important part of the FA domain information. Typically, they are

highly structured and they have with many optional or conditional fields of various

data types. There are further syntactic, semantic or cardinality constraints on the

message structures, both on a single field and inter-field basis.

Our analysis has revealed two kinds of message usage in the domain. The first

kind includes those messages that are sent as single chunks of information

independent of any previous ones. Every such message supplants its immediate

predecessor of the same type. The second kind of usage is practically an

accumulation of a series of communications of the same message type.

Specifically, the current interpretation of a message at a particular destination is a

function of all previous receptions of that message kind. In such a usage, the first

reception of a message creates an initial copy at the destination. Subsequent

message receptions result in updates on the original copy. The message is

39

removed from the scope of the actor with the arrival of a special deletion message.

In the FA domain model the majority of the message usages are of the first kind.

The mission hierarchy builds up the set of FA observed fire missions that are

modeled in this work. The mission model elements themselves do not possess

mission related information; rather they are simple atomic elements merely used as

markers of mission types. Mission specific information is conveyed within message

structures. Mission model elements exist as parts of some of those message

structures. Figure 13 and Figure 14 show the synopsis of the data model hierarchy

as manifested in GME Browser.

Figure 13. A sample of data model in GME

40

Figure 14. An overview of data model in GME Browser

3.2. Metamodeling of Observed Fire in GME

An examination of the narrative FA model outline of 2.2. Elements of Field Artillery

suggests a set of messages, entities and relationships between these entities.

The observed (indirect) fire techniques of the Field Artillery (FA) domain constitute

the source model for the transformations. This section first gives a conceptual

overview on the elements and fire direction processes of the FA domain, and then

presents the metamodeling effort of the domain implemented in GME environment.

The entities in the FA domain are FO, Battalion FDC, Battery FDC, Firing Section,

FAT and Target. Note that, when we examine the field manuals [31], it is seen that

there are many more sub-divisions and personnel working in coordination in an FA

41

unit. In order to reduce complexity and provide a better understanding of the

responsibilities, we worked out to gather all these real-life participants under

following functional entities.

From a military perspective, firing sections are organized under batteries and

batteries are organized under battalions. However, from modeling perspective, the

kinds of interactions that can occur among them are more important and

organizational hierarchy is not a serious concern. Thus, we gathered the Battalion

FDC, Battery FDC and Firing Section under the aggregate FAT (Field Artillery

Team). In fact, this non-hierarchic organization schema is relevant in order to

sketch message communication diagrams straightforwardly in GME.

Target is rather a passive actor that most of the time is a primary concern of the

others. Its most distinguishing features are that it provides a location to issue fire

orders for, shapes the method of engagement, fire and control according to its

kind, and provide feedback for mission termination. Last, but not least, a field

artillery operation cannot be envisioned at all without a target concept.

All the entities mentioned are modeled as GME models and are considered

specializations of an abstract Entity model element. Figure 15 depicts the entities

as defined in GME.

Figure 15. Field Artillery Entities

42

Figure 16. An overview of the FACM metamodel

An overview of the FACM metamodel, as sown in GME model browser, is given in

Figure 16. The components making up the model are organized under four major

folders.

The actors are the active driving forces of mission executions. In modeling actors

we assumed a functional perspective rather than a one to one mapping of real life

entities. Therefore they represent personnel, equipment or an aggregation of these

in FA batteries. Actors are the producers and comsumers of the message traffic.

Nets are similar to actors in terms for producing and consuming messages.

However they are an abstraction of a set of actors in the domain. Any message

entering a net is distributed to the actors in the net. Hence they resemble the real

life nets in the mission space.

43

Figure 17. An example of DurableData in FACM

The DurableData folder contains the model elements that represent the long

lasting domain information such as ammunition, SOPs, and metro reports. Durable

data are usually expected to exist and keep their states until a mission is either

completed or aborted. Their states can be (partly) modified and these modifications

are transmitted among actors. The sketch of DurableData is shown in Figure 17 as

an example. The details can be found in Appendix B.

The messages are communicated among the actors while executing FA missions.

These are generally instantaneously generated by its sender and are void. Once

they are consumed by the receiver(s). In short they are short-lived, volatile

information chunks that do not have lives spanning multiple message

communications. The messages are best candidates for transforming into

interaction classes in OMT.

The utility sheet consists of a variety of lower level components that are commonly

used by the higher level messages. These encompass such components as date

and time, location, measurement, etc. These utility components are specially

treated during transformations in that they have their own transformation rules and

these rules are called from the higher level rules that transform messages.

Consequently the utilities facilitate modularization and reuse.

Please refer to Appendix B for the details of the entities.

44

CHAPTER 4

HLA OMT METAMODEL

4.1. Federation Design Model

The HLA-OMT metamodel has been developed in a previous study [6]. Here we

provide only refreshment that would be necessary for the reader to understand our

target model.

The Federation Design Model (FDM) provides an interface to define a federation

and the federates and to connect them to the related FOM and SOMs. In FDM,

FOM and SOMs are referenced object models. Each design can include one

federation and one FOM reference, while there may be any number of federates

and SOMs.

Figure 18. Federation design model

45

Figure 18 shows the GME class diagram of federation design model. There is a

“MemberOf” connection between federation and federates. This connection

presents the federation execution capabilities. Federation Design Model is not

intended to complete; it is constructed to show the usage of object models in

context.

4.2. Object Model

The Object Model paradigm sheet includes the main diagram for object models. As

seen in Figure 19, there are three types of object models, namely, FOM, SOM and

Other. FOM and SOM are HLA object models which are defined in HLA OMT

specification. The “Other” type provides a template for “temporary” object models.

Object Model, which is the parent of FOM, SOM and Other, is an abstract class.

The inheritance operator in this figure presents a parent-child relation that is

analogous to the inheritance in usual OO approach. Object models have some

attributes [6]:

• Name: The name assigned to the object model.

• Version: The version identification assigned to the object model.

• Modification Date: The latest date on which this version of the object

model was created or modified.

• Purpose: The purpose for which the federate or federation was

developed.

• Application Domain: The type or class of application to which the

federate or federation applies.

• Sponsor: The organization that sponsored the development of the

federate or federation.

• Point of Contact: The name of the point of contact (POC) for

information.

• POC Organization: The organization with which the POC is affiliated.

• POC Telephone: The telephone number for the POC.

• POC E-mail: The e-mail address of the POC.

• References: Additional sources of information. The default value is

“NA”.

46

• Other: Other information related to the object model. The default value

is “NA”.

• MOM version: The version of the included management object model.

The default value is “IEEE 1516”. Selecting a MOM name is required for

all FOMs. In SOMs the MOM shall be included if needed.

• Notes: Note labels added to the object model.

Object models have five aspects, namely Classes, User-Supplied Tags,

Synchronization, Switches and Time Representation. In each aspect the model

definitions are taken from the related paradigm sheets with proxy elements. The

Classes aspect includes the definition of object classes, attributes, interaction

classes and parameters. The User-Supplied Tags aspect includes the user-

supplied tag elements. The Synchronization aspect includes the definition of

synchronization point models. The Switches aspect includes the switches in order

to change the initial settings and time representation aspect includes the definition

of look ahead and timestamp models.

4.3. OMT Core

Both FOM’s and SOM’s structure make use of the same set of model constructs

defined inside the OMTCore package. Therefore the OMT elements can be

considered as the core of the object model, as its name implies. In Figure 19, we

see the object model structure. The OMT core contains any number of federates

and HLA classes. Federates have publish and subscribe relationships to attribute

lists, which in turn have relationship to the attributes of HLA classes.

47

Figure 19. OMT Object Models diagram

There are two types of HLA classes and HLA attributes. Each class has its own

type of attributes, namely, Object attribute and Interaction parameter. The value

that an HLA attribute carries is represented with a separate HLAAttribValue FCO

construct, which has a recursively defined tree structure having primitive GME-

typed atomic values at the leaves. This structure is displayed in Figure 20.

48

Figure 20. HLA Class and Attribute Structure

4.4. The Meta Data

Meta data are used in declaring various HLA borne properties of HLA

classes and attributes. The MetaData model element is specified into

HLAClassMetaData and HLAAttribMetaData submodels. HLAClassMetaData is

further categorized into ObjectClassMetaData and InteractionClassMetaData,

whose single submodels being PS and ISR, respectively. HLAAttribMetaData has

six immediate leaf submodels, and an ObjectAttributeMetaData submodel that has

four further submodels. Finally, all these leaf metadata elements are contained in

HLA classes and attributes with cardinality 1 (see Figure 21). Note that the

metadata hierarchy naturally follows the HLA class and attribute hierarchy. These

metadata have distinguished data types provided by HLA.

49

Figure 21. HLA Meta Data Hierarchy

4.5. The Meta Data Types

This section defines the types of the meta data elements. As known from the

programming language theory, every datum must have a type associated with it

that resembles the set of all of the similar other data elements. This rule surely

applies in our case. Figure 22 shows the top level meta data type hierarchy for

HLA meta data. Each meta data type consists of a set of literals. Primitive literals

are string, double, integer, and boolean literals, and there are infinitely many of

them, except for the Boolean literals, which are true and false.

Please refer to [6] and Appendix C for the other details of the HLA-OMT Meta

Model.

50

Figure 22. Top Level HLA Meta Data Type Hierarchy

51

CHAPTER 5

FA DATA MODEL TO HLA-OMT TRANSFORMATIONS

The data model transformation of FADMM2HOMM has little in graph-based pattern

matching, but has much done in user code library. The DataTypes block contains

rules for creating any non-standard basic, simple, enumerated, array and fixed

record data types that the following rules will refer to. Figure 23 shows the top-level

data model transformation block.

Figure 23. Top-level data model transformation block

52

The InitFOM rule is shown in Figure 24. The pattern matches if the FACM data

model has a Messages and DurableDataStore folders (The match on FAM side

about data types is trivial since those elements were hand-prepared in a previous

rule. Once the input and output patterns match, an ObjectModels folder is created

under HLAObjectModel parent folder. Moreover a FOM element is created with all

of its child objects under ObjectModels. HLAInteractionRoot and HLAPrivilegeTo-

DeleteObject are the two constant top level objects from which all of the interaction

classes and object classes are extended [41]. A blue color of an association or a

model entity indicates “CreateNew”, whereas black indicates “Bind” semantic. Input

packets arrive at a rule trough blue input ports and leave out via the red output

ports. AttributeMapping provides the user an opportunity to specify custom code (in

C++) for applying more complicated and/or flexible operations on the bound

objects using the UDM API [39]. These operations range from simple ones such as

setting a new object’s name or position on the screen to sophisticated graph

traversals, object creations or deletions.

Figure 24. InitFOM rule

53

InteractionClasses rule, as seen in Figure 25, simply creates an interaction class

per NonDurableMsg matched from the FACM. The sister rule ObjectClasses does

a similar job as creating an object class per DurebleData. Remember that the non-

durable messages and durable data define families of objects with varying size and

complexity underneath them. The whole convolution of converting field artillery

messages and durable data into HLA classes and objects is hindered under the

AttributeMapping code, which makes a call to the user code library to perform a

programmatic transformation using the UDM API [39]. We have developed the user

code library as Microsoft Visual C++ project. It consists of hundreds of lines of

code with a handful of methods. The source code of the library is presented in

Appendix A. In addition to that, all other transformation rules defined for FADM to

HLA-OMT transformation is presented in Appendix D.

Figure 25. InteractionClasses rule

We have identified and implemented three distinct approaches, the third one

having two varieties, to transforming a FACM message into an OMT class with

attributes. The problem is that, a FA message is usually highly structured, with the

possibility of having child objects being bound to their parents in varying

cardinalities. This makes the situation even worse, because in order to represent

such combination possibilities we would need many patterns, hence rules. For

example if a structure can have n direct children each with a 0..1 cardinality, then

we would need at least n parallel rules to cope with the source model. This is one

of the reasons why we called for user code library support. In this case we only

54

need one rule no matter how many children with whatever cardinality a message

structure may have. The other reason is course performance gain; direct C++

executes much faster than first matching a graph and then calling the effector

(Note that solving graph isomorphism problem is NP-hard, which is done in every

pattern matching). In all of them an OMT class is created for a FA message or

durable data (from now on, FA message and durable data will be used

interchangeably when not stated explicitly otherwise). The difference lies in the

construction of the attributes of the class. Whereas a FA message is highly

structured, an OMT class has a fairly simple structure; it consists of only OMT

attributes (which correspond to message parts) as well as some HLA-specific

elements. The data model view of FADM Input model that will be transformed into

HLA-OMT output model for the following examples is shown in Figure 26. Note that

the Oid_W_Msg message which is a Call for Fire message in FA has been

expanded in the view so as to be used in the following transformation cases as an

example.

Figure 26. Example FADM Input Model

55

5.1. Message Structure Flattened into a Set of Plain Attributes

In this strategy, a field artillery message structure is transformed into a set of fully

flattened OMT attributes within the OMT class. All of the attributes have

primitive/simple data types and their names consist of a string of concatenated

message structure names, separated by ‘_’, from the leaf to the root node. This is

best explained with a visual example. Figure 27 shows a typical FA message which

is part of a call for fire request and Figure 28 shows the transformation result of it

using this strategy.

Figure 27. FA message of a call for fire request

56

Figure 28. Transformation result of call for fire by flattenning

5.2. Message Structure Mapped into one Attribute of FixedRecord

This schema is at the other extreme compared to the previous one. This time only

one super attribute is created under the class having an HLA fixed record data

type. The data type directly mimics the FA message structure. Members of the

fixed record type are also made fix record types until primitive/simple types of the

57

leaves are reached. In other words, the class and the attribute together form a

fairly simple structure, but the whole complexity of the message structure is pushed

inside the attribute’s data type. The above example’s transformation with this

schema is shown in Figure 29.

Figure 29. The FA message transformed by fixed record

5.3. A Hybrid Solution of Flattening and Fixed Recording

The third approach is actually a mixture of the two previous strategies. The field

artillery message structure is transformed into an OMT attribute having a fixed

58

record data type, within the OMT class. Each common message part that is reused

(among multiple messages) is transformed into a fixed record type's field, having

further a fixed record data type, mimicking the common message part. All of the

other non-common parts of the message structure are transformed into fields of the

fixed record type having appropriate primitive/simple types, with the field name

mimicking the message structure hierarchy. The field name consists of a string of

concatenated message structure types, separated by _, from the leaf to the root

node as in the first scheme (i.e., message structure flattening).

Figure 30. The FA message transformed by hybrid solution

59

This approach can exhibit different levels of commitment to the two schemas that it

combines. We identified two variations of this scheme. In the first variant, the low

level fixed record type corresponding to the common message structure has a

further continuing fixed record type inside, whereas in the second variant, the low

level fixed record type corresponding to the common message structure has a set

of flattened primitive/simple typed fields. In the beginning there was only the first

variant, however, experience showed that it was not ideal in that if there were

similar sub-fixed record types, these would quickly clutter the

FixedRecordDataTypes folder. Later we naturally devised the second variant,

which is free of this flaw, more compact and looks more legitimate. Many tests in

transformations have revealed that the third schema, variant two is the best one

among the proposed approaches to transforming FA messages to HLA classes.

Figure 31. Example HLA-OMT Output Model

60

To provide more liberty to the user, we established a configuration mechanism to

select among the four available alternatives. The choice is made inside the source

model. Then the selected strategy is extracted at run time and the flow is controlled

accordingly. The above example Call for Fire Request message transformation

with this schema using second variant is shown in Figure 30. In addition to that, the

output HLA_OMT model of Figure 26 is presented in Figure 31.

61

CHAPTER 6

CONCLUSION

In this thesis we have developed a data model and a model transformer for Field

Artillery (FA) observed fire domain. The most striking promise of the FA metamodel

is the opening up the path to MDE. The model transformer converts a FA data

model, which conforms to the FA metamodel into the object model part (i.e., OMT)

of an HLA federation architecture model. The model transformer tool used is Graph

Rewriting and Transformation (GReAT), a model transformation generator based

on graph transformations, where the transformations are a set of explicitly

sequenced elementary rewriting operations [9]. A preliminary version of the model

transformation study is presented in [42].

We proposed three approaches in transforming an FA model into an HLA OMT

model. In the first one is a field artillery message structure is transformed into a set

of fully flattened OMT attributes within the OMT class. The advantage of this

schema is its simplicity, where all of the attributes have primitive/simple data types

and their names consist of a string of concatenated message structure names,

separated by ‘_’, from the leaf to the root node. On the other hand, there is no

possibility of representing composite data types that could exhibit a one-to-one

correspondence to the source model element (data) structure here.

The second approach, on the contrary to the first one, only creates one super

attribute under the class having an HLA fixed record data type, whose parts are

also fixed record types until primitive/simple types of the leaves are reached. In

other words, the class and the attribute together form a fairly simple structure, but

the whole complexity of the message structure is pushed inside the attribute’s data

type, which is structurally equivalent to the source model (data) structure. This

structural resemblance could both be an advantage or disadvantage. If a

prospective model executor that uses the target model supports complex data

62

types, then a direct data type mapping could be possible. However, if does not,

then there is even no change to make use of the produced target model at all.

The third proposal is a well-balanced compromise between the previous two

extreme alternatives. This time the FA message structure is transformed into an

OMT attribute having a fixed record data type, within the OMT class, where each

reusable common message part is transformed into a fixed record type's field,

having further a fixed record data type, just as in the second approach. Apart from

that, all of the non-common parts are transformed into fields of the fixed record

type having simple types, similar to the first approach. We proposed identified two

variants of this third method. In one of them, the low level fixed record type

corresponding to the common message structure has a further continuing fixed

record type inside. In the other one, the low level fixed record type corresponding

to the common message structure has a set of flattened simple typed fields.

The third approach combines the merits of the previous two approaches, providing

a flexible, yet expressive enough model representation capability. On the other

hand, exercising with the two variants of the third approach revealed that the first

variant would result in redundant sub fixed-records for common, repeating model

parts. The second variant eliminates this duplication problem, yielding a compact

and legitimate target model for a source model.

63

REFERENCES

[1] Schmidt, D.C., “Model-Driven Engineering”, IEEE Computer, vol.39 no.2, pp. 25-32, 2006.

[2] Agrawal A., Levendovszky T., Sprinkle J., Shi F., Karsai G., “Generative Programming via
Graph Transformations in the Model Driven Architecture”, Workshop on Generative
Techniques in the Context of Model Driven Architecture, OOPSLA , Nov. 5, 2002, Seattle,
WA.

[3] J. Greenfield, K. Short, S. Cook, S. Kent: “Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools”, Wiley, 2004.

[4] Gürkan Özhan, Halit Oguztüzün, and Pinar Evrensel, Modeling of Field Artillery Tasks with
Live Sequence Charts, The Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology 2008 5: 219-252.

[5] Topçu, O., Adak, M. and Oğuztüzün, H., “A Metamodel for Federation Architectures”, ACM
Transactions on Modeling and Computer Simulation (TOMACS), vol.18 no.3, art.10, July 2008

[6] D. Çetinkaya and H. Oğuztüzün, “A Metamodel for the HLA Object Model”, 20th European
Conference on Modeling and Simulation (Track on Modeling and Simulation Methodologies),
Bonn, Germany, May 2006.

[7] Adak, M., Topçu, O. and Oğuztüzün, H., “Model-based code generation for HLA federates”,
Software—Practice & Experience, vol.40, issue 2 (February 2010)

[8] Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle J. and Volgyesi, P., “The Generic Modeling Environment”, In Proceedings of
WISP’2001, Budapest, Hungary, May 2001.

[9] A. Agrawal, G. Karsai and A. Ledeczi., “An End-to-End Domain-Driven Software
Development Framework”, 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Anaheim, California, October
2003.

[10] G. Karsai, A. Agrawal, F. Shi, J. Sprinkle, “On the Use of Graph Transformations for the
Formal Specification of Model Interpreters”, JUCS, November 2003.

[11] Jack Sheehan, Terry Prosser, Harry Conley, George Stone, Kevin Yentz and Janet Morrow,
“Conceptual Models of the Mission Space (CMMS): Basic Concepts, Advanced Techniques,
and Pragmatic Examples” 98 Spring Simulation Interoperability Workshop Papers

[12] Antonio De Nicola, Vandana Kabilan, Michele Missikoff and Vahid Mojtahed, “Practical Issues
in Ontology Modeling: The Case of Defence Conceptual Modeling Framework-Ontology” 6th
European Union Framework Programme.

[13] KAMA “A conceptual modeling tool for the mission space”, Progress Report II, General Staff
Presidency, Turkish Armed Forces, 2006.

[14] MIP. "JC3IEDM ratified as NATO STANAG 5255". Multilateral Interoperability Programme.
http://www.mip-site.org/010_Public_Home_News.htm. Retrieved 2009-03-11.

[15] MIP. "Overview of the C2 Information Exchange Data Model (C2IEDM)". Multilateral
Interoperability Programme, Greding, Germany, 20 November 2003.

64

[16] OMG. MDA Guide Version 1.0.1. omg. Object Management Group, 2003-06-01

[17] Milicev, D., "Automatic Model Transformations Using Extended UML Object Diagrams in
Modeling Environments," IEEE Transaction on Software Engineering, Vol. 28, No. 4, April
2002,

[18] Wai-Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, and François Pennaneac'h.: UMLAUT:
an extendible UML transformation framework, in Proc. Automated Software Engineering,
ASE'99, Florida, October 1999.

[19] Tony Clark, Andy Evans, Stuart Kent: The Metamodelling Language Calculus: Foundation
Semantics for UML. FASE 2001.

[20] Tony Clark, Andy Evans, Stuart Kent: Engineering Modelling Languages: A Precise Meta-
Modelling Approach. FASE 2002.

[21] OMG. MOF 2.0 Query/Views/Transformation RFP, 2002. Object Management Group
document ad/2002-04-10

[22] Krzysztof Czarnecki and Simon Helsen , ‘Classification of Model Transformation Approaches’,
OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven
Architecture.

[23] Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp. ‘A Taxonomy of Model
Transformation’ , ENTCS2006

[24] K. Czarnecki and S. Helsen. Feature-based Survey of Model Transformation Approaches. IBM
Systems J., 45(3), June 2006.

[25] Blostein D., Schürr A., ”Computing with Graphs and Graph Rewriting”, Technical Report AIB
97-8, Fachgruppe Informatik, RWTH Aachen, Germany.

[26] Rozenberg,G., “Handbook on Graph Grammars and Computing by Graph Transformation:
Foundations”, Vol.1-2. World Scientific, Singapore, 1997

[27] Maggiolo-Schettini, A., Peron, A.: Semantics of Full Statecharts Based on Graph Rewriting,
Springer LNCS 776, 1994, pp. 265--279.

[28] A. Schürr, “PROGRES for Beginners”, Technical Report, Lehrstuhl für Informatik III, RWTH
Aachen, Germany.

[29] Taentzer, G.: AGG: A Tool Enviroment for Algebraic Graph Transformation, in Proc. of
Applications of Graph Transformation with Industrial Relevance, Kerkrade, The Netherlands,
LNCS,Springer, 2000.

[30] Aydemir H., Term Project, MS 531 Course, METU Informatics Institute, 2004.

[31] Global Security Organization, http://www.globalsecurity.org/military/library/policy/army/fm/6-
20/index.html, last accessed 30.06.09.

[32] Defense Modeling and Simulation Office-DMSO, “HLA Glossary”, 1998.

[33] U.S. Department of Defense, “Draft Standard for Modeling and Simulation High Level
Architecture”, IEEE P1516, April 1998

[34] IEEE Std. 1516, IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA) - Framework and Rules, IEEE, 2000.

[35] G. Nordstrom, J. Sztipanovits, G. Karsai, A. Ledeczi: Metamodeling - Rapid Design and
Evolution of Domain- Specific Modeling Environments, Proceedings of the IEEE ECBS'99
Conference, pp. 68-74, Nashville, TN, April, 1999.

65

[36] OMG, “UML 2 Unified Modeling Language: Infrastructure”, Object Management Group,

February 2007.

[37] Ledeczi, A., Nordstrom, G., Karsai, G., Volgyesi, P. & Maroti, M. (2001). On Metamodel
Composition. IEEE Conference on Control Applications 2001, Mexico City, Mexico.

[38] Agrawal A., Karsai G., Shi F., “A UML-based Graph Transformation Approach for
Implementing Domain-Specific Model Transformations”, Technical report, (ISIS), Vanderbilt
University, Nashville, TN, 2003

[39] A. Bakay, “The UDM Framework,” http://www.isis.vanderbilt.edu/Projects/mobies/. Last
accessed 23.10.2009.

[40] Object Management Group, Object Constraint Language Specification, OMG Document
formal/01-9-77. September 2001.

[41] IEEE 2000c. Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) –
Object Model Template Specification (IEEE 1516.2).

[42] Özhan, G. and Oguztüzün, H., “Model-Integrated Development of HLA-Based Field Artillery
Simulation”, In Proceedings of the European Simulation Interoperability Workshop, (06E-SIW-
027), Stockholm, Sweden, June19-22, 2006.

66

APPENDIX A

TRANSFORMATION SOURCE CODE

Source code for transforming field artillery messages into HLA classes.

#include <UdmBase.h>

#include <UdmUtil.h>

#include <cint_string.h>

#include "stack"

#include "..\Udm\HOMM.h"

#include "..\Udm\FADMM.h"

class DataTypeRetriever

{

public:

 //Given any matched node, dataTypaClassName and dataTypeName, this method

first tracks upwards along the node tree to the root and

 //then tracks down into to HLADataTypes node and then scans inside all of the

HLA data type folders under that, to find the data type

 //identified by the dataTypaClassName and dataTypeName.

 static HOMM::HLADataTypeRef_RefersTo_Base GetDataType(Udm::Object matchNode,

string dataTypeClassName, string dataTypeName){

 //Go up through the node tree to the root node.

 Udm::Object fadmRoot = matchNode;

 int depth = matchNode.depth_level() ;

 for (int i = depth ; i>0 ; i--){

 fadmRoot = fadmRoot.GetParent();

 }

 //Locate the specific DataType under one of the child folders (i.e.,

ArrayDataTypes, SimpleDataTypes, etc.) of the HLADataTypes folder

 HOMM::HLADataTypeRef_RefersTo_Base DataType;

 std::set<Udm::Object> fadmChilds = fadmRoot.GetChildObjects();

 //bool found = false;

 if (!fadmChilds.empty()){

 for(std::set<Udm::Object>::iterator iter= fadmChilds.begin();

iter!= fadmChilds.end() && (DataType.operator ==(NULL)) ; ++iter){

 Udm::Object childNode = (Udm::Object)(*iter);

 std::string childName = "Name";

 childNode.GetStrValue("name",childName);

 Uml::Class cls = childNode.type();

 Udm::StringAttr clsNameStrAttr = cls.name();

 string clsNameStr = clsNameStrAttr.operator

std::string();

 if (clsNameStr == "HLADataTypes"){

 std::set<Udm::Object> fadmDTChilds =

childNode.GetChildObjects();

 for(std::set<Udm::Object>::iterator iter2=

fadmDTChilds.begin(); iter2!= fadmDTChilds.end() && (DataType.operator ==(NULL));

++iter2){

 Udm::Object childNode2 =

(Udm::Object)(*iter2);

 std::string childName2 = "Name";

 childNode2.GetStrValue("name",childName2);

67

 Uml::Class cls2 = childNode2.type();

 Udm::StringAttr clsNameStrAttr2 =

cls2.name();

 string clsNameStr2 =

clsNameStrAttr2.operator std::string();

 if (clsNameStr2 == "ArrayDataTypes" ||

clsNameStr2 == "SimpleDataTypes" || clsNameStr2 == "FixedRecordDataTypes"){

 std::set<Udm::Object>

fadmADTChilds = childNode2.GetChildObjects();

 for(

std::set<Udm::Object>::iterator iter3= fadmADTChilds.begin(); iter3!=

fadmADTChilds.end() && DataType.operator ==(NULL); ++iter3){

 Udm::Object childNode3 =

(Udm::Object)(*iter3);

 std::string childName3 =

"Name";

 childNode3.GetStrValue("name",childName3);

 Uml::Class cls3 =

childNode3.type();

 Udm::StringAttr

clsNameStrAttr3 = cls3.name();

 string clsNameStr3 =

clsNameStrAttr3.operator std::string();

 if

(clsNameStr3==dataTypeClassName && childName3 == dataTypeName){

 DataType =

HOMM::HLADataTypeRef_RefersTo_Base::Cast(childNode3);

 HOMM::MgaObject

mgaObj = HOMM::MgaObject::Cast(childNode3);

 string mgaName =

mgaObj.name().operator std::string();

 //found = true;

 //break;

 return DataType;

 }

 }

 }

 }

 }

 }

 }

 return DataType;

 }

};

enum HLAObjectType {

 OBJECT,

 INTERACTION

};

class ModelTransUtils

{

protected:

 static HOMM::HLADataTypeRef_RefersTo_Base GetHLAASCIIStringDT(Udm::Object

matchNode){

 return

DataTypeRetriever::GetDataType(matchNode,"HLAArrayData","HLAASCIIString");;

 }

 static HOMM::HLADataTypeRef_RefersTo_Base GetInt32DT(Udm::Object matchNode){

 return

DataTypeRetriever::GetDataType(matchNode,"HLASimpleData","Int32");

 }

68

 static HOMM::HLADataTypeRef_RefersTo_Base GetReal32DT(Udm::Object matchNode){

 return

DataTypeRetriever::GetDataType(matchNode,"HLASimpleData","Real32");

 }

 //Compose the node (i.e., ICParameter) name by concatenating all ancestor

names up until the root node, delimited by -

 static string GetAbsoluteNameForNode(Udm::Object node, Udm::Object root){

 return GetAbsoluteNameForNode(node,root,false);

 }

 //Compose the node (i.e., ICParameter) name by concatenating all ancestor

names up until the root node, delimited by -

 static string GetAbsoluteNameForNode(Udm::Object node, Udm::Object root, bool

useNodeTypeInsteadOfName){

 std::string nodeName = "";

 std::string absoluteName = "";

 if (useNodeTypeInsteadOfName){

 Uml::Class cls1st = node.type();

 Udm::StringAttr clsNameStrAttr1st = cls1st.name();

 absoluteName = clsNameStrAttr1st.operator std::string();

 while (node.operator != (root)){

 node = node.GetParent();

 //NOTE!: If we use the existing variables

above(cls1st,clsNameStrAttr1st), then node's parent type names get mixed up!!!

 //Even the same var names for above and below would be

OK, but new declaration is a MUST. This costed me 6 hours!!!

 Uml::Class cls = node.type();

 Udm::StringAttr clsNameStrAttr = cls.name();

 nodeName = clsNameStrAttr.operator std::string();

 absoluteName = nodeName+"-"+absoluteName;

 }

 }else{

 node.GetStrValue("name",absoluteName);//Initially assign the

"name" attribute to absoluteName variable

 while (node.operator != (root)){

 node = node.GetParent();

 node.GetStrValue("name",nodeName);

 absoluteName = nodeName+"-"+absoluteName;

 }

 }

 return absoluteName;

 }

 //Push the child nodes of a node to the given stack

 static void PushNodeChildrenToStack(std::stack<Udm::Object>&

nodeStack,Udm::Object node){

 if (/*nodeStack.operator ==(NULL) || */node.operator ==(NULL))

return;

 std::set<Udm::Object> childs = node.GetChildObjects();

 if (!childs.empty()){

 for(std::set<Udm::Object>::iterator iter= childs.begin();

iter!= childs.end(); ++iter){

 Udm::Object child = (Udm::Object)(*iter);

 if (child.operator !=(NULL)){

 nodeStack.push(child);

 }

 }

 }

 }

 static void CreateAttributesForNode(Udm::Object node, Udm::Object root,

/*HOMM::InteractionClass&*/ Udm::Object& InteractionClass, HLAObjectType

hlaObjType){

 //First get the HLAAsciiString and Int32 data type objects at hand to

use later in Parameter data type ref constructions

 HOMM::HLADataTypeRef_RefersTo_Base HLAAsciiString =

GetHLAASCIIStringDT(InteractionClass);

69

 HOMM::HLADataTypeRef_RefersTo_Base Int32 =

GetInt32DT(InteractionClass);

 HOMM::HLADataTypeRef_RefersTo_Base Real32 =

GetReal32DT(InteractionClass);

 //Compose the node (i.e., ICParameter) name by concatenating all

ancestor names up until the root node, delimited by -

 std::string absoluteName = GetAbsoluteNameForNode(node,root);

 Uml::Class cls = node.type();

 Udm::StringAttr clsNameStrAttr = cls.name();

 string clsNameStr = clsNameStrAttr.operator std::string();

 Udm::ChildrenAttr<::Uml::Attribute> childrenAttr = cls.attributes();

 std::vector<::Uml::Attribute> attrs = childrenAttr.operator

std::vector<::Uml::Attribute>();

 //Create a parameter for every attribute of a node. Node being branch

or leaf does not matter. Note that if the node has attributes,

 // then no parameter is created excessively for the node itself, but

only for its attributes.

 for(std::vector<::Uml::Attribute>::iterator iter= attrs.begin();

iter!= attrs.end(); ++iter){

 ::Uml::Attribute childAttr = (::Uml::Attribute)(*iter);

 Udm::StringAttr udmStrAttrName = childAttr.name();

 Udm::StringAttr udmStrAttrType = childAttr.type();

 string attrNameStr = udmStrAttrName.operator std::string();

 string attrTypeStr = udmStrAttrType.operator std::string();

 HOMM::OMTAttribute omtAttribute;

 //Code repetition of below:

 if (hlaObjType==INTERACTION){

 //HOMM::Parameter ICParameter=

HOMM::Parameter::Create(InteractionClass);

 omtAttribute =

HOMM::Parameter::Create(InteractionClass);

 }else if (hlaObjType==OBJECT){

 omtAttribute =

HOMM::Attribute::Create(InteractionClass);

 }

 omtAttribute.name()=absoluteName+"-"+attrNameStr;

 //Set the dataType for ICParameter.

 //IMPORTANT NOTE/FACT: enumerated attribute types in FADMM are

treated as String by the Udm API!!! (e.g. CFF tgt type comes as String typed in C++

code here!) This simplifies our job :-)

 HOMM::HLADataTypeRef dataTypeRef =

HOMM::HLADataTypeRef::Create(omtAttribute);

 std::string dtRefName = "DataType";

 if (attrTypeStr=="String"){

 HLAAsciiString.GetStrValue("name",dtRefName);

 dataTypeRef.name()=dtRefName+"Ref";

 dataTypeRef.ref() = HLAAsciiString;//new

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>(); //Udm::PointerAttr<

::HOMM::HLADataTypeRef_RefersTo_Base> ref()

 }

 else if (attrTypeStr=="Integer"){

 Int32.GetStrValue("name",dtRefName);

 dataTypeRef.name()=dtRefName+"Ref";

 dataTypeRef.ref() = Int32;//new

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>(); //Udm::PointerAttr<

::HOMM::HLADataTypeRef_RefersTo_Base> ref()

 }else if (attrTypeStr=="Double"||attrTypeStr=="Real"){

 Real32.GetStrValue("name",dtRefName);

 dataTypeRef.name()=dtRefName+"Ref";

 dataTypeRef.ref() = Real32;//new

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>(); //Udm::PointerAttr<

::HOMM::HLADataTypeRef_RefersTo_Base> ref()

 }

 }

70

 //Create a parameter for nodes that have NO attributes and that are

leaf nodes! (such as marker nodes like Shot, Fire, etc.)

 if (attrs.size()==0 && node.GetChildObjects().empty()){

 //HOMM::Parameter ICParameter=

HOMM::Parameter::Create(InteractionClass);

 HOMM::OMTAttribute omtAttribute;

 if (hlaObjType==INTERACTION){

 //HOMM::Parameter ICParameter=

HOMM::Parameter::Create(InteractionClass);

 omtAttribute =

HOMM::Parameter::Create(InteractionClass);

 }else if (hlaObjType==OBJECT){

 omtAttribute =

HOMM::Attribute::Create(InteractionClass);

 }

 omtAttribute.name()=absoluteName;//

(std::string)NonDurableMsg.name()+ "_" + objName;

 HOMM::HLADataTypeRef dataTypeRef =

HOMM::HLADataTypeRef::Create(omtAttribute);

 //Set the dataType for ICParameter. Give it a default datatype

of HLAAsciiString

 std::string dtRefName = "DataType";

 HLAAsciiString.GetStrValue("name",dtRefName);

 dataTypeRef.name()=dtRefName+"Ref";

 dataTypeRef.ref() = HLAAsciiString;//new

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>(); //Udm::PointerAttr<

::HOMM::HLADataTypeRef_RefersTo_Base> ref()

 }

 }

 //Note: on durable data part, we do not transform DurableData_Msg, as similar

to NonDurableMsg, but DurableData, which is part of DurableData_Msg

 static void TransformFAMessage2OMTClass(Udm::Object& faMsg, Udm::Object&

omtClass, HLAObjectType hlaObjectType){

 std::stack<Udm::Object>& nodeStack = std::stack<Udm::Object>();//This

is an initialization stmt in C++. If

 //Initially push the root (i.e., faMsg) node.

 nodeStack.push(faMsg);

 Udm::Object currentNode;

 while (!nodeStack.empty()){

 currentNode = nodeStack.top();

 nodeStack.pop();

 CreateAttributesForNode(currentNode, faMsg,

omtClass,hlaObjectType);

 PushNodeChildrenToStack(nodeStack, currentNode);

 }

 }

 //-------------------------------3rd approach type: Convert Msgs into Full

HLAFixedRecord Types

 static void TransformFAMessage2OMTClass_FullFixRec(Udm::Object& FAMsg,

Udm::Object node, HOMM::HLAFixedRecordData& HLAFixedRecordData,

HOMM::FixedRecordDataTypes& DataTypes){

 //By giving UseOnlyTypeInNaming false, we use

absolutePathToRoot+attrName in new DataType names. By giving true we only use

attrType in new DataType names

 TransformFAMessage2OMTClass_FullFixRec(FAMsg, node,

HLAFixedRecordData, DataTypes,false);

 }

 static void TransformFAMessage2OMTClass_FullFixRec(Udm::Object& FAMsg,

Udm::Object node, HOMM::HLAFixedRecordData& HLAFixedRecordData,

HOMM::FixedRecordDataTypes& DataTypes, bool UseOnlyTypeInNaming){

 //CreateAttributesForNode_FullFixRec(currentNode, faMsg,

omtClass,hlaObjectType);

 //First get the HLAAsciiString and Int32 data type objects at hand to

use later in Parameter data type ref constructions

 HOMM::HLADataTypeRef_RefersTo_Base HLAAsciiString =

GetHLAASCIIStringDT(DataTypes);

 HOMM::HLADataTypeRef_RefersTo_Base Int32 = GetInt32DT(DataTypes);

71

 HOMM::HLADataTypeRef_RefersTo_Base Real32 = GetReal32DT(DataTypes);

 //Compose the node (i.e., ICParameter) name by concatenating all

ancestor names up until the root node, delimited by -

 std::string absoluteName = GetAbsoluteNameForNode(node,FAMsg);

 Uml::Class cls = node.type();

 Udm::StringAttr clsNameStrAttr = cls.name();

 string clsNameStr = clsNameStrAttr.operator std::string();

 Udm::ChildrenAttr<::Uml::Attribute> childrenAttr = cls.attributes();

 std::vector<::Uml::Attribute> attrs = childrenAttr.operator

std::vector<::Uml::Attribute>();

 //Create a Field on the HLAFixedRecordData for every attribute of the

node (that corresponds to the FixedRecord). These fields would have

SimpleDataTypereferences.

 //Create a parameter for every attribute of a node. Node being branch

or leaf does not matter. Note that if the node has attributes,

 // then no parameter is created excessively for the node itself, but

only for its attributes.

 for(std::vector<::Uml::Attribute>::iterator iter= attrs.begin();

iter!= attrs.end(); ++iter){

 ::Uml::Attribute childAttr = (::Uml::Attribute)(*iter);

 Udm::StringAttr udmStrAttrName = childAttr.name();

 Udm::StringAttr udmStrAttrType = childAttr.type();

 string attrNameStr = udmStrAttrName.operator std::string();

 string attrTypeStr = udmStrAttrType.operator std::string();

 HOMM::Field fixedRecField =

HOMM::Field::Create(HLAFixedRecordData);

 if (UseOnlyTypeInNaming){

 //NOTE: we used attrNameStr instead of attrTypeStr

when UseOnlyTypeInNaming==true, as opposed to below, because for primitive types

attrTypeStr would result in String, Integer, etc, which is not desired.

 fixedRecField.name()=attrNameStr;

 }else{

 fixedRecField.name()=absoluteName+"-"+attrNameStr;

 }

 //IMPORTANT NOTE/FACT: enumerated attribute types in FADMM are

treated as String by the Udm API!!! (e.g. CFF tgt type comes as String typed in C++

code here!) This simplifies our job :-)

 HOMM::HLADataTypeRef dataTypeRef =

HOMM::HLADataTypeRef::Create(fixedRecField);

 std::string dtRefName = "DataType";

 if (attrTypeStr=="String"){

 HLAAsciiString.GetStrValue("name",dtRefName);

 dataTypeRef.name()=dtRefName+"Ref";

 dataTypeRef.ref() = HLAAsciiString;//new

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>(); //Udm::PointerAttr<

::HOMM::HLADataTypeRef_RefersTo_Base> ref()

 }

 else if (attrTypeStr=="Integer"){

 Int32.GetStrValue("name",dtRefName);

 dataTypeRef.name()=dtRefName+"Ref";

 dataTypeRef.ref() = Int32;//new

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>(); //Udm::PointerAttr<

::HOMM::HLADataTypeRef_RefersTo_Base> ref()

 }else if (attrTypeStr=="Double"){

 Real32.GetStrValue("name",dtRefName);

 dataTypeRef.name()=dtRefName+"Ref";

 dataTypeRef.ref() = Real32;//new

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>(); //Udm::PointerAttr<

::HOMM::HLADataTypeRef_RefersTo_Base> ref()

 }

 }

 // //Create a parameter for nodes that have NO attributes

and that are leaf nodes! (such as marker nodes like Shot, Fire, etc.)

72

 //if (attrs.size()==0 && node.GetChildObjects().empty()){

 // //HOMM::Parameter ICParameter=

HOMM::Parameter::Create(InteractionClass);

 // HOMM::OMTAttribute omtAttribute;

 // if (hlaObjType==INTERACTION){

 // //HOMM::Parameter ICParameter=

HOMM::Parameter::Create(InteractionClass);

 // omtAttribute =

HOMM::Parameter::Create(InteractionClass);

 // }else if (hlaObjType==OBJECT){

 // omtAttribute =

HOMM::Attribute::Create(InteractionClass);

 // }

 // omtAttribute.name()=absoluteName;//

(std::string)NonDurableMsg.name()+ "_" + objName;

 // HOMM::HLADataTypeRef dataTypeRef =

HOMM::HLADataTypeRef::Create(omtAttribute);

 // //Set the dataType for ICParameter. Give it a default datatype

of HLAAsciiString

 // std::string dtRefName = "DataType";

 // HLAAsciiString.GetStrValue("name",dtRefName);

 // dataTypeRef.name()=dtRefName+"Ref";

 // dataTypeRef.ref() = HLAAsciiString;//new

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>(); //Udm::PointerAttr<

::HOMM::HLADataTypeRef_RefersTo_Base> ref()

 //}

 //If the node has further children (i.e., structure), then create a

FixedRecordType for every child, push those children on the stack, and let the loop

repeat the same process of creating simple types for that every child node's

attributes and fixedrec types for further children of the child node

 std::set<Udm::Object> childs = node.GetChildObjects();

 if (!childs.empty()){

 for(std::set<Udm::Object>::iterator iter= childs.begin();

iter!= childs.end(); ++iter){

 Udm::Object child = (Udm::Object)(*iter);

 if (child.operator !=(NULL)){

 FADMM::MgaObject mgaChild =

FADMM::MgaObject::Cast(child);

 Udm::StringAttr udmStrAttrMgaChild =

mgaChild.name();

 Uml::Class umlClsMgaChild = mgaChild.type();

 string mgaChildNameStr =

udmStrAttrMgaChild.operator std::string();

 string attrTypeStr =

(umlClsMgaChild.name()).operator std::string();

 string namePrefix;

 if (UseOnlyTypeInNaming){

 namePrefix=attrTypeStr;

 }else{

 namePrefix=absoluteName+"-

"+mgaChildNameStr;

 }

 //Create a Field for the child object under the

HLAFixedRecordData of the parent object, that will contain a HLADataTypeRef to a

further child HLAFixedRecordData

 HOMM::Field fixedRecField =

HOMM::Field::Create(HLAFixedRecordData);

 fixedRecField.name()=namePrefix;

 //Create a separate HLAFixedRecordData for the

child, to be passed into the recursive call for further building up the data

structure for the child's descendants.

 HOMM::HLAFixedRecordData fixedRecordData =

HOMM::HLAFixedRecordData::Create(DataTypes);

 fixedRecordData.name()=namePrefix+"-

FixRecType";

73

 //Create a HLADataTypeRef under the Field of

the child object and establish the reference association to the would be later

constructed HLAFixedRecordData of the child object

 HOMM::HLADataTypeRef fixedRecordDataRef =

HOMM::HLADataTypeRef::Create(fixedRecField);

 fixedRecordDataRef.name()=namePrefix+"-

FixRecTypeRef";

 fixedRecordDataRef.ref() = fixedRecordData;

 //Call the method recursively with the child

object together with its HLAFixedRecordData

 TransformFAMessage2OMTClass_FullFixRec(FAMsg,

child, fixedRecordData, DataTypes,UseOnlyTypeInNaming);

 }

 }

 }

 }

 //---

 // --------------------------- P U B L I C M E T H O D S -------------------

public:

 static void TransformNonDurableMsg2InteractionCls(FADMM::NonDurableMsg&

NonDurableMsg, HOMM::InteractionClass& InteractionClass){

 InteractionClass.name()=(std::string)NonDurableMsg.name()+"IC";

 TransformFAMessage2OMTClass(NonDurableMsg,InteractionClass,INTERACTION);

 }

 static void TransformDurableData2ObjectCls(FADMM::DurableData& DurableData,

HOMM::ObjectClass& ObjectClass){

 ObjectClass.name()=(std::string)DurableData.name()+"OC";

 TransformFAMessage2OMTClass(DurableData,ObjectClass,OBJECT);

 }

 static void

TransformNonDurableMsg2InteractionCls_FullFixRec(FADMM::NonDurableMsg&

NonDurableMsg, HOMM::HLAFixedRecordData& HLAFixedRecordData,

HOMM::FixedRecordDataTypes& DataTypes){

 TransformFAMessage2OMTClass_FullFixRec(NonDurableMsg,NonDurableMsg,HLAFixedRe

cordData,DataTypes);

 }

 static void TransformDurableData2ObjectCls_FullFixRec(FADMM::DurableData&

DurableData, HOMM::HLAFixedRecordData& HLAFixedRecordData,

HOMM::FixedRecordDataTypes& DataTypes){

 TransformFAMessage2OMTClass_FullFixRec(DurableData,DurableData,HLAFixedRecord

Data,DataTypes);

 }

 static void TransformDurableData2ObjectCls_Hybrid(FADMM::DurableData&

DurableData, HOMM::ObjectClass& ObjectClass,HOMM::FixedRecordDataTypes& DataTypes){

// InteractionClass.name()=(std::string)NonDurableMsg.name()+"IC";

 TransformFAMessage2OMTClass_Hybrid(DurableData,ObjectClass,OBJECT,DataTypes);

 }

 static void

TransformNonDurableMsg2InteractionCls_Hybrid(FADMM::NonDurableMsg& NonDurableMsg,

HOMM::InteractionClass& InteractionClass,HOMM::FixedRecordDataTypes& DataTypes){

 // InteractionClass.name()=(std::string)NonDurableMsg.name()+"IC";

74

 TransformFAMessage2OMTClass_Hybrid(NonDurableMsg,InteractionClass,INTERACTION

,DataTypes);

 }

 //static std::set<std::string>& commonFadmElements;

 static bool IsCommonUtilityElement(std::string fadmNodeType,

std::set<std::string>& commonFadmElements){

 if (!commonFadmElements.empty()){

 for(std::set<std::string>::iterator iter=

commonFadmElements.begin(); iter!= commonFadmElements.end() /*&& (DataType.operator

==(NULL))*/ ; ++iter){

 if (fadmNodeType == (*iter)){

 return true;

 }

 }

 }

 return false;

 }

 static void InitializeCommonElements(std::set<std::string>&

commonFadmElements){

 ///*std::set<std::string>& */commonFadmElements =

std::set<std::string>();

 //std::stack<Udm::Object>& nodeStack =

std::stack<Udm::Object>();//This is an initialization stmt in C++. If

 commonFadmElements.insert("PolarLoc");

 commonFadmElements.insert("GridLoc");

 commonFadmElements.insert("ShiftKPLoc");

 commonFadmElements.insert("Duration");

 commonFadmElements.insert("Angle");

 commonFadmElements.insert("Distance");

 commonFadmElements.insert("Speed");

 commonFadmElements.insert("Pressure");

 commonFadmElements.insert("Temperature");

 commonFadmElements.insert("DateTime");

 commonFadmElements.insert("LateralShiftDist");

 commonFadmElements.insert("VerticalShiftDist");

 commonFadmElements.insert("RangeShiftDist");

 commonFadmElements.insert("HorizontalDir");

 commonFadmElements.insert("VerticalDir");

 commonFadmElements.insert("RangeDir");

 commonFadmElements.insert("SheafDir");

 commonFadmElements.insert("CardinalDir");

 commonFadmElements.insert("LateralShiftAng");

 commonFadmElements.insert("VerticalShiftAng");

 commonFadmElements.insert("SheafShiftAng");

 }

 //Note: on durable data part, we do not transform DurableData_Msg, as similar

to NonDurableMsg, but DurableData, which is part of DurableData_Msg

 static void TransformFAMessage2OMTClass_Hybrid(Udm::Object& faMsg,

Udm::Object& omtClass, HLAObjectType hlaObjectType,HOMM::FixedRecordDataTypes&

DataTypes){

 std::set<std::string>& commonFadmElements=std::set<std::string>();

 InitializeCommonElements(commonFadmElements);

 std::stack<Udm::Object>& nodeStack = std::stack<Udm::Object>();//This

is an initialization stmt in C++. If

 //Initially push the root (i.e., faMsg) node.

 nodeStack.push(faMsg);

 Udm::Object currentNode;

 while (!nodeStack.empty()){

 currentNode = nodeStack.top();

 nodeStack.pop();

 Uml::Class cls = currentNode.type();

 Udm::StringAttr clsNameStrAttr = cls.name();

75

 string clsNameStr = clsNameStrAttr.operator std::string();

 //Else part is the same as in TransformFAMessage2OMTClass. The

if part is new; it creates FixedRecTypes for common elements (only once per type!)

 if (IsCommonUtilityElement(clsNameStr,commonFadmElements)){

 FADMM::MgaObject currentNodeMga =

FADMM::MgaObject::Cast(currentNode);

 HOMM::OMTAttribute omtAttribute;

 if (hlaObjectType==INTERACTION){

 //HOMM::Parameter ICParameter=

HOMM::Parameter::Create(InteractionClass);

 omtAttribute =

HOMM::Parameter::Create(omtClass);

 }else if (hlaObjectType==OBJECT){

 omtAttribute =

HOMM::Attribute::Create(omtClass);

 }

 omtAttribute.name()=(std::string)currentNodeMga.name();//absoluteName+"-

"+attrNameStr;

 HOMM::HLADataTypeRef& HLADataTypeRef=

HOMM::HLADataTypeRef::Create(omtAttribute);

 HLADataTypeRef.name()=(std::string)currentNodeMga.name()+"DTRef";

 //HOMM::HLAFixedRecordData& HLAFixedRecordData=

HOMM::HLAFixedRecordData::Create(DataTypes);

 //Check if the FixedRecord data type already exists,

and if so, get it

 string fixRecDTName = clsNameStr;

 HOMM::HLADataTypeRef_RefersTo_Base baseDT =

DataTypeRetriever::GetDataType(DataTypes,"HLAFixedRecordData",fixRecDTName);

 HOMM::HLAFixedRecordData HLAFixedRecordData =

HOMM::HLAFixedRecordData::Cast(baseDT);

 // If the FixedRecord data type does not exist, then

create it for the first time

 if (HLAFixedRecordData.operator ==(NULL)){

 HLAFixedRecordData=

HOMM::HLAFixedRecordData::Create(DataTypes);

 HLAFixedRecordData.name()=

fixRecDTName;//(std::string)currentNodeMga.name()+"DT";

 //THESE BELOW ARE TWO ALTERNATIVES TO SELECT

ONE FROM

 //TransformFAMessage2OMTClass_FullFixRec(currentNode,currentNode,HLAFixedReco

rdData,DataTypes,true);

 TransformFAMessagePart2HLAFixedRecord(currentNode,currentNode,HLAFixedRecordD

ata,DataTypes,false);

 }

 //Bind the DataType Ref to the FixedRecord data

 HLADataTypeRef.ref() = HLAFixedRecordData;

 }else{

 CreateAttributesForNode(currentNode, faMsg,

omtClass,hlaObjectType);

 PushNodeChildrenToStack(nodeStack, currentNode);

 }

 }

 }

 static void TransformFAMessagePart2HLAFixedRecord(Udm::Object root,

Udm::Object node, HOMM::HLAFixedRecordData& HLAFixedRecordData,

HOMM::FixedRecordDataTypes& DataTypes, bool UseOnlyTypeInNaming){

76

 //CreateAttributesForNode_FullFixRec(currentNode, faMsg,

omtClass,hlaObjectType);

 //First get the HLAAsciiString and Int32 data type objects at hand to

use later in Parameter data type ref constructions

 HOMM::HLADataTypeRef_RefersTo_Base HLAAsciiString =

GetHLAASCIIStringDT(DataTypes);

 HOMM::HLADataTypeRef_RefersTo_Base Int32 = GetInt32DT(DataTypes);

 HOMM::HLADataTypeRef_RefersTo_Base Real32 = GetReal32DT(DataTypes);

 //Compose the node (i.e., ICParameter) name by concatenating all

ancestor names up until the root node, delimited by -

 std::string absoluteName = GetAbsoluteNameForNode(node,root,true);

 Uml::Class cls = node.type();

 Udm::StringAttr clsNameStrAttr = cls.name();

 string clsNameStr = clsNameStrAttr.operator std::string();

 Udm::ChildrenAttr<::Uml::Attribute> childrenAttr = cls.attributes();

 std::vector<::Uml::Attribute> attrs = childrenAttr.operator

std::vector<::Uml::Attribute>();

 //Create a Field on the HLAFixedRecordData for every attribute of the

node (that corresponds to the FixedRecord). These fields would have

SimpleDataTypereferences.

 //Create a parameter for every attribute of a node. Node being branch

or leaf does not matter. Note that if the node has attributes,

 // then no parameter is created excessively for the node itself, but

only for its attributes.

 for(std::vector<::Uml::Attribute>::iterator iter= attrs.begin();

iter!= attrs.end(); ++iter){

 ::Uml::Attribute childAttr = (::Uml::Attribute)(*iter);

 Udm::StringAttr udmStrAttrName = childAttr.name();

 Udm::StringAttr udmStrAttrType = childAttr.type();

 string attrNameStr = udmStrAttrName.operator std::string();

 string attrTypeStr = udmStrAttrType.operator std::string();

 HOMM::Field fixedRecField =

HOMM::Field::Create(HLAFixedRecordData);

 if (UseOnlyTypeInNaming){

 //NOTE: we used attrNameStr instead of attrTypeStr

when UseOnlyTypeInNaming==true, as opposed to below, because for primitive types

attrTypeStr would result in String, Integer, etc, which is not desired.

 fixedRecField.name()=attrNameStr;

 }else{

 fixedRecField.name()=absoluteName+"-"+attrNameStr;

 }

 //IMPORTANT NOTE/FACT: enumerated attribute types in FADMM are

treated as String by the Udm API!!! (e.g. CFF tgt type comes as String typed in C++

code here!) This simplifies our job :-)

 HOMM::HLADataTypeRef dataTypeRef =

HOMM::HLADataTypeRef::Create(fixedRecField);

 std::string dtRefName = "DataType";

 if (attrTypeStr=="String"){

 HLAAsciiString.GetStrValue("name",dtRefName);

 dataTypeRef.name()=dtRefName+"Ref";

 dataTypeRef.ref() = HLAAsciiString;//new

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>(); //Udm::PointerAttr<

::HOMM::HLADataTypeRef_RefersTo_Base> ref()

 }

 else if (attrTypeStr=="Integer"){

 Int32.GetStrValue("name",dtRefName);

 dataTypeRef.name()=dtRefName+"Ref";

 dataTypeRef.ref() = Int32;//new

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>(); //Udm::PointerAttr<

::HOMM::HLADataTypeRef_RefersTo_Base> ref()

 }else if (attrTypeStr=="Double"){

 Real32.GetStrValue("name",dtRefName);

 dataTypeRef.name()=dtRefName+"Ref";

77

 dataTypeRef.ref() = Real32;//new

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>(); //Udm::PointerAttr<

::HOMM::HLADataTypeRef_RefersTo_Base> ref()

 }

 }

 std::set<Udm::Object> childs = node.GetChildObjects();

 //Create a fixed record field for nodes that have NO attributes and

that are leaf nodes! (such as marker nodes like Shot, Fire, etc.)

 if (attrs.size()==0 && childs.empty()){

 HOMM::Field fixedRecField =

HOMM::Field::Create(HLAFixedRecordData);

 if (UseOnlyTypeInNaming){

 //Use only the node's type name in field name

 Uml::Class cls = node.type();

 Udm::StringAttr clsNameStrAttr = cls.name();

 string nodeTypeStr = clsNameStrAttr.operator

std::string();

 fixedRecField.name()=nodeTypeStr;

 }else{

 //Use the canonical path from the node to the root in

field name

 fixedRecField.name()=absoluteName;

 }

 //IMPORTANT NOTE/FACT: enumerated attribute types in FADMM are

treated as String by the Udm API!!! (e.g. CFF tgt type comes as String typed in C++

code here!) This simplifies our job :-)

 HOMM::HLADataTypeRef dataTypeRef =

HOMM::HLADataTypeRef::Create(fixedRecField);

 std::string dtRefName = "DataType";

 HLAAsciiString.GetStrValue("name",dtRefName);

 dataTypeRef.name()=dtRefName+"Ref";

 dataTypeRef.ref() = HLAAsciiString;//new

Udm::PointerAttr<::HOMM::HLADataTypeRef_RefersTo_Base>(); //Udm::PointerAttr<

::HOMM::HLADataTypeRef_RefersTo_Base> ref()

 }

 //If the node has further children (i.e., structure), then create a

FixedRecordType for every child, push those children on the stack, and let the loop

repeat the same process of creating simple types for that every child node's

attributes and fixedrec types for further children of the child node

 if (!childs.empty()){

 for(std::set<Udm::Object>::iterator iter= childs.begin();

iter!= childs.end(); ++iter){

 Udm::Object child = (Udm::Object)(*iter);

 if (child.operator !=(NULL)){

 TransformFAMessagePart2HLAFixedRecord(root,

child, HLAFixedRecordData, DataTypes,UseOnlyTypeInNaming);

 }

 }

 }

 }

78

APPENDIX B

GME SCREENSHOTS OF FADMM

Entities

Durable Data

a. Ammunition

79

b. FireCommandSOP

c. FireOrderSOP

d. MainDurableData

80

e. MetroReport

f. MissionTypeHierarchy

81

 Utilities

Messages

82

a. AmmoSOPMetMsgDefs

b. CallForFire

83

c. Correction

84

APPENDIX C

GME SCREENSHOTS OF HLA-OMT MODEL

Main Diagram

Object Model

85

HLA Classes

Publish-Subscribe Diagram

86

APPENDIX D

FADM TO HLA-OMT TRANSFORMATIONS SCREENSHOTS

Overview

 GetTransConfig

87

IEEE1516Defaults

InitOMTClassFolders

88

SelectTransType

Trans_Simple

89

Trans_FixRec

Trans_Hybrid_FRInFR

90

Trans_Hybrid_SInFR

